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Abstract
Recent experimental results have shown that the detection of cues in behavioral at-
tention tasks relies on transient increases of acetylcholine (ACh) release in frontal 
cortex and cholinergically driven oscillatory activity in the gamma frequency band 
(Howe et al. Journal of Neuroscience, 2017, 37, 3215). The cue-induced gamma 
rhythmic activity requires stimulation of M1 muscarinic receptors. Using biophysical 
computational modeling, we show that a network of excitatory (E) and inhibitory (I) 
neurons that initially displays asynchronous firing can generate transient gamma os-
cillatory activity in response to simulated brief pulses of ACh. ACh effects are simu-
lated as transient modulation of the conductance of an M-type K+ current which is 
blocked by activation of muscarinic receptors and has significant effects on neuronal 
excitability. The ACh-induced effects on the M current conductance, gKs, change 
network dynamics to promote the emergence of network gamma rhythmicity through 
a Pyramidal-Interneuronal Network Gamma mechanism. Depending on connectivity 
strengths between and among E and I cells, gamma activity decays with the simu-
lated gKs transient modulation or is sustained in the network after the gKs transient 
has completely dissipated. We investigated the sensitivity of the emergent gamma 
activity to synaptic strengths, external noise and simulated levels of gKs modulation. 
To address recent experimental findings that cholinergic signaling is likely spatially 
focused and dynamic, we show that localized gKs modulation can induce transient 
changes of cellular excitability in local subnetworks, subsequently causing popu-
lation-specific gamma oscillations. These results highlight dynamical mechanisms 
underlying localization of ACh-driven responses and suggest that spatially localized, 
cholinergically induced gamma may contribute to selectivity in the processing of 
competing external stimuli, as occurs in attentional tasks.
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1  |   INTRODUCTION

Cholinergic neurons situated in the basal forebrain (BF) 
project to virtually all cortical layers and regions. In con-
trast to traditional descriptions of this projection system as 
“diffusely organized” and involved in the relatively slow 
regulation of cortical activity states, contemporary evidence 
indicates the presence of BF subpopulations of neurons 
with highly topographically organized afferent and effer-
ent projections (Gielow & Zaborszky, 2017; Yuan, Biswal, 
& Zaborszky,  2018; Zaborszky, Buhl, Pobalashingham, 
Bjaalie, & Nadasdy,  2005; Zaborszky et  al.,  2015) and, in 
cortex, of spatially and temporally discrete, fast, phasic or 
“transient” cholinergic signaling (Parikh, Kozak, Martinez, 
& Sarter, 2007). Because cortical cholinergic activity is nec-
essary for attentional performance in rodents and humans 
(Kim, Muller, Bohnen, Sarter, & Lustig, 2019; McGaughy, 
Kaiser, & Sarter, 1996), the role of cholinergic transients has 
been investigated specifically in the context of attentional 
performance. In rats performing a signal detection-based at-
tention task, cholinergic transients were found to be evoked 
by cues that were successfully detected, but not by missed 
cues (Howe et al., 2013). Moreover, optogenetic suppression 
and generation of transients indicated that cholinergic tran-
sients are necessary and sufficient for the detection of cues in 
such contexts (Gritton et al., 2016). Transient cholinergic sig-
naling has been proposed to account for a range of behavioral 
and cognitive functions which traditionally have been associ-
ated with more slowly (over minutes) changing extracellular 
ACh levels (Sarter & Lustig, 2020).

Consistent with the finding that cholinergic transients are 
necessary to force a relatively complex behavioral response, 
the determination of their post-synaptic impact indicated that 
these transients generate high-frequency oscillations in the 
gamma range in frontal cortex and that gamma oscillations 
remain active through the cue-response period. Moreover, 
generation of gamma oscillations requires local, frontal 
stimulation of muscarinic M1 ACh receptors (mAChRs). 
Blocking M1-mediated increases in gamma power was suf-
ficient to reduce cue detection rates (Howe et al., 2017). The 
present study was guided by questions about the potential, 
neuronal network-based mechanisms which allow brief, pha-
sic ACh release events to generate such impactful high-fre-
quency oscillations.

Using biophysical models of networks of excitatory and 
inhibitory neurons, we show that simulated transient ACh 
modulation through mAChRs can induce network gamma 
rhythmicity. As previously shown (Borgers, Epstein, & 
Kopell, 2005) (Tiesinga, Fellous, Jose, & Sejnowski, 2001), 
simulated mAChR effects on membrane potassium currents 
can promote tonic synchronous network oscillatory activity in 
the gamma band through a Pyramidal-Interneuronal Network 
Gamma (PING) mechanism. While these previous results 

suggest that transient ACh modulation should be able to re-
sult in transient gamma-band oscillatory activity, many ques-
tions remain regarding network and modulation conditions 
that support reliable generation and dissolution of transient 
gamma rhythmic activity. In this study, we particularly focus 
on the characteristics of transient ACh modulation and net-
work properties that allow the transient emergence of gamma 
oscillations from background asynchronous, non-rhythmic 
activity. The role of acetylcholine in attentional modulation 
of neural network responses has been previously investigated 
in computational models of diverse brain networks (Borgers 
et al., 2005; Borgers & Kopell, 2008; Deco & Thiele, 2011; 
Hasselmo, Anderson, & Bower, 1992; Tiesinga et al., 2001) 
(see Newman, Gupta, Climer, Monaghan, and Hasselmo 
(2012) and Thiele and Bellgrove (2018) for reviews). Here, we 
concentrate on ACh-induced effects on neuronal excitability 
that generate transient gamma-band rhythmicity that is asso-
ciated with attentional performance. We show that spatially 
localized transient ACh modulation can induce spatially local-
ized transient gamma oscillations which can act as a substrate 
for attentional selectivity in network processing of external 
stimuli. However, we also show that the parametric region in 
which gamma oscillations are readily generated due to ACh 
increase is bistable. This means that reduction of ACh tone 
alone may not lead to its abolition—noise or other desynchro-
nizing agents are needed for prompt gamma dissolution.

