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ABSTRACT

Machine learning (ML) [1] and in particular deep learning (DL) [2] have proven

to be the key approaches in solving complex cognition and learning problems. ML

algorithms have demonstrated unprecedented success across a variety of applications

including image recognition [3], object detection and tracking [4–6], natural language

processing [7], robotic motion planning, perception and control [8]. Moreover, an

emerging frontier of active research is real-time machine learning (RTML), which

combines modern DL, ML and traditional statistical inference techniques to reinforce

the optimal decision making in real time. Despite the advancement of powerful RTML

algorithms, the required performance and stringent energy requirements create a gap

for efficient domain-specific computing architectures and infrastructures, hindering

the development of next-generation acceleration software and hardware.

This thesis explores three abstract levels within the spectrum of domain-specific

computing acceleration, where specialized computing hardware and software architec-

tures and frameworks are proposed to draw synergies with the increasingly complex

ML and DL algorithms.

First, I will begin with the investigation of optimizations within neuro-inspired

computing algorithms and hardware architectures. This work introduces a sparse

spatio-temporal (ST) cognitive system-on-a-chip (SoC), designed to extract ST fea-

tures from videos for action classification and motion tracking. The SoC core is a

sparse ST convolutional auto-encoder that implements recurrence using a 3-layer net-

work. High sparsity is enforced in each layer of processing, reducing the complexity

ix



of ST convolution by two orders of magnitude and allowing all multiply-accumulates

(MAC) to be replaced by select-adds (SA). The design is demonstrated in a 3.98mm2

40nm CMOS SoC with an OpenRISC processor providing software-defined control

and classification. ST kernel compression is applied to reduce memory by 43%. At

0.9V and 240MHz, the SoC achieves 1.63TOPS to meet the 60fps 1920×1080 HD

video data rate, dissipating 127mW.

Second, I will elaborate on the impacts of dataflows and reduction mechanisms for

deep neural network (DNN) acceleration. Specifically, I will quantify the inefficiencies

of Cartesian Product-based dataflow and address its limitation for sparse DNN accel-

erations and propose Stitch-X [9], a novel DNN inference accelerator that efficiently

stitches together both sparse weights and input activations. This design features a

novel dynamic, look-ahead index matching unit in hardware [10] to efficiently extract

reducible computation and feed them into a multi-level, spatial-temporal reduction

dataflow, achieving high energy efficiency and low control complexity for a wide va-

riety of DNN layers. Our evaluation demonstrates that Stitch-X delivers up to 4.3×

speedup over an efficient, dense DNN accelerator, 1.6× speedup and 2.1× energy-

delay-product improvement compared to a state-of-the-art sparse DNN accelerator.

Lastly, I will expand the domain-specific acceleration scope to cover RTML algo-

rithms, and propose a new architecture modeling framework for joint software and

hardware optimization. Specifically, I will introduce ERA, a new end-to-end devel-

opment framework for developing RTML-specialized acceleration architectures and

systems from software to hardware. ERA consists of two components: HANA, a set

of high-performance RTML-specific architecture design templates, and PyHLM, an

open-source Python-based high-level modeling and compiler tool chain for cross-stack

architecture design and exploration. Using ERA, this work demonstrates a real-time

visual object tracking (VOT). The optimized accelerator achieves an average speedup

of 2.1× over state-of-the-art architecture design patterns across a wide-range of mod-

x



ern RTML algorithms.

The three pieces of work presented in this thesis constitute an ultimate vision of

a high-level architecture modeling infrastructure that can enable agile hardware and

software development and optimizations beyond the state-of-the-art compute-store

patterns. To conclude, this thesis contributes to a concrete direction for liberating

the development of domain-specific acceleration architectures and a foundation for

enabling next-generation intelligence from the edge to the cloud.
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CHAPTER I

Introduction

We live in an exciting era. Artificial intelligence (AI) has fundamentally changed

the world and is also drastically shifting the dynamics of industries and businesses

around the world. The powers granted by AI algorithms such as machine learning

(ML) and deep learning (DL) has significantly altered the ways in which humans

tackle problems in the emerging field of security and surveillance, autonomous driving,

industrial automation and much more complex applications.

However, the path to achieving penetration of ML and DL applications is chal-

lenging. On one hand, the capability and development of ML and DL algorithms is

still in flux. On the other hand, the hardware and software performance requirements

(e.g. power, performance and cost) are also key factors that are hindering mass com-

mercial deployment. Despite the obstacles ahead, the emerging capabilities of AI has

also revealed rich opportunities for cross-stack architecture research. Specifically, the

crossover from compute algorithm to software architectures, modeling frameworks to

silicon architecture designs constantly drive new innovations within the research field

of domain-specific computing acceleration.

Before diving into complete domain-specific architecture development frameworks,

we will take a few steps back to revisit the history and fundamentals of AI algorithms.

We find that one of the earliest attempts to achieve artificial cognition and learning is
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by mimicking the method in which animals learn and perceive the world. Specifically,

by modeling the ways neurons are structured, this approach is often referred to as

biologically-inspired neural network modeling. In addition, the way that animals

convey complex information and drive action has also inspired researchers to formulate

computing models that surround the very basis of neuronal behaviors, and by using

these models to perform computation, these methods are denoted as neuro-inspired

computing.

In other words, neuro-inspired computing algorithms is: A class of computing

algorithms for learning and inference that is referncing the ways in which animals

gain cognition of the world. It is inspired by: 1) the way animals perform action, e.g.,

neuron firing and inhibition; 2) the way animals store data, e.g. over-complete and

sparse data storage; and 3) the way animals perceive the world, e.g. spatio-temporal

modalities. Notably, most neuro-inspired computing resemble some variant of neural

networks (NNs). A neural network is essentially an explicit expression of neuron

connections, representing features that could be learned in different dimensions. The

term deep neural networks (DNNs) hence refers to multiple layers of neurons that

are connected together, where the data can propagate from one layer to the next in

a pipelined fashion.

Typically, there are two major functions that a NN needs to perform: 1) training;

and 2) inference. Training refers to the process where a model neural network fits

itself using a given set of input data and mathematically optimizes for a target metric

(e.g. reconstruction loss) that describes how well the NN model is performing with

respect to its current trained status. In addition, not all NN algorithms require labels

(i.e. ground truths). When using a training algorithm that uses both input data and

labels, it is referred to as supervised learning, and for those that do not require labels,

they are referred to as unsupervised learning.

The training process can be static (offline) or dynamic (online). Where static

2



training refers to tuning the NN model representation before it is deployed into the

field, and dynamic training refers to tuning the NN models on-the-fly while they are

in use. The typical bottleneck for dynamic training lies in the required amount of

memory, the introduced computation overhead and the training algorithms that can

be used. For dynamic training, the method is likely to be unsupervised due to the

lack of readily available labeled data.

The inference process takes a trained NN and passes the input data through the

network to obtain the output result. Depending on the purpose of the NN, the output

may be a class label prediction, bounding boxes, object boundaries etc. To elaborate,

if the NN is tasked to discern different classes of objects, the application is referred

to as classification. Moreover, the input data can take on may different forms and

modalities, such as audio, images and videos.

Recent domain-specific computing works have focused on the acceleration of the

inference process, mainly due to its deterministic simplicity and abundant data par-

allelism. Many works regarding DNN acceleration have emerged as the prime targets

for domain-specific computing architecture research. The direct implications for these

types of dedicated hardware is their capability to harness a sufficient amount of data

parallelism, which requires a significant amount of compute and storage bandwidth.

On top of these constraints, given the trend for the increasing depth of NNs together

with the evolving network architecture, the complexities also scale exponentially for

the underlying hardware, and in particular specialized computing hardware to service

the NN inference demands.

On the two ends of the flexibility and efficiency spectrum, we find that special-

ized accelerators are situated at the efficiency extreme (Figure 1.1), in contrast to

Von Neumann architectures such as CPUs. Specialized accelerator architectures ben-

efit from compute-store paradigms such as dataflows, which enable large data and

memory bandwidths while removing the burdens of conventional CPU control and

3



Figure 1.1: The spectrum of hardware and software domain specialization.

scheduling overhead. However, in terms of programmability and the capability to

adapt to different algorithms and applications, they often fall short. Consequently,

this introduces a significant gap in between the software infrastructure and the hard-

ware optimizations that can be achieved.

Notably, domain-specific computing paradigms focus on three levels of software

and hardware interactions: 1) the exploration of a specific algorithm (e.g. neuro-

inspired computing algorithm) and its tailored optimizations and impacts on a spe-

cialized computing architecture; 2) the investigation of an algorithm regime (e.g.

DNNs) and their generic implications to the hardware compute and storage archi-

tecture; and 3) the design of architecture modeling framework that can provide agile

prototyping and deep SW-HW co-optimization capabilities for a wide range of algo-

rithms and applications.

The following sections will briefly touch upon these three aspects: 1) neuromorphic

computing acceleration; 2) sparse deep neural network acceleration; and 3) real-time

machine learning processing architecture modeling framework.
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1.1 Neuromorphic Computing Acceleration

Neuromorphic computing is an attempt at modeling the behaviors of how animals

approach cognition and learning. It is a rich research field that has focuses on how

to draw efficiency from tailored compute and storage patterns. Specifically, visual

recognition is a major application that exhibits huge potentials in the field of security

and surveillance and autonomous driving. One of the earliest works discussing the

modeling of the mammalian primary visual cortex is presented by Olshausen and

Field [11], where they showed a sparse coding algorithm that exhibits an overcomplete

set of receptive fields (features) similar to the primary visual cortex whilst being able

to exhibit sparse characteristics. This discovery is especially important for object

detection, as traditional features such ad Harris [12], Hessian [13] are hand-crafted,

and could not be well tailored to deliver the best detection performance with changing

environments.

On top of the foundations of Olshausen and Field, Rozell [14] later presented

the locally-competitive algorithm (LCA), a compressed sensing method where local

neuron activation inhibits nearby neurons from firing; a means to enforcing sparse

activation and representation of an input image. This feature is extremely important

as the algorithm is unsupervised, leading to a potential for on-chip learning and

efficient feature extraction for visual recognition and associated tasks.

Notably, action classification is an application within the field of visual recognition,

where an image or video is used as an input, and the actions within need be classified.

This is a compute and storage demanding problem, as modern images or videos

demand high resolution, high frame rates, not to mention the requirement for real-

time performance on resource-constrained platforms. Traditional methods for action

classification uses 2-D images as inputs, however, only the spatial information could be

extracted as features, whilst losing great potential for the temporal information from

frame to frame. Formally put, action classification operates on sequences of image
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frames to extract the activity or action from videos. Different from single-image

recognition, classifying videos relies on extracting spatio-temporal (ST) features and

using the ST features to build a classifier. Consequently, the computation is 3-D as

opposed to 2-D for images.

Spatio-temporal receptive fields (STRFs) are understood as features or basis func-

tions of videos [11]. STRFs can be extracted by unsupervised learning using an auto-

encoder. Due to the high redundancy in video data, a compressed video encoding can

be obtained using a sparse spatio-temporal (ST) auto-encoder. This neuro-inspired

approach provides not only efficient video coding but also cognitive processing capa-

bilities such as action classification and motion tracking [15].

1.2 Sparse Deep Neural Network Acceleration

Deep learning or more specifically, deep neural network (DNN), has emerged to be

a key approach to solving complex cognition and learning problems [2,3]. State-of-the

art DNNs [4,16–21] require billions of operations and hundreds of megabytes to store

activations and weights. Given the trend towards even larger and deeper networks,

the ensuing compute and storage requirements will prohibit real-time, low-power de-

ployment on platforms that are resource and energy constrained. The compute and

storage challenges motivated efforts in network pruning to zero out a large number

of weights (W) of a DNN model with as little effect on the inference accuracy as pos-

sible [22–24]. In addition to sparsity in weights, the commonly-used rectifier linear

unit (ReLU) clamps all negative activations to zeros, resulting in sparsity in output

activations (OA), which become input activations (IA) of the next layer.

Data sparsity can be exploited to save power. Many DNN accelerators, e.g., Eye-

riss [25], gates the computation, e.g., by turning off the clock, whenever a zero in the

IA is detected in runtime. Most dense DNN accelerators can incorporate this tech-

nique to reduce power, but it does not shorten the latency or improve the throughput.
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Cnvlutin [?] and Cambricon-X [26] are well-known early architectures that exploit

sparsity in compressed IA for latency reduction and throughput improvement. How-

ever, they were designed to work with the sparsity in one of the two operands, W or

IA, but not both. A dense processing architecture can be easily adapted to support

one-operand sparsity by indirect data access.

To fully exploit sparsity in both operands, W and IA are stored in a compressed

form where nonzero elements are represented by value-index pairs. Storage in a

compressed form can reduce the memory size and bandwidth. However, unlike the

common dense array and matrix storage, a compressed storage is not amenable to

regular and efficient vector processing. One approach is to decompress the compressed

form before processing, but decompression costs performance, memory, and power.

