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1  | INTRODUC TION

Museum collections worldwide house billions of specimens and 
are an invaluable resource for tracking how organisms change 
over time. One of the most influential fields in modern collec-
tions-based research is museum genomics, which is transforming 
the way that museum specimens are used in research by enabling 
studies of long term change in genetic variation. Until recently, 

museum genomics research focused exclusively on genetic se-
quences; however, a growing body of recent work in “paleoepi-
genetics” demonstrates that ancient DNA retains patterns of in 
vivo DNA methylation (Gokhman, Meshorer, & Carmel, 2016; 
Orlando & Cooper, 2014), a well-studied epigenetic mechanism 
associated with transcriptional regulation and modulation of gene 
expression (Jones, 2012). The implications of this discovery are 
compelling; methylation markers in museum specimens could 
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Abstract
Museum genomics has transformed the field of collections-based research, opening 
up a range of new research directions for paleontological specimens as well as natural 
history specimens collected over the past few centuries. Recent work demonstrates 
that it is possible to characterize epigenetic markers such as DNA methylation in 
well preserved ancient tissues. This approach has not yet been tested in tradition-
ally prepared natural history specimens such as dried bones and skins, the most com-
mon specimen types in vertebrate collections. In this study, we developed and tested 
methods to characterize cytosine methylation in dried skulls up to 76 years old. Using 
a combination of ddRAD and bisulphite treatment, we characterized patterns of cy-
tosine methylation in two species of deer mouse (Peromyscus spp.) collected in the 
same region in Michigan in 1940, 2003, and 2013–2016. We successfully estimated 
methylation in specimens of all age groups, although older specimens yielded less 
data and showed greater interindividual variation in data yield than newer specimens. 
Global methylation estimates were reduced in the oldest specimens (76 years old) 
relative to the newest specimens (1–3 years old), which may reflect post-mortem hy-
drolytic deamination. Methylation was reduced in promoter regions relative to gene 
bodies and showed greater bimodality in autosomes relative to female X chromo-
somes, consistent with expectations for methylation in mammalian somatic cells. Our 
work demonstrates the utility of historic specimens for methylation analyses, as with 
genomic analyses; however, studies will need to accommodate the large variance in 
the quantity of data produced by older specimens.
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elucidate patterns of gene expression in past populations, opening 
up a number of new directions for collections-based research. In 
addition, the ability to document how epigenetic effects change 
over time may help clarify the role of epigenetic processes in ad-
aptation and evolution.

Around a dozen paleoepigenetic studies have been published 
to date (Briggs et al., 2010; Gokhman et al., 2014, 2016; Gokhman, 
Malul, & Carmel, 2017; Hanghøj et al., 2016; Llamas et al., 2012; 
Murphy & Benítez-Burraco, 2018; Orlando & Cooper, 2014; 
Pedersen et al., 2014; Seguin-Orlando et al., 2015; Smith et al., 
2014; Smith, Monroe, & Bolnick, 2015). To our knowledge, all previ-
ous studies have focused on ancient DNA from paleontological and 
archaeological specimens rather than “historic DNA” from museum 
specimens collected by naturalists in the modern era, which range 
from decades old to a few centuries old.

Compared to ancient specimens, historic specimens are more 
abundant and broadly available across taxa and can therefore be 
used for a greater diversity of study questions. Though researchers 
now routinely collect tissue vouchers for genomic analyses, tradi-
tional preparations such as dried skins and bones still comprise the 
majority of existing vertebrate collections and represent some of 
the oldest and rarest specimens. Somewhat counterintuitively, such 
historic tissues are not necessarily more amenable to genomic work 
than ancient (i.e., paleo) tissues. Historic specimens have the ad-
vantage of being much “younger” than paleontological specimens, 
reducing the amount of time for post-mortem DNA damage to accu-
mulate. Such specimens are also likely to be more pristine, harbour-
ing less exogenous DNA, and have been stored in (hopefully) optimal 
conditions. However, high quality ancient specimens such as tissues 
obtained from permafrost are often remarkably well preserved and 
may actually be less degraded than historic bones and skins despite 
their age. DNA degradation such as fragmentation and nucleotide 
damage (notably hydrolytic deamination) is the primary challenge 
for ancient and historic DNA studies, making DNA harder to extract 
and amplify, increasing contamination risk, and producing sequence 
errors due to base pair misincorporations (Willerslev & Cooper, 
2005). Nevertheless, the field of museum genomics is thriving, and 

new protocols and analytical methods continue to broaden and 
strengthen collections-based genomic analyses. Llamas et al. (2012) 
remark that the main challenge in ancient methylation protocols is 
extracting amplifiable nuclear DNA, which is now feasible even for 
low quality historic specimens such as bones and dried skins (e.g., 
Irestedt, Ohlson, Zuccon, Källersjö, & Ericson, 2006; Bi et al., 2013).

