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Key Points: 10 

 Eu anomalies in suprasolidus rocks record any process that changes the relative 11 

availability of Eu2+ and Eu3+, not just feldspar growth. 12 

 Disequilibrium is required for feldspar growth to strongly influence accessory mineral Eu 13 

anomalies. 14 

 Comparing accessory mineral Eu anomalies and Sr concentrations leads to more robust 15 

interpretation than evaluating Eu anomalies alone. 16 
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Abstract 19 

Accessory-mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount 20 

of feldspar over time, allowing accessory mineral U–Pb dates to be linked to the progressive 21 

crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. 22 

However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ 23 

and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus 24 

metasedimentary rocks to investigate processes that can influence accessory mineral Eu 25 

anomalies. We modeled three scenarios: 1) closed-system, equilibrium crystallization; 2) 26 

fractionation of Eu by feldspar growth during melt crystallization; and 3) removal of Eu by melt 27 

extraction. In the closed-system equilibrium model, accessory-mineral Eu/Eu* changes as a 28 

function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure–temperature 29 

range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to 30 

decreases accessory-mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt 31 

extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the 32 

residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth 33 

can be a dominant control on a rocks Eu budget, they also show that the common interpretation 34 

that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead 35 

to incorrect interpretation about the duration and rates of tectonic processes. Consideration of 36 

other processes that influence Eu anomalies will allow for a broader range of geological 37 

processes to be investigated by petrochronology. 38 

Plain Language Summary 39 

Metamorphic rocks—rocks in which new minerals grew in response to increase in pressure and 40 

temperature related to deep burial or subduction—and igneous rocks—rocks that formed as 41 

magmas cool and crystallize—provide a direct record of how Earth's continents have moved and 42 

changed through time. To read this record, geologists need to be able to measure the ages of 43 

metamorphism and magmatism: When did it happen? How long did it last? How does it relate to 44 

other rocks around the world? A common approach to addressing these questions is using U–Pb 45 

dating of the minerals zircon, monazite, and apatite. The elements these minerals incorporate are 46 

indicative of how hot and how deep in the Earth they were when they grew. In this paper we 47 

explore how geologists can use the concentrations of the element Europium (Eu) in these 48 

minerals to provide new insights into the geological significance of U–Pb dates, leading to more 49 

robust interpretations of Earth’s plate tectonic history. 50 
 51 

1 Introduction 52 

Trace-element concentrations and ratios in accessory minerals can be used to (semi-53 

)quantitatively link accessory-mineral growth to the growth and breakdown of major phases (e.g. 54 

Bea & Montero, 1999; Buick et al., 2006; Cioffi et al., 2019; Finger & Krenn, 2007; Foster et al., 55 

2000; Foster et al., 2002; Garber et al., 2017; Hacker et al., 2019; Hermann & Rubatto, 2003; 56 

Hokada & Harley, 2004; Kelly et al., 2006; Kelly & Harley, 2005; Mottram et al., 2014; Pyle & 57 

Spear, 1999; Rubatto, 2002; Rubatto & Hermann, 2007; Rubatto et al., 2006; Taylor et al., 2015; 58 

Warren et al., 2019) (Figure 1). This approach—along with trace-element thermobarometers 59 

(Ferry & Watson, 2007; Gratz & Heinrich, 1997; Hayden et al., 2008; Pyle et al., 2001; 60 

Seydoux-Guillaume et al., 2002; Thomas et al., 2015; Tomkins et al., 2007; Wark & Watson, 61 

2006) and modeling of accessory-mineral stability (Janots et al., 2007; Kelsey et al., 2008; Kohn 62 

et al., 2015; Shrestha et al., 2019; Spear, 2010; Spear & Pyle, 2010; Yakymchuk, 2017; 63 
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Yakymchuk & Brown, 2014; Yakymchuk et al., 2017)—can be combined with in-situ U–Pb 64 

geochronology to infer P–T–t–d paths of crystalline rocks that underpin interpretations of their 65 

geodynamic significance (e.g. Engi, 2017; Kohn, 2017; Rubatto, 2017; Zack & Kooijman, 2017). 66 

This multilayered approach to assessing the petrological and geological significance of 67 

accessory-mineral U–Pb dates forms the foundation of petrochronology (Engi et al., 2017). 68 

