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we model exchange in training. In this case, the STFR-based
MWE estimates are close to the MESE-based estimates.
Key words: myelin water fraction (MWF), small-tip fast re-

covery (STFR), scan optimization, kernel ridge regression,

machine learning

1 | INTRODUCTION

Quantitative magnetic resonance imaging (QMRI) is the application of MRI to estimate parameters of interest. One
QMRI application of growingsinterest is myelin water imaging, where one seeks quantitative maps of myelin water
fraction (MWF) [1, 2]. The MWF is the proportion of MRI signal in a given voxel that originates from water bound
within the myelin sheath. MWF maps are desirable for tracking progression of demyelinating diseases [2], e.g., multiple
sclerosis [3].

The most widely accepted myelin water imaging techniques use the multi-echo spin echo (MESE) MRI scan (or
variants) [3, 4, 5]. MESE.is the standard for clinical MWF imaging to which alternative MWF mapping techniques are
typically compared. However, MESE traditionally suffers from long scan times, impeding its routine clinical use. On
the other hand, a combined gradient and spin echo (GRASE) MRI scan, a variant of MESE, has been shown to enable
whole-brain MWF maps in under 8 minutes [6].

An alternative to MESE=based myelin water imaging uses faster, steady-state MRl scans [7] that can acquire whole-
brain MWF maps in 7 minutes[6]. Despite evidence showing that this method produces reproducible MWF maps (thus
enabling longitudinal studies), there are concerns about overestimating the true MWF [8, 9] and its precision [10].
Other steady-state methods have also been explored for MWF estimation, such as multi-echo gradient echo (GRE)
[11, 12, 13] and dual-echesteady-state (DESS).[14, 15, 16].

To our knowledge, most of these myelin water imaging techniques ignore potential differences in the effective
magnetic field experienced by myelin-bound water compared to water outside of myelin (an exception being [13]).
However, it has been shown that in cerebral white matter, myelin-bound water does in fact experience a different
effective magnetic field[17].

In preliminary work [18], we showed that modeling the additional off-resonance experienced by myelin water
reduces the Cramér-Rao Lower Bound (CRLB) of estimates of MWF using small-tip fast recovery (STFR) MRI [19].
We showed that the STFR'sequence is sensitive to the frequency differences, suggesting that the difference in off-
resonance between myelin and non-myelin water is a potentially useful contrast mechanism containing information
that can help estimateMMWHF:[48]. Simulations using optimized STFR scan parameters led to MWF estimates with lower
errors when there was a.fixed; hon-zero (but unknown) difference in off-resonance, compared to when there was no
(still unknown) frequency.difference. To our knowledge, this work was the first to specifically design scans for myelin
water imaging that exploit frequency differences. Because the actual frequency difference is unknown and might vary
between voxels or disease conditions, the proposed approach treats the difference as an unknown parameter that is
estimated alongside other unknown parameters like the T and T% values of the various tissue compartments.

One limitation of ourprevious work was its tissue model. In[18] we assumed a two-compartment, non-exchanging
model for simplicity in computing the STFR signal. However, neglecting exchange can lead to biases in MWF estimates
[20]. Therefore, the method proposed in this paper uses a three-compartment model. The three compartments are
myelin water, non-myelin water, and amacromolecular pool; myelin water and non-myelin water are in exchange, while

myelin water exchanges with the macromolecular pool [21].
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1
2 We previously estimated MWF from optimized STFR scans using parameter estimation via regression with ker-
3 nels (PERK), a recently developed learning-based technique for parameter estimation in MRI that uses kernel ridge
4 regression at its core [18, 22]. One alternative method for MWF estimation is non-linear least squares, which requires
5 iterative methods for solving and can get stuck in a local minimum. Another alternative is dictionary search, which
6 requires evaluating the STFR signal model on a discretized grid of the signal model parameters, which is impractical
7 when the number of parameters exceeds three or four. Yet another alternative is to use a neural network. While
8 neural networks can lead to good parameter estimates, they require a lot of training data and long training time. In
?O contrast, PERK trains quickly and avoids the other problems associated with non-linear least squares and dictionary
11 search. Therefore, this workagainuuses PERK.
12 This paper substantially builds upon our previous work. First, we re-optimize the STFR scan parameters to model
13 variations of bulk off-resonance and to account for two spoiled gradient-recalled echo (SPGR) scans that are used
14 for separate bulk off-résonance estimation. Next, we compare STFR-based MWF estimates to MESE-based MWF
15 estimates in simulation. lnsparticular, we estimate MWF from the optimized STFR scans with PERK [22] using a three-
1 ? compartment tissue madel with exchange. Finally, we compare our proposed STFR-based MWF estimation method to
18 MESE-based MWEF estimation'in vivo. Figure 1 illustrates the proposed approach.
19 The organization of this paper is as follows. Section 1.1 provides background information on the scans used in
20 this work (STFR and MESE);the scan design process, and PERK. Section 2 outlines our experiments, both for the STFR
21 scan design and for MWF &stimation in simulation and in vivo. Section 3 reports the experimental results. Section 4
22 discusses our results. Section 5 gives concluding remarks.
23
24
25
% 1.1 | Background
27
28 1.1.1 | STFR
29
30 One repetition of STFR [19] begins with an initial tip-down excitation with flip angle o.. Then there is time T}, during
31 which free precession eccurs, after which there is a tip-up excitation (“fast recovery") where magnetization is rotated
32 up towards the +z-axiswithflip angle 8 and phase ¢. Finally there is gradient spoiling for time Ty. For a single com-
33 partment, the signal obtained‘at a given spatial location from a STFR scanis given by [23]
34
35 Sl(MO»TlvTQ)Awaﬂanreeng:avﬁ’(b) =
36 )
37 Mo sin(ra) [e—irg/:r1 (1 — e~ Tiree/T1) cos(k3) + (1 _ e—Tg/Tl)] e~ Ttree/(2T2) g—iAwTtree /2

, (1)

