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Abstract17

We develop a mixed Long Short Term Memory (LSTM) regression model to predict the18

maximum solar flare intensity within a 24-hour time window 0∼24, 6∼30, 12∼36 and19

24∼48 hours ahead of time using 6, 12, 24 and 48 hours of data (predictors) for each He-20

lioseismic and Magnetic Imager (HMI) Active Region Patch (HARP). The model makes21

use of (1) the Space-weather HMI Active Region Patch (SHARP) parameters as predic-22

tors and (2) the exact flare intensities instead of class labels recorded in the Geostation-23

ary Operational Environmental Satellites (GOES) data set, which serves as the source24

of the response variables. Compared to solar flare classification, the model offers us more25

detailed information about the exact maximum flux level, i.e. intensity, for each occur-26

rence of a flare. We also consider classification models built on top of the regression model27

and obtain better results in solar flare classifications as compared to Chen et al. (2019).28

Our results suggest that the most efficient time period for predicting the solar activity29

is within 24 hours before the prediction time using the SHARP parameters and the LSTM30

model.31

1 Introduction32

Space weather involves the dynamical processes of the Sun-Earth system that may33

affect human life and technology. The most destructive consequences of space weather,34

ranging from electric power disruptions to radiation hazards for astronauts, are due to35

energetic solar eruptions: producing both magnetic disturbances in the solar wind known36

as coronal mass ejections (CMEs) and intense electromagnetic radiation known as so-37

lar flares.38

Given their destructive capability, the predictions of energetic space weather events39

is critical for safeguarding our technological infrastructure. Extreme space storms – those40

that could significantly degrade critical infrastructure – could disable large portions of41

the electrical power grid, resulting in cascading failures that would affect key services42

such as water supply, health care, and transportation. The threat-assessment report by43

the Lloyd’s insurance company (Maynard et al., 2013) concludes that extreme events could44

cause $2.6 trillion in damage with a recovery time of months. An earlier report by the45

National Research Council (Baker et al., 2009) arrived at similar conclusions.46

While there are known precursors to these eruptions, accurate predictions of their47

occurrence remain very difficult. The current space weather forecasting based on phys-48

ical models is far from reliable: the forecasting window is only minutes away from the49

current time point and the accuracy is low. Previous work has established that solar erup-50

tions are all associated with highly nonpotential magnetic fields that store the necessary51

free energy. The most energetic flares come from very localized intense kiloGauss pho-52

tospheric fields known as active regions (Forbes, 2000; Schrijver, 2009). Measurement53

of these fields was greatly increased by the advent of the Helioseismic and Magnetic Im-54

ager (HMI) instrument on the Solar Dynamics Observatory (SDO) launched on Febru-55

ary, 2010. HMI provides vast quantities of data in the form of high-cadence high-resolution56

vector magnetograms. These data are subdivided into HMI-Active Regions Patches (HARPs),57

which correspond to localized regions of intense magnetic fields. While HARPs are very58

similar to NOAA active regions they frequently define different spatial regions. Param-59

eters relevant to solar eruptions are calculated from the HARP vector magnetic fields60

and saved with the data files which are designated as Space-weather HMI Active Region61

Patches, or SHARPs (Bobra et al., 2014).62

Currently, over 7000 HARPs have been recorded, each one with full vector data saved63

on a 12-minute cadence for a period of approximately 14 days required to rotate across64

the disk. How to make the best use of the large amount of data available to provide re-65

liable real-time forecasting of space weather events is one of the major questions for sci-66

entists in the field. Recently, data-driven approaches are gaining attention in the space67
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Figure 1. Examples of physical parameters derived from two HARPs, 377 and 746. The blue

and red curves show the time variation of TOTUSJH and SAVNCPP quantities respectively.

Here, TOTUSJH stands for Total unsigned current helicity, and SAVNCPP stands for Sum of the

modulus of the net current per polarity. Each small vertical line represents a recorded flare event.

The height of the line is proportional to the log scale flare intensity, while red, green and blue

represent M/X flare, C flare and B flare respectively.

science community with much more data becoming available. Scientists have adopted68

different machine learning algorithms to perform various space weather prediction tasks,69

including the solar flare classification using the SDO/HMI SHARP parameters and other70

data sets, see Barnes et al. (2016), K. Leka & Barnes (2018), Liu et al. (2019), Cam-71

poreale (2019), K. D. Leka et al. (2019a) and K. D. Leka et al. (2019b) for reviews and72

references therein. Among all the papers mentioned, Liu et al. (2019) also used the GOES73

data set and adopted the LSTM technique to predict solar flares. In contrast, in this pa-74

per we propose a different mixed LSTM model and we consider not only classification75

but also regression to predict the exact intensities rather than the labels of the solar flares.76

Moreover, our data pre-processing gives a new way of defining response variables and77

takes quiet time data into consideration.78

Chen et al. (2019) showed that the time series of SHARP parameters from the SDO/HMI79

data provide useful information for distinguishing strong solar flares of M/X class from80

weak flares of A/B class roughly 24 hours prior to the flare event. These SHARP param-81

eters are derived from the HMI images based on physically meaningful quantities of the82

active regions where the flares emerge from, see Bobra et al. (2014) for detailed descrip-83

tions of these features. To make the task of binary classification manageable, Chen et84

al. (2019) only considered the B and M/X flares, ignoring the more prevalent C flares.85

This design is due to the consideration that flare classes are arbitrarily categorized based86

on a continuous logarithmic scale of flare intensity (radiant power level), thus strong C87

flares are essentially indistinguishable from weak M flares.88

Fig. 1 shows the flare history (B/C/M/X classes) for two HARPs (377 and 746)89

and time evolution of two important SHARP parameters, TOTUSJH and SAVNCPP,90

for a period of ten days (labeled on the x-axis). Specifically, TOTUSJH stands for To-91

tal unsigned current helicity, and SAVNCPP stands for Sum of the modulus of the net92

current per polarity. We can see that many incidences of C flares accompany a strong93

flare (of M/X class) and that the SHARP parameters evolve in continuous but locally94

stochastic ways during the energy buildup and release stages of strong flares. Therefore,95

it is important to consider the entire time series with flares of all classes, especially the96

highly prevalent C flares, when training machine learning models for flare prediction as97
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opposed to only the time point where a weak (B) or strong (M/X) flare occurs as is done98

in Chen et al. (2019).99

As found in the GOES data set, flares events occur sparsely, at irregular intervals,100

and at highly varying intensity levels, including long gaps between events, all of which101

present a unique challenge in the data analysis. We note that due to the fact that the102

amount of information contained in the observed data is limited, the inferential objec-103

tive should be geared towards extracting the maximum amount of available information104

and avoiding over-interpreting the data. Instead of seeking to model the flare intensity105

in continuous time for every time point, we model aggregated quantities instead, e.g. the106

maximum flare intensity within a fixed length time window (such as ±12 hours). In this107

way, we attach an intensity value to every data point that has a recorded flare in the neigh-108

boring ±12 hour time window. For the other time points, we define them as being “quiet”109

locally with an indicator function attached to it. We will explain the details of this data110

preparation process in Section 2.1. In our proposed prediction model, we are able to pre-111

dict the maximum flare intensity level within a fixed length time window T hours in the112

future, where T can be specified to a desired value such as 12 or 24 hours, using the time113

series of SHARP parameters in the past. As a byproduct, we can classify the predicted114

events into strong or weak flares according to the flare level definitions.115

2 Methodology116

We provide a detailed description of the data pre-processing pipeline in Section 2.1.117

A mixed Long-Short Term Memory (LSTM) regression model (Hochreiter & Schmid-118

huber (1997)) that can directly predict the solar flare intensity is introduced in Section 2.2,119

including the model structure and a novel loss function. Section 2.3 covers three binary120

classification models based on the mixed LSTM regression model. They all try to dis-121

tinguish the M and X flares from other flares (including or excluding the C flares) by mak-122

ing use of the predicted intensities given by the regression model.123

2.1 Data Preparation124

The machine learning models that we aim to train are prediction models, which125

require two sources of input data: the feature set (a.k.a. predictors) and the response126

variables. In this section, we give the details of the data sources and how we prepare the127

data for training and testing the machine learning models.128

For response variables, we use flare events recorded in the GOES data set ranging129

from 05/01/2010 to 06/20/2018 (MM/DD/YYYY). Within this time range there are a130

total of 12,012 recorded flares. See flare-event-only data set in Fig. 2 for the distribu-131

tion of the flare events in GOES data set. Note that the theoretical distribution of the132

flare events should be a power law distribution. The reduced number of recorded flares133

in lower energy levels is because events are lost in the background and go undetected.134

