
Real-time Observations of Quasicrystal Formation 
 

 

by 

 

Insung Han 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Materials Science and Engineering) 

in the University of Michigan 

2020 

Doctoral Committee: 

 

Assistant Professor Ashwin J. Shahani, Chair  

Professor Sharon C. Glotzer  

Professor Emeritus John W. Halloran 

Professor Emmanuelle Marquis 

 



   

 

 

 

 

 

 

 

 

 

 

 

Insung Han 

  

insungh@umich.edu  

  

ORCID iD:  0000-0002-9831-8505  

 

  

  

© Insung Han 2020 

 
  



   

 ii 

Acknowledgements 

 

 

I am very thankful to my PhD advisor, Prof. Ashwin J. Shahani, for his consistent 

guidance, patience and support since I joined the Shahani Research Group as a graduate student 

in 2017. Prior to joining the group, I only had little background knowledge about quasicrystals, 

synchrotron-based characterization and computational techniques, so it took me quite a lot of 

time to get started and learn everything from scratch. Without his advice and encouragement 

over the past years, I would not have learned and grown so much as a student, a scientist, and a 

colleague. 

 I would like to thank Prof. John W. Halloran, Prof. Sharon C. Glotzer, and Prof. 

Emmanuelle Marquis for their valuable service on my doctoral committee. The discussions and 

feedback during my preliminary exam and data meeting guided me to think more deeply about 

the fundamental backgrounds, experimental techniques and my research results. Consequently, I 

could broaden my perspective and have more confidence when I completed each step of the 

requirements toward the PhD degree.  

 I appreciate the fun times and trips spent together with my fellow colleagues, Dr. Nancy 

Senabulya, Dr. Ning Lu, Dr. Hadi Parsamehr, Dr. Saman Moniri, Caleb Reese, Jiwoong Kang, 

Geordie Lindemann, Paul Chao, Yeqing Wang, Matt Higgins, Zhucong Xi, Mushfequr Rahman, 

Ron Keinan and Megan Wiltse, and their very helpful feedback on my research. They have 

always been supportive with their brilliant ideas. 

 Special thanks to the dedicated staffs at the Michigan Center for Materials 

Characterization, especially to Dr. Haiping Sun and Dr. Kai Sun for teaching me how to operate 

the instruments following safety protocols and sharing their time to discuss research projects. In 

addition, I would like to thank to the staffs at the Lurie Nanofabrication Facility, especially 

David Sebastian and Katharine Beach for helping me find optimized sample condition, which 

was extremely sensitive.  



   

 iii 

 I am very grateful to my research collaborators, Dr. Xianghui Xiao (Brookhaven National 

Laboratory), Dr. Joseph T. Mckeown (Lawrence Livermore National Laboratory), Dr. Matt J. 

Kramer and Dr. Cai-Zhuang Wang (Ames Laboratory), Dr. Vincent de Andrade (Argonne 

national Laboratory) and Kelly Wang (University of Michigan) for their experimental assistance 

and devoted help. Without their support, I could not have such valuable research opportunities. 

 I am also grateful that the University of Michigan has provided resources and facilities 

and my funding source, the U.S. Department of Energy (contract no. DE-SC0019118) has 

supported my PhD study. 

 Last but certainly not least, I would like to express my gratitude to my parents, Youngha 

Han and Hyunju Kong, brother, Hee-sung Han and girlfriend, Ain Hwang for their support 

throughout the years. 

 

  



   

 iv 

 

 

 

 

 

Table of Contents 

 

Acknowledgements ii 

List of Tables vii 

List of Figures viii 

Abstract xxii 

Part I. Theoretical Background 1 

Chapter 1. What Are Quasicrystals? 2 

1.1. A short history of quasicrystals 2 

1.2. Crystal structure and structural complexity of quasicrystals 3 

1.3. Phason mode, Phason flip, and Phason strain in quasicrystals 5 

1.4. Quasicrystals and their approximant phases 7 

 

Chapter 2. Nucleation and Growth Mechanisms 9 

2.1. Nucleation 9 

2.1.1. Classical nucleation theory 9 

2.1.2. Nucleation in quasicrystal-forming systems 11 

2.2. Growth 12 

2.2.1. Diffusion limited growth 12 

2.2.2. Interface limited growth 13 

2.2.3. Dendritic growth 14 

2.2.4. Mullins-Sekerka instability 16 

2.2.5. Growth of metastable phases 19 

2.2.6. Growth of complex intermetallics, including quasicrystals 21 

 



   

 v 

Part II. Experimental Methods 23 

Chapter 3. Experimental Methods 24 

3.1. Synchrotron-based X-ray absorption tomography 25 

3.1.1. Basic principles 25 

3.1.2. Sample preparation 25 

3.1.3. Data collection and reconstruction 27 

3.1.4. Segmentation of 2D reconstructed images and volume rendering 27 

3.1.5. Microstructure analysis 28 

3.1.6. Compositional analysis 29 

3.2. Dynamic transmission electron microscopy 30 

3.2.1. Basic principle 30 

3.2.2. Sample preparation 31 

3.2.3. X-ray absorption spectroscopy measurement 31 

3.2.4. DTEM experiment 32 

3.2.5. Finite element analysis (FEA) simulation 32 

 

Part III. Results and Discussion 34 

Chapter 4. Growth and Dissolution of a Decagonal Quasicrystal 35 

4.1. Experimental backgrounds 35 

4.2. Microstructure evolution 37 

4.2.1. 3D full volume reconstructions 37 

4.2.2. Analysis of ten-fold plane 38 

4.3. Analysis of liquid phase compositions 39 

4.4. Growth 41 

4.4.1. Growth in aperiodic directions 41 

4.4.2. Growth in periodic directions 45 

4.5. Dissolution 46 

 

Chapter 5. Growth of Approximant X phase and Comparison with d-QC 48 

5.1. Microstructure evolution 49 

5.2. Nucleation dynamics: d-QC vs. X phase 50 



   

 vi 

5.3. Growth dynamics: d-QC vs. X phase 54 

5.4. Connection between stability and solidification rate 58 

 

Chapter 6. Kinetic and Equilibrium Shapes of an Icosahedral Quasicrystal 60 

6.1. Growth shape and equilibrium shapes of an icosahedral quasicrystal 61 

6.2. Comparison to theory 63 

 

Chapter 7. Growth Interaction of Quasicrystals 65 

7.1. Growth of single quasicrystals by solidification route 65 

7.2. Growth of single quasicrystals by grain coalescence 66 

7.3. Experimental studies of grain coalescence 67 

7.4. Molecular dynamics studies of grain coalescence 71 

7.5. Details on molecular dynamics simulations 80 

 

Chapter 8. Formation of Metastable Dendritic Quasicrystals in the Solid-state 82 

8.1. DTEM experiment 83 

8.1.1. Initial condition 83 

8.1.2. Quasicrystal growth from approximant matrix 84 

8.2. Development of interface instabilities 87 

8.3. Insights from ab initio MD simulations 90 

 

Part IV. Conclusions & Outlooks 95 

Appendix A. Rapid solidification and stability of interfaces 99 

Bibliography 102 



   

 vii 

List of Tables 

 

Table 3.1. Physical properties used in FEA simulation 33 

 

Table 4.2. Kinetic coefficients of undercooling in a liquid phase, 𝛽
𝑚

,  of various crystals, as 

determined from both experiments and simulations.  The values of  𝛽
𝑚

 of aperiodic crystals are 

all significantly smaller than those of periodic, elemental metallic crystals by approximately six 

to nine orders of magnitude, and those of periodic, intermetallic crystals by two to eight orders of 

magnitude, indicating a slower growth rate. The kinetic coefficient derived here for the d-QC 

phase is consistent with other studies on the i-QC phase. 44 

 

Table A1. Hierarchy of equilibrium. Reprinted from [216]. 99 

 



 viii 

List of Figures 

 

Figure 1.1. (a) 2D space filling with pentagonal structural motifs. (b) Ten-fold diffraction pattern 

from an AlCoNi decagonal QC, along [00001] zone axis, reprinted from [2]. 2 

 

Figure 1.2. Examples of (a) Ideal tiling, (b) random tiling, and (c) cluster-based models. 

Reprinted from [10, 13, 14], respectively. 4 

 

Figure 1.3. 2D embedding of the 1D Fibonacci sequence. (a) A strip with an irrational slope of 

1/τ (τ: Golden ratio, 
1+√5

2
) with height w acts as window for projection (cf. rational slope is 

achieved from periodic crystals). The lattice points inside the strip are projected onto its parallel 

space (x-axis, V||). The resulting pattern in 1D is the Fibonacci sequence. (b) In reciprocal space, 

each lattice point is convoluted with the Fourier transform. The Fourier transform of the 1D 

Fibonacci sequence is obtained by ‘cutting’ the Fourier transform of the strip (white double lines). 

Reprinted from [16] 5 

 

Figure 1.4. Example of the structure change by a phason flip observed in the HRTEM image at 

1123 K in AlCuCo d-QC. Reprinted from [25]. 6 

 

Figure 1.5. One layer of the approximant X-phase (Al9(Co,Ni)4) of decagonal QCs with 

highlighted pentagonal structure motifs. Reprinted from [48]. 8 

 

Figure 2.1. Quasicrystal-enhanced nucleation. Schematic drawings of the possible mechanism 

leading to the formation of Al multiple twinned grains from an existing icosahedral phase in 

undercooled liquid. Reprinted from [61].  12 

 



   

 ix 

Figure 2.2. Schematic drawing of the energetic situation at a smooth interface where an energy 

barrier impeding atom attachment exists. Reprinted from [63] 13 

 

Figure 2.3. Schematic drawing of terrace-ledge-kink model of interface, corresponding to n = 1, 

and a screw dislocation, corresponding to n = 2. The integer exponent determines the surface of 

growing phase. Reprinted from [63, 66] 14 

 

Figure 2.4. Conditions for constitutional undercooling at the solid- liquid interface and resultant 

structures. Reprinted from [49]. 15 

 

Figure 2.5. Resultant morphologies (first low), concentration (second low) and temperature 

profiles (third low) of dendrites in pure metals (a,b) and alloys (c,d). Reprinted from [49]. 16 

 

Figure 2.6. Rc delineates stability of a sphere as a function of its radius (y axis) and 

supersaturation (x axis). Below this solid line, the interface is stable (hatched region); above, it is 

unstable.  Dashed curve gives critical nucleation radius 𝑅∗and broken curves (1-2) represent 

possible growth pathways of particles. Reprinted from [69]. 18 

 

Figure 2.7. Free energy vs. temperature curves illustrating possible free energy change during 

heating and solidification cycles for a single component system. Reprinted from [72].  19 

 

Figure 2.8. Gibbs free energy curves of thermodynamically stable α and β phases at Cα(eq). A 

slight supersaturation changes the slope of the tangent line and provide a driving force to form 

the metastable γ phase. Reprinted from [72]. 20 

 

Figure 2.9. Decomposition of thermodynamically metastable γ phase to thermodynamically 

stable α phase. Reprinted from [72].  

 21  

Figure 3.1. Spatial and temporal resolutions of various characterization techniques. Reprinted 

from [84]. 24 

 



   

 x 

Figure 3.2. Schematic drawings of experimental setups for X-ray microtomography experiment 

on QC solidification. 25 

 

Figure 3.3. Equilibrium phase diagrams of (a) a pseudo-binary Al100-2xNixCox [46] and (b) Al80-

xPd20Mnx [87]. Note ’D’ and ‘I’ represent d-QC and i-QC, respectively. The regions of interest for 

Ch.4, Ch.5 and Ch.6 are highlighted on the phase diagrams. 26 

 

Figure 3.4. (a) 3D microstructure consists of triangular mesh. (b) A triangle face that belongs to 

the triangular mesh. 𝑣, 𝑒, and �̂� denote the vertex, edge, and normal vector of the triangle face i.

 28 

 

Figure 3.5. Schematic of movie-mode DTEM. Reprinted from [97]. 31 

 

Figure 4.1. System-of-interest.  (a) Electron diffraction pattern of the solid QC phase, which proves 

unambiguously the decagonal symmetry of the QC phase in the Al-Ni-Co system. The scale bar 

measures 2 nm-1.  (b) Partial section of the Al100-2xNixCox pseudo-binary, equilibrium phase 

diagram as measured by Yokoyama et al. [46]. 𝐿 and 𝐷 indicate the liquid and decagonal QC 

phases, respectively.  (c) Calculated, alloy composition within the FOV during the XRT 

experiment (red) superimposed on the same phase diagram (black). The region plotted in (c) 

corresponds to the blue boxed region in (b).  The solid QC grows and then melts due to the “pile 

up” of Al in the liquid phase. The dotted line indicates extrapolated compositions. 36 

 

Figure 4.2. Three dimensional reconstructions (bird’s eye view, see inset) of d-QC growth and 

melting during continuous cooling. The temperature decreases from left to right as a function of 

reaction time. Temperatures and times are as follows:  1259.8 K (800 sec), 1259.2 K (840 sec), 

1255.8 K (1040 sec), 1251.8 K (1280 sec), 1247.8 K (1520 sec), 1243.8 K (1760 sec), 1239.8 K 

(2000 sec), 1235.8 K (2240 sec), 1234.5 K (2320 sec) and 1233.8 K (2360 sec) respectively. The 



   

 xi 

start of the clock (0 sec) corresponds to the start of the XRT experiment. Scale bar measures 100 

µm. 37 

 

Figure 4.3. Evolution of the ten-fold plane as a function of time for QC (a) growth and (b) 

dissolution. Isochrones of the solid-liquid interface are colored according to their interfacial 

velocity, which is positive for growth and negative for melting. During growth, the QC develops 

ten distinct facets (numbered from 1 to 10), while during dissolution, the QC loses these facets and 

becomes increasingly rounded.  Discontinuities in the calculation of interfacial velocity for facet 

1 and 10 are due to the fact that the QC grows out of the tomographic FOV when it is largest.  

Scale bar measures 50 µm. (c) Average normal velocity of each facet.   39 

 

Figure 4.4. Analysis of time-dependent driving force. (a)  X-ray projection images collected at 

1272.5 K (40 sec, top image) and 1247.8 K (1520 sec, bottom image) during continuous cooling, 

respectively. The region contained in the first white box (“1”) was used to calibrate the average 

intensity from the liquid, < xCo,Ni
L > (t), and the second white box (“2”) was used to calibrate the 

average intensity from the QC. The wrinkles in the bottom image are due to the thin oxide skin. 

Scale bars measure 100 µm. 39 

 

Figure 4.5. (a) Average facet velocity of the ten quasicrystalline facets of the decagonal QC (red) 

and kinetic driving force (blue), during the growth process.  The driving force of supersaturation 

was calculated by subtracting the equilibrium liquid composition from the instantaneous liquid 

composition, see text and Eq. 4.1 for details. Errors in the measurement of average facet velocity 

are due to small errors in segmentation while those in the calculation of driving force are attributed 

to errors in the calibration of the phase compositions at equilibrium.  (b) Average facet velocity 

vs. driving force. The slope gives the kinetic coefficient 𝛽
𝑠
 associated with the growth process.

 41 

 



   

 xii 

Figure 4.6. Number of atoms in unit cell (cluster) vs. kinetic coefficient 𝛽
𝑚

 plot showing the larger 

unit cell (cluster), the more sluggish growth rate (smaller 𝛽
𝑚

). The source of the kinetic 

coefficients  𝛽
𝑚

 are Table 4.1. 45 

 

Figure 5.1. Three dimensional reconstructions of (a-e) Al-Co-Ni 𝑑-QC growth, and (f-j) its 

dissolution (in green), followed by (k-t) 𝑋 phase crystallization (in red) during continuous cooling 

(1 K min-1). The 𝑧 axis in the specimen frame points along the rotation axis of our cylinder sample. 

Temperatures and times are as follows: (a) 1259.8 K (800 s), (b) 1259.2 K (840 s), (c) 1257.2 K 

(960 s), (d) 1253.2 K (1200 s), (e) 1247.8 K (1520 s), (f) 1243.5 K (1780 s), (g) 1238.5 K (2080 

s), (h) 1235.2 K (2280 s), (i) 1233.8 K (2360 s), (j) 1233.8 to 1227.2 K (2360 to 2760 s), (k) 1227.2 

K (2760 s), (l) 1226.8 K (2780 s), (m) 1226.5 K (2800 s), (n) 1226.2 K (2820 s), (o) 1225.8 K 

(2840 s), (p) 1224.5 K (2920 s), (q) 1220.8 K (3140 s), (r) 1218. 8 K (3260 s), (s) 1217. 8 K (3320 

s), and (t) 1215.5 K (3460 s), respectively. The times given in the parentheses are with respect to 

the start of the XRT experiment at 1273.2 K (0 s). A thin grey layer indicates the Al2O3 protective 

skin of the molten alloy sample that was grown naturally by thermal oxidation. We observe the 

nucleation and growth of a single d-QC at high temperatures and multiple X phase crystals. 49 

 

Figure 5.2. (a) Number of nucleated 𝑋 phase crystals as a function of time 𝑡 following the first 

nucleation event at time 𝑡 = 𝑡0. Only those nucleation and growth events that occurred within the 

tomographic FOV are recorded. Nucleation is heterogeneous and takes place on either existing 

crystal surfaces or the protective Al2O3 oxide skin of the sample, with nearly equal probability. (b) 

Length of the “long axis” (parallel to the crystallographic 𝑏 direction) of X phase crystals versus 

time (red curves). Shown for comparison is the growth trajectory of d-QC along its long axis 

<00001> (green curve). All lengths were measured when the crystals were fully contained within 

the tomographic FOV except crystal #10; the cross mark at 𝑡 − 𝑡0 = 380 𝑠 for crystal #10 

indicates that it grew out of the tomographic FOV during the in situ experiment. Measurement 

errors for crystal (a) numbers and (b) lengths are minimal and arise from counting statistics. 

Superimposed 3D reconstructions of X phase crystals that nucleated heterogeneously from (c) the 

existing crystal surface and (d) protective Al2O3 oxide skin of the sample. Both (c) and (d) contain 



   

 xiii 

four different time-steps with a temporal discretization of 20 s, rendered with decreasing opacity 

(from opaque red to translucent yellow). The thick arrows in (c, d) indicate where the nucleation 

first occurred and the dashed line in (d) indicates where the reconstructed data were cropped for 

ease of visualization. The grey region represents the Al2O3 oxide skin.   50 

 

Figure 5.3. Mass fractions 𝑓𝑠 of the solid 𝑑-QC (red) and X phase (blue) vs. relative temperature 

𝑇 – 𝑇𝐿, where 𝑇𝐿 represents the liquidus temperature of either phase. Both curves were calculated 

using the recent CALPHAD-based assessment of the Al-Co-Ni system from [108]. The first 

derivative 𝑑𝑇 𝑑𝑓𝑠⁄  of these two curves in the limit of 𝑓𝑠 → 0 represents the growth restriction 

factors (GRF) of the d-QC and X phase (see inset). The 𝑋 phase has a higher GRF by a factor of 

around 1.5. 53 

 

Figure 5.4. (a) Solid-liquid interfaces coloured by the local interfacial velocity at 1216.8 K. 

Positive interface velocity represents growth and negative velocity represents dissolution. The 

shown viewpoint is parallel to the specimen 𝑦-axis and the crystallographic <010> direction. The 

red dashed box was used to calculate the growth velocity 𝑉 of a single 𝑋 phase crystal, see text for 

details. (b) Interfacial isochrones with 80 s time increments within the dashed boxed region. The 

grey arrow indicates the motion of the facet in time. The represented temperatures and times are 

as follows: 1226.2 K (2820 s), 1224.8 K (2900 s), 1223.5 K (2980 s), 1222.2 K (3060 s), 1220.8 

K (3140 s), 1219.5 K (3220 s), 1218.2 K (3300 s), 1216.8 K (3380 s), and 1215.5 K (3460 s).  54 

 

Figure 5.5. (a) Calculated liquid composition (< cCo, Ni
L  >, in red) during XRT experiment, 

superimposed on a portion of the pseudobinary Al1−2𝑚Co𝑚Ni𝑚 phase diagram (0.074 ≤ 𝑚 ≤

0.088) that shows the equilibrium liquidus curve (cCo, Ni
L,equil

, in black). Errors in the calculation of 

the former are due to slight differences in the sample thickness between independent 

measurements, which in turn may influence the intensity 𝐼 of the forward attenuated beam (by the 

Beer-Lambert law, 𝐼 ∝ 𝑒−𝑑, where 𝑑 is sample thickness). The horizontal spacing between the red 

and black curves represents the supersaturation driving force at a given time and temperature. (b) 

Average facet velocity of a freely-growing 𝑋 phase crystal (in red, see also Fig. 5.4(b)) and 



   

 xiv 

supersaturation (in blue), during the growth process. (c) Average facet velocity vs. driving force 

of d-QC and X phase. The slopes give the kinetic coefficient 𝛽𝑠 which is associated with the growth 

process (i.e., Eq. 4.1 with 𝑛 = 1). 56 

 

Figure 6.1. (a) Two-dimensional isochrones of a solid Al-Pd-Mn i-QC in the x-z plane during 

solidification, where color indicates the passage of time. The corresponding temperatures are as 

follows from the red isochrone to blue isochrone: 894.5 °C, 893.5 °C,  892.5 °C,  891.5 °C,  890.5 

°C,  889.5 °C,  888.5 °C,  887.5 °C, and 886.5 °C. (b) 3D renderings of the i-QC at an early stage 

of growth (approx. 420 s following nucleation); the growth shape corresponds to a pentagonal 

dodecahedron (see inset schematic). (c) 3D rendering after growth has nearly commenced (approx. 

720 s following nucleation), wherein interfacial velocities are near-zero; the equilibrium shape 

corresponds to a truncated dodecahedron (inset). All scale bars are 100 μm. 

 61 

 

Figure 6.2. Facet velocities (a), areas (b), and area fractions (c), as function of time. The time axis 

is divided into growth “G” and equilibrium “E” regimes, for reasons that are discussed in the text. 

The six facets visible are color-coded according to the dodecahedron inset in (a). “Facet 7” 

represents three-fold facets of the near-equilibrium shape. Gravity points into the page with the 

purple facet perpendicular to the gravitational field. Inset scale-bar in (a) measures 100 μm. Error 

bars represent standard deviations in the velocity and area of patches of solid-liquid interfaces.

 62 

 

Figure 7.1. Tracking grain impingements in real-time. (a) Side view (z − x in the specimen frame) 

of two d-QCs with parallel {00001} long axes, observed after 50 min of cooling (1 °C/min) from 

1020 °C. (b) Birds-eye view (x − y) of quasiperiodic plane corresponding to boxed region shown 

in (a). (c) Side view of d-QCs with non-parallel {00001} long axes, observed at the same timestep 

as in (a). (d) Birds-eye view of the boxed region shown in (c). Isochrones of the solid-liquid 

interface in (b) and (d) are colored to illustrate the passage of time, with early times in red and late 

times in blue. Times taken after cooling and temperatures in (b) and (d) are as follows: 10 min 

(1010 °C), 20 min (1000 °C), 30 min (990 °C), 40 min (980 °C), 50 min (970 °C), 60 min (960 



   

 xv 

°C), 70 min (950 °C), 80 min (940 °C), 90 min (930 °C), 100 min (920 °C) and 110 min (910 °C). 

Yellow regions in (b) and (d) highlight the evolution of the grain boundary groove in time. 67 

 

Figure 7.2. X-ray diffraction pattern of water-quenched Al79Co6Ni15 alloy from an initial 

temperature of 970 °C. Rapid quenching prevents peritectic decomposition of d-QCs (i.e., 𝐿 +

 𝑄𝐶 → 𝐴𝑙3𝑁𝑖1). Diffraction peaks from d-QCs are indexed accordingly. The peaks marked with 

black and red symbols correspond to the Al3Ni1 and aluminum oxide, respectively. 68 

 

Figure 7.3. Stereographic projections of interface (facet) normal distributions of d-QC seeds on 

the (a) left-hand-side, (b) right-hand-side in Fig.1(b) after 50 min of cooling and (c) the coalesced 

d-QC after 110 min of cooling. Zone axis of projections is <00001> in all cases. Consequently, 

the QCs in (a,b) possess parallel long axes and small (<1°) misorientation in the aperiodic plane. 

𝑃(𝑛) represents the probability (weighted by area fraction) of finding an interfacial normal along 

a particular direction. Peaks in the distribution indicate a highly anisotropic or faceted structure. 

In principle, a facet should have a single (discrete) orientation, yet the peaks have finite width here. 