2  |   METHODS

2.1  |  Neuron model

All neurons in the network are modeled using a Hodgkin–
Huxley-type model that includes a Na+ current, a delayed 
rectifier K+ current and a leak current. An additional M-type 
slow K+ current is added to simulate modulation by ace-
tylcholine via mAChRs (Krnjevic,  2004; McCormick & 
Prince,  1985; Stiefel, Gutkin, & Sejnowski,  2009). The 
maximum conductance gKs of the M-type K+ current is the 
parameter that represents the amount of ACh modulation. In 
general, gKs is set between 0 and 1.5 mS/cm2 with low gKs 
corresponding to large concentration of ACh. The current 
balance equation for each neuron is

where C = 1μF/cm2. V represents the membrane voltage in 
millivolts, and t is time in milliseconds. gNa, gKd, gKs and 
gL are maximal conductances of the corresponding cur-
rents. In all the cells, gNa = 24 mS/cm2, gKd = 3 mS/cm2, 
and gL = 0.02 mS/cm2. gKs is varied as described below. 
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To show the influence of gKs on neuronal excitability, the 
neuronal input–frequency curve is plotted for various val-
ues of gKs (Figure 1c). The ENa, EK and EL are the reversal 
potentials for sodium, potassium and leak currents, where 
ENa  =  55  mV, EK =  −90  mV, and EL =  −60mV, respec-
tively. Iapp represents the externally applied current to both 
excitatory and inhibitory cells. Isyn models the synaptic 
input current that the cell receives from all other connected 
cells in the network (see below). Inoise represents external 
Poisson noise delivered to each cell (see below). The m∞, 
h, n and z are unitless gating variables of the correspond-
ing current activation, with their evolution given by general 
equation:

where
Heterogeneity in cell dynamics is introduced by varying 

the external driving current Iapp to every excitatory cell (Iapp 
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F I G U R E  1   Schematic diagram of network structure and effects of simulated acetylcholine (ACh) modulation on neuronal input–frequency 
(I–F) curve and phase response curve (PRC). (a) The network consisted of 800 excitatory cells and 200 inhibitory cells with random connectivity 
within and between groups. Excitatory cells received external noisy input. ACh modulation was simulated by brief down-regulation of the K+ 
M current conductance, gKs, applied only to excitatory cells (except in results in Figure 6). (b) In a different network configuration for results 
in Figure 7, excitatory cells are divided into two groups, where only one group (targeted) receives gKs modulation. (c) Current–frequency (I–F) 
curves for the Hodgkin–Huxley-type model neuron containing the K+ M current that is down-regulated by ACh. Different gKs values correspond 
to different ACh levels (see section 2). When gKs is low (high ACh), the neurons are more excitable with higher gain and a Type I profile of the 
I-F curve. Conversely, when gKs is high (low ACh), neuron excitability is lower and I-F curves have Type II profiles. (d) Phase response curves 
(PRCs) for the model neuron at different gKs values. When gKs is low, brief excitatory applied current pulses induce only advances in time of spike 
firing (positive phase shifts) regardless of their timing (Type I PRC). At high gKs values, brief excitatory stimuli result in either advances or delays 
(negative phase shifts) of spike firing depending on their timing (Type II PRC) [Colour figure can be viewed at wileyonlinelibrary.com]
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is different for every cell but kept constant throughout the 
simulation). The amplitude of this external current is chosen 
to make the intrinsic firing rates of excitatory cells for base-
line gKs (0.6 mS/cm2) follow a normal distribution with mean 
frequency of 50 Hz and standard deviation of 5 Hz. Thus, 
based on the neuronal input–frequency curve (Figure  1c), 
Iapp values were chosen between 2.814 and 3.427  μA/cm2. 
For every inhibitory cell, the baseline current is chosen from 
a uniform distribution, with mean near current threshold 
(−0.2 μA/cm2) and standard deviation (0.02 μA/cm2).

2.2  |  Network structure

The E–I network consists of 1,000 neurons, among which 800 
neurons are excitatory and 200 neurons are inhibitory. The 
connectivity between every pair of neurons is randomly as-
signed. Each E cell receives pre-synaptic input from other E 
cells with probability of 5% (unless otherwise specified) and 
from inhibitory cells with probability of 30%. Each I cell re-
ceives pre-synaptic input from all other cells (both excitatory 
and inhibitory cells) with probability of 30%. This connectiv-
ity is based grossly on that experimentally reported (Ascoli & 
Atkeson, 2005; Viriyopase, Memmesheimer, & Gielen, 2016).

In the simulations shown in Figure 7, the excitatory cells 
are divided randomly into two groups with 400 neurons in 
each group. Other connectivity probabilities are kept the 
same except that the probability that two excitatory cells from 
different groups are connected is reduced to 0.5%.

The synaptic current is modeled with a double-exponen-
tial profile:

In the equation, τd is the decay time constant and τr is the 
rise time constant. In the simulations, τd = 3 ms for excitatory 
synapses, τd = 5.5 ms for inhibitory synapses, and τr = 0.2 ms 
for all the synapses. The si are the firing times of the spikes of 
pre-synaptic neurons. V is the membrane voltage of post-syn-
aptic neuron and Esyn is the reversal potential of the synaptic 
current, which is set to be 0 mV for excitatory synapses and 
−75  mV for inhibitory synapses; wsyn is the maximal con-
ductance of the synaptic current or synaptic strength. The 
default values are wee = 0.004 mS/cm2, wii = 0.016 mS/cm2, 
wei = 0.002 mS/cm2 and wie = 0.003 mS/cm2. In Figure 3 and 
Figure 6, synaptic conductances were varied as indicated.
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F I G U R E  2   Emergence of gamma oscillations mediated by a simulated ACh transient. (a) Transient change in maximum conductance of 
K+ M current, gKs, simulating ACh transient. (b) Power spectrogram computed from simulated local field potential (see section 2). Starting at 
2,000 ms, the gKs transient led to increasing power in the gamma band. At around 3,000 ms, the gamma power dropped back to the default level 
with the recovery of gKs. (c) Raster plot showing the time range at which the network began to change from asynchronous firing to synchronous 
gamma oscillations with onset of gKs transient (excitatory cells in red and inhibitory cells in blue). (d) Raster plot showing the time range during 
the recovery of the gKs transient when synchronous gamma oscillations gradually dissipated and the network returned to the asynchronized state 
[Colour figure can be viewed at wileyonlinelibrary.com]
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2.3  |  Transient ACh pulse

