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Abstract 22 

The opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount 23 

importance for the development of modern ocean characteristics. Notably, it has been 24 

suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current 25 

formation (ACC), in the cooling of high-latitude South Atlantic waters and in the initiation of 26 

North Atlantic Deep Water (NADW) formation. 27 

Several model studies have aimed to assess the impacts of DP opening on climate, but most of 28 

them focused on surface climate and only few used realistic Eocene boundary conditions. 29 

Here, we revisit the impact of the DP opening on ocean circulation with the IPSL-CM5A2 30 

Earth System Model. Using appropriate middle Eocene (40 Ma) boundary conditions, we 31 

perform and analyze simulations with different depths of the DP (0 m, 100 m, 1000 m and 32 

2500 m) and compare results to existing geochemical data. Our experiments show that DP 33 

opening has a strong effect on Eocene ocean structure and dynamics even for shallow depths. 34 

The DP opening notably allows the formation of a proto-ACC and induces deep ocean 35 

cooling of 1.5°C to 2.5°C in most of the Southern Hemisphere. There is no NADW formation 36 

in our simulations regardless of the depth of the DP, suggesting that the DP on its own is not a 37 

primary control of deep-water formation in the North Atlantic. This study elucidates how and 38 

to what extent the opening of the Drake Passage contributed to the establishment of the 39 

modern global thermohaline circulation. 40 

1. Introduction 41 

The Eocene (56 to 33.9 Ma) was a greenhouse period that witnessed major changes in global 42 

climate and ocean characteristics (e.g. Borrelli et al., 2014; Katz et al., 2011; Pagani et al., 43 

2014). Notably, it is characterized by a long-term gradual cooling initiated by ca 50 Ma, 44 

which led to the formation of an ice sheet over Antarctica at the Eocene-Oligocene Transition 45 

(EOT; ca 34 Ma) (Zachos et al., 2001). Understanding the cause of this cooling is crucially 46 

important to identify governing mechanisms of global climate in relation to geochemical 47 

cycles and oceanic circulation. Several tectonic changes occurred during the Eocene, 48 

including the Drake Passage (DP) and the Tasmanian Gateway opening, the collision of India 49 

and Asia, the narrowing of the Tethys Ocean and the widening of the Atlantic basin (Bice et 50 

al., 2000). In particular, the role of DP opening on Eocene cooling has been extensively 51 

studied (e.g. Elsworth et al., 2017; Goldner et al., 2014; Inglis et al., 2015; Lefebvre et al., 52 

2012; Mikolajewicz et al., 1993; Nong et al., 2000; Sijp & England, 2004; Zhang et al., 53 

2010). It has long been hypothesized that, as it allows the formation of the ACC, DP opening 54 
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may have induced a thermal isolation of Antarctica and subsequent changes in ocean 55 

temperatures (Kennett, 1977). Some model studies have shown that the effect of the DP 56 

opening was not sufficient to match the global cooling observed throughout the Eocene. They 57 

rather suggest that an additional decrease in pCO2 was required to account for the magnitude 58 

and spatial extent of the late Eocene cooling as well as the EOT itself (e.g. DeConto & 59 

Pollard, 2003; Elsworth et al., 2017; Goldner et al., 2014; Inglis et al., 2015; Ladant et al., 60 

2014b; Mikolajewicz et al., 1993; Najjar et al., 2002; Sijp et al., 2009). This hypothesis is 61 

consistent with pCO2 reconstructions from various proxies (e.g. Anagnostou et al., 2016; 62 

Doria et al., 2011; Inglis et al., 2015; Maxbauer et al., 2014; Pagani et al., 2011, 2005; 63 

Pearson & Palmer, 2000; Pearson et al., 2009; Tripati et al., 2005). However, despite a 64 

moderate effect of DP opening on global temperatures suggested by data and model studies, 65 

the actual effects of this gateway opening on changes in ocean structure and dynamics remain 66 

to be identified and quantified.  67 

Different geochemical proxies have been used to track water masses and circulation changes 68 

through the Eocene, especially oxygen, carbon and neodymium isotopes. Stable isotopes of O 69 

and C can reveal changes in environmental characteristics, such as temperature, ice volume 70 

and paleoproductivity (see Cooke & Rohling, 1999), whereas radiogenic Nd-isotopes can be 71 

used to finger-print specific water masses and inter-basin water mass exchange (Frank et al., 72 

2006; Huck et al., 2017; Scher & Martin, 2008; Wright et al., 2018). Based on these proxies, 73 

some studies have suggested a priming role for the opening of Eocene gateways on the onset 74 

of a modern-like ocean circulation (Borrelli et al., 2014; Katz et al., 2011; Sijp & England, 75 

2004). On the one hand, the DP opening and deepening enabled the formation of the ACC, 76 

which connects the Pacific and Atlantic Oceans and encircles Antarctica. This horizontal 77 

circulation pattern is particularly visible from changes in Nd-isotope signatures of the South 78 

Atlantic, which receives more radiogenic waters originating from the Pacific (Scher & Martin, 79 

2004, 2006). Further, DP opening is often correlated with the contemporaneous onset of a 80 

marked difference between Northern and Southern latitude temperatures in the Atlantic 81 

Ocean, with cooler temperatures in the high Southern latitudes suggested by 
18

O data 82 

(Borrelli et al., 2014; Coxall et al., 2018; Cramer et al., 2009; Katz et al., 2011; Langton et 83 

al., 2016). On the other hand, different proxies (
13

C, Nd, 
18

O, contourites) suggest the 84 

onset of North Atlantic Deep Water formation (NADW) during the late Eocene, which may 85 

also have contributed to the thermal differentiation mentioned above (Borrelli et al., 2014; 86 
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Coxall et al., 2018; Hohbein et al., 2012; Katz et al., 2011; Langton et al., 2016; Scher & 87 

Martin, 2008).   88 

Whether these modern-style circulation features suggested by data are reproduced by model 89 

studies, and to what intensity, largely varies with model setup and boundary conditions. 90 

Notably, the choice of geography (modern or Eocene) and pCO2 levels plays an important 91 

role in explaining the diversity of the results. Furthermore, many studies have focused on 92 

surface processes, thus limiting comparison to geochemical proxies.  93 

Several modelling studies have aimed to understand the effect of the DP opening by 94 

evaluating its role in modern ocean circulation. These studies use a present-day geography 95 

(England et al., 2017; Mikolajewicz et al., 1993; Nong et al., 2000; Sijp & England, 2004, 96 

2005), or an idealized geography such as aquaplanet with idealized continental barriers 97 

(Toggweiler & Bjornsson, 2000), and modern pCO2 levels. These experiments have shown a 98 

significant relationship between the opening stage of the DP and the existence and intensity of 99 

the ACC and NADW, with a strength of the ACC close to modern observations (between 100 

136.7 ± 6.9 Sv and 173.3 ± 10.7 Sv, Donohue et al., 2016; Firing et al., 2011; Meredith et al., 101 

2011; e.g. 140 Sv, Sijp & England, 2004). While a closed DP inhibits the formation of 102 

NADW, opening of the DP leads to the onset of deep water formation in the Northern 103 

Hemisphere (Mikolajewicz et al., 1993; Nong et al., 2000; Sijp & England, 2005, 2004; Sijp 104 

et al., 2009; Toggweiler and Bjornsson, 2000). A decrease in sea surface temperature of as 105 

much as 10°C can be produced as a result of these circulation changes (Sijp & England, 106 

2004). Despite the importance of these modeling studies in providing a conceptual 107 

understanding of the impact of an open DP on modern oceans, their suitability to represent 108 

