Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar R. M. Holder^{1,2}, C. Yakymchuk³, and D. R. Viete²

¹Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA.

²Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.

³Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada.

Corresponding author: Robert Holder (roholder@umich.edu)

Key Points:

1

2

- Eu anomalies in suprasolidus rocks record any process that changes the relative availability of Eu²⁺ and Eu³⁺, not just feldspar growth.
- Disequilibrium is required for feldspar growth to strongly influence accessory mineral Eu anomalies.
- Comparing accessory mineral Eu anomalies and Sr concentrations leads to more robust interpretation than evaluating Eu anomalies alone.

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2020GC009052

Abstract 19

Accessory-mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount 20

21 of feldspar over time, allowing accessory mineral U–Pb dates to be linked to the progressive

- crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. 22
- However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu²⁺ 23 and Eu³⁺. We constructed partitioning budgets for Sm, Eu²⁺, Eu³⁺, and Gd in suprasolidus 24 metasedimentary rocks to investigate processes that can influence accessory mineral Eu 25 anomalies. We modeled three scenarios: 1) closed-system, equilibrium crystallization; 2) 26 27 fractionation of Eu by feldspar growth during melt crystallization; and 3) removal of Eu by melt extraction. In the closed-system equilibrium model, accessory-mineral Eu/Eu* changes as a 28 function of fO₂ and monazite stability; Eu/Eu* changes up to 0.3 over a pressure-temperature 29 range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to 30 decreases accessory-mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt 31 extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the 32 residue by ≤ 0.05 . Although these models demonstrate that fractionation of Eu by feldspar growth 33 34 can be a dominant control on a rocks Eu budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead 35 to incorrect interpretation about the duration and rates of tectonic processes. Consideration of 36 37 other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology. 38

Plain Language Summary

Metamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth's continents have moved and changed through time. To read this record, geologists need to be able to measure the ages of metamorphism and magmatism: When did it happen? How long did it last? How does it relate to other rocks around the world? A common approach to addressing these questions is using U–Pb dating of the minerals zircon, monazite, and apatite. The elements these minerals incorporate are indicative of how hot and how deep in the Earth they were when they grew. In this paper we explore how geologists can use the concentrations of the element Europium (Eu) in these minerals to provide new insights into the geological significance of U–Pb dates, leading to more robust interpretations of Earth's plate tectonic history.

1 Introduction

Trace-element concentrations and ratios in accessory minerals can be used to (semi-53)quantitatively link accessory-mineral growth to the growth and breakdown of major phases (e.g. 54 Bea & Montero, 1999; Buick et al., 2006; Cioffi et al., 2019; Finger & Krenn, 2007; Foster et al., 55 56 2000; Foster et al., 2002; Garber et al., 2017; Hacker et al., 2019; Hermann & Rubatto, 2003; Hokada & Harley, 2004; Kelly et al., 2006; Kelly & Harley, 2005; Mottram et al., 2014; Pyle & 57 58 Spear, 1999; Rubatto, 2002; Rubatto & Hermann, 2007; Rubatto et al., 2006; Taylor et al., 2015; Warren et al., 2019) (Figure 1). This approach—along with trace-element thermobarometers 59 (Ferry & Watson, 2007; Gratz & Heinrich, 1997; Hayden et al., 2008; Pyle et al., 2001; 60 Seydoux-Guillaume et al., 2002; Thomas et al., 2015; Tomkins et al., 2007; Wark & Watson, 61 62 2006) and modeling of accessory-mineral stability (Janots et al., 2007; Kelsey et al., 2008; Kohn

et al., 2015; Shrestha et al., 2019; Spear, 2010; Spear & Pyle, 2010; Yakymchuk, 2017; 63

40

42

45

46

49

50 51

Yakymchuk & Brown, 2014; Yakymchuk et al., 2017)—can be combined with *in-situ* U–Pb
geochronology to infer *P*–*T*–*t*–*d* paths of crystalline rocks that underpin interpretations of their
geodynamic significance (e.g. Engi, 2017; Kohn, 2017; Rubatto, 2017; Zack & Kooijman, 2017).
This multilayered approach to assessing the petrological and geological significance of
accessory-mineral U–Pb dates forms the foundation of petrochronology (Engi et al., 2017).

In this paper, we address one of the trace-element ratios most commonly used in petrochronology: the Eu anomaly $(Eu/Eu^* = Eu_n^{total} / \sqrt{Sm_n \times Gd_n}$, subscript n denotes a normalized concentration; $Eu^{total} = Eu^{3+} + Eu^{2+}$; for this paper, the normalizing values are C.I. chondrite; McDonough & Sun, 1995). Variability in accessory-mineral Eu/Eu* ratios are commonly attributed to the growth and breakdown of plagioclase (e.g. Holder et al., 2015) or alkali-feldspar (e.g. Mottram et al., 2014; Rubatto et al., 2006; 2013; 2016); plagioclase feldspar is particularly sensitive to changes in pressure and useful for investigating high pressure metamorphism (e.g. O'Brien & Rötzler, 2003), whereas the modes and compositions of both feldspars are sensitive to the extent of partial melting in suprasolidus rocks. However, mineral Eu/Eu* might be influenced by a range of factors, including: 1) bulk-rock Eu/Eu*; 2) the stability of minerals that strongly partition either Eu^{2+} or Eu^{3+} ; 3) bulk-rock Eu^{3+}/Eu^{2+} , which depends on fO_2 , T, and P; 4) possible differences in the temperature-dependence of partitioning for Eu^{3+} relative to Eu^{2+} ; or 5) any other process that fractionates Eu^{3+} from Eu^{2+} . Consequently, accessory-mineral Eu/Eu* might not always be exclusively controlled by feldspar. The purpose of this paper is to highlight the potential complexity of Eu partitioning, by modeling changes in accessory-mineral Eu/Eu* for three simple, plausible scenarios (changes in fO_2 , feldspar fractionation, and open-system melting), as a basis for further discussion about interpreting accessory-mineral Eu/Eu* in natural samples.

