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Purpose: To demonstrate the feasibility of an optimized set

of small-tip fast recovery (STFR) MRI scans for rapidly esti-

matingmyelin water fraction (MWF) in the brain.

Methods:We optimized a set of STFR scans to minimize the

Cramér-Rao Lower Bound (CRLB) of estimates of MWF. We

evaluated the RMSE of MWF estimates from the optimized

scans in simulation. We compared STFR-based MWF esti-

mates (both modeling exchange and not modeling exchange)

to multi-echo spin echo (MESE)-based estimates. We used

the optimized scans to acquire in vivo data from which a

MWF map was estimated. We computed the STFR-based

MWF estimates using PERK, a recently developed kernel re-

gression technique, and theMESE-basedMWF estimates us-

ing both regularized non-negative least squares (NNLS) and

PERK.

Results: In simulation, the optimized STFR scans led to esti-

matesofMWFwith lowRMSEacross a rangeof tissueparam-

eters and across white matter and gray matter. The STFR-

based MWF estimates that modeled exchange compared

well toMESE-basedMWFestimates in simulation. When the

optimized scans were tested in vivo, the MWFmap that was

estimated using a three-compartment model with exchange

was closer to theMESE-basedMWFmap.

Conclusion: The optimized STFR scans appear to be well-

suited for estimating MWF in simulation and in vivo when
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we model exchange in training. In this case, the STFR-based

MWF estimates are close to theMESE-based estimates.

Key words: myelin water fraction (MWF), small-tip fast re-

covery (STFR), scan optimization, kernel ridge regression,

machine learning

1 | INTRODUCTION

Quantitative magnetic resonance imaging (QMRI) is the application of MRI to estimate parameters of interest. One

QMRI application of growing interest is myelin water imaging, where one seeks quantitative maps of myelin water

fraction (MWF) [1, 2]. The MWF is the proportion of MRI signal in a given voxel that originates from water bound

within themyelin sheath. MWFmaps are desirable for tracking progression of demyelinating diseases [2], e.g., multiple

sclerosis [3].

The most widely accepted myelin water imaging techniques use the multi-echo spin echo (MESE) MRI scan (or

variants) [3, 4, 5]. MESE is the standard for clinical MWF imaging to which alternative MWFmapping techniques are

typically compared. However, MESE traditionally suffers from long scan times, impeding its routine clinical use. On

the other hand, a combined gradient and spin echo (GRASE) MRI scan, a variant of MESE, has been shown to enable

whole-brainMWFmaps in under 8minutes [6].

Analternative toMESE-basedmyelinwater imaginguses faster, steady-stateMRI scans [7] that canacquirewhole-

brainMWFmaps in 7minutes [6]. Despite evidence showing that thismethodproduces reproducibleMWFmaps (thus

enabling longitudinal studies), there are concerns about overestimating the true MWF [8, 9] and its precision [10].

Other steady-state methods have also been explored for MWF estimation, such as multi-echo gradient echo (GRE)

[11, 12, 13] and dual-echo steady-state (DESS). [14, 15, 16].

To our knowledge, most of these myelin water imaging techniques ignore potential differences in the effective

magnetic field experienced by myelin-bound water compared to water outside of myelin (an exception being [13]).

However, it has been shown that in cerebral white matter, myelin-bound water does in fact experience a different

effectivemagnetic field [17].

In preliminary work [18], we showed that modeling the additional off-resonance experienced by myelin water

reduces the Cramér-Rao Lower Bound (CRLB) of estimates of MWF using small-tip fast recovery (STFR) MRI [19].

We showed that the STFR sequence is sensitive to the frequency differences, suggesting that the difference in off-

resonance between myelin and non-myelin water is a potentially useful contrast mechanism containing information

that canhelpestimateMWF[18]. SimulationsusingoptimizedSTFRscanparameters led toMWFestimateswith lower

errors when there was a fixed, non-zero (but unknown) difference in off-resonance, compared to when there was no

(still unknown) frequency difference. To our knowledge, this work was the first to specifically design scans for myelin

water imaging that exploit frequency differences. Because the actual frequency difference is unknown andmight vary

between voxels or disease conditions, the proposed approach treats the difference as an unknown parameter that is

estimated alongside other unknown parameters like the T1 and T2 values of the various tissue compartments.

One limitationof our previousworkwas its tissuemodel. In [18]weassumeda two-compartment, non-exchanging

model for simplicity in computing the STFR signal. However, neglecting exchange can lead to biases inMWFestimates

[20]. Therefore, the method proposed in this paper uses a three-compartment model. The three compartments are

myelinwater, non-myelinwater, and amacromolecular pool;myelinwater andnon-myelinwater are in exchange,while

myelin water exchanges with themacromolecular pool [21].
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We previously estimated MWF from optimized STFR scans using parameter estimation via regression with ker-

nels (PERK), a recently developed learning-based technique for parameter estimation in MRI that uses kernel ridge

regression at its core [18, 22]. One alternativemethod forMWFestimation is non-linear least squares, which requires

iterative methods for solving and can get stuck in a local minimum. Another alternative is dictionary search, which

requires evaluating the STFR signal model on a discretized grid of the signal model parameters, which is impractical

when the number of parameters exceeds three or four. Yet another alternative is to use a neural network. While

neural networks can lead to good parameter estimates, they require a lot of training data and long training time. In

contrast, PERK trains quickly and avoids the other problems associated with non-linear least squares and dictionary

search. Therefore, this work again uses PERK.

This paper substantially builds upon our previous work. First, we re-optimize the STFR scan parameters to model

variations of bulk off-resonance and to account for two spoiled gradient-recalled echo (SPGR) scans that are used

for separate bulk off-resonance estimation. Next, we compare STFR-based MWF estimates to MESE-based MWF

estimates in simulation. In particular, we estimateMWF from the optimized STFR scans with PERK [22] using a three-

compartment tissuemodel with exchange. Finally, we compare our proposed STFR-basedMWFestimationmethod to

MESE-basedMWF estimation in vivo. Figure 1 illustrates the proposed approach.

The organization of this paper is as follows. Section 1.1 provides background information on the scans used in

this work (STFR andMESE), the scan design process, and PERK. Section 2 outlines our experiments, both for the STFR

scan design and for MWF estimation in simulation and in vivo. Section 3 reports the experimental results. Section 4

discusses our results. Section 5 gives concluding remarks.

1.1 | Background

1.1.1 | STFR

One repetition of STFR [19] begins with an initial tip-down excitation with flip angleα. Then there is time Tfree during

which free precession occurs, after which there is a tip-up excitation (“fast recovery") where magnetization is rotated

up towards the+z-axis with flip angle β and phase ϕ. Finally there is gradient spoiling for time Tg . For a single com-

partment, the signal obtained at a given spatial location from a STFR scan is given by [23]

s1(M0, T1, T2,∆ω, κ, Tfree, Tg, α, β, ϕ) =

M0 sin(κα)
[

e−Tg/T1
(

1− e−Tfree/T1
)

cos(κβ) +
(

1− e−Tg/T1

)]

e−Tfree/(2T2)e−i∆ωTfree/2

1− e−Tg/T1e−Tfree/T2 sin(κα) sin(κβ) cos(∆ω · Tfree − ϕ)− e−Tg/T1e−Tfree/T1 cos(κα) cos(κβ)
, (1)

whereM0 is the equilibrium magnetization, T1 and T2 are the spin-lattice and spin-spin time constants, respectively,

∆ω is the off-resonance frequency, and κ is a flip angle scaling constant (to account for differences between the pre-

scribed and actual flip angles). Note that approximating flip angle error as a scale factor is accurate for the small flip

angles used in this work, but typically inaccurate at larger flip angles. STFR with β = 0 is the same as SPGR with

TR = Tfree + Tg .

