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Abstract

To facilitate the development of active distribution networks with high pene-

tration of large-scale distributed generation (DG) and electric vehicles (EVs),

active management strategies should be considered at the planning stage to

implement the coordinated optimal allocations of DG and electric vehicle

charging stations (EVCSs). In this article, EV charging load curves are

obtained by the Monte Carlo simulation method. This article reduces the num-

ber of photovoltaic outputs and load scenarios by the K-means++ clustering

algorithm to obtain a typical scenario set. Additionally, we propose a bi-level

programming model for the coordinated DG and EVCSs planning problem.

The maximisation of annual overall profit for the power supply company is

taken as the objective function for the upper planning level. Then, each sce-

nario is optimised at the lower level by using active management strategies.

The improved harmonic particle swarm optimisation algorithm is used to solve

the bi-level model. The validation results for the IEEE-33 node, PG&E-69 node

test system and an actual regional 30-node distribution network show that the

bi-level programming model proposed in this article can improve the planning

capacity of DG and EVCSs, and effectively increase the annual overall profit of

the power supply company, while improving environmental and social wel-

fare, and reducing system power losses and voltage shifts. The study provides a

new perspective on the distribution network planning problem.
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1 | INTRODUCTION

With increasing attention on environmental pollution problems and the fossil fuel crisis, an increasing number of appli-
cations are being proposed for distributed generation (DG) and electric vehicles (EVs).1,2 Furthermore, the necessary
infrastructure for EVs, that is, electric vehicle charging stations (EVCSs), is being built with support from government
and enterprise. However, the large-scale integration of DG and EVCSs will bring many new problems, such as increas-
ing power losses and voltage sags during power system operation. Therefore, the planning problem of reasonably allo-
cating DG and EVCSs is attracting much attention.
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The work by Gao et al3 uses multiobjective formulations that consider net revenue maximisation, load timing char-
acteristics and the DG output and generates solutions with an adaptive generic algorithm. The work by Kayalvizhi and
Vinod4 builds a multiobjective optimisation model that simultaneously consider power loss minimisation, voltage shift
minimisation and cost minimisation, and the validity of the programming model is verified by three examples. The
work by Singh et al5 builds an optimal allocation model for DG with constraints for reactive power optimisation and
network reconfiguration. The intelligent heuristic algorithm is used to obtain optimal solution. Some Traffic flow
models are used in Xiang et al6 to determine the capacity of EVCSs with consideration of coupled traffic flow and load
demand constraints. In other studies, such as references 7-9, the authors formulate the EVCSs planning goal as a total
cost minimisation problem by considering power loss costs and EVCSs investment costs together.

The aforementioned works mainly study the planning problems of DG and EVCSs separately without considering
the coupled coordination problem. In practice, the siting and sizing of EVCSs affects not only the power system stability
but also the convenience of EV use. In addition, the reasonable planning of EVCSs will benefit local on-site consump-
tion of DG power output. Based on these considerations, the work by Liu et al10 builds a joint planning model of EVCSs
and renewable energy with minimum voltage fluctuations, minimum load fluctuations and maximum capacity for
EVCS energy storage connections, and the genetic particle swarm algorithm is used to determine the optimal construc-
tion scheme. Other works11,12 consider the impacts of increasing the load demand, dynamic electricity pricing and DG
power intermittence on the EVCS and DG coordination planning problem.

Large-scale access to renewable DG and the extensive use of EVs have promoted the use of clean energy and
enhanced the sustainability of power grid development. However, at the same time, problems such as power quality
declines, voltage overruns and an increase in system losses have emerged. The traditional distribution network has the
problem of an outdated management mode that cannot completely solve the above problems. To effectively reduce the
adverse effects of new grid-connected energy sources and improve the compatibility between these sources and the
overall system, the related technologies of active distribution networks (ADNs) have received extensive attention in
recent years. ADNs coordinate and control DG, the energy storage system, controllable loads and other power equip-
ment in the distribution network by optimising the system management mode to promote the source absorption of
green and clean energy. The planning models in [10–12] do not consider the adjustment ability of ADNs when consid-
ering the planning problem, and could not make full use of the positive effects of DG and EVCs on reducing network
loss and improving system power flow distribution, which limited the development of DG and EVCS. The work by Zare
et al13 takes active management measures for DG connected to distribution network and establishes a distributed plan-
ning model of DG based on multiobjective two-layer distribution under the active management model. The work by Bo
et al14 is based on the master–slave logic structure, aiming at promoting the efficient use of intermittent DG, and
established the ADN double-layer scene-planning model. The location and volume of DG and EVCS are closely related
to ADN's operation control strategy. Solving the bi-level programming model is an effective means of ADN planning.

In conclusion, there are few studies on joint planning of DG and EVCS and considering active management mea-
sures. Therefore, a bi-level planning model of a coupled EVCS and DG system that considers the active management
strategy of distribution network is proposed in this article. First, the daily characteristic curve of EV charging load is
obtained through Monte Carlo simulation (MCS), and then the total charging load in the planned area is obtained. The
K-means++ clustering algorithm is used to construct typical scenarios for DG and conventional loads. On this basis, a
two-layer model of joint coordination planning including DG and EVCS is established. The upper planning level sets
the objectives of investment cost, power loss cost and environmental and social welfare and the lower level proposes
three active management measures to optimise the power flow for typical scenarios. The active management at the
lower level proposes three active management measures to optimize the power flow for each typical scenario. The over-
all problem is solved by improved harmonic particle swarm optimisation (IHPSO) and verified on IEEE-33 node and
PG&E-69 node test systems.

2 | EV CHARGING MODEL AND DG OUTPUT MODEL

2.1 | EV charging model

There are four types of typical EVs: buses, taxis, business cars and private cars. The charging load is affected by the
charging mode, battery capacity, initial state-of-charge (SOC) and other factors. The charging parameters of four types
of EVs are listed in Table 1.
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The charging time is determined by the EV parameters,15 as shown in (1).

Tc =
β−SOC0ð Þ

η�Pc
�Eb�60, ð1Þ

where Tc indicates the charging time in minutes, β indicates the percentage of batter capacity after charging, SOC0 indi-
cates the percentage of battery capacity before charging, η indicates the charging efficiency, Pc indicates the charging
power and Eb indicates battery capacity.

The charging behaviours of the four types of EVs are listed in Table 2.16 Buses and taxis need to chargemore than two times
due to their longer daily driving distances. The operating time of buses is usually 5:30 to 23:00. To ensure sufficient driving
power, it is assumed that buses need to be charged twice a day. In the daytime, to avoid the rush hours of 6:30 to 9:00 and 16:30
to 18:00, the charging time is 10:00 to 16:30. During daytime operation, the time for buses to stop and charge is limited, so fast
charging is adopted. During the night, according to the bus operation time, the night charging time can be assumed to be 23:00
to 5:30, and because the charging time in the night is longer, the conventional chargingmethod can be used. Taxis are in opera-
tion for most of the day. To ensure sufficient driving power, taxis need to be charged twice a day. In the daytime, they need to
be charged from 11:30 to 14:00 and from 2:00 to 5:00 during break time. The fast chargingmode is chosen for the limited charg-
ing time. Because government departments or enterprises usually perform their official duties in the daytime, the official vehi-
cles will be in the driving state only during the day. The charging time is long from 18:00 to 7:00, so conventional charging is
adopted. The charging period of private cars can be divided into a night rest period at home and a daytime work period, that is,
18:00 to 7:00 and 8:00 to 17:00. The charging time is long and can be 19:00 to 22:00 at places such as supermarkets and shopping
malls. Considering the shopping and entertainment needs of private EV users, short-term charging time should be applied.

