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Abstract

The aim of this study was to develop a highly porous calcium-containing chitosan

scaffold suitable for dentin regeneration. A calcium hydroxide (Ca[OH]2) suspension

was used to modulate the degree of porosity and chemical composition of chitosan

scaffolds. The chitosan solution concentration and freezing protocol were adjusted

to optimize the porous architecture using the phase-separation technique. Scanning

electron microscopy/energy-dispersive spectroscopy demonstrated the fabrication

of a highly porous calcium-linked chitosan scaffold (CH-Ca), with a well-organized

and interconnected porous network. Scaffolds were cross-linked on glutaraldehyde

(GA) vapor. Following a 28-day incubation in water, cross-linked CH scaffold had no

changes on humid mass, and CH-Ca featured a controlled degradability profile since

the significant humid mass loss was observed only after 21 (26.0%) and 28 days

(42.2%). Fourier-transform infrared spectroscopy indicated the establishment of

Schiff base on cross-linked scaffolds, along with calcium complexation for CH-Ca.

Cross-linked CH-Ca scaffold featured a sustained Ca2+ release up to 21 days in a

humid environment. This porous and stable architecture allowed for human dental

pulp cells (HDPCs) to spread throughout the scaffold, with cells exhibiting a widely

stretched cytoplasm; whereas, the cells seeded onto CH scaffold were organized in

clusters. HDPCs seeded onto CH-Ca featured significantly higher ALP activity, and

gene expressions for ALP, Col1, DMP-1, and DSPP in comparison to CH, leading to a

significant 3.5 times increase in calcium-rich matrix deposition. In sum, our findings

suggest that CH-Ca scaffolds are attractive candidates for creating a highly porous

and bioactive substrate for dentin tissue engineering.
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1 | INTRODUCTION

Tissue engineering approaches to repair and regenerate damaged tis-

sues rely on the use of three-dimensional scaffolds that provide an

extracellular matrix (ECM) template for cell infiltration and a physical

support to guide the cells' activity into the targeted tissues or organs

(Lei, Guo, Rambhia, & Ma, 2018). These concepts have opened a new

perspective for conservative treatments in Operative Dentistry and

Endodontics, since, upon adequate stimulus, mesenchymal stem cells

from pulp tissue and apical papillae are induced into odontogenic phe-

notype and mediate the dentin-like tissue regeneration (Bottino,

Pankajakshan, & Nör, 2017; Murray, 2012). In the clinical scenario,

calcium hydroxide [Ca(OH)2] powder, paste or cement, has been used

as a mineralizing-inducer for dentin regeneration at pulp exposure

sites. However, besides creating mineralized tissue on the application

site, the burst release of Ca2+ and its high alkalinity instantly kills

those cells in direct contact with the material, inducing an adjacent

inflammatory reaction. Once the intensity of the inflammation is mini-

mized and the Ca2+ gradient is established, dentin regeneration

occurs, mediated by resident dental pulp cells (da Rosa et al., 2018; de

Souza Costa et al., 2014; Sangwan, Sangwan, Duhan, & Rohilla, 2013).

Therefore, tissue-engineering strategies have focused on overcoming

this negative initial effect by incorporating Ca(OH)2 particles in poly-

meric blends to create smart biomaterials capable of modulating min-

eralized tissue regeneration. This is due to the complexation potential

of Ca2+, which modulates its release and, consequently, the local tis-

sue pH, thus reducing inflammation intensity and improving tissue

regeneration (Flores-Arriaga et al., 2018).

Chitosan scaffolds have been proven to provide adequate support

for tertiary dentinogenesis in vivo (Li, Liu, Zhao, Wu, & Xu, 2014; Yang,

Han, Pang, & Fan, 2012). A number of studies has shown that dental pulp

cells seeded onto chitosan scaffolds remain viable and differentiate into

odontoblast-like cells capable of depositing high amounts of calcium-rich

matrix (Park, Li, Hwang, Huh, & Min, 2013; Soares et al., 2017; Soares

et al., 2018; Yang et al., 2012). When chitosan is dissolved in acidic solu-

tions, protonated free amino and hydroxyl groups are exposed, which

allow chitosan to form ionic complexes with a wide variety of species,

providing a simple mechanism for modifying the surface and bulk proper-

ties of the chitosan structures (Flores-Arriaga et al., 2018; Lei et al.,

2017). Bonding NH2 and the OH groups of chitosan with Ca2+ from

mineral sources can be obtained by simply mixing the mineral phase with

the chitosan solution, enhancing interaction with precursor cells due to

their increased similarity to natural bone/dentin ECM (Kim et al., 2015;

Klein-Júnior et al., 2018; Lei et al., 2017; Nitta et al., 2017; Shahbazarab,

Teimouri, Chermahini, & Azadi, 2018; Soares et al., 2017).

A highly interconnected porous network is also essential for host cell

ingrowth, angiogenesis, and homogeneous neo-tissue-genesis through-

out the scaffold structure (Gupte et al., 2018). Tri-dimensional porous

chitosan scaffolds are usually obtained by freezing and lyophilizing

chitosan solutions in a suitable vessel; however, these pores are fairly

uniform, with a low degree of interconnectivity (Aranaz et al., 2017;