Instead, state-of-the-art sparse DNN accelerators [27–31] process data directly in the

compressed form, offering both low memory bandwidth and high degree of accelera-

tion.

Data sparsity leads to better performance and efficiency, but major challenges

remain:

• Front-end challenge: Multiplier under-utilization due to an insufficient number of

W-IA pairs that can be extracted and dispatched to the multiplier array.

• Back-end challenge: Data traffic and access contention to support accumulation of

psums whose destination addresses are seemingly random.

• Flexibility challenge: Limited support for different kernel sizes and layer types.

State-of-the-art sparse DNN accelerators including EIE [27], SCNN [28], Sticker [29,

30], and Eyeriss v2 [31] addressed some of the challenges in sparse DNN processing,

but did not solve all of them. EIE exploits both W and IA sparsity but is restricted to

fully-connected (FC) layers. SCNN is the first attempt at exploiting both W and IA

sparsity for convolution (CONV) layers. It maximizes multiplier utilization at the cost
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of massive psum writeback traffic and access contention, and it supports only CONV

layers. Sticker follows SCNN’s dataflow and uses 2-way set-associative processing el-

ements (PEs) to alleviate the access contention but requires offline preprocessing to

re-arrange IA data. Without the data re-arrangement, the access contention remains

as significant as in SCNN. Eyeriss-v2 employs a two-step search frontend to find ef-

fectual W-IA pairs by first fetching nonzero IAs, and then using the channel index

of the IA to look for nonzero Ws. Eyeriss-v2 adopts an Eyeriss-like row stationary

dataflow [25] to avoid memory access contention.

1.3 Real-Time Machine Learning Processing Architecture Mod-

eling Framework

From previous sections, we have formulated a preliminary consensus that machine

learning (ML) [1] and in particular deep learning (DL) [2] have proven to be the key

approaches in solving complex cognition and learning problems. ML algorithms unar-

guably demonstrated unprecedented success across a variety of applications including

image recognition [3], object detection and tracking [4–6], natural language process-

ing [7], robotic motion planning, perception and control [8]. One emerging frontier

of active research is real-time machine learning (RTML) that combines modern DL,

ML and traditional statistical inference techniques to reinforce the optimal decision

making in real time.

Unlike conventional DL computation, RTML requires heterogeneous processing

to support dynamically changing workloads. RTML applications often impose a

short millisecond completion latency and a high processing throughput, and they

are frequently deployed on edge platforms with stringent resource constraints [32].

To sum up, the heterogeneous processing, the dynamically changing workloads, the

low-latency and high-throughput processing, and the resource-constrained platforms
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present unique challenges for the systematic design of RTML processing architectures.

RTML can be considered an application domain. Recent work in domain-specific

architecture (DSA) [33–35], and DSA development frameworks [36–39] have provided

a number of elements that are needed in constructing a full-fledged RTML develop-

ment framework. These elements include hardware primitives, software tools, and

full-stack frameworks that capture all aspects of the optimization opportunities.

Hardware primitives refer to the building blocks for constructing hardware ar-

chitectures. Buffets [37], for example, presents a hardware storage idiom featuring

a modular memory hierarchy for accelerator design, reducing the design effort and

streamlining DSA generation. However, Buffets may not reach the best performance

potential due to the compute-store synchronization scheme that complicates module

integration and programming. As another example, MatchLib [40] provides a suite

of C/C++ modules designed to be synthesizable to RTL using high-level synthe-

sis [41] frameworks to target application-specific integrated circuits (ASICs) or field-

programmable gate arrays (FPGAs). However, MatchLib focuses on register-transfer

level (RTL) generation, and lacks high-level architecture modeling and exploration

that are necessary for capturing RTML’s unique optimization opportunities.

Software tools focus on building compilers and generators to produce opti-

mized implementations of specific suites of algorithms on given hardware platforms.

TVM [42] is the first generic DL compiler that optimizes the DL computation graph

for mapping to specialized accelerator architectures. Pixel Visual Core [43] leverages

Halide [44] language for generating high-level virtual instruction set architectures

(ISAs) that can be compiled to physical ISAs for on-device execution. Despite the

benefits, current software-level tools are still limited to specific classes of well-studied

algorithms, which are too restrictive to address RTML’s diversity.

Full-stack frameworks combine both hardware primitives and software tools.

A full-stack framework leverages compiler’s flexibility together with parameterized
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hardware modules to enable rapid design space exploration given a set of resource

constraints. VTA [45] is a recent example of a full-stack development framework

that combines a programmable DL-acceleration architecture template with a TVM

compiler backend with its just-in-time (JIT) compiler for run-time instruction stream-

ing. However, VTA is restricted to DL applications. VTA’s hardware templates are

based on general matrix multiply (GEMM), where compile-time scheduling is possi-

ble. RTML requires versatile processing patterns beyond GEMM, and it also requires

run-time scheduling to support dynamically changing workloads. As a result, VTA

captures only one aspect of RTML, but not the entirety.

Real-time machine learning (RTML) requires a full-stack design framework that

encompasses both hardware primitives and software tools to target the unique features

of RTML applications. Towards this goal, we target RTML’s four key characteristics:

1) heterogeneous processing patterns; 2) dynamically changing workloads; 3) low-

latency; and 4) high-performance processing, and resource-constrained platforms. By

providing both hardware design patterns and custom-defined instructions, as well as

a suite of tools from compiler to high-level architecture modeling and design space

optimization.
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CHAPTER II

Neuro-inspired Computing Accelerator

Spatio-temporal receptive fields (STRFs) are understood as features or basis func-

tions of videos [11]. STRFs can be extracted by unsupervised learning using an auto-

encoder. Due to the high redundancy in video data, a compressed video encoding

can be obtained using a sparse spatio-temporal (ST) auto-encoder [46]. This neuro-

inspired approach provides not only efficient video coding but also cognitive processing

capabilities such as action classification and motion tracking [15,47] (Figure 2.1).

2.1 Spatio-Temporal Cognitive SoC

The core of the SoC1 chip is a sparse ST convolutional auto-encoder that consists

of 192 neurons, with each supporting a kernel up to 6×6×8 (6×6 frame, spanning 8

time steps) (Figure 2.2). The auto-encoder is configurable with several settings: 64,

128 or 192 neurons, frame size from 1 to 36 and time steps from 1 to 8. Inputs are

streamed in to the frame load queue, and ST kernels are reconstructed from their

compressed storage prior to performing ST convolutions. The core is integrated with

memory and an OpenRISC processor through a common control bus. The OpenRISC

processor is programmed by an ISA together with a configuration and a classifier

1Thomas Chen contributed to the physical design of the STLCA chip, Jie-fang Zhang contributed
to the machine learning model for off-line action classification and Chester Liu for algorithm and
implementation consultation
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Figure 2.1: Cognitive processing of video input using spatio-temporal (ST) convolu-
tional auto-encoder for human action classification and motion tracking.

profile. The configuration profile controls the operation of the core during runtime;

and the classifier profile configures the on-chip classification algorithm. The outputs

of the core are sent to a communication hub in the OpenRISC processor.

2.2 Sparse Recurrent Network Architecture

Sparsity is often enforced by an L-1 normalization term as part of the cost function

in reference auto-encoder designs [11,46] (Figure 2.3). To achieve an even higher spar-

sity, we reformulate the auto-encoder as a 3-layer recurrent network (Figure 2.3(b)),

and introduce L-1 normalization in two layers using rectification (Fig. 4): 1) in Layer

1 (L1), neurons compute ST convolutions to compute the recurrence and apply min/-

max rectification (i.e., hard thresholding to binary levels) to enforce a sparse spike

rate of S1, reducing the downstream workload by a factor up to 1/S1; 2) in Layer 2

(L2), neurons compute ST convolutions to compute the potential update; and 3) in

Layer 3 (L3), neuron potentials are thresholded to generate sparse spikes at a target

rate of S3. The spikes are fed back to L1, reducing L1’s workload by a factor up to

1/S3. The three layers are fully parallelized using 192 neurons in each layer. Each

L1 and L2 neuron performs a 6×6×8 ST convolution at a time, and each L3 neuron

updates its potential and performs thresholding. The number of iterations through

the 3 layers is adjustable between 2 to 32 to meet processing requirements. To achieve

a high classification accuracy while maintaining a low-power operation, the sparsity

12



Figure 2.2: Sparse spatio-temporal (ST) cognitive SoC system architecture, including
an OpenRISC processor, memory, and a sparse ST convolutional auto-
encoder (core).

targets S1 and 1 are set to 3% and 1% respectively (Figure 2.4), i.e., 97% and 99% of

the L1 and L3 outputs are zero, enabling significant complexity and power reduction.

In one iteration, the combined L1 and L2 workload is reduced to only 1 to 3% of the

equivalent 3.54M OPs (an OP is defined as an equivalent 8b MAC) for a 6×6×64

(6×6 frame, 64 time steps) input video patch.

Spike-Based Inference and Sparsity-Enabled Compression Spike inputs to L1 and

L2 simplify L1 and L2 neuron implementation from multiply-accumulates (MAC)

to select-adds (SA) triggered by sparse spikes (Figure 2.5(a), (b)), thereby reducing

neuron’s power and area by 8.1× and 10.1× respectively. Spikes are detected by

successively ANDing the spike train with its two’s complement, which returns the
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Figure 2.3: (a) Baseline 3-stage charge-compete-activate inference architecture, (b)
Modified 3-layer recurrent inference architecture.

one-hot encoding of the spike locations, i.e., the addresses of the ST kernel mem-

ory to read. In the absence of spikes, an entire layer will be skipped, enabling an

average 3.5× power reduction and 6.3× latency reduction. Dynamic clock gating is

enabled by the OpenRISC processor based on the configuration profile to cut the

dynamic power by 4.2× when switching from 192 to 64 neurons to adapt to problem

requirements. The spike outputs of an L1 neuron are aggregated over 8 time steps to

reduce dimensionality (Figure 2.5(d)), which is equivalent to a pooling operation in

the time domain to compress data and reduce the latency of downstream processing.

An L3 neuron’s outputs are encoded using the compressed column storage format

(Figure 2.5(c)). Due to sparsity, the compression results in 64 to 84% reduction in

intermediate data storage.

ST kernels are quantized to 8 bits (Figure 2.6(a)), and their storage requires

108KB, occupying 2.5mm2 area in 40nm CMOS. We observe that the pixel value

difference for 95% of the time-adjacent ST kernels vary within 4 LSB (Figure 2.6(b)).

Therefore, we apply non-uniform delta coding (Figure 2.6(c)) to compress ST kernels
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Figure 2.4: Spatio-temporal (ST) auto-encoder (core) implemented in a 3-layer re-
current network, consisting of configurable sparsity of outputs at different
layers, and configurable feedback iterations.

Figure 2.5: (a) Auto-encoder L1 implementation, (b) Auto-encoder L2 implementa-
tion, (c) Auto-encoder L3 implementation, (d) Temporal pooling of L1
output.

to 4 bits to reducing memory usage by 47.25KB and chip area by 43%. Prior to an

ST convolution, ST kernels are reconstructed by a tree generator (Figure 2.6(a))

2.3 Chip Measurement and Classification Results

A 3.98mm2 sparse ST cognitive SoC chip (Figure 2.7) is implemented in 40nm

CMOS. The chip achieves an effective 1.63TOPS with 0.9V supply at 240MHz. The

performance meets the 60fps 1920×1080 HD video data rate, while dissipating 127mW

(Figure 2.8). The 6-class KTH human action dataset [48] is used for action classifi-

cation testing (600 samples with train/test split ratio of 5:1). With the auto-encoder

extracting the activation response of ST kernels, a softmax classifier implemented on
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Figure 2.6: (a) Time-adjacent ST kernels are compressed to 4 bits, and reconstructed
by a tree generator, (b) Histogram plot of all pixel value deltas for time-
adjacent ST kernels, (c) Non-uniform delta coding quantization diagram.

the OpenRISC processor achieves a 76.7% classification accuracy. Using the same

auto-encoder outputs, an off-chip SVM achieves an 82.8% accuracy (Figure 2.9). Mo-

tion tracking is also prototyped using a simple bounding box regression method based

on the auto-encoder outputs. Compared to state of-the-art vision processors [49,50],

this design offers enhanced capabilities of action classification and motion tracking

using a recurrent network. The design exploits sparse spikes to effectively reduce

workload, demonstrating competitive performance and efficiency (Figure 2.10). The

sparse spatio-temporal SoC is suitable for a range of cognitive processing tasks.
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Figure 2.7: Packaged chip microphotograph.

Figure 2.8: Measured power and frequency at room temperature.
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Figure 2.9: Comparison Of classification accuracy.