38 1 — e Ta/T1eE Tiee/ T2 sin(ka) sin(k8) cos(Aw - Thee — ¢) — e~ Ta/T1e=Three/T1 cos(ka) cos(k/3)
39
40 where M) is the equilibrium magnetization, T and T% are the spin-lattice and spin-spin time constants, respectively,
41 Auw is the off-resonancefrequency, and « is a flip angle scaling constant (to account for differences between the pre-
42 scribed and actual flip angles). Note that approximating flip angle error as a scale factor is accurate for the small flip
43 angles used in this work, but typically inaccurate at larger flip angles. STFR with 8 = 0 is the same as SPGR with
44 TR = Tiree + Tg-
45
46 For myelin water imaging, more than one compartment must be modeled. In a two-compartment model, one
47 compartment consists of spins within myelin (myelin water), and the other compartment consists of other spins (non-
48 myelin water). If one neglects exchange, then the STFR signal at a given spatial location is the weighted sum of the
49
50
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FIGURE1 Workflowofthe proposed methods. We first optimized a set of STFR scan parameters by minimizing a
Cramér-Rao Lower Bound; then acquired data using those scans, as well as Bloch-Siegert (BS) scans. Two of the STFR
scans were equivalent to SPGR'scans, so were used to estimate Aw, and the BS scans were used to estimate . These
parameters were treated as known values in the MWF estimation step. We then generated noisy training data using
an STFR signal model. Finally, we passed the training data, acquired STFR images, and known parameters to PERK to
estimate MWF voxel-by-voxel.
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2 single-compartment STFR signals of the individual compartments:
3
4 s2(Mo, fr, Th,t, Tis, To 5, T s, Aws, Aw, K, Tiree, T, @, B, ¢) =
Z fe-s1(Mo, Ty ¢, To £, Aw + Aws, K, Tiree, Tgs @, 8, ¢) +
7 (1= fr)-s1(Mo,T1,s,T2s, Aw, K, Tiree, Ty, @, B, $), (2)
8
9 where the weight f; is the'myelin water fraction (MWF), T’ ¢ and T5 ¢ are the T} and T» time constants for the fast-
10 relaxing, myelin water compartment, 7% s and T% ¢ are the T and T time constants for the slow-relaxing, non-myelin
11 water compartment, and Awy is the additional off-resonance that is experienced only by myelin water [17].
12 Although (2) has a eonvenient analytical expression, a more accurate tissue model for cerebral white matter con-
13 sists of three compartments (non-myelin water, myelin water, and a macromolecule water pool) with exchange be-
14 tween the non-myelin and myelin water compartments and from the myelin water compartment to the macromolecule
15 compartment [21]. In this;eaSe, the STFR signal is also a function of the macromolecule compartment volume frac-
16 tion fm, the macromolecule compartment T ., and Ts ., the residence time for exchange from myelin water to non-
17 ' '
18 myelin water 7¢_, ;, and'thé residence time for exchange from myelin water to the macromolecule compartment r¢_, ,,,
19 in addition to the previouslyzmentioned parameters. We assume the myelin water and non-myelin water compart-
20 ments are in chemical equilibrium, which means that fr7s_,¢ = (1 — ff — fm )7t s, and we assume there is no other
21 exchange, i.e., Ty = Ts—m = Tm—s = oo [21]. Because of exchange, the STFR signal no longer has an analytical
22 expression and must be computed using the Bloch-McConnell equation [24].
23
24
25 112 | MESE
26 One repetition of MESE;[25],eensists of an initial excitation with flip angle .y (typically 90°) followed by a sequence
27 of N,..f refocusing excitationswith flip angle a,.¢ (typically 180°). The signal is sampled at times Tg, 27, . . . , Nyof TR
28 after the initial excitation; resulting in N,or images in one MESE scan. The repetition time Ty is typically chosen to
29 be long enough so that the net magnetization of the spins is in equilibrium prior to each repetition. Thus, the MESE
2(1) i i i ex» Qref, 1R, and TR, as well as the same tissue parameters as the STFR signal; but if Ty is suffi-
32 ciently long there is little dependence on T} (of any compartment). Additionally, for myelin water imaging using MESE,
33 normally the acquired MESEsignal is modeled as a weighted sum of MESE signals from individual compartments, i.e., ig-
34 noring exchange between compartments. When ignoring exchange, we computed the MESE signal using the extended
35 phase graph (EPG) method [26]. When accounting for exchange, we used Bloch-McConnell simulation.
36
;; 1.1.3 | Scan Design Using the Cramér-Rao Lower Bound
39 MR image data for a single.voxel in a single scan is often modeled as
40
41 y=fl@v.p) +e (3)
42
ji where f(x,v,p) € Cisithe MR signal that is a function of unknown parameters @, known parameters v, and scan
45 parameters p; and e ~ CN(0, o2) is additive complex Gaussian noise. When there are D scans then the data for a
46 single voxel across each scan is collected into a vector:
47
48 y=f(m,u,P)+6, (4)
49
50
51 This article is protected by copyri%/lht. All rights reserved
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wherey € CP, f(x,v,P) = [fi(z,v,p1),..., fp(x,v,pp)]T, fa is the signal given by the dth scan for d =
1,...,D, P = (p1,...,pp) denotes the collection of all scan parameters, and the noise vector is e ~ CN(0, X).
We assume that each scan has noise independent of the other scans, and we assume that each scan has the same noise
variance o2;thus ¥ = ¢2Ip, where I isthe D x D identity matrix.

For simplicity in computing the Fisher information matrix (see below), we further assume that the MR signal model
f isreal-valued. We also take the magnitude of the received signal v, resulting in a Rician distributed signal [27]; how-
ever, we assume sufficiently high SNR so that this magnitude signal is approximately normally distributed with mean
f(z, v, p) and variance 0.

Under these assumptions, the' Fisher information matrix for the magnitude of signal model (4) is [28]
1
I(:I:,V,P): ;(me(w,V,P))T(me(w,u,P)), (5)

where V. denotes a row gradient with respect to the unknown parameters x. The inverse Fisher information matrix
gives the Cramér-Rao Lower.Bound (CRLB) for unbiased estimators [29]. In particular, the variance of an unbiased
estimator for the ith unknown parameter x; has a lower bound given by the ith diagonal element of the inverse Fisher
information matrix, i.e., var(z;) > [(I(=,v, P))*l]m-. This bound on the precision of unbiased estimators is useful
for optimizing experimental designs. The CRLB has been used to optimize MR sequence parameters for a variety of
pulse sequences and applications, e.g., [22, 30, 31, 32]. In this work, we optimize scan parameters of a set of D STFR
scans for MWF estimation by minimizing an expected weighted sum of the CRLB for each unknown parameter [33]:

P = argmin Eg p[trace(W (I(z,v, P))"1)], (6)
PcP
where P denotes the scan parameter search space, E ., denotes an expectation over « and v, and W is a diagonal

weighting matrix used totindicate the relative importance of precisely estimating the different unknown parameters.

