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Abstract

Background: We sought to leverage data routinely collected in electronic health

records (EHRs), with the goal of developing patient risk stratification tools for predict-

ing risk of developing Alzheimer’s disease (AD).

Method: Using EHR data from the University of Michigan (UM) hospitals and

consensus-based diagnoses from the Michigan Alzheimer’s Disease Research Center,

we developed and validated a cohort discovery tool for identifying patients with AD.

Applied to all UMpatients, these labelswere used to train anEHR-basedmachine learn-

ingmodel for predicting AD onset within 10 years.

Results: Applied to a test cohort of 1697 UM patients, the model achieved an area

under the receiver operating characteristics curve of 0.70 (95% confidence interval

= 0.63-0.77). Important predictive factors included cardiovascular factors and labora-

tory blood testing.

Conclusion: Routinely collected EHR data can be used to predict AD onset with mod-

est accuracy. Mining routinely collected data could shed light on early indicators of AD

appearance and progression.
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1 INTRODUCTION

Alzheimer’s disease (AD), themost common form of dementia,1 affects

approximately 5.8 million Americans,1 and that number is expected to

more than double by 2050.1 The physiological changes in the brain

associated with AD, including amyloid beta (A𝛽) and tau buildup, are

currently suspected to take place at least 20 years before symptom

onset.1 Earlier identification of at-risk individuals could lead to earlier

andmore effective treatment.

Predictive modeling for AD risk has focused on AD-specific

biomarkers such as cerebrospinal fluid (CSF), neuropsychological test

scores, and complex medical imaging.2-16 These are not routinely

collected in clinical care, and thus apply to only a subset of individuals
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for whom these data are available. Importantly, because collection of

these biomarkers can be invasive or involve significant cost/logistics,

they are rarely obtained during the pre-clinical stage, limiting current

predictive ability of these biomarkers to short-term horizons (eg, 2–4

years).2-5,10-13 In contrast, we aimed to leverage existing databases

of routinely collected electronic health record (EHR) data to develop

predictive models for AD that can identify at-risk individuals up to a

decade in advance.

EHRs often contain decades of longitudinal clinical data (eg, medi-

cations and comorbidities) for thousands of patients.17 However, these

data have been largely underused in studying pre-clinical signs of AD

progression.18-21 The ability to automatically identify patients with

AD using EHR data would increase the feasibility of downstream
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computational analyses on large-scale datasets, without requiring

labor-intensive chart review. To this end, we first developed and vali-

dated a cohort discovery tool that can be applied to EHR data for auto-

matic classification of AD individuals. Second, we applied this tool to

a large cohort of patients and used machine learning techniques to

develop and validate a model for estimating patient risk of developing

ADwithin a 10-year prediction horizon. Applied more broadly, such an

approach couldhelp in identifying risk factors that arisewell in advance

of clinical symptoms.

2 METHODS

We describe the inclusion/exclusion criteria that were applied to two

datasets to obtain our study cohorts, one for building the cohort dis-

covery tool and another for building the predictivemodel.

2.1 Study cohorts

Our analyses relied on two study cohorts: (1) the cohort discovery

tool–cohort and (2) the risk stratificationmodel–cohort. These cohorts

were extracted from theMichigan Alzheimer’s Disease Research Cen-

ter (Michigan-ADRC) and the University of Michigan’s Research Data

Warehouse (RDW). The Michigan-ADRC, which focuses on memory

and aging research, contains data for 789 participants from ∼2005
to 2019. All participants received a consensus-based clinical diagnosis

using the National Alzheimer’s Coordinating Center Uniform Dataset

criteria.22,23 TheRDWcontains records of patient encounters (defined

as inpatient and outpatient visits) with Michigan Medicine for more

than 4 million patients dating from ∼2000 to 2019. These data consist
of all clinical data associatedwith the encounter (eg, medications). This

studywas approvedby the Institutional ReviewBoard at theUniversity

ofMichigan.