Acetylcholine modulation was modeled as a brief reduction 
in the maximal conductance of the M current, gKs, simulating 
the post-synaptic effect of ACh mediated by mAChRs. The 
baseline gKs value, gKs, in the excitatory cells and inhibitory 
cells was set to be 0.6 and 0 mS/cm2, respectively (except for 
simulations in Figure 4 and Figure 6c–f). The gKs transient 
was modeled by gKs−ΔgKs (t), where −∆gKs(t) is a piece-
wise function with an initial linear decrease and an exponen-
tial recovery (see Figure 2a):

where tp is the time that the transient starts and was set to 
2,000  ms in all simulations. The decay time td was set to 
100 ms, so the maximum gKs reduction occurred at 2,100 ms. 
cr is the recovery constant which reflects the time of gKs recov-
ery and was set to cr = 3,600 ms. With this value, gKs recovers 
to very close to gKs after approximately 1,500 ms. ∆gKs rep-
resents the amplitude of the gKs transient, and its default set-
ting is 0.6 mS/cm2 (except in Figure 4). In Figures 2–5 and 7, 
the gKs transient is applied only to excitatory cells. In Figure 4, 
gKs and ∆gKs are varied to study their influence on emergent 
gamma oscillations. In Figure 6c,d, the default gKs transient is 
applied to only inhibitory cells, and in Figure 6e,f, it is applied 
to all cells.

2.4  |  Poisson noise

In Figures 2, 5 and 7, in addition to heterogeneity introduced 
by different external driving current Iapp, random external 
noisy input in the form of Poisson-distributed, brief, depolar-
izing “kick” stimuli was applied to both the excitatory cells 
and inhibitory cells to simulate background noise outside the 
network from other parts of the brain. In each simulation, the 
amplitude and Poisson rate of kicks to all cells are fixed at the 
same values. Each kick was a square applied current pulse of 
duration 1 ms.

2.5  |  Simulation

The codes implementing the simulations were written in 
MATLAB. All simulations were run for 4,000  ms. Initial 
conditions for membrane voltages and gating variables were 
set randomly. Initial conditions for V ranged between −62 
and −22 mV; initial conditions for n, h and z ranged between 
0.2 and 0.8, 0.2 and 0.8, and 0.15 and 0.25, respectively. The 

ordinary differential equation system is solved by fourth-or-
der Runge–Kutta method. Results shown in Figures 3–6 were 
averaged over five simulations.

In sample raster plots in Figures 2, 3 and 7, red represents 
excitatory cells with indices from 1 to 800 (red and green 
in Figure 7) and blue represents inhibitory cells with indices 
from 801 to 1,000. The excitatory cells are sorted so that the 
cells with the highest driving current Iapp are assigned the 
lowest index, while the cells with lowest driving current are 
assigned the highest index. The two groups of excitatory cells 
are sorted separately in Figure 7.

2.6  |  Measures

Synchrony measure is used to quantify how well the cells are 
synchronized in the network by measuring the degree of 
spike coincidence (Golomb & Rinzel,  1993, 1994). Spike 
trains for each cell are first convolved with a Gaussian func-
tion to form a simulated spike trace, Vi (t). The Gaussian is in 
the form g (t)= e−((t−t0)2

∕1.6) where t0 is the spike time. The 
averaged spike trace over all cells V(t) is defined as 

V (t)=
1

N

N
∑

i=1

Vi (t) where N is number of the cells. The vari-

ance of individual spike trace σi and the variance of the aver-
age spike trace σ are defined as

where <> is the time average over the interval during which 
synchrony is measured. The synchrony measure is defined as

Therefore, S = 0 indicates complete asynchrony and S = 1 
indicates complete synchrony.

In the figures, synchrony measures are calculated in dif-
ferent intervals relative to the simulated ACh pulse. As the 
major part of the pulse is contained in the time interval from 
2,050 to 2,550 ms, synchrony measure is calculated over this 
interval to describe network activity during the pulse. Spikes 
from 1,500 to 2,000 ms and spikes from 3,500 to 4,000 ms 
are used to calculate the synchrony measure before the pulse 
and after the pulse, respectively.

To determine duration of synchrony in Figure 5, the syn-
chrony measure of inhibitory cells from 2,000 to 4,000 ms 
was calculated in 20 time windows of length 100 ms. Time 
windows with synchrony measure >0.7 were considered syn-
chronized. The threshold of S = 0.7 for inhibitory cells was 
chosen from observations of raster plots.

ΔgKs (t)=

⎧

⎪

⎨

⎪

⎩

0 ift≤ tp

ΔgKs ⋅
t−tp

td
iftp < t≤ tp+ td

ΔgKs ⋅e
−

t−tp−td

cr ift> tp+ td

�i =

�

Vi (t)
2
�

−⟨Vi (t)⟩
2

�=

�

V (t)2
�

−⟨V (t)⟩
2

S=
�

1

N

∑N

i=1
�i (t)

.



3550  |      LU et al.



      |  3551LU et al.

The Fourier transform was used to compute the change 
of power in each frequency band over time. To compute the 
power spectrogram, simulated spike traces, obtained by con-
volving spike trains of each cell with the Gaussian function 
above, were summed across all excitatory cells to simulate 
a local field potential (LFP). The Fourier transform was ap-
plied to the simulated LFP in sliding time windows to ob-
tain the power spectrum over time. The window width was 
500 ms with a sliding step size of 10 ms.

In Figure  7, average firing frequency is calculated in a 
sliding time window to show frequency changes over time. 
To compute, we define Nk as the number of times that cell k 
fires in a time window of length T = 500 ms and then com-
pute the average firing frequency in the time window as

The summation is over the groups of ACh-modulated and 
non-ACh-modulated excitatory cells and inhibitory cells sep-
arately where j is the number of cells in each group. Average 
firing frequency is computed in each 500-ms time window 
with a 10-ms sliding step size.