1.1.4 | Parameter Estimation via Regression with Kernels (PERK)

This section describes the PERK method we use to estimate MWF from STFR scans. Suppose a set of scan parameters
P is given, typically the P.from the scan design process (6). We seek to estimate unknown parameters « after acquir-
ing data using the D scans corrnesponding to these scan parameters. We generate training data by simulating data y,,
via (4) with appropriate signal models f for various values of unknown and known parameters x,, and v,,; these N
training data points arelcollected as (g1, z1), .. ., (gn, zn ), Where gn, = [|lyn|T, v I|T and | - | denotes element-wise
complex modulus. After seanning (with the scan parameters P), we have test data q for each voxel (where v collects
separately estimated.parameters, such as B1+ maps, that are treated as known values), and we want to estimate x.
PERK computes estimates.viaregularized linear regression (ridge regression), after first transforming the feature vec-
tors q (for both training and testing) via some user-defined feature map (which is never directly used but is indirectly
specified through the choice of kernel function). The PERK estimator is [22]

. 1 _
2(q) = N XIn+ XM(MKM + NpIyn) 'k(q), 7
where X = [z1,...,2zy] denotes all of the training data, 15 € R is a vector of all ones, M = I — %INIE is

a de-meaning operator, p is a regularization parameter, the Gram matrix K € RN *N has entries K;; = k(qi,qj),
where k(q) = [k(q,q1),...,k(q,qn)]T — %KIN, and k(q, q') is the user-specified kernel function. In this work,

This article is protected by copyri%/‘ht. All rights reserved
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we used the Gaussian kernel
AN 1 —1 N2
k(a,q') Zexp{—5llAT (@ —q)l2 ), (8)

where A is a positive definite weighting matrix. PERK with a Gaussian kernel corresponds to first transforming the
feature vectors q via amonlinear feature map into infinite-dimensional features, and then applying ridge regression
on the transformed features. This lifting of features to a higher-dimensional space improves the ability to capture the
nonlinear dependence of the signal on the unknown parameters we wish to estimate.

To reduce storage and'écomputational needs, we approximated (7) using random Fourier features [22, 34].

2 | METHODS

This section describes the'experiments performed in this work. We first explain the scan design process for optimizing
a set of STFR scans for MWF estimation. We then explain simulated MWF estimation experiments that compare our
proposed method to MESE-based MWF estimation. Finally, we explain an experiment to test our proposed method in
vivo. The code for repraducingthe methods and results in this paper is available at
https://github.com/StevenWhitaker/STFR-MWF.

The raw data is availableathttps://doi.org/10.7302/nw6e-1d66.

21 | ScanDesign

For the STFR scan design, we:computed the CRLB using the two-compartment non-exchanging signal model (2). We
chose the weightingmatrix:Wto place full weight on the CRLB for f (i.e., the diagonal entries of W were all 0 except
for a 1 in the location correspending to f;). We took the flip angle scaling x and bulk off-resonance Aw to be known,
i.e., part of v, and we.optimized a set of D = 11 STFR scans. Two of these scans were SPGR scans with fixed scan
parameters and an echo time shift. We included these scans to enable the option of estimating Aw using conventional
techniques and then treat Aw as known for further parameter estimation.

We fixed Ty = 2.8 msacross all 11 scans. We fixed o = 5° and T = 10.3 ms for the two SPGR scans. The Ty; of
each STFR scan and the firstSPGR scan was 4 ms. The echo time shift between the two SPGR scans was 2.3 ms. For the
remaining nine STFR scans, we fixed T, = 8 ms and we constrained « € [1, 15]°, 3 € [0, 15]°,and ¢ € [—180, 180]°.

The expectation in (6) requires choices for the probability distributions of the unknown and known parameters.
Table 1 shows the distributions we used. To explore the effect that the additional myelin water off-resonance Aws has
on the CRLB of f¢, we'performed one scan design (design A) where we took Awy to be unknown, and another (design
B) where we ignorediAwg(ite;;we assumed it was known and equal to 0). To solve the optimization in (6), we used the

NLopt package? in the Juliasprogramming language?.

2.2 | MWEF Estimation

For MWF estimation, we compared several estimation protocols. The proposed method, which we call STFR3-PERK,
uses PERK to estimate MWF from the optimized STFR scans, with training data generated using the three-compartment

exchanging model. This method assumes bulk off-resonance Aw and flip angle scaling « are known (unless otherwise

"https://github.com/Julialpt/NLopt. j1
thtps ://julialang.org/

This article is protected by copyri%/‘ht. All rights reserved
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TABLE 1 Unknown and known parameters used in scan design and in simulation. Values were chosen to match
literature values for white matter [1, 17, 21, 35]. We used M, = 1 for the scan designs because it only scales the
STFR signal. The line below « separates parameters used in both the two-compartment and three-compartment
models (above) from those used only in the three-compartment exchanging model (below).

Parameter Design A Design B White Matter  Gray Matter = PERK Training Ranges
My 1 1 0.77 0.86 unif (0, Max)3
fe unif (0.03,0:81)  unif(0.03,0.31) 0.15 0.03 unif (0.03, 0.31)
Ty ¢ (ms) N (400, 80%) N (400, 802) 400 500 unif (320, 480)
T1 s (ms) N(1000,2002)  A/(1000,2002) 832 1331 unif (800, 1200)
T ¢ (ms) N(20,42) N(20,42) 20 20 unif(16, 24)

T s (Ms) N(80,162) N(80,162) 80 80 unif (64, 96)
Aws (Hz) unif (5, 35) 0 15 5 unif (0, 35)
Aw (H2) unif(—50,50)°  unif(—50,50)" Varies Varies unif (—50, 50)P
K unif(0.8,1.2)°  unif(0.8,1.2)" Varies Varies unif (0.8,1.2)P
fn N/A N/A 0.1 0.03 unif(0.03, 0.31)
T1,m (Ms) N/A N/A 1000 1000 unif (800, 3000)
To,m (Ms) N/A N/A 0.02 0.02 unif(0.01, 0.1)
T (MS) N/A N/A 100 20 unif (80, 150)
T¢—sm (MS) N/A N/A 50 10 unif (40, 75)

N/A - Not applicable (scan'designs only used two-compartment model).

unif (a, b) - Uniform distribution on interval [a, b].

N (1, 0?) - Normaldistribution with mean p and variance o2.