Figure 2.10: Comparison with prior work; (a) Power is 127mW at 240MHz (60fps
1920x1080p HD video data rate), (b) Frame size is 1920x1080p HD video,
(c) 1 OP is defined as an 8b multiply or a 16b add, (d) 1 OP is defined
as an equivalent 8b multiply-accumulate (MAC).
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CHAPTER III

Deep Neural Network Accelerator

Deep learning [2] has emerged to be a key approach to solving complex cognition

and learning problems. Deep neural networks (DNNs) in particular have become

pervasive due to their successes across a variety of applications, including image

recognition [16–19, 51], object detection [4, 20], semantic segmentation [21, 52, 53],

language translation [54], audio synthesis [55] and autonomous driving [56]. State-

of-the-art DNNs [4,16–21,51–53] require up to billions of operations and hundreds of

megabytes to store activations and weights. Given the trend towards even larger and

deeper networks, the ensuing compute and storage requirements will prohibit any

real-time, low-power deployment. This challenge has motivated efforts in building

commercial DNN accelerators [57–59]1.

The core computation behind a DNN is the dot product of input activations

and weights. Motivated by the potential performance and energy efficiency gains

of specialized hardware [60–65], many prior works, from both research prototypes

and industrial products, propose specialized hardware to accelerate dense DNN pro-

cessing [57–59, 66–78]. The efficiency of a DNN accelerator is, to a large extent,

determined by the amount and pattern of memory traffic. Eyeriss [69] proposed

a dataflow taxonomy that categorizes different accelerators based on which type of

1Jie-fang Zhang contributed to the architecture, chip implementation and tapeout and Chester
Liu for algorithm and implementation consultation
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data, i.e., weight, input activation, or partial sum is reused over time to illuminate

the traffic patterns and the efficiency of dense convolution architectures.

Recent research has shown that techniques such as quantization, pruning and

re-training can zero out a large number of weights from a DNN without affecting

classification accuracy [23,79]. Input activations to each layer of DNN are also likely

to be sparse due to the commonly-used rectified linear unit (ReLU) that clamps

all negative values to zeros. Recent work has proposed sparse DNN accelerators

architectures to make use of these types of sparsity to obtain higher performance and

better efficiency: Cambricon-X [26] exploits zeros in weights, Cnvlutin [80] exploits

zeros in input activations, and EIE [27] and SCNN [28] exploit zeros in both weights

and input activations for fully-connected layers and convolution layers, respectively.

The key to exploiting sparsity is to align the non-zero weights and activations such

that they can be multiplied together and then accumulated. The architectures that

employ only weight or activation sparsity typically perform the alignment by using

the indices of the sparse operand to index the dense operand, retaining the regular

accumulator structure of the dense accelerators. However, such a simple indexing

scheme does not work when both operands are sparse.

SCNN is the first attempt at exploiting both weight and input activation spar-

sity to improve the performance of sparse convolution computation. By adopting a

Cartesian product-based dataflow, SCNN avoids the index matching complexity but

suffers severely from the large partial sum traffic, leading to high energy cost in the

multi-banked accumulation buffer design and low multiplier utilization due to bank

conflicts. In addition, Cartesian Product-based dataflow requires the multiplier array

to execute input activations and weights of the same input channel dimension, i.e.,

the C dimension, every cycle. With fully-connected and 1×1 convolution layers, the

amount of unique data within a single input channel is quite limited, especially in

the presence of sparse data. As a result, such an architecture cannot be used to ac-
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celerate fully-connected layers and achieves less than 20% multiplier utilization when

accelerating 1× 1 convolution layers [28].

In this work, we propose the Stitch-X architecture that aims to exploit both weight

and activation sparsity and accelerate both convolutional and fully-connected layers

while mitigating limitations of prior sparse architectures. Specifically, Stitch-X makes

the following contributions:

• We highlight that although Cartesian Product-based dataflow avoids the spar-

sity handling logic to align the non-zero weights and activations, it suffers

severely from scattered partial sum accumulation in SRAM, leading to high

energy cost and low multiplier utilization.

• We propose Stitch-X, a novel sparse DNN accelerator with a dynamic Par-

allelism Discovery Unit (PDU) and a multi-level, spatial-temporal reduction

mechanism that efficiently accelerate a diverse range of Deep Neural Network

layers with both sparse input activations and weights.

• We prototype Stitch-X architecture in RTL and evaluate it over a suite of mod-

ern DNNs [16–19]. Our evaluations demonstrate that Stitch-X achieves up

to 4.3× speedup compared to an efficient dense accelerator and 1.6× perfor-

mance with 2.1× energy efficiency improvement over a state-of-the-art, Carte-

sian Product-based sparse DNN accelerator.

3.1 Background and Motivation

This section presents an overview of the fundamental computations in modern

DNNs and the state-of-the-art sparse DNN accelerators. In particular, we take a

deep dive on the trade-off of Cartesian Product-based dataflow. We end this section

with a characterization of different reduction mechanisms in DNN hardware design.
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Figure 3.1: Input activation, weight, and output activation dimensions in DNN pro-
cessing.

3.1.1 DNN Basics

Figure 3.1 shows a nested-loop representation of a convolution formulated as a

nested loop over of an input activation (IA) array and a weight (W) array. The

computation involves the generation and accumulation of partial sums, where the ac-

cumulation process is referred to as reduction. The same formulation also applies to

fully-connected layers that are used in widely in multilayer perceptrons (MLPs) and

recurrent neural networks (RNNs). This work focuses on accelerating both convolu-

tional layers and fully-connected layers considering both input activation and weight

sparsity.

Figure 3.2 illustrates the IA and W data densities, ranging between 41% and 67%,

for four modern DNN networks after pruning with the techniques described in [79]

and tested using Tensorflow [81] on ImageNet [3] without accuracy loss. The high

sparsity in DNN has motivated recent work in DNN accelerator designs to efficiently

skip computation and data movement with zero-valued data.
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Figure 3.2: Average input activation, weight density and the effectual work after net-
work pruning.

3.1.2 Index Matching in Sparse DNN

The fundamental challenge to exploit sparsity in both IA and W operands lies

in the index matching problem, i.e., efficiently searching non-zero reducible pairs in

parallel from sparse IA and W arrays. Reducible IA and W pairs produce partial

sums that can be accumulated to the same final output. Most of the prior sparse

DNN accelerators only skip computation that involves either zero-valued weights or

input activations but not both, e.g., Cambricon-X [26] with sparse weight and Cn-

vlutin [80] with sparse input activation. By working with only one set of sparse

operands, these approaches simplify the sparsity handling logic significantly but fail

to fully benefit from skipping redundant computation and external memory move-

ment for both operands. SCNN [28] is the first hardware accelerator that leverages

sparsity in both input activations and weights in convolutional layers by adopting
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Figure 3.3: Cartesian Product-base dataflow in SCNN.

a Cartesian Product-based dataflow to avoid handling sparse index matching com-

pletely. We discuss the trade-offs in Cartesian product-based dataflow in the next

section.

3.1.3 Cartesian Product-Based Dataflow

SCNN is the first DNN accelerator that adopts Cartesian Product-based dataflow

to exploit data sparsity, as illustrated in Figure 3.3. It exploits a unique property

of convolution that all the activations (IAs) need to be multiplied once with all the

weights (W) of the same input channel to produce the final output, independent of

the processing order. Leveraging this observation, Cartesian Product-based dataflow

adopts an input-channel-last loop order, i.e., the input-channel dimension is the outer-

most loop, and multiplies all the weights and inputs of the same input channel first.

The advantage is that it requires no ordering between the loading of input IA and W
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except that they need to have the same input channel since any pair of them can be

multiplied together, making it appealing for sparse accelerator design. SCNN adopts

this dataflow and multiplies all the combinations of 4 non-zero IAs and 4 non-zero

Ws of the same input channel every cycle and produces 4× 4 partial-sums.

However, the lack of alignment in non-zero IA and W inputs results in a large

number of scattered partial sums produced every cycle, each of which has to be accu-

mulated to a unique output address. This has led to two key limitations of Cartesian

Product-based dataflow. First, it requires a high-bandwidth SRAM to accumulate

all the scattered partial sums every cycle, causing high area and energy overheads.

SCNN provisions a 32-bank accumulation buffer design with a 16 × 32 crossbar to

accumulate 16 partial sums every cycle, taking more than 50% of the total acceler-

ator area. Second, even with a multi-banked accumulation buffer, bank conflict still

occurs frequently since partial sums are randomly scattered across the entire address

space. Whenever a bank conflict happens, the entire processing pipeline stalls until

the accumulation buffer absorbs all the partial sums, leading to low multiplier uti-

lization. In addition, Cartesian Product-based dataflow cannot efficiently accelerate

fully-connected layers as IA in fully-connected layer becomes a vector and there is

only one data element per channel. As a result, SCNN only achieves a maximum of

25% multiplier utilization. Next section quantifies that there is at least 3× energy

efficiency loss in Cartesian Product-based dataflow.

3.2 The Stitch-X Dataflow

Reduction in convolution takes place in three dimensions, R, S and C. Differ-

ent from the input-channel-last loop ordering in Cartesian Product-based dataflow,

Stitch-X adopts an input-channel-first dataflow that always exploits cross-input-

channel, i.e., cross-C, spatial and temporal reduction opportunity first. The reason

is threefold. First, each layer typically has a deep C dimension, in the range of 64 to
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2048, much deeper than R and S, which typically range from 1 to 7. Second, both

convolutional and fully-connected layers can exploit cross-C reduction but cross-R/S

reduction does not apply to fully-connected layers. Finally, cross-C reduction also

simplifies the index matching problem, i.e., instead of doing two-dimension index

matching for both R and S, it only requires a one-dimension index matching along

C. Motivated by the above benefits, Stitch-X employs a multi-level, spatial-temporal,

cross-C reduction dataflow that maximizes the use of SR and local TR while mini-

mizing the use of expensive TR to SRAM.

3.2.1 Spatial and Temporal Reductions

As illustrated in Figure 3.1, each element in output activation (OA) requires

R×S×C accumulations, independent of how the nested loops are ordered. A reduc-

tion mechanism describes how these accumulations are done in hardware. Specifically,

existing DNN architectures perform these accumulations either spatially or tempo-

rally:

Spatial Reduction (SR) performs partial-sum accumulation spatially without

explicit storage during the reduction process. As illustrated in Figure 3.4(a), given

T partial sums, SR is realized using an T : 1 adder tree to produce an output in one

time step (a single clock cycle). DianNao [66] and NVDLA [59] are examples of DNN

architectures that adopt the SR approach. It requires all the T partial sums to be

mapped to the same output but cuts the number of accesses to OA buffer by a factor

of T , reducing OA buffer’s bandwidth pressure and energy cost.

Temporal Reduction (TR) reduces over time by using a single adder to ac-

cumulate one partial sum per time step over T steps, shown in Figure 3.4(b). The

advantage of TR is that it has no requirement on whether the T number of partial

sums contribute to the same address, making it more flexible to handle irregular

computation. As a result, accelerators with two sparse operands, e.g., EIE [27] and
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Figure 3.4: (a) Spatial reduction (SR). (b) Temporal reduction (TR). (c) Normalized
Energy of DNN accelerators with Spatial Reduction (SR), Temporal Re-
duction to RF (TR-RF), and Temporal Reduction to SRAM (TR-SRAM).

Figure 3.5: Reduction mechanisms in state-of-the-art, sparse DNN accelerators.

SCNN [28], tend to use TR. However, every TR requires two accesses, one read and

one write, increasing the bandwidth requirement for the output OA buffer design.

We quantify the energy implications of different reduction mechanism in Fig-

ure 3.4(c). We compare three reduction mechanisms, 1) spatial reduction (SR), used

in DianNao [66] and NVDLA [59], 2) temporal reduction to a register file (TR-RF),

used in ShiDiaoNao [68] and EIE [27], and 3) temporal reduction to an SRAM (TR-

SRAM) that Cartesian Product-based dataflow uses, e.g., SCNN [28]. To make a fair

comparison, all the designs use the same data reuse pattern, i.e., input stationary,
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the same size of W, IA, OA buffers, and the same number of multipliers. We also size

the convolution dimensions based on the buffer size such that no data is refetched

from DRAM. Hence, the only variable under test is the reduction mechanism. We

see that SR is the most energy efficient due to its aggressive reduction of write-back

accesses to OA buffers. TR-RF consumes 1.8× higher energy compared to SR, due to

the additional RF read and write for partial sums. More importantly, we notice that

TR-SRAM, the reduction mechanism used in SCNN [28], exhibits the highest energy

cost at 3.1× SR. TR-SRAM has a significantly higher SRAM energy consumption

since every partial-sum accumulation requires one read and one write access to an

SRAM buffer, which has a much higher per access energy cost than a RF.

As a result, although Cartesian Product-based SCNN achieves a 2.3× energy

reduction compared to its dense baseline — a TR-SRAM-based design [28], it is still

not as efficient as a dense, spatially-reduced accelerator due to the high energy penalty

associated with temporal reduction to SRAM. Such a high overhead is inevitable for

Cartesian Product-based dataflow because the lack of alignment in IA and W makes

a large number of scattered partial sums be reduced temporally in SRAM.

Understanding the intrinsic limitations of Cartesian Product-based dataflow mo-

tivates us to rethink the balance between costs of index matching and reduction. The

key is to devise 1) a reducible dataflow that maximizes the use of SR and local TR

before partial sums reach to OA SRAM, and 2) a low-cost index-matching mecha-

nism that aligns reducible non-zero IA and W together before it reaches multipliers.