Eocene ocean changes is questionable. It is expected that studies performed with modern 109 

geography and low pCO2 concentrations reproduce an ocean circulation similar to present day 110 

with near-modern ACC, AMOC and NADW intensities. As an intermediate step into Eocene-111 

like boundary conditions, some studies have used higher pCO2 and/or modified modern 112 

geographies with key differences such as an open Panama Seaway (e.g. Cristini et al., 2012; 113 

Elsworth et al., 2017; Ladant et al., 2018; Sijp & England, 2009; Sijp et al., 2011; Yang et al., 114 

2014; Zhang et al., 2010). The use of an adequate paleogeography is particularly important as 115 

it impacts ocean circulation and properties (e.g. temperature and salinity distribution, see 116 

Yang et al., 2014; Zhang et al., 2010). For instance, the closure of the Central American 117 

Seaway and the Arctic Ocean, and the subsidence of the Greenland Scotland Ridge have been 118 

described as causal mechanisms for NADW onset because of their impact on North Atlantic 119 
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salinity (e.g. Abelson & Erez, 2017; Hutchinson et al., 2018, 2019; Ladant et al., 2018; 120 

Mikolajewicz et al., 1993; Sepulchre et al., 2014; Stärz et al., 2017). Experiments with the 121 

UVic intermediate complexity model (energy balanced model for atmosphere) and increased 122 

pCO2 alone still describe a strong impact of DP opening on ocean meridional overturning 123 

circulation and climate, notably on surface temperatures (Sijp et al., 2009, 2011). Conversely, 124 

DP opening in the low-resolution FOAM general circulation model produces a smaller impact 125 

in terms of temperature and ocean circulation in an Eocene configuration with high CO2 126 

levels compared to a modern one (Zhang et al., 2010).  127 

Recent studies have also addressed the question of the DP opening effect on climate using 128 

realistic middle Eocene to early Oligocene boundary conditions (Goldner et al., 2014; 129 

Hutchinson et al., 2018; Kennedy-Asser et al., 2015, 2019; Vahlenkamp et al., 2018). These 130 

studies describe an ACC with a moderate intensity during the Eocene / Oligocene (around 4 131 

Sv to 46.2 Sv, Kennedy-Asser et al., 2015), which strengthens as a result of pCO2 decrease, 132 

Antarctic Ice-Sheet formation and opening of the Southern Ocean (up to 89 Sv, Hill et al., 133 

2013; Kennedy-Asser et al., 2015; Ladant et al., 2014a; Lefebvre et al., 2012; Zhang et al., 134 

2010). Among these studies, the impact of DP opening on temperatures is variable with either 135 

a regional cooling of the Atlantic sector of the Southern Ocean (up to 6°C, Kennedy-Asser et 136 

al., 2015, 2018) or quasi-insignificant temperature changes (<1°C) (e.g. Goldner et al., 2014; 137 

Inglis et al., 2015; Zhang et al., 2010). Goldner et al., (2014) have illustrated the particularly 138 

weak contribution of the opening of Southern gateways to EOT ocean temperature changes, in 139 

comparison to pCO2 decrease or Antarctic Ice-Sheet build-up. Finally, Northern Hemisphere 140 

geography, and especially Arctic geometry, is determinant in the presence or absence of 141 

NADW formation, regardless of the configuration of Southern gateways (Hutchinson et al., 142 

2019, 38 Ma paleogeography; Vahlenkamp et al., 2018, 56 - 47.8 Ma paleogeography).  143 

In light of these elements, DP opening is an intermediate stage in the conditions necessary for 144 

the onset of modern-like ocean circulation but with a variable, and to some degree model-145 

dependent effect, on ocean temperatures and a high sensitivity to geography. In this paper, we 146 

investigate the contribution of DP opening to Eocene ocean changes suggested by 147 

geochemical data using the IPSL-CM5A2 Earth System Model (ESM) and realistic Eocene 148 

boundary conditions. We perform four simulations with different DP depths (closed, 100, 149 

1000 and 2500 m) and explore the impact of DP opening on the ocean circulation and 150 

subsequent temperature changes. 151 

 152 
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2. Methods 153 

2.1 The model 154 

We use the IPSL-CM5A2 ESM (Sepulchre et al. 2019), which is built upon IPSL-CM5A-LR; 155 

the CMIP5 ESM developed at IPSL (Institut Pierre-Simon Laplace, Dufresne et al., 2013). As 156 

IPSL-CM5A-LR, it is composed of the LMDZ atmospheric model (Hourdin et al., 2013), the 157 

ORCHIDEE land surface and vegetation model (Krinner et al., 2005), and the NEMO ocean 158 

model (NEMO v3.6, Madec, 2008), which include modules for ocean dynamics (OPA8.2, 159 

Madec, 2008), biogeochemistry (PISCES, Aumont et al. 2015) and sea-ice (LIM2, Fichefet & 160 

Morales-Maqueda, 1997). Atmospheric and oceanic grids are connected via the OASIS 161 

coupler (Valcke, 2006). The atmospheric grid has a horizontal resolution of 3.75° longitude 162 

×1.875° latitude (96×95 grid points), and is divided into 39 vertical levels. The ocean 163 

domain is an irregular tri-polar grid (ORCA2, Madec & Imbard, 1996) with a nominal 2° 164 

resolution refined latitudinally up to 0.5° in the tropical region (Dufresne et al., 2013). The 165 

ocean is composed of 31 vertical levels whose thickness ranges from 10 m at the surface to 166 

500 m at the bottom. For more detailed descriptions of the model and its different 167 

components, the reader is referred to Sepulchre et al. (2019). 168 

2.2 Experimental design 169 

2.2.1 Boundary conditions 170 

In order to investigate the role of DP opening on ocean circulation and climate, we perform 171 

four simulations with different DP depths (Table 1). These simulations use a 40 Ma 172 

paleogeography (Figure 1, see Tardif et al., 2020) and a pCO2 concentration of 1120 ppm (4x 173 

Pre-Industrial Atmospheric Levels, PAL) typical of middle Eocene values (Anagnostou et al. 174 

2016; Beerling & Royer, 2011). Antarctica is ice-free because prescribed pCO2 levels are 175 

above the threshold for perennial polar glaciation in the Eocene (DeConto & Pollard, 2003; 176 

Ladant et al., 2014b). Orbital parameters and other boundary conditions are left at their pre-177 

industrial values. 178 

The different Eocene simulations are first compared together to identify the effects of the DP 179 

depth on ocean dynamics and properties. Then, as a second step, the simulations are 180 

compared to a pre-industrial simulation (CTRL) and another one in which atmospheric pCO2 181 

is increased to 1120 ppm (CTRL-4x). This allows us to have a modern reference frame and to 182 

assess the relative importance of both geography and pCO2 on the modern behavior of ocean 183 

circulation.  184 
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Table 1 185 

Experimental design and volumetric flow rate through the Drake Passage  186 

 
DP depth 

(m) 

pCO2 

(ppm) 
AIS Geography DP Flux (Sv) 

Simulation 

length (year) 

DC 0 

1120 no 40 Ma 

/ 

4000 
D100 100 1.3 (sd = 0.2) 

D1000 1000 21.8 (sd = 1.2) 

D2500 2500 33.9 (sd = 3.1) 