“Known parameter;

@ M@ given by maximumssignal value from data divided by mean signal value from signal model with My = 1.

bUnless parameter is known,in which case training range covers range of values in known map.
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| InVivo Experiments

Under an IRB-approved protocol, we scanned a healthy volunteer to compare the proposed STFR-based MWF esti-
mation to MESE-based MWF estimation. We used 3D acquisitions for both the STFR and MESE scans to avoid slice
profile effects. The STFR scans used design A, and the RF pulses had time-bandwidth product of 8 and duration of 1
ms; the two SPGR scans;teek:58 s and the nine STFR scans took 3 min 36 s for a total scan time of 4 min 34 s. We
also acquired a pair of Blech=Siegert (BS) scans for separate estimation of x [36]; the excitation RF pulse of these scans
had time-bandwidth product of 8 and duration of 1 ms, and used £4 kHz off-resonant Fermi pulses between excitation
and readout. The total duration of the BS scans was 2 min 40 s. Therefore, our overall STFR-based MWF estimation
scan protocol lasted 7 min 14 s. For the MESE scan, we used the same scan parameters as in simulation (described
above); the initial excitation®RFipulse had time-bandwidth product of 6, duration of 3 ms, and slab thickness of 0.9 cm,
and each refocusing pulse had time-bandwidth product of 2, duration of 2 ms, and slab thickness of 2.1 cm. Each re-
focusing pulse was also flanked with crusher gradients, each of which imparted 14 cycles of phase across the imaging
volume. The total duration ofthe MESE scan was 36 min 11 s. For all scans, we acquired a 22 x 22 x 0.99 cm3 field of
view (FOV) with matrixsize 200 x 200 x 9 (except the BS scans used matrix size 200 x 50 x 9). We implemented the
protocol in TOPPE [37];

We used a GE Discovery™ MR750 3.0T scanner with a 32-channel Nova Medical® head coil. We used conven-
tional inverse FFT reconstruction followed by square-root of sum-of-squares coil combination to make the magnitude
images used for MWF estimation. We estimated the SNR in the white matter brain regions (pooling the four white
matter regions of interesty(ROIs) in Supporting Information Figure S1 for each scan/echo) to vary from 8-17 across
the STFR scans and from 673 for across MESE echoes.

We analyzed the center slice of the acquired data. We estimated MWF using STFR3-PERK, STFR2-PERK, MESE-
NNLS, and MESE-PERK. Inthiscase, for STFR3-PERK and STFR2-PERK we took bulk off-resonance Aw to be unknown

(but still assumed « to betknown).

3 | RESULTS

3.1 | ScanDesign

Table 2 reports the two optimized scan design parameters. For design A, the additional myelin water off-resonance
Awg was taken to be unknewnrand distributed uniformly from 5 to 35 Hz. For design B, Aw; was ignored (i.e., taken to

be known and equal to 0).

Figure 2 comparesithe expected CRLB of the standard deviation of MWF of these two scan designs versus Awy,
where at each data pointiAw is fixed (unlike the other parameters that vary according to the distributions in Table 1)
but still unknown, i.e., is contained in  (see §1.1.3). For these CRLB calculations, we used a noise standard deviation
that corresponds to SNR ranging from 9-15 in white matter across the STFR scans to match the SNR of the 1.1 mm
isotropic in vivo data. Figure 2 shows that modeling Aw; improves the precision of the optimized scan design, and that

MWF becomes easier to estimate as Awy increases.

This article is protected by copyri%/‘ht. All rights reserved
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1
2 TABLE 2 Optimized scan parameters. The first two scans are the STFR (SPGR) scans with fixed parameters; the
3 remaining scans were optimized during the scan design process. All values have units of degrees. For design A, the
4 additional myelin water off-resonance Awy was taken to be unknown and distributed uniformly from 5 to 35 Hz. For
5 design B, Awy was ignored (i.e., taken to be known and equal to 0).
? Scan# 1 2 3 4 5 6 7 8 9 10 11
8 @ 55 15.0 15.0 15.0 150 150 150 15.0 114 15.0
?O Design A B 0 O 15.0 15.0 11.6 150 133 150 149 0.3 144
11 070" -1393 -1081 -660 -280 259 644 1041 1463 1730
g @ 5 5 15.0 15.0 15.0 150 150 150 150 15.0 15.0
14 Design B B 0 mo0 15.0 14.5 14.9 148 148 149 0.0 14.5 15.0
15 0.0 -139.3  -1133 -63.7 -143 143 637 832 113.3 1393
16
17 . .
18 Comparison of CRLBs of Scan Designs
19 4r —ll- Design B:lgnore Aws during scan design
20 w —@— Design A: Optimize over range of Aws
21 =
22 =
23 5
24 S 3r
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28 -
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40
41 FIGURE 2 The two optimized scans (see Table 2) were evaluated to explore how including the additional myelin
42 water off-resonance Awy inth€ design process affects performance. Design A (where Aw¢ was included in the
43 optimization) has a better expected CRLB for every value of Awg within the 5-35 Hz range over which design A was
44 optimized. Design B (where Aw; was ignored) understandably has a better expected CRLB for Aw; = 0. For each
value of Awy investigated in this plot, the expected CRLB was computed with that value of Aws held constant but
45 unknown. Typical values of Awy in white matter are 5-35 Hz [17]. Although these CRLB values predict estimator
46 standard deviation (for an unbiased estimator) on the order of 100% MWF or more, we are not restricted by these
47 large values because we are using a Bayesian estimator (see Supporting Information Figure Sé for details).
48
49
50
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Comparison of How to Account for Aws
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FIGURE 3 RMSE of MWF estimates from simulated test data for various ways of accounting for the additional
myelin water off-resonance Awy. The diamond-markered green curve was generated using scan design B (where Aws
was ignored) and using'PERK training data where Aw; = 0. In other words, Awy was not considered in any aspect,
neither in the scan design norwhen training. The square-markered red curve was also generated using scan design B,
but the training datadincluded a range of Awr values. The circle-markered blue curve was generated using design A
and a range of values of Aws. The latter two methods look almost identical, but both have much better RMSE than the
first method as Awy increases.

3.2 | MWEF Estimation
| Numerical Simulation

We computed the RMSE of MWF estimates for test data generated using (2) with different values of Aw; and a range
of tissue parameters. For design A, we estimated MWF using training data that was generated with a range of Aws
values. For design B, in_one experiment we estimated MWF using training data that was generated with a range of
Awg, and in another experiment the training data included only Aw¢ = 0. Figure 3 shows the results. The mean MWF
value in the test data was 0.17, so the minimum RMSE of 0.045 corresponds to about 26% relative error. Supporting
Information Figure S2 reports an analogous experiment using fixed white matter and gray matter tissue values.

Furthermore, we investigated the effects of exchange on MWF estimates. We simulated STFR scans (using de-
sign A) and a MESE scan, and we used the three-compartment tissue model with exchange using tissue parameters
corresponding to white matter and gray matter. We estimated MWF using STFR2-PERK, STFR3-PERK, MESE-NNLS,
MESE-PERK, and STFR3-PERK-JE. Table 3 shows the RMSEs, means, and standard deviations of the MWF estimates.