In this study, we describe DNA methylation in skull specimens 
from deer mice (Peromyscus spp.) sampled from the same region in 
Michigan over three time periods: 1940, 2003, and 2013–2016. We 
generate reduced representation methylomes at base  pair resolu-
tion using a combination of double digest restriction site-associated 
DNA sequencing (ddRAD) and bisulphite treatment. To explore the 
effect of specimen age, we compare data yield and global methyla-
tion estimates in older versus newer specimens. For one of our spe-
cies, we use genome annotations to describe methylation patterns 
in known genomic regions (putative promoters vs. gene bodies and 
autosomes vs. sex chromosomes). We conclude with a discussion of 
the challenges of working with historic samples, in particular loss of 
data, and the sampling designs and epigenetic analyses that can ac-
commodate these challenges. We also highlight how epigenetic data 
sets, including the data set produced in this study, can be used in 
future work to infer gene expression in past populations and charac-
terize change over time in epigenetic effects.

2  | MATERIAL S AND METHODS

2.1 | Specimens and sampling design

We sampled 75 specimens total: 40 white-footed mice 
(Peromyscus leucopus noveboracensis) and 35 woodland deer mice 
(Peromyscus maniculatus gracilis). All specimens were collected from 
the same locality in Menominee county in Michigan over three col-
lecting periods: 1940, 2003, and 2013–2016 (Figure 1). The speci-
mens were traditional museum skull preparations (dried skulls stored 
at room temperature). When possible, we balanced sampling be-
tween the sexes. Skulls collected from 2013–2016 were provided 

F I G U R E  1   Sampled localities in the Upper Peninsula of Michigan. (a) The Great Lakes region of North America. The grey box indicates 
the region shown in (b). (b) Sampled localities for both species. Black squares indicate sampling in 1940, white circles indicate sampling in 
2003, and grey triangles indicate sampling in 2013–2016
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by the Dantzer Laboratory at the University of Michigan and the 
Hoffman Laboratory at Miami University. Older skulls (1940–2003) 
were provided by the University of Michigan Museum of Zoology. 
Detailed specimen information is included in Table S2.

2.2 | Tissue sampling and DNA extraction

All preamplification steps were performed in the ancient DNA fa-
cility in the Genomic Diversity Laboratory at the University of 
Michigan following standard protocols for working with historic 
DNA. Briefly, all work was performed under a hood in a dedicated 
laboratory for processing historic specimens and followed stringent 
anti-contamination protocols, including dedicated reagents, unidi-
rectional flow of equipment and personnel, filtered pipette tips, and 
additional negative controls. We sampled tissue from dried skulls 
stored at room temperature. To minimize damage to the skulls, we 
sampled microturbinates (small nasal bones) by inserting a sterile 
micropick into the nasal cavity to dislodge 5–12 mg of tissue (Taylor 
& Hoffman, 2010; Wisely, Maldonado, & Fleischer, 2004). Prior to 
DNA extraction, the bone fragments were placed into thick-walled 
2 ml microcentrifuge tubes with four 2.4 mm stainless steel beads 
and processed in a FastPrep tissue homogenizer (MP Biomedicals) 
for 1  min at 6.0  m/s. All 2013–2016 specimens and some 2002–
2003 specimens were extracted using a Qiagen DNeasy Blood and 
Tissue Kit with modifications for working with museum specimens. 
To increase yield, the rest of the specimens were extracted using a 
phenol-chloroform protocol. Detailed extraction protocols are de-
scribed in Appendix S1 (also see Iudica, Whitten, & Williams, 2001; 
Mullen & Hoekstra, 2008; Rowe et al., 2011).

2.3 | Library preparation

The samples were prepared for sequencing using a combination of 
double digest restriction site-associated DNA sequencing (ddRAD) 
and bisulphite treatment (see flowchart in Figure S1, Appendix S1; 
also see Trucchi et al., 2016; van Gurp et al., 2016 for similar ap-
proaches). Samples were individually barcoded using a combinatorial 
indexing system (10 unique barcodes on the forward adapter and 
10 unique indices on the reverse PCR primer) and processed into 
multiplexed libraries (see Table S1 for oligonucleotide sequences). 
Specimens were assigned to the libraries based on the amount of 
DNA that could be extracted or specimen availability. We prepared 
three libraries with different starting concentrations of DNA—one 
high DNA concentration library (350 ng/specimen) of younger speci-
mens (0–3 years old [yo]), one medium DNA concentration library 
(150  ng) of younger and older specimens (0–76 yo), and one low 
DNA concentration library (40  ng) of older specimens (13–76 yo). 
Two specimens were sequenced in both the medium and low con-
centration libraries.