This article estimates the EV charging loads based on MCS. MCS is used to obtain the daily charging load curve of
EVs. The MCS is a method used to study the distribution characteristics of time series by setting up random processes,
repeatedly generating time series and calculating parameter estimators and statistics. The prediction accuracy depends
on the number of simulations, with more simulations resulting in more accurate predictions, and the error method has
nothing to do with the dimension of the problem because the dimension error of the problem does not increase with
the size of the problem. The method can be used directly to determine the statistical properties of a problem, and it does
not need to handle discretisation or continuity problems. The solution process is simple and direct, and the error in the
result is the error probability, which can be effectively reduced by increasing the number of simulations. Thus, this
method is the most effective way or the only way to resolve some problems.

Based on MCS, the calculation process of EV charging loads is as follows:

1. randomly select the beginning charging time and initial SOC of a single EV;
2. calculate the charging limit time Tlim based on the time period of EV charging behaviour;
3. calculate the required charging time Tf according to the fully charged expectation;
4. obtain the practical charging time Tcd = min(Tlim, Tf);
5. repeat steps 1 to 4 for all other EVs considered and
6. aggregate the total EV charging load in a certain region.

2.2 | Intermittent DG output model

If an EV is fully charged by power generation from conventional energy sources, then the indirectly produced CO2

emissions will not be less than those of conventional vehicles. To date, the most common renewable energy resources

TABLE 1 Charging parameters of electric vehicles

Vehicle type Battery capacity (kW�h) Conventional charging power (kW) Fast charging power (kW)

Bus 200 21 135

Taxi 64 14 90

Official car 32 7 45

Private car 32 7 45
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are distributed wind generation (DWG) and photovoltaic generation (PVG), which have strong characteristics of inter-
mittence due to the effects of solar irradiance, wind speed and other environmental factors. To choose optimal EVCS
locations, we should consider the weather conditions in certain areas.

The PV power output model is

PPVG =
PPVGS

g
gs

g≤ gs

PPVGS g> gs

8<
: ð2Þ

where PPVG denotes the output power of PV, PPVGS indicates the rated output power of PV, g indicates the actual solar
irradiance and gs indicates the rated solar irradiance.

Wind power is closely correlated with wind speed, and the relationship can be described as follows:

PDWG =

0 0≤ v< vi[ vo ≤ v

PDWGS
v−vi
vs−vi

vi ≤ v< vs

PDWGS vs ≤ v< vo

8>><
>>:

ð3Þ

where PDWG indicates the wind output power, PDWGS indicates the rated wind output power, v indicates the actual wind
speed, vi indicates the cut-in wind speed, vo indicates the cut-off wind speed and vs indicates the rated wind speed.

2.3 | Selection of typical scenarios

The PV, wind output power and load demand have characteristics of periodicity and uncertainty. Therefore, selecting
the typical scenarios according to historical data in certain areas is very important for describing the PV output power,
wind output power and demand load. This article uses the K-means++ clustering algorithm17 for scenario reduction.
The K-means++ algorithm has the advantages of simple implementation and good clustering, and compared with
other methods, such as the K-means algorithm, this algorithm possesses a selection process of initial clustering centres
by the distance maximisation principle that is conducive to improving the clustering effect. We can use 8760 hours of
historical data as the original dataset for the PV, wind power and load demand and then divide these 365 daily curves
into k scenarios according to the Pseudo F-statistic (PFS) metric.18 The k scenarios selected are denoted as ξ1, ξ2, …, ξk.
The DG output is calculated according to these k scenarios. The clustering process is as follows:

1. Normalisation of PV, wind power and load demand based on the data standardisation method;
2. Based on the maximum distance between initial clustering centres, K clustering centres are initialised. The steps are

as follows:

a. A scene from the original scene set Ni, i = 1, 2, 3, …, 365 is randomly selected as the first cluster ξ1.
b. The shortest Euclidean distance d(Ni, ξj) between each original scene and the existing clustering centres is calcu-

lated, and d(Ni, ξj) of each original scene is accumulated to get the accumulated value sum (d).
c. The random value rand, rand < sum (d) is generated, and the rand value is updated to rand d(Ni, ξj). When ran-

d < 0, Ni is the new cluster centre, which ensures that the original scene farther from the existing cluster centre is
selected as the new cluster centre.

d. Steps 2 and 3 are repeated until the selection of k clustering centres ξ1, ξ2, …, ξk is completed.

e. The Euclidean distance from the remaining original scene to k clustering centres is calculated, and the original scene
is divided into the nearest clustering cluster.

f. The centres of k clusters are calculated, and the k centres to the new generation of clustering centres of ξ1, ξ2, …, ξk
are updated.

g. Steps 3 and 4 are updated until the clustering results do not change.
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3 | MATHEMATICAL FORMULATION WITH BI-LEVEL PROGRAMMING

A bi-level programming model is a hierarchical system optimisation model in which the upper and lower levels have
their own mathematical models.19,20 The lower-level programming problem is based on the scheme given by the upper-
level decision-making process. The optimal value of the lower-level decision-making process is fed back to the upper
level, and the upper-level decision-making process conforms to the global optimal benefit according to the optimal
value response of lower-level decision-making process. Bi-level programming is characterised by considering the entire
situation from a holistic point of view, which is conducive to achieving the global optimum.

3.1 | The planning level model

It is assumed that the investment in intermittent DG and EVCSs comes from a power supply company. The decision
variables of the upper planning level will be location and capacity, and the objective is the maximisation of annual reve-
nue with considerations for the annual rate of return, power loss and environmental and social welfare. The objective
function is shown in (4).

maxF =Cpro−Closs +Cenv: ð4Þ

where Cpro indicates the annual rate of return for the power supply company, Closs indicates the power loss and Cenv

indicates the environmental and social welfare. The three cost structures are listed as follows:

1. The annual rate of return for the power supply company Cpro is given by

Cpro =CS +CB−Cinv−COM ð5Þ

where Cs indicates the profit of the power supply company, CB indicates government subsidies for renewable energy sources,
Cinv indicates the investment in intermittent DG and EVCSs and COM indicates the maintenance fee for DG and EVCSs.