Figure 4 shows the ground truth map and a visual comparison of the estimated MWF maps. Figure 5 shows the re-

This article is protected by copyri%/‘ht. All rights reserved
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1
2 TABLE 3 Comparison of various methods of MWF estimation. The reported time refers to the entire estimation,
3 combining the time to estimate MWF in white matter voxels and gray matter voxels; it also includes training time for
4 the methods that use PERK. The best value in each column is highlighted. See Figure 4 for a visual comparison of
5 these methods.
6 White Matter (MWF =0.15) = Gray Matter (MWF =0.03)
; ] RMSE  Mean St. Dev. RMSE Mean St.Dev. Time(s)
9 STFR2-PERK | 0.215 0.349 0.082 0.185 0.209 0.047 21.9

)
1(1) STFR3-PERK m0.021 0.158 0.020 0.046 0.074 0.015 43.1
12 STFR3'PERKJE | 0.026 0.145 0.026 0.044  0.069 0.021 41.3
13 MESE-NNES | 0.063 0.092 0.025 0.029 0.001 0.003 1602.4
14
15 MESE-PERK | 0.029 0.134 0.025 0.026 0.026 0.025 142.7
16
17 TABLE4 Sample means 4 standard deviations of MWF estimates for four white matter (WM) regions of interest
18 (ROIls) and one gray matter (GM) ROI. Figure 6 shows corresponding MWF maps, and Supporting Information Figure
19 S1 shows the corresponding ROls.
20 1 y
21 ROI | STFR2-PERK STFR3-PERK MESE-NNLS MESE-PERK
;g WMd0:175 £ 0.021  0.116 £0.029  0.096 £ 0.042  0.105 % 0.030
24 WM2990.175 + 0.009 0.117 +0.011  0.089 +0.046  0.097 + 0.023
25 WMS3 | 0.206 +0.010  0.1334+0.010 0.108 0.036 0.133 +0.014
26
57 WIV2™01195 + 0.008  0.1384+0.010 0.121+0.039  0.141 + 0.014
1

28 0.187 £0.034 0.110+£0.029 0.034 £0.035 0.085 £ 0.034
29 =
30
31 sults of this experiment,when using a nine-compartment exchanging model. Supporting Information Figures S3 and
32 S4 show results when using'afour-compartment exchanging model and a three-compartment non-exchanging model,
33 respectively. The anatomy forithe simulated data used in these experiments came from BrainWeb [38].
34
35
36
37 . .
38 | InVivo Experiments
39
40
41 We scanned a healthy volunteer using scan design A. Supporting Information Figure S5 shows images of the two SPGR
42 and nine STFR scans.ofithe subject. In the same scan session, we also scanned the volunteer with a MESE scan. Fig-
ji ure 6 shows MWF maps'that were computed from the STFR and MESE scans. In this case, we made the STFR-based
45 MWE estimates without using a separately estimated Aw map because the MWF estimates made with the separately
46 estimated Aw map exhibited spatial variation that mimicked the field map spatial variations, which we do not expect
47 in MWF maps (i.e., we expect myelin content to be independent of Aw). Table 4 shows numerical results for the in vivo

48 data for several ROls.

49

50

51 This article is protected by copyri%/lht. All rights reserved
52 Magnetic Resonancé in Medicine

53



oNOYTULT D WN =

Magnetic Resonance in Medicine Page 14 of 31

14 WHITAKER ET AL.
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FIGURE4 Right: MWF maps from five methods using simulated test data for a three-compartment tissue model
with exchange. Table 3 reports numerical results. The proposed STFR3-PERK estimates are closer to the true MWF
value for white matter tissuewvalues than are the MESE-NNLS estimates. Left: Bulk off-resonance Aw and flip angle
scaling x maps used in this simulation.

4 | DISCUSSION

Almost all of the optimized flip angles o and 3 for both scan designs A and B are equal to (or are very close to) the upper
constraint, and there is awide spread of tip-up phases (see Table 2). This seems to suggest that most of the information
needed for estimating MWEF lies in the phase accrual that occurs between the tip-down and tip-up excitations, so the
flip angles should be chosentte'maximize SNR. Interestingly, however, an unreported experiment showed that a scan
design with flip angles set to 15° and with an even spread of tip-up phases ¢ resulted in CRLBs that were many orders
of magnitude worse than the optimized scans. This result emphasizes the importance of the scan design process in
choosing scan parameters, because these optimized parameters are robust across a range of Awy values (see Figure 2).
We also looked at optimized scan parameters when fixing T, to 6 ms. We found that the tip-up phases still covered a
spread of values, but the range of phases was slightly smaller, which makes sense because a smaller T},... leads to less
off-resonance precession.

The expected CRLB for scan design A is better than that of design B when compared across many values of the
additional myelin water"Awg (see Figure 2), as expected because the optimization of design B ignored the presence
of Aws. Figure 2 also illustrates the impact that Aws has on estimates of MWF; MWF becomes harder to estimate
as Aws approaches'OmThese findings appear to be at variance with the findings in [39], where in multi-GRE MWF
estimation modeling Awy led to worse estimates at 3T. However, there is likely more information about Awy in the
STFR scans because of the optimized tip-up phases, which could explain why modeling Awy in this work improved
MWEF estimation.

Simulated test data showed that scan design A and scan design B gave similarly good estimates of MWF across

This article is protected by copyrigﬁf/‘ht. All rights reserved
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FIGURE5 MWEF mapsfromifive methods using simulated test data for a nine-compartment tissue model with
exchange. These resultsare essentially the same as when using the three-compartment exchanging model (see Figure
37 4). Thus, even though STFR3-PERK was trained with a three-compartment exchanging model, it still produced good
38 MWEF estimates fromisignal'generated using a nine-compartment exchanging model.
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FIGURE6 MWF maps from in vivo MESE data and STFR data using scan design A. Table 4 shows numerical results
for several manually'selectedregions of interest. The MESE-NNLS MWF map appears noisier than those shown in
other works. This is likely.due to the lower SNR of our data due to differences in voxel size. To match the STFR

resolution, we acquired MESE with 1.1 mm isotropic voxels, whereas often MESE data is collected with slice thickness

of 5mm and 1.6 mm or greaterin the phase encode direction. Remarkably, MESE-PERK is much less noisy than
MESE-NNLS. This is likely:due'to PERK being a Bayesian estimator that discourages estimates that are far from the