For myelin water imaging, more than one compartment must be modeled. In a two-compartment model, one

compartment consists of spins within myelin (myelin water), and the other compartment consists of other spins (non-

myelin water). If one neglects exchange, then the STFR signal at a given spatial location is the weighted sum of the
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FIGURE 1 Workflow of the proposedmethods. We first optimized a set of STFR scan parameters byminimizing a

Cramér-Rao Lower Bound, then acquired data using those scans, as well as Bloch-Siegert (BS) scans. Two of the STFR

scans were equivalent to SPGR scans, so were used to estimate∆ω, and the BS scans were used to estimate κ. These

parameters were treated as known values in theMWF estimation step. We then generated noisy training data using

an STFR signal model. Finally, we passed the training data, acquired STFR images, and known parameters to PERK to

estimateMWF voxel-by-voxel.
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single-compartment STFR signals of the individual compartments:

s2(M0, ff , T1,f , T1,s, T2,f , T2,s,∆ωf ,∆ω, κ, Tfree,Tg, α, β, ϕ) =

ff · s1(M0, T1,f , T2,f ,∆ω +∆ωf , κ, Tfree, Tg, α, β, ϕ) +

(1− ff) · s1(M0, T1,s, T2,s,∆ω, κ, Tfree, Tg, α, β, ϕ), (2)

where the weight ff is the myelin water fraction (MWF), T1,f and T2,f are the T1 and T2 time constants for the fast-

relaxing, myelin water compartment, T1,s and T2,s are the T1 and T2 time constants for the slow-relaxing, non-myelin

water compartment, and∆ωf is the additional off-resonance that is experienced only bymyelin water [17].

Although (2) has a convenient analytical expression, a more accurate tissue model for cerebral white matter con-

sists of three compartments (non-myelin water, myelin water, and a macromolecule water pool) with exchange be-

tween thenon-myelin andmyelinwater compartments and from themyelinwater compartment to themacromolecule

compartment [21]. In this case, the STFR signal is also a function of the macromolecule compartment volume frac-

tion fm, the macromolecule compartment T1,m and T2,m, the residence time for exchange frommyelin water to non-

myelinwater τf→s , and the residence time for exchange frommyelinwater to themacromolecule compartment τf→m,

in addition to the previously mentioned parameters. We assume the myelin water and non-myelin water compart-

ments are in chemical equilibrium, which means that ffτs→f = (1 − ff − fm)τf→s, and we assume there is no other

exchange, i.e., τm→f = τs→m = τm→s = ∞ [21]. Because of exchange, the STFR signal no longer has an analytical

expression andmust be computed using the Bloch-McConnell equation [24].

1.1.2 | MESE

One repetition of MESE [25] consists of an initial excitation with flip angle αex (typically 90◦) followed by a sequence

ofNref refocusing excitationswith flip angleαref (typically 180
◦). The signal is sampled at timesTE, 2TE, . . . , NrefTE

after the initial excitation, resulting in Nref images in one MESE scan. The repetition time TR is typically chosen to

be long enough so that the net magnetization of the spins is in equilibrium prior to each repetition. Thus, the MESE

signal is a function ofαex,αref , TE, and TR, as well as the same tissue parameters as the STFR signal; but if TR is suffi-

ciently long there is little dependence on T1 (of any compartment). Additionally, for myelin water imaging usingMESE,

normally the acquiredMESEsignal ismodeledas aweighted sumofMESEsignals from individual compartments, i.e., ig-

noring exchange between compartments. When ignoring exchange, we computed theMESE signal using the extended

phase graph (EPG)method [26]. When accounting for exchange, we used Bloch-McConnell simulation.

1.1.3 | ScanDesign Using the Cramér-Rao Lower Bound

MR image data for a single voxel in a single scan is oftenmodeled as

y = f(x,ν,p) + ϵ, (3)

where f(x,ν,p) ∈ C is the MR signal that is a function of unknown parameters x, known parameters ν , and scan

parameters p; and ϵ ∼ CN (0, σ2) is additive complex Gaussian noise. When there areD scans then the data for a

single voxel across each scan is collected into a vector:

y = f(x,ν,P ) + ϵ, (4)
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where y ∈ CD , f(x,ν,P ) = [f1(x,ν,p1), . . . , fD(x,ν,pD)]T , fd is the signal given by the dth scan for d =

1, . . . , D, P = (p1, . . . ,pD) denotes the collection of all scan parameters, and the noise vector is ϵ ∼ CN (0,Σ).

We assume that each scan has noise independent of the other scans, andwe assume that each scan has the same noise

variance σ2; thusΣ = σ2ID , where ID is theD ×D identity matrix.

For simplicity in computing theFisher informationmatrix (seebelow),we further assume that theMRsignalmodel

f is real-valued. We also take the magnitude of the received signal y, resulting in a Rician distributed signal [27]; how-

ever, we assume sufficiently high SNR so that this magnitude signal is approximately normally distributed with mean

f(x,ν,p) and variance σ2.

Under these assumptions, the Fisher informationmatrix for themagnitude of signal model (4) is [28]

I(x,ν,P ) =
1

σ2
(∇xf(x,ν,P ))T (∇xf(x,ν,P )), (5)

where∇x denotes a row gradient with respect to the unknown parameters x. The inverse Fisher information matrix

gives the Cramér-Rao Lower Bound (CRLB) for unbiased estimators [29]. In particular, the variance of an unbiased

estimator for the ith unknown parameter xi has a lower bound given by the ith diagonal element of the inverse Fisher

information matrix, i.e., var(x̂i) ≥ [(I(x,ν,P ))−1]i,i. This bound on the precision of unbiased estimators is useful

for optimizing experimental designs. The CRLB has been used to optimize MR sequence parameters for a variety of

pulse sequences and applications, e.g., [22, 30, 31, 32]. In this work, we optimize scan parameters of a set ofD STFR

scans forMWF estimation byminimizing an expectedweighted sum of the CRLB for each unknown parameter [33]:

P̂ = argmin
P∈P

Ex,ν [trace(W (I(x,ν,P ))−1)], (6)

where P denotes the scan parameter search space, Ex,ν denotes an expectation over x and ν , andW is a diagonal

weightingmatrix used to indicate the relative importance of precisely estimating the different unknown parameters.

1.1.4 | Parameter Estimation via Regressionwith Kernels (PERK)

This section describes the PERKmethodwe use to estimateMWF from STFR scans. Suppose a set of scan parameters

P is given, typically the P̂ from the scan design process (6). We seek to estimate unknown parametersx after acquir-

ing data using theD scans corresponding to these scan parameters. We generate training data by simulating data yn

via (4) with appropriate signal models f for various values of unknown and known parameters xn and νn; these N

training data points are collected as (q1,x1), . . . , (qN ,xN ), where qn = [|yn|T ,νT
n ]T and | · | denotes element-wise

complex modulus. After scanning (with the scan parametersP ), we have test data q for each voxel (where ν collects

separately estimated parameters, such as B1+ maps, that are treated as known values), and we want to estimate x.