The first cohort, the cohort discovery tool-cohort, included all

Michigan-ADRC participants with at least one RDW encounter at or

after the age of 65 years. Only this age group was considered, because

most cases of AD occur in that population.1 Our second cohort, the

risk stratification model-cohort, included patients with at least one

RDWencounter between the ages of 68 and 72 years who had at least

10 years of follow-up or who converted to AD within 10 years. This

age range allowed for a relatively large study population. We excluded

patientswith anADdiagnosis before 68 years. Here, AD refers to prob-

able AD, because AD cannot be officially diagnosed until after death

and because this diagnosiswas commonly used throughout this period.

2.2 Cohort discovery tool

Using diagnoses provided by the Michigan-ADRC, we investigated the

accuracy of different EHR-based rules for identifying AD patients in

RDW. Each rule aimed to identify RDW encounters associated with

patients with an AD diagnosis and was based on EHR variables related

RESEARCH INCONTEXT

1. Systematic review: We searched the literature for

reports on predictive modeling and cohort discovery in

Alzheimer’s disease (AD). Previous research has analyzed

data not routinely collected in clinical care, has focused

on relatively short prediction horizons (eg, 3 years), or

is limited in the scope of electronic health record (EHR)

data considered.

2. Interpretation: We developed and validated an EHR-

based cohort discovery tool for AD patients. This tool

facilitates analyses of EHR data without requiring man-

ual chart review. Using this tool, we developed and vali-

dated an EHR-based model for predicting AD onset up to

10 years in advance. Covariates associated with the out-

come align in part with the AD literature. Novel associ-

ations included forms of health-care use and urine tests.

Such findings can be used to stimulate hypothesis gener-

ation and/or aid in longitudinal study recruitment.

3. Future directions: Associations identified by our model

require further investigation. Model performance could

be improved with additional longitudinal data and the

inclusion of censored individuals.

toAD: diagnosis codes forAD,medications forAD, procedure codes for

psychological/cognitive testing, and procedure codes involving moder-

ate to high complexity medical decision making (details in Appendix

S1 in supporting information). For example, one rule labeled RDW

encounters with a current or previous AD diagnosis code and a pre-

scription for an AD-associated medication as AD . We also evaluated

an existing tool from thePhenotypeKnowledgeBase (PheKB),20 which

labeledpatientswith at least five encounterswith adementia diagnosis

code or prescription for an AD-associated medication as AD. Applied

to a set of encounters in RDW for a patient, the first encounter that

met theEHR-based criteriawas labeledas “AD”by the cohort discovery

rule. Because AD is currently irreversible,1 we labeled all subsequent

encounters as “AD.”

The labels produced by each EHR-based rule were compared to

the Michigan-ADRC diagnoses at the patient level. Michigan-ADRC

participants are followed longitudinally, and thus may have multiple

timestamped diagnoses (eg, cognitively normal, mild cognitive impair-

ment, AD). As ground truth, we labeled the 6 months preceding the

first AD diagnosis from the Michigan-ADRC and anytime thereafter

as AD. Prior work has shown that clinical diagnoses of AD have good

diagnostic accuracy to histopathology-confirmed AD.24 If a patient

was never diagnosed with AD, then we considered them “not AD”

until 6 months after their last Michigan-ADRC diagnosis. Using these

time frames as ground truth, comparisons to the corresponding RDW

encounters were made as follows (Figure 1). Only those whose RDW

and ground truth time windows overlapped were included during

evaluation. If at least one AD-diagnosed RDW encounter was within
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F IGURE 1 ComparingMichigan Alzheimer’s Disease Research
Center (MIchigan-ADRC) andMichiganMedicine’s Research Data
Warehouse (RDW) encounters for a sample patient. Each row
represents a timeline for the respective dataset, and encounters are
indicated with squares. Shading along theMichigan-ADRC timeline
indicates consensus-based diagnoses. A true positive is counted if at
least one identified Alzheimer’s disease (AD) RDWencounter overlaps
with theMichigan-ADRC defined ADwindow (eg, the encounters in
the blue circles)

the Michigan-ADRC-defined AD window, the patient was considered

to have been correctly identified by the EHR-based rule (true pos-

itive). We defined false positives as those with at least one AD-

diagnosed RDW encounter but no Michigan-ADRC diagnosis for AD

within the Michigan-ADRC-defined AD time window. True negatives

were defined as those not identified by the EHR-based rule and who

never received a Michigan-ADRC diagnosis for AD, while a false neg-

ative had a Michigan-ADRC diagnosis for AD, but was missed by the

EHR-based rule.

