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Abstract

Transpiration (T) is perhaps the largest fluxes of water from the land surface to

the atmosphere and is susceptible to changes in climate, land use and vegetation

structure. However, predictions of future transpiration fluxes vary widely and are

poorly constrained. Stable water isotopes can help expand our understanding of

land–atmosphere water fluxes but are limited by a lack of observations and a poor

understanding of how the isotopic composition of transpired vapour (δT) varies.

Here, we present isotopic data of water vapour, terrestrial water and plant water

from a deciduous forest to understand how vegetation affects water budgets and

land–atmosphere water fluxes. We measured subdiurnal variations of δ18OT from

three tree species and used water isotopes to partition T from evapotranspiration

(ET) to quantify the role of vegetation in the local water cycle. We find that δ18OT

deviated from isotopic steady-state during the day but find no species-specific pat-

terns. The ratio of T to ET varied from 53% to 61% and was generally invariant during

the day, indicating that diurnal evaporation and transpiration fluxes respond to similar

atmospheric and micrometeorological conditions at this site. Finally, we compared the

isotope-inferred ratio of T to ET with results from another ET partitioning approach

that uses eddy covariance and sap flux data. We find broad midday agreement

between these two partitioning techniques, in particular, the absence of a diurnal

cycle, which should encourage future ecohydrological isotope studies. Isotope-inferred

estimates of transpiration can inform land surface models and improve our understand-

ing of land–atmosphere water fluxes.
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1 | INTRODUCTION

Evapotranspiration (ET) connects the water and carbon cycles and

plays an important role maintaining terrestrial energy balance

(Dunn & Mackay, 1995; Ellison et al., 2017; Swann, Fung, &

Chiang, 2012; Worden, Noone, & Bowman, 2007). Despite its

broad significance, estimates of terrestrial water fluxes from

reanalysis, upscaled observations and land surface models (LSMs)

differ by up to 50%, and predicting future land–atmosphere water

fluxes remains a challenge (Mao et al., 2015; Mueller et al., 2013;

Vinukollu, Meynadier, Shef, & Wood, 2011). Central to this uncer-

tainty are yet unresolved responses of plants to climate and land

use change (Frank et al., 2015; Jackson et al., 2001; Massmann,

Gentine, & Lin, 2019; Schlesinger & Jasechko, 2014). In a higher
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CO2 world, some predict that changes to leaf area index (LAI), stomatal

conductance, soil moisture and terrestrial run-off will intensify the

water cycle (Brutsaert, 2017; Ohmura & Wild, 2002; Zeng et al., 2018;

Zhang et al., 2016); others anticipate that these vegetation-induced

changes will decrease water cycling (Gedney et al., 2006; Labat, Godd,

Probst, & Guyot, 2004). Consequently, a growing body of eco-

hydrological research is aimed at studying terrestrial water fluxes to

better understand what drives water exchange between the land and

the atmosphere, and how terrestrial hydrology may change in the

future and how plants regulate freshwater resources.

ET is composed of ecosystem evaporation (E, including surface

evaporation and evaporation of canopy-intercepted water) and plant

transpiration (T). The ratio of T to ET, hereafter referred to as FT,

provides insight into the role that vegetation plays in terrestrial

water recycling and links plant hydrology with climate and meteoro-

logical conditions (Stoy et al., 2019). A complete understanding of

this ratio is an important step towards predicting how plants will

respond to land use and climate changes and how hydrologic balance

may change in the future. To date, there is no consensus about the

values of global, regional and ecosystem FT (Anderegg, Trugman,

Bowling, Salvucci, & Tuttle, 2019; Bowen, Cai, Fiorella, & Putman, 2019;

Stoy et al., 2019). In particular, estimates of T and FT from LSMs and

remote sensing algorithms, which rely on ecosystem-scale information,

do not currently agree with ground-based observations of T and FT that

can vary on spatial scales of less than a kilometre (Good, Noone, &

Bowen, 2015; Talsma et al., 2018; Wei et al., 2017). Most LSMs and

remote sensing data cannot capture subgrid cell variations of lateral

water flow (Chang et al., 2018; Ji, Yuan, & Liang, 2017; Maxwell &

Condon, 2016), plant water stress (Fang et al., 2017; Matheny, Bohrer,

Stoy et al., 2014) and micrometeorological forcing (Badgley, Fisher,

Jimenez, Tu, & Vinukollu, 2015), which are necessary to accurately model

FT. Further complicating our understanding of land–atmosphere water

exchange, some ground-based observations of ET may not actually cap-

ture conditions at the transpiring or evaporating surfaces. For example,

near-surface gradients of water vapour concentrations and vapour pres-

sure deficits (VPDs) can make it difficult to relate ET measurements,

most of which are made using eddy covariance above canopies, to leaf

and soil fluxes within canopies (Aron, Poulsen, Fiorella, &

Matheny, 2019; De Kauwe, Medlyn, Knauer, & Williams, 2017; Jarvis &

McNaughton, 1986). Therefore, additional leaf- and soil-level flux mea-

surements are needed to improve estimates of FT and predictions of

terrestrial water fluxes.

Stable water isotopes can improve our understanding of water

fluxes from the land to the atmosphere because the component pro-

cesses, evaporation and transpiration, have distinct isotopic signatures

(Yakir & Sternberg, 2000). Evaporation causes a large fractionation

that enriches vapour in the lighter isotope. Because plants generally

do not fractionate water during uptake and a vast amount of water

passes through plants without fractionating, transpiration generally

adds vapour with a higher proportion of heavy isotopes to the atmo-

sphere (Ehleringer & Dawson, 1992). Using these fingerprints, many

researchers have use water isotopes to measure FT and learn about

land–atmosphere water exchange (Xiao, Wei, & Wen, 2018 and refer-

ences therein).

Isotopic ET partitioning requires knowledge of the isotope

ratios associated with ET (δET), evaporation (δE), and transpiration

(δT). Until recently, isotope-inferred estimates of ET were limited to

a low temporal resolution (day-to-annual timescales). As a result,

the isotopic composition of transpired vapour was not measured

and instead was assumed to be in isotopic steady-state (equal to

that of source water) (Haese, Werner, & Lohmann, 2013). How-

ever, observations from high-resolution laser absorption spectrome-

ters now enable estimates of δT and show that transpiration can

deviate from isotopic steady-state when periods of stable environ-

mental conditions are too short to allow δT to reach the isotopic

composition of source water (Dubbert et al., 2014; Dubbert, Cuntz,

Piayda, Maguás, & Werner, 2013; Dubbert, Cuntz, Piayda, &

Werner, 2014; Dubbert, Kübert, & Werner, 2017; Simonin

et al., 2013). These δT observations may improve estimates of

land–atmosphere water fluxes and our understanding of the role

plants play in the water cycle. However, thus far studies of δT
have focused only on a small subset of species and environments,

and it is still quite challenging to model short-term (subdiurnal)

variations of δT (Dubbert, Cuntz, et al., 2014) or incorporate

nonsteady-state transpiration into isotope-enabled LSMs (Wong,

Nusbaumer, & Noone, 2017). Additional observations of δT from a

wide variety of species and environments can inform estimates of

FT and may help reconcile FT differences between observations

and LSMs or remote sensing.

