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Key points

� Right heart catheterization data from clinical records of heart transplant patients are used to
identify patient-specific models of the cardiovascular system.

� These patient-specific cardiovascular models represent a snapshot of cardiovascular function
at a given post-transplant recovery time point.

� This approach is used to describe cardiac function in 10 heart transplant patients, five of which
had multiple right heart catheterizations allowing an assessment of cardiac function over time.

� These patient-specific models are used to predict cardiovascular function in the form of right
and left ventricular pressure-volume loops and ventricular power, an important metric in the
clinical assessment of cardiac function.

� Outcomes for the longitudinally tracked patients show that our approach was able to identify the
one patient from the group of five that exhibited post-transplant cardiovascular complications.

Abstract Heart transplant patients are followed with periodic right heart catheterizations (RHCs)
to identify post-transplant complications and guide treatment. Post-transplant positive outcomes
are associated with a steady reduction of right ventricular and pulmonary arterial pressures, toward
normal levels of right-side pressure (about 20 mmHg) measured by RHC. This study shows that
more information about patient progression is obtained by combining standard RHC measures
with mechanistic computational cardiovascular system models. The purpose of this study is
twofold: to understand how cardiovascular system models can be used to represent a patient’s
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cardiovascular state, and to use these models to track post-transplant recovery and outcome.
To obtain reliable parameter estimates comparable within and across datasets, we use sensitivity
analysis, parameter subset selection, and optimization to determine patient-specific mechanistic
parameters that can be reliably extracted from the RHC data. Patient-specific models are identified
for 10 patients from their first post-transplant RHC, and longitudinal analysis is carried out for five
patients. Results of the sensitivity analysis and subset selection show that we can reliably estimate
seven non-measurable quantities; namely, ventricular diastolic relaxation, systemic resistance,
pulmonary venous elastance, pulmonary resistance, pulmonary arterial elastance, pulmonary
valve resistance and systemic arterial elastance. Changes in parameters and predicted cardio-
vascular function post-transplant are used to evaluate the cardiovascular state during recovery
of five patients. Of these five patients, only one showed inconsistent trends during recovery in
ventricular pressure–volume relationships and power output. At the four-year post-transplant
time point this patient exhibited biventricular failure along with graft dysfunction while the
remaining four exhibited no cardiovascular complications.
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Introduction

Diagnosis and treatment plans for patients with
cardiovascular pathophysiologies are currently being
guided with an increasing number of non-invasive
and minimally invasive clinical measures by statistically
inferring correlations between measurements and
diagnosis/treatment. However, this approach is limited
in scope since the underlying physiological mechanisms
associated with the success or failure of a given treatment
for a given patient cannot be discriminated. One
example is the assessment of cardiovascular function
using right heart catheterization (RHC) measurements
after heart transplants. For this patient group, repeated
RHC measurements of ventricular and pulmonary
arterial pressure are used to monitor post-transplant
pulmonary hypertension, which if not resolved, can lead
to complications in post-transplant recovery (Greenberg
et al. 1985; Bhatia et al. 1987; Young et al. 1987;
Goland et al. 2007). Traditionally, RHC measurements
are used to inform post-transplant treatment and inter-
vention and a close monitoring of these measurements
has been associated with better outcomes. However,
these RHC measurements only describe the upper-level
phenotype of the cardiovascular system and do not
explicitly take advantage of the relationships between
pressure, volume and flow governed by the known
physiology of the cardiovascular system. It has been
suggested (Armitage et al. 1987; Stobierska-Dzierzek et al.
2001) that a complete evaluation of the cardiovascular
system could improve the detection and treatment
of dysfunction in the transplanted heart. The study
presented here builds a patient-specific computational
methodology (Fig. 1) integrating clinical measures and
computing time-varying patient-specific pressures, flows

and volumes, while estimating mechanistic parameters,
which can be incorporated into clinical analyses to guide
treatment and assess the recovery of heart transplant
patients. Many of the estimated mechanistic parameters
and predicted cardiovascular variables obtained with the
computational approach presented here cannot easily be
measured in the clinic.

In addition to the RHC measurements,
echocardiography, magnetic resonance and Doppler
imaging have been used to track the metrics of
post-transplant cardiac function (Sundereswaran et al.
1998; Dandel et al. 2001; Marie et al. 2001; Sun et al.
2005). These non-invasive modalities are always coupled
with RHC measurements in standard clinical protocols
and may not on their own provide sufficient information
needed to improve diagnosis and treatment protocols.
The study by Dandel et al. (2001) utilized tissue Doppler,
to determine the optimal times that RHC measurements
should be made during recovery, while the other studies
focused on identifying a single biomarker or set of
biomarkers from echocardiography which were used
to identify dysfunction and guide therapy. This latter
approach is problematic in two ways. First, if a prospective
biomarker or set of biomarkers does not discriminate
outcomes, another biomarker or set of biomarkers
must be selected, and the process repeated. Second, this
approach ignores the fact that post-transplant recovery
and outcome are multifactorial, involving the function of
the entire cardiovascular system working in conjunction
with the transplanted heart and thus biomarkers focusing
only on the transplanted heart have a reduced chance of
discriminating patient outcome.

To gain more insight into post-transplant recovery of
cardiovascular function, our approach uses mathematical
models to analyse deidentified RHC data from patient

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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electronic health records (EHRs) that also contain
post-transplant clinical outcomes. More specifically, we
employ a mechanistic representation of each patient at
each specific recovery time point using a mathematical
model of the cardiovascular system similar to several pre-
viously developed models (Smith et al. 2004; Lumens
et al. 2009; Beard et al. 2013; Williams et al. 2014). We
personalize the model by calculating initial estimates of
model parameters using information extracted from the
EHR. Next, we use rigorous model analysis techniques
to identify and estimate parameters, minimizing the
least squares error between the model predictions and
data. The final step involves running forward simulations
with the personalized instance of the model predicting
patient-specific dynamics that can be used to inform the
clinical diagnosis and treatment procedure. A vital part of
this analysis is to select the right granularity of the model
informed by the clinical data, and then quantify which
parameters can be estimated given the model and available
RHC data. At this point the RHC data used here does not
contain any pressure waveforms and is not combined with
any direct measures of left ventricular function.

The patient-specific instantiations of the mathematical
model are used to infer the underlying differences
between 10 patients, and then associate how changes in
cardiovascular function are related to clinical outcome.
By integrating our physiological knowledge of the
cardiovascular system with patient-specific data, we are
constraining the system to represent the cardiovascular
state of an individual patient. In addition, since this is a
retrospective analysis, our approach makes it possible to
search for early indicators of positive and negative heart
transplant outcomes.

Of the 10 patients’ datasets obtained, five contain
longitudinal RHC measurements at an additional 3–7
post-transplant time points over the span of up to
13 months. We analyse these longitudinal RHC measures
from these patients to quantify how underlying cardio-
vascular function for each of these five patients is changing
during post-transplant recovery. Finally, the trends in
the predictions of pressure-volume (PV) loops and
ventricular power output for the right and left ventricle
are associated with clinical outcome in each of these five
patients.

Figure 1. Workflow showing patient-specific modeling of cardiovascular function
Retrospective approach where electronic health record data is used to identify a mechanistic model of the closed
loop cardiovascular system thus generating model versions representing the cardiovascular function of each patient
(or patient at different times). These patient-specific instantiations of the model can then be used to understand
differences between the outcomes across populations of patients.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Methods

RHC measures

This study analyses 10 RHC records from heart trans-
plant patients extracted from the clinical data repository
at the University of Washington Medicine Regional Heart
Center. This retrospective data capture was approved by
the Institutional Review Board (IRB) at the University of
Washington and the requirement of informed consent was
waived for the use of the deidentified clinical repository
data used within this study. The data in the repository were
exported from the Mac-Lab Hemodynamic Recording
System (GE Healthcare, Chicago, IL, USA) used in the
University of Washington cardiac catheterization lab.
The repository was queried for RHC datasets from
heart transplant patients with catheterization procedures
performed between 6 March 2014 and 21 March 2016.
Ten patient records were retrieved; of these, five records
contained multiple RHC measures from a period of
4–12 months immediately following the transplant. The
datasets contained 12 clinically measured values: systolic
and diastolic pressure measured in the right ventricle,
pulmonary artery, and systemic arteries; an average
pulmonary capillary wedge pressure, heart rate, cardiac
output, body weight, height and sex, as shown in Table 1.