This is likely a result of mesh smoothing. (d) Radial distribution of facet orientations obtained 

from 40 min to 110 min. The red, blue, and purple colors represent the d-QC seeds on left- and 

right-hand-side (before impingement) and the coalesced d-QC, respectively. Angular 

measurements start at the 12 o'clock position of the stereographic projection (see (a)) and increase 

clockwise. Two facets (peaks) are separated by an angle of nearly 36 degrees, which is consistent 

with a decaprismatic morphology of the d-QC phase. 70 

 

Figure 7.4. Changes in particle orientation (θ) toward near-equilibrium configurations (~25 

million simulation timesteps) are shown. Left: Histograms of simulated (yellow to green lines) and 

expected particle orientation (grey peaks). Yellow indicates earlier timesteps while green indicates 

later timesteps. Grey peaks are expected probability density functions (PDF) for the reference grain 

(θ = 0°) and rotated grain. PDFs are calculated from single-seeded simulations. Peaks for the 

reference seed are centered at θ = 0° and peaks for the rotated seed are centered at θ = (a) 3°, (b) 

9°, (c) 10°, and (d) 15°, respectively. Right: Spatially-binned simulation frames at 25 million 



   

 xvi 

timesteps for each set of seeds. Scale bars for local orientation are below each histogram (left) and 

correspond to the orientation in the histogram axes, where bright blue corresponds to particles that 

align with the reference seed (θ = 0°). Bright orange corresponds to particles that align with the 

rotated seed, where θ = (a) 3°, (b) 9°, (c) 10°, and (d) 15°. Black area corresponds to angles along 

the shortest arc between 0° and the rotated seed and white area corresponds to angles along the 

longest arc between 0° and the rotated seed. 71 

 

Figure 7.5. Diffraction patterns of the coalesced structure, when the initial misorientation between 

two QCs is (a) 3°, (b) 9°, (c) 10° and (d) 15°, respectively. The patterns correspond to the results 

in Fig. 7.4. Note (a) and (b) are indicative of a single d-QC. On the other hand, the diffraction 

patterns of (c) and (d) suggest the presence of two d-QCs with different orientation. Thus, the 

diffraction pattern represents the superposition of two single QC patterns. The scattered pattern in 

(c) reflects the effect of rotation toward the intermediate angle, so that the misorientation between 

the two ten-fold patterns in (c) is approximately 6°. (d) shows a misorientation of ~15°, which 

corresponds to the initial misorientation between the seeds. 73 

 

Figure 7.6. Density modes associated with one pair of Bragg peaks (one basis vector and its 

negative) for (a) 3°, (b) 9°, (c) 10° and (d) 15° initial misorientations. (a-d) corresponds to the 

diffraction pattern in Fig. 7.5(a-d). The presence of partially different contrast in (a-d) indicates 

regions with local phonon strain as highlighted in red in (a). On the other hand, the distinctive 

contrast in (c,d) is associated with different grain orientations, as highlighted in yellow in (c).  74 

 

Figure 7.7. Real-space images of a single density mode [175] when merged QCs reach the last 

frame in MD simulation (~2.5 × 107 simulation timesteps) with (a) 3° and (b) 15° initial 

misorientations. Dislocations are highlighted with red circles, (a) and (b) are cropped to provide a 

magnified view from the images that represent full volume. We focus on the region where the two 

QCs collide. (c) Relationship between the initial misorientation and number of dislocations along 

the grain boundary in the coalesced structure. We find that there are few dislocations (if any) at 

low (θ < 9.5°) initial misorientation, since two QCs can rotate toward θ = 0° (cf. (a)). Conversely, 



   

 xvii 

there are many dislocations when two QCs cannot minimize the misorientation between them. The 

error bars were calculated from multiple dislocation analyses to retain consistency of our approach.

 74 

Figure 7.8. Tiling calculated at the ~2.5×107 simulation timesteps of (a) single QC growth, and 

growth from two QCs with (b) 9° and (c) 18° misorientations. We classified five tiles [173] into 

four classes (see inset in (a)). From largest to smallest, the four classes are colored in light blue, 

yellow, green, and grey. The red tiles indicate the initial QC seed positions. Images are cropped 

from the full volume for better visualization. (a) and (b) demonstrate few, dispersed tiling 

violations (white regions) that are not assigned to tiles), whereas tiling violations in (c) are 

concentrated along the grain boundary region (boxed in black). These findings support the 

formation of a single QC and a grain boundary, respectively. 75 

 

Figure 7.9. Tangential motion of crystals along planar grain boundary typically occurs in response 

to an applied stress σ. Elastic distortions are small and not depicted. (a) Original bicrystal, showing 

grain boundary and the trace of a plane in each crystal. The positions of atoms along this trace is 

followed in the other parts of this figure. (b) Sliding without interface motion (greased boundary), 

(c) Coupling of relative tangential translation of crystals with interface normal motion without 

sliding; direction of interface normal motion determined by the coupling. (d) Coupling and sliding. 

Reprinted from [164]. 75 

 

Figure 7.10. Growth of a single d-QC from two seeds (labeled A and B) with 3° misorientation 

(a) during early stages of grain growth; (b) immediately after collision; (c) after collision, grain 

rotation to minimize misorientation; (d) early stages of grain coalescence; (e) after grain 

coalescence. All heatmaps are cropped according to the inset shown in (e) from the total volume. 

Subplots (a-e) are colored on the basis of an expected particle seed distribution Fig. 7.4(a). 

Contiguous regions of white in subplots (a-e) correspond to liquid regions. Arrows in (b-c) point 

to the GB grooves at the QC-liquid interfaces. 77 
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Figure 7.11. Growth of an FCC crystal with 3° misorientation between seeds at (a) 1.50 × 105, (b) 

1.65 × 105, (c) 1.80 × 105, (d) 1.95×105, (e) 2.55×105, (f) 3.0×105 timesteps. Although the uniform 

color distribution suggests global rotation of misoriented grains toward 0° misorientation, a 

persistent grain boundary groove (highlighted with arrows) suggests unresolved phonon strain 

along the grain boundary due to incommensurate distances between FCC lattices. 78 

 

Figure 7.12. Density modes obtained by filtering two pairs of Bragg peaks from the merged 

quasicrystals with (a) 0°, (b) 3°, and (c) 9° initial misorientations at timestep 4.0 ×105 from the 

MD simulations. The two pairs of Bragg peaks (cf. Fig.7.6) represent the two different length 

scales (long and short) in QCs. The red dots indicate the seed positions. The region boxed in (a-c) 

with yellow rectangles is segmented for further analysis with an appropriate threshold. (d), (e) and 

(f) correspond to (a), (b) and (c) respectively. (g) Phason densities calculated as a function of initial 

misorientation between seeds, using the method introduced by Freedman et al. [175]. The phason 

density was determined from the segmented images based on the areas inside of the yellow 

rectangles for misorientations of multiple 0°, 0.5°, 1°, 1.5°, 2°, 2.5°, 3°, 6°, and 9° cases. More 

specifically, we quantified the fraction of `jags', which is longer than zero and shorter than the 

longer edge of the yellow rectangles in (a-c), along the direction of the stripes. As the initial 

misorientation increases, a higher phason strain is accumulated within the grain boundary region. 

For consistency of our results, we repeated analyses on different MD simulation datasets, which 

explains the origin of the error bars. 79 

 

Figure 8.1. Comparison of local structure measurements, (a) Experimental EXAFS results of the 

pre-irradiated Al90Cr10 film and simulated Al13Cr2 structure in k-space. (b) Radial distribution 

functions (RDFs) of the annealed Al90Cr10 film, simulated Al13Cr2 structure, and Al-Cr icosahedral 

QC [184]. (c) Schematic illustrations of the approximant Al13Cr2 phase along the [104] direction 

and a Mackay cluster in Al-Cr icosahedral QC [185]. Unique rotational symmetries, such as five-

fold and ten-fold, can be found in both approximant (highlighted in red) and QC structures. 83 

 

Figure 8.2. Calculated 2D temperature profile (in the plane of the sample) upon laser irradiation 

on Al90Cr10 film with thickness of 150 nm (left) and peak temperature profile as a function of 



   

 xix 

time (right). The temperature field shown at left correspond to a time of x us after the laser was 

fired. 84 

 

Figure 8.3. Dynamics of QC precipitation following laser irradiation of Al-Cr thin film samples. 

Initial condition in (a) was the approximant phase Al13Cr2 and in (b) the Al-Cr icosahedral QC 

‘seeds’. In both cases, we focus on a single representative precipitate (in white). Time lapse 

between consecutive images is 5 µs. Note: the QC precipitate seen in (b,i) is not the same QC 

obtained in (a,ix). (c) Precipitate radius vs. time, where 0 µs corresponds to the time at which the 

laser was fired. Equivalent radii were computed based on the number of pixels that belongs to the 

growing QC phase after image segmentation. Data points corresponding to (a) and (b) are indicated 

with red and blue circles, respectively. Growth curves are compiled from multiple DTEM 

experiments. (d) TEM image of Al-Cr QC precipitate formed via laser irradiation. Inset shows a 

selected area diffraction pattern with a [000001] zone axis taken from the highlighted area. 85 

 

Figure 8.4. Energy dispersive spectroscopy mapping on Al-Cr QCs of elements (a) Al, (b) Cr, and 

(c) Al + Cr. The QC is rich in Cr and rejected Al is segregated to the interdendritic regions and 

grain boundaries. 86 

 

Figure 8.5. Scanning electron microscopy image of the laser-induced heat-affected zone in the Al-

Cr film. The major axis of the heat-affected zone measured approximately 80 µm. The average 

radius of a dendritic QC grain is approximately 2 µm. The contrast between the center and 

boundary can be attributed to the lattice with high strain after quenching, which enhances beam 

scattering. 87 

 

Figure 8.6. Calculated critical precipitate radius Rc(𝑙) for relative stability as a function of 

supersaturation. Curves correspond to the lth order spherical harmonic. Interface is radially stable 

below the neutral curve and radially unstable above it. Shaded area represents the conditions 

encountered in our DTEM experiment, the boundaries of which are determined by the maximum 

supersaturation and the average radius of the fully-grown QCs. 88 
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Figure 8.7. Concentration profile after 20 min. of annealing at 750 K. Fitting this plot to the thin 

film solution of the diffusion equation gave a Cr self-diffusivity D of 1.18 x 10 -12 cm2/s in the 

approximant phase. 90 

 

Figure 8.8. Total and partial pair correlation functions of liquid Al90Cr10 at T = 2000 K obtained 

from the MD simulation using the deep learning potential (DeePMD) are compared with those 

from ab initio simulations. Both simulations are performed using 200 atoms and averaged over 30 

ps. 91 

 

Figure 8.9. The distribution of alignment scores against various template motifs as indicated by 

the legend for (a) Al- and (b) Cr-centered clusters in the quenched Al90Cr10 liquid at T = 300 K 

with a cooling rate of 1012 K/s. 92 

 

Figure 8.10. Short-range-order (SRO) of Al90Cr10 alloy, quenched from 2200 K to 700 K at a rate 

of 1011 K/s. For reference, we show (a-c) three types of 13-atom, Cr-centered clusters in the 

approximant Al13Cr2 phase and (d) a prototypical icosahedron (i.e., the first coordination shell of 

a 55-atom Mackay cluster). Note the simulated clusters depicted in (a-d) are slightly distorted from 

the referenced icosahedra. While they may look similar, they can be distinguished from each other: 

the corresponding ratio of average Cr-Al bond lengths in (a-d) is 1.03:1.02:1.01:1.00. The green 

and gray balls in (a-d) represent Cr and Al atoms, respectively. (e) Cluster analysis on rapidly 

quenched Al90Cr10 liquid, wherein the Cr-centered motifs are compared to those shown in (a-d). 

Clusters are said to have the SRO similar to the given reference structure when their alignment 

score is below the cut-off value of 0.16 (indicated by a yellow dashed line). A low score indicates 

small deviation from the reference. 93 

 

Figure 8.11. (a,b,c) Three types of Cr sites in the approximant Al13Cr2 phase (labelled 1-3). The 

first shell (gray) surrounding each site consists of 12 atoms; the second shell (green) has 38-40 

atoms. The green and red balls in (a-c) represent Al and Cr atoms, respectively. The ratio of the 
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three sites is 1:2:4. Cluster analysis of Al13Cr2-1, -2, -3 and Mackay clusters with (d) the 13-atom 

icosahedral motif and (e) MRO superclusters in rapidly quenched Al90Cr10. 94 

 

Figure A1. (a) Schematic representation of interface velocity vs. temperature function, and 

corresponding (b) concentration profiles and (c) interface morphologies. Reprinted from [217].
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Abstract 

 

Since the discovery of quasicrystals, there have been continued efforts to explain their 

growth mechanisms given that their unique structures violate the rules of conventional 

crystallography. Despite decades of research on the topic, the growth mechanisms of quasicrystals 

remain one of the fundamental puzzles in the field of crystal growth. To elucidate the growth of 

quasicrystals, many theories have been proposed. However, there have been very few experimental 

investigations with which to test the various theories, and quasicrystal growth often accompanies 

complicated interactions and unexpected growth pathways beyond the scope of these theories. 

Therefore, to corroborate these theories, it is essential to utilize the benefits of advanced in situ 

characterization techniques, such as X-ray tomography (XRT) and dynamic transmission electron 

microscopy (DTEM). The results obtained through these advanced techniques provide direct 

evidence to support the theories, with high spatial and temporal resolutions. Especially, such in 

situ approaches allow extracting the information regarding the growth kinetics, growth shapes, and 

growth interactions which cannot be retrieved from ex situ characterization techniques.  

 In the first and primary part of this thesis, the growth of a single quasicrystal will be 

discussed. We demonstrate how growth and dissolution pathways of a decagonal quasicrystal are 

different from each other with respect to the underlying mechanism (interfacial attachment in the 

former case and bulk transport in the latter). In addition, we compare the growth kinetics of a 

decagonal quasicrystal with its crystalline approximant, which shares a similar structural motif. 

Furthermore, we investigate the kinetic and equilibrium shapes of icosahedral quasicrystals. These 

observations are only possible when we incorporate 4D (i.e., 3D space + time) approaches.  

 The second part of this thesis concerns the growth interactions between multiple 

quasicrystals. We examine the interfacial phenomena when quasicrystals impinge on each other 

using 4D XRT and describe the preconditions required for forming a single quasicrystal from 

multiple quasicrystalline nuclei or ‘seeds’ with the aid of molecular dynamics (MD) simulations. 

From the XRT results, we can directly observe the formation of a single quasicrystal based on the 

gradual disappearance of grain boundary grooves. In typical solidification experiments, it is often 
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unavoidable to produce polycrystalline materials, which often deteriorates materials’ properties. 

Therefore, our joint experiment-computational discovery paves the way toward fabrication of 

single, large-scale quasicrystals to solve engineering problems. 

 The last part of this thesis covers the solid-state phase transformation from approximant to 

quasicrystalline phases induced by a short-pulsed laser irradiation. To the best of our knowledge, 

the real-time investigation of quasicrystal growth far-from-equilibrium has not been reported in a 

time-resolved manner. Additionally, the solid-state dendritic growth is extremely rare in Nature 

and several preconditions have to be satisfied for this growth form to manifest. Interestingly, this 

study demonstrates how quasicrystals grow dendritically showing a huge deviation from their 

well-known polyhedral growth shapes and what contributes to this unique precipitation pathway. 

Through ab initio MD simulations, we identify common structural motifs that facilitate the phase 

transformation between the approximant and quasicrystalline phases. 

 Overall, the findings in this dissertation work are at the forefront of solidification science 

and have expanded our knowledge on the growth mechanisms of quasicrystals and their 

approximants using advanced characterization techniques and corresponding simulations. 
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Part I. Theoretical Background 
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Chapter 1. What Are Quasicrystals? 

 

1.1. A short history of quasicrystals 

 The discovery of quasicrystals (QCs) by Shechtman et al. was a fascinating if somewhat 

controversial event in the field of crystallography due to their unique structures [1]. This is because 

QCs are characterized by their long-range translational order and unique rotational symmetries 

(e.g. five-, eight-, ten-, and twelve- fold) which cannot be found in ordinary crystals. In plane 

language, it was known that such unique rotational symmetries cannot be used to fill 2D plane or 

3D space as depicted in Fig. 1.1(a). However, diffraction patterns of QCs provide counter-

examples, see Fig. 1.1(b). 

 

Fig. 1.1. (a) 2D space filling with pentagonal structural motifs. (b) Ten-fold diffraction pattern from an AlCoNi decagonal QC, 

along [00001] zone axis, reprinted from [2]. 

As such, the discovery of QCs led to a revision in the definition of a crystal by the International 

Union Crystallography (IUCr) to a material with discrete diffraction patterns regardless of its 

periodicity [3] and Shechtman was later awarded Nobel Prize in Chemistry in 2011 for his 

discovery.   
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 The first QCs were found in Al – 14 at% Mn alloy upon rapid quenching. Shechtman 

reported the icosahedral point group symmetry (m3̅5̅) from this alloy and the specimen displayed 

clear twofold, threefold and fivefold diffraction patterns as the sample was rotated through the 

angle of this point group [1]. The discovery of QCs with icosahedral point group symmetry, so 

called icosahedral (i-) QCs was followed by the discovery of decagonal (d-) QCs where we can 

find both two-fold periodic and ten-fold aperiodic lattices simultaneously [4].  

 The unique structure and properties of QCs led more than 11,000 publications since their 

discovery and more than 200 articles have been reported annually in recent years [5]. However, in 

spite of a number of recent articles, there are still remaining open questions as Steurer mentioned 

in his seminal review paper [5], in the realm of the structure, stability and growth of QCs. Several 

of the open questions regarding the growth of QCs have been answered with the development of 

advanced in situ characterization techniques with high temporal and spatial resolutions.  

 

1.2. Crystal structure and structural complexity of quasicrystals 

 Due to the absence of unit cells in QCs (lack of periodicity), we seek alternative ways to 

describe the complex crystal structure in QCs. For example, the Penrose tiling can be used to cover 

a plane in a nonperiodic fashion using two different types of rhombi [6-8] (which can be thought 

of as unit cells). The tiles are arranged in a way that they obey certain ‘matching rules’. The 

Penrose tiles can be expanded to fill a 3D space, as well. In that case, the 3D space can be filled 

with rhombohedrons instead of rhombi [7].  If the quasicrystalline structure follows the Penrose 

tiling, it is considered that the quasicrystalline structures are ideal QCs, or devoid of defects. 

However, in practice, it is more widely acceptable that quasicrystalline structures are explained by 

randomly assembled tiles, incorporating microscopic disorder and Bragg peak scattering [9]. Since 

the ideal tiling model cannot explain the disordered structure, we alternately use a random tiling 

model [10, 11] in which a class of configurations corresponding to tiling of the plane with rhombi 

is assumed to occur with the same probability to explain this structure. In addition, quasicrystalline 

structures can be explained by the cluster-based model in which overlapping clusters or quasi-unit-

cells fill the 2D plane or 3D space [12, 13]. All of these theories describe the basic building blocks 

of aperiodic structures. Fig. 1.2 demonstrates the examples of the ideal tiling, random tiling and 

cluster-based models.  
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Fig. 1.2. Examples of (a) Ideal tiling, (b) random tiling, and (c) cluster-based models. Reprinted from [10, 13, 14], respectively.  

Due to the aperiodicity in at least one dimension in QCs, it is not possible to describe the 

structure using three-integer Miller indices to label observable Bragg reflections. In order to assign 

integer indices on the diffraction patterns of QCs, we need five (for d-QC) or six (for i-QC) linearly 

independent vectors [15]. The necessary ‘n’ vectors span an n-dimensional reciprocal space and 

therefore there needs to be an n-dimensional direct space where a structure can be built. In this 

high-dimensional space, we can describe a QC as a periodic crystal [15]. In addition, the n-

dimensional space can be separated into orthogonal subspaces, V|| and Vꓕ , where V|| is the parallel 

or physical three-dimensional space and corresponds to atomic positions in real space. Vꓕ  

corresponds to the (n-3)-dimensional perpendicular space and can be represented by an extended 

polyhedral distribution function called an occupation domain or atomic surface [15]. This means 

that the kind of long range order of a quasiperiodic structure is not only coded in the n-dimensional 

Bravais lattice type but also in the position, size and shape of the atomic surfaces [5]. The actual 

quasicrystalline structure in the physical space can be obtained by an appropriate projection of 

high-dimensional space onto low-dimensional space (see Fig. 1.3). Hence, it is reasonable to state 

that there exists a unit cell in the n-dimensional structure. The contents of such n-dimensional unit 

cell consist of hyperatoms in analogy to the atoms in a normal unit cell. This allows us to describe 

the quasicrystalline structure with a finite set of parameters.   
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Fig. 1.3. 2D embedding of the 1D Fibonacci sequence. (a) A strip with an irrational slope of 1/τ (τ: Golden ratio, 
1+√5

2
) with 

height w acts as window for projection (cf. rational slope is achieved from periodic crystals). The lattice points inside the strip are 

projected onto its parallel space (x-axis, V||). The resulting pattern in 1D is the Fibonacci sequence. (b) In reciprocal space, each 

lattice point is convoluted with the Fourier transform. The Fourier transform of the 1D Fibonacci sequence is obtained by 

‘cutting’ the Fourier transform of the strip (white double lines). Reprinted from [16].  

 

1.3. Phason mode, Phason flip, and Phason strain in quasicrystals 

Phasons are a class of defect that is unique to QCs. It would be useful to define here the 

various terminologies frequently used in the QC community, such as phason mode, phason flip 

and phason strain. Even though these terminologies are sometimes used interchangeably, it is 

important to have an accurate understanding of their distinctions. For example, de Boissieu [17] 

suggested that we should keep the term ‘phason’ for phason modes only. The explanation of each 

term is below. 

 Phason modes in QCs can be introduced within the hydrodynamic theory, which is a 

phenomenological theory based on symmetry breaking arguments and group theory analysis [18]. 

Hydrodynamic equations predict a set of low frequency modes that are either propagating with a 

dispersion relation w ~ cq (w: frequency, c: velocity, q: wavevector) or diffusive relation, which is 

described as w ~ -iDq2 , where D is a diffusion constant.  

 In QCs with n-dimensional quasiperiodicity, there are 2n broken symmetry hydrodynamic 

variables, which are twice as many as in conventional periodic crystals. The first n variables 

correspond with phonon modes, which represents elementary vibrational motion in which a lattice 

of atoms uniformly oscillates at a single frequency. On the other hand, the additional n variables 

represent phason modes which are associated with the relative displacement of incommensurate 
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density waves [19]. According to Landau theory [19, 20], uniform translation of phonon and 

phason variables do not change the free energy of the system. The phason modes are applicable to 

all aperiodic crystals and show diffusion-like, collective and non-propagative excitation. The 

dispersion relation of a phason mode with wavevector q consists of a purely imaginary part and 

decays exponentially, thus different with the propagative long wavelength, acoustic phonon modes 

[18].  

 Phason flip refers to the local rearrangement process at the atomic scale (or tile scale) 

between split positions in QCs [17] by the elementary process of a phason mode [21]. A phason 

flip transforms one local configuration into a similar, energetically nearly identical one by 

overcoming an energy barrier between them. Phason flips can be either single-particle jumps or 

correlated ring-like multi-particle move [21], see Fig. 1.4. The presence of phason flips plays a 

key role in explaining enhanced atomic diffusion [22], dislocation motion [19], and structural 

phase transitions in QCs [23]. The long-wavelength phason mode can be possibly related to a local 

phason flip. In other words, such a long wavelength phason fluctuation could consist of a 

combination of local phason flips; however, this has yet to be demonstrated [24].  

 

 

Fig. 1.4. Example of the structure change by a phason flip observed in the HRTEM image at 1123 K in AlCuCo d-QC. 

Reprinted from [25]. 

  To characterize the presence of phason flips in QCs, various advanced characterization 

studies have been performed. For example, with the aid of in situ transmission electron 

microscopy, we can directly observe thermally activated phason flips, such as that shown in 

Fig. 1.4 [25-27]. In addition to such direct imaging methods, researchers have reported phason 
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flips via indirect means, such as neutron scattering [28, 29], Mössbauer spectroscopy [30] and 

nuclear magnetic resonance [31, 32] techniques. 

 Phason strain refers to a perpendicular shear strain of the periodic space [17]. When phason 

strain is relaxed, phason flips take place and there is a change in the atomic surface. From the point 

of view of the tiling picture, phason strain is evidenced by violations of the matching rules, or local 

deviations from the ground state structure [33]. In particular, the presence of incommensurate 

length scales in QCs gives rise to a possible phason strain field which contributes to diffraction 

peak shift and broadening in a manner qualitatively different from strain in periodic crystals [34]. 

Also, the phason strain reveals systematic deviation from the diffraction pattern of ideal QCs [34]. 

A more qualitative way to study the presence of phason strain is to use the relation between 

scattering vector G||, (G|| = 4π sin 𝜃/𝜆) vs. half width half maximum (HWHM) and phason 

momentum (Gꓕ ,) vs. HWHM [35]. This approach is feasible because the peak broadening in X-

ray diffraction is well accounted for by simple lattice strain with no measurable dependence of the 

peak widths on phason momentum. Specifically, the presence of phason strain can be estimated 

when HWHM and Gꓕ  are linearly proportional and HWHM and G|| are not correlated [35]. 

 

1.4. Quasicrystals and their approximant phases 

 The term “approximant” was first introduced by Elser and Henley [36] to explain the 

crystalline structure generated from a hyper-cubic crystal using a rational ratio q/p (q and p are 

consecutive numbers in the Fibonacci sequence) to substitute for the irrational golden mean, τ = 

(1 + √5)/2. Described succinctly, approximant phases of QCs are defined as structures which share 

a similar structural motif or subunits of QCs and in many cases they exhibit definite orientation 

relationships with the QCs [37].  Additionally, the approximant phase should have periodically 

stacked atomic layers and specifically for the case of d-QCs, the periodicity length in the 

approximant phase should be almost identical to that of the d-QCs or at similar to that of the 

sublattice of d-QCs [38, 39].   

 In general, these approximants phases have a complex, large unit cell and play an important 

role in understanding quasicrystalline structures. As implied above, the approximant phases can 

be found in both 2D decagonal quasicrystals and 3D icosahedral quasicrystals and can include a 

number of compositional variants. For instance, binary aluminum-cobalt phases, which are 
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approximant phases of decagonal Al-Co-Ni QCs, form a large number of equilibrium phases with 

large unit cells (e.g. Al5Co2, Al9Co2, Al13Co4, etc.) [40, 41]. The approximant phases of d-QCs 

commonly contain pseudo-decagonal structural motifs (e.g. pentagonal bipyramid, see Fig. 1.5) 

and represent similar diffraction patterns with QCs. Similarly, θ-Al13Cr2 phase [42] is known as a 

Mackay-type approximant phase of 3D icosahedral QC [43, 44]. We can find a stacking or 

overlapping of Mackay-type clusters, and thus a local pseudo-fivefold symmetry, in the Al-rich 

region of θ-Al13Cr2 alloy and other Al-TM alloys [43-45]. The phase transformation between QCs 

and approximant phases is often observed during slow cooling [46] and sometimes we can obtain 

both phases simultaneously depending on quenching rate [44, 47]. Fast quenching rates generally 

induce the formation of metastable Al-TM QCs, whereas slow quenching rates lead the formation 

of thermodynamically stable approximant phases [47].  