Forests play a critical role in land–atmosphere water exchange,

but very few studies have directly used water isotopes to partition

forest ET (Lai, Ehleringer, Bond, & Paw, 2006; Lee, Kim, &

Smith, 2007; Moreira et al., 1997). Instead, most isotopic ET par-

titioning studies are based in croplands or grasslands where water

management is easy to control and canopy cover is low, uniform

and continuous (e.g., Aouade et al., 2016; Lu et al., 2017; Wu, Du,

Ding, Tong, & Li, 2017). To address this gap, we measured the iso-

topic composition of transpired vapour from three tree species,

bigtooth aspen (Populus grandidentata), red oak (Quercus rubra) and

red maple (Acer rubrum), in a mixed deciduous forest in northern

lower Michigan. We then use δT measurements to estimate forest

FT. Our objectives are to (1) quantify the temporal and species-

specific variability of δT, (2) use water isotopes to estimate forest

FT and (3) evaluate whether measurements of nonsteady-state δT
improve isotopic ET partitioning. Finally, we compare our results

from the isotopic ET partitioning with results from another par-

titioning technique that uses eddy covariance and sap flux data.

Taken together, these objectives examine whether water isotopes

provide accurate quantitative estimates of forest ET fluxes. If so,

isotope-inferred FT and δT may inform isotope-enabled LSMs and

improve predictions of land–atmosphere water exchange. Broadly,

this work builds upon a growing field of high-resolution isotope

ecohydrology studies that seek to understand the role of vegeta-

tion in local, regional and global water budgets.
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2 | ET PARTITIONING

2.1 | Theoretical isotopic ET flux partitioning

The isotopic two-source model is commonly used to partition

evaportranspiration (ET) because evaporation (E) and transpiration

(T) fluxes have distinct isotopic compositions. In this framework, ET is

defined as

ET=E+T: ð1Þ

Following isotopic mass balance and using delta (δ) notation,

Equation 1 can be expressed as

δETET = δEE + δTT ð2Þ

where δET, δE and δT are the isotopic compositions of ET, evaporation

and transpiration, respectively. A list of all symbols and abbreviations

used in this study is presented in Table 1. Throughout this manuscript,

we use δ notation in per mil (‰), where R is the ratio of the heavy iso-

tope to the light isotope (δ = (Rsample/Rstandard − 1)*1,000) and the stan-

dard is Vienna Standard Mean Ocean Water (VSMOW) (Coplen, 1996;

Gat, 1996). Combining Equation 1 and Equation 2 yields FT, the ratio of

T to ET:

FT =
T
ET

=
δET−δE
δT−δE

: ð3Þ

This linear, two-source mixing model has been used in a number

of previous studies to partition water fluxes of ET (e.g., Wang &

Yakir, 2000; Xiao et al., 2018; Yakir & Sternberg, 2000).

We determined δET with a Keeling mixing model (Keeling, 1958;

Yakir & Sternberg, 2000), where δET is estimated as the y-intercept of

a linear regression between the isotopic composition of atmospheric

water vapour (δa) and the reciprocal of the water vapour concentration.

The isotopic composition of transpired vapour (δT) is calculated

from leaf chamber measurements following Wang, Good, Caylor, and

Cernusak (2012). Using this approach, δT is defined as

δT =
qmδm−qaδa

qm−qa
, ð4Þ

where q is the water vapour concentration, m refers to measurements

when the chamber was closed around a leaf, and a refers to measure-

ments when the chamber was open to ambient vapour (Wang

et al., 2012).

The isotopic composition of soil evaporation (δE) is estimated

using the Craig and Gordon (1965) model:

δE =
α−1
eq δs−hδa−εeq− 1−hð Þεk
1−hð Þ+10−3 1−hð Þεk

, ð5Þ

using meteorological measurements and isotopic values of soil water

(δs) and atmospheric vapour (δa). Here, αeq (>1) is the temperature-

dependent equilibrium fractionation factor (Majoube, 1971), εeq is calcu-

lated as (1 − 1/αeq) × 103, εk is the kinetic fractionation term and h is the

relative humidity at the temperature of the evaporating surface.

2.2 | ET partitioning from sap flux and eddy
covariance data

ET partitioning from sap flux and eddy covariance measurements follows

the approach described by Williams et al. (2004). In this technique, the

latent heat-derived ET is separated into biotic (T) and abiotic

(E) components using eddy covariance estimates of latent energy and

direct measurements of sap flux. To partition ET, we assumed that tran-

spiration accounted for nearly all of the ET fluxes on the driest days

TABLE 1 Description of symbols and subscripts used in this study

Symbol Description Subscript Description

αeq equilibrium fractionation factor a Atmospheric vapour

αk kinetic fractionation factor E Evaporation

δ Delta notation, stable isotope value (‰) ET Evapotranspiration

δ18O Oxygen isotope value (‰) g Groundwater

δ2H Hydrogen isotope value (‰) l Leaf

d Deuterium-excess lake Lake

E Evaporation m Closed leaf chamber vapour

ET Evapotranspiration p Precipitation

FT Transpiration/evapotranspiration s Soil

h Relative humidity T Transpiration

q Specific humidity x Xylem

R Isotope ratio (e.g., 18O/16O)

T Transpiration
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during the growing season and derived a scaling equation to estimate

the ratio of T to ET on days when evaporation was not negligible (Kool

et al., 2014). Additional details on this scaling are provided in the

Supporting Information.

3 | METHODS

3.1 | Site description

This study was conducted at the 46-m AmeriFlux-affiliated eddy

covariance tower site at the University of Michigan Biological Station

(UMBS) in northern lower Michigan (45.59�N, 84.70�W, AmeriFlux

database site-ID US-UMB). The forest at this site has been dominated

by bigtooth aspen (P. grandidentata) and paper birch (Betula papyrifera)

but is currently transitioning to a mixed composition dominated by

red oak (Q. rubra), red maple (Acer rubrum), white pine (Pinus strobus),

American beech (Fagus grandifolia) and sugar maple (Acer saccharum).

As a result of heavy logging in the early 20th century, the forest has a

relatively uniform age and canopy structure. Mean canopy height is

�22 m and mean peak LAI is 3.9 m2 m−2. The site receives 766 mm of

precipitation annually, and the mean annual temperature is 5.5�C

(Matheny et al., 2017). Soils at the UMBS site are well-drained

Haplorthods of the Rubicon, Blue Lake or Cheboygan series and con-

sist of �95% sand and �5% silt (Nave et al., 2011). Additional site

details are available in Matheny et al. (2017) and Gough et al. (2013).

3.2 | Isotope measurements

3.2.1 | Surface waters

We collected a variety of surface waters and shallow groundwaters

during the 2017 growing season to characterize the isotopic composi-

tion of potential source waters for trees and to examine seasonal

hydrologic variability near our study site. We collected event-scale

precipitation at the tower site in a plastic bucket lined with mineral oil

to prevent evaporation (Friedman, Smith, Gleason, Warden, &

Harris, 1992; Scholl, Ingebritsen, Janik, & Kauahikaua, 1996). We used

a needle point syringe to extract precipitation and avoid transferring

any oil to the collection vial. The sampling bucket was cleaned, dried

and given a fresh layer of oil between samples. From April to October,

we collected monthly samples from the edge of a nearby lake and

from the mouth of a groundwater spring. The groundwater spring

originates from a seep at the bottom of the lake (Hendricks, Vande

Kopple, Goodspeed, & White, 2016). We collected shallow (within

3 m of the surface) groundwater in April, June and November from

15 wells near the mouth of the spring. All liquid water samples were

collected in HDPE vials (Wheaton Industries, 986716) and analysed

within a few weeks of collection, so we do not expect any fraction-

ation between the plastic HDPE collection containers and the sam-

pled water (Spangenberg, 2012). We used a Picarro L2130-i cavity

ringdown spectrometer (CRDS) with an A0211 high-precision

vaporizer and attached autosampler to measure δ18O and δ2H of liq-

uid water samples. We used Picarro ChemCorrect software to moni-

tor samples for organic contamination. For liquid samples, precision

was better than 0.1‰ and 0.3‰ for δ18O and δ2H, respectively.