Mathematical model

Inspired by a previously published cardiovascular
system-level model (Smith et al. 2004), we developed
the mechanistic model used here (schematic shown in
Fig. 2) to study patient-specific cardiovascular function
in heart transplant patients. The objective of this study is
to create a simple model that can simulate the RHC and
systemic arterial blood pressure data. The main differences
between our model and the model by Smith et al. are that
(1) we ignored the right ventricular and left ventricular
pressures’ and volumes’ influence on each other via the
septal wall otherwise known as ventricular–ventricular
interaction (VVI) and (2) we omitted the influence of the
inertance of blood flowing through the four heart valves.
We justified the former using simple sensitivity analysis by
doubling and halving the parameters involved with VVI
around nominal values for several of our patients. Low
sensitivity of the parameters involved with VVI did not
justify the significant increase in model complexity. This
observation agrees with findings in the literature, which
note that VVI mainly impacts left ventricular dynamics
for patients with very high right ventricular pressures and
volumes associated with severe pulmonary hypertension
(Maughan et al. 1981; Gan et al. 2006). Inertance of blood
flowing through the four valves in the heart could be
important for the prediction of waveforms (especially the
aortic pressure waveform). However, the RHC measures

used here are not given as waveforms in the EHR but
are simply provided as maximal and minimal pressures in
systole and diastole, respectively. Therefore, the RHC data
from the EHRs do not contain the information needed to
identify inertance parameters.

The cardiovascular systems model depicted in Fig. 2 is
used to predict blood pressure, flow, and volume in the
heart’s left and right ventricles, and the pulmonary and
systemic arteries and veins. The model is analogous to
several resistor-capacitor electrical components in series
where current is analogous to blood flow Q (ml·s−1),
voltage to pressure P (mmHg), and charge to volume
V (ml). Note, the blood flow Q is directly related to
cardiac output which is the average flow over the period,
T, of the cardiac cycle, i.e. CO = 1

T ∫T
0 Q dt (ml·s−1). In

addition, elastance E (mmHg·ml−1) is the reciprocal of
compliance, which is analogous to capacitance, while R
(mmHg·s·ml−1) represents the resistance to flow within a
compartment. Diodes are used to simulate one-way valves
preventing blood from exiting a ventricle through a closed
aortic, mitral, pulmonary or tricuspid heart valve. The
muscle contraction within the heart is modelled using
a Gaussian activation function defined over one cardiac
cycle as

A(t̃) = e−a(̃t−T/2)2

, (1)

where a is a scaling factor with the value of heart rate
from Table 1 and units of 1 s−2 to make the exponent
unitless, T = 1/H (s), where H is heart rate in beats
per second, is the period of the cardiac cycle and t̃ =
mod(t, T) (s) is the time from the start of the current
cardiac cycle. This relationship creates a symmetrical curve
about T/2 bounded by 0 ≤ A (̃t) ≤ 1 and denotes the
relative contribution of the systolic and diastolic pressure
development during the cardiac cycle. The end-systolic
pressure Pes and volume Ves in the left and right ventricles
are assumed to be linearly related to the end-systolic
ventricular elastance E es via

Pes = E es (Ves − Vd) , (2)

where Vd is the end-systolic volume at zero pressure.
In addition, the end-diastolic pressure Ped is related
non-linearly to the end-diastolic volume Ved by

Ped = P0

[
eλ(Ved−V0) − 1

]
, (3)

where P0 is the pressure at the unstressed volume V0, and
λ (ml−1) specifies the steepness of the exponential PV
relationship in diastole. The pressure in the left ventricle
at any time in the cardiac cycle is calculated by combining
eqns (2) and (3) giving

P (t) = A(t̃)Pes + [1 − A(t̃)] Ped + Pth, (4)

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Table 1. Right heart catheter measurements extracted from the clinical data repository at the University of Washington Medicine
Regional Heart Center

Patient
Prv

systole
Prv

diastole
Ppa

systole
Ppa

diastole
Ppcw

average
Psa

systole
Psa

diastole
CO∗∗

(L/min)
HR∗∗

(bpm)
Weight

(kg)
Height

(cm) Sex

060 36 2 36∗ 14 16 132 79 6.3 69 62 180 M
066 28 1 26 13 8 134 79 7.8 81 120 194 M
233 40 4 35 19 19 149 83 10.3 83 96 172 F
266(1) 37 10 34 14 11 154 81 6.0 90 75 169 M
266(2) 30 6 27 10 9 121 75 6.5 94 71 169 M
266(3) 29 9 30∗ 13 12 115 82 6.1 96 73 169 M
266(4) 27 8 25 10 9 112 69 5.2 92 73 169 M
266(5) 23 5 26∗ 10 8 106 77 5.4 94 75 169 M
266(6) 27 9 28∗ 12 11 119 81 5.9 101 79 169 M
266(7) 22 5 22∗ 8 7 107 76 6.0 102 75 169 M
363(1) 30 7 29∗ 20 12 108 78 4.8 109 80 162 M
363(2) 22 1 21 13 6 119 87 4.1 92 75 162 M
363(3) 25 2 25∗ 17 10 113 73 3.4 108 79 162 M
363(4) 26 1 24 12 7 107 85 4.8 119 79 163 M
456(1) 44 4 35 13 16 104 67 5.5 90 78 170 M
456(2) 42 4 36 14 15 122 75 5.0 86 78 170 M
456(3) 39 2 33 14 13 128 88 4.6 93 75 170 M
456(4) 23 5 24∗ 13 6 130 79 5.0 108 78 170 M
456(5) 37 11 33 18 15 118 78 5.9 93 78 170 M
456(6) 34 12 31 18 14 133 75 5.5 103 73 170 M
456(7) 30 4 24 13 9 110 74 4.7 99 78 170 M
456(8) 28 1 24 9 6 99 63 6.9 100 74 170 M
558(1) 31 3 32∗ 15 14 114 49 7.7 90 101 170 F
558(2) 38 7 33 12 15 124 77 6.1 63 101 170 F
558(3) 34 5 33 14 18 144 85 7.9 71 101 170 F
558(4) 36 1 35 12 16 152 88 7.8 73 103 170 F
558(5) 45 5 44 21 25 125 71 7.8 70 110 170 F
558(6) 28 1 27 10 12 128 79 7.4 69 103 170 F
558(7) 33 2 34∗ 17 12 166 102 7.4 69 103 170 F
572(1) 31 5 30 12 12 116 66 6.4 100 82 180 M
572(2) 29 5 24 7 9 119 72 7.3 97 82 180 M
572(3) 26 2 24 8 7 112 72 6.7 100 82 180 M
572(4) 26 2 23 10 9 109 71 6.5 95 82 180 M
572(5) 28 1 24 10 9 112 73 6.9 90 82 180 M
572(6) 17 4 20∗ 10 10 108 67 6.2 88 83 180 M
572(7) 22 1 16 9 5 122 71 7.1 98 82 180 M
572(8) 19 4 17 9 7 115 73 7.2 97 82 180 M
794 38 6 39∗ 17 21 98 57 6.8 84 44 174 F
839 25 1 18 9 7 135 84 6.1 91 83 170 M