CS = 365
Xk
l=1

pl
X24
t=1

ðco Pl,t,DWG + Pl,t,PVGð Þ+ co−cið Þ�

Pl,t,L−Pl,t,DWG−Pl,t,PVGð Þ+ ce−cið ÞPl,t,EVÞ,
ð6Þ

where k indicates the number of typical scenarios; pl indicates the probability of the lth typical scenario; ci and co indi-
cate the purchasing and selling prices for the power supply company; ce indicates the unit selling price for EVCSs; and

TABLE 2 Charging behaviour of electric vehicles

Type
Charge time
period

Charge
probability

Initial SOC
distribution

Initial charging time
distribution

Charge
method

Bus 10:00-16:30 1 N(0.5, 0.12) Evenly distributed Fast charge

23:00-5:30 1 N(0.5, 0.12) Evenly distributed Regular charge

Taxi 11:30-14:00 1 N(0.3, 0.12) Evenly distributed Fast charge

2:00-5:00 1 N(0.3, 0.12) Evenly distributed Fast charge

Official
car

18:00-7:00 1 N(0.4, 0.12) Evenly distributed Regular charge

Private
car

8:00-17:00 0.2 N(0.6, 0.12) N(9, 0.52) Regular charge

18:00-7:00 0.7 N(0.6, 0.12) N(19, 1.52) Regular charge

19:00-22:00 0.1 N(0.6, 0.12) Evenly distributed Regular charge
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Pl,t,L, Pl,t,DWG, Pl,t,PVG and Pl,t,EV represent the load demand, DWG output power, PVG active power and EVCS charging
load, respectively, at time interval t.

CB = 365
Xk
l=1

pl
X24
t=1

cb,DWGPl,t,DWG = cb,PVGPl,t,PVG ð7Þ

where cb,DWG and cb,PVG represent units of government subsidies for DWG and PVG.

Cinv =
XnDWG

j=1
ct1P j,DWG +

XnPVG

j=1
ct2P j,PVG +

XnEV

j=1
cg + ct3P j,EV
� �� � r 1+ rð Þn1

1 + rð Þn1 −1
, ð8Þ

where Cinv indicates the investment and building costs of DG and EVCSs; nDWG, nPVG and nEV indicate the number of
candidate nodes for DWG, PVG and EVCSs, respectively; Pj,DWG, Pj,PVG and Pj,EV indicate the capacity for DWG, PVG
and EVCSs, respectively, at node j; ct1, ct2 and ct3 indicate the unit capacity construction costs of DWG, PVG and
EVCSs, respectively; cg indicates the fixed investment cost of EVCSs; r indicates the discount rate and n1 indicates the
service life of the equipment.

COM =365
Xk

l=1
pl
X24

t=1
com1Pl,t,DWG + com2Pl,t,PVGð Þ+

XnEV

j=1
com3P j,EV
� � ð9Þ

where com1 and com2 indicate the unit maintenance fees for DWG and PVG, respectively, and com3 indicates the
amortised unit maintenance fee for EVCSs.

2. The power loss cost Closs is given by

Closs = 365
Xk
l=1

pl
X24
t=1

coPl,t,loss ð10Þ

where Pl,t,loss indicates the system loss at time interval t.
3. The environmental and social welfare Cenv is given by

Es = 365
Xk
l=1

pl
X24
t=1

Pl,t,DWG + Pl,t,PVGð Þ ð11Þ

Cenv =Es

XNenv

s=1

xs as + bsð Þ+365
Xk
l=1

pl
X24
t=1

Pl,t,EV

eEV
cCo2xEV, ð12Þ

where Es indicates the output power for renewable energy; Cenv indicates the social welfare of renewable energy
sources and reduced emissions from EVs; Nenv indicates the types of pollution gases; xs, as and bs denote the emis-
sion levels of the sth kind of pollution gas; eEV indicates the energy consumed by an EV in 100 miles; cCO2 indicates
the CO2 trading tax fee in the international market; and xEV indicates the difference between EVs and conventional
vehicles.

The constraints in the upper-level optimisation model are

PDGi,min ≤PDGi ≤PDGi,max ð13Þ

XnDG
i=1

PDGi ≤PDG,max ð14Þ
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PEVi,min ≤PEVi ≤PEVi,max: ð15Þ

3.2 | The active management level model

The lower active management level is based on the upper-level planning decisions, and three active management strate-
gies are proposed for power flow optimisation in typical scenarios, including transformer adjustment, DG output cur-
tailment and reactive power compensation. The curtailment rate of DG is 0% to 30%, the transformer adjustments are
1% ± 1.25%*8 and are installed at the system header node, and the reactive power compensation is 50 kvar for a unit
capacity with 0 to 10 units. Power flow optimisation based on active management measures impacts network losses,
voltage levels, transmission power and other constraints of system operation and thus affects the ability of a system to
accept DG and EVCSs. The above effects are ultimately reflected in the objective function. The objective function of the
lower-level optimisation model is

maxf =Cl,S +Cl,B−Cl,OM−Cl,loss +Cl,env, ð16Þ

where Cl,S, Cl,B, Cl,OM, Cl,loss and Cl,env denote the profit of the power supply company, the government subsidy for
renewable energy sources, the maintenance fee for DG and EVCSs, the power loss fee and the environmental and social
welfare in scenario l, respectively.

Pi−Ui
P
j∈i
Uj Gij cos θij +Bij sin θij

� �
=0

Qi−Ui
P
j∈i
Uj Gij sin θij−Bij cos θij

� �
=0

8><
>:

ð17Þ

Uimin ≤Ui ≤Uimax ð18Þ

Sij ≤ Sijmax ð19Þ

Umin
OLTC ≤UOLTC ≤Umax

OLTC ð20Þ

Pcuti ≤Pmax
cuti ð21Þ

Qci ≤Qmax
ci , ð22Þ

where Pi and Qi indicate active power and reactive power injections; Ui and Uj indicate the voltages at nodes i and j,
respectively; Gij and Bij indicate conductance and admittance, respectively; θij indicates the angle shift between i and j;
Uimax and Uimin indicate the upper and lower voltage bounds, respectively, at node i; Sij and Sijmax indicate the transmis-
sion power and transmission power limit, respectively; UOLTC indicates the secondary voltage at the transformer; Umax

OLTC

and Umin
OLTC indicate the upper and lower limits of secondary voltage at the transformer, respectively; Pcuti indicates the

curtailment for DG at node i; Pmax
cuti indicates the allowed curtailment at node i and Qci indicates the reactive power com-

pensation at node i with an allowed upper limit of Qmax
ci .

4 | THE OPTIMAL SOLUTION OF THE PROPOSED BI-LEVEL
PROGRAMMING METHOD

4.1 | The solution algorithm for the two-layer model

Particle swarm optimisation (PSO) simulates the principle of bird swarm foraging. It has the advantages of simple cal-
culation and strong direction of optimisation. However, the PSO algorithm has poor global search ability and easily falls
into local optima in the later stage of the algorithm. Harmony search (HS) expands the search range in the later stage
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of the algorithm, but its directivity is not strong. The new harmony combination principle of the HS algorithm is intro-
duced in the particle optimisation process of the PSO algorithm. In each iteration of the process, the search space is
searched for the optimal particle with a certain probability to improve the global search performance of the algorithm.
The computational steps of IHPSO algorithm are as follows:

1. Chaotic initialisation of PSO based on formula (23) is used to improve the ergodicity of the initial particle in the sea-
rch space:

xi,j = xmin
j + xmax

j −xmin
j

� �
χi,j ð23Þ

χi,j+1 = λ�χi,j 1−χi,j

� �
, ð24Þ

where xi,j indicates the j-dimension of particle i; xmax
j and xmin

j indicate the upper and lower limit values, respectively, of
variable j; and χi,j indicates the sequences of chaotic variables generated by logistic mode 1, and the chaotic parameters
λ are set to 4.