mean MWEF training value.
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1
2 many values of Awy, at least for a range of tissue parameters (see Figure 3). At first glance, one may be surprised that
3 design A performed noticeably better than design B with respect to the expected CRLB, and yet the two designs had
4 similar RMSE values. One may also be surprised that the RMSE values were relatively small (about 25% of the mean
5 MWEF value) even though the expected CRLB predicted errors of 100% or more. However, PERK is a Bayesian esti-
6 mator; thus, the unbiased CRLB does not necessarily predict the precision of MWF estimates computed by PERK. We
7 minimized the unbiased.CRLB during scan design because of its simplicity, but recognize that other objective functions
8 for scan optimization may be better suited for MWF estimates from PERK or other Bayesian estimation methods. We
?O investigated the effect of bias in Section S3 of the Supporting Information.
11
12 Simulated test dataalso shows that STFR-based myelin water imaging compares well to MESE-based approaches.
13 Compared to the conventional MESE-NNLS, STFR3-PERK gives more accurate results in simulated white matter vox-
14 els, in addition to reducing estimation time by more than an order of magnitude (see Table 3). This result is interesting
15 because the simulated'MESE. echoes generally had much higher SNR than the STFR scans. Combining MESE with
16 PERK improves upon the NNLS results. However, the MESE scan is longer than the combined time of all the STFR and
17 BS scans. Furthermore, MWF estimation using MESE-PERK takes longer than STFR3-PERK because when simulating
18 the MESE signal one must simulate a collection of spins to account for stimulated echoes, which is not necessary for
19 STFR. This simulated data alsoshows that ignoring exchange when estimating MWF with STFR scans results in drasti-
20 cally overestimated MWF values (see Figure 4), so it is essential to generate training data that accounts for exchange.
;; These same results hold even when the test data was generated using a nine-compartment exchanging model (see Fig-
23 ure 5). See Section S2 efithe;Supporting Information for results using a four-compartment exchanging model and a
24 three-compartment non-exchanging model.
25
26 The in vivo MWE estimates in Figure 6 further emphasize the importance of modeling exchange. The MWF map
27 given by STFR2-PERK hashigher MWF values than the map given by STFR3-PERK. The three-compartment model led
28 to maps that better agreedwith the MWF maps estimated from MESE data. Table 4 indicates that in all white mat-
29 ter ROIs the STFR3-PERK estimates are within one standard deviation of the mean MESE-NNLS estimates. In gray
30 matter it is different; however, this difference could be due to how the STFR training data were simulated, as typical
31 values for gray matter T} ¢ and T7 s are slightly outside of the range of values generated for training. Figure 6 and Ta-
32 ble 4 also demonstrate the effect that the estimation method has on MWF estimates: the MESE-PERK estimates have
;i decreased standard deviation compared to the MESE-NNLS estimates. Furthermore, Table 4 demonstrates that STFR-
35 based MWF estimates havellower standard deviation than MESE-based MWEF estimates, despite the MESE scans be-
36 ing 4x longer than the STFR'scans.
37
38 For the in vivo datajwe did not use a separately acquired bulk off-resonance Aw map as a known parameter for
39 our proposed STFR-based MWF estimation technique, even though the scan design and simulations assumed that Aw
40 was known. When we attempted to use the separately acquired Aw map for the in vivo data, the MWF estimates
41 appeared to be more biased in regions with high Aw values. Further work is needed to investigate this behavior.
42
ji For the in vivo datawe acquired a 9 mm slab in about 7 minutes total scan time with 1.1 mm isotropic resolution.
45 Whole brain coverage would require 4 times as much data (with 2 mm slices), so our proposed approach would take
46 about 28 minutes, which is longer than the 8 minutes achieved by the GRASE method. However, in [6] the authors
47 under-sampled the GRASE data by a factor of 4, whereas we acquired fully sampled data. By under-sampling by the
48 same factor the proposed STFR approach would achieve whole-brain coverage in about 7 minutes.
49
50
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5 | CONCLUSION

This work optimized a set of STFR scans that can be used to estimate MWF. We found that estimates of MWF are more
precise for larger values of the frequency difference Aw; between myelin water and non-myelin water. Fortunately,
in white matter reported values of Awy that are far enough away from O to aid estimation of MWF [17]. We also
found that modeling exehange (i.e., using a more accurate tissue model) greatly impacts the MWF estimates from STFR
scans. When modeling exchange, STFR with PERK yields MWF estimates that are comparable to MESE-based MWF
estimates.

This is the first work to'compare STFR-based MWF estimation to MESE-based MWF estimation. Additionally, to
our knowledge, this'is the first work to generate MWF estimates from a MESE scan using PERK. While this estimation
method was not the mainpoint;of this paper, it illustrates another potential method for MWF estimation.

This study was a proef-of=concept study to see if STFR could be applied to estimating MWF. As such, only a sin-
gle healthy volunteer was scanned. While the initial comparison of STFR to MESE is promising, future studies should
compare the two methaods aeress multiple volunteers. Additionally, our proposed MWF estimation method should be
validated in pathology to verify that it can detect, e.g., multiple sclerosis lesions. Such verification is especially impor-
tant because the proposed method assumes a fixed number of tissue compartments, which may or may not inhibit its
sensitivity to anomalies.

There are several ways in which the scan design process could be further explored. Our choice to optimize nine
STFR scans for scan design was somewhat arbitrary, so one could explore different numbers of scans to see how the
CRLB is affected for a giveniscan time budget. Additionally, one could change the space of scan parameters over which
to optimize; especially interesting would be to increase the upper bound on « and 3 to see if the optimized scans
would have a greater variety of flip angles. Another route to explore is to adjust the weighting matrix W to optimize
STFR scans for estimating other parameters in addition to or instead of MWF. In particular, since the results here
suggest that the STFR Scans are sensitive to the effects of exchange, it could be interesting to optimize STFR scan
design for quantifying exehange parameters. Additionally, future work could explore what parameters to include as
known parameters versusinknown parameters, in both the scan design and in PERK.

