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ABSTRACT

Vast amounts of heat are emitted by industrial factories, automobiles and geologic formations.

To convert the abundance of heat into usable electricity, stable thermoelectric materials with high

conversion efficiencies (or equivalently, large zT values) are essential. In this thesis, I first focus

on a superionic conductor, Cu2Se, that is an excellent thermoelectric material, yet known to have

dissociation issues in real application conditions. By doping the structure with Sn, I was able to

demonstrate improved zT values and increased chemical stability. I describe the homebuilt current

stress test that I implemented for emulating a high-temperature power generation setting, which

has now become more common in thermoelectric studies of Cu2Se-based materials.

In a second project, I formed part of a team that showed that magnetic dopants can augment

the thermoelectric conversion efficiencies in a half-Heusler alloy, (Ti, Zr, Hf)NiSn. Here, I detail

my study of the low-temperature magnetic properties of the composite materials, including the

cluster-glass behavior that is visible in the bifurcation of the zero-field-cooled and field-cooled

temperature-dependent magnetic susceptibility. I applied the AC susceptibility technique to wit-

ness the evolution of the cluster-glass freezing temperatures as a function of driving frequency and

strength of the applied magnetic field. The extensive magnetic characterization is important for the

recent acceleration of research on magnetic compounds within the thermoelectrics community.

I further discovered that the same half-Heusler composites exhibit a strongly non-monotonic

dependence of the heat capacity on applied magnetic field at temperatures below 10 K. In the final

project of this thesis, I describe the fitting of multi-level paramagnon and volumetric magnon mod-

els to the heat capacity data. Using statistical analysis tools, I show that the two-level paramagnon

effect on the heat capacity is the most significant, and could be due to trace impurities or defects

within the highly disordered compounds. The Fe-added samples exhibit a unique trend of the heat

xii



capacity with magnetic field at temperatures lower than 4 K. I derive a magnon model as a possi-

ble explanation, yet it overfits the data. In the end, I qualitatively attribute the lowest temperature

effect in the Fe-added samples to a magnetotransport effect observed in the second project.

Overall, the thesis is primarily motivated by thermoelectrics research, which is seen most di-

rectly in the high-temperature thermoelectric property study of Cu2Se. The magnetic half-Heusler

alloys that were shown to possess improved thermoelectric properties at high temperatures are

then studied for their magnetic properties, magnetotransport and magnetothermodynamics at low

temperatures as a way of discovering more fundamental aspects of the compounds.

xiii



CHAPTER 1

Introduction

1.1 Motivation: Thermoelectric Power Generation from Waste
Heat

Approximately two-thirds of the world’s energy consumption in industrial processes is squandered
as waste heat, as highlighted in Figure 1.1 [1]. The smoke stacks of innumerable fossil fuel-
burning power stations and steel mills, as well as the exhaust from the tailpipes of more than
a billion automobiles worldwide, are primary examples of rejected heat. Thermoelectric (TE)
materials, which can convert heat directly into electricity, have great potential to harvest waste
heat and thereby curtail the global dependence on fossil fuels and reduce harmful emissions into the
atmosphere. To be economically viable, TEs must possess high conversion efficiency, represented
by the dimensionless TE figure of merit

zT =
S2σ

κT
T =

PFT

κe + κL
, (1.1)

with S the Seebeck coefficient, σ the electrical conductivity, PF = S2σ the “power factor”, T
the absolute temperature, and κT = κe + κL the total thermal conductivity split into its two main
constituents: the electronic contribution, κe, and the lattice contribution, κL. A derivation of Eq.
1.1 can be found in Ref. [2], wherein a proper accounting of the heat flow and power output of a
TE device (Figure 1.2(a)) is made.

For real-world applications, the corresponding device efficiency for a given zT is expressed as

η =
TH − TC
TH

( √
1 + zT − 1√

1 + zT + TC
TH

)
= ηC

( √
1 + zT − 1√

1 + zT + TC
TH

)
. (1.2)

Here, TH is the hot side of the TE device, TC is the cold side, and ηC is the Carnot efficiency, the
maximum allowable conversion efficiency of a heat engine. As zT →∞, η → ηC . A plot

1
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Figure 1.2: Thermocouple schematic and comparison of various thermodynamic cycles. (a)
Thermoelectric (TE) device [4] consisting of two semiconducting legs, one in which electrons are
the dominant charge carrier (n-type) and the other p-type, where the oppositely charged “holes”
are the majority carriers. The incident heat energy is converted into output electrical power by the
Seebeck effect, as described further in Section 1.2.1. (b) Comparison of the efficiency, η(TH ;TC =
300 K), of various thermodynamic cycles, with the solid black line the Carnot limit. Four different
zT values of 0.5 (solid brown line), 2 (dashed green line), 4 (solid blue line) and 20 (dotted gold
line) scale from the lowest values in the plot to increasingly higher ones. The grey dotted-dashed
line in the middle is the Curzon-Ahlborn limit, the maximum efficiency of a heat engine affected
by irreversible finite heat transfer rates. Modified from Ref. [5] with permission from Annual
Reviews.

of the device conversion efficiencies against zT is given in Fig. 1.2(b) for an ambient cold side
temperature (TC ≈ 300 K). zT ≈ 1 has served as a historical standard for critical, yet niche, ap-
plications [3], such as providing the onboard power for deep space missions like Voyager, Pioneer,
and others.

Realistically, zT values > 2 and beyond (device conversion efficiencies around 20%) are nec-
essary for broad implementation of TE waste heat recovery from factories, automobiles, and even
the human body [6]. Recent reviews by Tan et al. [7], Han et al. [8], Shi et al. [9], and He and
Tritt [10] compile the most promising TE material families and the strategies used to optimize their
zT values. During the past decade, several classes of TEs have been identified and engineered to
attain values of zT > 2. We plot the temperature dependence of zT for select materials in Figure
1.3.

The heat engine perspective of a TE device can be run in the opposite direction, i.e. an electrical
current can be input into a thermocouple to drive a temperature gradient. Typical applications of
TE coolers include temperature management of optical systems, on-chip cooling of semiconductor

3



Figure 1.3: Temperature-dependent thermoelectric figure of merit, zT , for a num-
ber of highly researched materials. The materials include CsBi4Te6 [11], BiSbTe3 [12],
MgAg0.965Ni0.005Sb0.99 [13], Ti0.5Zr0.25Hf0.25NiSb0.998Sn0.002 [14], Ba0.11Sr0.09Yb0.05Co4Sb12.3

[15], Bi0.875Ba0.125CuSeO [16], Cu2Se [17], SiGe [18], Pb0.98Na0.02Te-8% SrTe [19], and SnSe
[20].

devices, and electronic refrigeration of biological substances. TE cooling will not be mentioned
much more herein since the TE aspects of the thesis focus on the high-temperature (> 600 K)
conversion of heat into electricity. However, the interested reader may consult Ref. [21].

Since the goal of TE research is to increase zT as much as possible for higher device conversion
efficiencies (within economic and environmental restraints, of course), it is essential to ask whether
condensed matter physics places a fundamental upper bound on zT . To start, we can consider
the charge carrier concentration, n, or how many conduction electrons (or the positively charged
equivalent “holes”) are present per cm3 in a material. n is one of the most readily tunable aspects
of solids, so zT (n) has a direct connection with real-world TE performance. Later, in Section 2.2,
we will derive expressions for n, S, σ and κe that can be used to assess zT (n), which is plotted in
Figure 1.4.

Evidently, the peak that occurs in the numerator of zT as a function of carrier concentration
yields an upper bound for zT at a specific value of nopt. Typical values for nopt range from 1019

to 1020 cm−3, characteristic of highly doped (degenerate) semiconductors. As a result, most of
TE research focuses on semiconducting materials, normally with electronic energy band gaps / 1
eV, which is borne out in the list of materials shown in Fig. 1.3. From Fig. 1.4, we understand
that one of the optimization steps in maximizing zT in candidate TE materials is to determine
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Figure 1.4: Thermoelectric properties as a function of charge carrier concentration. The
thermoelectric figure of merit, zT , the Seebeck coefficient, S, the electrical conductivity, σ, the
power factor, S2σ, and the total thermal conductivity, κT , are shown as light green, cyan, maroon,
black, and light purple solid lines, respectively. The plot demonstrates that fundamental solid-state
physics places an upper bound on S2σ that is reflected in a maximum for zT . Modified from Ref.
[22], with permission from Nature Publishing Group.

the appropriate nopt through elemental doping, for example. Another approach is to consider that
the lattice contribution to the thermal conductivity, κL, is decoupled from n. Therefore, carefully
selecting and engineering materials with low values of κL, usually / 1 Wm−1K−1, can lead to
exceptional zT . Although these are not the only guiding principles of TE research, as outlined in
Refs. [7, 8, 9, 10], they are the primary motivations for the TE research presented in Chapters 3
and 4.

1.2 Thermoelectric Phenomena

From Section 1.1, it is clear that TE power generation could be an effective way of utilizing waste
heat as long as zT values can be substantially enhanced within economic and environmental con-
straints. In the current section, we will describe the underlying physical phenomena for TE power
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generation (the Seebeck effect) and cooling (the Peltier effect), as well as an important electronic
effect in the presence of applied magnetic field, that is, the Hall effect.

1.2.1 Seebeck and Peltier Effects

The joining of two wires of dissimilar metals at a common point, typically called a junction, results
in a device known as a thermocouple. Heating the junction creates a non-zero potential difference
between the end-points of the open loop, a phenomenon known as the Seebeck effect [2]. If the
open loop were closed, an electrical current would circulate within the thermocouple as long as
the temperature gradient, ∆T , between the two closed ends remained, as in Fig. 1.2(a). The
corresponding voltage, ∆V , driving the current is found experimentally to be

∆V = S∆T, (1.3)

where S is the previously mentioned Seebeck coefficient. Rigorous mathematical formulae for
the Seebeck coefficient within the framework of the Boltzmann transport equation (BTE) will be
derived in Section 2.2. The units of S are V K−1, with most semiconductors for TE applications
possessing magnitudes of the Seebeck coefficient from 50 to 300 µV K−1 [23].

Viewed in another sense, the electronic charge carriers within the metallic legs of the thermo-
couple thermally diffuse from the hot junction to the cold. Because the electronic energies of the
two separate metals are not equivalent, there is a corresponding potential difference between the
hot and cold ends. Possibly more intuitive is the construction of a thermocouple in which one of
the legs is an n-type semiconductor, where electrons are the charge “fluid” and the Seebeck coef-
ficient is negative, while the other thermocouple leg is a p-type semiconductor, where the motion
of the holes sets the direction of the electrical current and the Seebeck coefficient is positive. In
such a case, Fig. 1.2(a), the electrons and holes counter-propagate within the circuit, setting up a
counter-clockwise current. The direction of the current would of course be opposite if the two legs
were switched.

Starting with the open loop thermocouple again, but with the hot and cold ends at the same
temperature initially, a current driven through the junction will cause a local heating or cooling,
called the Peltier effect. The physical basis for the heating or cooling is the emission or absorption
of energy by the charge carriers as they pass between the two dissimilar metals at the junction.
Phenomenologically, the heat, Q, liberated or absorbed at the junction scales linearly with the
input current, I:

Q = ΠI, (1.4)

with Π the so-called Peltier coefficient. The Peltier effect is the basis for TE cooling. It is generally
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more challenging to detect since the driving current also gives rise to Joule heating. Comparing the
junction temperature for opposing current directions, in which the Joule heating would be identical
yet the Peltier effect would be opposite, is one way of isolating the Peltier signal.

1.2.2 Hall Effect

Due to the Lorentz force, charge carriers in motion feel the presence of a local magnetic field
slanted away from the direction of current [24]. The force, ~FL = q~ξ × ~H , is perpendicular to both
the velocity of the charge carriers, ~ξ, and the applied magnetic field, ~H . q = −e for electrons
and +e for holes, where e ≈ 1.6 x 10−19 C is the elementary charge. The motion is pictured
for an electron in a rectangular bar of an n-type material in Figure 1.5. As the electrons pile up
on one side of the bar, a measurable potential difference develops between the opposite edges.
This phenomenon is known as the Hall effect, with VH the Hall voltage. The corresponding Hall
coefficient is defined as

RH ≡
EH
jH

=
VH/w

IH/tw
= t

VH
IH

, (1.5)

where EH is the magnitude of the electric field associated with the Hall voltage, j is the current
density used to excite the electronic motion along the x̂ direction in Fig. 1.5, and t and w are the
labeled sample dimensions. The last expression in Eq. 1.5 is the most experimentally useful since
voltages and excitation currents are more readily accessible than electric fields and current densi-
ties. Typical values of RH start at ≈ 10−3 cm3 C−1 for highly degenerate semiconductors, which
can be quite difficult to measure experimentally. Less heavily doped, intrinsic semiconductors can
have values of RH closer to 101 cm3 C−1 that are quite stable during measurement [23].

At steady state with a constant magnetic field along the ẑ direction and electrical current only
along x̂, the build-up of charge carriers on the side of the sample prevents further accumulation
through the opposing Hall field. Considering the corresponding forces acting on the charge carri-
ers, we can set their sum in the ŷ direction to be zero:∑

i

Fi,y = Fe,y + FL,y = q(EH − ξxH) = 0. (1.6)

Thus, EH = ξxH can be plugged into the definition of RH in Eq. 1.5 to yield

RH =
ξx
j

=
1

nq
, (1.7)

where j = nqξx, and n is the charge carrier density mentioned in Section 1.1. Because q is the
opposite sign for electrons and holes, the Hall coefficient is one way of identifying whether a
semiconductor is dominantly n-type or p-type, respectively. This is experimentally borne out in
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Figure 1.5: Schematic of the Hall effect for a rectangular solid. The bar has dimensions w x t x
L. A current, I , driven by an excitation voltage, Vx, runs parallel to the long axis of the bar in the
x̂ direction. At the same time, a magnetic field, H , is directed along ẑ. The resultant Lorentz force
diverts the ξx velocity of the electrons to the −ŷ direction, setting up the Hall voltage, VH [25].

the fact that the measured Hall voltage is positive for p-type materials and negative for n-type, due
to the charge carriers accumulating on the identical side of the sample regardless of sign. Also,
because RH is a simple constant in Eq. 1.7, VH scales linearly with the applied magnetic field by
Eq. 1.5. Any non-linear VH vs. H behavior would suggest a different physical picture than the one
described above.

Another critically important aspect of Eq. 1.7 is that the experimentally measurable Hall coef-
ficient is directly related to the charge carrier concentration. As demonstrated in Fig. 1.4, zT (n) is
maximized at a certain n = nopt that enhances TE performance. Measuring the Hall effect is there-
fore a key tool for TE research. For example, knowing n for a given TE material and conducting
a doping study to alter the charge carrier concentration with insight from the Hall effect measure-
ment, is one approach for optimizing zT . Highly doped semiconductors can have n ' 1020 cm−3,
whereas more intrinsic semiconductors possess values of n / 1018 cm−3 [2, 22].

Furthermore, combining the Hall coefficient with the electrical conductivity, σ, determines the
charge carrier mobility, µ, in the following manner:

µ =
σ

ne
= σ|RH |. (1.8)

The charge carrier mobility is a measure of how easily charge carriers move through a material
when driven by an electric field. Normal TE materials maintain mobilities of ≈ 30 to 200 cm2

V−1 s−1 [23]. In general, charge carriers can encounter other charge carriers, ionized impurities,

8



lattice vibrations, grain boundaries, etc. in their path. The form of scattering that dominates
the conduction influences the temperature dependences and magnitudes of σ, S and zT , as to
be discussed in Section 2.2. To determine the main source of scattering, µ(T ) is required [26].
Both RH(T ) and σ(T ) are therefore needed. Yet again, we see that measuring the Hall effect,
specifically as a function of temperature, is critical for optimizing TE performance, in this case by
providing insight into the charge carrier scattering mechanisms.

The above equations (1.6 - 1.8) assume the overwhelming presence of a single charge carrier
type with a single charge carrier mobility. In semiconductors and composite materials, there can
be multiple charge carriers (electrons and holes) present simultaneously with distinct mobilities
and carrier concentrations that complicate the analysis. For example, in a two-carrier system, the
electrical conductivity becomes the sum of the individual conductivities, σ = |q|(n1µ1 + n2µ2),
and the Hall coefficient is then

RH =
σ2
1RH,1 + σ2

2RH,2

(σ1 + σ2)2
=

1

|q|
n2µ

2
2 − n1µ

2
1

(n2µ2 + n1µ1)2
. (1.9)

Because of the weighting of the individual Hall coefficients, the Hall voltage response to magnetic
field can in general be non-linear in the two-carrier system, as detailed thoroughly in Ref. [27].
In such a scenario, the individual charge carrier concentrations and mobilities can be extracted by
studying the magnetic field-dependent electrical conductivities and Hall voltages. Chapters 3 and
4 of the thesis contain Hall effect measurement data that is analyzed simply with Eqs. 1.7 and 1.8
because the Hall voltage was linear with respect to the applied magnetic field.

1.3 Classical Magnetic Phenomena

Chapters 4 and 5 involve many aspects of classical magnetism, such as diamagnetism, param-
agnetism and ferromagnetism, in addition to more recently discovered forms of magnetism, like
cluster glass freezing. Therefore, the following sections describe the classical magnetic phenome-
na in greater detail to promote ease of understanding in the later chapters. Much of the discussion
here follows the works of Ashcroft and Mermin [24], Kittel [28] and Hurd [29].

1.3.1 Fundamental Definitions

Discrete magnetic moments in a solid are associated with the electron spins of the constituent ions.
The moments can be induced by the presence of an applied magnetic field, as in diamagnetism and
paramagnetism, or they can spontaneously arise from inter-moment coupling, as in ferromagnetism
and anti-ferromagnetism.
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For characterization purposes, we define the magnetization of an equilibrium system at tem-
perature T in a magnetic field of strength H as

M(H,T ) ≡
∑
i

mi(H,T ) = −∂F (H,T )

∂H
, (1.10)

where F is the thermodynamic free energy, and the directions of the applied magnetic field and
magnetic moment are assumed to be parallel [24]. Each magnetic moment i of strength mi con-
tributes to the overall magnetization. Typical measurement units for the magnetic moment are
known as “emu”, or electromagnetic unit, which is equivalent to one-thousandth of an Ampere m2.
The applied field strength is often measured in Tesla (T) or Oersted (Oe), with 1 T = 10 kOe in
vacuum. Strongly magnetic materials can exhibit magnetizations of several 10−1 emu g−1, when
normalized to the sample mass. On the contrary, very weak magnetic materials possess values
closer to 10−5 emu g−1.

How easily the magnetization is affected by the magnetic field is described by the magnetic
susceptibility,

χ ≡ ∂M

∂H
. (1.11)

With these definitions in place, we can now briefly detail the classical forms of magnetism.

1.3.2 Diamagnetism

For ions with completely filled electronic shells, the lowest energy (ground) state of the system
has zero spin and orbital angular momentum. An applied magnetic field then only affects the total
kinetic energy of the electrons via a vector potential, resulting in Larmor/Langevin diamagnetism
with

χdia ∝ −e2nI
〈

0
∣∣∣∑

i

r2i

∣∣∣0〉, (1.12)

where nI is the ion density and the bracketed term represents the expectation value of the electronic
positions in the ground state. Two key features of the diamagnetic susceptibility are that it is
negative and temperature independent. The magnitudes of χdia are typically around 10−5 in units of
cm3 per mole. An intuitive way of understanding diamagnetism is that the motion of the electrons
around the nuclei represents an internal magnetic field. In the presence of an applied magnetic
field, the electrons react to oppose ~H and find a lower energy state, similar to Lenz’s law for
electrical circuits.
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1.3.3 Paramagnetism

For ions with incompletely filled d- or f-electron shells, the interaction of the magnetic field with
the non-zero spin and orbital angular momentum significantly changes the free energy. The energy
of the interaction between the total angular momentum of the ion, ~J , and the pervading magnetic
field is given as

Eion = −gµB ~J · ~H, (1.13)

a coupling that favors alignment of the free spin with ~H . In Eq. 1.13, g is the unitless Landé
g-factor (also known as the spectroscopic splitting factor) that is approximately 2 for electrons.
µB = 9.274 x 10−24 Joules per Tesla is the Bohr magneton. For the total angular momentum, J ,
the allowed states can span −J , −J + 1, ..., J − 1, J for a total of 2J + 1 states. This has a direct
impact on the free energy, yielding an overall magnetization of

Mpara = nIgµBJBJ(gµBJH/kBT ), (1.14)

where BJ(x) is the Brillouin function defined as

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x
2J

)
. (1.15)

Again, Eq. 1.14 assumes that ~J and ~H are parallel, or that their dot product has value JH [24].
BJ(x) is plotted in Figure 1.6(a) for several pertinent values of J .

From Eq. 1.13, we already know that χpara > 0 since ~M will follow ~H . The positivity
of ∂BJ(x)/∂x for all x and J 6= 0 (Figure 1.6(a) and Section 1.4.3) is further confirmation.
Indeed, in the low-field, high-temperature (HT) limit, i.e. x = gµBJH/kBT � 1, BJ(x) ≈
x(J + 1)/3J +O(x3), giving a magnetic susceptibility following the Curie Law

χpara ∝ (gµB)2
J(J + 1)

kBT
. (1.16)

The 1/T dependence of χpara is a defining experimental signature of paramagnetism. In gen-
eral, the magnitudes of χpara are normally of order 10−2 to 10−3 cm3 per mole, 100 to 1000 times
larger than the diamagnetic component, Eq. 1.12. Notably, the magnetic moments themselves
are constantly changing orientation as a function of time, based on their thermal energy, so any
experimental probe with frequencies . 10 kHz measures the time-averaged magnetization [30].

To be clear, the “Langevin” paramagnetism outlined above stems from the localized electrons
surrounding ions with J 6= 0. For J = 0, which occurs in electron shells that are one electron
short of being half full, a second-order perturbative effect termed Van Vleck paramagnetism is
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Figure 1.6: Magnetization of paramagnetic and ferromagnetic systems. (a) The Brillouin Func-
tion, BJ(x), that governs the magnetization of paramagnetic systems as a function of applied field.
Here, the independent variable is the unitless x = gµBJH/kBT . The three different values of J
represent unique total angular momenta of the paramagnetic ions. (b) “Hysteresis loop” character-
istic of ferromagnetic materials initially at zero magnetization then magnetized to high positive and
negative fields [31]. Ms, Hs, Mr, and Hc are, respectively, the saturation magnetization, saturation
field, remanent magnetization and coercive field described in the text.

present [24, 28, 29]. Furthermore, conduction electrons in metals interact with magnetic fields as a
delocalized two-level system. This so-called Pauli paramagnetism, as well as the Van Vleck para-
magnetism, are both nearly temperature independent and similar in magnitude to diamagnetism,
i.e. 100-1000 times weaker than Langevin paramagnetism.

1.3.4 Ferromagnetism

In many materials, there is some form of interaction between the spins, known as exchange cou-
pling, that results in spontaneous magnetic ordering below some temperature. Given an array of
spins in a particular configuration, the total interaction energy in the Heisenberg model is given as

Eexc = −1

2

∑
j

∑
i 6=j

Jij ~Si · ~Sj, (1.17)

where Jij is the exchange constant between spins i and j. Jij > 0 is a ferromagnetic interaction
in which the coupled spins align in the same direction. The corresponding ordering temperature
is known as the Curie temperature, TC . Ferromagnetic phases transition to paramagnetic as T
surpasses TC from the low side. The susceptibility of the associated paramagnetic phase remains
the same as Eq. 1.16, but with T → T − TC , known as the Curie-Weiss Law. On the other
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hand, Jij < 0 represents an anti-ferromagnetic interaction in which the coupled spins oppose each
other’s directions. The ordering temperature in this case is known as the Néel temperature, TN .
The Curie-Weiss Law for anti-ferromagnetic phases is again Eq. 1.16, but with T → T − TN

Short-range magnetic order occurs in the case of “direct exchange”, where the magnetic mo-
ments are sufficiently close to each other such that their wave functions overlap. “Indirect ex-
change” can couple moments over longer distances by acting through an intermediary. In the case
of metals and degenerate semiconductors that are of interest to TE research, the intermediary is
often itinerant (conduction) electrons. This particular interaction is known as RKKY coupling
for co-discoverers Ruderman, Kittel, Kasuya, and Yosida [32, 33, 34]. JRKKY (~rij) is an oscil-
latory function of the spin separation vector ~rij , creating spatial regions of ferromagnetic and
anti-ferromagnetic interaction. The combination leads itself naturally to the concept of magnetic
frustration to be discussed in Chapter 4.

Much theoretical work has been done in analyzing Eq. 1.17 to understand the ground state and
excited states that satisfy the Heisenberg model, and their associated physical characteristics. In
short, ferromagnetism in the one- and two-dimensional Heisenberg model exists only at zero tem-
perature, while excited states are possible in three dimensions, by the Mermin-Wagner theorem
[35]. Tractable solutions to Eq. 1.17 involve first simplifying the model by selecting out a single
direction for the spin (the so-called Ising model) and narrowing the sums to include only nearest
neighbors. The exact solution to the 1D Ising model demonstrates that M = 0 for H = 0, i.e. no
spontaneous magnetization. However, for 2D, Onsager’s solution exhibits M 6= 0 for H = 0 for
a number of lattices [36]. The spontaneous magnetization in this case is not in conflict with the
Mermin-Wagner theorem since the solution is not found in the full 2D Heisenberg model. Current-
ly, no solution exists for the 3D Ising model, but computational simulations can be implemented
to understand some of its properties.

In real ferromagnetic materials, either polycrystalline or single crystalline, the magnetic mo-
ments are not uniformly aligned throughout the bulk in the absence of an external magnetic field,
even with T < TC . Ferromagnets split into microscopic, internally aligned domains because the
energy of macroscopic magnetism (∝ VM2, with V the volume) outweighs the interaction energy
of Eq. 1.17. A body divided into randomly directed domains of locally aligned moments lowers
the associated magnetic energy while sacrificing only a small amount of exchange energy gained
by the unfavorable neighboring interactions at the domain boundaries.