In this paper, we address one of the trace-element ratios most commonly used in 69 

petrochronology: the Eu anomaly (Eu/Eu∗  =  Eun
total/√Smn × Gdn, subscript n denotes a 70 

normalized concentration; Eutotal = Eu3+ + Eu2+; for this paper, the normalizing values are C.I. 71 

chondrite; McDonough & Sun, 1995). Variability in accessory-mineral Eu/Eu* ratios are 72 

commonly attributed to the growth and breakdown of plagioclase (e.g. Holder et al., 2015) or 73 

alkali-feldspar (e.g. Mottram et al., 2014; Rubatto et al., 2006; 2013; 2016); plagioclase feldspar 74 

is particularly sensitive to changes in pressure and useful for investigating high pressure 75 

metamorphism (e.g. O’Brien & Rötzler, 2003), whereas the modes and compositions of both 76 

feldspars are sensitive to the extent of partial melting in suprasolidus rocks. However, mineral 77 

Eu/Eu* might be influenced by a range of factors, including: 1) bulk-rock Eu/Eu*; 2) the 78 

stability of minerals that strongly partition either Eu2+ or Eu3+; 3) bulk-rock Eu3+/Eu2+, which 79 

depends on fO2, T, and P; 4) possible differences in the temperature-dependence of partitioning 80 

for Eu3+ relative to Eu2+; or 5) any other process that fractionates Eu3+ from Eu2+. Consequently, 81 

accessory-mineral Eu/Eu* might not always be exclusively controlled by feldspar. The purpose 82 

of this paper is to highlight the potential complexity of Eu partitioning, by modeling changes in 83 

accessory-mineral Eu/Eu* for three simple, plausible scenarios (changes in fO2, feldspar 84 

fractionation, and open-system melting), as a basis for further discussion about interpreting 85 

accessory-mineral Eu/Eu* in natural samples. 86 

 87 

2 Methods 88 

2.1 Construction of partitioning models 89 

The concentrations of Sm, Eu, and Gd in accessory minerals, major minerals, and melt 90 

were calculated for average suprasolidus metapelite and metagreywacke (Figure 2) as functions 91 

of pressure and temperature using mineral modes and partition coefficients. Mineral modes were 92 

calculated by phase-equilibrium modeling as described by Yakymchuk et al. (2017). Whole-rock 93 

mass fractions of Sm, Eu, and Gd were taken to be 5.9, 1.2, and 5.2 µg/g, respectively, reflecting 94 

the average values of shales (e.g. Condie, 1993). This corresponds to Eu/Eu*rock = 0.66.  95 

There is considerable variability in the availability and quality of partitioning data. In 96 

recognition of this uncertainty, models were constructed with two sets of partition coefficients, 97 

referred to as “B94”—empirical partition coefficients from Bea et al. (1994)—and “modified 98 

composite” (MC)—a dataset of partition coefficients compiled from multiple studies, modified 99 

slightly to reduce several discrepancies observed among calculations and observations in the first 100 

iterations of the model calculations (zircon and garnet: Rubatto & Hermann, 2007; Taylor et al., 101 

2015; monazite: Stepanov et al., 2012; apatite: Watson & Green, 1981; plagioclase: Sun et al., 102 

2017; alkali-feldspar: Ren, 2004). The partitioning data used in each of these models are 103 
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described in more detail in Texts S1 and S2 and summarized in Table 1. All partition coefficients 104 

(Kd
x, x = element or ion of interest) are mineral:melt unless specifically stated.  105 

The advantages of the B94 models are that: (1) The estimated peak metamorphic 106 

temperature of the rocks from which the partitioning data were estimated (750°C) is lower than 107 

the experimental/magmatic temperatures of most trace-element partitioning studies, and (2) The 108 

rocks from which the data were estimated are similar to the modeled compositions of this study 109 

(i.e. peraluminous migmatites). The B94 models do not account for the temperature- or pressure-110 

dependence of partitioning or the presence of Eu2+ in accessory minerals and their samples are 111 

more reduced than many metasedimentary rocks (e.g. Ague, 1991; Diener & Powell, 2010; 112 

Spear, 1993). The advantages of the MC models are that they account for the temperature 113 

dependence of partitioning and include both Eu2+ and Eu3+ in each accessory mineral. 114 

2.2 Calculating whole-rock Eu valence for partitioning models 115 

The Eu species Eu3+ and Eu2+ were treated independently. Values of Kd
Eu3+ were taken as 116 

the geometric mean of Kd
Sm and Kd

Gd, whereas it was assumed that Kd
Eu2+ = Kd

Sr (Philpotts, 117 

1970) due to the near identical size and ionic radius of Eu2+ and Sr2+ (Shannon, 1976). We 118 

assumed that the bulk-rock Eu2+/Eu3+ ratios are reasonably approximated by the equations of 119 

Burnham et al. (2015), who measured Eu valence in experimental silicate melts as functions of 120 

temperature, fO2, and melt composition. Burnham et al. (2015) found that contours of constant 121 