3.2.2 | Vapour

To analyse water vapour isotopes, we deployed two CRDSs, a Picarro

L2120-i and a Picarro L2130-i, in a temperature-controlled shed

located next to the 46-m eddy covariance tower. We used a Picarro

Standard Delivery Module (SDM, A0101) to deliver liquid laboratory

standards to monitor for drift and calibrate isotope data to the

VSMOW–SLAP scale (Bailey, Noone, Berkelhammer, Steen-Larsen, &

Sato, 2015). Each SDM was setup with a Drierite (26800) column and

a Picarro high precision vaporizer (A0211) maintained at 140�C and

ambient pressure. We analysed standards at night in order to mini-

mize interference with data collection during the day when transpira-

tion was higher.

CRDSs are known to exhibit an isotope-ratio bias due to changes

in cavity humidity (Aemisegger et al., 2012). To correct for this bias,

we used version 1.2 of the University of Utah vapour processing

scripts to derive cavity–humidity correction equations and instrument

precision (Fiorella, Bares, Lin, Ehleringer, & Bowen, 2018). We present

the 1σ uncertainty at 10,000 ppmv, the lowest measured vapour

mixing ratio, and 25,000 ppmv, near the highest measured mixing

ratio. For d-excess (d = δ2H − 8 * δ18O (Dansgaard, 1964), we assume

oxygen and hydrogen errors are independent. 1σ uncertainty on the

L2120-i ranged from 0.28‰ for δ18O, 0.93‰ for δ2H and 2.45‰ for

d at 10,000 ppmv to 0.20‰, 0.59‰ and 1.68‰ (for oxygen, hydro-

gen and d, respectively) at 25,000 ppm. On the L2130-i, 1σ uncertainty

ranged from 0.13‰ for δ18O, 0.43‰ for δ2H and 1.14‰ for d at

10,000 ppmv to 0.09‰, 0.29‰ and 0.78‰ (for oxygen, hydrogen and

d, respectively) at 25,000 ppm. Additional information about the cavity

humidity correction equations is available in the Supporting Information.

We installed a vapour sampling manifold on the eddy covariance

tower and selected three similarly-sized nearby trees—a bigtooth

aspen, a red oak and a red maple—for transpiration measurements.

We chose these species because together they account for more than

70% of the LAI and a majority of the sap flux at the site (Figure 1).

Leaves and branches from the aspen and oak were accessible from a

platform on the eddy covariance tower 15 m above the ground. No

maple branches were accessible directly from the eddy covariance

tower, so we built a small 5-m tower a few metres from the base of

the eddy covariance tower to reach a maple tree. The uppermost

extent of all three sampled trees reached the upper canopy and was

exposed to full sunlight.

We built two transparent flow-through sampling chambers following

the description in Wang et al. (2012) to make δT measurements at 5 and

15 m. Each chamber was approximately 20 cm long, 15 cm wide and

5 cm tall. This size accommodated large (up to �15 cm) oak leaves but

was kept small to minimize lag or memory effects between switching

samples. Just before a closed-chamber transpiration measurement, we
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manually inserted a live leaf (still attached to the tree) into the chamber

and sealed the chamber. Each chamber had two small (�2 cm) openings

to pull in ambient vapour during closed-chamber measurements. The

chamber hung from the tree for the duration of each transpiration mea-

surement period. Occasionally, we had to reorient the chamber to pre-

vent the leaf from touching the side of the chamber because any contact

points between the leaf and the chamber promoted condensation. Every

closed-chamber measurement was made on a different leaf. At the end

of the transpiration measurement period, we opened the chamber,

removed the leaf and measured ambient vapour from the open chamber.

Sampling lines extended from the chambers to the Picarro ana-

lyser. The 5-m chamber had two sampling lines, one to measure

vapour when the chamber was closed around a leaf and another to

measure vapour when the chamber was open. The 15-m chamber had

three sampling lines, one for closed oak measurements, one for closed

aspen measurements and one for open chamber measurements. A

final ambient-only sampling line extended above the canopy and was

collocated adjacent to 34-m meteorological and flux measurements

from the eddy covariance tower. All sampling lines were constructed

from nonfractionating Bev-A-Line tubing (Simonin et al., 2013),

encased in insulation and wrapped with a warm wire to prevent con-

densation. The whole sampling manifold was held below ambient

pressure by a diaphragm pump that operated at �5 L/min to maintain

constant airflow and minimize memory effects between samples.

Each Picarro analyser controlled a multiposition valve (VICI/Valco

EMT2SD6MWE) to switch between sampling locations. We measured

each ambient vapour for 5 min and transpired (closed-chamber)

vapour for 10 min. We define a cycle of isotopic measurements as a

loop through each port on the multiposition valve and assume that the

average isotopic composition at each sampling location represents the

isotopic composition at that location for the full cycle of measurements.

Initially, we planned to use the L2120-i to analyse ambient vapour

and the L2130-i to analyse transpired vapour. This set-up was

designed to measure the highest possible temporal resolution of δT.

However, the L2130-i analyser malfunctioned after the June sampling

campaign, which forced us to reconfigure our approach and use the

L2120-i to measure all six locations in August and October. We mea-

sured vapour isotopes during three periods in 2017: 19 June (DOY

170); 14 August (DOY 226), 15 August (DOY 227) and 16 August

(DOY 228); and 6 October (DOY 279) and 9 October (DOY 282).

These days were selected to study transpiration during periods when

water fluxes were high (June and August) and low (October). Missing

days in October (DOY 280 and 281) are due to technical issues with

the Picarro analysers, poor weather and other logistical difficulties at

the field site.

3.2.3 | Terrestrial and biological waters

We used a soil auger to collect soil from the top 10 cm around

noon on 19 June, 16 August and 6 October. Xylem samples were

collected midday at breast height using an increment borer on

16 August, 6 October and 9 October. To avoid disrupting the

hydraulics of the trees that were monitored for transpiration, we

collected xylem samples from trees near the eddy covariance

tower. We collected leaves from the transpiration-monitored trees

because leaves from other trees were out of reach and the

removal of a few leaves from a fully leafed-out tree was not

expected to significantly affect plant hydraulics. Leaf samples were

collected around 8 AM, 11 AM, 2 PM and 5 PM on 15 August,

16 August, 6 October and 9 October. To collocate measurements

of leaf water and transpired vapour, we collected maple leaves at

5 m and oak and aspen leaves at 15 m. Soil, xylem and leaf sam-

ples were stored in a refrigerator after collection.

Waters from soil, xylem and leaf matrices were extracted on a

cryogenic vacuum distillation line following the methods of West,

Patrickson, and Ehleringer (2006). The midrib was not removed from

leaves prior to the distillation. Distilled soil waters were analysed for

oxygen and hydrogen isotopes on a Picarro L2130-i as described ear-

lier. Due to complications arising from the presence of organic com-

pounds (West, Goldsmith, Brooks, & Dawson, 2010), leaf and xylem

waters were analysed for δ18O and δ2H using a Thermo Scientific

Delta V gas isotope ratio mass spectrometer (TC/EA-IRMS hereafter)

that does not suffer from organic contamination. The TC/EA-IRMS

was interfaced with a Thermo Scientific FlashIRMS elemental analyser

running in pyrolysis mode. A 0.5-ul aliquot of distilled water was

F IGURE 1 (a) Mean diurnal sap flux (W/m2)
and (b) leaf area index (LAI) by species during the
2017 growing season (May to October)
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injected into a glassy carbon furnace maintained at 1450�C. The prod-

uct gases were separated chromatographically on a Restek Molesieve

5A column (60/80 mesh, 2 m × 2 mm ID isothermal at 50�C) and were

introduced to the IRMS by means of a continuous flow open-split

interface (Conflo IV) optimized to each gas for linearity and sensitivity.

