
PROVENANCE METADATA FOR
STATISTICAL DATA: AN
INTRODUCTION TO STRUCTURED
DATA TRANSFORMATION
LANGUAGE (SDTL)

George Alter1, Darrell Donakowski1, Jack Gager2, Pascal Heus2, Carson Hunter2, Sanda

Ionescu1, Jeremy Iverson3, H V Jagadish1, Carl Lagoze1, Jared Lyle1, Alexander Mueller1,

Sigbjorn Revheim4, Matthew A. Richardson1, Ornulf Risnes4, Karunakara Seelam1, Dan Smith3,

Tom Smith5, Jie Song1, Yashas Jaydeep Vaidya1, Ole Voldsater4

Abstract

Structured Data Transformation Language (SDTL) provides structured, machine actionable

representations of data transformation commands found in statistical analysis software. The

Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an

automated system that captures provenance metadata from data transformation scripts and adds

variable derivations to standard metadata files. SDTL also has potential for auditing scripts and for

translating scripts between languages. SDTL is expressed in a set of JSON schemas, which are

machine actionable and easily serialized to other formats. Statistical software languages have a

number of special features that have been carried into SDTL. We explain how SDTL handles

differences among statistical languages and complex operations, such as merging files and

reshaping data tables from “wide” to “long”.

Acknowledgment
Acknowledgement: The Continuous Capture of Metadata for Statistical Data Project is funded by

National Science Foundation grant ACI-1640575.

1 University of Michigan
2 Metadata Technologies North America
3 Algenta Technologies
4 Norwegian Centre for Research Data
5 NORC

1

Table of Contents
Introduction 2

Statistical Packages as Data Processing Platforms 2

Elements of SDTL 4

TransformBase 5

InformBase 8

ExpressionBase 9

Conditional Execution by Row or by File/Dataframe 12

Function Library 12

Flow Control, Loops, and Macros 16

Appending, Merging, and Updating Datasets 16

ReshapeLong, ReshapeWide, and CompositeVariableNameExpression 20

Pseudocode Library and Translator 22

Discussion 22

References 24

2

Introduction
Structured Data Transformation Language (SDTL) is a language for representing data

transformation commands found in statistical analysis and data management software. SDTL

describes changes to a dataset at both the file- and variable-level. Since SDTL is structured and

machine actionable, it can be queried to produce histories of each variable in a dataset and to

answer questions like:

 Which original variables were used to construct this derived variable?

 Which commands were used in the construction of this derived variable?

 Which derived variables were affected by this original variable?

SDTL can be translated into natural language, so that researchers do not need to understand the

specific software used to process the data. SDTL can also be incorporated into versions of the PROV

model that have been extended to describe provenance at the variable- and command-level, like

ProvONE (Cuevas-Vicenttín et al., 2015).

SDTL was developed to work with five leading statistical packages: SPSS, Stata, SAS, R, and Python

(IBM Corp., 2019; Python Software Foundation, 2019; R Core Team, 2013; SAS Institute, 2015;

StataCorp., 2020). The Continuous Capture of Metadata for Statistical Data (C2Metadata) Project,

which created SDTL, set out to automate the creation of variable-level provenance metadata by

translating scripts used by statistical analysis software into a format compatible with metadata

standards like the Data Documentation Initiative (DDI) (Vardigan, 2008) and Ecological Markup

Language (EML) (E.H. Fegraus, 2005). (See Alter et al., 2020) Our goal was to create a history for

each variable showing its derivation from earlier variables and all of the ways that it has been

modified. SDTL serves as an intermediate language that represents other languages in a more

convenient format. Since SDTL is expressed in a structured format (e.g., JSON) with tags and

delimiters, its syntax is obvious and unambiguous, and SDTL is easily read by computer programs

without elaborate parsing algorithms. SDTL may be used to translate between statistical languages,

but it is designed for documentation and description and not as an operational language.

The DDI Alliance, which maintains international standards for metadata, has adopted SDTL as one

of its suite of products (DDI Alliance, 2020). DDI metadata is widely used by data repositories

serving the social sciences for data discovery tools, catalogs, and codebooks. SDTL provenance

descriptions can be inserted into existing data derivation fields in the DDI metadata standards. The

DDI Alliance will assure that the SDTL is maintained and expanded in an orderly way.

We provide here an introduction to SDTL focusing on important features of the source languages

that it can represent and ways that SDTL handles differences among them. Detailed descriptions of
SDTL commands and other documentation are available at C2Metadata Project (2020b).

Statistical Packages as Data Processing Platforms
SDTL inherits a number of assumptions about how data are transformed from the languages used

in statistical analysis packages, and it is helpful to understand how those programs work. Statistical

packages differ in important ways from two other tools often used for managing data, spreadsheets

and relational databases, such as SQL. All three tools encourage users to think of data as

rectangular matrices, “tables,” but they each have different capabilities and limitations.

3

1. Rows and Columns

In statistical packages, each row is an individual/entity or an observation of an

individual/entity, and each column is a variable describing an attribute of an individual/entity.

As in a relational database, columns are named and are referenced by their variable names.

Statistical packages typically do not allow users to put more than one type of information in

each column as a spreadsheet does.

