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Objective: Despite the widespread use of spinal cord stimulation (SCS) for chronic pain 

management, its neuromodulatory effects remain poorly understood. Computational models 

provide a valuable tool to study SCS and its effects on axonal pathways within the spinal cord. 

However, these models must include sufficient detail to correlate model predictions with clinical 

effects, including patient-specific data. Therefore, the goal of this study was to investigate 

axonal activation at clinically-relevant SCS parameters using a computer model that 

incorporated patient-specific anatomy and electrode locations.  

 

Methods: We developed a patient-specific computer model for a patient undergoing SCS to 

treat chronic pain. This computer model consisted of two main components: 1) finite element 

model of the extracellular voltages generated by SCS and 2) multi-compartment cable models 

of axons in the spinal cord. To determine the potential significance of a patient-specific 

approach, we also performed simulations with standard canonical models of SCS. We used the 

computer models to estimate axonal activation at clinically-measured sensory, comfort, and 

discomfort thresholds. 

 

Results: The patient-specific and canonical models predicted significantly different axonal 

activation. Relative to the canonical models, the patient-specific model predicted sensory 

threshold estimates that were more consistent with the corresponding clinical measurements. 

These results suggest that it is important to account for sources of interpatient variability (e.g. 

anatomy, electrode locations) in model-based analysis of SCS. 
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Conclusions: This study demonstrates the potential for patient-specific computer models to 

quantitatively describe the axonal response to SCS and to address scientific questions related 

to clinical SCS. 

 

Key Words: Spinal Cord Stimulation; Chronic Pain; Computer Simulation; Failed Back Surgery 

Syndrome 
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INTRODUCTION 

 Spinal cord stimulation (SCS) is a common neurostimulation therapy for neuropathic 

pain conditions (e.g. failed back surgery syndrome, complex regional pain syndrome) that are 

refractory to conventional treatments.1–3 Although SCS has been a widely-used clinical therapy 

for decades, it still has limited success (~50% of patients receive ≥50% reduction in pain).3 

 To improve clinical outcomes of SCS, we need to better understand the electric fields 

generated by SCS and their direct effects on the nervous system.4 While experimental and/or 

clinical studies are useful in studying the mechanisms of action of neurostimulation therapies,4–8 

these studies include shortcomings related to interspecifies differences and difficulties in 

assessing stimulation quality and perception in animal models. In the past, several groups have 

used computational models to study the bioelectric effects of SCS. These studies have helped 

improve lead design, stimulation configurations, waveform parameters, and programming 

procedures.9–13 Computational models have also provided insight into the direct neural response 

to SCS and its potential mechanisms of action.14–17 

 Although these computational studies have been productive, they utilized canonical 

models with geometric parameters based on average anatomical measurements with the goal 

of investigating technical and scientific principles that could be generalized to the target patient 

population. Typically, these generalized models do not account for the interpatient variability in 

anatomy and electrode locations that has been previously reported.18,19 Clinical experience 

indicates significant variability in the therapeutic stimulation parameters (e.g. amplitude, pulse 

width, stimulation configuration), lead placement, and the degree of efficacy across patients that 

may limit the utility or accuracy of canonical SCS models in predicting the neural response 

This article is protected by copyright. All rights reserved.
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within individual patients.19–24 To successfully correlate model-based predictions with patient-

specific clinical effects, it may be necessary for computer models of SCS to incorporate three-

dimensional (3D) patient-specific anatomy and electrode locations. 3D patient-specific 

computational models have shown tremendous success in defining optimal stimulation 

parameters and describing potential mechanisms of action in other neurostimulation therapies, 

such as deep brain stimulation,25–28 but they have never been applied to SCS. 

 Therefore, the goal of this study was to develop a 3D patient-specific computer model of 

SCS. We defined the patient-specific model from preoperative and postoperative imaging and 

electrode impedance measurements for a patient undergoing SCS to treat neuropathic pain. We 

performed clinical measurements to assess the subject’s sensory, comfort, and discomfort 

thresholds across several sets of stimulation parameters (e.g. pulse width, stimulation 

configuration). We also compared the results derived from the patient-specific computer model 

to results predicted by canonical models of SCS. 

 

METHODS 

Patient demographics 

This study was reviewed and approved by the institutional review board at the Cleveland 

Clinic (Cleveland, OH, USA). We recruited one patient who was being treated with SCS as part 

of his standard clinical care and who provided informed consent to participate in the study. The 

patient was a 37-year-old male who had been diagnosed with post-laminectomy syndrome with 

chronic pain in his left leg. Approximately two weeks prior to enrollment, a three-column paddle 

lead array (Medtronic Model 39565 SpecifyTM 5-6-5 Surgical Lead, Medtronic, Inc., Minneapolis, 

This article is protected by copyright. All rights reserved.



 8 

MN) had been implanted at the T8-T9 spinal levels and connected to a rechargeable voltage-

regulated implantable pulse generator (IPG) (RestoreSensorTM Model 37714, Medtronic, Inc.). 

 

Clinical testing 

We performed all clinical testing procedures at a single visit approximately 6 weeks after 

SCS implantation to allow time for encapsulation of the implanted electrode array.29 To localize 

the electrode array relative to the spine, we obtained a postoperative computed tomography 

scan of the lower thoracic spinal levels (see ‘Model Analysis’). We measured the sensory 

threshold (ST), comfort threshold (CT), and discomfort threshold (DT) for several sets of 

stimulation parameters. To determine these thresholds, we followed 5 steps: 1) we increased 

the amplitude until the participant experienced stimulation-induced paresthesias, 2) we reduced 

the amplitude until the participant no longer reported paresthesias, 3) we increased the 

amplitude in 0.1 V increments until the participant experienced paresthesias (defined as the 

ST), 4) we increased the amplitude until the stimulation became uncomfortable (defined as the 

DT), and 5) we decreased the amplitude until the stimulation-induced paresthesias were at a 

maximum intensity that was comfortable to the participant (defined as the CT). 

To consider the effects of stimulation parameters on axonal recruitment, we varied the 

pulse width and the stimulation configuration.10,12 For each set of stimulation parameters, we 

used a standard pulse frequency of 50 Hz.30 We tested the following pulse widths: 60, 210, 300, 

450, and 1000 µs. We tested the following stimulation configurations: bipole, longitudinal 

guarded cathode, transverse guarded cathode, and pseudo-monopole. We used a single 

cathode, which had provided the participant with significant pain relief (see the Supplemental 

This article is protected by copyright. All rights reserved.
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Methods, Supporting Information for further details). To help ensure that the spinal cord was in a 

similar position relative to the spine during both imaging procedures and clinical testing, we 

performed the testing procedures while the participant was supine on an exam bed. 