The internal moments of a ferromagnetic material can be sufficiently randomized by elevating
the temperature to above TC and allowing the material to cool without applying any magnetic fields.
The magnitude of the magnetization will be near its minimum, M ≈ 0, after such a procedure. If
a magnetic field is then ramped up with T < TC , the ferromagnetic moments will align with the
field, achieve a saturation magnetization, Ms, at Hs and hold onto a remanent magnetization, Mr,
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once the applied field is returned to zero. The spontaneous moments result in a “hysteresis loop”
of the magnetization plotted against applied magnetic field as H is swept from 0 to H > Hs, then
to a symmetrically negative magnitude field and finally back to zero. The magnetic field required
to bring the magnetization back to zero after the initial magnetization procedure is known as the
coercive field, Hc. A typical hysteresis loop is pictured in Fig. 1.6(b) and is one of the primary
indications of ferromagnetism in experimental studies.

Considering the exchange coupling as an internal field that forces spin alignment, we can make
an approximation of the magnitude of the field by kBTC = µBHint. With pure iron as an example,
TC ≈ 1043 K yields Hint ≈ 103 Tesla. For comparison, the magnetic field that guides compasses
on Earth is < 1 x 10−4 Tesla, 7 orders of magnitude smaller.

1.4 Heat Capacity

The heat capacity of matter in any state (gas, liquid, solid, plasma, etc.) is the amount of energy
required to raise a specific volume of the matter by one degree Kelvin. The heat capacity is often
given in per mass or per volume units for an easier comparison between materials, and then is
called the “specific heat”. Experimental studies typically report specific heat data, like that which
we present in Chapter 5. In the majority of theoretical considerations for solids, the heat capacity
at constant volume is the most convenient parameter to derive, with definition

CV ≡
∂U

∂T

∣∣∣∣
V

. (1.18)

Experimentally, the heat capacity of solids at constant pressure, Cp, is most frequently measured
since changing the temperature affects the volume. However, Cp is very close in value to CV in
most three-dimensional cases besides very high temperatures (T ' 500 K). In the low temperature
(LT) studies detailed in Chapter 5, we will apply the theoretical CV models to the experimentally
measured Cp data.

The heat capacity of solids stems mainly from (1) the atomic motion of a crystal structure’s
constituent elements, (2) the electrons of the individual atoms, and (3) discrete energy levels of the
atoms and electrons that become depopulated at temperatures / 10 K. In the following sections,
we derive the full form of CV for the three different sources, as well as the appropriate limits at
low and high temperatures that will be useful in Chapter 5. In essence, we recast the parts of Refs.
[24, 28, 37] that are relevant to the heat capacity studies in this thesis.
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1.4.1 Lattice Vibrations

At finite temperature, the atoms occupying the lattice sites oscillate around their equilibrium po-
sition due to the competition between the thermal energy and the chemical energy of the bonds
holding the crystal structure together. The periodicity of the lattice results in cooperative behavior
manifested as regular modulation of the atomic position throughout the crystal structure. Such
“waves”, or “lattice vibrations”, are known as “phonons” in the particulate description. Based on
the stiffness of the chemical bonds and the geometric arrangement of the atoms in space, the effec-
tive energy of the lattice vibrations can be derived. For small displacements around the equilibrium
positions, the potential energy scales quadratically with the displacement, known as the “harmonic
approximation”.

We start by considering a generic form of the total energy of all phonons in a solid:

Ulatt =
∑
P

∫
dωDP (ω)

~ω
exp (~ω/kBT )− 1

. (1.19)

Here, DP (ω) is the number of phonon modes with frequency between ω and ω + dω, also known
as the density of states, for each polarization type, P . Considering a cubic structure in reciprocal
space, there is one allowed momentum state per volume (2π/L)3 = 8π3/V , where V = L3 is
the real-space volume of the primitive cell of length L. Thus, the number of modes within a
momentum space sphere of radius k is N = (V/8π3)(4πk3/3) = V k3/6π2. The density of states
for each polarization type is then

DP (ω) =
dN

dω
=
V k2

2π2

dk

dω
. (1.20)

For three-dimensional solids, one of the most successful models of lattice vibrations is from
Debye [38]. Motivated by continuum mechanics, Debye posited that the phonon frequency scales
with its momentum, k, and velocity, vs, i.e. ω = vsk. Furthermore, each polarization has the same
speed of sound, and there is one phonon mode per primitive cell for each polarization type. With
nD = N/V the total number of phonon modes per real-space volume per P , the largest frequency
achievable is the “Debye cutoff frequency”:

ω3
D = 6π2v3snD. (1.21)

Incorporating Eqs. 1.20 and 1.21 into 1.19 yields

Ulatt =
3V

2π2v3s

∫ ωD

0

~ω3dω

exp (~ω/kBT )− 1
=

3V k4BT
4

2π2v3s~3

∫ xD

0

x3dx

ex − 1
, (1.22)

where the factor of 3 in front accounts for the two transverse and one longitudinal polarizations.
In the second equality, the substitution of the dimensionless x = ~ω/kBT was made to remove the
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dimensionality of the integral. By differentiating the middle term in Eq. 1.22, the corresponding
heat capacity from Eq. 1.18 becomes

CV,latt =
3V

2π2v3s

∫ ωD

0

~ω3(~ω/kBT 2) exp (~ω/kBT )

[exp (~ω/kBT )− 1]2
dω =

3V k4BT
3

2π2v3s~3

∫ xD

0

x4exdx

(ex − 1)2
. (1.23)

By scaling the dimensionless xD by temperature, we can define a characteristic “Debye tem-
perature” as θD = xDT = ~ωD/kB = ~vs(6π2nD)1/3/kB. CV,latt becomes the more compact

CV,latt =
3k4BT

3

2π2v3s~3

(
~vs
kBθD

)3

6π2N

∫ xD

0

x4exdx

(ex − 1)2
= 9NkB

(
T

θD

)3 ∫ xD

0

x4exdx

(ex − 1)2
. (1.24)

The last expression in 1.24 is the exact one we use in Chapter 5 to determine the Debye temperature
from experimental data measured from 2 to 400 K. In the LT limit, xD → ∞, and the integral
yields a constant. This is certain by inspection since the integrand is zero at the origin, contains no
singularities on the way to∞ and is exponentially damped. Thus, CV,latt = βT 3 for some constant
β at low temperatures.

1.4.2 Charge Carriers

A gas of free electrons is a simple model for the conduction electrons that propagate almost inde-
pendently within semiconductors and metals. Unlike the phonons of the previous section, electrons
do not have three polarizations, but their intrinsic spin can take on one of two opposing values. Fur-
thermore, due to the Pauli exclusion principle, the probability distribution of electrons of energy E
is given by the Fermi-Dirac function f(E) = (exp (E − EF )/kBT+1)−1, whereEF is the highest
individual energy of the electron system, known as the Fermi energy. With these considerations in
mind, the electron equivalent of Ulatt in Eq. 1.19 is given by

Uelec =

∫
dE

ED(E)

exp [(E − EF )/kBT ] + 1
. (1.25)

The dispersion relation for electrons is also distinct from phonons. In particular, E = ~k2/2m∗,
where m∗ is the effective mass of the electrons. The density of states

D(E) =
V k2

π2

dk

dE
=

V

2π2

(
2m∗

~2

)3/2

E1/2 (1.26)

can be substituted into Eq. 1.25 to arrive at

Uelec =
V

2π2

(
2m∗

~2

)3/2 ∫ ∞
0

dE
E3/2

exp [(E − EF )/kBT ] + 1
. (1.27)
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By taking the temperature derivative of Fermi-Dirac distribution function in Eq. 1.27, we have
the heat capacity CV,elec as

CV,elec =
V

2π2kBT 2

(
2m∗

~2

)3/2 ∫ ∞
0

dE
E3/2(E − EF ) exp [(E − EF )/kBT ]

{exp [(E − EF )/kBT ] + 1}2
. (1.28)

For low temperatures, kBT � EF , the appreciable values of the integrand are located right around
E = EF . Therefore, we restrict the integration range to [EF − kBT,EF + kBT ] and approximate
the integral using the trapezoidal rule to get

CV,elec ≈
V

2π2kBT 2

(
2m∗

~2

)3/2

kBT [a(EF + kBT )3/2(kBT ) + b(EF − kBT )3/2(−kBT )]

≈ V kB
2π2

(
2m∗EF

~2

)3/2 [
a

(
1 +

3kBT

2EF

)
− b
(

1− 3kBT

2EF

)]
∝ 3k2BTD(EF )/5.

(1.29)

In Eq. 1.29, a ≈ b ≈ 1/5 are two constants from the integrand. The mathematical jump from line 1
of Eq. 1.29 to line 2 utilized the first-order Taylor series of (1+x)n ≈ 1+nx for x = kBT/EF � 1.
The trapezoidal method implemented here is more intuitive and simpler than the methods used in
Refs. [24, 28] and arrives at the correct dependences but with the coefficient off by a factor of≈ 5.

Combining Eqs. 1.24 (the contribution of lattice vibrations to the heat capacity) and 1.29, the
total heat capacity of a solid in most circumstances at low temperatures (T / 10 K) can be taken
as

Cp = γT + βT 3. (1.30)

In measuring heat capacity experimentally, the data should always first be plotted as Cp/T vs. T 2

to check linearity, with the slope corresponding to β and the y-intercept to γ. Such a scenario
is demonstrated in Figure 1.7. Any non-linearity, especially at the lowest temperatures, signals
behavior outside the realm of phonons and electrons, which is the focus of the next section.

1.4.3 Discrete Energy Levels

Both electron and nuclear spins have discrete allowed states based on their total angular momen-
tum, J , as discussed in Section 1.3.3. At high enough temperatures, all of the states are equally
populated, and the energy associated with the spins does not change appreciably with temperature,
yielding essentially zero heat capacity. Conversely, as T → 0 K, the lowest energy state of the
spins is the only level populated, and “small” changes in temperature have little impact on the
total system energy, again yielding negligible heat capacity. Somewhere in between the two limits,
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Figure 1.7: Electron and phonon contributions to the heat capacity. The experimental data (red
circles) is accompanied by the best-fit electron and phonon contributions given by γT (black line)
and βT 3 (magenta line), respectively, with the values of γ and β listed in the plot. θD is the Debye
temperature. The units of γ and β are irrelevant here since Cp has been reduced by a combination
of the Boltzmann and Avogadro constants for computational purposes. In agreement with Eqs.
1.24, 1.29, and 1.30, the electron component is constant and the phonon component is linear in
the CpT−1 vs. T 2 representation here. The non-linearity of the experimental data at temperatures
lower than approximately 4 K indicates that the pure electron and phonon contributions are an
insufficient description of the system.

there must be disorder among the energy levels and a positive contribution to the heat capacity. We
can estimate the temperatures at which discrete energy levels become relevant by Eq. 1.13. For
example, a free conduction electron with spin 1

2
either up or down exhibits an energy splitting in a

magnetic field of 1 Tesla of T = 2µB/kB ≈ 1 K. Nuclear magnetic moments are typically about
100 times smaller, so the corresponding temperature splitting in the same 1 Tesla magnetic field
would be ≈ 10 mK [37].

We can derive the heat capacity contribution from 2J + 1 discrete energy levels by utilizing
Eqs. 1.14 and 1.15, as well as the fact that Upara = −MH . Upara is distinct from E in Eq. 1.13 in
that it is a total system energy, not just the moment-field interaction. Accordingly,

CV,para = nIgµBJH
dBJ(gµBJH/kBT )

dT

= −nIg
2µ2

BH
2

4kBT 2

[
(2J + 1)2csch2

(
(2J + 1)gµBH

2kBT

)
− csch2

(
gµBH

2kBT

)]
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= −nIkBy2
[
(2J + 1)2csch2((2J + 1)y)− csch2(y)

]
, (1.31)

with y = gµBH/2kBT . Eq. 1.31 will be used in Chapter 5 to analyze the LT heat capacity data of
a half-Heusler composite series. In addition, the ferromagnetic contribution to the heat capacity in
a magnetic field will be there derived and utilized.
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CHAPTER 2

Governing Equations in Thermoelectric Transport

2.1 Introduction

From Section 1.1, we understand that the primary goal of thermoelectrics (TEs) research is to
achieve high zT values over a broad range of temperatures for TE power generation. zT =

S2σT/κ is controlled by the Seebeck coefficient, S, the electrical conductivity, σ, and the ther-
mal conductivity, κ. The underlying physics of the three parameters has a large impact on the zT
values achievable in a given material system, as highlighted in Figure 1.4. Therefore, it is critical
that we thoroughly develop the model physics that governs the TE transport processes relevant
in semiconductors and metals. The most widely regarded method for handling the TE transport
physics was derived by Boltzmann and is presented in Section 2.2. The Boltzmann transport equa-
tion (BTE) is also treated in Refs. [2, 39, 40].

2.2 Boltzmann Transport Equation

At its core, the BTE describes the return to equilibrium of an out-of-equilibrium system of electron-
s. It is semiclassical in the sense that it uses the quantum mechanical expression for the electronic
Fermi-Dirac distribution function, yet classical generalized forces. In Section 2.2.1, we develop the
BTE utilizing the relaxation-time approximation (RTA), and then in Sections 2.2.2 and 2.2.3, re-
spectively, we describe the limits of the BTE in the cases of degenerate semiconductors (or metals)
and non-degenerate semiconductors.

2.2.1 Generic Formalism

While the equilibrium Fermi-Dirac distribution function we mentioned in Section 1.4.2 was only
a function of the electronic energy, E, the Fermi level, EF , and temperature, T , we here elevate
the function to generically depend on the position of an electron, ~r, the electronic momentum, ~k,
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and the time, t. The three parameters seem to be the most critical for describing out-of-equilibrium
systems since by definition non-equilibrium systems are not spatially uniform in temperature and
continuously seek equilibrium. For the forces present, we directly include an electric field, ~E ,
to drive the transport. Later, a temperature gradient will naturally arise within the equations as a
representation of a diffusive force.

To begin, we can write down the continuity equation of the distribution function reliant on the
convective derivative

Dtf(~r,~k, t) = (∂t + ~v · ~∇r + ~̇k · ~∇k)f(~r,~k, t) =

(
∂f

∂t

)
coll

=
∂f

∂t
+ ~v · ~∇rf +

q

~
~E · ~∇kf =

(
∂f

∂t

)
coll

.

(2.1)

The convective term is equal to the collision term in Eq. 2.1 since the electrons in the system will
interact with each other and redistribute their individual momenta. The ~∇if are gradients of the
distribution with respect to the variable i. In the second line of Eq. 2.1, the electric field is inserted
as the force that shifts the momentum by acting on the charges of magnitude q. The partial time-
derivative of the distribution function is quite small compared to the other driving terms, so it can
be ignored. We can then solve for the collision term to obtain the Boltzmann transport equation:(

∂f

∂t

)
coll

= ~v · ~∇rf +
q

~
~E · ~∇kf. (2.2)

The simplest approach to calculating the collision term is to make the relaxation-time approx-
imation (RTA) that the rate of return to equilibrium is set by some time constant, τ(~k), called
the relaxation time. In addition, how quickly the non-equilibrium distribution function changes is
directly proportional to how far out of equilibrium the distribution is perturbed. Therefore,(

∂f

∂t

)
coll

= −f(~k)− f 0(~k)

τ(~k)
, (2.3)

where f 0(~k) is the equilibrium distribution function. Furthermore, we assume that the distribution
function is not too far out of equilibrium so that we can set the gradients that drive the distribution
function to equilibrium to be the same ones that keep the system at equilibrium. As a result,

~∇rf(~r,~k, t) ≈ ~∇rf
0(~r,~k) =

(
−~∇r ξ −

E − ξ
T

~∇rT

)
∂f 0

∂E
(2.4)

~∇kf(~r,~k, t) ≈ ~∇kf
0(~r,~k) = ~~v

∂f 0

∂E
. (2.5)

In Eq. 2.4, we use the “chemical potential”, ξ, in place of EF for full generality, since ξ is the
temperature-dependent version of EF with ξ(T = 0) = EF . The temperature gradient arises

21



naturally through the spatial derivative of the Fermi-Dirac distribution. Because E = E(~k), the
spatial derivative of the electron energy is zero and therefore not present in Eq. 2.4. Eq. 2.5
stems from the fact that ~∇kE = ~~v. The perturbed distribution function can then be solved for by
combining Eqs. 2.2 - 2.5 to get

f(~k) = f 0(~k) + τ(~k)~v(~k)

(
~∇r ξ

∗ +
E − ξ
T

~∇rT

)
∂f 0

∂E
, (2.6)

which is the so-called “linearized” BTE due to the assumptions made in Eq. 2.4 and 2.5. We have
defined ~∇r ξ

∗ = ~∇r ξ − q ~E , with ξ∗ the “electrochemical potential” that includes the effect of the
electric field on the chemical potential.

Because the whole point of presenting the BTE here is to understand the transport of charge and
heat for TE research, we need to define the charge and heat currents. We must sum the electrical
current density and heat current density over all electronic energies and account for the three-
dimensional density of states (Eq. 1.26), as done similarly in Section 1.4.2. The electrical current
density is then

~J =
q

V

∫ ∞
0

~v(E)f(E)D(E)dE, (2.7)

while the heat current density is

~Q =
1

V

∫ ∞
0

~v(E)(E − ξ)f(E)D(E)dE, (2.8)

where the amount of heat that each charge carries is E − ξ. At equilibrium, there is no net charge
nor heat transport, so the term f 0 in Eq. 2.6 is irrelevant to Eqs. 2.7 and 2.8, which then have
magnitude

J =
q

V

∫ ∞
0

v2(E)τ(E)

(
~∇r ξ

∗ +
E − ξ
T

~∇rT

)
∂f 0

∂E
D(E)dE (2.9)

and

Q =
q

V

∫ ∞
0

v2(E)τ(E)(E − ξ)
(
~∇r ξ

∗ +
E − ξ
T

~∇rT

)
∂f 0

∂E
D(E)dE. (2.10)

To connect Eqs. 2.9 and 2.10 with experiment, we can set the electric field and thermal gradient
as acting along the x̂ axis of a rectangular bar of a sample material, similar to Fig. 1.5. The velocity
of the carriers is then v2x = v2/3 = 2E/3m∗. The gradients of the electrochemical potential and
temperature with respect to the position vector, ~∇r, are also replaced by the singular direction
equivalent, d/dx. Eqs. 2.9 and 2.10 become
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Jx =
2q

3m∗V

[∫ ∞
0

τ(E)E
dξ∗

dx

∂f 0

∂E
D(E)dE +

∫ ∞
0

τ(E)E(E − ξ)
(

1

T

dT

dx

)
∂f 0

∂E
D(E)dE

]
= qL11

(
− 1

T

dξ∗

dx

)
+ qL12

(
− 1

T 2

dT

dx

)
,

(2.11)

and

Qx =
2q

3m∗V

∫ ∞
0

τ(E)E(E − ξ) dξ
∗

dx

∂f 0

∂E
D(E)dE

+
2q

3m∗V

∫ ∞
0

τ(E)E(E − ξ)2
(

1

T

dT

dx

)
∂f 0

∂E
D(E)dE

= L21

(
− 1

T

dξ∗

dx

)
+ L22

(
− 1

T 2

dT

dx

)
,

(2.12)

where the Onsager coefficients, Lij , are defined as

L11 ≡ −
2T

3m∗V

∫ ∞
0

τ(E)E
∂f 0

∂E
D(E)dE,

L12 ≡ −
2T

3m∗V

∫ ∞
0

τ(E)E(E − ξ) ∂f
0

∂E
D(E)dE = L21,

L22 ≡ −
2T

3m∗V

∫ ∞
0

τ(E)E(E − ξ)2 ∂f
0

∂E
D(E)dE.

(2.13)

It is evident from Eqs. 2.11 and 2.12 that the electrical current density and heat current density are
both affected by the electric field and the thermal gradient, not just the intuitive singular driving
forces. Because the individual Onsager coefficients are nearly identical in form besides the power
of E in the integral, we define an auxiliary integral for later use:

Ks ≡ −
2T

3m∗V

∫ ∞
0

τ(E)Es+1 ∂f
0

∂E
D(E)dE. (2.14)

Eqs. 2.11 and 2.12 become

Jx = qK0

(
− 1

T

dξ∗

dx

)
+ q(K1 − ξK0)

(
− 1

T 2

dT

dx

)
(2.15)

and

Qx = (K1 − ξK0)

(
− 1

T

dξ∗

dx

)
+ (K2 − 2ξK1 + ξ2K0)

(
− 1

T 2

dT

dx

)
. (2.16)

With the BTE formalism in place, we can now derive the desired TE transport properties.
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2.2.1.1 Charge Carrier Concentration

The number of charge carriers present in unit volume, n, of a solid can be readily controlled through
the process of doping, alloying, secondary phase formation, etc. n has a tremendous impact on TE
transport and zT , as displayed in Fig. 1.4. Regardless of the equilibrium status of an electronic
system, the charge carrier concentration should be constant at a given temperature and Fermi level.
The charge carrier concentration is simply a matter of statistics and does not require the BTE nor
the current densities, but we derive it first for its fundamental importance.

For the three-dimensional density of states in Eq. 1.26, the charge carrier concentration is
calculated as

n =
1

V

∫ ∞
0

f 0(E)D(E)dE =
1

2π2

(
2m∗

~2

)3/2 ∫ ∞
0

E1/2

exp [(E − ξ)/kBT ] + 1
dE

=
1

2π2

(
2m∗kBT

~2

)3/2

F 1
2
(η),

(2.17)

where we substituted the reduced energy, ε ≡ E/kBT , and reduced chemical potential, η ≡
ξ/kBT , in the first line of Eq. 2.17 to yield the Fermi integral in the second line, defined as

Fj(η) ≡
∫ ∞
0

εj

exp (ε− η) + 1
dε. (2.18)

2.2.1.2 Electrical Conductivity

Because the electrical conductivity and carrier concentration of a given material are usually tem-
perature dependent, the true value of σ and n are taken at a single temperature. With that in mind,
to determine the electrical conductivity, we set the temperature gradient of the sample to zero and,
consequently, the Fermi level is homogeneous throughout the material. Therefore, by the definition
of the electrical conductivity and Eq. 2.15,

σ ≡ Jx

Ex
= qK0

(
− 1

TEx

dξ∗

dx

)
=
q2

T
K0. (2.19)

2.2.1.3 Seebeck Coefficient

The Seebeck coefficient is measured in an open-circuit condition (Jx = 0) and in the presence of
a temperature gradient. The first fact, coupled with Eq. 2.15, gives us

1

T

dξ∗

dx
= − 1

T 2

(
K1 − ξK0

K0

)
dT

dx
, (2.20)

which conveniently ties into the definition of the Seebeck coefficient as the ratio of the electro-
chemical potential to the temperature gradient, that is,
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S ≡ −1

q

dξ∗

dx

(
dT

dx

)−1
=

1

qT

K1 − ξK0

K0

. (2.21)

2.2.1.4 Peltier Coefficient

As a measure of the heat current density driven by the electric field in a temperature-homogeneous
material, the Peltier coefficient is, from Eqs. 2.15 and 2.16,

Π ≡ Qx
Jx

=
K1 − ξK0

T

dξ∗

dx

(
qK0

T

dξ∗

dx

)−1
=

1

q

K1 − ξK0

K0

= TS.

(2.22)

The last equality in Eq. 2.22 is known as the second Kelvin relation that relates the Peltier and
Seebeck coefficients through a direct proportionality with the temperature.

2.2.1.5 Electronic Thermal Conductivity

The thermal conductivity contribution by the charge carriers, κe, is determined in a similar manner
as the Seebeck coefficient, i.e. in the open-circuit condition (Jx = 0) and in the presence of
a temperature gradient. κe is defined as the ratio of the heat current density to the temperature
gradient, such that

κe = −Qx
(
dT

dx

)−1
= (K1 − ξK0)

(
1

T

dξ∗

dx

)(
dT

dx

)−1
+ (K2 − 2ξK1 + ξ2K0)

(
1

T 2

)
= − 1

T 2

(K1 − ξK0)
2

K0

+ (K2 − 2ξK1 + ξ2K0)

(
1

T 2

)
=

1

T 2

(
K2 −

K2
1

K0

)
.

(2.23)

2.2.1.6 Lorenz Number

A final important parameter for TE transport is the so-called Lorenz number that relates the elec-
tronic contribution to the thermal conductivity, κe, and the electrical conductivity, σ. Using Eqs.
2.19 and 2.23,

L ≡ κe
σT

=
1

T 2

(
K2 −

K2
1

K0

)
q−2K−10

=
1

q2T 2

(
K2

K0

− K2
1

K2
0

)
.

(2.24)
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2.2.1.7 Power Law τ(E)

The integrals within Section 2.2.1 all contain τ(E), the energy-dependent relaxation time. τ(E)

is the parameter through which electronic scattering processes are incorporated within the BTE
framework. It is customary and accurate to make the assumption that

τ(E) = τ0E
r, (2.25)

where τ0 is a constant independent of energy, and r is the scattering parameter that sets the power
law. For example, r = −3/2, 0, and 1/2 describe the scattering of charge carriers dominantly
by acoustic phonons, neutral impurities, and ionized impurities, respectively. Implementing the
electronic density of states (Eq. 1.26) and the relaxation time (Eq. 2.25), we can write the Ks

integrals (Eq. 2.14) as

Ks = −Tτ0
√
m∗

3π2

(
2

~

)3/2 ∫ ∞
0

Es+r+ 3
2
∂f 0

∂E
dE. (2.26)

Using integration by parts, we can simplify Eq. 2.26 even further:

Ks = −Tτ0
√
m∗

3π2

(
2

~

)3/2 [
Es+r+ 3

2 f 0

∣∣∣∣∞
0

−
(
s+ r +

3

2

)∫ ∞
0

Es+r+ 1
2f 0 dE

]

=
Tτ0
√
m∗

3π2

(
2

~

)3/2(
s+ r +

3

2

)
(kBT )s+r+

3
2Fs+r+ 1

2
(η).