2. Metadata

Statistical packages attach more metadata to each variable than either a spreadsheet or a

relational database, even if it is less metadata than most researchers need. Users control the

data type (numeric, string, date, etc.) and display format of every variable. Columns can have

both variable and value labels that appear on output. A variable label is a brief description of its

content. Value labels are text descriptions of the categories in variables. Statistical packages

encourage the use of integer codes for categorical information, but they will display the

corresponding value label in output tables. For example, a variable may be coded as 1 for ages

0 to 15, 2 for ages 15 to 65, and 3 for ages 65 and above, but tables can show these categories

with labels “Children,” “Working ages,” and “Older ages.”

3. Variable lists and variable ranges

One of the most common features of statistics software packages is the use of “variable lists”
and “variable ranges” to simplify the application of data transformation commands to multiple

variables. For example, common value labels (e.g. 1=”Yes”, 2=”No”, 3=”NA”) may be applied to

hundreds of variables with a single command. Variable ranges refer to a group of adjacent

columns by identifying the first and last variable in the range. For example, “VAR01 TO VAR04”

in SPSS or “VAR01-VAR04” in Stata or SAS will apply a command to VAR01, VAR02, VAR03, and

VAR04, assuming that the columns appear in that order in the data. A variable list may include

both individual variables and variable ranges, such as “VAR01 VAR05 VAR11-VAR32 VAR51-

VAR72”.

4. Order of rows and columns matters

Commands in statistical packages can take advantage of the order of columns and rows. The

meaning of a variable range, such as “Age TO Income” depends upon the order of the columns.

Statistical packages also process rows in sequential order, which is often used in data

processing scripts. Commands that merge files or aggregate within groups may only operate on

data sorted in advance. Statistical packages can also use values from earlier or later rows in

computing variables. For example, if the data consist of annual observations of a country or

region, the SPSS LAG function can be used to access the value in the previous year. In Stata, a

command can test whether the current row applies to the same person or place as the

preceding row by using syntax like “if districtID == districtID[_n-1]”. This is not possible in SQL

relational databases, which do not permit operations that depend on the sequential ordering of

rows, but it is possible in spreadsheets, which allow both absolute and relative cell references.

SDTL includes a command (SortCases) to change the order of rows, but it does not currently

support a command to change the order of columns. When we tested commands that sort

columns in SPSS and Stata, we discovered that they apply different sort sequences to variable

names. Stata is case sensitive and sorts variable names in ASCII order. SPSS is not case

4

sensitive for variable names, but it sorts names beginning with lowercase before uppercase of

the same letter. For example,

SPSS sort order: aa8 aA9 Aa7 AA6 id xx3 xX4 Xx2 XX1 XX5

Stata sort order: AA6 Aa7 XX1 XX5 Xx2 aA9 aa8 id xX4 xx3

5. Missing values

The value of a variable may not be available for all rows, and all statistical packages have

features for handling these “missing values.” Statistical calculations may exclude cases with

missing values on any variable, or they may adjust for missing values in some way. Some

statistical packages also allow users to identify more than one type of missing value. In survey

research some questions do not apply to all respondents (e.g. “How many years have you been

married?”), and respondents may respond “don’t know” or simply refuse to answer.

Researchers need to distinguish between “does not apply”, “don’t know”, and “no response”.

There are also important differences among statistical packages in the ways that missing values

in logical expressions are processed. SPSS and R use three-valued logic in which a logical

expression may be true, false or missing. SAS and Stata use two-valued logic (true or false) by

processing missing values as either negative or positive infinity. Thus, if the value of varX is

missing, the logical expression “varX > 0” will be false in SAS but true in Stata.

6. Dataframes and files

When a statistical package is in operation, data may exist only in computer memory or in

temporary storage space. A data transformation script may create any number of temporary

instances of the data and save only a few of them for later use. The C2Metadata Project adopted

the convention of using “dataframe” for working versions of data stored in memory or

temporary storage to distinguish them from data in files that will persist after the

transformation script is completed.

Elements of SDTL
The elements of SDTL, called “types,” are divided into groups as shown in Figure 1. Commands are

found in CommandBase, which is divided into two parts: TransformBase for commands that

change data or metadata and InformBase for types that generate messages or comments.

ExpressionBase consists of elements used to construct numeric, text, or logical expressions within

commands. Types that describe variables are in VariableReferenceBase, which is a sub-category

of ExpressionBase. The last group in Figure 1, “types for complex properties,” is used when a

property of a type has more than one sub-property. The “bases” shown in Figure 1 are hierarchical,

and types inherit properties from higher levels. For example, the messageText property is

5

available to all types in CommandBase.6 Tables 1-5 list the SDTL types under the headings shown

in Figure 1.

FIGURE 1. SDTL TYPES HIERARCHY

TransformBase
The types belonging to TransformBase are commands that change data or provide information

about the data to a user. All commands in TransformBase also inherit properties from

CommandBase:

Properties inherited from CommandBase:

command The name of a command

sourceInformation Information about the source of the transform command.

message Adds a message that can be displayed with the command.

Properties inherited from TransformBase:

producesDataframe Identifies the dataframe which this transform produces.

consumesDataframe Identifies the dataframe which this transform acts upon.