Because the participant’s commercial SCS system utilized voltage-controlled stimulation, 

we also considered the effects of electrode impedance on stimulation thresholds. At the end of 

the research testing, we measured the bipolar electrode impedances across the entire array. 

The average electrode impedance was 695±34.7 Ω. 

 

Model analysis 

Step 1: Calculate the extracellular voltages generated by SCS 

 The first step in our model analysis was to estimate the extracellular voltages generated 

in the spinal cord during SCS. We developed a finite element model (FEM) of the lower thoracic 

spinal cord and surrounding anatomy based on the patient-specific anatomy and electrode 

locations. We used preoperative magnetic resonance imaging (MRI) to segment the 

participant’s spinal cord, cerebrospinal fluid (CSF), epidural fat, and spine (Fig. 1). We used the 

postoperative computed tomography scan to localize the SCS electrodes and segment the 

participant’s spine. We then co-registered the segmented 3D surfaces from the preoperative 

and postoperative images and defined a patient-specific FEM. This patient-specific FEM 

included a spinal cord domain scaled to match the anteroposterior and mediolateral dimensions 

of the participant’s spinal cord anatomy at the T9 spinal level and included an explicit 

representation of the electrode array. The FEM also included a domain to represent the 

electrode encapsulation that occurs with chronic SCS implants.29 To assess whether or not 

This article is protected by copyright. All rights reserved.
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there is an advantage to the patient-specific approach compared to previously-used canonical 

models, we also performed simulations with two versions of a canonical FEM. In the first 

canonical FEM, the same SCS array was placed on the dural surface along the spinal cord 

midline to resemble previous canonical models of SCS.16,20,31–33 The second canonical FEM was 

an “impedance-matched” model that, like the patient-specific FEM, included an additional 

domain to represent the electrode encapsulation. 

We assigned electrical conductivities to each domain using experimental data available 

in the literature.12,14,34 For the patient-specific and the impedance-matched FEMs, we adjusted 

the encapsulation layer conductivity until each FEM produced average electrode impedances 

that matched the clinical impedance measurements. We applied 1 V and 0 V boundary 

conditions at the cathode and anode(s), respectively, set the outer tissue boundary of the FEM 

to be perfectly insulating, and solved Laplace’s equation. The corresponding spatially-

dependent FEM voltage solutions were then scaled by the time-dependent output of the IPG to 

determine the spatiotemporal extracellular voltages generated by SCS.35,36 

 

Step 2: Define axon models in the spinal cord 

The next step was to define computer models of spinal cord axons. With regards to 

SCS, studies have shown that the two axon types most likely affected by SCS are the large-

diameter myelinated dorsal root (DR) fibers and Aβ fibers within the dorsal columns (DC).14,37 

Therefore, we included computer models of both DR and DC fibers in our analysis (Fig. 2). We 

used a previously-published compartmental model of a mammalian axon38 to represent these 

axons. For both patient-specific and canonical models, we generated axon populations within 

This article is protected by copyright. All rights reserved.
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the white matter boundaries of the spinal cord that covered a range of diameters (i.e. 5.7-11.5 

µm) to match the axon diameters and densities measured in the DC of the human spinal cord.37 

We also defined DR fibers that had a 3D axon trajectory in which they entered the spinal cord at 

a 45-degree angle.39 We placed DR fibers in 1 mm intervals along the rostrocaudal axis. Near 

the dorsal horn, the DR fiber branched into a daughter fiber that traveled along the rostrocaudal 

axis within the DC. 

 

Step 3: Assess the axonal response to SCS 

 The final step was to assess the axonal response to SCS under each set of conditions in 

our patient-specific and canonical models. We applied the extracellular voltages defined by the 

FEM (Step 1) to the axon models (Step 2) (Fig. 3). We then calculated the activation thresholds 

and a model-predicted ST for each parameter set and compared these model estimates to the 

corresponding clinical ST, CT, and DT. 

Activation threshold. We defined the activation threshold as the minimum pulse 

amplitude required to generate an action potential for each stimulus pulse in a particular axon. 

 Model sensory threshold. To compare our model predictions to our clinical 

measurements, we defined a model ST as the pulse amplitude required to activate ≥10% of the 

DC axons.11  

 Pulse width. We calculated the model ST for each pulse width that we tested clinically: 

60, 210, 300, 450, and 1000 µs. 

This article is protected by copyright. All rights reserved.
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 Stimulation configuration. We calculated the activation thresholds and model ST for each 

stimulation configuration that we tested clinically: bipole, longitudinal guarded cathode, 

transverse guarded cathode, pseudo-monopole. 

 For a complete description of the model development and analysis, see the 

Supplemental Methods. 

 

RESULTS 

Fiber size 

Extracellular electrical stimulation can excite myelinated axons by generating action 

potentials at the nodes of Ranvier. For myelinated axons, the activation threshold is largely 

determined by the spacing between adjacent nodes of Ranvier.40 This inter-nodal spacing 

increases as a function of axon diameter and therefore large diameter fibers have a lower 

threshold than smaller fibers. Previous studies suggest that conventional SCS functions through 

direct activation of large-diameter myelinated axons within the DC.14 Therefore, fiber diameter is 

an important variable to consider because the DC in the human spinal cord consists of axons 

with a wide range of diameters (average axon diameter ~5.0 µm and a maximum diameter of 

16.0 µm at lower thoracic levels).37 Therefore, we calculated the activation thresholds for axon 

populations with a range of axon diameters (i.e. 5.7, 7.3, 8.7, 10.0, and 11.5 µm) and densities 

based on histological data from the human spinal cord (Fig. 4). For these simulations, we used 

a bipolar stimulation configuration, pulse width of 300 µs, and a pulse frequency of 50 Hz. The 

results displayed the expected trend of large-diameter fibers having the lowest activation 

thresholds. 

This article is protected by copyright. All rights reserved.
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In general, both canonical models exhibited significantly lower activation thresholds 

relative to the patient-specific model. According to these canonical models, a significant number 

of small-diameter 5.7 µm axons were activated within the clinically-measured therapeutic range 

and even below the clinically-measured ST (Fig. 4). The patient-specific model predictions were 

more representative of the clinical findings and only predicted activation of these smaller 

diameter fibers at amplitudes above the clinically-measured ST. 