(2.27)

The boundary term in the first line of Eq. 2.27 is zero at each endpoint, while the second term
gives off (s+ r + 3

2
) factors of kBT by changing to the Fermi integral defined in Eq. 2.18.

With the three-dimensional electronic density of states and power law scaling of the relaxation
time with energy, we can rewrite σ (Eq. 2.19), S (Eq. 2.21), Π (Eq. 2.22), κe (Eq. 2.23), and L
(Eq. 2.24) as

σ =
q2τ0
√
m∗

3π2

(
2

~

)3/2(
r +

3

2

)
(kBT )r+

3
2Fr+ 1

2
(η), (2.28)

S =
1

qT

[(
r + 5

2

)
(kBT )r+

5
2Fr+ 3

2
(η)(

r + 3
2

)
(kBT )r+

3
2Fr+ 1

2
(η)
− ξ

]
=
kB
q

[(
r + 5

2

)
Fr+ 3

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)
− η

]

=
Π

T
,

(2.29)

κe =
τ0
√
m∗

3π2T 2

(
2

~

)3/2

(kBT )r+
7
2

(r +
7

2

)
Fr+ 5

2
(η)−

(
r + 5

2

)2
F 2
r+ 3

2

(η)(
r + 3

2

)
Fr+ 1

2
(η)

 , (2.30)
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L =

(
kB
q

)2
(r + 7

2

)
Fr+ 5

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)
−

(
r + 5

2

)2
F 2
r+ 3

2

(η)(
r + 3

2

)2
F 2
r+ 1

2

(η)

 . (2.31)

Eq. 2.29 is used in Chapter 3 to solve for η using experimental data for S and r, then the resultant
temperature-dependent η is input to Eqs. 2.31 and 2.30 to determine L and κe, respectively. Evi-
dently, Eqs. 2.28 - 2.31 are not merely theoretical considerations but actually quite applicable in
real-world materials.

2.2.2 The Degenerate Limit

In the case of highly doped (extrinsic) semiconductors, with n & 1020 cm−3, and metals, with
n & 1022 cm−3, the electron (hole) transport occurs within the conduction (valence) bands. Such
a scenario is known as the “degenerate limit” and implies that the Fermi level intersects the bands.
With ξ measured starting from the bottom of the conduction band for electrons, or top of the
valence band for holes, the degenerate limit indicates that ξ/kBT � 0. The Fermi integrals
pervading Eqs. 2.17 and 2.28 - 2.31 can be simplified via the Sommerfeld expansion [24] but will
not be detailed here besides the following result:

lim
η�0

Fj(η) ≈ ηj+1

j + 1
+
jπ2

6
ηj−1 +O(ηj−3). (2.32)

Putting Eq. 2.32 to work with the carrier concentration (Eq. 2.17) and the electrical conductiv-
ity (Eq. 2.28), we can drop the terms of O(ηj−1) due to the direct proportionality with the Fermi
integral to find

ndeg =
1

3π2

(
2m∗ξ

~2

)3/2

, (2.33)

σdeg =
q2τ0
√
m∗

3π2

(
2

~

)3/2

ξr+
3
2 . (2.34)

Both parameters in the degenerate limit are essentially constant with temperature unless the Fer-
mi level moves within the electronic bands or the effective mass (band curvature) changes with
temperature.

Because the Seebeck coefficient contains a ratio of two Fermi integrals (Eq. 2.29), we maintain
terms up to O(ηj−1) in the numerator and denominator to yield
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Sdeg =
kB

q

(
r + 5

2

) [ ηr+ 5
2

r + 5
2

+

(
r + 3

2

)
π2ηr+

1
2

6

]
− η

(
r + 3

2

) [ ηr+ 3
2

r + 3
2

+

(
r + 1

2

)
π2ηr−

1
2

6

]
(
r + 3

2

) [ ηr+ 3
2

r + 3
2

+

(
r + 1

2

)
π2ηr−

1
2

6

]

=
π2kB

6q

(
r +

3

2

)
(2ηr+

1
2 )η−r−

3
2 =

π2k2BT

3qξ

(
r +

3

2

)
=

Π

T
,

(2.35)

where the term of O(ηr−1/2) in the first equality of Eq. 2.35 was ignored in the denominator. The
Seebeck coefficient follows a linear temperature dependence in the degenerate limit, with values
that can be quite small, especially with acoustic phonon scattering dominant (r ≈ −3/2).

We perform the same manipulations for the electronic thermal conductivity (Eq. 2.30), setting
a parameter A to be the product of the bracket prefactor and the η−r−3/2 that comes from the first
order expansion of the denominator. The result is

κe,deg = A

(
r +

7

2

)(
ηr+

7
2

r + 7
2

+
π2

6

(
r +

5

2

)
ηr+

3
2

)(
r +

3

2

)(
ηr+

3
2

r + 3
2

+
π2

6

(
r +

1

2

)
ηr−

1
2

)

− A
(
r +

5

2

)2
(
ηr+

5
2

r + 5
2

+
π2

6

(
r +

3

2

)
ηr+

1
2

)2

= A
π2

6
η2r+3

[(
r +

7

2

)(
r +

5

2

)
+

(
r +

3

2

)(
r +

1

2

)
− 2

(
r +

5

2

)(
r +

3

2

)]
+ A

π4

36
η2r+1

[(
r +

1

2

)(
r +

3

2

)(
r +

5

2

)(
r +

7

2

)
−
(
r +

3

2

)2(
r +

5

2

)2
]

= A
π2

3
η2r+3 − Aπ

4

18
η2r+1

(
r +

3

2
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with A reintroduced in the second-to-last line in Eq. 2.36. κe,deg is almost constant as a function
of temperature if the small correction term of O(kBT/ξ)

2 is ignored.
The Lorenz number is algebraically nearly identical with the electronic contribution to the

thermal conductivity, except that the denominator term in Eq. 2.31 is squared. Therefore, we find
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Without the second order correction term, Ldeg is a constant with value L0 ≡ 2.44 x 10−8 V2 K−2.

2.2.3 The Non-Degenerate Limit

For intrinsic semiconductors and those that are only lightly doped, typically with n . 1018 cm−3,
carrier transport occurs by thermal excitations to the conduction or valence bands from the Fermi
level. Such a scenario is known as the “non-degenerate limit” and implies that the Fermi level sits
in the middle of the gap between the bands, i.e. ξ/kBT � 0. In this limit, the Fermi integrals
become

lim
η�0

Fj(η) ≈ eη
∫ ∞
0

εje−εdε = eη Γ(j + 1), (2.38)

where Γ(j + 1) = jΓ(j) is the Gamma function with particularly useful values of Γ(1/2) =
√
π

and Γ(1) = Γ(2) = 1. With these Gamma function properties and Eq. 2.38 in mind, we can
simplify the Eqs. 2.17 and 2.28 - 2.31 to be
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(2.43)

Eqs. 2.39 and 2.40 are particularly useful in analyzing temperature-dependent Hall effect mea-
surement data and σ(T ), respectively, for intrinsic semiconductors. In particular, if we assume that
the Fermi level sits in the middle of the electronic energy band gap, then the separation between
the top of the valence band and the bottom of the conduction is Eg = 2EF , and η = Eg/2kBT .
Fitting an exponential curve to n(T ) or σ(T ) therefore allows for extraction of the band gap.
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CHAPTER 3

Enhanced zT and Attempts to Chemically Stabilize
Cu2Se via Sn doping

3.1 Motivation: Superionic Conductors as Thermoelectric Ma-
terials

One fascinating family of thermoelectric (TE) materials that has generated a lot of interest as of late
is the superionic conductors (SICs), typified by Cu2Se [17] and Cu2S [41]. As the name entails,
SICs are solids in which certain ions (Cu+ in the case of Cu2Se and Cu2S), rather than occupying
rigid lattice sites, acquire a directional flow when subjected to an external electric field. The ionic
conductivities (σI = JIE −1, with JI the ionic current density and E the electric field) of SICs
in their solid state are similar to the σI of ionic conductors (e.g., NaCl, CaF2, etc.) in their liquid
state, with values of order 1 (Ω-cm)−1 [42]. This is in stark contrast to normal solids having σI of
order 10−8 (Ω-cm)−1 as a result of their substantially fixed ions. In most SICs, the crystal structure
consists of two distinct sublattices, one that forms a rigid, ordered backbone and one where the
ions can move in a fluid-like fashion between various interstitial sites.

Thermodynamic studies of the normal-to-superionic phase transition show that the entropy
change per atom during the superionic transition is approximately the same as the entropy change
per atom upon melting, indicating that half of the crystal, or one sublattice, is quasi-molten, or
“liquid-like” [42], as depicted in Figure 3.1. SICs have the potential to be important TE materials
because the fluid nature of the quasi-molten sublattice hinders the transport of heat by transverse
mode phonons [17, 43], while the fixed sublattice provides a crystalline pathway for electronic
conduction. These features reduce κ while preserving σ, respectively, which leads to a significant
enhancement in zT .

Indeed, initial reports on Cu2Se demonstrated zT ≈ 1.5 at 1000 K [17, 44], which could
amount to device conversion efficiencies of around 10%. Since the work of Liu et al. [17], a
variety of unique synthesis techniques, including self-propagating high-temperature synthesis [45],
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Figure 3.1: Schematic comparison of the normal phase and superionic phase of superionic
conductors. Here, we illustrate the specific case of Cu2Se with its face-centered cubic crystal
structure. In the normal low-temperature α-phase, both sublattices are fixed, while in the superi-
onic β-phase, the Cu sublattice becomes quasi-molten, and the Cu ions are highly mobile between
tetrahedral sites when an electrical field is applied. The opacity of the Cu ions in both phases
represents the site occupancy; in the SIC phase, the Cu ions occupy the octahedral sites to a lesser
extent than in the normal phase.

plasma-activated reactive sintering [46], and wet chemical synthesis [47, 48], as well as doping
efforts [49, 50, 51, 52] and nanostructuring [48, 53, 54] have been used for both stoichiometric and
copper-deficient compounds to create similar and even higher values of zT , including zT ≈ 2.1 at
973 K recorded for nanostructured Cu2Se by Gahtori et al. [54].

Regarding its crystal structure (Fig. 3.1), the normal room temperature (RT) α-phase of Cu2Se
is monoclinic, with the selenium anions forming a rigid framework in which the copper cations
statically occupy the interstices [55, 56, 57, 58, 59, 60]. Upon heating, the material transitions
to the superionic β-phase around 410 K, with the higher symmetry cubic anti-fluorite structure
(space group Fm3̄m) [57, 58, 59, 60, 61, 62, 63]. Being superionic, the copper cations in the high-
temperature (HT) β-phase can flow freely between the tetrahedral interstitial sites, as determined
by X-ray diffraction [58, 63], neutron diffraction studies [64], nuclear magnetic resonance spec-
troscopy [65], and transmission electron microscopy [60]. Ab initio molecular dynamics demon-
strate that the trajectories of the Cu atoms stray far away from their equilibrium positions as the
temperature is elevated in the β-phase [66]. The disorder of the copper cation leads to thermal con-
ductivity values as low as 0.5 W m−1 K−1 [54]. Coupling the small κ with the electronic behavior
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of a p-type degenerate semiconductor, Cu2Se possesses promising TE properties.
Yet, Cu2Se cannot be used for continuous mid- to high-temperature power generation because

of its tendency to materially degrade in TE application conditions [67, 68, 69, 70, 71], a prevalent
issue for all SICs [72]. Specifically, when Cu2Se is held at elevated temperatures (≈ 750 K and
above) and exposed to large currents (≈ 1 A and above), as would be the case in TE generators,
selenium evaporation and copper ion migration result in the expulsion of solid copper from the
material. The reaction of free selenium and copper with the electrical contacts of the TE device
causes an increased contact resistance, lowering the efficiency of power generation [46, 68, 70].
Furthermore, the eventual physical separation of the material from the electrical contacts of the
device, due to the forceful expulsion of copper, terminates operation.

At the time of the study to be presented here [73], attempted solutions to the issue of mate-
rial degradation in Cu2Se had been entirely external, meaning that they were applied to the final
material product [68, 70]. For example, using baffled ceramic coatings does indeed reduce the
selenium evaporation, but undesirably decreases device efficiency by acting as a thermal short. In
our study, we pursued the more fundamental, internal approach of substitutional doping, i.e. the
replacement of a certain fraction of atoms of the base material with selected elements. Doping is a
logical approach to stabilize copper selenide for several reasons.

First, doping can be reliably controlled at the beginning of the material synthesis process,
providing the basis for repeatable results. Second, the introduction of foreign elements into the
crystal structure of Cu2Se can potentially block the long-range migration of Cu and, in turn, reduce
the material degradation, as has been seen in the related superionic thermoelectric Cu2S [74].
Similarly, the dopant atoms can act as point defects within the crystal structure and distort the
lattice, thereby enhancing phonon scattering and decreasing thermal conductivity [2]. Last, doping
is a well-known strategy for optimizing the carrier concentration to maximize the power factor,
PF = S2σ, provided that the carrier mobility is not degraded [75]. Thus, we chose substitutional
doping as a possible means of mitigating the material degradation in Cu2Se, while simultaneously
preserving, or even enhancing, its superior TE properties.

Specifically, in this study, we focus on the compositional series Cu2−2xSnxSe with nominal
dopant concentrations x = 0, 0.01, 0.02 and 0.05. Tin (Sn) was selected as the dopant element
for two reasons. First, Sn can dissolve in the Cu2Se matrix in small concentrations in either its 2+
or 4+ oxidation states [76], with effective ionic radii of ≈ 0.76 Å and ≈ 0.55 Å, respectively, in
comparison to ≈ 0.60 Å for Cu1+ [77, 78]. The combination of the charge difference and distinct
ionic radii between Sn and Cu within the Cu2Se matrix will result in a distorted lattice. In turn, the
electromigration pathway of the Cu1+ ions could be significantly hampered, thereby decreasing
the loss of solid copper, as was previously shown in the mineral bornite [74]. Second, record high
zT values of 2.6 at 923 K were recently demonstrated in single-crystal SnSe [20], making the
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combination of Cu2Se and SnSe an appealing system for TEs [79, 80]. Because of the reported
low solubility limit of tin in copper selenide [76], our investigation utilized small concentrations
of the dopant element. One final noteworthy advantage of the materials used in this study is that
copper, tin and selenium are all earth abundant, inexpensive and nontoxic elements, which renders
them suitable for TE applications.

The following three sections detail our work published in Ref. [73]. In particular, Section
3.2 describes the synthesis procedure and the resulting microstructure of the Cu2−2xSnxSe (x =
0, 0.01, 0.02 and 0.05) series that we studied. Section 3.3 presents the results of the HT TE
property measurements, with the primary conclusion that the Cu1.98Sn0.01Se sample possesses a
15% enhanced zT in comparison to the pure sample over a wide temperature range. Section 3.4
elucidates the outcomes of the current stress test performed in this study as a means of checking
the electrical stability of the samples. Overall conclusions can be found in Section 3.5, while an
update on more recent results is given in Section 3.6.

3.2 Synthesis and Microstructure

3.2.1 Experimental Details

In an argon atmosphere glovebox, Cu shot (6N, Alfa Aesar), Sn shot (5N, Alfa Aesar) and Se shot
(5N, Alfa Aesar) were weighed out to match the stoichiometry of Cu2−2xSnxSe, with x = 0, 0.01,
0.02 and 0.05. The elements were placed in carbon-coated quartz tubes, evacuated to 10−4 torr,
and then sealed quickly by an oxygen-propane torch. The resulting ampoules were then heated
from RT to 1423 K at 1 K per minute in a closed furnace, soaked at that temperature for 12 hours,
slow cooled to 1023 K over the span of one day, annealed for 7 days, and then finally cooled to
RT over the span of two days. The approximately 10 g solid ingots were removed from the quartz
tubes and ground into powder by agate mortar and pestle in air, typically achieving grain sizes less
than 150 microns. Both Cu2Se and Cu1.90Sn0.05Se ingots featured a layer of Se on the outside that
was removed before further processing. The reacted powder was loaded into a 20 mm diameter
graphite die lined with graphite paper, then cold pressed and spark plasma sintered at 923 K for 5
minutes at a pressure of 50 MPa. Graphite paper was removed from the samples, and their density,
ρ, was determined by the Archimedes method. All samples were 98-100% theoretical density.

After synthesis, the samples were sectioned by a diamond saw into the proper geometries
and sizes for characterization. To identify the compounds and structures present in the sintered
samples, powder X-ray diffraction (PXRD) was performed using a Rigaku Ultima IV X-ray D-
iffractometer with incident radiation of wavelength λ = 1.5406 Å. A HT stage was used for
PXRD measurements at 473 K in addition to the RT scans. Scanning electron microscopy (SEM)
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Figure 3.2: Temperature-dependent powder X-ray diffraction patterns of the four
Cu2−2xSnxSe samples in the study. (a) The top panel includes the patterns at T = 298 K, while
the bottom panel is for T = 473 K. Below the sample PXRD patterns are the known PDF cards
of α-Cu2Se, SnSe and β-Cu2Se, labeled by 1, 2 and 3, respectively. At room temperature (RT),
the Bragg peaks at 2θ ≈ 31.0◦ (marked by * and shown enlarged in the inset) for the Sn-doped
samples are indexed by 3 (SnSe), whereas the rest of the peaks belong to 1 (α-Cu2Se). Above
the phase transition temperature, the patterns are indexed by 2 (β-Cu2Se) and show no signs of
3 (SnSe), indicating that the secondary phase peaks are below the detection limit of the PXRD
machine. This is caused by the well-known Debye-Waller effect and a greater dissolution of Sn
in the Cu2Se matrix at high temperatures, which is further supported by the main diffraction peak
shifts to lower values of 2θ at T = 473 K, as shown in (b).

(JEOL-7800FLV) was performed to observe the microstructure, while in situ energy dispersive
X-ray spectroscopy (EDX) was used to qualify chemical composition. All of the characterization
equipment mentioned above is part of the Electron Microbeam Analysis Lab at the University of
Michigan (UM).

3.2.2 Results and Discussion

Figure 3.2(a) displays the RT and HT PXRD patterns for the four samples in the study. For clarity,
the higher energy and lower intensity Cu Kβ lines of the main diffraction peaks have been removed.
In all of the samples at T = 298 K, every peak of the Cu2Se α-phase (PDF Card 47-1448) is
present, which is in agreement with previous results on stoichiometric and slightly Cu-deficient
Cu2Se. In the doped samples, there is an additional set of peaks around 2θ ≈ 31.0◦ at 298 K,
which is highlighted in the inset of Fig. 3.2(a). These specific Bragg peaks belong to SnSe (PDF
Card 14-0159), indicating that a secondary phase exists in the sample. Furthermore, as the Sn
dopant level is increased, the intensity of the SnSe peaks increases.
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At 473 K, the Cu2Se α-phase peaks are replaced by the sharper β-phase peaks (PDF Card 46-
1129), and some of the Cu2Se α-phase peaks are lost altogether (e.g., 2θ ≈ 38.8◦, 40.4◦ and 61.0◦).
Notably, the SnSe peaks around 2θ ≈ 31.0◦ seen at RT in the doped samples have disappeared,
meaning that their presence is below the detection limit of the PXRD equipment. At least two
factors contribute to this effect. First, the increased thermal motion of the atoms at 473 K decreases
the intensity of all diffraction peaks, which is the well-known Debye-Waller effect. Second, the
further dissolution of the Sn dopant in the Cu2Se matrix above the phase transition temperature
of approximately 410 K decreases the PXRD signal of the secondary phase. The reported larger
cell volume of the high-temperature (HT) phase in Cu2Se [58] can accommodate a greater amount
of the Sn atoms in the interstices. Indeed, as can be seen in Fig. 3.2(b), the main diffraction
peak of the doped samples occurs at lower angles than the pure sample, meaning that their crystal
structures are expanded by the introduction of Sn. Because Sn2+ ions are larger than Cu1+ ions
(≈ 0.76 Å vs. ≈ 0.60 Å), while Sn4+ ions are actually smaller (≈ 0.55 Å) [77, 78], the enlarged
lattice parameter suggests the presence of Sn2+ ions within the Cu2Se matrix and not Sn4+. This
is an important distinction that will be helpful in understanding the carrier concentration data.
In addition, the higher angle of the diffraction peak for Cu1.90Sn0.05Se compared to Cu1.96Sn0.02Se
may be explained by Sn replacing small fractions of Se, which has a larger radius of≈ 1.84 Å in its
Se2− valence state [78]. The aforesaid loss of Se during the synthesis of the Cu1.90Sn0.05Se sample
and the carrier concentration measurements to be mentioned later (Figure 3.4(c)) are consistent
with this hypothesis. Despite the noted peak shifts and absence of secondary phase signals in the
HT PXRD patterns, we do not assume full solubility of Sn within the Cu2Se matrix for the doped
samples at high temperatures, especially given the reported low solubility limits of less than 3 at%
[76].

Backscattered electron (BSE) images of the x = 0, 0.01, 0.02 and 0.05 samples are shown in
Figure 3.3. From Fig. 3.3(a), we notice the featureless single-phase matrix of the pure sample.
In Figs. 3.3(b-d), the secondary phase detected in the PXRD patterns for the doped samples can
clearly be seen in white. EDX spectroscopy of the secondary phase in the doped samples typi-
cally indicated approximately 45 at% each of Sn and Se, confirming the chemical composition to
be nearly stoichiometric SnSe. Trace amounts of oxygen, carbon and copper accounted for the re-
mainder of the signal in the EDX spectroscopy, which is only an approximate technique. As shown
in Fig. 3.3(b), Cu1.98Sn0.01Se possesses irregularly shaped agglomerations of SnSe with a typical
dimension of a few microns and separation distances of a few tens of microns. The more highly
doped samples (Figs. 3.3(c) and (d)) have the additional feature of continuous SnSe formations
at parts of the grain boundaries of the Cu2Se main phase. As the dopant level is increased, the
agglomerations and grain boundary formations grow in volume fraction.
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Figure 3.3: Backscattered electron images of the four Cu2−2xSnxSe samples in the study. (a)
Cu2Se as a single phase, (b) Cu1.98Sn0.01Se with isolated SnSe secondary phase precipitates and
(c) Cu1.96Sn0.02Se, and (d) Cu1.90Sn0.05Se with more developed networks of the SnSe secondary
phase.

3.3 Thermoelectric Properties

3.3.1 Experimental Details

HT electrical property measurements (S and σ) were performed at the Wuhan University of Tech-
nology (WHUT) using an ULVAC-RIKO ZEM-3 with 4-point pressure contacts on samples that
were approximately 9 mm2 by 10 mm in length cut perpendicular to the pressing direction. A Net-
zsch Laser Flash Analysis 457 at WHUT was used for the thermal diffusivity (D) data, with the
laser incident on square samples approximately 7.5 mm in width and 1 mm thick cut parallel to the
pressing direction. A pyroceram reference sample ensured that the measurement of D was well
calibrated over the entire temperature range, and repeated measurements on multiple specimens
of the same sample yielded consistent results. In addition, S, σ and D values were confirmed to

37



within 10% error with measurement equipment at UM. Heat capacity at constant pressure (Cp)
measurements were performed at UM using a NETZSCH Differential Scanning Calorimeter Mod-
el 404 C with a calibrated Al2O3 standard. The thermal conductivity was calculated with the
expression κ = ρDCp. HT carrier concentration data was determined by Hall effect measurements
with a 1 Tesla field, conducted at UM using a 4-probe AC method with the signal measured by a
Linear Research AC Bridge Model LR-700. We assumed a single parabolic band model to extract
the carrier concentration, p = (RHe)

−1, where RH is the measured Hall coefficient and e = 1.602

x 10−19 C is the elementary charge. The hole mobility was calculated as µH = σRH . All HT
measurements were performed under inert atmospheres to reduce sample oxidation.

3.3.2 Results and Discussion

The electronic properties of the four samples in this study are displayed in Figure 3.4. All of
the curves exhibit a discontinuity around 410 K associated with the phase transition discussed
earlier. The data for the pure sample are consistent with previous reports using similar techniques
[17, 44, 45, 49, 50, 53]. With increasing temperature, the electrical conductivity of each sample
(Fig. 3.4(a)) decreases while the positive Seebeck coefficient (Fig. 3.4(b)) increases, illustrating
the typical behavior of a degenerate p-type semiconductor with a single carrier [26]. In general,
Cu1.98Sn0.01Se and Cu1.96Sn0.02Se possess slightly diminished σ but enhanced S in comparison
to the pure sample, while Cu1.90Sn0.05Se follows the opposite trend: a much enhanced electrical
conductivity and diminished Seebeck coefficient. This separation can be explained by the carrier
concentration data from our Hall effect measurements (Fig. 3.4(c)), which show the exact same
division. We first note that all of the samples exhibit p-type character with carrier concentrations on
the order of 1020 cm−3 that increase with temperature. Cu1.98Sn0.01Se and Cu1.96Sn0.02Se exhibit
lower values of the carrier concentration than Cu2Se, while Cu1.90Sn0.05Se has a distinctly higher
value of p.