We discuss how Stitch-X addresses each of the two challenges in Section 3.2 and

Section 3.3

3.2.2 Multi-Level Reduction

Figure 3.5 illustrates the spectrum of reduction mechanisms adopted by today’s

sparse DNN accelerators. On one end of the spectrum, sparse DNN accelerators that
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leverage only one type of input operand sparsity, i.e., Cnvlutin [80] and Cambricon-

X [26], maximizes the use of SR through a wide adder tree to deliver better perfor-

mance and energy efficiency. In such cases, it is feasible to use the indices of the

sparse operand to directly index the dense one while keeping the wide adder tree

fully utilized. However, attempting to leverage sparsity in both operands exposes the

challenge of finding a sufficient number of reducible W-IA pairs every cycle. SCNN

took the liberal approach of letting independent partial sums be reduced by TR

to SRAM, leading to significant performance and energy penalties due to excessive

SRAM accesses.

Stitch-X applies a multi-level reduction approach that maximizes the use of SR

and TR-RF. As illustrated in Figure 3.5, three levels of SR and TR are employed by

Stitch-X:
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parallel_for(w1 = 0:W1)*(s = 0:S){
  for(h1 = 0:H1){
    for(r = 0:R){
      for(k1 = 0:K1){
        OA_RF = 0;
        for(c1 = 0:C1){
          p_sum = 0;
          // Local Spatial Reduction
          parallel_for(c0 = 0:C0){
            p_sum += 
              LSR(IA[h1,w1,c1*C0+c0])*
              W[r,s,k1,c1*C0+c0];
          }
          // Temporal Reduction
          OA_RF += TR(p_sum);
        }
        // Global Spatial Reduction
        // The CEs with the same (w1-s) 
        // can be reduced.
        OA[h1-r+1,w1-s+1,k1] += 
          GSR(OA_RF);
}}}}

(d)

Figure 3.6: R×S×C convolution. (a) Input Activation (IA) of size H1×W1×C and
Weight of size K1×R1×S1×C. (b) IA is partitioned in its W dimension
and multi-casted in each row of CEs, while Weight is partitioned in its S
dimension and multi-casted in each column of CEs. (c) Each CE receives
a slice of IA and Weight, both of size C, and reduces them locally. The
partial sums from the highlighted CEs in diagonal direction can be further
reduced globally since they contribute to the same output. (d) Stitch-X’s
Dataflow, with C = C0 × C1.

1. Local SR. 1 in Figure 3.5 shows the first-level SR employed by Stitch-X to

perform cross-C reductions. We choose a 3 : 1 adder tree to balance multiplier

utilization and reduction benefit.
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parallel_for(w1 = 0:W1)*(c2 = 0:C2){
  for(h1 = 0:H1){
    for(k1 = 0:K1){
      OA_RF = 0;
      for(c1 = 0:C1){
        p_sum = 0;
        // Local Spatial Reduction
        parallel_for (c0 = 0:C0){
          p_sum += 
            LSR(IA[h1,w1,
                   (c2*C1+c1)*C0+c0])*
            W[0,0,k1,
              (c2*C1+c1)*C0+c0];
        }
        // Temporal Reduction
        OA_RF += TR(p_sum);
      }
      // Global Spatial Reduction
      // The CEs with the same 
      // w1 can be reduced.
      OA[h1,w1,k1] += GSR(OA_RF);
}}}

(d)

Figure 3.7: 1 × 1 × C convolution. (a) IA is still of size H1 ×W1 × C, but Weight
size is K1 × C as R and S are one. (b) IA is partitioned in its W and
C dimensions while Weight is partitioned in its C dimension. Each slice
of Weight is multi-casted in column while each slice of IA is uni-casted
to its corresponding CE. (c) Each CE receives a slice of matching IA and
Weight of size C/3. The highlighted CEs can be reduced globally. (d)
Stitch-X’s Dataflow, with C = C0 × C1 × C2.
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parallel_for(k2 = 0:K2)*(c2 = 0:C2){
  for(k1 = 0:K1){
    OA_RF = 0;
    for(c1 = 0:C1){
      p_sum = 0;
      // Local Spatial Reduction
      parallel_for(c0 = 0:C0){
        p_sum += 
          LSR(IA[0, 0,
                 (c2*C1+c1)*C0+c0])*
          W[0, 0, k1,
            (c2*C1+c1)*C0+c0];
      }
      // Temporal Reduction
      OA_RF += TR(p_sum);
    }
    // Global Spatial Reduction
    // The CEs with the same k2 
    // can be reduced.
    OA[0,0,k2*K1+k1] += GSR(OA_RF);
}}

(d)

Figure 3.8: Fully-Connected Layers. (a) IA becomes a vector of size C while Weight
is a matrix of size K × C. (b) IA is partitioned in its C dimension while
Weight is partitioned in its K dimension and C dimensions. (c) Each CE
receives a slice of matching IA and Weight of size C/3. The partial sums
from highlighted CEs can be further accumulated globally. (d) Stitch-X’s
Dataflow, with C = C0 × C1 × C2, K = K1 ×K2.
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2. Intermediate TR. 2 shows the second-level TR-RF employed by Stitch-X to

accommodate the irregular sparsity in the operands. Although TR-RF not as

efficient SR, it relaxes the throughput requirement of the index matching logic.

3. Global SR. 3 shows the third-level SR employed by Stitch-X to perform spatial

reduction globally. It further reduces the number of accesses to OA SRAM by

grouping the RF write-back traffic streams that go to the same SRAM address.

3.2.3 Mapping DNN layers to Stitch-X

The multi-level reduction dataflow of Stitch-X exploits cross-C reduction that is

common to all types of layers, i.e., R×S×C convolutions, 1×1×C convolutions, and

fully-connected layers. Specifically, Stitch-X adopts a PlannarTiled-InputChannel(C)-

KernelWidth(S)-Spatial dataflow for R × S × C convolutions and a PlannarTiled-

InputChannel(C)-Spatial dataflow for 1 × 1 × C convolutions and fully-connected

layers.

R× S×C convolution is one of the most commonly used convolution layers in

modern DNNs. Figure 3.6 shows an example of how data is streamed to Stitch-X’s

Compute Elements (CE) for R × S × C convolution. Input activation (IA) is of size

H1 ×W1 × C, and weight (W) is of size K1 × R1 × S1 × C, shown in Figure 3.6(a).

We choose PlannarTiled-C-S-Spatial dataflow here because it maximizes the spatial

reduction opportunities across both the input-channel (C) and kernel-width (S) di-

mensions.

Specifically, Figure 3.6(b) illustrates Stitch-X partitions the image width (W )

dimension of IA across rows of CEs and the S dimension of W across columns and

streams a slice of IA and W to each CE. Taking the CE on the upper left corner as an

example, Figure 3.6(c) shows that it gets the slice a of size C from IA and the slice

0, also of size C, from W. The data from the IA and W slices can be multiplied and

reduced together, both spatially and temporally in this CE, to a single piece of output
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data. In addition, the final OA outputs from the highlighted CEs in Figure 3.6(c) can

be further spatially reduced diagonally so that only one output needs to be written

back to the OA SRAM. Figure 3.6(d) illustrates this dataflow in a nested-loop form.

CEs in Stitch-X process slices of IA and W across W and S dimensions in parallel.

Inside each CE, it first multiplies and spatially reduces chunks of data across C0 in

parallel followed by a TR-RF across C1. Partial sums for the same output can be

further reduced spatially across the S dimension cross-CE.

1× 1×C convolution is also widely used in newer networks like ResNet-50 [18]

and Inception layers [19]. Figure 3.7(a) shows the dimensions for 1 × 1 × C convo-

lution. The IA dimension is the same as R × S × C convolution, but W becomes

a two-dimensional matrix of size K1 × C since both R1 and S1 are one. We apply

PlannarTiled-C-Spatial dataflow for 1× 1×C convolution as C is the only available

reducible dimension in the algorithm.

Figure 3.7(b) shows how Stitch-X partitions IA and W across CEs. IA is parti-

tioned in its W dimension across rows of CEs, and both IA and W are partitioned

in C dimension across columns of CEs. Figure 3.7(c) demonstrates which pieces of

IA and W are delivered to the bottom row of CEs. Each CE gets a slice of matching

IA and W of size C/3 which can be locally reduced to a single output. In addition,

the outputs from the highlighted CEs can be reduced globally before writing the final

output to OA SRAM. Figure 3.7(d) illustrates the dataflow in more details.

PlannarTiled-C-Spatial dataflow splits the slice along C dimension into multiple

sub-slices that are processed in CEs in parallel. In this case, CEs with the same w1

can be globally reduced across the C2 dimension.

Fully-connected layers are commonly used in multi-layer perceptrons (MLPs),

recurrent neural networks, and the end of convolutional neural networks for classifi-

cation and prediction.

Different from SCNN [28] that cannot support fully-connected layers, Stitch-X
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continues exploiting cross-C reductions in matrix-vector multiplication. Figure 3.8(a)

illustrates the IA and W dimensions for fully-connected layers. In this case, IA is a

one-dimensional vector of size C, and W is a two-dimensional matrix of size K1×C.

Similar to 1 × 1 × C convolution, we also apply PlannarTiled-C-Spatial dataflow to

fully-connected layer execution as C is also the only reducible dimension. The only

difference is that CEs processes parallel slices of IA and Weight in C and K dimension

instead of C and W because IA becomes a vector.

Figure 3.8(b) shows how Stitch-X partitions the IA vector and W matrix across

rows and columns. Taking the CE on the bottom left corner as an example, Fig-

ure 3.8(c) shows that it gets the c0 slice from IA and 0 slice from W. Both slices are

of size C/3 and can be reduced cross-C into a single output. Similar to the other two

cases, the outputs of the highlighted CEs can also be reduced globally into one final

output. Cross-C reduction still starts with local spatial reduction within a CE and

ends with a cross-CE, global spatial reduction.

3.3 The Stitch-X Accelerator

The second key innovation in Stitch-X is a low-cost, look-ahead Parallelism Dis-

covery Unit (PDU) that dynamically aligns non-zero IA and W pairs. This section

introduces the full Stitch-X architecture and details how PDU works to efficiently

find reducible IA and W pairs.

3.3.1 Architecture Overview

Figure 3.9 shows the top-level diagram of the Stitch-X architecture consisting of

compute, control, and memory modules.

The compute module contains an array of Compute Elements (CEs), Paral-

lelism Discovery Units (PDUs), and a Global Spatial Reduction Unit. Specifically,

Figure 3.10a shows the structure of the compute module and the microarchitecture
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Figure 3.9: Stitch-X microarchitecture overview.

of a CE. Each CE includes three multipliers, a 3 : 1 SR tree, and TR register file to

support local SR and intermediate TR. Each column of CEs share a PDU to find IA

and W pairs of the matching input channel C. The CEs are connected via multiple

parallel horizontal and vertical data buses that distribute IA and W operands.

The memory module includes SRAM to store IA, W, and OA on-chip and a

DRAM controller to access off-chip DRAM. Global buffers store blocks of the IA

and W arrays, each of which are transferred successively to a multi-banked IA and

W local buffer for processing. Each bank of the IA and W local buffer supports data

distribution to a row or a column of the CEs. The banked local buffers accommodate

different data layouts needed to facilitate processing different DNN layers. Stitch-X

adopts a simple run-length-encoding (RLE) mechanism to store compressed sparse

IA and W. A Post-Processing Unit (PPU) applies activation functions, e.g. ReLU,

and compress OA with the same RLE before transferring it back to DRAM.
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(a) Stitch-X’s Compute Module. Each column of Compute Module includes a
Parallelism Discovery Unit (PDU) and an array of Compute Elements (CEs).
The partial sums of CEs are further spatially reduced via the Global Spatial
Reduction unit.

(b) Example of PDU encoding and the CE’s sequence decoding and local spatial
reduction process.

Figure 3.10: Finding reducible IA and W pairs in Stitch-X.

The control module contains three controllers for execution, CE buffer, and

writeback. The execution controller orchestrates the input operand streaming from

the memory module to the compute module and the OA local buffer writeback to

DRAM. The CE buffer controller fetches and delivers operands that are required

for computation. The writeback controller determines the writeback address of par-

tial sums once the reduction is complete. The writeback address is determined by
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performing simple arithmetics on the IA and W indices.

3.3.2 Finding Reducible Pairs

With the Stitch-X dataflow, the index matching problem amounts to finding all

reducible pairs of non-zero IA and W elements of the same input-channel, i.e, C,

dimension. Predetermining the interactions between the two arrays is impossible as

the IA density is statically unknown. Thus, we propose a low-cost, dynamic PDU

that efficiently performs parallel search on IA and W arrays to find matching IA

and W pairs of the same C index. PDU enables Stitch-X to fully exploit the cross-

C reduction opportunity and achieve high multiplier utilization with low area and

energy cost.