CTRL 
Modern 

280 yes 
Modern 

109.7 (sd = 8.7) 2700 

CTRL-4x 1120 no 147.3 (sd =11.2) 3000 

Note. Fluxes were calculated through the Drake Passage (DP), as averages of the last 100 187 

years. They are given in Sverdrups (Sv: 10
6 

m
3
.s

-1
) and correspond to averages over the last 188 

100 years. Abbreviations: ppm = parts-per-million; sd = standard deviation over the same 189 

period (last 100 years). 190 

 191 

2.2.2 Model steady state 192 

To what extent the model has reached steady state need to be assessed when analyzing deep 193 

ocean circulation (e.g. Kennedy-Asser et al., 2018). Our Eocene simulations are run for 4000 194 

years and we use four metrics as indicator of steady state: (1) stability of ocean temperatures 195 

at different depths (Figure 2), (2) water conservation through time, (3) stability of the main 196 

water masses studied (AABW and ACC, Figure 2, Supporting information Figure S1) and (4) 197 

ideal age of ocean waters (Supporting information Figure S2 and S3), which is estimated 198 

using 5000 year-long offline age tracer simulations forced by the last 100 years climatology 199 

of each fully-coupled simulation. At the end of model integration, temperatures indicate 200 

quasi-equilibrium with small trends persisting (< 0.1°C/century) in the deep ocean (Figure 2). 201 

This criterion is frequently used as indicative of near equilibrium (e.g. Hutchinson et al., 202 

2018; Ladant et al., 2018; Lunt et al., 2017), although the elimination of these trends with 203 

further integration would be ideal. The model exhibits only a negligible drift in global salinity 204 

(less than 2 cm/century eustatic sea level equivalent change) linked to the not fully 205 

conservative LIM2 sea ice model (Sepulchre et al., 2019). In addition, the mean annual 206 

intensity of the ACC and the Southern Hemisphere overturning have stabilized by the end of 207 

the integration (Figure 2). Finally, the offline age tracer simulations show that the oldest water 208 

age in the Pacific, Atlantic and Indian basins is found in the Drake Closed simulation and 209 

reaches ~ 2500 years, which suggest that the global overturning of the ocean was completed 210 

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Paleoceanography and Paleoclimatology 

 

8 

 

at least once over the simulation integration time (supporting information Figure S2 and S3). 211 

The results shown in this study are averages of the last 100 years. 212 

3. Results 213 

3.1 Changes in ocean dynamics  214 

With a closed Drake Passage (DP), the main upper oceanic circulation patterns of the 215 

Southern Ocean can be described as follows (Figure 3). An eastward current, fed by the Brazil 216 

and Agulhas currents, exists between South America and Australia. This eastward-flowing 217 

current splits into two parts westward of Australia, one branch flows South and the other, to a 218 

lesser extent, flows North. Upper ocean waters crossing the Tasmanian Gateway then 219 

circulate northward and join the East-Australian Current to finally enter the Ross Gyre or 220 

circulate out of the Southern Ocean along the western South America margin. Some South 221 

Pacific waters are transferred to the Indian section of the Southern Ocean through the 222 

Antarctic Counter Current. As the DP opens, the South Atlantic eastward transport increases, 223 

the branch south of Australia strengthens and stops the Antarctic Counter Current, the Ross 224 

Gyre weakens and a continuous current (Proto-Antarctic Circumpolar Current) encircles 225 

Antarctica. This circulation diminishes inputs of the Brazil and Agulhas currents into the 226 

Southern Ocean. 227 

In the 40 Ma experiments (D100, D1000, D2500), horizontal fluxes simulated across the DP 228 

are weak (maximum 33.9 Sv) but show some substantial changes owing to deepening of the 229 

DP. A maximum difference of 32.6 Sv is observed between D100 and D2500. Simulations 230 

with a modern geography exhibit a stronger ACC, comparable to published estimations 231 

(between 136.7 ± 6.9 Sv and 173.3 ± 10.7 Sv, Donohue et al., 2016; Firing et al., 2011; 232 

Meredith et al., 2011). The transport through the DP is larger in CTRL-4X than in CTRL. 233 

This result suggests a positive impact of pCO2 on ACC strength with a modern geography. 234 

The different mechanisms driving this westward circulation will be introduced and their 235 

respective roles discussed in section 4.2.  236 

At 40 Ma, all deep convection takes place in the Southern hemisphere whereas mixed-layer 237 

depths (MLD) in the Northern Hemisphere do not exceed 500 m (Figure 4). When the DP is 238 

closed, sinking occurs in the Atlantic sector of the Southern Ocean and to a lesser extent in 239 

the Indian sector (Figure 4). DP opening reduces the depth of these convection zones. Deep 240 

convection persists in a small area of the Weddell Sea, but completely ceases in the Indian 241 
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sector of the Southern Ocean (Figure 4). In contrast, new deep convection areas develop in 242 

the Pacific sector of the Southern Ocean.  243 

With a closed DP, the meridional overturning circulation is essentially restricted to 244 

intermediate waters (< 1500 m depth) in the Atlantic Basin (Figure 5). Despite significant 245 

deep sinking in the Weddell Sea, meridional water transport is weak. When the DP opens, as 246 

deep convection shifts to the wider and deeper Pacific Ocean basin, a larger and more intense 247 

Southern Hemisphere overturning cell forms and expands northward up to 40°N. These 248 

changes in convection zones and meridional transport occur even for shallow DP depths 249 

(D100). As the DP deepens (D100 to D2500), flow of Antarctic Intermediate Waters (AAIW; 250 

here defined as the maximum of the absolute overturning of the Southern hemisphere < 1500 251 

m deep waters) diminishes; Antarctic Bottom Waters (AABW; here defined as the maximum 252 

of the absolute overturning of the Southern hemisphere > 1500 m deep waters) sink deeper 253 

and overall maximum overturning is reduced. In all the Eocene experiments, the Southern 254 

Hemisphere drives the meridional overturning circulation. There is no source of deep or 255 

intermediate waters in the Northern Hemisphere (Figure 4 and 5, supporting information 256 

Figure S4). More freshwater is routed to the high-latitudes (poleward of 50°) in the Northern 257 

Hemisphere than in the Southern Hemisphere regardless of the configuration of the Drake 258 

Passage. The North Atlantic basin receives ~ 42% more freshwater than the South Atlantic 259 

and the North Pacific basin receives ~ 36% more freshwater than the South Pacific 260 

(supporting information Table S1). These larger freshwater fluxes in the northern high-261 

latitudes are primarily related to larger runoff inputs in the northern basins (supporting Table 262 

S1) and participate to the freshening of surface waters, increasing their buoyancy. 263 

3.2 Change in ocean properties and Antarctica climate 264 

In addition to the ocean circulation changes described above, DP opening also affects ocean 265 

properties. With a closed DP, the mean annual global Sea Surface Temperature (SST) is 266 

28.6°C. The opening of the DP has little effect on mean annual global SST even with a 2500 267 

m depth (< 0.5°C; Figure 6, Table 2). However, at a regional scale (40°S-80°S), the opening 268 

of DP results in significant changes, which differ from one basin to another. SSTs decrease 269 

similarly in the Atlantic and Indian sectors of the Southern Ocean when the DP is open to 100 270 

m (1.2°C in each basin; Table 2). But the effect of DP opening on Southern Ocean 271 

temperatures is not linear. Opening from 100 to 1000 m indeed produces more of a cooling 272 

effect (1.7°C in average across the Southern Ocean, locally up to 5.8°C in the Kerguelen 273 

Plateau area) than opening from 1000 to 2500 m (in fact, the Southern Ocean even warms 274 
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slightly on average, Table 2). In contrast, the Pacific sector of the Southern Ocean exhibits a 275 

large warming zone surrounded by cooling areas (Figure 6), but there is no clear tendency for 276 

warming or cooling with DP deepening (Table 2). The SST reconstructed with our 277 

simulations are in a moderate agreement with proxy-data reconstructions for the late-middle 278 

Eocene (Figure 7; data compilation from Tardif et al., 2020, modified after Baatsen et al., 279 

2020). Although most estimates are within our confidence interval, which represents the 280 

longitudinal range of annual temperatures, there is a tendency to underestimate high latitude 281 

temperatures and overestimate low latitude temperatures for all the simulations. Because it 282 

results on average in a cooling of the Southern Ocean (Table 2), the opening of the Drake 283 