We followed the ddRAD protocol outlined in Peterson, Weber, 
Kay, Fisher, and Hoekstra (2012) with added steps for bisulphite 

treatment. Briefly, we digested each sample with the restriction en-
zymes SphI-HF and MluCI for 1 hr at 37°C (New England Biolabs). 
These enzymes were chosen because they are insensitive to DNA 
methylation (and therefore will not show biased template en-
richment) and have previously been used to prepare libraries in 
Peromyscus (Munshi-South, Zolnik, & Harris, 2016). We added 
a spike-in of digested unmethylated lambda phage DNA (Sigma 
Aldrich) to each sample at a concentration of 0.1% of the sample 
concentration; these phage reads were used to directly measure the 
bisulphite conversion rate for each individual sample. We ligated cus-
tom methylated barcoded Illumina adapters (Sigma Aldrich) onto the 
digested products and pooled samples into sublibraries. Size selec-
tion was performed on a Pippin Prep electrophoresis platform (Sage 
Biosciences), with 376–412 bp and 325–425 bp fragments selected 
in the high and lower concentration libraries, respectively (a wider 
range was chosen for the latter to ensure that the samples exceeded 
the recommended minimum mass of DNA for the Pippin Prep cas-
sette). Based on in silico digestion of the genomes, the estimated 
sampling rate for the selected restriction enzymes and size selection 
window was c. 25,000 loci. Bisulphite conversion was performed on 
the size selected sublibraries using a Promega MethylEdge Bisulphite 
Conversion Kit, which converted unmethylated cytosines to uracils, 
and amplified by PCR using KAPA HiFi HotStart Uracil+ MasterMix, 
which replaced uracils with thymines in the amplified product. Due 
to low DNA concentration in the final libraries for sequencing, the 
low concentration and medium concentration libraries were com-
bined and sequenced on the same lane. The high concentration li-
brary was sequenced in one lane for 100 bp paired-end reads and 
the medium/low concentration library in a separate lane for 125 bp 
paired-end reads on an Illumina HiSeq 2500.

2.4 | Illumina data processing

The raw sequence reads were demultiplexed using the process_rad-
tags script of stacks v.1.45 (Catchen, Hohenlohe, Bassham, Amores, 
& Cresko, 2013) with a maximum allowed barcode distance of one 
(--barcode_dist 1). The restriction site check was disabled because 
bisulphite treatment can change the sequence at the restriction site 
(--disable_rad_check). Demultiplexed reads were trimmed for qual-
ity and adapter contamination and cut site sequences were removed 
using trimgalore v.0.6.0 (www.bioin​forma​tics.babra​ham.ac.uk/proje​
cts/trim_galor​e/). Quality and adapter trimming was performed 
using default settings for paired-end reads; by default, trimgalore re-
moves base calls with Phred ≤20, trims adapter sequences from the 
3′ end, and removes sequences trimmed to a total length of 20 bp 
or less. The stringency for adapter trimming was set at the default 
minimum of 1 bp of overlap between the read sequence and adapter 
sequence; this highly stringent setting is recommended for bisul-
phite analyses because adapter contamination can skew methylation 
calling. After quality and adapter trimming, the reads were visually 
assessed for degradation at read ends using M-bias plots (Figure S2). 
Cut site sequences were removed by trimming five positions from 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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the 5′ end of forward reads (--clip_r1 5) and four positions from the 
5′ end of reverse reads (--clip_r2 4). Forward reads were further 
trimmed to remove low quality positions at the read ends by trim-
ming five more positions from the 5′ end and truncating reads to 
118 bp at the 3′ end (--hardtrim5 118).

2.5 | Methylation calling

We focused on CpG methylation; in eukaryotes methylation almost 
always occurs on a cytosine, and in mammals almost exclusively in 
the context of a CpG dinucleotide (Jones & Takai, 2001). Because 
methylation is tissue-specific, it is necessary to standardize the tis-
sue sampled. We chose to sample bone tissue from dried skulls, one 
of the most common specimen types available in vertebrate collec-
tions. Even within a tissue the methylation state of a given CpG po-
sition in the genome may vary between alleles or across cells, so 
methylation at a given position is typically expressed as a percentage 
ranging from fully methylated (methylated in 100% of sequences) to 
fully unmethylated (methylated in 0% of sequences). Within a tis-
sue, most CpGs are either fully methylated or fully unmethylated (al-
though partial methylation is not uncommon), resulting in a bimodal 
distribution across loci (Eckhardt et al., 2006; Rakyan et al., 2004).

