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Abstract

Cells use chemical modifications to alter the sterics, charge, and conformations

of large biomolecules, modulating their biogenesis, function, and stability.

Until recently post-transcriptional RNA modifications were thought to be

largely limited to nonprotein coding RNA species. However, this dogma has

rapidly transformed with the discovery of a host of modifications in protein

coding messenger RNAs (mRNAs). Recent advancements in genome-wide

sequencing technologies have enabled the identification of mRNA modifica-

tions as a potential new frontier in gene regulation—leading to the develop-

ment of the epitranscriptome field. As a result, there has been a flurry of

multiple groundbreaking discoveries, including new modifications, nucleoside

modifying enzymes (“writers” and “erasers”), and RNA binding proteins that

recognize chemical modifications (“readers”). These discoveries opened the

door to understanding how post-transcriptional mRNA modifications can

modulate the mRNA lifecycle, and established a link between the

epitranscriptome and human health and disease. Despite a rapidly growing

recognition of their importance, fundamental questions regarding the identity,

prevalence, and functional consequences of mRNA modifications remain to be

answered. Here, we highlight quantitative studies that characterize mRNA

modification abundance, frequency, and interactions with cellular machinery.

As the field progresses, we see a need for the further integration of quantitative

and reductionist approaches to complement transcriptome wide studies in

order to establish a molecular-level framework for understanding the conse-

quences of mRNA chemical modifications on biological processes.
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1 | INTRODUCTION

Chemical modifications have been studied as key modulators of RNA biogenesis, function, and stability for over half a
century (Cohn & Volkin, 1951; F. F. Davis & Worthington Allen, 1957; Helm & Alfonzo, 2017; R. P. Perry, Kelley,
Friderici, & Rottman, 1975; Rottman, Shatkin, & Perry, 1974). Until recently, post-transcriptional modifications were
thought to be largely limited to noncoding RNAs (ncRNAs), as only three modifications, N7-methylguanosine (m7G),
N6-methyladenosine (m6A), and inosine (I), were known in protein coding messenger RNAs (mRNAs) (Desrosiers,
Friderici, & Rottman, 1974; Morse & Bass, 1997; Nachtergaele & He, 2017; Paul, 1998; R. P. Perry & Kelley, 1974). The
discovery of over a dozen enzymatically incorporated modifications in mRNAs has shifted this paradigm and generated
tremendous interest because mRNA modifications have the potential to control protein expression (Figure 1; Frye,
Harada, Behm, & He, 2018; Gilbert, Bell, & Schaening, 2016).

It is still unclear if most modifications result from background off-target activities of ncRNA modifying enzymes, or
if they represent a new layer of post-transcriptional control. Regardless, there are likely to be biological consequences
for mRNA modifications, as these chemical tags can influence the interactions between mRNAs and the cellular
machinery. The study of mRNA modifications (the epitranscriptome, Figure 2) is a rapidly emerging field as researchers
seek to establish the influence of mRNA modifications on biology and human health (Gilbert et al., 2016; Hoernes,
Huttenhofer, & Erlacher, 2016; Nachtergaele & He, 2017; Peer, Rechavi, & Dominissini, 2017; Roundtree, Evans,
Pan, & He, 2017; Saletore et al., 2012). Initial correlative studies have revealed links between a subset of modifications
and essential biological functions including development, sex determination and circadian rhythm maintenance, multi-
ple cancers, and diseases (Angelova et al., 2018; Q. Cui et al., 2017; De Jesus et al., 2019; Fustin et al., 2018; Haussmann
et al., 2016; L. J. Li, Fan, Leng, Pan, & Ye, 2018; Lin, Choe, Du, Triboulet, & Gregory, 2016; Roundtree, Evans, et al.,
2017; Sibbritt, Patel, & Preiss, 2013; Yoon et al., 2017; Zhang et al., 2016; Zhong et al., 2018). However, key fundamental
questions regarding the incorporation and molecular-level consequences of mRNA modification need to be investigated
to understand how mRNA modification status contributes to discrete biological processes and disease states (Figure 3).

The mRNA epitranscriptome is chemically diverse, containing nucleoside isomers, methyl, acetyl, hydroxymethyl,
and formyl modifications (Figure 2; Arango et al., 2018; Carlile et al., 2014; Delatte et al., 2016; Dominissini et al., 2016;
Huber et al., 2015; Jia et al., 2011; Lovejoy, Riordan, & Brown, 2014; S. Schwartz et al., 2014; Squires et al., 2012; Tardu,
Jones, Kennedy, Lin, & Koutmou, 2019; Xu et al., 2017). Modifications are present in eukaryotic, bacterial, and viral
mRNAs (Deng et al., 2015; Kennedy, Courtney, Tsai, & Cullen, 2017). Advances in sequencing technologies enabled
the development of techniques to identify the location of modifications transcriptome wide (Amort et al., 2017; Delatte

FIGURE 1 Chemical modifications have the potential to individually influence mRNA structure and dynamics, splicing and

maturation, RNA–protein interactions, translation, and stability. The interconnected nature of the mRNA life cycle can intensify the effect of

a modification through the modulation of downstream processes. For example, several mRNA modifications, m6A, m1A, m1G, Ψ, and f5C,

have been shown to change the stability of RNA structures and would be predicted to redistribute the ensemble of mRNA secondary

structures present in a cell (Charette & Gray, 2000; D. R. Davis, 1995; B. Liu et al., 2018; Roost et al., 2015; Spitale et al., 2015; R. Wang et al.,

2016; Zhou et al., 2016). This alteration can modulate the ability to form RNA–protein interactions, which can in turn impact mRNA

maturation, translation, and decay through pathways dependent on these interactions. Additionally, mRNA translation rates and mRNA

decay rates are coupled, with poorly translated mRNAs being targeted more robustly for decay (Presnyak et al., 2015; Radhakrishnan et al.,

2016). Thus, if an mRNA modification strongly impacts one step in an mRNA's life, this perturbation is likely to be observed in the outcome

of related processes (e.g., modification induced perturbations in mRNA structure could slow translation, which in turn reduces the mRNA's

half-life)
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et al., 2016; Motorin & Helm, 2019). These approaches have given us an expansive bird's-eye view of mRNA modifica-
tions by providing detailed maps of where 12 modifications can be incorporated into the transcriptome
[N6-methyladenosine (m6A) pseudouridine (Ψ), N4-acetylcytidine (ac4C), N1-methyladenosine (m1A),
N7-methylguanosine (m7G), 20O-methyl modifications (Cm, Am, Gm, Um), 5-methylcytidine (m5C), and
5-hydroxymethylcytidine (hm5C), and inosine (I)] (Alon et al., 2015; Amort et al., 2017; Arango et al., 2018; Carlile
et al., 2014; X. Cui et al., 2017; Danecek et al., 2012; Delatte et al., 2016; Dominissini et al., 2012; Garcia-Campos et al.,
2019; Kim et al., 2004; Levanon et al., 2004; X. Li et al., 2015; Lovejoy et al., 2014; Meyer et al., 2012; Sakurai, Yano,
Kawabata, Ueda, & Suzuki, 2010; S. Schwartz et al., 2014; Squires et al., 2012; Yang et al., 2017; You, Dai, & Wang,
2017; Yuan et al., 2019; L. S. Zhang et al., 2019).

