SUPPORTING INFORMATION FOR:

Cooper, D. R., N. Ryan, K. Syndergaard, Y. Zhu. 2020. The potential for material circularity and independence in the U.S. steel sector. Journal of Industrial Ecology.

Summary

This supporting information contains information useful to understanding the themes and numbers introduced in the main article. This document is 61 pages long and contains 22 tables and 32 figures.

Contents	
SECTION S1-1: U.S. END-OF-LIFE RECYCLING RATES	S1-2
SECTION S1-2: ADDITIONAL DATA FOR U.S. STEEL DMFA	S1-3
Product lifespans	S1-3
True consumption in different end-use sectors	S1-4
Historical U.S. true consumption	S1-4
Aggregated stocks per capita (spc)	S1-8
DMFA Results - Overview	S1-10
DMFA Results - Steel consumption	S1-13
DMFA Results - Steel scrap arising	S1-17
DMFA Results - Steel stocks per capita	S1-21
DMFA Results - Absolute stocks	S1-27
SECTION S1-3: INTERMEDIATE STEEL EMBEDDED IN END-USE PRODUCTS	S1-31
SECTION S1-4: MODELED COPPER CONCENTRATION OF DMFA STEEL SCRAP CATEGORIES	S-134
SECTION S1-5: IMPORTED METAL IN 2017 (AND NEW PRODUCT COPPER TOLERANCES)	S1-35
Direct imports of steel mill products (inc. copper tolerance)	S1-35
Indirect imports of steel in finished goods (inc. copper tolerance)	S1-42
SECTION S1-6: SCRAP DISCARDS IN 2017	S1-50
U.S. steel scrap exports in 2017	S1-50
U.S. steel scrap sent to landfill or hibernating scrap in 2017	S1-51
SECTION S1-7: U.S. STEEL MASS & MONEY TRADE FLOWS	S1-58
SECTION S1-8: DERIVING LOW RESOLUTION MAP OF U.S. 2017 STEEL FLOW	S1-60
From the DMFA	S1-60
Other data sources used	S1-60
REFERENCES	S1-62

Section S1-1: U.S. end-of-life recycling rates

End of life (EOL) recycling rates (RR) found in the literature are summarized in Table S1-1 and shown in this section to provide context. Global RRs defined for 2007 by the World Steel Association (2010) are used in the global steel analyses by Pauliuk et al. (2013) and Daehn et al. (2017). Both of these studies are referenced in the main manuscript.

Scrap category	Scope	Year	EOL recycling rate	Reference
Total	Global	2007	0.5 - 0.8	Wang et al. (2007) – Yale Center for Industrial Ecology
Construction	Global	2018	0.82	Elshkaki et al. (2018) – Yale Center for Industrial Ecology
Machinery	Global	2018	0.82	Elshkaki et al. (2018) – Yale Center for Industrial Ecology
Transport	Global	2018	0.87	Elshkaki et al. (2018) – Yale Center for Industrial Ecology
Metal goods	Global	2018	0.58	Elshkaki et al. (2018) – Yale Center for Industrial Ecology
Total	Global	2006	0.65	Allwood et al. (2010)
Construction	Global	2007	0.85	World Steel Association (2010)
Automotive	Global	2007	0.85	World Steel Association (2010)
Machinery	Global	2007	0.9	World Steel Association (2010)
Appliances	Global	2007	0.5	World Steel Association (2010)
Containers	Global	2007	0.69	World Steel Association (2010)
Appliances	U.S.	2014	0.89	USGS (2016)
Containers	U.S.	2014	0.70	USGS (2016)
Structural beams and plates from	U.S.	2014	0.98	USGS (2016)
bar and other materials	U.S.	2015	0.71	USGS (2016)
Total	U.S.	1998	0.52	USGS value reported by Bowyer et al. (2015)
Total	U.S.	2007	0.9	Steel Recycling Institute reported by Bowyer et al. (2015)
Total	U.S.	2004- 2009	47.5/87.2 = 0.55	Damuth (2011) reported by Bowyer et al. (2015)
Construction	U.S.	2004 - 2009	1-0.32 = 0.68	Damuth (2011) reported by Bowyer et al. (2015)

Table S1-1: Global and U.S. specific EOL RRs presented in the literature

Section S1-2: Additional data for U.S. steel DMFA

Product lifespans

The product lifespan scenarios for each of the sectors are shown in Table S1-2. This study uses normal lifespan distributions. Different product lifespan distributions have been used in previous DMFAs (e.g., beta, lognormal, normal, Weibull, Gaussian). Müller et al. (2014) present a review of studies that investigate the effect of choosing different lifespan distribution functions on DMFA model results. They found either that DMFA model results are insensitive to the choice of product lifespan distribution or that findings were most sensitive to mean lifetimes themselves. Additionally, sensitivity analyses are presented by both Müller et al. (2011) and Müller et al. (2006) on the effect of the lifetime distribution function (normal, log-normal and Weibull) and mean lifetime on calculated in-use stocks. In both studies, they found that calculated stocks are sensitive to the modeled mean product lifespans but not the choice of lifespan distribution. Normal distributions are a popular choice for modeling product lifespans in the literature and are used by Pauliuk et al. (2013), Müller et al. (2011), Müller et al. (2006), and Yin and Chen (2013). Mean product lifespans and lifespan standard deviations are extracted from these above studies and used in this article.

Table S1-2: Pr	oduct mean	lifespan	for each	scenario	used in	this	study's
	DMFA n	ormal lif	etime di	stributior	ns.		

	Lifespan scenario (years)								
Product	Ba	aseline		Long	Short				
Category	Mean	Standard deviation	Mean	Standard deviation	Mean	Standard deviation			
Construction	75	25	97.5	32.5	52.5	17.5			
Transport	20	7.5	14	5.25	26	9.75			
Machinery	30	10	21	7	39	13			
Other	15	5	10.5	3.5	19.5	6.5			

T • 0

True consumption in different end-use sectors

The amount of true consumption attributed to each end-use sector can have a significant impact on the DMFA results because products in different end-use sectors have very different lifespans (e.g., steel I-beams within 'construction' versus steel packaging cans within 'metal goods'). Challenges encountered when estimating the sectoral breakdown of true consumption using primary data sources include the focus of many sources on the final product destinations of domestically produced steel (ignoring imports) and the tendency to assign large percentages of demand not to a specific end-use sector but to 'service centers' or 'other.' Only more recent data from the American Iron and Steel Institute (AISI) do not include the 'service center' classification. Therefore, in this article we assign the sectoral breakdown of true consumption according to the average of AISI's estimates from their yearly profiles (2014-2017), see Table S1-3. These values are assumed constant between 1880-2017, which is an assumption also made by Pauliuk et al. (2013), who also use AISI data sources for the U.S. sector split in their global steel use study. It is also assumed in this study that the same sector split applies to internationally traded goods as well as domestically produced steel products. This assumption was also made in Müller et al.'s (2006) study.

Product Type	AISI (avg. 2014-2017)
Construction	42%
Transport	27%
Machinery	17%
Products	1.4%

Table S1-3: Sector split used in flow-driven DMFA (AISI, 2015, 2016, 2017, 2018)

Historical U.S. true consumption

Annual total U.S. true consumption steel values are estimated for 1880-2017. Table S1-4 summarizes the data sources and methodology used to estimate true consumption for the different years.