2 Methods

2.1 Construction of partitioning models

The concentrations of Sm, Eu, and Gd in accessory minerals, major minerals, and melt were calculated for average suprasolidus metapelite and metagreywacke (Figure 2) as functions of pressure and temperature using mineral modes and partition coefficients. Mineral modes were calculated by phase-equilibrium modeling as described by Yakymchuk et al. (2017). Whole-rock mass fractions of Sm, Eu, and Gd were taken to be 5.9, 1.2, and 5.2 μ g/g, respectively, reflecting the average values of shales (e.g. Condie, 1993). This corresponds to Eu/Eu*_{rock} = 0.66.

There is considerable variability in the availability and quality of partitioning data. In 96 recognition of this uncertainty, models were constructed with two sets of partition coefficients, 97 referred to as "B94"-empirical partition coefficients from Bea et al. (1994)-and "modified 98 composite" (MC)-a dataset of partition coefficients compiled from multiple studies, modified 99 slightly to reduce several discrepancies observed among calculations and observations in the first 100 iterations of the model calculations (zircon and garnet: Rubatto & Hermann, 2007; Taylor et al., 101 2015; monazite: Stepanov et al., 2012; apatite: Watson & Green, 1981; plagioclase: Sun et al., 102 2017; alkali-feldspar: Ren, 2004). The partitioning data used in each of these models are 103

described in more detail in Texts S1 and S2 and summarized in Table 1. All partition coefficients $(K_d^x, x = \text{element or ion of interest})$ are mineral:melt unless specifically stated.

The advantages of the B94 models are that: (1) The estimated peak metamorphic 106 temperature of the rocks from which the partitioning data were estimated (750°C) is lower than 107 the experimental/magmatic temperatures of most trace-element partitioning studies, and (2) The 108 rocks from which the data were estimated are similar to the modeled compositions of this study 109 (i.e. peraluminous migmatites). The B94 models do not account for the temperature- or pressure-110 dependence of partitioning or the presence of Eu²⁺ in accessory minerals and their samples are 111 more reduced than many metasedimentary rocks (e.g. Ague, 1991; Diener & Powell, 2010; 112 Spear, 1993). The advantages of the MC models are that they account for the temperature 113 dependence of partitioning and include both Eu^{2+} and Eu^{3+} in each accessory mineral. 114

2.2 Calculating whole-rock Eu valence for partitioning models

The Eu species Eu^{3+} and Eu^{2+} were treated independently. Values of $K_d^{\text{Eu}3+}$ were taken as the geometric mean of K_d^{Sm} and K_d^{Gd} , whereas it was assumed that $K_d^{\text{Eu2+}} = K_d^{\text{Sr}}$ (Philpotts, 1970) due to the near identical size and ionic radius of Eu^{2+} and Sr^{2+} (Shannon, 1976). We assumed that the bulk-rock Eu^{2+}/Eu^{3+} ratios are reasonably approximated by the equations of Burnham et al. (2015), who measured Eu valence in experimental silicate melts as functions of temperature, fO₂, and melt composition. Burnham et al. (2015) found that contours of constant Eu^{2+}/Eu^{3+} were parallel to the fayalite-magnetite-quartz buffer in plots of fO_2 vs T, demonstrating that Eu valence was controlled by Fe^{2+} - Fe^{3+} redox. This suggests that the *relative* changes in Eu valence should be reasonably approximated by fO_2 for systems in which fO_2 is controlled by Fe²⁺–Fe³⁺ mineral equilibrium (among magnetite–spinel, ilmenite, biotite, and garnet in our models). However, the *absolute values* of bulk-rock and mineral Eu^{2+}/Eu^{3+} might be different in real (semi-)pelitic systems which differ from the experiments of Burnham et al. (2015) in that they are outside of their investigated compositional range (mostly maficintermediate), at lower temperature, and they contain minerals (the experiments of Burnham et al., 2015, were strictly on melts) which might impart their own crystal-chemistry influence on Eu^{2+}/Eu^{3+} in their structures (e.g. Philpotts, 1970). Therefore, the models should only be interpreted semi-quantitatively, in terms of order-of-magnitude change and trends.

Models were calculated with fixed O concentrations, corresponding to slightly oxidized 133 bulk compositions ($Fe^{3+}/Fe^{total} = 0.15$; Yakymchuk et al., 2017) that produce ilmenite±magnetite 134 135 (e.g. Diener and Powell, 2010), consistent with observations from many natural metapelites. Calculated $\log_{10} fO_2$ in the models varies between ~FMQ₊₁ and FMQ₊₃, where FMQ is the 136 137 fayalite-magnetite-quartz buffer and the subscript indicates logarithmic deviations from the buffer. Such values are relatively common in metasedimentary granulites (e.g. Boger et al., 2012; 138 Yakymchuk et al., 2019) and typical of many lower-crustal rocks in general (Bucholz & 139 Keleman, 2019). No explicit fO_2 buffer was imposed on the calculations, as that would require 140 that O concentrations vary as a function of T, P, and the compositions of $Fe^{2+}-Fe^{3+}$ solid 141 solutions to maintain the buffer (i.e. not a closed system). Values of Eu³⁺/Eu^{total} vary 142 approximately linearly over this fO_2 range (Burnham et al., 2015). For significantly more 143 reduced (<FMQ₋₄) or oxidized rocks (>FMQ₊₈), the equations of Burnham et al. (2015) predict 144 Eu to be monovalent: Eu^{2+} or Eu^{3+} , respectively. Our calculations are not applicable to natural 145

146 systems at these fO_2 extremes (such as graphite–pyrite-bearing metapelites; Connolly & Cesare, 147 1993).

148 2.3 Model scenarios

(1) In the equilibrium closed-system partitioning models, partition coefficients were used 149 to calculate concentrations of Sm, Eu, and Gd in each relevant mineral as functions of mineral modes, temperature, and Eu^{2+}/Eu^{3+} ratio. (2) The models of Eu fractionation by feldspar crystallization were calculated along an isobaric cooling path at 6 kbar. The models began at 950°C with REE-equilibrium among all phases. The REE incorporated into plagioclase and alkali-feldspar as they grew was incrementally removed from the effective whole-rock composition at one-degree-K cooling intervals. All other aspects of these models were assumed to be in equilibrium (e.g. mineral modes, major-element compositions, and REE partitioning among all other phases) to specifically isolate the influence of feldspar fractionation on accessory mineral Eu anomalies. For portions of the modeled cooling path in which the mode of either plagioclase or alkali-feldspar decreased, a proportionate amount of the previously fractionated REE was added back into the effective bulk-composition. (3) For the models of melt extraction during isobaric heating, REE equilibrium was maintained among all phases. When the melt fraction reached 7 mol%, approximately the melt-connectivity threshold (Rosenberg & Handy, 2005), the major-element equivalent of 6 mol% melt was removed from the model composition (leaving 1% remaining) along with proportionate amounts of Sm, Eu, and Gd. Although the exact value of this melt-connectivity threshold will depend on grainsize, grain shape, and deformation, this approach is used for consistency with the now-common meltreintegration method used by Korhonen et al. (2013) to estimate the protolith composition of residual granulites (this approach is the inverse of theirs). The weight fractions of accessory minerals were also modified by each melt-extraction step in accordance with their solubilities (e.g. Yakymchuk, 2017).