In Table 1 the commands in TransformBase are arranged into six functional sub-groups. There

are only four SDTL commands that add or modify variables without changing the structure of a

dataframe (group A), and Compute and Recode are by far the most frequently used in data

6 We show SDTL types in bold font beginning with uppercase, like Compute. Properties within types are in
bold font beginning with a lowercase letter, like sourceInformation.

6

transformation scripts. Compute assigns the value of an expression to a variable. Recode converts

a continuous variable into categories.

Commands in group B operate only on metadata (names, labels, data type, display properties).

Load and Save in group C read and write data from files into dataframes.

The commands in group D modify the structure of a dataframe by changing the number of rows or

columns.

Commands that control the execution of a script (group E) are discussed below.

Table 1

TransformBase: SDTL Types that Change a Dataframe

A. Commands that create variables or change the values of a variable

Aggregate An aggregation summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is added to
each row of the existing dataset. The SDTL Collapse
command is used when the summary data is used to
create a new dataframe with one row per group..

Compute Assigns the value of an expression to a variable.

Recode Describes recoding values in one or more variables
according to a specified mapping. The Recode command
can either describe a recoding of one or more individual
variables, or a range of variables. When one or more
individual variables are described, a new variable name
can be specified. In this case, the original variable is left
alone, and a new variable is created with the recoded
values.

SetMissingValues Defines values that are treated as missing values for a list
of variables.

B. Commands that change the metadata associated with a variable or dataframe

Rename Rename changes the name of a variable or list of
variables.

SetDatasetProperty Changes a property of a dataframe.

SetDataType Sets the data type of a variable or list of variables.

SetDisplayFormat
Sets the display or output format for a variable or list of
variables.

SetValueLabels Describes the assignment of labels to categorical values.

7

SetVariableLabel Describes the assignment of a label to a variable.

C. Commands that read or write files

Load Load data from a file.

Save Writes a dataset to a file.

D. Commands that change the structure of a dataframe

AppendDatasets Combines datasets by concatenation for datasets with
the same or overlapping variables.

Collapse A collapse command summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is
represented in a new dataset. See Aggregate for adding
summary variables without changing the number of rows.

DropCases Rows that match the selection condition are deleted in
the dataset. Other rows are retained.

DropVariables Deletes variables from the dataset.

KeepCases Rows that match the selection condition are retained in
the dataset. Other rows are deleted.

KeepVariables Variables to be retained in the dataset. Variables not on
the list are deleted.

MergeDatasets Merges datasets holding overlapping cases but different
variables. The merge may be controlled by keys or
grouping variables.

NewDataframe Creates a new empty dataframe. Numbers of rows or
columns may be specified. All values are assumed to be
missing.

ReshapeLong Creates a new dataset with multiple rows per case by
assigning a set of variables in the original dataset to a
single variable in the new dataset.

ReshapeWide ReshapeWide is not supported in the current version of
SDTL, because it depends on values in the data. However,
it may be useful when values of the index variable are
available in the metadata file or the data can be
processed.

SortCases Sorts rows in the dataframe in a specified order.

8

E. Commands that control the flow of operations in a script

DoIf A set of commands that are performed when a logical
expression is true. May also include ElseCommands to be
performed if the logical expression is false. The
commands in DoIf are performed once, and it expects a
logical condition that applies to the entire dataframe.
Use IfRows for commands that are performed on each
row depending upon values on those rows.

Execute This command causes the system to execute preceding
commands before continuing to process the command
script.

IfRows A set of commands that are performed on each row in
the dataframe when a logical expression is true for that
row. May also include ElseCommands to be performed if
the logical expression is false. Use DoIf for a logical
condition that applies to the entire dataframe and
commands that are performed once.

LoopOverList A loop creates multiple versions of a set of commands by
iterating over a list of variables, numbers, or strings.

LoopWhile LoopWhile iterates over a set of commands under the
control of one or more logical expressions. Since the
logical conditions typically depend upon values in the
data, commands executed in a LoopWhile cannot be
anticipated and expanded in SDTL.

InformBase
Table 2 shows informational commands that do not describe changes to the data. Although SDTL

does not include commands that analyze data, these commands can be transcribed verbatim in an

SDTL script with the Analysis command. Unsupported is used for commands that our Parser
cannot translate into SDTL. Invalid is used when the parser recognizes a command in the source

language but its syntax does not conform to expectations. NoTransformOp was created for

commands in the source language that do not play a role in SDTL. For example, R and Python install

libraries that may change the operation of commands. Even though the Parser has translated these

commands into SDTL, the library may be relevant information for some data users.

Table 2.

InformBase: Commands that provide information

Analysis
Describes an analysis command. An analysis command does not result in any data

transformation.

9

Comment Describes a source code comment.

Invalid
Describes an invalid command. A command is invalid if it uses incorrect syntax, or is

otherwise not allowed by the executing system.

Message Inserts message text in the SDTL file.

NoTransformOp

NoTransformOp is used for a command in the original script that provides important

information but does not have a function in SDTL. For example, “library()” in R loads

a package of R functions. Since the Parser detects the library, the SDTL will reflect

the library that is used, and commands derived from the library will be translated in

the SDTL script. However, it is useful to know which library is active for auditing the

R script, even if it does not perform any data transformations.

Unsupported
Describes an unsupported command. An unsupported command is valid syntax, but

not supported by the parsing application.