PERK computes estimates via regularized linear regression (ridge regression), after first transforming the feature vec-

tors q (for both training and testing) via some user-defined feature map (which is never directly used but is indirectly

specified through the choice of kernel function). The PERK estimator is [22]

x̂(q) =
1

N
X1N +XM(MKM +NρIN )−1k(q), (7)

whereX = [x1, . . . ,xN ] denotes all of the training data, 1N ∈ RN is a vector of all ones,M = IN − 1
N
1N1T

N is

a de-meaning operator, ρ is a regularization parameter, the Gram matrixK ∈ RN×N has entriesKi,j = k(qi, qj),

where k(q) = [k(q, q1), . . . , k(q, qN )]T − 1
N
K1N , and k(q, q

′) is the user-specified kernel function. In this work,
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we used the Gaussian kernel

k(q, q′) ≜ exp

(

−
1

2
∥Λ−1(q − q′)∥22

)

, (8)

where Λ is a positive definite weighting matrix. PERK with a Gaussian kernel corresponds to first transforming the

feature vectors q via a nonlinear feature map into infinite-dimensional features, and then applying ridge regression

on the transformed features. This lifting of features to a higher-dimensional space improves the ability to capture the

nonlinear dependence of the signal on the unknown parameters wewish to estimate.

To reduce storage and computational needs, we approximated (7) using random Fourier features [22, 34].

2 | METHODS

This section describes the experiments performed in this work. We first explain the scan design process for optimizing

a set of STFR scans for MWF estimation. We then explain simulated MWF estimation experiments that compare our

proposedmethod toMESE-basedMWF estimation. Finally, we explain an experiment to test our proposedmethod in

vivo. The code for reproducing themethods and results in this paper is available at

https://github.com/StevenWhitaker/STFR-MWF.

The raw data is available at https://doi.org/10.7302/nw6e-1d66.

2.1 | ScanDesign

For the STFR scan design, we computed the CRLB using the two-compartment non-exchanging signal model (2). We

chose the weightingmatrixW to place full weight on the CRLB for ff (i.e., the diagonal entries ofW were all 0 except

for a 1 in the location corresponding to ff ). We took the flip angle scaling κ and bulk off-resonance∆ω to be known,

i.e., part of ν , and we optimized a set of D = 11 STFR scans. Two of these scans were SPGR scans with fixed scan

parameters and an echo time shift. We included these scans to enable the option of estimating∆ω using conventional

techniques and then treat∆ω as known for further parameter estimation.

WefixedTg = 2.8ms across all 11 scans. Wefixedα = 5◦ andTfree = 10.3ms for the two SPGR scans. TheTE of

each STFR scan and the first SPGR scanwas 4ms. The echo time shift between the two SPGR scanswas 2.3ms. For the

remaining nine STFR scans, we fixedTfree = 8ms andwe constrainedα ∈ [1, 15]◦, β ∈ [0, 15]◦, andϕ ∈ [−180, 180]◦.

The expectation in (6) requires choices for the probability distributions of the unknown and known parameters.

Table 1 shows the distributions we used. To explore the effect that the additional myelin water off-resonance∆ωf has

on the CRLB of ff , we performed one scan design (design A) where we took∆ωf to be unknown, and another (design

B) where we ignored∆ωf (i.e., we assumed it was known and equal to 0). To solve the optimization in (6), we used the

NLopt package1 in the Julia programming language2.

2.2 | MWFEstimation

For MWF estimation, we compared several estimation protocols. The proposed method, which we call STFR3-PERK,

usesPERKtoestimateMWFfromtheoptimizedSTFRscans,with trainingdatageneratedusing the three-compartment

exchanging model. This method assumes bulk off-resonance∆ω and flip angle scaling κ are known (unless otherwise

1
https://github.com/JuliaOpt/NLopt.jl
2
https://julialang.org/
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TABLE 1 Unknown and known parameters used in scan design and in simulation. Values were chosen tomatch

literature values for white matter [1, 17, 21, 35]. We usedM0 = 1 for the scan designs because it only scales the

STFR signal. The line below κ separates parameters used in both the two-compartment and three-compartment

models (above) from those used only in the three-compartment exchangingmodel (below).

Parameter Design A Design B WhiteMatter GrayMatter PERK Training Ranges

M0 1 1 0.77 0.86 unif(0,Mmax
0 )a

ff unif(0.03, 0.31) unif(0.03, 0.31) 0.15 0.03 unif(0.03, 0.31)

T1,f (ms) N (400, 802) N (400, 802) 400 500 unif(320, 480)

T1,s (ms) N (1000, 2002) N (1000, 2002) 832 1331 unif(800, 1200)

T2,f (ms) N (20, 42) N (20, 42) 20 20 unif(16, 24)

T2,s (ms) N (80, 162) N (80, 162) 80 80 unif(64, 96)

∆ωf (Hz) unif(5, 35) 0* 15 5 unif(0, 35)

∆ω (Hz) unif(−50, 50)* unif(−50, 50)* Varies Varies unif(−50, 50)b

κ unif(0.8, 1.2)* unif(0.8, 1.2)* Varies Varies unif(0.8, 1.2)b

fm N/A N/A 0.1 0.03 unif(0.03, 0.31)

T1,m (ms) N/A N/A 1000 1000 unif(800, 3000)

T2,m (ms) N/A N/A 0.02 0.02 unif(0.01, 0.1)

τf→s (ms) N/A N/A 100 20 unif(80, 150)

τf→m (ms) N/A N/A 50 10 unif(40, 75)

N/A - Not applicable (scan designs only used two-compartmentmodel).

unif(a, b) - Uniform distribution on interval [a, b].

N (µ, σ2) - Normal distribution withmean µ and variance σ2.

*Known parameter.

aMmax
0 given bymaximum signal value from data divided bymean signal value from signal model withM0 = 1.

bUnless parameter is known, in which case training range covers range of values in knownmap.
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noted). Another method, STFR2-PERK, is the same as STFR3-PERK, except training data is generated using the two-

compartment non-exchangingmodel. Again,∆ω andκ are assumed known. The referencemethod,MESE-NNLS, uses

regularized NNLS to estimate MWF from a MESE scan. Following [5], we fit 40 different T2 components spaced log-

arithmically from 15 ms to 2000 ms, and computed MWF as the proportion of signal coming from components with

T2 ≤ 40ms to the total signal. This method does not assume knowledge of∆ω or κ, but jointly estimates κ. A fourth

method, MESE-PERK, estimates MWF from a MESE scan using PERK, with training data generated using the three-

compartment exchangingmodel. This method was included to determine whether performance differences were due

to the estimationmethod (i.e., NNLS versus PERK), or due to the scans (i.e., MESE versus STFR). MESE-PERK does not

assume knowledge of∆ω or κ. Finally, because the proposed STFR3-PERK assumes∆ω and κ are known, whereas

the reference MESE-NNLS does not, we compared a fifth method, STFR3-PERK-JE, that is the same as STFR3-PERK

except∆ω and κ are assumed unknown. Table 1 shows the training ranges for themethods that use PERK.