 

Pulse width 

 For extracellular stimulation, increasing the pulse width leads to an exponential decrease 

in axonal activation thresholds.12 Clinical studies have demonstrated that increasing the pulse 

width can increase total paresthesia coverage, pain relief, and comfort.23,32 Therefore, we used 

the patient-specific and canonical models to estimate the ST as a function of pulse width. We 

defined the model-based ST as the minimum amplitude that produced activation of ≥10% of DC 

axons.11 We then compared the model-based ST to the clinically-measured ST (Table 1). Both 

of the models and the clinical data exhibited an exponential decrease in ST with increasing 

pulse width (Fig. 5). The clinical ST was 6.6, 3.3, 2.7, 2.5, and 1.9 V for pulse widths of 60, 210, 

300, 450, and 1000 µs, respectively. The patient-specific model ST was 7.5, 3.1, 2.6, 2.3, and 

2.1 V with a mean absolute percentage error of 8.9% relative to the clinical ST. The canonical 

model ST was 3.9, 1.6, 1.4, 1.3, and 1.2 V with a mean absolute percentage error of 44.9% 

relative to the clinical ST. The impedance-matched canonical model ST was 5.8, 2.4, 2.0, 1.7, 

and 1.6 V with a mean absolute percentage error of 22.0% relative to the clinical ST. 

This article is protected by copyright. All rights reserved.
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We also calculated the minimum amplitudes required to activate DR fibers as a function 

of pulse width. In the patient-specific model, DR fiber activation started at 3.0, 1.4, 1.3, 1.2, and 

1.1 V for pulse widths of 60, 210, 300, 450, and 1000 µs, respectively. In the canonical model, 

DR fiber activation started at 2.0, 1.0, 0.93, 0.85, and 0.85 V. In the impedance-matched 

canonical model, DR fiber activation started at 2.9, 1.4, 1.3, 1.1, and 1.1 V. 

 

Stimulation configuration 

 During SCS programming procedures, an extensive amount of time is dedicated to 

finding the combination of cathodes and anodes, also known as the stimulation configuration, 

that maximizes pain relief and minimizes side effects. Clinicians will select a variety of electrode 

combinations to “steer” the stimulation to generate an optimal pain-paresthesia overlap. 

Therefore, we also considered the effects of changing the stimulation configuration on the 

clinical ST, CT, and DT and on model-predicted activation (Table 1). We tested the following 

stimulation configurations: bipole, longitudinal tripole, transverse tripole, and pseudo-monopole 

(Fig. 6).  For the tested stimulation configurations, the clinical ST was 2.7, 2.2, 3.3, and 2.9 V, 

respectively. The patient-specific model ST was 2.6, 2.0, 2.4, and 3.1 V with a mean absolute 

percentage error of 12.1% relative to the clinical ST. The canonical model ST was 1.4, 1.0, 1.2, 

and 1.7 V with a mean absolute percentage error of 51.1% relative to the clinical ST. The 

impedance-matched canonical model ST was 2.0, 1.5, 1.8, and 2.4 V with a mean absolute 

percentage error of 30.8% relative to the clinical ST. 

We also examined the extent of axonal activation predicted by the patient-specific model 

at the clinical CT and DT. The clinical CT was 4.1, 3.2, 5.0, and 4.3 V. The clinical DT was 5.9, 
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4.8, 6.4, and 5.8 V. At the clinical CT, the patient-specific model predicted extensive axonal 

activation within the DC, but activation of only 3.2, 3.1, 3.4, and 3.6% of axons within the dorsal 

lateral funiculi. At the clinical DT, the patient-specific model predicted considerable activation in 

the dorsal lateral funiculi of 10.6, 11.8, 7.2, and 11.1% of axons. 

Furthermore, we calculated the minimum amplitudes required to activate DR fibers for 

each stimulation configuration. In the patient-specific model, DR fiber activation started at 1.3, 

1.0, 1.3, and 1.2 V for each stimulation configuration. In the canonical model, DR fiber activation 

started at 0.93, 0.73, 0.93, and 0.95 V. In the impedance-matched canonical model, DR fiber 

activation started at 1.3, 1.0, 1.3, and 1.2 V. 

 

DISCUSSION 

 The fundamental goal of this study was to develop a computer model that accounted for 

3D patient-specific anatomy and electrode locations to investigate the direct neuromodulatory 

effects of SCS. To examine the significance of this patient-specific approach, we performed 

identical simulations with a standard canonical model of SCS. Our results demonstrated 

considerable differences in axonal activation predicted with the patient-specific model relative to 

two canonical models. The canonical models predicted markedly lower thresholds for axonal 

activation (Figs. 4-6). The patient-specific model produced estimates of ST that were closer to 

the clinical ST measurements (Figs. 5-6). These results suggest that it is beneficial to consider 

sources of interpatient variability (e.g. anatomy and electrode locations) in computational 

analysis of SCS. 

This article is protected by copyright. All rights reserved.
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 We also considered the axonal activation predicted at clinical CT and DT. At CT, the 

patient-specific model predicted extensive activation of DC axons for several different 

stimulation configurations with little dorsolateral activation. However, at DT, the patient-specific 

model predicted that activation had spread to the dorsal lateral funiculi. Therefore, axons in the 

dorsal root entry zone and Lissauer’s tract, dorsal spinocerebellar tract, and lateral corticospinal 

tract may be activated at these stimulation amplitudes, contributing to patient discomfort. 

 The goal of this type of computational approach is to characterize the direct effects of 

SCS on different axonal pathways in the spinal cord. Canonical models based on averaged 

experimental and clinical measurements will continue to be an invaluable tool to improve our 

scientific understanding of SCS for pain and to improve lead design, stimulation configuration, 

and waveform parameters.9,10,12 However, the results of our study suggest that, under various 

conditions (e.g. patient anatomy, lead placement), patient-specific models may produce 

predictions of axonal activation within the spinal cord that are more consistent with clinical 

observations from individual patients. This study also suggests that patient-specific models 

capture the details necessary to quantitatively describe the axonal response to SCS. Therefore, 

these patient-specific models could help address scientific questions, such as therapeutic 

mechanisms of action, related to clinical SCS. 