Madihally &Matthew, 1999; Zhu,Wan, Zhang, Yin, & Cheng, 2014). Por-

ogens with a designed size and shape can be used to modulate pore

architecture and interconnectivity, such as paraffin, sugar, salt, and silica;

however, they require additional steps for porogen release (Ruixin et al.,

2016; Ruixin et al., 2017; Wang et al., 2017; Wang et al., 2017). The gas

foaming technique, by which carbon dioxide (CO2) is injected into a poly-

meric solution, has also been used to increase overall porosity and pore

interconnectivity (Harris, Kim, & Mooney, 1998). Others have described

reactions between carbonate salts and weak acids as possibly resulting in

a bubbling reaction from CO2 release during the freezing process, which

can control the porous architecture of scaffolds. Carbonate sources are

capable of donating Ca2+ to chitosan and, in turn, creating a fairly inex-

pensive and efficient Ca2+ drug release (Chen et al., 2012; Chen, Thein-

Han, Weir, Chen, & Xu, 2014; Kim et al., 2008; Sergeeva, Gorin, &

Volodkin, 2015; Thein-Han & Xu, 2013). These mineral phases can

potentially modulate the osteo/odontogenic differentiation of bone/

dentin precursor cells, and the increased deposition of hydroxyapatite on

chitosan scaffolds has been demonstrated after incubation in simulated

body fluid (Diaz-Rodriguez, Garcia-Triñanes, Echezarreta López,

Santoveña, & Landin, 2018; Holopainen, Santala, Heikkilä, & Ritala,

2014; Mohan, Palangadan, Fernandez, & Varma, 2018; Saveleva et al.,

2018;Wang et al., 2016).

In view of this, in the present investigation, we have proposed

the addition of Ca(OH)2 during the fabrication of the chitosan scaf-

folds as a carbonate source to modulate the degree of porosity and

donate Ca2+ for complexation. We intended to create a bioactive

chitosan scaffold with a highly interconnected porous network capa-

ble of releasing Ca2+ in a sustained fashion in order to amplify the

odontogenic potential of human dental pulp cells. Therefore, this new

biomaterial would become an interesting candidate for pulp capping

procedures by upregulating the regenerative potential of resident pulp

cells with no tissue toxicity, thus leading to deposition of a dentin bar-

rier at the exposure site.

2 | MATERIALS AND METHODS

2.1 | Development of macroporous calcium-
containing chitosan scaffolds

2.1.1 | Scaffold synthesis

One or 2% high-molecular-weight chitosan solutions (310,000–

375,000 Da; 75–85% deacetylated, pH 3.5, Sigma-Aldrich, St. Louis,

MO) were prepared by dissolving the powder into a 2% acetic acid

aqueous solution at room temperature for 24 hr. A 1% w/v calcium

hydroxide (Ca(OH)2; pH 12.0, Sigma-Aldrich) suspension was then

prepared in deionized water. This suspension (2 ml) was incorporated

dropwise under magnetic stirring (1,000–1,500 rpm) into 4 ml of

chitosan solution (1:2), followed by a 5-min stirring at room tempera-

ture, to obtain chitosan–calcium hydroxide solutions (pH 6.8). Incor-

poration of the Ca(OH)2 suspension at low volumes under vigorous

magnetic stirring allowed the mineral particles to be incorporated into

the chitosan solution with no precipitation of the mineral phase. The

Ca(OH)2 suspension at 1% was chosen, since higher concentrations
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did not allow for its complete incorporation into the chitosan solution,

and resulted in an extremely dry scaffold (data not shown). To obtain

the scaffolds, as-received (unmodified) chitosan and chitosan–calcium

hydroxide solutions were poured into Teflon molds, frozen at −80�C

for 24 hr and freeze-dried overnight (Liotop L101, Liobras, S~ao Carlos,

S~ao Paulo, Brazil) at −56�C. The scaffolds' morphology and composi-

tion were evaluated by scanning electron microscopy (SEM)/energy-

dispersive spectroscopy (EDS) (JMS-6610V Scanning Microscope;

JEOL, Tokyo, Japan) at an accelerating voltage of 12–15 kV on sam-

ples sputter-coated with gold.

2.1.2 | Evaluation of dental pulp cells' behavior

To assess the cytocompatibility of these formulations, primary culture

of dental pulp cells (HDPCs) were seeded onto the synthesized scaf-

folds for cell viability (Soares et al., 2018). A mixed culture of pulp cells

was chosen to better represent the clinical scenario. The HDPC was

obtained (after local Ethics Committee approval) by enzymatic diges-

tion in a collagenase type I solution (3 mg/ml, Sigma-Aldrich) of fresh

human pulp tissue from third molars (from an 18-year-old donor), as

described in detail by Soares et al. (2018). Cells at passages 3–6 were

used in this study. The scaffolds (6-mm diameter × 1-mm thick) were

disinfected by soaking in 70% ethanol, followed by vacuum incubation

for 30 min to eliminate air bubbles. The scaffolds were then placed on

48-well plates, washed in phosphate-buffered saline (PBS; pH 7.4;

GIBCO), and incubated overnight at 37�C in complete α-MEM. The

medium was delicately aspirated from the scaffolds, and one drop

(3 μl) of α-MEM containing 1 × 105 HDPCs was poured onto the

materials so that the cells were seeded exclusively on scaffold struc-

tures. The HDPC/scaffold constructs were then cultured for 24 hr

and incubated with 4 μM ethyl homodimer-1 (Eth-1 – dead cells = red

fluorescence) and 2 μM Calcein AM (CA – viable cells = green fluores-

cence) in serum-free α-MEM at room temperature for 45 min (Live/

Dead® Viability/Cytotoxicity Kit; Invitrogen). The presence of viable

and dead cells on the scaffold was observed by means of a Leica DM

5500B microscope (Nussloch GmbH, Nussloch, Germany).