Paired-end reads were aligned to the appropriate genome 
(Peromyscus maniculatus NCBI ID: GCA_003704035.1; Peromyscus 
leucopus NCBI ID: GCA_004664715.1) and methylation calling was 
performed using the bisulphite aligner bismark v.0.18.1 (Krueger & 
Andrews, 2011) with bowtie2 v.2.1.0 (Langmead & Salzberg, 2012) 
as the core aligner. bismark was run with default settings except for 
the mismatch criteria (-N 1) and gap penalties (--score_min L,0,-0.4), 
which were adjusted to allow more differences between the aligned 
reads and the reference. An analysis was also run with the default 
settings for both species and returned the same global methylation 
trends, but fewer loci; therefore, the results from the less stringent 
criteria are reported here. We also aligned the reads to the lambda 
phage genome (NCBI ID: NC_001416) using default alignment set-
tings and used these reads to estimate the bisulphite conversion rate 
for each sample.

The methylation calls output by Bismark were further filtered for 
significance based on the sample-specific bisulphite conversion rate 
using functions from methylextract v.1.9 (Barturen, Rueda, Oliver, & 
Hackenberg, 2013). Briefly, we used Bismark to generate a list of all 
CpG positions in our sequences with the number of methylated and 
unmethylated reads. We then estimated the sample-specific bisul-
phite conversion rates from the lambda phage-aligned reads using 
the MethylExtractBSCR function. Significant methylation calls were 
determined using the  MethylExtractBSPvalue function, which as-
signs p-values to each CpG based on binomial tests incorporating the 
raw read counts and the sample-specific bisulphite conversion rate 
and uses the Benjamini-Hochberg step-up procedure to control the 
false discovery rate for multiple testing. We specified an accepted 
error interval of 0.2 (the default value) and an FDR of 0.05. Only sig-
nificant sites were used in downstream analyses. For specimens with 

fewer than 200 phage cytosines analyzed (five of the 75 specimens) 
we used the minimum bisulphite conversion rate from other speci-
mens from the same ddRAD sublibrary, which were pooled together 
in the same bisulphite conversion reaction and should have the same 
conversion rate.

2.6 | Data analysis

To assess data yield in specimens of different ages, we modelled 
the total number of cleaned reads (demultiplexed and trimmed) and 
aligned reads per specimen. We also modelled the number of unique 
CpG positions sequenced per specimen. These data were modelled 
using negative binomial regression implemented in r v.3.5.1 (R Core 
Team, 2018) with the glm.nb function of the package mass v.7.3-50 
(Ripley et al., 2013). We modelled each measure separately with 
fixed effects of species and specimen age. We used Tukey tests 
for all pairwise comparisons, implemented using the glht function 
of the r package multcomp v.1.4-8 (Hothorn et al., 2014). We report 
Bonferroni corrected p-values for all pairwise comparisons.

To characterize percent methylation, we modelled raw read counts 
of methylated and unmethylated cytosines at each locus using bino-
mial generalized linear mixed models with a logit link function and fit 
with Laplace approximation, implemented using the glmer function of 
the r package lme4 v.1.1-20 (Bates, Mächler, Bolker, & Walker, 2014). 
Because cytosine methylation shows high spatial correlation (Eckhardt 
et al., 2006), data from CpGs occurring within 1,000 bp of each other 
in the genome were pooled into a single locus. Sequences with a read 
depth <10X were excluded following conservative guidelines for call-
ing percent methylation (Ziller, Hansen, Meissner, & Aryee, 2015). To 
account for PCR duplication, we also excluded positions with abnor-
mally high coverage, defined as bases in the top 99.9th percentile of 
read depth for each individual (following Hu, Perez-Jvostov, Blondel, 
& Barrett, 2018). Because many loci were sequenced for each indi-
vidual, we included specimen identity as a random intercept term in 
all models. We also included an observation-level random effect in 
all models to account for overdispersion (Harrison, 2014). Dispersion 
parameters are reported for each model below.

To test for abnormalities in methylation calling associated with 
specimen age, we checked for biased methylation estimates toward 
read ends and compared global methylation estimates due to spec-
imen age. To assess methylation estimates across reads, Bismark 
M-bias report files for each specimen were combined and visualized 
using the methylationtuples v.0.3.0 package in r (Hickey, 2015). To 
assess global methylation, we modelled methylation at each locus 
with species and specimen age as fixed effects (dispersion param-
eter = 1.020). For this analysis, all loci including known autosomal 
loci, known X chromosome loci, and unplaced loci were included; 
because the reference scaffold for P. leucopus lacks chromosome as-
signments, sex chromosomes could not be omitted.