ExpressionBase
The SDTL types in Table 3 (ExpressionBase) are used in expressions, which may be numeric, text

or logical. The most powerful of these types is FunctionCallExpression, which is discussed

below.

VariableReferenceBase (Table 4) is a subcategory of ExpressionBase used to describe the

variables used in an expression.

Table 3.

ExpressionBase: SDTL Types Used in Expressions

BooleanConstantExpression BooleanConstantExpression takes values of TRUE and FALSE.

FunctionCallExpression An expression evaluated by reference to the Function Library.

GroupedExpression

A group of expressions to be evaluated before expressions

outside of the group. Used to control the order of operations in a

formula.

IteratorSymbolExpression
The name of an iterator symbol used as an index in describing

the actions of a loop.

MissingValueConstantExpression
A missing value constant. Some languages allow multiple missing

value constants.

10

NumberRangeExpression Defines a range of numeric values.

NumericConstantExpression A numeric constant.

NumericMaximumValueExpression Represents the largest numeric value supported by a system.

NumericMinimumValueExpression Represents the smallest numeric value supported by a system.

StringConstantExpression A text string.

StringRangeExpression Defines a range of string values.

UnhandledValuesExpression
Represents any values not previously handled (for example, in a

set of recode rules).

ValueListExpression Wraps a list of other expressions.

VariableReferenceBase SDTL types used to describe variables. See Table 3.

Table 4.

VariableReferenceBase: SDTL Types Used to Describe Variables in Expressions

AllNumericVariablesExpression
An expression that represents all numeric variables in the

dataset, similar to `_all` in SPSS or Stata.

AllTextVariablesExpression
An expression that represents all text variables in the dataset,

similar to `_all` in SPSS or Stata.

AllVariablesExpression
An expression that represents all variables in the dataset, similar

to _all in SPSS or Stata.

CompositeVariableNameExpression
A composite variable name is used to describe a variable name

that is computed.

VariableListExpression

A list of variables which may include variable names

(VariableSymbolExpression) and variable ranges

(VariableRangeExpression).

VariableRangeExpression
A list of variables in adjacent columns defined by the variable

names of first and last columns.

11

VariableSymbolExpression A reference to a variable.

Table 5 includes types that were created to represent complex properties of other commands. For

example, every type in CommandBase uses sourceInformation to show the original language of

each command and its location in the command script. AppendDatasets and MergeDatasets,

which operate on more than one file use types AppendFileDescription and

MergeFileDescription to capture a number of properties associated with each file.

Table 5.

Types for Complex Properties in SDTL Commands

AppendFileDescription Describes files used in an AppendDatasets command.

DataframeDescription

Describes a dataframe in the consumesDataframe or producesDataframe

types. Provides the name of the data frame and a list of variables

(columns). DataframeDescription can also define dimensions in

dataframes that have hierarchical indexes, data cubes, or multi-indexes.

FunctionArgument
Describes the arguments in a function as specified in the SDTL Function

Library.

IteratorDescription
Describes an iteration process consisting of an IteratorSymbolExpression

and a list of values it takes.

MergeFileDescription Describes files used in a MergeDatasets command.

RecodeRule Describes how values will be recoded.

RecodeVariable Describes a variable that will have its values recoded.

RenamePair Variable names before and after a variable is renamed.

ReshapeItemDescription Describes a new variable created by reshaping a dataset from wide to long.

SortCriterion
Describes a criterion by which cases are sorted, including the variable

name and whether to sort ascending or descending.

SourceInformation
SourceInformation defines information about the original source of a data

transform.

ValueLabel Associates a label with a value in a categorical variable.

12

Conditional Execution by Row or by File/Dataframe
Statistical languages have some commands that are executed sequentially on every row and other

commands that apply to an entire file or dataframe. The Compute command illustrated above is

an example of the first type. Compute creates or modifies a variable that will appear on every row

in the data. New variables are usually computed from other variables on the same row, but we

describe calculations that aggregate across rows in our discussion of the “Function Library” below.

In contrast, commands that load or save files or modify metadata, such as data type and display

format, do not change the number or contents of rows in the dataframe.

The difference between row-level and file/dataframe-level commands becomes very important

when the action is conditional on the value of a variable or other parameter. Consider these

commands in the Stata language:

replace varY=3 if varX>5 /*** Version 1 *****/

if varX>5 replace varY=3 /*** Version 2 ****/

Although they appear to be the same, they have very different outcomes. The condition in Version

1, “if varX>5”, is a qualifier within a Stata command (“replace”) that is executed sequentially on

each row in the dataframe. Some rows will be set to 3 and others will not be changed, depending

upon the value of “varX” on each row. In Version 2 the “replace” command is nested in an “if”

command, which is a program flow command designed for use in Stat scripts (“do-files”). The “if”

command is not evaluated separately for each row; it is evaluated only once using the value of

“varX” on the first row in the dataframe. Consequently, if “varX>5” is true for row one, “varY” is set

to 4 for all rows, and if “varX>5” is false for row one, no rows are changed regardless of the value of

“varX” on other rows. Table 6 illustrates the results of these commands where only row 1 satisfies

the condition “varX>5”.