Year	Calculation of true	Data sources
	consumption	
2017	Apparent Consumption (AC) + Indirect trade (IT)*	United States Geological Survey (AC) + Comtrade (IT)
2002-2016	True Consumption (TC)	World Steel Yearbook (TC)
1991-2001	Apparent Consumption (AC) + Indirect trade (IT)*	United States Geological Survey (AC) + Comtrade (IT)
1962-1990	U.S. Net Domestic Supply minus other product imports and exports (NDS) + Indirect trade (IT)*	American Iron and Steel Institute (NDS) + Comtrade (IT)
1940-1961**	Domestic Shipments (DS) + Net Steel Imports (NSI)	American Iron and Steel Institute (DS & NSI)
1932-1939**	U.S. Production x Yield***	American Iron and Steel Institute
1930-1931**	Domestic Shipments (DS) + Net Steel Imports (NSI)	American Iron and Steel Institute (DS & NSI)
1912-1929**	Production Steel Ingots & Casting x Yield*** + Imports/Exports	American Iron and Steel Institute
1880-1911**	Production Steel Ingots & Casting x Yield***	American Iron and Steel Institute

Table S1-4: Data sources and methods used to estimate historical U.S. true consumption

*The steel embedded in net indirect imports was converted into the quantity of steel used to manufacture these goods by dividing by 0.84 (as explained in the main manuscript) **Indirect trade is not included in true consumption estimates for these years as the net contribution is assumed to be negligible

*** Yield value of 0.93 used, based on Cullen et al.'s (2012) rolling/forming losses

The World Steel Association estimate U.S. true consumption in their annual Statistical Yearbook but this data only exists for 2002-2016. The World Steel Association has yet to calculate true consumption for more recent years. Therefore, for all other years, the true consumption was estimated in this study using a combination of data on shipments, apparent consumption, production, yields, and indirect net imports in order to estimate true consumption dating back to 1880.

The steel embedded in net indirect imports is calculated using the United Nations Commodity Trade (Comtrade) database for 1962-2001 and 2017. Indirect trade is calculated from the Comtrade database by mapping the trade of 29 commodities ranked by global import, all having global imports greater than 1,000 Gg iron per year (United Nations, 2018; Wang et al., 2007b). These categories are a subset of the 220 categories Wang et al. (2007b) used when characterizing iron cycles. Table S1-5 lists the commodity codes, part descriptions, percent iron and mass to value ratios.

For 15 of the categories in 2017, Comtrade reports the quantity imported and exported in kilograms but they report U.S. dollar values for all commodities listed in Table S1-5. As described fully in Section S5 (Indirect imports of steel in finished goods), a series of regression analyses are performed on the depedence of the steel intensity (kgs steel per traded U.S. dollar) in the 15 known categories on a range of product attributes (product category, steel fraction by mass, level of fabrication, and complexity of the energy conversion systems in the product). The results were used to estimate the steel intensity for the other 14 product categories (see Table S).

In order to calculate the mass imported and exported of the different import and export categories we multiplied the traded dollar values by the mass to dollar ratios (steel intensity) listed in Table S1-5. However, these mass values and those directly reported by Comtrade are in terms of steel embedded in final goods. Therefore, to translate the mass of imports and exports for each commodity to true consumptions values we divided by the ratio of steel 'in end-use products' to steel 'fabricated products' from Cullen et al. (2012). We then added the resulting mass values to World Steel Yearbook's apparent consumption to find total true consumption.

SITC	STITC.1_Code	Parts or Final Product Descriptions	% Fe	Import kg/\$	Export kg/\$
S1	7321	Passenger motor cars, other than buses	0.65	0.05	0.04
S1	719	Machinery and appliances non electrical parts	0.75	0.11	0.13
S1	7328	Bodies & parts motor vehicles ex motorcycles	0.7	0.06	0.07
$\mathbf{S1}$	698	Manufactures of metal	0.9	0.14	0.27
$\mathbf{S1}$	729	Other electrical machinery and apparatus	0.55	0.03	0.03
S1	718	Machines for special industries	0.75	0.08	0.10
S1	7323	Lorries and trucks, including ambulances, etc.	0.8	0.10	0.11
S1	735	Ships and boats	0.9	0.12	0.15
S1	722	Electric power machinery	0.55	0.03	0.02

Table S1-5: Commodities mapped for indirect imports and exports. \$ are 2017 U.S. dollars

SITC	STITC.1_Code	Parts or Final Product Descriptions	% Fe	Import kg/\$	Export kg/\$
		and switchgear			
$\mathbf{S1}$	7250	Domestic electrical equipment	0.65	0.06	0.08
$\mathbf{S1}$	69421	Nuts, bolts, screws, rivets, washers of iron/steel	0.98	0.20	0.32
$\mathbf{S1}$	7115	Internal combustion engines, not for aircraft	0.5	0.03	0.03
$\mathbf{S1}$	693	Wire products ex electric & fencing grills	0.9	0.19	0.30
$\mathbf{S1}$	7333	Trailers & other vehicles not motorized, & parts	0.5	0.12	0.11
$\mathbf{S1}$	861	Scientific, medical, & optical instruments	0.55	0.03	0.03
$\mathbf{S3}$	8213	Metal furniture	0.7	0.16	0.15
$\mathbf{S1}$	7316	Rail. &tram. cars ,not mechanically propelled	0.85	0.18	0.22
$\mathbf{S1}$	69221	Casks, drums, etc. used for transport of iron/steel	0.96	0.25	0.28
$\mathbf{S1}$	715	Metalworking machinery	0.65	0.06	0.06
$\mathbf{S1}$	714	Office machines	0.22	0.02	0.02
$\mathbf{S1}$	724	Telecommunications apparatus	0.25	0.02	0.02
$\mathbf{S1}$	712	Agricultural machinery and implements	0.7	0.07	0.08
$\mathbf{S1}$	894	Perambulators, toys, games and sporting goods	0.2	0.07	0.02
$\mathbf{S1}$	695	Tools for use in the hand or in machines	0.85	0.23	0.05
$\mathbf{S1}$	6291	Rubber tires & tubes for vehicles and aircraft	0.15	0.04	0.04
$\mathbf{S1}$	717	Textile and leather machinery	0.65	0.06	0.06
$\mathbf{S1}$	7325	Road tractors for tractor trailer combinations	0.8	0.13	0.17
$\mathbf{S1}$	69721	Domestic utensils of iron or steel	0.95	0.24	0.16
$\mathbf{S1}$	69411	Nails, tacks, staples, spikes, etc. of iron or steel	0.98	0.46	0.60

In recent years, a significant proportion of U.S. steel true consumption has been from net indirect imports (e.g., 19.3% in 2017); however, this has not always been the case. Please note that Müller et al. (2006), in their analysis of historical U.S. iron stocks, ignored international trade prior to 1950 as they assumed it to then be negligible. In our study, we only exclude trade prior to 1940.

Aggregated stocks per capita (spc)

Historical *spc*, aggregated over the different sectors, are shown in Figure S1-1.

Figure S1-1: Historical stocks per capita (*spc*) aggregated over the end-use sectors

The aggregated *spc* values calculated for 2017 (8.5-13 t/capita) align with existing estimates from the literature (9.1-14.3 t/capita). Hatayama et al. (2010) estimate 9.1 t/capita in 2005. Müller et al. (2006) reference 12 t/capita since 1980. USGS estimate 14.3 t/capita for 2002 (USGS, 2005). Müller et al. (2011) estimate 10-11 t/capita for 2005. Regarding the *spc* saturation level, Müller et al. (2006) estimate 11-12 t/capita saturation level and Pauliuk et al. (2013) estimate 13.6 to 14.3 t/capita for 2008. The variation between the above estimates could be the result of different lifetime estimates, distributions, sector divisions, or the use of true consumption (rather than embedded steel) in demand estimates.

Per-capita stocks are extrapolated in the stock-driven DMFA because, as argued by Müller (2006), personal stocks are likely the main driver of the material cycle and more directly related to the provision of services than consumption alone. Extrapolated *spc* are shown in Figures S1-13-S1-24

and total stocks based on population scenarios are shown in Figures S1-25-S1-28. The results of the DMFA are shown in Figures S1-2-S1-12.