2.1.3 | Modulating porosity degree by freeze-
drying

The 2% high-molecular-weight chitosan solution containing 1% Ca(OH)2

suspension (2:1) was selected and described as chitosan–calcium

(CH-Ca) scaffold. The degree of porosity was modulated by varying the

freezing method as follows: [−80�C] freezing at −80�C overnight;

[−80�C/−198�C] freezing at −80�C overnight, followed by a 30-min

immersion in liquid nitrogen (N2); [−20�C/−80�C/−198�C] freezing at

−20�C for 4 hr, followed by freezing at −80�C overnight and 30-min

immersion in N2; [−20�C/−80�C] freezing at −20�C for 4 hr, followed

by freezing at −80�C overnight; [−198�C] 30-min immersion in N2. Fol-

lowing the freezing procedure, the solutions were freeze-dried over-

night (Liotop L101, Liobras) at −56�C. Scaffold surface topography was

evaluated by SEM (JMS-6610V Scanning Microscope; JEOL). The scaf-

fold porosity (%) and pore diameter (μm) were calculated by ImageJ soft-

ware (National Institutes of Health, Bethesda, MD) on six SEM images

per sample (20 units per image) at 100× magnification (n = 4).

2.1.4 | Modulating degradation profile

In order to increase the stability of the CH and CH-Ca scaffolds obtained

by the gradual freezing protocol at −20�C/−80�C/−198�C, the materials

were cross-linked into 25% glutaraldehyde (GA) vapor. To that end,

chitosan (CH) and CH-Ca scaffolds were prepared as previously

described using the gradual freezing procedure (−20�C/−80�C/−198�C).

The scaffolds (6-mm diameter × 1-mm thick) were placed in a platform

inside a desiccator containing 15 ml of 25% GA solution at the bottom.

A vacuum was applied for 30 min, and the set was incubated for 6 hr.

Degradability of the CH and CH-Ca scaffolds subjected or not to cross-

linking was assessed by calculating the humid weight over 28 days

(n = 6). The samples were incubated in a 500 μl PBS solution at 37�C for

1 hr, followed by drying with absorbent paper at 37�C for 30 min for ini-

tial humid weight measurement (baseline) in a micro-precision meter

(Mettler Toledo XS105 DualRange). Immediately thereafter, the samples

were incubated in PBS at 37�C for 4 weeks, with the PBS solution being

replaced every week. The weight was measured following 1 day of PBS

incubation, and weekly from the baseline. Three readings were per-

formed at each measurement. The mean baseline value for each material

was considered to be 100% of the humid weight in order to calculate

the percentage of humid mass throughout the degradation period.

2.1.5 | Fourier-transform infrared spectroscopy
(FTIR) analysis

The unmodified chitosan (CH) and CH-Ca scaffolds subjected or not to

cross-linking were assessed using FTIR to detect modifications on the

chitosan spectra due to Ca(OH)2 incorporation and GA vapor. This anal-

ysis was performed to understand the chemical interaction of Ca(OH)2

with chitosan and predict its release potential in a humid environment.

The spectra were recorded in a Shimadzu FT-IR-8300 (Shimadzu Corpo-

ration, Kyoto, Honshu, Japan) with an average accumulation of 32 scans

between 4,500 and 400 cm−1 with a resolution of 4 cm−1 at room tem-

perature, in attenuated total reflectance (ATR) mode. The samples

(n = 3) were positioned in the center of an ATR diamond crystal (Smart

Miracle™, Pike Technologies, Madison, WI) and compressed against a

micrometric low-pressure clamp (Shimadzu Corporation).

2.1.6 | Calcium release

This analysis was performed on cross-linked CH and CH-Ca scaffolds

by immersing the cylindrical samples in 200 μl of ultra-pure distilled

water (Life Technologies) at 37�C, for 1, 5, 7, 14, and 21 days (n = 4).

At each time point, one aliquot was removed for reading by reaction
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with o-cresolphthalein complexone substrate (Labtest, Lagoa Santa,

MG, Brazil). The absorbance was quantified at 570 nm (Synergy H1,

Biotek, Winooski, VT) and the data were converted in concentration

(mg/dl) by means of a standard curve.

2.2 | Biological characterization of cross-linked
chitosan-calcium scaffolds

2.2.1 | Cell viability, spreading, and proliferation

HDPCs were seeded onto cross-linked CH and CH-Ca samples and cell

viability (n = 2) was evaluated by live/dead assay, such as previously

described, after culturing the cell/scaffold construct in complete α-MEM

for 14 days. F-actin staining was performed at the material's surface and

in 1-mm thick transversal slices to observe the cytoplasmic filaments

morphology throughout the scaffolds after 14 days of in vitro culture.

The constructs (n = 2) were fixed in 4% paraformaldehyde for 15 min at

room temperature, followed by washing in PBS and incubation with

Alexa-fluor Phalloidin 555 in 2% bovine serum albumin (1:40; Life Tech-

nologies) for 30 min. The samples were washed in PBS, covered with

mounting medium DAPI (Life Technologies), and evaluated on a fluores-

cence microscope (Leica DM 5500B, Nussloch GmbH). Alamar Blue®

assay (n = 6) was performed at 1, 7, and 14 days of cell culture, for indi-

rect measurement of cell proliferation over time. At each time point, the

constructs were incubated with 1:10 Alamar Blue dye in serum-free

medium for 4 hr at 37�C and 5% CO2. The fluorescence intensity of the

supernatant was read at 570 nm excitation and 585 nm emission

(Synergy H1; Biotek). The mean absorbance values of the CH group at

Day 1 was considered to be 100% of cell viability to determine prolifer-

ation over time for both the CH and CH-Ca scaffolds.