Table 6. Examples of Conditional Execution by Row and Dataframe in Stata

Initial values

Version 1 (SDTL IfRows):
replace varY=3 if varX>5

Version 2 (SDTL DoIf):
if varX>5 replace varY=3

Row varX varY varX varY varX varY

1 9 11 9 3 9 3
2 4 11 4 11 4 3
3 1 11 1 11 1 3

SDTL includes two ways of applying conditions to commands. The SDTL command IfRows is used

for conditions that should be evaluated sequentially on every row. DoIf in SDTL is used for flow

control in scripts where the condition is evaluated once before executing a command or group of

commands. Both IfRows and DoIf can be applied to a group of commands, and both include an

elseCommands property for commands to be performed if the condition is false.

Function Library
Although the number of data transformation commands in statistical packages is small, the power

of these commands is magnified by “functions,” which are available in every language. Functions
are available in most computer languages as a convenient way to invoke common operations. In

13

the same way that a mathematical equation may use “sine(x)” to refer to the corresponding

trigonometric function, “sine(varX)” may be used in a statistical package to insert the sine of

variable “varX” in a computation or comparison. There are thousands of functions in statistical

packages, and programming C2Metadata parsers and updaters to reproduce all of them would have

been an enormous job. Fortunately, our goal is to describe data transformations not to perform

them. We devised a simple way to add an unlimited number of functions to SDTL with minimal

impact on the code required to translate a script into SDTL. This was accomplished by creating a

Function Library, which serves as a crosswalk between SDTL and the various statistical packages.

The Function Library is a file that can be maintained in a spreadsheet and accessed as a JSON file.

Functions in computer languages normally have two parts: a function name followed by parameters

enclosed in parentheses. The function invokes program code that replaces the function with a value

computed from the parameters. The computed value of a function may be a number, text, or logical

(Boolean) constant. For example, sine(varX) will return the sine of an angle equal to the value of

varX, and gt(varX, varY) will return TRUE if varX is greater than varY and FALSE otherwise. Each

parameter is used in a specific way by the computer code that evaluates the function.

Parameters may be specified in two ways. Sometimes, parameters are given in a defined order

separated by a delimiter, usually a comma, which is included even if the parameter is omitted.

Parameters may also be identified by name. For example, in Stata “std(varX), mean(10) std(3)” will

standardize the values of varX so that the transformed values have mean=10 and standard

deviation=3. In this case the first parameter (varX) is given by position, but the other two

parameters (“mean” and “std”) are specified by name. In SDTL parameters may be specified by

position or by name. We currently use EXP1, EXP2, EXP3, … as parameter names in SDTL, but

these names are arbitrary and meaningful mnemonics could be used.

Some functions operate on a list items of the same type, which makes them appear to have an

indeterminate number of parameters. For example, mean(varX, varY, varZ) would compute the

mean of three variables. To avoid parameter lists of indefinite length, the SDTL Function Library

uses the VariableListExpression and ValueListExpression types in SDTL. A

VariableListExpression packages a list of variables into a single SDTL type that is treated as one

parameter in an SDTL function. A VariableListExpression has a single property (variables)

defined as a JSON array that can consist of any combination of individual variables

(VariableSymbolExpression) or variable ranges (VariableRangeExpression).

The Function Library maps the names and parameters of SDTL functions to functions in other

languages. Every function is described with the SDTL name of the function and the order and

names of its parameters. The SDTL function is also mapped to the same function in SPSS, Stata, SAS,

R, and Python. This table compares functions that compute a random number from a uniform

distribution in SDTL and five other languages:

SDTL random_variable_uniform(EXP1, EXP2)
SPSS RV.UNIFORM(EXP1, EXP2)
Stata runiform(EXP1 EXP2)
SAS RANUNI(seed)
R runif(n, min=EXP1, max=EXP2)
Python numpy.random.uniform(low= EXP1, high= EXP2)

14

SDTL and most of these languages specify the minimum (EXP1) and maximum (EXP2) of the range

of the random number. In SAS the range is always 0 to 1, which is the default range in other

languages. The Function Library entry for SAS specifies that 0 and 1 are passed to SDTL as values

for parameters EXP1 and EXP2. Computer programs often use mathematical formulas to

approximate random numbers, and the SAS version of this function allows users to specify a “seed”

for its random number generator. Since the seed is specific to the implementation in SAS, it is not

included in SDTL. In R the “runif” function creates a vector of random numbers of length “n”. We

assume that the random number will be either a single number used in an expression or a vector

added to the dataframe as a new variable, which makes this parameter unnecessary in SDTL.

The Function Library partitions functions into four groups corresponding to different SDTL

commands:

Function Library
group

SDTL command Meaning

Horizontal Compute Calculates a value from variables on the same row.
Rows are processed sequentially.

Vertical Aggregate Calculates a new variable by aggregating across rows
in a group. Every row in the group has the same
value.

Collapse Collapse Calculates a new variable by aggregating across rows
in a group in a new dataframe with one row per
group.

Logical DoIF
IfRows
KeepCases
DropCases

Functions used in logical conditions.

