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We propose the first learning algorithm for single-product, periodic-review, backlogging inventory systems

with random production capacity. Different than the existing literature on this class of problems, we assume

that the firm has neither prior information about the demand distribution nor the capacity distribution,

and only has access to past demand and supply realizations. The supply realizations are censored capacity

realizations in periods where the policy need not produce full capacity to reach its target inventory levels.

If both the demand and capacity distributions were known at the beginning of the planning horizon, the

well-known target interval policies would be optimal, and the corresponding optimal cost is referred to as

the clairvoyant optimal cost. When such distributional information is not available a priori to the firm, we

propose a cyclic stochastic gradient descent type of algorithm whose running average cost asymptotically

converges to the clairvoyant optimal cost. We prove that the rate of convergence guarantee of our algorithm

is O(1/
√

T ), which is provably tight for this class of problems. We also conduct numerical experiments to

demonstrate the effectiveness of our proposed algorithms.
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1. Introduction

Capacity plays an important role in a production–inventory system (see Zipkin (2000) and Simchi-

Levi et al. (2014)). The amount of capacity and the variability associated with this capacity affect

the production plan as well as the amount of inventory that the firm will carry. As seen from our

literature review in §1.2, there has been a rich and growing literature on capacitated production–

inventory systems, and this literature has demonstrated that capacitated systems are inherently

more difficult to analyze compared to their uncapacitated counterparts, due to the fact that the

capacity constraint makes future costs heavily dependent on the current decision. For instance,
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facing a capacity constraint, a mistake of under-ordering in one particular period may cause the

system to be unable to produce up to the inventory target level over the next multiple periods.

The prior literature on capacitated inventory systems assumes that the stochastic future demand

that the firm will face and the stochastic future capacity that the firm will have access to are given

by exogenous random variables (or random processes), and the inventory decisions are made with

full knowledge of future demand and capacity distributions. However, in most practical settings, the

firm does not know the demand distribution a priori, and has to deduce the demand distribution

based on the observed demand while it is producing and selling the product. Similarly, when the

firm starts producing a new product on a manufacturing line, the firm may have very little idea

of the variability associated with this capacity a priori. The uncertainty of capacity can be much

more significant than the uncertainty in demand in some cases. For instance, Tesla originally stated

that it had a line that would be able to build Model 3s at the rate of 5000 per week by the end of

June 2017. However, Tesla was never able to reach this production rate at any time in 2017. In fact,

during the entire fourth quarter of 2017, Tesla was only able to produce 2425 Model 3s according

to Sparks (2018). Tesla was finally able to achieve the rate of 5000 produced cars the last week of

the second quarter of 2018. However, even at the end of August 2018, Tesla was not able to achieve

anywhere near an average 5000 Model 3s production rate per week. Even if we ignore ramp-up

issues and assume that Tesla has finally (after one year’s delay) achieved “stability”, according to

Bloomberg’s estimate as of September 10, 2018, Tesla was only producing an average of 3857 Model

3s per week in September according to Randall and Halford (2018). Even though Tesla may have

had more problems than the average manufacturer, significant uncertainty over what production

rate can be achieved at a factory is not at all uncommon. In fact, some analysts have questioned

whether this line will ever be able to achieve a consistent production rate of 5000 Model 3s per

week displaying the difficulty of estimating the true capacity of a production line.

Another salient example is Apple’s launches of its iPhone over time. When the iPhone 6 was

being introduced, there were a large number of articles (see, e.g., Brownlee (2014)) indicating that

the radical redesign of Apple’s smartphone would lead to a short supply of enough devices when

it launched due to the increasing difficulty of producing the phone with the new design. In this

case, Apple was producing the iPhone already for about seven years. However, the new generation

product was significantly different so that the estimates that Apple had built of its lines’ production

rates based on the old products were no longer valid. Similarly, as Apple was about to launch its

latest iPhone in October 2018, there were numerous reports about potential capacity problems.

Sohail (2018) discussed how supply might be constrained at launch due to capacity problems.

However, a month and a half after launch, Apple found that sales of its XS and XR models were
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less than predicted and had to resort to increasing what it offers for trade-in of previous generation

iPhone models as an incentive to boost sales. Thus, even in year 11 of production of its product,

Apple still has to deal with capacity and demand uncertainty and with each new generation, it has

to rediscover its capacity and demand distributions. This is what has motivated us to develop a

learning algorithm that helps the firm decide on how many units to produce, while it is learning

about its demand and capacity distributions.

1.1. Main Results, Contributions, and Connections to Prior Work

We develop the first learning algorithm, called the data-driven random capacity algorithm (DRC for

short), for finding the optimal policy in a periodic-review production–inventory system with random

capacities, where the firm neither knows the demand distribution nor the capacity distribution

a priori. Note that our learning algorithm is nonparametric in the sense that we do not assume

any parametric forms of these distributions. The performance measure is the standard notion of

regret in online learning algorithms (see Shalev-Shwartz (2012)), which is defined as the difference

between the cost of the proposed learning algorithm and the clairvoyant optimal cost, where the

clairvoyant optimal cost corresponds to the hypothetical case where the firm knew the demand

and capacity distributions a priori and applied the optimal (target interval) policy.

Our main result is to show that the cumulative T -period regret of the DRC algorithm is bounded

by O(
√
T ), which is also theoretically the best possible for this class of problems. Our proposed

learning algorithm is connected to Huh and Rusmevichientong (2009) that studied the classical

multi-period stochastic inventory model and Shi et al. (2016) that considered the multi-product

setting under a warehouse capacity constraint. We point out that both prior studies hinged on the

myopic optimality of the clairvoyant optimal policy, i.e., it suffices to examine a single-period cost

function. However, the random production capacity (on how much can be produced) considered

in this work is fundamentally different than the warehouse capacity (on how much can be stored)

considered in Shi et al. (2016), and our problem does not enjoy myopic optimality. It is well-known

in the literature that models with random production capacities are challenging to analyze, in

that the current decisions will impact the cost over an extended period of time (rather than a

single period). For example, an under-ordering in one particular period may cause the system to

be unable to produce up to the inventory target level over the next multiple periods. Thus, we

need to carefully re-examine the random capacitated problem with demand and capacity learning.

There are three main innovations in the design and analysis of our learning algorithm.

(a) First, we propose a cyclic updating idea. In our setting, the “right” cycle is the so-called

production cycle, first proposed in Ciarallo et al. (1994) to establish the extended myopic
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optimality for the random capacitated inventory systems. The production cycle is defined as

the interval between successive periods in which the policy is able to attain a given base-stock

level, in which one can show that the cumulative cost within a production cycle is convex in the

base-stock level. Naturally, our DRC algorithm updates base-stock levels in each production

cycle. Note that these production cycles (seen as renewal processes) are not a priori fixed

but are sequentially triggered as demand and supply are realized over time. Technically, we

develop explicit upper bounds on moments of the production cycle length and the associated

stochastic gradient. A major challenge in the algorithm design is that the algorithm needs

to determine if the current production cycle (with respect to the clairvoyant optimal system)

ends before making the decision in the current period. We design for each possible scenario to

gather sufficient information to determine if the target level should be updated.

(b) Second, the observed capacity realizations are, in fact, censored. That is, when the plant is

able to complete production (i.e., the capacity was sufficient in the current period to bring

inventory up to the desired level), the actual capacity will not be revealed. This creates major

challenges in the design and analysis of learning algorithms. For example, suppose that at the

beginning of a period, the firm decides to produce 100 units. If the production facility has a

random capacity of 80 with 1
3
probability, 120 with 1

3
probability and 150 with 1

3
probability,

then upon producing 100 units, the firm can only confirm that the capacity in this period is

not 80, but cannot decide between 120 and 150. Therefore, the firm needs to carry out active

explorations, which is to over-produce when necessary, in order to learn the capacity correctly.

If the firm employs no active explorations and believes what it observes, the firm will have the

wrong assumption on the capacity, leading to a spiral down effect.

(c) Third, facing random capacity constraints, the firm may not be able to achieve the desired

target inventory level as prescribed by the algorithm, and hence we keep track of a virtual

(infeasible) bridging system by “temporarily ignoring” the random capacity constraints, which

is used to update our target level in the next iteration. The gradient information of this virtual

system needs to be correctly obtained from the demand and the censored capacity observed in

the real implemented system when the random capacity constraints are imposed. Also, due to

positive inventory carry-over and capacity constraints, we need to ensure that the amount of

overage and underage inventory (relative to the desired target level) is appropriately bounded,

to achieve the desired rate of convergence of regret.

1.2. Relevant Literature

Our work is closely related to two streams of literature: (1) capacitated stochastic inventory systems

and (2) learning algorithms for stochastic inventory systems.
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Capacitated stochastic inventory systems. There has been a substantial body of literature

on capacitated stochastic inventory systems. The dominant paradigm in most of the existing liter-

ature has been to formulate stochastic inventory control problems using a dynamic programming

framework. This approach is effective in characterizing the structure of optimal policies. We first

list the papers that consider fixed capacity. Federgruen and Zipkin (1986a,b) showed that a modi-

fied base-stock policy is optimal under both the average and discounted cost criteria. Tayur (1992),

Kapuscinski and Tayur (1998), and Aviv and Federgruen (1997) derived the optimal policy under

independent cyclical demands. Özer and Wei (2004) showed the optimality of modified base-stock

policies in capacitated models with advance demand information. Even for these classical capaci-

tated systems with non-perishable products, the simple structure of their optimal control policies

does not lead to efficient algorithms for computing the optimal control parameters. Tayur (1992)

used the shortfall distribution and the theory of storage processes to study the optimal policy

for the case of i.i.d. demands. Roundy and Muckstadt (2000) showed how to obtain approximate

base-stock levels by approximating the distribution of the shortfall process. Kapuscinski and Tayur

(1998) proposed a simulation-based technique using infinitesimal perturbation analysis to com-

pute the optimal policy for capacitated systems with independent cyclical demands. Özer and Wei

(2004) used dynamic programming to solve capacitated models with advance demand information

when the problem size is small. Levi et al. (2008) gave a 2-approximation algorithm for this class

of problems. Angelus and Zhu (2017) identified the structure of optimal policies for capacitated

serial inventory systems. All the papers above assume that the firm knows the stochastic demand

distribution and the deterministic capacity level.

There has also been a growing body of literature on stochastic inventory systems where both

demand and capacity are uncertain. When capacity is uncertain, several papers (e.g., Henig and

Gerchak (1990), Federgruen and Yang (2011), Huh and Nagarajan (2010)) assumed that the firm

has uncertain yield (i.e., if they start producing a certain number of products, an uncertain propor-

tion of what they started will become finished goods). An alternative approach by Ciarallo et al.

(1994) and Duenyas et al. (1997) assumed that what the firm can produce in a given time interval

(e,g., a week) is stochastic (due to for example unexpected downtime, unexpected supply shortage,

unexpected absenteeism etc.) and proved the optimality of extended myopic policies for uncertain

capacity and stochastic demand under discounted optimal costs scenario. Güllü (1998) established

a procedure to compute the optimal base stock level for uncertain capacity production–inventory

systems. Wang and Gerchak (1996) extended the analysis to systems with both random capacity

and random yield. Feng (2010) addressed a joint pricing and inventory control problem with random

capacity and shows that the optimal policy is characterized by two critical values: a reorder point
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and a target safety stock. More recently, Chen et al. (2018) developed a unified transformation

technique which converts a non-convex minimization problem to an equivalent convex minimization

problem, and such a transformation can be used to prove the preservation of structural properties

for inventory control problems with random capacity. Feng and Shanthikumar (2018) introduced

a powerful notion termed stochastic linearity in mid-point, and transformed several supply chain

problems with nonlinear supply and demand functions into analytically tractable convex prob-

lems. All the papers above assume that the firm knows the stochastic demand distribution and the

stochastic capacity distribution.