3  |   RESULTS

3.1  |  ACh modulation of neural response 
properties

Acetylcholine modulates intrinsic membrane excitability 
of a neuron through muscarinic and nicotinic receptors (m/
nAChRs). Guided by neurophysiological evidence, here 
we concentrated on the effects of ACh modulation through 
mAChRs and their action on the slow, hyperpolarizing 
voltage-gated K+ M current. We modeled neuronal dynam-
ics using a biophysical cell model based on the Hodgkin–
Huxley formalism that incorporates the M current in addition 
to spike-generating Na+ and K+ ionic currents. The model, 
originally developed by Stiefel et al. (2009), is based on ex-
perimental recordings of ACh modulation of visual cortex 

principal cells (Stiefel, Gutkin, & Sejnowski, 2008) (see sec-
tion 2 for details). We varied the maximal conductance (gKs) 
of the M current in excitatory cells as a proxy for the local 
ACh level, with gKs = 0 mS/cm2 corresponding to high ACh 
level (down-regulation of the M current) and gKs = 1.5 mS/
cm2 corresponding to lowest ACh level (up-regulation of the 
M current). Here, we specifically investigated the emergence 
of transient gamma-band rhythmic network activity due to 
transient increase in ACh level, simulated by transient de-
crease in gKs, mimicking phasic ACh release measured dur-
ing cued response attentional tasks (Howe et al., 2017).

In this neural model, changes in gKs conductance values 
result in changes to the neuronal input–frequency (I–f) de-
pendence. Namely, with decreasing gKs, the neuronal input–
frequency (I–f) curve changes from a discontinuous profile 
(Type II) to a continuous profile (Type I) (Figure 1c) and, at 
the same time, the neural membrane becomes significantly 
more excitable, with lower gKs significantly elevating the 
frequency response of the cell to the same level of input. 
Additionally, decreasing gKs induces a simultaneous change 
in the neuronal phase response curve (PRC; Figure  1d) 
(Stiefel et al., 2008). The PRC profile changes from Type II 
for which either delays or advances in spike timing can be 
induced by a brief excitatory stimulus depending on its tim-
ing, to Type I for which spike timing is only advanced by the 
stimulus. Previous analytical and numerical work has shown 
that neurons with Type II PRCs are more prone to synchro-
nize compared to cells with Type I PRCs (Bogaard, Parent, 
Zochowski, & Booth, 2009; Ermentrout, 1996; Fink, Booth, 
& Zochowski, 2011). We initially focused on gKs modulation 
of excitatory cell responses (gKs set to 0 mS/cm2 in inhibitory 
cells), but also considered gKs modulation of both cell types.

Model networks were composed of 800 excitatory (E) 
and 200 inhibitory (I) neurons with random connectivity 
among and between each cell type (Figure 1a, see section 
2 for details). Cells additionally received noisy external 
synaptic input. First, we investigated effects of global tran-
sient gKs modulation on the generation of transient gamma 
rhythmic synchronous dynamics in the network; then, we 
considered spatially localized, transient gKs modulation in a 
network consisting of two subpopulations of E cells where 

f =

∑j

k=1
Nk

jT
.

F I G U R E  3   Sensitivity of emergent gamma to network connectivity strength between and among excitatory and inhibitory cells. (a–c) 
Synchrony measure (color, see section 2) of excitatory cells (top) and inhibitory cells (bottom) computed in 500-ms time intervals before (left 
panels), during (middle panels) and after (right panels) the simulated ACh transient, averaged over five simulations. Maximum conductances of 
synaptic currents among the inhibitory cells (I–I synapses, wii) and among the excitatory cells (E–E synapses, wee = 0.25wii) are varied on the 
x-axis, and maximum conductances of synaptic currents from the inhibitory cells to the excitatory cells (I–E synapses, wie) are varied on the y-axis 
(conductance of E–I synapses was fixed at wei = 0.002 mS/cm2). (a) Before the gKs transient (1,500–2,000 ms), networks exhibited synchronous or 
asynchronous firing depending on the connectivity strengths. (b) During the gKs transient (2,050–2,550 ms), synchronous gamma oscillations were 
exhibited by networks in a wider range of connectivity strengths. (c) After the gKs transient recovered (3,500–4,000 ms), gamma oscillations were 
maintained in networks in some synaptic strength parameter regimes (compare with (a)), or network activity returned to the pre-stimulus state. (d–f) 
Raster plots showing network firing for synaptic strength values indicated in (a–c) during time intervals before (left), during (middle) and after 
(right) the gKs transient (excitatory cells in red and inhibitory cells in blue). The parameter values used in (e) are the same as in Figure 2. External 
random noise was not included in these simulations [Colour figure can be viewed at wileyonlinelibrary.com]
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only one was modulated (Figure 1b), and investigated spa-
tially localized generation of transient gamma oscillatory 
dynamics.

3.2  |  Phasic ACh release promotes emergent 
gamma oscillations

In our E–I network model, transient decrease in gKs changed 
the network dynamical regime from asynchronous activ-
ity to gamma-band oscillations. Interestingly, the emergent 
gamma could be maintained as a stable state in the network 
after the phasic gKs had recovered, or could be destabilized 
through external noise, causing the network to revert back 
to the asynchronous state when the gKs transient dissipated. 
Figure 2 depicts an example of transient emergent gamma in 
response to phasic gKs modulation. Here, the E cells were as-
sumed to contain muscarinic receptors that induce a transient 
decrease in gKs (Figure 2a).