DMFA Results - Overview

Figure S1-2: Historical and future U.S. steel consumption aggregated over the end-use sectors

Figure S1-3: Historical and future U.S. steel scrap arising aggregated over the end-use sectors

Figure S1-4: Baseline (expected population growth and product lifespan) DMFA results in the four end-use sectors

DMFA Results - Steel consumption

Figure S1-5: U.S. steel consumption in the construction sector

Figure S1-6: U.S. steel consumption in the transport sector

Figure S1-7: U.S. steel consumption in the machinery sector

Figure S1-8: U.S. steel consumption in the metal goods (products) sector

DMFA Results - Steel scrap arising

Figure S1-9: U.S. steel scrap arising in the construction sector

Figure S1-10: U.S. steel scrap arising in the transport sector

Figure S1-11: U.S. steel scrap arising in the machinery sector

Figure S1-12: U.S. steel scrap arising in the metal goods (products) sector

DMFA Results - Steel stocks per capita

Figure S1-13: DMFA logistic curve fit to historical spc for the construction sector

Figure S1-14: DMFA logistic curve fit to historical *spc* for the construction sector

Figure S1-15: DMFA logistic curve fit to historical spc for the construction sector

Figure S1-16: DMFA logistic curve fit to historical spc for the transport sector

Figure S1-17: DMFA logistic curve fit to historical spc for the transport sector

Figure S1-18: DMFA logistic curve fit to historical spc for the transport sector

Figure S1-19: DMFA logistic curve fit to historical spc for the machinery sector

Figure S1-20: DMFA logistic curve fit to historical spc for the machinery sector

Figure S1-21: DMFA logistic curve fit to historical spc for the machinery sector

Figure S1-22: DMFA logistic curve fit to historical *spc* for the metal goods (products) sector

Figure S1-23: DMFA logistic curve fit to historical spc for the metal goods (products) sector

Figure S1-24: DMFA logistic curve fit to historical *spc* for the metal goods (products) sector

DMFA Results - Absolute stocks

Figure S1-25: Absolute steel stocks in the construction sector

Figure S1-26: Absolute steel stocks in the transport sector

Figure S1-27: Absolute steel stocks in the machinery sector

Figure S1-28: Absolute steel stocks in the metal goods (products) sector

Section S1-3: Intermediate steel embedded in end-use products

The U.S. quantity and fractional breakdown of intermediate steel products embedded in final goods is shown in Table S1-6.

T , N , N ,	Breakdown (kt) of intermediate product destinations				Associated fractional breakdown (0-1)			
Intermediate products	Construct- ion	Transport	Machinery	Products	Construct- ion	Transport	Machinery	Products
Casting	1384	2419	742	0	0.0329	0.1098	0.0321	0.0000
Tool steel	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Wire rods	1596	1171	617	0	0.0379	0.0532	0.0267	0.0000
Hot rolled bars	1190	2425	2220	0	0.0282	0.1101	0.0960	0.0000
Hot rolled coil	13474	3036	2703	63	0.3198	0.1378	0.1168	0.0095
Hot rolled narrow strip	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Cold rolled coil	0	3746	1191	4685	0.0000	0.1701	0.0515	0.7082
Cold rolled strip	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Plate	493	125	7066	0	0.0117	0.0057	0.3054	0.0000
Hot rolled galvanized coil	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Cold rolled galvanized	3572	7882	0	0	0.0848	0.3578	0.0000	0.0000
Cold rolled coil coated	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Cold rolled coil tinned	0	17	0	1868	0.0000	0.0008	0.0000	0.2823
Welded and seamless tube	3277	1162	8532	0	0.0778	0.0527	0.3687	0.0000
Rail	1087	0	66	0	0.0258	0.0000	0.0029	0.0000
Electrical sheet	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Light section	1474	44	0	0	0.0350	0.0020	0.0000	0.0000
Heavy section	5925	0	0	0	0.1406	0.0000	0.0000	0.0000
Construction (rail)	0	0	0	0	0.0000	0.0000	0.0000	0.0000
Rebar	8661	0	0	0	0.2056	0.0000	0.0000	0.0000
Totals	42132	22027	23137	6616	1	1	1	1

Table S1-6: Annual U.S. manufacturing consumption of intermediate steel in 2014 (Zhu et al., 2019)

The U.S. quantity and fractional breakdown of intermediate steel products embedded in final goods is shown in Table S1-7.

Intermediate products	Breakdown (Mt) of intermediate product destinations				Associated fractional breakdown (0-1)			
	Vehicles	Machinery	Construction	Goods	Vehicles	Machinery	Construction	Goods
Light Sections			42		0.00	0.00	0.07	0.00
Heavy Sections			38		0.00	0.00	0.06	0.00
Rail		1	9		0.00	0.01	0.02	0.00
Rebar			165		0.00	0.00	0.28	0.00
Wire Rod	10	8	77	38	0.07	0.05	0.13	0.21
Hot Rolled Bar	15	36	4	29	0.11	0.20	0.01	0.16
Plate	27	30	6	25	0.19	0.17	0.01	0.14
HRC	6	30	88	6	0.04	0.17	0.15	0.03
HRC Galv.			9		0.00	0.00	0.02	0.00
HR Narrow Strip			18	15	0.00	0.00	0.03	0.08
CRC		19	60	29	0.00	0.11	0.10	0.16
CRC Galv.	58				0.41	0.00	0.00	0.00
CRC Coated				12	0.00	0.00	0.00	0.07
CRC Tinned				8	0.00	0.00	0.00	0.05
Electrical Sheet		8			0.00	0.05	0.00	0.00
Welded Tube	1	20	37	1	0.01	0.11	0.06	0.01
Seamless Tube	6	4	16		0.04	0.02	0.03	0.00
Tool steel	0	0	0	0	0.00	0.00	0.00	0.00
Cast Iron	17	15	27	9	0.12	0.09	0.05	0.05
Cast Steel		5		5	0.00	0.03	0.00	0.03
Totals	140	176	596	177	1.00	1.00	1.00	1.00

Table S1-7: Annual global manufacturing consumption of intermediate steel in 2008 (Cullen et al., 2012)

Section S1-4: Modeled copper concentration of DMFA steel scrap categories

The concentration of copper in the four different DMFA steel scrap sources is shown in Table S1-8. Three copper concentration scenarios (expected, low, and high) are modeled for each scrap source.

Table S1-8: DMFA scrap category copper concentrations used in this analysis

	Copper concentration (wt. %)				
Scrap Source	Expected	Low	High		
Transport	0.3	0.2	0.5		
Machinery	0.3	0.2	0.4		
Construction	0.2	0.1	0.2		
Goods	0.35	0.2	0.4		

These copper contamination values were assigned according to values presented din Daehn et al.'s analysis and as calculated from 2017 U.S. collected scrap data, as summarized in Table S1-9.

	Copper concentration (wt. %)							
Scrap	Derived from	From Daehn et al.'s (2017) analysis						
Source	collected U.S. scrap in 2017 (Table S1-	Expected	Low	High				
	17)							
Transport	0.29	0.3	0.2	0.5				
Machinery	0.34	0.25	0.2	0.4				
Construction	0.33	0.1	0	0.1				
Goods	0.30	0.4	0.2	0.3				

Table S1-9: Previous scrap category copper concentration data

Section S1-5: Imported metal in 2017 (and new product copper tolerances)

Direct imports of steel mill products (inc. copper tolerance)

Imports of steel mill products to the U.S. in 2017 were extracted from the U.S. Census Bureau (2018), which splits these imports into twenty sub-categories. The imported *billets, blooms and slabs* will be formed into intermediate products domestically; therefore, this category of imports is assigned to the various intermediate product import categories in the same ratio as domestically produced steel, as reported for steel mill products in Table 3 of the USGS 2014 iron and steel Minerals Yearbook (USGS, 2014a) and as reported for steel and iron castings in the mineral commodity summary report for (USGS, 2015).

In 2017, the U.S. imported 7.7 Mt of billet, bloom and slab (BBS). The breakdown into intermediate products is shown in Table S1-10.