Learning algorithms for stochastic inventory systems. There has been a recent and grow-

ing interest in situations where the distribution of demand is not known a priori. Many prior

studies have adopted parametric approaches (see, e.g., Lariviere and Porteus (1999), Chen and

Plambeck (2008), Liyanage and Shanthikumar (2005), Chu et al. (2008)), and we refer interested

readers to Huh and Rusmevichientong (2009) for a detailed discussion on the differences between

parametric and nonparametric approaches.

For nonparametric approaches, Burnetas and Smith (2000) considered a repeated newsvendor

problem, where they developed an algorithm that converges to the optimal ordering and pricing

policy but did not give a convergence rate result. Huh and Rusmevichientong (2009) proposed a

gradient descent based algorithm for lost-sales systems with censored demand. Besbes and Muhar-

remoglu (2013) examined the discrete demand case and showed that active exploration is needed.

Huh et al. (2011) applied the concept of Kaplan-Meier estimator to devise another data-driven

algorithm for censored demand. Shi et al. (2016) proposed an algorithm for multi-product systems

under a warehouse-capacity constraint. Zhang et al. (2018) proposed an algorithm for the per-

ishable inventory system. Huh et al. (2009) and Zhang et al. (2019) and Agrawal and Jia (2019)

developed learning algorithms for the lost-sales inventory system with positive lead times. Yuan

et al. (2019) and Ban (2019) considered fixed costs. Chen et al. (2019a,b) proposed algorithms for

the joint pricing and inventory control problem with backorders and lost-sales, respectively. Chen

and Shi (2020) focused on learning the best Tailored Base-Surge (TBS) policies in dual-sourcing

inventory systems. Another popular nonparametric approach in the inventory literature is sample

average approximation (SAA) (e.g., Kleywegt et al. (2002), Levi et al. (2007, 2015)) which uses

the empirical distribution formed by uncensored samples drawn from the true distribution. Con-

cave adaptive value estimation (e.g., Godfrey and Powell (2001), Powell et al. (2004)) successively

approximates the objective cost function with a sequence of piecewise linear functions. None of

the papers surveyed above modeled random capacity with a priori unknown distribution, and we

therefore need to develop new learning approaches to address this issue.
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1.3. Organization and General Notation

The remainder of the paper is organized as follows. In §2, we formally describe the capacitated

inventory control problem for random capacity. In §3, we show that a target interval policy is

optimal for capacitated inventory control problem with salvaging decisions. In §4, we introduce

the data-driven algorithm for random capacity under unknown demand and capacity distribution.

In §5, we carry out an asymptotic regret analysis, and show that the average T -period expected

cost of our policy differs from the optimal expected cost by at most O(
√
T ). In §6, we compare

our policy performance to the performance of two straw heuristic policies and show that simple

heuristic policies used in practice may not work very well. In §7, we conclude our paper and point

out plausible future research avenues.

Throughout the paper, we often distinguish between a random variable and its realizations

using capital and lower-case letters, respectively. For any real numbers a, b ∈ R, a+ =max{a,0},
a− =−min{a,0}; the join operator a∨ b=max{a, b}, and the meet operator a∧ b=min{a, b}.

2. Stochastic Inventory Control with Uncertain Capacity

We consider an infinite horizon periodic-review stochastic inventory planning problem with pro-

duction capacity constraint. We use (time-generic) random variable D to denote random demand,

and U to denote random production capacity. The random production capacity may be caused by

maintenance or downtime in the production line, lack of materials, among others (see Zipkin (2000),

Simchi-Levi et al. (2014), Snyder and Shen (2011)). The demand and the capacity have distribution

functions FD(·) and FU(·), respectively, and density functions fD(·) and fU(·), respectively.

At the beginning of our planning horizon, the firm does not know the underlying distributions

of D and U . In each period t= 1,2, ..., the sequence of events are as follows:

(a) At the beginning of each period t, the firm observes the starting inventory level xt before

production. (We assume without loss of generality that the system starts empty, i.e., x1 = 0.)

The firm also observes the past demand and (censored) capacity realizations up to period t−1.

(b) Then the firm decides the target inventory level st. If st ≥ xt, then it will try to produce

qt = st − xt to bring its inventory level up to st. Here, qt is the target production quantity

which may not be achieved due to capacity. During the period, the firm will realize its random

production capacity ut, and therefore its final inventory level will be st∧(xt+ut). We emphasize

here that the firm will not observe the actual capacity realization ut if they meet their inventory

target st. Thus, the firm actually observes the censored capacity ũt, i.e., when the production

plan cannot be fulfilled at period t, ũt = ut; otherwise, ũt = (st−xt)
+∧ut. On the other hand,
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if st < xt, then the firm will salvage −qt = xt − st units. Notice that in our model, we allow

for negative qt, which represents salvaging. We denote the inventory level after production or

salvaging as yt = st ∧ (xt + ut). If the firm decides to bring its inventory level up, it incurs a

production cost c(yt − xt)
+ and if it decides to bring its inventory level down, it receives a

salvage value θ(xt− yt)
+, where c is the per-unit production cost and θ is the per-unit salvage

value. We assume that θ≤ c.

(c) At the end of the period t, after production is completed, the demand Dt is realized, and we

denote its realization by dt, which is satisfied to the maximum extent using on-hand inventory.

Unsatisfied demands are backlogged, which means that the firm can observe full demand real-

ization dt in period t. The state transition can be written as xt+1 = st∧ (xt+ut)−dt = yt−dt.

The overage and underage costs at the end of period t is h(yt − dt)
+ + b(dt − yt)

+, where h is

the per unit holding cost and b is the per unit backlogging cost.

Following the system dynamics described above, we write the single-period cost as a function of

st and xt as follows.

Ω(xt, st) = c(st ∧ (xt +Ut)−xt)
+ − θ(xt − st ∧ (xt +Ut))

+

+h (st ∧ (xt +Ut)−Dt)
+
+ b (Dt − st ∧ (xt +Ut))

+

= c(yt −xt)
+ − θ(xt − yt)

+ +h(yt −Dt)
+ + b(Dt − yt)

+.

Let ft denote the cumulative information collected up to the beginning of period t, which includes all

the realized demands d, observed (censored) capacities u, and past ordering decisions s up to period

t− 1. A feasible closed-loop control policy π is a sequence of functions st = πt(xt, ft), t = 1,2, ...,

mapping the beginning inventory xt and ft into the ending inventory decision st. The objective

is to find an efficient and effective adaptive inventory control policy π, or a sequence of inventory

targets {st}∞t=1, which minimizes the long-run average expected cost

limsup
T→∞

1

T
·E
[

T
∑

t=1

Ω(xt, st)

]

. (1)

If there is a discount factor α∈ (0,1), the objective becomes the total discounted cost, i.e.,

E

[

∞
∑

t=1

αt ·Ω(xt, st)

]

. (2)

3. Clairvoyant Optimal Policy (with Salvage Decisions)

To facilitate the design of a learning algorithm, we first study the clairvoyant scenario by assuming

that the distributions of demand and production capacity were given a priori. Furthermore, we
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assume that the actual production capacity in each period is observed by the firm, i.e., there is

no capacity censoring in this clairvoyant case. The clairvoyant case is useful as it serves as a lower

bound on the cost achievable by the learning model. For the case where the firm can only raise

its inventory (without any salvage decisions), Ciarallo et al. (1994) showed that a produce-up-to

policy is optimal. A minor contribution of this paper is to extend their policy by enabling the firm

to salvage extra goods with salvage price θ at the beginning of each period before the demand is

realized. The firm incurs production cost c per-unit good if it decides to produce and receives a

salvage value of θ (i.e., incurring a salvage cost −θ) per-unit good if it decides to salvage, and c≥ θ.

We shall describe a target interval policy, and show that it is optimal. A target interval policy

is characterized by two threshold values (s∗l , s
∗
u) such that if the starting inventory level x < s∗l ,

we order up to s∗l , if x > s∗u, we salvage down to s∗u, and if s∗l ≤ x≤ s∗u, we do nothing. Note that

target interval policy has been introduced in a number of earlier papers. In fact, the structure of

this policy was first identified by Eberly and Van Mieghem (1997) and the term target interval

policy was first used by Angelus and Porteus (2002).

Assumption 1. We make the following assumptions on the demand and capacity distributions.

(a) The demands D1, . . . ,DT and the capacities U1, . . . ,UT are independently and identically dis-

tributed (i.i.d.) continuous random variables, respectively. Also, the demand Dt and the capacity

Ut are independent across all time periods t∈ {1, . . . T}.
(b) The (time generic) demand and capacity D and U have a bounded support [0, d̄] and a bounded

support [0, ū], respectively. We also assume that E[U ]>E[D] to ensure the system stability.

(c) The (clairvoyant) optimal produce-up-to level s∗l lies in a bounded interval [0, s̄], i.e., s∗l ∈ [0, s̄].

Assumption 1(a) assumes the stationarity of the underlying production–inventory system to be

jointly learned and optimized over time. Assumption 1(b) ensures the stability of the system, i.e.,

the system can clear all the backorders from time to time. Assumption 1(c) assumes that the firm

knows an upper bound (potentially a loose one) on the optimal ordering levels. These assumptions

are mild and standard in inventory learning literature (see, e.g., Huh and Rusmevichientong (2009),

Huh et al. (2009), Zhang et al. (2019, 2018)). We also remark here that an important future research

direction is to incorporate non-stationarity of the demand and capacity processes, which would

require a significant methodological breakthrough.

3.1. Optimal Policy for the Single Period Problem with Salvaging Decisions

We first use a single-period problem to illustrate the idea of target interval policy, and then extend

it to the multi-period problem with salvage decisions.
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Symbol Type Description
c Parameter Production cost.
θ Parameter Salvage cost.
h Parameter Per unit holding cost.
b Parameter Per unit backlogging cost.
Dt, dt Parameter Random demand and its realization in period t.
FD, fD Parameter Demand probability and density function.
Ut, ut Parameter Random production capacity and its realization in period t.
FU , fU Parameter Capacity probability and density function.
s∗l or s∗ State Clairvoyant target product-up-to level after ordering.
s∗u State Clairvoyant target salvage-down-to level after salvaging.
xt State Beginning inventory level in period t.
yt State Ending inventory level in period t.
st Control Target inventory level after ordering/salvaging in period t.
qt Control Ordering/salvaging quantity in period t.

Table 1 Summary of Major Notation

Cost

(a)

Cost

(b)

Cost

(c)

Figure 1 Illustration of a target interval policy

Proposition 1. For the single period problem, a target interval policy is optimal. More specifically,

there exist two threshold levels s∗l and s∗u such that the optimal policy can be described as follows:

1. When s∗l ≤ x≤ s∗u, the firm decides to do nothing.

2. When x< s∗l , the firm decides to produce to bring inventory up to s∗l as close as possible.

3. When s∗u <x, the firm decides to salvage and bring inventory down to s∗u.

The three situations discussed above can be readily illustrated in Figure 1. The two curves are

labeled “q≥ 0” and “q < 0”, respectively. The solid curve is the effective cost function Ω(y), which

consists of curve “q≥ 0” for s≥ x, and curve “q < 0” for s < x.