 To better understand the mechanisms of action of SCS, it is critical that future research 

move towards patient-specific approaches to perform systematic studies of SCS in human 

subjects. One potential approach would be to couple patient-specific computational models with 

standard clinical outcome measures as well as objective measurements characterizing the 

physiological effects of SCS (e.g. quantitative sensory testing, functional neuroimaging).4 This 
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approach would help explain potential differences in the physiological effects of various SCS 

paradigms (e.g. tonic, burst, and kilohertz-frequency SCS). By accounting for additional sources 

of interpatient variability, patient-specific models would further highlight the potential advantages 

and disadvantages of various lead designs, lead placements, and stimulation configurations. 

These patient-specific models could also be used to investigate changes in neural activity 

associated with spinal cord movement (e.g. due to body position, respiration, cough) that are 

being considered in a novel closed-loop SCS system.41,42 We believe that this type of patient-

specific approach will further elucidate the physiological and technical factors relevant to SCS to 

improve implementation of current systems as well as innovate novel technologies to 

significantly improve the clinical outcomes associated with SCS. 

Although the results of this study exhibited excellent agreement between the patient-

specific model and clinical measurements, this study had several limitations. This study was a 

proof-of-concept study performed in a single patient. The true validity and utility of this type of 

approach needs to be validated by extending this approach to multiple patients and testing a 

wider range of waveform parameters and stimulation configurations. To help make this patient-

specific approach feasible, a cohort study would account for multiple sources of interpatient 

variability and allow for a parameter sensitivity analysis to determine the minimal model 

complexity necessary to produce accurate model-based predictions. We also assumed that 

model-based ST corresponded to activation of ≥10% of the DC axons. While this approach has 

been used in previous SCS modeling studies,11,15 other modeling studies have suggested that 

ST corresponds to the activation of only a single large-diameter DC fiber.14 Therefore, in future 

studies, it will be critical to examine what degree of model-based activation best correlates with 
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clinical measurements in a large cohort. Furthermore, we only performed clinical measurements 

for acute SCS and did not correlate model predictions of axonal activation with clinical outcomes 

(i.e. pain relief over time). We also tested several sets of stimulation parameters within a single 

research visit; therefore, it is possible that carryover effects could have influenced the 

thresholds for individual sets of stimulation parameters. Due to the limited resolution of the 

clinical MRI scan, we were unable to define patient-specific gray- and white-matter boundaries 

in the spinal cord and we had to define these boundaries from a cadaver sample43 that was 

scaled to match the outer dimensions of the patient’s spinal cord. However, it is possible that 

future improvements in diffusion tensor imaging and fiber tractography could help address this 

limitation. Another potential limitation was that our axon distributions were based on a study that 

only considered the superficial (~300 µm) aspect of the DC. Other white matter areas may have 

different fiber size distributions and therefore different activation thresholds. However, previous 

studies have shown that the large-diameter myelinated axons in the superficial DC have the 

lowest thresholds to SCS.13,14,16 In our models, we represented the electrical properties of the 

tissue as purely resistive. The capacitive properties of biological tissues could affect the 

spatiotemporal voltages generated during SCS and the corresponding neural response, 

especially at higher stimulation frequencies. However, previous studies suggest that tissue 

capacitance has a negligible filtering effect with conventional SCS parameters, especially during 

voltage-controlled stimulation.44–46 

One of the main limitations was estimating DR fiber activation. DR fiber activation can 

generate uncomfortable paresthesias and/or activation of motor reflex nerves before sufficient 

activation of DC fibers. One goal of SCS modeling is to guide the selection of stimulation 
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configurations and waveform parameters that selectively activate DC fibers over DR fibers. In 

our models, DR fiber activation occurred at amplitudes below the clinical ST. DR thresholds 

were lowest for fibers that entered the spinal cord near the cathode and the thresholds rapidly 

increased for fibers a few millimeters above or below the cathode (data not shown). For the 

bipole configuration, there was also a decrease in activation threshold for DR fibers entering the 

spinal cord near the anode. We believe that the low thresholds for DR fiber activation were 

partly attributed to the FEM design. To reduce computational demands, the anatomy of the 

rootlets is typically not represented in the FEM mesh (Figs. 1 and 3).14 However, the rootlets 

have a lower electrical conductivity relative to the surrounding CSF. Therefore, our model, along 

with the models used in several other studies, may overestimate the excitability of DR fibers for 

a given fiber size. Future studies should consider explicitly representing the spinal cord rootlets 

within the FEM.47 With regards to neural activation at DT, future studies should also consider 

the range of diameters, number of fibers, as well as functional groups (e.g. proprioceptive, 

touch) of DR fibers that are activated at stimulation settings that produce unwanted side effects.  

To improve the accuracy of the model-based estimations of the voltage distributions 

generated in the spinal cord, we developed a circuit model of the output of the clinical 

neurostimulator utilized in this study that we coupled to each FEM (see Supplemental 

Methods).36 We used this approach to account for differences in the tissue voltages generated 

by standard clinical neurostimulators as a function of pulse width and pulse frequency. In the 

patient-specific and impedance-matched canonical models, we adjusted the electrical 

conductivity of the encapsulation layer domain so that the model impedances matched the 

average impedances measured by the clinical programming device. In this study, matching the 
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model impedance to the clinical impedance was important because the relevant commercial 

SCS system utilized voltage-controlled stimulation. Electrode impedance variability can produce 

large differences in the tissue voltages generated during voltage-controlled stimulation.48 In this 

study, we only considered a single encapsulation layer domain that would not be able to 

account for potential electrical heterogeneities in the tissue surrounding individual electrodes. In 

a previous SCS modeling study, these potential heterogeneities were shown to affect the 3D 

voltage distributions and corresponding activation within the spinal cord.29 While our current 

methodology only permitted us to account for the average electrode impedance, it would be 

possible to include local encapsulation layer domains at and around each individual electrode.29 

This approach would provide a means to consider electrical heterogeneities and to adjust the 

model parameters so that each model impedance matched the corresponding clinical 

impedance for each individual electrode. It should also be noted that while the commercial SCS 

system considered in this study utilized voltage-controlled stimulation, many SCS systems 

utilize current-controlled stimulation that would reduce the potential effects of the electrode 

encapsulation and heterogeneities on the corresponding voltage distributions generated within 

the spinal cord.48–50 

 

CONCLUSION 

In this study, we implemented a patient-specific computer modeling approach of SCS. 