Eu2+/Eu3+ were parallel to the fayalite–magnetite–quartz buffer in plots of fO2 vs T, 122 

demonstrating that Eu valence was controlled by Fe2+–Fe3+ redox. This suggests that the relative 123 

changes in Eu valence should be reasonably approximated by fO2 for systems in which fO2 is 124 

controlled by Fe2+–Fe3+ mineral equilibrium (among magnetite–spinel, ilmenite, biotite, and 125 

garnet in our models). However, the absolute values of bulk-rock and mineral Eu2+/Eu3+ might 126 

be different in real (semi-)pelitic systems which differ from the experiments of Burnham et al. 127 

(2015) in that they are outside of their investigated compositional range (mostly mafic–128 

intermediate), at lower temperature, and they contain minerals (the experiments of Burnham et 129 

al., 2015, were strictly on melts) which might impart their own crystal-chemistry influence on 130 

Eu2+/Eu3+ in their structures (e.g. Philpotts, 1970). Therefore, the models should only be 131 

interpreted semi-quantitatively, in terms of order-of-magnitude change and trends. 132 

Models were calculated with fixed O concentrations, corresponding to slightly oxidized 133 

bulk compositions (Fe3+/Fetotal = 0.15; Yakymchuk et al., 2017) that produce ilmenite±magnetite 134 

(e.g. Diener and Powell, 2010), consistent with observations from many natural metapelites. 135 

Calculated log10fO2 in the models varies between ~FMQ+1 and FMQ+3, where FMQ is the 136 

fayalite–magnetite–quartz buffer and the subscript indicates logarithmic deviations from the 137 

buffer. Such values are relatively common in metasedimentary granulites (e.g. Boger et al., 2012; 138 

Yakymchuk et al., 2019) and typical of many lower-crustal rocks in general (Bucholz & 139 

Keleman, 2019). No explicit fO2 buffer was imposed on the calculations, as that would require 140 

that O concentrations vary as a function of T, P, and the compositions of Fe2+–Fe3+ solid 141 

solutions to maintain the buffer (i.e. not a closed system). Values of Eu3+/Eutotal vary 142 

approximately linearly over this fO2 range (Burnham et al., 2015). For significantly more 143 

reduced (<FMQ–4) or oxidized rocks (>FMQ+8), the equations of Burnham et al. (2015) predict 144 

Eu to be monovalent: Eu2+ or Eu3+, respectively. Our calculations are not applicable to natural 145 
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systems at these fO2 extremes (such as graphite–pyrite-bearing metapelites; Connolly & Cesare, 146 

1993). 147 

2.3 Model scenarios 148 

(1) In the equilibrium closed-system partitioning models, partition coefficients were used 149 

to calculate concentrations of Sm, Eu, and Gd in each relevant mineral as functions of mineral 150 

modes, temperature, and Eu2+/Eu3+ ratio. (2) The models of Eu fractionation by feldspar 151 

crystallization were calculated along an isobaric cooling path at 6 kbar. The models began at 152 

950°C with REE-equilibrium among all phases. The REE incorporated into plagioclase and 153 

alkali-feldspar as they grew was incrementally removed from the effective whole-rock 154 

composition at one-degree-K cooling intervals. All other aspects of these models were assumed 155 

to be in equilibrium (e.g. mineral modes, major-element compositions, and REE partitioning 156 

among all other phases) to specifically isolate the influence of feldspar fractionation on 157 

accessory mineral Eu anomalies. For portions of the modeled cooling path in which the mode of 158 

either plagioclase or alkali-feldspar decreased, a proportionate amount of the previously 159 

fractionated REE was added back into the effective bulk-composition. (3) For the models of melt 160 

extraction during isobaric heating, REE equilibrium was maintained among all phases. When the 161 

melt fraction reached 7 mol%, approximately the melt-connectivity threshold (Rosenberg & 162 

Handy, 2005), the major-element equivalent of 6 mol% melt was removed from the model 163 

composition (leaving 1% remaining) along with proportionate amounts of Sm, Eu, and Gd. 164 

Although the exact value of this melt-connectivity threshold will depend on grainsize, grain 165 

shape, and deformation, this approach is used for consistency with the now-common melt-166 

reintegration method used by Korhonen et al. (2013) to estimate the protolith composition of 167 

residual granulites (this approach is the inverse of theirs). The weight fractions of accessory 168 

minerals were also modified by each melt-extraction step in accordance with their solubilities 169 

(e.g. Yakymchuk, 2017). 170 

3 Results 171 

Results of the models are tabulated in Data Sets S1–S16, which are available through the 172 