All pressures are given in mmHg. ∗ indicates that when nominal values were calculated, pulmonary artery pressure was adjusted to
be 95% of the pressure in the right ventricle to enforce a pressure drop in the direction of flow. ∗∗Measurements of cardiac output
(CO) and heart rate (HR) are given in conventional units (l min-1) and (bpm), but to keep consistency of units, in the model these are
converted to (ml/s) and (bps). Superscripts on patient number indicates different RHC measurements for a given patient at sequential
recovery timepoints. Subscripts: rv – right ventricle, pa – pulmonary arteries, pcw – pulmonary capillary wedge, sa – systemic arteries

where Pth = 0 is the assumed tissue pressure in the
thoracic cavity. As A(t̃) changes throughout the cardiac
cycle, eqn (4) shifts the contributions of the systolic and
diastolic pressure terms to give the total pressure in the
ventricle. When A(t̃) is equal to 1 the pressure is described
solely by eqn (2) and when equal to 0 by the diastolic PV
curve of eqn (3). Since the pulmonary arteries and veins

are located in the thoracic cavity, the pressure and volume
are related as

P = E V + Pth, (5)

while the majority of the systemic arteries and veins are
outside the thoracic cavity where

P = E V. (6)

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Blood flow in and out of each compartment is
proportional to the difference between the compartment’s
input and output pressures and represented by the fluid
equivalent to Ohm’s Law

Q = Pin − Pout

R
(7)

and conservation of volume, where the change in the
compartmental volume must equal the difference in flow
in and flow out, implying that

dV

dt
= Q in − Q out (8)

for each compartment. To model the one-way heart valves,
we set flow to zero when pressure across the valve indicates
the valve is closed, giving

Q valve =
{

Pin−Pout

R if Pin > Pout

0 otherwise
(9)

for the aortic (av), tricuspid (tc), pulmonary (pv), and
mitral (mt) valves. A list of equations making up the
model is given in Appendix A, and a version of the
model implemented in MATLAB (The MathWorks, Inc.,
Natick, MA) is available at github.com/alcolunga/Heart_
Tx_CVS_Model and at https://wp.math.ncsu.edu/cdg/
publications/.

In summary, the system of equations can be written in
the form

dx

dt
= f (x, t : θ)

y = g (x, t : θ)

x = {
Vlv, Vsa, Vsv, Vrv, Vpa, Vpu

}
θ = {E lv, Vd,lv, P0,lv, λlv, V0,lv, E rv, Vd,rv, P0,rv, λrv, V0,rv,

E pa, E pu, Rpul, Pth, E sa, E sv, Rsys, Rmt, Rav, Rtc , Rpv}
y = {

Prv, Ppa, Ppu, Psa, Q
}
.

Where x are the state variables of the model, t is time, θ
are the model parameters and y are the model outputs,
of which we take the maximum, minimum or average

in order to compare with our clinical data. The data are
expected to match model output as

yd
i = y (ti) + εi, i = 1, . . . , K ,

where K denotes the number of time points, and εi is the
error assumed to be independent identically distributed
random variables with mean E [εi] = 0, covariance
cov(εi, εj ) = 1, and constant variance var(εi) = μ2. The
equations are solved under the assumptions that the
cardiac cycle is initialized to be at end-diastole, i.e. the
volumes in the left and right heart are at their maximum,
while the venous and arterial volumes are initialized at
their average values.

Nominal parameter values

Nominal parameter values for each patient RHC are
determined from the clinical data and literature values
using an approach similar to a previous method for the rat
cardiovascular system (Marquis et al. 2018) but translated
to the human. The nominal parameters and how they are
obtained are shown in Table 2.

Blood volume

In order to compute nominal values of all elastances, the
blood volume distribution in the cardiovascular system
must be estimated. Total blood volume (TBV in ml)
(Nadler et al. 1962) and body surface area (BSA in m2)
(Du Bois & Du Bois, 1916) are calculated as functions of
height (Hgt in cm), weight (BW in kg), and sex as

TBV =

⎧⎪⎪⎨
⎪⎪⎩

(
0.3669 Hgt3 + 0.03219 BW + 0.641

)
1000

for males(
0.3561 Hgt3 + 0.03308 BW + 0.1833

)
1000

for females
(10)

Figure 2. Schematic of closed loop
cardiovascular model used in this study
In the model by Smith et al. (2004) left and
right ventricles interact by accounting for
the dynamic pressure difference across the
septal wall. In the reduced version of the
model used in this study,
ventricular–ventricular interaction along
with inertance of the blood moving through
the four heart valves is omitted.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Table 2. Equations for calculating nominal parameter values

Parameter Units Equation Mean ± STD Reference

Heart Parameters H s−1 heart rate 90.66 ± 12.91
T s H−1 0.33 ± 0.05

Left ventricle E lv mmHg·ml−1 Psa,syst− Pth
Vlv,m−Vd,lvf

1.7 ± 0.6 ∗

Vd,lv ml 10 Williams et al. (2014)
P0,lv mmHg 0.125 ∗∗

λlv ml−1 0.029 ± 0.005 ∗∗

V0,lv ml 12 ∗∗

Right ventricle E rv mmHg·ml−1 Ppa,syst− Pth
Vrv,m−Vd,rvf

0.44 ± 0.23 ∗

Vd,rv ml 9 ∗∗

P0,rv mmHg 0.25 ∗∗

λrv ml−1 0.024 ± 0.004 ∗∗

V0.rv ml 10.8 ∗∗

Pulmonary vasculature E pa mmHg·ml−1 Ppa,syst− Pth
CBVpa

0.32 ± 0.09 ∗

E pu mmHg·ml−1 Ppcw
CBVpu

0.019 ± 0.08 ∗

Rpul mmHg·s·ml−1 Ppa,syst−Ppcw
CO 0.16 ± 0.05 Ohm’s Law/Data

Systemic vasculature E sa mmHg·ml−1 Psa,syst
CBVsa

0.69 ± 0.09 ∗

E sv mmHg·ml−1
1
3 Psv,syst+ 2

3 Psv,diast
CBVsv

0.02 ± 0.01 ∗

Rsys mmHg·s·ml−1 Psa,syst−( 1
3 Psv,syst+ 2

3 Psv,diast)
CO 1.14 ± 0.25 Ohm’s Law/Data

Heart valves Rmt mmHg·s·ml−1 Ppu,diast−Plv,diast
CO 0.0025 ± 0.0009 Ohm’s Law/Data

Rav mmHg·s·ml−1 Plv,syst−Psa,syst
CO 0.029 ± 0.006 Ohm’s Law/Data

Rtc mmHg·s·ml−1 Psv,diast−Prv,diast
CO 0.0011 ± 0.0008 Ohm’s Law/Data

Rpv mmHg·s·ml−1 Prv,syst−Ppa.syst
CO 0.028 ± 0.025 Ohm’s Law/Data

The total flow through the system equals CO (converted to ml/s), CBV denotes the circulating blood volume, P the blood pressure,
and H heart rate (converted to 1/s). Subscripts: lv denotes the left ventricle, rv the right ventricle, lvf the left ventricular free wall, rvf
the right ventricular free wall, syst systole, diast diastole, m mean, d the dead space, pa pulmonary arteries, pu pulmonary veins, sa
systemic arteries, and sv systemic veins. Entries noted with ∗ are computed by rearranging the model equations and using available
data as described in the methods section. Entries noted with ∗∗ are set by hand fitting normal CV function model output to the Smith
model output using values in the CellML version of the Smith model (Nielsens, 2010) as a guide.

BSA =
{

0.0005795 BW0.38 Hgt1.24 for males
0.0009755 BW0.46 Hgt1.08 for females.

(11)

TBV is used to estimate the volumes in the systemic
vasculature while BSA is used to estimate mean left
and right ventricular volumes as shown later. Following
approximations by Beneken et al. (1967) the total blood
volume is distributed as 3.5% in the left ventricle, 3.5%
in the right ventricle, 3% in the pulmonary arteries,
11% in the pulmonary veins, 13% in the systemic
arteries, and 64% in the systemic veins. The compartment
models only track stressed volume which we assume are
approximately the following for the distributed volumes
in each individual compartment: 27% in the systemic
arteries, 58% in the pulmonary arteries, 18% in the
systemic veins, and 11% in the pulmonary veins.