Each gas was normalized to an injection of internal reference gas, and

each batch of samples was then normalized to VSMOW by means of

complementary analysis of known standards under these same condi-

tions. Precision of TC/EA-IRMS analyses was better than 0.4‰ for

δ18O and 2.4‰ for δ2H.

3.3 | Sap flux

Sap flux is considered a proxy for transpiration (Granier & Loustau, 1994;

Phillps & Oren, 1998). We used a network of custom-built Granier (1987)

style thermal dissipation probes in 60 trees to continuously monitor sap

flux at our field site. For this project, we installed six additional sap flux

probes in the maple and oak trees that were used to measure transpira-

tion to ensure they were hydrologically similar to others at the site. Sap

flux measurements were made every minute and reported as 30-min

averages. Additional details about the sap flux sensors and network are

available in Matheny, Bohrer, Vogel et al. (2014) and Matheny

et al. (2017).

3.4 | Meteorological and eddy covariance
measurements

Temperature and relative humidity (HMP45g, Vaisala, Helsinki, Finland)

were measured at 3, 15 and 34 m from the eddy covariance tower.

Three-metre measurements were reported every minute; 15- and 34-m

measurements were reported as 30-min averages. To facilitate compari-

son with other meteorological and eddy covariance data, 3-m tempera-

ture and relative humidity were averaged to common 30-min time steps.

Daily precipitation amount was measured approximately 6 km east of

our field site at the Pellston Regional Airport. These data are available

from the National Oceanic and Atmospheric Administration Climate Data

Online archive (Network ID USW00014841).

Eddy covariance CO2 and H2O fluxes were measured above the

canopy at 34 m. The latent heat flux was measured at high resolution

(10 Hz) using the eddy covariance approach: water vapour and CO2

concentrations were measured using a closed-path infrared gas ana-

lyser (LI7000, LI-COR Biosciences, Lincoln, NE, USA); wind velocity

and temperature were measured with a 3-D ultrasonic anemometer

(CSAT3, Campbell Scientific, Logan, UT, USA). The latent heat flux

was corrected by the Webb–Pearman–Leuning correction to account

for density fluctuations in water vapour fluxes (Webb, Pearman, &

Leuning, 1980). A complete description of the eddy covariance data

processing is available in Gough et al. (2013). All eddy covariance

variables were reported as 30-min averages. Spikes in the eddy

covariance data were identified using a median filter (Starkenburg

et al., 2016) and removed.

3.5 | Data processing: δT calculations and ET
partitioning

All isotopic, meteorologic and eddy covariance data were processed

to a common time step to facilitate analysis. The common time of δT
measurements was rounded to the nearest half hour of the closed-

chamber measurements. Following Equation 4, δ18OT was calculated

from isotope and humidity measurements when the chamber was

open (measuring ambient vapour) and closed (measuring transpired

vapour). The Picarro simultaneously measures isotopic compositions

and specific humidity; no additional parameters or measurements are

needed to calculate δT (Wang et al., 2012). We omit the first 2 min of

each measurement period to minimize memory effects from switching

sampling ports and used the average of measurements from Minutes

3–5 for the δ18OT calculation (Aemisegger et al., 2012). Although the

closed-chamber measurements continued for 10 min, we chose not to

use transpired vapour measurements from Minutes 5–10 because we

observed that condensation occasionally built up in the chambers

after 5 min.

Air within the canopy is usually poorly mixed (Aron

et al., 2019), so we used above-canopy measurements for the

Keeling regression to derive ecosystem-scale δET. In contrast, δT
measurements are separated by species (e.g., δT,maple, δT,aspen and

δT,oak). At UMBS, maple, aspen and oak account for �22%, 26%

and 26%, respectively, of the total LAI (Figure 1b). To ensure we

did not overpredict the transpiration flux from these three species,

we scaled δT,maple, δT,aspen and δT,oak values by the percentage of

total LAI accounted for by each species. This approach can pro-

duce species-specific values of FT, although that is not our focus

in this study because similar measurements are already done at

UMBS from sap flux data (Figure 1a). Instead, in this study, we

combine transpiration fluxes from maple, oak and aspen trees to

approximate an ecosystem-wide flux. We refer to FT calculated

from the scaled δT measurements as nonsteady-state FT.

To test the effects of assumed steady-state transpiration on

isotope-inferred FT, we compare nonsteady-state FT with FT esti-

mated with two steady-state δT assumptions: a source water

assumption that uses the Craig and Gordon (1965) leaf water

model and defines δT as xylem water (δx) and a precipitation

assumption that sets δT as δp. A summary of the various tech-

niques and assumptions we use to estimate FT is presented in

Table 2. δs and δx can vary spatially across a landscape (Brooks,

Barnard, Coulombe, & McDonnell, 2010; McDonnell, 2014) and

mostly likely reflect a mixture of water from past precipitation

events and other incoming surface and groundwater flows

(Barbour, 2007). Preferential flow paths through the porous (>90%

sand) UMBS soil may also bias the isotopic composition of avail-

able soil water (Brooks et al., 2010). Neither the source water nor

the precipitation assumptions consider these environmental com-

plexities, and a detailed assessment of soil hydrology is beyond the

scope of this study. Instead, the steady-state assumptions used in

this study are our best attempt to capture a representative transpi-

ration flux from the forest.
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4 | RESULTS

4.1 | Seasonal and synoptic-scale variability

Seasonal variations of local meteorology, sap flux and latent heat flux

are shown in Figure 2. Temperature, specific humidity, sap flux and

latent heat flux increased through the spring, reached a maximum in

the summer and decreased in the fall. Soil moisture was greatest in

the spring when the soil was moist from winter snowmelt and

decreased through the growing season as water percolated through

the soil or returned to the atmosphere via ET (Figure 2f). Soil moisture

increased rapidly after precipitation events, but due to the high sand

content, limited storage potential, and increased ET fluxes after rain, it

decreased quickly after each storm pulse (Figure 2f). Sap flux and

latent heat were positively correlated (Pearson's r > 0.75) throughout

the growing season and moderately well correlated with above-

canopy VPD (r > 0.53) (Figure 2d,e). Imprinted on this seasonal varia-

tion, meteorological, eddy covariance and sap flux measurements var-

ied on 3- to 4-day timescales as weather systems passed through the

study region (Figure 2). Daily precipitation totals varied from 0 to

1.18 cm (Figure 2f). In general, on rainy days, temperature, sap flux

and latent heat were lower, and specific humidity was higher.

Monthly variability of terrestrial (rain, lake, soil and ground) and plant

(xylem and leaf) waters δ18O and δ2H are shown in Figure 3. Precipita-

tion, surface water and shallow groundwater cluster around the global

meteoric water line (GMWL, δ2H = 8 * δ18O + 10‰; Craig, 1961). The

local meteoric water line (LMWL, δ2H = 7.9 * δ18O + 13.6‰) at UMBS

has a slope close to the that of the GMWL and an intercept that reflects

the high degree of moisture recycling downwind of Lake Michigan

(Bowen, Kennedy, Henne, & Zhang, 2012; Putman, Fiorella, Bowen, &

Cai, 2019). The isotopic compositions of soil (δs), xylem (δx) and leaf (δl)

waters generally fall below the GMWL along lines with shallow slopes

(�2.5‰ ‰−1>) and very low intercepts (approximately −37‰), indica-

tive of evaporative enrichment.