EarthChem community data repository (Holder et al., 2020). 173 

3.1 Models of equilibrium, unbuffered, closed-system metamorphism 174 

Contours of oxygen fugacity (log10fO2), oxygen fugacity relative to the fayalite–175 

magnetite–quartz buffer (log10fO2 rock – log10fO2 FMQ), and Eu valence (Eu3+/Eutotal) as functions 176 

of pressure and temperature are shown in Figure 3. Contours of log10fO2 rock – log10fO2 FMQ 177 

(Figure 3c,d) parallel reactions among the Fe2+–Fe3+ minerals (ilmenite, magnetite–spinel, 178 

garnet, and biotite). At higher pressure, the contours closely parallel the rutile-in reaction, which 179 

involves breakdown of ilmenite to form garnet and rutile with increasing pressure; the slope of 180 

this reaction changes between 750 and 850°C due to the breakdown of biotite. At lower pressure, 181 

the contours become more closely spaced, following magnetite–spinel stability, with a notable 182 

“trough” at ~750°C.  183 

 Contours of Eu3+/Eutotal (Figure 3e,f) are similar to the contours of log10fO2 rock – log10fO2 184 

FMQ (Figure 3c,d), as expected from the Fe-redox-controlled Eu-redox equations used in the 185 
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models (Burnham et al., 2015). The overall changes in Eu3+/Eutotal across the models (675–186 

950°C, 4–12 kbar) is 0.2–0.3 in both pelite and greywacke. The values of Eu3+/Eutotal are 187 

primarily functions of pressure, due to the pressure-dependence of oxide stability, with slight 188 

deflection associated with biotite breakdown, as mentioned in the previous paragraph.  189 

 Calculated Eu/Eu* in the accessory minerals and garnet in the MC models are shown in 190 

Figure 4. The values for each mineral are ~0.6–0.7 at higher pressure and 0.4–0.5 at lower 191 

pressure. At lower temperature, where all three accessory minerals are abundant, the contours of 192 

Eu/Eu* essentially parallel the contours of whole-rock Eu3+/Eutotal (Figure 3e,f). However, at 193 

~850°C (pelite) and ~900°C (greywacke), contours of Eu/Eu* are more temperature-dependent; 194 

this change occurs as the mode of monazite decreases exponentially, until it is not stable. For the 195 

B94 models, accessory-mineral Eu/Eu* parallels whole-rock Eu3+/Eutotal (Figure S1), because 196 

accessory-mineral Kd
Eu2+ = 0. Calculated Eu/Eu* anomalies of plagioclase and melt in the MC 197 

model are shown in Figure 5. Values of Eu/Eu* in feldspars and melt decrease with increasing 198 

temperature and show little pressure dependence, except for the B94 greywacke model (Figure 199 

S2) in which plagioclase and melt Eu/Eu* show a stronger pressure dependence near the solidus.  200 

Figure 6 shows the proportion of each phase, their total Eu content, and their Eu/Eu* 201 

from the MC models along a hypothetical clockwise P–T path consisting of isobaric heating at 202 

10 kbar to 850°C, isothermal decompression at 850°C to 5 kbar, and isobaric cooling at 5 kbar to 203 

675°C. As described above, feldspars and melt Eu/Eu* changes most significantly with 204 

temperature, whereas Eu/Eu* of the accessory minerals and garnet (Kd
Eu3+ >> Kd

Eu2+) change 205 

most significantly with pressure. The total change in accessory mineral Eu/Eu* along such a P–T 206 

path is similar in all models: approximately –0.1 to –0.2. Pressure–temperature paths that pass 207 

through lower pressure and higher temperature conditions, where magnetite–spinel is stable, 208 

would result in slightly larger changes in Eu/Eu* for the accessory minerals and garnet (Figure 209 

3e,f; e.g. Holder et al., 2018). 210 

Figure 7 shows apatite Eu/Eu* as functions of T, P, feldspar wt%, and Eu3+/Eutotal on 211 

accessory mineral Eu/Eu* in the closed-system, equilibrium MC models. Apatite is plotted, 212 

because it exhibits the largest P–T stability range of the accessory minerals; however, monazite 213 

and zircon exhibit similar relationships (Figures 4, 6). Viewed together, these plots illustrate that 214 

the relationship of accessory mineral Eu/Eu* with feldspar is nonsystematic. In contrast, changes 215 

in pressure and temperature show strong consistent effects, due to changes in bulk-rock Eu 216 

valence (changes in fO2, relative to the FMQ buffer) and monazite stability, respectively. Total 217 

changes in accessory mineral Eu/Eu* over the modeled P–T conditions are 0.2–0.3. 218 

3.2 Models of feldspar fractionation 219 

Figure 8 shows the results of the models in which REE are fractionated by feldspars 220 

during isobaric cooling and melt crystallization. Models were stopped when the weight fractions 221 

of the feldspars became essentially constant, making the fractionation calculations non-222 

applicable. For the pelite model, this occurred at 700°C, slightly above the calculated solidus. 223 