The methods that use PERK require specifying the regularization parameter ρ and the positive definite matrixΛ

in the Gaussian kernel. For the Gaussian kernel, to eliminate dependence on scale we setΛ = λ diag(m|q|), where

λ is a regularization parameter andm|q| denotes the sample average across all voxels of the magnitude test data |q|,

where q collects the magnitude STFR signals |y| and the known parameters ν (see §1.1.4). We chose ρ = 2−60 and

λ = 23.5 for the regularization parameters, which we tuned using a holdout process described in [22, Sect. S.II].

| Numerical Simulation

We compared the two optimized sets of STFR scans to validate the scan design process. We simulated test data using

the two-compartmentnon-exchangingSTFRsignalmodel (2) using the rangeof tissueparametersoverwhich the scans

were optimized (to match the scan design assumptions), and we estimated MWF using STFR2-PERK. We measured

the root mean square error (RMSE) of the MWF estimates versus the additional myelin water off-resonance∆ωf for

three cases: first, using design B and training data that ignored ∆ωf (i.e., all training points had ∆ωf = 0); second,

using design B and training data that accounted for∆ωf ; and third, using design A and training data that accounted for

∆ωf . Section S1 of the Supporting Information describes another experimentwhere test datawas generated using the

two-compartmentmodel with fixedwhite matter and graymatter tissue values (see Table 1).

Next, we investigated the effects of exchange and compared STFR-based MWF estimates to MESE-based esti-

mates. We simulated STFR scans using design A and aMESE scan usingαex = 90◦,αref = 180◦,Nref = 32, TE = 10

ms, andTR = 1200ms. We simulated test data using the three-compartmentmodel with exchange and tissue parame-

ters corresponding towhitematter and graymatter (seeTable 1). Additionally, we chose bulk off-resonance∆ω values

to vary from−30 to 30 Hz and κ values to vary from 0.8 to 1.2. We comparedMWF estimates from each of the afore-

mentioned methods (STFR3-PERK, STFR2-PERK, MESE-NNLS, MESE-PERK, and STFR3-PERK-JE). For these simula-

tions we added complex Gaussian noise corresponding to a SNR in white matter ranging from 7-28 across the STFR

scans and from2-122 across the 32MESE echoes (tomatch the SNR of the in vivo data), where SNRwas calculated by

dividing the white matter signal mean by the noise standard deviation.

The proposed method (STFR3-PERK) uses a model that matches the model used to generate the test data in the

previous experiment. To investigate the effects ofmodelmismatch, we repeated the previous experiment using a nine-

compartment tissue model with exchange for the test data. The nine compartments were created by splitting each

of the three compartments in the three-compartment model into three sub-compartments. For example, the myelin

water compartment with fraction ff and relaxation time T2,f was split into three compartments with fractions 0.5ff ,

0.25ff , and 0.25ff and relaxation times T2,f , 0.8T2,f , and 1.2T2,f . Section S2 of the Supporting Information repeats

this experiment for a four-compartmentmodel with exchange and a three-compartmentmodel without exchange.
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| In Vivo Experiments

Under an IRB-approved protocol, we scanned a healthy volunteer to compare the proposed STFR-based MWF esti-

mation to MESE-based MWF estimation. We used 3D acquisitions for both the STFR and MESE scans to avoid slice

profile effects. The STFR scans used design A, and the RF pulses had time-bandwidth product of 8 and duration of 1

ms; the two SPGR scans took 58 s and the nine STFR scans took 3 min 36 s for a total scan time of 4 min 34 s. We

also acquired a pair of Bloch-Siegert (BS) scans for separate estimation ofκ [36]; the excitation RF pulse of these scans

had time-bandwidth product of 8 and duration of 1ms, and used±4 kHz off-resonant Fermi pulses between excitation

and readout. The total duration of the BS scans was 2 min 40 s. Therefore, our overall STFR-based MWF estimation

scan protocol lasted 7 min 14 s. For the MESE scan, we used the same scan parameters as in simulation (described

above); the initial excitation RF pulse had time-bandwidth product of 6, duration of 3 ms, and slab thickness of 0.9 cm,

and each refocusing pulse had time-bandwidth product of 2, duration of 2 ms, and slab thickness of 2.1 cm. Each re-

focusing pulse was also flanked with crusher gradients, each of which imparted 14 cycles of phase across the imaging

volume. The total duration of theMESE scan was 36min 11 s. For all scans, we acquired a 22× 22× 0.99 cm3 field of

view (FOV) with matrix size 200× 200× 9 (except the BS scans usedmatrix size 200× 50× 9). We implemented the

protocol in TOPPE [37].

We used a GE DiscoveryTM MR750 3.0T scanner with a 32-channel Nova Medical R⃝ head coil. We used conven-

tional inverse FFT reconstruction followed by square-root of sum-of-squares coil combination tomake themagnitude

images used for MWF estimation. We estimated the SNR in the white matter brain regions (pooling the four white

matter regions of interest (ROIs) in Supporting Information Figure S1 for each scan/echo) to vary from 8-17 across

the STFR scans and from 6-73 for acrossMESE echoes.

We analyzed the center slice of the acquired data. We estimatedMWF using STFR3-PERK, STFR2-PERK, MESE-

NNLS, andMESE-PERK. In this case, for STFR3-PERKandSTFR2-PERKwetookbulkoff-resonance∆ω tobeunknown

(but still assumed κ to be known).

3 | RESULTS

3.1 | ScanDesign

Table 2 reports the two optimized scan design parameters. For design A, the additional myelin water off-resonance

∆ωf was taken to be unknown and distributed uniformly from 5 to 35Hz. For design B,∆ωf was ignored (i.e., taken to

be known and equal to 0).

Figure 2 compares the expected CRLB of the standard deviation of MWF of these two scan designs versus∆ωf ,

where at each data point∆ωf is fixed (unlike the other parameters that vary according to the distributions in Table 1)

but still unknown, i.e., is contained in x (see §1.1.3). For these CRLB calculations, we used a noise standard deviation

that corresponds to SNR ranging from 9-15 in white matter across the STFR scans to match the SNR of the 1.1 mm

isotropic in vivo data. Figure 2 shows thatmodeling∆ωf improves the precision of the optimized scan design, and that

MWF becomes easier to estimate as∆ωf increases.
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TABLE 2 Optimized scan parameters. The first two scans are the STFR (SPGR) scans with fixed parameters; the

remaining scans were optimized during the scan design process. All values have units of degrees. For design A, the

additional myelin water off-resonance∆ωf was taken to be unknown and distributed uniformly from 5 to 35Hz. For

design B,∆ωf was ignored (i.e., taken to be known and equal to 0).