Passage tends to strengthen the latitudinal temperature gradient in the Southern Hemisphere 284 

(Figure 7). Changes in surface temperature effect is well explained by changes in Southern 285 

Ocean deep convection changes and their evolution on both sides of the DP as the DP 286 

deepens. On the one hand, deep water sinking in the Pacific Southern Ocean tends to attract 287 

lower-latitude warm surface waters toward the Southern Ocean. On the other hand, the 288 

decline of Weddell Sea and South Indian convection induces a decrease in heat transfer 289 

toward this other sector of the Southern Ocean. After the main convection zone shifts from 290 

the Atlantic to the Pacific sector, the Weddell convection is suppressed, whereas Ross Sea 291 

convection only slightly weakens (Figure 4). A slight increase in sea surface salinity is 292 

observed through most of the ocean with DP deepening. In the Southern Ocean salinity 293 

changes follow the same trends as sea-surface temperatures (i.e. an increase in the Pacific 294 

sector of the Southern Ocean and a decrease in the Atlantic sector of the Southern Ocean, see 295 

supporting information Figure S5).  296 

Table 2 297 

Sea surface and 2 m atmospheric temperatures 298 

Note. Mean annual surface temperatures (°C) are given as global mean (SST) or averaged 299 

over the Southern Ocean (40°S - 80°S, SO) and its different sectors: Pacific (PSO), Atlantic 300 

 Sea surface temperatures 2 m atmospheric temperatures 

 
SST SO PSO ASO ISO SAT  Ant. Ant. JAS Ant. JFM 

DC 28.6 18.1 17.3 17.4 20.4 26.7 6.0 -6.7 21.3 

D100 28.3 17.7 17.5 16.3 19.2 26.4 4.6 -8.2 20.3 

D1000 28.1 16.5 16.9 14.9 17.0 26.3 3.7 -8.9 19.1 

D2500 28.1 17.0 17.4 15.6 17.4 26.2 3.7 -9.6 19.8 
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(ASO) and Indian (ISO). Atmospheric 2m temperatures (°C) are given as annual mean 301 

averaged globally (SAT) or over Antarctica (Ant.). Ant. JAS and JFM represent the austral 302 

winter and summer mean respectively.  303 

In the DC experiment, global Ocean Heat Transport (OHT) is asymmetric with stronger 304 

transport toward the Southern than toward the Northern Hemisphere (Figure 8; on average 305 

~ 30 % higher than in modern experiments 10°S - 65°S). Opening the Drake Passage shifts 306 

the OHT towards a modern state and induces a net southward OHT decrease (13.4%) between 307 

10°S - 60°S.  308 

DP opening and the formation of a proto-ACC also affect Antarctic continental climate. Our 309 

simulations exhibit a 1 to 4°C cooling in the 2-meter air temperatures with largest values 310 

occurring over the Atlantic sector of continental Antarctica (Table 2 and Figure 9), even 311 

though the largest absolute change occurs over the Indian sector of the Southern Ocean. In 312 

conjunction with the changes in deep-water formation areas, changes in low cloud cover 313 

contribute to cooling the Indian sector of the Southern Ocean by increasing planetary albedo 314 

(Figure 9). The existence of two low-pressure cells located over deep-water formation areas in 315 

the modern Weddell and Ross Seas in D2500 (Figure 9) and a higher-pressure cell in the 316 

Indian sector of Antarctica leads to poleward flow of Atlantic-Indian air masses, carrying the 317 

Indian cooling signal to Antarctica. This atmospheric reorganization explains why the 318 

Antarctic continent cools rather than warms, even if the Southern Ocean exhibits both cooling 319 

and warming zones. 320 

The simulated Antarctic cooling in our simulations is comparable to that of Kennedy-Asser et 321 

al. (2019), who simulate a cooling of 3°C in Antarctica for comparable boundary conditions. 322 

This result is also consistent with studies suggesting that the opening of the Drake Passage 323 

may have contributed to create favorable climatic conditions for the onset of the Antarctic Ice 324 

Sheet but was likely not the main direct catalyst of this event (DeConto & Pollard, 2003; 325 

Ladant et al., 2014b). 326 

Opening the DP leads to the cooling of most deep ocean waters (here defined as waters below 327 

1500 m; Figure 10). The Atlantic, Indian and Pacific Ocean temperatures drop by as much as 328 

2.5°C in some areas. These temperature changes are rather constant across latitudes for any 329 

given depth in the Pacific and Indian Oceans, but the cooling is stronger at southern mid- to 330 

high latitudes in the Atlantic basin. The cooling of deep waters is accompanied by warming of 331 

intermediate waters (i.e. between 300 m and 1500 m) in all basins (locally as much as 4.5°C). 332 

This warming extends from the basins' northernmost latitudes down to 40°S for the Atlantic 333 
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and Indian Ocean and 60°S for the Pacific Ocean. This pattern is consistent with the 334 

deepening of the meridional stream function, which is the result of the initiation of deep-water 335 

production in the South Pacific, and reduction in deep-water formation in the South Atlantic 336 

when the DP opens. The existence of a MOC in the wide and deep Pacific basin, in addition 337 

to the diminished Atlantic MOC, reduces the imprint of the Atlantic MOC on overall ocean 338 

circulation and physical properties, leading to a warming of North Atlantic intermediate and 339 

deep waters and a cooling of Pacific and Indian deep waters (Figure 5). These vertical cooling 340 

and warming patterns are observed in all DP opening experiments (D100 to D2500). Cooling 341 

or warming intensity depends on gateway depth but does not vary linearly, with the strongest 342 

differences occurring in D1000, as is also the case for surface temperatures (supporting 343 

information Figure S6).  344 

Following the water temperature and salinity changes mentioned above, potential water 345 

density and pressure gradients increase in the Southern Ocean (Figure 11). In the latitudinal 346 

band of 65°S to 45°S, the pressure gradient increases from 0.5 kg/m
3
 in DC to 0.6 kg/m

3
 in 347 

D2500 and to 0.9 kg/m
3
 in CTRL-4X at 400 m depth; and from 0.2 kg/m

3
 in DC and D2500 348 

to 0.5 kg/m
3
 in CTRL-4X at 800 m depth. 349 

In order to better understand the behavior of the proto-ACC, Southern hemisphere horizontal 350 

surface wind changes were also tracked (Figure 11). Indeed, horizontal surface winds are 351 

often given a key role in explaining ACC strength, notably, the westerlies that directly blow 352 

on this current (Scher et al., 2015). Compared to modern simulations, Eocene experiments 353 

have weaker winds and a more equable distribution across latitudes. Because of steeper 354 

temperature gradient and the presence of the Antarctic ice sheet, CTRL shows stronger polar 355 

easterlies (South of the DP) and the maximum intensity zone of the westerlies is located ~ 5° 356 

further North. A few differences are observed as the DP depth is increased. The westerlies 357 

(~ 50°S - 30°S) and polar easterlies (South of the DP) are slightly strengthened, with a 358 

maximum difference of 0.6 m.s
-1

 and 1.1 m.s
-1

 respectively (D2500 minus DC). 359 

Discussion 360 

4.1 Results Summary  361 

Opening the Drake Passage (DP) impacts Southern Hemisphere ocean dynamics and 362 

properties in several ways. First, it leads to the formation of a continuous proto-ACC, which 363 

leads to a modification of surface temperatures and salinities patterns across the Southern 364 

Ocean. Second, an open DP favors deep-convection in the Pacific sector of the Southern 365 
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Ocean instead of the Atlantic and Indian sectors. Third, it strengthens the meridional 366 

overturning circulation. Fourth, it induces cooling of most of Pacific and Indian Ocean deep 367 

waters, but induces an asymmetric cooling in the Atlantic Ocean, in which only South 368 