By accounting for patient-specific anatomy, electrode locations, and impedances, theoretical 

estimates of SCS-induced neuromodulation closely matched the corresponding clinical 

measurements with far greater accuracy than predictions from a standard canonical model. 
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These results suggest that patient-specific models can provide quantitative descriptions of the 

neural response to SCS and serve as a tool to address scientific questions related to clinical 

SCS as well as inform the development of tools that may guide SCS implantation and 

programming. 

 

SUPPORTING INFORMATION 

Supplemental Methods. The supplemental methods provides additional details with 

regards to the clinical testing procedures, imaging parameters and segmentation, FEM 

development and solutions, time-dependent stimulator output, axon models, and overall 

simulation procedures. 
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Figure Legends 

Figure 1. Patient-specific finite element model (FEM). a. We used preoperative MRI scans to 

define the participant’s anatomy (e.g. spinal cord, cerebrospinal fluid (CSF), spine) and a 

postoperative X-ray computed tomography (CT) scan to define the 3D electrode locations. b. 

We coregistered the 3D objects segmented from the preoperative and postoperative images to 

define a patient-specific FEM. The figure on the top right shows outlines of the 3D FEM objects 

in the preoperative MRI. The figure on the bottom right shows the voltages generated on the 

surface of the spinal cord for a -1 V bipolar stimulus (Note: In this figure, the electrode array and 

spinal cord are not drawn on the same scale). 

 

Figure 2. Axon models. a. In our analysis, we included multi-compartment cable models of 

myelinated axons38 running through the white matter of the spinal cord. We also included dorsal 

root (DR) fibers that consisted of a mother fiber and a bifurcated daughter fiber running along 

the dorsal columns. b. We generated axon populations that covered a range of diameters (i.e. 

5.7-11.5 µm) to match the axon diameters and densities measured in the human spinal cord.37 

For computational simplicity, we only used 1% of the true anatomical densities. (Note: In this 

figure, the axon diameters are not drawn to scale). 

 

Figure 3. Axonal response to spinal cord stimulation (SCS). a. Axial and sagittal views of 

isopotential lines of the extracellular voltages generated by SCS. The voltage distributions were 

calculated from the patient-specific finite element model. b. To estimate the direct axonal 

response to SCS, we interpolated the SCS-induced extracellular voltages onto the axon models. 
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With sufficient depolarization, action potentials were initiated in an axon and propagated in both 

orthodromic and antidromic directions. The figure shows the time-dependent transmembrane 

voltages at several nodes in a dorsal column (DC) axon and illustrates action potential 

generation with a 50 Hz SCS waveform. 

 

Figure 4. SCS activation thresholds as a function of axon diameter. a. Thresholds for individual 

axons within the dorsal columns (DC) as a function of axon diameter. We performed simulations 

for the patient-specific and both canonical models. The clinical sensory threshold (ST) and 

discomfort threshold (DT) are indicated by the black horizontal lines. b. Model axons activated 

at the clinical ST as a function of axon diameter. The top, middle, and bottom rows show axial 

cross sections of the spinal cord for the patient-specific, canonical, and impedance-matched 

canonical models, respectively. Activated axons are shown in red, green, and blue for the 

patient-specific, canonical, and impedance-matched canonical models, respectively. We 

calculated thresholds for a bipolar stimulation with a pulse width of 300 μs and a pulse 

frequency of 50 Hz. 

 

Figure 5. Sensory threshold (ST) as a function of pulse width. We measured the clinical ST as a 

function of pulse width. We also estimated the model ST (i.e. minimum pulse amplitude to 

activate ≥10% of the dorsal column axons) for the patient-specific and both canonical models. 

We calculated the ST for bipolar stimulation with a pulse frequency of 50 Hz. 
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Figure 6. Sensory threshold (ST) for various stimulation configurations. We measured the 

clinical ST and calculated the model ST (i.e. minimum pulse amplitude to activate ≥10% of the 

dorsal column axons) for the patient-specific and both canonical models. We determined the ST 

for the following stimulation configurations: bipole (1st column), longitudinal guarded cathode 

(2nd column), transverse guarded cathode (3rd column), and pseudo-monopole (4th column). We 

determined the ST for a pulse width of 300 μs and a pulse frequency of 50 Hz. 
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SUPPLEMENTAL METHODS 

Clinical testing 

At the time of the research visit, the participant was using four stimulation programs to 

help manage his chronic pain. We asked the participant which individual program provided the 

most significant pain relief. This program utilized contact 7 (C7) as the cathode (Fig. S1). 

Therefore, we used C7 as the cathode in our study. 

We measured the sensory threshold, comfort threshold, and discomfort threshold for 

several sets of stimulation parameters. We varied the pulse width and the stimulation 

configuration. For each set of stimulation parameters, we used a pulse frequency of 50 Hz. 

When varying the pulse width, we used C7 as the cathode and C8 as the anode. When varying 

the stimulation configuration, we used a pulse width of 300 µs and tested the following 

stimulation configurations ((-) = cathode; (+) = anode): bipole = C7(-),C8(+); longitudinal 

guarded cathode = C6(+),C7(-),C8(+); transverse guarded cathode = C1(+),C2(+),C7(-

),C12(+),C13(+); and pseudo-monopole = C7(-),C10(+) (Fig. S1). We used the hand-held 

N’Vision Clinician Programmer Model 8840 (Medtronic, Inc., Minneapolis, MN, USA) to adjust 

the stimulation parameters. All stimulation parameters were tested in a randomized order. 

Because the participant’s commercial SCS system utilized voltage-controlled stimulation, 

it was important to consider the effects of electrode impedance on stimulation thresholds. 

Therefore, we measured the bipolar electrode impedances relative to C0 for each of the 

remaining 15 electrodes at the end of the research testing using the built-in functionality of the 

implantable (IPG) and the N’Vision Clinician Programmer. 
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Figure S1. Individual electrode numbers for the SCS array (e.g. C0 = contact 0). 