Our best understanding of how mRNA modifications can influence gene expression comes from a long-standing
body of work of inosine, and overlying the findings of transcriptome wide studies with genetic and biochemical investi-
gations of m6A (Bajad, Jantsch, Keegan, & O'Connell, 2017; S. Schwartz, 2016). Inosine can contribute to mRNA stabil-
ity, splicing, and translational recoding (Bazak et al., 2014; Ferreira et al., 2016; Garrett & Rosenthal, 2012; Licht et al.,
2019; Peng et al., 2018; Ramaswami et al., 2013; Rueter, Dawson, & Emeson, 1999). Similarly, the primary consequence
of m6A is mRNA degradation, though effects on transcript maturation and translation have also been reported
(Ke et al., 2017; Pendleton et al., 2017; X. Wang et al., 2014; Xiao et al., 2016; X. Zhao et al., 2014). Eukaryotes possess a
series of “reader” and “eraser” proteins that bind m6A-containing transcripts to mediate these effects (Patil, Pickering, &
Jaffrey, 2018; Rajecka, Skalicky, & Vanacova, 2019; S. Schwartz, 2016; H. Shi, Wei, & He, 2019). Inosine prevalence and
the conservation of m6A reader proteins across a variety of eukaryotic species suggest that at least some modifications
could contribute to biological function. Despite our in-depth knowledge of where mRNA modifications can exist and

FIGURE 2 Reported messenger RNA (mRNA) modifications. Unmodified nucleosides are shown in boxes, while the modified

nucleosides are unboxed. The full names of the nucleosides are: A, adenosine; m6A, N6-methyladenosine; m1A, 1-methyladenosine; Am, 20-
O-methyladenosine; I, inosine; m6Am, N6, 20-O-dimethyladenosine; C, cytidine; Cm, 20-O-methylcytidine; m5C, 5-methylcytidine; m3C,

3-methylcytidine; f5C, 5-formylcytidine; ac4C, N4-acetylytidine; hm5C, 5-hydroxymethylcytidine; G, guanosine; m7G, 7-methylguanosine;

Gm, 20-O-methylguanosine; m1G, 1-methylguanosine; U, uridine; Ψ, pseudouridine; Um, 20-O-methyluridine
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growing molecular-level insight into inosine and m6A function, we have a limited (or no) picture of the biological role
for the other 14 reported mRNA modifications.

Establishing a quantitative, biochemical framework for understanding individual mRNA modifications to comple-
ment existing transcriptome wide datasets is one of the next milestones for the epitranscriptome field. In particular,
measurements of the frequency (stoichiometry) of individual modification sites under a variety of cellular conditions
and disease states will be required to determine which sites are the most biologically meaningful. Additionally, in vitro
structural, thermodynamic, and kinetic studies characterizing how interactions between proteins, ncRNAs, decay
machinery, and the ribosome are changed by mRNA modifications will provide a deep understanding of how post-
transcriptional modifications can influence protein production. Such work can also potentially reveal additional

FIGURE 3 The implementation of quantitative approaches will allow us to critically assess some of the key questions in the

epitranscriptome field and establish a molecular understanding of individual messenger RNA (mRNA) modifications. Here, we present

several knowledge gaps that we think can be best filled using quantitative approaches: (a) Several mRNA modifications, m6A, m1A, m1G, Ψ,
and f5C, affect the stability of RNA secondary structure, but limited knowledge is known about the effect of other chemical modifications

(Charette & Gray, 2000; D. R. Davis, 1995; B. Liu et al., 2018; Roost et al., 2015; Spitale et al., 2015; R. Wang et al., 2016; Zhou et al., 2016).

High-resolution structural biology and secondary structure-probing techniques are needed to uncover modification mediated structural

changes. (b) Current transcriptome wide sequencing approaches have uncovered thousands of modification sites, but little is known about

how modification insertion sites are selected. Modifications could be randomly incorporated on available sites, incorporated on specific

locations of target transcripts, or there could be cross talk between sites on a single transcript (cooperative incorporation). Kinetic and

thermodynamic investigations of modifying enzyme selectivity and broad analyses of the contributions of structure to selectivity (as in

Carlile et al., 2019), coupled with measurements of the stoichiometry of multiple modifications on individual transcripts can help to

distinguish between these models. (c) Targeted approaches will be required to discern which mRNA modification sites are biologically

relevant. Measurements of modification stoichiometry, and assessment of how the stoichiometry at individual sites varies as a function of

cell cycle, environment and disease is one example of experiments that could be done to identify significant sites of modification.

(d) Occupancy of individual sites might be temporally controlled, and therefore the stoichiometry of individual sites need to be

quantitatively assessed as a function of time. Without this information it is likely that biologically relevant sites may be overlooked. (e) It is

difficult to deconvolute the impact of mRNA modifications on mRNA–protein, splicing, mRNA stability, and mRNA translation on protein

output in cells (see Figure 1). Reconstituted systems are ideally suited to overcome this challenge by allowing researchers to dissect how each

individual interaction is influenced by mRNA modifications. These sorts of studies can help to establish which biological processes are likely

more impacted by particular modifications, and have the potential to suggest likely consequences of mRNA modifications
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functions of modifications that might not be immediately obvious from correlative studies. Together, these data will
enable us to critically consider some of the key questions in the emerging epitranscriptome field—including assessing
the potential biological significance/insignificance of individual modifications and modification sites (Figure 3). Here,
we will discuss the pioneering studies starting to build a molecular foundation basis for understanding the
epitranscriptome. We will focus on studies of modifications other than inosine, as adenosine to inosine (A to I) editing
has been extensively reviewed elsewhere (Nishikura, 2016; Walkley & Li, 2017; Y. Wang, Zheng, & Beal, 2017). This
review will emphasize the work conducted to quantify modification abundance, frequency of incorporation, and inter-
actions with the cellular machinery.

2 | QUANTITATIVE APPROACHES FOR STUDYING MRNA MODIFICATION
LEVELS AND CONSEQUENCES

We will begin by presenting and contextualizing some of the quantitative approaches used to characterize mRNA modi-
fications. In particular, we will discuss methods that measure mRNA levels and stoichiometries to quantitatively
describe the mRNA modification landscape of the transcriptome. Additionally, we will highlight a variety of approaches
that provide insight into the biological consequences of mRNA modifications by evaluating the impact of modifications
on mRNA:protein interactions, splicing, translation and decay.