Resultswere summarizedby the truepositive rate (sensitivity), false

positive rate (specificity), positive predictive value (PPV), and F1 score

(F1). We measured a population-adjusted PPV, since the Michigan-

ADRC dataset is enriched compared to the general population (details

in Appendix S2 in supporting information).

WhenevaluatingEHR-based rules against eachother,weprioritized

maximizing the F1 score to balance the population-adjusted PPV and

sensitivity. In the case of ties, we considered the adjusted PPV, unad-

justed PPV, specificity, and sensitivity, in that order.

Given the rule with highest F1 score, we evaluated when patients

received the diagnosis within RDW relative to the Michigan-ADRC, by

measuring the time from the first ADMichigan-ADRC diagnosis to the

first AD-labeled encounter in RDW. We also examined our ability to

identify AD at the encounter level. Using the ground truth labels out-

lined earlier, a confusion matrix was constructed to show the number

of encounters (AD/not AD) that were correctly and incorrectly identi-

fied by the EHR-based rule. Results are reported as the median with

an empirical 95% confidence interval (CI), over 1000 bootstrapped

samples. Statistical significance relative to the best rule was deter-

mined by whether the upper bound of the 95% CI for the F1 score was

below the lower bound F1 score of the best rule.

2.3 Predictivemodel

In the following sections, we frame the problem of predicting AD over

a 10-year horizon using EHR-extracted data. We describe feature

engineering, including which EHR components were used, and model

training. We then describe model evaluation in terms of predictive

performance and influential features.

2.3.1 Outcome

To control for the effect of age on risk of developing AD, we aligned

patients in our risk stratification cohort (Section 2.1) based on their

earliest visit between 68 and 72 years. Patientswere labeled according

to the cohort discovery tool (Section 2.2) as converting to AD within

10 years or not. The date of conversion was defined as the date of the

first encounter meeting the cohort discovery tool’s criteria. Patients

were labeled positive if they converted within 10 years of alignment

and negative otherwise.

2.3.2 Variable extraction

Given the “alignment visit", each patient was represented by a high-

dimensional feature vector summarizing all encounters in the 1000

days prior to alignment. A look-back period of 1000 days was chosen

based on the median length of available history. We extracted data

pertaining to diagnoses (ICD9 [International Classification ofDiseases,

Ninth Revision] codes), procedures (CPT [current procedural termi-

nology] codes), medications (medication name, ingredient name, and

VA [Veterans Affairs] class code), laboratory results (LOINC [Logical

Observation Identifiers Names andCodes] and result values), vital sign

measurements (eg, temperature), health-care utilization (eg, encounter

types), and demographic information (eg, race). Features were catego-

rized as “time-invariant” or “time-dependent.” Time-invariant features

were patient characteristics that do not change over time (eg, race),

and time-dependent features were those associated with a specific

encounter or timestamp (eg, diagnoses). Data were pre-processed

with FIDDLE (Flexible Data-Driven Pipeline),25 using a timewindow of

250 days, a pre- and post-filter threshold of 0.0003, and a frequency

threshold of 1.0. Feature vectors for each patient were constructed

by concatenating their time-invariant and time-dependent data

corresponding to the 1,000 days prior to alignment.