Table S1-10: Breakdown o	of intermediate product	ts formed in U.	S. from in	mported
	Billets, Blooms. And S	Slabs		

Intermediate product	BBS (%)	Quantity (Mt)
Hot Rolled Sheet and Strip	22.4%	1.73
Cold Rolled Sheet and Strip	11.6%	0.90
Hot Dip Galvanized sheet	15.2%	1.18
Electrogalvanized sheet	1.3%	0.10
Other metallic coated sheet	1.4%	0.11
Tinplate/Tin coat sheet	1.5%	0.12
Tin Free sheet/ BlackPlate	0.4%	0.03
Oil Country Goods	3.5%	0.27
Standard Pipe	0.8%	0.06
Other Pipe/Tube	0.8%	0.06
Plates, cut length	7.1%	0.55

Intermediate product	BBS (%)	Quantity (Mt)
Plates, in coils	3.2%	0.25
Reinforcing bar	7.6%	0.59
Wire Rod and Wire	2.7%	0.21
Hot Rolled Bar	5.2%	0.41
Cold Finished Bars	1.3%	0.10
Light Shaped bars	2.0%	0.16
Heavy sections	6.0%	0.47
Rail	1.0%	0.08
Steel Castings	0.4%	0.03
Iron Castings	4.3%	0.34
	Total	7.73

All directly imported metal was then grouped according to the intermediate product categories shown in Table S1-8. In total, the U.S. imported 34.5 Mt of steel mill products in 2017.

2019 Journal of Industrial Ecology – <u>www.wileyonlinelibrary.com/journal/jie</u>

Table S1-11: Total U.S. direct imports of steel mill products in 2017 (and copper tolerances of new intermediate steel products used in this analysis)

Inter-	Copper	tolerand	ce (wt. %) ²	Imports							
mediate	Esti-	Max	Min	in 2017		Breakdown of imports according to U.S. Census Bureau category					
product	mate	max.		(Mt)							
Steel/iron for castings ¹	0.75^{3}	0.75^{3}	0.75^{3}	0.41	Ingots And Steel For Castings 0.04	BBS - steel castings 0.03	BBS - iron castings 0.34				
Tool steel ²	0.75^{3}	0.75^{3}	0.75^{3}	0.16	Tool steel 0.16						
Wire rods	0.1	0.2	0.1	2.42	Wire rod	Wire drawn 0.78	BBS - Wire Rod and Wire 0.21				
Hot rolled bars	0.15	0.2	0.1	2.03	Bars - hot rolled 1.20	Bars - cold finished 0.32	BBS - Cold Finished Bars 0.10	BBS - hot rolled bar 0.41			
Hot rolled coil	0.1375	0.2	0.06	3.52	Sheets (hot rolled) 1.93	Allocation of BBS - Hot Rolled Sheet and Strip ⁴ 1.58					
Hot rolled narrow strip	0.15	0.2	0.06	0.33	Strip (hot rolled) 0.18	Allocation of BBS - Hot Rolled Sheet and Strip ⁴ 0.15					

Inter-	Copper	toleranc	e (wt. %) ²	Imports								
mediate	Esti-	Max.	Min.	in 2017	Breakdown of imports according to U.S. Census Bureau category							
product	mate			(Mt)								
Cold rolled coil	0.1	0.2	0.06	3.49	Sheets (cold rolled) 2.66	Allocation of BBS - Cold Rolled Sheet and Strip ⁵ 0.83						
Cold rolled strip	0.1	0.2	0.06	0.28	Strip (cold rolled) 0.21	Allocation of BBS - Cold Rolled Sheet and Strip ⁵ 0.07						
Plate	0.15	0.2	0.1	2.89	Plate in coils 1.24	Plates cut lengths 0.75	Steel piling 0.10	BBS - plates in coils 0.25	BBS - plates cut to lengths 0.55			
Hot rolled coil galvanized	0.2	0.2	0.06	2.79	50% of total galvanized sheet and strip 1.62	BBS - Hot Dip Galvanized sheet 1.18						
Cold rolled galvanized	0.06	0.1	0.06	1.72	50% of total galvanized sheet and strip	BBS - electro- galvanizing						

Inter-	Copper	toleran	ce (wt. %) ²	Imports												
mediate product	Esti- mate	Max.	Min.	in 2017 (Mt)		Breakdown of imports according to U.S. Census Bureau category										
				1	1.62	0.10										
Cold rolled coil coated	0.06	0.06	0.04	1.17	Sheets & Strip All Oth Met Coat 1.06	BBS - metal sheet coated 0.11										
Cold rolled coil tinned	0.06	0.06	0.04	1.27	Tin plate	Tin free steel 0.21	Black plate 0.06	BBS - tin plate 0.12	BBS - tin free 0.03							
Welded & seamless tube	0.15	0.2	0.1	8.01	Total Pipe & Tubing	Stainless pipe & tubing	Oil country goods	Line pipe	Standard pipe	Mech- anical tubing	Pressure tubing	Struct- ural pipe and tube	Pipe for piling	BBS - oil country goods	BBS - standard pipe	BBS - other pipe and tube
Rail	0.15	0.2	0.1	0.29	0.02 Rail standard 0.21	0.14 BBS 0.08	3.10	1.2	1.06	0.61	0.06	0.57	0.04	0.27	0.06	0.06
Electrical sheet	0.06	0.15	0.06	0.10	Sheets and strip - electrical 0.10											
Light section	0.3	0.3	0.2	0.31	Bars - Light Shaped	BBS										

Inter-	Copper	toleranc	e (wt. %) ²	Imports	
mediate product	Esti- mate	Max.	Min.	in 2017 (Mt)	Breakdown of imports according to U.S. Census Bureau category
					0.15 0.16
Heavy section	0.3	0.3	0.2	1.25	Structural Shapes BBS Heavy 0.78 0.47
Construct- ion - rail	0.3	0.3	0.2	0.02	Rails allRailroadotheraccessories0.020.01
Rebar	0.4	0.5	0.4	2.01	Bars - reinforcing 1.42 0.59
			Total	34.47	

Notes. 1: These intermediate product categories are not included in Daehn et al.'s (2017) analysis and instead come straight from the U.S. Census Bureau data (U.S. Census Bureau, 2018); 2: All copper tolerance values taken from Daehn et al. (2017) except where otherwise stated in these notes; 3: Copper tolerance data for castings and tool steel taken from (Alro, 2015); 4: Hot rolled sheet and strip (produced from BBS) assigned to "hot rolled coil" and "hot rolled narrow strip" in same proportions as imported "sheets (hot rolled)" and "strip (hot rolled)"; 5: Cold rolled sheet and strip (produced from BBS) assigned to "cold rolled coil" and "cold rolled strip" in same proportions as imported "sheets (cold rolled)" and "strip (cold rolled)"

Indirect imports of steel in finished goods (inc. copper tolerance)

Trade of 29 steel intensive product categories is analyzed (see Table S). The same 29 categories were used in Wang et al.'s (2007b) analysis of global iron cycles. Data on the indirect import and export of these goods is provided by the U.N. Comtrade Database (U.N., 2018). The Comtrade data shows the value of each category in 2017 U.S. dollars (USD). The quantity (in kilograms) of the import and export category is also reported for 15 of the categories. This sub-section describes how the Comtrade data was used to estimate the quantity of steel imported and exported in each of the 29 product categories.

A conversion factor from product mass to steel mass was applied to the Comtrade mass data using iron fractions presented on page S8 of the Supporting Information from Wang et al.'s (2007b) article. Wang et al. (2007b) provide steel content statistics for all 29 product categories used in this analysis. Subsequently the mass of imported steel can be readily calculated for the 15 categories in which product mass import data is available from Comtrade. An empirical equation describing the steel intensity of imports (kg.steel per USD of trade) is derived in order to predict the steel imported within the 14 other product categories.

A series of regression analyses are performed on the depedence of the steel intensity in the 15 known categories on a range of product attributes (product category, steel fraction by mass, level of fabrication, and complexity of the energy conversion systems in the product). The results of the regression analyses were compared primarily using the R squared and Adjusted R squared statistic.

The products were split into 4 low resolution product categories: transport, machinery, electrical equipment, and other. No dependence of steel intensity based

on this produict categorization could be observed in the data. The dependence of steel intensity on the steel fraction by mass in the product is shown in Figure S1-29.