2.1 | Liquid chromatography with tandem mass spectrometry (LC–MS/MS) measures
total modification abundance

The overall abundance of modifications is an important metric for gauging how broadly a particular modification might
influence mRNAs. Sequencing strategies have provided deep insight into where mRNA modifications can be localized.
However, sequencing-based approaches cannot reliably report on absolute modification abundances because they rely
heavily on the efficiency and specificity of the biochemical workflow as well as the bioinformatic parameters used to
analyze the data (peak alignment, peak detection method, etc.; Helm & Motorin, 2017). Direct methods, such as LC–
MS/MS, are better suited to measure the overall abundance of modifications in mRNAs. LC–MS/MS is a well-
established approach extensively utilized to quantify post-transcriptional modifications in ncRNAs including tRNAs
and rRNAs and is increasingly being applied to study mRNA modifications.

In order to measure modification levels by LC–MS/MS, mRNAs are purified and enzymatically hydrolyzed to
mononucleosides (Chan et al., 2010; Kowalak, Pomerantz, Crain, & McCloskey, 1993; Pomerantz & Mccloskey, 1990;
Russell & Limbach, 2013; Su et al., 2014). The resulting nucleosides are separated using liquid chromatography
(LC) and absolutely quantitated by mass spectrometry using multiple reaction monitoring with an internal standard.
Early studies used LC–MS/MS to confirm the presence of mRNA modifications found by RNA-seq, but more recently
researchers have begun to use LC–MS/MS to identify new modifications and modifying enzymes (Chu et al., 2018;
Tardu et al., 2019; Xu et al., 2017). Additionally, high-throughput applications of LC–MS/MS for mRNA modification
discovery and characterization are emerging. These approaches are similar to mass spectrometry studies of tRNA modi-
fications that characterize dozens of nucleosides in parallel and allow researchers to rapidly explore a broad chemical
space (Chu et al., 2018; Su et al., 2014; Tardu et al., 2019; Xu et al., 2017). Nonetheless, the impact of current LC–MS/
MS approaches is limited because they do not provide any sequence context for modified nucleosides and require large
quantities of highly purified mRNA.

2.2 | Approaches for measuring modification occupancy

Determining the occupancy of discrete mRNA modification sites is imperative for uncovering the contributions of mod-
ifications to biological processes. If modifications serve as a gene regulatory mechanism, then the occupancy of con-
trolled modification sites is likely to vary over the lifetime of an mRNA to alter its function (Figure 3). Transcriptome
wide methodologies to measure site occupancy will allow us to form hypotheses about which modified sites may influ-
ence biological processes. This is especially true in the context of stress or diseased states, under which modification
occupancy levels could dramatically fluctuate. Comparison of the absolute abundances of mRNA modifications with
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the number of possible sites of modification indicates that the occupancy of most modification sites are likely sub-stoi-
chiometric, similar to protein post-translational modifications (PTMs; Prus, Hoegl, Weinert, & Choudhary, 2019).

The occupancy of individual sites can be measured with site-specific cleavage and radioactive-labeling followed
by ligation-assisted extraction and thin-layer chromatography (SCARLET) (N. Liu et al., 2013). SCARLET uses com-
plementary oligos targeted to known modification sites to investigate the occupancy of the modification at discrete
sites. This method takes advantage of the different chemical properties of modified and unmodified nucleosides—
using thin-layer chromatography to separate radioactively labeled modified/unmodified RNA species in a manner
that enables the quantification of the relative modification frequency (described in detail in Figure 4). Notably,
because SCARLET does not rely on the specific recognition of a modification by an antibody or nuclease, it can be
applied to all modifications. While SCARLET is a highly accurate method for quantifying the extent of modification
incorporation in mRNAs, it requires researchers to know where modification sites exist, can only assess a single site
at a time, and is challenging to implement. As such, despite being the first and arguably most reliable method of
quantifying mRNA modification occupancy, SCARLET has only been applied to study a handful of m6A sites, and a
single Ψ-modified mRNA (Chen et al., 2015; Duan et al., 2017; X. Li et al., 2015; Linder et al., 2015; N. Liu et al.,
2013; Y. Zhao, Karijolich, Glaunsinger, & Zhou, 2016).

Reliable approaches for measuring the transcriptome wide occupancy of mRNA sites only exist for studying m6A
and inosine (Sakurai et al., 2014; Zaccara, Ries, & Jaffrey, 2019). For the purposes of this review, we will focus on m6A-
related methods, m6A-level and isoform-characterization sequencing (m6A-LAIC-seq) and m6A-sensitive RNA digestion
and sequencing (MAZTER-seq; Figure 4), as inosine methods are well reviewed in Sakurai et al. (2014), Garcia-Campos
et al. (2019), and Molinie et al. (2016). MAZTER-seq and m6A-LAIC-seq use either an antibody or nuclease to identify
modified sites in purified cellular RNA and synthetic mRNA controls. RNA-seq is subsequently used to measure the
abundance of both mRNAs of interest and the controls to determine m6A incorporation frequency. These methods,
while powerful, both rely on indirect methods to detect the m6A modification. The recent advent of direct nanopore ion
sequencing technology may eventually permit researchers to directly measure the occupancy of all modifications on
individual mRNA transcripts, but further advances in the computational analysis of nanopore data will be required
before this approach can be widely implemented for this purpose (Jain, Olsen, Paten, & Akeson, 2016).

2.3 | Transcriptome wide studies of mRNA translation and half-life

Sequencing-based approaches have been used to assess both the half-life and translation of modified mRNAs trans-
criptome wide. Ribosome profiling is a powerful technique that allows researchers to take a snap-shot of where every
ribosome sits on every mRNA in a cell at a given period of time (Ingolia, Ghaemmaghami, Newman, & Weissman,
2009). This approach enables the identification of well- and poorly-translated sequences in vivo, and can even provide
insight into how distinct states of translation elongation are modulated (Lareau, Hite, Hogan, & Brown, 2014; C. C.
Wu, Zinshteyn, Wehner, & Green, 2019). Similarly, the half-lives of all cellular mRNAs can be measured in parallel by
using RNA-seq to observe the time-dependent reductions in mRNA levels following transcriptional shut-off by small
molecules, such as actinomycin, or temperature sensitive RNA Polymerase II mutants (Lugowski, Nicholson, &
Rissland, 2018). Ribosome profiling and transcriptome wide half-life measurements robustly report on the details of
mRNA stability and translation and have greatly advanced our understanding of RNA biology.