Pressure

In order to estimate nominal parameter values for
elastances and resistances, pressures must be estimated
or extracted from the clinical data. EHRs with RHC
procedures include measurements of systolic and diastolic
pressures in the right ventricle and the main pulmonary
artery along with the capillary wedge pressure which
effectively represents the mean pressure in the pulmonary
veins. In addition, systemic arterial blood pressure is
measured using a pressure cuff. Using these values, we
can estimate other pressures in the cardiovascular system.
First, we estimate the diastolic pressure in the pulmonary
veins. For this, we use the capillary wedge pressure which
we assume to represent the mean pulmonary venous
pressure. We then assume that the pulmonary venous
pulse pressure is roughly 20% of the measured pulmonary
arterial pulse pressure as based on observations in a

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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normotensive human study (Caro et al. 1967) and then
calculate the diastolic pressure as the mean pressure minus
33% of the pulse pressure.

Ppu,pp = 0.2Ppa,pp, (12)

Ppu,diast = Ppcw − 0.33Ppu,pp. (13)

In addition, we need to estimate systolic and diastolic
pressures for the left ventricle, and the vena cava. The
systolic pressure in the left ventricle is of the same order of
magnitude as the systolic arterial pressure and the diastolic
pressures in the left ventricle and vena cava are similar
to the pulmonary venous diastolic pressures and right
ventricular diastolic pressure. Assuming a 2.5% pressure
drop across the mitral, aortic and tricuspid valves, we can
approximate these three pressures as

Plv,syst = 1.025Psa,syst, (14)

Plv,diast = 0.975Ppu,diast , (15)

Psv,diast = 1.025Prv,diast. (16)

Furthermore, we estimate the systolic vena cava pressure
assuming that the pulse pressure in the vena cava Psv,pp is
5% of systemic arterial pulse pressure, giving

Psv,syst = Psv,diast + Psv,pp. (17)

Stroke volume

Using the cardiac output (CO (ml·s−1)) and heart rate (H
((1 s−1)) data we can calculate the stroke volume, SV (ml),
by

SV = CO

H
. (18)

Volume

Using a linear regression from Gutgesell & Rembold
(1990), we calculate the end-diastolic left ventricular
volume as

Vlv = 93 BSA − 16, (19)

where BSA denotes the body surface area (in m2)
calculated in eqn (11). From eqns (18) and (19), we
calculate the volume of the left ventricle at the end of
systole as

Vlv = Vlv − SV. (20)

Accurate measurements of right ventricular volumes
are difficult because of the complex geometry of the right
ventricular chamber. For the purpose of our nominal

parameter calculations we assumed that right ventricular
end-diastolic and end-systolic volumes were estimated
at roughly 0.9 times the corresponding left ventricular
volumes based on observations that the right ventricle
chamber volumes are slightly smaller than in the left heart
(Hergan et al. 2008; Tamborini et al. 2010).

Elastance

Nominal elastance parameter values are needed for
all compartments. Nominal elastance parameters are
calculated by combining information in eqns (2), (5)
and (6) with the estimated compartmental blood volume
(CBV) in compartment i to give

E i = Pi,syst − P ∗
th

CBVi − V∗
d,i

. (21)

where i is sa, sv, rv, pa, pu and lv. Equation (21)
has three forms. For compartments inside the thorax
(pa, pu, rv, lv), the systolic pressure is offset by the intra-
thoracic tissue pressure P ∗

th . This term is not included in
calculations predicting elastance in the systemic arteries
and veins as these are mostly outside the thorax. Finally,
the CBV is offset by V∗

d,i , a dead space volume, in
compartments representing the left and right ventricles.

Resistances

Nominal values of the resistances in each compartment
of the model are calculated from the fluid equivalent of
Ohm’s Law using measured CO as our baseline flow and
the estimated or measured pressures for Pin and Pout

Ri = Pin − Pout

CO
. (22)

In 12 sets of RHC data the systolic pulmonary artery
pressure was recorded as greater than or equal to the
systolic right ventricular pressure. Since this would yield
an unrealistic zero or negative resistance, for these patients
we set

Ppa,syst = 0.95Prv,syst (23)

to estimate the nominal value of the resistance across the
pulmonary valve.

Remaining parameters

The remaining parameters were set to nominal parameter
values from the literature or hand-tuned to fit normal
cardiovascular function as determined by Smith et al.
(Table 2). All nominal parameter sets are then checked
to make sure the model output is sufficiently close to the
RHC measures for a given patient. In a few patients, the
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left and right ventricular diastolic relaxation parameters,
λlv and λrv , are adjusted from the Smith nominal values
to more closely represent the RHC measurements before
the sensitivity analysis or parameter optimization is
performed.

Sensitivity analysis

With unique sets of nominal parameter values determined
for each patient RHC we use local sensitivity analysis to
determine the relative importance of the parameters in the
neighbourhood of the nominal values. Given that both
the model output and parameters contain quantities of
different orders of magnitude and units, we compute a
relative sensitivity matrix S defined by

Si,j = ∂y(ti, θ)

∂θj

θj

yd
i

, (24)

where y(ti, θ) represents the model output at time ti ,
θj denotes the jth parameter, and yd

i denotes the data
measured at time ti . Due to the complexity of the model, S
is difficult to calculate analytically, so similar to Pope et al.
(2009) we use finite differences to estimate S by

Si,j = y(ti, θ + hej ) − y(ti, θ)

h

θj

yd
i

. (25)

Here h = √
ε where ε is the tolerance (set at 10−12)

of the ordinary differential equation solver, and ej is
the unit vector in the jth direction. To approximate the
influence that each parameter has on the model, we rank
the sensitivity for parameter j, Rj , as the two-norm over
each column of the relative sensitivity matrix, S

Rj =
(

N∑
i=1

S2
i,j

) 1
2

. (26)

Parameter subset selection

In addition to being sensitive, it is important that estimated
parameters are not correlated (Marquis et al. 2018). To
determine a subset of independent parameters we used
sensitivity-based covariance analysis (Olufsen & Ottesen,
2013) to get a priori insight into the potential correlation
structure. For all sensitive parameters, we calculate the
covariance matrix

c ij = Cij√
CiiCjj

, C = (
STS

)−1
, (27)

where S denotes the sensitivity matrix. This formulation
is valid under the assumption that the variance is
constant. The covariance matric C is defined if STS (also
known as the Fisher information matrix) can be inverted
necessitating the a priori removal of parameters that are

perfectly correlated. Parameters for which c ij > γ (here
we let γ = 0.9) are denoted as correlated. Following the
structured correlation method by Ottesen and Olufsen
(2013), the covariance matrix is analysed for all sensitive
parameters. It is an iterative algorithm that removes
the least sensitive parameter from a pair of correlated
parameters. Parameters are removed sequentially until an
uncorrelated subset is identified. Before the structured
analysis discussed above, analytical knowledge is used to
identify parameters that appear in structurally correlated
combinations. All parameters that are removed from the
subset are fixed at their nominal value. This analysis is local
in nature as the sensitivity matrix is evaluated at nominal
parameter values determined for each patient.

