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Abstract 

 

Character displacement, is a process wherein closely resembling species diverge in their 

resource-linked traits as a response to intense competition. Research evaluating whether 

character displacement can influence the evolution of a plant’s belowground root system remains 

unreported in the literature, despite the importance of root systems in capturing resources from 

the soil environment and mediating belowground competition. Thus, my dissertation addresses 

the overarching question, Can character displacement influence the evolution of root traits 

between two closely related species? 

 

In the first two data chapters of this dissertation I tested for the potential that root traits can 

evolve via character displacement using Ipomoea purpurea and I. hederacea. In my first data 

chapter (Chapter 2) I performed a greenhouse common garden experiment to test if root traits 

were genetically variable and a competition field experiment to test if belowground competition 

can impose selection on root traits. In my second data chapter (Chapter 3) I expanded on my 

findings from Chapter 2 and performed a second competition field experiment to test for the 

main prediction of character displacement.  

 

In addition to the root system, the root-associated microbiome can play a major role in a plant’s 

realized niche and affect how plants access and compete for belowground resources. Moreover, 

the root-associated microbiome can potentially influence root phenotypes and vice versa. 

Consequently, plant-microbe interactions can potentially feedback into plant ecology and 

evolution and alter the outcome of processes such as belowground plant-plant competition. To 

this end in my third data chapter (Chapter 4). I asked the broad question, Does the rhizosphere 

microbial community composition and structure vary with root phenotypes and what are their 

relative effects on plant fitness according to competitive environment? I subsampled and 

analyzed the bacterial microbiome from rhizosphere soil taken from individuals of I. purpurea 

and I. hederacea grown in the presence and absence of belowground competition. I tested if root 
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phenotypes and measures of the rhizosphere microbial community were linked with each other 

and determined the relative impact of the rhizosphere microbial community on plant fitness in 

context of belowground competition 

 

In brief, my thesis demonstrates that belowgound competition and root traits represent a viable 

and overlooked agent and target of selection. Most importantly, it demonstrates that 

belowground competition may potentially result in character convergence, not displacement of 

root traits. It provides initial evidence for the possibility that the rhizosphere microbiome and 

root traits can influence each other and effect how plants compete belowground. My work 

demonstrates the potential for belowground competition to shape plant evolution and diversity 

and suggests that plant-microbe interactions itself may play an important role in how plants 

respond and adapt to belowground competition. Collectively, this work represents a novel first 

step in linking plant ecology and evolution to the ‘hidden’ half.  
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Chapter 1. Introduction 

 

Background and problem statement 

Understanding the relative role of competition in the evolution and distribution of closely 

related species is a major and unresolved challenge in evolutionary ecology (Losos 2000; Pfennig 

and Pfennig 2009; Stuart and Losos 2013). Geographic patterns of plant species distributions show 

that closely related species can co-occur (sympatry) and when they do, they tend to be more 

phenotypically diverged compared to regions where they do not co-occur (allopatry) (Armbruster 

1985; Levin 1985; Whalen 1978; Fishman and Wyatt 1999; Veech and Jenkins 2000; Muchhala 

2007). Theory, however, predicts that closely related species are unlikely to coexist in similar 

habitats because their high similarity in resource-associated traits should result in strong 

competitive interactions for limiting resources. In turn, strong competition between closely related 

species should then ultimately result in the exclusion of the weaker congener in regions where they 

come into contact (Gause 1936). How do closely related plant species coexist? A possible solution 

to this central issue is that similar species have diverged through the process of character 

displacement.  

 

Character displacement is a phenomenon whereby closely related species evolve in their resource 

use and uptake-associated traits as a response to competition for limiting resources (Brown and 

Wilson 1956; Pfennig and Pfennig 2009). The end result of character displacement is greater trait 

divergence of competitors in regions of sympatry relative to those in allopatry (Figure 1-1). In 

general, research on character displacement in plant systems is lacking (Schluter 2000; Dayan and 

Simberloff 2005, Beans 2014), and the available work has focused on aboveground interactions 

and traits such as growth form and flower morphology (reviewed in Beans 2014). Surprisingly, 

despite the fundamental role belowground root traits play in resource uptake and mediating 

competition with other plants, consideration of how readily character displacement can influence 

the evolution of root systems remains a significant gap in the literature.  
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While research testing for character displacement as a potential driver in the evolution of 

belowground plant traits is novel, research on aboveground plant traits, however, has begun to 

build evidence that the process of character displacement has played an important role in shaping 

geographical patterns of diversity and morphological adaptations between competing plant 

species (e.g., character displacement in floral traits, growth morphology, mating system and seed 

mass; Beans 2014). Because above-ground interactions and traits only tell half the story, in order 

to fully understand the mechanisms driving patterns of plant species diversity and coexistence 

we must also begin to ask whether the process of character displacement is important for the 

evolution of root traits. 