As noted in previous works on pure Cu2Se, the intrinsic Cu deficiency of the material removes
electrons from the system, resulting in hole (p-type) conduction [17, 81]. In the series of com-
pounds studied here, the PXRD suggests that one Sn2+ atom is substituted for two Cu1+ atoms,
so the hole count of the system should theoretically stay the same. Up to the 2 at% dopant level,
the Sn introduced into the compound acts as a n-type dopant potentially by decreasing the native
deficiency of Cu in the Cu2Se matrix, thus reducing the hole count. After the Cu sites become
saturated, as suggested by the reported low solubility limit [76], Sn atoms may occupy the Se
sites of the matrix, acting as an anionic substitution and contributing two fewer electrons than
Se. Such a phenomenon is the most likely cause for the strong p-type dopant behavior seen in
Cu1.90Sn0.05Se, especially considering the loss of Se during the synthesis of this sample. In ad-
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dition, anionic substitution of elements with similar electronegativity differences has been readily
achieved in Cu2Se-based compounds [50, 51, 52]. This explanation is also consistent with the shift
of the main diffraction peak of Cu1.90Sn0.05Se to higher angles than that of Cu1.96Sn0.02Se, which
suggests a reduced lattice constant by the replacement of large Se anions with the smaller Sn.

Figure 3.4: Temperature-dependent electrical properties of Cu2−2xSnxSe. The trends of (a) the
electrical conductivity and (b) the Seebeck coefficient with respect to the dopant content can be
explained by (c) the carrier density calculated from the Hall measurements. (d) shows the hole
mobility with dotted lines illustrating different power law slopes to help understand the carrier
scattering in the samples. See the text for further discussion.

Using the HT Hall data, we are able to rigorously understand the electronic transport of the
materials in the study. Figure 3.4(d) shows the mobility as a function of temperature in a log-
log plot in order to extract the exponent ν that describes the dominant charge carrier scattering
mechanism, with µH ∝ T−ν [26]. The RT mobilities of the 1 at% and 2 at% doped samples
are enhanced in comparison to the pure sample, potentially a result of strain relaxation in the
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Figure 3.5: Temperature-dependent power factor of Cu2−2xSnxSe.

crystal structure upon small dopant concentrations, which has been seen in other TE materials
[82]. Cu1.90Sn0.05Se exhibits reduced RT mobilities most likely due to the increased density of
impurities that scatter charge carriers. Below the phase transition, ν ≈ 1, indicating that the holes
are mainly scattered by acoustic phonons and the carrier effective mass is roughly constant at these
temperatures. The mobilities of the samples converge above the phase transition and show reduced
values that could be a result of scattering by the disordered Cu ions. The exponent changes to
2 / ν / 3, meaning that acoustic phonon scattering still dominates, but the carrier effective mass
is now a growing function of temperature [26].

Combining the electrical conductivity and the Seebeck coefficient, the power factor (PF =

S2σ) determines how much electricity can be generated by a given temperature gradient. In this
study, Cu1.98Sn0.01Se and Cu1.90Sn0.05Se show enhanced PF in comparison to the pure sample
(Figure 3.5), with Cu1.90Sn0.05Se possessing the maximum HT value of PF ≈ 9.3 µW cm−1 K−2

at 773 K. Unfortunately, Cu1.96Sn0.02Se, as a result of its drop in σ without a concomitant rise in
S, has a diminished PF with respect to the pure sample. Overall, the electronic properties of the
samples are comparable to other excellent TE materials [23].

Figure 3.6(a) presents the thermal conductivity data with the anomalously large T = 423 K
point near the phase transition removed in order to view the curves on a more clear scale. As
expected, the thermal conductivity values for Cu2Se are quite low, reaching ≈ 0.76 W m−1 K−1

at 823 K. Cu1.98Sn0.01Se has an even lower thermal conductivity, showing approximately a 10%
reduction in comparison to the pure sample above 473 K and reaching a minimum of≈ 0.69 W m−1

K−1 at 823 K. Cu1.96Sn0.02Se and Cu1.90Sn0.05Se have larger thermal conductivities than the pure
sample, with the magnitude increasing with increasing dopant content and reaching a maximum of
≈ 1.14 W m−1 K−1 at 823 K for Cu1.90Sn0.05Se.
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Figure 3.6: Temperature-dependent thermal conductivities of Cu2−2xSnxSe. (a) The total ther-
mal conductivity and (b) the lattice contribution to the thermal conductivity show impressively low
values, with the 1 at% Sn-doped sample exhibiting about a 10% reduction in comparison to the
pure sample. The data at the α-β phase transition of Cu2Se seen in all of the samples has been
removed from (a) and (b) for the sake of clarity. See the text for the method of calculating the
lattice thermal conductivity.

To isolate the lattice contribution to the thermal conductivity, κL, we subtracted the electronic
contribution, LσT , where L is the Lorenz number, from the total thermal conductivity, κT , such
that κL = κT–LσT . In order to determine the Lorenz number, we first calculated the reduced Fermi
energy, η, by using the experimental Seebeck coefficient data and Eq. 2.29, which is reproduced
here:
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with the Fermi integrals, Fn(η), defined in Eq. 2.18. The experimental S data shown in Fig. 3.4(b)
is used as input to Eq. 3.1 while r = −1/2 for the acoustic phonon scattering of the holes, as
determined from our HT mobility analysis. With η calculated for each sample and temperature,
the corresponding Lorenz number is determined by Eq. 2.31, also reproduced here:
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The values of the Lorenz numbers were on a range of (1.5-1.9) x 10−8 V2 K−2, with the small-
er values occurring at high temperature. Across samples, the Lorenz numbers followed the same
trend as the carrier concentration, decreasing from the pure sample to the 2 at% dopant level and
increasing thereafter. The variation of the Lorenz numbers with temperature and dopant concen-

41



tration is an important finding that is necessary in rigorously calculating κL to isolate it from the
heat flow associated with the charge carriers. Figure 3.6(b) shows the resulting lattice thermal
conductivity.

In comparison to the pure sample, the 1 at% Sn-doped sample possesses a lattice thermal
conductivity reduced by approximately 10%, while the 2 at% and 5 at% doped samples show larger
values. In all of the samples, atomic mass and strain fluctuations in the matrix must lead to greater
phonon scattering [2]. WithmCu = 63.55 amu andmSn = 118.71 amu, the heavier Sn atoms in the
Cu2Se phase act as point defects to scatter high frequency phonons. What ultimately distinguish the
samples are their microstructures. For the 1 at% doped sample, the isolated micron-size secondary
phase (Fig. 3.3(b)) scatters lower frequency phonons [2] that travel unimpeded in the pure sample,
resulting in the reduced lattice thermal conductivity. For the more highly doped samples, the
developed network of the SnSe secondary phase decorates parts of the grain boundaries of the
Cu2Se matrix (Figs. 3.3(c) and (d)) that already play a role in scattering phonons. With its well-
known low thermal conductivity [20, 83], SnSe as a secondary phase cannot act as a thermal
short. Thus, in order for the SnSe secondary phase to increase the lattice thermal conductivity,
the SnSe lining parts of the Cu2Se grains must in fact reduce the reflection of phonons at the
grain boundaries in comparison to that which occurs between two neighboring Cu2Se grains. As a
result, the developed networks of SnSe create a smoother passage for heat to flow. To rigorously
determine the effects of the Sn dopant on the lattice dynamics, inelastic neutron scattering studies
would have to be performed to obtain the phonon density of states and dispersion relations [84].

One final observation to consider regarding the lattice thermal conductivity is the upturn of the
values for Cu1.96Sn0.02Se and Cu1.90Sn0.05Se at 723 K and 623 K, respectively. Normally, a rising
κL at high temperatures would indicate bipolar conduction, where intrinsically generated charge
carriers begin to significantly add to the lattice thermal conductivity [2]. The carrier density data
in Fig. 3.4(c) indicate that a rise in n occurs at lower temperatures in Cu1.90Sn0.05Se compared to
the other samples. The corresponding generation of intrinsic carriers at lower temperatures is then
reflected in the bipolar conduction that is seen most readily in Cu1.90Sn0.05Se.

Using the expression zT = S2σκ−1T = PFTκ−1, we calculated the TE Figure of Merit,
and the results are shown in Figure 3.7. Except at the phase transition, all of the samples have
increasing zT with increasing temperature. With a slightly increased power factor (Fig. 3.5) and
reduced thermal conductivity (Fig. 3.6(a)), Cu1.98Sn0.01Se averages a 15% enhancement in the TE
figure of merit compared to the pure sample over the broad temperature range of 473 K – 823 K.
The more highly doped samples do not possess the optimal combination of electrical and thermal
properties to show an enhanced zT . It is interesting to note that Liu et al. found the maximum zT

values to occur in the Cu2Se sample containing 3 mol% SnSe [79]. The distinct optimized dopant
levels are most likely due to the different synthesis techniques, which indeed resulted in unique
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Figure 3.7: The thermoelectric figure of merit, zT , of the Cu2−2xSnxSe samples. The 1 at%
Sn-doped sample possesses 15% enhanced values above 423 K compared to the pure sample.

microstructures and consequently varied TE properties. Overall, to further increase the figure of
merit of these compounds, nanostructuring could be a viable technique, as evidenced by previous
works [45, 47, 48, 53, 54].

3.4 Current Stress Test

3.4.1 Experimental Details

In order to test the ability of the samples to withstand typical TE generator conditions, we altered
the homemade setup normally used for the measurement of S and σ at UM so that greater currents
could be passed through the samples. We were guided by the works of Brown et al. [70] and
Dennler et al. [71]. A schematic of a general current stress test is shown in Figure 3.8, while
a photograph of our experimental setup is given in Figure 3.9(a). Half-cylinder samples of 1/2”
diameter and 2 mm thickness were mounted on a stainless steel block that was placed in a graphite
holder, and a stainless steel cap was attached to the top of the sample. Surrounding the graphite
holder slightly below the sample is a simple heater of coiled stainless steel wire used to estab-
lish a temperature gradient across the sample in attempt to emulate the conditions of TE power
generation. Type R thermocouples using Pt and a Pt/Rh alloy were attached to the sample and
registered a ∆T of approximately 50 K during the test. The entire unit was placed in a furnace in a
closed chamber equipped with electrical feedthroughs. Copper wires attached to the stainless steel
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Figure 3.8: Schematic of a current stress test emulating thermoelectric power generation con-
ditions. Electrical contacts on the sample allow for several amperes of current to pass continuously
through the material while it is held at the desired temperature of operation. Thermocouples at-
tached to the sample measure the temperature gradient along its length, with the hot end established
by the heater below the sample. The cations in the material (shown as yellow filled circles with +
signs in the middle) are electrically forced to the bottom and build up as solid precipitates if the
material is structurally, and consequently, electrically unstable.

cap and block were connected to an external power supply run in constant current mode. During
the current stress test, approximately 8 A of current was passed through the samples continuously
for 24 hours while the furnace temperature was held at 773 K. The current density amounted to
≈ 12 A cm−2, a typical maximum operating condition found in TE generators [71]. The direc-
tion of the current opposed the thermal gradient in order to rule out the migration of the copper
ions by thermal diffusion. An argon atmosphere within the chamber helped to slow down sample
oxidation.

Visual observation of the samples after the current stress test is a way of immediately iden-
tifying the chemical stability of the samples. In addition, we used SEM images to view surface
changes of the samples under high magnification, as well as backscattered electron (BSE) images
to observe microstructural changes as a result of the current stress test. To determine the elemental
buildups on the surfaces of the samples after the test, we performed Auger spectroscopy (Phys-
ical Electronics Auger Nanoprobe 680). As a means of quantifying the material degradation of
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Figure 3.9: Experimental setup and results of the current stress test performed for
Cu2−2xSnxSe. The graphite holder with the sample and electrical attachments is shown in (a)
with the current direction against the direction of thermal diffusion. Cu ribbons (b) and selenium
granules (c) form at the hot end of the samples, as verified by Auger spectroscopy, with Se often
surrounding the Cu (d).

the samples, we measured the density before and after the current stress test. Because the main
component of the material degradation is the loss of solid copper, which has a larger density than
the samples (≈ 9.0 g cm−3 vs. ≈ 6.8 g cm−3), we expected the density of the samples to decrease
when the copper was expelled.

3.4.2 Results and Discussion

Images of the pure sample and the 5 at% Sn-doped sample after the current stress test are shown
in Fig. 3.9(b) and (c), respectively. Two distinct elemental buildups on the bottoms of the samples
are evident. First, as illustrated by the pure sample in Fig. 3.9(b), ribbons of copper were expelled
at the hot end of the sample, and, second, as evidenced by the 5 at% Sn-doped sample in Fig.
3.9(c), selenium granules also developed at the hot side. Due to its high ionic conductivity and
ability to flow between tetrahedral sites within the Cu2Se matrix, the Cu ions move towards the
hot end of the sample by electrical forcing. Once a large enough concentration of Cu is built up
at the hot side, most of the Se atoms are pushed away as the solid Cu is forced out. The selenium
often builds up in a region surrounding the solid copper precipitate, as shown in Fig. 3.9(d), in
a combination of its pure state and reacted states with Cu, according to Auger spectroscopy. The
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pure Se, with a melting point of 494 K [85], would be molten at 773 K. As the furnace is cooled
to room temperature following the experiment, the selenium crystallizes as granules that collect at
the hot side.

In addition to the Se and Cu signals in the Auger spectroscopy, we noticed a small signal from
Fe within the selenium granules, indicating that the selenium deposits at the bottom of the sample
reacted with the stainless steel block below it. Such chemical reactions with contacts are known to
lead to increased contact resistance that is deleterious to device performance [46, 68, 70]. One final
byproduct of the material degradation tests for the doped samples were small particles composed
of tin oxides. Because no unreacted pure tin was detected in the doped samples by SEM before the
current stress test, the possible sources of the tin in the tin oxides are the secondary phase of SnSe
and the Sn within the Cu2Se main phase.

Unfortunately, the current stress test causes material degradation in all of the samples, mean-
ing that the tin dopant does not cure the issue of chemical stability found in these Cu2Se-based
compounds. After the current stress test, the hot ends of the samples were extensively deformed,
often revealing the fractured surface, as shown in the SEM image of Cu2Se in Figure 3.10(a). All
of the samples featured holes at the hot ends where the copper was expelled. The holes ranged in
size from tens of microns to several hundreds of microns, which is illustrated by the SEM image of
Cu1.90Sn0.05Se in Fig. 3.10(b) and the BSE image of the same sample in Fig. 3.10(c). In addition,
the secondary phase of the doped samples appeared to be reduced slightly in volume fraction and
was altered in shape after the current stress test, as evidenced by the BSE image of Cu1.90Sn0.05Se
in Fig. 3.10(c). Unfortunately, we cannot make a comparison of the bulk compositions of the
samples due to the EDX signal being polluted by multiple oxides and elements involved in the
electrical contacts of the experiment, which renders the data unmeaningful.

We did notice visually that the amount of Cu and Se leaving the samples during the current
stress test did diminish with the higher doping content. To confirm this quantitatively, we assessed
the density change of the samples during the current stress test, the results of which are shown
in Fig. 3.10(d). As expected, due to the mass loss primarily from copper, the density, ρ, of the
pure sample was reduced during the current stress test, by approximately 4%. With increasing
dopant content, the percent density loss decreased, with the minimum of 2% density loss achieved
for Cu1.90Sn0.05Se. The error bars attached to the data points in Figure 3.10(d) are calculated by
adding the error sources of the density calculation in quadrature. Specifically, for a single density
measurement, ρ = m

V
± δρ, of a mass m± δm of volume V ± δV , the relative error is
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demonstrating that the relative errors in the individual inputs (m and V ) contribute equivalently.

Figure 3.10: Surface, microstructure, and material loss assessment of the Cu2−2xSnxSe sam-
ples after the current stress test. The material degradation of the samples often unveiled the
micron-sized crystallites of the fractured surface (a, Cu2Se). Holes on the surface were common
for all of the samples and ranged in size (b and c, Cu1.90Sn0.05Se). BSE revealed an altered mi-
crostructure (white dots) in the doped samples (c, Cu1.90Sn0.05Se ) as well as holes (black spots).
The percent density loss as a function of the Sn dopant (d) indicates that the material degradation
decreases with higher Sn content. The error bars are calculated following Eq. 3.3 described in the
text.

For measuring the density loss incurred through the electromigration experiment (current stress
test), two separate measurements before and after the experiment are performed, and the relative
errors in each are also added in quadrature. In general, the relative error in the mass of several gram
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samples is less than 1%, while the relative error in the volume can be 10% or more due to the small
sample size. A separate quantitative method that we did not pursue in this study is described in Ref.
[74]. The method involves measuring the electrical conductivity of the samples within the current
stress test as a function of time. Because the expulsion of Cu from the compounds increases the
number of holes contributing to the electronic conduction, the σ of pure Cu2Se measured during the
electromigration experiment should increase over time, t. An electrically stable compound would
exhibit a nearly constant σ vs. t if assessed for several days with fine increments (≈ 1 minute),
as long as there is no other form of material degradation, such as oxidation. Of course, the proper
current density must be applied in keeping with the emulation of TE application conditions.

We propose two potential reasons for the decreased material degradation with the introduction
of larger amounts of tin in the materials (Fig. 3.10). First, as discussed before, the tin atoms
getting into the Cu2Se matrix may act as physical and electrical barriers due to their size and
charge difference in comparison to the copper atoms. As point defects within the matrix, Sn can
distort the long-range pathway for the Cu electromigration in a similar manner as Fe dopants in
Cu2S [74], thereby diminishing the solid Cu expulsion. Second, the secondary phases of SnSe that
form at the grain boundaries of the Cu2Se main phase may hinder the transit of Cu ions. As the Sn
dopant content increases, the volume fraction of the SnSe secondary phase increases, as seen in the
PXRD peaks (Fig. 3.2(a)) and the BSE images (Fig. 3.3), which may contribute to the decreased
material degradation we see at higher dopant values.

In order to stabilize the Cu2Se-based compounds, more work must be done to prevent the elec-
tromigration of the Cu ions. Following a dopant approach with larger ionic radii elements, such
as Na and Ca, or multi-valent atoms, such as Fe or Cr, may prove successful, but the exact solu-
bilities of these elements within the Cu2Se matrix will play a big role. Work on the tetrahedrite
Cu12Sb4S13 has shown increased phase stability with Ni substitution [86], while introducing Fe in-
to Cu2S results in the bornite structure that is more robust under current stress [74]; potentially the
same dopants could help the chemical stability of Cu2Se due to its similar chemical constituents
and atomic coordinations. An alternative strategy could be to overdope the matrix, creating com-
pounds of the form Cu2AxSe, where the dopant element A could possibly fit into the vacant inter-
stices of Cu2Se, thereby trapping the Cu ions. Yet, the question remains whether preventing the
electromigration of the Cu ions, whose kinetic disorder is a contributing factor to the extremely
low thermal conductivity, might actually deteriorate the TE properties of the material. It is pos-
sible that Cu2Se-based compounds, due to their superionic nature, cannot simultaneously possess
superior TE properties and remain chemically stable in TE applications. Further investigations are
necessary to study this relationship more thoroughly.
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3.5 Conclusions

We have reported here the Cu2−2xSnxSe (x = 0, 0.01, 0.02 and 0.05) series of compounds that
exhibit maximum TE performance for the 1 at% Sn-doped sample. Its unique microstructure
and inherent point defect scattering of phonons resulted in a 10% reduction of the lattice thermal
conductivity. With an increased power factor, Cu1.98Sn0.01Se demonstrated an enhancement of zT
averaging 15% over the broad temperature range of 473 K – 823 K.

In current stress tests designed to emulate the typical operating conditions of TE power gener-
ation, the material degradation of the samples decreased with increasing dopant content, as judged
by the density loss of the samples during the test. The Sn atoms, acting within the matrix and
as a secondary phase, contribute to the decreased material degradation. Yet, because the issues of
copper expulsion and selenium precipitation still exist at the 5% dopant level, these compounds are
not viable for applications. Pursuing other dopant elements that have shown success in rendering
similar systems robust against degradation is one approach for potentially resolving the electro-
migration issue. However, it is possible that stabilizing Cu2Se-based compounds may actually
eliminate the liquid-like lattice that endows them with superior TE properties. We wish to empha-
size that all TE studies of Cu2Se and other SICs should perform current stress tests in addition to
the standard TE property measurements, in order to check the electrical stability of the materials
in TE operating conditions. The overarching goal of TE research, which is to benefit society and
the environment through the economic and safe utilization of waste heat, can only be realized in
these Cu-based materials if they remain robust in applications.

3.6 Latest Results and Future Work

The above work was published in Ref. [73], and a follow-up review article in Ref. [72] surveyed
the literature for a broader range of SICs, including Cu2S, Ag2Se, MgAgSb, Zn4Sb3, and others.
As of April 2020, the research article [73] has approximately 35 citations, while the review article
[72] has about 15. Instances of current stress tests were quite rare in the literature regarding SIC
TEs, numbering about 5 or so [70, 71, 73, 74, 87] compared to 100s of related publications simply
reporting zT values. Standard TE measurements are usually carried out with electrical currents
on the order of 10-100 mA applied momentarily, whereas the current stress tests require multiple
amperes for hours and days. Because most groups conducting TE property measurements utilize
commercial equipment, it can be a challenge for them to develop more prolonged tests that emulate
real-world TE power generation conditions. In the past three years, many works have considered
the issue of electrical stability more thoroughly. We highlight a few of those works here.

A collaborative study initiated by Professor Poudeu at UM, and led by his then-graduate stu-
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dent Dr. Alan Olvera [88], found that zT values up to 2.6 at 850 K can be achieved in Cu2Se
by incorporating just 1 mol% of CuInSe2 to create a nanocomposite, as shown in Figure 3.11(a).
One of the major breakthroughs of the study was that the zT values at lower temperatures for the
Cu2Se-CuInSe2 samples were all enhanced to much larger values than any other Cu2Se-based sys-
tems. At lower temperatures, the issue of material degradation in Cu2Se is less of an issue, albeit
still prevalent, so the Cu2Se-CuInSe2 are attractive candidates for TE applications. Indeed, the
homebuilt current stress test performed by Olvera demonstrated no visible degradation nor copper
extrusion from the Cu2Se-1mol%CuInSe2 sample. The reference Cu2Se sample shed multiple Cu
wires at the negative electrode when run through the same current stress test. The authors surmised
that the dissolution of the In within the Cu2Se structure, in addition to the nanoscale secondary
phase of CuInSe2, both act as physical and electrical barriers to slow the migration of the Cu ions
in the presence of an electric field. Surprisingly, the enhanced electrical stability of the Cu2Se-
1mol%CuInSe2 did not increase the thermal conductivity. Rather, the Cu2Se-1mol%CuInSe2 sam-
ple maintains values of κ near 0.4 W m−1 K−1 above 600 K, while the pure Cu2Se hosts values
that are double that. Thus, the study provided a case in which nanocompositing not only enhanced
the zT values, but also helped to stabilize the Cu2Se-based compounds.

Additional work by Qiu et al. [89] examined the chemical potential of the Cu1+ ions in a mixed
ionic-electronic conduction model to understand the critical applied voltage, Va, at which Cu metal
deposition occurs in a TE device. They found that the applied voltage is the determining factor
for electrical stability, not the current density, J , according to thermodynamics. The current
density that runs through a material leg in TE operating conditions sets up an associated voltage
across the length of the material, and that voltage must be kept underneath the critical voltage, Vc,
for electrical stability of the ions. To satisfy Va < Vc, the authors developed segmented Cu1.97S
legs (Cu2S actually has a greater issue with electrical stability compared to Cu2Se), with two
conductive carbon layers inserted equidistant along the sample bar, as shown in Fig. 3.11(c) and
(d). The stable carbon layers allow for electronic conduction but block ion migration. Due to the
series arrangement of the heterogeneous leg, the voltage across the individual segments of Cu1.97S
is cut to a third of the value for an unsegmented leg, given a constant current density. Thus,
the three-segment bar of material allows for higher current densities closer to real TE operating
conditions without Cu metal deposition. The authors experimentally demonstrated the electrical
stability of the Cu1.97S segmented sample at J ≈ 30 A cm−2 for periods of ten minutes (Fig.
3.11(c)). However, when a 373 K temperature gradient was applied to the material, the maximum
current density possible before Cu deposition shrank to ≈ 3 A cm−2 (Fig. 3.11(d)). Evidently,
further segmentation is essential for stabilizing the material for TE application conditions, and
more prolonged testing is needed. Nevertheless, the segmentation approach developed by Qiu et

al. [89] should be applicable to a wide range of superionic conductors.
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Figure 3.11: Recent results in thermoelectrics research on superionic conductors. (a)
Temperature-dependent zT values for the Cu2Se-xCuInSe2 composites studied in Ref. [88]. The
enhanced zT over the whole temperature range compared to the pure Cu2Se samples, and the elec-
trical stability witnessed in the current stress test, bode well for applications. (b) Eight-couple
Cu2Se/Yb0.3Co4Sb12 module and maximum efficiency, ηmax, as a function of the temperature gra-
dient across the device, ∆T . Modified from Ref. [90] with permission from Elsevier. The long-
term stability of the power, Pmax, suggests that the device could operate reliably in real-world TE
power generation conditions and compete with other TE materials. (c) Relative resistance, R/R0,
and (d) relative Seebeck coefficient, S/S0, measured at different applied current densities, J , for
a homogeneous Cu1.97S bar and a segmented equivalent [89]. The segmented leg reduces the lo-
cal voltage such that Cu metal deposition only becomes a major issue at larger current densities
compared to the unsegmented equivalent.