Finally, to reduce the scan time of the STFR scans, either to allow for more scans or to reduce scan time, one could
under-sample the MRI k-space data. The image reconstruction would then be under-determined, thus requiring some
sort of regularized reconstruction. Methods that jointly reconstruct all D scans at once would be a natural approach,
e.g.,[40,41].
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1
2 SUPPORTING INFORMATION
z Additional supporting information may be found online in the Supporting Information section.
5 Figure S1 White matter (WM) and gray matter (GM) regions of interest (ROIls). The underlying image is from a
6 standard MP-RAGE acquisition, acquired in the same scan session and registered to the other scans. The ROls are
7 labeled to correspond to Table 4 in the paper.
8 Figure S2 RMSE of MWEestimates for white matter and gray matter simulated test data. Scan design A has better
9 RMSE in white matter foFvalues of Aw; we expect to see in white matter. This better RMSE in white matter is at the
10 cost of worse RMSE in gray matter. Note that the values of T ¢ and T s for gray matter were outside of the range of
11 values used for the scan designs and for training our estimator.
12 Figure S3 MWF maps from five methods using simulated test data for a four-compartment tissue model with ex-
13 change. The four compartments considered were myelin water, axonal water (i.e., water in myelinated axons), all other
14 water, and macromolecules. The results are similar to those using the three-compartment model with exchange. Sup-
15 porting Information TableiS&Shows numerical results.
16 Table S1 Numericalfresultsfor Supporting Information Figure S3.
1 ; Figure S4 MWF maps/from five methods using simulated test data for a three-compartment tissue model without
19 exchange. Without exchangejthe three-compartment model becomes essentially a two-compartment model because
20 the Ty of the macromolecular pool is so small. Thus it makes sense that STFR2-PERK performs well. Surprisingly,
21 MESE-PERK still produces good MWF estimates, even though it is trained with the three-compartment exchanging
22 model (like STFR3-PERK). This could be because the TR of the MESE scan is long compared to the residence times
23 governing exchange. Furthermore, it is possible that if the training ranges for the residence times were adjusted appro-
24 priately (increased) theft STFR3-PERK would also do well. Supporting Information Table S2 shows numerical results.
25 Table S2 Numerical results for Supporting Information Figure S4.
26 Figure S5 In vivoimagesfor two SPGR and nine STFR scans using scan design A. Each image is the square root sum
27 of squares combination of the,individual coil data. STFR produces contrast similar to balanced SSFP, including a similar
28 off-resonance profile thatinduces the characteristic banding artifact of balanced SSFP. Different points of this profile
29 are sampled as the phase ¢ of the STFR tip-up excitation varies. The nine STFR images are sorted by increasing ¢, so
2(1) this off-resonance profile is easily visualized. In the lower right is the field map estimated from the two SPGR scans.
32 Figure S6 Comparison.of biased and unbiased CRLBs for white matter tissue values using the two-compartment
33 non-exchanging model. Thedbiased CRLB is much lower than the unbiased CRLB, suggesting that bias is the reason why
34 our STFR-based MWF estimation results in estimates with low variance. However, our proposed method still shows
35 sensitivity to changes in MWF (see Supporting Information Figure S7).
36 Figure S7 Expected MWF estimates from the proposed STFR3-PERK MWF estimation technique for fixed white
37 matter tissue valuesfromathree-compartment exchanging model. The proposed method is (mildly) biased, yet it s still
38 very sensitive to changesinitrue MWF value. Furthermore, bias decreases as SNR increases. (An unbiased estimator
39 would have estimates alengithe line of identity, i.e., along the dashed line.)
40
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This Supperting Information presents additional results and discussion for experiments not included in
the main body of the manuscript.

S1 Estimator RMSE for White and Gray Matter Tissue Values

We compared, MWE estimates from scan designs A and B. We simulated test data using the two-compartment
non-exchanging STFR signal model using tissue values typical of white matter and gray matter (see Table
1), and we @stimated MWF using STFR2-PERK. We plotted RMSE of MWEF' estimates from both scan
designs versus the/additional myelin water off-resonance Aws. Supporting Information Figure S1 shows the
results.

Supporting Information Figure S1 indicates that scan design A gives better MWF estimates in white
matter over valuesiof Aws we expect to see, but scan design B performs better in gray matter. However, the
values of Ty and T ¢ for gray matter are (slightly) outside of the range of values used for the scan designs
and for training our estimator. When quantifying MWF in gray matter is of interest, one probably should
use a wider range of values for scan design and training.

S2 Estimator Performance with Model Mismatch

We comparedMWF estimates from STFR2-PERK, STFR3-PERK, MESE-NNLS, MESE-PERK, and STFR3-
PERK-JE for different ground truth models. First, we generated test data for white matter and gray matter
tissue values using a four-compartment exchanging model. The four compartments were myelin water, ax-
onal waterm(ilemmwater in myelinated axons), all other water, and macromolecules. Myelin water was in
exchange with themmacromolecular pool, myelin water and axonal water exchanged with each other, and
myelin water and all other water exchanged with each other. Supporting Information Figure S2 shows the
results, and Supporting Information Table S1 reports numerical values. STFR3-PERK still provides good
MWF estimates despite the model mismatch between the test data and the training data.

We then generated test data for white matter and gray matter tissue values using a three-compartment
non-exchanging model. The three compartments were the same as in the three-compartment exchanging
model thatsSTFR3-PERK was trained with, except no exchange occurred (i.e., the exchange rates were set
to 0). Supportingulnformation Figure S3 shows the results, and Supporting Information Table S2 reports
numerical values. Without exchange, the three-compartment model becomes essentially a two-compartment
model because the T of the macromolecular pool is so small. Thus it makes sense that STFR2-PERK
gives good MWF estimates. The overestimation of MWF could be because the macromolecular pool has
a nonzero fy,, but since it contributes no signal the estimator assumes that the smaller signal is due to a
larger MWF. MESE-NNLS does better without exchange, though it still underestimates gray matter MWF,
while STFR3-PERK does poorly. It is possible, though, that if the training ranges for the residence times
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Supporting Information Figure S1: White matter (WM) and gray matter (GM) regions of interest (ROIs).
The underlying image is from a standard MP-RAGE acquisition, acquired in the same scan session and
registered to the other scans. The ROIs are labeled to correspond to Table 4 in the paper.
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47 Supporting Information Table S1: Numerical results for Supporting Information Figure S2.

49 White Matter (MWF = 0.15) | Gray Matter (MWF = 0.03)
50 RMSE Mean St. Dev. RMSE Mean  St. Dev. | Time (s)

52 STFR2-PERK 0.170  0.308 0.062 0.112  0.133 0.044 14.7
53 STFR3-PERK 0.028 0.130 0.020 0.028  0.052 0.017 42.1
54 STFR3-PERK-JE | 0.040  0.120 0.026 0.028 0.046 0.022 42.2
55 MESE-NNLS 0.071  0.084 0.024 0.029  0.001 0.004 1623.6
56 MESE-PERK 0.033  0.127 0.023 0.056  -0.005 0.043 167.3
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Supporting Information Figure S2: RMSE of MWF estimates for white matter and gray matter simulated
test data._Sean design A has better RMSE in white matter for values of Awr we expect to see in white
matter. This better RMSE in white matter is at the cost of worse RMSE in gray matter. Note that the
values of T7 s and 77 5 for gray matter were outside of the range of values used for the scan designs and for
training ourrestimator.
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42 Supporting Information Figure S3: MWF maps from five methods using simulated test data for a four-
43 compartment tissue model with exchange. The four compartments considered were myelin water, axonal
44 water (i.emmwatersin myelinated axons), all other water, and macromolecules. The results are similar to
45 those using the three-compartment model with exchange. Supporting Information Table S1 shows numerical
46 results.
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Supporting Infoermation Figure S4: MWEF maps from five methods using simulated test data for a three-
compartment tissue model without exchange. Without exchange, the three-compartment model becomes
essentially astwosecompartment model because the T of the macromolecular pool is so small. Thus it makes
sense that STFR2-PERK performs well. Surprisingly, MESE-PERK still produces good MWF estimates,
even though it is trained with the three-compartment exchanging model (like STFR3-PERK). This could be
because the Tr,of the MESE scan is long compared to the residence times governing exchange. Furthermore,
it is possible that if the training ranges for the residence times were adjusted appropriately (increased) then
STFR3-PERK would also do well. Supporting Information Table S2 shows numerical results.

were adjustéd appropriately (increased, to allow for less exchange) then STFR3-PERK would also do well,
although doing so. might cause greater estimator bias. It is somewhat surprising that MESE-PERK still gives
good MWF estimates, despite being trained with the three-compartment exchanging model. This could be
because the T of the MESE scan is long compared to the residence times (more than 10x longer).