Effect of Product Iron content on Steel per dollar

Figure S1-29: Effect of product steel fraction by mass on steel intensity

It was observed in the empirical data that products have a lower steel intensity if, during their production, there is a higher degree of fabrication and assembly (e.g. automobiles), or if the final product contains complex sub-assemblies that convert energy from one form to another (e.g. electrical motors or combustion engines). Hence, we characterize the products by introducing two new indices, both equal to values between 0 and 1: (a) the degree of fabrication and assembly (as shown in Table S1-12); and (b) the complexity of the present energy transformation system (as shown in Table S1-13). These characterizations inevitably contain a degree of subjectivity but the allocation of values is justified for all assigned products in Table S1-12 and Table S1-13.

Fabrication		
& Assembly	Justification	Products
Index (0-1)		
0.00	Products that come straight out of metal forming equipment ready to be shipped to the customer	Nuts, bolts, screws, rivets, washers of iron/steel; Nails, tacks, staples, spikes, etc. of iron or steel
0.25	Products that require minimal, low skill labor to fabricate and/or assemble before shipping to the customer	Manufactures of metal; Casks, drums, etc.; Domestic Utensils of iron or steel; Perambulators, toys, games, and sporting goods; Tools for use in the hand or in machines
0.50	roducts that require moderate, nedium skill labor to fabricate nd/or assemble before hipping to the customer	Metal furniture; Rubber tires and tubes for vehicles and aircraft; Office Machines; Telecommunications apparatus
0.75	Products that require fabrication of many components for a sub- assembly	Bodies and Parts motor vehicles excl. Motorcycles; Internal combustion engines, not for aircraft; Trailers and other vehicles not motorized and parts; Wire products excl. electric and fencing grills; Rail and tram cars, not mechanically propelled
1.00	Products that require extensive, potentially high skill labor, fabrication of hundreds of components	Passenger motor cars, other than buses; Lorries and trucks, including ambulances, etc.; Domestic Electrical Equipment; Agricultural machinery and implements; Road tractors for tractor trailer combinations; Machinery and appliances non electrical parts; Other electrical machinery and apparatus; Machines for special industries; Ships and boats; Electric power machinery and switchgear; Scientific, medical, and optical instruments; Metalworking machinery; Textile and leather machinery

Table S1-12: Degree of fabrication	& assembly (high=1; low=0)
------------------------------------	----------------------------

Table S1-13: Presence of energy transformation system (no=0; yes=1)

Energy Conversion Index (0-1)	Justification	Products
0.00	Products that contain no energy transformation system	Manufactures of metal; Nuts, bolts, screws, rivets, washers of iron/steel; Trailers and other vehicles not motorized and parts; Metal furniture; Casks, drums, etc.; Rubber tires and tubes for vehicles and aircraft; Domestic Utensils of iron or steel; Nails, tacks, staples, spikes, etc. of iron or steel; Wire products excl. electric and fencing grills; Rail and tram cars, not mechanically propelled; Perambulators, toys, games, and sporting goods; Tools for use in the hand or in machines

0.50	Machines that contain low cost energy conversion systems	Machinery and appliances non electrical parts; Office Machines; Telecommunications apparatus
		Passenger motor cars, other than buses; Bodies and Parts motor vehicles excl. Motorcycles: Lorries and trucks.
		including ambulances, etc.; Domestic Electrical Equipment;
1.00	Machines that contain multiple energy conversion systems or	Internal combustion engines, not for aircraft; Agricultural machinery and implements; Road tractors for tractor trailer
1.00	whose main purpose is energy	combinations; Other electrical machinery and apparatus;
	conversion	Machines for special industries; Ships and boats; Electric
		optical instruments; Metalworking machinery; Textile and
		leather machinery

Figure S1-30 and Figure S1-31 show the dependence of the product steel intensity on the degree of fabrication/assembly and the complexity of the energy transformation system respectively.

Figure S1-30: Effect of fabrication and assembly on steel intensity

Effect of energy transformation system on Iron per dollar

Figure S1-31: Effect of complexity of energy transformation system present on steel intensity

Four linear regressions are performed on the complete empirical data (15 known dependent variables). The results of the analyses are summarized in Table S1-14.

Regression	Regression 1:	Regression 2:	Regression 3:	Regression 4:
	One independent	Three independent	Four independent variables	One independent
	variable = Iron	variables = Iron	= Category; Iron content;	variables =
	content	content; Fabrication;	Fabrication; Energy	Category
		Energy Conversion	Conversion	
R Square	0.47	0.71	0.77	0.46
Adjusted R	0.43	0.63	0.47	0.22
Square	0.13	0.05	0.17	0.22

Table S1-14: Comparison between different linear regression models

As described by Montgomery (2009), the R square statistic is a measure of the amount of reduction in the variability of the dependent variable obtained by using the regressor variables in the model (Montgomery, 2009). However, a large value of

R does not necessarily imply that the regression model is a good one. Adding a variable to the model will always increase the R square value regardless of whether the additional variable is statistically significant or not. Thus, it is possible for models that have large R square values to yield poor predictions of new observations or estimates of the mean response. In general, the adjusted R square statistic however will not always increase as variables are added to the model. In fact, if unnecessary terms are added, the value of will often decrease. When the R square and adjusted R square statistics differ dramatically, there is a good chance that nonsignificant terms have been included in the model. For Regression 3, Table S1-14 shows that despite having the highest R square value (0.77), it has a much lower adjusted R square value of 0.47. Given that there was no clear dependence of steel intensity on product categorization into transport, machinery, electrical or other then it is likely that regression 3 has introduced unnecessary terms. Subsequently, in this analysis we choose the results of regression 2 to model the steel intensity of the remaining 14 product categories based upon the iron content by mass, the fabrication/assembly complexity, and the complexity of the energy conversion system.

The resulting predictive equation, using the coefficient values produced in regression analysis number 2, is shown in equation S1 and used to estimate the steel intensity of the products highlighted in yellow in Table S1-15.

Iron intensity $\left(\frac{kg}{USD}\right)$	(S1)
$= 0.04 + (0.25 \times iron \ content \ as \ mass\%) - (0.09 \times fab. \ index) - (0.05 \times energy \ conversion \ index)$	

The above methodology was repeated for product exports, giving the equation shown below (equation S2):

Iron intensity of exports $\left(\frac{kg}{USD}\right)$ = -0.03 + (0.35 × iron content as mass%) - (0.065 × fab. index) - (0.065 × energy conversion index) (S2)