3 Results

Results of the models are tabulated in Data Sets S1–S16, which are available through the EarthChem community data repository (Holder et al., 2020).

3.1 Models of equilibrium, unbuffered, closed-system metamorphism

Contours of oxygen fugacity ($\log_{10}fO_2$), oxygen fugacity relative to the favalite-175 magnetite–quartz buffer ($log_{10}fO_{2 \text{ rock}} - log_{10}fO_{2 \text{ FMQ}}$), and Eu valence (Eu³⁺/Eu^{total}) as functions 176 of pressure and temperature are shown in Figure 3. Contours of log₁₀fO_{2 rock} - log₁₀fO_{2 FMO} (Figure 3c,d) parallel reactions among the Fe^{2+} - Fe^{3+} minerals (ilmenite, magnetite-spinel, garnet, and biotite). At higher pressure, the contours closely parallel the rutile-in reaction, which 179 involves breakdown of ilmenite to form garnet and rutile with increasing pressure; the slope of 180 this reaction changes between 750 and 850°C due to the breakdown of biotite. At lower pressure, 181 the contours become more closely spaced, following magnetite-spinel stability, with a notable 182 "trough" at $\sim 750^{\circ}$ C. 183

184 Contours of Eu^{3+}/Eu^{total} (Figure 3e,f) are similar to the contours of $log_{10}fO_{2 rock} - log_{10}fO_{2}$ 185 _{FMQ} (Figure 3c,d), as expected from the Fe-redox-controlled Eu-redox equations used in the models (Burnham et al., 2015). The overall changes in Eu^{3+}/Eu^{total} across the models (675– 950°C, 4–12 kbar) is 0.2–0.3 in both pelite and greywacke. The values of Eu^{3+}/Eu^{total} are primarily functions of pressure, due to the pressure-dependence of oxide stability, with slight deflection associated with biotite breakdown, as mentioned in the previous paragraph.

Calculated Eu/Eu* in the accessory minerals and garnet in the MC models are shown in Figure 4. The values for each mineral are ~0.6–0.7 at higher pressure and 0.4–0.5 at lower pressure. At lower temperature, where all three accessory minerals are abundant, the contours of Eu/Eu* essentially parallel the contours of whole-rock Eu³⁺/Eu^{total} (Figure 3e,f). However, at ~850°C (pelite) and ~900°C (greywacke), contours of Eu/Eu* are more temperature-dependent; this change occurs as the mode of monazite decreases exponentially, until it is not stable. For the B94 models, accessory-mineral Eu/Eu* parallels whole-rock Eu³⁺/Eu^{total} (Figure S1), because accessory-mineral $K_d^{Eu2+} = 0$. Calculated Eu/Eu* anomalies of plagioclase and melt in the MC model are shown in Figure 5. Values of Eu/Eu* in feldspars and melt decrease with increasing temperature and show little pressure dependence, except for the B94 greywacke model (Figure S2) in which plagioclase and melt Eu/Eu* show a stronger pressure dependence near the solidus.

Figure 6 shows the proportion of each phase, their total Eu content, and their Eu/Eu* from the MC models along a hypothetical clockwise P-T path consisting of isobaric heating at 10 kbar to 850°C, isothermal decompression at 850°C to 5 kbar, and isobaric cooling at 5 kbar to 675°C. As described above, feldspars and melt Eu/Eu* changes most significantly with temperature, whereas Eu/Eu* of the accessory minerals and garnet ($K_d^{Eu3+} >> K_d^{Eu2+}$) change most significantly with pressure. The total change in accessory mineral Eu/Eu* along such a P-Tpath is similar in all models: approximately -0.1 to -0.2. Pressure–temperature paths that pass through lower pressure and higher temperature conditions, where magnetite–spinel is stable, would result in slightly larger changes in Eu/Eu* for the accessory minerals and garnet (Figure 3e,f; e.g. Holder et al., 2018).

Figure 7 shows apatite Eu/Eu* as functions of *T*, *P*, feldspar wt%, and Eu³⁺/Eu^{total} on accessory mineral Eu/Eu* in the closed-system, equilibrium MC models. Apatite is plotted, because it exhibits the largest *P*–*T* stability range of the accessory minerals; however, monazite and zircon exhibit similar relationships (Figures 4, 6). Viewed together, these plots illustrate that the relationship of accessory mineral Eu/Eu* with feldspar is nonsystematic. In contrast, changes in pressure and temperature show strong consistent effects, due to changes in bulk-rock Eu valence (changes in fO_2 , relative to the FMQ buffer) and monazite stability, respectively. Total changes in accessory mineral Eu/Eu* over the modeled *P*–*T* conditions are 0.2–0.3.

3.2 Models of feldspar fractionation

Figure 8 shows the results of the models in which REE are fractionated by feldspars during isobaric cooling and melt crystallization. Models were stopped when the weight fractions of the feldspars became essentially constant, making the fractionation calculations nonapplicable. For the pelite model, this occurred at 700°C, slightly above the calculated solidus. For linguistic simplicity, we refer to 700°C as "the solidus" for the pelite models in the following paragraphs. For the greywacke model, the weight fractions of feldspar are essentially constant at $T < 798^{\circ}$ C.