Model optimization and parameter identifiability

Next, we use the cardiovascular system model to reproduce
the clinical measures from the RHC procedure along
with systemic arterial blood pressure. Clinical measures
of patient height, weight and sex are used to estimate the
total blood volume (eqn 10) and heart rate is used to drive
the model (eqn 1). The remaining measures are matched
to the output of the model simulation (light grey shaded
measures in Table 1). For each patient, we estimate a subset
of parameters θ ∗, that minimize the least squares error

J = rTr, (28)

where r is the residual vector containing eight entries
ri, 1 ≤ i ≤ 8, where

r1−3 = rk = 1√
8

· max [Pk (t̃)] − P d
k,syst

P d
k,syst

, k = {
sa, pa, rv

}
(29)

r4−6 = rk = 1√
8

· min [Pk (t̃)] − P d
k,diast

P d
k,diast

, k = {sa, pa, rv}
(30)

r7 = 1√
8

·
∫T

0 Ppu(ti)dt
T − P d

pcw

P d
pcw

, (31)

r8 = 1√
8

·
∫T

0 Q (ti)dt
T − COd

COd
, (32)

where quantities with superscript d refer to data. For each
term, values are calculated over one cardiac cycle after the
system has reached a steady state of pulsatile pressures
and flows over t̃ ∈ (0, T). The capillary wedge pressure
(Ppcw) and cardiac output (CO) represent average values
over the cardiac cycle. Therefore, time-varying quantities
Q and Ppu are averaged over the stable cardiac cycle
before being compared with the data. Given that quantities
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minimized are of different units, each residual function is
divided by a characteristic value for the quantity. Point
estimates for the identifiable parameters are obtained
using the Levenberg–Marquardt optimization routine by
Kelley (1999) and since parameters vary in magnitude
we estimate the log-scaled parameters as outlined in
Marquis et al. (2018). To ensure convergence we repeated
parameter estimation starting with eight initial parameter
sets, varying the nominal parameter values by 10%.

To overcome the limitation of the local approach,
similar to Marquis et al. (2018) we applied the delayed
rejection adaptive metropolis (DRAM) (Haario et al.
2006; Smith, 2013), a Metropolis–Hastings type Markov
chain Monte Carlo (MCMC) algorithm, to verify that
our deterministic results are reasonable. MCMC is a
widely used sampling method which allows the study of
sample point distributions per the evaluation of iteratively
generated random samples, each strictly dependent
on the previous one. More specifically, DRAM is an
acceptance–rejection algorithm accepting, or rejecting,
newly generated parameters during each iteration based
on their ability to satisfy a higher likelihood than the
current evaluated parameter. If a parameter is rejected,
delayed rejection permits the further evaluation of other
parameters (Smith, 2013).

For this analysis we used a normal joint a priori
distribution with the mean obtained from the point
estimate obtained using the Levenberg–Marquardt
gradient-based optimization method (Kelley, 1999). The
a priori estimates are used as initial values in the DRAM
algorithm, in turn calculating a posterior distribution
which allows us to study the potential of pairwise
correlations and possible impacts on identifiability.

Results

Sensitivity, subset selection and comparison of model
predictions

In this study we selected two subsets of parameters
to analyse. The first is based on known parameters of

physiological interest, whereas the second is formed to
include identifiable parameters determined from local
sensitivity and structured correlation analysis. Figure 3
presents the normalized ranked parameter sensitivities
for a characteristic dataset and the two parameter sub-
sets chosen for this study for patient 233. Rav and Rmt

are not included in the subset as their ranked sensitivities
are less than 0.01. These parameters were fixed at their
nominal values and not included in correlation analysis.
To justify fixing these parameters we doubled and halved
them noting that changing their value has a negligible
effect on dynamic model predictions. For the remaining
parameters, we used the structured correlation algorithm
(Olufsen & Ottesen, 2013) to determine an identifiable
parameter set. For all patients, we used a correlation
threshold of γ = 0.9. This analysis determined the
following sensitivity-based identifiable parameter subset
including:

θ̂ = {
λrv, λlv, E pa, E pu, Rpul, E sa, Rsys, Rpv

}
.

When this analysis was run on other patient data in the
study the same identifiable subset emerged, although in
some cases the ranking order changed slightly. Results
shown in Fig. 4 for patient 233 are obtained by estimating
the sensitivity-based identifiable subset θ̂ keeping all other
parameters fixed at their nominal value. Results shown in
Fig. 4 are obtained by minimizing the least square error
as presented in eqn (28). The optimized parameter values
θ̂op t are given in Table 3.

Results for patient 233 are shown in Fig. 5
estimating the physiology-based parameter subset
θ̃ = {E rv, E lv, Rsys, E pu, Rpul, E pa, Rpv, E sa, Vd,lv}. The
optimized parameter values for this subset
are given in Table 3. Note that the two sub-
sets θ̂ and θ̃ have six parameters in common,
θcom = {Rsys, E pu, Rpul, E pa, Rpv, E sa}. From a physio-
logical point of view, the systolic elastances of the left and
right ventricles (E lv and E rv) are easier to interpret than
the parameters defining diastolic filling (λlv and λrv),

Figure 3. Ranked sensitivities for patient 233
Blue squares indicate the parameters selected by
identifiability after sensitive parameters were also
assessed for structural correlation while the red circles
indicate those thought to be interesting based on
their physiological meaning. Rank sensitivities for
other patients in this study produces very similar
rankings and yielded the same identifiable parameter
subset.
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and therefore are included in the physiological subset θ̃.
However, correlation analysis revealed that parameters
E rv and λrv in addition to E lv and λlv are correlated and
that the elastance parameters are less sensitive. Therefore,
the identifiable parameter set θ̂ includes λlv, λrv and fixes
E lv and E rv at their nominal values. Next, we observe
that Vd,lv is strongly correlated with E rv, E lv, Rsys, E pu

and E sa. Removing Vd,lv from the subset, fixing it at
its nominal value, eliminated correlations within the
remaining subset.

When we optimize θ̂ and θ̃, the residual least squares
cost are both small (e.g. 1.5 × 10−5 and 1.67 × 10−3,
respectively, for patient 233) but the residual is smaller
with the sensitivity-based identifiable parameter subset.
In addition, the physiology-based parameter subset, θ̃, for
patient 233 gives estimations of left and right ventricular
volume that differ significantly in magnitude (Fig. 5F)
while in the sensitivity-based identifiable parameter sub-
set, θ̂, of the optimized model the systolic and diastolic
volumes for the ventricles are similar in magnitude
(Fig. 4F). Systolic and diastolic volumes for the right
and left ventricles are expected to be similar in a normal
cardiovascular state (Alfakih et al. 2003), which is in line
with the sensitivity-based identifiable parameter subset
optimization predictions; however, no studies have been
performed that quantify relative ventricular volumes in
post-transplant hearts.

Table 3. Nominal and optimized parameter values for patient
233 using the sensitivity-based identifiable parameter subset, θ̂

and the physiology-based parameter subset, θ̃

Optimized

Parameter Units Nominal SBIP, θ̂ PBP, θ̃

λlv ml 0.03 0.0289 —
λrv ml-1 0.025 0.0183 —
E lv mmHg·ml−1 3.51 — 2.704
Vd,lv ml 10 — 8.13
E rv mmHg·ml−1 0.92 — 3.65
E pa mmHg·ml−1 0.39 0.1696 0.2074
E pu mmHg·ml−1 0.30 0.212 0.1059
Rpul mmHg·s·ml-1 0.095 0.0481 0.05015
E sa mmHg·ml−1 0.820 0.678 0.767
Rsys mmHg · s·ml-1 0.835 0.637 0.715
Rpv mmHg · s·ml-1 0.029 0.00797 0.00777

Parameter definitions: λ, ventricular end-diastolic pressure-
volume exponent, E, elastance, and R, resistance. Subscripts:
lv, left ventricle, rv, right ventricle, pa, pulmonary artery,
pu, pulmonary veins, pul, pulmonary circulation, sa, systemic
arteries, sys, systemic circulation, pv, pulmonary valve.