Horizontal functions operate sequentially by row using variables appearing on each row. Vertical

and Collapse functions operate on groups of rows by aggregating values within columns (see Figure

2). Vertical functions used in an SDTL Aggregate command add new variables (columns) to a

dataframe by applying the result of a computation to every row in a group. The Collapse command

does the same computation, but it reduces the number of rows by creating one row per group. For

example, suppose that groups are defined by variable “YearsOfEducation,” and we compute

mean(AnnualIncome). The Aggregate command will add mean AnnualIncome to every row, and

the Collapse command will create one row for every value of YearsOfEducation including both

YearsOfEducation and mean AnnualIncome. Thus, Vertical functions do not change the number of

rows in the dataframe, and Collapse functions create a new dataframe with fewer rows.

15

Figure 2. Illustrations of Aggregate and Collapse

All functions have unique names in SDTL, but other languages sometimes use the same function

name in different contexts with different outcomes. A good illustration is a function for computing

means, which has three different meanings in both SPSS and Stata.

 Compute Aggregate Collapse
SDTL mean(EXP1) agg_mean(EXP1) col_mean(EXP1)
SPSS mean(EXP1)

Context: COMPUTE
mean(EXP1)
Context: AGGREGATE with

MODE=ADDVARIABLES

mean(EXP1)
Context: AGGREGATE

Stata rowmean(EXP1)
Context: generate, replace

mean(EXP1)
Context: egen

 “(mean)” statistic option
Context: collapse

16

Flow Control, Loops, and Macros
Statistical software packages include extensive programming capabilities. Stata and SAS have

powerful macro features, and R and Python are very capable programming languages. There are

two ways of handling these programming features in SDTL.

First, whenever possible the Parser will expand macros and other programming code into simpler

commands. For example, if a loop applies a Compute command to four variables, it can be

converted into four Compute commands. This may make the SDTL long and verbose, but it

simplifies the work of finding which commands affect every variable.

Second, SDTL does include types for describing loops (LoopOverList, LoopWhile), which are the

most common kind of flow control, and IteratorSymbolExpression was created to describe an

index used in a loop.

SDTL does not have arrays, which may be used in loops, but it does have functions that operate like
arrays. The VariableArrayDereference and ValueArrayDereference functions allow an SDTL

script to use an expression to select an entry in a list. The first parameter of each function points to

the position of an entry in a variable or value list given as the second parameter. The operation of

these functions can be illustrated by this simplified example, in which “[Age, Sex, Education,

Income]” is a list of variable names:

VariableArrayDereference(3, [Age, Sex, Education, Income])

The value of this function would be “Education”, which is the third item in the list. Since the

contents of the list is not stored anywhere, the full list must be repeated every time that the

function is used. However, the index parameter could be an IteratorSymbolExpression in a loop.

Appending, Merging, and Updating Datasets
The six languages covered by the C2Metadata Project offer a wide variety of ways of combining

datasets. AppendDatasets is used to concatenate rows (cases) from datasets that have the same

columns (variables) (Figure 3). MergeDatasets combines columns from datasets that have the

same rows. These operations are complicated by features that resolve conflicts, such as merging

files with overlapping column names or unmatched rows. Datasets are usually merged by joining

rows with the same keys, but some statistical packages will merge rows sequentially when keys are

not specified. MergeDatasets can also be used to update a dataset by replacing its current values

with values from a different dataset. Both AppendDatasets and MergeDatasets use subtypes

(AppendFileDescription, MergeFileDescription) to describe actions that apply to specific input

datasets. For example, the merge commands in SPSS and SAS allow users to rename variables,

select variables, and select cases at the time of the merge without changing the input dataset.

17

Figure 3. Appending Datasets

R (dplyr) and Python (Pandas) use “joins” like those in SQL to merge dataframes. Rows in the

output dataset are created by comparing one or more key variables specified in a “by” parameter.

Joins in R and Python are implicitly Cartesian joins that create every possible combination of rows

with the same keys. For example, caseID=2 is repeated in DS_A and caseID=1 is repeated in DS_B.

The Cartesian join of DS_A and DS_B by caseID is DS_C (Figure 4), in which there are two rows for

both caseID=1 and caseID=2. Note that caseID=3 and =4 are not included in DS_C, because they do

not exist in both input datasets. DS_C is the result of an “inner” join, and the unmatched rows can

be included by specifying “outer”, “left”, or “right” joins. Following the model of SQL, R and Python

are agnostic about the order in which the data are sorted, and all joins are Cartesian.

18

Figure 4. Cartesian Inner Join

In SPSS, SAS, and Stata merging is often a sequential process on files that are sorted before they are

merged. Even when the merge involves matching on key variables, SPSS, SAS, and Stata require the

input files to be sorted before they can be merged, and the user must determine whether keys are

unique (one-to-one) or repeated (one-to-many or many-to-many). A sequential merge of DS_A and

DS_B without keys produces DS_D (Figure 5), which is very different from the result of a Cartesian

join (Figure 4).

Figure 5. Sequential Merge

19

SDTL uses three properties (mergeType, newRow, and update) to represent all of these

possibilities. These properties are found in MergeFileDescription, which means that they are

specified for each input dataset.

The mergeType property describes how rows from the input datasets are combined in the output

data. Most merge types (e.g. OneToOne, OneToMany) involve matching rows on key variables,

which are specified with mergeByVariables (in MergeDatasets) and mergeByNames (in

MergeFileDescription). Sequential merges assume that the input files are already sorted.

The newRow property determines when the rows contributed by an input file generate a row in

the output file. When newRow is TRUE, all rows in this dataset are included in the output dataset,

regardless of whether they were matched to another input dataset on the mergeByVariables.