In all models, the effective whole-rock Eu/Eu* decreases with cooling, as the amount of feldspar increases. In the MC pelite model, the significant resorption of alkali-feldspar as biotite begins to crystallize (at 813°C) results in a sharp increase in effective whole-rock Eu/Eu*, before continued plagioclase crystallization draws the value back down. The B94 pelite model does not show the same influence of the biotite-in reaction, due to much lower values of K_d^{Eu2+} in the alkali feldspar. Values of Eu/Eu* in accessory minerals and garnet are generally sub-parallel to the whole-rock values, with deviations due to changes in mineral modes and differences in K_d^{Eu3+} and K_d^{Eu2+} among minerals.

3.3 Models of melt extraction

Figure 9 shows the results of models in which REE were removed by step-wise melt extraction during isobaric heating based on their equilibrium values in melt. The results of the calculations differ substantially between the MC and B94 models.

For the MC models, melt extraction changes the bulk-rock Eu/Eu* very little from the initial value of 0.66. Accessory-mineral and garnet Eu/Eu* show a total variability of 0.10–0.15 (pelite) and ~0.02 (greywacke). The greywacke models show less variability in Eu/Eu*, because less melt is produced and extracted. For the B94 models, melt extraction changes the bulk-rock Eu/Eu* more appreciably than in the MC models. Bulk-rock Eu/Eu* decreases from 0.66 to 0.53 (pelite) or 0.63 (greywacke). Values of accessory-mineral and garnet Eu/Eu* generally follow the effective whole-rock Eu/Eu*, decreasing as melt is extracted.

The differences between results of the MC and B94 melt-extraction models are primarily due to differences in the calculated Eu/Eu* of the melt. In the B94 models, the Eu/Eu* of the melt is 14 (greywacke) or 18 (pelite) at the solidus and remains greater than unity for most of the models, allowing for substantial removal of Eu relative to other REE during melt extraction. In the MC models, the Eu/Eu* of the melt is 2.4 (greywacke) or 4.5 (pelite) at the solidus and decreases below unity at 876°C (greywacke) or 830°C (pelite); although melt was extracted multiple times within this temperature range, the draw-down in whole-rock Eu/Eu* is negligible due to the relatively low Eu/Eu* and low total concentrations of REE in the melt.

4 **Discussion**

4.1 Controls on equilibrium mineral Eu/Eu*

Interpreting Eu/Eu* in minerals is complicated by presence of both Eu^{2+} and Eu^{3+} in most metamorphic and igneous environments. The equilibrium Sm–Eu–Gd partitioning calculations shown in Figures 3–7 provide a starting point to understand the processes that control mineral Eu/Eu*.

Both feldspars and melt preferentially incorporate Eu^{2+} over Eu^{3+} , resulting in Eu/Eu^* consistently greater than the whole-rock value. However, in all models, the values of feldspar and melt Eu/Eu^* decrease by approximately an order of magnitude from 700 to 950°C (Figure 5). This is due to several effects: 1) temperature- and composition-dependence of feldspar K_d 's The accessory minerals and garnet have very large Eu^{3+}/Eu^{2+} ratios (>10–100). Values of Eu/Eu* in these minerals is primarily controlled by the availability of Eu^{3+} . Contours of accessory mineral Eu/Eu* (Figure 4) are sub-parallel to the whole-rock Eu^{3+}/Eu^{total} contours (Figure 3e,f), which is governed by fO_2 (in the B94 models, this is the only control). An exception to this is: at ~850°C (pelite) and ~900°C (greywacke), the amount of monazite decreases exponentially until it becomes fully dissolved in the melt (Figure 4), causing the accessory-mineral Eu/Eu* contours to deviate from the whole-rock Eu^{3+}/Eu^{total} contours.

Most importantly for this study, in the equilibrium closed-system models, there is no systematic correlation between feldspar abundance and accessory mineral Eu/Eu*. Apparent correlations occur for some P-T conditions, but these vary in sign and magnitude (Figure 7a,b) and are more appropriately attributed to changes in pressure and temperature, which influence modeled Eu³⁺/Eu^{total} and the mode of monazite, respectively (Figure 7c,d). This lack of a clear relationship with the amount of feldspar is expected, because feldspars and accessory minerals are mostly competing for difference species of Eu (Eu²⁺ and Eu³⁺, respectively; e.g. Kohn and Kelly, 2017). Maximum changes in equilibrium accessory-mineral Eu/Eu* are predicted to be ~0.2–0.3 for the modeled suprasolidus conditions. Due to the strong pressure dependence of accessory-mineral Eu/Eu* in the models, clockwise P-T paths are predicted to result in a net increase in Eu/Eu*.

4.2 Open system effects on mineral Eu/Eu*

4.2.1 Fractionation of Eu by feldspar crystallization

The calculations shown in Figure 8 support the hypothesis that feldspar growth and breakdown can significantly influence accessory mineral Eu/Eu* if the REE incorporated into feldspar are effectively fractionated from the rest of the rock. For the MC models, crystallization of 10% feldspar resulted in a decrease in accessory mineral Eu/Eu* of ~0.15, with a maximum possible decrease of ~0.4; for the B94 models, the corresponding decrease was smaller but not insignificant: ~0.05 for 10% feldspar crystallization, with a maximum possible decrease of ~0.15. However, application of these generalizations to real rocks is complicated by the recognition that alkali-feldspar and plagioclase modes are unlikely to change monotonically during crystallization; they grow/breakdown as functions of their miscibility, and due to reactions with garnet (such as the "GASP" reaction), incongruent versus congruent melting, melt crystallization and reactions with micas. For example, the MC pelite model (Figure 8c) shows accessory mineral Eu/Eu* with increases and decreases of > 0.1 during cooling as a result of feldspar crystallization at high temperature then feldspar resorption and mica crystallization at lower temperature. Another complication is that Eu²⁺ diffusivity in feldspar, if similar to Sr diffusivity, is ~4 orders of magnitude higher than REE^{3+} diffusivity (Cherniak 1995, Cherniak & Watson, 1992; Cherniak & Watson, 1994); fractionation of Eu by feldspar growth might therefore be limited at suprasolidus conditions. Nevertheless, the very large changes in accessory

mineral Eu/Eu* observed in some samples (≥ 0.4 , Figure 1; e.g. Rubatto et al., 2006), likely require some degree of Eu fractionation by feldspar growth.