2. The fitness value f(xi) of each particle is calculated, and the individual extreme value Pi of each particle and the
global extreme value Pg of the population are obtained.

3. The inertia coefficient, learning coefficient and particle position and velocity are updated.
4. The fitness value of the new generation particle swarm is calculated, the individual extreme value is updated, and

the global extreme value is removed.
5. New particles hmnew are generated based on Harmony Memory Considering Rate (HMCR), Pitch Adjusting Rate

(PAR), and bandwidth (BW).
a. If HMCR is larger than the random variable, new particle variables are randomly obtained from PSO; otherwise,

they are randomly generated from the range of variables.
b. If PAR is greater than the random variable, then the bandwidth of the new particle variable is adjusted; other-

wise, no adjustment is made.
c. Steps (b) and (c) are repeated until all new variables are constructed to generate new particles.

6. The global extremum Pg is updated. If the fitness value of the new harmony f(hmnew) is better than the fitness value
of the global extremum f(Pg), then the new harmony hmnew is the new global extremum Pg.

7. Whether the algorithm satisfies the conditions for achieving the number of iterations is determined; otherwise,
return to step 3.

4.2 | The flowchart of the solution process

The coordinated bi-level programming framework for DG and EVCSs is presented in Figure 1. The planning level
determines the siting and sizing of DG and EVCSs, and the active management level determines the three active
management strategies by using transformer adjustment, DG output curtailment and reactive power compensa-
tion. The planning layer transfers the optimal allocation scheme of DG and EVCSs to the active management level.
On this basis, the active management level optimises the power flow of four scenarios under the optimal allocation
scheme by adjusting the On-load tap changer (OLTC) gear, reducing DG active power and switching reactive
power compensation devices. By satisfying the reliability of system operation, the optimal solutions maxf1 ~ maxf4
of four scenarios is obtained and fed back to the planning level. Combining the optimal solutions maxf1 ~ maxf4
and the investment and construction costs of the DG and charging stations, the planning level calculates the opti-
mal solution maxF and optimises the decision scheme. By analogy, the optimal joint planning scheme of
DG-charging station is determined through multiple information transmissions and feedback between the plan-
ning level and the active management level.
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5 | CASE STUDY

5.1 | Case study of the IEEE-33 node test system

This article considers the coordinated planning problem for DG and EVCSs on an IEEE-33 node test system, which is
shown in Figure 2, using the system parameters described in.21

It is assumed that the number of EVs is 600 in the studied region, the running time for the MCS is 50 000, and the
parameters of the probability model are shown in Table 2. The ratio of electric buses, electric taxis, electric buses and
electric private cars is 1:2.4:10.2:63.5, as in reference [16]. The average charging load of 60 minutes in the hour is used
as the charging load of an hour. According to the calculation presented in section A, the total charging load is shown in
Figure 3.

The 365*24-hour daily profiles of wind speed, solar irradiance, and conventional load demand are presented in
Figure 4 in references 22, 23.

According to the PFS metric (Figure 5) of the clustering results, the number of clusters is set to be 4. The four typical
scenarios of wind speed, solar irradiance and conventional load demand are shown in Figure 6, in which normalisation
has been completed.

PFS=
tr NBð Þ= K−1ð Þ
tr NWð Þ= S−Kð Þ , ð25Þ

where K is the number of clusters; S is the number of original scene samples and tr (NB) and tr (NW) are the traces of
the interclass and intraclass scatter matrices, respectively. After clustering, if the distance between different clusters is
larger and the distance between samples in the same cluster is smaller, then the PFS index is larger, which indicates
that the clustering effect is better.

The particle swarm size is 40, the number of iterations time is 100, the inertia coefficients ωmax = 0.95 and ωmin = 0.4,
learning coefficient c1max = 2.75, c1min = 1.25, c2max = 2.25 and c2min = 0.5. In harmony algorithm part, the memory
library value probability HMCR = 0.9, the fine-tuning probabilities PARmax = 0.4, and PARmin = 0.9, and the fine-
tuning bandwidths bwmax = 1 and bwmin = 0.0001. The wind turbines are installed at nodes 13, 23 and 31; the PV panels
are installed at 7, 21, 28; and the EVCS candidate nodes are nodes 20, 4, 8, 14 and 29. The rated power for DG is
100 kW, with a rated solar irradiance of 1 kW/m2, and a cut-in wind speed, rated wind speed and cut-off wind speed of
3 m/s, 13.5 m/s and 20 m/s, respectively. The purchasing and selling prices of the power supply company are 0.4
CNY/China Yuan (RMB)/kW�h and 0.5 RMB/kW�h. The unit price of a charging station is 1 RMB/kW�h. The govern-
ment subsidy price Cb,DWG is 0.1 RMB/kW�h, and Cb,PVG is 0.36 RMB/kW�h.

The building costs are ct1 = 5381 RMB/kW, ct2 = 4375 RMB/kW, ct3 = 6000 RMB/kW and cg = 3 000 000 RMB. The
discount rate is 8%, and the equipment life is 20 years. The cost parameters for operation and maintenance are
com1 = 0.0296 RMB/kW�h, com2 = 0.0096 RMB/kW�h and com3 = 100 000 RMB/MW in in reference [23].

The pollution costs of thermal power generation are shown in Table 3, as in reference [24].
Three strategies are employed for optimal allocation.

• Strategy 1: use the active management strategy for the coordinated planning of DG and EVCSs.
• Strategy 2: do not use the active management strategy for the coordinated planning of DG and EVCSs.
• Strategy 3: use the optimal allocation for DG and then for EVCSs.

The results from using these three strategies are shown in Table 4.
In the DG planning scheme, 13(8) indicates that 8 distributed generators are installed in nodes 13, and in the EVCSs

planning scheme, 20(237) indicates that the capacity of the charging station in node 20 is 237 kW.
The active management measures of Strategy 1 are shown in Table 5.
In the curtailment rate of DG, 13(23%) indicates that the active outputs of DG on node 13 are reduced by 23%. In

the reactive power compensation, 13(400) indicates that 400 kvar of reactive power are compensated in node 13. In the
transformer adjustments, −3 indicates that the transformer tap is connected at −3 × 1.25%.

1. Result analysis of optimal allocation
Strategy 2 considers coordinated planning for DG and EVCSs, and strategy 3 considers DG planning first and then
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allocates EVCSs based on the DG planning result. Comparing strategy 2 to strategy 3, strategy 2 increases the DG
capacity to 300 kW because it considers mutual support for the DG and EV charging loads.
The integration of EVs into the distribution network can help to increase system flexibility by integrating DG and to
reduce the possibility of voltage violations caused by DG integration. However, strategy 3 is individual planning
strategy, which is limited by the designed capacity.

START

Calculate the daily charging load of electric
vehicles in the planned area

Perform scene reduction to obtain typical
daily scenes of intermittent DG output and

normal load demand

Initialize DG and EVCS planning

Pass the upper-level planning plan to the lower
layer to obtain an active management measures

plan

The lower layer calculates the lower objective
function maxf of each typical scene and feeds the

result back to the upper layer

The upper layer combines the plan and maxf to
calculate the objective function.