 

Fig. 1.5. One layer of the approximant X-phase (Al9(Co,Ni)4) of decagonal QCs with highlighted pentagonal structure motifs. 

Reprinted from [48]. 
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Chapter 2. Nucleation and Growth Mechanisms 

 

2.1.  Nucleation  

2.1.1. Classical nucleation theory 

 The transformation of one phase into another requires rearrangement of the atoms, which 

includes a short-range atomic rearrangement to form a nucleus of a new crystal structure. In 

discontinuous transformations [49], atoms of the parent phase migrate and grow into the new 

phase. However, a thermodynamic driving force is needed to induce the nucleation. This is why 

tiny clusters in liquid alloys above the melting point are metastable and do not evolve into stable 

nuclei. In this section, the driving force of nucleation will be discussed based on classical 

nucleation theory.  

 Nucleation begins at some degree of undercooling ΔT, defined as the temperature 

difference between the equilibrium (liquidus) temperature of an alloy and its actual temperature. 

Below the liquidus, the free energy change associated with the nucleation process will have the 

following three contributions: (i) a volume free energy reduction of 𝑉∆𝐺𝑣  by the creation of a 

volume 𝑉 of a stable solid phase and (ii) a free energy increase of 𝐴𝛾 by the creation of a surface 

area 𝐴 assuming the liquid-solid interface energy 𝛾 is isotropic [49, 50]. Summing terms gives the 

total free energy change as 

∆𝐺 =  𝑉∆𝐺𝑣 +  𝐴𝛾 = −
4𝜋𝑟3

3
∆𝐺𝑣 +  𝛾4𝜋𝑟2 (2.1)  

where we have ignored the strain energy and assumed a spherical solid phase of radius 𝑟. For a 

unary (single component system), one can show that ∆𝐺𝑣  is represented as  

∆𝐺𝑣 =  ∆𝑠𝑓∆𝑇 (2.2)  
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where ∆𝑠𝑓 is the entropy of fusion per unit volume. Generalizations to Eq. 2.2 for alloys are 

presented in Sec. 2.2.5. If we assume that ∆𝑇 is simply the undercooling of the liquid of the pure 

metal solidifying with a planar interface, then  

∆𝑇 =  𝑇𝑒 − 𝑇∗  (2.3) 

where 𝑇𝑒 is the equilibrium liquidus temperature and 𝑇∗ is the interface temperature. The value 

of 𝛾 is always positive whereas ∆𝐺𝑣  depends upon ∆𝑇 and is negative if ∆𝑇 is positive. This 

behavior leads to the occurrence of a maximum in the value of ∆𝐺 when the melt is undercooled, 

i.e., when ∆𝑇 is positive. The maximum can be regarded as being the activation energy which 

has to be overcome in order to form a crystal nucleus which will continue to grow. The criterion 

for the maximum is that  

𝑑∆𝐺

𝑑𝑟
= 0  (2.4) 

and can be regarded as being a condition for unstable equilibrium between a liquid and a solid with 

curvature such that the driving force for solidification is equal to that for melting [49]. 

Differentiation of Eq 2.1 yields 

𝑟0 =
2γ

∆𝐺𝑣 
  (2.5) 

∆𝐺∗ = 
16𝜋𝛾3

3∆𝐺𝑣
2   (2.6) 

where 𝑟0 and ∆𝐺∗ represent the critical radius for further crystal growth and the activation energy 

for nucleation. Before solidification can begin, at least one cluster which is as large as 𝑟0 must be 

formed. For small 𝑟, the surface energy penalty exceeds the volumetric liberation of energy, 

whereas the volumetric contribution dominates at larger radii [51]. The time which elapses before 

this occurs will be different at different locations in the melt. In this case, fluctuations 

spontaneously create a small crystalline volume in an otherwise homogeneous melt (no solid 

phase). This is referred to as homogeneous nucleation because the occurrence of nucleation 

transforms an initially homogeneous system (consisting only of atoms in the liquid state) into a 

heterogeneous system (crystal + liquid). However, when the melt contains solid particles, or is in 

contact with a crystalline crucible or oxide layer (such as our work), nucleation may be facilitated, 

even with a few K of undercooling. This is known as heterogeneous nucleation [49, 51]. 
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According to the negentropic model by Spaepen [52] and Thompson [53],  𝛾 is given as 

𝛾(𝑇) =  𝛼∆𝑆𝑓𝑇(𝑁𝐿𝑉𝑚
2)−1/3  (2.7) 

where 𝛼, ∆𝑆𝑓, 𝑁𝐿, and 𝑉𝑚 denotes dimensionless interfacial energy, entropy of fusion, Avogadro 

number and molar volume, respectively. More specifically, the parameter 𝛼 depends on the 

structure of the solid phase. It is found that i-QCs have comparatively low 𝛼 value, approximately 

0.3, compared with other FCC and BCC structures [52, 54-56] which have values in the range of 

0.7-0.85. This can be attributed to the prevalence of icosahedral short range order in undercooled 

metallic melts, i.e., the structural similarity between solid and liquid phases, which leads to a low 

interfacial energy by way of Eq. 2.7 and also a low nucleation barrier by way of Eq. 2.6. The 

short-range order in metallic melts of pure metals [57, 58] and quasicrystal forming alloys [59] has 

been demonstrated by neutron scattering studies.   

 

2.1.2. Nucleation in quasicrystal-forming systems 

The above arguments suggest that it is possible to nucleate QCs with relative ease. The 

quasicrystalline nuclei could, in turn, provide a template for crystal growth for other periodic 

crystals and contribute to the formation of nanotwinned structures [60, 61], see Fig. 2.1. According 

to Kurtuldu et al. [61], a trace amount of Cr in Al-Zn-Cr alloy contributes to forming Al-Cr 

icosahedral solid clusters prior to solidification. The Al-Cr icosahedral clusters act as inoculants, 

nucleating heterogeneously the α-Al FCC phase with the same orientation of icosahedral cluster. 

During slow solidification with cooling rate of 0.2 K/s, the metastable icosahedral phase dissolves 

through a peritectic transformation and we can eventually observe twin structures of α-Al FCC 

phase. This study indicates that trace elements favoring the formation of an icosahedral phase 

could bring a significant contribution to nucleation of periodic metals [61]. In a similar sense, 

Hornfeck et al. [60] reported a decagonally shaped solidification front in an NiZr alloy with high 

undercooling (at most 300 K) with electrostatic levitation. Tenfold microtwinning in NiZr is 

correlated to a decagonal nucleus underneath. From these studies, we can understand the 

importance of pre-existing nuclei in supercooled liquids on final microstructure under near- [61] 

and far-from [60] equilibrium conditions.  
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Fig. 2.1. Quasicrystal-enhanced nucleation. Schematic drawings of the possible mechanism leading to the formation of Al 

multiple twinned grains from an existing icosahedral phase in undercooled liquid. Reprinted from [61]. 

 

2.2.  Growth  

2.2.1. Diffusion limited growth 

The attachment of atoms on a ‘rough’ interface between a stable nucleus and a 

supersaturated matrix (either a melt or a solid) is relatively easy, because there is no energy barrier 

to overcome to become a part of growing crystal. In other words, the growth rate of the particle is 

governed by the solute flux in the matrix phase, and not by the kinetics of atom attachment 

(discussed below). The diffusion current of solute across a surface S of a non-facetted particle 

should be equal to the rate of mass change of the crystal (the so-called Robin condition) [62]. 

Hence, 

∮ 𝐼 · 𝑑𝐴 = 4𝜋𝑙2𝐷∇𝐶 = 4𝜋𝑟2 𝑑𝑟

𝑑𝑡𝑆
  (2.8) 

where 𝐼 (= −𝐷∇𝐶) is the diffusion current per unit area, 𝑑𝐴 is the differential area, D is the 

diffusion coefficient, ∇𝐶 is the solute concentration gradient in the liquid, l is the mean distance 

of an imaginary surface from the grain center, r is the radius of the crystal, and dr/dt is the growth 

rate. The growth rate (Eq. 2.9) can be found from Eq. 2.8,  

𝑑𝑟

𝑑𝑡
= 𝐷 (𝑐𝑎 − 𝑐𝑟)/𝑟 (2.9) 

where  𝑐𝑎 and 𝑐𝑟 denote the solute concentration at a long distance away from the interface and at 

the interface, respectively. Eq. 2.9 predicts that the growth rate should decay as crystals grow 

larger, assuming a constant supply of solute.  That said, the supersaturation (𝑐𝑎 − 𝑐𝑟) can vary due 
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to overlapping of diffusion fields, especially when the diffusion length (roughly, √𝐷𝑡) is larger 

than the particle radius.  It is also worth noting that in this simplified treatment, a crystal is always 

spherical, whereas in reality constitutional effects lead to instabilities and diverse growth forms 

(see Sec. 2.2.3-2.2.4 and also Appendix A for a discussion on rapid solidification).  

 

2.2.2. Interface limited growth 

 Here we consider the opposite extreme, that is, atoms have to overcome an energy barrier 

at the interface to become a part of the growing crystal. Assuming that the α crystal grows from 

the β matrix as shown in Fig. 2.2, 

 

 

Fig. 2.2. Schematic drawing of the energetic situation at a smooth interface where an energy barrier impeding atom attachment 

exists. Reprinted from [63]. 

The thermally activated fluxes from the α crystal to the β matrix and vice versa are 

𝐼α→ β =  𝑛𝑎
α𝜐exp (−

𝐺A

𝑘B𝑇
)  (2.10) 

𝐼β→ α =  𝑛𝑎
β

𝜐exp (−
𝐺A+ 𝛥𝐺atom

𝑘B𝑇
)  (2.11) 

where 𝑛a is the number of atoms per area at the interface, 𝜐 is the number of jumps an atom 

performs per second, and 𝐺A is the energy barrier. From the Eqs (2.10 & 2.11), different fluxes 

arise due to the increase of the energy barrier by 𝛥𝐺atom. Assuming that (i) 𝑛𝑎
α = 𝑛𝑎

β
=  𝑛𝑎, (ii) 

the local interface velocity is a function of net flux, and (iii) 𝛥𝐺atom/𝑘B𝑇 ≪ 1, then 

𝑣 = 𝛺(𝐼α→ β− 𝐼β→ α) =  𝛺𝑛𝑎𝜐exp (−
𝐺A

𝑘B𝑇
)

𝛥𝐺atom

𝑘B𝑇
 (2.12) 
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or                        v =
dR

dt
= 𝑀𝛥𝐺atom (2.13) 

where 𝑀 denotes the interface mobility 

𝑀 =  𝛺𝑛𝑎𝜐exp (−
𝐺A

𝑘B𝑇
)

1

𝑘B𝑇
  (2.14) 

Eq. 2.13 suggests that the interface velocity is constant, provided the supersaturation is fixed (cf. 

Eq. 2.9).  These equations also demonstrate that the growth rate depends not on diffusivities but 

rather on the energy of transferring an atom from the matrix to the crystal. 

Eq 2.12 is often presented in a more general form [63, 64], as 

𝑣 = 𝛽𝑠(𝑥𝑎
β

−  𝑥𝑎
β,equil

)𝑛 (2.15) 

where 𝛽𝑠 is a constant of proportionality known as the kinetic coefficient in a supersaturated 

matrix. For example, interface kinetics of first order (𝑛 =  1), otherwise known as the “normal” 

growth mechanism, signifies growth of interfaces decorated with terraces, ledges, and kinks, while 

interface kinetics of second order (𝑛 =  2) indicates spiral growth along a screw dislocation (Fig. 

2.3). Descriptions of other growth laws (𝑛 = 3 and so on) can be found in [65].   

 

 

 

 

 

Fig. 2.3. Schematic drawing of terrace-ledge-kink model of interface, corresponding to n = 1, and a screw 

dislocation, corresponding to n = 2. The integer exponent determines the surface of growing phase. Reprinted from 

[63, 66]. 

 

2.2.3. Dendritic growth 

Dendrites are tree-like structures which grow far from the limit of stability of the planar 

front (described below). The dendritic tips adopt an orientation that is in an opposite direction of 

heat flux and/or consistent with the crystallographically-preferred growth axes [67]. Dendritic 
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growth begins when small perturbations along the interface are amplified [49]. If the heat flow is 

opposite to the growth direction, columnar dendrites form. Such columnar growth can be only 

found in the solidification of alloys, not pure metals, owing to the partitioning of solute (discussed 

below). When the temperature gradient due to the heat flux is greater than the temperature gradient 

of liquidus temperature at the solid-liquid interface, the perturbations at the interface would be 

damped. However, when the temperature gradient of liquidus temperature is greater than the actual 

temperature gradient, the tip of a perturbation experiences an increase of undercooling (so-called 

constitutional undercooling) and thus a planar interface becomes unstable [49].  Numerically the 

constitutional undercooling at the interface is developed if 

𝐺 < 𝑚𝐺𝑐  (2.16) 

where 𝐺 is the temperature gradient, 𝐺𝑐 is the concentration gradient and m is the slope of liquidus 

curve (such that 𝑚𝐺𝑐 is the liquidus temperature gradient). Fig. 2.4 shows that the temperature 

gradients at the interface and expected final structures for a stable (left) and unstable front (right).

  

 

Fig. 2.4. Conditions for constitutional undercooling at the solid- liquid interface and resultant structures. Reprinted from [49]. 

On the other hand, when the heat flows from the crystal into the melt, equiaxed dendrites 

can grow freely in both pure metals and alloys. The dendrites grow radially until the growth is 

limited by soft collisions (overlapping diffusion fields) and hard collisions (impingements). For 
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pure metals, the latent heat creates negative temperature gradient in the liquid surrounding the 

crystals and perturbations on the growing crystals make this gradient steeper and allow the tip to 

reject more heat. Consequently, this leads faster local growth rate at the tip and a morphological 

instability. A similar phenomenon is observed in alloys, where both solute and heat are rejected 

during the solidification process. To fully understand the equiaxed dendritic growth of alloys, one 

needs to solve the problem of coupled heat and mass transport at the interface [68]. The resultant 

morphologies, concentration and temperature profiles of pure metal and alloy dendrites are 

represented in Fig. 2.5.  

 

Fig. 2.5. Resultant morphologies (first low), concentration (second low) and temperature profiles (third low) of dendrites in pure 

metals (a,b) and alloys (c,d). Reprinted from [49]. 

 

2.2.4. Mullins-Sekerka instability 

The above analysis takes into account the destabilizing influence of solute but does not 

account for the stabilizing influence of surface tension or capillarity.  Mullins and Sekerka 

considered both of these effects, mathematically predicting the stability of the shape of an 

interphase boundary during a phase transformation where mass transport or heat flux regulate the 
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growth process [69]. This model contains the following approximations: (i) elastic stain energy 

and anisotropy of interface properties are neglected; (ii) thermal and diffusion fields are assumed 

to follow Laplace’s equation; and (iii) local equilibrium holds at each element of interface [69]. 

The instability calculation determines whether perturbations at the interface will grow or decay.  

First, we can introduce an infinitesimal distortion of shape caused by a single spherical 

harmonic 𝑌𝑙𝑚, with the amplitude 𝛿. The equation of the distorted sphere can be represented as 

Eq. 2.17 and the spherical coordinates depend on time. 

𝑟 = 𝜌(𝜃, 𝜑) = 𝑅 +  𝛿𝑌𝑙𝑚(𝜃, 𝜑)  (2.17) 

The first derivative of Eq. (2.17) is 

𝑣 =
𝑑𝑅

𝑑𝑡
+

𝑑𝛿

𝑑𝑡
𝑌𝑙𝑚 

=
𝐷

𝐶− 𝑐𝑠
{

𝑐∞− 𝑐𝑅

𝑅
+ [(𝑙 − 1)

𝑐∞− 𝑐0

𝑅2  −  
𝑐0Γ𝐷

𝑅3 [𝑙(𝑙 + 1)2 − 4] ] 𝛿𝑌𝑙𝑚}  (2.18) 

where 𝐶 is the concentration in the precipitate, 𝑐𝑠 is the equilibrium concentration at a general 

curved interface, 𝑐∞ is the concentration in the supersaturated solution, 𝑐𝑅 is the concentration on 

the undistorted sphere, 𝑙 is the order of spherical harmonic, and Γ𝐷 is a capillary constant (Γ𝐷 = 

𝛾𝛺

𝑅𝑇
, where 𝛾 and Ω represent the interfacial free energy and molar volume of the precipitate.  From 

Eq. 2.18, we obtain the rate of growth of the amplitude of the spherical harmonic (�̇� =  𝑑𝛿/𝑑𝑡) as 

�̇�𝑙 =
𝐷(𝑙−1)

(𝐶− 𝑐𝑅)𝑅
[𝐺 −

𝑐0Γ𝐷

𝑅2 (𝑙 + 1)(𝑙 + 2)] 𝛿𝑙 (2.19) 

where 𝐺 =  (𝑐∞ −  𝑐𝑅)/𝑅 is the normal concentration gradient at the surface of the undistorted 

sphere, and the subscript 𝑙 indicates the corresponding harmonic. Eq. 2.19 can be modified as Eq. 

2.17 to represent the relationship between a harmonic of 𝑙𝑡ℎ order and the radius of the sphere that 

determines whether perturbations will grow or decay. The interface is unstable when the radius of 

the sphere is greater than the critical radius 𝑅𝑐(𝑙), at given supersaturation, 

𝑅𝑐(𝑙) = 2Γ𝐷[(1/2)(𝑙 + 1)(𝑙 + 2) + 1]/[(𝑐∞ −  𝑐0)/𝑐0] (2.20) 

Here, supersaturation is given by the quantity [(𝑐∞ −  𝑐0)/𝑐0]. This Mullins-Serkeka instabilitiy 

is applicable in both solidification [69] and solid-state transformations [69-71]. Fig. 2.6 plots 

Eq. 2.20 for a range of supersaturations.  It can be seen that growing crystals are generally stable 
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when the crystal radii are small due to the influence of surface tension, suppressing perturbation. 

Also, we can see the decreasing effective supersaturation (trajectories 2 & 3 in Fig 2.6) which can 

be attributed to the overlapping diffusion fields between different crystals. Stated altogether, the 

growth of dendrites is an interplay between surface tension and bulk diffusion.  

 

Fig. 2.6. Rc delineates stability of a sphere as a function of its radius (y axis) and supersaturation (x axis). Below this solid line, 

the interface is stable (hatched region); above, it is unstable.  Dashed curve gives critical nucleation radius 𝑅∗and broken curves 

(1-2) represent possible growth pathways of particles. Reprinted from [69]. 

 

 

 

 

 

 

 



   

 19 

2.2.5. Growth of metastable phases 

 

Fig 2.7. Free energy vs. temperature curves illustrating possible free energy change during heating and solidification cycles for a 

single component system. Reprinted from [72]. 

 Fig. 2.7 shows examples of free energy curves of several phases as a function of 

temperature for a single component system. If we heat up α phase above its liquidus temperature 

and let it cool down (see arrows), we may able to observe the nucleation of the α phase. However, 

if nucleation of the α phase is suppressed upon cooling, possibly due to a high interfacial energy 

and hence, nucleation barrier (see Sec. 2.2.2), the liquid becomes undercooled. Under such 

conditions, we may expect to see the nucleation of either the metastable β or γ phase. That is, as 

the liquid is progressively cooled, other reactions are possible, although thermodynamics by itself 

is not able to predict which reaction will be preferred. The prediction of phase transformations 

should be based on other factors, such as the interfacial free energy and the presence of 

heterogeneous nucleation catalysts [72, 73].  

 As we work with alloys, it is of interest to predict metastable phase transformations in 

multi-component systems. Two- or three- component alloys have additional compositional degrees 

of freedom and thus the possibility of equilibria between multiple phases over a range of 

temperatures [72]. The formation of a given phase at a given temperature is thermodynamically 

valid if it satisfies the Baker-Cahn ‘tangent-to-curve’ construction [72]. For example, in a binary 

alloy, when equilibrium may be disrupted by an additional amount of solute, we can predict the 
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formation of a metastable phase by first drawing a tangent line at the given composition. For 

example, in Fig. 2.8, initially the β phase is in equilibrium with the α phase. The equilibrium 

condition is confirmed by the existence of a common tangent at the composition 𝐶α(𝑒𝑞). However, 

as the composition becomes B-rich due to a saturation of B atoms, the metastable γ phase has the 

larger driving force compared to the β phase and thus we would predict the formation of the 

metastable γ phase (considering again only driving forces and not interfacial energies, strain 

energies, etc.). According to Baker and Cahn [72], a phase transformation is thermodynamically 

possible so long as the line connecting the tangent to free energy curve points vertically downward. 

The length of this line (e.g., ∆𝐺𝛼→𝛽) gives us the free energy change (per mole reacted) for 

reactions in a closed system that transfer small amounts of components of composition 𝐶𝛽 from 𝛼 

phase at composition 𝐶0 to the 𝛽 phase at composition 𝐶𝛽 [72]. Using the same approach, we can 

predict the phase decomposition of a metastable phase to a stable phase. In Fig. 2.9, we draw a 

tangent line from the free energy curve of the metastable γ phase at the initial composition of C0, 

and thus we would predict the formation of α phase rather than the β phase since there is a driving 

force for phase transformation. 

 

Fig. 2.8. Gibbs free energy curves of thermodynamically stable α and β phases at Cα(eq). A slight supersaturation changes the 

slope of the tangent line and provide a driving force to form the metastable γ phase. Reprinted from [72]. 
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Fig. 2.9. Decomposition of thermodynamically metastable γ phase to thermodynamically stable α phase. Reprinted from [72]. 

 

2.2.6. Growth of complex intermetallics, including quasicrystals 

While their structures have been extensively studied, the growth kinetics of the complex 

intermetallic phases from a liquid phase have been much less explored. To this end, Steurer has 

identified in his topical reviews [5, 74] the problem of QC growth as one of the still open questions 

facing the crystallographic community, as of 2018. He asks, `How does the 1000th atom find its 

site in a giant unit cell with thousands of atoms?' One physically plausible explanation is that the 

growth (of both QCs and their approximants) occurs not by the attachments of single atoms but 

rather energetically favourable clusters of atoms that pre-exist in the liquid phase (see also 

Sec. 1.2). If this cluster-based argument is to be believed, then one might suppose that the rate of 

crystal growth slows with increasing cluster size. This is because large clusters require more time 

to rotate towards the correct orientation [75-77] in this way, clusters should overcome a 

configurational entropy-type barrier in order to incorporate into the solid phase. 

Refs. [78-80] have analyzed the growth of icosahedral QCs via in situ X-ray radiography 

(i.e., projection videomicroscopy). They studied the interfacial velocity of the facets and edges in 

the icosahedral QC during directional solidification. Based on the results obtained, the researchers 

suggested that QC growth is in some ways analogous to the kinetics of ledge growth in 

semiconductors [81-83]. While one can extract some qualitative information from the 2D images, 

X-ray radiography is prohibitive since most growth models, such as those listed above, make 
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predictions based upon a 3D structure. In a similar sense, Nagao et al. have studied grain growth 

in a decagonal QC specimen using in situ high resolution transmission electron microscopy 

(HRTEM) [27]. This study, too, is limited to the ten-fold {00001} plane, i.e., there is no mention 

of the interfacial dynamics along the period direction. In situ and 3D experimental studies on the 

growth and dissolution of QCs from a parent liquid phase have not been demonstrated yet, to the 

best of our knowledge. 
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Part II. Experimental Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 24 

Chapter 3. Experimental Methods 

 

 In this chapter, we will discuss the two main imaging techniques used to investigate real-

time formation of QCs. Among many characterization techniques (Fig. 3.1), we chose two in situ 

techniques, (i) synchrotron-based X-ray absorption tomography and (ii) dynamic transmission 

electron microscopy. The former provides a sufficient temporal resolution to observe the 

microstructure evolution under near-equilibrium (e.g. slow cooling), while the latter is optimized 

to capture the QC growth dynamics far-from-equilibrium during rapid quenching. Utilizing the 

benefits of these two techniques, we can obtain a better understanding of transient growth 

behaviors of QCs, such as local growth velocity, facet orientation and interface instabilities;  these 

insights can be used to compare the growth kinetics between thermodynamically stable and 

metastable QCs as well as their approximants.   

 

Fig. 3.1. Spatial and temporal resolutions of various characterization techniques. Reprinted from [84]. 
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3.1.  Synchrotron-based X-ray absorption tomography 

3.1.1.  Basic principles  

X-ray tomography (XRT) is a nondestructive approach that enables us to investigate the 

evolution of 3D microstructure in real-time. In principle, the XRT is based on different attenuation 

of elements and phases inside the sample, for instance, a higher intensity is typically associated 

with low atomic number elements in the microstructure due to less attenuation of the incident beam 

[85]. The intensity of a transmitted X-ray also depends on other factors, including sample thickness 

and beam hardening.  After X-rays penetrate the sample, the transmitted X-ray is absorbed by the 

scintillator, which emits the absorbed energy in the form of visible light. The light is detected by 

the CCD camera. To render 3D volume, we need to record on the CCD camera a consecutive set 

of X-ray projections spanning 180° of sample rotation. The experimental setups are illustrated in 

Fig. 3.2 and more details regarding the sample preparation, experiment and data processing 

methods will be further explained in this chapter. 