308 4.2.2 Open-system melting

In our models, melt Eu/Eu* was greater than whole-rock Eu/Eu* at all conditions. Therefore, extraction of melt from migmatites has the potential to decrease whole-rock Eu/Eu*, but the modeled magnitude of this decrease depends on the partitioning data used. Observations of leucosome:melanosome trace-element ratios in natural samples from Bea et al. (1994) suggest that partial melt extraction can have a substantial influence on Eu/Eu* in residual minerals (Eu/Eu* changes >0.1 in the B94 models; Figure 8). However, the MC models suggest that open-system melting will have essentially no influence on accessory-mineral Eu/Eu*. It is possible that the discrepancy in these results relates to how the partitioning data for the two models were estimated. The partitioning data of Bea et al. (1994) are based on mineral:leucosome trace-element ratios; however, leucosomes rarely record initial melt compositions, due to fractional crystallization of feldspar (physical separation of feldspar from residual melt as the leucosome crystallizes: e.g. Brown et al., 2016; Sawyer, 1987). Consequently, the B94 models might have overpredicted the concentration of Eu²⁺ and Eu/Eu* in the melt.

5 Conclusions

As hypothesized by Rubatto et al. (2006), our models predict that growth of feldspar can significantly influence accessory-mineral Eu/Eu*, but only if REE in feldspar are effectively fractionated from the rock. At equilibrium, the mode of feldspar has negligible/subordinate effects on accessory-mineral Eu/Eu* compared to fO_2 and the stability of monazite (for the suprasolidus peraluminous rocks modeled). Feldspars do not strongly influence accessory-mineral Eu/Eu* at equilibrium, because feldspars and accessory minerals predominantly incorporate different Eu species (Eu²⁺ and Eu³⁺, respectively; e.g. Kohn & Kelly, 2017).

Whereas Y+HREE partitioning among accessory minerals and garnet is relatively well understood (e.g. Pyle et al., 2001), Eu partitioning is highly complex. This makes interpretation of Eu/Eu* more difficult than Y+HREE, but might allow for a broader range of geological processes to be investigated with petrochronology, particularly open-system processes such as fluid–rock interaction, partial melting, and magma crystallization. The models presented here provide a basis for further study, but are limited in application to suprasolidus peraluminous rocks. The models are also limited in theory by available partitioning data and a lack of quantification on the crystal chemical effects on Eu valence in minerals. To fully understand accessory mineral Eu/Eu*, the roles of other minerals (e.g. allanite, amphibole, titanite in metabasites and intermediate rocks) also needs to be assessed. In addition, systematic assessments of Eu/Eu* in natural samples, as have been undertaken for mineral Y+HREE concentrations, are needed (e.g. Bea & Montero, 1999; Foster et al., 2000; Hermann & Rubatto, 2003; Pyle & Spear, 1999).

344

345 Acknowledgments

This work was supported by the Morton K Blaustein Department of Earth and Planetary 346 Sciences, Johns Hopkins University. The authors declare no conflicts of interest. Tabulated 347 results of the models in this paper can be found in the EarthChem community data repository, 348 DOI: 10.26022/IEDA/111590. Author contributions following the CRediT taxonomy: Holder: 349 conceptualization, data curation, formal analysis, methodology, visualization, writing - original 350 draft; Yakymchuk: formal analysis, methodology, writing – review & editing; Viete: funding 351 acquisition, resources, visualization, writing – review & editing. The authors thank Miguel 352 353 Cisneros and Pierre Lanari for their helpful reviews, which improved the presentation and discussion of this work. 354

References

- Ague, J. J. (1991). Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, 19(8), 855–858. https://doi.org/10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2
- Bea, F., & Montero, P. (1999). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust : An example from the Kinzigite Formation of Ivrea-Verbano , NW Italy. *Geochimica et Cosmochimica Acta*, 63(7/8), 1133–1153. https://doi.org/10.1016/S0016-7037
- Boger, S. D., White, R. W., & Schulte, B. (2012). The importance of iron speciation (Fe+2/Fe+3) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30(9), 997–1018. https://doi.org/10.1111/jmg.12001
- Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. (2016). From source to sink: Petrogenesis of cretaceous anatectic granites from the Fosdick migmatite-granite complex, West Antarctica. *Journal of Petrology*, 57(7), 1241–1278. https://doi.org/10.1093/petrology/egw039
- Bucholz, C. E., & Kelemen, P. B. (2019). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174(10), 1–27. https://doi.org/10.1007/s00410-019-1609-z
- Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. (2006). A SHRIMP U–Pb and LA-ICP-MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. *Lithos*, 88(1–4), 150–172. https://doi.org/10.1016/j.lithos.2005.09.001
- Burnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. (2015). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. *Chemical Geology*, 411, 248–259. https://doi.org/10.1016/j.chemgeo.2015.07.002
- Cherniak, D. J. (2003). REE diffusion in feldspar. Chemical Geology, 193(1–2), 25–41. https://doi.org/10.1016/S0009-2541(02)00246-2
- Cherniak, D. J., & Watson, E. B. (1992). A study of strontium diffusion in K-feldspar, Na-K feldspar and anorthite
 using Rutherford Backscattering Spectroscopy. Earth and Planetary Science Letters, 113(3), 411–425.
 https://doi.org/10.1016/0012-821X(92)90142-I
- 381 Cherniak, D. J., & Watson, E. B. (1994). A study of strontium diffusion in plagioclase using Rutherford
- backscattering spectroscopy. Geochimica et Cosmochimica Acta, 58(23), 5179–5190.