PDU finds matching IA and W pairs in two steps: encoding and decoding. PDU

first takes the input channel indices of IA and W stored in the input-channel-first, i.e.,

C-first order and finds the matched IA and W indices, sending them to the target CE.

To decode, a Sequence Decoder in CE decodes the sequences from PDU to extract

reducible IA and W pairs for computation. Since the throughput of the PDU, i.e., N

per cycle, is much higher than the CE’s throughput, i.e., 3 per cycle, a PDU can be

shared across multiple CEs. We discuss the encoding and decoding processes in more

details in the following sections.

3.3.2.1 PDU Encoding

The left part of Figure 3.10a illustrates the microarchitecture of a PDU design.

A PDU operates on a block of N pairs operands at the same time, where it receives

the input-channel index vectors of IA and W, both of size N , as inputs. Internally,

the PDU uses an N ×N comparator array to search for matching IA and W channel

indices in parallel. The comparator array produces a binary output at each junction,

1 for match and 0 for mismatch. For each column, i.e., a unique weight W , at most
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one matching IA can be found, since each weight is multiplied with a unique IA for

the target OA.

An one-hot encoder is connected to each column of the comparator array to find

the row address of the matched IA. Each one-hot encoder produces a valid bit to

indicate whether a match is found and an IA index (IA-ID) to index the matched IA.

The encoded W-Valid and IA-ID sequences are sent to a Sequence Decoder in each

CE to index the reducible IA and W pairs.

3.3.2.2 Sequence Decoding

As Figure 3.10a shows, a Sequence Decoder in a CE decodes the encoded sequence

generated by the PDU and obtains the matching pair of IA and W for multiplication.

Depending on the local SR reduction factor r, the Sequence Decoder scans the W-

valid sequence to find r valid signals that are used directly as the read enable signals

to access the W and IA data registers. At the same time, the positions of these valid

signals are also 1) the positions of the matched W since if the weight is valid, there is

a matched IA found for that W; and 2) the positions in the IA-ID sequence to locate

the matched IA for the corresponding W.

3.3.2.3 An Example

Figure 3.10b shows an example of PDU encoding and decoding, where the PDU

encoder width, N = 5 and the decoding way, r = 3. Starting from the left side

of the figure, the PDU first loads N input channel indices of W and IA since we

always look for cross-C reduction opportunity first. The array of comparators in the

PDU compares W’s and IA’s input-channel indices, producing a 1 (match) for each

matching pair. The one-hot encoder in each column checks the outputs of comparators

in the same column and produces two values: the first is a one-bit value indicating

whether a match is found; the second is the one-hot encoded IA ID indicating which
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IA matches the weight in that column. Taking the first column as an example, since

no matching IA is found for the weight of input channel 0, the W-valid bit of the first

column is 0. For the second column with the weight from input channel 1, the PDU

finds the first IA is also from input channel 1. In this case, W-valid is set to 1 and

the matched IA-ID is 0, indicating row zero is the match. In this particular example,

out of the five Ws and IAs that the PDU checks, it identifies three matching (W-ID,

IA-ID) pairs: (1,0), (2,1), and (4,3) and encodes the results into encoded W-Valid,

IA-ID sequences.

The encoded sequences are sent to a Sequence Decoder. The decoder first checks

the W-valid sequence to find three valid signals — in this case, it finds the 1st,

2nd, and 4th (counting starts from 0) positions contain valid entries. These are

the positions from which we should fetch weight data. In addition, these are also

where we should check the IA-ID sequence to find the corresponding IA indices for

the matched weight. In the example in Figure 3.10b, using the valid positions, the

Sequence Decoder successfully decodes the matched W and IA pairs. This simple

example only shows a unique IA-W pair per IA, i.e., there is a unique weight for

every IA. However, when we run large networks, it is possible that there are multiple

weights of the same input-channel (C) index but different output channel (K) indices

mapped to the same IA. A unique one-hot encoding of IA-ID per weight is required

to differentiate different mapped pairs.

3.3.2.4 PDU Scalability

Both PDU encoding the decoding are easily scalable, i.e., given N IA and W

input-channel indices, the PDU can produce encoded sequences of length N every

cycle. To scale the decoding, we make the Sequence Decoder search for r valid signals

in the W-Valid sequence, so that a maximum of r reducible pairs can be obtained

and reduced using a r : 1 local SR tree in one cycle. In addition, by ensuring that
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Table 3.1: Stitch-X area breakdown.
Area (mm2) Percentage

PDU (N = 64) 0.118 4.3%

Sequence Decoder 0.090 3.3%

MULT (8x3x3=72) 0.032 1.2%

Local SR (3:1) 0.051 1.8%

Global SR (8:1) 0.160 5.8%

OA Local Buffer (4 KB) 0.099 3.6%

IA+W Local Buffer (16 KB) 0.174 6.4%

Global Buffer (128 KB) 1.100 40.0%

Register File (28 KB) 0.843 30.7%

Control 0.081 2.9%

Total 2.748 100%

N � r, we can make PDU a centralized module shared between multiple CEs, so

that each CE requests to the PDU in a time-multiplexed fashion. The actual N and

r parameters depend on the buffer bandwidth, throughput requirements and physical

constraints of the design.

3.4 Experimental Methodology

We implemented the Stitch-X accelerator architecture in SystemVerilog and syn-

thesized it using Synopsys Design Compiler at a 1.0 GHz clock frequency in a com-

mercial 40 nm CMOS technology. We also constructed a cycle-accurate architectural

performance and energy model to explore the design space and evaluate the perfor-

mance of Stitch-X running real-world DNNs.

Architecture model. We constructed a cycle-accurate performance and energy

model based on detailed hardware characterization. We use the performance model

for three purposes: 1) to evaluate the performance of the Stitch-X prototype running

representative DNNs with IA and W extracted from Tensorflow to faithfully capture

the sparse data patterns; 2) to explore the design space of Stitch-X by sweeping
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Figure 3.11: Overall performance improvement of Stitch-X compared with
Cambricon-X, Cnvlutin, and SCNN, running a range of modern
DNNs: (a) AlexNet, (b) VGG-16, (c) Inception-v3, and (d) ResNet-50.
Performance is normalized to a dense SR accelerator baseline. The
multiplier utilization of Stitch-X is plotted on the right Y-axis.

hardware parameters, e.g., on-chip SRAM capacity, bandwidth, PDU encoding width,

and register file sizes; and 3) to generate runtime activity counts of operations and

accesses to memory modules. These counts are inputs to our loop-based energy

model to obtain the energy consumption of executing a DNN layer. We build the

energy model following the same methodology described in [69, 82] with a detailed

energy characterization of hardware components of Stitch-X, including SRAMs, RFs,

multipliers, adder trees, local and global SR, and PDU, based on RTL synthesis

results.

Design space exploration. We use the performance-energy model to explore

different design choices for Stitch-X. Specifically, we explore three aspects of Stitch-X

design: 1) compute throughput, including reduction factors, both locally and globally,

and the dimensions of the CE array, 2) memory sizes, including on-chip SRAM sizes
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and their bandwidth, and 3) PDU throughput, including the width of PDU and

how a PDU is shared across CEs. We explore different design parameters with our

performance and energy model and evaluate a wide range of real-world networks

(Section 3.5.1). Table 4.1 lists the specific parameters we choose in our design that

delivers high energy efficiency under the area envelop.

In addition, to quantitatively evaluate Stitch-X performance compared with other

architectures, we extend our modeling framework to capture the designs of other

sparse accelerators, e.g., SCNN, Cambricon-X, and Cnvlutin, validated our models

against the published results.

Hardware implementation. Table 4.1 shows the area breakdown of the key

components in the final Stitch-X implementation. Stitch-X’s compute module consists

of an 8×3 grid of CEs, a PDU per column of CEs, and a global spatial reduction (GSU)

unit. Each CE has three 16-bit multipliers and a 3 : 1, 48-bit adder tree for local SR.

A 1.15 KB register file is allocated per CE for storing IA, W, their coordinates, and

the PDU encoded sequence. The global SR is done by the GSU that includes a 4 KB

register file to store reduced partial sums. The parallel search overhead of Stitch-X,

i.e., PDU and sequence decoder, together occupy only 7.6% of the total area, much

lower than the decoding overheads reported in previous work [26].

3.5 Evaluation

We first demonstrate Stitch-X’s performance by evaluating over real-world DNN

workloads, compared with state-of-the-art sparse accelerators. We then analyze the

performance and energy efficiency of Stitch-X at different IA and W densities. Fi-

nally, we discuss two important design parameters and their impacts on Stitch-X

architecture: OA buffer bandwidth and PDU encoder width.
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(a) Speedup (b) Energy

(c) Energy-Delay Product

Figure 3.12: (a) Performance comparison of Stitch-X, SCNN, and Oracle. (b) Energy
comparisons of Stitch-X and SCNN. (c) Energy-Delay Product Improve-
ment of Stitch-X over SCNN. Energy is normalized to the same efficient
dense baseline with SR. X-axis indicates W and IA densities. We choose
a layer that fits entirely in on-chip SRAM to focus the comparison on
microarchitecture differences.

3.5.1 Overall Performance

Figure 3.11 shows the overall performance of Stitch-X running a range of modern

DNNs, i.e., AlexNet [16], VGG-16 [17], Inception-v3 [19], and ResNet-50 [18]. For

each network, we evaluate the speedup performance of Stitch-X and state-of-the-art

sparse accelerators, e.g. Cnvlutin, Cambricon-X, and SCNN, over an efficient dense

SR baseline. The Oracle performance shows the maximum achievable speedup by

exploiting both input activation and weight sparsity in these networks, i.e., divide the

total number of non-zero multiplications by the number of multipliers in the design.

We also plot Stitch-X’s multiplier utilization for each layer on the right Y-axis.

Stitch-X achieves a 3.8× average speedup over the dense baseline while main-
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taining on average 74% multiplier utilization, across all the networks evaluated. In

addition, Stitch-X significantly improves the performance of fully-connected layers of

AlexNet and VGG-16 shown in Figures 3.11(a) and (b) and 1×1 convolution layers of

ResNet-50 and Inception-v3 shown in Figures 3.11(c) and (d), both of which are typ-

ically neglected in existing sparse DNN accelerators. Compared with previous sparse

accelerators, Stitch-X achieves 2.0×, 1.8× and 1.6× average speedup improvement

over Cambricon-X, Cnvlutin and SCNN, respectively. To highlight the effectiveness

of Stitch-X in exploiting sparsity in DNNs, we use the metric Proximity to Ora-

cle Speedup (PTOS) to measure the percentage of achieved speedup over the oracle

speedup. Stitch-X achieves a PTOS of 77.4%, while SCNN only achieves a 48.4% for

the benchmarked networks.

3.5.2 Sensitivity to Network Sparsity

Performance. Figure 3.12a specifically compares the performance of dense SR,

SCNN, Stitch-X, and Oracle, sweeping W and IA densities. We also use the PTOS

metric to compare the effectiveness of Stitch-X over SCNN in executing sparse DNN

computation. Stitch-X achieves a PTOS of 97% at 1.0/1.0 density and sustains at

least 75% PTOS until the density drops to 0.3/0.3, while the highest PTOS achieved

by SCNN across all densities is only 79%. At lower densities, Stitch-X shows a dimin-

ishing speedup since we provision 4 parallel accesses for the Stitch-X’s OA buffer while

SCNN has 32. Conceptually, when the input data is extremely sparse, the writeback

to the OA buffer becomes more frequent even with multi-level reduction. However,

less than 20% density for both weights and input activation is highly uncommon in

modern networks, whose the typical density range (also the target of Stitch-X’s de-

sign) is 40% to 60%, as shown in Figure 3.2. In the typical case of 0.5/0.5, Stitch-X

delivers 1.5× better performance than SCNN while the maximum achievable speedup,

i.e., oracle speedup over SCNN, is only 1.75×.

43



Energy. Figure 3.12b shows the energy breakdown of Stitch-X and SCNN nor-

malized to the dense SR design for different IA and W densities. For a typical network

density of 0.5/0.5, Stitch-X delivers more than 3.0× better performance than the

dense SR baseline while consuming the same energy, leading to an overall 3.0× im-

provement in energy-delay product. When the data is completely dense, i.e., 1.0/1.0,

Stitch-X dissipates 2.4× higher energy than the dense SR baseline. The reason is

twofolds: 1) as discussed earlier, Stitch-X uses an intermediate TR level to ease the

throughput requirement of index matching, but when it comes to executing fully

dense data, TR is less efficient compared to SR; 2) Stitch-X needs the PDU and in-

dex storage for sparse data handling, introducing extra energy cost. As data becomes

sparser, Stitch-X makes more efficient use of memory and compute resource, leading

to better energy scaling. On average, Stitch-X achieves 1.1× better energy efficiency

compared to our dense SR baseline. Compared to SCNN, in the fully dense case,

Stitch-X is 1.7× more energy- efficient due to the inefficiency of TR-SRAM-based

dataflow, as discussed in Section 3.2.1. As a result, Stitch-X achieves an average of

1.4× energy efficiency improvement over SCNN across all data densities.