Therefore, the observed distribution is different from the theoretical distribution and we135

are focused on the observed information in this paper.136

For the source of data for features/predictors, we consider data from 860 HMI Ac-137

tive Region Patches (HARPs). For the chosen time period (05/01/2010 to 06/20/2018),138

there are approximately 7000 HARPs, many occurring without flares. From these, in or-139

der to maintain the quality of the data, we down select the HARPs to a group of 860140

based on the criteria (1) the longitude of the HARP should be within the range of ±68◦141

from Sun central meridian, to avoid projection effects, see Bobra & Couvidat (2015) and Chen142

et al. (2019); (2) the missing SHARP parameters should be fewer than 5 % of all in the143

HARP, to make sure that the missing data is not significantly large to cause any bias144

in model training.145
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For each HARP, there is a time series of vector magnetograms with 12-minute ca-146

dence. Here we consider the time series as a video with one frame every 12 minutes. We147

use the SHARP parameters, which are scalar variables derived from the full photospheric148

vector magnetic field. The SHARP parameters are calculated over the magnetogram of149

the each frame, see Bobra et al. (2014) for a detailed description of the calculations. Of150

all the SHARP parameters, we use USFLUX, MEANGAM, MEANGBT, MEANGBZ,151

MEANGBH, MEANJZD, TOTUSJZ, MEANALP, MEANJZH, TOTUSJH, ABSNJZH,152

SAVNCPP, MEANPOT, TOTPOT, MEANSHR, SHRGT45, SIZE, SIZE ACR, NACR153

and NPIX in our study (see the definitions of these parameters in Table 1). Therefore,154

each frame corresponds to one vector magnetogram and a 20×1 SHARP vector. Each155

HARP corresponds to a data matrix with 20 columns and “number of frames (vector mag-156

netograms)” rows. These data are provided by the Stanford Joint Science Operations157

Center (see http://jsoc.stanford.edu).158

Parameter Description
TOTUSJH: Total unsigned current helicity
TOTUSJZ: Total unsigned vertical current
SAVNCPP: Sum of the modulus of the net current per polarity
USFLUX: Total unsigned flux
ABSNJZH: Absolute value of the net current helicity
TOTPOT: Proxy for total photospheric magnetic free energy density

SIZE ACR:
De-projected area of active pixels (Bz magnitude larger than
noise threshold) on image in micro-hemisphere (defined as
one millionth of half the surface of the Sun)

NACR: The number of strong LoS magnetic-field pixels in the patch
MEANPOT: Proxy for mean photospheric excess magnetic energy density
SIZE: Projected area of the image in micro-hemispheres
MEANJZH: Current helicity (Bz contribution)
SHRGT45: Fraction of area with shear > 45◦

MEANSHR: Mean shear angle
MEANJZD: Vertical current density
MEANALP: Characteristic twist parameter, α
MEANGBT: Horizontal gradient of total field
MEANGAM: Mean angle of field from radial
MEANGBZ: Horizontal gradient of vertical field
MEANGBH: Horizontal gradient of horizontal field
NPIX: Number of pixels within the patch

Table 1. List of SHARP parameters and brief descriptions.

2.1.1 Response Variable159

Since some of the flares recorded in the GOES data set happened in HARPs that160

are not recorded in the filtered JSOC data, we consider 10,349 out of the total 12,012161

flares recorded in the GOES data set during the time range indicated on Table 2. More-162

over, the flares recorded in the GOES data set are listed by NOAA active region num-163

bers while the corresponding photospheric magnetic field is identified with HARP patches,164

which use different criteria to identify and group the strong field regions. Consequently,165

there is the potential issue of a single HARP corresponding to multiple active regions;166

in fact, roughly 20% of SHARP patches include components from multiple active regions.167

This problem has been acknowledged in Chen et al. (2019) and more details can be found168

therein. In this paper, we do not address this potential problem caused by the data but169

focus on the methods for modeling. We speculate that this potential problem of mismatch170
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of SHARP and GOES data may or may not result in biases for prediction models, while171

might incur loss of statistical efficiency due to the extra noise brought in.172

In order to make maximum use of the data, we consider not only the class of each173

flare, but also the exact value of the flare intensity whkich is defined as the peak flux in174

watts per square metre (W/m2) of soft X-rays with wavelengths 100 to 800 picometres.175

Moreover, since the flare intensity spans orders of magnitude, we take the log10 trans-176

form (see Table 3) in order to better handle the extreme values, X and M flares. All flare177

intensities mentioned later are log10 scale intensities if not further specified.178

Class/Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total
X 0 8 5 12 15 2 0 4 0 46
M 8 84 110 90 169 128 7 37 0 633
C 64 788 906 1105 1231 1194 244 225 11 5768
B 512 519 398 418 94 428 722 606 205 3902

Table 2. The number of X/M/C/B flares recorded in each year in the GOES data set during

the time range 05/01/2010-06/20/2018.

Flare class Peak flux range (W/m2) log10 intensity
X ≥ 10−4 ≥ −4
M 10−5 ∼ 10−4 −5 ∼ −4
C 10−6 ∼ 10−5 −6 ∼ −5
B 10−7 ∼ 10−6

log10−−−→
−7 ∼ −6

Table 3. Transformation from flares class to continuous intensity values we adopt.

After performing the data processing as described above, there are over 10,000 flares179

identified from a time history of X-ray intensity levels. However, considering only the180

peak intensity level recorded at a given time point as in Chen et al. (2019), there are some181

limitations, stated below.182

1. Most of the M and X flare events are accompanied by much more frequent C flares.183

If we simply assign the response variable based on flares’ peak times, two flares184

happening adjacent to each other with totally different intensities can have a large185

amount of overlapping training data (time series). Two observations with simi-186

lar training data but quite different response variables would confuse the model.187

2. Even though there are over 10,000 flare records in GOES data set, they are not188

all in the recorded range of the 860 HARP videos. Also, the number of the strong189

flares which we care the most are limited (see Table 2). Besides, some of the HARP190

videos are not suitable for use in training machine learning models due to large191

amounts of missing entries in the SHARP parameters. Therefore, the effective num-192

ber of flare events that we can use for training/testing the machine learning model193

is not as large as expected.194

3. The recorded flares only occupy a very small fraction of the time series of obser-195

vations, i.e. the SHARP parameters. Those time points without a recorded flare196

might be an unrecorded weak flare near a stronger one, or most likely a “flare-free”197

time point. Considering these time points as contrasts to the time points with flares198

can help the model better distinguish the strong flares from the others. There-199

fore, discarding this piece of information would impair the performance of the pre-200

diction model.201
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Figure 2. The distribution of non-quiet samples’ flare intensities (I) in flare-event-only data

set and full data set, where flare-event-only data set only takes flare intensities recorded on

GOES data set as response variables. The definition of full data set can be seen in Section 2.1.1.

Red line is the fitted Cauchy distribution with location parameter x0 = -5.84 and scale parameter

γ=0.31.

Therefore, in order to overcome these drawbacks, we propose the following defini-202

tion of response variables in our prediction model: for each frame, we define its real-time203

intensity as the maximum flare intensity that happened within a 24-hour time window204

(12 hours before and 12 hours after). In other words, instead of focusing on each recorded205

flare in GOES data set, we only care about the largest flare that happened in each frame’s206

24-hour time window. By applying this new mechanism, we can assign each frame a re-207

sponse variable. Correspondingly, the new data set is called “full data set” (see the dis-208

tribution of the flares in the constructed full data set as compared to the flare-event-only209

data set in Fig.2). As a result, the non-quiet sample size of the full data set is over two210

times larger as compared to the flare-event-only data set, 22,928 as opposed to 10,349.211

Plus, the response variables of those C flares happening next to strong flares (M or X)212

are redefined as high intensities which is certainly more reasonable for model training.213

Most importantly, this mechanism more accurately portray s the processes of solar ac-214

tivities: instead of being single-time-point incidences, they are processes of extended time215

evolution.216

A natural question is how to deal with the frames where there is no flare recorded217

in the 24-hour time window. We define one more binary response variable to denote the218

“flaring” or “non-flaring” of the 24-hour time window – 1 means there is at least one flare219

(M/X/C/B-class) recorded in the GOES data set within the 24-hour window while 0 means220

no flare recorded in the GOES data set within the window.221

To recap, for each frame, we assign it a 2-dimensional response variable, the first222

dimension Q corresponds to the “local quietness” or “local non-quietness” (Boolean, 1223

for having a flare event within the 24-hour window and 0 for not having a flare event within224

the 24-hour window) while the second dimension I stands for its real-time intensity on225

the log10 scale (continuous). Specifically, if a sample has Q = 0, then we annotate the226

second dimension of its response variable as N/A (see Table 4). An example of how we227

define the response variable [Q, I] for HARP 377 is shown in Fig. 3.228
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Figure 3. An example of how we define response variables based on the recorded flares that

happened with HARP 377. The lower panel is the value of I given all flares while the upper

panel is the value of Q. Still, red, green and blue points represent M/X, C and B flares respec-

tively. Notice that there are missing values of I. The missing part is defined as the quiet region

where correspondingly Qs take a value of 0.