2.3.3 Model training

Data were split using an 80%–20% training–test random stratified

split. Using the training data, we performed model selection. Mini-

mizing the L2-regularized hinge loss, we trained a linear-support vec-

tor machine to predict AD onset for patients aligned between 68 and

72 years over a 10-year horizon. The amount of regularization was

tuned using five-fold cross-validation on the training set, sweeping C

= (0.001-1000) on a logarithmic scale. Analyses were performed in

Python 3.6 using SciKitlearn.26

2.3.4 Model evaluation

Overall performance of our predictive model was measured using the

area under the receiver operating characteristics curve (AUROC) and

a confusionmatrix measuring sensitivity, specificity, PPV, and accuracy
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F IGURE 2 Cohort discovery results. Comparison of results from cohort discovery tools which tested a single electronic health record (EHR)
component, were previously published, or whosemedian F1 score was>0.5. Each color corresponds to the identification tool indicated in the
figure legend. Complexity in medical decisions wasmeasured by the amount and variety of patient data examined by a physician, patient risk, and
treatment options. A “*” in the figure legend denotes criteria whose F1 score was significantly worse than the best cohort discovery tool

based on a threshold at the 65th percentile on the held-out test set.

We measured model calibration using the Brier score27 (details in

Appendix S3 in supporting information). Additionally, we examined the

model’s ability to classify AD converters among patients with memory

impairments, reporting the AUROC and confusion matrix (details and

results in Appendix S9 in supporting information). We report all model

evaluation results as empirical 95% confidence intervals generated

using 1000 bootstrapped samples unless otherwise stated.

We also assessed the model’s ability to predict over the 10-year

horizon by examining the number of correctly predicted converters

with respect to their time to conversion (time between alignment and

first AD diagnosis). Because themodel outputs a continuous risk score,

we classified patients as “high risk" if their risk score was above the

65th percentile and as low risk otherwise. We examined five non-

overlapping conversion windows, reporting the sensitivity for each.

Beyond model performance, we examined which categories of EHR

information (eg, diagnoses vs procedures) were the most informative

for prediction by comparing the AUROCs on models trained with dif-

ferent subsets of features (eg, training only on diagnosis features or

training only on procedural features).

Wealso analyzed themodel’smost important features using permu-

tation importance,28 in which any decrease in AUROC was measured

by randomly permuting all patient values within a feature or group of

correlated features (R≥|0.7|). The most important features were iden-

tified as those with the largest drop in AUROC, taken as the median

over 100 permutations and whose lower bound on an empirical 95%

confidence interval was above zero.

3 RESULTS

In the following sections, we identify the best EHR-based rule for

cohort discovery. We then summarize performance of the predictive

model in terms of AUROC, calibration, and learned risk factors.

3.1 Cohort discovery tool

From 789 Michigan-ADRC volunteers, 624 (79%) were 65 years and

older and had encounters withMichiganMedicine (details in Appendix

S4 in supporting information); 24.8% of the 624 volunteers converted

to AD.

Among several cohort discovery rules (Figure 2), the one that best

identified AD patients included those with a diagnosis code for AD

(Table S1 in supporting information; median F1-score = 0.73 [95%

CI = 0.68-0.78], median adjusted PPV = 0.77 [95% CI = 0.71-0.82],

median sensitivity= 0.70 [95%CI= 0.65-0.74]). The PheKB tool20 per-

formed significantly worse in terms of median F1-score = 0.55 (95%

CI = 0.48-0.62, P < .05) and median sensitivity = 0.45 (95% CI = 0.31-

0.51, P< .05).

Among the true positives identified by our best rule, the first RDW

diagnosis occurred on average 177 days before (95% CI = 278 before-

68 days after) the first ADMichigan-ADRCdiagnosis. At the encounter

level, this rule yielded amedian PPV of 0.59 (95%CI= 0.56-0.63) and a

median sensitivity of 0.82 (95% CI = 0.72-0.83; details in Appendix S5

in supporting information).

3.2 Predictivemodel

Applying the cohort-discovery rule with the highest F1-score to RDW

(Figure 3) yielded a study population of 8474 patients, of which 4.14%

converted to AD within 10 years from alignment (Table 1). FIDDLE

extracted 268 time-invariant features and 3963 time-dependent fea-

tures per time window across four time windows (feature breakdown

in Appendix S6 in supporting information). The training and test sets

consisted of 6777 and 1697 patients, respectively.