Has the appropriate number of
iterations been reached?

Output optimal planning scheme and
optimal solution

YES

END

IHPSO
algorithm
iteration

NO

FIGURE 1 Flowchart of the bi-level programming model

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19 20 2118

23 2422

26 27 28 29 30 3125 32

FIGURE 2 IEEE-33 node test system

FIGURE 3 Charging load of an electric vehicle
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By comparing strategy 1 to strategy 2, we find that the introduction of an active management strategy increases the
DG capacity by 1300 kW and the EVCS capacity by 150 kW. It is believed that the use of active management strate-
gies for DG and EVCS operation can effectively control the allocation of power flow by increasing system flexibility
to integrate DG and EVCSs while satisfying various constraints in the distribution network. In traditional methods,
the system could easily present some voltage or power violations for the integration of large-scale DG and EVCSs.

2. Revenue analysis of distribution network
The revenues from the distribution network using different strategies are summarised in Table 6. Comparing strat-
egy 1 to strategy 2, strategy 1 increases the annual revenue by 654 100 RMB, with annual profit increases of 445 900
RMB, power loss decreases of 94 300 RMB and environmental and social welfare increases of 113 900 RMB.
a. Regarding the annual profit from the selling price, strategy 1 effectively increases the capacity of DG and EVCSs.

Although increasing the capacity increases the investment and system maintenance fees, more DG output can
also be consumed. The lower level power supply company will reduce the cost of purchasing electricity from the
upper-level power supply company. Furthermore, EVCSs can be more effectively integrated into the power sys-
tem, with increasing profits for the charging stations. Therefore, strategy 1 will have better annual profits.

b. The annual power losses caused by these three strategies are presented in Figure 7, in which strategy 1 decreases the
power loss by 50.72% and 53.09% compared to strategy 2 and strategy 3, respectively. Because strategy 1 uses active

FIGURE 4 Wind speed, light intensity and load curves

FIGURE 5 PFS of different clustering scene numbers
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management for optimising power flow allocation, the power losses in the distribution network are effectively
controlled.

c. Regarding clean energy utilisation, strategy 1 consumes 1870 MW�h more DG output power and integrates
85.14 MW�h more EV charging loads than strategy 2, which encourages the consumption of clean energy while
reducing the environmental pollution caused by fossil fuels. The emissions of SO2, NOx and CO2 are reduced by
6707 kg, 2887 kg and 1.20 × 106 kg, respectively, which satisfies the requirements of the Chinese government. The
integration capability of clean energy and the pollution reduction ability of different strategies are presented in
Table 7.

FIGURE 6 Wind speed, light intensity and load scenarios
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As seen by comparing strategy 2 to strategy 3, strategy 2 considers the integration capability of EVCSs for
DG. Therefore, the DG output power consumption is increased by 410.47 MW�h in strategy 2, with an annual profit
increase of 178 900 RMB. The emissions of SO2, NOx and CO2 are reduced by 1472 kg, 633 kg and 0.26 × 106 kg,
respectively.

d. Voltage shift analysis
For the analysis of voltage shift in the active management strategy, strategy 1 for the optimal allocation of DG and
EVCSs has two results, which correspond to the cases of considering active management (case a) and not consider-
ing active management (case [b]). The absolute values of the maximum voltage shift are presented in Figure 8.

Using ±5% as the limit for node voltage shifts, without the active management strategy, nodes 9 ~ 17 and 28 ~ 32
will have voltage limit violations, with a maximum voltage shift of 6.47%. The maximum voltage deviation occurs at
node 17 for the 4 typical scenarios, and its 24-hour voltage is shown in Figure 9. Voltage overshoot occurs at 9:00,
10:00, 19:00, 20:00, 21:00 and 22:00. If active management is utilised, the voltage shifts of all nodes are below 5%, with a
maximum value of 2.88%. The results demonstrate that, in the scenario of high penetration of DG and EVCSs, the active
management strategy can help to reduce the possibility of voltage violations and increase system reliability.

In conclusion, the comparison between strategy 2 and strategy 3 shows that the joint planning of DG and EVCSs is
beneficial to the mutual absorption of DG output and EV charging loads and the development of new energy sources.
Thus, strategy 2 is superior to strategy 3. By comparing strategy 1 and strategy 2, it can be concluded that in the joint
planning of DG and EVCSs, considering active management measures can effectively improve the system's DG and
electricity performance. The acceptance capacity of electric vehicle charging loads can meet the needs of distribution
companies while reducing environmental pollution and achieving a win–win situation between enterprise interests and
environmental protection. Therefore, strategy 1 is superior to strategy 2, and strategy 1 is the best of the three strategies.

TABLE 3 Cost parameters of

environmental pollution
Contaminant xs (kg/MW�h) as (RMB/kg) bs (RMB/kg)

CO2 639.2 0.01 0.02

SO2 3.587 1.00 6.00

NOx 1.544 2.00 8.00

TABLE 4 Optimal allocation

results of different strategies
Strategy Optimised configuration results Capacity (kW)

Strategy 1 DG 13(8).23(10).31(10).7(7).21(2).28(6) 4300

EVCS 20(237).4(194).8(223).14(309).29(203) 1166

Strategy 2 DG 13(10).23(5).31(8).7(7) 3000

EVCS 20(252).4(197).8(186).14(173).29(208) 1016

Strategy 3 DG 13(9).23(4).31(10).21(3).28(1) 2700

EVCS 20(185).4(186).8(185).14(184).29(185) 925

TABLE 5 The active management measures of strategy 1

Scenarios
Curtailment rate of distributed
generation Reactive power compensation

Transformer
adjustments

Scenarios 1 13(0%).23(0%).31(0%).7(0%).21(0%).28(0%) 13(400).23(50).31(100).7(0).21(250).28
(250)

−3

Scenarios 2 13(23%).23(29%).31(30%).7(23%).21(28%).28
(30%)

13(200).23(50).31(200).7(0).21(50).28(50) 1

Scenarios 3 13(25%).23(10%).31(0%).7(2%).21(8%).28(7%) 13(300).23(50).31(50).7(0).21(500).28(0) −1

Scenarios 4 13(0%).23(0%).31(0%).7(0%).21(0%).28(0%) 13(250).23(250).31(300).7(0).21(150).28
(200)

1
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5.2 | Case study of the PG&E-69 node test system

To validate the optimised configuration model proposed in this article, the PG&E-69 node test system shown in
Figure 10 and the real 30-node distribution system shown in Figure 11 are verified and analysed. The parameters of the
two systems are shown in references [25, 26].

For the PG&E-69 node test system, the wind turbines are installed at nodes 10, 33 and 38, the PV panels are
installed at 21, 50, 66, and the EVCS candidate nodes are nodes 14, 32, 40, 45 and 61. The planning results and the
active management measures of strategy 1 are shown in Tables 8 and 9. The revenues from the distribution network
using different strategies are shown in Table 10.