When newRow is FALSE, only rows that have been matched are included. An inner join is

represented in SDTL by setting newRow to FALSE on all input datasets, and newRow is TRUE for

all input datasets to describe an outer join. Left and right-joins are created by using TRUE and

FALSE on different inputs.

mergeType

Sequential Match rows from each input dataframe in the order in sequential
order.

OneToOne Create one row for each value of the MergeByVariables. If a
combination of the MergeByVariables is repeated, only one row is
matched. Rows with repeated combinations of the MergeByVariables
may or may not be included in the output file depending on the
NewRow property.

OneToMany Create a row in the output dataframe by matching rows in this
dataframe to every row in other dataframes with the same value of
MergeByVariables. Note that OneToMany implies that one of the
other input datarames is set to ManyToOne.

ManyToOne Create a row in the output dataframe by matching all rows in this
dataframe
to the one row in the other dataframe with the same value of
MergeByVariables.

Cartesian Create a new row in the output dataframe for every possible
combination of rows having the same value of MergeByVariables.
This is equivalent to a many to many merge.

Unmatched Create a new row for every row that cannot be matched on the
MergeByVariables

SASmatchMerge SAS uses a merging approach that combines matching keys and
sequential merges within groups.

20

newRow

TRUE Always include rows from this dataframe, even if the
MergeFileVariables do not match a row in any other dataframe.

FALSE Only include rows from this dataframe, if the MergeFileVariables match
a row in another dataframe.

There is even more diversity in the responses of different languages when the datasets to be

merged contain a variable (column) with the same name. R and Python follow SQL by including

both variables with modified names, which can be handled by using the renameVariables

property in the MergeFileDescription. However, SPSS, Stata, and SAS will include only one

variable in the output data, and they may use the omitted variable to update values in the included
variable. The update property of MergeFileDescription is used to specify how values from the

omitted version of the variable will be handled. If update is set to Ignore, a variable that is also

found in the Master dataset will have no effect on the output dataset. If update is set to FillNew,

values from the repeated variable will only appear on new rows not found in the Master dataset.

UpdateMissing replaces only missing values in the Master dataset, and Replace changes all values

on matched rows in the Master dataset.

update

Master This dataframe is the Master dataframe.

Ignore If a column with the same name exists in the Master dataframe, ignore
the values in this dataframe.

FillNew If a column with the same name exists in the Master dataframe, use the
values from this dataframe only in new rows created from this
dataframe.

UpdateMissing If a column with the same name exists in the Master dataframe, use
values from this dataframe when the value in the Master dataframe is
missing.

Replace If a column with the same name exists in the Master dataframe, use
values from this dataframe.

ReshapeLong, ReshapeWide, and
CompositeVariableNameExpression
All of the statistical packages covered by the C2Metadata project have commands to reshape files

between “wide” and “long” formats. Figures 6 and 7 illustrate the difference between wide and long

21

format for data describing a mother and her children. In the wide format (Figure 6) there is one

row for each mother, and each child is described by two variables, age and sex. Data for each child

are identified by including birth order in the variable name, e.g. age1, age2, etc. The wide format

requires a column for every variable for each child, and we must allow enough variables to describe

the largest family in the data. If one woman had 20 children, the dataset in Figure 6 would have 40

columns: age1, sex1, …, age20, sex20. Consequently, datasets in wide format usually have many

empty cells. In long format, Figure 7, there is a row for each child and information about mothers is

repeated on the rows for each of their children. The long format includes an additional variable,

birthOrder that uniquely identifies children within each family. Since the information in each

format is identical, the choice between wide and long depends upon the types of analysis to be

performed and convenience.

Figure 6. Wide Format

Figure 7. Long Format

The information in Figures 5 and 6 can also be stored in separate datasets for mothers and children

by using the motherID variable as a key for linking children to their mothers. In a relational

database the two-table approach would be used to remove repetition and “normalize” the database.

However, unlike SQL, most statistical analysis software cannot compute results on data contained

in more than one table. Data from the mothers table and the children table would need to be

merged before any analysis is performed.

SDTL includes features for operating on wide and long format data. The

CompositeVariableNameExpression is used to describe repeated variable names in wide-format

data, such as age1, age2, etc. Composite names consist of a “stub” (e.g. “age”, “sex”) and an index

value. Composite names are described in a ReshapeItemDescription, which is a complex

property used in the ReshapeWide and ReshapeLong SDTL commands.

22

The C2Metadata Project has implemented the ReshapeLong but not the ReshapeWide command.

When we convert data from wide to long, we know how many rows to create, because each row

corresponds to a set of identical variables described in the metadata file. But we cannot reshape

data from long to wide format without knowing the maximum number of columns to create, which

is not included in the metadata file of a long format dataset. Since the scope of the C2Metadata

Project has been limited to metadata-only operations, ReshapeWide is not currently supported.