3.2. Optimal Policy for the Multi-Period Problem with Salvaging Decisions

Next, we derive the optimal policy for the multi-period problem with salvaging decisions.
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Proposition 2. (a) For the T -period finite-horizon problem with salvaging decisions, a target

interval policy is optimal. More specifically, for each period t= 1, . . . , T , there exist two time-

dependent threshold levels s∗t,l and s∗t,u such that the optimal target level s∗t satisfies

s∗t =



















s∗t,l, xt < s∗t,l,

xt, s∗t,l ≤ xt ≤ s∗t,u,

s∗t,u, xt > s∗t,u.

(b) For both the infinite horizon discounted problem (2) with salvaging decisions and the average

cost problem (1) with salvaging decisions, a target interval policy is optimal. More specifically,

there exist two time-invariant threshold levels s∗l and s∗u such that the optimal target level s∗t

satisfies

s∗t =



















s∗l , xt < s∗l ,

xt, s∗l ≤ xt ≤ s∗u,

s∗u, xt > s∗u.

Note that for the finite time horizon case, the optimal target level depends on a pair of time-

dependent threshold levels, whereas for the infinite horizon case, the optimal interval policy depends

on a pair of time-invariant threshold levels. Since the clairvoyant benchmark is chosen with respect

to the infinite horizon problem, our goal is to find the optimal target interval (s∗l , s
∗
u).

We have shown that if the firm has the option to salvage extra goods at the beginning of each

period, then it will choose to salvage extra goods if the starting inventory is high enough. In the

full-information problem, we can immediately conclude that in the infinite horizon problem, the

salvage decision will only be made in the first period when the initial starting inventory is higher

than s∗u. This is because after salvaging down to s∗u in the first period, the inventory level will

gradually be consumed down below s∗l and after that, the inventory level will never exceed s∗l again,

due to the stationary demand assumption. Thus, the optimal produce-up-to level s∗l is the same as

the optimal produce-up-to level, denoted by s∗, in Ciarallo et al. (1994) without salvaging options,

and an extended myopic policy described therein is also optimal for the infinite horizon average

cost setting. In the remainder of this paper, we will use s∗l and s∗ interchangeably.

However, we must emphasize here that in the learning version of the problem, since we do not

know the demand and capacity distributions (and of course s∗l or s∗), we need to actively explore

the inventory space, and salvaging decisions will be made in our online learning algorithm (more

frequently in the beginning phase).
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4. Nonparametric Learning Algorithms

As discussed in §1, in many practical scenarios, the firm neither knows the distribution of demand

D nor the distribution of production capacity U at the beginning of the planning horizon. Instead,

the firm has to rely on the observable demand and capacity realizations over time to make adaptive

production decisions. More precisely, in each period t, the firm can observe the realized demand dt

as well as the observed production capacity ũt. In our model, while dt is the true demand realization

(since the demands are backlogged), the observed production capacity ũt is, in fact, censored.

More explicitly, the censored capacity ũt = (st−xt)
+∧ut. That is, suppose the firm wants to raise

the starting inventory level xt to some target level st. If the true realized production capacity

ut > (st−xt)
+, then the firm cannot observe the uncensored capacity realization ut. Our objective

is to find an efficient and effective learning production control policy whose long-run average cost

converges to the clairvoyant optimal cost (had the distributional information of both the random

demand and the random capacity been given a priori) at a provably tight convergence rate.

4.1. The Notion of Production Cycles

It is well-known in the literature that the optimal policy for a capacitated inventory system cannot

be solved myopically, i.e., the control that minimizes a single-period cost is not optimal. Moreover,

when capacities are random, the per-period cost function is non-convex, due to the fact that the

decision is truncated by a random variable (see Chen et al. (2018) and Feng and Shanthikumar

(2018)). Thus, one cannot run the stochastic gradient descent algorithms period by period. To

overcome this difficulty, we partition the set of time periods into carefully designed learning cycles,

and update our production target levels from cycle to cycle, instead of from period to period.

We now formally define these learning cycles. Given that we produce up to the target level st

in some period t and then use the same target level st for all subsequent periods, we define a

production cycle as the set of successive periods starting from period t until the next period in

which we are able to produce up to st again. Mathematically, let τj denote the starting period of

the jth production cycle. Then, for any given initial target level s1 ∈ [0, s̄], we have

τ1 = 1, τj =min
{

t≥ τj−1 +1
∣

∣

∣
xt +ut ≥ sτj−1

}

, for all j ≥ 2.

For convenience, we call sτj the cycle target level for production cycle j. We let lj be the cycle

length of the jth production cycle, i.e., lj = τj+1 − τj.

Figure 2 gives a simple graphical example of a production cycle. Suppose the target production

level s5 = 30 and the realized capacity levels ut = 15 for t= 5, . . . ,9. In periods 6,7,8, we are not
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able to attain the target level s5 even if we produce the full capacity in these periods, whereas we

are able to do so in period 9. Therefore this production cycle runs from period 5 to period 9. Note

that in period 9, we could only observe the censored capacity ũ9 = 11 (instead of the true realized

capacity u9 = 15), because we only need to produce 11 to attain the target level.

The definition of these production cycles is motivated by the idea of extended myopic policies,

which we shall discuss next. In the full-information (clairvoyant) case with stationary demand, the

structural results in §3 imply that if the system starts with initial inventory s∗ (for simplicity we

drop the subscript from the optimal produce-up-to level s∗l ), then the optimal policy is a modified

base-stock policy, i.e., in each period t,

yt =







s∗, if xt +ut ≥ s∗,

xt +ut, if xt +ut < s∗.

In this case, our definition of production cycles reduces to

τ1 = 1, τj =min
{

t≥ τj−1 +1
∣

∣

∣
yt = s∗

}

, for all j ≥ 2.

In other words, the optimal system forms a sequence of production cycles whose cycle target levels

are all set to be s∗, which is also illustrated at the top portion of Figure 3. Ciarallo et al. (1994)

showed that the extended myopic policy, which is obtained by merely minimizing the expected total

cost within a single production cycle, is optimal. (They also provided a computationally tractable

procedure to compute this s∗ with known demand and capacity distributions.)

The above discussion has motivated us to design a nonparametric learning algorithm that updates

the modified base-stock levels in a cyclic way, in which the sequence of production cycle costs in our

system will eventually converge to the production cycle cost of the optimal system. We emphasize

again that the (clairvoyant) optimal system does not need to salvage since s∗ is known, whereas

our system needs to actively explore the inventory space to learn the value of s∗ and thus salvaging

can happen frequently in the beginning phase of the learning algorithm.

4.2. The Data-Driven Random Capacity Algorithm (DRC)

With the definition of production cycles, we shall describe our data-driven random capacity algo-

rithm (DRC for short). The DRC algorithm keeps track of two systems in parallel, and also ensures

that both systems share the same production cycles as in the optimal system (which uses the same

optimal base-stock level s∗ in every period). The optimal system is depicted using dash-dot lines

shown at the top of Figure 3. The optimal system starts at optimal base-stock level s∗, and uses

s∗ as target level in every period.
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Figure 3 An illustration of the algorithmic design

The first system that the DRC algorithm keeps track of is a virtual (or ideal) system, which

starts from an arbitrary inventory level ŝ1. The DRC algorithm maintains a triplet (ŝt, ŷt, x̂t) in

each period t, where ŝt is the virtual target level, ŷt is the virtual inventory level, and x̂t is the

virtual starting inventory level. At the beginning of each production cycle j, namely, in period τj,

the DRC algorithm computes the (desired) virtual cycle target level ŝτj , and artificially adjusts

the virtual inventory level ŷτj = ŝτj by temporarily ignoring the random capacity constraint in
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that period. For all subsequent periods t ∈ [τj + 1, τj+1 − 1] within production cycle j, the DRC

algorithm sets the virtual target production level ŝt = ŝτj and runs the virtual system as usual

(facing the same demands and random capacity constraints as in the actual implemented system),

i.e., ŷt = ŝt ∧ (x̂t + ut) and x̂t+1 = ŷt − dt. Figure 3 gives an example of the evolution of a virtual

system, as depicted using dotted lines.

The second system is the actual implemented system, which starts from an arbitrary inventory

level s1 = ŝ1. The DRC algorithm maintains a triplet (st, yt, xt) in each period t, where st is the

target production level, yt is the actual attained inventory level, and xt is the actual starting inven-

tory level. Different than the virtual system described above, at the beginning of each production

cycle j, namely, in period τj, the DRC algorithm tries to reach the (desired) virtual target level ŝτj

but may fail to do so due to random capacity constraints. The resulting inventory level yτj may

possibly be lower than ŝτj . Nevertheless, to keep the production cycle synchronized with that of

the optimal system, we simply set the cycle target level sτj = yτj , and keep the target production

level the same within the production cycle, i.e., st = sτj for all t ∈ [τj, τj+1 − 1]. Figure 3 gives an

example of the evolution of an actual implemented system (as depicted using solid lines).

We now present the detailed description of the DRC algorithm.

The Data-Driven Random Capacity Algorithm (DRC)

Step 0. (Initialization.) In the first period t= 1, set the initial inventory x1 ∈ [0, s̄] arbitrarily.

We set both the target level and the virtual target level the same as the initial inventory, i.e.,

s1 = ŝ1 = x1. Then we also have the actual attained inventory level y1 = x1 and the virtual inventory

level ŷ1 = x̂1 = x1. Initialize the counter for production cycles j = 1, and set t= τ1 = 1.

Step 1. (Updating the Virtual System.)

The algorithm updates the virtual target level in period t+1 by

ŝt+1 =







Proj[0,s̄]

(

ŝτj − ηj ·
∑t

k=τj
Gk(ŝτj )

)

, if t= τj,

ŝτj , if t > τj,

where Gk(ŝτj ) =







h, if ŝτj ∧ (x̂k +uk)≥ dk,

−b, otherwise.

Note that the projection operator Proj[0,s̄](x) =max{0,min{x, s̄}}. The step-size is chosen to be

ηj =
γ

√

∑j

k=1 lk

, where lk = τk+1 − τk,
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where γ > 0 is a constant (to be optimized later for the tightest theoretical regret bound).

The evolution of the virtual system is given as follows,

ŷt =







ŝτj −
∑t−1

i=τj
di +

∑t

i=τj+1 ui, for t > τj,

ŝτj , for t= τj,
and x̂t+1 = ŷt − dt.

Step 2. (Updating the Actual Implemented System.)

We have the following cases when updating the actual implemented system based on ŝt.

1. If ŝt+1 ≥ sτj , then we try to produce up to ŝt+1, and the actual inventory level yt+1 will be

yt+1 =







ŝt+1, if xt+1 +ut+1 ≥ ŝt+1,

xt+1 +ut+1, if xt+1 +ut+1 < ŝt+1.

(a) If sτj ≤ yt+1 ≤ ŝt+1, we start a new production cycle j +1, by setting the starting period

of this new cycle τj+1 = t+1. Correspondingly, we set the virtual cycle target level ŝτj+1
=

ŝt+1, and the actual implemented cycle target level sτj+1
= yt+1. We then increase the

value of j by one.

(b) If yt+1 < sτj , we are still in the same production cycle j, and thus we set st+1 = sτj .

2. If ŝt+1 < sτj , then we first try to produce up to sτj (instead of ŝt+1) , and the actual inventory

level yt+1 will be

yt+1 =







sτj , if xt+1 +ut+1 ≥ sτj ,

xt+1 +ut+1, if xt+1 +ut+1 < sτj .