Label Response Variable ([Q, I])
M1.5 [1, -4.824]
X1.6 [1, -3.796]
C7.2 [1, -5.143]
Quiet [0, N/A]

Table 4. Examples of the how we define response variables given the flare labels. Quiet stands

for one quiet sample. See Section 2.1.1 for details.

2.1.2 Input Data Pre-processing Pipeline229

A detailed diagram of how we prepare the raw data for machine learning is shown230

in Fig. 4. We briefly describe it here. Suppose we aim to train a model that uses m hours231

of SHARP parameters to predict the maximum flare intensity in the 24-hour window be-232

ginning at n hours after. Since the time cadence of our data is 12 minutes, there are 5233

observed frames (magnetograms) at each hour. Each video needs to contain 5×(m+ n+ 24)234

consecutive frames to have at least one sample available. We take samples every 2 hours235

(10 frames), a reasonable step size which is neither too long to capture the detailed be-236

haviors of the HARP nor so short that it causes oversampling of the time series. We take237

HARP 394 as an example. There are 1,334 frames in total. The training samples include238

frame 0 ∼ frame 5m−1, frame 10 ∼ frame 5m+9, ... , frame 10k ∼ frame 5m+10k−239

1, ... Correspondingly, the response variables include the maximum flare intensities recorded240

within frame 5(m+n) ∼ frame 5(m+n+24)−1, frame 5(m+n)+10 ∼ frame 5(m+241

n + 24) + 9, ... , frame 5(m + n) + 10k ∼ frame 5(m + n + 24) + 10k − 1, ..., where242

k = 0, 1, 2... and 5(m+ n+ 24) + 10k − 1 < 1334.243

We split the training and testing data by years in order to avoid information leak-244

ing. Since all the recorded data ranges from 2010 to 2018, we have that roughly 63% of245

flares happened before 2015 (6,536 out of 10,349). We note that the corresponding sam-246

ple size as obtained by the data preparation described above has a similar flare rate. Each247

HARP only has one video, so no HARP is divided in both the training and testing set.248
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Figure 4. A diagram of how we prepare samples for training the algorithm (See Sec-

tion 2.1.2). For each HARP, there is a “video” containing a time series of magnetograms. For

each frame, 20 SHARP parameters are calculated from the magnetic field components over the

whole HARP. Therefore, we can obtain a data matrix for each HARP with 20 columns and “the

number of frames (magnetograms)” rows. Data in blue braces are the predictors. Green braces

denote the prediction intervals and the response variables are decided based on the maximum

flare intensities recorded in red braces. Samples are taken every 10 frames.

In this study, we split all flares that happened before 01/01/2015 into the training set249

and the rest into the testing set. After splitting the data into training/testing samples,250

we normalize all the data by subtracting the mean and dividing by the standard devi-251

ation computed from the training data (Hastie et al., 2009, Chapter 7.10). No informa-252

tion from the testing data is used in the normalization step.253

Some of the HARPs have missing frames, which result in the time interval between254

two adjacent frames being longer than 12 minutes. In this case, we set up a tolerance255

threshold: if the number of missing frames in total for one sample input is less or equal256

to 10, we apply hot deck imputation (Andridge & Little, 2010) to fill the missing val-257

ues. However, if there are more than 10 frames missing, we drop the sample.258
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2.2 Model Description259

We adopt a mixed LSTM (Hochreiter & Schmidhuber (1997)) regression model to260

portray the relationship between SHARP parameters and flares, with a novel loss func-261

tion to measure the differences between predicted results and the 2-dimensional response262

variables defined in Section 2.1.1. The LSTM model predicts outcomes using trained non-263

linear transformations of input parameters and has been applied to classification of time-264

series data (Goodfellow et al., 2016, Chapter 10). It should be noted that in Chen et al.265

(2019), the LSTM is only used for binary classifications whereas in this paper, the LSTM266

is used for both regression and classification. We call the proposed model a mixed LSTM267

regression model in that it is an LSTM model combining regression and classification tasks.268

2.2.1 Model Structure269

The flowchart of the model is shown in Fig. 5. For each sample, the input/predictor270

is 5m sets of SHARP parameters (see Fig.4), a 1×5m×p tensor. Again, m is the num-271

ber of hours of data we use for prediction before current time point and n is number of272

hours from 24-hour window’s left bound to now. m takes value from 6, 12, 24 and 48,273

which are a series of data lengths typically considered for training prediction models for274

solar flares; n takes values from 0, 6, 12, 24; and p takes the value of 20, since we con-275

sider 20 SHARP parameters. The output/response is a 2×1 vector, including the pre-276

dicted quiet score, Q̂ and predicted intensity, Î (see Table 4).277

As shown in Fig. 5, the model starts with LSTM layers. We introduce dropout lay-278

ers (Srivastava et al., 2014a) between adjacent LSTM layers with dropout ratio = 0.3.279

The number of LSTM layers = 4, the dimensionality h of the LSTM layers and the out-280

put space is 30, and the sample size N in one batch is set to be 40. Take a model with281

m = 24 and n = 6 as an example. We have 38,906 samples available in training set282

(see Section 2.1.2). For each epoch, we randomly assign them to 41869/40 ≈ 973 batches.283

Therefore, the input is one batch out of 973, a 40× 120× 20 tensor. After the LSTM284

layers, the output is a 40 × 120 × 30 tensor, given h = 30. Then, it goes through the285

truncation procedure, during which the tensor becomes 40 × k × 30, typically k <<286

120. Considering that LSTM is a sequential model for time series (Goodfellow et al., 2016,287

Chapter 10), the choice of k = 5m = 120 corresponds to the sequence prediction model288

that explicitly adopts all these 120 input frames. However, our main goal is to capture289

the behavior of the 5n subsequent HARP frames. Therefore, the output from the lat-290

ter few frames (k frames) suffice for making the desired predictions. Specifically, k takes291

the value of 1 in our models. Nevertheless, we have tried taking more than one (k = 2, 5, 10...)292

frames’ output into the next layer and did not obtain a significantly better result.293

After the LSTM and truncation layers, we feed it to two separate sub-models for294

Q and I’s training respectively, each of which contains two dense layers. The first dense295

layer serves the purpose of reducing the second dimension of the tensor to 1, while the296

second condenses the third dimension to 1. Intuitively, the first dense layer works to com-297

bine all the information in all k frames to 1 frame for each feature and the second com-298

bines information of all p features into 1 super-feature. A Relu function is added between299

two dense layers to break the linearity. Since we take k = 1 in our models, the Dense300

Layer I1 and II1 shown in Fig. 5 are deprecated, leaving only Relu functions. The only301

difference between these two sub-models is that we further add a Sigmoid function at302

the end of the Q-training model in order to keep its value, interpreted as the probabil-303

ity of being unquiet, between [0, 1]. Though Q and I go through two separate pipelines,304

they are not independent during the training. We introduce the loss function in Section 2.2.2305

that enables us to consider Q and I jointly in the training.306

We set the epoch number to be 20. Each model takes 5-7 epochs, which costs 5 to307

10 minutes, to converge; and around 20 minutes to finish all the 20 epochs (on a 2.3GHz,308

i5, 16GB machine that we use). Typically, during the first 1-3 epochs, the model learns309
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Start Algorithm Input: A batch of samples

Long-Short Term Memory Layers

Wrap up the information

of N time series.

Truncation

Keep the last k frame(s)

of output (k ≤ m).

Dense Layer I1
For each feature,

combine information of

kept frames into one.

Dense Layer II1

Dense Layer I2
Combine information of

all features into one.