All 20	017 imp	ports										
All in	ferred	values ar	e shown highlighted in yellow		Data from Co	mmodity Trade (Comtra	de) Database					
No.	SITC	C-1 Code	Parts or Final Product	%Fe	Value (units)	Value (USD)	Value (kg)	Iron value in 2017 (kg)	Mass per unit (kg/unit)	Mass per dollar (kg/USD)	Iron per unit (kg)	Iron per dollar (kgs/USD)
1	S1	7321	Passenger motor cars, other than buses	0.65	7925506	178810765021	12948748892	8416686780	1634	0.07	1061.97469	0.047
2	S1	719	Machinery and appliances non electrical parts	0.75		137455737441	19584448360	14688336270				0.107
3	S1	7328	Bodies and Parts motor vehicles excl. Motorcycles	0.70		66635892926	6183632622	4328542835		0.09		0.065
4	S1	698	Manufactures of metal	0.90		22120238110	3376302441	3038672197		0.15		0.137
5	S1	729	Other electrical machinery and apparatus	0.55		114628676365	6440698450	3542384147				0.031
6	S1	718	Machines for special industries	0.75		18971857727	2036957969	1527718477				0.081
7	S1	7323	Lorries and trucks, including ambulances, etc.	0.80	1075498	27276125258	3259749770	2607799816	3031	0.12	2424.73702	0.096
8	S1	735	Ships and boats	0.90		2555835532	334366604	300929944				0.118
9	S1	722	Electric power machinery and switchgear	0.55		56866382742	3195179730	1757348851				0.031
10	S1	7250	Domestic Electrical Equipment	0.65		10851783884	1058257799	687867569		0.10		0.063
11	S1	69421	Nuts, bolts, screws, rivets, washers of iron/steel	0.98		5168791299	1049691823	1028697987		0.20		0.199
12	S1	7115	Internal combustion engines, not for aircraft	0.50		26378390589	1394883902	697441951		0.05		0.026
13	S1	693	Wire products excl. electric and fencing grills	0.90		1459065605	313741896	282367707				0.194
14	S1	7333	Trailers and other vehicles not motorized and parts	0.50		3591018656	855693396	427846698		0.24		0.119
15	S1	861	Scientific, medical, and optical instruments	0.55		50559714852	2840823844	1562453114				0.031
16	S3	8213	Metal furniture	0.70		6124738010	1435740098	1005018069		0.23		0.164
17	S1	7316	Rail and tram cars, not mechanically propelled	0.85		626756114	133551257	113518568				0.181
18	S1	69221	Casks, drums, etc.	0.96		581461513	148586964	142643485		0.26		0.245
19	S1	715	Metalworking machinery	0.65		5315448607	455610126	296146582				0.056
20	S1	714	Office Machines	0.22		184379633312	18098472830	3981664023				0.022
21	S1	724	Telecommunications apparatus	0.20		100522038702	8359756918	1671951384				0.017
22	S1	712	Agricultural machinery and implements	0.70		7108904984	744524557	521167190		0.10		0.073
23	S1	894	Perambulators, toys, games, and sporting goods	0.20		19440649311	6423543285	1284708657				0.066
24	S1	695	Tools for use in the hand or in machines	0.85		7783517973	2081920533	1769632453				0.227
25	S1	6291	Rubber tires and tubes for vehicles and aircraft	0.15		14648616617	3494969595	524245439		0.24		0.036
26	S1	717	Textile and leather machinery	0.65		4997278760	428338410	278419966				0.056
27	S1	7325	Road tractors for tractor trailer combinations	0.80	60874	5808137524	925589003	740471202	15205	0.16	12163.9978	0.127
28	S1	69721	Domestic Utensils of iron or steel	0.95		2930550633	750383543	712864366		0.26		0.243
29	S1	69411	Nails, tacks, staples, spikes, etc. of iron or steel	0.98		825610105	387457879	379708721		0.47		0.460
·			Color key: Transport; Electrical equipment; Machinery; Ot	her		1	Total (kgs)	58317254449				•
							Total (Mt)	58.3				

Table S1-15: U.S. imports of 29 product categories in 2017. Data in yellow is calculated as part of this article's work

Table S1-15 shows that indirect steel imports were 58 Mt in 2017. Data from the World Steel Association is not so recent (see Figure S1-32) but the trend is consistent with the data shown in Table S1-15.

Figure S1-32: Indirect U.S. steel trade. Data from the Steel Statistical Yearbook report published by the World Steel Association (WSA, 2017)

Section S1-6: Scrap discards in 2017

U.S. steel scrap exports in 2017

In 2017, the U.S. exported 14 Mt of steel scrap (USGS, 2018b). At the time of writing, the types of steel scrap exported in 2017 were unavailable; therefore, the fractional breakdown of exported scrap categories was assumed equal to the latest year for which values were available, which was 2014, in which 15.1 Mt of EOL steel scrap (excluding manufacturing scrap) were exported. The exported scrap categories are listed in Table 11 of the 2014 Minerals Yearbook for Iron and Steel Scrap (USGS, 2014b). Table S1-13 presents the estimated quantity of exported scrap in 2017 and the copper contamination in each of the categories according to the concentrations from DJJ (2018), Leroy (1995) and Kostetsky et al. (2000).

Scrap	Copper		Scrap quantity export	ted (Mt)	
industry	content		2014		Scaled
category	(%)	Total	Categories from US	GS	2017 value
			No. 1 heavy-melting scrap	_	
#1 HM	0.24	4.87	4.87		4.53
			No. 2 heavy-melting scrap		
#2 HM	0.46	0.88	0.88	-	0.81
			Cut plate and structural	Ships	
3' P&S	0.18	0.77	0.765	0.01	0.72
			Shredded steel scrap		
Std. shredded	0.23	4.66	4.66	-	4.33
			No. 2 bundles		
#2 Bdls.	0.45	0.02	0.023	_	0.02
			Tinned iron or steel		
Tin plate	0.04	0.11	0.11	-	0.11
			Used rails		
Rail crops	0.15	0.04	0.04	-	0.04
			Other steel scrap	_	
Municipal scrap 0.45		2.32	2.32		2.16
Steel	0.15	0.00			0.00

Table S1-16: The copper content and quantity of U.S. exported EOL steel scrap quantities in 2017

Scrap	Copper			
industry	content		2014	Scaled
category	(%)	Total	Categories from USGS	2017 value
wheels				
Railcar sides	0.2	0.00		0.00
Steel cans	0.05	0.00		0.00
			Remelting scrap ingots	
All other carbon steel	0.28	0.02	0.02	0.01
		_	Other alloy steel scrap	
Alloy steel scrap	0.28	0.53	0.53	0.49
Other mixed scrap	0.45	0.00		0.00
		_	Iron scrap	
Cast iron scrap	0.28	0.30	0.30	0.28
		_	Stainless steel scrap	
Stainless steel scrap	1.5	0.55	0.55	0.51
	Total	15.07		14.00

U.S. steel scrap sent to landfill or hibernating scrap in 2017

Table S1-17 shows the calculation of U.S. scrap collection in 2014 (52.1 Mt, data from Table 2 in USGS, 2014) and the estimated quantity of U.S. scrap collected in 2017 based on scaling the 2014 values by the ratio of USGS recorded apparent consumption of scrap in the two years (58 Mt in 2014 and in 62 Mt 2017). The quantity of U.S. scrap sent to landfill or hibernating stocks in 2017 was estimated based on the weighted recycling rates for each scrap category (i.e., the sectoral breakdown of each scrap category (Table S1-17) and the recycling rate for each end-use sector (Table S1-18)). Apparent consumption of scrap in the U.S. in 2014 and 2017 was 58 Mt and 62 Mt respectively (USGS, 2018b).

					2014		2017					
Scrap indust ry catego ry	Copp er conte nt	Sector	Total collect ed (Mt)	U.S. consumer receipts (Mt)	Export scrap (Mt)	Import scrap (Mt)	Total collect ed (Mt)	Total quantity of available discards (Mt)		ntity of ble (Mt)	Tota l quan tity of scra p sent to land fill (Mt)	
#1 HM	0.24	Construct ion (70%), machiner		No. 1 heavy-melting steel	No. 1 heavy-melting scrap	No. 1 heavy-melting scrap						
#1 HM	0.24	y (20%) & transport (10%)	9.23	4.67	4.87	0.311	9.87	13.74		3.87		
40 IIM	Construct ion (50%), machiner			No. 2 heavy-melting steel	No. 2 heavy-melting scrap	no. 2 heavy-melting scrap						
#2 111VI	0.40	y (25%), transport (25%)	6.21	5.58	0.877	0.243	6.64		9.31		2.67	
3' P&S	0.18	0.18	(25%) Construct ion (33%), transport (33%) &		Cut structural & plate	Cut plate and structural	Ships	Cut structu ral & plate	Shi ps			
		machiner y (33%)	5.19	4.67	0.77	0.01	0.25	$\begin{array}{c} 0.00 \\ 3 \end{array}$	5.55	7.95	2.41	
Std. shredde d	0.23	Transport (62.5%) &		Shredded or fragmentized	Shredded steel scrap	Shredded steel scrap						
	0.20	(37.5%)	19.28	15.20	4.66	0.582	20.61		26.57	7	5.96	