For the real 30-node system, the wind turbines are installed at nodes 8 ~ 14, the PV panels are installed at nodes
23 ~ 29, and EVCS candidate nodes are set as nodes 5, 8, 16, 22 and 25. The planning results and the active manage-
ment measures of strategy 1 are shown in Tables 11 and 12. The revenues from the distribution network by using differ-
ent strategies are shown in Table 13.

To analyse the voltage shift in the active management strategy, strategy 1 for the optimal allocation of DG and
EVCSs has two results, which correspond to the cases of considering active management (case [a]) and not considering
active management (case [b]).The absolute values of the maximum voltage shift are presented in Figures 12 and 13.

TABLE 6 Comprehensive income of different strategies

Strategy 1 Strategy 2 Strategy 3

Investment and construction cost/10 000 RMB 449.83 374.68 354.65

Operation and maintenance cost/10 000 RMB 44.52 39.44 38.13

Government subsidy fee/10 000 RMB 174.35 130.28 115.50

Distribution network sales revenue/10 000 RMB 696.09 621.29 694.87

Charging station sales revenue/10 000 RMB 258.46 252.50 248.03

Annual comprehensive sales revenue/10 000 RMB 634.54 589.95 575.62

System network loss cost/10 000 RMB 9.16 18.59 19.53

Environmental benefits/10 000 RMB 83.72 72.33 69.71

Annual comprehensive income/10 000 RMB 709.11 643.69 625.81

FIGURE 7 Annual network loss of different strategies

TABLE 7 Clean energy acceptance and pollutant reduction

Strategy 1 Strategy 2 Strategy 3

Distributed generation total consumption (MW�h) 12 407 10 537 10 127

Electric vehicle charging load total acceptance (MW�h) 3692 3607 3543

SO2 emission reduction (kg) 44 506 37 799 36 326

NOx emission reduction (kg) 19 157 16 270 15 636

Carbon emission reduction (×106 kg) 8.03 6.83 6.57
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As seen by comparing the optimal allocation results of the three strategies and the annual comprehensive benefits
of the distribution network, strategy 1 has the highest level of clean energy acceptance and the best annual comprehen-
sive benefits. A comparison of the advantages and disadvantages of the three strategies is similar to the simulation
results of the IEEE-33 node test system. The proposed model is verified again based on the optimal configuration results
of the PG&E-69 node system and a real 30-node distribution system.

5.3 | Performance comparison of algorithms

In this article, the IHPSO algorithm and the PSO algorithm are tested by the test functions f1(x) ~ f4(x).

f 1 xð Þ=
Xn
i=1

x2i ð26Þ

FIGURE 8 Maximum voltage shift of IEEE-33 node system

FIGURE 9 Maximum offset of node voltage
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59 63 64 65 66 67 68 6960 61 62

4140 5857

5655

42 46 47 48 49 50 51 5243 44 45 53 54
36 37 38 39

28 29 30 31 32 33 34 35

FIGURE 10 PG&E-69 node test system
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1918
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2524 26 27 28 29FIGURE 11 Real 30-node distribution system
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TABLE 8 Optimal allocation

results of different strategies for the

PG&E-69 node system

Strategy Optimise configuration results Capacity (kW)

Strategy 1 DG 10(9).33(2).38(10).21(3).50(10).66(10) 4400

EVCS 14(186).32(273).40(190).45(266).61(339) 1254

Strategy 2 DG 10(2).33(5).38(10).21(4).50(10).66(10) 4100

EVCS 14(185).32(294).40(238).45(224).61(214) 1155

Strategy 3 DG 10(5).33(2).38(10).21(2).50(9).66(9) 3700

EVCS 14(190).32(181).40(193).45(188).61(191) 943

Abbreviations: DG, distributed generation; EVCS, electric vehicle charging stations.

TABLE 9 The active management measures of strategy 1 in the PG&E-69 node system

Scenarios Curtailment rate of DG Reactive power compensation
Transformer
adjustments

Scenarios
1

10(0%).33(3%).38(0%).21(0%).50(0%).66(0%) 10(100).33(300).38(0).21(0).50(200).66(50) −1

Scenarios
2

10(25%).33(29%).38(0%).21(30%).50(0%).66
(0%)

10(50).33(0).38(100).21(300).50(450).66
(200)

−4

Scenarios
3

10(23%).33(0%).38(0%).21(12%).50(0%).66(0%) 10(50).33(300).38(400).21(50).50(250).66
(250)

−4

Scenarios
4

10(0%).33(0%).38(0%).21(0%).50(0%).66(0%) 10(50).33(0).38(300).21(300).50(500).66
(200)

−5

TABLE 10 Comprehensive income of different strategies for the PG&E-69 node system

Strategy 1 Strategy 2 Strategy 3

Investment and construction cost/10 000 RMB 455.43 432.28 400.03

Operation and maintenance cost/10 000 RMB 39.83 35.66 33.02

Government subsidy fee/10 000 RMB 194.31 189.02 169.32

Distribution network sales revenue/10 000 RMB 652.76 614.36 592.47

Charging station sales revenue/10 000 RMB 260.75 258.63 248.98

Annual comprehensive sales revenue/10 000 RMB 612.57 594.08 577.73

System network loss cost/10 000 RMB 2.73 4.57 4.30

Environmental benefits/10 000 RMB 77.34 71.53 67.90

Annual comprehensive income/10 000 RMB 687.17 661.04 641.33

TABLE 11 Optimal allocation results of different strategies for the 30-node system

Strategy Optimise configuration results Capacity (kW)

Strategy 1 DG 8(13).9(12).10(15).11(15).12(10).13(11).14(15).23(8).24(12).25(11).26(11).27(14).28(15).29(6) 16 800

EVCS 5(470).8(494).16(562).22(372).25(660) 2258

Strategy 2 DG 8(15).9(15).10(15).11(12).12(7).13(13).14(15).23(8).24(12).25(1).27(7).28(12).29(3) 13 500

EVCS 5(454).8(537).16(316).22(482).25(203) 1992

Strategy 3 DG 8(14).9(14).10(14).11(7).12(13).13(14).14(14).23(2).24(6).25(7).26(3).27(8).28(3).29(7) 12 600

EVCS 5(375).8(369).16(364).22(371).25(371) 1850

Abbreviations: DG, distributed generation; EVCS, electric vehicle charging stations.
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f 2 xð Þ=
Xn
i=1

xij j+
Yn
i=1

xij j ð27Þ

f 3 xð Þ=
Xn−1

i=1

100� xi+1−x2i
� �2

+ xi−1ð Þ2
h i

ð28Þ

f 4 xð Þ=
Xn
i=1

x2i −10�cos 2πxið Þ+10
� �

: ð29Þ

The search parameters of the functions f1(x) ~ f4(x) are shown in Table 14.
Using MATLAB programming, the particle swarm size of the algorithm is 50, the number of iterations is 1000, and

each algorithm runs 100 times independently. The test results of the two algorithms are shown in Table 15.
According to the simulation results of the f1(x) function, the IHPSO algorithm is superior to the PSO algorithm in

searching for single-peak convex functions. Compared with the PSO algorithm, the IHPSO algorithm has a stronger
global searching ability for functions with local extrema such as f2(x) and f3(x). Therefore, the indexes of simulation
results have been greatly improved. For functions such as f4(x), for which it is difficult to search for global extrema, the
simulation results again verify the IHPSO search. It can be verified that the IHPSO algorithm proposed in this article
substantially improves the performance of the algorithm.