Dense layer II2

Predicted Quiet
scores Q̂ ∈ [0, 1] Predicted Intensities Î

Output: [Q̂, Î] End Algorithm

N × 5m× p

N × 5m× h

N × k × h
N × k × h

N × 1 × h
Relu

N × 1× h
Relu

N × 1 × 1
Sigmoid

N × 1× 1

N × 1 N × 1

N × 2

Figure 5. The flowchart of the LSTM regression model, discussed in Section 2.2.1. In the

figure, N is the number of samples in one batch, 5m is the number of frames for each sample (see

Fig.4 for details), and p is the number of features we take into consideration. h is the dimension-

ality of the LSTM layers and the output space and k is the number of frame(s) we keep after

going through the LSTM layers.

the means of all response variables and assigns the predicted intensities as the sample310

mean. Then, it takes a few epochs for the model to optimize over the parameters. And311

in the next 1-3 epochs, the loss converges super-linearly. Fig. 6 gives a typical example312

of the variation of the loss function in the training process. We will give a detailed def-313

inition of the loss function in Section 2.2.2.314

Specifically, we here reemphasize several strategies implemented to avoid overfit-315

ting issues. First, the dropout layers with dropout ratio equal to 0.3 are set between ad-316

jacent LSTM layers. Those dropout layers randomly rule out 30% of the neurons from317

the preceding LSTM layers which have been proven to be an efficient way to avoid over-318

fitting (Srivastava et al., 2014b). Second, we apply early stopping with back propaga-319

tion strategy (Doan & Liong, 2004) by setting the epoch number to 20. Last and most320

importantly, the sample size is over 60,000 – 37,784 quiet samples plus 22,928 non-quiet321
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samples – after the pre-processing pipeline (Section 2.1.2), which is enough for model322

to learn the behavior of solar flares comprehensively.323

Figure 6. An example showing the convergence behavior of the mixed LSTM regression

model. The x-axis labels the epoch number and the y-axis stands for the average loss across

batches. From epoch 1 to epoch 2, the average loss for each batch drops approximately from 75

to 12. In order to also visualize clearly the super-linear change starting at epoch 5 in one figure,

we cut the intermediate part of the loss change between epochs 1 and 2.

2.2.2 Loss Function324

In our mixed LSTM regression model, the response variables contain both Boolean325

and continuous values. Therefore, we need to adopt a special mixed approach to jointly326

evaluate the loss. In addition, for those samples with Q = 0, there are no exact values327

of intensity recorded. We assign N/A to those “missing” intensity values. The desired328

loss function should avoid the usage of I for those samples with intensity values miss-329

ing. We use binary cross-entropy loss in terms of Q̂, which takes values between 0 and330

1; and the squared error loss for Î (Janocha & Czarnecki (2017)), which takes values in331

R; see Table 5 for examples. Furthermore, we define three tuning parameters to flexi-332

bly deal with the overabundance of the quiet samples and the non-comparability between333

the loss for quiet score and that for (logarithm) intensity values.334

Loss Quiet Sample Non-quiet sample

Q − log(1− Q̂) − log(Q̂)

I N/A (I − Î)2

Table 5. We use binary cross-entropy loss in terms of Q̂ and L2 loss for Î
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More precisely, the loss function for each batch is defined as

L =

N∑
batch samples

[
r 1

] [− log(1− Q̂) − log(Q̂)

0 (I − Î)2

] [
1(Q = 0)w1

1(Q 6= 0)w2(I)

]

=

N∑
batch samples

[
−1(Q = 0)w1r log(1− Q̂) + 1(Q 6= 0)w2(I)(−r log Q̂+ (I − Î)2)

]
,

where Q only takes values in the binary set {0, 1}, I ∈ [−7,−3] are observed log-intensity335

values, Q̂ ∈ [0, 1] and Î ∈ R are fitted values, 1(Q = 0) is the indicator function for336

Q = 0, and N is the sample size of each batch. We take N = 40 in all our models (see337

Section 2.2.1). The tuning parameters w1, w2(·) and r are adopted to calibrate the weight338

of each component in the loss function. Specifically, w1 is the weight for loss generated339

by quiet samples, while w2(.) is a function set for non-quiet samples returning weights340

given specific intensity, and r is the weight for the loss generated by the Q dimension.341

Note that for the loss function, only the relative values of w1, w2(·) and r matter – a loss342

function can be defined up to a positive constant. Next we explain the different compo-343

nents in the design of this loss function.344

For the loss generated by the Q dimension, since Q ∈ {0, 1} and I ∈ [−7,−3],345

the scale of Q’s loss is incomparable to I’s loss. We multiply the Q dimension’s loss by346

a scale parameter r for all samples in order to balance the losses of Q and I. In terms347

of loss of quiet samples, there are significantly more of them , 37,784, than non-quiet sam-348

ples (flare events) , 22,928. We note that our main focus is on those non-quiet samples349

when predicting local maximum flare intensities. Therefore, we multiply the loss of the350

quiet samples with weight w1(< 1) in order to attenuate the impact caused by the over-351

abundance of quiet samples when training our prediction models. The values of r and352

w1 are both tuned by the cross-validation (Hastie et al. (2009, Chapter 7.10)) . Specif-353

ically, we consider r taking values in set {1, 2, 5, 10, 15} and w1 taking values in set {0.1, 0.2, 0.5, 1}.354

We randomly divide the training data set into 10 folds. For each possible pair of r and355

w1, we train the model 10 times with 9 folds as the training set and the remaining fold356

as the testing set. Finally we take the parameter values r = 5, w1 = 0.2, which results357

in the lowest average loss.358

Now we consider the loss associated with the non-quiet samples (flare events). As359

we can see in Fig. 2, C flares dominate the data set while the samples for B and M/X360

flares are comparatively more limited. We adopt the squared error loss for the predic-361

tion of flare intensities. If we simply weight all the input samples equally, under the square362

loss setting, the consequence is that the predicted results will tend to cluster at the cen-363

tral part (around -6 to -5.5 for logarithm intensity, corresponding to C flares), which are364

the 30% and 70% quantiles of the response variables respectively, instead of the [-7, -3]365

intensity range. This is inconsistent with our original intention that M/X flares shall stand366

out from other flares as much as possible in the model. Thus we add w2(·) (see Eq. (1))367

which serves to balance the weights of samples from different classes, which down-weights368

the prevalent C flares essentially. We define the weight for the flare with intensity level369

I as370

w2(I) = |I − µ| × constant. (1)371

Next we explain our rationale for choosing this particular set of weights. We fit the em-372

pirical distribution of the logarithm of the flare intensity of the full data set to a Cauchy373

distribution, which is a heavy-tailed distribution, with location parameter µ= -5.84 and374

scale parameter γ = 0.31. The fitted curve is shown in Fig. 2. The weight is set to be375

the L1 distance from µ multiplied by a constant specified based on the proportion of the376

quiet samples. By doing so, we maintain the balance of samples of M/X, C and B classes.377

Eq. (2) gives the detailed probability mass corresponding to each flare class under the378
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weighting scheme given by Eq. (1):379 
B flares :

∫ −6

−7
|x− µ| · f(x)dx = 0.121

C flares :
∫ −5

−6
|x− µ| · f(x)dx = 0.116

M/X flares :
∫ −3

−5
|x− µ| · f(x)dx = 0.114

, (2)380

where a Cauchy distribution with location parameter µ and scale parameter γ has prob-381

ability density function denoted by f(x) =
[
πγ(1 +

(
(x−µ)
γ )2

)]−1

.382

With this strategy, we can combine the quiet and non-quiet samples in one model383

and train them simultaneously. Again, the loss function L is defined over each batch with384

N samples therein. Therefore, we can obtain the “number of batch” of losses for each385

epoch. The loss we evaluate and visualize in Fig. 6 is the average loss of all batches over386

each epoch. The results calculated based on the loss function L are shown in Section 3.1.387

Start Algorithm
Input: All training samples

with class M/X and B

[Q̂, Î] = LSTM(samples)

(see Fig.5)

LB = −6, UB = −5, n = 0

n ≥ 5

construct a confusion

matrix based on

Î > threup

where threup = UB ×
2/3 + LB × 1/3.