2.2.2 | ALP activity

This parameter was measured at 14 days of the HDPC/scaffold cul-

ture by means of the SensoLyte™ Alkaline Phosphatase Assay Kit

(AnaSpec; Fremont, CA). The scaffolds (n = 6) were transferred to

1.5 ml tubes, immersed in Triton-X 100 for cell lysis, and subjected to

mechanical disruption with a pestle tissue grinder. P-nitrophenyl

phosphate colorimetric substrate was then added and the samples

were incubated at room temperature for 1 hr. The samples were then

centrifuged at 10,000g at 4�C for 15 min to collect the supernatant,

and the absorbance was read at 405 nm (Synergy H1, Biotek). Data

were obtained by means of a standard curve and normalized using the

total protein content (Lowry/Folin–Ciocalteu method) (Soares et al.,

2018). The CH-group was considered to be 100% of the ALP activity.

2.2.3 | Mineralized matrix deposition

The cell-scaffold constructs (n = 6) at 21 days were fixed in 70% etha-

nol at 4�C for 1 hr, followed by washing in PBS, and staining with

40 mM Alizarin Red (Sigma-Aldrich) solution for 20 min. The scaffolds

were submitted to a five-time washing in deionized water under shak-

ing for 15 min. Thereafter, the samples were transferred to 1.5 ml

tubes, immersed in 10% cetylpyridinium chloride, mechanically

disrupted with a pestle, and incubated at room temperature for

20 min. The supernatant was collected (10,000g at 4�C for 15 min),

which was used for absorbance reading at 570 nm (Synergy H1, Bio-

tek). Scaffolds with no cells were used as blanks for each composition,

eliminating the background (these samples followed the same experi-

mental protocol as cell-seeded scaffolds). The CH group was consid-

ered to represent 100% of the mineralized matrix deposition.

2.2.4 | Real-time PCR

Gene expression of DSPP, DMP-1, ALP, and collagen type I (Col1)

was evaluated by real-time PCR at 21 days (n = 4), by using an

RNAqueous®-micro kit (Ambion, Austin, TX) and a High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems, Foster City, CA), according

to the recommended protocol for RNA isolation and cDNA synthesis,

respectively. Real-time PCR quantification of mRNA (StepOne Plus;

Applied Biosystems) was performed with Taqman assays and reagents

(Applied Biosystems). GAPDH was used as the constitutive gene. Data

were calculated according to the 2ΔΔCT equation, with the CH group for

normalization.

2.3 | Statistical analysis

Two independent experiments were performed. Data were compiled

and analyzed by one- or two-way analysis of variance followed by the

Tukey's test for observation of significant differences between the

study groups or by the Student's test (p < .05 = statistically signifi-

cant). Power calculation analysis was performed by DDS Research

(Statistical Power Calculator, average, two-sample, two-tailed test,

α = 5%) at the end of the experiment, showing 100% statistical power

for each evaluation.

3 | RESULTS

3.1 | Structure and chemical analysis of the
scaffolds

Plain chitosan scaffolds prepared with a 1% or 2% chitosan solution

featured a disorganized porous architecture, as observed in the SEM

images on Figure 1a/c. Nevertheless, when the mineral phase com-

posed of 1% Ca(OH)2 suspension was incorporated, the scaffolds fea-

tured a more organized pore network, with a round-shaped

architecture. EDS analysis demonstrated the presence of Ca in the

chitosan composition (Figure 1b/d), and live/dead images confirmed

the cytocompatibility of all tested formulations with HDPCs. Among

the tested formulations, the 2% high-molecular-weight chitosan
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solution gave rise to larger pores, allowing for the HDPCs to exhibit a

stretched cytoplasm 24 hr after seeding; whereas, the cells were orga-

nized into clusters for all the other formulations. Therefore, this for-

mulation was selected and described as a chitosan-calcium scaffold

(CH-Ca) for the following experiments. This formulation was then

subjected to different freezing protocols to select the one capable of

providing the larger pore diameter and a higher degree of porosity.

The SEM images in Figure 2a demonstrated that all freezing protocols

gave rise to round-shaped porous scaffolds with different architec-

tures. Analysis of the pore diameter (Figure 2b) demonstrated that

F IGURE 1 The panel of images for selection of the scaffold's composition selection. From left to right, SEM of the scaffold surface (500×),
EDS graphs, and Live/Dead assay 24 hr after HDPC seeding (20×), representative of the scaffolds formulated with: (a) 1% high-molecular-weight
chitosan solution, (b) 1% high-molecular-weight chitosan solution +1% Ca(OH2) suspension 2:1, (c) 2% high-molecular-weight chitosan solution,

(d) 1% high-molecular-weight chitosan solution +1% Ca(OH2) suspension 2:1. Green fluorescence indicates live cells. Red fluorescence indicates
dead cells. Full white arrows indicate cells organized in clusters; the open white arrow indicates cells exhibiting wide cytoplasm spreading
throughout the scaffold
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freezing CH-Ca at −80�C, −20�C/−80�C, −20�C/−80�C/−198�C

resulted in the highest pore size in comparison to the other protocols,

with no significant differences among them. Nevertheless, analysis of

the porosity degree showed that gradual freezing at −20�C/−80�C/

−198�C conferred a significantly higher percentage of porosity among

all tested protocols (Figure 2c). Therefore, this protocol was selected

for the following experiments.