					2014					2017				
Scrap indust ry catego ry	Copp er conte nt	Sector	Total collect ed (Mt)	U.S. consumer receipts (Mt)	Export scrap (Mt)		Im	port scrap (Mt)	Total collect ed (Mt)	Total a diso	quan vailak cards	tity of ble (Mt)	Tota l quan tity of scra p sent to land fill (Mt)	
		Machiner y (20%),		No. 2 and all other bundles	Electric furnace, 1' & under	N bui	lo. 2 ndles		No. 2 bundles					
#2 Bdls.	0.45	constructi on (26%), transport (35%), products (19%)	1.05	0.95	0.11	0.	.023	0.037		1.12		1.56		0.44
Tin plate	0.04	Products (container s)					Tinne iron o steel	d r	Tinned iron or steel					
			0.04				0.114	l.	0.079	0.04		0.05		0.02
Rail	0.15	Construct		Railroad rails	Used ra	ils			Used rails					
crops	0.10	ion	0.21	0.25	0.041				0.073	0.23		0.30		0.07
ът · ·		Products (mix of					Other st scrap	teel	Other steel scrap					
Munici pal scrap	0.45	.45 (mix of container s and appliance s)	1.70				2.32		0.623	1.81		2.61	T	0.80
Steel	0.15	Transport						1						

					2014				2017				
Scrap indust ry catego ry	Copp er conte nt	Sector	Total collect ed (Mt)	U.S. consumer receipts (Mt)	Export scrap (Mt)		Import scrap (Mt)	Total collect ed (Mt)	Total quantity of available discards (Mt)			Tota l quan tity of scra p sent to land fill (Mt)	
wheels			0.00				1				0.00	0.00	0.00
Railcar	0.2	Transport											
sides		manoport	0.00								0.00	0.00	0.00
Steel	0.05	Products (container		Steel cans, postconsumer									
cans		s)	0.10	0.10							0.10	0.15	0.05
All other	0.28	Machiner y (25%), constructi		All other carbon steel scrap	Remelting s	crap ing	ots	Remelting scrap ingots					
carbon steel	0.20	on (32%), transport (43%)	2.58	2.57	0.0	15		0.003	2.76		3.81		1.05
Allov		Machiner y (25%),		Alloy steel (except stainless)	Other alloy	steel scr	ар	Other alloy steel scrap					
Alloy steel scrap	0.28	constructi on (32%), transport (43%)	0.51	0.51	0.55	27		0.529	0.54		0.75		0.21
Other mixed scrap	0.45	Machiner y (25%), constructi		Other mixed scrap	Slag scrap	Ingo t mold							

					2014					2017				
Scrap indust ry catego ry	Copp er conte nt	Sector	Total collect ed (Mt)	U.S. consumer receipts (Mt)	Export so	Export scrap (Mt) Import scrap		nport scrap (Mt)	Total collect ed (Mt)	Total quantity of available discards (Mt)		Tota l quan tity of scra p sent to land fill (Mt)		
		on (32%), transport (43%)				& stool scra p								
			3.00	2.30	0.68	$\begin{array}{c} 0.02\\4 \end{array}$						3.21	4.43	1.23
Cast iron scrap	0.28	Transport (44%) & Machiner y (56%)		Machinery and cupola cast iron	Motor blocks	Othe r iron scra p	Iron sci	rap	Iron scrap					
			1.77	0.39	0.20	1.11	0.3		0.23	1.89		2.91		1.01
		Machiner		Stainless	Stair	less			Stainless					
Stainle ss scrap	1.5	y (20%), constructi on (26%), transport (35%), products (19%)	1.23	1.013	0.5	48			0.329	1.32	1.32 1.83		i	0.52

			2014						2017				
Scrap indust ry catego ry	Copp er conte nt	Sector	Total collect ed (Mt)	U.S. consumer receipts (Mt)	Export sc	Export scrap (Mt) Import scr		Import scrap (Mt)	Total collect ed (Mt)	Tota a dis	l quar availa scards	ntity of ble (Mt)	Tota l quan tity of scra p sent to land fill (Mt)
Total		52.09	Consumer receipts:		40.3 1	Export:	15.07	Import :	3.29 3	55.6 8	75.9 7	20.29	

Table S1-17: USGS scrap collection data for 2014 (consumer receipts, export scrap, and import scrap) and estimated quantity of scrap sent

to landfill (including hibernating stocks) in 2017

	for 2014									
Scrap category	Scrap arising (DMFA, see S2)	Scrap collected (Table S1-17)	Implied recycling rate							
Total	$71.07 \; \mathrm{Mt}$	$52.09 \mathrm{Mt}$	0.73							
Construction	$18.33~\mathrm{Mt}$	$14.05 \; \mathrm{Mt}$	0.77							
Transport	$24.52~\mathrm{Mt}$	$20.45~\mathrm{Mt}$	0.83							
Machinery	$14.56 \mathrm{~Mt}$	8.1 Mt	0.56							
Product	$13.67 \mathrm{\ Mt}$	9.49 Mt	0.69							

Table S1-18: Calculated U.S. scrap arising, collection and recycling rates

Table S1-19: Calculated U.S.	. LHSE scrap for 2017
------------------------------	-----------------------

	-	(Quantity (Mt)	
Scrap industry category	Copper content	Total Landfill & Export	Landfill & Hibernating stocks	Export
#1 HM	0.24	8.40	3.9	4.5
#2 HM	0.46	3.48	2.7	0.8
3' P&S	0.18	3.12	2.4	0.7
Std. shredded	0.23	10.29	6.0	4.3
#2 Bdls.	0.45	0.46	0.4	0.0
Tin plate	0.04	0.12	0.0	0.1
Rail crops	0.15	0.11	0.1	0.0
Municipal scrap	0.45	2.95	0.8	2.2
Steel wheels	0.15	0.00	0.0	0.0
Railcar sides	0.2	0.00	0.0	0.0
Steel cans	0.05	0.05	0.0	0.0
All other carbon steel	0.28	1.07	1.1	0.0
Alloy steel scrap	0.28	0.70	0.2	0.5
Other mixed scrap	0.45	1.23	1.2	0.0
Cast iron scrap	0.28	1.29	1.0	0.3
Stainless steel scrap	1.5	1.03	0.5	0.5
	Total	34.29	20.3	14.0

Section S1-7: U.S. steel mass & money trade flows

		Imports		Exports		Net	
		Mass (Mt)	Value (\$ billion)	Mass (Mt)	Value (\$ billion)	Mass (Mt)	Surplus (\$ billion)
Raw	Iron	3.5	0.26	12	0.9	8.5	0.6
materials	ore*						
	Pig	5.1	1.8	0.04	0.01	-5.1	-1.8
	iron						
	DRI	3.3	0.97	1.16	0.53	-2.11	-0.4
Steel mill		36	29.1	11	9.1	-25.0	-20.1
products							
Finished goods**		58.3	1084	36	574	-22.3	-510.3
Scrap		3	1.5	14	4.9	11	3.4
Total		109	1118	74	590	-35	-529

Table S1-20: Data used to construct Figure 6 in the main manuscript

*Includes mass of gangue

**Only the mass of iron and/or steel in the finished good is included in this calculation. The value, however, is the value of the whole product

The data presented in Table S1-20 comes from:

• USGS iron ore Mineral Commodity Summaries for 2018:

https://minerals.usgs.gov/minerals/pubs/commodity/iron_ore/mcs-2018-feore.pdf

• MIDREX 2017 world DRI production statistics:

https://www.midrex.com/assets/user/news/MidrexStatsBook2017.5_.24_ .18_.pdf

Trade in Steel mill products from the USGS iron and steel mineral commodity summary (USGS, 2018a); the commodity report U.S. Census Bureau "Exhibit 2. U.S. Imports For Consumption of Steel Products" (U.S. Census Bureau, 2018); and the U.S. Department of Commerce Steel Export Report:

https://www.trade.gov/steel/countries/pdfs/exports-us.pdf

- Indirect trade value calculated using United Nations Comtrade data as described in section S1-5.
- USGS iron and steel scrap Mineral Industry Survey in December 2017 (also contains pig iron data):

https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_scrap /mis-201712-fescr.pdf

Section S1-8: Deriving low resolution map of U.S. 2017 steel flow

From the DMFA

- Aggregated consumption in 2017 is equal to 104 Mt.
- Aggregated end-of-life scrap arising in 2017 is equal to 74 Mt.