Utilizing ribosome profiling and transcriptome wide decay studies to discern the function of a specific modification
would ideally involve knocking-out (or knocking-down) an mRNA modifying enzyme, and comparing the translation
and stability of modified and unmodified mRNAs. It is important to note that ribosome profiling and transcriptome
wide half-life studies report on the average behavior of the overall population of mRNA transcripts containing a given
sequence. Therefore, the heterogeneity of modification occupancy introduces challenges for interpreting data collected
by these methods. The analysis of such data is further complicated by the fact that most enzymes that catalyze mRNA
modification also catalyze the incorporation of the same functional groups into ncRNA species essential to protein
translation (e.g., tRNAs, ribosomal RNA [rRNA]; Arango et al., 2018; X. Li et al., 2017; S. Schwartz et al., 2014; Tardu
et al., 2019; Xu et al., 2017). Since translation and decay rates are coupled, these potential perturbations to the transla-
tion machinery can make complicate efforts to deconvolute the impacts of modifications on ncRNAs from those on
mRNAs by these methods (Figure 1; Presnyak et al., 2015; Radhakrishnan et al., 2016). Ultimately, regardless of their
limitations, ribosome profiling and transcriptome wide mRNA half-life studies will be useful for uncovering how
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FIGURE 4 Methods to quantify messenger RNA (mRNA) m6A modification stoichiometry. (a) Site-specific cleavage and radioactive-

labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET) is the most direct method developed to quantify m6A

frequency (N. Liu et al., 2013). During this process, a chimera is annealed to a specific mRNA where the DNA sequence is immediately upstream

of the putative modification site. RNase H is used to cleave the mRNA to release an oligonucleotide containing the putative modification at the 50

end. The 50end of the oligonucleotide is 32P-labeled using T4 polynucleotide kinase and is splint ligated to a 116mer DNA oligomer. RNase T1/A is

used to digest the resulting chimera to contain a single A or m6A at the 30end of the 116mer DNA oligomer. The resulting oligonucleotide is gel

purified, digested to nucleosides using nuclease P1, and analyzed using TLC. The stoichiometry is measure based on the relative intensity of the

m6A and A phosphorescence. (b) m6A-level and isoform-characterization sequencing (m6A-LAIC-seq; Molinie et al., 2016) utilizes m6A modified

external RNA controls consortium (ERCC) control RNAs to normalize the measured m6A stoichiometries to increase the accuracy of a standard

m6A-RIP assay. ERCC controls are added before and after m6A-RIP to normalize the efficiency of the immunoprecipitation and detection by next

generation sequencing, respectively. The relative counts of m6A positive and negative reads of the same transcript determine the stoichiometry.

The occupancy levels measured by m6A-LAIC-seq correlate well with modification levels of mRNA standards (R = 0.995) despite the lack of

single nucleotide resolution. (c) MAZTER-seq also utilizes RNA-seq to characterize m6A occupancy transcriptome wide (Garcia-Campos et al.,

2019). However, MAZTER-seq does not rely on immunoprecipitation to isolate modified mRNAs, and instead identifies sites using the bacterial

nuclease MazF to cleave immediately upstream of ACA sequences but not m6ACA sequences. Purified mRNA is digested using MazF, and an

adapter is ligated to the 30end of the digested products. The resulting oligonucleotides are reverse transcribed, 30 adapter ligated, amplified, and

end-pair sequenced. Following read alignment and data processing, the stoichiometry is determined by calculating the cleavage efficiency of MazF

at a specific ACA motif. While MAZTER-seq has the advantage of quantifying m6A occupancy at single nucleotide resolution, there are some

limitations to this approach. Namely, the lack of quantification at the ~50% of m6A found outside ACA motifs (Pandey & Pillai, 2019), MazF only

cuts at ACA sites with 70% efficiency and can cleave at other sequences resembling ACA, and the values measured by MAZTER-seq only

modestly correlate with SCARLET measurements at similar sites (R values = 0.6–0.7; Garcia-Campos et al., 2019)
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mRNA modifications change translation and mRNA stability, however, we anticipate that interpretation of trans-
criptome wide observations will benefit from synergistic in vitro studies.

2.4 | In vitro biochemistry and structural biology

For over 70 years high-resolution structural and functional studies with purified cellular components have proven
invaluable for our understanding of how biology controls the production, function and degradation of biomolecules.
One of the fundamental principles of biochemistry is that the 3D structure of molecules determines their function. In
general, much less is known about the structures of RNAs relative to proteins. This is evidenced by the fact that struc-
tures of RNA and RNA-protein complexes represent <5% of the structures deposited in the Protein Data Bank (PDB)
(Berman, Henrick, & Nakamura, 2003). High-resolution X-ray crystallography, cryo-EM and NMR studies of modified
mRNAs, modified mRNA-protein, and modified mRNA-ribosome complexes will be vital for building a detailed under-
standing of how modifications can influence mRNA structure (Choi et al., 2016; Eyler et al., 2019; Svidritskiy,
Madireddy, & Korostelev, 2016; Zhou et al., 2016). Additionally, lower resolution RNA-secondary structure mapping
studies (e.g. using DMS or SHAPE reagents) comparing modified and unmodified mRNAs can provide additional
insights information about how the shape of mRNAs is influenced by modifications (Mauger et al., 2019). Structural
studies will prove useful not only for understanding how modifications impact the intrinsic properties of mRNAs to
impact their function and stability, but also as researchers are seeking to develop therapeutics targeting m6A-modified
transcripts (Cross, 2019).

Changes in mRNA structure, charge, or base-pairing ability can reasonably be expected to alter the interaction of
these molecules with other biomolecules. Therefore, in vitro kinetic and thermodynamic assays will be required to
establish how modifications alter mRNA interactions with proteins, other RNAs, or the ribosome (Choi et al., 2016;
Eyler et al., 2019; Vaidyanathan, AlSadhan, Merriman, Al-Hashimi, & Herschlag, 2017). Such studies are limited in
their scale, but have the benefit of being readily interpretable. For example, in vitro translation assays on modified
mRNAs have been used to directly report on how modifications alter the action of the translation machinery in a
straightforward manner, without the needing to consider in rRNA or tRNA modification status or mRNA stability. Sin-
gle molecule and bulk transient kinetic studies will allow us to establish how individual functional groups affect specific
steps in the translation and decay pathways (Choi et al., 2016, 2018; Eyler et al., 2019). Given the critical contributions
of fundamental biochemical and structural studies to our understanding essential biological processes, including post-
translational protein modifications, we anticipate that such studies will be vital as researchers begin to understand the
types and extent of consequences of mRNA modifications on biology.