(a) If yt+1 = sτj , we salvage our inventory level down to yt+1 = ŝt+1. We then start a new

production cycle j+1, by setting the starting period of this new cycle τj+1 = t+1. Corre-

spondingly, we set the virtual cycle target level ŝτj+1
= ŝt+1, and the actual implemented

cycle target level sτj+1
= ŝt+1. We then increase the value of j by one.

(b) If yt+1 < sτj , we are still in the same production cycle j, and thus we set st+1 = sτj .

We then increase the value of t by one, and go to Step 1. If t= T , terminate the algorithm.

4.3. Overview of the DRC Algorithm

In Step 1, we update the virtual system using the online stochastic gradient descent method. In

each period t of any given cycle j, the DRC algorithm tries to minimize the total expected cost

associated with production cycle j by updating the virtual target level using a gradient estimator
∑t

k=τj
Gk(ŝτj ) of the total cost accrued from period τj to period t. We shall show in Lemma 4 below

that Gj(ŝτj ) =
∑τj+1−1

k=τj
Gk(ŝτj ) is the sample-path cycle cost gradient of production cycle j. Note
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that Gj(ŝτj ) is the sample-path cycle cost gradient for the virtual system. However, we could only

observe the demand and censored capacity information in the actual implemented system, and the

key question is whether this information is sufficient to evaluate this Gj(ŝτj ) correctly.

Lemma 1. The sample-path cycle cost gradient of the virtual system Gj(ŝτj ) =
∑τj+1−1

k=τj
Gk(ŝτj ) for

every cycle j ≥ 1 can be evaluated correctly by only using the observed demand and censored capacity

information of the actual implemented system.

Proof of Lemma 1. It suffices to show that for each period k= τj, . . . , τj+1−1, the cost gradient

estimator Gk(ŝτj ) can be evaluated correctly. We have the following two cases.

(a) If k = τj, i.e., the production cycle j starts in period k, we must have xk + ũk ≥ sτj−1 by

our definition of production cycle. In addition, we observe the full capacity ũi = ui in period

i= τj−1 +1, . . . , k− 1 but only observe the censored capacity ũk ≤ uk in period k.

(1) if sk = ŝk, by the system dynamics we have

ŝk = sk = xk + ũk ≤ x̂k + ũk ≤ x̂k +uk,

where the first inequality holds because by our algorithm design, we always have sτj−1
≤

ŝτj−1
for all j = 2,3, . . ., and then

xk = sτj−1
−

τj−1
∑

i=τj−1

di +

τj−1
∑

i=τj−1+1

ui ≤ ŝτj−1
−

τj−1
∑

i=τj−1

di +

τj−1
∑

i=τj−1+1

ui = x̂k.

Hence, the event
{

ŝτj ∧ (x̂k +uk)≥ dk
}

is equivalent to
{

ŝτj ≥ dk
}

, and therefore we can

evaluate Gk(ŝτj ) correctly.

(2) if sk < ŝk, we have produced full capacity and therefore observe the full capacity ũk = uk.

Then the event
{

ŝτj ∧ (x̂k +uk)≥ dk
}

is equivalent to
{

ŝτj ∧ (x̂k + ũk)≥ dk
}

, and therefore

we can evaluate Gk(ŝτj ) correctly.

(b) On the other hand, if k ∈ [τj + 1, τj+1 − 1], i.e., then we are still in the current production

cycle j. In this case, we always produce at full capacity, and therefore we observe the full

capacity ũk = uk. Then the event
{

ŝτj ∧ (x̂k +uk)≥ dk
}

is equivalent to
{

ŝτj ∧ (x̂k + ũk)≥ dk
}

,

and therefore we can evaluate Gk(ŝτj ) correctly.

Combining the above two cases yields the desired the result. Q.E.D.

In Step 2, we compare ŝt+1 and sτj to decide how to update the actual implemented system.

We have two cases. The first case is when ŝt+1 ≥ sτj . We want to produce up to the new target

level ŝt+1 instead of sτj . If the actual implemented inventory level yt+1 ≥ sτj , we know that the

current production cycle ends because we have achieved at least sτj , and then we shall start the
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next production cycle. In order to perfectly align the production cycle with that of the optimal

system when ŝt+1 ≥ yt+1 ≥ sτj , we should set the next cycle target level sτj+1
= yt+1. Otherwise, we

produce at full capacity, and stay in the same production cycle, which is also synchronized with the

optimal production cycle. The second case is when ŝt+1 < sτj . We first produce up to the current

cycle target level sτj to check whether we can start the next production cycle. If sτj is achieved,

we shall start the next production cycle and salvage the inventory level down to yt+1 = ŝt+1 and

also set the new cycle target level sτj+1
= ŝt+1. Otherwise, we produce at full capacity, and stay in

the same production cycle, which is also synchronized with the optimal production cycle.

The central idea here is to align the production cycles of the actual implemented system (as

well as the virtual bridging system) with those of the (clairvoyant) optimal system, even while

updating our cycle target level at the beginning of each production cycle. As illustrated in Figure

3, the optimal system knows s∗ a priori and keeps using the target level s∗ (i.e., the optimal

modified base-stock level) in every period t. Whenever the target level s∗ is achieved, we start the

next production cycle. However, in the learning problem, the firm does not know s∗ and needs

to constantly update the cycle target level at the beginning of each production cycle. Due to the

discrepancy between the new and the previous target levels, it is crucial to design an algorithm

that can determine whether the current production cycle ends, and whether we should adopt the

new target level in the very same period. Figure 4 shows the possible scenarios. The scenarios 1(a),

1(b), and 1(c) show the case when ŝt+1 ≥ sτj . In this case, we always raise the inventory to ŝt+1

as much as possible. If ŝt+1 is achieved, we know that the production cycle ends. Even if ŝt+1 is

not achieved, we know that we produce at full capacity and then can readily determine whether

the production cycle ends (by checking if we reach at least sτj ). The scenarios 2(a), 2(b), and 2(c)

show the case when ŝt+1 < sτj . In this case, we always raise the inventory to sτj as much as possible

to determine whether the production cycle ends (by checking if we reach exactly sτj ). We salvage

the inventory level down to ŝt+1 only if the production cycle ends. Note that active explorations

are needed in the sense that sometimes the learning algorithm will have to produce up and then

salvage down in the same period, so as to obtain unbiased capacity information. Technically, doing

so ensures that the production cycles are perfectly aligned between the actual implemented system

and the clairvoyant optimal system.

4.4. Discussion of the DRC Algorithm without Censoring

We have elaborated the challenges of facing censored capacity in the previous sections. The censored

capacity comes from the fact that the production is terminated once the inventory level reaches

the target level, and as a result, the true capacity will not be revealed.
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Figure 4 A schematic illustration of all possible scenarios

Now, we shall discuss the setting in which the firm has access to the uncensored capacity infor-

mation. There are the following two cases: 1) If the firm knows the true capacity before making the

production decision, then the firm knows if a production cycle ends in the current period. In this

case, the firm only needs to update the virtual target level at the end of the production cycle. The

firm will always produce up to the virtual target level, without the need of any salvaging options.

This case leads to a simplified DRC algorithm. 2) On the other hand, if the firm knows the true

capacity only after making the production decision, then the firm does not know if a production

cycle ends in the current period. In this case, the firm still requires the use of the full-fledged DRC

algorithm (as designed for the setting with censored capacity information).

5. Performance Analysis of the DRC Algorithm

We carry out a performance analysis of our proposed DRC algorithm. The performance measure

is the natural notion of regret, which is defined as the difference between the cost incurred by our

nonparametric learning algorithm DRC and the clairvoyant optimal cost (where the demand and

production capacity distribution are both known a priori). That is, for any T ≥ 1,

RT =E

[

T
∑

t=1

(Ω(xt, st)−Ω(xt, s
∗))

]

,

where st is the target level prescribed by the DRC algorithm for period t, and s∗ is the clairvoyant

optimal target level. We note that our clairvoyant benchmark is chosen with respect to the infinite

horizon problem, and the regret quantifies the cumulative loss of running our learning algorithm

for any T ≥ 1 periods, compared to this stationary benchmark.
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Theorem 1 below states the main result of this paper.

Theorem 1. For stochastic inventory systems with demand and capacity learning, the cumulative

regret RT of the data-driven random capacity algorithm (DRC) is upper bounded by O(
√
T ). In

other words, the average regret RT/T approaches to 0 at the rate of O(1/
√
T ).

Remark 1. Let µ=E[U ]−E[D], the difference between expected capacity and expected demand.

We define υ = 2µ2/(ū+ d̄)2 and X1 = (h ∨ b)l1 −
∑τ2

t=τ1+1Ut +
∑τ2−1

t=τ1
Dt, and then further define

α=−E[X1] and σ2 = V ar[X1] and β = E[X3
1 ]. The optimal constant γ in the step size (that gives

rise to the tightest theoretical regret bound) is given by

γ =
s̄

√

(h∨ b)2
(

1
υ
+ 2

υ2 +
2
υ3

)

+2(h∨ b)2 s̄
µ

σ
α
e

6β

σ3
+α

σ +2(c+ θ)(h∨ b)σ
α
e

6β

σ3
+α

σ

,

and the associated constant K in the regret bound of Theorem 1 is given by

K = s̄

√

(h∨ b)2
(

1

υ
+

2

υ2
+

2

υ3

)

+2(h∨ b)2
s̄

µ

σ

α
e

6β

σ3
+α

σ +2(c+ θ)(h∨ b)
σ

α
e

6β

σ3
+α

σ .

The proposed DRC algorithm is the first learning algorithm for random capacitated inventory

systems, which achieves a square-root regret rate. Moreover, this square-root regret rate is unim-

provable, even for the repeated newsvendor problem without inventory carryover and with infinite

capacity, which is a special case of our problem.

Proposition 3. Even in the case of uncensored demand, the square-root regret rate is tight.

Proof of Proposition 3. The proof follows Proposition 1 in Zhang et al. (2019) for the repeated

newsvendor problem (without inventory carryover and with infinite capacity). Q.E.D.

The remainder of this paper is to establish the regret upper bound in Theorem 1. For each j ≥ 1,

if we adopt the cycle target level sτj and also artificially set the initial inventory level xτj = sτj , we

can then express the cost associated with the production cycle j as

Θ(sτj ) =

τj+1
∑

t=τj+1

c
(

sτj ∧ (xt +Ut)−xt

)+
(3)

+

τj+1−1
∑

t=τj

[

h
(

sτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − sτj ∧ (xt +Ut)
)+
]

=

τj+1−1
∑

t=τj+1

cUt + c(sτj −xτj+1
)+

τj+1−1
∑

t=τj

[

h
(

sτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − sτj ∧ (xt +Ut)
)+
]

=

τj+1−1
∑

t=τj+1

cUt + c





τj+1−1
∑

t=τj

Dt −
τj+1−1
∑

t=τj+1

Ut
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+

τj+1−1
∑

t=τj

[

h
(

sτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − sτj ∧ (xt +Ut)
)+
]

,

where the second equality comes from the fact that we always produce at full capacity within a

production cycle, except for the last period in which we are able to reach the target level. The

third equality follows from expressing

xτj+1
= xτj +

τj+1−1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt = sτj +

τj+1−1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt.