Follow-up work by the same group (Ref. [90]) assembled a TE module of p-type Cu2Se legs
with the n-type counterparts being the filled skutterudite Yb0.3Co4Sb12 (Fig. 3.11(b)). The more
complicated electrical circuit compared to the previous work (Ref. [89]) results in an expression
for Va that includes the cross-sectional areas of the p- and n-type legs, as well as their individual
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Seebeck coefficients and electrical conductivities. By tuning the ratio of the cross-sectional areas,
Ap/An, the stability condition of Va < Vc could theoretically be met in the Cu2Se side of the
TE device for a variety of ∆T applicable to real-world power generation conditions. No leg seg-
mentation is required in this approach. Using Ap/An = 4, the group constructed an eight-couple
Cu2Se/Yb0.3Co4Sb12 module and measured a heat-to-electricity conversion efficiency of η ≈ 9%
with the cold side of the device held at room temperature and Th = 973 K, i.e. ∆T = 680 K. Long-
term aging tests with ∆T = 520 K (to maintain Th = 823 K so that the Sb in the skutterudite leg
did not sublimate) displayed η ≈ 7% and a continuous power output for 420 hours (Fig. 3.11(b))
without any noticeable degradation in the device construction. The study therefore demonstrates
that Cu2Se can be used as one leg of a couple in a robust TE device with sufficient conversion
efficiencies at low cost.
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CHAPTER 4

Mictomagnetic Full-Heusler Nanoprecipitates in (Ti,
Zr, Hf)NiFexSn Half-Heusler Composites

4.1 Motivation: Half-Heusler Composites as Magnetic Ther-
moelectric Materials

Half-Heusler (HH) compounds are a diverse group of materials that crystallize as cubic structures
with chemical formula XYZ, where X and Y are transition metals, such as Ti, Nb, Co, etc., and Z
is an s-p element, such as Ge, Sn, Sb, etc. [91]. Due to the large number of stable elemental com-
binations, HH materials exhibit a wide range of physical phenomena that has spurred on intense
research in the areas of topological materials [92], spintronics [93, 94] and thermoelectrics (TEs)
[95, 96]. Specifically, TE devices are a low-maintenance, solid-state technology capable of turning
temperature gradients into usable electricity [2]. Utilizing the waste heat omnipresent in industrial
processes and automobiles, TE devices can generate electrical power for both economical and en-
vironmental benefits. Considering the current concern about climate change and fossil fuel usage,
the development of TE devices as an alternative energy source is critical [97].

Recently, we synthesized a set of HH composites, Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025

(TZHNSS), for high-temperature (HT) TE applications [98]. More favorable than simple XYZ
compounds, the composites have dramatically reduced thermal conductivities (κ ≈ 5 Wm−1K−1

at 300 K for the x = 0.05 sample compared to κ ≈ 15 Wm−1K−1 at 300 K for HfNiSn [99]).
The native phase separation and disorder that occurs when exceeding the solubility limit of the X
and Y sites are the sources of the smaller κ, as exemplified in a number of HH systems [100, 101,
102, 103, 104, 105, 106]. Unique to the Fe-added TZHNSS samples, the full-Heusler (FH) XY2Z
secondary phase resulting from the purposefully overstoichiometric Y site is actually magnetic and
results in the samples being ferromagnetic until TC ≈ 650 K. The interaction of the charge carri-
ers with the magnetic TiNi4/3Fe2/3Sn nanoinclusions aids in maintaining a respectful power factor
[98], PF = S2σ, where σ is the electrical conductivity and S is the Seebeck coefficient. Overall,
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the x = 0.05 sample of the TZHNSS composites displayed a 30% improvement in the dimen-
sionless TE figure of merit, zT = PFT/κ, a direct measure of the heat-to-electricity conversion
efficiency.

The utilization of magnetic dopants to simultaneously reduce κ and enhance PF to maximize
zT has lately been applied to several families of TE materials [107, 108, 109, 110, 111, 112, 113].
In order to make further improvements in magnetically doped TE materials and spread the tech-
nique to heretofore unexplored classes, it is essential to understand the magnetic phenomena
present within the compounds. Having shown the benefits of the magnetic FH nanoprecipitates
to the HT TE performance of the TZHNSS composite, we here investigate the low-temperature
(LT) properties of the compounds, including the DC magnetization, the AC susceptibility and the
magnetotransport. We find that the TiNi4/3Fe2/3Sn secondary phase in the Fe-added samples im-
bues them with long-range magnetic order that displays itself in magnetization hysteresis and a
bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) DC magnetization over the whole
temperature range of the study. With the greatest population density of magnetic TiNi4/3Fe2/3Sn
nanoparticles, the x = 0.05 sample features the largest magnetic moments and a strong superpara-
magnetic signal with a distribution of blocking (moment freezing) temperatures around Tf ≈ 175

K. The metallic electrical resistivity of the Fe-added samples contains an upturn near 25 K that we
attribute to enhanced magnetic scattering of itinerant charge carriers, i.e. the Kondo effect. Last,
we demonstrate the presence of weak anti-localization in the pure TZHNSS sample at temperatures
below 4 K, which is significantly suppressed by the ferromagnetism in the Fe-added composites.
In total, our work is a careful investigation of the magnetic phenomena that occur in some of the
newest TE materials.

4.2 Experimental Methods

A series of Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 (TZHNSS) polycrystalline samples, with x = 0,
0.02, 0.05, 0.075 and 0.10, was synthesized following the procedure in Ref. [98]. The fully
dense pellets were polished and sectioned into the geometries required for measurements of the
DC magnetization, AC susceptibility and magnetotransport properties. Throughout the text and
figures, we commonly refer to the HH samples individually as “HH#”, where # is the atomic
percentage of Fe included in the compound. For example, “HH0” and “HH5” refer to the pure and
5 at% Fe-added TZHNSS samples, respectively.

A Quantum Design Physical Property Measurement System (PPMS) Dynacool model equipped
with a 14 Tesla magnet was used for all magnetization and magnetotransport property measure-
ments from 2 to 350 K. For the DC magnetization studies, powder samples of approximately 80 mg
were identically encapsulated and oscillated within the Vibrating Sample Magnetometer (VSM) of
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the PPMS. To examine the ZFC magnetic moments, each sample was cooled to 2 K without an
applied magnetic field, then a 100 Oe (0.01 T) DC field was applied, and the sample was heated to
300 K while measuring the magnetic moment. The samples were subsequently cooled from 300
K to 2 K with an applied field of 100 Oe, then the temperature-dependent FC magnetic moments
were measured while warming back to room temperature. Isothermal magnetization curves up to
an applied field of 140 kOe were recorded at a variety of temperatures to determine the diamagnet-
ic, paramagnetic and ferromagnetic nature of the samples. AC susceptibility measurements (PPMS
ACMS option) were performed for the x = 0.05 sample using a bulk chunk of approximately 150
mg mounted on a quartz paddle with varnish. The small background magnetic signal from the
quartz paddle was recorded in a separate measurement and subtracted off the raw sample data to
yield that presented here. Temperature scans focused on the blocking phenomena in the 100 to 350
K range and utilized an AC drive field of Hac = 5 Oe. A number of drive field frequencies, ω, and
background magnetic fields, Hdc, were implemented to assess the glassy magnetic behavior.

Sample bars of approximate dimensions of 1 mm x 3 mm x 6 mm were mounted with Ag paste
contacts and Cu wires for the 2 to 300 K magnetotransport study using the Electrical Transport
Option (ETO) of the PPMS. The in-line resistivity, ρxx, was measured by the standard 4-probe AC
technique. The magnetoresistance is defined as: MR(H) = 1

2
(∆ρxx(H) + ∆ρxx(−H))/ρxx(H =

0), where ∆ρxx(H) = ρxx(H) − ρxx(H = 0). MR(H) was assessed with the applied current
perpendicular to the magnetic field direction and symmetrized over the field sweep of 140 kOe to -
140 kOe to remove any effects from the misalignment between the electric and magnetic fields. The
transverse (Hall) voltage mutually orthogonal to the applied current and magnetic field was also
determined with the PPMS ETO. As a function of the applied magnetic field, the Hall voltage was
linear, so the data between -10 kOe and 10 kOe were used for the calculation of the Hall coefficient,
RH . No anomalous Hall signal due to the magnetization was detected, likely because the moments
in the samples are quite small. The carrier concentration was extracted as nH = (eRH)−1, where
e is the electron charge.

4.3 Results and Discussion

4.3.1 Microstructural Properties

A thorough discussion of the phases present in the TZHNSS samples and their respective chemical
compositions and spatial extent is given in Ref. [98]. A few points are worthy mentioning here.
First, the samples feature powder X-ray diffraction (PXRD) patterns with all peaks indexed to the
desired HH structure type, and no impurity peaks were detected within the resolution of the PXRD
machine. Scanning electron microscopy (SEM) confirmed the multiphase nature of the compounds
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that was suggested by the splitting of the (220) peak in the PXRD, the dominant phases being one
rich in Ti and one rich in (Zr, Hf). Furthermore, transmission electron microscopy (TEM) dis-
covered Fe-rich FH nanoparticles dispersed among the two different HH phases. Electron probe
microanalysis results indicated that the magnetic FH nanoparticles were of approximate compo-
sition TiNi4/3Fe2/3Sn with average spatial extent minimized in HH5. Higher levels of Fe doping
caused larger FH conglomerations. The size distribution, number and chemical composition of the
magnetic domains within the Fe-added TZHNSS samples have a direct impact on the magnetic
properties as well as the electronic transport, to be discussed hereafter.

4.3.2 Magnetic Properties of Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025

To understand the effect of the FH TiNi4/3Fe2/3Sn magnetic nanoparticles on the properties of the
TZHNSS system, we must first assess the Fe-free base sample, Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025.
The zero-field-cooled (ZFC) and field-cooled (FC) magnetic moments, m, for the pure sample are
given in Figure 4.1(a). With magnetic moments less than a ten-thousandth of a Bohr magneton,
µB = 9.274 x 10−24 JT−1, per formula unit over the entire temperature range, the sample is
essentially non-magnetic and does not host long-range magnetic order. At temperatures below
approximately 125 K, the ZFC and FC magnetization curves diverge, with the collective moments
cooled without an applied field shrinking in overall magnitude. The temperature at which the ZFC-
FC divergence occurs is known as the irreversibility temperature, Tir. Typically, such ZFC-FC
bifurcation is attributed to spin-glass behavior or superparamagnetism [29, 30, 114, 115, 116, 117].
In either case, at temperatures lower than some freezing temperature, Tf , defined as the maximum
in the ZFC curve, the magnetic moments constituting the system are essentially frozen in space.
Raising the temperature unblocks some of the moments, which then contribute to an increasing
susceptibility. Here, Tf ≈ 37 K. Because superparamagnetism requires localized nanoscale regions
of magnetically ordered particles, we do not expect that it would be relevant in the Fe-free TZHNSS
sample. Furthermore, the lack of a sharp m vs. H slope at temperatures higher than Tir at low
fields (Fig. 4.1(b)) does not align with superparamagnetism. The possibility of spin-glass behavior
is more convincing. The natural phase separation of the compound, the high likelihood of antisite
disorder, and the full ionization of the Sb dopant could all lead to frustration of the magnetic
moments. The resulting spin glass would account for the ZFC-FC bifurcation. Unfortunately,
because the magnetism in the pure sample is so weak, we cannot rigorously confirm the spin-glass
state through other available experimental techniques (the AC susceptibility measurement) that
will be applied later to the more strongly magnetic Fe-added TZHNSS samples.
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Figure 4.1: Magnetic properties of the pure Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025 sample. (a) Zero-
field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetic moments of the pure
TZHNSS sample under an applied magnetic field of 100 Oe (dotted and dashed lines, respectively)
and 20 kOe (FC, solid line). (b) DC magnetization as a function of applied field at a variety of
temperatures for the pure TZHNSS sample.

57



Looking at the 20 kOe FC curve for the pure TZHNSS sample in Fig. 4.1(a), the diamagnetic
response at room temperature persists down to ≈ 80 K, below which a paramagnetic signal domi-
nates. The diamagnetism at temperatures higher than 80 K is simple to understand. According to
the Slater-Pauling rule for HHs, all (Ti, Zr, Hf)NiSn compounds should possess zero magnetic mo-
ment because their d-bands are full [93]. In practice, TiNiSn is known to be strongly diamagnetic,
whereas HfNiSn is either diamagnetic or paramagnetic based on temperature and synthesis condi-
tions [118]. Because the pure TZHNSS sample studied here is a composite of TixZryHf1−x−yNiSn
phases, the magnetization will be a weighted sum of the individual contributions, resulting in the
observed paramagnetic to diamagnetic transition. In addition, localized moments stemming from
defects (site disorder) and/or impurities, such as the ionized Sb dopant, can contribute to a param-
agnetic signal at the lowest temperatures.

4.3.3 Magnetic Properties of Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025

Figure 4.2 demonstrates the weak ferromagnetism characteristic of the Fe-added TZHNSS sam-
ples. With moments that are fractions of Bohr magnetons per Fe atom, it is evident that the mag-
netism does not stem directly from bare Fe atoms or Fe agglomerations. Rather, the source of
the ferromagnetism is the Fe-rich FH inclusions of various sizes and narrow range of chemical
compositions that are verified to be magnetic based on their electron count [93, 98] and previous
susceptibility measurements [119]. In Fig. 4.2(a), the ZFC-FC curves for the Fe-added samples
are displayed. The curves agree well with our previous work [98], except for the ZFC data of the
x = 0.10 sample, which feature a downturn with decreasing temperature in Ref. [98]. We suspect
that the sensitivity of the magnetism on the underlying microstructure and corresponding nominal
composition, to be discussed shortly, may account for the difference.

With the FC susceptibility returning at higher values than the ZFC, all Fe-added samples ex-
hibit a similar ZFC-FC bifurcation as that of the pure TZHNSS sample. However, the divergence
between the ZFC and FC curves starts at the highest temperature of the VSM measurement (Tir =

300 K), and the magnitude of the separation is considerably larger than that observed in the pure
sample. The open hysteresis loops at 2 K and 300 K (Figs. 4.2(c,d), respectively) indicate that
inherent magnetic frustration is responsible for the ZFC-FC bifurcation, favoring a greater align-
ment of the moments as the samples are cooled with field. Magnetic frustration is common in
alloys where the magnetic elements may be disordered on different sites within the crystal struc-
ture, such as in the FH phase TiNi4/3Fe2/3Sn present in the Fe-added TZHNSS composites [30].
If the temperatures of the ZFC-FC measurement were extended to the TC ≈ 650 K determined in
our HT study [98], it is likely that we would find Tir ≈ TC because the magnetic frustration would
be washed away at T > TC .

58



Figure 4.2: Magnetic properties of the Fe-added Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 samples.
(a) Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetic susceptibility
of the Fe-added TZHNSS samples under an applied magnetic field of 100 Oe (solid and dashed
lines, respectively). (b) High-field magnetic moments at 300 K, illustrating the sharp superpara-
magnetic nature most notable in the 5 at% Fe-added TZHNSS sample. Hysteresis loops for the
Fe-added samples are shown at 2 K (c) and 300 K (d), with the insets being zoomed-in versions of
the lower moment samples.

Maxima present in all the ZFC curves, most notable in the HH5 sample with Tf ≈ 175 K, are
suggestive of either spin-glass or superparamagnetic behavior. The sharp rise in magnetization as
the applied field is increased (Fig. 4.2(b)) strongly supports the role of superparamagnetism, which
we expected after witnessing a high concentration of fine (< 50 nm) ferromagnetic nanoparticles
in our microscopy study of the 5 at% Fe-added sample. Nanoscale magnetic domains with suf-
ficient thermal energy (T > Tf , the so-called blocking temperature) can overcome the built-in
anisotropy to behave like paramagnets with large moments [29, 30, 114]. Reducing the size of the
nanoparticles decreases the energy barrier for the superparamagnetic behavior, resulting in lower
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values of Tf . The transition to and from the superparamagnetic state is sharp if the nanoparticle
size is narrowly distributed, but otherwise broadens when there is a greater range of nanoparticle
sizes. Corresponding to the broad size distribution of magnetic nanoparticles present in HH5, the
Tf ≈ 175 K noted in Fig. 4.2(a) is merely the maximum of a wide transition that may span 100 to
250 K.

One of the hallmarks of the superparamagnetism is the universal relation at temperatures higher
than Tf between the normalized magnetization, m/ms, where ms is the saturation magnetization,
and the temperature-reduced applied field, H/T [120, 121, 122]. At temperatures lower than Tf ,
superparamagnetism is frozen out, the long-range magnetic interactions return, and the m/ms vs.
H/T curves no longer overlap. Figure 4.3(a) exhibits this exact scenario as additional evidence
for superparamagnetism in HH5. The 150 and 300 K curves follow each other closely, whereas
the lower temperature data separates. Because the lightly doped HH2 contains far fewer ferromag-
netic nanoparticles than in HH5, the superparamagnetism is not as strong (Fig. 4.2(b)), and the
tendency of the nanoparticles to agglomerate in the more heavily doped samples [98] diminishes
the superparamagnetic signal.

By definition, superparamagnetic particles are non-interacting and do not give rise to hystere-
sis. Yet, clearly there are remanent fields in the magnetization of the HH5 sample at temperatures
above and below Tf (Fig. 4.2 (c,d)). Such a behavior has been observed previously in more
traditional, ideal superparamagnetic systems [123, 124] and can be accounted for by a broad dis-
tribution of magnetic domain sizes. Typically on the scale of microns, larger magnetic clusters
can interact and form a cluster glass as the temperature is lowered. Cluster glasses exhibit hys-
teresis at temperatures above and below the blocking temperature and display many of the same
features as superparamagnets. Given the distribution of magnetic nanoparticle size we observed
in the Fe-added TZHNSS samples, we expect both superparamagnetic and cluster-glass domains
to be present. To further investigate the combination in HH5, we assessed the AC susceptibil-
ity as a function of temperature and drive field frequency, ω, a technique that is well grounded
both experimentally and phenomenologically in the field of spin glasses and superparamagnetism
[30, 115, 116, 117, 125]. The real part of the AC susceptibility, χ′, measures how well the mag-
netic moments align in-phase with the AC drive field, Hac. For the small Hac = 5 Oe used here, χ′

represents mainly magnetic domain wall motion because aligning entire magnetic domains, even
those that only extend several nanometers, with the field requires larger amplitudes. The imaginary
part of the susceptibility, χ′′, is the out-of-phase response of the material to the AC drive field that
stems from long relaxation times of excited spins compared to the inverse frequency of Hac. χ′

and χ′′ for HH5 at four different values of ω are displayed in Fig. 4.3(b).
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Figure 4.3: Ti0.25Zr0.25Hf0.50NiFe0.05Sn0.975Sb0.025 (HH5) superparamagnetism and cluster-
glass behavior. (a) Normalized DC magnetization versus H/T for different temperatures. (b)
The real (χ′, solid lines) and imaginary (χ′′, dotted lines) parts of the AC susceptibility shown for
different excitation frequencies, Hac = 5 Oe, and zero background magnetic field, Hdc = 0 Oe.
(c) χ′(T ) with several background magnetic fields, labelled in bold to the left of the curves in units
of Oe; ω = 10 kHz, Hac = 5 Oe.

Notably, HH5 exhibits a maximum in χ′ between 175 and 225 K depending on the AC drive
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field frequency. The temperature range corresponds well with the Tf ≈ 175 K extracted from
the DC-measured ZFC curve. At temperatures lower than Tf , the real part of the susceptibility
decreases as the magnetic domain wall motion and small magnetic domain switching becomes
increasingly difficult. Examining the frequency dependence of χ′, we notice that the temperature
Tf at which the maximum occurs shifts to higher values as ω is increased (Fig. 4.3(b)), a typical
behavior of spin glasses and superparamagnets. It should be noted that the critical temperatures
in ferromagnets and antiferromagnets also display a similar frequency dependence, but with ω

on the order of MHz and GHz due to very short spin-spin relaxation times [30, 120, 125, 126].
In the present study, the excitation frequencies are experimentally limited to 10 kHz, which is
suitable for the investigation of glassy behavior that is present in longer spin-lattice relaxation
times. For glassy states, the relaxation times of the magnetic moments increase with decreasing
temperature following an Arrhenius description. Therefore, higher frequency AC drive fields will
experience the greatest χ response at higher temperatures where the relaxation times are shorter.
The shift in Tf as a function of ω can be used to distinguish ideal spin-glass, cluster-glass and
superparamagnetic states via the phenomenological parameter

δTf =
∆Tf

Tf∆(logω)
. (4.1)

From the experimental data in Fig. 4.3(b), δTf ≈ 0.10, compared to values typically associated
with cluster glasses (≈ 0.05) and superparamagnets (≈ 0.10 to 0.30) [30, 127]. The intermediate
value corroborates the presence of both phenomena, as already suggested by the DC magnetization
and microscopy studies. The combination of the fine magnetic nanoparticles (< 50 nm) and larger
interacting clusters gives rise to a “mictomagnetic”, or mixed, state.

In most of the spin-glass literature, the value of χ′′ is typically up to an order of magnitude
smaller than that of χ′, and χ′′ as a function of temperature usually contains a maximum within
a few degrees of that seen in χ′. The two characteristics are evident from the Casimir-du Pré
equations that govern the effects of spin-lattice relaxation in an oscillating magnetic field [128]:

χ′ = χS +
χT − χS
1 + ω2τ 2

; χ′′ = ωτ

(
χT − χS
1 + ω2τ 2

)
, (4.2)

where χS is the adiabatic susceptibility (the spin and lattice do not exchange energy), χT is the
isothermal susceptibility (the spin and the lattice are at the same temperature) and τ is the relaxation
time. In the limits ωτ � 1 and ωτ � 1, χ′ → χS and χ′ → χT , respectively, while χ′′ approaches
zero. Between the two extremes, i.e. ωτ ≈ 1, the two are comparable, and for ωτ = 1 exactly,
χ′ = χ′′ + χS , thus reconciling the typically larger values of χ′ than those of χ′′. From Eq. 4.2, it
is not too difficult to show that d2χ′′

dω2 ∝ dχ′

dω
, meaning that a maximum in the real part occurs when

the imaginary part is changing slope the fastest [30]. According to the functional form of χ′′, a
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maximum occurs near its own inflection point, thus yielding the neighboring maxima in χ′ and
χ′′. Yet, in Fig. 4.3(b), no maximum in χ′′ accompanies that seen in χ′, and the χ′′ values are so
diminished that they are essentially equal to the background levels of the quartz paddle used in the
PPMS measurement. Unfortunately, because χ′ itself is already quite small, the further reduced
χ′′ is not detected by the susceptometer. Thus, no analysis can be performed on the imaginary
component of the susceptibility.

As a final step in characterizing the magnetic interactions in the HH5 sample, we again per-
formed the AC susceptibility measurement at ω = 10 kHz and Hac = 5 Oe, but with background
magnetic fields, Hdc, spanning from 100 Oe to 5 kOe. The temperature- and magnetic field-
dependent χ′ is shown in Fig. 4.3(c). With increasing Hdc, the magnitude of the real part of the
susceptibility constantly declines, as expected from the softening of the DC magnetization curves
at larger fields (Fig. 4.2(c,d)). The maximum witnessed at zero applied field shifts to lower temper-
atures, and a prominent kink develops near 150 K, likely corresponding to the freezing of magnetic
nanoparticles with a concentrated spatial extent < 50 nm. At higher background magnetic fields,
the AC drive field becomes less relevant, and the freezing phenomena subside. With the analysis
of the magnetic properties in the Fe-added TZHNSS samples complete, we now turn to the mag-
netotransport and the unique interactions of the itinerant (conduction) electrons with the magnetic
TiNi4/3Fe2/3Sn phases present in the samples.

4.3.4 Kondo Effect and Weak Anti-Localization

The degenerate semiconducting nature of the TZHNSS compounds is demonstrated in the in-line
electrical resistivity, ρxx, plotted in Figure 4.4(a). Similar to the magnetization as a function of the
amount of Fe, the electrical resistivity increases to a maximum for the HH5 sample, drops at the
7.5 at% Fe level and rises thereafter. The trend matches with that of the carrier concentration (Fig.
4.4(b)) and agrees with the HT data [98]. Given that the observed magnetic nanoinclusions within
the Fe-added TZHNSS samples decrease in size and increase in number density until the 5 at%
Fe level, then begin to agglomerate at greater dopant levels, we expect an interaction between the
charge carriers and the magnetic secondary phase to be the cause of the observed variation in the
electrical properties. Specifically, a localization behavior of the charge carriers around the mag-
netic nanoinclusions would explain the diminished carrier concentration and enhanced resistivity.

For most of the temperature range, dρxx
dT

> 0, as expected from the small electronic band gaps
of HHs and associated large carrier concentrations (mid 1020 cm−3 to 1021 cm−3) [99, 118, 129].
An exception to the metallic behavior can be found in the electrical resistivity of the Fe-added
samples, a close-up of which is shown in Fig. 4.4(c). Evidently, minima in ρxx occur near 25 to
30 K and dρxx

dT
< 0 at lower temperatures, which is entirely absent in the pure TZHNSS sample.
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Figure 4.4: Electronic properties of the Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 composites. (a)
Electrical resistivity and (b) carrier concentration of the five samples over the full temperature
range. (c) Electrical resistivity normalized to the individual values at 50 K, showing minima near
25 to 30 K in the Fe-added samples. In (a) and (c), the open symbols are the experimental data,
and the solid lines are the fits extracted from Eq. 4.3.
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The source of the behavior could be the freezing out of carriers that were thermally excited to
an Fe-induced impurity band separated from the Fermi level by a few meV. However, the carrier
concentration is essentially constant as a function of temperature below 100 K. Furthermore, the
associated scattering of charge carriers by ionized impurities would yield a ρxx ∝ T−3/2 functional
dependence that does not agree well with the data.

An alternative, more intuitive explanation for the resistivity minimum is the Kondo effect
[130, 131]. Dilute magnetic phases within metals and semiconductors can act as localized spin-
s that interact with itinerant electrons through exchange coupling, based on the Pauli exclusion
principle. As the temperature is lowered and other electron scattering mechanisms become less
important, the interaction between free carriers and the magnetic ions intensifies, contributing pos-
itively to the resistance below the Kondo temperature, TK . Because magnetic iron was added
into the phase-separated HH samples of this study, it is natural to expect that some form of the
Kondo effect may occur, either through widely dispersed single Fe atoms or magnetic secondary
phases spatially separated on the microscale. Our X-ray diffraction and transmission electron mi-
croscopy studies found no evidence for the presence of individual iron atoms randomly located
throughout the compounds and indeed demonstrated the existence of an Fe-rich secondary FH
phase (TiNi4/3Fe2/3Sn) in the materials [98]. Typically, the Kondo effect resulting from the pres-
ence of bare magnetic elements, such as Fe, Co, Cr, Mn, etc., widely dispersed in metallic and
semiconducting matrices can result in something like a 10% upturn in ρxx below TK . Here, the
effect is < 1%, which suggests that the magnetic source is not elemental Fe, but rather the FH
phase in the Fe-added TZHNSS composites.