3 | CURRENT QUANTITATIVE PERSPECTIVE ON MRNA MODIFICATIONS

In order to evaluate the significance of post-transcriptional mRNA modifications, there are several fundamental ques-
tions that remain to be critically investigated (detailed in Figure 3). Here, we discuss how quantitative measurements
are allowing researchers to begin addressing some of the key gaps in our knowledge of mRNA modifications. We will
examine the available quantitative measurements of mRNA modification levels and incorporation frequency, and con-
sider these findings in the context of post-translational protein modification stoichiometries. Additionally, we will dis-
cuss the insights into how mRNA modifications impact interactions between mRNAs and the cellular machinery
provided by structural biology, in vitro biochemistry, and quantitative transcriptome wide studies. Together, these data
suggest that several mRNA modifications are reasonably abundant, affect mRNA structure, and can influence how pro-
teins and the ribosome interact with transcripts.

3.1 | mRNA modification abundance and frequency

As we begin to investigate the consequences and potential biological functions of mRNA modifications, it seems reason-
able to first consider where and how frequently they are present. The levels of different mRNA modifications vary
widely; there is a > 1,000-fold range in concentrations for the mRNA modifications levels measured to date (Table 1
and Figure 5). m6A is the most abundant modification across all organisms (Table 1), as might be expected given its
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purported widespread role in the post-transcriptional regulation of a host of mRNAs. SCARLET, m6A-LAIC-seq and
MAZTER-seq established a wide range of m6A frequencies (0–95%) at mapped sites (Chen et al., 2015; Duan et al.,
2017; Garcia-Campos et al., 2019; X. Li et al., 2015; Linder et al., 2015; Y. Zhao et al., 2016). Transcriptome wide ana-
lyses of m6A site occupancies revealed a nearly bimodal distribution of m6A frequency (centered around ~10% and
50–60%), and demonstrate that m6A modification frequencies differ on the same transcripts between GM12878,
HEK293T, and hESC cells. m6A modifications are enriched in mRNA 30 UTRs and near stop codons (Dominissini et al.,
2012; Meyer et al., 2012). Notably, the presence of m6A in 3' UTRs opens up the possibility that m6A could be incorpo-
rated into some miRNA target sites to modulate miRNA-binding. Regardless of where they are localized, the data sug-
gest that m6A sites are essentially never fully occupied on any given transcript, making it unlikely that modifications
serve as a binary switch to dictate the maturation, movement or behavior of the entirety of mRNA molecules of any
particular sequence.

Several modifications, Ψ, ac4C, Cm, and Gm, have abundances approaching those of m6A (Arango et al., 2018; X. Li
et al., 2015; Tardu et al., 2019; You et al., 2017). These modifications have been less well studied than m6A, but their
prevalence and localization in mRNA coding regions suggests that they might also play roles in regulating mRNA func-
tion (Arango et al., 2018; Carlile et al., 2014; X. Li et al., 2015; Lovejoy et al., 2014; Nakamoto, Lovejoy, Cygan, &
Boothroyd, 2017; S. Schwartz et al., 2014; L. Sun et al., 2019; You et al., 2017). Like m6A, the positions of some of these
modifications appear to be conserved. For example Ψ is most commonly found in the second and third position of
UUU and second position of UUC codons in protozoa, plant and human mRNA coding regions (Nakamoto et al., 2017;
S. Schwartz et al., 2014; L. Sun, Xu, et al., 2019). Little is known about how often modifications other than m6A or ino-
sine are incorporated at particular mRNA sites. However, estimates of Ψ-frequency based on Ψ-seq experiments suggest
that Ψ incorporated into mRNA by pseudouridine synthase 7 (Pus 7) is present at high levels; with a distribution occu-
pancy comparable to ribosomal RNA (rRNA) levels (S. Schwartz et al., 2014). Furthermore, SCARLET measurements
of Ψ occupancy in EEF1A1 mRNA are consistent with this conclusion—Ψ is present in 56% of the time in this tran-
script, a frequency comparable to many of the reported m6A and inosine sites (X. Li et al., 2015; Sakurai et al., 2014).
Together these data suggest that the incorporation frequency of Ψ, at least at some sites, is likely to be high.

Most modifications are present at levels 10- to 100-fold less than m6A, and a handful of modifications (m3C, m1G,
hm5C) are even more rare, with levels at least 500-fold lower than m6A (Figure 5, Table 1). The location of m5C modifi-
cations have been mapped primarily to mRNA 50 UTRs, and the relative occupancy of m5C sites has also been estimated
using a stringent bisulfite sequencing method (Amort et al., 2017; T. Huang, Chen, Liu, Gu, & Zhang, 2019). While
incomplete conversion of cytidine and m5C during bisulfite treatment limits the accurate quantification and location of
m5C throughout the transcriptome, control RNAs were utilized to tune treatment conditions and approximate m5C
modification frequency (R2 = 0.98) and location. This study suggests that m5C occupancy at most sites is low (<20%)
relative to m6A and Ψ, as might be expected from the modest levels of m5C measured in mRNAs by LC–MS/MS
(Figure 5). The modest levels of the majority of modifications suggest that the enzymes responsible for these modifica-
tions likely either target only a handful of specific mRNAs targets, as studies indicate is the case for m1A, or might mod-
ify many different mRNAs at relatively low frequencies (Khoddami et al., 2019; Safra et al., 2017). Alternatively, it is
possible that the levels of these modifications have just not been measured yet under conditions where the modification
is most highly incorporated. We expect to find other relatively rare mRNA modifications, such as m3C and m1G, may
also exhibit low occupancy at many (though perhaps not all) of their sites.

FIGURE 5 LC–MS/MS measurements of mRNA modification abundance.

All values displayed are the average values for mammals unless indicated

otherwise (* yeast, ** plant) (Table 1). The error bars reflect the range of values

measured. Modifications without error bars have only one reported value in the

literature
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TABLE 1 Summary of modification abundances measured by targeted liquid chromatography with tandem mass spectrometry

(LC–MS/MS)

mRNA modification Abundance (Mod/main base) References

N6-methyladenosine (m6A)

Mammal 0.1–1.79% (X. Dai, Wang, Gonzalez, & Wang, 2018; Dominissini et al.,
2016; Edupuganti et al., 2017; Jia et al., 2011; X. Li et al., 2016;
Roundtree et al., 2017; H. Sun, Zhang, Li, Bai, & Yi, 2019;
H. Wang et al., 2019; X. Wang et al., 2014; Wei et al., 2018; Xu
et al., 2017; L. S. Zhang, Liu, et al., 2019; X. Zhang et al., 2019;
Zheng et al., 2013; Zhu et al., 2017)

Yeast 0.14% (Tardu et al., 2019)

Plant 0.35–0.7% (Duan et al., 2017)

Virus 0.01–0.015% (Martinez-Perez et al., 2017)

7-methylguanosine (m7G)

Internal:

Mammal 0.0004–0.05% Chu et al., 2018; L. S. Zhang, Liu, et al., 2019)