Time series of meteoric water isotopes through the 2017

growing season are shown in Figure 4. Event-scale δ18Op generally

varied between −4‰ and −12‰ (−10‰ to −80‰ for δ2H),

although a large (�1.2 cm) storm in late June had a particularly

low isotopic composition (−17.1‰ and −120.6‰ for oxygen and

hydrogen, respectively, Figure 4a). Precipitation d-excess (�13‰)

was relatively consistent from May to October, with the exception

of three midsummer storms that had low d-excess (<6.1‰,

Figure 4b). δ18O of the lake and groundwater spring, which flows

from a seep at the bottom of the lake, increased 1.2‰ and 0.3‰,

respectively, through the growing season (Figure 4a). Together,

these trends indicate that some lake water evaporated during the

growing season. δ18O and δ2H of groundwater was almost always

less than that of surface water. The groundwater spring (δ18O

−9.1‰ to −8.5‰) was therefore likely a mixture of lake water

(δ18O −8.1‰ to −6.9‰) and shallow groundwater (δ18O −12.2‰

to −8.1‰). The seasonal trends in δ18O and d-excess of the spring

suggest that the contribution of groundwater to the spring

decreased through the growing season.

4.2 | Diurnal isotope variability

Soil and xylem waters were evaporatively enriched relative to precipi-

tation on all the days we measured these pools (Figure 5). In August,

δ18Op of the rain event just before the measurement period (−9.1‰)

was less than that of δ18Ox for maple, aspen and oak (−4.2‰, −6.7‰

and −7.8‰, respectively) (Figure 5a,b). Similarly, on 6 October, δ18Op

(−5.5‰) was lower than δ18Ox (−4.8‰, −4.3‰ and −3.9‰, maple,

aspen and oak, respectively, Figure 5c); on 9 October, δ18Op (−4.7‰)

was lower than or nearly equal to δ18Ox (−4.9, −3.4 and −3.3‰,

maple, aspen and oak, respectively, Figure 5d). Precipitation d-excess

in August, 6 October and 9 October was higher (14.5‰, 17.6‰ and

25.2‰, respectively) than d-excess of xylem water, suggesting that

TABLE 2 Summary of FT methods, species, assumptions and results

Method Species Assumptions FT explanation FT

δT measurements

(nonsteady-state)

Aspen, maple, oak Direct leaf-level measurements of δT 37 ± 2%

Source water assumption

(steady-state δT)
Aspen, maple, oak δx = δT δT scaled to LAI of aspen, maple, oak 36 ± 2%

Aspen, maple, oak

ecohydrologic

Aspen, maple, oak Sap flux scaled to LAI of aspen, maple, oak 43 ± 9% (40 ± 7% midday)

Precipitation assumption

(steady-state δT)
Aspen, beech, birch,

maple, oak, pine

δp = δT δT scaled to LAI of all non-oak

species + δx,oak scaled to the LAI of oaka
53 ± 3%,

Plot-level ecohydrologic Aspen, beech, birch,

maple, oak, pine

Total plot level sap flux 65 ± 12% (61 ± 8% midday)

Abbreviation: LAI, leaf area index.
aMatheny et al. (2017) demonstrated that oak at our study site has a deeper rooting structure and can access soil water that is more depleted in heavy iso-

topes than other tree species at the site. As a result, FT from the precipitation assumption is calculated from the sum of δp scaled to the LAI of all non-oak

species plus δx,oak scaled to the LAI of oak.
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the difference between δ18Ox and δ18Op is likely related to evaporative

enrichment prior to uptake (Figure 5e–h). δ18Os was never equal to

δ18Op, which suggests that soil water experienced fractionation by post-

depositional processes (likely evaporation), was a mixture of water from

multiple previous rain events and/or was fed by other nearby sources

(Figure 5a–d). Near-surface soil water d-excess was lower than that of

precipitation, indicating that soil water was also evaporatively enriched

relative to the most recent precipitation (Figure 5e–h).

Observed δ18Ol of all three species exhibited a pronounced

(>10‰) daily pattern with the most evaporative enrichment (highest

δ18Ol values) in the afternoon when temperature was at a maximum,

relative humidity was at a minimum and sap flux was high (Figure 5a–

d). As expected, d-excess of leaf water exhibited the opposite diurnal

pattern with the greatest values in the morning and the lowest values

in the mid-afternoon (Figure 5e–h). Observed δ18Ol is generally lower

than estimated steady-state δ18Ol, which may result from a discrep-

ancy between observed δ18Ol, which includes midrib and vein water,

and modelled δ18Ol, which estimates water at the evaporation sites.

Alternatively, the offset between observed and estimated δ18Ol may

suggest that, even at midday when the transpiration flux was high

F IGURE 2 Above-canopy mean daily
(a) temperature, (b) vapour pressure deficit,
(c) specific humidity, (d) sap flux, (e) latent heat
flux and (f) total daily precipitation and mean daily
soil moisture through the growing season. The
vertical blue lines indicate days on which we
measured transpiration isotopes
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(Figure 1a) and leaf-water turnover time was quickest, leaves were

not at isotopic steady-state (Figure 5a–d).

Although the diurnal pattern of leaf water isotopes was consis-

tent between maple, oak and aspen, the magnitude of diurnal δl
change and values of δ18Ol and δ18Ox varied between species. For

example, in August morning (8 AM), δ18Ox and δ18Ol of oak were lower

than δ18Ox and δ18Ol of either maple or aspen (Figure 5a). Addition-

ally, minimum morning δ18Ol varied on consecutive sampling days,

with lower δ18Ol,maple and δ18Ol,aspen on 16 August than 15 August

(Figure 5a,b). In contrast, October δ18Ox,maple, δ18Ox,oak and

δ18Ox,aspen were within 1‰ of each other (approximately −4‰), but

δ18Ol,maple was �5‰ lower than δ18Ol,oak and δ18Ol,aspen (Figure 5c,d).

δ18OT varied between −15‰ and 6‰ and frequently deviated

from δ18Ox, δ18Os or δ18Op, indicating that transpiration was not at

isotopic steady state on subdiurnal timescales (Figure 6). In general,

δ18OT was lower in the morning when relative humidity was high and

increased through the day as transpiration increased. δ18OT was

always greater than δ18Oa (−23.6‰ to −16.7‰; Figure 6) and there-

fore pushed the isotopic composition of atmospheric water vapour to

higher values. No consistent species-specific δ18OT trend emerged,

and δ18OT,aspen, δ18OT,oak and 18OT,maple varied considerably day to

day and on subdiurnal timescales (Figure 6). δ18OE varied between

−38.3‰ and −31.2‰ and pushed δ18Oa to lower values (Figure 6).