Scan # 1 2 3 4 5 6 7 8 9 10 11

Design A

α 5 5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 11.4 15.0

β 0 0 15.0 15.0 11.6 15.0 13.3 15.0 14.9 0.3 14.4

ϕ 0 0 -139.3 -108.1 -66.0 -28.0 25.9 64.4 104.1 146.3 173.0

Design B

α 5 5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

β 0 0 15.0 14.5 14.9 14.8 14.8 14.9 0.0 14.5 15.0

ϕ 0 0 -139.3 -113.3 -63.7 -14.3 14.3 63.7 83.2 113.3 139.3

0 10 20 30 40
Δωf (Hz)

1

2

3

4

CR
LB

 o
f S

ta
nd

ar
d 

De
vi

at
io

n 
of

 M
W

F

Comparison of CRLBs of Scan Designs
Design B : Ignore Δωf during scan design
Design A : Optimize over range of Δωf

FIGURE 2 The two optimized scans (see Table 2) were evaluated to explore how including the additional myelin

water off-resonance∆ωf in the design process affects performance. Design A (where∆ωf was included in the

optimization) has a better expected CRLB for every value of∆ωf within the 5-35Hz range over which design Awas

optimized. Design B (where∆ωf was ignored) understandably has a better expected CRLB for∆ωf = 0. For each

value of∆ωf investigated in this plot, the expected CRLBwas computedwith that value of∆ωf held constant but

unknown. Typical values of∆ωf in white matter are 5-35Hz [17]. Although these CRLB values predict estimator

standard deviation (for an unbiased estimator) on the order of 100%MWFormore, we are not restricted by these

large values because we are using a Bayesian estimator (see Supporting Information Figure S6 for details).
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Ignore Δωf in scan design and in training
Account for Δωf in training but ignore in scan design
Account for Δωf in scan design and in training

FIGURE 3 RMSE ofMWF estimates from simulated test data for various ways of accounting for the additional

myelin water off-resonance∆ωf . The diamond-markered green curvewas generated using scan design B (where∆ωf

was ignored) and using PERK training data where∆ωf = 0. In other words,∆ωf was not considered in any aspect,

neither in the scan design nor when training. The square-markered red curve was also generated using scan design B,

but the training data included a range of∆ωf values. The circle-markered blue curve was generated using design A

and a range of values of∆ωf . The latter twomethods look almost identical, but both havemuch better RMSE than the

first method as∆ωf increases.

3.2 | MWFEstimation

| Numerical Simulation

We computed the RMSE ofMWF estimates for test data generated using (2) with different values of∆ωf and a range

of tissue parameters. For design A, we estimated MWF using training data that was generated with a range of∆ωf

values. For design B, in one experiment we estimated MWF using training data that was generated with a range of

∆ωf , and in another experiment the training data included only∆ωf = 0. Figure 3 shows the results. The meanMWF

value in the test data was 0.17, so the minimum RMSE of 0.045 corresponds to about 26% relative error. Supporting

Information Figure S2 reports an analogous experiment using fixedwhite matter and graymatter tissue values.

Furthermore, we investigated the effects of exchange on MWF estimates. We simulated STFR scans (using de-

sign A) and a MESE scan, and we used the three-compartment tissue model with exchange using tissue parameters

corresponding to white matter and gray matter. We estimated MWF using STFR2-PERK, STFR3-PERK, MESE-NNLS,

MESE-PERK, and STFR3-PERK-JE. Table 3 shows the RMSEs, means, and standard deviations of the MWF estimates.

Figure 4 shows the ground truth map and a visual comparison of the estimated MWF maps. Figure 5 shows the re-
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TABLE 3 Comparison of variousmethods ofMWF estimation. The reported time refers to the entire estimation,

combining the time to estimateMWF in white matter voxels and graymatter voxels; it also includes training time for

themethods that use PERK. The best value in each column is highlighted. See Figure 4 for a visual comparison of

thesemethods.

WhiteMatter (MWF = 0.15) GrayMatter (MWF = 0.03)

RMSE Mean St. Dev. RMSE Mean St. Dev. Time (s)

STFR2-PERK 0.215 0.349 0.082 0.185 0.209 0.047 21.9

STFR3-PERK 0.021 0.158 0.020 0.046 0.074 0.015 43.1

STFR3-PERK-JE 0.026 0.145 0.026 0.044 0.069 0.021 41.3

MESE-NNLS 0.063 0.092 0.025 0.029 0.001 0.003 1602.4

MESE-PERK 0.029 0.134 0.025 0.026 0.026 0.025 142.7

TABLE 4 Samplemeans± standard deviations ofMWF estimates for four white matter (WM) regions of interest

(ROIs) and one graymatter (GM) ROI. Figure 6 shows correspondingMWFmaps, and Supporting Information Figure

S1 shows the corresponding ROIs.

ROI STFR2-PERK STFR3-PERK MESE-NNLS MESE-PERK

WM1 0.175± 0.021 0.116± 0.029 0.096± 0.042 0.105± 0.030

WM2 0.175± 0.009 0.117± 0.011 0.089± 0.046 0.097± 0.023

WM3 0.206± 0.010 0.133± 0.010 0.108± 0.036 0.133± 0.014

WM4 0.195± 0.008 0.138± 0.010 0.121± 0.039 0.141± 0.014

GM 0.187± 0.034 0.110± 0.029 0.034± 0.035 0.085± 0.034

sults of this experiment when using a nine-compartment exchanging model. Supporting Information Figures S3 and

S4 show results when using a four-compartment exchanging model and a three-compartment non-exchanging model,

respectively. The anatomy for the simulated data used in these experiments came fromBrainWeb [38].

| In Vivo Experiments

Wescanned a healthy volunteer using scan design A. Supporting Information Figure S5 shows images of the two SPGR

and nine STFR scans of the subject. In the same scan session, we also scanned the volunteer with a MESE scan. Fig-

ure 6 shows MWF maps that were computed from the STFR and MESE scans. In this case, we made the STFR-based

MWF estimates without using a separately estimated∆ωmap because theMWF estimates madewith the separately

estimated∆ω map exhibited spatial variation that mimicked the field map spatial variations, which we do not expect

inMWFmaps (i.e., we expectmyelin content to be independent of∆ω). Table 4 shows numerical results for the in vivo

data for several ROIs.
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FIGURE 4 Right: MWFmaps from fivemethods using simulated test data for a three-compartment tissuemodel

with exchange. Table 3 reports numerical results. The proposed STFR3-PERK estimates are closer to the trueMWF

value for white matter tissue values than are theMESE-NNLS estimates. Left: Bulk off-resonance∆ω and flip angle

scaling κmaps used in this simulation.

4 | DISCUSSION

Almost all of the optimizedflip anglesα andβ for both scan designsA andB are equal to (or are very close to) the upper

constraint, and there is awide spread of tip-up phases (see Table 2). This seems to suggest thatmost of the information

needed for estimating MWF lies in the phase accrual that occurs between the tip-down and tip-up excitations, so the

flip angles should be chosen to maximize SNR. Interestingly, however, an unreported experiment showed that a scan

design with flip angles set to 15◦ andwith an even spread of tip-up phases ϕ resulted in CRLBs that weremany orders

of magnitude worse than the optimized scans. This result emphasizes the importance of the scan design process in

choosing scan parameters, because these optimized parameters are robust across a range of∆ωf values (see Figure 2).

We also looked at optimized scan parameterswhen fixingTfree to 6ms. We found that the tip-up phases still covered a

spread of values, but the range of phases was slightly smaller, which makes sense because a smaller Tfree leads to less

off-resonance precession.