3.2 | FTIR analysis of CH and CH-Ca scaffolds

Figure 3a shows the FTIR spectra of the CH scaffold (pure chitosan)

and CH-Ca scaffold. In pure CH scaffold, several characteristic

absorbance bands were identified: (a) The broadband around

3,500–3,100 cm−1, relative to the stretch vibrations of the OH and

NH groups; (b) The band at 2,929 and 2,875 cm−1, related to the

asymmetric and symmetric C H stretch vibration of the CH groups;

(c) The vibrational bands of amide I, amide II, and amide III, situated at

1,650, 1,552, and 1,321 cm−1, respectively; (d) The asymmetric NH2

bending vibration situated at �1,590–1,560 cm−1 overlaps with the

amide II band. Thus, characteristic NH bend vibrations in primary

amines are situated at 1,639 cm−1 (CO-NHR) and are relative to the

protonated amino group. In general, this band, relative to amines on

CO NHR and C O of amide, appears in the same regions of fre-

quency (1,600–1,650 cm−1) in the FTIR spectrum; (e) The NH2 bend

vibrations, coupled with the C N stretching of amide II, are

observed at 1,552 cm−1; and the C N stretching band of amide,

coupled with the NH bend, appears around 1,321–1,380 cm−1; (f)

Bands at 1,408, 1,380, and 1,257 cm−1 regions are also related to

CH symmetrical deformations bend of alkyl and the methyl groups;

(g) The absorption bands at 1,153, 1,074, and 1,029 cm−1 are indica-

tive of the C O stretching vibrations [(C O C)] bridge and skeletal

vibrations] of the polysaccharide structure; (h) The absorption band at

896 cm−1 is also characteristic of the saccharide structure of chitosan.

The CH-Ca spectra featured a marked displacement in the position

and change of intensity, denoting the interaction of chitosan with

Ca(OH)2. The absorption bands at 1,608, 1,567, 1,534, 1,469, and

1,447 cm−1 showed an increased modification after the insertion of

Ca(OH)2. Bands at 1,608, 1,567, and 1,534 cm−1 relative to NH

stretching and bending vibrations of amides and amines ( NH2,

NHCO, and C N) presented a marked intensity and shift change,

indicating involvement of the amino groups in the calcium complex

F IGURE 2 Panel of SEM
(200×) images (a) Bar graphs of
pore diameter, (b) overall porosity,
and (c) of CH-Ca scaffolds
subjected to the different freezing
protocols. Bars are mean
(numbers) and SD of the pore
diameter (μm) and overall porosity
(%). [ indicates significant

differences among the groups
(one-way analysis of variance
(ANOVA); Tukey's test;
p < .05; n = 6)
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formation. New bands at 1,469 and 1,442 cm−1 are relative to suggest

a different arrangement of primary hydroxyl groups and modification

in the CH2 OH environment and carbonated stretching of CO3
2−. A

decrease of the band at 1,153 and 1,072 cm−1 for C O stretching

vibrations indicates the complexation of Ca2+ with the hydroxyl and

acetyl groups of the saccharide structure. The appearance of bands in

the low frequency region (670–644 cm−1) is referent to stretching

vibrations of the Ca N and Ca O bonds.

Figure 3b–d shows FTIR spectra derivatives after cross-linking. It

is possible to observe that amide I and amide II band on cross-linked

CH scaffold shows shift and intensity alterations, with absorbencies in

the range of 1,645–1,348 cm−1, relative to reticulation reaction

between chitosan amine NH2 groups and C O groups of GA, to

form imines C N (Figure 3b). It is noteworthy that bands related to

the imine-type bonds ( C N) may overlap the C O-type bands of

amide I, since both absorb in the same region of the infrared spec-

trum. Another significant change occurred in the region of

1,565–1,530 cm−1 strongly indicating C C bonds. Changes on CH-Ca

spectra can also be noted after cross-linking (Figure 3c) at NH

stretching and bending vibrations of amides and amines ( NH2,

NHCO, and C N, at 1,567, 1,534 and 1,447 and 1,415 cm−1) indi-

cating GA interaction in these binding sites. Additionally, a decrease

of the band at 1,608 cm−1 and the appearance of the band at

1,644 cm−1 relative to imine also indicates effective GA cross-linking,

and the new bands in the region of 1,380 and 1,310 cm−1 demon-

strates the establishment of Schiff base. Finally, when CH and CH-Ca

spectra after the interaction with GA were compared (Figure 3d), it is

possible to notice the spectral differences related to the interaction

and presence of calcium in the scaffold structure, indicating that even

after GA cross-linking, Ca complexation was established.

3.3 | Analysis of degradability degree

As demonstrated in Table 1, both CH and CH-Ca had a high degrada-

tion rate when immersed in a neutral aqueous medium without GA

cross-linking. Significant weight loss in comparison to the baseline

occurred at 7, 14, 21, and 28 days for the CH scaffold, with each

F IGURE 3 FTIR spectrum comparing (a) CH and CH-Ca scaffold before cross-linking; (b) CH before and after cross-linking; (c) CH-Ca before
and after cross-linking; and (d) CH and CH-Ca scaffold after cross-linking
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TABLE 1 Effect of cross-linking with GA vapor on scaffold degradation

Groups

Scaffold Cross-linking Baseline 1 day 7 days 14 days 21 days 28 days

CH − 100.00a (±15.89)b

Aa

104.79 (±19.58)

Aa

68.30 (±14.81)

Bb

25.75 (±7.46)

Cb

16.09 (±4.97)

Cb

14.06 (±4.71)

Cc

CH + 100.00 (±9.42)

Aa

98.00 (±8.40)

Aa

109.81 (±14.78)

Aa

111.63 (±30.39)

Aa

94.08 (±10.28)

Aa

92.90 (±5.29)

Aa

CH-Ca − 100.00 (±19.94)

Aa

71.11 (±14.04)

Bb

45.01 (±1.16)

Cb

15.66 (±1.92)

Db

8.57 (±0.87)

Db

5.83 (±0.95)

Dc

CH-Ca + 100.00 (±12.04)

Aa

94.85 (±14.94)

ABab

106.71 (±20.54)

ABa

90.48 (±26.65)

ABa

73.96 (±11.42)

BCa

57.81 (±10.58)

Cb

aMean values of humid weight percentage.
bStandard deviation.

Uppercase letters allow comparisons in lines and lowercase letters allow comparisons in rows (p < .05; repeated measure two-way analysis of variance

(ANOVA), Tukey's test; n = 6).