To substantiate the charge carrier scattering by the dispersed magnetic phases, we fit the resis-
tivity data to the following functional form:

ρxx = ρxx,0 + aT b − c ln(T ), (4.3)

where ρxx,0 is the residual resistivity and a, b and c are free parameters [130, 131]. The second
term in Eq. 4.3 covers generic scattering in disordered solids, while the last term represents the
magnetic screening. Procedurally, the parameters of the model (Eq. 4.3) were allowed to take on
distinct values at temperatures above and below 100 K, far from the Kondo temperature, except for
the constraint c = 0 above 100 K and for the Fe-free TZHNSS sample. The results of the fitting are
plotted as solid lines in Fig. 4.4(a,c), with the corresponding parameters listed in Table 4.1. At the
lowest temperatures, the coupling between the Kondo centers and the itinerant electrons becomes
stronger than the electron-electron interaction (b ≈ 2) to yield the minimum in the electrical resis-
tivity closely matching the data. Evaluating the ratio of the Kondo and disorder terms at T = 25

K (Table 4.1), c ln(25)
a∗25b is much larger (≈ 55 to 70%) for the HH5 sample than for the rest of the

Fe-added samples. With an increased number of the magnetic nanoinclusions and a comparatively
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Table 4.1: Fitting parameters extracted from the comparison of the electrical resistivity data for
Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 (Fig. 4.4(a)) to Eq. 4.3. The units of ρxx,0 are µΩ-m; a(T <
100 K) is given in 10−12Ω-m-K−b; b is unitless; c and a(T > 100 K) are given in nΩ-m and nΩ-m-
K−b, respectively. The last column represents the ratio of the Kondo and disorder terms in Eq. 4.3
at T = 25 K.

Sample ρxx,0(T < 100 K) a(T < 100 K) b(T < 100 K) c
HH0 1.33 13.01 2.03 -
HH2 2.41 4.46 2.25 10.6
HH5 3.50 4.45 2.30 19.3

HH7.5 2.54 10.12 2.06 11.9
HH10 2.63 24.49 1.91 17.7

ρxx,0(T > 100 K) a(T > 100 K) b(T > 100 K) c ln(25)
a∗25b ∗ 10−3

HH0 1.25 1.03 1.16 -
HH2 2.22 1.49 1.13 5.5
HH5 3.30 1.10 1.20 8.5

HH7.5 2.43 0.63 1.23 5.0
HH10 2.50 0.84 1.20 5.0

lower carrier concentration, the HH5 sample evidently plays host to stronger Kondo screening.
In Kondo’s theory, the magnetic ions are treated as non-interacting and dilute, i.e. paramag-

netic. Therefore, it may seem that the Kondo effect cannot take place in the Fe-added TZHNSS
samples, which we have shown to contain ferromagnetic ordering. However, the presence of free
spins that contribute a paramagnetic behavior within an overall ferromagnetic material can still
give rise to the Kondo effect, as has been observed in ferromagnetic GaMnAs films [132] and (Fe,
Co)-Pd-Si alloys [133]. In each case, a distribution of the magnetic moments allows for essen-
tially free spins to develop the Kondo effect while the non-zero moments maintain a spontaneous
magnetization. As we noted previously, the dispersed TiNi4/3Fe2/3Sn clusters vary in size and
composition throughout the Fe-added TZHNSS samples, yielding a range of effective moments.
We have discerned that the magnetic nanoinclusions lead to superparamagnetism and free spins,
whereas the larger micron-sized precipitates give rise to weak ferromagnetism (coercive fields ≈
100 Oe). The mictomagnetic nature of the Fe-added samples therefore allows for the simultaneous
presence of the Kondo effect and ferromagnetism.

The Fe-free TZHNSS sample does not feature an electrical resistivity minimum like the Fe-
added samples, but does exhibit a decreasing ρxx below a temperature of ≈ 4 K. A plot of the
electrical resistivity normalized by ρxx(T = 2 K) for the pure sample is displayed in Figure 4.5(a).
Two potential causes of the resistance drop-off are the following: (1) the presence of elemental
Sn (TC ≈ 3.7 K) and its binaries that would render part of the sample superconducting below
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TC ; and (2) the weak anti-localization (WAL) effect. A quantum intereference phenomenon that
occurs at low temperatures in disordered solids, the WAL effect is the result of the phase coherence
length of a charge carrier exceeding the mean free path between its elastic collisions [134]. In such
a quantum diffusive transport regime, the time-forward and time-backward scattering amplitudes
can interfere destructively to yield a lower resistive state, i.e. anti-localization. The application
of a magnetic field breaks time reversal symmetry, which destroys the quantum interference of
the time-reversed diffusive pathways of the charge carriers and lifts the WAL effect. In Type 1
superconductivity, the Cooper pairs are broken above a critical magnetic field, and the normal state
is restored. Thus, when the TZHNSS sample is cooled in the presence of a large magnetic field
of 8 T, the lower resistance state at temperatures below 4 K no longer exists (open squares in Fig.
4.5(a)).

To discover whether (1) or (2) is the proper explanation of the resistance drop-off in the pure
TZHNSS sample, we assessed the magnetoresistance, MR, plots of which are given in Figs.
4.5(b,c). The first item to note is that returning to the normal resistive state at 2 and 3 K re-
quires magnetic fields of ≈ 10 kOe. The potential presence of superconducting Sn and its binaries
would give way to the non-superconducting state at fields no greater than ≈ 500 Oe [135]. As a
result, the enhanced conductivity at temperatures lower than 4 K in the TZHNSS sample is not due
to superconducting secondary phases. To substantiate the presence of the WAL effect, we assessed
the electrical conductivity data as a function of temperature and applied magnetic field within the
well accepted WAL model. The temperature-dependent in-line electrical conductivity, σxx(T ), in
a weakly delocalized state in three dimensions can be expressed as

σxx(T ) = σxx(T = T ′)− 2e2

π2ha
(T

p
2 − T ′

p
2 ), (4.4)

where T ′ is a reference temperature typically taken as the lowest temperature of the study, and h
is the Planck constant [134]. The characteristic length scale of the delocalization is set by a such
that an electron travels on average a distance of Ldel = aT−p/2 between inelastic collisions, which
are disruptive of the phase. p is a scattering parameter that describes the source of the inelastic
potential as Coulombic (electron-electron) in impure materials (p = 3

2
), Coulombic in the pure

regime (p = 2), or due to electron-phonon interactions (p = 3). Fitting the data for the pure sample
to Eq. 4.4 over the temperature range of ≈ 1.8 to 4 K, the closest matching scattering parameter is
p = 3

2
, reflecting the expected impurity-laden nature of the disordered semiconducting compound.

The best-fit value a = 9.0 ± 1.9 Å is the average length over which an electron in pure TZHNSS
maintains its quantum phase at 1 K. The red line in Fig. 4.5(a) represents the least-squares match
between the experimental data and Eq. 4.4.

Given the success of the temperature-dependent fitting to the WAL model and the previous
observation of weak anti-localization in other HH compounds [118], the WAL effect is a reasonable
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explanation for the large ∆ρxx at the lowest temperatures in our study. In fact, the presence of the
WAL effect should not be surprising given the poor charge carrier mobility (< 50 cm2V−1s−1) that
makes for a small electronic mean free path and greater likelihood that the phase coherence length
will surpass it. Another important ingredient for the WAL effect is strong spin-orbit scattering,
which is certainly anticipated with the heavy elements in TZHNSS.

Figure 4.5: Weak anti-localization and magnetoresistance, MR, of the half-Heusler compos-
ites. (a) Electrical resistivity of the pure x = 0 sample normalized to the 2 K value with (open
squares) and without (solid squares) applied magnetic field. The superconducting critical temper-
ature of elemental tin is shown for reference. The red solid line is the p = 3

2
WAL fitting described

by Eq. 4.4. (b) MR of the pure x = 0 sample against applied magnetic field at a variety of
temperatures. Note the logarithmic scaling of the x-axis. (c) Close-up of the MR with smaller
fields than in (b) and a linear x-axis. The open circles are best-fit quadratic terms reflecting the
classical magnetoresistance outside the anti-localized state. (d) MR of the x = 0.05 sample with
logarithmic scaling of the x-axis.

Also noteworthy in Fig. 4.5(b) is the polytonic nature of the magnetoresistance in the Fe-free
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TZHNSS sample at 2 and 3 K in the delocalized state. We find that at 2 K, the MR rises linearly
for fields up to ≈ 2.5 kOe, then increases quadratically before returning to the normal resistive
state with H ≈ 10 kOe, which is characteristic of the WAL effect. The seemingly saturated MR

is further enhanced at larger fields with quadratic growth up the highest field of the study, H =

140 kOe, likely due to classical magnetoresistance from the Lorentz force. Similar results hold
at 3 K, except that the breaking of the anti-localization occurs near 7.5 kOe. From Fig. 4.5(c), a
remnant of the WAL state at 4 K is evident in the short rise of theMR at the lowest fields, while the
higher temperature curves follow the classical H2 dependence (open circles). The absolute values
of theMR decrease as a function of temperature owing to the reduced charge carrier mobility from
electron-phonon scattering at higher temperatures.

Because magnetic fields are not equivalent in the time-forward and time-backward directions,
the magnetism inherent to the Fe-added TZHNSS samples should serve to suppress the WAL effect
observed in the pure sample. Indeed, the MR witnessed in Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025

at 2 and 3 K is significantly reduced for x > 0, as exemplified by the data for HH5 shown in Fig.
4.5(d). At 2 K, the magnetoresistance rises linearly until ≈ 2.5 kOe and changes to a quadratic
trend before reaching the normal resistive state near 5 kOe, about half that needed for the pure
sample. Higher fields display dMR

dH
< 0, likely as a result of preferential spin scattering pro-

viding a somewhat easier pathway for electron transport. Such a behavior is a manifestation of
the interaction between the localized moments in ferromagnets and the itinerant charge carriers
[136, 137, 138]. Once the magnetization is saturated, no additional gains in preferential spin scat-
tering occur, and the classical positive magnetoresistance begins to dominate above approximately
80 kOe at 2 K. At higher temperatures, the smoother path provided by aligned spins becomes
less effective as other scattering mechanisms, such as electron-phonon interactions, strengthen,
yielding the standard MR ∝ H2. The different Fe-added samples follow the exact same trends
in the MR as that displayed by the HH5 sample (Fig. 4.5(d)) with only slight variations in the
magnitudes.

4.4 Conclusions

Taking the series of half-Heusler (HH) composites, Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025, from our
previous work on magnetically doped high-temperature (HT) TEs, we have explored their low-
temperature (LT) DC magnetization, AC susceptibility and magnetotransport properties. The fer-
romagnetic signal observed at high temperatures expresses itself as a combination of superparam-
agnetism and cluster-glass behavior, known as mictomagnetism. The hysteresis in the DC mag-
netization from 2 to 300 K, the separation of the zero-field-cooled (ZFC) and field-cooled (FC)
magnetic moments and the frequency- and field-dependent maxima in the AC susceptibility all
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point to spin freezing phenomena in the magnetically doped samples. We illustrate the magnetic
phenomena in greatest detail using the HH5 sample, given its larger magnetic moments result-
ing from the high concentration of magnetic TiNi4/3Fe2/3Sn nanoparticles within the structure.
Regarding the magnetotransport, we witnessed a rise in the metallic electrical resistivities of the
Fe-added samples at approximately 25 K, which we believe is a manifestation of the Kondo ef-
fect. At the lowest temperatures (< 4 K), we found evidence of weak anti-localization in the pure
TZHNSS sample that is quite subdued in the magnetic samples. The analysis herein is a prime
example of the techniques and models needed for understanding diverse magnetic phenomena in-
herent to many of the latest TE materials where magnetic elements and secondary phases are being
utilized.
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CHAPTER 5

Magnetic Field-Dependent Heat Capacity in a
Half-Heusler Composite

5.1 Motivation: Field-Dependent Heat Capacity as Essential
Insight to Magnetic Refrigeration

The effect of an applied magnetic field, H , on ground-state thermodynamic properties, including
the magnetic susceptibility, χ, magnetization, M , and heat capacity, C, has been critical in under-
standing the condensed matter physics that enables a wide range of technologies. Prime examples
are the magnetocaloric effect for magnetic refrigeration [139, 140, 141], single molecule mag-
netism for information storage [142, 143], and the spin Seebeck effect for spintronics [144, 145].
Concerning magnetocalorics specifically, the magnetic contribution to the heat capacity at tem-
perature T , Cm(H,T ), is particularly important in calculating the corresponding device figure of
merit. Cm(H,T ) is also intrinsically tied to the most fundamental models of magnetism in con-
densed matter physics, including the classic Heisenberg model [146, 147] and the more recent
Fermi liquid theory [148]. While studies of Cm(H,T ) as a function of temperature are numer-
ous, they often struggle to disambiguate the types of magnetism present in material systems and
miss out on the unique response of Cm(H,T ) to an applied magnetic field [149]. The rare heat
capacity studies that successfully incorporate magnetic fields can be insightful [150, 151, 152],
but frequently the underlying physical mechanism is unclear, and the effect is considered to be
anomalous [153, 154, 155, 156, 157, 158].

To thoroughly explore the dependence of the heat capacity on magnetic field in a range of
material systems, we selected a paramagnetic half-Heusler (HH) composite and its mictomag-
netic counterparts (ferromagnetic TC ≈ 650 K) that we recently engineered for TE applications
[98, 159]. As a diamagnetic comparison, we also examine the magnetothermodynamics of pure,
elemental gold. At low temperatures (LTs) (T = 2 to 10 K), the experimentally measured Cp

(heat capacity at constant pressure) in the purely paramagnetic compound features a maximum as
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a function magnetic field. The mictomagnetic samples additionally display a high-field quench-
ing of the heat capacity. We are able to satisfactorily explain most of the Cp(H) behavior based
on paramagnon contributions. However, the paramagnon model cannot account for the low-field
heat capacity of the mictomagnetic samples at temperatures lower than 4 K. We therefore derive
the magnon contribution with quartic dispersion in field to model the ferromagnetic component of
Cp within the mictomagnetic samples. Despite containing only one additional free parameter, the
combined paramagnon and magnon model overfits the experimental data. Separate measurements
of Cp down to 0.36 K support the paramagnon analysis, yet still demonstrate the presence of a
separate low-temperature magnetic field-dependent heat capacity contribution. We qualitatively
connect the distinct behavior to a magnetotransport effect witnessed in our previous work [159],
namely the possibility of Sn-based superconducting binaries. The Cp(H) trend in the mictomag-
netic samples highlights the power of assessing the heat capacity as a function of field at a given
temperature compared to the lower sensitivity Cp(T ) studies at a given field.

5.2 Experimental Methods

Three polycrystalline HH composites of chemical formula Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025

(TZHNSS), where x = 0, 0.05, and 0.10, were synthesized following the procedure in Ref. [98].
The exact compounds stem from our previous work optimizing the materials for thermoelectric
applications. The Ti, Zr, and Hf alloying are useful in lowering the thermal conductivity, while
the Sb tailors the charge carrier concentration of the compounds. Several 10-20 mg pieces were
taken from each fully dense polished ingot in order to conduct the heat capacity measurements.
Throughout the text and figures, we commonly refer to the HH samples individually as “HH#”,
where # is the atomic percentage of Fe included in the compound. Specifically, “HH0”, “HH5”,
and “HH10” refer respectively to the 0, 5, and 10 at% Fe-added TZHNSS samples. Pure gold (Au)
wire of 99.9% purity was purchased from NETZSCH for a diamagnetic comparison.

A Quantum Design Physical Property Measurement System (PPMS) Dynacool model equipped
with a 14 Tesla magnet was used for all heat capacity measurements from 0.36 to 400 K. Initial
temperature-dependent measurements in zero magnetic field were performed for all samples of the
study upon cooling to 2 K. For the 2 to 10 K temperature scans in magnetic field, the chamber was
initially set to 2 K to allow the sample holder to stabilize temperature for two hours. Then, the
magnetic field was ramped to a desired value before bringing the temperature to 10 K and waiting
a few minutes for temperature stability. The heat capacity was then measured in 1 K increments
during cooling, with the temperature stabilized before each measurement. The process was repeat-
ed for magnetic fields of 0 to 14 T in fine increments. At each temperature and field, the sample
heater was turned on to collect the time-dependent temperature response data, T (t). The two-tau

72



modeling of T (t) returned Cp values with less than 5% error. For the heat capacity measurement, a
small dab of N-grease was first placed on the sample stage for an addendum measurement without
the sample. Once the addendum measurement was complete, an approximately 10-20 mg thin,
polished piece of the individual samples was placed on the greased stage for the sample measure-
ment. The difference in the Cp between the sample measurement and the addendum yields the
Cp of the sample. The same procedure was utilized for the measurement of Cp(H,T ) for HH10
down to 0.4 K, with 0.2 K increments used for the in-field scans. The He-3 option of the PPMS,
which uses a specially designed sample holder to minimize background noise, addenda values and
addenda field dependence, was needed to achieve such low temperatures.

5.3 Results

5.3.1 Microstructural Properties

A detailed microstructural analysis of the TZHNSS samples can be found in Ref. [98]. We sum-
marize the important aspects here. The TZHNSS samples are composite materials with regions
of Ti-rich HH and (Zr, Hf)-rich HH, as indicated by the powder X-ray diffraction (PXRD) and
scanning electron microscopy (SEM). No impurity peaks were detected within the resolution of
the PXRD patterns. The chemical compositions and spatial extent of the individual phases are
given in Ref. [98]. Transmission electron microscopy (TEM) unveiled Fe-rich FH nanoparticles
scattered among the two distinct HH phases. The magnetic FH nanoparticles are of approximate
composition TiNi4/3Fe2/3Sn, as per electron probe microanalysis. In HH5, the nanoparticles are
mainly isolated and / 10 nm in spatial extent. Larger conglomerations of the Fe-rich phase (up to
several hundreds of microns in diameter) are present in HH10.

5.3.2 Heat Capacity as a Function of Magnetic Field

The magnetic field dependence of the heat capacity for the four samples of the study are displayed
in Figure 5.1, at temperatures of 2 to 5 K, where the largest magnitude effects occur. Unlike
diamagnetic Au, which features essentially constant Cp(H), the HH samples exhibit starkly non-
monotonic trends of the heat capacity as a function of magnetic field. Specifically, HH0 and HH5
show pronounced peaks in the heat capacities at several T, then significant declines in Cp at higher
magnetic fields. The maxima contract in magnitude as the temperature is raised, while also shifting
to larger magnetic field strength. For HH10, the trends are much different. At 2 K, Cp(H) is fairly
flat until approximately 2 T, after which it drops precipitously by 50% at 14 T, an equivalentCp(H)

quenching as the HH5 sample at 2 K. Similar behavior is seen for HH10 at 3 K, but with a smaller
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Figure 5.1: Magnetic field-dependent heat capacity of the Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025

samples and Au. In (a)-(d), the best-fit curves (solid lines) are least-squares solutions of the
experimental data (scattered points) to the paramagnon (PM) model at 2 to 5 K, respectively.

quenching of 35%. At 4 and 5 K, the Cp(H) trends for HH10 mimic those of the other two HH
samples, displaying a broad maximum at several T with an eventual decline. We stress here that the
temperature-dependent Cp at set fields (Figures 5.5 and 5.7) show no signs of the unique behavior
in HH10, highlighting the sensitivity of the Cp(H) study.

To explain the field dependence of Cp of the three HH samples, we sought out intuitive models
that could fit the experimental data with reasonable confidence intervals. Details for each model
can be found in Sections 5.4.1 - 5.4.3, while the fitting procedure and error analysis are elaborated
in Section 5.4.4. No modeling was performed for Au since its maximum change in Cp(H) of
a mere 1.5% at 2 K is within the addendum Cp(H) limits (Figures 5.2(f) and 5.9(a)). Because
diamagnetic Au displayed no signifcant Cp(H) effect, and paramagnetic phases are a common
feature of the HH samples, the role of paramagnetism in the magnetic field-dependent heat capacity
was a natural first step in our inquiry. Indeed, for HH0 (Figure 5.2(a)-(e)), the best-fit minimal
model over the whole temperature range is one of multi-level paramagnons (the PM model, for
short), which I derived in Section 1.4.3 as Eq. 1.31, reproduced here in the following form:
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Cp,para = −nIkBy2
[
(2J + 1)2csch2(2J + 1)y − csch2y

]
. (5.1)

In Eq. 5.1, nI is the concentration of paramagnetic ions, each of total angular momentum, J , and
y = µBH/kBT [28]. For the HH composites, we allow for the possibility of small internal fields,
Hint,para, within the sample due to the presence of Ni in the compound and the large amount of
disorder that can create weak coupling of neighboring spins [152, 160, 161]. Therefore, H =

Hint,para + Hext, with Hext the magnetic field applied by the PPMS during the experiment. The
fitted curves displayed in Fig. 5.1 capture the structure of Cp(H) with intuitively small internal
fields, Hint,para ≈ 1 T, and total angular momentum, J = 1/2. Our statistical analyses in Figure 5.2
demonstrate reasonable overall confidence intervals for the fit of the PM model to the data. The
two-level paramagnetic contribution to the heat capacity agrees well with the strong paramagnetic
signal in the magnetization of HH0 at low temperatures [98, 159]. Further, the J = 1/2 is a logical
choice for HH0 that corresponds to an electron in an unfilled shell of a bonded atom with quenched
orbital momentum [162]. The best-fit parameters of the PM model applied to the specific heat of
HH0 are listed in Section 5.4.1, Table 5.1. We believe the source of the behavior in HH0 to be
either ionized impurities or defects. Further discussion can be found in Section 5.4.1.

The PM model can capture the Cp(H) behavior fairly well in HH5 at temperatures above 2
K and in HH10 for temperatures above 3 K. However, attempts to fit the Cp(H) data with the
PM model at 2 K for the HH5 sample and at 2 and 3 K for HH10 were not as successful as
the fitting for HH0. The large confidence intervals of the corresponding fits in Figures 5.3(a)
and 5.4(a)-(b) demonstrate the presence of a separate contribution to the Cp(H). Considering
that the two samples contain ferromagnetic regions in addition to their paramagnetic phases, we
believed that magnons could play a role in Cp(H). We therefore derived the magnon contribution
to the heat capacity, Cp,ferro, as detailed in Section 5.4.2. The lengthy final expression in Eq.
5.15 is dependent on two free parameters: the spin stiffness, D, and the volume fraction of the
magnon phase, vM . Combining Cp,ferro with Cp,para (Eq. 5.1), we have the PM+M (paramagnons
and magnons) model. After adjusting the units to match the experimental data, we were able to
model the distinct behavior of Cp(H) for the HH5 and HH10 samples at 2 and 3 K. The fitted
curves in Figures 5.3(f) and 5.4(f) match the experimental data for HH5 and HH10 quite well,
respectively. However, our statistical analysis demonstrates that the PM+M model overfits the data,
as reflected in the 95% confidence intervals of the magnon fit parameters that span both positive
and negative values surrounding the mean value. We can estimate vM based on our previous
microscopy work (Ref. [98]), thereby removing one of the free parameters in the PM+M model.
Yet, the uncertainities in D still remain several orders of magnitude larger than the mean value.
Overall confidence intervals for the fits of the PM+M model to the Cp(H) of HH5 and HH10 were
not calculable. Therefore, we cannot rigorously use the PM+M model to explain the additional
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Figure 5.2: Paramagnon analysis of the specific heat data of HH0, and the normalized values
for Au. (a)-(d) Experimental data (black squares) for HH0 ranging temperatures from 2 to 5 K,
respectively. The 95% confidence intervals (red shading) and 1σ deviations (blue shading) for the
fits to the PM (paramagnons) model (solid black line) are also included. (e) and (f) are normalized
heat capacities as a function of magnetic field at several temperatures for HH0 and Au, respectively.
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Figure 5.3: Paramagnon and magnon analysis of the specific heat data of HH5. (a)-(d) Exper-
imental data (black squares) for HH5 ranging temperatures from 2 to 5 K, respectively. The 95%
confidence intervals (red shading) and 1σ deviations (blue shading) for the fits to the PM (para-
magnons) model (solid black line) are also included. (e) Normalized heat capacity as a function
of magnetic field at several temperatures for HH5. (f) Best fits of the PM+M (paramagnons and
magnons) model to the Cp(H) of HH5 ranging temperatures from 2 to 5 K. Confidence intervals
for the fits in (f) were not calculable.
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Figure 5.4: Paramagnon and magnon analysis of the specific heat data of HH10. (a)-(d) Exper-
imental data (black squares) for HH10 ranging temperatures from 2 to 5 K, respectively. The 95%
confidence intervals (red shading) and 1σ deviations (blue shading) for the fits to the PM (para-
magnons) model (solid black line) are also included. (e) Normalized heat capacity as a function
of magnetic field at several temperatures for HH10. (f) Best fits of the PM+M (paramagnons and
magnons) model to the Cp(H) of HH10 ranging temperatures from 2 to 5 K. Confidence intervals
for the fits in (f) were not calculable.
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Cp(H) behavior of HH5 and HH10 at 2 and 3 K. Attempts to fit the data to a spin cluster model, as
a way of accounting for both the intercluster and intracluster interactions of the magnetic secondary
phases in HH5 and HH10, were equally unsuccessful. Additional information on the spin cluster
model can be found in Section 5.4.3. To entirely eliminate D as a free parameter in the PM+M
model, future work could utilize either first-principles calculations or inelastic neutron scattering
experiments to assess the spin stiffness of the TiNi4/3Fe2/3Sn phase. That way, the impact of
Cp,ferro(H) could be readily determined without any fitting.