 

Fig. 3.2. Schematic drawings of experimental setups for X-ray microtomography experiment on QC solidification.  

 

3.1.2.    Sample preparation 

For the X-ray microtomography experiment, high purity alloy samples (e.g., Al81Co9.5Ni9.5 

(Ch. 4 & Ch. 5), Al79Co6Ni15 (Ch. 7), and Al74Pd20Mn6 (Ch.6)) were prepared with the vacuum 

arc remelting (VAR) technique at the Materials Preparation Center (MPC) at Ames Laboratory in 

Ames, Iowa, USA. Past work [2, 86] has demonstrated that these systems will produce 
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thermodynamically-stable decagonal and icosahedral phases, respectively, within a narrow 

compositional window, see Fig. 3.3.   

 

Fig. 3.3. Equilibrium phase diagrams of (a) a pseudo-binary Al100-2xNixCox [46] and (b) Al80-xPd20Mnx [87]. Note ’D’ and ‘I’ 

represent d-QC and i-QC, respectively. The regions of interest for Ch.4, Ch.5 and Ch.6 are highlighted on the phase diagrams. 

The cast alloy buttons were cut into a rod of 1 mm diameter by 5 mm height for the synchrotron 

experiment. The sample was placed in a boron nitride (BN) specimen holder with a 1.2 mm 

cylindrical hole (see Fig. 3.2). The BN specimen holder is X-ray transparent and stable at high 

temperature such that it does not influence the solidification experiments. The sample and holder 

were mounted on the Al2O3 rod and placed on the rotating stage with in situ resistance heater for 

the X-ray microtomography experiment. The X-ray microtomography experiment was performed 

at beamline 2-BM of the Advanced Photon Source (APS) at Argonne National Laboratory in 

Lemont, Illinois, USA.  
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3.1.3.    Data collection and reconstruction 

The projection images for microtomography experiment were collected at a rate of 50 Hz 

using a polychromatic ‘pink’ beam centered at 27 keV. The ‘pink beam’ is an alternative to 

monochromatic beams for dynamic studies (higher flux) where the X-ray beam is reflected from 

a grazing incidence mirror rather than a monochromator [88]. A PCO Edge 5.5 CMOS camera 

optically coupled with a 20 µm-thick LuAg:Ce scintillator was used for data collection. The field 

of view (FOV) measured 2560 by 800 pixels along the specimen x (horizontal) and z (vertical) 

directions, respectively, with a pixel size of (0.65 × 0. 65) µm2. One thousand projections were 

recorded for each 180° rotation of the sample with an exposure time of 14 ms, resulting in a 

temporal resolution of 20 s between successive 3D reconstructions. The in situ solidification 

experiment was conducted while projections were recorded continuously, or in other cases, 

discretely (i.e., ‘blocks’ of 180° rotations were separated by a time interval). The size of a single 

3D tomogram (or a set of projection images that span 180° of sample rotation) is approximately 4 

GB.  

The XRT data were reconstructed with TomoPy [89], a Python-based open-source 

framework for data processing and reconstruction. First, we normalized the X-ray projection 

images with white-field images after the dark-field image correction. Normalization helps to 

compensate differences in the sensitivities and responses of each detector pixel; however, 

normalization alone is not enough to remove ‘ring’ artefacts, which result from dead pixels in the 

detector and X-ray beam instabilities. For the removal of ring artefacts, we use a built-in combined 

Fourier-wavelet filter [90]. After normalization and ring artefact removal, the tomographic data 

were reconstructed via the Gridrec algorithm [91]. Gridrec is based on discrete Fourier transform; 

further details can be found in Gürsoy et al. [89]. In this way, a stack of 800 2D image slices along 

the specimen z direction (representing a 3D volume) was obtained for each time-step (with a 

temporal discretization of 20 s). 

 

3.1.4.  Segmentation of 2D reconstructed images and volume rendering 

Image segmentation was conducted using the Image Processing Toolbox in MATLAB. We 

subtracted the image stack of the fully liquefied sample from all other image stacks in order to 

enhance the contrast between the solid and liquid phases and eliminate any remaining artefacts. 
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The subtracted images were then segmented into solid and liquid phases using a common threshold 

value for the reconstructed intensity and combined to reveal the 3D microstructures. For the 

subsequent analysis, the solid-liquid interfaces were meshed, or represented by a sequence of 

triangles and vertices [92]. To remove any staircasing artifacts, the triangular mesh (see Fig. 

3.4(a)) was smoothed via mean curvature flow [93]. The following calculations make use of the 

mesh face and vertex positions. We denote the vertices of an arbitrary triangle face i as 𝑣1
𝑖 , 𝑣2

𝑖 , and 

𝑣3
𝑖 . 

 

Fig. 3.4. (a) 3D microstructure consists of triangular mesh. (b) A triangle face that belongs to the triangular mesh. 𝑣, 𝑒, and �̂� denote 

the vertex, edge, and normal vector of the triangle face i. 

 

3.1.5. Microstructure analysis 

We track the growth dynamics by computing the local interfacial orientation and local 

velocity of each triangle in the mesh (Fig. 3.4(b)). Given that the edges of ith triangle face are 

defined as 𝑒12
𝑖 =  𝑣2

𝑖 − 𝑣1
𝑖  , 𝑒23

𝑖 =  𝑣2
𝑖 − 𝑣3

𝑖  and 𝑒31
𝑖 =  𝑣3

𝑖 − 𝑣1
𝑖 , and that the vertex order is 

consistent for all faces, the unit normal vector �̂� of the ith triangle in the mesh can be found as 

�̂� = (𝑒12
𝑖 × 𝑒23

𝑖 ) / |𝑒12
𝑖  × 𝑒23

𝑖 | (3.1) 

Following thermodynamic convention, all normal vectors point from the crystal to the liquid. 

Geometrically, the denominator in Eq. 3.1 represent the area of ith triangle face in the mesh, 𝐴𝑖 = 

|𝑒12
𝑖  × 𝑒23

𝑖 |. After computing all normal vectors, we next plotted the interface normal distribution 

(IND) [94], which indicates the degree of directionality in the microstructure. In practice, we 
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depicted the IND as a stereographic projection of the interface normal vectors, �̂� adorning the 

mesh. Note the IND is computed in the specimen frame of reference and not the crystallographic 

frame. That is, the IND conveys the extrinsic directionality of the faceted solid-liquid interfaces 

while electron diffraction patterns convey the intrinsic lattice symmetry. 

In addition to the local interfacial orientation, the local interfacial velocities were calculated 

according to a nearest neighbor (NN) algorithm [95]. In short, we found the NN vertex in the mesh 

corresponding to time-step 𝑡 +  ∆𝑡, for each face centroid at time 𝑡. The distance between these 

two points divided by the time interval ∆𝑡 gives the face velocity of each triangle face 𝐴𝑖. In a 

similar manner, the collective facet velocity can be found as  

𝑉𝑓𝑎𝑐𝑒𝑡 =  ∑ 𝐴𝑖𝑉𝑖
𝑖 ∈ 𝑓𝑎𝑐𝑒𝑡  /  ∑ 𝐴𝑖

𝑖 ∈ 𝑓𝑎𝑐𝑒𝑡  (3.2) 

Thus, the facet velocity is a weighted average of the local triangle face velocities. The summations 

in Eq. 3.2 are carried out only for those triangle faces that belong to the facet.  

 

3.1.6. Compositional analysis 

The intensity 𝐼 of a transmitted X-ray beam depends on many factors, including sample 

thickness, chemical composition, and beam hardening, as mentioned previously.  For example,  

𝐼 ∝ 𝑒−𝑑 according to the Beer-Lambert law, where 𝑑 is sample thickness.  Thus, to ensure that 

differences in intensity reflect only the differences in chemical composition — such that the 

composition mapping strategy described later in Sec. 4.3 can be applied — the following 

precautions were taken:  First, we selected the same thicknesses of liquid and QC (approx. 1110 

µm, in regions 1 and 2 respectively (Fig. 4.4)).  In addition, we subtracted a projection image of 

the fully liquefied sample above the liquidus temperature from every projection that followed.  

This was done to mitigate the effect of beam hardening, which arises when a polychromatic X-ray 

beam becomes “harder” due to the ease of absorption of soft X-rays. 

After these processing steps, we measured the average transmitted X-ray intensities from 

the QC and liquid at equilibrium. Correspondingly, the composition of the QC and liquid at 

equilibrium are read from the phase diagram [46]. With these two reference points, we can simply 

solve the simultaneous equations that give the contributions of Al and heavy elements (Ni and Co) 

to X-ray intensity. In this manner, the composition of the liquid phase, in terms of Al and the heavy 
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elements, is attained for all time-steps.  Additionally, to determine the total alloy composition <

xCo,Ni
total > (t) in the FOV, as plotted in Fig. 4.1(c), we need to know the QC volume fraction, 𝑓𝑄𝐶, 

which is simply found from the segmented 3D reconstructions as the sum of all voxels belonging 

to the QC phase divided by the sum of all voxels contained in the rod sample within the FOV.  

Then, < xCo,Ni
total > (t) can be found from the lever rule as 

< xCo,Ni
total > (t) = 𝑓𝑄𝐶xCo,Ni

QC + (1 − 𝑓𝑄𝐶) < xCo,Ni
L > (t) (3.3)  

where the term (1 − 𝑓𝑄𝐶) represents the volume fraction of the liquid phase.   

 

3.2.  Dynamic transmission electron microscopy 

3.2.1.  Basic principle 

Dynamic transmission electron microscopy (DTEM) at Lawrence Livermore National 

Laboratory, Livermore, California, USA, enables the imaging of transient behaviors (e.g. phase 

transformation, structural deformation and chemical reaction) with an unparalleled combination 

of temporal (~10 ns) and spatial resolutions (~10 nm) [96]. In the DTEM experiment, a short pulse 

of laser melts the alloy sample and the transient phase transformation dynamics are recorded by 

the electron probe after a user-set delay time in the DTEM either in the single shot [96] or nine-shot 

“movie-mode” [97] configuration. In this manner, we can capture the transient growth behaviors 

of crystals (and QCs) with relative ease.  

The technology uses two synchronized laser beams with ns pulses, one of which will be 

used to optically trigger the melting of a solid film of QC composition, and second of which will 

generate the electrons bunches (109 electrons) for subsequent TEM imaging. That is, each pulse 

captures an image of the sample at a specific time. A fast-switching electron deflector located 

below the sample directs each image to a separate patch of a large high-resolution CCD camera, 

thereby overcoming the slow refresh rate of camera [96]. This is a key feature that allows DTEM 

to achieve a frame rate which is six ordered of magnitudes faster than conventional video-rate 

TEM.  Fig. 3.5 demonstrates a schematic of DTEM movie mode.  
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Fig. 3.5. Schematic of movie-mode DTEM. Reprinted from [97]. 

 

3.2.2.  Sample preparation  

Metastable quasicrystals are most often encountered under high driving forces in Al-TM 

alloys (TM: Cr, Mn, among others) [1, 13– 16]. Thus, we prepare thin Al-Cr films sample at the 

Lurie Nanofabrication Facility, Ann Arbor, Michigan, USA. The PVD 75 has the capability to co- 

or tri- deposited Al and other transition metals (V, Mn, Cr, Fe, Co, Ni, etc), which demonstrated 

the formation of metastable i-QCs upon rapid quenching [98]. SiN TEM grids and targets were 

mounted into the PVD 75 and the chamber was evacuated below 10-7 Torr to prevent 

contamination. We co-deposited Al and Cr with thickness of 150 nm, which is ideally adjusted for 

the DTEM experiment in terms of sample stability at elevated temperature [99] and image quality. 

The sample composition was calibrated to Al90Cr10.    

 

3.2.3.   X-ray absorption spectroscopy measurement 

The local structure of the film before laser irradiation was confirmed by X-ray absorption 

spectroscopy (XAS) at the National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 

Taiwan. Samples for XAS were prepared in the same manner as for DTEM and annealed for 5 

minutes at 340 °C, but with a thickness of 450 nm to satisfy the detection limit of XAS. The X-ray 

energy was set above the Cr K-edge (5989 eV). The IFEFFIT software package [100] was used to 
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analyze the raw XAS spectra in k-space and R-space. The data was fit to simulated Al13Cr2 

structure [42]. 

 

3.2.4.    DTEM experiment 

The Al90Cr10 samples were placed on an in situ heating stage in the DTEM and annealed 

at 340 °C for five minutes to induce a phase transformation to the Al13Cr2 phase (C2/m)  (plus Al) 

[101]. Then, the samples were irradiated by a short pulsed laser with 1064 nm wavelength for 15 

ns of exposure time. The laser intensity was tuned to 15.2 µJ to prevent film dewetting and rupture. 

The microstructural evolution within the thermally affected zone was recorded in DTEM using 50 

ns electron probe pulses after a preset delay time, approximately 180 µs. Two different time lapses, 

2.5 µs and 5 µs (between the nine consecutive frames) were used to investigate the growth 

behaviors of QCs. To calculate the growth velocity of QCs, we computed equivalent radii based 

on the number of pixels that belongs to the growing QC phase after image segmentation using the 

Image processing toolbox in MATLAB.  The data processing steps are somewhat similar to that 

described in Sec. 3.1.4, albeit for a set of 2D images.  

 

3.2.5.    Finite element analysis (FEA) simulation 

FEA was conducted by using COMSOL Multiphysics software (version 5.4, COMSOL, 

Inc) to determine the temperature evolution of our sample. The laser flux, 𝜙𝑙𝑎𝑠𝑒𝑟, is determined as  

𝜙𝑙𝑎𝑠𝑒𝑟 = 𝑃𝑙𝑎𝑠𝑒𝑟
√𝑠𝑖𝑛𝜃

2𝜋𝜎
exp (−

𝑥2+𝑦2𝑠𝑖𝑛2𝜃

2𝜎2
) (3.4) 

where 𝑃𝑙𝑎𝑠𝑒𝑟 is the power of the laser; θ is the angle of incidence; σ is the radius of the laser; and 

x and y represent the coordinates on the sample surface along the minor and major axes, 

respectively. All parameters used to determine 𝜙𝑙𝑎𝑠𝑒𝑟 are shown in Table 1.  
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Table 3.1. Physical properties used in FEA simulation. 

The focus of laser is defined as the origin of the x and y coordinates. We assumed that there is no 

surface heat conduction and convection, and only accounted for heat radiation at the surface and 

heat conduction within the solid. These assumptions are similar to those used by Zweiacker et al. 

[102]. The reflectivity of the Al90Cr10 film was determined by linear interpolation between the 

reflectivities of the constituent elements, Al and Cr [103].   
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Part III. Results and Discussion 

Part III presents the results of our experimental efforts, the corresponding analyses, and 

discussion of the results. The chapters in Part III include the growth of a single d-QC and its 

approximant phase; the growth and equilibrium shapes of a single i-QC; physical interaction 

between multiple QCs; and solid-state i-QC growth under far-from equilibrium conditions. This 

chapter contains the works published over the course of my doctoral research, which are listed in 

Refs. [2, 86, 104] with Refs. [105] in revision and [106] to be submitted.  
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Chapter 4. Growth and Dissolution of a Decagonal Quasicrystal 

 

 The growth mechanism of QCs remains one of the fundamental puzzles in the field of 

crystal growth since there have been very few experimental investigations to test various 

hypotheses (e.g., ideal tiling model, random tiling model, and cluster-based model) explaining the 

QC growth (see also Sec 1.2). In particular, direct evidence of the in situ and 3D growth of a QC 

from a parent liquid is lacking. To fill-in-the-gaps in our understanding of the solidification and 

dissolution pathways of QCs, we performed synchrotron-based XRT experiments on a decagonal 

QC-forming system, as will be described below. 

 

4.1. Experimental background 

Our foundational work started with probing the growth and dissolution pathways of a single 

d-QC using synchrotron-based 4D (3D + time) XRT. We focus our investigation on the Al-Co-Ni 

system, which contains a thermodynamically stable decagonal QC phase, as mentioned previously 

[107, 108]. The synchrotron experiment was performed on an alloy of nominal composition Al-

9.55at%Ni-9.55at%Co. As a first step and to prove the existence of decagonal QCs in this system, 

we recorded the electron diffraction pattern of the stable decagonal QC phase at ambient 

temperature from the cast alloy (Fig. 4.1(a)). As expected, the diffraction pattern shows sharp 

reflections and the requisite 10-fold symmetry. Our XRT results were obtained by continuously 

cooling an Al-9.55at%Ni-9.55at%Co rod sample from above its liquidus temperature into the 

two-phase, decagonal QC plus liquid regime. A partial section of the pseudo-binary Al100-2xNixCox 

phase diagram is shown in Fig. 4.1(b). The solidification of the Al-15at%Ni-15at%Co QC is non-

congruent, with rejection of Al as growth proceeds. This means that we were able to achieve 

absorption contrast between the QC and the surrounding liquid phase owing to differences in X-ray 

absorption [85]. 
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Although the entire rod sample is cooled during the tomography experiment (see Sec. 

3.1.2), only a portion of the sample is imaged (hereafter referred to as the tomographic 

field-of-view or FOV).  This FOV behaves as an open system, exchanging solute (Al, Ni, and Co) 

with other parts of the rod sample.  We observed Fig. 4.1(c) that the alloy composition within the 

FOV becomes Al-rich as time proceeds. Here, the time-dependent alloy composition was found 

quantitatively by mapping the variation of intensity in the X-ray projection images to composition 

(see Sec. 4.3).  The “pile up” of the Al constituent is likely due to a combination of gravity-induced 

segregation and Al rejection from regions outside the FOV.  Eventually, the accumulation of Al in 

the liquid initiates dissolution of the QC. A similar phenomenon of dendrite arm remelting was 

reported by several investigators [109]. Thus, we were able to measure both growth and melting 

in the same experiment, as the sample enters and exits the two-phase decagonal QC plus liquid 

regime in Fig. 4.1(c), respectively.   

 

Fig. 4.1. System-of-interest.  (a) Electron diffraction pattern of the solid QC phase, which proves unambiguously the decagonal 

symmetry of the QC phase in the Al-Ni-Co system. The scale bar measures 2 nm-1.  (b) Partial section of the Al100-2xNixCox 

pseudo-binary, equilibrium phase diagram as measured by Yokoyama et al.[46].  𝐿 and 𝐷 indicate the liquid and decagonal QC 

phases, respectively.  (c) Calculated, alloy composition within the FOV during the XRT experiment (red) superimposed on the 

same phase diagram (black). The region plotted in (c) corresponds to the blue boxed region in (b).  The solid QC grows and then 

melts due to the “pile up” of Al in the liquid phase. The dotted line indicates extrapolated compositions.  
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4.2. Microstructure evolution 

4.2.1. 3D full volume reconstructions 

 

Fig. 4.2. Three dimensional reconstructions (bird’s eye view, see inset) of d-QC growth and melting during continuous cooling. 

The temperature decreases from left to right as a function of reaction time. Temperatures and times are as follows:  1259.8 K 

(800 sec), 1259.2 K (840 sec), 1255.8 K (1040 sec), 1251.8 K (1280 sec), 1247.8 K (1520 sec), 1243.8 K (1760 sec), 1239.8 K 

(2000 sec), 1235.8 K (2240 sec), 1234.5 K (2320 sec) and 1233.8 K (2360 sec) respectively. The start of the clock (0 sec) 

corresponds to the start of the XRT experiment. Scale bar measures 100 µm. 

   We detected one single QC within the tomographic FOV during continuous cooling.  Its 

evolution at ten representative time intervals is depicted in Fig. 4.2. The QC grows from the one 

side to the other side of the Al2O3 skin that contains the molten alloy (not pictured).  The QC is 

anchored to this oxide skin on both sides and therefore the QC does not sediment to the bottom of 

the melt. The growth velocity along the periodic direction is approximately over two orders of 

magnitude greater than the velocity along the aperiodic direction, which corroborates the ex situ 

observations of Gille et al. [110] and Meisterernst et al. [111]. The “long axis” parallel to <00001> 

represents the fast-growing, periodic direction and <10000> represents the set of ten slow-

growing, aperiodic directions. When the QC melts, it does not mirror the growth pathway, which 

is fully faceted and nearly isotropic in the aperiodic <10000> directions.  Rather, we observe 

marked curvature of the solid-liquid interface upon melting. Therefore, the growth and dissolution 

processes do not have time-reversal symmetry and hence different physical principles must be 

invoked in order to explain these different behaviors.  Furthermore, we investigated a cross-section 
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of the 3D reconstructed volume to better understand the growth and dissolution processes within 

the aperiodic plane. The region selected for our analysis is highlighted with a grey line in Fig. 4.2 

and includes a thickness of 20 µm along the periodic direction.    

 

4.2.2. Analysis of ten-fold plane 

Isochrones of the solid-liquid interface in the ten-fold, {00001} plane (corresponding to 

the grey line in Fig. 4.2) are shown in Fig. 4.3 with 80 sec increments.  The interfaces are colored 

according to their local, interfacial velocity, which was calculated using the nearest-neighbor 

approach given by Shahani et al. [112] (see Sec. 3.1.5).  We follow the thermodynamic convention, 

wherein positive velocity indicates growth, and negative velocity indicates melting.  In the initial 

stage of growth, facets are not readily distinguishable at the resolution of XRT. Nevertheless, the 

facets become more apparent as the QC grows: The fourth isochrone (1040 sec) from the center in 

Fig. 4.3(a) visibly displays the ten facets (numbered). After the QC is fully faceted, its growth is 

nearly isotropic, i.e., the growth velocity is almost uniform across all ten facets. Any differences 

in the facet velocities during growth are most likely due to thermosolutal convection.  During 

dissolution (Fig. 4.3(b)), however, the interfacial velocity is faster at the bottom of the QC (near 

facet 10) than the top (near facet 5).  Due to the anisotropic nature of melting, the QC surface loses 

its facets and becomes increasingly rounded as a function of time. Fig. 4.3(c) depicts the average 

velocity of each QC facet in time. Consistent with Fig. 4.3(a), the velocities are almost the same 

for all ten facets during growth. However, during melting (i.e., after 1520 sec) there is a marked 

deviation in the facet velocities, which in turn depends on the facet orientations. The facets at the 

bottom melt faster than the facets at the top (cf. Fig. 4.3(b)).  
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Fig. 4.3. Evolution of the ten-fold plane as a function of time for QC (a) growth and (b) dissolution. Isochrones of the solid-liquid 

interface are colored according to their interfacial velocity, which is positive for growth and negative for melting. During growth, 

the QC develops ten distinct facets (numbered from 1 to 10), while during dissolution, the QC loses these facets and becomes 

increasingly rounded.  Discontinuities in the calculation of interfacial velocity for facet 1 and 10 are due to the fact that the QC 

grows out of the tomographic FOV when it is largest.  Scale bar measures 50 µm. (c) Average normal velocity of each facet.   

 

4.3. Analysis of liquid phase compositions 

 

Fig. 4.4. Analysis of time-dependent driving force. (a)  X-ray projection images collected at 1272.5 K (40 sec, top image) and 

1247.8 K (1520 sec, bottom image) during continuous cooling, respectively. The region contained in the first white box (“1”) was 

used to calibrate the average intensity from the liquid, < xCo,Ni
L > (t), and the second white box (“2”) was used to calibrate the 

average intensity from the QC. The wrinkles in the bottom image are due to the thin oxide skin. Scale bars measure 100 µm. 
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In addition to the morphology and dynamics of the QC, we measured the time-dependent 

composition of the liquid phase during solidification. This analysis is possible because the 

composition of the liquid that is examined in the field of view changes due to solute rejection and 

convection. This was done by analyzing the variation of the intensity in the X-ray projection 

images.  In an absorption contrast X-ray imaging experiment, a higher intensity is typically 

associated with low atomic number elements in the microstructure due to less attenuation of the 

incident beam [85]. Recall that in our experiment, non-congruent growth (i.e., rejection of Al) gave 

rise to X-ray absorption contrast and induced an intensity difference. Put more quantitatively, using 

a monochromatic source, Husseini et al. proved that the intensity should vary linearly across the 

X-ray projection image for small, linear changes in atomic fraction [113].  Thus, the observed 

intensity can be directly mapped to composition, provided that the projection intensity has been 

calibrated against some features in the microstructure of known composition [114]. As 

demonstrated by Becker et al. [115], this approach is viable for both monochromatic and 

polychromatic sources.  For instance, Becker et al. calculated the composition of an Al-Ge alloy 

using a laboratory-based polychromatic X-ray source by calibrating the projection intensity against 

two liquid alloys of different compositions [115]. Here, we used the following two features in the 

microstructure to correlate projection intensity (a.u.) to composition (at. %):  

1. The solid QC phase.  Note the proportion of Al atoms to the heavy atoms (Ni and Co) in 

the QC is 7:3 at any temperature according to the phase diagram (Fig. 4.1(b)) [46]. The 

projection intensity of the QC along <00001> is denoted “2” in Fig. 4.4.  The average 

projection intensity is measured when the QC is viewed “end-on,” i.e., there are no 

pockets of liquid in the path of the beam within region “2”. 

2. The liquid phase at equilibrium.  At the instance that the QC stops growing, the 

supersaturation (i.e., a driving force for crystal growth) in the liquid phase must be equal 

to zero and hence the liquid phase is at equilibrium.  In this case, the composition of the 

liquid phase can be read directly from the phase diagram (Fig. 4.1(b)) [46], since the 

alloy temperature is known.  The projection intensity of the liquid phase at equilibrium is 

denoted “1” in Fig. 4.4.  For comparison, we also show the highly supersaturated liquid 

phase prior to QC nucleation, directly above it.   