Finally, we tested whether methylation estimates in known ge-
nomic regions followed predicted patterns for mammalian meth-
ylation; namely, we compared methylation in putative promoters 



     |  1165RUBI et al.

versus gene bodies and in autosomes versus X chromosomes. These 
analyses were only done for P. maniculatus because the reference 
genome for P. leucopus lacks annotations and chromosome assign-
ments. We first compared methylation estimates in promoters, 
which we predicted would show reduced methylation, and gene 
bodies, which we predicted would show increased methylation. We 
modelled methylation with genomic region and specimen age as 
fixed effects and compared methylation in promoters and gene bod-
ies (dispersion parameter = 1.041). Genomic regions were defined 
by sequence annotations downloaded from Ensembl (the pbairdii_
gene_ensembl data set) following the classification method outlined 
in Pedersen et al. (2014). Briefly, putative promoter regions were 
defined as the region 500 bp upstream and 2,000 bp downstream 
of the transcription start site (TSS) for the first exon in a gene, gene 
bodies were defined as the region from the end of the promoter 
(2,000 bp downstream from the TSS) to the final transcription end 
position in the gene, and all loci not defined as promoters or gene 
bodies were labelled as other. Ensembl annotations were down-
loaded and processed using the r package biomart v.2.36.1 (Kinsella 
et al., 2011). To assess chromosome methylation, we compared 
locus methylation in autosomes, female X chromosomes, and male 
X chromosomes. This analysis was only performed for P. maniculatus 
from the youngest age group (0–3 yo) because older specimens did 
not yield enough loci from the X chromosome. We modelled methyl-
ation at each locus with chromosome type as a fixed effect (disper-
sion parameter = 1.042).

3  | RESULTS

3.1 | Bisulphite conversion efficiency

The bisulphite conversion rates calculated from the lambda phage 
reads indicated almost complete conversion in all samples (sequenc-
ing statistics for each specimen are shown in Table S1). The 0.1% 
phage spike-in produced a sufficient number of cytosines (over 200) 
to estimate conversion efficiency in all but five (out of 75) samples; 
for those samples, the average conversion rate of the sublibrary was 
used for methylation calling as described in Section 2.5. After ad-
justing for low coverage, estimated conversion rates ranged from 
94.2%–100% (mean 98.9%).

3.2 | Data yield

For all three measures of data yield, younger specimens yielded more data 
than older specimens (Table 1). The total number of cleaned read pairs, 
defined as pairs retained after demultiplexing and trimming for quality, 
was greater in 0–3 yo specimens than 13 yo specimens (1.379 ± 0.334; 
z = 4.132, p =  .0001) and 76 yo specimens (2.352 ± 0.359; z = 6.555, 
p < .0001) and was greater in 13 yo specimens than 76 yo specimens 
(0.973 ± 0.358; z = 2.718, p = .020). The number of cleaned read pairs 
did not differ between the two species (z = −1.259, p = .208). The total 

number of aligned read pairs, defined as pairs retained after aligning to 
the reference genome, was also greater in younger specimens; more 
aligned pairs were retained for 0–3 yo specimens than 13 yo specimens 
(2.229 ± 0.405; z = 5.509, p < .0001) and 76 yo specimens (3.295 ± 0.435; 
z = 7.574, p < .0001) and more pairs were retained for 13 yo specimens 
than 76 yo specimens (1.066 ± 0.434; z = 2.457, p = .042). Significantly 
more aligned read pairs were retained for Peromyscus leucopus speci-
mens than Peromyscus maniculatus specimens (0.846 ± 0.346; z = 2.444, 
p <  .015). The total number of CpG positions sequenced was greater 
in 0–3 yo specimens than 13 yo specimens (2.652 ± 0.352; z = 7.534, 
p < .0001) and 76 yo specimens (3.923 ± 0.378; z = 10.368, p < .0001) 
and was greater in 13 yo specimens than 76 yo specimens (1.271 ± 0.377; 
z = 3.369, p = .002) (Figure 2).

3.3 | Global methylation estimates

Plots of percent methylation at each position along reads were visu-
ally assessed for read end biases (Figure S2). Reads were trimmed for 
cut site sequences (first five positions of forward reads and first four 
positions of reverse reads) and forward reads were further trimmed 
for quality by removing 5 bp at the 5′ end and truncating reads at 
118  bp. After trimming, these plots revealed greater variation in 
older versus newer specimens but no systematic methylation biases 
due to read position.