4.3 | Diurnal ET partitioning

A summary of ET partitioning results is presented in Table 2. Using

Equation 3 and the measured values of δ18OT, transpiration from

maple, oak and aspen accounted for 37 ± 2% of the ET flux. This

value, referred to as nonsteady-state FT, did not exhibit a consistent

diurnal cycle (Figure 7). We compare nonsteady-state FT with FT cal-

culated from two steady-state isotope assumptions: that δT is equal to

xylem water (source water assumption) and that δT is equal to δp of

the most recent storm event (precipitation assumption). The precipita-

tion assumption, which assumes that the only available source water

is recent precipitation, allows us to estimate a transpiration flux from

all species in the forest, including ones from which we did not

F IGURE 3 δ18O and δ2H of various waters pools at or near the study site in (a) June, (b) August, and (c) October 2017. Leaf (diamonds) and
xylem (squares) isotopes are colour coded by species (maple is grey, aspen is blue, and oak is yellow). Lake, rain, ground and soil water are
differentiated by symbology but are all coloured black. The black line is the global meteoric water line

F IGURE 4 Time series of (a) δ18O and (b) d-excess of precipitation (green diamond), lake (purple triangle), groundwater well (grey circle), and
groundwater spring (blue square) from April to November 2017
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measure δx. The precipitation assumption is our best attempt to

quantitively estimate a plot-level transpiration flux; it does not

address the timescale over which plants access available soil water or

the complexities of preferential flow paths through soils, both of

which affect δx and δT (Allen, Kirchner, & Goldsmith, 2018; Brooks

et al., 2010; Evaristo, Jasechko, & Mcdonnell, 2015).

FT estimated from the source water assumption (36 ± 2%,

Figure 7) is nearly identical to nonsteady-state FT. The precipitation

assumption produces a higher estimate of FT (53 ± 3%, Figure 7). The

offset between these FT values arises because the precipitation

assumption includes a water flux from all tree species at the site while

the source water assumption only includes the species from which we

F IGURE 5 (a–d) Diurnal δ18O and (e–h) d-excess of leaf water (circles), xylem (dashed lines), precipitation (solid black line) and soil water
(black dotted dashed line) on (a and e) 15 August, (b and f) 16 August, (c and g) 6 October, and (d and h) 9 October. Colour differentiates species:
maple is grey, aspen is blue, and oak is yellow. The solid coloured lines are expected steady state δ18Ol and d-excesslestimated from the Craig and
Gordon (1965) using values of the kinetic fractionation factor from Merlivat (1978). Values of δx on 15 August are assumed to be the same as
those measured on 16 August

F IGURE 6 Diurnal δT (circles), δa (squares) and δE (triangles) on six days of measurements. For δT, maple is grey, aspen is blue, and oak is
yellow. For δa, 5 m is purple, 15 m is red, and 34 m is pink. Horizontal lines indicate δp (solid black) of recent precipitation, δs (dotted dash black)
and δx (dashed, maple is yellow, aspen is blue, and oak is grey)
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measured δx (maple, oak and aspen) and accounts for �70% of the

site LAI. Correcting for this LAI discrepancy (scaling FT results from

the precipitation assumption to include only 70% of the trees) and

assuming that each species produces a similar amount of transpiration

per unit leaf (Jarvis & McNaughton, 1986), we find that the source

water assumption (36%) and the precipitation assumption (37%) pro-

duce nearly identical estimates of FT. Agreement between the two

steady-state δT assumptions suggests that at this site either technique

is a precise approach to measuring forest FT. The plot-level FT results

(53 ± 3%) agree with other estimates of forest FT (Berkelhammer

et al., 2016; Matheny, Bohrer, Vogel, et al., 2014; Sun et al., 2014;

Tsujimura et al., 2007; Zhou, Yu, Zhang, Huang, & Wang, 2016). Like

nonsteady-state FT, FT calculated using the either source water or

precipitation assumptions exhibits no diurnal variation (Figure 7).

Finally, we compare isotopic ET partitioning results with FT esti-

mated using eddy covariance and sap flux data (Figure 7). The sap flux

network at this site is extensive and, coupled with eddy covariance

data, provides a wide range of information about forest water fluxes

including an estimate of FT. For simplicity, we refer to FT calculated

using eddy covariance and sap flux data as the ecohydrologic ET par-

titioning technique. Plot-level ecohydrologic FT was 65 ± 12%;

ecohydrologic FT scaled to include only the transpiration flux from

maple, oak and aspen was 43 ± 9% (Figure 7). Agreement between

the isotopic and ecohydrologic partitioning techniques was stronger

midday (10 AM to 4 PM, 61 ± 8% plot-level FT; 40 ± 7% FT for maple,

oak and aspen) when water fluxes were high and weaker in the morn-

ing and evening when water fluxes were lower. When FT from the iso-

topic and ecohydrologic ET partitioning techniques diverged, the

ecohydrologic partitioning technique tended to estimate higher FT

than the isotopic technique (Figure 7). Neither partitioning approach

revealed a consistent nor pronounced daytime FT cycle.

5 | DISCUSSION

5.1 | Isotope data as an indicator of local hydrology

5.1.1 | Observations of nonsteady-state δT

It has long been recognized that on timescales longer than the plant–

water turnover time, the isotopic composition of vapour that is tran-

spired from a leaf must equal the water that enters the leaf from the

source (Dongmann, Nürnberg, Forstel, & Wagener, 1974). Accord-

ingly, most isotope models assume that transpiration is a non-

fractionating process, at least on longer timescales (Farquhar &

Cernusak, 2005; Flanagan et al., 1991; Haese et al., 2013; Wang &

Yakir, 1995). However, on short timescales (subdiurnal to a few days),

recent observations have revealed that δT deviates from steady-state

conditions because environmental conditions change quicker than the

turnover of plant water (Dubbert et al., 2017; Dubbert, Piayda,

et al., 2014; Harwood, Gillon, Griffiths, & Broadmeadow, 1998;

Simonin et al., 2013; Wang & Yakir, 1995; Yakir, Berry, Giles, &

Osmond, 1994). δT varies with abiotic and biotic conditions including

stomatal conductance, temperature, humidity and δa (Simonin et al., 2013).

At the leaf level, δT is also controlled by the transpiration rate, stomatal

density and leaf water content (Buckley, 2019; Dubbert et al., 2017). The

Craig and Gordon (1965) model predicts that temperature and humidity

are correlated with δT (Dongmann et al., 1974; Farquhar et al., 1993;

F IGURE 7 Isotopic (filled circles) and ecohydrologic (open diamonds) FT on six days of measurements. FT estimated with nonsteady-state
measurements (black), the source water assumption (red) and sap flux scaled to include only medium maple, large oak and large aspen (yellow)
only capture the transpiration flux from a subset of trees. FT from the precipitation assumption (blue) and plot-level sap flux (green) capture the
transpiration flux from all species and size classes in the forest
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Farquhar & Cernusak, 2005; Farquhar & Lloyd, 1993; Farris &

Strain, 1978; Flanagan et al., 1991), which Simonin et al. (2013) confirmed

in a leaf-cuvette study, and we find to be true in naturally varying condi-

tions (Figure 6).

We measured δT from three broadleaf deciduous trees but did not

find consistent species-specific δT patterns (Figure 6). In contrast, in a

controlled greenhouse, Dubbert et al. (2017) measured δT from a variety

of herbs, shrubs and trees and linked δT variations to species-specific dif-

ferences in the transpiration rate, stomatal aperture, stomatal density

and leaf water content. At our field site, oak has an extensive rooting

structure and can access a deeper, isotopically more depleted soil water

pool than maple, which are shallow rooting (Matheny et al., 2017),

although these uptake dynamics may be site-specific (Lanning, Wang,

Benson, Zhang, & Novick, 2020). We therefore expected that the isoto-

pic composition of xylem, leaf and transpired water from oaks would be

less than that from maples and aspen, but this was only true of xylem

and leaf water in August when soil moisture was low. Rain storms on

4 October and 7 October moistened the soil and provided near-surface

moisture for the maple, oak and aspen trees to transpire. When the soil

was drier during the August sampling period, the oak favoured a more

abundant, deeper isotopically more negative water source (Matheny

et al., 2017). Taken together, these results suggest that when broadleaf

deciduous trees are not water stressed, species-specific effects on local

isotope signals are difficult to identify and distinguish. In contrast, when

these trees are water stressed, species-specific differences may be evi-

dent in water isotope signals.