 

Imaging parameters 

Magnetic resonance imaging (MRI) parameters. We used preoperative MRI scans 

without contrast of the thoracic spine to define the patient-specific anatomy. These images were 

obtained as part of the participant’s standard clinical care for SCS. These scans consisted of 

T2-weighted images in the sagittal and axial orientations as well as T1-weighted images with a 

sagittal orientation. The sagittal T2-weighted images were obtained with the following imaging 

parameters: scanning sequence = spin echo, magnetic field = 1.5 T, pixel spacing = 0.725 mm, 

field of view = 325 mm, number of slices = 17, slice increment = 3.60 mm, slice thickness = 3.00 

mm. The axial T2-weighted images were obtained with the following imaging parameters: 
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scanning sequence = gradient echo, magnetic field = 1.5 T, pixel spacing = 0.391 mm, field of 

view = 200 mm, number of slices = 42, slice increment = 5.20 mm, slice thickness = 4.00 mm. 

The sagittal T1-weighted images were obtained with the following imaging parameters: 

scanning sequence = spin echo, magnetic field = 1.5 T, pixel spacing = 0.725 mm, field of view 

= 325 mm, number of slices = 19, slice increment = 3.30 mm, slice thickness = 3.00 mm. 

 Computed tomography (CT) parameters. We used a modified research CT protocol to 

image the lower thoracic spine and the implanted SCS electrodes. The CT scan was obtained 

with the following acquisition parameters: peak voltage = 120 kV, X-ray tube current = 135 mA, 

collimation = 0.6 mm, field of view = 164 mm, pixel size = 0.320 mm. The CT scans had the 

following reconstruction parameters: kernel value = B40s, extended CT scale, axial slice 

thickness = 0.75 mm (number of slices = 302) and 2.00 mm (number of slices = 114). 

 

Image segmentation 

We used preoperative MRI images to segment relevant components of the participant’s 

anatomy. We used a combination of T1-weighted and T2-weighted images to segment the 

participant’s spinal cord, cerebrospinal fluid (CSF), epidural fat, and spine. We used the 

postoperative CT scan to determine the location of the individual SCS electrodes and segment 

the participant’s spine. All image segmentations were manually performed and converted to 3D 

surface objects in the Mimics Innovation Suite (Materialise, Leuven, Belgium).  

To coregister the 3D objects from the preoperative MRI data and the postoperative CT 

data, we first imported the 3D objects into the 3-matic module within the Mimics Innovation 

Suite. We performed this coregistration process in two steps using the spine segmentations 

from both the MRI and CT datasets. The first step was to use the ‘N points registration’ function 

in 3-matic to coregister the spine by manually selecting matching anatomical landmarks on the 

preoperative and postoperative spines (e.g. points near the midline at the top and bottom of the 

vertebral bodies, dorsal ends of the vertebral processes). This step moved the 3D spine object 
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segmented from the postoperative CT image along with the electrode segmentations to the 

same coordinate system as the preoperative MRI. In the second step, we refined this 

coregistration with the ‘Global registration’ function in 3-matic. 

 

Patient-specific finite element model 

In the 3-matic module, we then used the coregistered 3D surface objects of the patient-

specific anatomy and electrode locations to define a patient-specific finite element model (FEM) 

(Fig. S2a). To define the spinal cord, we determined the boundaries between the gray and white 

matter from a human cadaver sample of the lower thoracic spinal cord.1 We then scaled the 

anteroposterior and mediolateral dimensions of this spinal cord cross section to match the 

average measurements of the participant’s spinal cord anatomy at the T9 spinal level (i.e. 

anteroposterior = 7 mm and mediolateral = 9 mm). To create a 3D spinal cord containing gray 

and white matter domains, we then swept this 2D spinal cord cross section along the trajectory 

of the participant’s spinal cord as determined by the preoperative MRI. We used the CSF 

surface segmentation to define the CSF space and a dural sac with a thickness of 300 µm.2 

Based on average measurements of the dorsal epidural space at the T8-T9 spinal levels in the 

preoperative MRI, we defined the epidural space as a 2 mm thick layer surrounding the dural 

sac. We defined the spine as a simple 4 mm thick layer surrounding the epidural space. We 

defined an additional general thorax layer as a cylinder with a 100 mm diameter that followed 

the approximate trajectory of the dural sac. 

To define the lead array within the FEM, we first generated a 3D object to match the 

geometry of the Medtronic Model 39565 SpecifyTM 5-6-5 Surgical Lead array (Medtronic, Inc.). 

The lead body had a transverse width (mediolateral) of 10 mm, rostrocaudal length of 

approximately 64 mm, and thickness of 2 mm. The individual electrodes had a length of 4 mm 

and a width of 1.5 mm (geometric surface area of 6 mm2). The individual electrodes had 

longitudinal and lateral (center-to-center) spacings of 9 mm and 3 mm, respectively. We then 
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coregistered this lead array to the patient-specific electrode locations (i.e. centroid of the leads 

from the CT artifact) using the ‘N-points registration’ and ‘Global registration’ functions in 3-

matic. 

We then used the ‘Create volume mesh’ function in 3-matic to convert the 3D surface 

objects into a 3D FEM. We included a high-node-density ROI that was 80 mm in length and was 

centered around C7. For the extracellular voltage calculations, we assumed the lead body was 

a perfect insulator and removed the lead volume from the FEM. The finalized FEM consisted of 

more than 33 million first-order tetrahedral elements. 

 

Canonical finite element models 

To determine the potential significance of accounting for patient-specific anatomy and 

electrode locations, we also performed model simulations with two versions of a canonical FEM 

(Fig. S2b). This canonical FEM had an idealized spinal cord anatomy and an idealized lead 

placement at the spinal cord midline. Idealized canonical FEMs have been used extensively in 

the literature to investigate potential mechanisms of action of SCS and other technical issues 

related to the direct neuromodulatory effects of SCS (e.g. stimulation configuration, lead design, 

pulse width).2–4  

This canonical FEM consisted of the gray and white matter of the spinal cord, CSF, dura, 

epidural fat, vertebral bone, and a surrounding general thorax layer. The dimensions of the 

spinal cord and the white and gray matter boundaries were defined by human cadaver samples 

of the lower thoracic spinal cord with anteroposterior and mediolateral dimensions of 5 and 7.4 

mm, respectively.1 The FEM also contained an explicit representation of a Medtronic Model 

39565 SpecifyTM 5-6-5 Surgical Lead array implanted in the epidural fat dorsal to the spinal 

cord. The dorsal CSF layer had a thickness of 3.2 mm, a value within the range clinically 

observed at the lower thoracic levels.5 In the first version of the canonical FEM, the lead array 

was placed directly on the dorsal surface of the dura along the spinal cord midline. In the 
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second version of the canonical FEM, we developed an “impedance-matched” canonical model 

by adding a 300 µm thick encapsulation layer domain around the lead body.  