The expected CRLB for scan design A is better than that of design B when compared across many values of the

additional myelin water∆ωf (see Figure 2), as expected because the optimization of design B ignored the presence

of ∆ωf . Figure 2 also illustrates the impact that ∆ωf has on estimates of MWF; MWF becomes harder to estimate

as ∆ωf approaches 0. These findings appear to be at variance with the findings in [39], where in multi-GRE MWF

estimation modeling ∆ωf led to worse estimates at 3T. However, there is likely more information about ∆ωf in the

STFR scans because of the optimized tip-up phases, which could explain why modeling ∆ωf in this work improved

MWF estimation.

Simulated test data showed that scan design A and scan design B gave similarly good estimates of MWF across
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FIGURE 5 MWFmaps from fivemethods using simulated test data for a nine-compartment tissuemodel with

exchange. These results are essentially the same as when using the three-compartment exchangingmodel (see Figure

4). Thus, even though STFR3-PERKwas trainedwith a three-compartment exchangingmodel, it still produced good

MWF estimates from signal generated using a nine-compartment exchangingmodel.
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FIGURE 6 MWFmaps from in vivoMESE data and STFR data using scan design A. Table 4 shows numerical results

for several manually selected regions of interest. TheMESE-NNLSMWFmap appears noisier than those shown in

other works. This is likely due to the lower SNR of our data due to differences in voxel size. Tomatch the STFR

resolution, we acquiredMESEwith 1.1mm isotropic voxels, whereas oftenMESE data is collectedwith slice thickness

of 5mm and 1.6mmor greater in the phase encode direction. Remarkably, MESE-PERK is much less noisy than

MESE-NNLS. This is likely due to PERK being a Bayesian estimator that discourages estimates that are far from the

meanMWF training value.
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many values of∆ωf , at least for a range of tissue parameters (see Figure 3). At first glance, one may be surprised that

design A performed noticeably better than design B with respect to the expected CRLB, and yet the two designs had

similar RMSE values. One may also be surprised that the RMSE values were relatively small (about 25% of the mean

MWF value) even though the expected CRLB predicted errors of 100% or more. However, PERK is a Bayesian esti-

mator; thus, the unbiased CRLB does not necessarily predict the precision ofMWF estimates computed by PERK.We

minimized the unbiasedCRLBduring scan design because of its simplicity, but recognize that other objective functions

for scan optimizationmay be better suited forMWF estimates from PERK or other Bayesian estimationmethods. We

investigated the effect of bias in Section S3 of the Supporting Information.

Simulated test data also shows that STFR-basedmyelin water imaging compares well toMESE-based approaches.

Compared to the conventional MESE-NNLS, STFR3-PERK gives more accurate results in simulated white matter vox-

els, in addition to reducing estimation time bymore than an order of magnitude (see Table 3). This result is interesting

because the simulated MESE echoes generally had much higher SNR than the STFR scans. Combining MESE with

PERK improves upon the NNLS results. However, theMESE scan is longer than the combined time of all the STFR and

BS scans. Furthermore, MWF estimation usingMESE-PERK takes longer than STFR3-PERK because when simulating

the MESE signal one must simulate a collection of spins to account for stimulated echoes, which is not necessary for

STFR. This simulated data also shows that ignoring exchange when estimatingMWFwith STFR scans results in drasti-

cally overestimatedMWF values (see Figure 4), so it is essential to generate training data that accounts for exchange.

These same results hold evenwhen the test data was generated using a nine-compartment exchangingmodel (see Fig-

ure 5). See Section S2 of the Supporting Information for results using a four-compartment exchanging model and a

three-compartment non-exchangingmodel.

The in vivo MWF estimates in Figure 6 further emphasize the importance of modeling exchange. The MWFmap

given by STFR2-PERKhas higherMWFvalues than themap given by STFR3-PERK. The three-compartmentmodel led

to maps that better agreed with the MWF maps estimated from MESE data. Table 4 indicates that in all white mat-

ter ROIs the STFR3-PERK estimates are within one standard deviation of the mean MESE-NNLS estimates. In gray

matter it is different; however, this difference could be due to how the STFR training data were simulated, as typical

values for gray matter T1,f and T1,s are slightly outside of the range of values generated for training. Figure 6 and Ta-

ble 4 also demonstrate the effect that the estimationmethod has onMWFestimates: theMESE-PERK estimates have

decreased standard deviation compared to theMESE-NNLS estimates. Furthermore, Table 4 demonstrates that STFR-

based MWF estimates have lower standard deviation than MESE-based MWF estimates, despite the MESE scans be-

ing 4× longer than the STFR scans.

For the in vivo data, we did not use a separately acquired bulk off-resonance∆ω map as a known parameter for

our proposed STFR-basedMWFestimation technique, even though the scan design and simulations assumed that∆ω

was known. When we attempted to use the separately acquired ∆ω map for the in vivo data, the MWF estimates

appeared to bemore biased in regions with high∆ω values. Further work is needed to investigate this behavior.

For the in vivo data we acquired a 9 mm slab in about 7 minutes total scan time with 1.1 mm isotropic resolution.

Whole brain coverage would require 4 times as much data (with 2 mm slices), so our proposed approach would take

about 28 minutes, which is longer than the 8 minutes achieved by the GRASE method. However, in [6] the authors

under-sampled the GRASE data by a factor of 4, whereas we acquired fully sampled data. By under-sampling by the

same factor the proposed STFR approachwould achieve whole-brain coverage in about 7minutes.
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5 | CONCLUSION

Thiswork optimized a set of STFR scans that can be used to estimateMWF.We found that estimates ofMWFaremore

precise for larger values of the frequency difference∆ωf between myelin water and non-myelin water. Fortunately,

in white matter reported values of ∆ωf that are far enough away from 0 to aid estimation of MWF [17]. We also

found thatmodeling exchange (i.e., using amore accurate tissuemodel) greatly impacts theMWFestimates fromSTFR

scans. When modeling exchange, STFR with PERK yields MWF estimates that are comparable to MESE-based MWF

estimates.

This is the first work to compare STFR-basedMWF estimation to MESE-basedMWF estimation. Additionally, to

our knowledge, this is the first work to generateMWF estimates from aMESE scan using PERK.While this estimation

methodwas not themain point of this paper, it illustrates another potential method forMWF estimation.

This study was a proof-of-concept study to see if STFR could be applied to estimating MWF. As such, only a sin-

gle healthy volunteer was scanned. While the initial comparison of STFR to MESE is promising, future studies should

compare the twomethods across multiple volunteers. Additionally, our proposedMWF estimation method should be

validated in pathology to verify that it can detect, e.g., multiple sclerosis lesions. Such verification is especially impor-

tant because the proposed method assumes a fixed number of tissue compartments, which may or may not inhibit its

sensitivity to anomalies.

There are several ways in which the scan design process could be further explored. Our choice to optimize nine

STFR scans for scan design was somewhat arbitrary, so one could explore different numbers of scans to see how the

CRLB is affected for a given scan time budget. Additionally, one could change the space of scan parameters overwhich

to optimize; especially interesting would be to increase the upper bound on α and β to see if the optimized scans

would have a greater variety of flip angles. Another route to explore is to adjust the weighting matrixW to optimize

STFR scans for estimating other parameters in addition to or instead of MWF. In particular, since the results here

suggest that the STFR scans are sensitive to the effects of exchange, it could be interesting to optimize STFR scan

design for quantifying exchange parameters. Additionally, future work could explore what parameters to include as

known parameters versus unknown parameters, in both the scan design and in PERK.