F IGURE 4 Characterization of cross-linked scaffolds. (a, b) Representative SEM images at low and high magnification of the surface (left) and
transversal slice (right) of CH; (c, d) Representative SEM images at low and high magnification of surface (left) and transversal slice (right) of CH-Ca.
The white arrows indicate pore interconnectivity; (e, f) Bar graphs of pore diameter and overall porosity, respectively. Bars are the mean (numbers)
and SD of the pore diameter (μm) and overall porosity (%). [ Indicates significant differences among groups (Student's t-test; p < .05; n = 6)
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being around 32.0%, 74.3%, 83.9%, and 85.9%, respectively. CH-Ca

featured a significantly higher degradability than CH on Day 1, losing

around 28.9% mass in comparison to the baseline, followed by 54.9%,

84.3%, 91.4%, and 94.2% of weight loss at, 7, 14, 21, and 28 days,

respectively. These degradability profiles were significantly reduced

for both scaffolds when they were subjected to GA-crosslinking. For

CH, no significant differences were observed for humid mass through-

out the time points, and significantly higher values were detected in

comparison to non-crosslinked CH scaffolds at Days 7, 14, 21, and

28. A similar pattern was detected for CH-Ca. No significant differ-

ence from the baseline was observed for the GA-treated CH-Ca scaf-

folds on Days 1, 7, and 14. Significant mass loss of around 26.0% and

42.2%, respectively, in comparison to the baseline, was observed at

21 and 28 days, respectively. Significant differences between GA-

treated scaffolds were detected only at 28 days, demonstrating that

the GA-treated CH-Ca scaffold had a significantly higher degradability

degree than the GA-treated CH scaffold following a long incubation

time in a humid environment.

3.4 | Degree of architecture and porosity for GA-
treated scaffolds

SEM images of a GA-treated scaffold's surface and transversal slices

(Figure 4a/d) demonstrate that the cross-linked CH-Ca scaffold featured

an organized and interconnected porous network; whereas, the CH scaf-

fold had a disorganized, porous architecture. This macroporous architec-

ture was detected on the surface and in transversal slices of the CH-Ca,

thus demonstrating the potential for this formulation to create a homo-

geneous matrix for tissue engineering. A significantly higher pore diame-

ter was detected for the CH-Ca scaffold (202.1 μm) in comparison to the

CH scaffold (86.9 μm). The percentage of porosity was also significantly

higher for CH-Ca (86.89%) related to CH (32.17%) (Figure 4e/f).

3.5 | Analysis of calcium release

The cumulative calcium (Ca2+) release profile from the CH and CH-Ca

scaffolds is demonstrated in Figure 5. A sustained Ca2+ release was

detected for the CH-Ca scaffold throughout the time points, with the

higher amount being detected at 21 days, demonstrating that a Ca2+

release system was achieved.

3.6 | In vitro biological characterization

According to Figure 6a, significantly higher cell viability values were

detected for CH-Ca as compared to CH at 1 and 7 days, demonstrating

F IGURE 5 Calcium release assay from CH and CH-Ca cross-
linked scaffolds incubated in ultra-pure distilled water at 37�C, for
21 days (n = 4). Values are mean and SD of cumulative calcium
released (mg/dl in ultra-pure water) at 1, 5, 7, 14, and 21 days

F IGURE 6 Cytocompatibility assay for cross-linked scaffolds. (a) Alamar blue. Bar graph of the mean values for cell viability percentage at
each time point for both scaffolds. Letters allow comparisons among the time points, for each scaffold. [ Allows comparisons among scaffolds at
each time point (Two-way analysis of variance (ANOVA); Tukey's test; p < .05; n = 6). (b) Representative images of Live/Dead assay at the
scaffold surface. Green = live cells; red = dead cells. (c, d) Representative images of F-actin staining at the material's surface and transversal slices,
respectively. Red = Actin filaments; blue = nuclei]
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a higher proliferative potential for the cells seeded onto the CH-Ca scaf-

fold. The live/dead images at 14 days confirm the presence of viable

cells at the surface of both scaffolds (Figure 6b). F-actin images revealed

that cells were capable of spreading throughout the porous structure of

CH-Ca; whereas, round-shape structures were detected on the CH scaf-

fold (Figure 6c/d). Significant increases in ALP activity and mRNA gene

expression of the odontoblastic markers ALP, Col1, DMP-1, and DSPP

were observed for CH-Ca in comparison to the CH scaffold, along with

a significant increase (3.5×) in mineralized matrix deposition detected by

the alizarin red assay (Figure 7a–f).

4 | DISCUSSION

Chitosan solutions can be easily transformed into porous, spongy-like

structures using the phase-separation technique. Ice induces the sol-

ute originally dispersed into the solution to be segregated; once elimi-

nated by freeze-drying, ice creates polygonal pores at the material

structure (Aranaz et al., 2017; Madihally & Matthew, 1999; Zhu et al.,

2014). Incorporation of a mineral phase to chitosan scaffolds has been

proposed to enhance osteoconductivity and fasten neo-tissue-gene-

sis. Usually, the material is prepared by mixing the powder in a

chitosan solution; however, by using this protocol, mineral forms

aggregates that interfere with the rheological behavior of the chitosan

solution, as high viscosity suspensions prevent water migration for

the growth of ice crystals, thus reducing pore size and interconnectiv-

ity (Kim et al., 2015; Klein-Júnior et al., 2018; Lei et al., 2017; Nitta

et al., 2017; Shahbazarab et al., 2018; Soares et al., 2017). In the pre-

sent investigation, we proposed to incorporate Ca(OH)2 aqueous sus-

pension into the chitosan solution to modulate both, the degree of

porosity and chemical composition. According to our results, the

incorporation of a 1% Ca(OH)2 suspension into a 2% chitosan solution

subjected to a gradual freezing protocol at −20�C/−80�C/−198�C,

gave rise to a highly porous scaffold containing calcium within its

structure, as demonstrated in the chitosan-calcium scaffold (CH-Ca).