Atlantic deep waters cool whereas North Atlantic deep waters warm. Some of these changes 369 

may characterize the transition from an Eocene to a modern ocean.  370 

In the following section, we discuss the implications of our results for the evolution of ocean 371 

properties and dynamics described by proxy data and compare our results with previous 372 

modeling work. We focus in particular on the onset of the ACC, on South Atlantic cooling 373 

and on the initiation of NADW. It is worth noting that some previous studies have focused on 374 

the role of other potential controls on the Eocene ocean circulation, such as the opening of the 375 

Tasmanian Gateway or the development of the Antarctic Ice Sheet (e.g. Goldner et al., 2014; 376 

Huber et al., 2003, 2004, Kennedy-Asser et al., 2015, 2019), but, as these controls remain 377 

constant in our experiments, we mainly discuss our results with respect to previous work 378 

focusing on the oceanic impact of changes in DP depth. 379 

4.2 Proto-ACC onset 380 

4.2.1 Formation of the proto-ACC 381 

Our results are consistent with inferences from proxy-based data studies that describe a 382 

complete but moderate proto-ACC during the late Eocene (Borrelli et al., 2014; Scher & 383 

Martin, 2004, 2006). In our closed DP experiment, circulation through the TG consists of an 384 

eastward branch from the Atlantic in the North of the passage and a westward branch (the 385 

Antarctic Counter Current) flowing along the margins of Antarctica. When the DP is open, 386 

the eastward transport through the TG strengthens and the Antarctic Counter Current ceases 387 

to exist (Figure 3). This circulation pattern is in agreement with former studies showing a 388 

westward exchange during the middle Eocene (Bijl et al., 2013; Huber et al., 2004; Sijp et al., 389 

2016) and its cessation with DP opening (Sijp et al., 2016). 390 

Multiple terms exist to qualify the earliest stages of the ACC. Borrelli et al. (2014) make the 391 

distinction between a "Drake Throughflow" and a "proto-ACC" depending on the current 392 

trajectory and depth around Antarctica. The "proto-ACC" encircles Antarctica but is 393 

shallower than the modern ACC. In our Eocene simulations, water transports of 1.3 to 33.9 Sv 394 

through the DP are by far weaker than the modern ACC (observed: 136.7 ± 6.9 Sv and 173.3 395 

± 10.7 Sv, Donohue et al., 2016; Firing et al., 2011; Meredith et al., 2011, or simulated: 108.9 396 

Sv in CTRL). Nevertheless, this weak eastward current exists around Antarctica in our open 397 

DP simulations even for shallow DP depths, consistent with the concept of a proto-ACC. A 398 
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proto-ACC circulation is supported by changes in the εNd signatures of the South Atlantic 399 

and South Indian Oceans by 37 - 41 Ma (Pfister et al., 2014; Scher & Martin, 2006, 2004; 400 

Wright et al., 2018). Furthermore, other evidence from εNd and δ
13

C isotopes suggest the 401 

initiation of a modern-like ACC later, between the early Oligocene (Katz et al., 2011; Scher et 402 

al., 2015), late Oligocene (Borrelli et al., 2014) and the Oligocene-Miocene boundary (Scher 403 

& Martin, 2008). The simulated transport intensities across the DP in our Eocene simulations 404 

are also within the range of previous model studies using similar Eocene boundary conditions 405 

with reported values ranging from 4 Sv to 46.2 Sv (Hutchinson et al., 2018; Kennedy-Asser et 406 

al., 2015; Ladant et al., 2014a; Zhang et al., 2010). Together, our results agree with former 407 

comparable modelling studies and geochemical records to indicate that a proto-ACC formed 408 

before the EOT, as soon as the DP started to open. 409 

4.2.2 Driving factors of proto-ACC intensity 410 

The difference in ACC intensity between our Eocene scenarios and the two simulations with a 411 

modern geography suggests a significant sensitivity to changes in geography. The DP is 412 

located in the Scotia arc, a complex tectonic region in which the Scotia Plate, the Antarctic 413 

Plate, and the South American plate interact together through a set of subductions zones and 414 

transform faults (Barker et al., 2001; Dalziel et al., 2013; Eagles & Scott, 2014). Related to 415 

the development of the scotia plate, DP opening would have taken place gradually, starting 416 

about 50 Ma ago (Eagles et al., 2006; Livermore et al., 2005). The first evidence of seafloor 417 

spreading indicates the formation of a shallow (< 1 km) connection between Pacific and 418 

Atlantic oceans around 41 Ma but such passage was probably narrow and tortuous before 30 419 

Ma (Eagles & Jokat, 2014). The presence of a continuous wide and deep passage (100-300 420 

km width, > 2.5 km depth) is documented around 26-20 Ma (Eagles & Jokat, 2014). 421 

However, the past position of the blocks that form this region and its paleogeography remains 422 

poorly constrained (Barker et al., 2001; Eagles, 2010; Galindo-Zaldívar et al., 2014), 423 

hampering direct comparison with data (Sijp et al., 2014). Nd-isotope signatures from the 424 

Kerguelen Plateau and locations around the Antarctic continent do not suggest major 425 

oceanographic changes related to DP opening before 44 Ma (Huck et al., 2017) or after ~36 426 

Ma (Wright et al., 2018), suggesting that sufficient opening of the DP to allow water mass 427 

mixing took place in the middle Eocene (Wright et al., 2018). Nd-isotope data from two 428 

locations in the Atlantic sector of the Southern Ocean, OPD Sites 1090 and 689, exhibit a 429 

positive shift between 42 to 39 Ma, superimposed on an increasing trend, suggesting an influx 430 

of shallow Pacific waters carrying a more radiogenic Nd-isotope signature (Scher and Martin, 431 

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Paleoceanography and Paleoclimatology 

 

15 

 

2004; 2006). Finally, a middle Eocene surface opening of the Drake Passage is supported by 432 

multi-variate analyses of dinoflagellate cyst occurrences at sites in the Drake Passage area 433 

(Estebenet et al., 2014).  434 

Besides the degree of opening of the DP, the depth of the Tasmanian Gateway and the 435 

Kerguelen Plateau might limit the proto-ACC strength (Hill et al., 2013; Scher et al., 2015). 436 

The Kerguelen Plateau formation is related to volcanic activity. It started in the Cretaceous 437 

for its southern and central parts and ~ 40 Ma for its northern part (Wright et al., 2018). 438 

During the Eocene, most of the northern parts of the plateau were submarine (~ 870 m) and 439 

the southern part reached between ~1200 – 2250m below sea level (Wright et al., 2018). In 440 

our paleogeographic reconstruction (40 Ma, see Tardif et al., 2020), the Kerguelen Plateau is 441 

shallower than at the present day (mostly 1000 to 1500 m depth, locally up to 400 m) and the 442 

Australian and Antarctic continents are closer. Our reconstructed depth for the Tasmanian 443 

Gateway varies between 500 m to 600 m near the continental margins, and between 1000 m 444 

to 2500 m, in its central part, which may favor water exchange, although flow remains very 445 

low compared to modern. Studies based on dinocyst distribution patterns suggest an initial TG 446 

opening during the early Eocene ~49-50 Ma (Bijl et al., 2013) followed by accelerated 447 

deepening in the late Eocene (~35.7 Ma; Houben et al., 2019). The latter deepening is 448 

consistent with widespread occurrence of unconformities in the Australian-Antarctic basin 449 

through non-deposition or erosion, indicative of bottom current intensification (Sauermilch et 450 

al., 2019). Rather than a later date for TG deepening between 35.5 Ma and 33.7 Ma (Carter et 451 

al., 2004; Exon et al., 2004; Stickley et al., 2004), changes in temperature (Cramwinckel et 452 

al., 2018) and pCO2 (Anagnostou et al., 2016), and/or northward movement of the Tasmanian 453 

region (Scher et al., 2015), may explain oceanographic changes near the EOT (Houben et al., 454 