On the test set, we achieved anAUROCof 0.70 (95%CI=0.63-0.77;

Figure S2a in supporting information) and a Brier score of 0.028 (95%

CI = 0.025-0.029; Figure S1 in supporting information). Thresholding
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F IGURE 3 Applying inclusion/exclusion criteria.We begin with all
patients inMichiganMedicine’s Research DataWarehouse (RDW).
Numbers in each box correspond to the number of patients
included/excluded

TABLE 1 Select characteristics of study cohort

Patient demographics RDW, N= 8,474

Number of encounters per

patient pre-alignment (IQR)

11 (4-25)

Number of encounters per

patient post-alignment (IQR)

84 (36-172)

Female (%) 54.94

Clinical characteristics

Most common co-morbidity Essential hypertension

Most common procedure Laboratory tests related to

hematology and coagulation

Most commonmedication Morphine

AD conversion within 10 years

(%)

4.14

Obtained from the inclusion/exclusion criteria in Figure 3.

Abbreviations: AD, Alzheimer’s disease; IQR, interquartile range; RDW,

MichiganMedicine’s Research DataWarehouse.

at the 65th percentile, we achieved a sensitivity of 0.62 (95%CI= 0.60-

0.63), a specificity of 0.66 (95%CI=0.65-0.66), and a PPVof 0.07 (95%

CI = 0.05-0.09), for an overall accuracy of 0.66 (95% CI = 0.65-0.66;

Table S5 in supporting information).

The model predicted AD onset over long and short prediction hori-

zonswith high sensitivity (Figure S3 in supporting information), though

performance generally decreased as the prediction horizon increased:

87% patients who converted within 2.5 years of alignment were cor-

rectly identified,while themodel correctly identified only 53%of those

who converted within 8.4 to 10 years of alignment. The distribution of

time to conversion was left skewed, with most patients converting >6

years post-alignment.

Overall, data on laboratory test results, procedures, and health-

care utilization had the most predictive power (Figure 4a, Figure S2b).

Predicting using laboratory test results alone was able to achieve

an AUROC of 0.62 (95% CI = 0.55-0.69). However, the best perfor-

mance was achieved when all categories of EHR data were combined.

Using longitudinal data from all previous encounters up to 1000 days

prior to alignment also improved performance, compared towhen data

from only the encounter of alignment was used AUROC = 0.54 (95%

CI = 0.47-0.61; Figure 4b). The top 10 important features pertained

to health-care utilization, procedures involving laboratory blood test-

ing, and cardiovascular risk factors (Figure 4c, Table 2), with themedian

drop in AUROC between 0.002 and 0.040.

4 DISCUSSION

Research in predicting AD risk2-16 has focused on datasets specifically

curated for the purpose of studying AD (eg, Alzheimer’s Disease Neu-

roimaging Initiative [ADNI]).29 While such studies can be used to iden-

tify predictors of disease progression, many of the studied variables,

for example, CSF composition, are not collected during routine clini-

cal care, especially in the decades before symptom onset. Moreover,

becauseof the costs associatedwith suchdata collection, studypopula-

tions are relatively small (∼1700 patients) and prediction horizons rel-
atively short (2–4 years). In contrast, EHR data consist of routinely col-

lected data, have been collected for over a decade at some institutions,

and are available for a large portion of the population, as highlighted by

Stephan et al.30 Given this potential, we sought to explore the utility of

EHRs in modeling the progression of AD 10 years before clinical diag-

nosis. We developed and validated an automated EHR-based cohort

discovery tool for identifying AD patients and then applied this tool to

a large cohort of patients aligned between68 and72 years. Using these

data and machine learning techniques, we developed a model for pre-

dicting AD conversion within 10 years.