Now, we use J to denote the total number of production cycles before period T , including possibly

the last incomplete cycle. (If the last cycle is not completed at T , then we truncate the cycle and

also let τJ+1 − 1 = T , i.e., sτJ+1
= sτJ ). By the construction of the DRC algorithm, we can write

the cumulative regret as

RT = E

[

T
∑

t=1

Ω(xt, st)−Ω(xt, s
∗)

]

= E





J
∑

j=1

Θ(sτj )+
J
∑

j=1

(

c
(

sτj+1
− sτj

)+
+ θ
(

sτj − sτj+1

)+
)

−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(xt, s
∗)





= E





J
∑

j=1

Θ(sτj )−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(xt, s
∗)



+E

[

J
∑

j=1

(

c
(

sτj+1
− sτj

)+
+ θ
(

sτj − sτj+1

)+
)

]

= E





J
∑

j=1

Θ(ŝτj )−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(xt, s
∗)



+E

[

J
∑

j=1

Θ(sτj )−
J
∑

j=1

Θ(ŝτj )

]

+E

[

J
∑

j=1

(

c
(

sτj+1
− sτj

)+
+ θ
(

sτj − sτj+1

)+
)

]

,

where on the right-hand side of the fourth equality, the first term is the production cycle cost

difference between using the virtual target level ŝτj and using the clairvoyant optimal target level

s∗. The second term is the production cycle cost difference between using the actual implemented

target level sτj and using the virtual target level ŝτj . The third term is the cumulative production

and salvaging costs incurred by adjusting the production cycle target levels.

To prove Theorem 1, it is clear that it suffices to establish the following set of results.

Proposition 4. For any J ≥ 1, there exists a constant K1 ∈R
+ such that

E





J
∑

j=1

Θ(ŝτj )−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(xt, s
∗)



≤K1

√
T .
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Proposition 5. For any J ≥ 1, there exists a constant K2 ∈R
+ such that

E

[

J
∑

j=1

Θ(sτj )−
J
∑

j=1

Θ(ŝτj )

]

≤K2

√
T .

Proposition 6. For any J ≥ 1, there exists a constant K3 ∈R
+ such that

E

[

J
∑

j=1

(

c
(

sτj+1
− sτj

)+
+ θ
(

sτj − sτj+1

)+
)

]

≤K3

√
T .

5.1. Several Key Building Blocks for the Proof of Theorem 1

Before proving Propositions 4, 5, and 6, we first establish some key preliminary results.

Recall that the production cycle defined in §4.1 is the interval between successive periods in

which the policy is able to attain a given base-stock level. We first show that the cumulative cost

within a production cycle is convex in the base-stock level.

Lemma 2. The production cycle cost Θ(s) is convex in s along every sample path.

Proof of Lemma 2. It suffices to analyze the first production cycle cost (with x1 = s1)

Θ(s1) =

τ2−1
∑

t=2

cUt + c

(

τ2−1
∑

t=1

Dt −
τ2−1
∑

t=2

Ut

)

+

τ2−1
∑

t=1

[

h (s1 ∧ (xt +Ut)−Dt)
+
+ b (Dt − s1 ∧ (xt +Ut))

+
]

.

Taking the first derivative of Θ(s1) with respect to s1, we have

Θ′ (s1) =

τ2−1
∑

t=1

(

h(ξ+t (s1))− b(ξ−t (s1))
)

, (4)

where ξ+t (s1) = ✶

{

s1 −
t
∑

t′=1

Dt′ +
t
∑

t′=2

Ut′ ≥ 0

}

and ξ−t (s1) = ✶

{

s1 −
t
∑

t′=1

Dt′ +
t
∑

t′=2

Ut′ < 0

}

are indicator functions of the positive inventory left-over and the unsatisfied demand at the end of

period t, respectively.

For any given δ > 0, we have

Θ′(s1 + δ) =

τ2−1
∑

t=1

[

h
(

ξ+(s1 + δ)
)

− b
(

ξ−(s1 + δ)
)]

.

It is clear that when the target level increases, the positive inventory left-over will also increase, i.e,

ξ+(s1 + δ)≥ ξ+(s1). Similarly, we also have ξ−(s1 + δ)≤ ξ−(s1). Therefore, we have Θ′ (s1 + δ)≥
Θ′ (s1) for any value of s1, and thus Θ(·) is convex. Q.E.D.

Given the convexity result, our DRC algorithm updates base-stock levels in each production

cycle. Note that these production cycles (as renewal processes) are not a priori fixed but are
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sequentially triggered as demand and capacity realize over time. Therefore, we need to develop

an upper bound on the moments of a random production cycle. The proof of Lemma 3 relies on

building an upward drifting random walk with Ut as upward step andDt as downward step, wherein

the chance of hitting a level below zero is exponentially small due to concentration inequalities.

Since the ending of a production cycle corresponds to the situation where the random walk hits

zero, the second moment of its length of the current production cycle can be bounded.

Lemma 3. The second moment of the length of a production cycle E
[

l2j
]

is bounded for all cycle j.

Proof of Lemma 3. By the definition of a production cycle in §4.1, we have

P{lj = l}= P







Uτj+1 −Dτj < 0, . . . ,

τj+l−1
∑

t=τj+1

Ut −
τj+l−2
∑

t=τj

Dt < 0,

τj+l
∑

t=τj+1

Ut −
τj+l−1
∑

t=τj

Dt ≥ 0







.

Since Dt and Ut are both i.i.d., so is lj. Let Mk be an upward drifting random walk, more precisely,

Mk =
∑k

t=1 (Ut −Dt) . Then we have, by letting µ=E [Ut −Dt] and υ= 2µ2/
(

ū+ d̄
)2
,

E
[

l2j
]

=
∞
∑

k=1

k2
P (M1 < 0, . . . ,Mk−1 < 0,Mk ≥ 0)

≤
∞
∑

k=1

k2
P (Mk−1 − (k− 1)µ<− (k− 1)µ)

≤
∞
∑

k=1

k2 exp

(

−2 (k− 1)µ2

(

ū+ d̄
)2

)

≤
∫ ∞

0

(k+1)2 exp

(

− 2kµ2

(

ū+ d̄
)2

)

dk=
1

υ
+

2

υ2
+

2

υ3
<∞,

where the second inequality follows from the Hoeffding’s inequality. Q.E.D.

We also need to develop an upper bound on the cycle cost gradient.

Lemma 4. For any j ≥ 1, the function Gj(s) =
∑τj+1−1

t=τj
Gt(s) is the sample-path cycle cost gradient

of production cycle j, where s is the cycle target level. Moreover, Gj(·) has a bounded second

moment, i.e., E
[

G2
j(s)

]

<∞ for any s.

Proof of Lemma 4. From the definition of Gj(s) and (4), it is clear that

Gj(s) =

τj+1−1
∑

t=τj

Gt(s) =

τj+1−1
∑

t=τj

[

h(ξ+t (s))− b(ξ−t (s))
]

=Θ′ (s) .
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Moreover, we have

E
[

G2
j(s)

]

=E





(

τ2−1
∑

t=1

(

h(ξ+t (s1))− b(ξ−t (s1))
)

)2


≤E

[

(h∨ b)
2
l2j

]

= (h∨ b)
2
E
[

l2j
]

<∞,

where the last inequality follows from Lemma 3. Q.E.D.

5.2. Proof of Proposition 4

Proposition 4 provides an upper bound on the production cycle cost difference between using the

virtual target level ŝτj and using the clairvoyant optimal target level s∗. The proof follows a similar

argument used in the general stochastic approximation literature Nemirovski et al. (2009) as well

as the online convex optimization literature Hazan (2016). The main point of departure is due to

the a priori random cycles, and therefore the proof relies crucially on Lemmas 3 and 4 previously

established.

By optimality of s∗, we have E [Ω(s∗, s∗)] = infx {E [Ω(x, s∗)]}, i.e., s∗ minimizes the expected

single period cost. Also notice that the length of a production cycle is independent of the cycle

target level being implemented. Thus, we have

E





J
∑

j=1

Θ(ŝτj )−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(xt, s
∗)



 ≤ E





J
∑

j=1

Θ(ŝτj )−
J
∑

j=1

τj+1−1
∑

t=τj

Ω(s∗, s∗)



 (5)

= E

[

J
∑

j=1

(

Θ(ŝτj )−Θ(s∗)
)

]

.

By the sample path convexity of Θ(·) shown in Lemma 2, we have

E

[

J
∑

j=1

(

Θ(ŝτj )−Θ(s∗)
)

]

≤
J
∑

j=1

E
[

∇Θ(ŝτj )(ŝτj − s∗)
]

=
J
∑

j=1

E
[

Gj(ŝτj )(ŝτj − s∗)
]

. (6)

By the definition of ŝτj+1
in the DRC algorithm,

E
(

ŝτj+1
− s∗

)2 ≤ E
(

ŝτj − ηjGj(ŝτj )− s∗
)2

= E
(

ŝτj − s∗
)2

+E
(

ηjGj(ŝτj )
)2 −E

[

2ηjGj(ŝτj )(ŝτj − s∗)
]

= E
(

ŝτj − s∗
)2

+E[ηj]E
(

Gj(ŝτj )
)2 − 2E[ηj]E

[

Gj(ŝτj )(ŝτj − s∗)
]

,

where the second equality holds because the step-size ηj is independent of ŝτj and Gj(ŝτj ). Thus,

E
[

Gj(ŝτj )(ŝτj − s∗)
]

≤ 1

2E[ηj]

(

E
(

ŝτj − s∗
)2 −E

(

ŝτj+1
− s∗

)2
)

+
1

2
E

[

ηj
(

Gj(ŝτj )
)2
]

. (7)

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Chen, Shi, and Duenyas: Optimal Learning Algorithms for Stochastic Inventory Systems with Random Capacities 25

Combining (6) and (7), we have

J
∑

j=1

E
[

∇Θ(ŝτj )(ŝτj − s∗)
]

≤
J
∑

j=1

(

1

2E[ηj]

(

E
(

ŝτj − s∗
)2 −E

(

ŝτj+1
− s∗

)2
)

+
1

2
E

[

ηj
(

Gj(ŝτj )
)2
]

)

=
1

2E[η1]
E (ŝτ1 − s∗)

2 − 1

2E[ηj]
E
(

ŝτj+1
− s∗

)2
+

1

2

J
∑

j=2

(

1

E[ηj]
− 1

E[ηj−1]

)

E
(

ŝτj − s∗
)2

+
J
∑

j=1

E

[

ηj
(

Gj(ŝτj )
)2
]

2

≤ 2s̄2

(

1

2E[η1]
+

1

2

J
∑

j=2

(

1

E[ηj]
− 1

E[ηj−1]

)

)

+
E[
(

Gj(ŝτj )
)2
]

2

J
∑

j=1

E[ηj]

=
s̄2

E[ηJ ]
+

E[
(

Gj(ŝτj )
)2
]

2

J
∑

j=1

E[ηj]

≤ K1

√
T ,

where the last inequality holds due to Lemma 4 (the bounded second moment of G(·)) and

J
∑

j=1

E[ηj] = γ
J
∑

j=1

E



1/

√

√

√

√

j
∑

i=1

li



≤ γ
T
∑

t=1

1/
√
t≤ 2γ

√
T .

5.3. Proof of Proposition 5

Proposition 5 provides an upper bound on the production cycle cost difference between using the

actual implemented target level sτj and using the virtual target level ŝτj . The main idea of this

proof on a high level is to set up an upper bounding stochastic process that resembles the waiting

time process of a GI/GI/1 queue. A similar argument appeared Huh and Rusmevichientong (2009)

and Shi et al. (2016). There are two differences. First, the mapping to the waiting time process is

more involved in the presence of random capacities. In the above two papers, the resulting level

is always higher than the target level, whereas the resulting level could be either higher or lower

than the target level in our setting. Second, the present paper needs to bound the difference in

cycle target levels (relying on Lemmas 3 and 4), rather than per-period target levels.