Î > threlo

where threlo =

UB × 1/3 + LB × 2/3

HSS2−upper > HSS2−lower

UB = UB
LB = threlo

UB = threup
LB = LB

thre =
(threlo + threup)/2

End Algorithm

no

HSS2−upper
HSS2−lower

yes no

n = n+ 1 n = n+ 1

yes

Figure 7. The flow chart of M/X vs B classification, discussed in Section 2.3. After inputting

all training samples with class M/X and B into the trained LSTM model, we use the output Î

together with I to decide an optimal threshold between M/X and B with trisection method. The

loop time is set to 5.
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2.3 Extension to Classification Models388

In this section, we introduce binary classification models that are built upon the389

mixed LSTM regression model in Section 2.2. The binary classification models are de-390

signed for classifications of M/X versus B, M/X versus B/Q and M/X versus C/B/Q.391

For M/X versus B, i.e. strong/weak flare classification, we only consider training392

samples that have flare intensities ranging from [−7,−6)∪[−5,−3). Borrowing the idea393

from transfer learning in Yosinski et al. (2014), we make use of the output given by the394

mixed LSTM regression model, Î, to decide an optimal threshold between M/X and B395

flares.396

Since we know the observed intensity, I of all training samples, for each potential397

threshold (thre ∈ (−6,−5]) for Î, we can construct a confusion matrix, where true pos-398

itives TP =
∑
1(Îi ≥ thre, Ii ≥ −5.5), false positives FP =

∑
1(Îi ≥ thre, Ii < −5.5),399

false negatives FN =
∑
1(Îi < thre, Ii ≥ −5.5), and true negatives TN =

∑
1(Îi <400

thre, Ii < −5.5), where each term is summed over all available training samples. Then401

we can calculate the HSS2 score correspondingly (see Bobra & Couvidat (2015) for the402

definition of HSS2). Again, 1(·) is an indicator function. Note that, in this case, I only403

takes values in [−7,−6)∪[−5,−3). Any number between -6 and -5 could act as the thresh-404

old for observed intensity, I. We hereby take the value of -5.5.405

Next we apply the trisection method (Gu et al., 2006) to find the threshold that406

yields the highest HSS2. For each iteration, we obtain a threlo and a threup by trisect-407

ing the current range of threshold. By constructing confusion matrixs respectively, we408

compare the HSS2 score, choose the one with the higher score, and define new threlo and409

threup. Throughout the iterations, the range of possible thresholds keeps getting smaller410

and finally we reach an optimal threshold for Î. The flowchart of the algorithm is in Fig. 7.411

The M/X versus B/Q classification model adopts the same strategy as the M/X412

versus B classification model does on determining the threshold between M/X and B/Q.413

Different from the M/X versus B/Q and M/X versus B models, the M/X versus C/B/Q414

classification model no longer has the sweet [−6,−5) buffering area for us to train a thresh-415

old. Once we include C flares in the model, the threshold is fixed at −5.416

We use the following 6 metrics to evaluate all our binary classifiers: Recall, Pre-417

cision, the F1 score, the Heidke skill scores (HSS1, HSS2), see Bobra & Couvidat (2015)418

for the definition of HSS1 and HSS2, and the true skill statistics (TSS), among which419

HSS2 and TSS are our main focuses. Specifically, Recall and Precision are two standard420

metrics evaluating the quality of a prediction. The F1 score is the harmonic mean of Re-421

call and Precision. However, these three scores can be rather unstable when encounter-422

ing unbalanced samples; which is true in our case where the B/C flares outnumber the423

M/X flares. We consider TSS and HSS2 as two reasonable measures of classification per-424

formance for solar flares. TSS is invariant to the frequency of samples, unlike Recall or425

Precision. HSS2 measures the fractional improvement of the forecast over the random426

forecast. There are detailed descriptions of HSS1, HSS2 and TSS in Florios et al. (2018).427

Bloomfield et al. (2012) gives conceptual comparison and discussion on the suitability428

of these metrics when predicting solar flares. A summary of the binary classification re-429

sults is shown in Section 3.2.430

2.4 Test Samples Preparation431

In this paper, we adopt the following strategy for preparing the testing samples to432

give a fair evaluation of the performance of our algorithms. Recall that each sample is433

a time series of SHARP parameters and corresponds to a 2-d response variable [Q, I].434

First, we take all the samples from the full data set after 2015 (see how we get full435

data set and do training/testing splitting in Section 2.1). For each sample with corre-436
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sponding response variable Q = 1 (non-quiet samples), there should be at least one flare437

happening in the 24-hour time window and the maximum intensity of all the applica-438

ble flares should be equal to I. For samples with overlapping predictors and the corre-439

sponding response variables belonging to the same flare class, we keep one of them at440

random to avoid repeated predictors - response variable pairs in the testing set. Quiet441

samples are collected with the same strategy. Section 3, Appendix A, Appendix B, and442

Appendix C give results for using testing samples obtained via this strategy.443

3 Results444

In this section, we present results in Sections 3.1, 3.2 and 3.3 based on the mod-445

els described in Section 2. In Section 3.4, we illustrate that under the LSTM architec-446

ture, the most efficient time range for predicting the solar activity using the SHARP pa-447

rameters is within 24 hours before the prediction time. Finally, case studies of intensity448

prediction with several representative HARPs are given in Section 3.5.449

With the current time point specified as time 0, we denote a model as “[−m, 0]-450

[n, n+24]” if it uses data in time range [−m, 0] to predict maximum local flare inten-451

sities within the [n, n + 24] time window (n,m ≥ 0). We define the [n, n + 24] time452

window as prediction window and [−m, 0] time window as input window. For example,453

if we want to use the past 6 hours of data to predict the maximum local flare intensity454

in the 24-hour window [0, 24], the model is denoted as [−6, 0]-[0, 24]. The prediction win-455

dow is [0, 24] and the input window is [−6, 0] in this case. Similarly, if we want to use456

the past 12 hours of data to predict the maximum local flare intensity in the next [12, 36]457

hours, the model should be denoted as [−12, 0]-[12, 36]. The prediction window is [12, 36]458

and the input window is [−12, 0].459

To allow fair comparisons across models, models with the same prediction window460

but different input windows are applied to the same group of samples. Consider a se-461

ries of models: [−6, 0]-[0, 24], [−12, 0]-[0, 24], [−24, 0]-[0, 24] as an example. Their sam-462

ples are all filtered based on the standard for model [−24, 0]-[0, 24] (see Section 2.1.2 for463

details on sample preparation). Therefore, for each sample, we have 24-hour length of464

SHARP parameters as the predictors; while we only use the last 6 and 12 hours of pre-465

dictors for models [−6, 0]-[0, 24] and [−12, 0]-[0, 24].466

3.1 The MSEs from the Mixed LSTM Regression Model467

In this section, we present the MSEs of predicted log10 flare intensities from all mod-468

els in the of line charts. The complete MSE tables for all models and all classes of flares469

can be found in Appendix A.470

Fig. 8 is a line chart showing the MSEs for models with the same prediction win-471

dow as the length of input window (m) increases (solid lines). The chart also includes472

the MSEs of the samples with M/X flares (dashed lines). As the prediction window gets473

farther away from the current time point (n increases), the MSE of all flare samples does474

not change too much. However, this is not true when we look at MSE calculated from475

M/X flares only. This shows the sensitivity of the evaluation metric, MSE, with respect476

to the samples that we use to calculate with. Therefore, the MSE of M/X flares can be477

considered as another metric for evaluating the performance of the regression models.478

Intuitively, the smaller the n, i.e., the closer the prediction window from the cur-479

rent time point, the smaller the MSE will be. This is confirmed in Fig. 8. Generally, from480

the results, the MSE is kept under 0.3 when the prediction window is [0, 24], [6, 30] or481

[12, 36]. We can keep the MSE of M/X flares under 0.5 when n = 0, a.k.a prediction482

window is [0, 24]. We also observe that there is a sudden increase in terms of the MSE483

of M/X flares when the prediction window is shifted from [6, 30] to [12, 36] and [24, 48].484
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Figure 8. Line chart showing the MSEs of all mixed LSTM regression models, shown in Sec-

tion 3.1. Again, m is the number of hours of data we use before the current time point, [−m, 0]

is the input window and [n, n+24] is the prediction window. Each point with a vertical line is

the average MSE and its 95% confidence interval of ten regression models with same [−m, 0]-

[n, n+24] trained separately. Each line shows the variation of MSE for models with the same

prediction window and different lengths of input windows. The solid lines represent the MSEs of

all non-quiet testing samples (M/X/C/B). The dashed lines represent the MSEs of those testing

samples with M/X flare intensities.