Parameter identifiability

We performed a DRAM analysis to confirm the degree
of identifiability for each of our two parameter subsets
and to further uncover which parameters in the subset

Figure 4. Model predictions for subject 233 with optimized sensitivity-based identifiable parameters, θ̂

Left ventricle, pulmonary vein and systemic arterial pressure (A) and right ventricle, pulmonary artery and systemic
venous pressure (B) comparison of computed results (continuous lines) and data (broken lines). C, comparison of
computed cardiac output and data. D, comparison of left and right ventricular pressure. E, computed left and
right ventricular volume (no data available). F, left and right ventricular pressure-volume loops.
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are correlated. For each of the two parameter subsets θ̂
and θ̃ we set up a normal joint a priori distribution with
the mean obtained from the point estimates discussed
above. The DRAM algorithm was run with 100,000 sample
points. To ensure that our solutions converge to a steady
state prior to calculating the posterior distributions and
correlations we removed, the burn-in period was set
to 10,000 sample points. Figure 6 shows that for both
parameter subsets, the chains have converged (top two
panels). The bottom panels in Fig. 6 show the posterior
distributions for each parameter in both subsets. For the
physiological subset θ̃, we observed that the parameter
Vd,lv , for the dead space volume in the left ventricle,
has an identical distribution to the parameter E lv , the
elastance of the left ventricle. This distribution suggests
that the parameters are correlated with a single valued
relationship; this is equivalent to saying their Pearson
correlation is +1. A Pearson correlation of +1 is indicative
of a perfect positive linear relationship (Everitt & Skrondal,
2010) between the parameters which is confirmed in
Fig. 7 depicting pairwise distributions. Therefore, fixing
one of the two parameters may improve the DRAM
results of the physiology-based parameter subset since
they are not mutually identifiable. Additionally, post-

erior and pairwise distributions for the sensitivity-based
identifiable parameter subset confirm local observations
that all parameters are independent.

Longitudinal analysis

Using the cardiovascular system model with the
sensitivity-based identifiable parameter subset, RHC
measurements were analysed to represent cardiovascular
functional changes during recovery in five of the
10 patients where multiple RHC measurements were
available. Figure 8 shows the changes in cardiovascular
function, as indicated from simulated left and right
ventricular PV loops and left and right ventricular power
output, for two representative patients (patients 266 and
558). Ventricular power output can be calculated by
integrating the area inside the PV loop and multiplying
it by heart rate. The adoption of left ventricular power as
a clinical measure is becoming more common (Cotter
et al. 2003b; Fincke et al. 2004) and has been shown
to be elevated at rest in septic shock and congestive
heart failure with hypertension (Cotter et al. 2003a).
Figure 8 shows a consistent reduction in right and left
ventricular pressure as well as left and right ventricular

Figure 5. Model predictions for subject 233 with optimized physiology-based parameters, θ̃

Left ventricle, pulmonary vein and systemic arterial pressure (A) and right ventricle, pulmonary artery and systemic
venous pressure (B) comparison of computed results (continuous lines) and data (broken lines). C, comparison of
computed cardiac output and data. D, comparison of left and right ventricular pressure. E, computed left and
right ventricular volume (no data available). F, left and right ventricular pressure-volume loops.
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power output during recovery in patient 266 that are
not seen with patient 558. For patient 266, the systolic
volumes in both ventricles increases during recovery with
diastolic volumes remaining relatively constant. However
for patient 558, systolic volumes in both ventricles show
a great degree of variability with a general reduction
during recovery and a left ventricular diastolic volume that
remains nearly constant. This representation of cardio-
vascular function cannot be obtained from the RHC
measurements without the use of this computational
analysis approach. As shown in Fig. 9, we can also track
individual parameters longitudinally; the values of the
sensitivity-based identifiable parameter subset are plotted
for patients 266 and 558. The remaining three patients
with longitudinal RHCs during recovery (363, 456 and
572, not shown) showed small increases in left ventricular
cardiac power during recovery of 6, 27 and 22% rising to
1.15, 1.42 and 1.73 W, respectively. All of these values are
well below the peak left ventricular power of 2.5 W for
patient 558, indicating that left ventricular cardiac power
below 2 W during recovery is favourable.

Discussion

In this study, we develop an analysis methodology where
a series of RHC measurements from recovering heart
transplant patients are analysed with an identifiable
model of cardiovascular system dynamics to represent
cardiovascular function progression during recovery. In
the first portion of this study we carefully assessed
which model parameters could be reliably identified
with the sparse clinical data from EHRs including
RHC measurements, systemic arterial blood pressure,
heart rate, and other biometrics from the patient.
A sensitivity-based parameter subset was selected and
compared with an alternative parameter subset to show
differences in parameter identifiability and correlation.
The sensitivity-based parameter subset was shown to be
identifiable and composed of independent parameters in
the neighbourhood of parameter values optimized to fit
clinical data for one exemplary RHC dataset. In the second
portion of this study we used this model to analyse recovery
progression for five patients that had a series of RHCs
over the span of 7 to 392 days post-transplant. Trends

Figure 6. Convergence chains and posterior distributions for inferred parameters
DRAM-based convergence chains (upper two panels) and parameter distributions (lower two panels) at optimized
parameter values for patient 233 using the sensitivity-based identifiable (left column panels) and physiology-based
(right column panels) parameter subsets. Note that the parameter distributions for the sensitivity-based parameter
subset are narrower than seen in the physiology-based subset for all common parameters.
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in simulated PV loops, left and right ventricular power
output and model parameters over the course of recovery
show differences in recovery progression. Two patients
(266 and 558) were selected from the analysis that show
distinct differences in recovery.

Longitudinal analysis of cardiovascular function

It is known that pulmonary hypertension
(>25–30 mmHg) is often observed post-transplant
with a trend to normal right-side pressures (�20 mmHg)
in a successful recovery (Delgado et al. 2001). We have
analysed RHC datasets at several post-transplant time
points in patients 266, 363, 456, 558 and 572 to see what

Figure 7. Pairwise posterior distributions for each parameter
subset
In the physiology-based parameter subset, Elv and Vlv,d are seen to
be correlated since the relationship between the two distributions
can clearly be seen. Pairwise parameters showing no correlation
form a large cloud of points indicating no distinct relationship exists
between the two distributions.

other cardiovascular metrics may be useful to predict
outcome. We focused on patient 266 to represent what
appears to be a successful heart transplant recovery.

For patient 266, left and right PV loop trends as a
function of recovery time represented in Fig. 8 show
a reduction in right ventricular pressure along with an
increase in end-systolic volume over seven time points
spanning an 11-month period post-transplant. The RHC
data alone show this reduction in ventricular pressures.
However, we observe that over time, the ejection fraction
decreases by 5%, the left ventricular end-diastolic pressure
decreases from about 10 to 6 mmHg, the systemic arterial
elastance decreases (reduction in stiffness) by 54% and the
systemic resistance decreases by 17%. Even more inter-
esting is the trend in left and right ventricular power
output. As recovery progresses, patient 266 experienced
a decrease in left ventricular power output from 1.8 W at
day 57 post-transplant to 1.4 W at day 392. These predicted
metrics describe the constellation of concurrent changes
that can be quantified in the transplanted heart, but
also account for changes in the pulmonary and systemic
cardiovascular system over time. A decreasing trend in
ventricular power can be interpreted as the heart working
less to maintain cardiac output as the patient recovers.
A normal left ventricular power output at rest is around
1 W (Cotter et al. 2003b; Klasnja et al. 2013) and roughly
represents a blood pressure of 120/80 mmHg, a heart rate
of 70 beats/min and a stroke volume of 70 ml. While
the predicted reduction in ejection fraction points to
reduced cardiovascular function in this patient, this is
likely due to the fact that volumes are not constrained
by any clinical measures in this study. The inclusion of
periodic echocardiograms along with the heart rate close
to the time of each RHC could be used as another set of
measurements to bound the left ventricular end-diastolic
and end-systolic volumes in the optimized models.