Plant 0.0032–0.0052% (Chu et al., 2018)

50 cap + internal:

Mammal 0.01–0.45% (Chu et al., 2018; L. S. Zhang, Liu, et al., 2019)

Plant 0.033–0.037% (Chu et al., 2018)

1-methyladenosine (m1A)

Mammal 0.007–0.054% (Dominissini et al., 2016; X. Li et al., 2016; Xu et al., 2017; L. S.
Zhang, Liu, et al., 2019)

Plant 0.0001% (Duan et al., 2017)

Pseudouridine (Ψ)

Mammal 0.2–0.6% (Dominissini et al., 2016; X. Li et al., 2015)

Yeast 0.11% (Tardu et al., 2019)

20-O-methylguansoine (Gm)

Mammal <0.03% (You et al., 2017; L. S. Zhang, Liu, et al., 2019)

Yeast 0.13% (Tardu et al., 2019)

20-O-methyluridine (Um)

Mammal 0.15% (You et al., 2017)

20-O-methyladenosine (Am)

Mammal 0.012% (You et al., 2017)

20-O-methylcytidine (Cm)

Mammal 0.1% (You et al., 2017)

Yeast 0.2% (Tardu et al., 2019)

5-methylcytidine (m5C)

Mammal 0.005–0.095% (Huber et al., 2015; Ma, Ding, Ye, Yuan, & Feng, 2019; Xu et al.,
2017)

Plant 0.00025–0.085% (X. Cui, Liang, et al., 2017; Duan et al., 2017)

Yeast 0.1% (Tardu et al., 2019)

3-methylcytidine (m3C)

Mammal 0.0006–0.0038% (Xu et al., 2017)

1-methylguanosine (m1G)

Plant 0.00002% (Duan et al., 2017)

(Continues)
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It is important to note that just because sites are not well occupied in a given transcriptome wide snap-shot, this
does not necessarily mean that they are insignificant. PTMs are also typically sub-stoichiometric, and their frequency
varies from site to site and in response to cellular conditions (Prus et al., 2019). For example, protein acetylation occurs
at a wide range of stoichiometries (<1–98%), with bulk of protein acetylation sites exhibiting very low modification fre-
quencies (<1%) (Baeza et al., 2014; Hansen et al., 2019; Weinert et al., 2015). In contrast, sites of phosphorylation tend
to be occupied at a modestly higher levels (>20%) (Carpy et al., 2014; Olsen et al., 2010; Tsai et al., 2015; R. Wu et al.,
2011), while N-glycosylation sites are frequently occupied (>60%) (S. Sun & Zhang, 2015; Zielinska, Gnad,
Wisniewski, & Mann, 2010). Despite the wide distribution of PTM stoichiometries, they each significantly impact the
regulation of protein biology. This highlights the need to extensively characterize mRNA modifications despite the sub-
stoichiometric modification of sites.

Furthermore, occupancy of sites might be temporally controlled so that they are only impactful at a particular time
(Figure 3). In ncRNAs, nucleoside levels dynamically fluctuate in response to environmental stress, nutrient depriva-
tion, stages in circadian rhythms, and cell cycle progression to alter RNA function (Baudin-Baillieu et al., 2009; Demirci
et al., 2010; Helm & Alfonzo, 2017; Maraia & Arimbasseri, 2017; Sergiev, Aleksashin, Chugunova, Polikanov, & Dont-
sova, 2018). Analysis of mRNA modification abundances under different conditions may provide insight into
modification-mediated mechanisms activated by environmental stress or disease. Consistent with this possibility, both
the abundances and distributions of mRNAs modifications are dependent on environmental conditions, cell-type, dis-
ease, and organism (Table 1; Carlile et al., 2014; Chu et al., 2018; X. Cui, Liang, et al., 2017; Duan et al., 2017; X. Li et al.,
2016; Ma et al., 2019; S. Schwartz et al., 2014; Tardu et al., 2019; Zhou et al., 2015). Nucleoside methylations and acety-
lations exhibit the largest changes in mRNA modification abundance as a result of shifting cellular environments
(Tardu et al., 2019). In line with this observation, the metabolites used by enzymes to catalyze methyl- and acetyl- mod-
ifications (S-adenosylmethionine and acetyl-CoA) also fluctuate significantly in response to cellular conditions
(Anstee & Day, 2012; Pietrocola, Galluzzi, Bravo-San Pedro, Madeo, & Kroemer, 2015; L. Shi & Tu, 2015). Comprehen-
sive studies of modification frequency under varied cellular conditions, disease states, and time points will be necessary
to uncover this information and link sites more directly to function (Figure 3).

3.2 | Consequences of mRNA modifications on translation

The functional role of mRNAs in the cell is to serve as blueprints for protein synthesis. As such the translational
machinery surely encounters modified mRNAs. Most mRNA modifications have been observed throughout mRNAs,

TABLE 1 (Continued)

mRNA modification Abundance (Mod/main base) References

N6,20-O-dimethyladenosine
(m6Am)

Mammal 0.0009–0.065% (Sendinc et al., 2019; H. Sun, Zhang, et al., 2019; Wei et al., 2018;
You et al., 2017; X. Zhang, Wei, et al., 2019)

5-formylcytidine (f5C)

Yeast 0.04% (Tardu et al., 2019)

N4-acetylcytidine (ac4C)

Mammal 0.11% (Arango et al., 2018)

Yeast 0.14% (Tardu et al., 2019)

5-hydroxymethylcytidine
(hm5C)

Mammal 0.001–0.0037% (Huber et al., 2015)

Notes: The values reported are the abundance of a modification with respect to its unmodified nucleoside (e.g., m6A/A, m7G/G, etc.) within purified messenger
RNAs (mRNAs). The modification abundances range over 500-fold from m6A (the most abundant modification), which displays the potential complexity of
how different variants affect the mRNA life cycle. We have displayed the reported mRNA modifications that have been quantified in multiple cell types and
tissues (mammalian, yeast, plant, and viral). Moreover, levels of both internal and 50-cap plus internal m7G have been quantified using alternative enzymatic