TABLE 12 The active management measures of strategy 1 in the 30-node system

Scenarios Curtailment rate of distributed generation Reactive power compensation
Transformer
adjustments

Scenarios
1

8(0%).9(0%).10(0%).11(0%).12(0%).13(0%).14(0%).23
(0%).24(0%).25(0%).26(0%).27(0%).28(0%).29(0%)

8(0).9(0).10(450).11(200).12(200).13(100).14
(350).23(0).24(100).25(250).26(200).27(0).28
(350).29(50)

−3

Scenarios
2

8(30%).9(0%).10(0%).11(0%).12(0%).13(28%).14
(0%).23(30%).24(11%).25(30%).26(30%).27(30%).28
(25%).29(30%)

8(0).9(100).10(350).11(0).12(500).13(50).14
(150).23(150).24(0).25(300).26(500).27(450).28
(100).29(150)

0

Scenarios
3

8(0%).9(0%).10(0%).11(0%).12(0%).13(0%).14(0%).23
(16%).24(0%).25(0%).26(30%).27(0%).28(30%).29
(0%)

8(0).9(0).10(300).11(250).12(200).13(0).14(0).23
(400).24(0).25(500).26(500).27(0).28(0).29(0)

1

Scenarios
4

8(0%).9(0%).10(0%).11(0%).12(8%).13(0%).14(0%).23
(0%).24(0%).25(0%).26(0%).27(0%).28(0%).29(0%)

8(400).9(300).10(50).11(500).12(0).13(250).14
(0).23(0).24(250).25(400).26(0).27(0).28(350).29
(0)

−5

TABLE 13 Comprehensive income of different strategy for the 30-node system

Strategy 1 Strategy 2 Strategy 3

Investment and construction cost/10 000 RMB 1179.19 986.11 932.71

Operation and maintenance cost/10 000 RMB 144.66 139.00 134.19

Government subsidy fee/10 000 RMB 725.77 595.00 552.19

Distribution network sales revenue/10 000 RMB 2782.24 2674.26 2602.63

Charging station sales revenue/10 000 RMB 525.06 491.60 496.00

Annual comprehensive sales revenue/10 000 RMB 2709.21 2635.76 2583.92

System network loss cost/10 000 RMB 27.75 44.65 46.48

Environmental benefits/10 000 RMB 299.66 282.30 271.77

Annual comprehensive income/10 000 RMB 2981.13 2873.41 2809.21
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6 | CONCLUSION

This article proposes a bi-level optimal allocation model for DG and EVCSs with consideration of the variability and
stochasticity of the EV charging load, the DG output power and the conventional load. The model is solved by the
IHPSO algorithm. Some conclusions can be summarised as follows:

1. Under the assumption that countries attach importance to the development of clean energy DG and EVs, compared
to the independent planning of DG, the coordination and complementarity between the charging load and DG
should be considered when optimising the allocation of DG, which is conducive to promoting the absorption of
clean energy in the system.

FIGURE 12 Maximum voltage shift of the PG&E-69 node

system

FIGURE 13 Maximum voltage shift of the regional 30-node

system

TABLE 14 Function search

parameters
Function Dimension Search scope Theoretical optimum

f1 10 [−100 100] 0

f2 10 [−100 100] 0

f3 10 [−100 100] 0

f4 10 [−100 100] 0

TABLE 15 Algorithm simulation

results
Function Algorithm Best value Worst value Mean value

f1 PSO 5.117e−20 3.017e−04 3.246e−06

IHPSO 1.687e−20 1.660e−07 4.1975e−09

f2 PSO 0.053 47.321 7.126

IHPSO 7.310e−04 1.830e−01 2.316e−02

f3 PSO 3.965e−04 469.222 29.459

IHPSO 7.685e−05 18.008 3.242

f4 PSO 0.995 46.763 15.900

IHPSO 0.995 16.914 6.779

Abbreviations: IHPSO, improved harmonic particle swarm optimisation; PSO, particle swarm optimisation.
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2. The use of an active management strategy can result in more reasonable plans for optimal DG and EVCS allocation,
which increases the capacity of DG and EVCSs over that the reliable system already in operation, increases the profit
of the power supply company and reduces power loss while making better use of clean energy for emission reduc-
tions under the encouragement of the national energy policy.

3. Compared with the traditional PSO algorithm, the IHPSO algorithm established in this article has a strong global
optimisation ability, does not easily fall into local optima, and results in improved performance of the algorithm.
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LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviations
DG distributed generation
DWG distributed wind generation
EVs electric vehicles
EVCSs electric vehicle charging station
IHPSO improved harmonic particle swarm optimisation
PVG photovoltaic generation

Variables and parameters
Tc charging time in minutes
Β percentage of batter capacity after charging
SOC0 percentage of battery capacity before charging
η charging efficiency
Pc charging power
Eb battery capacity
PPVG output power of PV
PPVGS rated output power of PV
g/gs actual/rated solar irradiance
PDWG wind output power
PDWGS rated wind output power
v actual wind speed
vi/vo cut-in/cut-off wind speed
vs rated wind speed
Cpro annual rate of return for the power supply company
Closs power loss
Cenv environmental and social welfare
Cs profit of the power supply company
CB government subsidies for renewable energy sources
Cinv investment in intermittent DG and EVCSs
COM maintenance fee for DG and EVCSs
k number of typical scenarios
pl probability of the lth typical scenario
ci/co purchasing/selling prices for the power supply company
ce unit selling price for EVCSs
Pl,t,L load demand at time interval t
Pl,t,DWG DWG output power at time interval t
Pl,t,PVG PVG active power at time interval t
Pl,t,EV EVCS charging load at time interval t
cb,DWG units of government subsidies for DWG
cb,PVG units of government subsidies for PVG
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Cinv investment and building costs of DG and EVCSs
nDWG number of candidate nodes for DWG
nPVG number of candidate nodes for PVG
nEV number of candidate nodes for EVCSs
Pj,DWG/Pj,PVG/Pj,EV capacity for DWG/PVG/EVCSs at node j
ct1/ct2/ct3 unit capacity construction costs of DWG/PVG/EVCSs
cg fixed investment cost of EVCSs
r discount rate
n1 service life of the equipment
com1/com2 unit maintenance fees for DWG/PVG
com3 amortised unit maintenance fee for EVCSs
Pl,t,loss system loss at time interval t
Es output power for renewable energy
Cenv social welfare of renewable energy sources and reduced emissions from EVs
Nenv types of pollution gases
xs/as/bs emission levels of the sth kind of pollution gas
eEV energy consumed by an EV in 100 miles
cCO2 CO2 trading tax fee in the international market
xEV difference between EVs and conventional vehicles
Cl,S profit of the power supply company in scenario l
Cl,B government subsidy for renewable energy sources in scenario l
Cl,OM maintenance fee for DG and EVCSs in scenario l
Cl,loss power loss fee in scenario l
Cl,env social welfare in scenario l
Pi/Qi active/reactive power injections
Ui/Uj voltages at nodes i and j
Gij/Bij conductance and admittance
θij angle shift between i and j
Uimax/Uimin upper/lower voltage bounds at node i
Sij transmission power
Sijmax transmission power limit
UOLTC secondary voltage at the transformer
Umax