 



   

 41 

In this manner, we calculated the average, time-dependent composition of the liquid phase, which 

we write as < xNi,Co
L > (t), during the growth process.  Note that it is impossible to decouple the 

contributions of Ni and Co within < xNi,Co
L > (t) using only the above two conditions; to do so 

would require a third such condition. Thus, < xNi,Co
L > (t) represents only the total atomic fraction 

of the heavy elements Ni and Co in the liquid phase at a particular instance in time.  Our calculation 

of < xNi,Co
L > (t) is still valuable as it permits us to measure the time-dependent supersaturation 

during QC growth: For instance, when < xNi,Co
L > (t) is much greater than the equilibrium liquidus 

composition given by xNi,Co
L,equil.

(t), the liquid phase is highly supersaturated in the heavy elements 

Ni and Co. This situation occurs immediately following QC nucleation. The relationship between 

supersaturation and QC velocity will be dealt with below.   

 

4.4. Growth 

4.4.1. Growth in aperiodic directions 

 

Fig. 4.5. (a) Average facet velocity of the ten quasicrystalline facets of the decagonal QC (red) and kinetic driving force (blue), 

during the growth process.  The driving force of supersaturation was calculated by subtracting the equilibrium liquid composition 

from the instantaneous liquid composition, see text and Eq. 4.1 for details. Errors in the measurement of average facet velocity are 

due to small errors in segmentation while those in the calculation of driving force are attributed to errors in the calibration of the 

phase compositions at equilibrium.  (b) Average facet velocity vs. driving force. The slope gives the kinetic coefficient 𝛽
𝑠
 associated 

with the growth process. 

 



   

 42 

In general, the morphology of a growing faceted crystal results from an interplay of 

interfacial kinetics and bulk transport.  The fact that the interfacial velocity is approximately the 

same for the ten <10000> aperiodic directions at each time interval during growth (see Fig. 4.3(a)) 

— irrespective of the physical location of these facets in the laboratory frame — suggests that 

facet motion is largely governed by interfacial mobility rather than bulk transport.  To lend 

quantitative support for this claim, we applied transition-state theory as follows:  During interface-

limited growth, the growth rate is limited by clusters incorporating into the QC at the solid-liquid 

interface, wherein the clusters must overcome an activation energy barrier [63, 64, 116]. In this 

case, the growth rate V is proportional to the difference in a forward flux as described in Sec. 2.2.2.  

For QC growth to occur, 𝐼L→QC >   𝐼QC→L, whereas at equilibrium 𝐼L→QC =   𝐼QC→L and 

hence V = 0.  If the growth occurs under weak supersaturation, one can use Eq. 2.15 [63, 64] to 

describe QC growth from the Al-Ni-Co melt 

V(t) = 𝛽
𝑠
 [< xCo,Ni

L > (t) − xCo,Ni
L,equil

(t)]𝑛 (4.1) 

where < xCo,Ni
L > (t) and xCo,Ni

L,equil
(t) are the instantaneous and equilibrium compositions of the 

liquid phase, respectively; the square-bracketed term represents the supersaturation (i.e., driving 

force) that is required for QC growth to occur. More details can be found in Sec. 2.2.2. 

In practice, we measured  < xCo,Ni
L > (t) directly from the X-ray projection images as a 

function of time (see Sec. 4.3) and < xCo,Ni
L,equil

(t) > from the as-calculated phase diagram [46]. 

Hence, our in situ imaging experiment provides a unique window into the time-dependent driving 

force associated with QC growth.  To simplify the analysis, we assumed that the variation of the 

kinetic coefficient 𝛽
𝑠
 is negligible within the temperature range of 1259.8 K to 1247.8 K at which 

growth occurs, and so 𝛽
𝑠
 is considered to be a constant value.  If the assumption presented in Eq. 

4.1 is satisfied, the QC growth process is dominated by the kinetics of interface attachment in the 

regime of weak supersaturation. As shown in Fig. 4.5(a), the trends in interfacial velocity and 

driving force are comparable to each other during the growth process.  By fitting the 

time-dependent growth velocity vs. driving force data (Fig. 4.5(b)) to a function of the form given 

in Eq. 4.1, we calculated the kinetic coefficient 𝛽
𝑠
 and the temporal exponent 𝑛 as 5.0 x 10-3 cm s-1 

and 1.0021, respectively. An R2 value of 0.963 was obtained, indicating a good fit of the linear 

model to the experimental data.  Thus, the growth of the QC in the <10000> aperiodic directions 
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follows first-order kinetics. In a similar sense, Refs. [79, 80] suggest that the Al-Pd-Mn icosahedral 

QCs grow from an undercooled liquid phase via an interface-limited, first-order growth 

mechanism. In addition, we can convert our value of 𝛽
𝑠

= 5.0 x 10-3 cm s-1 to the more widespread 

𝛽𝑚 = 2.5 x 10-6 cm s-1 K-1, which represents the kinetic coefficient in an undercooled melt (𝑚).  

In converting from one form of the coefficient to the other, we have made use of the slope of the 

liquidus curve in Figs. 4.1(b,c).   

   The magnitude of the kinetic coefficient also merits further discussion. According to 

Chernov [76], Markov [77], and Land et al. [75], the kinetic coefficient has a “steric” character: It 

is inversely proportional to the size of the attaching species because a larger species moves more 

slowly than a smaller one.  Moreover, it takes more time for the larger species to rotate to the 

correct orientation [75]. In this way, the QC clusters should overcome a configurational 

entropy-type barrier [76] in order to incorporate into the solid QC phase.  Using this logic, one 

might expect that the kinetic coefficient of an aperiodic crystal — that is thought to be built from 

the attachments of large clusters — to be smaller than that of other simple substances, such as pure 

metals [117-120] and intermetallics [121, 122].  In this way, the kinetic coefficient could serve as 

a measure of structural complexity. Indeed, the kinetic coefficients 𝛽
𝑚

 of QCs — including 

Al-Cu-Fe [123], Al-Pd-Mn [79, 123], and Al-Ni-Co (this work) — are all significantly smaller 

than those of periodic, elemental metallic crystals by approximately six to nine orders of 

magnitude, and those of periodic, intermetallic crystals by two to eight orders of magnitude (Table 

2).   
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Material Kinetic coefficient, 𝜷𝒎  (cm s-1 K-1) Reference 

Au 36.3 {100} 

20.7 {110} 

10.1 {111} 

Hoyt et al. [117] 

Ni 52 {100} 

40 {110} 

Hoyt et al. [118] 

Fe 30.5 {100} 

25.7 {110} 

Watanabe et al. [119] 

Cu 

 

 

FeSi 

CoSi 

Y3Al5O12 (YAG) 

Al2O3 

46 {100} 

27 {110} 

19 {111} 

1.4 

2.1 

3.5x10-3 

~3.5x10-2 

Hoyt et al. [120] 

 

Herlach [121] 

Herlach [121] 

Nagashio & Kuribayashi [122] 

Nagashio & Kuribayashi [122] 

Al-Ni-Co 𝑑-phase 2.5x10-6 {10000} This work 

Al-Pd-Mn 𝑖-phase 9.0x10-5   

9.4x10-7  

Thi et al.[79]  

Dong et al.[123] 

Al-Cu-Fe 𝑖-phase 3.0x10-8  Dong et al.[123] 

 

Table 4.1. Kinetic coefficients of undercooling in a liquid phase, 𝛽
𝑚

,  of various crystals, as determined from both experiments and 

simulations.  The values of  𝛽
𝑚

 of aperiodic crystals are all significantly smaller than those of periodic, elemental metallic crystals 

by approximately six to nine orders of magnitude, and those of periodic, intermetallic crystals by two to eight orders of magnitude, 

indicating a slower growth rate. The kinetic coefficient derived here for the d-QC phase is consistent with other studies on the i-

QC phase.   
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Fig. 4.6. Number of atoms in unit cell (cluster) vs. kinetic coefficient 𝛽
𝑚

 plot showing the larger unit cell (cluster), the more 

sluggish growth rate (smaller 𝛽
𝑚

). The source of the kinetic coefficients  𝛽
𝑚

 are Table 4.1.  

See also Fig. 4.6 which summarizes these trends. The kinetic coefficients listed for aperiodic 

crystals were determined from X-ray radiographs [79] and a combination of the Avrami approach 

and differential thermal analysis [123]. We assumed that the cluster in d-QC is composed of two 

layers of pentagons and the cluster in i-QC is the icosahedral second shell of the Tsai-type cluster 

[124]. Thus, it is entirely plausible that a higher configurational entropy-type barrier contributes 

to a more sluggish growth rate.  

 

4.4.2. Growth in periodic directions 

Our results indicate a stark contrast in the growth of the QC along the periodic and aperiodic 

directions. The growth rate along the periodic <00001> direction is about two orders of magnitude 

greater than the growth rate in the aperiodic <10000> directions, and this anisotropy in the 
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interfacial velocities results in an elongated shape of a decagonal prism, see Fig. 4.2. To explain 

these trends, higher-order kinetics deserves consideration since the degree of supersaturation is 

nearly uniform around the QC. According to a study [125] of an Al-Cu-Co single decagonal 

quasicrystal by X-ray topography, contrast associated with a screw dislocation appears in the 

{00001} plane.  This suggests that growth along <00001> occurs via second-order kinetics 

wherein the interfacial velocity is related to the square of the driving force (i.e., Eq. 4.1 with 𝑛 =

2).  The spiral ledges provide sites for crystal growth and thus there is no need for ledge nucleation.  

Consequently, the growth rate of crystal along the periodic direction is likely to be faster than in 

the aperiodic directions, even with a small amount of supersaturation [63, 64, 116]. Future 

improvements in higher resolution dynamic imaging would provide more conclusive support of 

this mechanism. 

 

4.5. Dissolution 

During dissolution, the QC loses its faceted solid-liquid interfaces, achieving a more 

rounded morphology (cf. Fig. 4.3(b)). Mechanistically, this may occur if the weakly bound, corner 

clusters leave the solid as soon as melting is initiated, further exposing new corners and 

perpetuating the melting process. The resulting, smooth curvature of the solid-liquid interface upon 

dissolution suggests that the removal of clusters occurs in a continuous way instead of in abrupt 

jumps.  That is, dissolution is not an activated process, in contrast to growth.  As a result, the 

dissolution process does not follow the geometric models mentioned above because dissolution is 

dominated by non-local, transport processes, as will be further explained below. If QC dissolution 

occurred via a local mechanism, the corners should evolve into facets, as has been observed by 

Wettlaufer and coworkers for a twelve-sided snowflake [126].  However, this behavior is not seen 

here (Fig. 4.3(b)).  

Importantly, the rate of dissolution is not the same for each of the ten corners, otherwise 

the isochrones of the solid-liquid interface would be perfectly circular.  Rather, the melting 

velocities depend strongly on the physical orientation, and not the crystallographic orientation. As 

a result, the melting process is asymmetric. For instance, after 1520 sec, facets 1, 9, and 10 show 

greater velocities than other facets, see Figs. 4.3(b,c).  Due to the influence of gravity, which points 

downward in Fig. 4.3, the heavy-atom Ni and Co-rich clusters at the bottom of the QC are removed 
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more easily than at the top of the QC.  The detached clusters tend to sink in the Al-rich liquid.  

Hence, the composition of heavy elements, i.e., Ni and Co, near the bottom interface of the QC 

decreases, while the composition of heavy elements near the top interface accumulates during the 

melting process.  In other words, there exists a density difference between the top and bottom 

facets of the QC that gives rise to buoyancy-driven convection. Consequently, the bottom facet is 

brought into contact with an Al-rich liquid that, in turn, causes it to dissolve at a faster rate.  Thus, 

transport kinetics are responsible for the unusual “egg-like” morphology of the QC at late times.   

The increase in the interfacial velocity of the bottom-most QC facets as dissolution 

progresses suggests an unstable distribution of heavy elements adjacent to these facets in the liquid 

phase, see Figs. 4.3(b-c). A similar behavior was recently observed via in situ X-ray radiography 

for Sn-Bi dendrites [127] that were solidified parallel to gravity, in which the heavy elements 

formed large plumes ahead of the growth front. These plumes disturbed the stability of the growing 

dendrites, such that their growth velocity was highly inconsistent over time. Taken altogether, 

interfacial kinetics brings about crystalline order while gravity-induced convection leads to 

microstructural heterogeneity, in both periodic crystals and QCs alike. 
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Chapter 5. Growth of Approximant X phase and Comparison with d-QC 

 

Our work in Ch. 4 supports the idea that the kinetic coefficient decreases as the complexity 

of the growth unit or cluster increases. It is worth mentioning that an alternate viewpoint that does 

not rely on the cluster description is offered by Herlach [121]. He suggested that short-range 

diffusion is necessary for the atoms to sort themselves out to find the proper sublattice position in 

a given intermetallic solid. In contrast, the attachment kinetics at the solid–liquid interface of a 

simple crystal (such as a pure metal) are only collision limited [128]. Consequently, for diffusion-

limited atomic attachment driven growth of intermetallics, the kinetic coefficient should be orders 

of magnitude smaller as compared with collision-limited growth of simple crystals, since the 

relaxation frequency for atomic diffusion (former case) is much less than the Debye 

frequency (latter case).  

Based on the steric argument given by Land & De Yoreo  [75] and Chernov [76], one might 

assume that the kinetic coefficients of QCs and their approximants are the same, owing to their 

similar structural motifs. To test this hypothesis, we captured in real time and at elevated 

temperature the solidification dynamics of the X phase during `fast' X-ray imaging and compared 

the results against the d-QC reported in Ch. 4.  
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5.1. Microstructure evolution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Three dimensional reconstructions of (a-e) Al-Co-Ni 𝑑-QC growth, and (f-j) its dissolution (in green), followed by (k-t) 

𝑋 phase crystallization (in red) during continuous cooling (1 K min-1). The 𝑧 axis in the specimen frame points along the rotation 

axis of our cylinder sample. Temperatures and times are as follows: (a) 1259.8 K (800 s), (b) 1259.2 K (840 s), (c) 1257.2 K (960 

s), (d) 1253.2 K (1200 s), (e) 1247.8 K (1520 s), (f) 1243.5 K (1780 s), (g) 1238.5 K (2080 s), (h) 1235.2 K (2280 s), (i) 1233.8 K 

(2360 s), (j) 1233.8 to 1227.2 K (2360 to 2760 s), (k) 1227.2 K (2760 s), (l) 1226.8 K (2780 s), (m) 1226.5 K (2800 s), (n) 1226.2 

K (2820 s), (o) 1225.8 K (2840 s), (p) 1224.5 K (2920 s), (q) 1220.8 K (3140 s), (r) 1218. 8 K (3260 s), (s) 1217. 8 K (3320 s), and 

(t) 1215.5 K (3460 s), respectively. The times given in the parentheses are with respect to the start of the XRT experiment at 1273.2 

K (0 s). A thin grey layer indicates the Al2O3 protective skin of the molten alloy sample that was grown naturally by thermal 

oxidation. We observe the nucleation and growth of a single d-QC at high temperatures and multiple X phase crystals. 
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We show in Fig. 5.1 three-dimensional reconstructions of one single 𝑑-QC (coloured in 

green) and multiple X phase crystals (coloured in red). Note that this is the same 𝑑-QC from Ch. 

4, reprinted here for ease of comparison.  The surrounding liquid phase is rendered transparent. 

The 𝑑-QC nucleates at 1259.8 K (Fig. 5.1(a)) and grows from one side of the protective Al2O3 

skin to the other, along the periodic <00001> direction [2]. Only one QC nucleation was detected 

within the tomographic field-of-view (FOV), for the duration of the in situ experiment. Nucleation 

of the X phase crystals takes place later, at 1227.2 K (Fig. 5.1(k)). Quantitative analysis of their 

nucleation and growth behaviors will be given in the subsequent sections. 

 

5.2. Nucleation dynamics: d-QC vs. X phase  

 

Fig. 5.2. (a) Number of nucleated 𝑋 phase crystals as a function of time 𝑡 following the first nucleation event at time 𝑡 = 𝑡0. Only 

those nucleation and growth events that occurred within the tomographic FOV are recorded. Nucleation is heterogeneous and takes 

place on either existing crystal surfaces or the protective Al2O3 oxide skin of the sample, with nearly equal probability. (b) Length 

of the “long axis” (parallel to the crystallographic 𝑏 direction) of X phase crystals versus time (red curves). Shown for comparison 

is the growth trajectory of d-QC along its long axis <00001> (green curve). All lengths were measured when the crystals were fully 

contained within the tomographic FOV except crystal #10; the cross mark at 𝑡 − 𝑡0 = 380 𝑠 for crystal #10 indicates that it grew 

out of the tomographic FOV during the in situ experiment. Measurement errors for crystal (a) numbers and (b) lengths are minimal 
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and arise from counting statistics. Superimposed 3D reconstructions of X phase crystals that nucleated heterogeneously from (c) 

the existing crystal surface and (d) protective Al2O3 oxide skin of the sample. Both (c) and (d) contain four different time-steps 

with a temporal discretization of 20 s, rendered with decreasing opacity (from opaque red to translucent yellow). The thick arrows 

in (c, d) indicate where the nucleation first occurred and the dashed line in (d) indicates where the reconstructed data were cropped 

for ease of visualization. The grey region represents the Al2O3 oxide skin.   

During the tomographic scan, a total of 13 crystals of the X phase were captured in the 

FOV (Fig. 5.2). By tracking their formations in 4D, we identify two distinct heterogeneous 

nucleation mechanisms: (i) self-nucleation, wherein intermetallics themselves act as potent 

nucleation sites for new X phase intermetallic crystals, at large distances away from the specimen 

surface. The second mechanism is (ii) Surface oxide nucleation, wherein the specimen surface 

(Al2O3) acts as a nucleant for the X phase. A similar behaviour was reported by [129-131] who 

considered the nucleation of another Al-based intermetallic, 𝛽-Al5FeSi. We did not detect 

homogeneous nucleation. The 4D data was thoroughly analysed to classify every X phase crystal 

according to these two categories, see Fig. 5.2(a). It can be seen that the total number of nucleation 

events increases continuously during continuous cooling. This might be because of the strongly 

anisotropic growth mechanism of the X phase, which grows along sharp crystallographic <010> 

directions (see Fig. 5.1(p)). Thus, the X phase cannot grow into the supersaturated liquid regions 

that are not in the path of its “long axis.” Constitutional undercooling builds up in these liquid 

regions until it exceeds the necessary nucleation undercooling. At this point, nucleation events are 

triggered around the existing crystals based on the above-mentioned two mechanisms (i, ii). 

Similar arguments were made by [132] to justify their in situ observations of repeated nucleation 

events of faceted Cu6Sn5 crystals. Fig. 5.2(a) indicates that at early times, such heterogeneous 

nucleation events occur on the surface oxide and the existing crystals with near-equal probability; 

at long times, there is more surface area on the exposed X phase facets, resulting in a slight bias 

towards self-nucleation.  We expect that these 13 nucleation and growth events are representative 

of nucleation and growth throughout the entire sample; this is because the alloy melt had been 

homogenized for around 400 s (Fig. 5.1(j)) before the first X phase crystals were observed. 

Three-dimensional examples of two different growth mechanisms are illustrated in Figs. 5.2(c, d). 

Fig. 5.2(b) shows the length of the “long axis” for each of the nucleated X phase crystals 

as a function of time. To interpret this plot, we must consider the interactions between the nucleated 

crystals: Their growth may be physically blocked by each other or the oxide skin (hard collisions); 

further elongation along the 𝑏-axis may also be suspended due to a depletion of the available solute 
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in the melt (soft collisions) [133, 134]. The latter occurs when the crystal separation is smaller than 

the solute diffusion length (see Sec. 2.2.1). Due to a combination of both hard and soft collisions, 

the length of the X phase rods tends to be shorter (on average) than that of the single d-QC, which 

grows quickly and without any interruption. In contrast, only four X phase crystals are able to 

extend from one side of the oxide skin to the other. Altogether, by combining Figs. 5.2(a, b), it is 

clear that the X phase rods are shorter and more numerous that the d-QC.  

At first glance, the comparatively low nucleation rate (# nuclei per unit volume per unit 

time) of the d-QC may seem incongruous with its low solid-liquid interfacial energy γSL [55] and 

higher nucleation temperature T*. According to classical nucleation theory [135, 136], both of 

these factors tend to increase the nucleation rate over that of the approximant phases. Yet this 

rudimentary analysis does not consider the influence of solute, otherwise known as constitutional 

undercooling. The development of constitutional undercooling — at the interface of the first 

crystals to nucleate — starts a “wave” of nucleation events throughout the bulk liquid [137]. Some 

understanding of these constitutional effects can be gained by considering the predicted 

solidification paths of both d-QC and X phases, see Fig. 5.3. Both curves were calculated with the 

aid of Thermo-Calc [138], using a recent thermodynamic assessment of the Al-Co-Ni system as 

input [108]. The growth restriction factor (GRF) is defined as the initial rate of development of 

the constitutional undercooling at the solid-liquid interface [137], and can be found directly from 

Fig. 5.3 as  

𝐺𝑅𝐹 = − (
𝑑𝑇

𝑑𝑓𝑠
)

𝑓𝑠→0 
 (5.1) 
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Fig. 5.3. Mass fractions 𝑓𝑠 of the solid 𝑑-QC (red) and X phase (blue) vs. relative temperature 𝑇 – 𝑇𝐿, where 𝑇𝐿 represents the 

liquidus temperature of either phase. Both curves were calculated using the recent CALPHAD-based assessment of the Al-Co-Ni 

system from [108]. The first derivative 𝑑𝑇 𝑑𝑓𝑠⁄  of these two curves in the limit of 𝑓𝑠 → 0 represents the growth restriction factors 

(GRF) of the d-QC and X phase (see inset). The 𝑋 phase has a higher GRF by a factor of around 1.5. 

 

In calculating the GRF, we assume two-phase coexistence only (e.g., liquid and X phase). 

Furthermore, we have considered the exact same master alloy composition as that of our XRT 

experiment (Al-9.55at%Ni-9.55at%Co). The inset derivatives in Fig. 5.3 indicate that the GRF of 

the X phase is approximately 1.5 times greater than that of the d-QC in the limit of vanishingly 

small solid fraction, 𝑓𝑠. Consequently, a large constitutional undercooling develops in a relatively 

short growth distance [132] for the X phase, enabling nucleation events to occur closer together 

(as experimentally observed in Figs. 5.1 and 5.2). Thus, due to the growth anisotropy of the faceted 

X phase and its high GRF, it is easier for new crystals to nucleate from the liquid than it is for a 

single crystal to branch during growth (like for a metal dendrite). In spite of this relatively high 

nucleation rate, only a few X phase rods can connect to both sides of the oxide skin, due to a high 

frequency of both hard and soft collisions, as mentioned previously.  
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5.3. Growth dynamics: d-QC vs. X phase  

 

Fig. 5.4. (a) Solid-liquid interfaces coloured by the local interfacial velocity at 1216.8 K. Positive interface velocity represents 

growth and negative velocity represents dissolution. The shown viewpoint is parallel to the specimen 𝑦-axis and the 

crystallographic <010> direction. The red dashed box was used to calculate the growth velocity 𝑉 of a single 𝑋 phase crystal, see 

text for details. (b) Interfacial isochrones with 80 s time increments within the dashed boxed region. The grey arrow indicates the 

motion of the facet in time. The represented temperatures and times are as follows: 1226.2 K (2820 s), 1224.8 K (2900 s), 1223.5 

K (2980 s), 1222.2 K (3060 s), 1220.8 K (3140 s), 1219.5 K (3220 s), 1218.2 K (3300 s), 1216.8 K (3380 s), and 1215.5 K (3460 

s).  

Once the constitutional undercooling has been relieved, the nucleated X phase crystals 

must grow to keep up with the cooling rate. To explain the growth kinetics of X phases we used 

the same approach as used in Ch. 4, see Eq. 4.1, which assumes implicitly that growth is governed 

by the kinetic contribution to the total driving force. This is a reasonable assumption to make due 

to the appearance of facets (Figs. 5.1 and 5.4), which inherently have few positions on the solid 

surface that are available for attachment [139, 140]. That is, not every atomic (or cluster) jump 

from the liquid to the solid will be successful, and thus the growth process will be limited by the 

kinetics of attachment at the solid-liquid interface. In other words, the kinetic coefficient 𝛽𝑠 is 

much less than the “diffusive speed” given by 𝛽𝑑𝑖𝑓𝑓 =
�̃�𝐿

𝑅(𝑐𝐶𝑜,𝑁𝑖
𝑆 −〈𝑐𝐶𝑜,𝑁𝑖

𝐿 〉)
, where �̃�𝐿 is the 

interdiffusivity in the liquid phase, 𝑅 is the crystal size, and 𝑐𝐶𝑜,𝑁𝑖
𝑆  is the composition of Co and Ni 

in the solid X phase. We can compare the characteristic speeds 𝛽𝑠 and 𝛽𝑑𝑖𝑓𝑓 using some realistic 

parameters. Assuming that �̃�𝐿 is equivalent to the self-diffusivity of Al in its melt (8 ± 0.7 × 10-5 

cm2/s at 1020 K) [141], we let 𝑅 be 1 × 10-3 cm; and we take 𝑐𝐶𝑜,𝑁𝑖
𝑆 − 〈𝑐𝐶𝑜,𝑁𝑖

𝐿 〉 to be approximately 

0.15, based on our compositional analysis. The calculated 𝛽𝑑𝑖𝑓𝑓  is 6 × 10−1 cm/s which is far 

greater than typical values seen for 𝛽𝑠 (e.g., 5 × 10−3 cm/s for 𝑑-QC). Thus, the 𝛽𝑑𝑖𝑓𝑓 is always 
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greater than 𝛽𝑠 in the range of our crystal size. It follows that diffusion is relatively fast (for the 

crystal sizes so-investigated) and hence interfacial attachment is the rate determining step in 

crystallization.  It can be noted that the same conclusion was drawn for the case of d-QCs in the 

aperiodic plane, see Ch. 4, on the basis that all bounding {10000} facets have the same velocity 

irrespective of their physical orientation and are therefore limited by their own intrinsic mobility 

(as represented by the quantity 𝛽𝑠).  