Estimated global methylation rates were significantly lower 
in P.  maniculatus than in P.  leucopus (−0.518  ±  0.085; z  =  −6.076, 
p < .0001; odds ratio (OR) = 0.596); average methylation over all loci 
was 64.3% and 67.1%, respectively. Global methylation estimates 
were significantly lower in the oldest age group (76 yo) than in the 
youngest age group (0–3 yo) (−0.291 ± 0.119; z = −2.437, p = .044; 
OR  =  0.748). No significant differences in methylation estimates 
were observed between 13  yo specimens and 76  yo specimens 
(z = 0.706, p =  .480) or 1–3 yo specimens (z = 1.461, p =  .144). In 
both species in all age groups, locus methylation followed a bimodal 
distribution in which fully methylated (100%) and fully unmethyl-
ated (0%) loci were more common than partially methylated loci 
(Figure 3).

3.4 | Methylation in known genomic regions in 
P. maniculatus

Methylation rates varied between different genomic regions fol-
lowing expected trends for mammalian genomes. Methylation was 
greater in gene bodies relative to promoter regions (1.297 ± 0.039; 
z = 33.38, p < .0001; OR = 3.658; Figure 4). Average locus methyla-
tion was 51.4% in promoter regions and 68.2% in gene body regions. 
Regional methylation did not differ significantly due to specimen age 
(relative to 0–3 yo specimens, 13 yo specimens: z = 0.619, p = .536; 
76 yo: z = 0.998, p = .318).

Chromosome-specific patterns could only be assessed in P. ma-
niculatus from the youngest age group; older specimens did not yield 
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enough loci from the X chromosome to describe the distribution of 
locus methylation. Loci from autosomes and the male X chromosome 
followed a bimodal distribution in percent methylation; fully methyl-
ated (100%) and fully unmethylated (0%) loci were more common than 
partially methylated loci. Loci from the female X chromosome showed 
reduced bimodality, with fewer fully methylated and fully unmeth-
ylated loci and more loci with intermediate methylation (Figure 5). 

Average locus methylation was reduced in female X chromosomes 
relative to autosomes (−0.681 ± 0.082; z = −8.296, p < .0001; odds 
ratio (OR) = 0.506) and was increased in male X chromosomes rel-
ative to autosomes (0.271 ± 0.066; z = 4.128, p < .0001; odds ratio 
(OR) = 1.311). Average methylation over all loci was 64.6% for au-
tosomes, 54.8% for female X chromosomes, and 67.3% for male X 
chromosomes.

4  | DISCUSSION

The cytosine methylation patterns we recovered from dried skull 
specimens, including samples up to 76  years old, demonstrate 
the enormous resource contained in natural history collections. 
However, our data set also highlights the challenges of conducting 
epigenetic studies using historic samples. As in museum genomic 
studies, museum epigenomic studies must account for reduced 
yield and high variability in the data produced by historic specimens. 
These issues are discussed in more detail below.

4.1 | Variability in specimen yield

Older specimens yielded less data than younger specimens, and data 
yield is likely to be the primary challenge for future studies that use 
historic museum specimens. However, our results indicate that some 
older specimens perform well; for example, the two 76 yo specimens 
with the highest extracted DNA concentrations (over 9  ng/μl) se-
quenced a number of CpG positions comparable to specimens in the 
13–14 yo and 0–3 yo age groups (Figure 2). This disparity in speci-
men performance is typical of older historic specimens, which tend 
to show high variation in the quantity of recoverable DNA. Our re-
sults suggest that starting DNA concentration may be a better pre-
dictor of sequencing success than specimen age. In addition, both of 
our high quality 76 yo samples were diluted to standardize concen-
tration during library preparation, suggesting that they could poten-
tially yield more CpGs if prepared at a higher concentration. Other 
options for increasing data yield are discussed below.

TA B L E  1   Sequencing statistics grouped by species and year collected. The number of specimens is indicated in the N spec column

Species Age Year N spec

Read pairs CpG positions

Cleaned Aligned 1X 5X 10X

P. leucopus 76 1940 13 1,053,049 292,168 26,714 6,185 5,463

13 2003 14 3,640,337 958,386 125,380 32,102 28,769

1–3 2013–15 13 4,690,267 2,231,013 498,326 166,270 75,872

P. maniculatus 76 1940 8 318,805 33,443 5,761 1,494 1,312

13 2003 13 1,042,870 181,536 24,871 1,388 1,154

0 2016 14 10,961,871 4,552,427 1,025,598 518,267 277,450

Note: The total number of read pairs sequenced is shown for cleaned reads (pairs retained after demultiplexing and cleaning) and aligned reads (pairs 
retained after alignment to the reference genome). The total number of CpG positions is shown for a minimum read depth of 1X, 5X, and 10X.