By the definition of production cycle cost (3), we have

E
[

Θ(sτj )−Θ(ŝτj )
]

= E





τj+1−1
∑

t=τj

[

h
(

sτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − sτj ∧ (xt +Ut)
)+
]
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−
τj+1−1
∑

t=τj

[

h
(

ŝτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − ŝτj ∧ (xt +Ut)
)+
]





≤ E





lj−1
∑

t=1

(h∨ b)|sτj − ŝτj |



≤E[lj](h∨ b)|sτj − ŝτj |,

where the second inequality holds due to the Wald’s Theorem using the fact that lj is independent

of sτj and ŝτj , and the first inequality follows from the fact that for any t∈ [τj, τj+1 − 1], we have

E

[[

h
(

sτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − sτj ∧ (xt +Ut)
)+
]

−
[

h
(

ŝτj ∧ (xt +Ut)−Dt

)+
+ b
(

Dt − ŝτj ∧ (xt +Ut)
)+
]]

≤ E

[

h
(

sτj ∧ (xt +Ut)− ŝτj ∧ (xt +Ut)
)+

+ b
(

ŝτj ∧ (xt +Ut)− sτj ∧ (xt +Ut)
)+
]

≤ (h∨ b)
∣

∣sτj − ŝτj
∣

∣ .

Thus, to prove Proposition 5, it suffices to prove

E

[

J
∑

j=1

Θ(sτj )−
J
∑

j=1

Θ(ŝτj )

]

≤E[lj](h∨ b)E

[

J
∑

j=1

|sτj − ŝτj |
]

≤O(
√
T ).

Next, we consider an auxiliary stochastic process (Zj | j ≥ 0) defined by

Zj+1 =



Zj +
γλj

√

∑j

t=1 lt

− νj





+

, (8)

where the random variables λj = (h∨b)lj, and νj =
∑τj+1

t=τj+1Ut−
∑τj+1−1

t=τj
Dt, and Z0 = 0. Moreover,

since we know that in period τj+1, the production cycle ends, we must have

νj =

τj+1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt ≥ 0.

Now we want to relate |ŝτj −sτj | to the stochastic process defined above. We can see from the DRC

algorithm that the only situation when the virtual target level cannot be achieved is when ŝτj > sτj .

When ŝτj ≤ sτj , we can salvage extra inventory and achieve the virtual target level. Therefore, we

relate |ŝτj − sτj | with the stochastic process Zj.

Lemma 5. For any j ≥ 1,

E

[

J
∑

j=1

|sτj − ŝτj |
]

≤E

[

J
∑

j=1

Zj

]

,

where {Zj, j ≥ 1} is the stochastic process we define above.
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Proof of Lemma 5. All the stochastic comparisons within this proof are with probability one.

When ŝτj+1
< xτj+1

+Uτj+1
, we have ŝτj+1

− sτj+1
= 0≤ Zj+1. When ŝτj+1

> xτj+1
+Uτj+1

, we have

sτj+1
= xτj+1

+Uτj+1
= sτj −

∑τj+1−1

t=τj
Dt +

∑τj+1−1

t=τj+1 Ut +Uτj+1. Therefore, we have

∣

∣ŝτj+1
− sτj+1

∣

∣

= ŝτj+1
− sτj+1

=Proj[0,s̄]
(

ŝτj − ηjGj(ŝτj )
)

− sτj+1
≤
∣

∣Proj[0,s̄]
(

ŝτj − ηjGj(ŝτj )
)∣

∣− sτj+1

≤
∣

∣ŝτj − ηjGj(ŝτj )
∣

∣− sτj +





τj+1−1
∑

t=τj

Dt −
τj+1−1
∑

t=τj+1

Ut



−Uτj+1

≤
∣

∣ŝτj − sτj − ηjGj(ŝτj )
∣

∣+





τj+1−1
∑

t=τj

Dt −
τj+1−1
∑

t=τj+1

Ut



−Uτj+1

≤
∣

∣ŝτj − sτj
∣

∣+
∣

∣ηjGj(ŝτj )
∣

∣−





τj+1−1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt





≤
∣

∣ŝτj − sτj
∣

∣+ ηj(h∨ b) · lj −





τj+1−1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt



 ,

where the first equality holds because following the DRC algorithm, we always have sτj ≤ ŝτj . The

third inequality holds because sτj is always nonnegative. This is because the virtual target level

is truncated to be nonnegative all the time, and we update the actual implemented target level

when the production cycle ends, which means after the previous actual implemented target level

is achieved. Since s1 ≥ 0, sτj ≥ 0 for all j. The fourth inequality holds because of the triangular

inequality and the last inequality holds because |Gj(ŝτj )| ≤ (h∨ b) · lj.

Therefore, from the above claim we have

∣

∣sτj+1
− ŝτj+1

∣

∣≤



|sτj − ŝτj |+ ηj(h∨ b)lj −





τj+1−1
∑

t=τj+1

Ut −
τj+1−1
∑

t=τj

Dt









+

.

Comparing to (8), we have

ηj(h∨ b)lj ≤
γλj

√

∑j

t=1 lt

,

and since s1− ŝ1 = 0, it follows, from the recursive definition of Zj, that |sτj+1
− ŝτj+1

| ≤Zj+1 holds

with probability one. Summing up both sides of the inequality completes the proof. Q.E.D.

We observe that the stochastic process Zj is very similar to the waiting time in aGI/GI/1 queue,

except that the service time is scaled by γ/
√

∑j

i=1 li in each production cycle j. Now consider a
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GI/GI/1 queue (Wj | j ≥ 0) defined by the following Lindley’s equation: W0 = 0, and

Wj+1 = [Wj +λj − νj]
+
, (9)

where the sequences λj and νj consist of independent and identically distributed random variables

(only dependent upon the distributions of D and U). Let ϕ0 = 0, ϕ1 = inf{t≥ 1 :Wj = 0} and for

t≥ 1, ϕt+1 = inf{t > ϕt :Wj = 0}. Let Bt = ϕt −ϕt−1. The random variable Wj is the waiting time

of the jth customer in the GI/GI/1 queue, where the inter-arrival time between the jth and j+1th

customers is distributed as νj, and the service time is distributed as λj. Then, Bt is the length of

the tth busy period. Let ρ= E[λ1]/E[ν1] represent the system utilization. Note that if ρ < 1, then

the queue is stable, and the random variable Bt is independent and identically distributed.

We invoke the following result from Loulou (1978) to bound E[Bt], the expected busy period of

a GI/GI/1 queue with inter-arrival distribution ν and service time λ.

Lemma 6 (Loulou (1978)). Let Xj = λj − νj, and α=−E[X1]. Let σ
2 be the variance of X1. If

E[X1]
3 = β <∞, and ρ< 1,

E[B1]≤
σ

α
exp

(

6β3

σ3
+

α

σ

)

.

For each n≥ 1, let the random variable i(n) denote the index t such that Bt contains n. This

means that the nth customer is within the Bi(n) busy period. Since Bt is i.i.d., we know that

E[Bi(n)] =E[Bt] =E[B1].

Lemma 7. For any period t≥ 1, we have

E

[

J
∑

j=1

Zj

]

≤ 2γ(h∨ b)E[B1]
√
T .

Proof of Lemma 7. As defined above, the stochastic process Zj+1 =

[

Zj +
γλj

√

∑j
i=1

li

− νj

]+

. Since

Zj can be interpreted as the waiting time in the GI/GI/1 queueing system, we can rewrite Zj as

Zj =

j
∑

j′=1





γλj′
√

∑j′

i=1 li

− νj′



1
[

j′ ∈Bi(j)

]

≤
j
∑

j′=1

γλj′
√

∑j′

i=1 li

1
[

j′ ∈Bi(j)

]

. (10)

We then bound the total waiting time of sequence Zj by only considering the cumulative service

times as follows.

E

[

J
∑

j=1

Zj

]

= E





J
∑

j=1

j
∑

j′=1

γλj′
√

∑j′

i=1 li

1[j′ ∈Bi(j)]



≤E





J
∑

j=1

J
∑

j′=1

γ(h∨ b)lj′
√

∑j′

i=1 li

1[j′ ∈Bi(j)]
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≤ E





J
∑

j′=1

γ(h∨ b)lj′
√

∑j′

i=1 li

J
∑

j=1

1[j′ ∈Bi(j)]



=E





J
∑

j′=1

γ(h∨ b)lj′
√

∑j′

i=1 li

Bi(j′)



≤E

[

T
∑

t=1

γ(h∨ b)√
t

Bi(t)

]

,

where the last inequality holds because

J
∑

j′=1

lj′
√

∑j′

i=1 li

≤
T
∑

t=1

1√
t
, where T =

J
∑

j′=1

lj′ .

Thus, we have

E

[

J
∑

j=1

Zj

]

≤E

[

T
∑

t=1

γ(h∨ b)√
t

Bi(t)

]

= γ(h∨ b)E

[

T
∑

t=1

1√
t

]

E[Bi(t)]≤ 2γ(h∨ b)
√
TE[B1], (11)

where the last inequality follows from the fact that
∑T

t=1
1√
t
≤ 2

√
T − 1. Combining (10) and (11)

completes the proof. Q.E.D.

Combining Lemmas 5 and 7, we have

E

[

J
∑

j=1

Θ(sτj )−
J
∑

j=1

Θ(ŝτj )

]

≤ E

[

J
∑

j=1

γ(h∨ b)(ŝτj − sτj )

]

≤ γ(h∨ b)E[l1]E

[

J
∑

j=1

Zj

]

≤ 2γ(h∨ b)2E[l1]E[B]
√
T ,

where both E[B] and E[l1] are bounded constants. This completes the proof for Proposition 5.

5.4. Proof of Proposition 6

Proposition 6 provides an upper bound on the cumulative production and salvaging costs incurred

by adjusting the production cycle target levels. The main idea of this proof on a high level is to

use the fact that the cycle target levels of the actual implemented system are getting closer to the

ones of the virtual system over time, and each change in the cycle target level can be sufficiently

bounded, resulting in an upper bound on the cumulative production and salvaging costs.

E

[

J
∑

j=1

c
(

sτj+1
− sτj

)+

]

≤E

[

J
∑

j=1

c
(

ŝτj+1
− sτj

)+

]

= E

[

J
∑

j=1

c
(

Proj[0,s̄]
(

ŝτj − ηj ·Gj(ŝτj )
)

− sτj
)+

]

≤E

[

J
∑

j=1

c
((

ŝτj − ηj ·Gj(ŝτj )
)

− sτj
)+

]

≤ E

[

J
∑

j=1

c
∣

∣ŝτj − sτj
∣

∣+
J
∑

j=1

c
∣

∣ηj ·Gj(ŝτj )
∣

∣

]

≤K4

√
T ,
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where K4 is some positive constant. The result trivially holds if sτj+1
≤ sτj . Now, consider the case

where sτj+1
> sτj , i.e., the firm produces. The first inequality holds because if the firm produces, we

must have sτj+1
≤ ŝτj+1

by the construction of DRC. The second inequality holds because sτj ≥ 0.