2019).  455 

In addition to the depth of sub-oceanic structures, it has been proposed that the latitudinal 456 

distribution of land barriers and gateways was critical in determining ACC strength (e.g. Hill 457 

et al., 2013; Scher et al., 2015; Stickley et al., 2004). The importance of latitudinal structures 458 

has been called into question because the modern ACC meanders between the latitudes of the 459 

DP and the latitudes of maximum wind stress (Allison et al., 2010; Rintoul et al. 2001), such 460 

as in the Malvinas Current region to the east of Argentina. Interestingly, our open DP 461 

simulations exhibit a similar current system that meanders across latitudes (Figure 3). 462 

Although the depth and width of the DP may be the dominant control on differences in water 463 

transport through the DP between simulations (e.g. Kennedy-Asser et al., 2015; Sijp & 464 
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England, 2004; Yang et al., 2014; Zhang et al., 2010), other parameters may contribute to 465 

ACC intensity, in particular the meridional density gradient and wind stress (Gent et al., 466 

2001; Lefebvre et al., 2012; Marshall et al., 2016). Using an eddy-permitting ocean model in 467 

an idealized channel configuration, Munday et al. (2015) suggest that the absence of 468 

overlapping continental barriers is not a necessary condition for strong circumpolar transport. 469 

However, the number of continental barriers, their latitudinal location, and whether they are 470 

overlapping may act on ACC strength by impacting its sensitivity to wind stress (Munday et 471 

al., 2015). In our simulations, the majority of wind strength changes between D2500, CTRL 472 

and CTRL-4X takes place within the maximum eastward wind zone where a portion of the 473 

proto-ACC flows (Fig. 9). This variable sensitivity of the ACC to wind stress might exist in 474 

our results but would need additional sensitivity experiments.  475 

In parallel, proto-ACC strength correlates with meridional density gradients in our 476 

simulations, where the strongest water transport (i.e. D2500, CTRL, CTRL-4X) corresponds 477 

to the steepest isopycnals (Figure 11). The link between the intensity of the ACC and 478 

meridional density gradients has been reported by previous modeling studies (Goldner et al., 479 

2014; Kennedy-Asser et al., 2019, 2015; Ladant et al., 2014a; Lefebvre et al., 2012). 480 

Additionally, the latitude of the Southern Hemisphere westerlies (~ 50°S - 30°S) is slightly 481 

displaced to the South, closer to modern ACC flow, which might also contribute to 482 

reinforcing the horizontal transport in this simulation (Figure 11).  483 

4.3 Changes in ocean properties and dynamics, and N/S thermal differentiation 484 

4.3.1 Surface temperature changes 485 

In our experiments, the opening of the DP impacts surface and deep-water temperatures in all 486 

basins. Most surface changes occur in the Southern Ocean, which exhibits a dipole pattern, 487 

with cooling in the Atlantic and Indian sectors and a warming zone in the Pacific (Figure 6). 488 

The presence of a warming zone in part of the Southern Ocean (here in the Pacific) has 489 

already been described in previous modeling studies with modern as well as Eocene 490 

paleogeographies (Cristini et al., 2012; Sijp & England, 2004; Zhang et al., 2010). It is well 491 

explained by changes in the distribution of deep convection zones that impact the southward 492 

inflow of warm subtropical waters (Kennedy-Asser et al., 2015; Ladant et al., 2018) and by 493 

the weakening of the Brazil and Agulhas currents (as seen by Sijp & England, 2004). Our 494 

simulated temperature changes with cooling in the Atlantic and Indian sectors and warming in 495 

the Pacific are similar to those described in previous model studies (Cristini et al., 2012; 496 

Zhang et al., 2010). In contrast to this dipole pattern, a more homogenous and up to 4°C 497 
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surface atmospheric cooling has been described over southernmost latitudes (Yang et al., 498 

2014).  499 

Our results are in a moderate agreement with proxy-data SST reconstruction. On the one 500 

hand, our model tends to overestimate the latitudinal temperature gradient and to reconstruct 501 

colder temperatures than some proxies in the Southern Ocean (Figure 7). This bias is very 502 

classical in warm climate reconstructions with GCMs, and could be responsible for a 503 

discrepancy between absolute SST from our experiments and proxies (see Huber & Caballero, 504 

2011). Studies carried out with more recent versions of GCM, such as CESM and GFDL, 505 

show improvements in the representation of this gradient, in particular thanks to a better 506 

consideration of cloud physics and other greenhouse gases (Baatsen et al., 2020; Hutchinson 507 

et al., 2020; Lunt et al., 2020; Sagoo et al., 2013; Zhu et al., 2019). With close boundary 508 

conditions, they reconstruct flatter gradients thanks to ~ 3°C lower SST in equatorial area and 509 

up to 2°C to 3°C higher SST at mid-latitudes (supporting information Figure S7; Baatsen et 510 

al., 2020; Hutchinson et al., 2018). Opening the DP tends to reinforce the latitudinal 511 

temperature gradient by mainly cooling Southern latitudes. It therefore does not create a better 512 

agreement with the absolute surface temperature data for this period. This trend suggests that 513 

the DP opening and the implementation of a proto-ACC may have contributed to the 514 

establishment of the modern gradient. On the other hand, multi-proxy data indicate warmer 515 

SSTs in the Pacific Southern Ocean than in the Atlantic during the middle and late Eocene 516 

(Douglas et al., 2014; Hollis et al., 2012; Liu et al., 2009), which is well explained by 517 

convection in the Ross Sea and coherent with Nd reconstructions indicating the northward 518 

export of Southern Ocean Deep water between 45 and 35 Ma (Douglas et al., 2014; Hague et 519 

al., 2012; Thomas, 2004; Thomas et al., 2014). Interestingly, this is not incompatible with 520 

locally intensive cooling described near the Tasman Plateau (Bijl et al., 2009; Hollis et al., 521 

2012), since our simulated SST changes in the Pacific sector of the Southern Ocean are 522 

heterogeneous with cooling areas (around Antarctica). 523 

In studies with modern or near-modern geographies, significant warming in the Northern 524 

Hemisphere, locally up to 6-12°C, is also observed (Elsworth et al., 2017; Sijp & England, 525 

2004; Toggweiler & Bjornsson, 2000; Yang et al., 2014). This warming at northern latitudes 526 

is explained by changes in the meridional overturning circulation, mainly with the onset of 527 

North Atlantic Deep Water formation (NADW), and a subsequent increase of northward 528 

Oceanic Heat Transport (OHT; Elsworth et al., 2017; Sijp & England, 2004; Toggweiler & 529 

Bjornsson, 2000; Yang et al., 2014; Zhang et al., 2010). Therefore, the absence of such a 530 
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warming in the Northern Hemisphere might be explained by the lack of NADW formation in 531 

our experiments. This absence of NADW is discussed in more detail in section 4.4.  532 

4.3.2 Intermediate / deep ocean changes 533 

Our results show a significant impact of the opening of the DP on deep ocean temperatures, 534 

which decrease in every basin except the North Atlantic by an amount consistent with earlier 535 

modeling work (Najjar et al., 2002; Nong et al., 2000; Sijp et al., 2009). The latitudinal extent 536 

of temperature changes is intimately linked to the strength of the meridional circulation (e.g. 537 

Goldner et al., 2014; Najjar et al., 2002; Sijp et al., 2011). Here, the northward propagation of 538 

cooling in the Pacific Ocean is due to deep convection in the Ross Sea when the DP is open, 539 

which shifts the core of the MOC in the Pacific. Conversely, more regional changes in the 540 