EDP. To better compare the energy and performance improvement together, we

use the energy-delay-product (EDP) as the metric to evaluate the overall efficiency.

Figure 3.12c shows the EDP improvement of Stitch-X compared to SCNN. Stitch-X

sustains more than 2× EDP improvement over SCNN from fully-dense case to 0.3/0.3

W/IA density. Stitch-X fundamentally addresses both the performance and energy

limitation in SCNN design and proposes an efficient sparsity handling mechanism to

significantly improve the overall execution of sparse DNN accelerators.

3.5.3 Sensitivity to OA Buffer Bandwidth

We quantify Stitch-X’sensitivity to OA buffer bandwidth by sweeping the the

bandwidth and measuring the achieved performance at different data densities. Fig-
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Figure 3.13: Sensitivity to the output activation buffer bandwidth.

ure 3.13 presents the effect of the OA buffer’s bandwidth on Stitch-X’s performance.

The Y-axis plots relative speedup over Stitch-X performance with OA buffer of

BW = 1 on fully dense data. Stitch-X’s multi-level reduction dataflow fully exploits

reduction opportunities to significantly reduce the number of parallel accesses to OA

buffer. When the data is relatively dense (¿ 0.7/0.7), even a single-port OA buffer

is sufficient to achieve the ideal speedup. When data density drops below 0.6/0.6, a

single-port OA buffer causes stalls due to bank conflict. Although a 2-way banked OA

buffer is sufficient to meet the network’s bandwidth requirement at typical workload

of 0.5/0.5 density, we implement a 4-way banked OA SRAM in our design to achieve

higher speedup for both high and low density workloads.
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3.5.4 PDU Time-Multiplexing

Similar to the size of instruction window in the out-of-order processor, the width

of PDU’s comparator array plays an important role in the number of reducible IA-W

pairs that can be found every cycle. For a fixed data density, a wider PDU typically

produces a larger number of IA-W pairs, leading to higher multiplier utilization. At

the same time, building a wide PDU for each CE can be expensive as PDU’area grows

quadratically with its width. One nice property of PDU is that it can be easily shared

with multiple CEs and time-multiplexed during its execution. Specifically, we explore

four different PDU sharing strategies with the same overall PDU throughput: 1) no

sharing, every CE gets its own PDU of width 8, 2) two CEs share a PDU of width

16, 3) four CEs share a PDU of width 32, and 4) eight CEs share a PDU of width 64.

Figure 3.14 captures the trade-off in area and speedup of the above four designs

executing ResNet-50 [18]. We only sweep the encoder width from 8 to 64 as wider

PDU cannot be synthesized with the same timing constraint. We see that the design

PDU of width 64 shared between eight CEs improves the overall performance by 70%

with a 55% area increase. The PDU time-multiplexing mechanism scales the total

PDU area linearly instead of quadratically, making it possible to design wide PDU,

i.e. Stitch-X uses PDU of width 64, for higher hardware utilization.

3.6 Conclusion

This work presents a comprehensive characterization of Cartesian Product-based

dataflow, highlighting its intrinsic limitation in achieving high performance and en-

ergy efficiency. To address its limitation, we propose Stitch-X, a sparse DNN ac-

celerator architecture that efficiently exploits unstructured sparsity in both input

activations and weights. Stitch-X builds Parallelism Discovery Unit, a dynamic, low-

cost index matching mechanism, to align non-zero pairs of IA and W so that they
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Figure 3.14: Design space exploration of different PDU time-multiplexing strategies.

can be reduced before reaching the output SRAM. Stitch-X also makes use of a

multi-level reduction mechanism consisting of local spatial reduction, intermediate

temporal reduction, and global spatial reduction to significantly reduce the writeback

traffic to SRAM, fundamentally improving the energy consumption and performance

over state-of-the-art sparse DNN accelerators. Stitch-X’s flexible spatial reduction

supports a variety of convolutional and fully-connected layers, making it more ver-

satile than prior designs. Evaluated with modern DNN workloads, Stitch-X achieves

more than 1.6× higher performance and 2.1× energy efficiency than a state-of-the-art

sparse accelerator.
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CHAPTER IV

Domain-Specific Architecture Modeling

Framework

4.1 Introduction

This section presents the ERA framework, a systematic design framework for

RTML accelerators. The design is done in four steps as illustrated in Figure 4.1:

¶ an RTML accelerator architecture model is designed based on the HANA archi-

tectural template using parameterized module instances from PyHLM’s component

library; · the RTML accelerator’s instruction set is defined based on the referenced

PyHLM components and the customizable compiler template; ¸ an RTML program

is compiled and compressed as instruction binary mapping onto the RTML acceler-

ator architecture model, and the entire model is simulated by PyHLM’s back-end;

and ¹ the RTML accelerator architecture’s performance is evaluated and the system

parameters are optimized using the PyHLM Design Explorer. The ERA design steps

¶ and · are supported by HANA, and the ERA steps ·, ¸ and ¹ are supported

by PyHLM1.

We envision our hardware platform will feature a RTML accelerator to perform

application acceleration and a host processor to configure and stream instructions in

1Haolei Ye contributed to PyHLM and HANA and Junkang Zhu contributed to the ERA-VOT
implementation and benchmarking
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Figure 4.1: Four systematic steps of ERA’s architecture modeling framework for
RTML accelerator design.

run-time to the accelerator for executions. We showcase ERA-VOT: a 64-core visual

object tracking (VOT) accelerator designed following the ERA design framework.

4.2 RTML Design Patterns and Templates

RTML is the cornerstone of real-time cognition and learning systems for robotic

navigation [83], autonomous driving and augmented realty/virtual reality. A state-

of-the-art RTML application typically contains three types of processing patterns:

• Feature extraction (front-end): shown in Figure 4.2(a), normally implemented

by deep neural networks (DNNs). SIMD architectures are popular for feature
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Figure 4.2: Three processing patterns seen in a RTML program: (a) SIMD pattern
is the most advantageous for well-structured data-parallel processing, (b)
scalar with VLIW extension pattern best captures data-dependent pro-
cessing, (c) vector DSP pattern is suitable for programs with a mix of
DLP and ILP processing.

extraction due to the inherent data level parallelism (DLP). Static (compile-time)

scheduling is essential for achieving high performance and energy efficiency.

• Reinforcement (back-end): shown in Figure 4.2(b), incorporates statistical ap-

proaches such as Kalman filters [84], Particle Filters [85], or advanced reinforcement

learning [86] techniques. Scalar processors with VLIW extensions are the most

suitable for accelerating this class of processing by extracting the instruction-level

parallelism (ILP).

• Traditional ML processing (middle-end): shown in Figure 4.2(c). Accelerat-

ing traditional ML learning and inference requires exploiting both DLP and ILP.

Vector DSP architectures that can support both SIMD and VLIW are the ideal

candidates.

The diverse processing patterns make it difficult to develop one fixed hardware ar-

chitecture and one fixed set of instructions to bring about the versatility, performance,

and energy efficiency required for RTML.
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4.2.1 Design Patterns

Architecture design patterns, as described in [87], are the templates that are

representative of a variety of common parallel and non-parallel compute patterns.

They are the generalizations of computing structures to allow target programs to be

adequately and optimally mapped to achieve high performance and energy efficiency.

Recent work on design patterns primarily targets DL models [3, 4, 88, 89]. DL

computation typically follows deterministic, offline models. These DL design patterns

are optimized for efficient data streaming and reuse by taking advantage of DL’s well-

established memory access. However, RTML consists of not only offline models, but

also online learning algorithms [5, 6] to dynamically adapt for robust performance.

Consequently, the prior DL design patterns are inadequate for RTML.

The ERA framework provides Hardware Aligned Nano-service Architecture (HANA):

a set of hardware and software architecture design patterns and templates specifically

targeting high-performance RTML. HANA contains three important components:

• A decoupled-operator dataflow pattern to provide high performance and flexible

architectural construction to support ERA design step ¶.

• A peer-to-peer (P2P) compute-store pattern for efficient parallel process mapping

and hardware scale-up to support ERA design step ¶.

• A flexible and custom-defined instruction template for the agile development of

decoupled operators and its processing elements to support ERA design step ·.

4.2.2 Decoupled-operator Dataflow

To meet the “real time” in RTML and the diverse processing modes, HANA

adopts a decoupled-operator dataflow architecture to support both high performance

and low latency, and yet offer the flexibility to adapt to different processing modes
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Figure 4.3: (a) Illustration of a dataflow graph (DFG), a process-level graph and a de-
coupled NanoOP-level graph representation of a RTML program. (b) A 5-
stage CPU architecture model following the decoupled-operator dataflow.

from scalar to vector-SIMD and VLIW. Inspired by early works on dataflow architec-

tures [90] and decoupled access execute [91], the decoupled-operator dataflow archi-

tecture embeds decoupled execution in a dataflow paradigm. Decoupled execution en-

ables concurrent execution to hide latency, while dataflow provides high throughput,

low latency, and a simple flow control. Figure 4.3(a) shows the decoupled-operator

dataflow paradigm. A dataflow diagram (DFG) representing a RTML program can

be divided as ordered-processes and these processes are further separated as decou-

pled operators. Specifically, the decoupled-operator dataflow pattern contains the

following essential elements:

• Nano-operator: or NanoOP, is the generalized decoupled instruction. There are

three types of NanoOPs depending on its function: execution (E-type), transaction

(T-type) and messaging (M-type). A RTML program is decomposed to decoupled

NanoOPs that can be executed concurrently. NanoOPs are coarse-granular exe-

cution units to enable a high mapping and processing efficiency. A NanoOP is

represented by a single instruction or a set of instruction sequences. Note that in

the following, we will use NanoOP and its representing instruction interchangeably.

• Node: responsible for processing NanoOPs, i.e., executing instructions. Specifi-

cally, there are two types of nodes: 1) runner node that dispatches sequences of
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NanoOPs; and 2) service node that executes NanoOP sequences. A node corre-

sponds to a hardware module, or a part of a hardware module.

• Channel: A channel refers to a set of FIFOs to allow the data exchange between

nodes as well as between nodes and a host.

• Flow control: As in a typical dataflow, data transactions are implicitly dependent

on the availability of data and the pre-set trigger conditions. This approach foregoes

explicit control, and allows a simple flow following node connectivity.

In Figure 4.3(b), a simple example of a 5-stage pipelined in-order CPU architecture

model is shown based on the decoupled-operator dataflow. Each execution stage of

the CPU is represented by a pair of service node and runner node. A runner node

parses NanoOPs to provide data addresses. At the IF, ID and EX stages, the runner

nodes dispatch E-Type NanoOPs to the corresponding service nodes; and at the

MEM/WB stage, a runner node dispatches T-Type NanoOPs to conduct transactions

with memory and another runner node to dispatch M-Type NanoOPs to message

external parties to the CPU. Channels connect all the nodes together. The decoupled-

operator dataflow is an abstract architecture model and it captures the behavior of

general DFG programs. The architecture model can be constructed and simulated

by PyHLM discussed in Section 4.3.

The decoupled execution and dataflow provide low-latency and high-throughput

execution. The decoupled-operator architecture is sufficiently flexible to allow nodes

to operate in parallel or in series. NanoOPs operating on parallel nodes can be SIMD

or MIMD to support diverse processing modes. E-Type and T-Type NanoOPs can

be mapped to nodes by a compiler to support static processing models; and M-Type

NanoOPs can be used to dynamically message connected nodes to provide run-time

coordination.
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4.2.3 P2P Compute-Store Hardware Pattern

The decoupled-operator dataflow is an abstract architecture model, but it can be

readily translated to a set of hardware patterns to make it implementable. Akin to

decentralized P2P networks and services rest, a P2P compute-store is a distributed

cache-less memory design pattern that allows for flexible integration and scale-up.

Nodes or group of nodes can be readily mapped to “peers”, and channels can be

implemented as physical FIFOs, queues, wire connections, or shared memory. In the

following, we describe the hardware patterns that are used for physical implementa-

tion.

• Peers: As shown in Figure 4.4(a), a peer (in the context of P2P) implements one

or a collection of service and runner nodes, including the required channels. A

peer is a physical compute-store. A peer can contain service nodes (e.g., multiply-

accumulates (MACs), arithmetic logic units (ALUs)), runner nodes (e.g. instruc-

tion decoders and generators), and channels (e.g. FIFOs and memory).

• Memory and data mapping: The store within a peer is made of distributed

memory blocks that provide compute with local memory access determined at

compile time. Each block can also be referenced for external memory transactions

in run time. Data mapping in memory locations takes into account data locality.

As shown in Figure 4.4(b), data required by local compute in a peer are prioritized

to be allocated within the peer to avoid data movement across peers. For dynamic

workloads, data are mapped in neighboring memory to minimize movement and

the access to the external memory.

• Scaling up: The P2P compute-store pattern can be scaled up to fit a given problem

size, a required degree of parallelism, and a particular depth of operator dependency

in a RTML program. As shown in Figure 4.4(c), peers can be grouped into clusters
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to exploit an increased level of locality. In addition, peer clusters can be joined by

routers.