383 https://doi.org/10.1016/0016-7037(94)90303-4

- Cioffi, C. R., Campos Neto, M. da C., Möller, A., & Rocha, B. C. (2019). Titanite petrochronology of the southern
 Brasília Orogen basement: Effects of retrograde net-transfer reactions on titanite trace element compositions.
 Lithos, 344–345, 393–408. https://doi.org/10.1016/j.lithos.2019.06.035
 - Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. *Chemical Geology*, *104*(1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E
 - Connolly, J. A. D., & Cesare, B. (1993). C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11(3), 379–388. https://doi.org/10.1111/j.1525-1314.1993.tb00155.x
 - Diener, J. F. A., & Powell, R. (2010). Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology, 28(6), 599–613. https://doi.org/10.1111/j.1525-1314.2010.00880.x
 - Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. *Reviews in Mineralogy and Geochemistry*, 83(1), 365 LP 418. https://doi.org/10.2138/rmg.2017.83.12
 - Engi, M., Lanari, P., & Kohn, M. J. (2017). Significant Ages—An Introduction to Petrochronology. *Reviews in Mineralogy and Geochemistry*, 83(1), 1–12. https://doi.org/10.2138/rmg.2017.83.1
 - Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. *Contributions to Mineralogy and Petrology*, 154(4), 429–437. https://doi.org/10.1007/s00410-007-0201-0
 - Finger, F., & Krenn, E. (2007). Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. *Lithos*, 95(1–2), 103–115. https://doi.org/10.1016/j.lithos.2006.06.003
 - Foster, G., Kinny, P., Vance, D., Prince, C., & Harris, N. (2000). The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. *Earth and Planetary Science Letters*, 181(3), 327–340. https://doi.org/10.1016/S0012-821X(00)00212-0
 - Foster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., & Tindle, A. (2002). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology, 191(1–3), 183– 207. https://doi.org/10.1016/S0009-2541(02)00156-0
 - Garber, J. M., Hacker, B. R., Kylander-Clark, A. R. C., Stearns, M. A., & Seward, G. (2017). Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. *Journal of Petrology*, 58(6), 1031– 1057. https://doi.org/10.1093/petrology/egx046
 - Gratz, R., & Heinrich, W. (1997). Monazite-xenotime thermobarometry: Experimental calibration of the miscibility
 gap in the binary system CePO4-YPO4. *American Mineralogist*, 82(7–8), 772–780.
- Hacker, B., Kylander-Clark, A., & Holder, R. (2019). REE partitioning between monazite and garnet: Implications
 for petrochronology. *Journal of Metamorphic Geology*, *37*(2), 227–237. https://doi.org/10.1111/jmg.12458
- Hayden, L. A., Watson, E. B., & Wark, D. A. (2008). A thermobarometer for sphene (titanite). *Contributions to Mineralogy and Petrology*, 155(4), 529–540. https://doi.org/10.1007/s00410-007-0256-y
- 419 Hermann, J., & Rubatto, D. (2003). Relating zircon and monazite domains to garnet growth zones: age and duration

- 420 of granulite facies metamorphism in the Val Malenco lower crust. *Journal of Metamorphic Geology*, 21(9),
 421 833–852. https://doi.org/10.1046/j.1525-1314.2003.00484.x
- Hokada, T., & Harley, S. L. (2004). Zircon growth in UHT leucosome: Constraints from zircon-garnet rare earth
 elements (REE) relations in Napier Complex, East Antarctica. *Journal of Mineralogical and Petrological Sciences*, 99(4), 180–190. https://doi.org/10.2465/jmps.99.180
 - Holder, R. M., Hacker, B. R., Horton, F., & Rakotondrazafy, A. F. M. (2018). Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high- T orogen. *Journal of Metamorphic Geology*, *36*(7), 855–880. https://doi.org/10.1111/jmg.12316
 - Holder, R. M., Hacker, B. R., Kylander-Clark, A. R. C., & Cottle, J. M. (2015). Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway. *Chemical Geology*, 409, 99–111. https://doi.org/10.1016/j.chemgeo.2015.04.021
 - Holder, R., Yakymchuk, C., Viete, D. (2020). Modeled mineral Eu anomalies in suprasolidus metasediments, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/111590
 - Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., & Cemič, L. (2007). Thermochemistry of monazite-(La) and dissakisite-(La): Implications for monazite and allanite stability in metapelites. *Contributions to Mineralogy and Petrology*, 154(1), 1–14. https://doi.org/10.1007/s00410-006-0176-2
 - Kelly, N. M., Clarke, G. L., & Harley, S. L. (2006). Monazite behaviour and age significance in poly-metamorphic high-grade terrains: A case study from the western Musgrave Block, central Australia11Abbreviations: After Kretz, 1983. *Lithos*, 88(1–4), 100–134. https://doi.org/10.1016/j.lithos.2005.08.007
 - Kelly, N. M., & Harley, S. L. (2005). An integrated microtextural and chemical approach to zircon geochronology: Refining the Archaean history of the Napier Complex, east Antarctica. *Contributions to Mineralogy and Petrology*, 149(1), 57–84. https://doi.org/10.1007/s00410-004-0635-6
 - Kelsey, D. E., Clark, C., & Hand, M. (2008). Thermobarometric modelling of zircon and monazite growth in meltbearing systems: examples using model metapelitic and metapsammitic granulites. *Journal of Metamorphic Geology*, 26(2), 199–212. https://doi.org/10.1111/j.1525-1314.2007.00757.x
 - Kohn, M. J. (2017). Titanite Petrochronology. *Reviews in Mineralogy and Geochemistry*, 83. https://doi.org/10.2138/rmg.2017.83.13
 - Kohn, M. J., Corrie, S. L., & Markley, C. (2015). The fall and rise of metamorphic zircon. *American Mineralogist*, *100*(4), 897–908. https://doi.org/10.2138/am-2015-5064
 - Kohn, M. J., & Kelly, N. M. (2017). Petrology and geochronology of metamorphic zircon. *Microstructural Geochronology: Planetary Records Down to Atom Scale*, 35–61. https://doi.org/10.1002/9781119227250.ch2
- Korhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. (2013). Osumilite-melt interactions in ultrahigh
 temperature granulites: Phase equilibria modelling and implications for the P-T-t evolution of the eastern ghats
 province, India. *Journal of Metamorphic Geology*, *31*(8), 881–907. https://doi.org/10.1111/jmg.12049
- 455 Mottram, C. M., Warren, C. J., Regis, D., Roberts, N. M. W., Harris, N. B. W., Argles, T. W., & Parrish, R. R.
- 456 (2014). Developing an inverted barrovian sequence; insights from monazite petrochronology. *Earth and*