Atlantic are linked to the weakening of deep convection in the Weddell Sea. Finally, as no 541 

deep-water forms in the Indian Ocean in either an open or a closed DP configuration, the 542 

cooling trend observed in the Indian Ocean basin comes from transport of cold deep waters 543 

from the Pacific (supporting information Figure S8). Our results contrast with the findings of 544 

Goldner et al. (2014) who show a minor contribution of Southern gateway changes to the 545 

Atlantic Ocean cooling (because of the opposite effects of DP deepening and Tasman 546 

Gateway opening on temperatures), using a configuration with a closed Tasmanian Gateway, 547 

which likely explains the significant differences between our studies. Furthermore, in contrast 548 

to our Eocene experiments with an open DP, the simulations of Goldner et al. (2014) do not 549 

produce a strong overturning circulation, which might limit the effect of any regional 550 

temperature change in the Southern Ocean.  551 

Among studies using Eocene geographies, some find similar results with a shift in deep 552 

convection zones and AABW strengthening in response to Antarctic Ice Sheet building 553 

(Goldner et al., 2014; Kennedy-Asser et al., 2015, 2019). However, model gateway opening 554 

experiments yield different results concerning the stability of deep convection in the Weddell 555 

Sea and show that the response might be model dependent and / or rely on paleogeographic 556 

differences, notably in the North Atlantic - Arctic area (Hutchinson et al., 2019; Vahlenkamp 557 

et al., 2018).  558 

The deep temperature changes observed among the different basins are in agreement with 559 

geochemical proxy reconstructions. In the Atlantic Ocean, several studies have documented 560 

thermal differentiation between the North and South Atlantic with a ~ 2°C cooling of southern 561 

high latitudes, represented by a ~ 0.5‰ δ
18

Obf difference, starting between 38.5 Ma and 35 562 

Ma (Borrelli et al., 2014; Coxall et al., 2018; Cramer et al., 2009; Katz et al., 2011; Langton 563 
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et al., 2016; Liu et al., 2018). Southern Hemisphere cooling in the Atlantic basin has often 564 

been interpreted as an indicator of the onset of a proto-ACC and of a decreased southward 565 

OHT (Borrelli et al., 2014; Katz et al., 2011; Langton et al., 2016). Borrelli et al. (2014) 566 

further describe brief warming of North Atlantic deep waters occurring contemporaneously to 567 

the thermal differentiation (~ 38.5 Ma), and interpret this warming as the signature of deep-568 

water formation in the Northern Hemisphere. As an alternative to this mechanism, we show 569 

that the opening of the DP also limited northward cold-water export into the Atlantic.  570 

The cooling of the deep Indian Ocean by inflow of Pacific waters is consistent with studies 571 

that describe an increase of the εNd signature in the Indian Ocean basin and on the Kerguelen 572 

Plateau during the middle and late Eocene (Huck et al., 2017; Le Houedec et al., 2012; Martin 573 

& Scher, 2006; Scher & Martin, 2004; 2006; Scher et al., 2011), which may be explained by 574 

an increased inflow of waters originating from the Pacific, which generally carry a higher εNd 575 

signature (Van de Flierdt et al., 2004; Hague et al., 2012; Le Houedec et al., 2016; Scher et 576 

al., 2015; Thomas et al., 2014). These Pacific waters may either originate from the onset of 577 

the ACC or the Indonesian Throughflow (Frank et al., 2006; Martin & Scher, 2006). 578 

Interestingly, our simulations indicate a shift in deep-water transport to the Indian Ocean. In a 579 

closed DP configuration, deep waters from the Atlantic sector of the Southern Ocean flow 580 

through the Indian Ocean toward the Pacific Ocean, whereas in a DP open configuration, the 581 

Indian Ocean is filled by deep waters flowing westward from the Pacific Ocean through the 582 

Indonesian Throughflow (supporting information Figure S8).  583 

Finally, the simulated deep Pacific Ocean cooling not easily reconciled with geochemical 584 

data. Eocene deep ocean temperature reconstructions are scarce for this basin (one equatorial 585 

site, ODP 1218) and do not indicate a decrease in deep ocean temperatures during the late 586 

Eocene (Borrelli et al., 2014).  587 

4.4 Circulation changes and the absence of NADW 588 

Along with the observed N/S thermal differentiation may have come the initiation of NADW 589 

formation during the Eocene. The existence of Northern Component Water potentially as 590 

early as 38.5 Ma is suggested by changes in North Atlantic δ
13

C signature of benthic 591 

foraminifera at ODP Site 1053 (Borrelli et al., 2014). The authors interpret the high δ
13

C 592 

signal at this bathyal site as evidence for sinking waters in the North Atlantic. Further, the 593 

intensification of southward transport by 35 Ma is suggested by the decreasing horizontal 594 

δ
18

O gradient between the North and Equatorial Atlantic (Langton et al., 2016; site 1053 and 595 

site 366). In contrast, the multi-site study by Coxall et al. (2018) indicates a slightly later 596 
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onset of Northern Component Water (~ 35.8 - 33.8 Ma) because the reduced difference in 597 

δ
18

O signatures of benthic and planktonic foraminifera suggests a decrease in water column 598 

stratification and a better convection of the North Atlantic during this period. A change in the 599 

εNd signatures of South Atlantic and Southern Ocean Sites between the late Eocene and the 600 

late Oligocene has been interpreted as increased southward advection of North Atlantic deep 601 

water (Scher & Martin, 2008; Via and Thomas, 2006; Wright et al., 2018). Possible 602 

contourites may also suggest the existence of NADW during the Eocene (Hohbein et al., 603 

2012), although this is debated (Stocker et al., 2013).  604 

Previous model studies using modern geography indicate the onset of NADW formation 605 

following DP opening (Mikolajewicz et al., 1993; Nong et al., 2000; Sijp & England, 2005, 606 

2004; Sijp et al., 2009; Toggweiler & Bjornsson, 2000; Yang et al., 2014). Several 607 

geographic changes might, however, be necessary to simulate the onset of NADW formation, 608 

notably the closure of the Panama Seaway and the closure of the Arctic-Atlantic gateway 609 

(Bice et al., 2000; Hutchinson et al., 2018, 2019; Roberts et al., 2009; Vahlenkamp et al., 610 

2018; Yang et al., 2014). As discussed in details by Ladant et al. (2018), there is significant 611 

variability in NADW reconstruction among model studies, and the geometry and depth of the 612 

Panama Seaway are likely instrumental in the existence of NADW in models using a modern 613 

geography (Ladant et al., 2018; Mikolajewicz et al., 1993; Sepulchre et al., 2014; Zhang et 614 

al., 2012). In some studies, the Panama Seaway allows for extensive freshwater transport 615 

from the Pacific to the North Atlantic, which decreases North Atlantic seawater and may limit 616 

the onset of NADW formation (Ladant et al., 2018; Sepulchre et al., 2014; Yang et al., 2014; 617 

Zhang et al., 2012). In our simulations, surface waters from the Mediterranean Sea flow 618 

across the North Atlantic and through the Panama Seaway. This process forms a salt leak in 619 

the Pacific Ocean that limits water density in the North Atlantic and may be responsible for 620 

the absence of NADW formation.  621 

In experiments with an Eocene paleogeography, the connection between the Arctic Ocean and 622 

the North Atlantic has been described as a controlling factor in the onset of NADW formation 623 

(Hutchinson et al., 2018, 2019; Roberts et al., 2009; Vahlenkamp et al., 2018). In these 624 

experiments, a connection between both basins hampers deep convection in the North 625 

Atlantic because of Arctic freshwater inputs. Apparent variability of salinity and ventilation 626 

of the Arctic Ocean during the Eocene supports changes in the Arctic and Atlantic connection 627 

during Eocene (Brinkhuis et al., 2006; Jakobsson et al., 2007). Alternatively, a number of 628 

studies have suggested that subsidence of the Greenland-Scotland Ridge (GSR) at ~36 Ma 629 
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was a prerequisite for NADW formation (e.g. Abelson & Erez, 2017; Borrelli et al., 2014; 630 