 

I address this gap as the subject of my dissertation, where I assessed the potential for character 

displacement to influence the evolution of root traits between closely related plant species. To this 

end, I tested whether the criteria necessary for the process of character displacement to occur--i.e., 

(1) genetic variation underlying resource associated traits, (2) selection on resource associated 

traits imposed by belowground competition and (3) a positive relationship between the phenotypic 

distance of competitors in their resource associated traits and species fitness (McPhail and Schluter 

1992; Losos 2000)--were satisfied using two sister species of common morning glories, Ipomoea 

purpurea and I. hederacea.  

 

Testing the potential for character displacement to drive the evolution of belowground root traits 

in closely related plant species 

The process of character displacement is a specific case of evolution by natural selection, 

wherein competition for limiting resources is the selective agent and resource associated traits are 

the targets of selection, e.g., adaptive divergence of flower morphology between plants that 

compete for pollinators (Brown and Wilson 1956; Pfennig and Pfennig 2009). A critical prediction 

for the process of character displacement is that the intensity of competition between any two 

species is inversely proportional to how similar two species are in their resource associated traits 

(Pfennig and Pfennig 2009). In other words, character displacement may be implicated if selection 

favors individuals bearing greater dissimilarity in their resource associated traits relative to their 

competitor. To test whether character displacement may be an important process in the adaptive 

evolution of resource associated traits, demonstrating a negative relationship between phenotypic 
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similarity and fitness of competing individuals is necessary, however, insufficient. As stated 

earlier, character displacement is an evolutionary process, therefore evidence that phenotypic 

variation includes a genetic component must be established because only then can they respond to 

selection (Anderson et al. 2014). Equally, evidence that competition for limiting resources per se 

is the agent of selection on resource associated traits is key since other ecological factors aside 

from competition could trigger phenotypic divergence of functionally important traits (e.g., 

selection from shared predators; Rundle et al. 2003).  

 

Disparate lines of evidence spanning from community ecology, plant breeding and experimental 

evolution suggest variation in specific root traits meet the criteria for character displacement. First, 

differences in the root foraging strategies between diverse plant species is considered by some as 

a critical component for maintaining plant diversity and abundance via resource partitioning 

(reviewed in Silvertown 2004). For example, differences in the root system’s spatial arrangement 

(e.g., rooting depth) between co-occurring plant species has been demonstrated across many plant 

communities which is thought to contribute to niche-partitioning between species (Callaway and 

Mahall 1991; Mueller et al. 2013). Furthermore, in a long-term grassland study, Tilman et al. 

(2001) grew seventeen grass species in different treatments where they varied the number of 

different functional plant groups according to their nitrogen use strategy. Their study found 

evidence that more functionally diverse groups of plant species had significantly higher plant 

productivity. Thus, this study suggests that greater dissimilarity in resource use between plant 

species can have a positive impact on plant performance and vice versa.  

In addition, plant breeding studies have uncovered significant phenotypic and genotypic variation 

between naturally occurring plant populations in their belowground root traits for multiple model 

organisms and, they have begun to show that specific root traits can provide competitive 

advantages in resource limited environments (Dorlodot et al. 2007; Hochholdinger and Tuberosa 

2009; Brown and Lynch 2012). From the limited literature in evolutionary ecology, Ferguson et 

al. (2016), studied natural accessions of Arabidopsis thaliana across multiple populations in their 

native geographic ranges and found significant associations between root phenotypes and soil 

nutrients, as well as population differences in primary root length, total root length and the number 

of lateral roots. This suggests that various root trait phenotypes have adapted as a response to 
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different soil environments. In brief, these works indicate that variation in specific root traits can 

respond to selection from local environmental pressures and result in adaptive phenotypes. 