Table S1-21: DMFA results used to help produce the low resolution 2017 steel map (Figure 6 in the main article)

Sector	spc (t/capita)
Construction	7.36
Transport	1.63
Machinery	1.50
Metal goods (products)	0.64
Total	11.1

Other data sources used

Table S1-22: Data sources for producing the low resolution 2017 steel map (Figure 6 in the main article)

Data	Value	Source
Collected scrap	56 Mt	Table S
Scrap import	$3 \mathrm{Mt}$	Dec 2017 Iron and Steel
		scrap industry survey results
Scrap export	$14 \mathrm{Mt}$	Dec 2017 Iron and Steel
		scrap industry survey
		results
Landfill & hibernating stocks	74 Mt - 56 Mt = 18 Mt	Mass balance
Raw steel	82 Mt	USGS 2018 Iron and Steel
		Mineral Commodity
		Summary
BOF	32% = 26 Mt	USGS 2018 Iron and Steel
		Mineral Commodity
		Summary
EAF	68% = 56 Mt	USGS 2018 Iron and Steel
		Mineral Commodity
		Summary
Imports of semi-finished	8.4 Mt	USGS 2018 Iron and Steel
steel		Mineral Commodity
		Summary
Direct Imports of Steel mill	36 Mt (including ingots,	USGS 2018 Iron and Steel
products (including semi-	blooms, billets, slabs)	Mineral Commodity

Data	Value	Source
finished products)		Summary
Exports of Steel mill	11 Mt	USGS 2018 Iron and Steel
products (including semi-		Mineral Commodity
finished products)		Summary
Indirect imports	$58~{ m Mt}$	Calculated using UN
		Comtrade data and
		equations S1 & S2
Indirect exports	36 Mt	Calculated using UN
		Comtrade data and
		equations S1 & S2
Forming scrap	10 Mt	Estimated from
		Syndergaard et al. (2019)
Fabrication scrap	26 Mt	Estimated from
		Syndergaard et al. (2019)
		& mas balance

References

- AISI. (2015). Profile 2015. Arlington Virginia, 10.
- AISI. (2016). Profile 2016.
- AISI. (2017). Profile 2017.
- AISI. (2018). Profile 2018.
- Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. *Environmental Science & Technology*, 44(6), 1888–1894. https://doi.org/10.1021/es902909k
- Alro. (2015). Tool steel. Retrieved from http://www.alro.com/datacatalog/014-toolsteel.pdf
- Bowyer, J., Bratkovich, S., Fernholz, K., Frank, M., Groot, H., Howe, J., & Pepke, E. (2015). Understanding Steel Recovery and Recycling Rates and Limitations To Recycling. *Dovetail and Partners*.
- Cullen, J. M., Allwood, J. M., & Bambach, M. D. (2012a). Mapping the global flow of steel: from steelmaking to end-use goods. *Environmental Science & Technology*, 46(24), 13048–13055. https://doi.org/10.1021/es302433p
- Cullen, J. M., Allwood, J. M., & Bambach, M. D. (2012b). Mapping the Global Flow of Steel: From Steelmaking to End-Use Goods (Supporting Information). *Environmental Science & Technology*, 46, 13048–13055. https://doi.org/10.1021/es304256s
- Daehn, K. E., Cabrera Serrenho, A., & Allwood, J. M. (2017). How Will Copper Contamination Constrain Future Global Steel Recycling? *Environmental Science* and Technology, 51(11), 6599–6606. https://doi.org/10.1021/acs.est.7b00997
- Damuth, R. J. (2011). Estimating the Price Elasticity of Ferrous Scrap Supply. A commissioned Report prepared by Nathan Associates.
- DJJ. (2018). Primary iron and U.S. scrap chemical compositions.
- Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. K. (2018). Resource Demand Scenarios for the Major Metals. *Environmental Science and Technology*, 52(5), 2491–2497. https://doi.org/10.1021/acs.est.7b05154
- Hatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. (2010). Outlook of the world steel cycle based on the stock and flow dynamics. *Environmental Science & Technology*, 44(16), 6457–6463. https://doi.org/10.1021/es100044n
- Kostetsky, Y., Troyansky, A., & Samborsky, M. (2000). Removal of Copper From Carbon-Iron Melts.
- Leroy, V. (1995). Mechanical working (Rolling mills): Effects of tramp elements in flat and long products. *European Commission Technical Steel Research*, 83.
- Montgomery, D. C. (2009). Introduction to Statistical Quality Control. Journal of Chemical Information and Modeling (6th Editio, Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
- Muller, D. B., Wang, T., Duval, B., & Graedel, T. E. (2006). Exploring the engine of anthropogenic iron cycles. *Proceedings of the National Academy of Sciences*, 103(44), 16111–16116. https://doi.org/10.1073/pnas.0603375103
- Müller, Daniel B., Wang, T., & Duval, B. (2011). Patterns of iron use in societal evolution. *Environmental Science and Technology*, 45(1), 182–188. https://doi.org/10.1021/es102273t
- Müller, Daniel Beat. (2006). Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. *Ecological Economics*, 59(1), 142–156. https://doi.org/10.1016/j.eco
- Müller, E., Hilty, L. M., Widmer, R., Schluep, M., & Faulstich, M. (2014). Modeling metal stocks and flows: A review of dynamic material flow analysis methods. *Environmental Science and Technology*, 48(4), 2102–2113. https://doi.org/10.1021/es403506a
- Pauliuk, S., Milford, R. L., Müller, D. B., & Allwood, J. M. (2013). The steel scrap age.

Environmental Science and Technology, 47(7), 3448–3454. https://doi.org/10.1021/es303149z

- Pauliuk, S., Wang, T., & Müller, D. B. (2013). Steel all over the world: Estimating in-use stocks of iron for 200 countries. *Resources, Conservation and Recycling*, 71, 22–30. https://doi.org/10.1016/j.resconrec.2012.11.008
- U.N. (2018). UN Comtrade Database. Retrieved July 31, 2018, from https://comtrade.un.org/
- U.S. Census Bureau. (2018). Exhibit 2. U.S. Imports For Consumption of Steel Products. Retrieved from https://www.census.gov/foreign-trade/Press-Release/2018pr/01/steel/index.html#fullp
- United Nations. (2018). UN Comtrade Database.
- USGS. (2005). Metal Stocks in Use in the United States. Denver, CO: USGS; 2005.
- USGS. (2014a). 2014 Minerals Yearbook: Iron and Steel. U.S. Geolocial Survey.
- USGS. (2014b). 2014 Minerals Yearbook Iron and Steel Scrap. U.S. Geolocial Survey Minerals Yearbook, (October), 2014–2016.
- USGS. (2015). Iron and Steel Mineral Commodity Summary. U.S. Geolocial Survey.
- USGS. (2016). 2015 Minerals Yearbook: Iron and Steel Scrap. Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_scrap/mcs-2018fescr.pdf
- USGS. (2018a). Iron and Steel. Mineral Commodity Summaries. Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel/mcs-2018-feste.pdf
- USGS. (2018b). *Iron and Steel Scrap Mineral Commodity Summary*. Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_scrap/mcs-2018-fescr.pdf
- Wang, T., Müller, D. B., & Graedel, T. E. (2007a). Forging the anthropogenic iron cycle. *Environmental Science & Technology*, 41(14), 5120–5129. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17711233
- Wang, T., Müller, D. B., & Graedel, T. E. (2007b). Forging the anthropogenic iron cycle. Environmental Science and Technology, 41(14), 5120–5129. https://doi.org/10.1021/es062761t
- World Steel Association. (2010). The three Rs of sustainable steel. Retrieved June 12, 2018, from https://www.steel.org/~/media/Files/SMDI/Sustainability/3rs.pdf?la=en
- WSA. (2017). Steel Statistical Yearbook 2017. World Steel Association. https://doi.org/http://www.worldsteel.org/statistics/statistics-archive/yearbookarchive.html
- Yin, X., & Chen, W. (2013). Trends and development of steel demand in China: A bottomup analysis. *Resources Policy*, 38(4), 407–415. https://doi.org/10.1016/j.resourpol.2013.06.007
- Zhu, Y., Syndergaard, K., & Cooper, D. (2019). Mapping the annual flow of steel in the United States. Accepted in Environmental Science & Technology.