Coxall et al., 2018; Hutchinson et al., 2018; Katz et al., 2011; Stärz et al., 2017). In this 631 

hypothesis, deep water forms in the Nordic Seas during the Eocene but the Greenland-632 

Scotland Ridge blocks its southward export (Abelson & Erez, 2017; Abelson et al., 2008). In 633 

our paleogeography, this ridge is sufficiently subsided but no deep convection occurs in the 634 

Northern Hemisphere. Oceanic barriers further south, including the Equatorial Atlantic 635 

Gateway and the Rio Grande Rise-Walvis Ridge barrier, had sufficiently subsided to allow 636 

the exchange of deep water between the Atlantic basins and the Southern Ocean before the 637 

Eocene (Batenburg et al., 2018; Pérez-Díaz & Eagles, 2017). Therefore, our results do not 638 

support a blocking of NADW export but rather suggest that the absence of NADW formation 639 

depends on surface water properties.  640 

The existence of NADW has also been linked to the intensity of the ACC (Langton et al., 641 

2016; Scher & Martin, 2008). Theoretical modelling experiments have shown a relationship 642 

between modern ACC and NADW intensities. This so-called "Drake Passage effect" 643 

hypothesis (Toggweiler & Samuels, 1995; see Kuhlbrodt et al., 2007 for a review) is based on 644 

a conceptual model in which the MOC and NADW formation are driven by Southern Ocean 645 

wind-driven upwelling, generated by the presence of the ACC. However, the potential 646 

covariability of the ACC and the MOC is probably highly dependent on geography and 647 

remains to be demonstrated with realistic paleoclimate modelling experiments. 648 

Finally, it is worth noting that previous studies based on modeling (Hutchinson et al., 2018; 649 

Thomas et al., 2014) and Nd isotope measurements (Hague et al., 2012; McKinley et al., 650 

2019; Thomas et al., 2014) have suggested the formation of deep-water in the North Pacific 651 

during Late Cretaceous/Paleogene. However, the existence of North Pacific Deep Water in 652 

the Late Cretaceous/Paleogene Ocean is still debated. Indeed, North Pacific sinking is absent 653 

from several recent Eocene earth system model simulations (Baatsen et al., 2020; Farnsworth 654 

et al. 2019; Kennedy-Asser et al., 2015; Lunt et al., 2016; Vahlenkamp et al., 2018). 655 

Additionally, recent Nd samples from the tropical and equatorial Pacific Ocean argue against 656 

the possibility of deep-water formation in the North Pacific until at least the latest Cretaceous 657 

(Haynes et al., 2020). Our simulations exhibit significant runoff freshwater fluxes in this 658 

basin, which freshen North Pacific surface waters and render them more buoyant, hampering 659 

deep convection in this area.  660 

Conclusion 661 
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Our simulations of the effect of the opening of the Drake Passage on ocean circulation 662 

patterns and paleo-environmental conditions are in a rather good agreement with proxy data. 663 

We show that DP opening has a strong effect on Southern Ocean physical properties and 664 

dynamics from a depth of 100 m onwards. It sets the stage for the formation of a proto-ACC 665 

and initiates changes in deep convection zones and in the meridional overturning circulation. 666 

Most deep waters experience cooling, which is characterized by an asymmetric distribution in 667 

the Atlantic Ocean. This pattern is in particularly good agreement with proxy-based 668 

reconstructions, which indicate a North/South thermal differentiation in this basin since 38.5 669 

to 37.5 Ma. Therefore, our simulations robustly describe how the Eocene opening of the DP 670 

constitutes an important step towards the onset of a global thermohaline circulation similar to 671 

the present day.  672 
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6. Figure legends 1128 

Figure 1. Eocene bathymetry (40 Ma) used in the different modeling experiments. The red 1129 

square indicates the Drake Passage (DP) location. It is in a closed configuration (DC) on the 1130 

global map. The bottom-right figure shows an enlargement of the maximum opening of the 1131 

DP used in this study (2500 m, D2500). 1132 

Figure 2. Global mean annual temperature evolution for the different Eocene experiments at 1133 

(a) 0 - 10 m, (b) 169 - 238 m, (c) 863 - 1203 m, (d) 2057 - 3012 m and Antarctic Circumpolar 1134 

Current (ACC) and Antarctic Bottom Water (AABW) evolution through simulation time (e, 1135 

f). Fluxes are given in Sverdrups (Sv: 10
6
m

3
.s

-1
). ACC is measured as the transport through 1136 

the Drake Passage. AABW represents the maximum overturning in the Southern hemisphere 1137 

deep ocean (below 1500 m). 1138 

Figure 3. Annually 0-300 m depth averaged current velocity through the Southern Ocean for 1139 

DC (a,b) and D2500 (c,d). (c,d) Correspond to qualitative reconstructions of the main water 1140 

masses present in this area. The dashed lines indicate 40°S and 60°S latitude rings. 1141 

Abbreviations: BC = Brazil Current; AC = Agulhas Current; WG = Weddell Gyre; 1142 

RG = Ross Gyre; ACoC = Antarctic Counter Current; EAC = East Australian Current; proto-1143 

ACC = proto-Antarctic Circumpolar Current.  1144 

Figure 4. Maximum monthly mean value of the mixed layer thickness (m).  1145 

Figure 5. Global mean annual meridional stream function in Sverdrup (10
6
 m

3
.s

-1
) for: (a) 1146 

DC, (b) D100, (c) D1000, (d) D2500. The blue filled areas denote negative values (anti-1147 

clockwise circulation) and the areas filled with warm colors correspond to positive values 1148 

(clockwise circulation).  1149 

Figure 6. Mean annual sea surface temperatures (°C) for (a) DC, and in anomaly with DC for 1150 

(b) D100, (c) D1000 and (d) D2500. 1151 

Figure 7. Latitudinal sea-surface temperature gradient (°C). Bold lines are annual mean 1152 

values, the thinner lines indicate the highest and lowest annual mean values for a given 1153 

latitude. Data are late-middle Eocene SST from Tardif et al. (2020) after Baatsen et al. 1154 

(2020).  1155 

Figure 8. Global mean annual total heat transport (PW: Petawatt = 10
15

 watts). Heat transport 1156 

is calculated as the sum of latitudinal advective and diffusive transports. Dashed lines indicate 1157 

anomalies with respect to the DC experiment.  1158 
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Figure 9. Evolution of the Antarctic climate through the Drake Passage opening. 1159 

Figure 10. Mean annual meridional temperatures for: (left column) Pacific Ocean, (middle 1160 

column) Atlantic Ocean, (right column) Indian Ocean, and from the top to the bottom: DC, 1161 

D2500 and the anomaly D2500 minus DC. The white vertical line represents the equator.  1162 

Figure 11. Pressure gradient changes and Surface wind. Globally averaged ocean meridional 1163 

potential water density (kg/m
3
) for (a-d) the different Eocene experiments, (e) modern CTRL 1164 

experiment and (f) CTRL-4x experiment. The numbers written on each figure correspond to 1165 

water potential density of this zone. Each line represents a water potential density decrease of 1166 

0.1 kg/m
3
. The right part of the figure (g) shows the meridional distribution of zonal wind at a 1167 

10 m altitude (m.s
-1

) for the different Eocene and modern simulations. Positive values indicate 1168 

eastward winds, negative values westward winds. Proto-ACC Flow and Modern ACC Flow 1169 

indicate the maximum strength zone of the ACC in D2500 and CTRL simulations 1170 

respectively.   1171 
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