To study the growth kinetics of X phase based on Eq. 4.1, we require the growth velocity 

and supersaturation. Both phases have nearly isotropic growth rates in the planes perpendicular to 

the ̀ long axis'. In extracting parameters (i) and (ii) from our real-time X-ray imaging data, we must 

consider carefully the consequence of a relatively high nucleation rate: namely, crystals that grow 

in close proximity to one another must `compete' for the available solute and thus growth may 

stagnate as it becomes solute limited. That is, the neighboring crystals act as solute sinks and can 

dramatically lower the nearby supersaturation. As an example, low facet velocities [indicated by 

light-blue colors in Fig. 5.4(a) are found where the diffusional fields of neighboring crystals 

overlap. As the crystals grow, Al is rejected into the melt, accumulating in the open spaces between 

the crystals. Such solutal interactions have been seen to deactivate the growth of equiaxed grains 

in metal castings [142]. For this reason, and to determine the unbiased facet velocity, we isolate a 

freely growing crystal (red dashed box in Figs. 5.4(a,b)) that has less of an interaction with other 

crystals and also enough space to grow further. In addition, we are able to retrieve the instantaneous 

composition of the bulk liquid 〈𝑐𝐶𝑜,𝑁𝑖
𝐿 〉(t) directly from our X-ray projection images, and the 

equilibrium liquidus composition 𝑐𝐶𝑜,𝑁𝑖
𝐿,𝑒𝑞𝑢𝑖𝑙

(t) from recent thermodynamic assessments of the Al–

Co–Ni system [108]. 
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Fig. 5.5. (a) Calculated liquid composition (< cCo, Ni
L  >, in red) during XRT experiment, superimposed on a portion of the 

pseudobinary Al1−2𝑚Co𝑚Ni𝑚 phase diagram (0.074 ≤ 𝑚 ≤ 0.088) that shows the equilibrium liquidus curve (cCo, Ni
L,equil

, in black). 

Errors in the calculation of the former are due to slight differences in the sample thickness between independent measurements, 

which in turn may influence the intensity 𝐼 of the forward attenuated beam (by the Beer-Lambert law, 𝐼 ∝ 𝑒−𝑑, where 𝑑 is sample 

thickness). The horizontal spacing between the red and black curves represents the supersaturation driving force at a given time 

and temperature. (b) Average facet velocity of a freely-growing 𝑋 phase crystal (in red, see also Fig. 5.4(b)) and supersaturation 

(in blue), during the growth process. (c) Average facet velocity vs. driving force of d-QC and X phase. The slopes give the kinetic 

coefficient 𝛽𝑠 which is associated with the growth process (i.e., Eq. 4.1 with 𝑛 = 1). 

The two compositions are plotted as functions of temperature in Fig. 5.5(a). At short times 

(high temperatures) following crystal nucleation, the difference, 〈𝑐𝐶𝑜,𝑁𝑖
𝐿 〉(t)−𝑐𝐶𝑜,𝑁𝑖

𝐿,𝑒𝑞𝑢𝑖𝑙
(t), is large, 

indicating that the liquid phase is highly supersaturated in the elements Co and Ni, whereas at long 

times (low temperatures) this supersaturation decays to near-zero and hence the two composition 

curves overlap. Fig. 5.5(b) indicates that the temporal variations in velocity and supersaturation 

are compatible with one another during the growth process.  By fitting the time-dependent velocity 
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vs. supersaturation data to a function of the form given by Eq. 4.1, we find the kinetic coefficient 

𝛽𝑠 and the temporal exponent 𝑛 to be 1.73 × 10−3 cm s−1 and 1.0347 for the X phase, respectively 

(Fig. 5.5(c)). An 𝑅2 value of 0.974 was obtained, which indicates a good fit of the model to the 

experimental data. Therefore, the growth process of the X phase is dominated by the kinetics of 

interfacial attachment in the regime of weak supersaturation. More specifically, its growth follows 

first-order kinetics (𝑛 ≈ 1) akin to the 𝑑-QC (in directions perpendicular to the “long” axis). In 

addition, we can convert the measured kinetic coefficient in a supersaturated (𝑠) matrix, 𝛽𝑠, to the 

more widespread kinetic coefficient in an undercooled (𝑚) melt, 𝛽𝑚, by making use of the liquidus 

slope. The latter parameter represents the interfacial velocity 𝑉 under unit undercooling (∆𝑇 = 1 

K). We find 𝛽𝑚 = 4.49  × 10−7 cm s−1 K−1 for the 𝑋 phase in the {010} plane, which is five times 

smaller than that of the 𝑑-QC in the aperiodic {00001} plane (𝛽𝑚 = 2.41 × 10−6 cm s−1 K−1, see 

also Fig. 5.5(c)).  

One might suppose that the difference in the two kinetic coefficients might be due to 

different growth temperatures (of approximately 32 K, see also Fig. 5.1), since 𝛽𝑚 is known to 

have an Arrhenius-type dependence on temperature 𝑇,  

𝛽𝑚  ∝ exp (−
𝐸𝑎

𝑘𝐵𝑇
)  (5.2) 

where 𝐸𝑎 is the activation energy for interdiffusion in the melt, and 𝑘𝐵 is the Boltzmann constant. 

For sake of simplicity, and due to the lack of data on multicomponent melts, we assume that the 

activation energy for interdiffusion in Al-Co-Ni melt is approximately the same as that of 

self-diffusion in liquid Al, given by 280 ± 70 meV (Kargl et al., 2012). By invoking Eq. 5.2, we 

find that the experimentally determined kinetic coefficient 𝛽𝑚 of the X phase (4.49  × 10−7 cm s−1 

K−1 , at its nucleation temperature, 1227.2 K) becomes 4.81 ± 0.08  × 10−7 cm s−1 K−1 at the 

nucleation temperature of 𝑑-QC (1259.8 K). Thus, our crude calculation shows that the 

“temperature-corrected” 𝛽𝑚 value is almost the same as at lower temperature. Ultimately, the 

origin of the different kinetic signatures 𝛽𝑚 is not a thermal one but rather a configurational one, 

as will be explained further in the next section.    
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5.4 Connection between stability and solidification rate 

In general, there are two routes of phase stabilization. One is kinetic stabilization, which 

occurs when crystals are quenched from high temperature to room temperature. During the 

quenching process, the system does not have sufficient time to overcome the energy barrier for 

phase transformation into other stable phases; thus kinetically stabilized states can be referred to 

as metastable states [24]. Another route is thermodynamic stabilization, which consists of two 

components, energy and entropy. If the former holds true, QCs exist as a ground state of matter, 

and their stability is determined by the heat of formation ∆𝐻  at 0 K. Instead, the stability of QCs 

can be determined by the entropy term 𝑇∆𝑆  in the expression for the Gibbs energy change, ∆𝐺. 

Topological, chemical and phasonic disorders may all contribute to the entropy of the system [24]. 

For instance, QCs which have a broad compositional stability range (e.g. the d-Al–Co–Ni phase, 

investigated in this work) can have large entropic contributions from site-occupancy disorder 

(either topological or chemical). This might explain why the Ni-rich d-Al–Co–Ni is only stable at 

high temperature (e.g. higher phononic and phasonic disorders) [143]. 

One way that entropy can be readily incorporated during solidification is if clusters attach 

to the QC growth front at random. As early as the 1990s, models (see, e.g., [144]) have been 

proposed for the random packing of decagonal clusters with 10-fold symmetry. In this view, the 

clusters overlap with their neighbors, in the sense that they share atoms with the neighboring 

clusters (see also Sec. 1.2). That is, there are no rules that force clusters into unique arrangements, 

and hence many possible configurations appear due to the large degrees of freedom on how to join 

with neighboring clusters. “Errors” or phason strain are inevitably introduced during the growth 

process. Such defects increase the phason elastic energy, which in turn is reduced through phason 

flips, as directly observed in situ via HRTEM [27]. In contrast, those same clusters cannot attach 

to the periodic approximant crystal at random, requiring instead extensive cluster rearrangements 

to maintain the translational symmetry of the underlying lattice. For this process, at least short-

range diffusion is necessary. In contrast to bulk diffusion (considered in Sec. 2.2.1), short-range 

diffusion occurs over only a few interplanar spacings within the solid-liquid interface (and thus the 

growth process is still interface-controlled). This explains why some metallic liquids have the 

ability to deeply undercool [145, 146] and, in our case, why the kinetic coefficient of the periodic 

approximant X phase is about one-fifth of that of the decagonal QC. Even if the different growth 
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temperatures 𝑇 between the two phases are accounted for (see above), the kinetic coefficient 

𝛽𝑚(𝑇) of the periodic approximant is still less than the QC. Further support of this idea comes 

from molecular simulations of QC growth by Ref. [147]. The team showed (in the case of a 

dodecagonal, one-component QC) that it “traps” icosahedral clusters in the liquid phase with 

minimal rearrangement; for this reason, the structurally more flexible QC can grow more rapidly 

than its periodic 𝜎-phase approximant, whose formation would require more extensive local 

rearrangements (Keys & Glotzer, 2007). Thus, despite having similar structural motifs (Sec. 1.4), 

the two phases can have very different kinetic signatures.  

 That the QC more readily incorporates atomic clusters – pre-existing in the liquid phase – 

would imply a greater interface width than that of the X phase. Indeed, synchrotron-based X-ray 

diffraction studies on electrostatically levitated metal droplets point to a diffuse interface that 

effectively `blurs' the distinction between solid QC and liquid [148]. According to the simple 

model of Tang & Harrowell [149], the growth normal velocity V is related to this interface 

width W as V = uW, where u is the fixed rate at which order increases at any point in the interface. 

Given the same supersaturation driving force, and holding all else constant, our results would 

indicate that the interface width of the X phase is five times smaller than that of the QC, thus 

producing a slower growth rate. 
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Chapter 6. Kinetic and Equilibrium Shapes of an Icosahedral Quasicrystal 

 

In the thirty years since Shechtman’s discovery, there have been great strides in 

determining the shapes of QCs. For instance, Ho et al. [150] used a lattice model with short range 

atomic interactions to conclude that the equilibrium shape (ES), bounded by low energy planes, 

of i-QCs could not be the pentagonal dodecahedron, although they stated that this shape could 

exist as a non-equilibrium growth shape (GS), bounded by the slowest growing orientations. 

Ingersent [151] argued that by employing a generic lattice model based on both attractive and 

repulsive atomic interactions, several shapes including the pentagonal dodecahedron could indeed 

represent the ES of i-QCs. However, Ingersent’s lattice model is likely unrealistic for QCs because 

the variability in their local atomic configurations renders any next nearest neighbor interactions 

unphysical [151]. On the experimental side, the vast majority of studies have inferred the ES from 

observations of faceted micro-voids, quenched specimens, and projection X-ray images. In 

particular, Beeli et al. [152, 153] investigated the morphology of micro-voids in i-QCs and 

suggested that their highly faceted shape could be a good indication of the ES in these systems. 

They found that voids tend to adopt the {4, 6, 10} Archimedean polyhedral shape, suggesting a 

nearly isotropic interfacial free energy [153]. These micro-voids are bounded by a liquid-gas 

interface, and thus the kinetic processes might not be representative of those occurring along the 

liquid-solid interfaces encountered in QC solidification. Another approach of determining the ES 

is through post mortem techniques, yet this too is somewhat unreliable due to the continued crystal 

growth that occurs during the quenching process. This sustained growth during quenching and the 

fact that the i-QC phase is sometimes only stable at higher temperatures, make it difficult to 

replicate the equilibrium structure of i-QCs at room temperature. To circumvent these issues, 

several groups [78-80] have analyzed the growth dynamics of i-QCs via in situ X-ray radiography. 

While X-ray radiography is a powerful tool for dynamic studies, growth models developed for i-

QCs are based on 3D structures which may render such 2D techniques unreliable. Thus, the in situ 

and 3D observation of the GS and ES in i-QCs is lacking and warrants further investigation.   
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6.1. Growth shape and equilibrium shapes of an icosahedral quasicrystal 

 

Fig. 6.1. (a) Two-dimensional isochrones of a solid Al-Pd-Mn i-QC in the x-z plane during solidification, where color indicates the 

passage of time. The corresponding temperatures are as follows from the red isochrone to blue isochrone: 894.5 °C, 893.5 °C,  

892.5 °C,  891.5 °C,  890.5 °C,  889.5 °C,  888.5 °C,  887.5 °C, and 886.5 °C. (b) 3D renderings of the i-QC at an early stage of 

growth (approx. 420 s following nucleation); the growth shape corresponds to a pentagonal dodecahedron (see inset schematic). 

(c) 3D rendering after growth has nearly commenced (approx. 720 s following nucleation), wherein interfacial velocities are near-

zero; the equilibrium shape corresponds to a truncated dodecahedron (inset). All scale bars are 100 μm. 

The growth evolution of the i-QC as a function of time is shown by the reconstructed, 2D 

interfacial isochrones in Fig. 6.1(a). The growth process occurs for ~ 600 s until the supersaturation 

is nearly relieved, i.e., the composition of the liquid phase reaches that of the liquidus. During this 

growth regime – wherein the interfacial velocity is greater than zero, as indicated by the large 

spacing between the isochrones in Fig. 6.1(a) – we observe a highly facetted pentagonal 

dodecahedron. This is the growth shape of the AlPdMn i-QC as shown in Fig. 6.1(b) with six 

visible facets in the field of view. For comparison, an ideal pentagonal dodecahedral shape is 

shown inset. While the ideal shape has a total of 12 facets, only six are visible in our work since 

the QC grows outward from the oxide skin of the sample.  

During the transition from growth to equilibrium, the pointed vertices in the pentagonal 

dodecahedron are gradually truncated (see arrows in Fig. 6.1) to form the truncated dodecahedron. 

Smaller, three-fold facets are now apparent at later stage of cooling. This shape is represented by 

the t{5, 3} Schläfli symbol and is a {10, 3} Archimedian polyhedron. The ideal truncated 

dodecahedron is shown inset. We note that the truncated dodecahedron shown in Fig. 6.1(c) is the 

near equilibrium shape of the i-QC phase due to the fact that the interface velocities are nearly zero 

(Fig. 6.2(a)), and also the facet area fractions are invariant in time (Figs. 6.2(b,c)). Both of these 
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trends are quantified explicitly and presented below. Porosity is responsible for the rough interface 

at the top-left of Fig. 6.1(c), consistent with that observed in previous studies [154, 155].  

 

Fig. 6.2. Facet velocities (a), areas (b), and area fractions (c), as function of time. The time axis is divided into growth “G” and 

equilibrium “E” regimes, for reasons that are discussed in the text. The six facets visible are color-coded according to the 

dodecahedron inset in (a). “Facet 7” represents three-fold facets of the near-equilibrium shape. Gravity points into the page with 

the purple facet perpendicular to the gravitational field. Inset scale-bar in (a) measures 100 μm. Error bars represent standard 

deviations in the velocity and area of patches of solid-liquid interfaces. 

Fig. 6.2(a) shows the evolution of the six facet velocities as a function of time. The mesh 

triangle velocities do not vary considerably across the facet surfaces, and thus the triangle 

velocities are approximately equivalent to the facet velocities. Furthermore, interfacial velocities 

tend to be relatively small during slow cooling, and therefore we do not see any morphological 

instabilities at the growth front, e.g., dendrites [156] (contrast this with what we report for 

icosahedral grains in Ch. 8). The plotted velocities tend to decay over time due to the depletion of 

solute in the liquid phase as the QC grows, varying from as high as ~1±0.25μm/s following 

nucleation (930s) to near-zero near-equilibrium (1600s). We define the onset of near-equilibrium 

as the time at which the three-fold facets appear, coinciding with the onset of near-zero growth 

rates. Errors in the measurement of interfacial velocities at the earliest two to three time-steps arise 

from the fact that QC growth occurs faster than the experimental resolution. However, as growth 

slows over time the image quality improves and hence errors are not as pronounced. Other sources 

of error include small segmentation errors and mesh smoothing.  

We have also plotted the facet areas as a function of time in Fig. 6.2(b). While most facet 

areas increase during continuous cooling, a few facets (e.g., blue) decrease in area to make way 

for the three-fold facet of the truncated dodecahedron that forms during the structural relaxation 

of the i-QC. Nevertheless, the general trend during growth is a gradual increase in surface area as 
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a function of time (and temperature). In the ideal scenario without any thermosolutal convection 

or geometric constraint (as will be explained below), one would expect equal facet areas, yet this 

is not the case here. Fig 6.2(c) shows the ratio of facet area to the total surface area as a function 

of time. The area fractions asymptotically tend to constant values at long annealing times (1500s 

and beyond). 

The theory of the crystal GS is based on the fact that the largest facets are those with the 

lowest velocity. However, in Fig. 6.2(a), we observe that the slowest growing facet (yellow) also 

has the smallest facet area (Fig. 6.2(b)). This discrepancy may be resolved by noting that this facet 

grows very close to the edge of the sample holder, and hence it quickly comes into contact with 

the sample edge (Al2O3 skin) that inhibits further expansion of the facet. This geometric effect 

keeps the facet velocity low despite the small facet area. The yellow facet can thus only increase 

in area if its neighboring facets (colored orange, blue, and purple) grow outward; however, growth 

rates at the orange and blue facets are also low due to limited transport of solute. Geometric 

confinements only affect the relative areas of the facets in contact with the oxide skin. 

Nevertheless, we still observe a few facets that grow freely into the melt (e.g., purple facet, 

throughout the experiment), and it is these facets from which we extrapolate the crystal GS.  

True ESs are notoriously difficult to measure experimentally, as their observation requires 

stable phase coexistence and time [157]. At equilibrium, the chemical potential of the solid phase 

is equal to that of the liquid phase, resulting in a net zero interfacial velocity. Importantly, we never 

reach absolute zero velocity because the near-equilibrium QC must keep up with the imposed 

cooling rate. Nevertheless, we report near-constant area fractions of each facet at long annealing 

times (Fig. 6.2(c)) indicating morphological self-similarity [95] and that near-ESs may have been 

achieved. A similar procedure was used in other studies [158] to deduce the ES of plate-shaped 

precipitates undergoing Ostwald ripening.  

 

6.2. Comparison to theory 

Ultimately, we observe a marked difference in the GS and near-ES of the i-QC. The 

transformation from GS to ES can be thought of as a relaxation mechanism upon which the 

crystallization driving force (i.e., supersaturation) is removed, as mentioned above. On the atomic 

scale, this relaxation occurs because the clusters at the vertices of the pentagonal dodecahedron 
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are loosely bound to those in the bulk. Hence, the clusters are in a thermodynamically unstable 

configuration and dissolve readily, leaving a three-fold facet (i.e., {011001}) behind. Based on 

these findings, we propose that that truncated dodecahedral shape is the near-equilibrium shape of 

the icosahedral Al71Pd19Mn10 QC. Finally, our findings are in excellent agreement with the 

theoretical prediction made by Ho et al. [150], that the pentagonal dodecahedron cannot be the 

equilibrium shape of i-QCs, despite conflicting reports from other authors [151, 153]. However, 

such shapes can indeed be realized during growth [150]. The three-fold facets may have higher 

growth rates or lower roughening temperatures [150] as compared to the broad five-fold facets 

(i.e., {000001}), thus prohibiting their appearance on the crystal GS. Should any smaller facets 

exist on the ES, they may be below the resolution of XRT.  
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Chapter 7. Growth Interaction of Quasicrystals 

 

In the previous chapters we investigated the growth of a single QC, either decagonal or 

icosahedral. That said, high nucleation rates typical of casting lead to the mutual interference 

between crystals or grains and ultimately, the formation of grain boundaries. For the case of QCs, 

it is not straightforward to predict when grain boundaries will be formed due to the fact that QCs 

are incommensurate. In this chapter, we report the formation of a single decagonal QC arising 

from a hard collision between multiple quasicrystals in a liquid. Through corresponding molecular 

dynamics simulations, we explore the preconditions required for quasicrystal coalescence, with 

attention to the effects of initial misorientation between the growing quasicrystalline grains on the 

formation of grain boundaries. The experimental study and image processing-based analysis were 

conducted by myself while the molecular dynamic simulations and bond angle analysis were 

performed by Ms. Kelly Wang (University of Michigan).  

  

7.1. Growth of single quasicrystals by solidification route 

Despite their unique anti-corrosive, thermal, electric and frictional properties [159-161], 

the practical application of QCs is limited due to the difficulties in forming a defect-free, large-

dimensional grain. Conventionally, researchers used the following techniques to grow a single 

crystal: Bridgman, Czochralski, floating zone and self-flux methods [162]. These methods will be 

briefly reviewed here. The Czochralski method uses a small piece of seed crystal and growth occurs 

atop the seed through incongruent solidification from the molten alloy (i.e. solid and melt have 

different compositions). The growth process requires careful control of the temperature gradient, 

rotation speed and crystal pulling speed (0.1 – 10 mm/h). In the Bridgman method, nucleation 

occurs spontaneously rather than on a pre-set seed. The sample is kept at high temperature (above 

the liquidus) for homogenization and then the sample is slowly pulled down across the temperature 

gradient zone, where crystallization proceeds. The floating zone method uses a polycrystalline feed 
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rod with the same composition as the target crystal. A floating zone (i.e. molten zone) is formed 

in the feed rod by selective heating. As the zone moves upward, crystallization occurs from the             

bottom to the top of the feed rod. The self-flux method, in which crystals are grown by cooling an 

off-stoichiometric melt below the liquidus temperature does not involve a temperature gradient 

nor selective heating. After obtaining crystals, the coexisting melt is decanted. 

7.2 Growth of single quasicrystals by grain coalescence 

 In general, it is notoriously difficult to avoid forming a polycrystalline QC without the 

delicate control of the solidification parameters, as described above. Instead, we consider the 

possibility of producing single QCs via grain coalescence.  Somewhat surprisingly, Schmiedeberg 

et al. [163] reported through phase field crystal simulations that coalescence occurs more readily 

in dodecagonal QCs than in periodic crystals, despite the fact that two QC grains are always 

incommensurate. They speculated that phason strain play a significant role in distributing stress 

around the non-fitting structures [163], wherein the resulting phason strain can be relaxed via 

phason flips [17, 21]. In spite of these insights offered by Schmiedeberg et al. [163], grain 

coalescence — or the formation of a single, dislocation free crystal from multiple, misoriented 

grains — has never been demonstrated experimentally, to the best of our knowledge. In addition, 

their work leaves several questions unanswered on the QC response to internal stresses, owing in 

part to the limited resolution of the phase field crystal calculations. In this chapter, we will 

investigate the dynamics of coalescence via joint experiment and simulation approaches, the latter 

being the work of Ms. Kelly Wang (University of Michigan). Due to the collaborative nature of 

the project, results from both experiment and simulation will be included here.   

More specifically, we unveil the coalescence between thermodynamically-stable 

decagonal d-QCs [108] upon solidification of an Al-15at%Ni-6at%Co alloy. We harnessed 

synchrotron-based, four-dimensional XRT to capture the formation sequence of a single d-QC 

from multiple grains with negligibly small initial misorientation in the aperiodic plane. On the 

basis of our experimental results, we performed MD simulations to identify the mechanism of 

grain coalescence (or conversely, grain boundary formation) at the atomic scale. We examine 

relevant crystal rotation mechanisms [164-168] and discuss the role of phasons in facilitating the 

process. Our combined efforts provide the first direct evidence of the self-healing nature of 

incommensurate structures, such as QCs. 
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7.3. Experimental studies of grain coalescence  

 

Fig. 7.1. Tracking grain impingements in real-time. (a) Side view (z − x in the specimen frame) of two d-QCs with parallel {00001} 

long axes, observed after 50 min of cooling (1 °C/min) from 1020 °C. (b) Birds-eye view (x − y) of quasiperiodic plane 

corresponding to boxed region shown in (a). (c) Side view of d-QCs with non-parallel {00001}   long axes, observed at the same 

timestep as in (a). (d) Birds-eye view of the boxed region shown in (c). Isochrones of the solid-liquid interface in (b) and (d) are 

colored to illustrate the passage of time, with early times in red and late times in blue. Times taken after cooling and temperatures 

in (b) and (d) are as follows: 10 min (1010 °C), 20 min (1000 °C), 30 min (990 °C), 40 min (980 °C), 50 min (970 °C), 60 min 

(960 °C), 70 min (950 °C), 80 min (940 °C), 90 min (930 °C), 100 min (920 °C) and 110 min (910 °C). Yellow regions in (b) and 

(d) highlight the evolution of the grain boundary groove in time. 

 

Fig. 7.1 depicts the time-evolution of multiple d-QCs before and after collisions in an alloy 

of composition Al-15at%Ni-6at%Co, upon slow cooling (1°C/min) from above the liquidus 

(~1026 °C) to below. The growth sequences of the d-QCs were recorded via XRT every 10 mins 

starting from 1020 °C (at which point the sample was in a fully liquid state) with 20 s of temporal 

resolution. The key advantage of using XRT is that we can unambiguously visualize the 

morphologies, misorientations, and growth dynamics of the QCs in real-time and in 3D, without 

needing to repeatedly quench our specimen. As mentioned previously, quenching is known to 
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distort the shapes and orientations of the solid-liquid interfaces [169]. Worth noting is that we 

confirmed the existence of d-QCs in our sample through X-ray diffraction (Fig. 7.2) together with 

a thermodynamic assessment of the Al-Co-Ni system [108]. 