digestion strategies.
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and the preponderance of Ψ, ac4C and 20O-methyl modifications are found in mRNA coding regions (Arango et al.,
2018; Carlile et al., 2014; Q. Dai et al., 2017; Nachtergaele & He, 2017; Nakamoto et al., 2017; S. Schwartz et al., 2014;
You et al., 2017). Modifications have the potential to change how the ribosome interprets the mRNA blueprint because
they can alter the hydrogen bonding interactions between codons and aminoacylated-tRNAs. This possibility is
supported by decades of observations indicating that tRNA anticodon nucleobase modifications alter mRNA:tRNA
interactions to influence ribosome speed and fidelity (Fan et al., 2017; Fan et al., 2015; Pan, 2018; Phizicky & Hopper,
2015; Ranjan & Rodnina, 2017; M. H. Schwartz & Pan, 2016). However, deciphering the impact of mRNA modifications
on translation in biological systems has been challenging for a number of reasons. Foremost amongst these is the fact
that most enzymes that catalyze mRNA modification also catalyze the incorporation of the same functional groups into
ncRNA species essential to protein translation (e.g., tRNAs, ribosomal RNA [rRNA]; Arango et al., 2018; X. Li et al.,
2017; S. Schwartz et al., 2014; Tardu et al., 2019; Xu et al., 2017). The shared origin of many coding and ncRNA modifi-
cations has limited the utility of classical genetics to discern mRNA modification function. Furthermore, the heteroge-
neity in modification occupancy makes it difficult for researchers to directly observe translation of modified transcripts
in vivo. Last, it can be problematic to fully deconvolute the impact of translation from protein- and mRNA-stability on
protein output in cells. Illustrative of this, reporter-based studies have reached conflicting conclusions regarding how
several modifications influence translation (Dominissini et al., 2016; Grozhik & Jaffrey, 2018; Hoernes, Clementi, et al.,
2016; Hoernes et al., 2019; Karijolich & Yu, 2011; Svidritskiy et al., 2016). Therefore, for the purpose of this review, we
will focus on discussing in vitro studies with reconstituted translation systems that offer a way to directly assess how
modifications impact ribosome function.

Initial in vitro studies of varying resolution on a limited set of mRNA modifications indicate that modifications can
alter the overall rate and fidelity of protein synthesis (Choi et al., 2016, 2018; Eyler et al., 2019; Hoernes, Clementi,
et al., 2016; Hoernes et al., 2018, 2019; Hudson & Zaher, 2015; You et al., 2017). In fully reconstituted Escherichia coli
translation systems, naturally occurring enzymatic nucleoside modifications and damaged ribonucleobases change
translation to varying degrees (Figure 6). The overall level of reporter peptides produced from mRNAs containing a sin-
gle modified nucleobase is reduced by 2- to >50-fold for m6A, Ψ, Cm, Am, m1A, m6G and m1G, and is essentially
unchanged for m5C (Hoernes, Clementi, et al., 2016; You et al., 2017). The severity of the protein expression defect is
highly dependent on the location of the modification within a codon - protein outputscan range by >25-fold depending
on the position of a modification within a single codon (Hoernes, Clementi, et al., 2016; You et al., 2017). The effects
observed in E. coli have been recapitulated in eukaryotic wheat germ extract translation assays, where m6A, m1A, and
m1G were shown to reduce the production of a reporter peptide in a position dependent manner (You et al., 2017).
Notably, in contrast to findings in E. coli, m6G also appeared to both impede and enhance protein output in wheat germ
extacts depending on where it was localized within a modified codon.

Further elegant bulk and single-molecule mechanistic investigations of 20 O-methyl, m6A, Ψ, and m6G modifica-
tions reveal that these modifications impact multiple steps in the ribosome kinetic pathway, reducing the rate of peptide
bond formation and guanosine-5'-triphosphate hydrolysis by EF-Tu (Choi et al., 2016, 2018; Eyler et al., 2019; Hudson &
Zaher, 2015). 20 O-methylmodifications and m6A have been further shown to impede tRNA accomodation—a crucial
step in translation elongation (Choi et al., 2016, 2018). Crystal structures of the 30S Thermus thermophilus ribosome
bound to m6A-modified mRNAs, and the 70S ribosome on a Ψ-modified mRNA indicate that m6A and Ψ can still form
Watson-Crick base pairs with cognate tRNAs (Choi et al., 2016; Eyler et al., 2019). The structure of the 70S ribosome
with tRNAPhe bound to ΨUU in the A site further demonstrates that despite the presence of correct mRNA:tRNA base-
pairing interactions, the 30 CCA of tRNAPhe is not properly positioned in the peptidyl-transfer center (PTC) of the ribo-
some, consistent with the kinetic observations suggesting that Ψ changes translation (Eyler et al., 2019). Together, these
studies indicate that mRNA modifications tend to slow the ribosome and that the magnitude to which a modification
perturbs translation depends strongly on the sequence context of the modification.

Ribosome profiling studies have reached slightly different conclusions regrding how modifications impact transla-
tion. These studies suggest that m1A slows translation in mitochondria, and that m6A and ac4C enhance translation
efficiency (Arango et al., 2018; Li et al., 2017; Wang et al., 2015). There could be several reasons for the differing conclu-
sions reached by ribosome profiling and in vitro studies including that modification reader proteins in the cell might
alter translation, and, given the substoichiometric occurance of mRNA modifications, the possibility that the population
of mRNAs being well translated might lack the targeted modification. Further work will need to be done to reconcile
the relationship between the differing observations between in vitro and ribosome profiling studies.

Since modifications can alter the fundamental properties of RNAs, including their secondary structures and base-
pairing abilities, it has been proposed that one consequence of mRNA modification could be to promote the
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incorporation of multiple amino acids on a single codon. Establishing if modifications alter tRNA selection on the ribo-
some is a timely question given that a wide range of modified nucleosides (Ψ, N1-methyl- Ψ, 2-thiouridine, 5-methyl-
cytosine) are being routinely inserted into synthetic mRNAs at high stoichiometric ratios for therapeutic applications
(Kariko et al., 2008). Multiple studies indicate that this is indeed possible for m5C, m1G, I, Ψ, and m6G, but not for m1A
and m6A (Eyler et al., 2019; Garrett & Rosenthal, 2012; Hoernes, Clementi, et al., 2016; Hudson & Zaher, 2015; Licht
et al., 2019). Similar to their effects on translation rate, the magnitude of the decoding errors is highly dependent on the
position of a modified within a codon. Additionally, Ψ-containing stop codons have been observed to direct the non-
sense suppression of translation termination in both bacteria and yeast (Fernandez et al., 2013; Hoernes et al., 2019;
Hoernes, Clementi, et al., 2016; Karijolich & Yu, 2011), though the impact of Ψ in stop codons remains an unresolved
question, as a follow-up studies have not recapitulated these effects (Eyler et al., 2019; Hoernes et al., 2019; Svidritskiy
et al., 2016).