Patient 558, on the other hand, shows a slight increase
in right ventricular pressure over the seven time points
spanning 5 months. For this patient, the model predicts a
consistent left ventricular end-diastolic pressure of about
11 mmHg, a decrease in systemic arterial elastance of
28%, a large increase in systemic resistance of 80% as
well as distinct arterial hypertension rising to 180 mmHg
as shown in the left ventricular pressure model output.
Markedly, the left ventricular power does not show any
downward trend and remains high over the observed
recovery period, varying between 1.5 and 2.5 W. The pre-
dicted increase in systemic resistance for patient 558 is
slightly below the range of 120% and 250% increase from
normal healthy values of systemic resistance observed in
patients with congestive heart failure with hypertension
and pulmonary oedema, respectively (Cotter et al. 2003a)
but still reflects a negative trend during recovery. It may
also be noted that our computation of cardiac power
from generated PV loops takes into account the diastolic
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filling pressure, which is ignored in clinical calculations,
making this prediction of cardiac power a better estimate
in the case of pulmonary hypertension and congestive
heart failure when diastolic filling pressures increase. A
comparison of cardiovascular metrics between patients

266 and 558 suggests a less successful recovery for patient
558.

To test whether these retrospective predictions align
with the actual patient outcome, the EHRs for each of the
longitudinally tracked patients were checked in March

Figure 8. Simulated pressure-volume
loops as well as left and right ventricular
power output over time for patients 266
and 558
Chronological progression earliest to latest by
colour is magenta, red, yellow, green, aqua,
blue and black. Even if the EHR contains
echocardiography and right heart
catheterization (RHC) data, the pressures from
RHC and volumes from echocardiography are
not obtained simultaneously; therefore, these
pressure-volume loops cannot be generated
except through a simulation as proposed here.
Simulation results for patient 266 and 558
predict dramatically different progression
during recovery.

Figure 9. Longitudinal parameter
trends for patients 266 and 558
Simulation results are displayed with
optimized parameters for the
sensitivity-based identifiable parameter
subset for patients 266 and 558. Top
panels: blue, pulmonary artery elastance,
red, systemic arterial elastance, gold,
pulmonary circulation resistance, purple,
systemic circulation resistance. Bottom
panels: blue, left ventricular end diastolic
pressure-volume exponent, red, right
ventricular end diastolic pressure-volume
exponent, gold, pulmonary venous
elastance, purple, pulmonary valve
resistance

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society



3218 A. L. Colunga and others J Physiol 598.15

of 2019. This represented post-transplant time points of
54 and 49 months for patients 266 and 558, respectively.
Patient 266 exhibited complications due to osteoarthritis,
likely precipitated from long-term immunosuppression
but had no cardiovascular-related complications. Cardio-
vascular function checked 43 months post-transplant
showed normal cardiovascular function with an ejection
fraction at 60% and a stroke volume of 54 ml. In contrast,
patient 558 at the 48-month post-transplant time point
exhibited biventricular failure with an ejection fraction at
49%, right atrial pressure at 25 mmHg, pulmonary hyper-
tension with right ventricular pressures of 48/35 mmHg,
systemic hypertension at 124/98 mmHg, a heart rate of
123 beats/min and diminished stroke volume of 23 ml.
The remaining longitudinally tracked patients (363, 456
and 572) predicted to have a positive outcome had no
cardiovascular complications noted in their EHRs at
post-transplant time points of 47, 46 and 52 months,
respectively. Even though the small number of patients
tracked in this study does not yet validate this approach,
it does illustrate the utility of mechanistic computational
analysis of clinical data as a tool for clinicians to use as
heart transplant patient recovery is assessed.

Model parameter subset selection

The model selected for this study was developed to
estimate the systolic and diastolic pressures, average
pulmonary capillary wedge pressure and cardiac output
obtained from EHR records. Using the Smith et al.
(2004) cardiovascular system model as a reference, we
carefully selected only the model components that could
be informed by the available data. The major components
omitted were VVI and inertance at each of the heart
valves. A more complex cardiovascular system model
could be implemented per the availability of pressure time
courses from the RHC measurements and/or the addition
of echocardiography data measuring volumes in the left
ventricle.

This study compared two parameter subsets. The
first was selected based on knowledge of the cardio-
vascular system and quantities of interest; the second was
selected using sensitivity analysis and subset selection. The
majority of parameters were present in both subsets, yet
rigorous analysis revealed that the physiology-based sub-
set included correlated parameters. The physiology-based
parameter subset included resistances of the systemic
vasculature (Rsys), pulmonary vasculature (Rpul) and
pulmonary valve (Rpv) along with elastances of the left
ventricle (E lv), right ventricle (E rv), pulmonary vein
(E pu), pulmonary artery (E pa), systemic arteries (E sa)
and the dead space volume in the left ventricle (Vd,lv) as
shown by the red squares in Fig. 3. The sensitivity-based
subset selection approach omitted Vd,lv , while identifying

the correlation between the elastance parameters in the
left and right ventricles and the more sensitive diastolic
filling exponents in the left and right ventricle, λlv and
λrv as shown by the blue circles in Fig. 3. This result
suggests that quantifying the parameters determining
diastolic filling in the left and right ventricle will have
more ability to discriminate underlying cardiovascular
function than quantifying the parameters determining
systolic contraction. The sensitivity-based approach did
not identify the pulmonary valve resistance (Rpv) as having
high sensitivity. However, this parameter was added to the
sensitivity-based identifiable subset since we had data for
right ventricular and pulmonary arterial pressure across
the valve along with cardiac output. While it is possible to
uniquely identify this parameter solely from data, it was
included as an adjustable parameter to provide maximum
flexibility in matching the two pressures and cardiac
output simultaneously.

The physiology-based approach for selecting model
parameters to optimize relies on intuition to determine
adjustable parameters of interest. However, this approach
does not reveal correlations between model parameters,
and therefore can lead to subsets which are not uniquely
identifiable given the model and associated experimental
data. The sensitivity-based approach selected a subset
with eight parameters, six of which were also included
in the physiology-based parameter subset. In addition to
parameter estimation, the sensitivity analysis and subset
selection methods employed here can also be used for
experimental design, e.g. to analyse what output quantities
are needed to estimate specific parameters. The model
studied here was simplified compared with the model by
Smith et al. and a major factor ignored was VVI. This
component is believed to be important for patients with
severe pulmonary hypertension. However, with clinical
measurements only from the right ventricle used in this
study, incorporating VVI with the Smith et al. model
components would likely lead to insensitive parameters
in that component of the model.

Finally, it should be noted that in this study the two sub-
sets were studied independently, i.e. the sensitivity-based
analysis was purely informed by model analysis. Another
approach is to pick parameters of interest and then
test whether the subset picked contains identifiable
parameters. Finally, the local estimates can be validated
by seeing if the point estimates determined using the
gradient-based method agree with the maximums of the
distributions obtained using DRAM. For this study, this
procedure was used for one dataset (patient 233) and
the results agreed. Yet both the point estimates and the
parameter distributions were obtained subject to values of
non-estimated parameters. In future studies, more work
is needed to determine the uncertainty to perturbation
of fixed parameters within physiological bounds. This
can be done using global sensitivity analysis combined
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Table 4. Optimized parameter values for first post-transplant right heart catheterization dataset from each patient using the
sensitivity-based identifiable parameter subset (θ̂)

Patient number

Parameter Units 60 66 233 266 363 456 558 572 794 839

λlv ml−1 0.0353 0.02046 0.0289 0.0328 0.0336 0.0329 0.0277 0.0290 0.0448 0.0283
λrv ml−1 0.0185 0.00882 0.0183 0.0303 0.0289 0.0217 0.017 0.0223 0.0316 0.0115
E pa mmHg ·ml−1 0.427 0.176 0.1696 0.463 0.243 0.6064 0.2405 0.4603 0.349 0.194
E pu mmHg ·ml−1 0.0811 0.0215 0.212 0.0581 0.157 0.0748 0.0562 0.0492 0.40062 0.0289
Rpul mmHg·s·ml-1 0.0471 0.08084 0.0481 0.113 0.147 0.0915 0.0558 0.0653 0.0472 0.0538
E sa mmHg·ml−1 0.719 0.7105 0.678 1.4007 0.838 0.757 1.018 0.995 0.625 0.9546
Rsys mmHg·s·ml-1 0.975 0.8069 0.637 1.035 1.047 0.878 0.591 0.788 0.6034 1.058
Rpv mmHg·s·ml-1 0.00435 0.00428 0.00797 0.01085 0.0064 0.026 0.00361 0.00562 0.00657 0.01602

Parameter definitions: λ, ventricular end-diastolic pressure-volume exponent, E, elastance, and R, resistance. Subscripts: lv, left
ventricle, rv, right ventricle, pa, pulmonary artery, pu, plumonary veins, pul, pulmonary circulation, sa, systemic arteries, sys, systemic
circulation, pv, pulmonary valve.

with more simulations varying these fixed parameters to
more completely understand how this variation impacts
outcomes.