While EHR data have been leveraged to model other

conditions,31-34 they have been largely underused in modeling

ADprogression.Most related studies focus on cohort discovery,18,20,35

characterizing the incidence of AD,19 and modeling the risk of demen-

tia more generally while controlling for age to a lesser extent.36,37 We

differ from previous work in that we focus on only AD, while prior

work has focused on AD and related dementias. We chose to focus on

AD alone, because it is the most common form of dementia. Previously

proposed identification rules required at least five encounters with

a dementia diagnosis code or AD associated medication.20 On RDW,

this rule had a lower F1 score compared to our proposed rule. In

addition, we differ from previous risk stratification models in that we

consider AD specifically,36,37 use a 10-year horizon instead of 5 years
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F IGURE 4 Comparison of electronic health record (EHR) data contributions. A, Analysis of individual EHR data fields. Comparison of model
performance when trained with specific fields of EHR data. In this experiment, all data up to 1000 days prior to alignment were used. Error bars
represent 95% confidence intervals. B, Analysis of longitudinal data. Comparison of model performance when trained on information from all
encounters up to 1000 days prior to alignment versus training on information from up to 500 days before alignment and information from
alignment only. In this experiment, data from all EHR components were used. Error bars represent 95% confidence intervals. The black dashed line
represents the receiver operating characteristic curve for random predictions. C, Analysis of individual features. Broad categories in which the
features from Table 2 can fall. Number correspond to those found in Table 2

or less,21,36 and focus on a broader set of input covariates or potential

risk factors.21,36,37 We also control for age to a larger extent, as it

has been demonstrated that previous models performed similarly to

predicting based on age alone.37,38

Compared to curated datasets like ADNI, EHR data present addi-

tional challenges. In the context of AD, EHRs do not have a set of

ground truth diagnoses. We relied on the fact that a subset of individ-

uals in RDWwere also volunteers in theMichigan-ADRC for whomwe

had ground truth diagnoses. In addition, data from prospective studies

such as ADNI are collected at fixed time intervals, while EHR data are

irregularly sampled.

Despite these challenges, there are many advantages in working

with EHR data. First, EHR data may contain more longitudinal data

per patient than ADNI. For example, 25% of ADNI participants had

>10 encounters, compared to more than 50% in our study population.

This allowed us to predict AD onset over longer horizons (10 years)

withmodest performance. Approximately half of the patientswho con-

verted between8.4 and10 years after alignmentwere correctly identi-

fied, demonstrating the possibility of early detection. The ability to pre-

dict over longer horizons could be crucial, as the physiological changes

in the brain are suspected to take place at least 20 years before symp-

tom onset.1 Over time, as more EHR data are collected, we may be

able to improve model performance and investigate longer time hori-

zons. Second, study populations from ADNI are highly enriched with

AD individuals and AD-specific data, while EHR-derived study popula-

tions aremore likely to represent the general population and the types

of data routinely available. We identified laboratory tests and proce-

dures associated with AD onset up to 10 years in advance.While iden-

tification of EHR variables known to be associated with AD for model

building is useful, EHRvariableswith no knownassociation toADcould

lead to the discovery of unknown biological mechanisms, interactions,

and novel biomarkers. Similarly, an EHR-based predictive tool may be

used in a cost-effective strategy to screenwhich at-risk patients should

undergo earlier testing using more invasive (eg, CSF fluid) or imaging-

based established biomarkers.

Many of the features identified as important matched previous

findings in the literature. In particular, features related to health-care

use appeared to be strong predictors, in line with previous work that
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TABLE 2 Important features

Feature group Description Drop in AUROC (95%CI)

1. Age between 59 and 68 • Maximum age between 59 and 68

• Age between 59 and 68

0.0400 (0.0251-0.0675)

2. Visit type – outpatient between 250 and 500 days

before alignment

• Patient has an outpatient visit

• Time between visits is in (0, 2] days

0.0180 (0.0060-0.0360)

3. Age between 71 and 72 • Maximum age between 71 and 72

• Age between 71 and 72

0.0070 (0.0015-0.0161)

4. Religion value NON Patient does not report a religious association 0.0047 (0.0015-0.0128)

5. Laboratorytest
32623-1with value in (5.30, 7.4]

21000-5with value in (11.099, 12.9]

4544-3with value in (16.799, 36.8]

777-3with value in (25.999, 190.0]

785-6with value in (15.699, 29.5]

786-4with value in (29.799, 33.7]

787-2with value in (52.499, 86.3]

789-8with value in (2.149, 4.09]

between 750 and 1000 days of alignment

Bloodmeasurements of

• platelet mean volume

• erythrocyte distribution

• hematocrit

• erythrocytemean corpuscular hemoglobin

0.0041 (0.0026-0.0074)