F I G U R E  2   Total CpGs sequenced per specimen by specimen 
age (minimum depth = 1X). Orange circles indicate P. leucopus 
and blue triangles indicate P. maniculatus. Inset: Zoomed view of 
specimens 13–76 years old (area shown in the dashed box) [Colour 
figure can be viewed at wileyonlinelibrary.com]
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4.2 | Global methylation estimates

To test for abnormalities in methylation calling in older specimens, we 
assessed our data for methylation biases near read ends and modelled 
global methylation levels as a function of specimen age. In particular, 
we tested for a signal of post-mortem hydrolytic deamination, which 
causes the spontaneous conversion of cytosine into either uracil (in the 
case of unmethylated cytosine) or thymine (in the case of 5-methyl-
cytosine) (Willerslev & Cooper, 2005). In ancient or historic genomics 
studies, this conversion results in erroneous C to T SNP calling; in bi-
sulphite studies, deaminated cytosines could be misinterpreted as un-
methylated cytosines and cause depressed methylation estimates for 
older specimens. Deamination tends to occur at higher rates near read 
ends, however, we did not observe such a signal in our reads in any age 
group (Figure S2). The lack of read end deamination was probably an 
outcome of sampling the genome using double digestion. Deamination 
is more common  near the ends of fragmented DNA where single 
strand overhangs occur, however, these natural breaks are less likely 
to be sequenced when two restriction enzymes are used to cleave the 
DNA at each end. The methylation bias plots also revealed more varia-
tion in methylation estimates at each read position in older specimens. 
This variation probably reflects the lower number of reads averaged at 
each position for older specimens rather than systematic biases within 
the data set.

Our global methylation estimates may indicate an effect of 
deamination in our oldest age group. Methylation in 76 yo spec-
imens was reduced relative to 0–3 yo specimens, though the ef-
fect was marginally significant (p = .044). The odds ratio of 0.748 

indicated that the likelihood of calling a given CpG position as 
methylated is about 25% less likely in 76 yo specimens relative to 
0–3 yo specimens. Assuming that the true methylation level does 
not vary between the mice sampled in 1940 and 2013–2016, our 
results suggest that deamination may bias methylation estimates 
in older historic specimens even in protocols such as ours with 
minimal read end deamination. Future studies should test for a 
potential signal of deamination and take steps to reduce sequenc-
ing of deaminated sites. For example, uracil-DNA-glycosylase and 
endonuclease VIII can be used to remove uracil prior to bisulph-
ite treatment, which will avoid miscalled bases due to deaminated 
unmethylated cytosines (though not methylated cytosines; Briggs 
et al., 2010).

4.3 | Methylation of known genomic regions in 
P. maniculatus

The observed patterns in known genomic regions were consistent 
with expectations for in vivo methylation in mammalian somatic 
cells. A CpG dinucleotide within a gene body was over 3.5 times as 
likely to be methylated as a CpG within a putative promoter region 
(odds ratio = 3.658). This pattern of reduced methylation in pro-
moters and increased methylation in coding regions is consistent 
with expectations for mammalian DNA (Jones, 2012). Locus meth-
ylation in autosomes showed a bimodal distribution with peaks at 
0% and 100%, as is expected for autosomal loci within a single 
cell type (Eckhardt et al., 2006; Rakyan et al., 2004). Loci in the 
male X chromosome showed a similar bimodal distribution, but loci 
in the female X chromosome showed a decreased frequency of 
fully methylated and fully unmethylated loci and an increased fre-
quency of loci with intermediate methylation. Duncan et al. (2018) 
described similar methylation distributions across autosomes, fe-
male X chromosomes, and male X chromosomes in liver cells of Mus 
musculus. The reduced bimodality observed in female X chromo-
somes probably reflects the role of methylation in X-inactivation, a 
mechanism of dosage compensation in female mammals. Loci that 
undergo X-inactivation are often hypermethylated on the inactive 
X and hypomethylated on the active X, resulting in intermediate 
measures of methylation when data from the two chromosomes 
are aggregated (Hellman, 2007).

F I G U R E  4   Violin plot of percent methylation in putative 
promoters, gene bodies, and unknown genomic regions (Other) in 
each age group. Methylation in promoters was reduced relative to 
methylation in gene bodies
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4.4 | Increasing the success of epigenomic studies 
based on historic samples

Probably the greatest challenge to museum epigenomics studies 
will be reduced sequencing success in historic specimens due to low 
DNA concentration or DNA fragmentation. Several steps of our bi-
sulphite ddRAD protocol could be modified or replaced to increase 
yield from historic specimens. For example, the size selection win-
dow could be reduced to compensate for fragmentation in historic 
DNA. Selecting for smaller fragments may increase yield, though 
the gain in loci will be accompanied by a reduction in the number of 
homologous loci sequenced across individuals. Steps could also be 
taken to minimize DNA degradation during the bisulphite treatment; 
for example, shortening the bisulphite incubation time should re-
duce DNA damage, though it may also reduce conversion efficiency 
(Grunau, 2002). Our protocol also cleaved the DNA with two restric-
tion enzymes, which may have contributed to problems in amplifica-
tion and sequencing associated with DNA fragmentation. However, 
double digestion may also minimize the signal of read-end deamina-
tion, as discussed above.