The increased pore size and pore-interconnectivity detected on

the CH-Ca scaffolds could be the result of a chemically mediated bub-

bling effect. Previous studies have demonstrated utilization of the

foam method to increase pore size and pore-interconnectivity by

reacting calcium carbonate (CaCO3) or calcium bicarbonate (NaHCO3)

and weak acids (citric acid) to generate CO2 bubbles, giving rise to an

organized, macroporous architecture (Chen et al., 2012; Chen et al.,

2014; Kim et al., 2008; Thein-Han & Xu, 2013). According to the liter-

ature, dissolution of Ca(OH)2 in water results in the absorption of

atmospheric CO2 and the formation of carbonate ions (CO3
2−), ulti-

mately leading to the formation of a CaCO3 layer on the surface of

Ca(OH)2 particles (Šavija and Lukovi�c, 2016). The FTIR data of the

CH-Ca scaffold suggest the occurrence of this phenomenon since we

observed the incorporation of a peak in the 1,400–1,500 cm−1 range,

which corresponds to CO3
2− precipitation band (Plavsic, Kobe, & Orel,

1999) supporting the mechanism of the bubbling formation. There-

fore, we believe that Ca(OH)2 water suspension reacted with air-

bubbles entrapped in the chitosan solution due to vigorous stirring,

which then acted as a source of CO2, leading to the formation of a

F IGURE 7 Bioactivity assays for cross-linked scaffolds. (a) ALP activity (% of μg/mg protein from CH group), (b–e) gene expression of ALP,
Col1, DMP-1, and DSPP (2ΔΔCT), respectively; and (f) Alizarin red assay (% alizarin red staining from CH group). Bar graphs of mean values for
each cell parameter for both scaffolds. [Allows comparisons among scaffolds, at each time point (Student's t-test; p < .05; n = 6)]
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CaCO3-rich phase on Ca(OH)2 particles. Following this process, the

reactions of Ca(OH)2 and CaCO3 with acetic acid from the chitosan

solution may have allowed for the formation of calcium acetate ulti-

mately releasing CO2 after reacting with CaCO3. Calcium acetate has

been proven to sequestrate CO2 (Kim & Kim, 2018; Vinoba et al.,

2013), thus facilitating the bubbling effect due to the expansion of the

entrapped air inside the chitosan solution, increasing pore size. The

molecular movement of the ions during these reactions may have cre-

ated the pore interconnections observed in CH-Ca scaffold. The

increased degree of porosity could also be a result of the water con-

tent of the CH-Ca solution, reducing the viscosity of the solvent

phase compared to the CH solution, thus allowing for the develop-

ment of larger ice crystals (Kim et al., 2015). Gradual freezing may

have allowed the ice crystals to grow in size (Madihally & Matthew,

1999; Zhu et al., 2014), playing a role in the establishment of

macropores after freeze-drying.

Sergeeva et al. (2015) described a mechanism of pore enlarge-

ment and interconnectivity on alginate scaffolds by using CaCO3 as a

porogen; however, this process also led to the release of Ca2+, which

was capable of binding to the alginate structure. Therefore, CaCO3

acted as a CO2 precursor and calcium donor. A similar effect was

detected in the present investigation. Besides modulating the pore

architecture of the chitosan scaffolds, Ca(OH)2 also resulted in the

assimilation of Ca on the chitosan structure, as determined by EDS

analysis (Figure 1). Chitosan is able to interact with various metal ions

due to the presence of ionizable amine and hydroxyl functional groups

on the chitosan surface. Whereas metal anions are bound to chitosan

by electrostatic attraction, metal cation, such as Ca2+, is likely to form

ligands (Pestov & Bratskaya, 2016). The modifications on the FTIR

spectra of the CH-Ca scaffold, suggest deprotonation of the NH3
+

groups due to treatment with Ca(OH)2. The variations on the intensity

and shift change of the bands are relative to stretching and bending

vibrations of amides and amines ( NH2, NHCO, and C N), indi-

cating the involvement of amino groups in the calcium complex for-

mation. We may also suggest an interaction of Ca2+ with hydroxyl and

the acetyl groups of the saccharide structure, due to the appearance

of bands in a low frequency region (670–644 cm−1), which refers to

the stretching vibrations of Ca N and Ca O bonds (He, Ao, Gong, &

Zhang, 2011). The amino, hydroxyl, and acetyl groups present on the

chitosan surface are the main sites of interaction with metallic ions

forming stable complexes by coordination, functioning as ligands

(Pestov & Bratskaya, 2016). According to the literature, this bonding

is favored at a higher pH, as deprotonated amine groups ( NH2) that

can bind to Ca2+, thus minimizing electrostatic repulsion of the posi-

tively charged amide groups ( NH3
+) found at a low pH (Flores-

Arriaga et al., 2018). In our experiment, the pH of the Ca-free chitosan

solution in 2% acetic acid was around 3.5, which was then increased

to 6.8 after incorporation of a highly alkaline Ca(OH)2 (pH 12.0) sus-

pension (Volda, Varuma, Guibalb, & Smidsrøda, 2003).