For linguistic simplicity, we refer to 700°C as “the solidus” for the pelite models in the following 224 
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paragraphs. For the greywacke model, the weight fractions of feldspar are essentially constant at 225 

T < 798°C. 226 

In all models, the effective whole-rock Eu/Eu* decreases with cooling, as the amount of 227 

feldspar increases. In the MC pelite model, the significant resorption of alkali-feldspar as biotite 228 

begins to crystallize (at 813°C) results in a sharp increase in effective whole-rock Eu/Eu*, before 229 

continued plagioclase crystallization draws the value back down. The B94 pelite model does not 230 

show the same influence of the biotite-in reaction, due to much lower values of Kd
Eu2+ in the 231 

alkali feldspar. Values of Eu/Eu* in accessory minerals and garnet are generally sub-parallel to 232 

the whole-rock values, with deviations due to changes in mineral modes and differences in Kd
Eu3+ 233 

and Kd
Eu2+ among minerals. 234 

3.3 Models of melt extraction 235 

Figure 9 shows the results of models in which REE were removed by step-wise melt 236 

extraction during isobaric heating based on their equilibrium values in melt. The results of the 237 

calculations differ substantially between the MC and B94 models. 238 

For the MC models, melt extraction changes the bulk-rock Eu/Eu* very little from the 239 

initial value of 0.66. Accessory-mineral and garnet Eu/Eu* show a total variability of 0.10–0.15 240 

(pelite) and ~0.02 (greywacke). The greywacke models show less variability in Eu/Eu*, because 241 

less melt is produced and extracted. For the B94 models, melt extraction changes the bulk-rock 242 

Eu/Eu* more appreciably than in the MC models. Bulk-rock Eu/Eu* decreases from 0.66 to 0.53 243 

(pelite) or 0.63 (greywacke). Values of accessory-mineral and garnet Eu/Eu* generally follow 244 

the effective whole-rock Eu/Eu*, decreasing as melt is extracted. 245 

The differences between results of the MC and B94 melt-extraction models are primarily 246 

due to differences in the calculated Eu/Eu* of the melt. In the B94 models, the Eu/Eu* of the 247 

melt is 14 (greywacke) or 18 (pelite) at the solidus and remains greater than unity for most of the 248 

models, allowing for substantial removal of Eu relative to other REE during melt extraction. In 249 

the MC models, the Eu/Eu* of the melt is 2.4 (greywacke) or 4.5 (pelite) at the solidus and 250 

decreases below unity at 876°C (greywacke) or 830°C (pelite); although melt was extracted 251 

multiple times within this temperature range, the draw-down in whole-rock Eu/Eu* is negligible 252 

due to the relatively low Eu/Eu* and low total concentrations of REE in the melt. 253 

4 Discussion 254 

4.1 Controls on equilibrium mineral Eu/Eu* 255 

Interpreting Eu/Eu* in minerals is complicated by presence of both Eu2+ and Eu3+ in most 256 

metamorphic and igneous environments. The equilibrium Sm–Eu–Gd partitioning calculations 257 

shown in Figures 3–7 provide a starting point to understand the processes that control mineral 258 

Eu/Eu*. 259 

Both feldspars and melt preferentially incorporate Eu2+ over Eu3+, resulting in Eu/Eu* 260 

consistently greater than the whole-rock value. However, in all models, the values of feldspar 261 

and melt Eu/Eu* decrease by approximately an order of magnitude from 700 to 950°C (Figure 262 

5). This is due to several effects: 1) temperature- and composition-dependence of feldspar Kd’s 263 
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(e.g. plagioclase Kd
Eu2+ decreases from 8.4 to 0.33 between 700 to 950°C at 10 kbar in the MC 264 

pelite model); 2) increase in the proportion of melt (Eu2+ must be shared among feldspars and 265 

melt); and 3) dissolution of accessory minerals, most prominently monazite (Figure 6, 7), which 266 

requires that their Sm, Gd, and Eu (mostly Eu3+) must be redistributed among the other phases.  267 

The accessory minerals and garnet have very large Eu3+/Eu2+ ratios (>10–100). Values of 268 

Eu/Eu* in these minerals is primarily controlled by the availability of Eu3+. Contours of 269 

accessory mineral Eu/Eu* (Figure 4) are sub-parallel to the whole-rock Eu3+/Eutotal contours 270 