To detect emergence of rhythmic network activity, we 
computed the Fourier transform of the simulated LFP (see 
section 2) to show characteristics of network activity in the 

frequency domain (Figure  2b). Initially, cells fired asyn-
chronously with no rhythmic activity apparent across the 
network. Keeping all other network parameters the same, 
as gKs decreased, firing rates of all the cells in the net-
work rapidly increased due to changes in E cell-intrinsic 
excitability (Figure 1c). During the gKs decrease, increased 
power at very low frequencies was observed due to the 
sharp rise in overall network activity and the simulated 
LFP. The increased activity from excitatory cells led to the 
emergence of gamma frequency band synchrony through 
the so-called PING process (Borgers & Kopell,  2005; 
Whittington, Traub, Kopell, Ermentrout, & Buhl,  2000; 
Tiesinga & Sejnowski, 2009). In this process, the increased 
excitation from E cells leads to increased firing and syn-
chronization of I cells. This, in turn, leads to silencing 
of the E cells, which when released from inhibition fire 
synchronously, subsequently driving another synchronous 
burst of inhibition. Here, gamma-band synchrony emerged 
as I cell synchrony consolidated during the decrease 
in gKs (Figure  2c) and gamma decayed as gKs recovered 
(Figure 2d). Below, we analyze the reliability of the emer-
gence and maintenance of this gamma-band synchrony as 

F I G U R E  4   Sensitivity of emergent gamma on magnitude of simulated ACh effects. Magnitudes of the maximum conductance of the K+ 
M current before and after the simulated ACh transient, baseline g

Ks
 (y-axes), and of the maximum change in gKs during the ACh transient, ∆gKs 

(x-axes), were varied. Synchrony measures (color) for excitatory cells (top) and inhibitory cells (bottom) computed in 500-ms time intervals before 
the ACh transient (a) and during the ACh transient (b). (c) Differences in synchrony measures computed before and during the transient highlight 
parameter regimes in which gamma synchrony is most affected. Gamma synchrony was reliably induced for moderate values of both baseline g

Ks
 

and ∆gKs (from around 0.4 to 0.8 mS/cm2) [Colour figure can be viewed at wileyonlinelibrary.com]
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important properties are varied, such as synaptic strengths, 
the presence of external noise and the efficacy of simu-
lated ACh on the M current. This analysis reveals that in-
ducing gamma rhythms transiently from a background of 
asynchronous activity depends sensitively on network and 
modulation characteristics.

3.3  |  Sensitivity of emergent gamma to 
network connectivity

We next investigated to what extent emergence of ACh 
mediated gamma-band oscillations depended on the 
properties of network connectivity. To isolate network 
connectivity effects, the external noisy input to cells was 
not included. We varied the magnitude of the synaptic 
conductances from I to E cells (I–E synapses, wie, y-axis, 
Figure 3a–c) and within the excitatory (E–E connectivity, 
wee) and inhibitory (I–I connectivity, wii) subnetworks (x-
axis, Figure  3a–c) keeping E–I synaptic strength fixed 
(wei fixed at 0.002  mS/cm2). The resultant network dy-
namics, quantified by the synchrony measure (color in 
Figure  3a–c, see section 2), within this connectivity 
parameter space could be divided roughly into three re-
gimes (Figure 3d–f).

With low I–E connectivity, the E–I network did not fully 
synchronize in response to the gKs transient (Figure 3d, bot-
tom region, wie < 0.002 mS/cm2). Although excitability of 
the excitatory cells rose during the gKs decrease and therefore 
inhibitory cells received more input from excitatory cells and 
became more synchronized, the low I–E synaptic conduc-
tance, however, stopped the inhibitory cells from synchro-
nizing the excitatory cells to form PING rhythmicity across 
the network. Thus, the excitatory cells fire asynchronously 
before, during and after the gKs pulse.

For moderate values of I–E connectivity (wie between 
0.002 and 0.005 mS/cm2), the network fired asynchronously 
before the gKs transient and synchronized to form gamma os-
cillations during the transient (Figure 3e). Synaptic strength 
values for the results shown in Figure 2 are in this regime. 
Interestingly, for some synaptic strength values within this 
parameter range, gamma synchrony could be maintained 
even after the gKs transient ended (Figure 3e, right panel), in-
dicating that the network stably generates both asynchronous 
firing and gamma rhythmicity, and that the gKs pulse switches 
the network between these two regimes. Experimentally, 
ACh-induced gamma-band synchrony has been observed 
only transiently, indicating lack of stability of the synchro-
nous gamma regime. We show below that maintained gamma 
synchrony after dissipation of the gKs transient can be easily 
destabilized by external noisy input to the network.

Finally, for high I–E connectivity (wie > 0.005 mS/cm2), 
the network remains synchronized before, during and after 
the gKs transient, with increased E cell excitability during the 
pulse acting to increase the frequency of synchronous firing 
(Figure 3f).

We note that in the low wie regime, the I cells were gen-
erally more synchronized than the E cells. This I cell syn-
chrony is similar to Interneuron Network Gamma (ING) 
synchrony as it is generated by the recurrent synaptic cou-
pling among the I cells (Tiesinga & Sejnowski,  2009; 
Whittington et al., 2000). In some definitions of ING, the I 
cells should be intrinsically spiking; here, not all I cells spike 
without input, but the mean external driving current to I cells 
is close to their current firing threshold and excitation from 
the E cells promotes their firing. With this characterization 
of low wie regime dynamics, the moderate wie regime exhib-
its bistability between ING and PING dynamics where either 
state is observed, and the high wie regime displays only PING 
dynamics. In separate simulations, we explicitly tested bista-
bility of ING and PING solutions in the moderate wie regime 
and verified that either solution is maintained depending on 
the initial conditions of the network state (results not shown).

These results show that inducing transient gamma rhyth-
micity requires network connectivity characteristics near the 
regime supporting both ING and PING synchrony. This may 
restrict properties of the asynchronous network states from 
which transient ACh can generate gamma oscillations.

F I G U R E  5   Duration of gamma synchrony in the presence of 
external random noise. External noise can drive the synchronized 
network back to asynchrony as the gKs transient recovers. Color 
shows the average time duration (in ms) of gamma synchrony 
induced by the gKs transient for different amplitudes (y-axis) and 
rates (x-axis) of brief, depolarizing kick stimuli delivered as a random 
Poisson process to each neuron. When the amplitude and rate were 
small, synchronous gamma remained stable (duration >1,500 ms) 
after the gKs transient recovered. When the amplitude and/or rate 
were large, the noise prohibited the network from displaying gamma 
synchrony even during the gKs pulse. Results are averaged over 
five simulation runs. Noise parameters for simulations displayed 
in Figure 2 are indicated by “X.” [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.4  |  Sensitivity of emergent gamma to 
simulated ACh level

We next investigated how the magnitude of simulated effects 
of ACh on the maximal conductance of the M current, gKs, 
affected the emergence of gamma rhythmicity (Figure 4). To 

model the gKs pulse, gKs was set initially to a baseline value, 
gKs, representing the absence or a low ACh level. During 
the pulse, gKs was dropped to gKs−ΔgKs as the ACh tran-
sient reached its peak. Thus, we can relate ∆gKs to the peak 
magnitude of the post-synaptic effects of the ACh pulse. 
Afterward, gKs recovered exponentially back to the base-
line level, following the time course depicted in Figure 2a. 