Despite a strong consensus that belowground competition can significantly reduce plant 

yield/fitness and direct evidence that differences in root traits are important for resource 

partitioning, research demonstrating root phenotypes as causal adaptations to belowground 

competition remains a major gap in the literature (Hodge 2009). Because character displacement 

is essentially adaptive evolution in response to competition, studying the potential for character 

displacement to influence the evolution of belowground root structures can provide insight on how 

belowground competition influences plant adaptation and in turn species diversity and 

distributions. Hence, my research will not only contribute to our understanding of the relative 

importance of character displacement in driving the adaptive phenotypic evolution of plants but 

also represents the first work to directly test this process as a potential driver in the evolution of 

root traits.  

To this end, the overarching goal of my dissertation is to address the question, Can character 

displacement influence the evolution of root traits, by examining the criteria for root traits of 

closely related plant species to undergo the process of character displacement. As a first step, in 

my first data chapter, I conducted a paired common greenhouse and field experiment to determine 

whether root traits of I. purpurea and I. hederacea meet the basic criteria to evolve by natural 

selection--i.e., (1) evidence for phenotypic and genotypic variation in root traits, and (2) evidence 

that belowground competition imposes selection on root traits. In my second data chapter I tested 

for the critical prediction of character displacement, which maintains that phenotypic distance 

between closely related species is positively and significantly correlated with the fitness of a focal 

species. Further, I expanded on my findings from my first data chapter to test whether root traits 

show evidence of genotypic variation and re-assessed evidence for selection from belowground 

competition to act on root traits, when grown in field conditions.  

 

Aside from the importance of root traits to mediate resource uptake and influence how plants 

compete belowground, the root-associated microbiome can also play an important role in plant 

function and fitness, e.g., influencing host plants' realized niches (Shoresh et al. 2010; Friesen et 

al. 2011; Pieterse et al. 2012). Moreover, the root associated microbiome can influence the 
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phenotypic expression of root traits and vice versa (discussed in Friesen et al. 2011). Consequently, 

root-microbial interactions can feedback into plant ecology and evolution and potentially impact 

eco-evolutionary processes such as competition for limiting resources, niche-partitioning and 

character displacement (Bever et al. 2010 Fuente Cantó et al. 2020). Despite the potential for root-

microbial interactions to shape plant ecology and evolution, research testing if and how root 

phenotypes and root associated microbial communities can influence each other and impact plant 

fitness in context of belowground competition, is lacking. As such, for my third data chapter 

(Chapter 4) I performed a series of exploratory analysis to address the broad question, does the 

rhizosphere microbial community composition and structure vary with root phenotypes and what 

are their relative effects on plant fitness according to competitive environment? Below I provide 

detailed information on my study system and an overview of my dissertation. 

 

Study system  

Ivy leaf morning glory, Ipomoea hederacea (L.) Jacquin and the common morning glory, 

I. purpurea (L.) Roth (Convolvulaceae) (Figure 1-2) are self-compatible annual climbing vines 

that commonly co-occur throughout Eastern United States in ruderal habitat types (e.g. side of 

train tracks, agricultural fields, road sides and waste areas). The history of coexistence between I. 

hederacea and I. purpurea is only partially known. Evidence suggests that I. purpurea is native 

to Central America (Gray 1886; Barkley 1986; Hickman 1993), and it has been present in the 

eastern United States since at least the early 1700s (Pursh 1814). The history of I. hederacea is 

less clear; it has been in the United States for at least 150 years (Bright 1998) but whether it is 

native to the United States (Mohr 1901; Stevens 1948) or was introduced from tropical America 

is uncertain (Shreve et al. 1910; Strausbaugh and Core 1964; Long Lakela 1971; Wunderline 

1982; Mahler 1984).  

 

Aboveground, both species have similar growth patterns and produce long stems that branch 

occasionally, however, I. purpurea is slightly larger (up to 10’ long) compared to I. hederacea 

(up to 6’ long). I. hederacea and I. purpurea are diploid with a mixture of selfing and 

outcrossing mating systems, where I. hederacea is highly selfing with a rate of approximately 

93% (Ennos 1981). 
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Dissertation Overview 

In brief, my dissertation encompasses three chapters that address the following: Chapter 

2) examines whether a few specific root traits meet the core criteria to evolve by natural selection, 

and that belowground competition can impose selection on root traits in I. purpurea and I. 