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

- 457 Planetary Science Letters, 403, 418–431. https://doi.org/10.1016/j.epsl.2014.07.006
- O'Brien, P. J., & Rötzler, J. (2003). High-pressure granulites: Formation, recovery of peak conditions and
 implications for tectonics. *Journal of Metamorphic Geology*, 21(1), 3–20. https://doi.org/10.1046/j.1525 1314.2003.00420.x
 - Philpotts, J. A. (1970). Redox estimation from a calculation of Eu2+ and Eu3+ concentrations in natural phases. *Earth and Planetary Science Letters*, 9(3), 257–268. https://doi.org/10.1016/0012-821X(70)90036-1
 - Pyle, J. M., & Spear, F. S. (1999). Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. *Geological Materials Research*, 1(6), 1–49.
 - Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. (2001). Monazite–Xenotime–Garnet Equilibrium in Metapelites and a New Monazite–Garnet Thermometer. *Journal of Petrology*, 42(11), 2083–2107. https://doi.org/10.1093/petrology/42.11.2083
 - Ren, M. (2004). Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma. *American Mineralogist*, 89(8–9), 1290–1303. https://doi.org/10.2138/am-2004-8-918
 - Rosenberg, C. L., & Handy, M. R. (2005). Experimental deformation of partially melted granite revisited: Implications for the continental crust. *Journal of Metamorphic Geology*, 23(1), 19–28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
 - Rubatto, D. (2002). Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. *Chemical Geology*, *184*, 123–138. Retrieved from www.elsevier.com/locate/chemgeo
 - Rubatto, D. (2017). Zircon: The Metamorphic Mineral. *Reviews in Mineralogy and Geochemistry*, 83(1), 261 LP 295. https://doi.org/10.2138/rmg.2017.83.10
 - Rubatto, D., Chakraborty, S., & Dasgupta, S. (2013). Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. *Contributions to Mineralogy and Petrology*, *165*(2), 349–372. https://doi.org/10.1007/s00410-012-0812-y
 - Rubatto, D., & Hermann, J. (2007). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. *Chemical Geology*, 241(1–2), 38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027
 - Rubatto, D., Hermann, J., & Buick, I. S. (2006). Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). *Journal of Petrology*, 47(10), 1973–1996. https://doi.org/10.1093/petrology/egl033
 - Sawyer, E. W. (1987). The role of partial melting and fractional crystallization in determining discordant migmatite
 leucosome compositions. *Journal of Petrology*, 28(3), 445–473. https://doi.org/10.1093/petrology/28.3.445
- 489 Seydoux-Guillaume, A.-M., Wirth, R., Heinrich, W., & Montel, J.-M. (2002). Experimental determination of
 490 Thorium partitioning between monazite and xenotime using analytical electron microscopy and X-ray
 491 diffraction Rietveld analysis. *European Journal of Mineralogy*, *14*(5), 869–878. https://doi.org/10.1127/0935492 1221/2002/0014-0869
- 493 Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides

494

- and Chalcogenides. Acta Crystallographica, A32, 751–767.
- Shrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. (2019). Thermodynamic modelling of
 phosphate minerals and its implications for the development of P-T-t histories: A case study in garnet monazite bearing metapelites. *Lithos*, 334–335, 141–160. https://doi.org/10.1016/j.lithos.2019.03.021
- Spear, Frank S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Monograph / Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America.
- Spear, F. S. (2010). Monazite–allanite phase relations in metapelites. *Chemical Geology*, 279(1–2), 55–62. https://doi.org/10.1016/j.chemgeo.2010.10.004
- Spear, F. S., & Pyle, J. M. (2010). Theoretical modeling of monazite growth in a low-Ca metapelite. *Chemical Geology*, 273(1–2), 111–119. https://doi.org/10.1016/j.chemgeo.2010.02.016
- Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. (2012). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. *Chemical Geology*, 300–301, 200– 220. https://doi.org/10.1016/j.chemgeo.2012.01.007
- Sun, C., Graff, M., & Liang, Y. (2017). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. *Geochimica et Cosmochimica Acta*, 206, 273–295. https://doi.org/10.1016/j.gca.2017.03.003
- Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. (2015). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high-T crustal processes. *Journal of Metamorphic Geology*, 33(3), 231–248. https://doi.org/10.1111/jmg.12118
- Thomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. (2015). TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations. *Contributions to Mineralogy and Petrology*. https://doi.org/10.1007/s00410-015-1120-0
- Tomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. *Journal of Metamorphic Geology*, 25(6), 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
- Wark, D. A., & Watson, E. B. (2006). TitaniQ: A titanium-in-quartz geothermometer. *Contributions to Mineralogy* and Petrology, 152(6), 743–754. https://doi.org/10.1007/s00410-006-0132-1
- Warren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. (2019).
 Garnet-monazite rare earth element relationships in sub-solidus Metapelites: A case study from Bhutan. *Geological Society Special Publication*, 478(1), 145–166. https://doi.org/10.1144/SP478.1

Watson, E. B., & Green, T. H. (1981). Apatite/liquid partition coefficients for the rare earth elements and strontium. *Earth and Planetary Science Letters*, 56(C), 405–421. https://doi.org/10.1016/0012-821X(81)90144-8

- White, R. W., Powell, R., & Clarke, G. L. (2002). The interpretation of reaction textures in Fe-rich metapelitic
 granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria calculations in the
 system. Journal of Metamorphic Geology, 20(1), 41–55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
- Yakymchuk, C. (2017). Behaviour of apatite during partial melting of metapelites and consequences for prograde
 suprasolidus monazite growth. *Lithos*, 274–275, 412–426. https://doi.org/10.1016/j.lithos.2017.01.009
- 530 Yakymchuk, C., & Brown, M. (2014). Behaviour of zircon and monazite during crustal melting. Journal of the

- 531 *Geological Society*, 171(4), 465–479. https://doi.org/10.1144/jgs2013-115
- 532 Yakymchuk, C., Clark, C., & White, R. W. (2017). Phase Relations, Reactions Sequences and Petrochronology.
- 533 Reviews in Mineralogy and Geochemistry, 83, 15–53. https://doi.org/10.2138/rmg.2017.83.2
 - Yakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. (2019). Petrochronology of oxidized granulites from southern
 Peru. Journal of Metamorphic Geology, (December 2018), 839–862. https://doi.org/10.1111/jmg.12501
 - Zack, T., & Kooijman, E. (2017). Petrology and Geochronology of Rutile. *Reviews in Mineralogy and Geochemistry*, 83(1), 443 LP 467. https://doi.org/10.2138/rmg.2017.83.14

Figure 1. The most applied interpretations of accessory mineral REE profiles. (a) Schematic illustration of two monazite REE profiles and how they might be interpreted in the context of progressive crystallization during which the abundance of major minerals changes. (b) Example dataset from Rubatto et al. (2006) of monazite core and rim compositions from Mount Stafford, Central Australia. Monazite cores were characterized by low Gd/Lu and high Eu/Eu* compared to monazite rims; this relationship was interpreted to record progressive monazite growth or recrystallization during low-pressure prograde metamorphism as the abundance of alkali-feldspar (preferentially incorporates Eu) and then garnet (preferentially incorporates HREE) increased.