OLTC=U
min
OLTC upper/lower limits of secondary voltage at the transformer

Pcuti curtailment for DG at node i
Pmax
cuti allowed curtailment at node i

Qci reactive power compensation at node i
Qmax
ci allowed upper limit of reactive power compensation at node i

xi,j j-dimension of particle i
xmax
j =xmin

j upper and lower limit values of variable j
χi,j sequences of chaotic variables generated by logistic mode 1
λ chaotic parameters
K number of clusters
S number of original scene samples
tr (NB)/tr (NW) traces of the interclass and intraclass scatter matrices

ORCID
Lijun Liu https://orcid.org/0000-0002-8074-6819

REFERENCES
1. Zhao J, Xu Z, Wang JH. Robust distributed generation investment accommodating electric vehicle charging in a distribution network.

IEEE Trans Power Syst. 2018;33(5):4654-4666.
2. Wang L, Sharkh S, Chipperfield A. Optimal decentralized coordination of electric vehicles and renewable generators in a distribution

network using A* search. Int J Electr Power Energy Syst. 2018;98:474.

20 of 21 LIU ET AL.

https://orcid.org/0000-0002-8074-6819
https://orcid.org/0000-0002-8074-6819


3. Gao YJ, Liu JP, Yang J, et al. Multi-objective planning of multi-type distributed generation considering timing characteristics and envi-
ronmental benefits. Power Syst Protect Control. 2014;7(10):6242-6257.

4. Kayalvizhi S, KDM V. Optimal planning of active distribution networks with hybrid distributed energy resources using grid-based multi-
objective harmony search algorithm. Appl Soft Comput. 2018;67:387.

5. Singh B, Mukherjee V, Tiwari P. GA-based multi-objective optimization for distributed generations planning with DLMs in distribution
power systems. J Electr Syst Inf Technol. 2016;4:1311.

6. Xiang Y, Liu JY, Li R. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates.
Appl Energy. 2016;178:647-659.

7. Yan XW, Duan C, Chen X. Planning of electric vehicle charging station based on hierarchic genetic algorithm. Transportation Electrifica-
tion Asia-Pacific. IEEE; 2014:1-5.

8. Bayati M, Abedi M, Gharehpetian GB, Farahmandrad M. Short-term interaction between electric vehicles and microgrid in
decentralized vehicle-to-grid control methods. Protect Control Modern Power Syst. 2019;4(4):42-52.

9. Yao W, Zhao J, Wen F. A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging
systems. IEEE Trans Power Syst. 2014;29(4):1811-1821.

10. Liu JP, Zhang TX, Zhu J, Ma TN. Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfac-
tion and distributed renewables integration. Energy. 2018;164(1):560-574.

11. Shojaabadi S, Abapour S, Abapour M. Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power gener-
ation in distribution networks considering uncertainties. Renew Energy. 2016;99:237-252.

12. Kandil SM, Farag HEZ, Shaaban MF. A combined resource allocation framework for PEVs charging stations, renewable energy
resources and distributed energy storage systems. Energy. 2018;143(15):961-972.

13. Zare K, Abapour S, Mohammadi-Ivatloo B. Dynamic planning of distributed generation units in active distribution network. IET Generat
Transm Distrib. 2015;9(12):1455-1463.

14. Bo Z, Nian L, Yuying Z, et al. Bi-level scenario programming of active distribution network for promoting intermittent distributed gener-
ation utilization. Trans China Electrotech Soc. 2013;28:155.

15. Islam MS, Nadarajah M, Duong QH. A day-ahead forecasting model for probabilistic EV charging loads at business premises. IEEE
Trans Sustain Energy. 2018;9:741-753.

16. Luo Z, Hu Z, Song Y. Study on plug-in electric vehicles charging load calculating. Autom Electr Power Syst. 2011;35(14):36-42.
17. Zhang Hepner GF. The dynamic-time-warping-based K-means++ clustering and its application in phenoregion delineation. Int J Remote

Sens. 2017;38(6):1720-1736.
18. Vogel MA, Wong AKC. PFS clustering method. IEEE Trans Pattern Anal Mach Intell. 2009;PAMI-1(3):237-245.
19. Zhang J, Li KJ, Wang M, et al. A bi-level program for the planning of an islanded microgrid including CAES. IEEE Trans Ind Appl.

2016;52(4):2768-2777.
20. Asensio M, Munoz-Delgado G, Contreras J. A bi-level approach to distribution network and renewable energy expansion planning con-

sidering demand response. IEEE Trans Power Syst. 2017;32(6):4298-4309.
21. Baran ME, Wu FF. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv.

1989;4(2):1401-1407.
22. Grigg C. The IEEE reliability test system 1996. IEEE Trans Power Syst. 1999;14(3):1010-1020.
23. Yan Y, Wu W, Zhang Y. Optimal allocation of intermittent distributed generation in considering benefit of regional energy active distri-

bution network supplier. Power Syst Technol. 2017;41(3):752-758.
24. Su H, Hu M, Liang Z. Distributed generation & energy storage planning based on timing haracteristics. Electric Powcr Autom Equip.

2016;36(6):56-63.
25. Baran ME, Wu FF. Optimal capacitor placement on radial distribution systems. IEEE Trans Power Deliv. 2002;4(1):725-734.
26. Peng X, Lin L, Liu Y, et al. Optimal distributed generator allocation method based on correlation Latin hypercube sampling Monte Carlo

simulation embedded crisscross optimization algorithm. Proc CSEE. 2015;35(16):4077-4085.

How to cite this article: Liu L, Zhang Y, Da C, Huang Z, Wang M. Optimal allocation of distributed generation
and electric vehicle charging stations based on intelligent algorithm and bi-level programming. Int Trans Electr
Energ Syst. 2020;30:e12366. https://doi.org/10.1002/2050-7038.12366

LIU ET AL. 21 of 21

https://doi.org/10.1002/2050-7038.12366

	Optimal allocation of distributed generation and electric vehicle charging stations based on intelligent algorithm and bi-l...
	1  INTRODUCTION
	2  EV CHARGING MODEL AND DG OUTPUT MODEL
	2.1  EV charging model
	2.2  Intermittent DG output model
	2.3  Selection of typical scenarios

	3  MATHEMATICAL FORMULATION WITH BI-LEVEL PROGRAMMING
	3.1  The planning level model
	3.2  The active management level model

	4  THE OPTIMAL SOLUTION OF THE PROPOSED BI-LEVEL PROGRAMMING METHOD
	4.1  The solution algorithm for the two-layer model
	4.2  The flowchart of the solution process

	5  CASE STUDY
	5.1  Case study of the IEEE-33 node test system
	5.2  Case study of the PG&E-69 node test system
	5.3  Performance comparison of algorithms

	6  CONCLUSION
	ACKNOWLEDGMENTS
	  LIST OF SYMBOLS AND ABBREVIATIONS
	REFERENCES