To further explore the unique trends of Cp(H) in the Fe-added samples at the lowest tempera-
tures, we measured the heat capacity of HH10 down to 0.36 K using the He-3 option of the PPMS.
The results are shown in Figure 5.5. Although no evident peak as a function of temperature occurs
in CpT−1 (Fig. 5.5(a)) at zero field, the application of a 1 T magnetic field does create a maximum
around 0.6 K. The peak shifts to higher temperatures and broadens as larger magnetic fields are
applied. Maxima in CpT−1 versus T 2 at such low temperatures are often labeled as “Schottky
peaks” and described by a generic energy level splitting that can result from nuclear or electronic
magnetic moments. The impact of the spin-1/2 Schottky phenomenon on the heat capacity can be
found in Refs. [24, 28, 37] and is given by

Cp,Sch = nSchkB

(
2yey

e2y + 1

)2

= nSchkBy
2

(
2

ey + e−y

)2

= nSchkBy
2sech2y. (5.2)

Eq. 5.2 is exactly Eq. 5.1 for J = 1/2, seen by using a number of hyperbolic trigonometric function
identities (sinh 2y = 2 sinh y cosh y and cosh2 y − sinh2 y = 1) as follows

Cp,para(J = 1/2) = −nIkBy2
(

4

sinh2 2y
− 1

sinh2 y

)
= −nIkBy2

(
1− cosh2 y

sinh2 y cosh2 y

)
= nIkBy

2sech2y.

(5.3)

More generically, it is not too difficult to show that the multi-level paramagnon expression (Eq.
5.1) is equivalent to a multi-level Schottky phenomenon with the number of non-degenerate levels
set by the angular momentum, N = 2J + 1, an expression for which can be found in Ref. [163].
The presence of the so-called “Schottky peak” in the temperature-dependent CpT−1 at the lowest
temperatures, and its equivalence with the paramagnon perspective, is assuring that our analysis of
the Cp(H) in terms of the PM model is a correct approach, even for HH5 and HH10 below 4 K.

We plot the normalized best fits to the Cp(H) of HH10 at temperatures below 2 K in Fig.
5.5(b). The corresponding confidence intervals are shown in Figure 5.6, while the best-fit param-
eters are listed in Table 5.1 of Section 5.4.1. The reemergence of a sharp maximum in the heat
capacity as a function of magnetic field at the lowest temperatures (Fig. 5.5(b)) is further sup-
port that the PM model is appropriate for analyzing Cp(H) since the peak amplitude grows with
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Figure 5.5: Specific heat data of HH10 at temperatures below ≈ 2.4 K. (a) Cp(H)T−1 against
T 2 for HH10 at a number of magnetic fields. (b) Normalized heat capacity as a function of magnet-
ic field at several temperatures for HH10 with the best fits of the PM model. Confidence intervals
for the fits in (b) are displayed in Figs. 5.4 and 5.6.

decreasing temperature. However, the poor fits and large confidence intervals (Fig. 5.6) confirm
that a separate effect is impacting the Cp(H), as we already expected from the 2 and 3 K data.
The unique phenomenon of Cp(H) in HH10 at low fields and temperatures is not noticed in the
temperature dependence of Cp at set fields (Figs. 5.5 and 5.7), highlighting the importance of the
field-dependent measurement.

In our previous work (Chapter 4, Ref. [159]), we identified a magnetotransport effect in the
samples at the lowest temperatures (< 4 K) that we attributed to weak anti-localization (WAL). The
lowered electrical resistivity required fields of≈ 1 T at 2 K to return to the normal electronic state,
which we argued ruled out the presence of superconducting Sn-based binary compounds. Looking
at the drop in Cp(H) at 2 K, we see that it coincidentally stops at around 1 T, after which the
expected rise and fall of the PM model kicks in. Furthermore, the inexplicable Cp(H) trend at low
fields in HH5 and HH10 occurs only below 4 K, exactly as the magnetotransport effect. The WAL
state heat capacity manifests iteself as either a field-dependent electronic contribution, γ(H)T , or a
Schottky-like form [134, 164, 165]. In Section 5.4, Figure 5.8(a), we demonstrate that γ is mainly
independent of magnetic field for all of the samples. Further, the presence of another Schottky-like
term, in addition to the paramagnon contribution, would magnify the Cp(H) enhancement with
field upon decreasing the temperature from 2 K, contrary to the decline in Cp(H) at low fields and
temperatures (Fig. 5.5(b)).

Elemental superconductors can exhibit enhanced critical fields when their spatial extent is re-
duced to the nanoscale. For example, indium nanoparticles of diameter < 50 nm exhibit critical
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Figure 5.6: Paramagnon analysis of the specific heat data of HH10 at temperatures from 0.4
K to 1.6 K. (a)-(d) Experimental data (black squares) for HH10 ranging temperatures from 0.4 K to
1.6 K, respectively. The 95% confidence intervals (red shading) and 1σ deviations (blue shading)
for the fits to the PM (paramagnons) model (solid black line) are also included.

fields up to ≈ 10 T [166], and similarly sized tin nanowires require fields of ≈ 2 T to return to
the normal resistive state at 2 K [167]. In general, cooling through the superconducting transition
results in an increased state of heat capacity. Applying magnetic fields in the superconducting state
constantly diminishes Cp(H) until reaching the normal state [168, 169]. Such a decline could ac-
count for the low-field behavior of the heat capacity of HH5 and HH10 at temperatures lower than
4 K. Although we did not detect any Sn-based binaries in the microscopy of the samples [98], it
is possible that such nanoscale phases could go unnoticed if in small concentrations. Because the
introduction of Fe adds further chemical disorder to the compound and increases the phase sepa-
ration, certain Sn-based binaries could become more energetically favorable as the alloy demixes.
We believe the greater likelihood of Sn-based superconducting binaries in HH5 and HH10 could
therefore at least qualitatively explain the unique Cp(H) behavior seen below 4 K.
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5.4 Modeling of Cp(H,T )

To understand the behavior of the heat capacity data as a function of magnetic field, we explored a
number of physical models. Our goal was to find the most intuitive description with the least free
parameters that fit the experimental data with narrow confidence intervals.

The three models described below are labeled as: PM (paramagnons), PM+M (paramagnons
and magnons), and PM+C (paramagnons and spin clusters). In the analysis of the experimental
data, we assume that the electronic coefficient, γ, and the phononic coefficient, β, in the fitting
are independent of magnetic field and temperature. In other words, at each temperature of the
analysis, we take Cp(H,T0) = A(T0) + f(H,T0), where A(T0) is a constant equal to the sum
of the electronic and phononic contributions, A(T0) = γT0 + βT 3

0 , and f(H,T0) is the magnetic
contribution based on the individual models. Without making any assumption about the model
f(H,T ), we can assess the Cp(H,T )T−1 vs T 2 for the different magnetic fields, shown in Figure
5.7(b), (d), (f), and (h). The slope of the data at temperatures≈ 7 to 10 K, where the non-linearities
are essentially absent, reflects the coefficient β. Visually, it seems that β is influenced slightly by
the field but not overwhelmingly so, nor consistently from sample to sample. Because phonons
are not charged, their interaction with magnetic fields is typically considered to be neglible un-
less mediated by strong phonon-electron coupling or phonon-induced diamagnetism [170, 171].
Other sources of heat capacity can exhibit a T 3 dependence that is field dependent, such as spin
fluctuations in nearly ferromagnetic alloys [172]. However, we will soon show that β is mainly
independent of field (Figure 5.8(b)) so we have no reason to consider such phenomena.

Regarding the electronic contribution for the HH5 and HH10 samples, we do notice a chang-
ing y-intercept of the Cp(H,T )T−1 vs T 2 plots for the different magnetic fields, again without
assuming any form for f(H,T ). A field-dependent γ is not unprecedented, having been reported
in weakly ferromagnetic compounds [170, 173] and superconductors [152]. Based on an elec-
tron+phonon model applied to the Cp(H = 0, T : [2, 10] K) data (Fig. 5.7(a), (c), (e), and (g)),
the electronic contribution to Cp becomes greater in magnitude than the phonon contribution at
temperatures less than ≈ 3 K (6 K) in the HH5 (HH10) samples, whereas Cp,elec < Cp,latt for HH0
down to 2 K. The greater weight of Cp,elec at lower temperatures for the Fe-added samples is in
agreement with the apparent magnetic field sensitivity of the y-intercept of Cp(H,T )T−1 vs T 2

for those samples (Figs. 5.7(d) and (f)). In other words, as the electronic contribution becomes a
significant portion of Cp at the lowest temperatures, the potential magnetic field dependence of γ
is more visible. However, the merely visual analysis and simplistic electron+phonon model can be
heavily influenced by the effect that causes the upturn in Cp at the lowest temperatures. Basically,
the apparent dependence of γ and β on the magnetic field may be an artifact of the dependence of
f(H,T ) on magnetic field.
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Figure 5.7: Zero-field electron and phonon contributions to the heat capacity of the half-
Heusler composites and Au, and temperature-dependent specific heat at a variety of magnetic
fields. At zero magnetic field ((a), (c), (e), and (g)), the data is fit with a model that simply accounts
for electron and phonon contributions, which are shown individually. (b), (d), (f), and (h) illustrate
the field-dependent CpT−1 at temperatures lower than 10 K.

83



Figure 5.8: Magnetic field-dependent electron and phonon coefficients of the
Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 samples and Au. (a) The electronic coefficient, γ, and (b)
the phononic coefficient, β. The coefficients are extracted from an electron+phonon+paramagnon
model fit to the temperature-dependent Cp data at each field.

Once we identified the PM model as the most appropriate f(H,T ) for the fitting of Cp(H) for
all of the samples (Section 5.3.2), we fit Cp as a function of temperature from 2 to 10 K for each
magnetic field used during the study. The resultant γ(H) and β(H) shown in Fig. 5.8 demonstrate
the overall lack of field dependence of the electronic and phononic terms, especially at low fields,
which substantiates our approach to the modeling of Cp(H). Up to about 4 T, the γ and β are
mostly constant, with the exception of a slightly increasing (≈ 10%) β for HH10, although still
within the estimated error. At higher fields, the estimated coefficients become somewhat noisier
as the least-squares solver struggles with the decreasing presence of the paramagnon term in the
model.

5.4.1 Model PM: Paramagnons

The HH samples consists of regions of paramagnetism and diamagnetism, with HH5 and HH10
possessing additional ferromagnetic regions [98, 159]. The magnetic susceptibility at temperatures
lower than 10 K shows a dominant signal from paramagnetism. Cp,para is derived in Section 1.4.3
as Eq. 1.31 and reproduced in Section 5.3.2 as Eq. 5.1. From a particulate perspective, the heat
capacity contribution is due to “paramagnons”, so we label the model as PM. The PM model
contains the following four free parameters: A(T0), nI , J and Hint,para. To reduce the number of
parameters to three, we set J = 1/2 for an electron with quenched orbital angular momentum in a
bonding environment [162]. Although the corresponding confidence intervals are larger than those
of the J-free model, the estimated parameters are more consistent as a function of temperature.
For example, the J-free model solution for HH0 yields values of J that are O(10−3) to O(100) at
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Table 5.1: Fitting parameters extracted from the comparison of the heat capacity data for the half-
Heusler samples and Au (Figs. 5.1 and 5.6) to Eq. 5.1.

Sample T0 (K) A(T0) (µJ g−1 K−1) nI (1016 g−1) Hint,para (T) ∆ J
HH0 2 13.1 84.9±19.0 0.99±0.23 0.13

3 26.1 86.3±17.6 1.29±0.10 0.13
4 47.1 76.1±23.9 1.34±0.19 0.14
5 78.8 92.6±29.5 1.55±0.69 0.22

HH5 2 19.8 398±58.9 1.60±0.08 0.37
3 33.7 403±69.6 2.10±0.15 0.10
4 54.0 400±97.0 2.45±0.15 0.13
5 84.2 411±99.7 2.67±0.14 0.14

HH10 2 42.4 556±116 2.45±0.20 0.75
3 64.9 570±137 3.70±0.16 0.14
4 93.7 541±125 4.48±0.33 0.13
5 130 540±103 4.86±0.39 0.10

0.4 10.2 213±60 0.32±0.15 0.96
0.8 19.3 372±101 0.75±0.38 0.31
1.2 27.3 504±112 1.25±0.25 0.77
1.6 35.8 562±178 1.86±0.30 0.54

different temperatures, which is not physically reasonable.
The best fits of the PM model to the Cp(H) of HH0 are shown for 2 to 5 K in Fig. 5.2(a)-(d),

along with the calculated confidence intervals. The normalized heat capacity data,Cp(H)/Cp(H =

0), for HH0 from 2 to 10 K is shown in Fig. 5.2(e). The fit parameters collected in Table 5.1
indicate the number of paramagnetic centers to be around 8.5 x 1017 per gram of HH0. Based
on the molecular weight of the compound (≈ 300 grams per mol), there are approximately 4
paramagnetic centers of strength µB for every 10000 unit cells. Because none of the intentional
dopants are at such a low level, the Cp(H) effect likely stems from trace impurities introduced
during the synthesis of the compounds. An alternative explanation is that the phase separation
native to these composites naturally hosts unpaired electrons at the grain boundaries, where defects
are in abundance.

To see how well a paramagnon-only model can capture the Cp(H,T ) of the HH5 and HH10
samples that contain ferromagnetic regions, we fit the sample data with the PM model. The best
fits and corresponding confidence intervals for HH5 and HH10 for temperatures of 2 to 5 K are
displayed in Figs. 5.3(a)-(d) and 5.4(a)-(d), respectively. The normalized heat capacity data for
HH5 and HH10 from 2 to 10 K are shown in Figs. 5.3(e) and 5.4(e), respectively. The fit parameters
are tabulated in Table 5.1. The paramagnon concentration is in the mid 1018 per gram, amounting

85



to about 1 for every 500 formula units of the compounds. Although nI is at a higher level than
HH0 (1 every 2500 unit cells), the concentration still does not correspond to any element within
the compound. The added Fe amplifies the effect from the base sample either through additional
impurities or the enhanced phase separation that its presence drives within the composites.

5.4.2 Model PM+M: Paramagnons and Magnons

Because HH5 and HH10 both consist of paramagnetic and ferromagnetic phases at the nano- and
micro-scale, we sought to understand the role of the ferromagnetic equivalent of paramagnons, i.e.
“magnons”, in the heat capacity. I derive the magnon contribution, Cp,ferro(H,T ), here.

Like phonons (Section 1.4.1), magnons are bosons, but without the different polarizations.
Following Refs. [24, 28, 147, 174], we can write down the total energy of the magnons, similar to
Eq. 1.19 as

Uferro = ~
∑
k

nkωk =
V

8π3

∫
~ωkdk3

exp (T ~ωk)− 1
=

V

8π3

∫
~ωkdk3

∞∑
p=1

e−pT ~ωk , (5.4)

where ωk is the frequency of the magnon with momentum k, and the integral is over all of k-space.
We have made the substitution T −1 = kBT for ease of reading. The last equality replaces the
Bose distribution with an infinite series by

∞∑
p=1

e−px = e−x + e−2x + e−3x + · · · = e−x(1 + e−x + e−2x + · · · ) = e−x

(
1 +

∞∑
p=1

e−px

)

=⇒
∞∑
p=1

e−px =
e−x

1− e−x
=

1

ex − 1
.

(5.5)

The dispersion relation for ωk, or how it depends functionally on the momentum, is typically taken
from an Ising model calculation without the presence of an applied field, such that ~ωk ≈ Dk2

in three dimensions [24, 28, 147, 174]. To include the magnetic field and higher order terms of
the momentum, we combine two separate calculations from Ref. [174] to perform an original
derivation with the following dispersion relation

~ωk = Dk2 +Dc1k
4 +Dc2(k

4
x + k4y + k4z) + gµBH. (5.6)

In Eq. 5.6,D is known as the “spin stiffness”, and c1 and c2 are constants characterizing the quartic
dispersion terms. We will link these terms to crystal symmetries and neutron diffraction studies
momentarily. The magnetic term is similar to Eq. 1.13, again with g the unitless Landé g-factor
that is approximately 2 for electrons and µB = 9.274 x 10−24 Joules per Tesla the Bohr magneton.
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We proceed by inserting Eq. 5.6 into Eq. 5.4 and expanding the integrals to include all directions
kx, ky, and kz with bounds (−∞,+∞).

Uferro =
V

8π3

∫∫∫
dkx dky dkz~ωk

∞∑
p=1

e−pT (Dk2+gµBH)e−pT [Dc1k4+Dc2(k4x+k
4
y+k

4
z)]

≈ V

8π3

∞∑
p=1

e−pT gµBH

∫∫∫
dkx dky dkz~ωke−pT Dk2 [1− pT Dc1k

4 − pT Dc2(k
4
x + k4y + k4z)],

(5.7)

In the second line of Eq. 5.7, we have assumed that the quartic correction terms are small so that
the exponential can be expanded, i.e. ex ≈ 1 + x for x � 1. Considering the constituents of ~ωk
(Eq. 5.6), we can assess the product within the integral of Eq. 5.7 and keep all terms up to O(k4).
We find

Uferro =
V

8π3

∞∑
p=1

e−pT gµBH

∫∫∫
dkx dky dkze

−pT D(k2x+k
2
y+k

2
z)I (H; kx, ky, kz), (5.8)

with

I (H; kx, ky, kz) = Dk2 +Dc1k
4 +Dc2(k

4
x + k4y + k4z) + gµBH

− pT gµBHDc1k
4 − pT gµBHDc2(k

4
x + k4y + k4z)

= D(k2x + k2y + k2z) +Dc1(1− pT gµBH)(k2x + k2y + k2z)
2 + gµBH

+Dc2(1− pT gµBH)(k4x + k4y + k4z)

= D(k2x + k2y + k2z) + 2Dc1(1− pT gµBH)(k2xk
2
y + k2xk

2
z + k2yk

2
z) + gµBH

+D(c1 + c2)(1− pT gµBH)(k4x + k4y + k4z), (5.9)

where we have used the fact that k2 = k2x + k2y + k2z . Each term in the integrand (Eq. 5.9) becomes
related to the Gaussian integral when inserted in Eq. 5.8, which can be solved using the following

Ij =

∫ ∞
−∞

xje−ax
b

dx =
2 Γ((j + 1)/b)

ba(j+1)/b
, (5.10)

for the even j of interest here. In Eq. 5.8, a = pT D and b = 2. Recall that Gamma function
follows Γ(j + 1) = jΓ(j). With Γ(1/2) =

√
π, then Γ(3/2) =

√
π/2 and Γ(5/2) = 3

√
π/4.

Because the integration in Eq. 5.8 is identical for kx, ky, and kz, the terms that add individual
directions in Eq. 5.9 will yield a factor of 3. Furthermore, when a particular direction is not
represented in the integrand terms, it still contributes a factor of I0. For example, the gµBH term
in Eq. 5.9 yields gµBHI30 when integrated in Eq. 5.8. With these two rules in mind, we can
combine Eqs. 5.8 - 5.10 to write
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Uferro =
V

8π3

∞∑
p=1

e−pT gµBH
{

3D
[
I2I20 + 2c1(1− pT gµBH)I22I0

+(c1 + c2)(1− pT gµBH)I4I20
]

+ gµBHI30
}

=
V

8π3

∞∑
p=1

e−pT gµBH

{
3D

[(√
π

2

)
(pDT )−

3
2π(pDT )−1

+ 2c1(1− pT gµBH)
(π

4

)
(pDT )−3π

1
2 (pDT )−

1
2

+ (c1 + c2)(1− pT gµBH)

(
3
√
π

4

)
(pDT )−

5
2π(pDT )−1

]
+ gµBHπ

3
2 (pDT )−

3
2

}

=
V

8π3/2

∞∑
p=1

e−pT gµBH

{
3D

[
1

2
(pDT )−

5
2 +

1

4
(5c1 + 3c2)(1− pT gµBH)(pDT )−

7
2

]
+ gµBH(pDT )−

3
2

}
, (5.11)

where we have collected the terms of pDT together in the last equality. To rewrite the sums in
Eq. 5.11, we can use the Bose-Einstein integrals, defined as

F (j, tH) =
1

Γ(j)

∫ ∞
0

xj−1dx

exp
(
x+ t−1H

)
− 1

=
∞∑
p=1

p−je−p/tH . (5.12)

In Eq. 5.11, tH = kBT/gµBH . We can pull out the (DT )−3/2 in the last equality of Eq. 5.11 and
insert the Bose-Einstein integrals to yield

Uferro =
V

(4πDT )3/2

{
3

2
T −1F

(
5

2
, tH

)
+ gµBHF

(
3

2
, tH

)
+

3D

4
(5c1 + 3c2)

[
F

(
7

2
, tH

)
−T gµBHF

(
5

2
, tH

)]
(DT )−2

}

= V

(
kBT

4πD

) 3
2
{
gµBHF

(
3

2
, tH

)
+ 3kBT

[
1

2
− 5c1 + 3c2

4D
(gµBH)

]
F

(
5

2
, tH

)
+

3(kBT )2

4D
(5c1 + 3c2)F

(
7

2
, tH

)}
. (5.13)

In the last equality of Eq. 5.13, we have substituted back in T −1 = kBT and organized the terms
with common powers of kBT and orders of F (j, tH).

Now, we can calculate the heat capacity by taking the temperature derivative of Eq. 5.13.
Recalling that tH = kBT/gµBH , we will require the temperature derivative of the Bose-Einstein
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integrals as follows

d

dT
F (j, tH) =

d

dT

∞∑
p=1

p−je−p/tH =
gµBH

kBT 2

∞∑
p=1

p−j+1e−p/tH =
gµBH

kBT 2
F (j − 1, tH). (5.14)

The heat capacity is then

Cp,ferro =
3V T

1
2

2

(
kB

4πD

) 3
2
{
gµBHF

(
3

2
, tH

)
+ 3kBT

[
1

2
− 5c1 + 3c2

4D
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]
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(
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2
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+
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4D
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(
7

2
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4πD
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2
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)

+
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2
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4D
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] [
3kBF

(
5

2
, tH

)
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T
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(
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)
+

3kBgµBH
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(
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1
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(
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4πD

) 3
2
{

(gµBH)2
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(
1
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[
3− 5c1 + 3c2
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(gµBH)
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(
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+
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[
5

14
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(
5

2
, tH

)
+

21(kBT )2

8D
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(
7

2
, tH

)}
. (5.15)

To compare Eq. 5.15, which is an original result, to formulations by other authors for simpler
dispersion relations, we can assess a few different limits of Eq. 5.15. For the typical ~ωk = Dk2,
we can set c1 = c2 = 0 and H = 0 for the magnon heat capacity without applied field, leaving
only one term from Eq. 5.15

Cquad
p,ferro(H = 0) =

15V

4

(
kBT

4πD

) 3
2

ζ

(
5

2

)
, (5.16)

where F (j, tH → ∞) → ζ(j), the Riemann zeta function. Specifically, ζ(5/2) ≈ 1.341. Eq.
5.16 is a demonstration of the T 3/2 scaling for the magnon heat capacity in zero magnetic field,
which is also derived in Refs. [24, 28, 147, 174, 175]. With a magnetic field present and quadratic
dispersion, Eq. 5.15 becomes
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Cquad
p,ferro(H 6= 0) = V T

1
2

(
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4πD

) 3
2
[

(gµBH)2

kBT
F

(
1

2
, tH

)
+ 3gµBHF

(
3

2
, tH

)
+

15

4
kBTF

(
5

2
, tH

)]
,

(5.17)

as can be found in Refs. [174, 175].
Given the complexity of Cp,ferro (Eq. 5.15), its value can surprisingly be calculated for ideal

magnon systems if the spin stiffness, D, is measured. Inelastic neutron scattering experiments can
map out the magnon dispersion and therefore extract D at low momenta. For example, pure Fe
has D = 281 meVÅ2 [176]. From Ref. [174], we are able to discern that for cubic lattices, the
expression 5c1 + 3c2 that appears repeatedly in Eq. 5.15 takes on a value of −L2/4 when the
ferromagnetic exchange interactions are held to nearest neighbors. L is the lattice parameter of a
given cubic structure, values of which are commonly tabulated [177]. With knowledge of L, D,
and the experimental conditions, Cp,ferro can be calculated directly.

The magnon contribution to the heat capacity (Eq. 5.15) is directly added to the paramagnon
contribution (Eq. 5.1) to model the magnetic field-dependent Cp of the Fe-added HH composites
of the study, i.e. Cp = Cp,para + Cp,ferro. To include the possibility that the presence of a magnon
secondary phase may create a magnetic field, Hint,para, in the intervening paramagnetic matrix,
we maintain H = Hint,para + Hext in Cp,para, with Hext the applied field from the PPMS within
the experiment. For the Cp,ferro term, Eq. 5.15, the only magnetic field is the applied one, H =

Hext. We label this model as PM+M (paramagnons and magnons). It has the following six free
parameters: A(T0), nI , J ,Hint,para, V andD. By setting J = 1/2 for the paramagnetic component,
as we did for the PM model, we reduce the number of free parameters to five. Last, we match the
units of Eq. 5.15 to the experimental data by weighting the Cp,ferro/V by a constant that is the
volume of the magnon phase per mass of the sample, vM . Related to the volume fraction of the
sample that is magnonic, vM is a free parameter in the model, taking the place of V in the previous
list. The results of the fitting for HH5 and HH10 are shown in Figs. 5.3(f) and 5.4(f), respectively.
Although the best fit curves match the experimental data well, the PM+M model is overfit. The
total confidence intervals are incalculable, and the estimated errors on the fit parameters are orders
of magnitude larger than the mean values themselves. Even setting vM to a reasonable value to
reduce the free parameter set does not allow the fitting algorithm to hone in on a D value with any
certainty. Using Eq. 5.17 for the simplified quadratic dispersion does not improve the results.