5.1.2 | Surface, terrestrial and biologic water isotope
variability

The isotopic composition of precipitation at UMBS reflects the domi-

nant fractionation processes in northern Michigan, Rayleigh distilla-

tion and ‘lake-effect’ precipitation (Bowen et al., 2012). Previous

estimates suggest that up to 32% of precipitation in this region is

derived from evaporation over Lake Michigan (Bowen et al., 2012;

Gat, Bowser, & Kendall, 1994; Machavaram & Krishnamurthy, 1995).

This high degree of moisture recycling explains the high (�13‰)

observed precipitation d-excess. The seasonal increase (decrease) of

δ18Olake (d-excesslake) indicates that evaporation of local surface water

likely also added vapour with a high d-excess to the atmosphere

(Figure 4).

The dome-shaped pattern of diurnal δl has been observed in

many studies and is related to the changes in VPD and transpiration

rate (Cernusak et al., 2016 and references therein). Among the broad-

leaf deciduous trees in this study, the shape and magnitude of the

diurnal δ18Ol pattern were independent of species type and were

broadly consistent with common isotopic leaf water models

(Farquhar & Cernusak, 2005). The initial, morning isotopic composi-

tion of δ18Ol did, however, vary between the three species and was

particularly notable on 16 August (δ18Ol,oak, Figure 5b,e) and 6 October

(δ18Ol,maple, Figure 5c,f). These differences may be related to rooting

strategy when the soils are dry (Matheny et al., 2017) or may arise

due to the high sand content and low moisture retention of soils that

can cause high spatial variability of δs or δx at the site (He et al., 2013;

Nave et al., 2011).

5.2 | ET partitioning

ET partitioning distinguishes the evaporation and transpiration com-

ponents of the ET flux and helps provide a quantitative understanding

of ecological processes within the water cycle (Jasechko et al., 2013;

Kool et al., 2014). Isotopic ET partitioning is predicated on E and T

fluxes of distinct isotopic compositions and accurate estimates of δET,

δE and δT. Currently, there is no consensus on the best approach to

measure the isotopic composition of the ET flux, and researchers use

either Keeling mixing models or the flux-gradient technique (Good,

Soderberg, Wang, & Caylor, 2012). The flux-gradient method works

best over smooth, homogenous surfaces such as lakes and grasses

(Xiao et al., 2017); we chose the Keeling approach to avoid complica-

tions of canopy turbulence that may limit the flux-gradient method

(Good et al., 2012; Yakir & Wang, 1996). Other ET partitioning studies

(e.g., Berkelhammer et al., 2016; Sun et al., 2014; Tsujimura

et al., 2007) have also successfully used the Keeling method to calcu-

late δET in forested environments, which further justifies our approach

to estimating δET.

We used the Craig and Gordon (1965) model (Equation 5) to cal-

culate δE. Here, the challenging factors are an accurate and represen-

tative value for the isotopic composition of soil water at the

evaporation front and the soil kinetic fractionation factor (Wang

et al., 2013; Xiao et al., 2018). We collected soil from the top 10 cm

and used δs from a single location to estimate the evaporative flux

over the entire tower footprint. This approach does not capture the

spatial heterogeneity of δs (Gazis & Feng, 2004; Hsieh, Chadwick,

Kelly, & Savin, 1998) but is a common approach in most ET par-

titioning studies (e.g., Aouade et al., 2016; Dubbert, Cuntz,

et al., 2014; Yepez et al., 2005; Zhang, Shen, Sun, & Gates, 2011). The

closed, thick canopy cover at our field site (Aron et al., 2019) likely

reduces spatial variation in δs. The kinetic fractionation factor in soil

evaporation studies has long been a point of debate and varies with

soil tortuosity, soil moisture and atmospheric conditions (Quade, Brü-

ggemann, Graf, Vereecken, & Rothfuss, 2018; Xiao et al., 2018). In our

study, diurnal soil water content was relatively consistent (varied by

less the 0.5% [m3 m−3] per day), so we elected to use the constant

value for εk provided by Quade et al. (2018).

Most isotope-based ET studies assume transpiration is in

isotopic-steady state and estimate that δT is equal to δx or δs
(e.g., Aouade et al., 2016; Wang & Yakir, 2000; Yepez, Williams,

Scott, & Lin, 2003; Zhang et al., 2011). Instead, in this study, we mea-

sured δT using a leaf chamber to (1) observe any nonsteady-state tran-

spiration isotope patterns and (2) evaluate whether direct δT
measurements affect isotopic ET partitioning. The technical and meth-

odological advancements for this type of measurement have only

recently been developed (e.g., Wang et al., 2012), and to date, only a

handful of studies have used a leaf chamber to measure δT and
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partition FT (Dubbert, Cuntz, et al., 2014; Good et al., 2014; Lu

et al., 2017; Wang et al., 2010, 2013; Wu et al., 2017). However,

nearly all of this work has been done in agricultural fields or grass-

lands, and still relatively little is known about δT (Lanning et al., 2020)

and isotope-inferred FT in forests.

The daytime, plot-level values of FT reported in this study (53%

from the precipitation assumption; 61% from the ecohydrologic tech-

nique, Figure 7) agree well with other estimates of forest FT. Ber-

kelhammer et al. (2016) and Tsujimura et al. (2007) used water

isotopes to calculate forest FT values of 49%–62% and 60%–73%,

respectively. Non-isotope ET partitioning techniques reveal similar FT

and range from 52% (Zhou et al., 2016) to �70%–80% (Matheny,

Bohrer, Vogel, et al., 2014; Sulman, Roman, Scanlon, Wang, &

Novick, 2016) in deciduous broadleaf forest sites. At our field site,

Matheny, Bohrer, Vogel, et al. (2014) and Aron et al. (2019) demon-

strated that ET partitioning is sensitive to forest structure and LAI,

with a greater transpiration flux from closed forest canopies and a

greater evaporation flux from open forest canopies. The positive rela-

tionship between LAI and FT is also observed in a variety of nonforest

environments (Scott & Biederman, 2017; Wang, Good, &

Caylor, 2014; Wei et al., 2017), although it is poorly parameterized in

most LSMs, with estimates of FT that are typically lower than

expected (Bowen et al., 2019).

In this study, midday FT did not exhibit a consistent cycle regard-

less of species, steady-state assumption or partitioning technique

(Figure 7). Because LAI sets FT, Wang et al. (2014) proposed that FT

should be relatively consistent throughout the growing season.

Although FT can vary with passing weather systems and precipitation

(e.g., Aron et al., 2019; Wen, Yang, Sun, & Lee, 2016), periods of water

stress (Good et al., 2014; Matheny et al., 2017) and the removal of

biomass (e.g., harvesting or cutting grass) (Wang, Yamanaka, Li, &

Wei, 2015), Berkelhammer et al. (2016) demonstrated that forest FT

was generally invariant on seasonal timescales. We come to the same

conclusions on subdiurnal timescales (Figure 7), although this observa-

tion may be dependent on vegetation type, aridity and soil moisture.