Model optimization using both selected parameter
subsets

Model optimization using both the sensitivity-based and
the physiology-based parameter subsets was able to fit the
RHC data and systemic arterial pressure measurements,
as can be seen by comparing the RHC measurements
(dashed lines) and simulated pressure and cardiac output
time courses (continuous lines) in panels A, B and C of
Figs 4 and 5, respectively. The main differences between
the two subsets are in their predictions of the left and
right ventricular volume. The physiology-based subset
predicts smaller right ventricular volumes and larger
left ventricular volumes than the sensitivity-based sub-
set as seen in Figs 4E, F and 5E, F. The model pre-
dictions obtained using the sensitivity-based parameter
subset leads to predicted left and right ventricular volumes
that are closely matched. It has been observed in normal
hearts that the ventricular volumes are typically similar
between the right and left sides of the heart (Alfakih et al.
2003; Hudsmith et al. 2005; Hergan et al. 2008), with the
right ventricular volume in the order of 5–10% smaller
than the left ventricular volume. However, in these same
studies right ventricular volumes can be as much as 48%
smaller or 68% larger depending on the sex considered, the
measurement modality and the method used to calculate
the volume from the images obtained. No similar studies
have been conducted for ventricular volumes in patients
with cardiac hypertrophy, pulmonary hypertension or
after heart transplantation.

Confidence in the use of the sensitivity-based
identifiable parameter subset is further bolstered by the
results of the DRAM analysis as shown in Fig. 6. In

the neighbourhood of the model optimization of patient
233 data, parameter distributions for all parameters in
the selected sensitivity-based identifiable subset show a
narrow Gaussian distribution, whereas the parameter
distributions for two parameters in the physiology-based
parameter subset, the pairwise distributions for E lv and
Vd,lv are clearly correlated and their distributions are
proportional over the range of each parameter value.

Optimized parameter relationship to cardiovascular
function and subsequent model predictions

Optimization of selected model parameters tells us about
the underlying function that represents the upper-level
phenotype quantified clinically, in this case, with RHC
and systemic arterial blood pressure measurements. The
optimized model parameters of the first complete RHC
dataset from the 10 patients in this study are shown in
Table 4; we observe that the five patients (66, 233, 558,
572 and 839) with values for λlv below 0.03 have the
greatest left ventricle diastolic filling. Comparing these
patients with the remaining five patients we see mean left
ventricular end-diastolic volumes of 178 ± 23 ml versus
141 ± 23 ml indicating a strong relationship between λlv

and left ventricular end-diastolic volume.
Since this model is non-linear, it does not encode a

one-to-one relationship between each model parameter
and the upper-level clinical measurements. However, the
power of this approach is that with a model tailored
to describe an individual patient’s cardiovascular system
function, we can make predictions of cardiovascular
system function that are not easily measured. One example
is the left and right ventricular PV loops, which are
often used to more accurately determine functional
metrics when available in the clinic. These metrics
include the left ventricular end-diastolic and end-systolic
pressure-volume relationships and both right and left
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ventricular work and power, which show important
changes from health to dysfunction. Even though these are
important diagnostic metrics, simultaneous measurement
of left ventricular volume and pressure without using an
invasive indwelling catheter in the left heart is impossible
in the clinic; therefore they are rarely obtained. Employing
our model analysis with the minimally invasive RHC
measurements enables us to predict both right and left
ventricular volumes while fitting the cardiovascular pre-
ssures in a patient-specific manner, resulting in these PV
loops. In Figures 4D, E and F we see the predicted left
and right ventricular pressure, volumes and PV loops for
patient 233. The relatively high left ventricular diastolic
filling pressure shown, resulting from the pulmonary
hypertension of the right side along with arterial systemic
hypertension warrants close monitoring. However, the left
ventricular ejection fraction of about 71% indicates an
efficiently functioning heart.

Conclusion

In this study, we have presented a workflow pushing model
design and sensitivity analysis prior to model optimization
in order to aid in selecting the model parameters that are
most likely to be informed by the clinical measurements.
We have used clinical RHC and systemic arterial blood
pressure data taken from patients shortly after heart trans-
plantation, to determine an identifiable parameter sub-
set, and contrasted it with a subset that was selected
based on physiological features of interest. Optimization
of both parameter subsets replicated the clinical data
equivalently. However, a single insensitive parameter in
the physiology-based subset decreased the confidence in
the identification of the remaining parameters and the
predictions made by the physiology-based subset of the
optimized model. To illustrate the potential to track
cardiovascular function over time, model optimizations
were performed on multiple RHC and systemic arterial
pressure measurements for several patients and the trends
in model parameters were shown. Predictions made by
looking at model results based on these retrospective
longitudinal data were confirmed by following up on
these patients at the 4-year post-transplant time point
illustrating the utility of this patient-specific model
analysis. This approach has the ability to provide clinicians
with previously unobtainable functional information,
such as left and right ventricular PV loops and
systemic vascular resistance, from routinely obtained RHC
measures. This additional functional information is not
only valuable in the assessment of post-heart transplant
recovery, but in other cases of cardiovascular dysfunction
where RHC measurements are made such as heart failure
both with reduced and preserved ejection fraction or
pulmonary hypertension.

Appendix: Model equations

The complete list of differential equations representing the
rate of change of volume of the compartments in this study
are as follows:

dVlv

dt
= Q mt − Q av

dVsa

dt
= Q av − E saVsa − E svVsv

Rsys

dVvc

dt
= E saVsa − E svVsv

Rsys
− Q tc

dVrv

dt
= Q tc − Q pv

dVpa

dt
= Q pv − E paVpa − E puVpu

Rpul

dVpu

dt
= E paVpa − E puVpu

Rpul
− Q mt

where

Q mt =
{

(E puVpu+Pth)−Plv

Rmt
if valve open

(
Ppu > Plv

)
0 otherwise (valve closed)

Q av =
{Plv−E saVsa

Rav
if valve open (Plv > Psa)

0 otherwise (valve closed)

Q tc =
{ E sv Vsv−Prv

Rtc
if valve open (Psv > Prv)

0 otherwise (valve closed)

Q pv =
{

Prv−(E paVpa+Pth)
Rpv

if valve open
(
Prv > Ppa

)
0 otherwise (valve closed)

and

Plv = A(t̃)
[
E lv

(
Vlv − Vd,lv

)]
+ {

[1 − A(t̃)] P0,lv

[
eλlv (Vlv−V0.lv ) − 1

]} + Pth

Prv = A(t̃)
[
E rv

(
Vrv − Vd,rv

)]
+ {

[1 − A(t̃)] P0,rv

[
eλrv (Vrv−V0.rv ) − 1

]} + Pth

A(t̃) = e−a(t̃−T/2)2
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