F I G U R E  6   Induction of gamma synchrony by simulated ACh modulation to only inhibitory cells or to both excitatory and inhibitory cells. 
Differences in synchrony measures (color) between before and during (a, c, e) the gKs transient, and between before and after (b, d, f) the gKs 
transient for excitatory cells (top panels) and inhibitory cells (bottom panels) when the transient was applied to only excitatory cells (a, b), to only 
inhibitory cells (c, d) or to both excitatory and inhibitory cells (e, f). Panel (a) ([b]) is the difference between Figure 3 panels (b) and (a) ([c] and 
[a]). Simulated ACh modulation to only inhibitory cells or to both excitatory and inhibitory cells did not effectively induce gamma synchrony, and 
network activity returned to its initial state after the gKs transient recovered. External random noise was not included in these simulations [Colour 
figure can be viewed at wileyonlinelibrary.com]
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To measure the efficacy of the gKs pulse to induce gamma, 
we measure network synchrony before the pulse (when 
gKs =gKs, Figure 4a), during the gKs transient (Figure 4b), 
and subsequently calculate the difference (Figure 4c) for E 
cells (Figure 4, top panels) and I cells (Figure 4, bottom pan-
els) separately.

Results in the parameter space spanned by gKs (y-axis) 
and ∆gKs (x-axis) could be divided into three regimes based 
on observed dynamics of the network (only values above the 
diagonal were considered to ensure that the lowest gKs value 
during the pulse, gKs−ΔgKs, was not negative). In the lower 
left corner, baseline gKs is low, and ∆gKs is small amplitude 

F I G U R E  7   Spatially localized simulated ACh modulation generates local gamma. (a) Raster plot from the network structure illustrated in 
Figure 1b when the gKs transient is only applied to group 1 excitatory cells (red, index: 1–400). During the transient, the activity of group 2 excitatory 
cells (green, index: 410–800) is slightly inhibited, while the group 1 excitatory cells (red) and inhibitory cells (blue, index: 801–1,000) show higher 
activity and synchronization. (b, c) Power spectrogram of the simulated local field potential of group 1 excitatory cells and group 2 excitatory cells, 
respectively. The power of gamma oscillation for group 1 cells is stronger than group 2 cells during the gKs transient. Change of average firing 
frequency over time ([c], see section 2) and change of synchrony measure over time ([d], see section 2) showed that the targeted excitatory cells 
(group 1, red) and inhibitory cells (blue) increased their firing and synchrony during gKs modulation, while non-targeted excitatory cells (green) 
showed decreased firing and only very weak synchrony during the gKs transient [Colour figure can be viewed at wileyonlinelibrary.com]
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(due to the gKs range constraints). Here, even before the gKs 
pulse was applied, the excitatory cells displayed high excit-
ability driving emergence of PING synchrony. During the 
ACh pulse, the dynamics did not change significantly, result-
ing in a difference in synchrony near zero (Figure 4c).

In the intermediate baseline regime (for gKs between 0.4 
and 0.8  mS/cm2), the network exhibited asynchronous dy-
namics before the gKs pulse. The left-hand side of this re-
gime corresponds to low magnitude of ACh effects (∆gKs 
small). Here, the increase in excitability of the excitatory 
cells associated with the gKs pulse was not sufficient to drive 
PING synchrony, and the network remained in an asynchro-
nous firing regime during the gKs pulse. However, for larger 
∆gKs values (center right part of this regime), increased E 
cell excitability mediated the formation of gamma synchrony 
during the gKs pulse (Figure 4b). This results in a significant 
increase in synchrony difference (Figure 4c).

In the third regime for high baseline gKs (gKs >0.8), the 
network exhibited strong synchrony before the gKs pulse. This 
synchrony was, however, not solely mediated by the PING 
mechanism, as the E cell excitability that drives PING was 
significantly decreased in this regime. Instead, synchrony 
was additionally supported by changes in neuronal response 
properties obtained with high gKs values, specifically changes 
in the PRC. As shown in Figure 1d, for large gKs values, the 
profile of the PRC changes from Type I to Type II facilitating 
promotion of synchrony. Separate simulations of the network 
in this regime verify that when synaptic connections from the 
I cell to the E cells were blocked (wie = 0 mS/cm2), synchrony 
was observed although the synchrony measure was higher 
with I to E synapses intact due to the PING mechanism (re-
sults not shown). Here, in this parameter regime, large ∆gKs 
decreased M current conductance and subsequently shifted 
the PRC toward a Type I profile resulting in weakened syn-
chrony. Hence, within this regime, the effect of the gKs pulse 
is essentially reversed with less synchrony being observed 
during the pulse as compared to before its presentation.

Thus, the emergence of transient gamma rhythmicity from 
a background of asynchronous activity requires sufficient 
magnitude of the mAChR-mediated post-synaptic effects and 
tight control of those effects in the absence of ACh.