Pseudocode Library and Translator
The Pseudocode Library is a simple and extensible way to create natural language versions of SDTL

scripts. Every type in SDTL consists of a set of properties. Each of these properties can be resolved

into text -- a variable name, a number, or a string. The Pseudocode Library is a set of templates for

SDTL types with text to include before and/or after each property in a command. Templates look like

this:

 “starting text {property1} more text {property2} even more text”

The translation involves inserting text created from each property into the corresponding space in
the template, where property names surrounded by curly brackets. For example, the pseudocode
templates for the Rename command and the RenamePair type are:

Rename Rename variables: {renames}

RenamePair \n\t from {oldVariable} to {newVariable};

In this case, RenamePair is a complex type used to fill the renames property of the Rename
command. If we rename varA to varAlpha, the RenamePair becomes.

\n\t from varA to varAlpha;

and the Rename command becomes

Rename variables: \n\t from varA to varAlpha;

If we evaluate \n as a new line and \t as a tab, we get

Rename variables:

from varA to varAlpha;

Pseudocode templates for functions are included in the Function Library.

Discussion
SDTL provides a new level of transparency for data processed and managed by statistical analysis

packages. SDTL was created to simplify the automated creation of provenance metadata at the

variable level. The C2Metadata Project is providing open-source code for translating SPSS, SAS,

Stata, R, and Python into SDTL, as well as code for translating SDTL into natural language

23

(C2Metadata Project, 2020a). Software applications that create data catalogs, codebooks, and tools

to reconstruct data provenance can read SDTL rather than interpreting each of the different

statistical languages. For data producers, these tools simplify the process of describing the steps in

preparing raw data for publication. Data repositories will receive more detailed machine-

actionable metadata to improve the documentation their collections. Researchers will be able to

understand how variables were created regardless of the software used in their production.

Version 1.0 of SDTL is being released with two limitations that are due to the limited scope of the
C2Metadata Project. First, the C2Metadata Project adopted a metadata-only approach. We assume

that the pre-transformation data are well described in a standard metadata schema, such as DDI or

EML, and we do not access the data at any time. For this reason, SDTL can describe reshaping data

from long to wide, but C2Metadata parsers do not support that command. When data are changed

from long to wide, the number of columns in the new dataframe depends upon the values of the

index variables in the original dataframe. The only way to know the range of these index variables

is to inspect the actual data, and this requires integration of SDTL into statistical analysis software.

We hope that this integration will happen in the future, especially for the open source packages R

and Python.

Second, SDTL does not yet describe variables created by statistical analysis commands. SDTL was

created to describe data and not tables, graphs or other analytical results. Since statistical analysis

packages have many more analysis commands than data transformation commands, representing

analysis commands was not on the agenda of the C2Metadata Project. However, we acknowledge

that analysis commands can also produce data. For example, estimated regression models are often

used to construct predicted values and residuals. In view of the number and diversity of analytical

commands, SDTL may be linked to an external ontology of statistical tests, such as the STATO

ontology (ISA Commons, 2020).

24

References
Alter, G., Donakowski, D., Gager, J., Heus, P., Hunter, C., Ionescu, S., . . . Voldsater, O. (2020).

Automating the Capture of Data Transformation Metadata from Statistical Analysis Software.
ICPSR. University of Michigan. Ann Arbor MI. Retrieved from
http://hdl.handle.net/2027.42/156014

C2Metadata Project. (2020a). Gitlab Repository: c2metadata. Retrieved from
https://gitlab.com/c2metadata

C2Metadata Project. (2020b). Structured Data Transformation Language. Retrieved from
http://c2metadata.gitlab.io/sdtl-docs/

Cuevas-Vicenttín, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., & Leinfelder, B.
(2015). Provone: A prov extension data model for scientific workflow provenance. In: DataOne
Project, Tech. Rep., Mar. 2014.[Online]. Available: http ….

DDI Alliance. (2020). Developing Products of the DDI Alliance. Retrieved from
https://ddialliance.org/about/developing-products-of-the-ddi-alliance

E.H. Fegraus, S. A., M.B. Jones, M. Schildhauer. (2005). Maximizing the value of ecological data with
structured metadata: an introduction to ecological metadata language (EML) and principles for
metadata creation. Bulletin of the Ecological Society of America, 86, 158–168.

IBM Corp. (2019). IBM SPSS Statistics for windows, version 26.0. Armonk, NY: IBM Corp.
ISA Commons. (2020). STATO: an Ontology of Statistical Methods. Retrieved from http://stato-

ontology.org/
Python Software Foundation. (2019). Python Language Reference, version 3.8. Beaverton, OR. Retrieved

from https://www.python.org/
R Core Team. (2013). R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-
project.org/

SAS Institute. (2015). SAS®9.4 Product Documentation. Cary, NC: SAS Institute Inc. Retrieved from
http://support.sas.com/documentation/94/index.html

StataCorp. (2020). Stata Statistical Software: Release 16.1. College Station, TX: StataCorp LP.
Vardigan, M. (2008). Beyond the codebook: Documenting survey research on the Web. Paper presented

at the International Conference on Survey Methods in Multinational, Multiregional, and
Multicultural Contexts (3MC), Berlin, Germany.

http://hdl.handle.net/2027.42/156014
https://gitlab.com/c2metadata
http://c2metadata.gitlab.io/sdtl-docs/
https://ddialliance.org/about/developing-products-of-the-ddi-alliance
http://stato-ontology.org/
http://stato-ontology.org/
https://www.python.org/
http://www.r-project.org/
http://www.r-project.org/
http://support.sas.com/documentation/94/index.html