For example, in arid sites with very low soil moisture, diurnal increases

in the transpiration flux may not be accompanied by a concurrent

evaporation flux, and FT may increase midday (Zhou, Yu, Zhang,

Huang, & Wang, 2018). However, the absence of a diurnal FT cycle at

our broadleaf deciduous forest site suggests that similar ecological

processes and environmental conditions drive the component ET

fluxes in this environment as both evaporation and transpiration

fluxes are controlled by external environmental factors including VPD,

incoming solar radiation, temperature, humidity, wind speed, water

availability and ambient CO2 concentration as well as a number of

internal soil or plant factors (e.g., tortuosity, available surface area and

water potential) (Ball, 1988; Cernusak et al., 2016; Penman, 1948;

Sperry, Hacke, Oren, & Comstock, 2002; Tyree & Zimmerman, 2002).

Finally, we compare FT from the isotopic and ecohydrologic par-

titioning techniques. Isotopic and ecohydrologic derived FT was simi-

lar during the day when ET was high, but results from the two

techniques diverged in the early morning and late afternoon when

water fluxes were lower. The timing of diurnal sap flux is usually well

correlated with incoming solar radiation, temperature and VPD (Ling

et al., 2008). It is therefore possible that the high ecohydrologic FT in

the morning and evening reflects differences in the initiation and ter-

mination of early morning and late afternoon diurnal evaporation and

transpiration fluxes. However, both steady-state isotopic FT estimates

remained invariant during these times (field logistics and low water

fluxes prohibited direct δT measurements in the early morning and

evening), suggesting that the high morning and afternoon

ecohydrologic FT may be an artefact of sap flux or eddy covariance

measurements. To this point, sap flux measurements are known to be

biased and prone to errors when water fluxes are low (Ewers &

Oren, 2000; Granier, 1987). High ecohydrologic FT may also be

explained by the refilling of dehydrated xylem tissues that does not

necessarily result in the release of water to the atmosphere at that

time. The midday agreement between isotopic nonsteady-state, isoto-

pic steady-state and ecohydrologic partitioning techniques highlights

the precision of these different approaches. Despite a multitude of

assumptions and simplifications, these techniques capture the same

water fluxes that are driven by incoming solar radiation, water avail-

ability and plant hydraulics. Additional ET partitioning techniques such

as solar-induced fluorescence (SIF) (Lu et al., 2018; Shan et al., 2019)

may soon be available at this site and may yield new insights into the

divergent partitioning results in the early morning and late afternoon.

5.3 | Caveats and experimental considerations

Forests play a critical role in the water cycle and imprint a distinct sig-

nature on the isotopic composition of local and regional water cycles.

However, measuring forest water fluxes is difficult because forests

are heterogeneous, turbulent environments. Accordingly, studies of

forest δT (e.g., Lanning et al., 2020) and isotopic ET partitioning have

lagged behind similar studies in greenhouses or homogenous environ-

ments such as croplands and grasslands (e.g., Dubbert et al., 2017;

Good et al., 2014). While our experimental approach mitigates this

gap, this study was affected by field logistics. For example, we were

only able to reach three trees for transpiration measurements. As a

result, FT from δT measurements, the source water assumption and

sap flux scaled to include only the transpiration flux from maples, oaks

and aspen are biased low.

Limitations of the experimental set-up are also an important con-

sideration. First, direct δT calculations require that a leaf be manually

inserted and removed from a sampling chamber, which limits the num-

ber of measurements. We likely missed water fluxes before and after

our measurement periods. Second, the different measurement heights

(5 m for maple, 15 m for aspen and oak) may complicate species-

specific observations of δT. Although vertical light-induced differences

in stomatal conductance and leaf temperature can balance each other

(Bögelein, Thomas, & Kahmen, 2017), even small differences in mea-

surement location and microclimate within the canopy can strongly

affect transpiration and δT (Baldocchi, Wilson, & Gu, 2002; Chen

et al., 1999; Jarvis & McNaughton, 1986). Third, scaling isotopic ET

partitioning from local measurements to a plot or regional scale
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remains a challenge given soil heterogeneity, diversity of plant eco-

physiology and a variety of vegetative and canopy structures. Sap flux

measurements suffer from similar scaling challenges (Schaeffer, Wil-

liams, & Goodrich, 2000); however, our field site has an unusually

robust sap flux network that has been successfully statistically scaled

to plot-level water fluxes (Matheny, Bohrer, Vogel, et al., 2014). Scal-

ing individual soil and tree isotope measurements to the plot-level

remains difficult (Sutanto et al., 2014).

5.4 | Implications and directions of future work

Moving forward, we show that continuous analysis of δa and routine

measurements of δx or δp can efficiently record FT. Researchers

should make measurements for the source water (δx) or precipitation

(δp) approaches based on site-specific characteristics such as species

distribution, expected δs heterogeneity and the frequency of precipi-

tation events. Neither approach requires laborious leaf chamber mea-

surements, and both are founded on a steady-state assumption about

δT that is valid for midday (Figure 7) and seasonal (e.g., Wei

et al., 2015) isotopic ET partitioning. In contrast, assumptions of

steady-state δT may not suffice for questions related to isotope and

water cycles on subdiurnal timescales (e.g., Aron et al., 2019; Simonin

et al., 2013; Welp et al., 2012). On this relatively short timescale,

nonsteady-state δT measurements inform how transpiration forces the

isotopic composition of atmospheric water vapour and may help vali-

date the Craig and Gordon (1965) model that is commonly used to

estimate δT and δE (e.g., Dubbert et al., 2013; Dubbert et al., 2014;

Good et al., 2012; Hu et al., 2014). Additionally, studies that measure

and model δT can partition species-specific FT to learn about species-

specific hydrology and responses to environmental conditions. Obser-

vation of δT may also improve the parameterization of kinetic isotope

effects during evaporation and transpiration, which remains a major

challenge in isotope ecohydrology research (Quade et al., 2018).

Overall, continued efforts to accurately measure and understand

local transpiration are critical to expand our knowledge of continental

water recycling and understand the role that plants play in regulating

water budgets. This study examines forest ET fluxes; additional obser-

vations from environments such as wetlands and tundra are still

needed to assess how hydrologic processes are represented in LSMs

and to monitor how water and energy fluxes respond to climate and

land use change. Currently, almost all LSMs underestimate FT. Recent

and ongoing efforts to incorporate water isotopes into LSMs

(e.g., Wong et al., 2017) may improve our understanding of land–

atmosphere water fluxes, but these models must be validated with

measurements of local δT and FT.

6 | CONCLUSIONS

We present direct, species-specific measurements of δ18OT from

three broadleaf deciduous trees and estimate the contribution of

transpiration to the ET flux in a mixed deciduous forest. The

methodology to make δT measurements in a field setting is new,

and these are among the first δT results obtained from a forest

environment. δ18OT deviated from isotopic steady-state on sub-

diurnal timescales but did not exhibit a clear species-specific pat-

tern. Using water isotopes, we found that the FT was invariant

during the day, which indicates that similar atmospheric and

micrometeorologic conditions control evaporation and transpiration

fluxes at this site. We find strong midday agreement between iso-

topic steady-state, isotopic nonsteady-state and ecohydrologic

(eddy covariance and sap flux) estimates of FT, which suggests that

assumptions of steady-state δT may suffice for other forest ET par-

titioning studies. Agreement between the isotopic and

ecohydrologic partitioning techniques, in particular the absence of

a diurnal cycle using either approach, should encourage use of the

isotopic ET partitioning method in environments where it is impos-

sible or logistically impractical to install sap flux sensors. Transpira-

tion and ET remain challenging fluxes to measure, model and

predict, but water isotopes can help improve our understanding of

these important hydrological processes. Future work on nonsteady-

state δT will improve the utility water vapour isotopes as a tool to

study land–atmosphere water exchange, while steady-state assump-

tions of δT and isotopic ET partitioning can provide insight into the

role of plants in terrestrial water cycling.
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