(Figure 3e,f), which is governed by fO2 (in the B94 models, this is the only control). An 271 

exception to this is: at ~850°C (pelite) and ~900°C (greywacke), the amount of monazite 272 

decreases exponentially until it becomes fully dissolved in the melt (Figure 4), causing the 273 

accessory-mineral Eu/Eu* contours to deviate from the whole-rock Eu3+/Eutotal contours. 274 

Most importantly for this study, in the equilibrium closed-system models, there is no 275 

systematic correlation between feldspar abundance and accessory mineral Eu/Eu*. Apparent 276 

correlations occur for some P–T conditions, but these vary in sign and magnitude (Figure 7a,b) 277 

and are more appropriately attributed to changes in pressure and temperature, which influence 278 

modeled Eu3+/Eutotal and the mode of monazite, respectively (Figure 7c,d). This lack of a clear 279 

relationship with the amount of feldspar is expected, because feldspars and accessory minerals 280 

are mostly competing for difference species of Eu (Eu2+ and Eu3+, respectively; e.g. Kohn and 281 

Kelly, 2017). Maximum changes in equilibrium accessory-mineral Eu/Eu* are predicted to be 282 

~0.2–0.3 for the modeled suprasolidus conditions. Due to the strong pressure dependence of 283 

accessory-mineral Eu/Eu* in the models, clockwise P–T paths are predicted to result in a net 284 

decrease in Eu/Eu*, whereas counter-clockwise paths are predicted to result in a net increase in 285 

Eu/Eu*.  286 

4.2 Open system effects on mineral Eu/Eu* 287 

4.2.1 Fractionation of Eu by feldspar crystallization 288 

The calculations shown in Figure 8 support the hypothesis that feldspar growth and 289 

breakdown can significantly influence accessory mineral Eu/Eu* if the REE incorporated into 290 

feldspar are effectively fractionated from the rest of the rock. For the MC models, crystallization 291 

of 10% feldspar resulted in a decrease in accessory mineral Eu/Eu* of ~0.15, with a maximum 292 

possible decrease of ~0.4; for the B94 models, the corresponding decrease was smaller but not 293 

insignificant: ~0.05 for 10% feldspar crystallization, with a maximum possible decrease of 294 

~0.15. However, application of these generalizations to real rocks is complicated by the 295 

recognition that alkali-feldspar and plagioclase modes are unlikely to change monotonically 296 

during crystallization; they grow/breakdown as functions of their miscibility, and due to 297 

reactions with garnet (such as the “GASP” reaction), incongruent versus congruent melting, melt 298 

crystallization and reactions with micas. For example, the MC pelite model (Figure 8c) shows 299 

accessory mineral Eu/Eu* with increases and decreases of > 0.1 during cooling as a result of 300 

feldspar crystallization at high temperature then feldspar resorption and mica crystallization at 301 

lower temperature. Another complication is that Eu2+ diffusivity in feldspar, if similar to Sr 302 

diffusivity, is ~4 orders of magnitude higher than REE3+ diffusivity (Cherniak 1995, Cherniak & 303 

Watson, 1992; Cherniak & Watson, 1994); fractionation of Eu by feldspar growth might 304 

therefore be limited at suprasolidus conditions. Nevertheless, the very large changes in accessory 305 
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mineral Eu/Eu* observed in some samples (≥0.4, Figure 1; e.g. Rubatto et al., 2006), likely 306 

require some degree of Eu fractionation by feldspar growth.  307 

4.2.2 Open-system melting 308 

In our models, melt Eu/Eu* was greater than whole-rock Eu/Eu* at all conditions. 309 

Therefore, extraction of melt from migmatites has the potential to decrease whole-rock Eu/Eu*, 310 

but the modeled magnitude of this decrease depends on the partitioning data used. Observations 311 

of leucosome:melanosome trace-element ratios in natural samples from Bea et al. (1994) suggest 312 

that partial melt extraction can have a substantial influence on Eu/Eu* in  residual minerals 313 

(Eu/Eu* changes >0.1 in the B94 models; Figure 8). However, the MC models suggest that 314 

open-system melting will have essentially no influence on accessory-mineral Eu/Eu*. It is 315 

possible that the discrepancy in these results relates to how the partitioning data for the two 316 

models were estimated. The partitioning data of Bea et al. (1994) are based on 317 

mineral:leucosome trace-element ratios; however, leucosomes rarely record initial melt 318 

compositions, due to fractional crystallization of feldspar (physical separation of feldspar from 319 

residual melt as the leucosome crystallizes: e.g. Brown et al., 2016; Sawyer, 1987). 320 