Taken together, there is a growing body of in vitro translation and ribosome profiling studies suggesting that mRNA
modifications have the ability to influence both the rate and fidelity of translation. How these alterations contribute to
biology still remains to be established. Even if mRNA modifications are not used to directly regulate translation, their
impact on translation may still have consequences for biological systems, for example under stress conditions where
increased levels of amino acid substitution have been shown to increase cellular fitness (Fan et al., 2017, 2015; M. H.
Schwartz & Pan, 2016). Further work will need to be done to determine the differential effects of individual

FIGURE 6 Impact of messenger RNA (mRNA) modifications

on mRNA–protein interactions and protein synthesis. (a) mRNA-

binding protein affinities are modestly altered by nucleoside

modifications. The ratio of binding affinities (KD) for proteins

binding to m6A (gray bars) and Ψ (black bars) unmodified and

modified mRNA transcripts binding to a Pumilio proteins (PUM2),

and the m6A binding proteins proline-rich coiled-coil 2A (PRRC2A),

YTHDF3, YTHDF2, YTHDC1, and insulin-like factor 2 mRNA

binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3)

(H. Huang et al., 2018; Vaidyanathan et al., 2017; X. Wang et al.,

2014; R. Wu et al., 2019). The affinity of PUM2 was measured for

model mRNAs containing 1 (PUM2_1) or 3 (PUM2_3) modifications.

(b) Reporter proteins were expressed from mRNAs containing a

single nucleotide modification in commercially available fully

reconstituted bacterial translation assays. The plot displays the

amount of protein produced from the modified mRNA relative to the

amount of protein produced from an unmodified transcript as a

function of codon. The values in this table were from studies by

Hoernes, Clementi et al. (2016) and You et al. (2017). The magnitude

of each modification's effect is depends not only on the identity of

the modification, but also on the codon in which it is located, the

position of the modification within that codon
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modifications on the translation mechanism, and identify situations (e.g., times in the cell cycle, environmental stress,
or disease) in which more somewhat subtle impacts on translation could contribute to cellular health.

3.3 | mRNA–protein interactions modifications

In addition to understanding how mRNA modifications impact translation, it is also important to gain quantitative
insight into the extent that modifications affect mRNA–protein interactions. Modulation of mRNA–protein interactions
has the potential to be biologically significant because many RNA binding proteins interact with a multiple mRNA
sequences and even small perturbations in affinity have the potential to shift the cellular environment, and thus fate, of
a host of mRNAs (Castello, Hentze, & Preiss, 2015; Gerber, Herschlag, & Brown, 2004; Hentze, Castello, Schwarzl, &
Preiss, 2018; Jarmoskaite et al., 2019; Lewis, Pan, & Kalsotra, 2017; Patil et al., 2018; Singh, Pratt, Yeo, & Moore, 2015;
Ule et al., 2003; Vaidyanathan et al., 2017). Immunoprecipitation, pull-down, mass-spectrometry, and RNA-seq
approaches have begun to identify proteins whose interactions with mRNAs are mediated by modifications. These stud-
ies reveal that m6A, m1A, and m5C are specifically recognized by proteins that can either read or erase modifications to
alter mRNA translation, localization, and stabilization (reviewed in X. Dai et al., 2018; X. Li et al., 2016; F. Liu et al.,
2016; Peer et al., 2017; Roundtree, Evans, et al., 2017; S. Schwartz, 2016; Trixl & Lusser, 2019; Yang et al., 2017). To
date, no “readers” or “erasers” of other mRNA modifications have been reported, though it has been proposed that the
ribosome can serve as a universal reader of modifications in mRNA coding regions (Gilbert, Bell, & Schaening, 2016).

Modifications appear to modulate mRNA stability, suggesting that they impact, either directly or indirectly, interac-
tions between mRNAs and the RNA degradation machinery. Notably, different modifications fine-tune stability in differ-
ent directions—m6A generally decreases stability, while ac4C, Ψ and m5C tend to increase mRNA half-life (Arango et al.,
2018; Kariko et al., 2008; Ke et al., 2017; Nakamoto et al., 2017; Sibbritt et al., 2013). It is not entirely clear precisely how
this is accomplished, though the observation that the YTHDC2 m6A reader interacts with the major 50à30 exonuclease
involved in mRNA decay, Xrn1, suggests that interactions between modified mRNAs and components of the mRNA deg-
radation pathway may, at least sometimes, be facilitated by modification binding proteins (Kretschmer et al., 2018).

Despite the discovery of several proteins that interact with modified mRNAs, the extent to which modifications alter
mRNA-protein interactions is less clear. Thermodynamic dissociation constants (KD) have only been measured for a
handful of the proteins reported to bind modified mRNAs (examples in Figure 6). Initial studies of modified mRNA–
protein interactions demonstrate that m6A and Ψ can both enhance and weaken RNA–protein interactions by ~2- to
20-fold (Figure 6). Members of the YTH-family of m6A “reader” proteins appear to discriminate between methylated/
unmethylated transcripts to a higher level (5- to 20-fold) than other mRNA binding proteins (two- to four-fold)
(Figure 6). Interestingly, these studies find modifications only induce relatively modest changes in protein affinities for
mRNAs. This suggests that modifications could be more likely to subtly, rather than drastically, shift the balance, and
identity of cellular mRNA–protein pools.

4 | CONCLUSION

The epitranscriptome field is quickly opening a new chapter, advancing through modification discovery to investigate
the biological roles and mechanisms of a broad set of mRNA modifications. The ground-breaking investigations that
established this burgeoning field of study relied heavily on sequencing-based tools to map the location of discrete modi-
fications across all RNAs in a cell. Such studies were a vital first step for the field to establish the existence and perva-
siveness of mRNA modifications. More recently, researchers have begun skillfully mining transcriptome wide datasets
to infer the biological function of modifications. The next horizon for the emerging mRNA modification field is to estab-
lish a molecular-level view of how modifications change interactions between mRNAs and the cellular machinery.

A detailed understanding of the consequences of modifications will be greatly enhanced by the biochemical and
structural characterization of individual cellular components and how they interact with modified mRNAs. The quanti-
tative data generated from such experiments (e.g., affinities, on and off rates, reaction rates, etc.) will facilitate the inter-
pretation of existing and future transcriptome wide studies, as they will provide parameters for the mRNA modification
community to refine their models of modification function. Structural biology and reductionist biochemistry
approaches will provide more than mechanistic details—they have the potential to generate new insights into the func-
tion of modifications that cannot be immediately derived by correlative studies. For example, these techniques can
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answer temporal questions, allow us to identify highly occupied modification sites, determine how specificity or promis-
cuity of modifying enzymes dictates target selection, and directly assess how modifications change interactions with the
splicing, translation and decay machinery (Figure 3). The ability to compare interactions of fully modified/unmodified
mRNAs with purified components will be particularly valuable in light of the challenges of interpreting transcriptome
wide mapping, half-life, and ribosome profiling data for heterogenous populations of sub-stoichiometrically modified
mRNAs. The initial quantitative studies described in this review demonstrate how biochemistry can reveal aspects of
RNA–protein and mRNA–ribosome interactions that are masked by other approaches. The continued integration of
quantitative, reductionist approaches combined and transcriptome wide studies will ultimately be required to identify
the biological consequences of the epitranscriptome.
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