• Synchronization: The decoupled operators can be viewed as parallel threads

making concurrent progressions. The NanoOP ordering and inter-node messaging

are critical to the potential performance bottlenecks. Figure 4.4(d) shows the ab-

stract method for synchronization support using special annotations in compilation

and a special message queuing structure. The specifics will be discussed in Section

4.4.3.

4.2.4 Custom-Defined Instructions

RTML applications span a wide range, and its rapid progression require that the

hardware adapt to not only a wide application space but also the evolving RTML al-

gorithms. Therefore, the instructions need to be custom-defined, and even modifiable

after the hardware is designed and fabricated. As the instructions are streamed from

a host processor to the RTML accelerator during run-time, they need to be flexible

and efficient. The following describes HANA’s templates for designing, compressing

and evolving instructions.

• Flexible instructions: A NanoOP is a basic execution unit under HANA’s

decoupled-operator dataflow architecture. A NanoOP is represented by a variable-

field, variable length (VFVL) instruction that consists of multiple fields to repre-

sent the sequencing pattern for compute and data access needed for completing

the NanoOP. The length of the instruction is variable depending on the operation

complexity, and the fields are also variable for instruction streaming efficiency. As

shown in Figure 4.5(a), a compiler template is provided for users to define the

operator formats.
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Figure 4.4: The P2P compute-store hardware pattern: (a) Peer structure, (b) locality
of a 2D matrix from row to column; data allocation on Peers is prioritized
to reduce data footprint, (c) example of clustering Peers and scaling using
an interconnect topology, and (d) high-performance P2P synchronization
with compiler annotation and synchronization tag.

• Instruction compression: To provide efficient instruction streaming, compres-

sion is applied to the compiled instruction binary at the host and the instruc-

tions are decoded at the RTML accelerator interface. Compression is done by

de-serializing instructions into bytes and parsed in order using the variable integer

encoding (varint) as described in Google Protobuf [92]. Figure 4.5(b) demonstrates

more than 90% compression rate for the three types of NanoOPs in HANA.

• Instruction evolution: After a RTML accelerator is fabricated, the instructions

can still be modified to adapt to new applications. In order to achieve cross-stack

56



Figure 4.5: The custom-defined instructions tempalte: (a) a template for flexible in-
struction design, (b) custom-defined instructions are compressed using
varint encoding, (c) four steps in deploying an updated schema to mod-
ule interfaces and streaming compressed data within the system.

compatibility, the Google Protobuf API is integrated within our compiler template

to provide instruction descriptions. The API converts custom-defined instructions

to a dictionary structure called schema. A schema is the decoding lookup and is

portable to the RTML accelerator and other IPs within a system.

Figure 4.5(c) illustrates aspects of the programmable schema deployment, and

streaming of instructions from a host processor to the RTML accelerator. HANA’s

flexible instruction design combined with the infrastructure for instruction compres-

sion and evolution represents a systematic approach towards ISA development for

RTML accelerators.

4.3 Modeling and Simulation

Specialized computing architectures can be complex, involving both hardware and

software.PyMTL [93] is a representative open-source Python-based hardware genera-

tion, simulation and verification tool. PyMTL encapsulates multi-level modeling, but

it does not permit a close-loop application development, e.g., program-level compi-

lation, transaction-level (TLM) modeling [94], and hardware-software co-design. In
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Figure 4.6: The PyHLM toolchain: (a) PyAssembly code structure with automatic
NanoOP vector syntax compatibility, (b) automatic SIMD syntax com-
patibility, (c) automatic API conversion from PyAssembly to PySTL, (d)
PyHLM IDE interface for design visualization and debugging.

essence, PyMTL is limited to modeling hardware only. Similarly, Aladdin [95] and

DeepBurning [96] are well established architecture simulation, however, the former

does not support software-level co-optimization levers and the latter only focuses on

neural network accelerator generation. To the best of our knowledge, no current high-

level modeling (HLM) tool provides both software and hardware modeling levers for

developers to systematically design and jointly optimize an architecture for its target

application’s performance.

Observing the previous gaps in HLM tools, a new framework need not only retain

the qualities of the past, but needs to be developed to emphasize the modeling and

simulation of both hardware and software. Such a HLM tool provides the following

essential features: 1) high-productivity language constructs to enable a simple archi-

tecture abstraction; and 2) cross-stack modeling of hardware-software interactions.

Towards these goals, the ERA framework provides PyHLM, a new Python-based
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HLM toolchain for RTML architecture modeling, compilation and design space ex-

ploration. PyHLM consists of three key components:

• Model construction based on a parameterized component library for the decoupled-

operator flow to support ERA design step ¶.

• A flexible compiler allowing custom-defined instructions to fit the underlying hard-

ware while adapting to changes in the programs to support ERA design step ·

and ¸.

• A Python-based simulation engine, an integrated design environment (IDE) for

debugging, and a design-space explorer for selecting the optimal system parameters

to support ERA design step ¹.

4.3.1 High-Level Model Construction

PyHLM provides a basic component library called BaseLib. BaseLib contains all

the parameterized components of HANA’s decoupled-operator dataflow. Three main

classes of components make up the BaseLib: 1) nodes: correspond to the nodes in

the decoupled-operator dataflow; 2) ports: I/O gateways that define the transactional

behavior between nodes; and 3) channels: correspond the channels in the decoupled-

operator dataflow.

In simulating the architectural model, the instruction executions are distributed

to individual node instances. Each node also enforces inter-node synchronizations and

performs data exchanges.By default, a channel operates like a FIFO, and data-driven

exchange is simply operated by “put” and “get” to/from the FIFO.

4.3.2 Compilation Tool

PyHLM supports HANA’s compiler template and provides a compiler to generate

the NanoOP-level instructions for the target hardware platform.Software-hardware
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Figure 4.7: The four stages of the OPCF visual object tracking pipeline.

co-design has been historically difficult for custom accelerators due to the lack of

flexible compiler support and interaction with the underlying architecture. To reduce

the deployment effort of a RTML program, the PyHLM compiler provides two levels

of language constructs:

• textbfPyAssembly is an assembly-like low-level programming language that is po-

sitioned to co-design the NanoOP instructions with the underlying hardware. A

PyAssembly program snippet consists of two main sections, as shown in Figure

4.6(a): data for memory that requires allocation during compile time, and text

for functions and program routines. The PyHLM compiler features automatic in-

struction field derivation (AIFD) to allow automatic vector and SIMD extensions

as shown in Figure 4.6(b). Specifically, the same set of instructions could be eas-

ily deployed on multiple processing elements by simply wrapping the original code

within a SIMD task bracket, significantly reducing the recurring effort in modifying

the instruction extensions during prototyping phases.

• PySTL is an automatically generated Python API, allowing developers to infer

loops, methods and any other Pythonic syntax to easily develop higher-level pro-

grams. The value proposition of this language construct is facilitate rapid program

construction, especially in early stages of an RTML algorithm development. Figure

4.6(c) shows an example of using PySTL to construct the program as opposed to

using PyAssembly. Obviously, PySTL is more efficient in tracking the changes at
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the program-level, while PyAssembly can be fine tuned to reflect the changes of

the underlying hardware and NanoOp instructions. PySTL improves instruction

streaming, code readability and re-usability, reducing the line-of-code (LOC) by at

least 3.6×, and more significantly, reducing the compilation time by three orders

of magnitude compared to the same program constructed using PyAssembly.

4.3.3 Architecture Simulation

A complete architecture model can be simulated by PyHLM. PyHLM’s simulator

consists of three parts:

• PyHLM simulation engine is based on Python. It invokes a simulation body

denoted as a session, wherein all module instances within the model are elaborated,

linked to a single TopModule class and attached to the session’s processing queue

for asynchronous execution. Upon initiation, the session will gather all instructions

stored in each node and place them in a task list. The simulator goes through the

instructions in a round-robin fashion. A single iteration is defined as a step, which

is the simulation granularity of PyHLM.

• Design space explorer utilizes the logged transactional states of each respective

node to assist the iterative design parameter selection process. The design space

exploration will be explained using an example in Section 4.5.4.

• Integrated design environment (IDE) allows all nodes and their states to be

visualized and re-played at any step. Figure 4.6(d) shows PyHLM’s IDE interface,

displaying not only the intermediate values of each node instance, but also data

traffic hotspots.
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4.4 ERA-VOT Accelerator

We use a visual object tracking (VOT) accelerator as an example to demonstrate

the result of a full-fledged RTML system designed in the ERA framework. We will

refer to this design as the ERA-VOT accelerator and we focus on its microarchitecture

and the system parameter optimizations.

4.4.1 Visual Object Tracking

Modern DL-based object detection algorithms [4,88,89] are often used in conjunc-

tion with VOT to handle frame-to-frame dependencies and real-world non-idealities,

e.g. occlusion, scale-change, rotation, illumination change and motion blurring. The

VOT-enabled object detection is faster and more efficient.

Based on state-of-the-art VOT algorithms [5,6], we present a new VOT processing

pipeline named oriented-particle correlation filter (OPCF). OPCF handles real-world

non-idealities, e.g. occlusion, motion blur etc., via online adaption and reinforce-

ment. OPCF is a representative example of an RTML algorithm. Specifically, OPCF

features a mix of unsupervised learning and Bayesian inference techniques, and an

OPCF implementation requires learning and inference to be conducted in real time.

Figure 4.7 provides a high-level overview of the OPCF algorithm pipeline, which con-

sists of four main computation stages: 1) deep feature extraction; 2) kernel correlation

filter (KCF) training and inference; 3) KCF adaptive boosting; and 4) particle filter

(PF) reinforcement.

Provided with an initial region-of-interest (ROI) of the target object, features

within the ROI are extracted by a convolutional autoencoder. The extracted features

are used in run time to train multiple KCFs that serve as discriminators for the

target. The KCF correlation responses are inferred across consecutive frames. By

aggregating all responses from multiple KCFs, the peak response denotes the most

probable object location. Taking into account the confidence level of individual KCFs,
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Figure 4.8: An example ERA-VOT accelerator architecture: (a) an example accel-
erator design using 16-Peer compute-store architecture organized using
a 2-layer 4-ary fat tree NoC topology, (b) Peer microarchitecture, (c)
SoftMem design and shadow buffer mechansim, (d) runner design.

the responses are adaptively boosted and bootstrapped with a particle filter (PF) to

leverage historical motion vectors of the object to further reinforce the detection

accuracy whenever dynamic motion is triggered.

OPCF’s pipeline stages encapsulate all of the RTML processing patterns described

in Section 4.2. In order to efficiently accelerate this complex algorithm pipeline, we

present a RTML accelerator architecture design in the next section.

4.4.2 Top-Level Architecture

Figure 4.8(a) shows a possible implementation of the VOT accelerator following

HANA design patterns. For example, an implementation of the VOT accelerator can

consist of 16 identical peers. Each peer contains 4 processing cores as service nodes.

Peers can be organized into groups of four and connected to a network-on-chip (NoC)

via a router and arbiter interface. The interconnect is organized as a 4-ary fat tree,

accommodating the aggregate data bandwidth requirement at the interface of the

accelerator.

The accelerator communicates externally via a standard AXI interface for data

transactions and a process scheduler interface for instruction packet distribution and

parameter configuration. The process scheduler is made of a pre-decoder that checks

the header packets sent from the host for the process identifiers in order to determine
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the peers that will receive the instructions. The scheduler acts to reduce the com-

munication traffic needed for instruction streaming. External data requests are made

through a transaction runner node, which not only acts as a decoupled DMA for

sequence generation, but also implements request coalescing and burst transactions

to improve NoC fabric efficiency.

4.4.3 Parameterized Peer Design

Peers are decentralized compute-store units, and each consists of both service

nodes and runner nodes. As an example illustrated in Figure 4.8(b), a peer can be

internally organized in 4 service nodes, i.e., 4 SoftPEs that share a single SoftMem,

and a set of runner nodes for execution-type (E-runner) and messaging-type (M-

runner) NanoOPs. The peer microarchitecture implements either SIMD for parallel

processing modes, or VLIW and scalar processing for all the other processing modes.

Data and instructions are distributed to SoftMem and exchanged between peers via

router and arbiter interfaces.

The components of a peer are described in detail below.

• Runner is a NanoOP sequence generator for read and write data addresses to

SoftMem to trigger SoftPE executions. Figure 4.8(c) shows an implementation

of a runner. Runners use variable-loop-depth counters with programmable base,

bound and stride to support different memory access patterns such as bound wrap-

around and incremental striding. A runner sequences NanoOPs in lock-step or

independently depending on whether it is SIMD or VLIW processing.

• SoftPE is part of a service node. For VOT processing, an implementation of a

SoftPE can contain a 16-bit pipelined floating-point ALU core for arithmetic and

binary operators. The SoftPE can be run-time configured to either floating-point

or integer modes. A SoftPE contains reuse buffers to efficiently handle recurrent
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dependency patterns (e.g. MAC, reduction). The reuse buffers are enabled by the

PyHLM compiler upon recognizing such patterns in the program or when specified

by the programmer.