Consequently, the B94 models might have overpredicted the concentration of Eu2+ and Eu/Eu* 321 

in the melt.  322 

5 Conclusions 323 

As hypothesized by Rubatto et al. (2006), our models predict that growth of feldspar can 324 

significantly influence accessory-mineral Eu/Eu*, but only if REE in feldspar are effectively 325 

fractionated from the rock. At equilibrium, the mode of feldspar has negligible/subordinate 326 

effects on accessory-mineral Eu/Eu* compared to fO2 and the stability of monazite (for the 327 

suprasolidus peraluminous rocks modeled). Feldspars do not strongly influence accessory-328 

mineral Eu/Eu* at equilibrium, because feldspars and accessory minerals predominantly 329 

incorporate different Eu species (Eu2+ and Eu3+, respectively; e.g. Kohn & Kelly, 2017).  330 

Whereas Y+HREE partitioning among accessory minerals and garnet is relatively well 331 

understood (e.g. Pyle et al., 2001), Eu partitioning is highly complex. This makes interpretation 332 

of Eu/Eu* more difficult than Y+HREE, but might allow for a broader range of geological 333 

processes to be investigated with petrochronology, particularly open-system processes such as 334 

fluid–rock interaction, partial melting, and magma crystallization. The models presented here 335 

provide a basis for further study, but are limited in application to suprasolidus peraluminous 336 

rocks. The models are also limited in theory by available partitioning data and a lack of 337 

quantification on the crystal chemical effects on Eu valence in minerals. To fully understand 338 

accessory mineral Eu/Eu*, the roles of other minerals (e.g. allanite, amphibole, titanite in 339 

metabasites and intermediate rocks) also needs to be assessed. In addition, systematic 340 

assessments of Eu/Eu* in natural samples, as have been undertaken for mineral Y+HREE 341 

concentrations, are needed (e.g. Bea & Montero, 1999; Foster et al., 2000; Hermann & Rubatto, 342 

2003; Pyle & Spear, 1999). 343 
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Figure 1. The most applied interpretations of accessory mineral REE profiles. (a) Schematic illustration of two 540 

monazite REE profiles and how they might be interpreted in the context of progressive crystallization during which 541 

the abundance of major minerals changes. (b) Example dataset from Rubatto et al. (2006) of monazite core and rim 542 

compositions from Mount Stafford, Central Australia. Monazite cores were characterized by low Gd/Lu and high 543 

Eu/Eu* compared to monazite rims; this relationship was interpreted to record progressive monazite growth or 544 

recrystallization during low-pressure prograde metamorphism as the abundance of alkali-feldspar (preferentially 545 

incorporates Eu) and then garnet (preferentially incorporates HREE) increased. 546 

 547 

Figure 2. Phase equilibria of (a) average pelite and (b) greywacke used for the partitioning models of this study 548 

(Yakymchuk et al., 2017). 549 

 550 

Figure 3. (A,B) The log10fO2 of the modeled compositions. (C,D) Differences between log10fO2 of the modeled 551 

compositions and the fayalite–magnetite–quartz buffer (FMQ). The shape of the contours is influenced by reactions 552 

among the Fe2+–Fe3+ minerals—ilmenite, magnetite, garnet, and biotite—most notably the rutile-in reaction with 553 

increasing pressure (involving ilmenite breakdown and garnet growth), the magnetite–spinel-in reactions with 554 

decreasing pressure, and the biotite-out reaction with increasing temperature. (E,F) The ratio Eu3+/Eutotal used to 555 

calculate Eu partitioning, which was calculated from fO2, T, and melt composition (Burnham et al., 2015). 556 

 557 

Figure 4. Calculated equilibrium Eu/Eu* anomalies of accessory minerals and garnet in the MC models: (A,B) 558 

zircon, (C,D) monazite, (E,F) apatite, and (G,H) garnet. Accessory mineral and garnet Eu/Eu* are primarily pressure 559 

dependent near the solidus, where the accessory minerals are abundant and the relative availability of Eu3+ and Eu2+ 560 

is controlled by fO2. With increasing temperature, the fraction of each accessory minerals decreases exponentially, 561 

particularly monazite, thereby strongly influencing the distribution of REE, resulting in a stronger temperature 562 

dependence on Eu/Eu*.  563 

 564 

Figure 5. Calculated equilibrium Eu/Eu* of plagioclase and melt in the MC models: (A,B) plagioclase and (C,D) 565 

melt. In contrast to accessory-mineral and garnet Eu/Eu* (Figure 4), feldspar and melt Eu/Eu* are strongly 566 

temperature dependent. 567 

 568 

Figure 6. Values of Eu/Eu* in each phase are controlled by the temperature-dependent solubilities of accessory 569 

minerals and the pressure-dependent Eu3+/Eutotal (Figure 3e,f). MC model results along the hypothetical P–T path 570 

shown in Figure 4c. Weight percent of phases along the path in (A) pelite and (B) greywacke. Percent of the total Eu 571 