5.4.3 Model PM+C: Paramagnons and Spin Clusters

Ideal Kondo systems, in which parts per million of magnetic elements are dissolved in non-
magnetic elements, are similar in structure to the Fe-added TZHNSS composites. While the nano-
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and micro-scale secondary magnetic phases in HH5 and HH10 are certainly not as dilute, we
thought that heat capacity modeling of Kondo systems could be applied to the TZHNSS compos-
ites. The work of Levin and Mills [178] put forth a model of clusters of magnetic moments within a
non-magnetic matrix, and even considered non-dilute alloys where clusters could contain hundreds
of electronic spins. The model Hamiltonian is written as

Hcl = −2
∑
i,j

Jdd~Si · ~Sj − µB
∑
i

~H · ~Si −
∑
i,e

Jsd~Si · seδ(~Ri − ~Re). (5.18)

The first term in Eq. 5.18 is the intracluster interactions by a short-range d-d exchange coupling
of the spins within a given cluster, similar to Eq. 1.17 described in Section 1.3.4. Although the
sum is over all of the spins in the system, the nearest neighbor aspect of Jdd restricts the sum to
intracluster behavior. Intercluster interactions are included in the second term by way of a local
magnetic field that originates from a molecular-field approximation in the case of ferromagnets
or a weak anisotropy energy in the case of paramagnets. The last term of Eq. 5.18 includes the
longer range s-d exchange between conduction electrons and the localized spins. These last two
terms are what distinguish the spin cluster model from the physically separated, non-interacting,
individual magnon contributions described by Eqs. 5.4, 5.6, and 5.15 in the paramagnons and
magnons (PM+M) model.

In Ref. [178], the number of spins per cluster was considered to be a constant in order to
attain semiquantitative agreement with the experimental resistivity and neutron scattering data of
Cu-Ni samples. The geometric arrangement of the Ni spins within the clusters was taken as cubic,
which is the case for the TZHNSS composites studied here (Section 5.3.1). At low temperatures
(T < TC for ferromagnetic materials), the heat capacity can be expressed by incorporating the
energy eigenfunctions of Eq. 5.18, which are solved for numerically, into the definition of the heat
capacity (Eq. 1.18) to get the specific heat (heat capacity per mass) contribution from the clusters

Cp,cl = nclkBy
2
[
ey(ey − 1)−2 − (Ncl + 1)2ey(Ncl+1)(ey(Ncl+1) − 1)−2

]
. (5.19)

In Eq. 5.19, ncl is the number of clusters per gram of material, Ncl is the number of spins in
each cluster, and y = µBH/kBT . For the purposes of our study, ncl is taken as a free parameter,
and we set Ncl to certain values based on the approximate configuration we hoped to model. Here,
H = Hint,cl+Hext includes the local fields developed by the spins,Hint,cl, in addition to the applied
field, Hext. The size of Hint,cl determines whether the intercluster interactions are paramagnetic
(/ 50 mT at T = 1 K) or ferromagnetic (several Tesla at T = 1 K). Last, because Cp,cl is the
contribution to the heat capacity from the clusters and does not include the remaining matrix, we
combine it with the paramagnetic contribution, Eq. 5.1, normalized by the mass for an overall
Cp = Cp,para + Cp,cl. We label this model as PM+C (paramagnons and spin clusters). It has the
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following seven free parameters: A(T0), nI , J , Hint,para, ncl, Ncl and Hint,cl. Given that the PM
model is successful in fitting the higher temperature data in HH5 and HH10, we maintained the
constant value of nI determined at higher temperatures and kept the J = 1/2 for the paramagnetic
term. Setting the value of Ncl for each fitting analysis reduced the number of free parameters to
four.

Considering the magnetic secondary phase of TiNi4/3Fe2/3Sn in the HH10 sample, its average
areal extent determined by image analysis in Ref. [98] is approximately 460 µm2. With the lattice
parameter of the cubic secondary phase as ≈ 6.07Å, the number of unit cells fitting within an
average spherical secondary phase would be Ncl ≈ 1 x 1013. The Ni and/or Fe within the cell
serve as the sources of magnetic spins within the large clusters. Because the Ni and Fe are in a
bonding environment in the secondary phase, their magnetic moments are not the full value of the
bare elements. Therefore, we introduced a free parameter as the coefficient of µB within Eq. 5.19.
As an alternative spin cluster, we considered the possibility of more dilute isolated regions of Fe
and Ni. Our microstructure analysis (Section 5.3.1 and Ref. [98]) did not find evidence of such
impurity phases, but such 1-3 nm regions could have been missed. Similar to Ref. [178], we setNcl

to appropriate values of 5 to 30 and ran the fitting analyses for HH5 and HH10. In either case of
Ncl, the resultant fits could not capture the Cp(H) behavior and produced best-fit parameters with
standard deviations larger than their magnitudes. Fits of the PM+C model in which the constraints
on the paramagnetic contribution were relaxed cut Cp,para to a third of its value or less and returned
values of J = 1. Such a scenario would be discontinuous from the higher temperature behavior
and also require an orbital angular momentum value of 1/2, which is not physically reasonable.
Thus, the spin cluster model does not help to explain the Cp(H) trends at 2 K in HH5 and at 2 and
3 K in HH10.

5.4.4 Fitting Procedure and Error Analysis

The raw specific heat data in units of Joules per gram-Kelvin is a function of temperature at the
magnetic fields used during the experiment. In order to compare the magnetic field dependence
at specified temperatures (e.g., 2 to 10 K every 1 K), we set the PPMS to collect the specific heat
data at those temperatures. The temperature of the sample when the specific heat was recorded
was not exactly the desired temperature, e.g. 1.95 K instead of 2 K. This is a result of the time it
takes for complete temperature stabilization upon cooling the PPMS from room temperature, the
heating involved during the measurement, and also the different values of the heat capacity when
different magnetic fields are applied. To adjust the sample temperature from the PPMS data file,
T ′, to a consistent desired temperature, T0, we first fit an electron+phonon model (Cp(H = 0, T ) =

γT + βT 3, Eq. 1.30) to the finer zero-field data with T : [T0 − 1, T0 + 1]. By using the first-order
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Taylor expansion of the Cp fit, we interpolated the value of Cp(H,T0) as Cp,data(H,T ′) + (T0 −
T ′)(γ + 3βT ′2). With the correction in place, we can compare the specific heat as a function of
magnetic field with confidence that the Cp values are at the exact same temperature.

When fitting a given model to experimental data, we use one of the least-squares solvers from
Matlab known as ‘lsqcurvefit’. From the solution at each data point, we can calculate the residual,
or the absolute difference between the fit curve and the data, as well as the Jacobian, which is
a matrix of partial derivatives of the model function with respect to its variables. The residuals
and Jacobian can be input to the ‘nlparci’ function of Matlab to determine the 95% confidence
intervals of the individual model parameters. To find the 95% confidence interval and 1σ standard
deviation (≈ 68% confidence interval) of the overall fit, we use the Matlab function ‘nlpredci’
that also requires the residuals and Jacobian as arguments. We perform the confidence interval
calculations as a way of comparing the models to each other and to understand the precision of the
fit parameters.

5.5 Ruling Out Experimental Artifacts

The distinct trends of Cp(H) observed in the different compounds - namely, a field independence
in Au, the peak feature in the HH samples, and the low-field decline in HH10 - were the first indi-
cations that systematic effects were not responsible for the field dependence of the heat capacity.
To be certain that the Cp(H) effect that we measured was not an experimental artifact, we ensured
that the PPMS was properly calibrated and ran the experiment multiple times for different samples,
as detailed below.

5.5.1 Calibration

For accurate temperature and heater power data, all components of the PPMS heat capacity holder
were calibrated as a function of temperature and magnetic field, including the holder heater, the
holder thermometer, and the sample stage thermometer. The two thermometers were calibrated
based on the known temperature and magnetic field dependence of the system thermometer. With
the calibrations in place, the errors in temperature and heater power are less than 2% [179, 180].
The same holder and calibration files were used for the addendum and sample heat capacity mea-
surements.

As further calibration, we measured the addendum heat capacity of the blank holder with grease
on the sample stage in a number of magnetic fields similar to those used for the sample measure-
ment. The results are displayed in Figure 5.9(a). At 2 K, the heat capacity of the addendum
changes at most by 3%. At higher temperatures, the addendum heat capacity values are mainly in-
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Figure 5.9: Calibration and signal of the Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 samples and Au
during the heat capacity measurement. (a) Normalized addendum (blank sample holder) heat
capacity as a function of magnetic field for temperatures from 2 to 10 K. (b) Ratio of zero-field
sample heat capacity to addendum heat capacity for the four samples of the study from 2 to 10 K
(b).

dependent of magnetic field. Thus, applying magnetic fields of 0 to 14 T during the heat capacity
measurement has very little impact on the sample holder at temperatures between 2 and 10 K.

To ensure the accuracy of the sample measurement, the heat capacity of the sample must be
of comparable magnitude with the addendum heat capacity. That way, the sample itself has a
heat capacity signal that is discernible from the underlying sample holder. For example, regarding
metallic compounds, Cp,sample/Cp,addendum ≈ 1/3 results in heat capacity errors certainly less than
10% and usually less than 5% [179, 180]. We confirm the values of Cp,sample/Cp,addendum in
each of our measurements, as illustrated in Fig. 5.9(b). For the entire temperature range, all HH
samples have heat capacities that are at least 30% of their respective addendum values, with even
higher magnitudes of the ratio at lower temperature (T < 4 K). With a larger heat capacity and
sample mass (28 mg vs. ≈ 14 mg for the HH samples), the Au sample has Cp values greater
than its addendum over the entire temperature range. Overall, the above calibrations demonstrate
that the background signal in the PPMS heat capacity measurement is small enough to rigorously
determine the sample heat capacity as a function of temperature and magnetic field.

5.5.2 Reproducibility

In the final step in confirming that the magnetic field dependence of Cp for the HH samples is
truly fundamental to the materials themselves, we performed the measurement multiple times for
HH5 and HH10. The normalized sample heat capacity data as a function of magnetic field for
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Figure 5.10: Reproducibility of the heat capacity measurement for HH5 and HH10. Two
separate measurements of the normalized sample heat capacity as a function of magnetic field for
temperatures from 2 to 5 K for (a) HH5 and (b) HH10. (b) also includes the Cp(H) data at 2 K
recorded using the He-3 setup with its distinct sample holder. The sample masses in the different
runs were unique: 16.5 mg (Run 1) and 13.5 mg (Run 2) for HH5; and 19.5 mg (Run 1), 14 mg
(Run 2), and 13 mg (He-3 setup) for HH10.

the distinct measurements are displayed in Figure 5.10. For each sample, a new addendum was
measured with a fresh layer of grease on the sample stage. The samples from the previous run
were cleaned, repolished, and weighed. The sample masses between Run 1 and Run 2 changed
as follows: 16.5 mg (Run 1) and 13.5 mg (Run 2) for HH5, and 19.5 mg (Run 1) and 14 mg
(Run 2) for HH10. Data from an entirely separate measurement using the He-3 PPMS option is
also included in Fig. 5.10(b) for HH10. The He-3 setup uses a distinct sample holder with its
own calibration, and the sample mass for that measurement was 13 mg. The data sets recorded
during the separate measurements (Fig. 5.10) are nearly identical, adding to the robust nature of
the magnetic field effect on Cp in these samples. Furthermore, because the effect is independent of
mass, we are not concerned about any possible contribution from potential stage vibration in the
high magnetic fields [179].

Last, our measured values of the zero-field heat capacity of gold are in agreement with previous
studies. Specifically, at T = 2 K, we find Cp,Au(H = 0, T = 2 K) = 24.4± 0.9 µJ g−1 K−1

compared to values of 24.7-25.2 µJ g−1 K−1 in Refs. [180, 181], and our γAu = 3.4 µJ g−1 K−2

matches that of Ref. [181]. The only heat capacity study we know of assessing Cp(H) for Au does
so for nanoscale colloids only at H = 0.5 T [182], so we cannot make any comparison regarding
the behavior we recorded.

95



5.6 Conclusions

In this chapter, we have shown that the magnetic field-dependent heat capacity, Cp(H,T ), at low
temperatures (2 to 10 K) is highly sensitive to the presence of paramagnetic centers in a num-
ber of magnetically different materials. High purity, diamagnetic gold displays a mainly con-
stant heat capacity with applied magnetic field, whereas Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025, a high-
ly disordered paramagnetic composite, exhibits a ' 20% enhancement in Cp(H) at 2 K under
an applied field of 3 T. The peak is gradually suppressed with increasing temperature, essen-
tially vanishing above 6 K. We rigorously showed that a two-level paramagnon contribution to
the heat capacity can capture the field-dependent behavior. With added iron, the mictomagnetic
Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 (x = 0.05 and 0.10) samples possess similar tendencies as the
paramagnetic half-Heusler above 3 K. However, at lower temperatures, the confidence intervals
of the paramagnon model fits to the experimental data become quite large for the mictomagnetic
samples, suggesting a separate magnetic field-dependent contribution to Cp(H,T ). The intuitive
magnon model that we derived to explain the additional effect in the partially ferromagnetic sam-
ples can mimic the heat capacity trend with one additional free parameter. However, the confidence
intervals on the fit parameters indicate that the combined paramagnon+magnon model overfits the
data. Separate measurements of the heat capacity of the x = 0.10 sample down to 0.36 K confirm
our paramagnon analysis and the remaining low-field decline in Cp(H) at the lowest temperatures.
We qualitatively link the additional effect to a magnetotransport phenomenon we observed in a
previous study, likely stemming from superconducting Sn-based binaries that could be present in
the composites. Our work illuminates the advantage of studying the magnetic field dependence of
Cp at set temperatures, compared to the less sensitive temperature-dependent studies at set fields,
in order to witness the totality of underlying physical phenomena.
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CHAPTER 6

Conclusions and Future Work

6.1 Summary

As a means of converting waste heat into usable electricity, thermoelectric materials should be
an important facet of the global energy portfolio. To implement thermoelectric materials more
broadly, I focused on two separate material systems: the superionic conductor, Cu2Se, detailed
in Chapter 3, and the half-Heusler composites, Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025, described in
Chapters 4 and 5.

Cu2Se, a thermoelectric material with high conversion efficiency, unfortunately degrades in
application conditions. In an effort to chemically stabilize the compound while maintaining its
superior thermoelectric properties, I replaced small percentages of Cu with Sn and synthesized the
series of samples Cu2−2xSnxSe (x = 0, 0.01, 0.02, and 0.05). By the thermoelectric transport mea-
surements from room temperature to 873 K, the x = 0.01 sample possesses the largest zT values,
averaging a 15% enhancement from 473 K to 823 K compared to the pure Cu2Se. The augmented
thermoelectric performance stems from a diminished thermal conductivity and a slightly improved
power factor. Increased point defect scattering of phonons in the Cu2Se matrix and the interaction
of phonons with the sub-micron secondary phase of SnSe are the major contributing factors for the
reduced thermal conductivity of Cu1.98Sn0.01Se. The larger hole mobility of Cu1.98Sn0.01Se leads
to the enhanced power factors compared to Cu2Se.

To test the ability of the large tin ions to chemically stabilize the compounds, I modified elec-
trical property measurement equipment to support a current stress test. During the experiments,
each sample was held at 773 K with a ∆T ≈ 50 K while a current was driven through the material
to emulate typical thermoelectric power generation conditions. The Cu2−2xSnxSe compounds with
greater tin concentrations exhibited decreased material degradation, as measured by the density
loss of the samples during the test. The Sn atoms within the matrix and as a secondary phase of
SnSe act as electrical and physical barriers for the copper ion electromigration. However, even at
the 5 at% Sn dopant level, solid copper was expelled and selenium-rich granules developed, which
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eliminates the prospects for these compounds in long-term thermoelectric applications. Because
there was a lack of current stress tests in the research on Cu2Se, and superionic conductors in gen-
eral, I emphasized that the electrical stability of the materials must be examined in thermoelectric
operating conditions in order for the research to have significant meaning.

Following collaborative work demonstrating the ability of added Fe to enhance the thermo-
electric performance of a half-Heusler composite, Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025 (Ref. [98]), I
sought to understand the magnetic properties of the Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 (x = 0,
0.02, 0.05, 0.075 and 0.10) series of samples (TC ≈ 650 K) at low temperatures (2 K to 300 K).
The DC magnetization and AC susceptibility measurements of the Fe-added samples all point to a
combination of superparamagnetism and cluster-glass behavior, the combination of which is called
“mictomagnetism”. The phenomena are most apparent in the x = 0.05 sample, which our previous
work showed contains the greatest density of magnetic TiNi4/3Fe2/3Sn nanoparticles [98]. The
evidence for the spin freezing phenomena near 175 K lies in the magnetization hysteresis and the
splitting of the zero-field-cooled and field-cooled temperature-dependent magnetic moments, as
well as the frequency- and field-dependent maxima in the AC susceptibility. In the magnetotrans-
port data, the Fe-added samples exhibit a Kondo minimum in the electrical resistivity near 25 K,
which is consistent with the magnetic secondary phase in the non-magnetic matrix. The electrical
resistivity below 4 K drops off sharply with temperature, an effect that can be explained by either
weak-localization or superconducting Sn-based binaries. Research in magnetic thermoelectrics is
a burgeoning pursuit, and the techniques and analyses demonstrated in Chapter 4 are important for
understanding a variety of magnetic phenomena in thermoelectric materials.

In the same Ti0.25Zr0.25Hf0.50NiFexSn0.975Sb0.025 composites, I observed a non-monotonic heat
capacity dependence on the applied magnetic field at temperatures below 10 K. The paramagnetic
x = 0 sample features a peak enhancement of the heat capacity of ' 20% at 2 K with an ap-
plied field of 3 T. At higher temperatures, the peak contracts and shifts to greater magnetic fields.
In the mictomagnetic samples, the heat capacity behavior with magnetic field is quite similar to
that of the paramagnetic sample, except for its augmented magnitudes and entirely unique trend
at temperatures below 4 K. The measured Cp(H) of diamagnetic gold was essentially constan-
t, with the slight 2% increase at 2 K accounted for by the change of the addendum in magnetic
field. The majority of the field dependence of the heat capacity can be explained by a two-level
paramagnon model, an intuitive approach with reasonable confidence intervals when fit to the da-
ta. From the fit parameters, the concentration of paramagnetic centers aligns with either ionized
impurities or defects at the grain boundaries of the composite materials. The paramagnon model
fails to capture the lowest temperature field dependence of the heat capacity in the mictomagnetic
samples. Namely, between 1.4 K and 3 K at low fields (up to 2 T), the heat capacity of the x
= 0.10 sample is initially flat or declines to a slight minimum before following the paramagnon
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trend. To explain the distinct dependence, I derived the magnon contribution to the heat capacity
in field and with fourth-order dispersion terms, adding just one free parameter to the overall para-
magnon+magnon model. Although the combined model fits the experimental data quite well, the
confidence intervals in the fit parameters are larger than the mean values, and the overall confidence
intervals cannot be calculated, both signs of overfitting. The lowest temperature measurements of
Ti0.25Zr0.25Hf0.50NiFe0.10Sn0.975Sb0.025 down to 0.36 K confirm the paramagnon peak, but still do
not allow for any reasonable fit by the paramagnon model. In the end, the separate contribution
to the heat capacity in the mictomagnetic samples below 4 K could be associated with supercon-
ducting Sn-based binaries potentially present in the composites. Overall, the chapter highlights
the insight of field-dependent heat capacity studies at fixed temperatures that cannot be as easily
gleaned from the temperature-dependent heat capacity at fixed magnetic fields.

6.2 Future Work

With research being an ongoing, iterative process, it is important to provide some potential routes
forward based on current findings. Regarding the promise of Cu2Se and superionic conductors as
stable thermoelectric materials, more recent results are highlighted in Section 3.6. Specifically,
nanocomposites, segmentation, and a proper accounting for the critical voltage of electrodeposi-
tion are viable techniques for the eventual development of thermoelectric modules, and many of
these efforts are ongoing worldwide. Considering the role of magnetic dopants in many classic
thermoelectric materials, it is possible that high-TC ferromagnetic nanoprecipitates within superi-
onic conductors could interact with itinerant Cu ions and help to localize the electromigration up
to a certain temperature. While improvements in zT are important, the main hurdle for superionic
conductors to be used more broadly in thermoelectric technologies is the issue of stability. Mea-
suring the time evolution of either the thermoelectric properties of a given material or the power
output of a fabricated device in application conditions over the span of several weeks is therefore
essential.

For the magnetic half-Heusler composites, the routes for high temperature thermoelectric per-
formance enhancement could certainly include attempts with other magnetic dopants, such as the
d-block Cr and Mn or the rare-earth elements. Other base compounds could be synthesized as
the non-magnetic matrix similar to Ti0.25Zr0.25Hf0.50NiSn0.975Sb0.025. Using the work of Galanakis
[93], the magnetic strength of some of the full-Heusler compounds can be compared as a starting
point for the intended magnetic composite phase. The size and concentration of the full-Heusler
phases are critical in determining the magnetism of the composites and their overall thermoelectric
properties. Therefore, the solubility of the magnetic dopant on the Ni site is a crucial parameter to
consider in future synthesis. One possible way of understanding the potential for the largest impact
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of the magnetism at high temperatures is to first screen the samples for the greatest magnetic frus-
tration (seen from the separation of the zero-field-cooled and field-cooled DC magnetic moments)
at low temperatures. With the desired materials in hand, it would be ideal to synthesize the individ-
ual magnetic full-Heusler compound within the composite as close to a single crystal as possible so
that its fundamental low-temperature properties can be understood. New half-Heusler compounds
are still being synthesized at various research centers globally, so many promising projects in this
realm are possible.

The magnetic field-dependent heat capacity is intricately linked to the temperature-dependent
magnetization by equilibrium thermodynamics, seen in the following expression:

Cp,H(H,T0) = Cp,H(0, T0) + T0

∫ H

0

∂2M(H,T )

∂T 2

∣∣∣∣
T=T0

dH, (6.1)

where the heat capacity and second derivative of the magnetization are evaluated at temperature
T0. Eqn. 6.1 relies on the definition of heat capacity that Cp,H = T (∂S/∂T )H , where S is the total
entropy of the system, as well as a magnetic Maxwell relation

(
∂S
∂H

)
T

=
(
∂M
∂T

)
H

. Experimental
verification of Eq. 6.1 would be a demonstration that the Maxwell relation indeed holds. However,
most magnetocaloric studies in the literature assume the Maxwell relation to be true in order to
derive the corresponding change in entropy with applied magnetic field. Because heat capacity
measurements are rarely performed at such fine increments of magnetic field, there are very few
reports confirming the equality in Eq. 6.1 [183, 184, 185]. Coupling the data from Chapter 5
with the temperature-dependent magnetization would yield a comparison of the two sides of the
equation. Care must be taken in evaluating the second derivative of the magnetization data since
most numerical techniques introduce a lot of noise. Eq. 6.1 is independent of the type of magnetic
system studied so it should hold in mictomagnetic composites, pure ferromagnets, etc.

Furthermore, the magnon model that I derived in Section 5.4.2 (with the final result in Eq. 5.15)
depends on the spin stiffness, the volume of the sample, and the material’s lattice parameters. If
the only unknown variable is the spin stiffness, the magnetic field-dependent heat capacity could
be used to extract the value in compounds where the magnon term is dominant. The value can
then be compared with inelastic neutron scattering experiments that map the dispersion relation.
Conversely, if the spin stiffness is known from neutron scattering data, Cp,ferro can be calculated
as a function of field and temperature by Eq. 5.15. Coupling the magnon contribution with that
from electrons and phonons, the experimentally measured Cp,H(H,T ) can be compared with the
calculation. While some efforts to perform such a study do exist [150], they are absent for most
materials, including the elementary magnets Fe, Ni and Co. Perhaps the electronic term in these
elements is highly dependent on magnetic field, obscuring the magnon contribution. Additional
efforts in this area are certainly granted and appear straightforward.
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[55] Milat, O., Vučić, Z., and Ruščić, B., “Superstructural ordering in low-temperature phase of
superionic Cu2Se,” Solid State Ion., Vol. 23, No. 1, 1987, pp. 37–47.

[56] Kashida, S. and Akai, J., “X-ray diffraction and electron microscopy studies of the room-
temperature structure of Cu2Se,” J. Phys. C: Solid State Phys., Vol. 21, No. 31, 1988, p-
p. 5329–5336.

[57] Yamamoto, K. and Kashida, S., “X-ray study of the average structures of Cu2Se and Cu1.8S
in the room temperature and the high temperature phases,” J. Solid State Chem., Vol. 93,
No. 1, 1991, pp. 202–211.

[58] Gulay, L., Daszkiewicz, M., Strok, O., and Pietraszko, A., “Crystal Structure of Cu2Se,”
Chemistry of Metals and Alloys, Vol. 4, 2011, pp. 200–205.

[59] Chi, H., Kim, H., Thomas, J. C., Shi, G., Sun, K., Abeykoon, M., Bozin, E. S., Shi, X., Li,
Q., Shi, X., Kioupakis, E., Van der Ven, A., Kaviany, M., and Uher, C., “Low-temperature
structural and transport anomalies in Cu2Se,” Phys. Rev. B, Vol. 89, 2014, pp. 195209.

[60] Lu, P., Liu, H., Yuan, X., Xu, F., Shi, X., Zhao, K., Qiu, W., Zhang, W., and Chen, L.,
“Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials,” J. Mater.
Chem. A, Vol. 3, 2015, pp. 6901–6908.

[61] Tonejc, A. and Tonejc, A., “X-ray diffraction study on α↔ β phase transition of Cu2Se,” J.
Solid State Chem., Vol. 39, No. 2, 1981, pp. 259–261.
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