The third inequality holds by the triangular inequality. The last inequality is due to the fact that
∑J

j=1

∣

∣ŝτj − sτj
∣

∣≤O(
√
T ) from Proposition 5, and

J
∑

j=1

c
∣

∣ηj ·Gj(ŝτj )
∣

∣≤ cγ(h∨ b)
J
∑

j=1

lj
√

∑j

i=1 li

≤ 2cγ(h∨ b)
√
T .

Similarly,

E

[

J
∑

j=1

θ(sτj − sτj+1
)+

]

=E

[

J
∑

j=1

θ(sτj − ŝτj+1
)+

]

= E

[

J
∑

j=1

θ
(

sτj −Proj[0,s̄]
(

ŝτj − ηj ·Gj(ŝτj )
))+

]

≤E

[

J
∑

j=1

θ
(

sτj −
(

ŝτj − ηj ·Gj(ŝτj )
))+

]

≤ E

[

J
∑

j=1

θ
∣

∣ŝτj − sτj
∣

∣+
J
∑

j=1

θ
∣

∣ηj ·Gj(ŝτj )
∣

∣

]

≤K5

√
T ,

where K5 is some positive constant. The result trivially holds if sτj ≤ sτj+1
. Now, consider the case

where sτj > sτj+1
, i.e., the firm salvages. The first equality holds because if the firm salvages, we

must have sτj+1
= ŝτj+1

by the construction of DRC. The first inequality holds because s̄≥ sτj . The

second inequality holds by the triangular inequality. The last inequality follows the same idea as

in the first part of this section.

Combing the above two parts completes the proof of Proposition 6.

Finally, Theorem 1 is a direct consequence of Propositions 4, 5, and 6, which gives us the desired

regret upper bound.

6. Numerical Experiments

We conduct numerical experiments to demonstrate the efficacy of our proposed DRC algorithm. To

the best of our knowledge, we are not aware of any existing learning algorithms that are applicable

to random capacitated inventory systems. Thus, we have designed two simple heuristic learning

algorithms (that are intuitively sound and practical), and use them as benchmarks to validate the

performance of the DRC algorithm. Our results show that the performance of the DRC algorithms

is superior to these two benchmarking heuristics both in terms of consistency and convergence rate.

All the simulations were implemented on an Intel Xeon 3.50GHz PC.
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6.1. Design of Experiments

We conduct our numerical experiments using a normal distribution for the random demand and a

mixture of two normal distributions for the random capacity. More specifically, we set the demand

to be N(10,32). We test four different capacity distributions, namely, a mixture of 20% N(5,12)

and 80% N(14,42), a mixture of 20% N(5,12) and 80% N(17,52), a mixture of 20% N(5,12)

and 80% N(20,62), and also a mixture of 20% N(5,32) and 80% N(17,52). The distributions

correspond to environments where the product capacity is subject to downtime. Clearly, in a

production environment, capacity may be random even if no significant downtime occurs (e.g., due

to variations in operator speed). However, machine downtime can significantly impact capacity.

These examples correspond to situations where the production system experiences downtime that

affects capacity with 20% probability. (We have experimented with other examples of downtime

and obtained similar results.)

The production cost c = 10, and the salvaging value is set to be half of the production cost,

i.e., θ = 5. The backlogging cost is linear in backorder quantity, with per-unit cost b = 10, and

the holding cost is 2% per period of the production cost, i.e., h = 0.2. We set the time horizon

T = 1000, and compare the average cost of our DRC algorithm with that of the two benchmarking

heuristic algorithms (described below) as well as the clairvoyant optimal cost over 1000 periods.

Clairvoyant Optimal Policy: The clairvoyant optimal policy is a stationary policy, given

that the firm knows both the demand and capacity distributions at the beginning of the planning

horizon. The average cost is calculated by averaging 1000 runs over 1000 periods.

Benchmarking Heuristic 1: We start with an arbitrary inventory level s1 and start the first

production cycle. For t≥ 1, we keep the target level st = sj the same during one production cycle

j ≥ 1. If the inventory level yt reaches sj, we claim that the jth production cycle ends and then

we collect all the past observed demand data to form an empirical demand distribution and all

the past observed capacity data (except the capacity data obtained at the end of each production

cycle) to form an empirical capacity distribution. We omit the capacity data obtained at the end

of each production cycle because we might not produce at full capacity (when the previous target

level is achieved). Then we treat the updated empirical demand and capacity distributions as true

distributions, and derive the long-run optimal target level sj+1 for the subsequent cycle j+1. Note

that the long-run optimal target level (with well-defined input demand and capacity distributions)

can be computed using the detailed computational procedure described in Ciarallo et al. (1994).

The average cost is calculated by averaging 1000 runs over 1000 periods.

Benchmarking Heuristic 2: We start with an arbitrary inventory level s1, and keep the target

level st = sj the same during one production cycle j ≥ 1. We still update the empirical demand
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distribution at the end of each production cycle using all past observed demand data. However, in

the first N = 10 periods, we always try to produce up to the maximum capacity ū, and we form

the empirical capacity distribution using only these N full capacity sample points, and treat the

empirical capacity distribution as the true capacity distribution for the rest of decision horizon.

At the end of each production cycle, we still collect all the past observed demand data to form an

empirical demand distribution, and similar to heuristic 1, derive the long-run optimal target level

for the subsequent cycle together with the empirical capacity distribution. In other words, in the

first N periods, we always produce up to the full capacity instead of the target level to get true

information of the capacity, and after N periods, we carry out a regular modified base-stock policy.

The average cost is calculated by averaging 1000 runs over 1000 periods. We have experimented

with N values different than 10 and our results are similar to those we report below.

6.2. Numerical Results and Findings

The numerical results are presented in Figure 5. We observe that Heuristic 1 is inconsistent, i.e., it

fails to converge to the clairvoyant optimal cost. This is because even if we collect all the capacity

data only when we produce at full capacity, the empirical distribution formed by these data is still

biased (as the capacity data we observe is smaller than the true capacity). Heuristic 2 performs

better than Heuristic 1, but still suffers from inconsistency.

Comparing to the benchmarking heuristic algorithms, the DRC algorithm converges to the clair-

voyant optimal cost consistently and also at a much faster rate. We can also observe that when the

capacity utilization (defined as the mean demand over the mean capacity) increases, the conver-

gence rate slows down. This is because when the capacity utilization is high, it generally takes more

periods for the system to reach the previous target level, resulting in longer production cycle length

and slower updating frequency. Finally, we find that increasing the variability of distributions does

not affect the performance of the DRC algorithm.

6.3. Extension to the Discounted Cost Case

We also conduct numerical experiments for the discounted cost case. More specifically, we choose

the demand to be N(10,32) and the production capacity to be a mixture of 20% N(5,12) and

80% N(14,42). The total cost can be written as
∑T

t=1α
tΩ(xt, st) where 0< α< 1 is the discount

factor and Ω(xt, st) is the single period cost. We compare our DRC algorithm with the optimal

policy and two benchmarking heuristics under α= 0.995,0.99,0.97,0.95. The production, salvaging,

backlogging, and holding costs are kept the same as the previous numerical experiment, i.e., c=
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Figure 5 Computational performance of the DRC algorithm (the average cost Case)

10, θ = 5, b = 10, h = 0.2. We compare the total cost up to T = 1000 periods. To adapt our DRC

algorithm to the discounted cost case, we slightly modify our updating strategy in Step 1 as follows:

Gk(ŝτj ) =







αt−τjh, if ŝτj ∧ (x̂k +uk)≥ dk,

−αt−τjb, otherwise.

where t− τj is the time elapsed counting from the beginning of the current production cycle. The

numerical results are presented in Figure 6. We observe that the DRC algorithm clearly outperforms

the two benchmarking heuristics in terms of the total discounted cost.
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Figure 6 Computational performance of the DRC algorithm (the discounted cost case)

7. Concluding Remark

In this paper, we have proposed a stochastic gradient descent type of algorithm for the stochastic

inventory systems with random production capacity constraints, where the capacity is censored.

Our algorithm utilizes the fact that the clairvoyant optimal policy is the extended myopic policy

and updates the target inventory level in a cyclic manner. We have shown that the average T -

period cost of our algorithm converges to the optimal cost at the rate of O(1/
√
T ), which is the

best achievable convergence rate. To the best of our knowledge, our paper is the first paper to

study learning algorithms for stochastic inventory systems under uncertain capacity constraints.

We have also compared our algorithm with two straw heuristic algorithms that are easy to use,

and we have shown that our proposed algorithm performs significantly better than the heuristics in

both consistency and efficiency. Indeed, our numerical experiments have shown that with censored

capacity information, the heuristics may not converge to the optimal policy.
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We leave an important open question on how to design an efficient and effective learning algo-

rithm for the capacitated inventory systems with lost-sales and censored demand. In the present

paper, with backlogged demand, the length of the production cycle is independent of the tar-

get level, and therefore the production cycles in our proposed algorithm and the optimal system

are perfectly aligned. With lost-sales and censored demand, the length of the production cycle

becomes dependent on the target level, and comparing any two feasible policies becomes much

more challenging, which would require significantly new ideas and techniques.

Finally, we would also like to remark the connection between our online learning algorithm and

deep reinforcement learning (DRL) algorithms. Needless to say, DRL is very popular nowadays

and can be used to solve stochastic problems involving learning. We refer interested readers to the

recent work by Gijsbrechts et al. (2019) that employed DRL in various inventory control settings.

The major differences of DRL and our online learning algorithms are as follows: (1) DRL requires

a vast amount of data at the beginning to build the deep neural network, and therefore is suitable

for inventory system which has substantial amount of history data. On the other hand, our online

learning algorithm assumes very limited information at the beginning, and learns to optimize from

scratch. Second, DRL uses the stochastic gradient descent method to carry out backprorogation,

but it is almost impossible to interpret how the decisions are made in each period. By contrast, our

online learning algorithm is highly interpretable. Third, the efficiency and accuracy of DRL highly

rely on the structure of deep neural network and the choice of hyper-parameters, which requires

much crafting and fine-tuning. It is harder to obtain theoretical convergence results. Overall, we

think that DRL is a very powerful method to solve complex problems where there is a substantial

amount of data and the decision makers can accept the results from a black-box procedure.
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Appendix. Technical Proofs for §3

Proof of Proposition 1

To prove the target interval policy, we write the optimal single-period cost function as follows.

E [Ω(x, s)] =min

{

min
s≥x

E [Ω+(x, s)] ,min
s<x

E [Ω−(x, s)]

}

, (12)
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where

E [Ω+(x, s)] = c · (1−FU(s−x))(s−x)+ c ·
∫ s−x

0

rfU(r)dr

+(1−FU(s−x))

[∫ ∞

s

b(z− s)fD(z)dz+

∫ s

0

h(s− z)fD(z)dz

]

+

∫ s−x

0

∫ ∞

x+r

b(z−x− r)fD(z)dzfU(r)dr+

∫ s−x

0

∫ x+r

0

h(x+ r− z)fD(z)dzfU(r)dr, (12a)

E [Ω−(x, s)] = θ · (s−x)+

[∫ ∞

s

b(z− s)fD(z)dz+

∫ s

0

h(s− z)fD(z)dz

]

. (12b)

Notice that we produce up to s when s≥ x, and salvage down to s when s < x.

We shall explain that in (12a) we condition on the event s≤ (x+U), which has a probability of

(1−FU(s− x)), we have s∧ (x+U) = s and apply the standard newsvendor integral E[s−D]+ +

E[D− s]+ =
∫ s

0
(s− z)dz+

∫∞
s
(z− s)dz. Similarly conditioning on the event s > (x+U), which has

a probability of FU(s−x) =
∫ s−x

0
fU(r)dr, we have s∧ (x+U) = x+U and also apply the standard

newsvendor integral. Allowing for salvaging, the target level s can always be achieved in (12b).