Finally, to reduce the scan time of the STFR scans, either to allow formore scans or to reduce scan time, one could

under-sample theMRI k-space data. The image reconstructionwould then be under-determined, thus requiring some

sort of regularized reconstruction. Methods that jointly reconstruct allD scans at once would be a natural approach,

e.g., [40, 41].
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SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Supporting Information section.

Figure S1White matter (WM) and gray matter (GM) regions of interest (ROIs). The underlying image is from a

standard MP-RAGE acquisition, acquired in the same scan session and registered to the other scans. The ROIs are

labeled to correspond to Table 4 in the paper.

Figure S2RMSEofMWFestimates forwhitematter and graymatter simulated test data. Scan designAhas better

RMSE in white matter for values of∆ωf we expect to see in white matter. This better RMSE in white matter is at the

cost of worse RMSE in gray matter. Note that the values of T1,f and T1,s for gray matter were outside of the range of

values used for the scan designs and for training our estimator.

Figure S3MWFmaps from five methods using simulated test data for a four-compartment tissue model with ex-

change. The four compartments consideredweremyelinwater, axonal water (i.e., water inmyelinated axons), all other

water, and macromolecules. The results are similar to those using the three-compartment model with exchange. Sup-

porting Information Table S1 shows numerical results.

Table S1Numerical results for Supporting Information Figure S3.

Figure S4MWFmaps from fivemethods using simulated test data for a three-compartment tissuemodel without

exchange. Without exchange, the three-compartment model becomes essentially a two-compartment model because

the T2 of the macromolecular pool is so small. Thus it makes sense that STFR2-PERK performs well. Surprisingly,

MESE-PERK still produces good MWF estimates, even though it is trained with the three-compartment exchanging

model (like STFR3-PERK). This could be because the TR of the MESE scan is long compared to the residence times

governing exchange. Furthermore, it is possible that if the training ranges for the residence timeswere adjusted appro-

priately (increased) then STFR3-PERKwould also dowell. Supporting Information Table S2 shows numerical results.

Table S2Numerical results for Supporting Information Figure S4.

Figure S5 In vivo images for two SPGRand nine STFR scans using scan designA. Each image is the square root sum

of squares combination of the individual coil data. STFR produces contrast similar to balanced SSFP, including a similar

off-resonance profile that induces the characteristic banding artifact of balanced SSFP. Different points of this profile

are sampled as the phase ϕ of the STFR tip-up excitation varies. The nine STFR images are sorted by increasing ϕ, so

this off-resonance profile is easily visualized. In the lower right is the fieldmap estimated from the two SPGR scans.

Figure S6 Comparison of biased and unbiased CRLBs for white matter tissue values using the two-compartment

non-exchangingmodel. The biasedCRLB ismuch lower than the unbiasedCRLB, suggesting that bias is the reasonwhy

our STFR-based MWF estimation results in estimates with low variance. However, our proposed method still shows

sensitivity to changes inMWF (see Supporting Information Figure S7).

Figure S7 Expected MWF estimates from the proposed STFR3-PERKMWF estimation technique for fixed white

matter tissue values froma three-compartment exchangingmodel. Theproposedmethod is (mildly) biased, yet it is still

very sensitive to changes in true MWF value. Furthermore, bias decreases as SNR increases. (An unbiased estimator

would have estimates along the line of identity, i.e., along the dashed line.)
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This Supporting Information presents additional results and discussion for experiments not included in
the main body of the manuscript.

S1 Estimator RMSE for White and Gray Matter Tissue Values

We compared MWF estimates from scan designs A and B. We simulated test data using the two-compartment
non-exchanging STFR signal model using tissue values typical of white matter and gray matter (see Table
1), and we estimated MWF using STFR2-PERK. We plotted RMSE of MWF estimates from both scan
designs versus the additional myelin water off-resonance ∆ωf . Supporting Information Figure S1 shows the
results.

Supporting Information Figure S1 indicates that scan design A gives better MWF estimates in white
matter over values of ∆ωf we expect to see, but scan design B performs better in gray matter. However, the
values of T1,f and T1,s for gray matter are (slightly) outside of the range of values used for the scan designs
and for training our estimator. When quantifying MWF in gray matter is of interest, one probably should
use a wider range of values for scan design and training.

S2 Estimator Performance with Model Mismatch

We compared MWF estimates from STFR2-PERK, STFR3-PERK, MESE-NNLS, MESE-PERK, and STFR3-
PERK-JE for different ground truth models. First, we generated test data for white matter and gray matter
tissue values using a four-compartment exchanging model. The four compartments were myelin water, ax-
onal water (i.e., water in myelinated axons), all other water, and macromolecules. Myelin water was in
exchange with the macromolecular pool, myelin water and axonal water exchanged with each other, and
myelin water and all other water exchanged with each other. Supporting Information Figure S2 shows the
results, and Supporting Information Table S1 reports numerical values. STFR3-PERK still provides good
MWF estimates despite the model mismatch between the test data and the training data.

We then generated test data for white matter and gray matter tissue values using a three-compartment
non-exchanging model. The three compartments were the same as in the three-compartment exchanging
model that STFR3-PERK was trained with, except no exchange occurred (i.e., the exchange rates were set
to 0). Supporting Information Figure S3 shows the results, and Supporting Information Table S2 reports
numerical values. Without exchange, the three-compartment model becomes essentially a two-compartment
model because the T2 of the macromolecular pool is so small. Thus it makes sense that STFR2-PERK
gives good MWF estimates. The overestimation of MWF could be because the macromolecular pool has
a nonzero fm, but since it contributes no signal the estimator assumes that the smaller signal is due to a
larger MWF. MESE-NNLS does better without exchange, though it still underestimates gray matter MWF,
while STFR3-PERK does poorly. It is possible, though, that if the training ranges for the residence times
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Supporting Information Figure S1: White matter (WM) and gray matter (GM) regions of interest (ROIs).
The underlying image is from a standard MP-RAGE acquisition, acquired in the same scan session and
registered to the other scans. The ROIs are labeled to correspond to Table 4 in the paper.

Supporting Information Table S1: Numerical results for Supporting Information Figure S2.