6. Laboratory test
736-9with value in (0.399, 16.6]

5905-5with value in (0.099, 6.1]

704-7with value in (0.000, 0.7]

731-0with value in (0.099, 1.1]

742-7with value in (0.000, 0.4]

751-8with value in (0.099, 3.0]

between 500 and 750 days of alignment

Bloodmeasurements of

• lymphocytes

• monocytes

• basophils

• neutrophils

0.0037 (0.0005-0.0093)

7. Diagnosis code V04.8 along with procedures 9065x

and G000x between 250 and 500 days before

alignment

Vaccines for influenza, pneumococcal disease

Revisionmastoidectomy

Injection of samarium lexidrona

0.0028 (0.0006-00073)

8. Non-invasive systolic blood pressure in (127, 136]

between 500 and 750 days before alignment

Elevated blood pressure/hypertension 0.0023 (0.0004-0.0041)

9. Procedure 8260x and lab test 2132-9with value in

(89.999, 382.8] between 0 and 250 days before

alignment

Measurements of

• blood cyanide

• vitamin B12

• transcobalamin

0.0021 (0.0012-0.0031)

10. Laboratory test
50557-8with value negative

27297-1with value negative

50561-0with value negative

50563-6with value< 1mg/dl

53327-3with value negative

53328-1with value negative

57747-8with value negative

between 250 and 500 days of alignment

Urinemeasurements of

• ketones

• leukocyte esterase

• protein

• urobilinogen

• total bilirubin

• glucose

• erythrocytes

0.0021 (0.0009-0.0044)

Summary of the top 10most important feature groups, as determined by permutation importance. The letter “x” is used to denote any character. Laboratory

tests, diagnoses, and procedures are represented as LOINC, ICD9, and CPT codes respectively.

Abbreviations: AUROC, area under the receiver operating characteristics curve; CI, confidence interval; CPT, current procedural terminology; ICD9, Interna-

tional Classification of Diseases, Ninth Revision; LOINC, Logical Observation Identifiers Names and Codes.

has reported an increase in health-care use one year prior to AD

diagnosis.39,40 In addition, many of the important features related

to laboratory blood tests have been previously associated with AD.

Specifically, Chen et al. and Winchester et al. found that changes in

blood cell composition may be associated with AD development.41,42

Wang et al. found an association between vitamin B12 and AD

development.43 In line with Cao et al. and Le Page et al., we identi-

fied immune system biomarkers as beneficial in early detection.44,45 In

terms of comorbidities we identified as associated with increased risk,

hypertension has previously been identified.46 In addition, urine tests

are associated with diabetes testing,47 another related risk factor.48

In terms of procedures, mastoid procedures could act as a possible
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surrogate for hearing loss, which has been suspected to be associated

with AD.49 Finally, the receipt of vaccinations may be indiciative of an

overall poorer state of health, increasing susceptibility to infection and

disease. Importantly, all of the predictive factors identified in our retro-

spective analysis aremerely associations and not necessarily indicative

of a causal relationship.

Our study is not without limitation. We relied on imperfect labels

from our cohort discovery tool. As a result, the model may not gen-

eralize to predicting the full spectrum of patients that convert to AD.

In addition, inaccuracies in labeling the date of AD onset may intro-

duce additional noise. Another limitation stems from our decision to

exclude censored patients. We excluded censored patients because

they did not have sufficient follow-up to assign a label. Going forward,

approaches for incorporating censored patients could increase the size

of the study population. Furthermore, although we aligned patients

between 68 and 72 years to control for the effects of age on our pre-

diction task, age appeared as an important predictor. Though aligning

patients at a single age (eg, 68 years) could have mitigated this effect,

this ultimately would have decreased the size of the study population.

In summary, we demonstrated the potential for EHRs as a novel

source of data for developing models that characterize AD progres-

sion. Going forward, such analyses could be applied to other EHRs to

generate hypotheses regarding novel early predictors andmechanisms

of AD. In addition, longitudinal clinical studies involving early inter-

ventions may selectively target recruitment efforts toward “at-risk"

patients well before symptom onset.
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