hederacea and Chapter 3) tests for the critical prediction of character displacement in root traits 

of I. purpurea as a focal species and expands my second chapter’s tests for maternal line variation 

and selection from belowground competition on a wider set of root traits. Chapter 4) tests for 

preliminary evidence that root traits and the rhizosphere microbial community can influence each 

other and potentially influence belowground plant-plant competition using rhizosphere soil 

samples taken from individuals of I. purpurea grown in the presence and absence of competition 

from I. hederacea. Finally, in Chapter 5) I synthesize the outcomes of my three data chapters and 

their general contributions to the field of evolutionary ecology, and discuss how future work should 

be directed in order to address the great unknowns in the evolution and ecology of ‘the hidden 

half’.  
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Figures 

 
Figure 1-1 Process of character displacement in the belowground root traits of two closely related plant 

species A-B) Hypothetical representation of character displacement acting on the belowground root traits 

of two closely related plant species, before and after character displacement. (A) Initially two species come 

into contact and overlap in their belowground root traits, (B) then strong interspecific competition selects 

for divergent root traits, and the end result is a significant difference between species in their mean trait 

value.  

  

 

 

 

 

 
 

Figure 1-2 Pictures of the ivy leaf morning glory (Ipomoea hederacea, left photo) and the common morning 

glory (I. purpurea, right photo) taken from our 2017 field experiment. Photo credit to Regina Baucom Ph.D.
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Chapter 2. Belowground Competition Influences the Evolution of Root Traits 

 

 

Abstract 

Although root traits play a critical role in mediating plant-plant interactions and resource 

acquisition from the soil environment, research examining if and how belowground competition 

can influence the evolution of root traits remains largely unexplored. Here we examine the 

potential that root traits may evolve as a target of selection from interspecific competition using 

Ipomoea purpurea and I. hederacea, two closely related morning glory species that commonly 

co-occur in the United States as a model system. We show that belowground competitive 

interactions between the two species can alter the pattern of selection on root traits in each 

species. Specifically, competition with I. purpurea changes the pattern of selection on root angle 

in I. hederacea, and competitive interactions with I. hederacea changes the pattern of selection 

on root size in I. purpurea. However, we did not uncover evidence that intraspecific competition 

altered the pattern of selection on any root traits within I. hederacea. Overall, our results suggest 

that belowground competition between closely related species can influence the phenotypic 

evolution of root traits in natural populations. Our findings provide a microevolutionary 

perspective of how competitive belowground interactions may impact plant fitness, potentially 

leading to patterns of plant community structure. 

 

Keywords: character displacement, root trait evolution, natural selection, Ipomoea 
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Introduction 

One of the key reasons plant species are thought to coexist in a given habitat is through 

niche partitioning (Aarssen 1997; Huston 1997; Tilman et al. 1997, 2001; Loreau 2000). Such 

niche partitioning is hypothesized to occur following competitive exclusion (competitive 

exclusion under limiting similarity; Gause 1936; Hutchinson 1957; Hardin 1960; MacArthur and 

Levins 1967), or from trait divergence stemming from competitive interactions between species 

(i.e., character displacement; Brown and Wilson 1965; Pfennig and Pfennig 2009). Because of 

the relevance of these ideas to the formation of plant community structure, there is a large body 

of literature examining competitive interactions among plants (Faget et al. 2013). Most of this 

work, however, focuses on above-ground interactions, and as a result, little is known about root-

root interactions belowground.  

 

Roots, which provide a vital resource acquisition function for the plant (Fitter, 2002), also serve 

as a structure through which plants experience competitive interactions with neighboring plants, 

whether indirectly through alterations of the soil environment—i.e., reduction of water, space 

and nutrients—or directly by the excretion of signaling and/or allelopathic molecules (reviewed 

in Schenk, 2006 & Callaway, 2002).  

 

The plant root system can be roughly characterized into both size and architectural traits. Root 

surface area, width, and root length are size proxies, whereas traits describing the spatial 

organization the root system, such as root angle, lateral root branching pattern, and internode 

branching distance are root architecture traits (Fitter et al. 1991; Lynch, 1995). These root 

phenotypes strongly influence how a plant accesses nutrients and water (Fitter et al. 1991; 

BassiriRad, 2005; Manschadi et al. 2006; reviewed in Lynch 2007; Kellermeier and Amtmann, 

2013). For example, shallow root architectures are linked to increases in the uptake of immobile 

resources such as phosphorus (Lynch and Brown, 2001; Fitter et al., 2002; Beebe et al. 2006; 

Lambers et al. 2006), whereas deep root architectures are linked to an increase in water uptake 

(Beebe et al. 2006; Ho et al. 2005). Thus, shallow root systems may be more advantageous and 

lead to higher fitness in nutrient-limited soils, and deeper root systems may provide a fitness 

advantage in water limited environments. How different root traits may influence fitness in the 

field is most often studied in crop plants (Lynch 2007), leading to a significant gap in our 
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understanding of the factors that influence root trait evolution in natural plant populations. In 

light of this, how belowground interactions between competing species can mediate plant 

resource acquisition patterns and potentially alter selection on root architecture and size traits—

especially in wild plant species—is largely unknown. 