S3 Estimator Bias

To assessthie effect of MWF estimator bias, we computed the biased CRLB [10] of scan design A for fixed
white mattertissue values (for the two-compartment non-exchanging model). (This is unlike what we did
in Figure 2, where we calculated an expected CRLB over distributions of the parameters.) The biased
CRLB indeed was smaller than the unbiased CRLB (see Supporting Information Figure S5), suggesting
that estimator bias is why our estimates had low variance. We investigated the bias of our STFR3-PERK
estimator for test data using the three-compartment exchanging model with fixed white matter tissue values.
We found that even with (mild) estimator bias, our proposed MWEF estimation technique is still sensitive to
changes in MWF (see Supporting Information Figure S6). Furthermore, our estimator bias decreases as SNR
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Supporting Information Table S2: Numerical results for Supporting Information Figure S3.

oNOYTULT D WN =

White Matter (MWF = 0.15) | Gray Matter (MWF = 0.03)
9 RMSE  Mean St. Dev. RMSE Mean  St. Dev. | Time (s)

10 STFR2-PERK 0.048  0.181 0.037 0.047  0.045 0.044 14.8
11 STFR3-PERK 0.097  0.055 0.020 0.051  0.058 0.043 41.9
12 STFRS-PERK-JE | 0.092  0.061 0.024 0.047  0.045 0.045 41.9
13 MESE-NNLS 0.031 0.148 0.031 0.027  0.007 0.013 1606.2
14 MESE-PERK 0.038  0.178 0.025 0.046  0.066 0.029 142.1

co
(]

Aw (Hz)

Lo

49 SupportingInformation Figure S5: In vivo images for two SPGR and nine STFR scans using scan design
50 A. Each image/is the square root sum of squares combination of the individual coil data. STFR produces
51 contrast similar to balanced SSFP, including a similar off-resonance profile that induces the characteristic
52 banding artifact of balanced SSFP. Different points of this profile are sampled as the phase ¢ of the STFR
53 tip-up excitation varies. The nine STFR images are sorted by increasing ¢, so this off-resonance profile is
54 easily visualized. In the lower right is the field map estimated from the two SPGR scans.
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Unbiased vs Biased CRLB for WM
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Supporting Information Figure S6: Comparison of biased and unbiased CRLBs for white matter tissue values
using the twoescompartment non-exchanging model. The biased CRLB is much lower than the unbiased
CRLB, suggesting that bias is the reason why our STFR-based MWF estimation results in estimates with
low variam€e. However, our proposed method still shows sensitivity to changes in MWF (see Supporting
Information Figure S6).

increases (e/8€., By using larger voxels). Thus, while the proposed method is biased, it still shows promise for
detecting changesyin MWEF.
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46 Supporting Information Figure S7: Expected MWF' estimates from the proposed STFR3-PERK MWF
47 estimation techmique for fixed white matter tissue values from a three-compartment exchanging model. The
48 proposed methodss (mildly) biased, yet it is still very sensitive to changes in true MWF value. Furthermore,
49 bias decreases as SNR increases. (An unbiased estimator would have estimates along the line of identity,
50 i.e., along thendashed line.)
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September 7, 2019

ISMRM
Re. 1.I. Rabi Award

Dear Colleagues,

I am delighted to enthusiastically recommend Steven Whitaker for the I.I. Rabi Award for his
paper submittedto MRM titled “Myelin Water Fraction Estimation Using Small-Tip Fast Recovery
MRI.” Theswork in this paper is part of Steven’s doctoral dissertation research in ECE at the
University ‘of/Michigan.

Steven is an ISMRM trainee member (number 82894). He is the first author of this original work.
He presented.a,preliminary version of this research at the ISMRM meeting in Montreal in 2019
(abstract #4403).

There are several.key components of the paper. The first component is the novel design of small-tip
fast recovery(STFR) scan combinations for precise myelin water fraction (MWF) imaging using a
two-compartment tissue model. Steven used a Bayesian Cramer-Rao bound optimization criterion
for experimental design to optimize the STFR acquisition parameters. Steven combined ideas in
previous papers for performing that optimization, and did all of the coding and design himself.

Importantlys=Steven discovered that the frequency shift between myelin water and non-myelin
water is a physical property to which the STFR sequence is sensitive. Other luminaries in the MRI
field have reported this frequency shift but, to our knowledge, Steven’s work in this paper is the
first to explait this frequency shift as a contrast mechanism to improve the MWF precision.

Following recent,work from my research group, Steven used a kernel regression method to rapidly
estimate the MWF from the STFR images. Steven rewrote the method in the emerging open-source
Julia language himself, and will share that code publicly after the paper is accepted.

Finally, Steven performed the experimental investigation of the method by performing simulations,
preparation, and scanning of ex vivo brain samples and phantoms, and in vivo brain scans. The
simulations were 100% Steven’s work. For the ex vivo and in vivo MRI scans, Steven used the
“TOPPE” pulse sequence framework that co-author Jon Nielsen at UM developed, and Jon and
Steven jointly=performed the scans. Jon and Steven collaborated on how to improve multi-echo
spin-echo (MESE) estimates that the paper uses to provide reference measurements. There were
extensive experiments performed for this paper and I would attribute about 90% of the contribution
to Steven.

Steven wrote the complete draft of the paper by himself, and my main role in the paper was minor
editing/organization suggestions to try to help it appeal to the MRM audience.

Overall, Steven’s contribution to this paper was at least 90%, as one would expect for a first-rate
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doctoral student. This paper is a very good match for the YIA because of the combination of novel
theory, methods, experimental investigation, and the potential for significant clinical impact. The
standard MESE method for MWF imaging requires prohibitively long scan times, whereas Steven’s
method, without any scan acceleration, took only a few minutes. This brings MWF imaging into
the realm of feasibility for examining a variety of brain diseases, and Steven deserves the credit for
this contribution. All together, he is an outstanding candidate for the Rabi Award.
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