However, we do not observe any significant patterns of the MSE varying monotonically485

as a function of m, the length of the time series that we use for prediction. We elabo-486

rate discussions on these results in Section 3.4.487

3.2 Performance of the Classification Models488

We use the HSS2 score to compare the performances of M/X versus B and M/X489

versus C/B/Q classifiers. Results in other metrics mentioned in Section 2.3 are shown490

in Appendix B. In addition, since M/X versus B/Q models give us similar HSS2 scores491

as M/X versus B models do, we also put results of M/X versus B/Q models in Appendix492

B.493

The HSS2 score results are also shown in the form of a line chart in Fig. 9. There494

is a large gap between all M/X versus B models and all M/X versus C/B/Q models. As495

mentioned in Section 2.3, we have a intensity interval, [−6,−5) (for C flares), where there496

is no flare defined as M/X or B. This is mainly why we can get incredibly high scores497

(HSS2 > 0.8 when the prediction window is [0, 24] or [6, 30], HSS2 > 0.7 when all mod-498

els) for M/X versus B. As for the M/X versus C/B/Q model, we can hardly get HSS2499

scores greater than 0.5. We manage to classify roughly half of the M and X flares out500

of other flares when prediction window is [0, 24] (See Appendix B). Almost all of the mis-501

classified M and X flares have predicted intensities falling into C flares’ intensity range502

(See Fig. 13). We do not observe an obvious HSS2 score difference between models with503

prediction window [0, 24] and [6, 30]. But when the prediction window is shifted from [6, 30]504

to [12, 36] and [24, 48], there is a large decrease in terms of the HSS2 score.505
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Figure 9. Line chart showing the HSS2 scores of all classification models, covered in Sec-

tion 3.2. Similar to Fig. 8, each point with a vertical line is the average HSS2 and its 95% confi-

dence interval of ten classification models with same [−m, 0]-[n, n+24] trained separately. Each

line shows the variation of HSS2 for models with same prediction window and different length of

input windows. The solid lines represent the HSS2s of M/X versus B models. The dashed lines

represent the HSS2 scores of M/X versus C/B/Q models.

3.3 Results of Quiet Samples from the Mixed LSTM Regression Model506

In Section 3.1 and Section 3.2, we only summarise the prediction results of non-507

quiet samples, i.e. samples with response variables Q = 1. In this section, we will par-508

ticularly focus on the performance of all the models in terms of the quiet samples, i.e.509

samples with response variables Q = 0.510

First, we examine the fitted distribution of the predicted intensity (Î) of the quiet511

samples in Fig. 13. This is an example of a [-6,0]-[0,24] model. We observe that almost512

all of the quiet samples have Î < −5 in the testing set, which indicates that the false513

alarm (False Positive rate) of quiet samples can be restrained significantly in our mod-514

els. Next, we formally evaluate the performance of the prediction. Note that we don’t515

have the exact observed intensity (I = N/A) for quiet samples (see examples of how516

we define response variables in Table 4). Therefore, we consider the prediction result ([Q̂, Î])517

as successful if it meets either of the following two requirements: (1) the predicted in-518

tensity Î < k, (2) predicted quiet score Q̂ < 0.5. Specifically, k takes the value of -5519

and -6, where k = −5 evaluates the rate of falsely predicting a quiet sample as inten-520

sive flare (M and X flare) while k = −6 evaluates the rate of falsely predicting a quiet521

sample as M, X or C flare. We denote k = −5 as metric 1 and k = −6 as metric 2.522

Fig. 10 shows the summarised result of the quiet sample prediction, where solid line523

corresponds to metric 1 and dashed line to metric 2 (the summary table can be seen in524

Appendix C). We obtain an accuracy of over 98.5% for all models in terms of metric 1525

and over 80% in terms of metric 2. Recall that “-5” is the cutoff of the logarithm of flare526

intensity for B and C flares, thus as long as we don’t give a Î > −5 which is an alarm527

of intense flare, we can consider the prediction satisfying. Therefore, we conclude that528

our regression models have an excellent performance on restraining false alarms.529

–18–This article is protected by copyright. All rights reserved.



manuscript submitted to space weather

Figure 10. Line chart showing the classification accuracy of quiet samples in all models,

covered in Section 3.1. Each point with a vertical line is the average accuracy and its 95% confi-

dence interval of ten models with same [−m, 0]-[n, n+24] trained separately. Each line shows the

variation of the accuracy for models with same prediction window and different length of input

windows. The solid lines represent the accuracy when the evaluation metric is Q̂ < 0.5 or Î < 6.

The dashed lines represent the accuracy when the evaluation metric is Q̂ < 0.5 or Î < 5.

3.4 Post-hoc Analysis530

In this section, we show visualizations of the prediction results, combined with the531

regression and classification results shown in Section 3.1, 3.2 and 3.3, to investigate in-532

depth how the information in the data (time series of SHARP parameters) convey for533

solar flare predictions under the LSTM architecture.534

Fig. 11 and Fig. 12 show the predicted intensity against the observed intensity with535

each point representing a flare event. Each color in the figures represents one class of so-536

lar flare. Purple stands for X flare, blue for M, aqua for C and green for B. Specifically,537

except that Fig. 11(b) is plotted based on the training samples, all other sub-figures in538

Fig. 11 and Fig. 12 are plotted based on testing samples corresponding to 5 models with539

different prediction windows and input windows. Fig. 11(b) exhibits the best performance540

over all figures, since it is based on training set. We cannot expect to achieve this high541

accuracy when applying models to the testing set.542

Fig. 13 shows the fitted Gaussian distribution of each class’s predicted intensity.543

The left panel is the fitted Gaussian distribution for training samples and right is for test-544

ing samples. Each color represents one class of flares. It can be seen that the different545

classes of flares, especially neighboring ones, have overlapping predicted intensity val-546

ues. Nevertheless, the strong flares and weak flares (or quiet time) are still highly dis-547

tinctive.548

Not surprisingly, the farther the prediction window from the current time point,549

the worse the prediction results. This is also intuitive: predicting what happens after one550

hour is easier than predicting what happens after ten hours. Another finding is that con-551

sidering more data backwards (greater m) does not necessarily guarantee a better pre-552

diction result. The explanation is twofold.553
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Figure 11. Predicted intensities versus True intensities. Each point represents a recorded

flare. Purple stands for X flare, blue for M, aqua for C and green for B. For each panel, the x-

axis is the observed intensity and y-axis is the predicted intensity. The thick gray dashed line

y=x shows the ideal positions where every point should locate when being accurately predicted.

First, we speculate that the most useful information for predicting the behavior of554

the prediction window is within 24 hours beforehand. Here 24 denotes the hours from555

the center of the prediction window to now. Once n + 12 ≥ 24 (12 is half of the pre-556

diction window’s length), considering more information does not help much based on our557

results. Notice that, even though the TSS and HSS2 scores decrease as the n increases,558

they always experience a sharp drop when the prediction windows move farther away559

from [6, 30] to [12, 36], i.e. n increases from 6 to 12 in all models. Recall that k in Fig. 5560

is the number of frame(s) we kept after going through LSTM layers and we take k =561

1 for all our models. Therefore, we are essentially using the output information of the562

last frame (n hours from the prediction window) to predict the behavior in the predic-563

tion window. A worse result indicates that the last frame is less relevant to the predic-564

tion window or it is harder for LSTM to build a relationship between the prediction win-565

dow and the last frame. Thus, the sharp drop when the prediction window shifts from566

[6,30] to [12,36] indicates the solar activities within the 24 hour window prior to the events567

have a significant influence on the behavior in the prediction window.568

Second, even though the most useful information for prediction is within 24 hours569

before the events, considering more information offering us worse result is still counter-570

intuitive. This is due to the limitations of the LSTM model. The LSTM is an artificial571

recurrent neural network (RNN) architecture used for digging out the temporal prop-572

erties within time-series data. The parameter matrices for each gate remain unchanged573

for all input time series. Therefore, the LSTM considers the entire time evolution pro-574

cess in a homogeneous way. If the whole time series before the event is not acting ho-575

mogeneously, adding information 24 hours before can, on the contrary, impair the per-576

formance of the prediction.577

3.5 Case Study578

In the case study section, we focus on the model performances on M and X flares’579

predictions for two reasons. First, M and X flares are of primary concern in the flare pre-580

diction problem. Second, as shown in Fig. 8, the model can already offer us a decent pre-581
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Figure 12. Visualizations for 4 example models. The figures share the same setting as

Fig. 11. Noted that, in both Fig. 12 and 13, there are no X flare plotted. Recall that we de-

fine the prediction window as [n, n+24]. Generally, there is no applicable X flares in testing set

for n > 0. We have very few X flares. Most of them happened before 2015. For the limited X

flares happened after 2015, they either have many frames missing before it happened, or hap-

pened only few hours after the video starting. So we don’t have X flares in testing set for models

with prediction windows farther away from the current time point.

diction, i.e. a relatively small MSE, for B and C flares. Besides, Fig. 13 shows that, for582

both the training and testing set, quiet samples’ predicted intensities are restricted be-583

low -5. Hence, M and X flares are not only the most important but also the most dif-584

ficult flares to predict, i.e. generating the highest MSE.585

Fig. 14 and Fig. 15 show 6 prediction plots, including 4 well and 2 badly performed586

examples, each of which corresponds to one HARP and one model. The 4 well-performed587

examples in Fig. 14 are chosen where at least one of their M and X flares lays near the588

y = x diagonal line in Fig. 12(a) and (b). For the 2 badly-performed cases in Fig. 15,589

we choose two videos where one of their M or X flares has the largest prediction error590
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’

Figure 13. Fitted distribution of predicted intensities based on one [−6, 0]-[0, 24] model. The

distribution is fitted using Gaussian kernel with bandwidth=0.15. X-axis is the values taken by

predicted intensities, Y-axis stands for the density of fitted distribution. Ideally, flares with class

B, C or M should follow an asymptotically normal distribution. The predicted distribution (a) for

training data is close to the ideal setting. While for testing set (b), the predicted intensities are

still having a hard time separating themselves with other flares.