The model geometry was defined and meshed in 3-matic. We specified higher mesh 

densities near the electrode array as well as within a 70 mm long region of interest surrounding 

the electrode array. The total model length was 201 mm with a diameter of 70 mm. The FEM 

consisted of more than 2.6 million first-order tetrahedral elements. 

 

 

Figure S2. Volume conductor models. Sagittal (left) and axial (right) views of the finite element 

model (FEM) designs for the (a) patient-specific and (b) canonical models. 

 

Extracellular voltage calculations 

To calculate the voltage distributions generated by SCS, we exported the patient-specific 

and canonical volume meshes generated in 3-matic and imported them into the finite element 

analysis software package, COMSOL Multiphysics (COMSOL, Inc., Burlington, MA). Within 

COMSOL, we assigned the appropriate electrical conductivities to each domain based on 

experimental data available in the literature (Table S1).3,4,6 

This article is protected by copyright. All rights reserved.



 7 

To account for the patient-specific electrode impedances and to represent the electrode 

encapsulation that occurs with chronic SCS implants,7 we included a 300 µm thick 

encapsulation layer domain around the lead body in the patient-specific model and the 

impedance-matched canonical model. During the research testing, we used the built-in 

functionality of the IPG to measure the bipolar electrode impedances relative to C0. At the end 

of the research visit, the electrodes had an average bipolar impedance of 695±34.7 Ω. We used 

bench testing to determine that this total electrode impedance corresponded to a tissue 

impedance of 530 Ω.8,9 In both the patient-specific and the impedance-matched canonical 

FEMs, we applied the appropriate boundary conditions to each FEM (i.e. 0 V at C0 and 1 V at 

the individual contact) to simulate the 15 pairs of bipolar electrode impedances and solved each 

FEM for each pair. We calculated the tissue impedance for each bipolar combination by 

integrating the total current generated in the FEM for a 1 V stimulus (i.e. ZFEM = 1 V / IFEM). We 

then averaged the 15 model impedances to calculate the corresponding average FEM tissue 

impedance. In both the patient-specific and the impedance-matched canonical FEMs, we 

adjusted the conductivity of the encapsulation layer domain until each FEM produced an 

average impedance of approximately 530 Ω. We determined that encapsulation layer 

conductivities of 0.46 and 0.49 S/m produced average FEM tissue impedances of 533 and 531 

Ω for the patient-specific and impedance-matched canonical models, respectively (Table S1).  

To calculate the extracellular voltages generated during SCS, we applied boundary 

conditions of 1 V and 0 V at the cathode (C7) and anode(s), respectively, and set the outer 

tissue boundary to be perfectly insulating. We then solved Laplace’s equation to calculate the 

voltage distributions generated in the tissue for a given stimulation configuration. We calculated 

the electrostatic FEM solutions for these unit voltages with an iterative equation solver using the 

conjugate-gradient method. We refined the mesh density until further increasing the mesh 

density produced a maximum ≤ 4% differences in the activation thresholds calculated for the 

neural elements considered in this study. The corresponding spatially-dependent FEM voltage 
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solutions were then scaled by the time-dependent output of the IPG (see below) to determine 

the spatiotemporal extracellular voltages. 

 

Table S1. Electrical conductivities used in the finite element models 

Tissue Conductivity (S/m) 

White matter (longitudinal) 0.600 

White matter (transverse) 0.083 

Gray matter 0.230 

Cerebrospinal fluid 1.700 

Dura 0.600 

Encapsulation layer (patient-specific model) 0.460 

Encapsulation layer (impedance-matched canonical model) 0.490 

Epidural fat 0.040 

Vertebral bone 0.020 

General thorax 0.250 

 

 

Time-dependent stimulator output 

 To incorporate accurate time-dependent descriptions of the IPG output, we developed a 

circuit model to closely mimic the components of the clinical SCS system and the IPG (Fig. 

S3).8,9 We represented the electrode-tissue interface (ETI) of the stimulating electrodes via a 3.3 

μF capacitor (Celec) based on the surface area of each electrode.10 We also incorporated 10 μF 

blocking capacitors (Cblock) at each output of the RestoreSensorTM IPG,11 a 15 Ω resistance 

representing the lead extension (Rext) that connects the IPG to the lead wire, and a 27 Ω 

resistance representing the lead wire (Rlead). The resistance of the lead extension and the lead 

wire were average resistance values directly measured from an extension model 7483 and a 
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Model 39565 SpecifyTM 5-6-5 Surgical Lead (Medtronic, Inc.), respectively. We specified Rtissue 

to achieve the desired tissue impedance determined from the FEM. For example, for a 

stimulation configuration of C7(-) and C8(+), the patient-specific FEM had a tissue impedance of 

503 Ω. Therefore, we defined Rtissue as 503 Ω to estimate the time-dependent Vtissue waveform 

for a bipolar stimulation configuration of C7(-) and C8(+). For stimulation configurations with 

multiple anodes, we added additional branches to the bottom of the circuit shown in Fig. S3 

using the same values for Celec, Rlead, Rext, and Cblock. This method assumed that the voltage 

stimulus resulted in equal currents through each anodic branch. We repeated this process for all 

stimulation configurations that we considered in this study. The IPG model also included two 

switches, one switch to apply the cathodic stimulus pulse and the second switch to allow for 

passive discharging.  

To accurately reproduce the IPG output, it was important to understand the output 

modes of the IPG. During the cathodic stimulus pulse, the IPG applied the selected pulse 

amplitude across the entire IPG circuit. At the end of the cathodic pulse, the circuit was placed 

in a “high-impedance” state that mimicked an open circuit for 80 μs to allow for more efficient 

neural excitation.12 At the end of this 80 μs interphase interval, residual charge in the IPG circuit 

was allowed to passively discharge. This passive discharge phase allowed for charge 

accumulated across the ETI capacitance and blocking capacitors to discharge. The duration of 

this passive discharge phase was dependent on the pulse frequency and pulse width and was 

19.6 ms for a pulse frequency of 50 Hz and a pulse width of 300 μs. At the end of the passive 

discharge phase, the IPG was placed in a “high-impedance” state until the start of the next 

cathodic stimulus pulse. 