Figure 2. Phase equilibria of (a) average pelite and (b) greywacke used for the partitioning models of this study (Yakymchuk et al., 2017).

Figure 3. (A,B) The $log_{10}fO_2$ of the modeled compositions. (C,D) Differences between $log_{10}fO_2$ of the modeled compositions and the fayalite-magnetite-quartz buffer (FMQ). The shape of the contours is influenced by reactions among the Fe²⁺-Fe³⁺ minerals—ilmenite, magnetite, garnet, and biotite—most notably the rutile-in reaction with increasing pressure (involving ilmenite breakdown and garnet growth), the magnetite-spinel-in reactions with decreasing pressure, and the biotite-out reaction with increasing temperature. (E,F) The ratio Eu³⁺/Eu^{total} used to calculate Eu partitioning, which was calculated from fO_2 , *T*, and melt composition (Burnham et al., 2015).

Figure 4. Calculated equilibrium Eu/Eu* anomalies of accessory minerals and garnet in the MC models: (A,B) zircon, (C,D) monazite, (E,F) apatite, and (G,H) garnet. Accessory mineral and garnet Eu/Eu* are primarily pressure dependent near the solidus, where the accessory minerals are abundant and the relative availability of Eu^{3+} and Eu^{2+} is controlled by fO_2 . With increasing temperature, the fraction of each accessory minerals decreases exponentially, particularly monazite, thereby strongly influencing the distribution of REE, resulting in a stronger temperature dependence on Eu/Eu*.

Figure 5. Calculated equilibrium Eu/Eu* of plagioclase and melt in the MC models: (A,B) plagioclase and (C,D) melt. In contrast to accessory-mineral and garnet Eu/Eu* (Figure 4), feldspar and melt Eu/Eu* are strongly temperature dependent.

Figure 6. Values of Eu/Eu* in each phase are controlled by the temperature-dependent solubilities of accessory minerals and the pressure-dependent Eu^{3+}/Eu^{total} (Figure 3e,f). MC model results along the hypothetical *P*–*T* path shown in Figure 4c. Weight percent of phases along the path in (A) pelite and (B) greywacke. Percent of the total Eu in the system hosted by each phase in (C) pelite and (D) greywacke. Values of Eu/Eu* in each phase in (E) pelite and (F) greywacke.

Figure 7. For the closed-system, equilibrium MC models, accessory mineral Eu anomalies exhibit strong positive correlations Eu^{3+}/Eu^{total} , which is primarily a function of pressure (Figure 4), and with monazite stability. In contrast, correlations with the wt% feldspar are inconsistent and variable, illustrating that, at equilibrium, wt% feldspar has minimal influence on accessory mineral Eu/Eu*. (A) Apatite Eu/Eu* as functions of wt% feldspar and temperature at constant pressure. (B) Apatite Eu/Eu* as functions of wt% feldspar and pressure at constant temperature. (C) Apatite Eu/Eu* as functions of whole-rock Eu^{3+}/Eu^{total} and temperature at constant pressure. (D) Apatite Eu/Eu* as functions of whole-rock Eu^{3+}/Eu^{total} and temperature. In all panels, apatite Eu/Eu* is shown because apatite is stable at all modeled P-T conditions; monazite and zircon show similar Eu/Eu* patterns for the P-T conditions at which they are stable (Figure 4).

Figure 8. The fractionation of Eu by feldspar growth can decrease Eu/Eu* in accessory minerals and garnet. (A) Weight fractions of plagioclase, alkali-feldspar, and melt in the model metapelite. (B) Weight fractions of plagioclase, alkali-feldspar, and melt in the model greywacke. (C) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the MC pelite model. The large increase in Eu/Eu* at ~810°C is due to alkali-feldspar resorption during biotite growth. (D) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the MC greywacke model. Model was ended at 798°C, because the changes in the weight fractions of feldspars are minimal at lower temperature. (E) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the B94 pelite model. The smaller overall Eu fractionation relative to the MC model is due to lower feldspar K_d^{Eu2+} , particularly for the alkali feldspar. (D) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the B94 greywacke model. **Table 1**. Mineral:melt K_d used for Sm, Eu, and Gd partitioning modeling.

model		monazite	zircon	garnet	apatite	plagioclase
B94	Sm ³⁺	75289	3.79	0.45	1105	1.45
	Eu ²⁺			0.01		1.25
	Eu ³⁺	84934	5.91	1.49	1535	1.72
	Gd^{3+}	95815	9.21	4.95	2133	2.05
Modified- Composite	Sm ³⁺	50•10 ^{(4373.9/T-} 1.0034)	10 ^(4765.0/T-3.3096)	10 ^(5424.0/T-4.1211)	10 ^(4037.9/T-1.7169)	$0.1 \cdot K_{d}^{Eu2+}$
1	Eu ²⁺	10 ^(4317.3/T-3.8397)	10 ^(4838.2/T-5.4992)	10 ^(4266.1/T-5.0498)	10 ^(-738.33/T+0.9258)	Sun et al. (2017)
	Eu ³⁺	50•10 ^{(4317.3/T-} 1.0125)	10 ^(4838.2/T-3.1581)	10(4266.1/T-2.8259)	10(4359.3/T-1.9877)	$0.1 \cdot K_{d}^{Eu2+}$
	Gd^{3+}	50•10 ^{(4254.2/T-} 1.0158)	10 ^(5147.7/T-3.2562)	10 ^(3470.9/T-1.8673)	10(4670.0/T-2.2498)	$0.1 \cdot K_{d}^{Eu2+}$

Table 1. Mineral:melt K_d used for Sm, Eu, and Gd partitioning modeling

temperature (°C)

This afficerers brocked by copyright. All rights reserved. temperature (°C)

feldspar fractionation of REE during isobaric cooling This article is protected by copyright. All rights reserved.

а

weight fraction

е

greywacke

Eu/Eu*: melt

Eu/Eu*: melt

10