(|I− Î|) among all M and X flares in the training set and testing set respectively in a591

[−24, 0]-[0, 24] model.592

A successful case should have the blue curve in the lower panel of each plot locat-593

ing as close as possible to the local maximum flare, i.e. local highest round point. Noted594

that the existence of dimension Q in the response variable is only to compensate for the595

non-observable flares. Thus, the quiet score Q̂ in the upper panel is more than a signal596

instead of an exact prediction result. As long as the lower panel offers a Î ≤ −6, we597

can still consider the model having a good prediction of the quiet time.598

The two cases shown in Fig. 15 represent two typical situations where M and X are599

wrongly predicted. (1) The model does perceive the increase in flare intensity but not600

precisely, like in Fig. 15(a). Predicted intensity may have increased hours before or af-601

ter the intensive flares’ happening. (2) The model fails to detect the intense flares to-602

tally, like in Fig. 15(b). However, this scenario only happens when the certain M/X flares603

lay at the head or tail of the video. Moreover, videos also tend to have a few frames miss-604

ing at the beginning and the end. Thus we speculate that it is the potential problem of605

the missing frames and the mismatch of HARP and Active regions (see Section 2.1.1 for606

details) rather than the model that restricts the performance of the prediction. We also607

note that there are many missing B and C flares in the GOES data set, which might re-608

duce precision of the response variable, leading to biased prediction results.609

4 Summary and Discussion610

In this paper, we presented a pipeline to prepare and analyze data from the SHARP611

parameters and GOES data set. A mixed LSTM regression model was introduced and612

applied and we shared encouraging results on solar flare intensity prediction and clas-613

sification. The work in this article can be considered as one further step from the pa-614

pers discussing flare classification including Chen et al. (2019) and Liu et al. (2019).615
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Figure 14. Case Studies: Successful cases. For each plot, the blue curve on the upper panel

is the predicted Q̂ score. The grey dashed line taking the value of 0.5 is the threshold of dividing

quiet and non-quiet times. The blue curve on the lower panel is the predicted real-time flare

intensity, Î. There is no time shift on each plot. Each red, green or blue round point corresponds

to one recorded M/X, C or B flare respectively. Unlike Fig. 1, the height of each point is exactly

the log10 intensity of the flare it represents.

We refer models in this paper as modelA and models in the above two papers as616

modelB . Generally, modelA differ from modelB in several aspects. (A direct compari-617

son on the breadth of usage between models is shown in Fig. 16.)618

• ModelA consider the intensity of each flare as a continuous variable on the log10619

scale, ranging from [−7,−3], instead of a single label, defined as a binary (Strong620

and Weak) or multi-class (≥ M5.0, ≥ M and ≥ C class) label. Therefore, modelA621

could predict both the intensity and the class of the flare as opposed to only pre-622

dicting flare class in modelB . ModelA are regression models whereas modelB are623

classification models. For example, we consider two flares with intensity level M1.0624

and C9.9. These two flares are similar in the regression model since their log10 in-625

tensities are close to each other, but are totally different in classification model626

since the former is an M-class flare and the latter is a C-class flare.627

• In modelA, we assign each frame the maximum flare intensity of flares happened628

within a 24-hour time window (12 hours before and 12 hours after). By doing so,629

modelA can assign every frame a flare intensity, including the frames where there630

is no flare happening.631
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Figure 15. Case Studies: Failed cases. Same setting as Fig. 14. In addition, the red vertical

dashed line is to indicate the largest prediction error.

• In our notation, a time point (one frame) with no flare happening includes two632

cases: (1) there exists at least one flare within the 24-hour window but not at the633

exact time and (2) there is no flare within the 24-hour window. We consider the634

latter frames as quiet regions and the former together with frames with flare hap-635

pening as unquiet regions. Hence, modelA can predict the quietness of a 24-hour636

window, instead of presuming there is flare happening at the prediction time point637

and classifying flare labels like modelB do.638

• The extended classification model in modelA is only a by-product of the regres-639

sion model. The way we get the classification relies on the predicted numerical flare640

intensity values and the trained thresholds. This is also different from the clas-641

sification methods in modelB .642

Specifically, compared to our previous results in Chen et al. (2019), the models pre-643

sented in this paper stand out in several aspects.644

• The prediction score, TSS and HSS2 of M/X versus B is increased by 0.1 when645

the prediction window is [0, 24].646

• We consider more cases, including [−6, 0]-[0, 24], [−12, 0]-[0, 24], [−24, 0]-[0, 24];647

[−6, 0]-[6, 30], [−12, 0]-[6, 30], [−24, 0]-[6, 30]; [−6, 0]-[12, 36], [−12, 0]-[12, 36], [−24, 0]-648

[12, 36], [−48, 0]-[12, 36]; [−6, 0]-[24, 48], [−12, 0]-[24, 48], [−24, 0]-[24, 48], [−48, 0]-649

[24, 48] and prepare the data to offer fair comparison with same prediction win-650

dows.651

There are several promising areas for future work. First, as we mentioned at the652

beginning of Section 2.1.1, there exists a potential mismatch of the SHARPs and GOES653

data, which may cause bias for prediction models. We plan to address this problem in654

future work using flare location data. Second, the Sun’s activity level experiences an 11655

year cycle, where the 24th cycle that began in December 2008 (Solar Cycle Progression656

(2019)). The boundary between the training and testing sets in this paper are set at year657

2015. Flares events that happened after 2015 are not exactly equivalent or comparable658

to flares before 2015. It would be worthwhile to explore other splits of the data sets into659

training and testing subsets. Third, in our models, we consider videos of different HARPs660

equally, which is certainly not the case due to the intrinsic variability among different661

HARPs. Moreover, there is a latent dependency among flares in the same HARP, which662

are not modeled in our LSTM approach. Last, as mentioned in Section 3.5, our results663
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Input: Samples with flares Input: Samples
without flares

Models in

Chen et al. (2019)

and Liu et al. (2019)

Mixed LSTM

Regression Model

(see Fig. 5)

Classification results,

like Strong v.s. Weak or

≥M5.0, ≥M, ≥C

Quietness ({0,1}) and
Flare intensity ([−7,−3])

Extended

Classification model

(see Fig. 7)

Classification results
X, M, C and B

Figure 16. A direct comparison between models introduced in this paper and models used

in Chen et al. (2019) and Liu et al. (2019). Mixed LSTM models can accept any kind of sample

inputs and give a more informative prediction including the quietness (quiet or unquiet), flare in-

tensity and, flare class within a 24-hour window. As a contrast, the models in Chen et al. (2019)

and Liu et al. (2019) can only give classification results.

are limited by its sole dependency on the SHARP parameters, which may or may not664

fully capture the information of the magnetic field. In the future, we plan to directly work665

with the HMI magnetograms for real time prediction of flares.666

Appendix A MSE Table for Mixed LSTM Regression667

In this table and all the following tables in the appendix, we denote the [−m, 0]-668

[n, n+24] model as (n+12)-m for simplicity. For example, [−12, 0]-[0, 24] is 12-12 and669

[−24, 0]-[24, 48] is 36-24. Note that the values given in the table are based on log10 scale670

of flare intensity values.671

Class Num of hours before Event - Num of hours of data used
12-06 12-12 12-24 24-12 24-24 24-48 36-06 36-24

Average 0.25 0.25 0.24 0.25 0.27 0.28 0.29 0.30
M/X 0.44 0.46 0.48 0.61 0.63 0.69 0.72 0.71

C 0.19 0.20 0.19 0.14 0.19 0.16 0.15 0.15
B 0.25 0.23 0.22 0.29 0.25 0.27 0.26 0.28
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Appendix B Tables of Classification Results672

B1 M/X versus B flare classification results (calculated based on Ta-673

ble B4)674

Metrics Num of hours before Event - Num of hours of data used
12-06 12-12 12-24 24-12 24-24 24-48 36-06 36-24