in the system hosted by each phase in (C) pelite and (D) greywacke. Values of Eu/Eu* in each phase in (E) pelite 572 

and (F) greywacke.  573 

 574 

Figure 7. For the closed-system, equilibrium MC models, accessory mineral Eu anomalies exhibit strong positive 575 

correlations Eu3+/Eutotal, which is primarily a function of pressure (Figure 4), and with monazite stability. In contrast, 576 

correlations with the wt% feldspar are inconsistent and variable, illustrating that, at equilibrium, wt% feldspar has 577 

minimal influence on accessory mineral Eu/Eu*. (A) Apatite Eu/Eu* as functions of wt% feldspar and temperature 578 

at constant pressure. (B) Apatite Eu/Eu* as functions of wt% feldspar and pressure at constant temperature. (C) 579 

Apatite Eu/Eu* as functions of whole-rock Eu3+/Eutotal and temperature at constant pressure. (D) Apatite Eu/Eu* as 580 

functions of whole-rock Eu3+/Eutotal and pressure at constant temperature. In all panels, apatite Eu/Eu* is shown 581 

because apatite is stable at all modeled P–T conditions; monazite and zircon show similar Eu/Eu* patterns for the P–582 

T conditions at which they are stable (Figure 4). 583 

 584 

Figure 8. The fractionation of Eu by feldspar growth can decrease Eu/Eu* in accessory minerals and garnet. (A) 585 

Weight fractions of plagioclase, alkali-feldspar, and melt in the model metapelite. (B) Weight fractions of 586 

plagioclase, alkali-feldspar, and melt in the model greywacke. (C) Effective whole-rock, garnet, and accessory 587 

mineral Eu/Eu* for the MC pelite model. The large increase in Eu/Eu* at ~810°C is due to alkali-feldspar resorption 588 

during biotite growth. (D) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the MC greywacke 589 

model. Model was ended at 798°C, because the changes in the weight fractions of feldspars are minimal at lower 590 

temperature. (E) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the B94 pelite model. The smaller 591 

overall Eu fractionation relative to the MC model is due to lower feldspar Kd
Eu2+, particularly for the alkali feldspar. 592 

(D) Effective whole-rock, garnet, and accessory mineral Eu/Eu* for the B94 greywacke model. 593 

 594 
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Figure 9. Melt extraction can decrease the effective whole-rock Eu/Eu* and thereby decrease Eu/Eu* of residual 595 

minerals; however, the modeled magnitude of this decrease is strongly dependent on the partitioning data used. (A) 596 

Weight fractions of plagioclase, alkali-feldspar, melt (remaining in the system), and cumulative extracted melt in the 597 

pelite model and (B) in the greywacke model. Whole-rock and mineral Eu/Eu* in the (C) MC pelite model, (D) MC 598 

greywacke model, (E) B94 pelite model, and (F) B94 greywacke model. Relative to the MC models, the B94 models 599 

show larger draw-down in whole-rock Eu/Eu* by melt extraction, because the melt was calculated to have higher 600 

REE concentrations and larger Eu/Eu*. 601 
 602 
Table 1. Mineral:melt Kd used for Sm, Eu, and Gd partitioning modeling. 603 

 604 

        

 Table 1. Mineral:melt Kd used for Sm, Eu, and Gd partitioning modeling   

 model   monazite zircon garnet apatite plagioclase 

 B94 Sm3+ 75289 3.79 0.45 1105 1.45 

   Eu2+ — — 0.01 — 1.25 

   Eu3+ 84934 5.91 1.49 1535 1.72 

   Gd3+ 95815 9.21 4.95 2133 2.05 

 

Modified-

Composite 

Sm3+ 50•10(4373.9/T–

1.0034) 

10(4765.0/T–3.3096) 10(5424.0/T–4.1211) 10(4037.9/T–1.7169) 0.1•Kd
Eu2+ 

   Eu2+ 10(4317.3/T–3.8397) 10(4838.2/T–5.4992) 10(4266.1/T–5.0498) 10(–738.33/T+0.9258) Sun et al. 

(2017) 

 

  Eu3+ 50•10(4317.3/T–

1.0125) 

10(4838.2/T–3.1581) 10(4266.1/T–2.8259) 10(4359.3/T–1.9877) 0.1•Kd
Eu2+ 

 

  Gd3+ 50•10(4254.2/T–

1.0158) 

10(5147.7/T–3.2562) 10(3470.9/T–1.8673) 10(4670.0/T–2.2498) 0.1•Kd
Eu2+ 

 605 
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           60.55   12.8    1.49   5.18    7.52   2.76  1.88     0.85   0.16    6.24   0.6
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