To calculate the time-dependent tissue voltage (Vtissue), we first defined the desired Vstim 

waveform in the time domain using the desired pulse width, pulse frequency of 50 Hz, pulse 

amplitude of 1 V, and a sampling frequency of 500 kHz. We then accounted for the filtering 

effects of the circuit in the frequency domain using the appropriate transfer function to estimate 
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the circuit output, Vtissue. We then inversed transformed the output to obtain the time-dependent 

Vtissue waveform. We calculated the corresponding time-dependent Vtissue for each circuit design 

and set of stimulation parameters (Fig. S3). Vtissue represented the input to our 3D FEM analysis. 

 

 

Figure S3. Circuit model to describe the time-dependent output of the SCS IPG. a. The IPG 

circuit model included the blocking capacitors on the IPG outputs (Cblock), resistance of the SCS 

extension wires (Rext), resistance of the SCS lead wires (Rlead), and the capacitance of the 

electrode-tissue interface (Celec). This model also included two switches. The top-left switch 

closed to apply the cathodic pulse while the lower-right switch closed to allow for passive 

discharging. b. Computer simulation of the time-dependent tissue voltage (Vtissue) using the 

following stimulation parameters: pulse amplitude (i.e. Vstim) = 1 V, pulse width = 300 µs, and 

pulse frequency = 50 Hz. 

 

Axon models 
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We represented the spinal cord and dorsal root (DR) fibers with a previously published 

compartmental model of a mammalian motor axon.13 This model reproduces experimental data 

by accurately representing the ion channels at the nodes of Ranvier as well as matching the 

geometry of the paranode, internode, and myelin to measured morphology. This model 

incorporates a double-layer cable model that accounts for the finite impedance of the myelin 

sheath. The nodes of Ranvier contain fast Na+, persistent Na+, and slow K+ nonlinear 

conductances as well as the linear leakage conductance and the membrane capacitance. 

We generated populations of spinal cord axons that mimicked the range of axon 

diameters and densities measured within the human spinal cord. We calculated the relative 

densities of each axon diameter from histograms of myelinated axon populations within the 

superficial dorsal column of the human spinal cord.14 We first divided the histograms into the 

discrete axon diameters that were available for the given axon model (i.e. 5.7, 7.3, 8.7, 10.0, 

11.5, 12.8, 14.0, 15.0, 16.0 µm).13 Second, we normalized the histogram to determine the 

percentage of axons within each specified diameter range. Third, to calculate the density of 

axons for a given diameter, we multiplied the percentage of axons by the total density of axons 

per area (i.e. 22.92 axons/1000 µm2).14 Finally, to determine the total number of axons for a 

given diameter, we then multiplied the individual axon density by the total cross section area of 

the white matter areas within the spinal cord. We repeated these steps for each axon diameter. 

For computational simplicity, we only used 1% of the true anatomical densities. In our analyses, 

we did not include axon diameters < 5.7 µm because they were unlikely to be excited by SCS4 

or axon diameters > 11.5 µm due to their relatively low density within the spinal cord.14 We used 

Lloyd’s algorithm with 10,000 iterations to uniformly distribute each axon population within the 

white matter of the spinal cord.15 

For the patient-specific model, spinal cord axons with a diameter of 5.7, 7.3, 8.7, 10.0, 

and 11.5 μm had a length of 199, 199, 199, 199, and 199 mm and 399, 266, 200, 174, and 160 
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nodes of Ranvier, respectively. The patient-specific model had 1882, 1232, 468, 142, and 37 

axons for diameters of 5.7, 7.3, 8.7, 10.0, and 11.5 μm, respectively, corresponding to a total of 

3761 axons (1427 axons within the dorsal columns (DC)). For both versions of the canonical 

model, spinal cord axons with a diameter of 5.7, 7.3, 8.7, 10.0, and 11.5 μm had a length of 

160, 160, 159, 160, and 159 mm and 320, 214, 160, 140, and 128 nodes of Ranvier, 

respectively.  The canonical models had 1167, 761, 285, 86, and 22 axons for diameters of 5.7, 

7.3, 8.7, 10.0, and 11.5 μm, respectively, corresponding to a total of 2321 axons (783 axons 

within the DC). For the patient-specific model, the mother DR fiber had a diameter of 8.7 μm 

and a length of 56 mm with 56 nodes of Ranvier. The daughter DC fiber had a diameter of 7.3 

μm and a length of 198 mm with 265 nodes of Ranvier. For both versions of the canonical 

model, the mother DR fiber had a diameter of 8.7 μm and a length of 44 mm with 44 nodes of 

Ranvier. The daughter DC fiber had a diameter of 7.3 μm and a length of 160 mm with 214 

nodes of Ranvier. The patient-specific and canonical models included 102 DR fibers. 

Simulations were performed with the software package, NEURON, within the Python 

programming environment.16 Model solutions were calculated using backward Euler implicit 

integration with a time step of 0.002 ms. 

 

Simulation procedures 

To assess the direct axonal response to SCS, we ported the spatiotemporal 3D voltage 

distributions calculated in the FEM and the IPG circuit model to the Python programming 

environment and directly applied the voltage distributions to the axon models of the DC and DR 

fibers. Because the bulk conductivity was linear, the voltage distributions generated by the 

different stimulation waveforms were scaled versions of the original FEM solutions with a unit 

voltage. We interpolated the scaled voltage distributions onto the model axons described above 

using the extracellular mechanism within NEURON. We determined the activation thresholds for 

each axon using a bisection algorithm (error < 0.1 V). 
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Table 1. Clinical and model-based sensory thresholds. 
 

  Clinical ST 
Patient-
specific 

model ST 
Canonical 
model ST 

Impedance-
matched 

canonical ST 

Pulse width 

60 6.6 7.5 3.9 5.8 

210 3.3 3.1 1.6 2.4 

300 2.7 2.6 1.4 2.0 

450 2.5 2.3 1.3 1.7 

1000 1.9 2.1 1.2 1.6 

 MAPE  8.9% 44.9% 22.0% 
      

Stimulation 
configuration 

Bipole 2.7 2.6 1.4 2.0 

Longitudinal 
tripole 2.2 2.0 1.0 1.5 

Transverse 
tripole 3.3 2.4 1.2 1.8 

Pseudo-
monopole 2.9 3.1 1.7 2.4 

 MAPE  12.1% 51.1% 30.8% 
 
ST = sensory threshold; MAPE = mean absolute percentage error. 
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