Recall 0.89 0.89 0.91 0.80 0.80 0.80 0.74 0.74
Precision 0.92 0.92 0.93 0.89 0.92 0.91 0.94 0.94
F1 Score 0.91 0.91 0.92 0.85 0.85 0.85 0.82 0.82

HSS1 0.82 0.81 0.84 0.71 0.72 0.72 0.68 0.69
HSS2 0.86 0.86 0.88 0.75 0.78 0.76 0.71 0.71
TSS 0.85 0.85 0.88 0.74 0.76 0.75 0.69 0.70

B2 M/X versus B/Q flare classification results (calculated based on Ta-675

ble B5)676

Metrics Num of hours before Event - Num of hours of data used
12-06 12-12 12-24 24-12 24-24 24-48 36-06 36-24

Recall 0.91 0.89 0.90 0.79 0.80 0.80 0.74 0.74
Precision 0.64 0.66 0.66 0.72 0.71 0.68 0.68 0.66
F1 Score 0.75 0.75 0.76 0.75 0.75 0.73 0.70 0.69

HSS1 0.39 0.42 0.43 0.48 0.46 0.39 0.34 0.31
HSS2 0.73 0.74 0.74 0.73 0.72 0.70 0.67 0.66
TSS 0.88 0.86 0.87 0.76 0.77 0.76 0.70 0.70

B3 M/X versus C/B/Q flare classification results (calculated based on677

Table B6)678

Metrics Num of hours before Event - Num of hours of data used
12-06 12-12 12-24 24-12 24-24 24-48 36-06 36-24

Recall 0.54 0.49 0.45 0.35 0.34 0.32 0.29 0.32
Precision 0.45 0.47 0.47 0.54 0.52 0.53 0.55 0.56
F1 Score 0.49 0.48 0.46 0.42 0.41 0.40 0.38 0.40

HSS1 -0.11 -0.06 -0.05 0.05 0.02 0.03 0.06 0.07
HSS2 0.47 0.45 0.44 0.39 0.38 0.37 0.35 0.37
TSS 0.51 0.46 0.43 0.33 0.32 0.30 0.28 0.30
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B4 M/X versus B Confusion Matrices679

Model Confusion Matrix (mean [min, max])
TP FN FP TN

12-06 86.2 [83,88] 8.8 [7,12] 7.3 [1,14] 176.7 [170,183]
12-12 84.2 [80,88] 10.8 [7,15] 6.8 [3,10] 177.2 [174,181]
12-24 85.4 [79,88] 9.6 [7,16] 6.4 [4,8] 177.6 [176,180]
18-06 79.5 [74,86] 10.5 [4,16] 7.9 [3,19] 156.1 [145,161]
18-12 79.2 [76,84] 10.8 [6,14] 5.4 [1,12] 158.6 [152,163]
18-24 81.1 [75,88] 8.9 [2,15] 7.9 [1,35] 156.1 [129,163]
24-06 71.7 [66,78] 17.3 [11,23] 4.3 [2,7] 158.7 [156,161]
24-12 70.3 [63,76] 18.7 [13,26] 5.2 [1,9] 157.8 [154,162]
24-24 71.0 [66,76] 18.0 [12,23] 6.8 [3,12] 156.2 [151,160]
24-48 64.4 [60,71] 16.6 [10,21] 6.4 [3,12] 113.6 [108,117]
36-06 57.5 [49,63] 20.5 [15,29] 4.1 [2,9] 89.9 [85,92]
36-12 59.9 [53,67] 18.1 [11,25] 6.8 [2,17] 87.2 [77,92]
36-24 57.6 [53,63] 20.4 [15,25] 4.1 [2,15] 89.9 [79,92]
36-48 59.4 [49,65] 18.6 [13,29] 6.1 [2,14] 87.9 [80,92]

B5 M/X versus B/Q Confusion Matrices680

Model Confusion Matrix (mean [min, max])
TP FN FP TN

12-06 86.2 [83,88] 8.8 [7,12] 49.0 [29,73] 1606.0 [1582,1626]
12-12 84.2 [80,88] 10.8 [7,15] 44.3 [33,55] 1610.7 [1600,1622]
12-24 85.4 [79,88] 9.6 [7,16] 44.6 [35,57] 1610.4 [1598,1620]
18-06 79.5 [74,86] 10.5 [4,16] 63.4 [23,113] 1571.6 [1522,1612]
18-12 79.2 [76,84] 10.8 [6,14] 51.3 [27,78] 1583.7 [1557,1608]
18-24 81.1 [75,88] 8.9 [2,15] 59.0 [21,167] 1576.0 [1468,1614]
24-06 71.7 [66,78] 17.3 [11,23] 25.6 [18,33] 915.4 [908,923]
24-12 70.3 [63,76] 18.7 [13,26] 27.8 [14,40] 913.2 [901,927]
24-24 71.0 [66,76] 18.0 [12,23] 29.8 [20,40] 911.2 [901,921]
24-48 64.4 [60,71] 16.6 [10,21] 32.7 [17,57] 865.3 [841,881]
36-06 57.5 [49,63] 20.5 [15,29] 31.1 [8,80] 840.9 [792,864]
36-12 59.9 [53,67] 18.1 [11,25] 43.0 [19,99] 829.0 [773,853]
36-24 57.6 [53,63] 20.4 [15,25] 33.8 [13,100] 838.2 [772,859]
36-48 59.4 [49,65] 18.6 [13,29] 39.8 [21,78] 832.2 [794,851]
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B6 M/X versus C/B/Q Confusion Matrices681

Model Confusion Matrix (mean [min, max])
TP FN FP TN

12-06 49.8 [40,57] 45.2 [38,55] 54.7 [37,67] 1998.3 [1986,2016]
12-12 47.1 [38,58] 47.9 [37,57] 53.5 [42,79] 1999.5 [1974,2011]
12-24 41.6 [32,54] 53.4 [41,63] 44.7 [31,64] 2008.3 [1989,2022]
18-06 36.6 [24,51] 53.4 [39,66] 35.5 [24,54] 1856.3 [1838,1868]
18-12 37.3 [29,43] 52.7 [47,61] 31.7 [18,42] 1860.3 [1850,1874]
18-24 35.0 [26,46] 55.0 [44,64] 29.2 [16,41] 1862.8 [1851,1876]
24-06 32.2 [27,40] 48.8 [41,54] 30.7 [20,38] 1137.3 [1130,1148]
24-12 29.4 [24,35] 51.6 [46,57] 26.1 [17,33] 1141.9 [1135,1151]
24-24 28.8 [19,39] 52.2 [42,62] 27.7 [20,33] 1140.3 [1135,1148]
24-48 28.0 [22,38] 53 [43,59] 25.1 [12,32] 1142.9 [1136,1156]
36-06 23.6 [12,33] 54.4 [45,66] 17.0 [10,22] 1025.0 [1020,1032]
36-12 26.9 [13,36] 51.1 [42,65] 19.9 [7,33] 1022.1 [1009,1035]
36-24 25.2 [19,29] 52.8 [49,59] 21.5 [14,40] 1020.5 [1002,1028]
36-48 25.1 [9,35] 52.9 [43,69] 15.9 [9,28] 1026.1 [1014,1033]

Appendix C Summary of Accuracy of Quiet Sample Prediction682

Model Accuracy (mean [min, max] in %) Model Accuracy
Metric 1 Metric 2 Metric 1 Metric 2

12-06 99.4 [98.9,99.8] 89.0 [83.5,92.3] 24-12 99.6 [99.4,99.9] 88.2 [85.5,91.3]
12-12 99.4 [98.9,99.8] 89.1 [86.0,91.6] 24-24 99.5 [99.4,99.9] 87.6 [82.9,91.9]
12-24 99.6 [99.2,99.9] 88.9 [82.9,92.4] 24-48 99.5 [99.2,99.7] 86.8 [83.4,92.5]
18-06 99.1 [98.7,99.5] 87.4 [83.8,91.7] 36-06 99.6 [99.1,100] 88.6 [84.8,91.9]
18-12 99.3 [99.0,99.7] 88.6 [86.9,90.1] 36-12 99.4 [98.5,99.9] 87.5 [82.9,92.5]
18-24 99.4 [99.0,99.7] 88.8 [85.7,92.7] 36-24 99.3 [98.2,99.7] 84.1 [74.2,90.9]
24-06 99.3 [99.1,99.9] 86.6 [77.8,90.7] 36-48 99.5 [99.0,99.9] 87.6 [84.1,89.6]
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