 

Fig. 7.2. X-ray diffraction pattern of water-quenched Al79Co6Ni15 alloy from an initial temperature of 970 °C. Rapid quenching 

prevents peritectic decomposition of d-QCs (i.e., 𝐿 +  𝑄𝐶 → 𝐴𝑙3𝑁𝑖1). Diffraction peaks from d-QCs are indexed accordingly. The 

peaks marked with black and red symbols correspond to the Al3Ni1 and aluminum oxide, respectively. 

The d-QCs in Fig. 7.1 show a decaprismatic morphology [2] with a `long axis' parallel to 

<00001>, representing the fast-growing periodic direction. Perpendicular to this direction is the 

aperiodic plane {00001}. Similar to our past experiments in Ch. 4, the d-QCs are `anchored' to the 

oxide skin of the sample (not pictured), which acts as a heterogeneous nucleant for the d-QCs. As 

they grow, the d-QCs interact with each other through soft and hard collisions. 

We selectively focus on two different cases of hard collisions between d-QCs with (i) 

parallel long axes (Figs. 7.1(a,b)) and (ii) non-parallel long axes (Figs. 7.1(c,d)). Figs. 7.1(a,c) 

show these two cases after 50 min of continuous cooling from a viewpoint perpendicular to the 

long axes of the d-QCs. Figs. 7.1(b,d) display a bird's eye (or cross-sectional) view of the growth 

sequences from the quasiperiodic planes. When the long axes of d-QCs are parallel (Fig. 7.1(b)), 

we observe multiple coalescence events, the first between 20-30 min and the second between 50-60 

min, the culmination of which is the formation of a single d-QC. The latter statement can be proved 

by the absence of a grain boundary groove (where the grain boundary intersects the solid-liquid 
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interfaces) [170, 171] as well as the presence of around ten facet planes on the coalesced structure 

at the final time-steps. If the grain boundary groove persists during solidification, it can be inferred 

that the grain boundary is stable and fixed to the groove [172]. However, the morphological 

transition from a V-shaped groove to a faceted interface (Fig. 7.1(b)), highlighted in yellow) 

suggests otherwise, i.e., the annihilation of the grain boundary during grain coalescence. 

Interestingly, the facet orientations of the d-QCs prior to impingement were nearly the same as 

those d-QCs following coalescence. This observation is in line with the findings of Schmiedeberg 

et al. [163] who testify to the coalescence between two colloidal QCs with small initial 

misorientation in the aperiodic plane regardless of the initial distance between them. Our 

quantitative analysis of facet orientations can be found in Fig. 7.3 which shows that the initial 

facets orientations of the two seeds and coalesced QC’s facet orientation align well, approximately 

less than 1°. The irregular shape of the d-QC on the left-hand-side in Fig. 7.1(b) between 40-50 

min of cooling (i.e., prior to collision) can be attributed to a mutual interference of diffusion fields 

between the two grains (soft collisions, prior to impingement). 
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Fig. 7.3. Stereographic projections of interface (facet) normal distributions of d-QC seeds on the (a) left-hand-side, (b) 

right-hand-side in Fig.1(b) after 50 min of cooling and (c) the coalesced d-QC after 110 min of cooling. Zone axis of projections 

is <00001> in all cases. Consequently, the QCs in (a,b) possess parallel long axes and small (<1°) misorientation in the aperiodic 

plane. 𝑃(𝑛) represents the probability (weighted by area fraction) of finding an interfacial normal along a particular direction. 

Peaks in the distribution indicate a highly anisotropic or faceted structure. In principle, a facet should have a single (discrete) 

orientation, yet the peaks have finite width here. This is likely a result of mesh smoothing. (d) Radial distribution of facet 

orientations obtained from 40 min to 110 min. The red, blue, and purple colors represent the d-QC seeds on left- and right-hand-side 

(before impingement) and the coalesced d-QC, respectively. Angular measurements start at the 12 o'clock position of the 

stereographic projection (see (a)) and increase clockwise. Two facets (peaks) are separated by an angle of nearly 36 degrees, which 

is consistent with a decaprismatic morphology of the d-QC phase. 

On the other hand, in the case where the two long axes are non-parallel to each other, we 

observe the persistence of a V-shaped grain boundary groove (Figs. 7.1(c,d)), signifying the 

formation of a stable GB between the two grains. In comparison to the above scenario where the 

long axes were parallel, here the quasiperiodic lattice in one d-QC merged with the periodic lattice 

of the other d-QC. Naturally, the appreciable disregistry between the two lattices resulted in the 

formation of a grain boundary, and hence a V-shaped groove (Fig. 7.1(d)). Since contrast in XRT 

stems from differences in photoabsorption between the phases, we can only capture the external 

solid-liquid interfaces and not the grain boundaries embedded within the solid phases. Thus, we 

turn to MD simulations to `see' inside the evolving d-QCs and fill in the spatiotemporal gaps from 

our experiment. 
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7.4. Molecular dynamics studies of grain coalescence 

 

Fig. 7.4. Changes in particle orientation (θ) toward near-equilibrium configurations (~25 million simulation timesteps) are shown. 

Left: Histograms of simulated (yellow to green lines) and expected particle orientation (grey peaks). Yellow indicates earlier 

timesteps while green indicates later timesteps. Grey peaks are expected probability density functions (PDF) for the reference grain 

(θ = 0°) and rotated grain. PDFs are calculated from single-seeded simulations. Peaks for the reference seed are centered at θ = 0° 
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and peaks for the rotated seed are centered at θ = (a) 3°, (b) 9°, (c) 10°, and (d) 15°, respectively. Right: Spatially-binned simulation 

frames at 25 million timesteps for each set of seeds. Scale bars for local orientation are below each histogram (left) and correspond 

to the orientation in the histogram axes, where bright blue corresponds to particles that align with the reference seed (θ = 0°). Bright 

orange corresponds to particles that align with the rotated seed, where θ = (a) 3°, (b) 9°, (c) 10°, and (d) 15°. Black area corresponds 

to angles along the shortest arc between 0° and the rotated seed and white area corresponds to angles along the longest arc between 

0° and the rotated seed. 

We systematically examine the effects of misorientation on grain behavior in d-QCs using 

seeded MD simulations with an isotropic, single-component pair potential previously shown to 

form d-QCs [173]. We focus on misorientations within the aperiodic plane {00001}, since the 

XRT experiments provide evidence for coalescence when the long axes are parallel (Fig. 7.1(a,b)). 

Thus, we carry out MD simulations in quasi-2D boxes to maximize motion in the quasiperiodic 

plane and minimize motion along the periodic axis. We fix the initial position of seeds in our 

simulations to match experimental conditions, where grains were `anchored' to the sample 

surfaces. We use the decatic order parameter, ψ10, to identify the local orientation (θ) of a particle 

with respect to a reference basis for each particle m, 

Ψ10(𝑚) =
1

𝑛
 ∑ 𝑒10𝑖𝜃𝑚𝑗𝑛

𝑗   (7.1) 

where 𝑛 and 𝜃 denote the number of neighboring atoms within a given radius and misorientation 

between the local atomic configuration of a particle and the fixed basis with decatic rotational 

symmetry. Particles that align with this reference basis will have an orientation of θ = 0°. A detailed 

description of MD simulation setup and analysis is provided in Sec. 7.5. 

In order to elucidate the mechanism behind grain coalescence in d-QCs, we begin with 

characterization of GB formation as a function of misorientation. Here, we define misorientation 

as the rotation angle about the <00001> axis between two seeds. We define grain as a region where 

the arrangement of particles may be described by a continuous lattice and seed as a set of particles 

belonging to the d-QC lattice with fixed orientation. We will refer to simulations based on the 

misorientations between seeds, rather than the misorientations between grains, since grains can 

change orientation over time but the misorientations between seeds are fixed and represent the 

initial conditions of d-QC grains. Fig. 7.4 compares small (3°), intermediate (9° and 10°), and 

large (15°) misorientations between two d-QC seeds with a fixed distance of 𝐿 =  40𝑑, where 𝑑 

is particle diameter. When seed misorientations are 3° and 9° (Figs. 7.4(a,b)), we observe 

unimodal distributions of Ψ10 in the bulk QC near-equilibrium (left, histograms). This result 
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suggests grain coalescence between misoriented seeds. On the other hand, when initial 

misorientations are 10° and 15° (Fig. 7.4(c, d)), we observe bimodal distributions of Ψ10 (left, 

histograms) in the bulk QC near-equilibrium. This result indicates the formation of a grain 

boundary. That is, grain coalescence between QCs can be observed for relatively low 

misorientation angles. For intermediate misorientations (θ = 9 - 10°) (Figs. 7.4(b-c)), grains tend 

to rotate toward intermediate orientations. However, grain coalescence is only observed when the 

orientations of two grains are well-aligned (e.g. Fig. 7.4(b) at right). At θ = 15°, the grain boundary 

is clearly defined and orientations of both seeds strongly resemble the initial seed orientations (Fig. 

7.4(d) at right). The contribution of initial misorientations on the final structure can be also verified 

by diffraction patterns (Fig. 7.5), density fields (Fig. 7.6), dislocation (Fig. 7.7) and tiling analyses 

(Fig. 7.8). In light of these trends, we can identify a critical misorientation Δθcrit ≈ 9° for the given 

simulation conditions (L = 40d and kT = 0.4), below which grains coalesce. The critical value 

provided here is not meant to represent all cases of grain coalescence in d-QCs, as Δθcrit is likely 

a function of various thermophysical parameters (i.e. grain size, fluid viscosity, and external stress 

[164, 165]. Instead, we treat it as a reference point for how the behavior of d-QCs change at Δθcrit. 

 

Fig. 7.5. Diffraction patterns of the coalesced structure, when the initial misorientation between two QCs is (a) 3°, (b) 9°, (c) 10° 

and (d) 15°, respectively. The patterns correspond to the results in Fig. 7.4. Note (a) and (b) are indicative of a single d-QC. On the 

other hand, the diffraction patterns of (c) and (d) suggest the presence of two d-QCs with different orientation. Thus, the diffraction 

pattern represents the superposition of two single QC patterns. The scattered pattern in (c) reflects the effect of rotation toward the 

intermediate angle, so that the misorientation between the two ten-fold patterns in (c) is approximately 6°. (d) shows a 

misorientation of ~15°, which corresponds to the initial misorientation between the seeds. 
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Fig. 7.6. Density modes associated with one pair of Bragg peaks (one basis vector and its negative) for (a) 3°, (b) 9°, (c) 10° and 

(d) 15° initial misorientations. (a-d) corresponds to the diffraction pattern in Fig. 7.5(a-d). The presence of partially different 

contrast in (a-d) indicates regions with local phonon strain as highlighted in red in (a). On the other hand, the distinctive contrast 

in (c,d) is associated with different grain orientations, as highlighted in yellow in (c).  

 

 

Fig. 7.7. Real-space images of a single density mode [174] when merged QCs reach the last frame in MD simulation (~2.5 × 107 

simulation timesteps) with (a) 3° and (b) 15° initial misorientations. Dislocations are highlighted with red circles, (a) and (b) are 

cropped to provide a magnified view from the images that represent full volume. We focus on the region where the two QCs collide. 

(c) Relationship between the initial misorientation and number of dislocations along the grain boundary in the coalesced structure. 

We find that there are few dislocations (if any) at low (θ < 9.5°) initial misorientation, since two QCs can rotate toward θ = 0° (cf. 

(a)). Conversely, there are many dislocations when two QCs cannot minimize the misorientation between them. The error bars 

were calculated from multiple dislocation analyses to retain consistency of our approach. 



   

 75 

 

Fig. 7.8. Tiling calculated at the ~2.5×107 simulation timesteps of (a) single QC growth, and growth from two QCs with (b) 9° and 

(c) 18° misorientations. We classified five tiles [175] into four classes (see inset in (a)). From largest to smallest, the four classes 

are colored in light blue, yellow, green, and grey. The red tiles indicate the initial QC seed positions. Images are cropped from the 

full volume for better visualization. (a) and (b) demonstrate few, dispersed tiling violations (white regions) that are not assigned to 

tiles), whereas tiling violations in (c) are concentrated along the grain boundary region (boxed in black). These findings support 

the formation of a single QC and a grain boundary, respectively. 

The phenomenon of grain coalescence is well documented in polycrystalline materials 

[164, 165, 167]. Grain coalescence is driven by reduction of grain boundary free energy and the 

mechanisms are categorized broadly by grain boundary migration and grain rotation (see Fig. 

7.9).  

 

Fig. 7.9. Tangential motion of crystals along planar grain boundary typically occurs in response to an applied stress σ. Elastic 

distortions are small and not depicted. (a) Original bicrystal, showing grain boundary and the trace of a plane in each crystal. The 

positions of atoms along this trace is followed in the other parts of this figure. (b) Sliding without interface motion (greased 

boundary), (c) Coupling of relative tangential translation of crystals with interface normal motion without sliding; direction of 

interface normal motion determined by the coupling. (d) Coupling and sliding. Reprinted from [164].  
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Grain boundary migration is typically coupled with rigid sliding [164, 165] (termed coupling), and 

can result in an increase or decrease in misorientation [168] (Figs. 7.9(c,d)). Grain rotation coupled 

with grain boundary migration may be identified by a translation in the grain boundary and a 

concomitant, continuous change in misorientation near the grain boundary [164]. On the other 

hand, uncoupled grain boundary sliding will always result in decreased misorientation [164]. Cahn 

and Taylor predicted that coupling will occur with high probability, with the exception of special 

symmetries [164]. Rotation occurs in these cases because the lack of symmetry near the grain 

boundary results in a biased, net tug on the lattice. In cases where grain boundary dislocations 

must be conserved, such as with small-angle GBs in periodic systems, grain rotation by pure 

sliding is prohibited, and coupling-induced rotation dominates [165]. This is because normal 

motion of the grain boundary ensures dislocations are conserved. Rigid sliding (Fig. 7.9(b)) 

dominates in special symmetries where dislocations can glide along the plane of the grain 

boundary [164] and grain boundary dislocations can easily annihilate or nucleate [165]. 

Considering the effects of symmetry on grain coalescence mechanisms, it is reasonable to wonder 

if the lack of translational symmetry, and the resulting phasons defects, play a role in facilitating 

grain coalescence in QCs.  

We begin our analysis of coalescence by investigating orientation mapping of grain growth 

from two seeds with misorientation well below Δθcrit, e.g. 3°, as depicted in Fig. 7.10. Fig. 7.10(a-

e) shows the time evolution of grain orientation for seeds with 3° misorientation. At early timesteps 

(Fig. 7.10(a-b)), we observe two grains (grains A and B) with good alignment to seed orientation 

(blue and orange regions, seeds A and B, respectively). Immediately after collision, grain A 

remains well aligned with seed A and a grain boundary is clearly visible (Fig. 7.10(b)). Both grains 

continue to rotate and reduce misorientation (darkening of both grains, Fig. 7.10(b-e)). 
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Fig. 7.10. Growth of a single d-QC from two seeds (labeled A and B) with 3° misorientation (a) during early stages of grain growth; 

(b) immediately after collision; (c) after collision, grain rotation to minimize misorientation; (d) early stages of grain coalescence; 

(e) after grain coalescence. All heatmaps are cropped according to the inset shown in (e) from the total volume. Subplots (a-e) are 

colored on the basis of an expected particle seed distribution Fig. 7.4(a). Contiguous regions of white in subplots (a-e) correspond 

to liquid regions. Arrows in (b-c) point to the GB grooves at the QC-liquid interfaces. 

After grain coalescence (Fig. 7.10(e)), a gradient between the grains is still visible. 

However, a unimodal distribution of Ψ10 is observed (Fig. 7.4(a)) and grain boundary grooves are 

no longer visible (Fig. 7.10(e)). This confirms the formation of a single grain, mimicking the 

experimental results (Fig. 7.1(b)), despite some internal heterogeneity. In contrast, simulations of 

FCC crystals (Fig. 7.11) show clear grain boundary grooves at all stages of growth, even after 

grain rotation.  
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Fig. 7.11. Growth of an FCC crystal with 3° misorientation between seeds at (a) 1.50 × 105, (b) 1.65 × 105, (c) 1.80 × 105, (d) 

1.95×105, (e) 2.55×105, (f) 3.0×105 timesteps. Although the uniform color distribution suggests global rotation of misoriented 

grains toward 0° misorientation, a persistent grain boundary groove (highlighted with arrows) suggests unresolved phonon strain 

along the grain boundary due to incommensurate distances between FCC lattices. 

 

Our results suggest that grain rotation should be a precondition for grain coalescence in 

d-QCs for low angle grain boundaries, where changes in the grain boundary shape during growth 

(Figs. 7.10(b-d)) are due to new crystal growth, rather than significant grain boundary motion. 

Given this evidence, we believe that the sliding model [164, 165] most accurately describes grain 

coalescence in our system, rather than grain boundary migration. When the rotation occurs by pure 

sliding, the driving pressure of grain rotation, P||, can be expressed as  

𝑃||  ≈  −
𝛾′

𝑅
  (7.2) 

in the absence of applied shear stress. Here 𝛾′ denotes the derivative of grain boundary energy as 

a function of misorientation and R denotes grain size. Assuming that 𝛾 is a monotonically 

increasing function of θ for low misorientation angles (𝜃 →  0°), 𝛾′ is positive so that the grains 

rotate to reduce the misorientation when the predominant rotation mechanism is grain sliding. In 

addition, it can be reasonably presumed that rotation does not occur when the misorientation is 
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greater than Δθcrit because the driving pressure becomes smaller. This is because 𝛾′ generally 

decreases with increasing θ [176]. 

 

Fig. 7.12. Density modes obtained by filtering two pairs of Bragg peaks from the merged quasicrystals with (a) 0°, (b) 3°, and (c) 

9° initial misorientations at timestep 4.0 ×105 from the MD simulations. The two pairs of Bragg peaks (cf. Fig.7.6) represent the 

two different length scales (long and short) in QCs. The red dots indicate the seed positions. The region boxed in (a-c) with yellow 

rectangles is segmented for further analysis with an appropriate threshold. (d), (e) and (f) correspond to (a), (b) and (c) respectively. 

(g) Phason densities calculated as a function of initial misorientation between seeds, using the method introduced by Freedman et 
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al. [177]. The phason density was determined from the segmented images based on the areas inside of the yellow rectangles for 

misorientations of multiple 0°, 0.5°, 1°, 1.5°, 2°, 2.5°, 3°, 6°, and 9° cases. More specifically, we quantified the fraction of `jags', 

which is longer than zero and shorter than the longer edge of the yellow rectangles in (a-c), along the direction of the stripes. As 

the initial misorientation increases, a higher phason strain is accumulated within the grain boundary region. For consistency of our 

results, we repeated analyses on different MD simulation datasets, which explains the origin of the error bars. 

We hypothesize that the absence of perfect dislocations in d-QCs due to 

noncrystallographic symmetry allows grain coalescence to occur more readily in d-QCs than in 

periodic crystals. Due to the additional phasonic components in the Burgers vectors, all 

dislocations in d-QCs are partial dislocations rather than perfect dislocations [21]. It follows that 

d-QC GBs consist of arrays of partial, rather than complete dislocations. Partial dislocations are 

shown to be mobile in sheared, 2D d-QCs via dislocation glide, which occurs via dissociation of 

dislocation cores and recombination of dislocation dipoles [178]. Motion of partial dislocations 

through d-QCs results in a wall of phasons along the slip plane [179]. This suggests that the 

dislocation reactions which enable sliding to occur redistribute the phonon strain from lattice 

mismatches as phason strain through its dislocation annihilation mechanism. Due to the 

complexity and variety of dislocations in d-QCs, however, we reserve quantitative analysis of 

dislocation structures and kinetics for future work. Instead, we examine samples where grain 

coalescence occurs for residual phason strain as potential signature of partial dislocation motion 

during grain coalescence (Fig. 7.12). Since phason strain relaxation occurs over much longer time 

scales than our simulations [180], we expect to see residual phason strain at or near regions where 

the hard collision occurred. Interestingly, Fig. 7.12 suggests that phason density near the grain 

boundary increases with initial misorientation, after grain coalescence. We hypothesize that grain 

sliding introduces phason strain near the GB while grains are rotating and a certain extent of phason 

strain is still tolerable for the single QC formation below θcrit. 

 

7.5. Details on Molecular dynamics simulations (by Ms. Kelly Wang, University of Michigan) 

Molecular dynamics (MD) simulation was performed with HOOMD-blue [181, 182] in the 

isobaric-isothermal (NPT) ensemble. Simulations used reduced units of energy (ϵ), length (σ), 

mass (𝑚), and time (τ =  √
𝑚ϵ

σ2
). Particles interacted through an oscillatory, double-well potential 

[173], previously shown to form d-QCs. Simulations were carried out in quasi-2D boxes with 

periodic boundary conditions for 500,000 particles. Quasi-2D boxes, with average final 
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dimensions of 360 × 360 × 8, were used to reduce the influence of layer mismatches and 

rearrangements along the periodic axis and to maximize the amount of atomic rearrangements in 

the quasicrystalline plane. Systems were linearly cooled from a liquid-like configuration (Tinit
∗  = 

1.5) to a temperature near, but below the melting point (Tend
∗  = 0.4) over 100,000 timesteps. The 

temperature was expressed in a reduced unit of T∗ =
𝑘𝐵T

ϵ
 where 𝑘𝐵 is the Boltzmann constant. Each 

system was then held at T∗end for 20 million simulation timesteps at a pressure of 3.9. Simulations 

consisted of two fixed seeds with a distance of 40 between the seed centers and misorientation 

between 0° and 18°. For each misorientation, 5-10 simulations were run to ensure consistency of 

the results. 
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Chapter 8. Formation of Metastable Dendritic Quasicrystals in the Solid-state 

 

Our recent in situ studies (Ch. 4-7) have demonstrated that the solidification of QCs and 

their approximants is governed by the kinetics of interfacial attachment, the anisotropy of which 

leads to the presence of facets and polyhedral kinetic shapes. These real-time experiments are 

typically done under near-equilibrium conditions wherein a liquid is cooled slowly below the 

liquidus, thereby solidifying a thermodynamically-stable phase. However, the growth mechanisms 

that control the formation of metastable QCs remain an enigma. Here, we overcome the challenge 

in observing the growth of QCs far-from-equilibrium with the aid of dynamic transmission electron 

microscopy (DTEM). By harnessing DTEM, we provide fresh insights into the growth shapes, 

growth rates, and growth mechanisms of the metastable QCs, which have a higher degree of 

phasonic and chemical disorder [183] than ideal QCs [27]. The DTEM experiment was performed 

with the aid of Dr. Joseph T. McKeown (Lawrence Livermore National Laboratory); structural 

analysis on the basis of experiment by Dr. Hadi Parsamehr (University of Michigan) and Dr. Ying-

Rui Lu (National Synchrotron Radiation Research Center); structural analysis on the basis of MD 

simulation by Dr. Ling Tang (Zhejiang University of Technology), Dr. Cai-Zhuang Wang, and Dr. 

Matthew J. Kramer (Ames Laboratory); and finite element analysis by Zhucong Xi (University of 

Michigan). 
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8.1. DTEM experiment 

8.1.1.  Initial condition 

 

Fig. 8.1. Comparison of local structure measurements, (a) Experimental EXAFS results of the pre-irradiated Al90Cr10 film and 

simulated Al13Cr2 structure in k-space. (b) Radial distribution functions (RDFs) of the annealed Al90Cr10 film, simulated Al13Cr2 

structure, and Al-Cr icosahedral QC [184]. (c) Schematic illustrations of the approximant Al13Cr2 phase along the [104] direction 

and a Mackay cluster in Al-Cr icosahedral QC [185]. Unique rotational symmetries, such as five-fold and ten-fold, can be found in 

both approximant (highlighted in red) and QC structures. 

Fig. 8.1(a) presents the extended X-ray absorption find structure (EXAFS) region of the 

XAS spectrum of the pre-irradiated Al90Cr10 film and simulated EXAFS results from the 

approximant Al13Cr2 structure [42] in k-space. The agreement between the experimental and 

simulated spectra and radial distribution functions (RDFs, Fig. 8.1(b)) indicate that the dominant 

crystal structure is Al13Cr2 before laser irradiation. However, the RDF of the Al-Cr icosahedral 

QC [184] shows that the adjacent atomic structures around a Cr atom in the icosahedral QC are 

more closely packed than the approximant phase. Therefore, the approximant and QC phases have 

different atomic distance distributions in spite of their structural similarities, see Fig. 8.1(c). 

Structural similarities are a hallmark of approximant phases of QCs, as described in Sec. 1.4. The 

unit cell of the approximant Al13Cr2 phase consists of three different types of icosahedra and these 

icosahedra are linked either by sharing vertices, edges, or triangular faces or interlocked at the 
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center of neighboring icosahedra [42]. Such icosahedral structures are frequently observed in the 

Al-Cr QCs in the form of Mackay clusters [186]. These clusters are aligned along the five-fold 

axis of i-QCs and produce a long-range icosahedral order. These structural details affirm the 

structural similarity between the approximant Al13Cr2 and QC phases, as introduced in Sec. 1.4.  

 

8.1.2. Quasicrystal growth from approximant matrix  

The microstructural evolution in an Al13Cr2 thin film following laser irradiation was 

captured via DTEM. The temperature profile of the sample, simulated via COMSOL in Fig. 8.2, 

suggests that the maximum temperature attained is below 600 °C, which is not sufficient to melt 

the sample (note the liquidus temperature of Al90Cr10 is 930 °C). Thus, the ensuing phase 

transformation occurs entirely in the solid-state. 