• SoftMem is shared by SoftPEs. In one implementation, a SoftMem can be a

multi-block multi-ported register files (RFs), serving as a data store for the Soft-

PEs and the NoC for handling P2P data exchange. The SoftMem is designed to

contain multiple memory banks, with each bank primarily serving a single SoftPE.

SoftMem’s internal address space is configurable, allowing virtual allocation of ad-

dress spaces for all SoftPEs within a peer. A SoftPE can access data that are not

physically allocated to its bank.

• Shadow buffer is a FIFO for resolving synchronization in P2P messaging and load

ordering without incurring the high cost of memory store duplication. A shadow

buffer interfaces with SoftMem. Figure 4.8(c) shows the process in determining

whether the messages from the shadow buffer are allowed to be written to the

SoftMem to guarantee synchronization. Specifically, if an incoming message packet

contains a special synchronization tag (sync tag) annotated by the compiler, the

message is held in the shadow buffer; otherwise the message is written to the

SoftMem. The queued message at the head of the shadow buffer is constantly

checked against the destination address’ sync tag. The message is written to the

SoftMem when the destination address’ sync tag is cleared. The queued messages

held in the shadow buffer are arbitrated along with the other unqueued messages

to ensure the forward progression of the program.

• NanoOP decoder is a single phit (byte-granularity) varint decoder pipelined into

two stages: 1) field decoding by a programmable schema look-up table and 2) varint

decompression by a hardware FIFO that aggregates the decoded phit segments into

an NanoOP.
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Figure 4.9: The impact of external I/O FIFO depth and width on the latency in
processing the 64×64 CONV3D function in OPCF.

4.5 Optimizations and System Benchmarking

We optimize the system parameters for the ERA-VOT accelerator architecture

using PyHLM. The latency performance is bencharmked and compared with a ded-

icated ASIC, a GPU and a CPU model using PyHLM. We also extend the scope of

the evaluations beyond RTML applications to show the applicability of the work.

The ERA-VOT accelerator architecture is entirely parameterized. The PyHLM

design space exploration is performed to obtain the optimal system parameters fol-

lowing three steps:

¶ High-level constraints: a set of high-level system constraints including the

program size, the hardware resources available, and the performance target are used

to set the bounds of parameter optimization.

· Parameter optimization: System simulations are done in PyHLM. The sen-

sitivity of each design parameter’s impact on performance is evaluated. The most

sensitive parameters are tuned in order to obtain a preliminary parameter set.

¸ Application profiling: a set of application programs are profiled to validate the

design.
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Figure 4.10: The maximum internal FIFO size and SoftMem needed in processing
the 64×64 CONV3D and FFT2D functions in OPCF.

4.5.1 SoftMem and Internal Buffer Size

In step ¶, we apply high-level system constraints to bound the parameter selection

for the SoftMem size and the internal buffer size. Figure 4.10 plots the maximum

SoftMem occupancy and various internal buffers’ occupancy for the two most stressing

functions within OPCF, the 64×64 16-bit floating-point CONV3D function and the

FFT2D function. In performing PyHLM simulations, the size of the SoftMem and

each buffer are initially set to be unconstrained to allow the exploration.

Based on the maximum occupancy shown in Figure 4.10, the SoftMem size is set

to 512 entries to accommodate the most stressing functions. Also according to Figure

4.10, we identify the potentially large sizes of the SB2S buffer (Shadow Buffer to

SoftMem) and the R2S buffer (router to SoftMem) required to support the CONV3D

function. However, a more in-depth analysis reveals the imbalance between the slow

data consumption and the fast data production causing the buffer size to explode.
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Figure 4.11: a) A Peer’s power consumption and area synthesized at different clock
frequencies, (b) the power consumption and area breakdown of a Peer
synthesized at different clock frequencies.

Table 4.1: ERA-VOT accelerator final parameters
Search Range Finalized Value

Peers 1, 2, 4, 8, 16 16

SoftMem Size 128 - 4096B 2048B

SoftMem Banks 1 - 4 4

SoftPE 1 - 4 4

I/O FIFO Depth 1 - 256 16

Read Bandwidth 32b× 1 - 32 32b × 4

Internal FIFO Depth 1 - 1024 See Figure 10

Since the performance is only limited by the slow data consumption, we choose to

bound the size of these two buffers to 128, which will have no impact on the system

performance.

4.5.2 SoftPE Allocation and External I/O Sizing

In step ·, we demonstrate the process for selecting the optimal number of SoftPEs

per Peer and the external I/O FIFO width and depth again using the most stressing

function, a 64×64 CONV3D in the OPCF algorithm. We select the number of SoftPEs

per Peer and the external I/O FIFO depth and width to reduce the system latency

until it reaches diminishing returns. As shown in Figure 4.9, allocating more SoftPEs
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Figure 4.12: Performance comparison between the ERA-VOT accelerator and the
ideal ASIC, CPU and GPU for OPCF, Kalman filter, Gaussian smooth-
ing, and noise-cancellation algorithm benchmarks.

per Peer reduces the system latency until it reaches 3 SoftPEs per Peer. However,

considering the relatively low marginal silicon area cost to add one additional SoftPE,

we choose 4 SoftPEs per Peer for the best performance to cost.

Considering the Peer design with 4 SoftPEs, the design point of 4 to 8 for the ex-

ternal I/O FIFO width and 16 for the depth is optimally positioned as shown in Figure

4.9, beyond which we reach diminishing returns on latency reduction. Therefore, we

use these parameters for the external I/O FIFO design.

4.5.3 Hardware Design Validation

Before proceeding to step ¸, we validate the power and area of the selected

systems parameters listed in Table I. The ERA-VOT accelerator architecture model

can be readily converted to System Verilog. The design is then synthesized using

Synopsys Design Compiler in a 28nm technology library for evaluation.

Since the architecture is modular, we present the evaluation of a single Peer.

Figure 4.11(a) shows that

a Peer operates a maximum clock frequency of 558MHz, consuming 79.1mW and

occupies 0.155 um2. The critical path is located within the SoftPE’s ALU datapath.

Figure 4.11(b) shows the silicon area and power breakdown for a Peer’s constituent

blocks.

SoftMem and SoftPE take up more than 75% and 70% of the area and power,
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respectively and the remaining portions relate to the decoupled execution and syn-

chronization, which presents only minimal overhead for the improved performance.

4.5.4 Application Benchmarking

In step ¸, OPCF and three other applications that cover different processing

patterns are profiled for the ERA-VOT accelerator and the common alternatives

including ASIC, CPU and GPU. The ASIC model is constructed such that every

sub-function within an application benchmark can be perfectly accelerated at full

utilization. The CPU model is an in-order 5-stage pipelined single-core architecture

(Figure 4.3(b)) and the GPU model is a 64-core SIMD architecture with a local reg-

ister file and a top-level shared memory. Figure 4.12 shows their normalized latency.

Across the four applications, the ERA-VOT accelerator achieves a range of speedups

compared to CPU and GPU, while the gap between the ERA-VOT accelerator and

the ideal but inflexible ASIC can be kept relatively low.

• OPCF represents a generic prototype of an RTML algorithm. It consists of a mix of

feature extraction (DNN inference), transformation for online ML (2D FFT/IFFT

and KCF kernel functions) and reinforcement (PF), which result in a diverse set

of DLP and ILP operators. The ERA-VOT achieved a speedup of 7.9× and 2×

compared to CPU and GPU, respectively. The speedup is mainly attributed to

exploiting the data locality for FFT2D and IFFT2D operators by the SIMD pro-

cessing internal to each Peer in the ERA-VOT accelerator without resorting to

expensive data movement. While the ERA-VOT performance is 4.3× worse than

the ideal ASIC, the inflexible ASIC is an impractical solution for RTML.

• Kalman filter is intrinsically data-parallel, but it is wasteful and difficult to draw

the full benefits of data-parallel architectures due to the degree of parallelism be-

ing awkwardly positioned between SIMD and scalar compute granularity. Con-
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sequently, Kalman Filters can be mapped to all hardware platforms with a rela-

tively high utilization, but it requires delicate control of the processing elements to

achieve a high performance and efficiency. The ERA-VOT accelerator leverages the

PyHLM compiler to generate instructions that are tailored to the compute gran-

ularity at the Peer-level. The ERA-VOT accelerator achieved a speedup of 2.5×

and 1.6× compared to CPU and GPU, respectively.

• Gaussian smoothing is both compute and memory intense. It represents a class

of feature extraction algorithms that can be easily mapped to SIMD architectures.

For this class of applications, the buffered data need to be maximally reused to ob-

tain a high performance. The ERA-VOT accelerator leverages its low-latency P2P

synchronization mechanism to achieve a high speedup of 16× and 5.3× compared

to CPU and GPU, respectively. The gap between the ERA-VOT accelerator and

the ASIC is due to the ideal ASIC’s large on-chip buffers that remove the need for

excessive external data access.

• Noise-cancellation is an algorithm for self-interference cancellation in full-duplex

radios [97]. It also shares many computational similarities with a broader suite of

statistical inference and online ML applications. The complex function composition

is similar to what is seen in OPCF, but the data access is more unstructured than

OPCF, which undermines the degree of ILP. The ERA-VOT accelerator allows

tailored VLIW NanoOP at the program level, and it is convenient to perform in-

Peer VLIW with locality-oriented data access. The ERA-VOT accelerator achieved

a speedup of 16.0× and 4.7× compared to CPU and GPU, respectively. The

performance of the ERA-VOT accelerator is only 33% worse than the ideal ASIC,

which is mainly due to the P2P data exchange overhead.
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4.6 Conclusion

This work presents the ERA framework; an end-to-end architecture development

framework, including hardware design templates and a complete software toolchain

tailored for designing and optimizing RTML processing architectures. We elabo-

rate on the structured steps in approaching an RTML architecture design using our

framework, and demonstrate a high-performance ERA-VOT accelerator model. Our

prototype accelerator outperforms in all four benchmark applications by an average

factor of 8.4× and 3.0× over CPU and GPU, respectively. The ERA framework not

only provides programming flexibility and low design barrier, but also unique oppor-

tunities in exploiting both DLP and ILP at different compute granularities to obtain

efficient acceleration. Broadly, our framework establishes a complete infrastructure

stack for systematic architecture development, where we believe in the future, it has

the potential to be extended beyond its current domain.
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CHAPTER V

Conclusion

This dissertation presents the study and advancement of tightly-coupled algorithm

and hardware co-design and domain-specific computing architectures and paradigms.

The dissertation work is summarized from three perspectives:

• Algorithms and specialized microarchitectures. Intimate algorithm and

hardware co-design is the bread and butter of modern domain-specific computing

acceleration. We investigated a neuromorphic computing algorithm and proposed a

specialized computing architecture targeting action classification and motion track-

ing. Specifically, we introduce a sparse spatio-temporal (ST) cognitive system-on-

a-chip (SoC), designed to extract ST features from videos. The SoC core consists

of a sparse ST convolutional auto-encoder. High sparsity is enforced at each layer

of processing, reducing the complexity of ST convolution by two orders of mag-

nitude and simplifying all multiply-accumulates (MAC) to select-adds (SA). The

SoC compresses ST kernels, reducing memory by 43%, and at 0.9V and 240MHz,

the SoC achieves 1.63TOPS to meet the 60fps 1920×1080 HD video data rate,

dissipating 127mW.

• Domain-specific acceleration architectures. Machine learning and deep learn-

ing algorithms have drastically advanced the capabilities of artificial intelligence

and rejuvenated the demand for domain-specific acceleration. We investigated the
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inefficiencies of state-of-the-art Cartesian product-based dataflow for deep learn-

ing inference and addressed its limitation for sparse deep neural network (DNN)

acceleration. Specifically, we proposed a novel DNN inference accelerator that effi-

ciently leverages both sparse weights and input activations within neural networks.

Our design features a novel runtime look-ahead index matching unit in hardware

to efficiently extract reducible computation, achieving high energy efficiency and

low control complexity for a variety of DNN layers. Our protoype accelerator de-

livers up to 4.3× speedup over an efficient, dense DNN accelerator, 1.6× speedup

and 2.1× energy-delay-product improvement compared to a state-of-the-art sparse

DNN accelerator.

• Domain-specific modeling paradigms. Real-time machine learning (RTML) is

an emerging frontier of machine learning, shifting the demand for domain-specific

acceleration to incorporate both software and hardware optimizations, especially

during the architecture modeling phase. We propose a new architecture modeling

framework to tackle this complex problem. Specifically, a new end-to-end devel-

opment framework is proposed to develop RTML-specialized acceleration architec-

tures and systems from software to hardware. Our framework consists of two key

components: 1) a set of high-performance RTML-specific architecture design tem-

plates; and 2) an open-source Python-based high-level modeling and compiler tool

chain for cross-stack architecture design and exploration. Using our framework we

demonstrated a real-time visual object tracking (VOT) accelerator, achieving an

average speedup of 2.1× over state-of-the-art architecture design patterns across a

range of modern RTML algorithms.
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