3.5  |  Effects of external noise on duration of 
emergent gamma

Next, we investigated how external noise affects stability of 
the emerging synchronous gamma oscillations during the gKs 
transient. This was particularly important as we observed that 
for noiseless network simulations, gamma oscillations could 
be maintained after the gKs transient subsided. Such a stability 
in gamma-band oscillations is not observed experimentally. 
Here, external noise was simulated by brief, depolarizing 

“kick” stimuli arriving to E and I cells at random times, gov-
erned by a Poisson process (see section 2). We measured the 
duration of synchronous gamma oscillations after the onset 
of the gKs transient as a function of the amplitude and aver-
age frequency of the kick stimuli (Figure  5). As expected, 
stronger and/or more frequent kick stimuli led to shorter du-
ration of synchronous gamma (Figure 5). When both the rate 
and amplitude of the noisy kicks were small (Figure 5; bot-
tom left corner), synchronous gamma oscillations remained 
stable indefinitely after the gKs transient. On the other hand, 
when rate and amplitude were both large (Figure 5; top right 
corner), the network did not achieve a synchronized state 
even at the minimum of the gKs pulse. In the intermediate 
regime, as the rate and amplitude of kicks increased, the time 
duration of the synchronous state decreased; moreover, we 
found that, in this regime, the duration of gamma oscillations 
rarely exceeded the duration of the gKs pulse. In summary, 
excessive noisy conditions in the network inhibit the emer-
gence of gamma rhythmicity and its duration.

3.6  |  Only ACh modulation of excitatory 
cells promotes strong emergent gamma

In the simulations reported above, simulated ACh effects 
on the M current occurred only in the E cells. However, it is 
known that there are inhibitory interneuron types that have mus-
carinic receptors (Disney & Aoki, 2008). Thus, we investigated 
whether incorporating ACh modulation of the M current in I 
cells, instead of E cells, or in both E and I cells could produce 
synchronous gamma oscillations (Figure 6). The figure displays 
the differences in network synchrony measured in the E cells 
(top panels) and in the I cells (bottom panels) between before 
and during the gKs transient (left panels), and between before 
and after the gKs transient (right panels). As the network connec-
tivity regimes where gamma synchrony can occur in these cases 
may vary, we considered the full ranges of network synaptic 
strengths where E cell gKs modulation had the strongest effects 
(as in Figure 3; for example, Figure 6a displays the difference 
of Figure 3b and Figure 3a). We observed that gKs modulation 
of the E cells had the most pronounced effects for the transition 
to gamma-band synchrony (Figure 6a,b), whereas gKs modula-
tion to only the I cells (Figure 6c,d) or to both E and I cells 
(Figure 6e,f) induced only slight changes in network synchrony.

When only I cells were modulated (Figure 6c,d), the gKs tran-
sient caused increases in synchrony only for network connectiv-
ity parameters in the regime where E cells showed synchronous 
firing prior to the gKs transient (see Figure  3a). However, for 
high wii values (lower right corner), synchrony of I cells dropped 
during the gKs pulse, due to increased excitability leading to 
increased inhibition among them. With almost all connectivity 
parameters, network dynamics returned to their initial state after 
the gKs pulse even without the presence of external noise.
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When gKs modulation was applied to both E and I cells 
simultaneously (Figure 6e,f), we observed increases in gam-
ma-band synchrony only with the combination of small I–E 
connectivity and relatively small intra-connectivity. But again 
networks returned to their initial state after the gKs transient.

Hence, emergence of gamma rhythmicity depended 
strongly on mAChR-mediated effects primarily occurring 
in excitatory cells. Simulated ACh modulation of only the I 
cells resulted in increases in gamma synchrony in parameter 
regimes exhibiting synchrony before the modulation, similar 
to previously reported effects of attentional modulation of I 
cells (Buia & Tiesinga, 2006).

3.7  |  Spatially localized ACh modulation 
induces spatially localized gamma

Finally, as recent experimental results indicate that cholinergic 
signaling is spatially focused rather than broadly distributed 
across networks (Sarter & Lustig, 2020), we investigated effects 
of spatially localized gKs modulation on generation of spatially 
localized gamma oscillations. Here, E cells are divided into two 
groups (Figure 1b)—only the targeted group (red) received gKs 
modulation; in the non-targeted group (green), gKs remained at 
its baseline level throughout the simulation (Figure 7). As the 
transient was applied to the targeted excitatory group, its firing 
rate, as observed earlier, significantly increased (Figure 7a,d). 
This increased excitatory drive increased I cell firing and 
eventually caused them to synchronize. All E cells, includ-
ing the non-targeted group, received inhibitory signaling. As 
a consequence, firing frequency in the non-targeted group 
decreased (Figure  7a,d). As I cell synchrony consolidated, 
PING-mediated gamma-band oscillations emerged in both E 
cell groups (Figure 7b,c,e); however, power in the gamma fre-
quency band was significantly stronger in the targeted group 
than in the non-targeted group. Gamma oscillations were weak 
in the non-targeted group due to their lower excitability that 
caused longer recovery times from the synchronous inhibitory 
input. The increased excitability of the E cells in the targeted 
group allowed them to recover faster and generate another burst 
of excitation to drive the next inhibitory burst before the non-
targeted E cells could fully recover. Hence, the targeted group 
displayed both significant enhancement of firing frequency and 
power of gamma-band synchrony over the non-targeted group. 
This spatial localization of gamma-band oscillations possibly 
provides for enhanced firing pattern readout from localized en-
sembles of cells within a network.

4  |   DISCUSSION

Motivated by recent evidence for fast, phasic and spatially lo-
calized ACh signaling in cortical networks and its generation 

of transient gamma rhythmicity, we investigated its underly-
ing neuronal network-based mechanisms using biophysical 
computational modeling of E–I networks. Post-synaptic ACh 
effects were simulated by the blockade of the muscarinic 
M-type K+ conductance gKs in excitatory cells based on 
experimental evidence showing the reliance on muscarinic 
receptors for the generation of gamma rhythmicity (Howe 
et al., 2017). Our results show that simulated ACh transients, 
causing increases in E cell excitability, induced gamma-band 
rhythmic firing through a PING mechanism, as might be in-
ferred from previous findings (Borgers et  al.,  2005) (Buia 
& Tiesinga,  2006, 2008; Tiesinga & Buia,  2009; Tiesinga 
et  al.,  2001). However, we show that the reliability of the 
generation of gamma rhythmicity from a background of 
asynchronous activity depends sensitively on important 
network and modulation characteristics. In particular, the 
emergence of gamma oscillations depended on synaptic con-
nection strengths among E cells and among I cells, while 
connection strengths from I to E cells had a larger role in 
causing synchronous gamma oscillations in the absence of 
simulated ACh. The presence of external noise in the network 
affected the generation and duration of gamma oscillations. 
Interestingly, for some network connectivity regimes in the 
absence of external noise, induced gamma oscillations were 
sustained even after the simulated ACh transient completely 
dissipated. This suggests that networks can support bista-
ble states involving PING dynamics and, conversely, that 
external mechanisms might be needed to eliminate gamma 
oscillation after ACh diminishes. Including simulated ACh 
modulation of the I cells, in addition to or instead of the E 
cells, was not as effective in generating gamma oscillations, 
although it affected synchrony as previously shown (Buia & 
Tiesinga, 2006). Lastly, we showed that spatially localized 
simulated ACh modulation induced gamma oscillations in a 
subset of cells in a network without recruiting the entire net-
work in the rhythmic activity, which may contribute to the 
selective processing of stimuli (see below).