 

Fig. 8.2. Calculated 2D temperature profile (in the plane of the sample) upon laser irradiation on Al90Cr10 film with thickness of 

150 nm (left) and peak temperature profile as a function of time (right). The temperature field shown at left correspond to a time 

of x us after the laser was fired. 
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Fig. 8.3. Dynamics of QC precipitation following laser irradiation of Al-Cr thin film samples. Initial condition in (a) was the 

approximant phase Al13Cr2 and in (b) the Al-Cr icosahedral QC ‘seeds’. In both cases, we focus on a single representative 

precipitate (in white). Time lapse between consecutive images is 5 µs. Note: the QC precipitate seen in (b,i) is not the same QC 

obtained in (a,ix). (c) Precipitate radius vs. time, where 0 µs corresponds to the time at which the laser was fired. Equivalent radii 

were computed based on the number of pixels that belongs to the growing QC phase after image segmentation. Data points 

corresponding to (a) and (b) are indicated with red and blue circles, respectively. Growth curves are compiled from multiple DTEM 

experiments. (d) TEM image of Al-Cr QC precipitate formed via laser irradiation. Inset shows a selected area diffraction pattern 

with a [000001] zone axis taken from the highlighted area. 

The growth sequence of single representative precipitate embedded in an approximant 

matrix is shown in Fig. 8.3(a) after image processing. To enhance the interphase boundaries 

between the matrix and precipitate, non-local means and Gaussian filters were applied along with 

black-white inversion. Following an initial incubation period, we were able to observe the growth 

and morphological evolution of the precipitate from a sphere to a dendrite. The latter transition 

occurred at some point between Fig. 8.3(a,ii) and Fig. 8.3(a.v). No facets were observed at the 

resolution of the images, suggesting only a minor role of interfacial kinetics. Eventually, the 

growth process terminates due to reduced driving forces [127] and/or solid diffusivities [187]. The 

temperature-dependent Cr supersaturation and diffusion are explained afterward. When these same 

samples were irradiated with a single pulse laser for a second time (Fig. 8.3(b)), QC growth 

occurred almost instantly (negligible incubation time). This is because the pre-existing precipitates 
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or ‘seeds’ serve as templates for QC growth. This result is further confirmation that the phase 

transformation proceeds entirely in the solid-state, since the QC liquidus is underneath the 

equilibrium liquidus [188]. The growth velocities of ~0.01 m/s was measured from Fig. 8.3(c), 

whether or not the sample contains the seeds. However, the incubation times, determined by 

extrapolating the growth curves in Fig. 8.3(c) to the zero-radius axis, are substantially different: ~ 

0 µs with seeds vs. ~ 170 µs without.  

Post mortem TEM analysis revealed that the fully-grown crystals are indeed icosahedral 

QCs, as demonstrated by the five-fold selected area electron diffraction (SAED) pattern, see Fig. 

8.3(d). Corresponding energy dispersive spectroscopy (EDS) analysis showed that these QCs are 

enriched in Cr and that they reject Al into the interdendritic regions during precipitation (Fig. 8.4). 

Thus, QC growth is rate-limited by diffusion and not collision [189], since we can find solute 

partitioning. The average QC grain size over the entire heat-affected zone was approximately 2 

µm (Fig. 8.5). 

 

 

Fig. 8.4. Energy dispersive spectroscopy mapping on Al-Cr QCs of elements (a) Al, (b) Cr, and (c) Al + Cr. The QC is rich in Cr 

and rejected Al is segregated to the interdendritic regions and grain boundaries. 



   

 87 

 

Fig. 8.5. Scanning electron microscopy image of the laser-induced heat-affected zone in the Al-Cr film. The major axis of the 

heat-affected zone measured approximately 80 µm. The average radius of a dendritic QC grain is approximately 2 µm. The contrast 

between the center and boundary can be attributed to the lattice with high strain after quenching, which enhances beam scattering. 

 

8.2.  Development of interface instabilities 

In general, a number of preconditions must be met in order for precipitates to grow 

dendritically. These include (i) an isotropic precipitate-matrix interfacial energy, (ii) low 

diffusivity within the growing precipitate, (iii) low ‘mismatch’ between the precipitate and matrix, 

and (iv) low precipitate nucleation density [187, 190, 191]. All of these factors allow perturbations 

to grow in amplitude at the interphase boundary. Bearing these requirements in mind, the 

formation of dendritic structures upon solidification of a metallic liquid is relatively common due 

to the missing stabilizing effects against perturbations [190]. Conversely, the formation of solid-

state dendrites is extremely rare in Nature [187, 190, 191]. Nevertheless, the QC precipitates seen 

here uniquely satisfy all of these preconditions: For instance, past work shows that icosahedral 

QCs possess a nearly-isotropic equilibrium Wulff shape and that transition elements are slow 

diffusers in icosahedral QCs in comparison to the self-diffusion in Al [192]. Moreover, and as will 

be demonstrated below, 13-atom icosahedral motifs are common to both QC and approximant 

phases, thus satisfying precondition (iii). This should lead to a highly mobile interface between the 

two phases, as there are no kinetic limitations for atoms or clusters to incorporate into the growing 

QC.  
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In light of the above considerations, we can test the theoretical predictions of Mullins and 

Sekerka [69], see also Sec. 2.2.4. In their analysis, the critical precipitate radius 𝑅𝑐(𝑙) above which 

the lth order spherical harmonic should grow is given by Eq. 2.23. 

Due to a lack of data on the Al-Cr system, we used 𝛾 between Al-Mn icosahedral QC and the 

approximant Al6Mn phase, 0.03 J/m2 at 750 K [193, 194] (note the Al-Mn quasicrystal is 

isostructural with the Al-Cr QC); Ω is 5.14 x 10-4 m3/mol from the molecular weight of an Al42Cr13 

Mackay cluster and the density of Al-Mn QC [195]; T at which perturbation were observed in Fig. 

8.3 is roughly 750 K from Fig. 8.2. The values of 𝑅𝑐(𝑙) from the stability criterion of Eq. 8.1 are 

plotted in Fig. 8.6 against the relative supersaturation |(CM −  C0)/C0|, where we restrict l to be 

6, 10, and 12. Only these values of l are possible under l = 16 given the 532 site group symmetry 

of the icosahedral QC phase [196]. 

 

Fig. 8.6. Calculated critical precipitate radius Rc(𝑙) for relative stability as a function of supersaturation. Curves correspond to the 

lth order spherical harmonic. Interface is radially stable below the neutral curve and radially unstable above it. Shaded area 

represents the conditions encountered in our DTEM experiment, the boundaries of which are determined by the maximum 

supersaturation and the average radius of the fully-grown QCs. 

In order to pinpoint where our DTEM experiment lands on this morphological stability 

diagram, we require estimates of the relative supersaturation |(CM −  C0)/C0| and the critical 

radius Rc. We demonstrate in Fig. 8.3 that instabilities tend to grow at precipitate radii well below 
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Rc ~ 2 µm (see Fig. 8.5). Likewise, we take the supersaturation to be is maximal value, i.e., 

|(CM −  C0)/C0| →  0.5. As we show below, this assumption is reasonable for the diffusion-limited 

growth (DLG) of a spherical precipitate: Before the development of dendritic protrusions, we can 

model the QC precipitate as a spherical crystal of radius R and uniform composition CQC that 

grows in a supersaturated matrix. We take the composition C0 of the approximant at the QC-

approximant interfaces to be the stoichiometric composition of the Al13Cr2 phase. We seek the 

composition CM of the approximant far from the QC-approximant interfaces.   

For the sake of simplicity, we neglect capillary and interference effects. Assuming DLG 

[63, 197] of the spherical QC, the time-dependent diffusion equation can be solved to yield the 

growth rate, dR/dt of the precipitate:  

𝑑𝑅

𝑑𝑡
=

1

2
 𝜆2  

𝐷

𝑅
   (8.2) 

where the dimensionless interface parameter 𝜆 can be approximated as [197, 198] 

𝜆 ~ 2 𝜔/((1 − 𝜔) )(1 + √𝜔 +  𝜔)  (8.3) 

and 𝜔 is the compositional parameter, |(CM −  C0)/(CQC −  C0)|. At the earliest stages of the 

growth process (i.e., right before morphological instabilities take over), dR/dt is ~0.01 m/s and R 

is ~0.5 µm, as determined from Fig. 8.3. The diffusion coefficient D of Cr in Al13Cr2 at 750 K is 

1.41 x 10-12 ± 0.26 cm2/s, which was determined through a thin-film diffusion experiment [199], 

as follows: we first deposited a 300 nm-thich layer of Cr on melt-spun Al13Cr2 ribbons, which were 

subsequently annealed for different times t of 5, 10, and 20 min. at 750 K. Cr concentration c along 

the ribbon thickness x was measured cross-sectionally by EDS. D was found by fitting the 

concentration profile c(x,t) to the thin film solution [199] of the diffusion equation. Ultimately, we 

obtain D of 1.41 x 10 -12 ± 0.26 cm2/s from the slope of ln(c(x,t) – cm) vs. x2, where cm is the Cr 

concentration of Al13Cr2. Fig. 8.7 shows concentration profile after 20 min. of annealing. 
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Fig. 8.7. Concentration profile after 20 min. of annealing at 750 K. Fitting this plot to the thin film solution of the diffusion 

equation gave a Cr self-diffusivity D of 1.18 x 10 -12 cm2/s in the approximant phase. 

Using these values, we find 𝜔 ~ 1, which corresponds to the theoretical maximum supersaturation 

|(CM −  C0)/C0| ~ 0.5. Our measurement of the supersaturation is an upper-bound because it does 

not account for the diffusional interactions between neighboring QCs [200] (condition (iv)), nor 

does it account for defects that are created upon laser irradiation [201, 202]. The shaded area in 

Fig. 8.6 indicates the region of the morphological stability diagram that we can access through our 

DTEM experiment. That all three 𝑅𝑐(𝑙) curves intersect this shaded region indicates that dendrites 

are indeed within the realm of experimental possibilities.  

 

8.3. Insights from ab initio MD simulations 

The reason that the QC can overcome the stabilizing influence of capillarity (surface 

tension) and form dendrites so readily is because of its structural similarity to the Al13Cr2 matrix 

(precondition (iii)). The structural similarity is evidenced with the aid of ab inito MD simulation 

and cluster analysis conducted by Dr. Ling Tang at the Zhejiang University of Technology. The 

interatomic potential for Al90Cr10 is constructed by neural network deep machine learning. 

Energies and forces of various order and disorder Al, Cr, and binary Al-Cr structures are calculated 

by first-principles method using VASP package [203], employed as the training dataset. The 

obtained potential for liquid simulations is validated by comparing the pair correlation function 
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g(r) of the liquid from the machine learning potential and from ab initio MD simulation as shown 

in Fig. 8.8.  

 

Fig. 8.8. Total and partial pair correlation functions of liquid Al90Cr10 at T = 2000 K obtained from the MD simulation using the 

deep learning potential (DeePMD) are compared with those from ab initio simulations. Both simulations are performed using 200 

atoms and averaged over 30 ps. 

The MD simulation for the quenched Al90Cr10 liquid was performed with an MD cell that contains 

4500 Al and 500 Cr atoms and with periodic boundary conditions. An isothermal-isobaric 

ensemble with the Nose-Hoover thermostat as implemented in the LAMMPS package [204] is 

used in the simulation [205, 206]. The time step for the MD simulation is 2.5 fs. The liquid Al90Cr10 

sample is first equilibrated at 2200 K for 500 ps and then is quenched down continuously to 300 

K at a cooling rate of 1012 K/s. The atomic coordinates averaged over 500 ps at 300 K are then 

used for the structure order analysis. The short-range order (SRO) in the first-shell of the clusters 

around every atom in the MD sample is classified by analyzing the similarity between the clusters 

and the given template structures using the cluster alignment method [207]. The distribution of the 

alignment score for the Al-centered and Cr-centered clusters are shown in Fig. 8.9(a) and (b) 

respectively. Smaller alignment score indicates a greater degree of similarity between the structure 

of the cluster and the corresponding template. A cluster is said to have the SRO similar to a given 

template if its alignment score is below the cut-off score [207]. As one can see from Fig 8.9, while 
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the Al-centered clusters do not have any favorable SRO, about 24 % (area fraction under the black 

curve) of Cr-centered clusters exhibit very strong icosahedral (ICO) SRO.  

 

Fig. 8.9. The distribution of alignment scores against various template motifs as indicated by the legend for (a) Al- and (b) Cr-

centered clusters in the quenched Al90Cr10 liquid at T = 300 K with a cooling rate of 1012 K/s. 

Further analysis reveals that the unit cell of the approximant Al13Cr2 phase consists of three 

different types of 13-atom icosahedra, and these icosahedra are linked either by vertices, edges, or 

triangular faces, or interlocked at the center of neighboring icosahedra [42]. Such icosahedral 

motifs are frequently observed in Al-Cr QCs as a substructure of 55-atom Mackay cluster [186]. 

The Mackay clusters are aligned with the five-fold axis of icosahedral QCs and produce a long-

range icosahedral order [186]. Our MD simulations trace the emergence of the icosahedral motifs 

in Al90Cr10 alloys. According to Figs. 8.9 and 8.10, the dominant SRO in the quenched liquid 

Al90Cr10 is a 13-atom icosahedral cluster, as indicated by a low alignment score (~0.05) and hence 

a small deviation from the reference structure (the first coordination shell of a Mackay cluster). 
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Fig. 8.10. Short-range-order (SRO) of Al90Cr10 alloy, quenched from 2200 K to 700 K at a rate of 1011 K/s. For reference, we show 

(a-c) three types of 13-atom, Cr-centered clusters in the approximant Al13Cr2 phase and (d) a prototypical icosahedron (i.e., the first 

coordination shell of a 55-atom Mackay cluster). Note the simulated clusters depicted in (a-d) are slightly distorted from the 

referenced icosahedra. While they may look similar, they can be distinguished from each other: the corresponding ratio of average 

Cr-Al bond lengths in (a-d) is 1.03:1.02:1.01:1.00. The green and gray balls in (a-d) represent Cr and Al atoms, respectively. (e) 

Cluster analysis on rapidly quenched Al90Cr10 liquid, wherein the Cr-centered motifs are compared to those shown in (a-d). Clusters 

are said to have the SRO similar to the given reference structure when their alignment score is below the cut-off value of 0.16 

(indicated by a yellow dashed line). A low score indicates small deviation from the reference.  

This can be attributed to the prevailing SRO in the liquid phase at high temperatures [208] (see 

Fig. 8.8). We have also compared the Cr-centered structural motifs in the quenched alloy to the 

three types of icosahedra in the approximant Al13Cr2 phase (Fig. 8.10). Here, too we observe a 

high degree of structural similarity despite the slight differences in Cr-Al bond lengths (consistent 

with the EXAFS results in Figs. 8.1(a,b)). In light of these results, we suppose that the 13-atom 

icosahedral clusters can survive annealing and laser irradiation and ultimately contribute to the 

formation of icosahedral QCs in the solid-state. The structural similarity between QC and 

approximant does not extend to the second shell, however: when we conducted cluster analysis 

using 55-atom Mackay clusters, we do not obtain as low of a score, which means that the 55-atom 

Mackay clusters are not common structural motifs (Fig. 8.11; cf. Fig. 8.10). 
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Fig. 8.11. (a,b,c) Three types of Cr sites in the approximant Al13Cr2 phase (labelled 1-3). The first shell (gray) surrounding each 

site consists of 12 atoms; the second shell (green) has 38-40 atoms. The green and red balls in (a-c) represent Al and Cr atoms, 

respectively. The ratio of the three sites is 1:2:4. Cluster analysis of Al13Cr2-1, -2, -3 and Mackay clusters with (d) the 13-atom 

icosahedral motif and (e) MRO superclusters in rapidly quenched Al90Cr10. 

The significance of these icosahedral clusters has long been a matter of debate in the 

scientific community. The central question is whether they impart a physical stability to QCs or if 

they simply appeal to our need to organize complex information into small units [209]. Here, we 

show that clusters are not only important from a structural perspective but also from a kinetic one: 

they facilitate the ‘easy’ transition from one solid intermetallic phase to another. That is, the 

long-range icosahedral order in QCs can be readily obtained by the motion of a few atoms from 

the short-range icosahedral order in the approximant phase [210]. As the clusters move into 

registry, whether by local ‘matching’ rules [211] or otherwise, they displace the surrounding Al 

atoms (solute rejection, see Fig. 8.4). Clearly, this ordering occurs by a nucleation and growth 

mechanism (Fig. 8.3). Without this common structural motif between the QC and approximant 

phases, the interphase boundaries would possess a relatively low mobility, thereby stabilizing the 

precipitates against dendritic perturbations [76]. The existence of icosahedral clusters (Figs. 8.9 

and 8.10) may also explain why we should see metastable QC precipitates in the first place, and 

why QCs are often observed as intermediate phases in multi-step nucleation processes [212]. These 

arguments can be extended to other phase transitions involving liquid or amorphous [213] 

precursors. 
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Part IV. Conclusions & Outlooks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 96 

This dissertation focused on investigating the formation of QCs and their approximants 

under various growth conditions, by taking advantage of cutting-edge characterization techniques 

and corresponding molecular simulations. The work reports significant advancement of 

fundamental science underlying the growth pathways of complex intermetallics more generally. 

To sum up, the questions that have been addressed in this thesis are as follows: 

 

 What mechanisms dominate the growth and dissolution processes of a single d-QC? 

By extracting morphological, dynamic, and compositional information directly from our 

space- and time-resolved data, we were able to provide a fresh lens on these poorly understood 

phase transitions. On the basis of our results, we determined that the decagonal Al-Ni-Co QC 

grows via a normal growth mechanism, similar to periodic crystals with atomically “rough” facets. 

Even so, the growth rate is remarkably sluggish compared to those of periodic crystals due to the 

rearrangement of clusters at the solid-liquid interface. To quantify the growth kinetics, we 

calculated an interface kinetic coefficient of 2.5 × 10−6 cm s−1 K−1, that is independent of the 

magnitude of the driving force. Hence, this coefficient can be used as input for mesoscale models 

(e.g., phase field simulations). On the other hand, melting is not an activated process and is 

governed purely by gravity-driven convection. Therefore, we can conclude that the growth and 

dissolution processes do not have time-reversal symmetry. 

 

 What are the kinetic and equilibrium shapes of QCs? 

Growth of the i-QC phase from a liquid phase is largely governed by gravity-induced 

convection. During this growth regime, the i-QC takes on a pentagonal dodecahedral shape. Once 

the supersaturation in the liquid has been almost entirely depleted, the pentagonal dodecahedron 

evolves into a truncated dodecahedron near-ES, indicating that the pentagonal dodecahedron is not 

the lowest energy structure in this i-QC. Our result is in support of the theoretic work by Ho et al., 

who found that the pentagonal dodecahedron could not be the ES in i-QCs but can exist in non-

equilibrium conditions [150]. Thus, the equilibrium and kinetic shapes of i-QCs are not necessarily 

identical, as previously assumed by several investigators [78, 80, 152, 153]. 
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 To what extent are the crystallization pathways of QCs and approximants the same? 

From the side-by-side comparison of the solidification dynamics of quasicrystalline and 

approximant phases in the Al-Ni-Co system, we found that the d-QC and approximant X phases 

possess markedly different kinetic signatures despite being crystallographically related. While 

growth of the X phase is governed by first-order kinetics, in the same manner as for the d-QC, the 

two solid phases differ with respect to their nucleation and growth rates. A greater constitutional 

undercooling enables a higher nucleation rate for the X phase crystals. The nucleated, 

approximant-phase crystals are unable to grow as fast as the d-QC due to `soft collisions' between 

overlapping diffusion fields. Yet even those X phase crystals that grow freely and away from 

other X-phase crystals have anomalously slow growth rates. This is most likely because extensive 

cluster rearrangements are necessary to maintain the translational symmetry of the periodic lattice. 

Meanwhile, the d-QC does not experience as great a kinetic undercooling at the solid–liquid 

interface since it is able to incorporate the atomic clusters at random. It is for this reason that the 

measured kinetic coefficient of the X phase is about one-fifth that of the d-QC.  

 

 How do QCs interact with each other via hard collisions? 

From the joint experiment and simulation, we were able to provide a cohesive picture for 

the conditions that give rise to grain coalescence: (i) parallel periodic axes and (ii) small 

misorientation between quasiperiodic lattices. In this operating regime, we observed grain rotation 

toward 0° misorientation in order to minimize grain-boundary energy. This process occurs through 

a dislocation- mediated mechanism that allows the d-QCs to redistribute phonon strain due to 

lattice mismatch as phason strain, by local rearrangement of dislocations into valid tilings. Taken 

altogether, our integrated approach highlights the exciting opportunity for microstructure 

optimization via control of the grain boundaries – that is, defect engineering.  

 

 How do QCs grow dendritically in the solid-state? 

Indeed, while QCs have been shown to grow dendritically in a liquid [60–62], we provide 

real-time experimental assessment via DTEM of this particular growth mode in the solid-state. We 

rationalize the development of morphological instabilities based on the similarity in local orders 
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between QC and approximant. With the aid of ab initio MD simulations, we trace this structural 

similarity to 13-atom, Cr-centered icosahedral clusters. These clusters readily assemble into 

icosahedral QCs without substantial rearrangements. This atomic picture fully explains the growth 

process of metastable QC dendrites in systems that are driven far-from-equilibrium.  

 

Looking ahead, I believe the recent advancements in characterization techniques would 

help to answer the remaining questions in QC growth, such as developing three-dimensional 

growth models starting with nucleation from the melt [5]. For example, the recently renovated X-

ray nanotomography beamline at NSLS-II noticeably improved the temporal resolution of the 

technique by a factor of ten, to less than one minute per 3D tomogram [214], while still maintaining 

a high spatial resolution (~ 30 nm). This new setup is compatible with the newly developed high 

temperature in situ heater [215] with maximum temperature greater than 1100 °C and high thermal 

stability. I was among the first to test this heater in the fall of 2019 [215]. These advanced 

experimental setups are ideal to investigate transient solidification and precipitation behaviors of 

QCs with much higher spatial resolution and may in turn allow us to investigate in greater detail 

the interface between QC and its parent phase and its growth mechanism.  

In addition, continued efforts to improve the temporal and spatial resolutions of DTEM 

would help us to capture the growth of QCs from their nucleation stage and eventually provide 

evidence of short range order in a supercooled liquid. By lowering the contents of TM in Al-TM 

films, we may be able to melt the sample in the DTEM and observe the rapid solidification 

behaviors of QCs, which should nucleate with minimal undercooling [188]. Finally, the coupling 

of advanced experimental and simulation approaches would enable significant progress in solving 

complex problems in the realm of the structure, stability and growth of QCs, such as the migration 

of phasons, dislocations, and grain boundaries in the as-solidified QCs.  
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Appendix 

 

A. Rapid solidification and stability of interfaces 

 Rapid solidification denotes either of the following two conditions: (i) High bulk 

undercooling of the melt in the absence of efficient heterogeneous nucleants, or by rapid quenching 

(e.g. atomization, melt spinning) and (ii) rapidly moving temperature fields by high power density 

sources (e.g. laser, e-beam) [50]. One consequence of rapid cooling is the breakdown of the local 

equilibrium at the interface (e.g. solid-liquid or solid-solid), see Table A1. 

 

Table Al. Hierarchy of equilibrium. Reprinted from [216]. 

For example, solidification or precipitation can occur without change in composition, also known 

as a massive transformation. Massive transformation includes partitionless solidification and 

solute trapping. The effect of solute trapping can be seen in the reduction of the solid and liquid 

compositions at the interface with velocity and by the decrease of the interval between liquidus 

and solidus curves [217]. Stated differently, the non-equilibrium partition coefficient 𝑘(𝑉) → 1 as 

𝑉 → ∞. In this section, we will discuss the relationship between the interface velocity and interface 

morphology. 

 At low interface velocity, a planar interface is stable to perturbations if the thermal gradient 

is larger than the liquidus temperature gradient, recall Fig. 2.4. Ignoring capillary effects, the flat 

interface prevails when the interface velocity is smaller than a critical velocity 𝑉𝑐 [218]  
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𝑉𝑐 =  
�̅�𝐷

∆𝑇0
 (A.1) 

where �̅� denotes the conductivity-weighted temperature gradient and ∆𝑇0 represents the 

equilibrium interval between liquidus and solidus curves. Under 𝑉𝑐, we should expect a steady-

state plane-front growth (case A in Fig. A1). Above 𝑉𝑐, the interface adopts a cellular or dendritic 

morphology and the growth temperature rises above the equilibrium solidus temperature, such that 

the solid concentration is less than the initial composition of the alloy, 𝐶0 [217] (cases B & C in 

Fig. A1). At higher velocities, a cellular or dendritic microstructure becomes finer in length-scale. 

When the velocity exceeds the upper limit 𝑉𝑎, diffusion becomes localized and capillarity 

(inversely proportional to this length-scale) takes control in the Mullins-Sekerka framework (see 

Sec. 2.2.4). Consequently, we should expect a plane-front growth interface once again. The 

velocity that determines absolute stability 𝑉𝑎 is given by 

𝑉𝑎 = 
∆𝑇0(𝑉)𝐷

𝑘𝑣Γ
  (A.2) 

where 𝑘𝑣 and Γ denote nonequilibrium liquidus slope and Gibbs-Thomson coefficient, 

respectively. Beyond the absolute stability limit, and particularly when dT/dV > 0, oscillatory 

instabilities may occur and result in banded structures, which is produced by the alternate growth 

of two phases [219]. However, such oscillatory structures do not form when there is low interphase 

mobility (e.g. solid-solid) and the distribution coefficient 𝑘(𝑉) is close to unity (cases D & E in 

Fig. A1).  
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Fig. A1. (a) Schematic representation of interface velocity vs. temperature function, and corresponding (b) concentration profiles 

and (c) interface morphologies. Retrieved from [217].  
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