Following the development of CH-Ca scaffolds, we detected a

high sensitivity to water contact, as demonstrated by the degree of

degradation. Therefore, the Ca-free chitosan (CH) and CH-Ca scaf-

folds were subjected to cross-linking with GA vapor for 6 hr to control

the degradation rate. Analysis of FTIR spectra demonstrated the crea-

tion of Schiff base in both scaffolds, and it did not interfere with Ca

complexation on CH-Ca scaffold. GA treatment markedly reduced

degradation for both scaffolds; it also allowed for pore architecture

maintenance, as observed in the SEM images. Therefore, a stable arti-

ficial ECM to support neo-tissue-genesis with 86.89% of degree of

porosity and 202.1 μm pore size was obtained. Previous reports dem-

onstrated that incubation in GA vapor is capable of increasing the

mechanical properties and reducing degradability of the delicate

chitosan-containing nanofibers, maintaining the matrix architecture

(Chen, Wang, Wei, Mo, & Cui, 2010; Liu, Wang, & Zhang, 2017).

According to Zhu et al. (2017), GA vapor incubation for long periods

(24–48 hr) causes modifications on scaffold nano- and micro-

architecture and creates very stiff matrices with toxic potential. On

the other hand, 2–6 hr GA vapor treatment causes less than a 1%

modification in the scaffold architecture, thus significantly increasing

its mechanical properties and reducing its degradability due to the cre-

ation of Schiff base (C N) through the GA aldehyde groups' reaction

with primary amines. When mesenchymal stem cells were seeded

onto 6 hr GA vapor-treated scaffolds, the cells were capable of adher-

ing and similarly spreading as seen in non-cross-linked matrices. Nev-

ertheless, long-term treatments, such as 48 hr, turn the substrate

toxic, which does not allow the establishment of cell–matrix interac-

tions (Zhu et al., 2017). In our experiment, the cells were seeded onto

GA-treated scaffolds, with no toxic effect being detected. Of note,

the interconnected porous network of CH-Ca allowed viable cells

with stretched cytoplasm to spread throughout the scaffold structure.

On the other hand, cells seeded on CH scaffolds were organized into

clusters resembling the scaffold architecture. Cell proliferation was

enhanced for the CH-Ca scaffolds at initial periods, which may have

occurred due to increased superficial area and adequate scaffold com-

position (Kim et al., 2015).

The cross-linked CH-Ca scaffold promoted a sustained Ca2+

release over time, which is an important feature for biological func-

tions. Farhadian, Godiny, Moradi, Hemati Azandaryani, and Shahlaei

(2018) demonstrated that chitosan/gelatin can act as a nanocarrier

system for Ca(OH)2 delivery. The authors incorporated an aqueous

solution of Ca(OH)2 into a chitosan/gelatin solution under intense

magnetic stirring for 5 min to obtain a homogeneous solution,

followed by freeze-drying, similarly to what was performed in the pre-

sent investigation. Then, smooth surface particles with controlled-

prolonged Ca2+ release were obtained. Flores-Arriaga et al. (2018)

demonstrated that Ca(OH)2 pastes containing chitosan as a vehicle

successfully promoted a sustained release of Ca2+ over time. How-

ever, these authors did not evaluate the biological functions of these

biomaterials. Klein-Júnior et al. (2018) created a biomembrane of

bovine pericardium coated with a chitosan layer containing Ca(OH)2

particles for direct pulp capping. This material was applied to the

mechanically exposed pulp tissue of rats, and the authors observed

that the pulp tissue in contact with the Ca(OH)2-chitosan-

biomembrane was less disorganized and inflamed when compared to

the Ca(OH)2 paste. The authors reported that this positive result was

related to the slow degree of Ca2+ release mediated by the
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experimental biomembrane. In the present study, the osteo/

odontogenic markers expression denoted the bioactive potential of

the CH-Ca scaffold. This biomaterial upregulated gene expressions of

ALP, Collagen type I, DSPP, and DMP-1, while it also increased ALP

activity and the mineralized matrix deposition. These biological effects

may be related to the Ca2+ influx into the intracellular environment

with activation of unspecified Ca2+ channels, thus enhancing cell pro-

liferation and activating ERK1/2 signaling along with DSPP, ALP,

fibroblast growth factor 2 (FGF-2), OPN, and OCN overexpression

(An, Gao, Ling, Wei, & Xiao, 2012; Barradas et al., 2012; Kanaya et al.,

2018; Kulan, Karabiyik, Kose, & Kargul, 2018; Li et al., 2015; Savija

Rashid et al., 2003; Woo et al., 2013). Activation of SMAD 1/5/8 sig-

naling pathways and increasing BMP-2 expression has also been

closely related to osteogenic differentiation of precursor cells in con-

tact with calcium-releasing sources (Kanaya et al., 2018; Li

et al., 2015).

Therefore, the innovative scaffold developed herein repre-

sents a new approach to creating a low-cost, highly porous artifi-

cial ECM capable of acting as a drug release system for Ca2+, using

a naturally derived polymer. The in vitro analysis demonstrated the

bioactive potential with human dental pulp cells toward an

odontogenic phenotype; however, in vivo studies are necessary to

observe the potential of CH-Ca as a promising biomaterial for den-

tin regeneration.

5 | CONCLUSION

This study reports a simple approach to modulating the architecture

and chemical composition of chitosan scaffolds by incorporating a

Ca(OH)2 suspension during the formulation procedure using the

phase-separation technique. A highly porous and stable calcium-linked

chitosan scaffold was created and its architecture controlled human

dental pulp cell proliferation. The calcium incorporated into the

chitosan structure was released, creating an environment capable of

positively modulating human dental pulp cells odontogenic differenti-

ation evidenced by the deposition of high amounts of calcium-rich

matrix when compared to Ca-free chitosan scaffolds. In sum, the low-

cost, innovative porous chitosan-calcium scaffold developed in this

study seems to be a viable candidate for mineralized tissue (dentin)

regeneration.
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