To show a target interval policy is optimal, we first show that (12a) and(12b) have global min-

imizers s∗l and s∗u, respectively. Then, we show that 0≤ s∗l ≤ s∗u <∞. Finally, we discuss different

strategies based on different starting inventory levels to imply that a target interval policy is opti-

mal.

By applying the Leibniz integral rule, the first partial derivative of (12a) with respect to s is

∂

∂s
E [Ω+(x, s)] = (1−FU(s−x))

[

c+

∫ ∞

s

∂

∂s
b(z− s)fD(z)dz+

∫ s

0

∂

∂s
h(s− z)fD(z)dz

]

.

It can be easily solved that the solution to the first-order optimality, denoted by s∗l , is

s∗l = F−1
D

(

b− c

h+ b

)

and

c+

∫ ∞

s∗
l

∂

∂s
b(z− s)fD(z)dz+

∫ s∗l

0

∂

∂s
h(s− z)fD(z)dz = 0. (13)

Then it is straightforward to see that ∂E [Ω+(x, s)]/∂s < 0 for s < s∗l , and ∂E [Ω+(x, q)]/∂q > 0 for

s > s∗l . Thus, we conclude that s∗l is the global minimum of E [Ω+(x, s)].

Moreover, the second partial derivative of (12a) with respect to s is

∂2

∂2s
E [Ω+(x, s)]

= cfU(s−x)+ (1−FU(s−x))

[∫ ∞

s

∂2

∂2s
b(z− s)fD(z)dz+

∫ s

0

∂2

∂2s
h(s− z)fD(z)dz
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+fD(s)(h+ b)

]

− fU(s−x)

[∫ ∞

s

∂

∂s
b(z− s)fD(z)dz+

∫ s

0

∂

∂s
h(s− z)fD(z)dz

]

= (1−FU(s−x)) [(h+ b)fD(s)]− fU(s−x) [(h+ b)FD(s)− b+ c] .

It is easy to see when s≤ s∗l ,

(1−FU(s−x)) [(h+ b)fD(s)]> 0 and fU(s−x) [(h+ b)FD(s)− b+ c]≤ 0.

Therefore, when s≤ s∗l , ∂
2
E [Ω+(x, s)]/∂s

2 ≥ 0, which suggests that E [Ω+(x, s)] is convex in s≤ s∗l .

Similarly, the first partial derivative of (12b) with respect to s is

∂

∂s
E [Ω−(x, s)] = θ+

∫ ∞

s

−bfD(z)dz+

∫ s

0

hfD(z)dz (14)

and it is straightforward to check
∂2

∂2s
E [Ω−(x, s)]≥ 0,

which implies that E [Ω−(x, s)] is convex in s. Let s∗u be the solution to the first-order condition

∂E [Ω−(x, s)]/∂s= 0, and then the solution s∗u is the global minimum of E [Ω−(x, s)].

Since θ≤ c, by comparing (13) and (14), we have s∗l ≤ s∗u. The optimal strategy is as follows.

1. When s∗l ≤ x≤ s∗u, the firm decides to do nothing.

2. When x< s∗l , the firm decides to produce up to s∗l (as much as possible).

3. When s∗u <x, the firm decides to salvage down to s∗u.

The three cases discussed above can be readily illustrated in Figure 1. We sketch (12a) and (12b)

as functions of s= x+q. The two curves are labeled “q≥ 0” and “q < 0”, respectively. We note that

(12a) and (12b) intersect at q= 0, as discussed earlier. The solid curve is the effective cost function

Ω(s), which consists of the curve “q≥ 0” for s≥ x, and the curve “q < 0” for s < x. Q.E.D.

Proof of Proposition 2

We first prove Proposition 2(a). Define G∗
t (xt) be the optimal cost from period t to period T with

starting inventory xt, then the optimality equation for the system can be written as follows.

G∗
t (xt)≡min

{

min
st≥xt

Gt+(xt, st), min
st<xt

Gt−(xt, st)

}

, (15)

where

Gt+(xt, st) =E [Ω+(xt, st)] +

∫ ∞

0

∫ st−xt

0

G∗
t+1(xt + r− z)fU(r)drfD(z)dz

+(1−FU(st −xt))

∫ ∞

0

G∗
t+1(st − z)fD(z)dz, (15a)
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Gt−(xt, st) =E [Ω−(xt, st)] +

∫ ∞

0

G∗
t+1(st − z)fD(z)dz, (15b)

where E [Ω+(xt, st)] and E [Ω−(xt, st)] represent the cost functions of period t with the produce-up-

to decision and the salvage-down-to decision, respectively, as in Proposition 1.

Our goal is to prove that a target interval policy is optimal for any period t, i.e., there exist two

threshold levels s∗t,l and s∗t,u such that the optimal target level s∗t satisfies

s∗t =



















s∗t,l, xt < s∗t,l,

xt, s∗t,l ≤ xt ≤ s∗t,u,

s∗t,u, xt > s∗t,u.

Lemma 8. If G∗
t+1(·) is convex, then G∗

t (·) is also convex. Also, a target interval policy is optimal

in period t.

Proof. We first show that a target interval policy is optimal in period t. The cost function for

period t consists of (15a) and (15b). When st ≥ xt, the cost function is (15a), and when st <xt, the

cost function is (15b). Since G∗
t+1(·) and E [Ω−(xt, st)] are convex in st, then we have that (15b) is

convex in st and we let s∗t,u be the global minimum for (15b). For (15a), the first-order condition is

∂

∂st
Gt+(xt, st) =

∂

∂st
E [Ω+(xt, st)] + (1−FU(st −xt))

∫ ∞

0

G∗′
t+1(st − z)fD(z)dz = 0. (16)

Let s∗t,l be the solution to (16). Following the same arguments as in Proposition 1 and the convexity

of G∗
t+1(·) and E [Ω+(xt, st)] for st ≤ s∗t,l, we conclude that s∗t,l is the global minimum for (15a).

Also, since θ≤ c, we have that s∗t,l ≤ s∗t,u. Thus, a target interval policy is optimal by following the

three cases discussed in the single-period problem in Proposition 1.

Next, we show that G∗
t (xt) is convex in xt. Given s∗t,l and s∗t,u, we can readily write G∗

t (xt) with

respect to the starting inventory xt as follows.

G∗
t (xt) =min{minst≥xt Gt+(xt, st),minst<xt Gt−(xt, st)}=







































































E
[

Ω+(xt, s
∗
t,l)
]

+

∫ ∞

0

∫ s∗t,l−xt

0

G∗
t+1(xt + r− z)fU(r)drfD(z)dz

+(1−F (s∗t,l −xt))

∫ ∞

0

G∗
t+1(s

∗
t,l − zt)fD(z)dz, xt < s∗t,l, (17a)

∫ ∞

xt

b(z−xt)fD(z)dz+

∫ xt

0

h(xt − z)fD(z)dz

+

∫ ∞

0

G∗
t+1(xt − z)fD(z)dz, s∗t,l ≤ xt ≤ s∗t,u, (17b)

E
[

Ω−(xt, s
∗
t,u)
]

+

∫ ∞

0

G∗
t+1(s

∗
t,u − z)fD(z)dz, s∗t,u <xt, (17c)
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where s∗t,l and s∗t,u are the global minima defined earlier.

By the Leibniz integral rule, the second derivatives of (17a), (17b), and (17c) with respect to xt

are
∂2

∂2xt

G∗
t (xt) =



































∂2

∂2xt

E
[

Ω+(xt, s
∗
t,l)
]

+

∫ ∞

0

∫ s∗t,l−xt

0

G∗′′
t+1(xt + r− z)fU(r)drfD(z)dz, xt < s∗t,l, (18a)

(h+ b)fD(xt)+

∫ ∞

0

G∗′′
t+1(xt − z)fD(z)dz, s∗t,l ≤ xt ≤ s∗t,u, (18b)

∂2

∂2xt

E
[

Ω−(xt, s
∗
t,u)
]

+

∫ ∞

0

G∗′′
t+1(s

∗
t,u − z)fD(z)dz, s∗t,u <xt. (18c)

Because E
[

Ω+(xt, s
∗
t,l)
]

and E
[

Ω−(xt, s
∗
t,u)
]

are convex (which has been derived in Proposition 1),

and G∗′′
t+1(·) is positive (by the inductive assumption), we have that (18a), (18b), and (18c) are all

positive. This means that G∗
t (xt) is convex on these three intervals separately. It remains to show

that G∗
t (xt) is convex on the entire domain by carefully checking the connecting points between

these intervals. We have

lim
δ→0−

G∗
t (s

∗
t,l)−G∗

t (s
∗
t,l − δ)

δ
= (h+ b)FD(s

∗
t,l)− b+

∫ ∞

0

G∗′
t+1(s

∗
t,l − z)fD(z)dz,

lim
δ→0+

G∗
t (s

∗
t,l + δ)−G∗

t (s
∗
t,l)

δ
= (h+ b)FD(s

∗
t,l)− b+

∫ ∞

0

G∗′
t+1(s

∗
t,l − z)fD(z)dz,

lim
δ→0−

G∗
t (s

∗
t,u)−G∗

t (s
∗
t,u − δ)

δ
= (h+ b)FD(s

∗
t,u)− b+

∫ ∞

0

G∗′
t+1(s

∗
t,u − z)fD(z)dz,

lim
δ→0+

G∗
t (s

∗
t,u + δ)−G∗

t (s
∗
t,u)

δ
= (h+ b)FD(s

∗
t,u)− b+

∫ ∞

0

G∗′
t+1(s

∗
t,u − z)fD(z)dz.

Thus, we can see that the first derivatives at the connecting points are the same, and therefore

G∗
t (·) is continuously differentiable and convex on the entire domain. Q.E.D.

By definition, we know that G∗
T+1(xT+1) =−θ(xT+1) is convex. Thus, by Lemma 8 and induction,

we conclude that the target interval policy is optimal for any period t = 1, . . . , T . This proves

Proposition 2(a).

We then prove Proposition 2(b). The single-period cost and derivative are exactly the same for

both the produce-up-to and salvage-down-to cases. The optimality equation for infinite horizon

case can be written as

J(x) =min

{

min
s≥x

G+(x, s),min
s<x

G−(x, s)

}

.

where

G+(x, s) =E [Ω+(x, s)] +α

∫ ∞

0

∫ s−x

0

J(x+ r− z)fU(r)drfD(z)dz
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+α(1−F (s−x))

∫ ∞

0

J(s− z)fD(z)dz, (19a)

G−(x, s) =E [Ω−(x, s)] +α

∫ ∞

0

J(s− z)fD(z)dz, (19b)

where 0≤ α< 1 is the discount factor. Our goal is to prove that a target interval policy is optimal,

i.e., there are two threshold levels s∗l and s∗u such that the optimal target level is s∗l when x < s∗l

and s∗u when x > s∗u and x otherwise. Similar to Lemma 8, we can show that J(x) is convex in

the starting inventory x. The remainder argument is identical to that of Proposition 2(a). For the

infinite horizon average cost problem, it suffices to verify the set of conditions in Schäl (1993),

ensuring the limit of the discounted cost optimal policy is the average optimal policy as the discount

factor α→ 1 from the below. Verifying these conditions is a standard exercise in the literature, and

thus we omit the details for brevity. This completes the proof. Q.E.D.
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