Many genomic library preparation protocols have been described 
for increasing yield from damaged and fragmented DNA. For exam-
ple, libraries can be prepared without digestion or sonication and 
sequenced directly to avoid further fragmentation (Burrell, Disotell, 
& Bergey, 2015), or low input bisulphite methods can be used when 
limited DNA is available (Miura & Ito, 2018). Enrichment methods 
seem to be particularly effective for sampling degraded historic and 
ancient DNA (Jones & Good, 2016; Suchan et al., 2016). Seguin-
Orlando et al. (2015) described methylation-based enrichment 
methods for ancient DNA which may be promising for museum epig-
enomic work, though the authors outline biases in template enrich-
ment that should be considered (e.g., greater enrichment of longer 
fragments and regions with limited deamination). Methylation-based 
enrichment also selectively targets CpG-rich regions, as does tradi-
tional reduced representation bisulphite sequencing; such protocols 
may be more fitting for studies focusing on regulatory regions such 
as CpG islands and promoters. Alternatively, it may be possible to 
avoid bisulphite conversion altogether; several ancient epigenomics 
studies have reconstructed methylation maps from patterns of hy-
drolytic deamination (e.g., Briggs et al., 2010; Gokhman et al., 2014; 
Pedersen et al., 2014; Hanghøj et al., 2016). This approach would not 
have been possible for our specimens, which did not show a strong 
deamination signal, however it may be an option for museum spec-
imens with high rates of deamination. In addition, several cheaper 
options are available for measuring methylation at fewer sites, such 
as MS-AFLP and targeted bisulphite sequencing; for example, Smith 
et al. (2015) used targeted bisulphite pyrosequencing to describe 
methylation at an imprinted site in ancient humans.

Museum epigenomics studies will need to accommodate the 
large variance in the quantity of data produced by individual historic 
specimens. Sampling designs should account for a high failure rate 
in older specimens, or if possible, specimens should be screened 
in advance of library preparation for DNA quantity and quality (for 

example, by characterizing fragment size distributions). We expect 
that most samples that can be used for genomic work can also be 
used for epigenomic work. Because high quality specimens are likely 
to be rare, analyses that require fewer individuals will probably be 
more successful.

4.5 | Applications of epigenomic data from 
historic specimens

Methylation is one of the best-studied epigenetic mechanisms 
and is associated with a range of processes, from development 
to disease response to phenotypic plasticity. One of the most in-
triguing directions for museum epigenomics research is the study 
of characteristics that do not fossilize, such as nonmorphological 
traits or historical environmental conditions. For example, meth-
ylation variation modulates gene expression related to various be-
havioural (e.g., Meaney & Szyf, 2005) and physiological traits (e.g., 
García-Carpizo, Ruiz Llorente, FernándezFraga, & Aranda, 2011). 
Murphy and Benítez-Burraco (2018) used methylation patterns to 
infer the expression of language processing genes in Neanderthals. 
Environmentally-induced methylation variation can reflect envi-
ronmental conditions such as food availability (e.g., Heijmans et al., 
2008), climate (e.g., Fu et al., 2010; Gugger, Fitz-Gibbon, Pellegrini, 
& Sork, 2016), and exposure to disease or toxins (Baccarelli & Bollati, 
2009; Robertson, 2005). Gokhman et al. (2017) demonstrated how 
methylation patterns can be used to study past environments by de-
scribing markers of prenatal nutrition in Denisovan and Neanderthal 
genomes. Ancient and historic epigenomic studies may allow us to 
explore aspects of past populations that are not reflected in a speci-
men's morphology or genetic sequence.

Museum epigenomics studies also provide the opportunity to 
directly measure how epigenetic effects change over time. Just as 
in museum genomic studies (Burrell et al., 2015), epigenomic studies 
can use collections to describe temporal changes in population-level 
variation. Such studies could help clarify a range of unresolved ques-
tions in ecological epigenetics, including the transgenerational sta-
bility of epigenetic marks, the timescales of induction of epigenetic 
effects, and the relationship between epigenetic and genetic varia-
tion. It is still unclear what role, if any, nongenetic mechanisms such 
as epigenetic effects play in evolutionary processes (e.g., Laland et 
al., 2014). Observing change over time in epigenetic effects may pro-
vide insights into their role in adaptation and evolution.
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