White Matter (MWF = 0.15) Gray Matter (MWF = 0.03)
RMSE Mean St. Dev. RMSE Mean St. Dev. Time (s)

STFR2-PERK 0.170 0.308 0.062 0.112 0.133 0.044 14.7

STFR3-PERK 0.028 0.130 0.020 0.028 0.052 0.017 42.1
STFR3-PERK-JE 0.040 0.120 0.026 0.028 0.046 0.022 42.2
MESE-NNLS 0.071 0.084 0.024 0.029 0.001 0.004 1623.6
MESE-PERK 0.033 0.127 0.023 0.056 -0.005 0.043 167.3
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Supporting Information Figure S2: RMSE of MWF estimates for white matter and gray matter simulated
test data. Scan design A has better RMSE in white matter for values of ∆ωf we expect to see in white
matter. This better RMSE in white matter is at the cost of worse RMSE in gray matter. Note that the
values of T1,f and T1,s for gray matter were outside of the range of values used for the scan designs and for
training our estimator.
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Supporting Information Figure S3: MWF maps from five methods using simulated test data for a four-
compartment tissue model with exchange. The four compartments considered were myelin water, axonal
water (i.e., water in myelinated axons), all other water, and macromolecules. The results are similar to
those using the three-compartment model with exchange. Supporting Information Table S1 shows numerical
results.
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Supporting Information Figure S4: MWF maps from five methods using simulated test data for a three-
compartment tissue model without exchange. Without exchange, the three-compartment model becomes
essentially a two-compartment model because the T2 of the macromolecular pool is so small. Thus it makes
sense that STFR2-PERK performs well. Surprisingly, MESE-PERK still produces good MWF estimates,
even though it is trained with the three-compartment exchanging model (like STFR3-PERK). This could be
because the TR of the MESE scan is long compared to the residence times governing exchange. Furthermore,
it is possible that if the training ranges for the residence times were adjusted appropriately (increased) then
STFR3-PERK would also do well. Supporting Information Table S2 shows numerical results.

were adjusted appropriately (increased, to allow for less exchange) then STFR3-PERK would also do well,
although doing so might cause greater estimator bias. It is somewhat surprising that MESE-PERK still gives
good MWF estimates, despite being trained with the three-compartment exchanging model. This could be
because the TR of the MESE scan is long compared to the residence times (more than 10× longer).

S3 Estimator Bias

To assess the effect of MWF estimator bias, we computed the biased CRLB [10] of scan design A for fixed
white matter tissue values (for the two-compartment non-exchanging model). (This is unlike what we did
in Figure 2, where we calculated an expected CRLB over distributions of the parameters.) The biased
CRLB indeed was smaller than the unbiased CRLB (see Supporting Information Figure S5), suggesting
that estimator bias is why our estimates had low variance. We investigated the bias of our STFR3-PERK
estimator for test data using the three-compartment exchanging model with fixed white matter tissue values.
We found that even with (mild) estimator bias, our proposed MWF estimation technique is still sensitive to
changes in MWF (see Supporting Information Figure S6). Furthermore, our estimator bias decreases as SNR
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Supporting Information Table S2: Numerical results for Supporting Information Figure S3.

White Matter (MWF = 0.15) Gray Matter (MWF = 0.03)
RMSE Mean St. Dev. RMSE Mean St. Dev. Time (s)

STFR2-PERK 0.048 0.181 0.037 0.047 0.045 0.044 14.8

STFR3-PERK 0.097 0.055 0.020 0.051 0.058 0.043 41.9
STFR3-PERK-JE 0.092 0.061 0.024 0.047 0.045 0.045 41.9
MESE-NNLS 0.031 0.148 0.031 0.027 0.007 0.013 1606.2
MESE-PERK 0.038 0.178 0.025 0.046 0.066 0.029 142.1

Supporting Information Figure S5: In vivo images for two SPGR and nine STFR scans using scan design
A. Each image is the square root sum of squares combination of the individual coil data. STFR produces
contrast similar to balanced SSFP, including a similar off-resonance profile that induces the characteristic
banding artifact of balanced SSFP. Different points of this profile are sampled as the phase φ of the STFR
tip-up excitation varies. The nine STFR images are sorted by increasing φ, so this off-resonance profile is
easily visualized. In the lower right is the field map estimated from the two SPGR scans.
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Supporting Information Figure S6: Comparison of biased and unbiased CRLBs for white matter tissue values
using the two-compartment non-exchanging model. The biased CRLB is much lower than the unbiased
CRLB, suggesting that bias is the reason why our STFR-based MWF estimation results in estimates with
low variance. However, our proposed method still shows sensitivity to changes in MWF (see Supporting
Information Figure S6).

increases (e.g., by using larger voxels). Thus, while the proposed method is biased, it still shows promise for
detecting changes in MWF.
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Supporting Information Figure S7: Expected MWF estimates from the proposed STFR3-PERK MWF
estimation technique for fixed white matter tissue values from a three-compartment exchanging model. The
proposed method is (mildly) biased, yet it is still very sensitive to changes in true MWF value. Furthermore,
bias decreases as SNR increases. (An unbiased estimator would have estimates along the line of identity,
i.e., along the dashed line.)
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EECS Department

1301 Beal Ave.

University of Michigan

Ann Arbor, MI 48109-2122

email: fessler@umich.edu

voice: 734-763-1434

web: http://web.eecs.umich.edu/˜fessler

September 7, 2019

ISMRM

Re. I.I. Rabi Award

Dear Colleagues,

I am delighted to enthusiastically recommend Steven Whitaker for the I.I. Rabi Award for his

paper submitted to MRM titled “Myelin Water Fraction Estimation Using Small-Tip Fast Recovery

MRI.” The work in this paper is part of Steven’s doctoral dissertation research in ECE at the

University of Michigan.

Steven is an ISMRM trainee member (number 82894). He is the first author of this original work.

He presented a preliminary version of this research at the ISMRM meeting in Montreal in 2019

(abstract #4403).

There are several key components of the paper. The first component is the novel design of small-tip

fast recovery (STFR) scan combinations for precise myelin water fraction (MWF) imaging using a

two-compartment tissue model. Steven used a Bayesian Cramer-Rao bound optimization criterion

for experimental design to optimize the STFR acquisition parameters. Steven combined ideas in

previous papers for performing that optimization, and did all of the coding and design himself.

Importantly, Steven discovered that the frequency shift between myelin water and non-myelin

water is a physical property to which the STFR sequence is sensitive. Other luminaries in the MRI

field have reported this frequency shift but, to our knowledge, Steven’s work in this paper is the

first to exploit this frequency shift as a contrast mechanism to improve the MWF precision.

Following recent work from my research group, Steven used a kernel regression method to rapidly

estimate the MWF from the STFR images. Steven rewrote the method in the emerging open-source

Julia language himself, and will share that code publicly after the paper is accepted.

Finally, Steven performed the experimental investigation of the method by performing simulations,

preparation and scanning of ex vivo brain samples and phantoms, and in vivo brain scans. The

simulations were 100% Steven’s work. For the ex vivo and in vivo MRI scans, Steven used the

“TOPPE” pulse sequence framework that co-author Jon Nielsen at UM developed, and Jon and

Steven jointly performed the scans. Jon and Steven collaborated on how to improve multi-echo

spin-echo (MESE) estimates that the paper uses to provide reference measurements. There were

extensive experiments performed for this paper and I would attribute about 90% of the contribution

to Steven.

Steven wrote the complete draft of the paper by himself, and my main role in the paper was minor

editing/organization suggestions to try to help it appeal to the MRM audience.

Overall, Steven’s contribution to this paper was at least 90%, as one would expect for a first-rate
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doctoral student. This paper is a very good match for the YIA because of the combination of novel

theory, methods, experimental investigation, and the potential for significant clinical impact. The

standard MESE method for MWF imaging requires prohibitively long scan times, whereas Steven’s

method, without any scan acceleration, took only a few minutes. This brings MWF imaging into

the realm of feasibility for examining a variety of brain diseases, and Steven deserves the credit for

this contribution. All together, he is an outstanding candidate for the Rabi Award.

Sincerely,

Jeffrey A. Fessler

William L. Root Professor of EECS
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