In the behavioral cue detection experimental results, the 
observed ACh-induced gamma-band activity occurred over a 
range of frequencies (Howe et al., 2017). Specifically, in re-
sponse to the cue, there was an initial burst of high-frequency 
gamma synchrony (75–90  Hz) followed by longer-lasting 
lower gamma frequency activity (47–57  Hz). Our simula-
tion results show a similar variation of gamma frequency in 
response to the gKs pulse, namely frequencies decrease over 
the range of approximately 90–50 Hz during the pulse (see 
Figure 2b). This frequency decrease follows the time course 
of the gKs transient; however, the frequency values are de-
termined by the PING mechanism. While the experimentally 
observed high- and low-frequency gamma activity may be 
associated with different mechanisms (Howe et  al.,  2017), 
our results suggest that a variation in gamma frequency can 
be the result of variation in the efficacy of ACh modulation.
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In this study, we focused on the modulation of corti-
cal circuitry mediated by muscarinic cholinergic receptors 
(mAChRs). In the motivating experimental study, Howe 
et  al. (2017) concluded that activation of mAChRs was 
the basis for the long-lasting gamma rhythms induced by 
cue-associated ACh transients. Cholinergic effects medi-
ated by nicotinic receptors (nAChRs), on the other hand, 
modulated only initial transient gamma activity observed 
at cue onset. As additional justification, based on effects 
of nAChR activation in neocortical circuits (Colangelo, 
Shichkova, Keller, Markram, & Ramaswamy, 2019), their 
effects may also act to contribute to generation of gamma 
oscillations by the mechanisms described here. Specifically, 
activation of nAChRs pre-synaptically modulates cortical 
pyramidal cell synaptic transmission leading to increases 
in glutamatergic synaptic signaling. Some studies report 
that inhibitory interneurons are the post-synaptic targets 
of the boosted signaling (Couey et  al.,  2007; Obermayer 
et  al.,  2018; Urban-Ciecko, Jouhanneau, Myal, Poulet, & 
Barth,  2018). These effects align with the PING mecha-
nism for gamma oscillations that relies on strong excit-
atory drive to inhibitory cells and with previous modeling 
studies showing promotion of ING and PING synchrony 
with increased excitatory drive to inhibitory cells (Buia 
& Tiesinga,  2006). Activation of nAChRs has also been 
reported to increase excitability of neocortical pyramidal 
cells (Hedrick & Waters, 2015). While this excitability in-
crease may be mediated by changes in intracellular Ca2+ 
activity, rather than by modulation of membrane K+ cur-
rents as occurs with mAChR activation, it would likewise 
promote gamma rhythmicity by a PING mechanism.

A number of other computational modeling studies have 
investigated the role of ACh in attention and processing of 
sensory inputs (Borgers et al., 2005; Borgers & Kopell, 2008; 
Deco & Thiele,  2011; Hasselmo et  al.,  1992; Kanamaru, 
Fujii, & Aihara, 2013; Tiesinga et al., 2001) (see (Newman 
et al., 2012) for review). In particular, these studies address 
how ACh modulates network dynamics to support selectiv-
ity in network responses to competing external stimuli, or 
winner-take-all dynamics, as would occur in selective at-
tention tasks (Thiele & Bellgrove,  2018). The contribution 
of gamma oscillations in selective attention was included in 
Borgers and Kopell (2005) and Borgers and Kopell (2008) 
where, in the presence of competing external excitatory stim-
uli, ACh modulation promoted increased gamma activity in 
the subset of cells receiving stronger stimuli. These studies 
consider diverse effects of ACh modulation on neuron and 
network properties including modulation of mAChR-medi-
ated K+ currents (Borgers & Kopell, 2005) and additional K+ 
and Ca2+ currents (Tiesinga et al., 2001), increases in inhibi-
tory synaptic activity (Borgers & Kopell, 2008), decreases in 
inhibitory synaptic activity (Kanamaru et al., 2013), or some 
combination of these effects (Deco & Thiele, 2011; Hasselmo 

et al., 1992). In related modeling studies of selective attention 
in visual cortical circuits, attention, simulated as changes in 
top-down or sensory-associated excitatory drive to E and/
or I cells, facilitated selective responses and increased gam-
ma-band oscillations and synchrony (Buia & Tiesinga, 2008; 
Tiesinga & Buia, 2009).

Our results point to a slightly different mechanism for 
selectivity in processing of competing external stimuli. 
Namely, spatially localized ACh could bias the network re-
sponse to be dominated by the activity of the affected excit-
atory neurons. Their interaction with local inhibitory neurons 
can induce spatially localized gamma which provides the 
network oscillatory dynamics necessary to promote cognitive 
processing of stimuli introduced in that local area of the net-
work. Multiple lines of evidence support the contributions 
of gamma oscillations as important for cognition (Buzsaki 
& Wang, 2012; Cannon et al., 2014) and integration of sen-
sory input (Singer & Gray, 1995). Thus, we hypothesize that 
spatially localized ACh-induced gamma primes the network 
for successful cognitive processing of spatially coincident 
stimuli. This provides an additional mechanism or dynam-
ical layer for priming an attentionally activated subnetwork 
toward integration of sensory information via gamma-band 
oscillations and biasing the network response to be driven by 
that subpopulation.
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