 

There are plausible reasons to expect competitive interactions to influence the adaptive evolution 

of root traits. The intensity of competition between plants is greater when rooting zones overlap 

(reviewed in Casper and Jackson, 1997; Casper et al. 2003; Rubio et al. 2003), indicating that 

occupying the same belowground niche has a deleterious effect on plant fitness. Although studies 

hint that differences in root systems between competitors leads to higher fitness (reviewed in 

Silvertown, 2014), most of the research characterizes the root system at a coarse level (e.g., 

belowground biomass, root length density; Poorter and Ryser, 2015), and has yet to include 

specific root size and architectural traits. Competition between co-occurring, closely related 

species can be especially intense due to greater overlap in physical space or niche use 

(MacArthur and Levins, 1967; Pfennig and Pfennig 2009; Burns and Strauss, 2011). To reduce 

the effects of this competition, selection would be expected to favor the divergence of root traits 

(e.g., root angle, root length, and overall root system size) that play important roles in water and 

nutrient acquisition. 

 

Despite this expectation, there are other explanations for particular root trait shapes or sizes in a 

species. As above, roots may evolve shallower, deeper, or larger root systems (among other 

changes) to optimize resource uptake in particular soil environments (Manschadi et al. 2006; 

Ferguson et al. 2016). Thus, specific root traits may reflect responses to factors in the 

environment that are distinct from competition. The only way to differentiate competition from 

other environmental factors that influence root trait evolution is to manipulate the presence of the 

competitor under otherwise identical conditions and determine if the pattern of selection on the 

trait is altered as a result (Wade and Kalisz, 1990; Dudley, 1996; Mauricio and Rausher, 1997). 

While there are many studies assessing how competition influences plant fitness (reviewed in 

Casper and Jackson, 1997 and Faget et al. 2013), there are no studies, to our knowledge, that 

have examined the potential that competition from a closely related species acts as an agent of 

selection on root morphology.   
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The purpose of this work is to determine if belowground competition between two morning glory 

species—Ipomoea purpurea and I. hederacea—can influence the phenotypic evolution of root 

traits in either species. I. purpurea and I. hederacea are two closely related vines and are 

common weeds of agriculture in the southeastern and Midwest US. They are most commonly 

found growing naturally in agricultural fields or in areas of high disturbance (Baucom et al. 

2011). In some fields, both species are found to co-occur and intensely compete by vining 

together above ground; in other fields only one of the species may be present (personal 

observation, RS Baucom). Previous work has established that competition from one species can 

alter the pattern of selection on the other. Smith and Rausher (2008) manipulated the presence of 

I. purpurea and experimentally showed that competition between the two species for pollinators 

can lead to divergence in the floral morphology of I. hederacea. Because these species interact in 

other ways, and share similar morphology as well as resource needs, it is likely that other 

competitive interactions between the two can lead to trait divergence—namely, root trait 

divergence following belowground competitive interactions.  

 

Here, we examine the potential that competitive interactions between these two closely related 

species can drive the evolution of root traits, and we do so by addressing some of the criteria for 

demonstrating the process of character displacement (detailed in Schluter and McPhail, 1992). 

We first characterize the extent of phenotypic overlap in early growth root traits between I. 

purpurea, and I. hederacea to determine if the species overlap in the same below-ground niche 

and then examine the potential for genetic variation underlying these traits. We likewise 

investigate the potential that natural selection can drive the evolution of root traits in field 

conditions. We specifically asked the following questions: How do root traits vary within and 

between species, and to what extent do the species exhibit phenotypic overlap? Is there evidence 

for genetic variation underlying root traits of either species, indicating that traits can respond to 

selection? Does belowground interspecific competition between I. purpurea and I. hederacea 

impose selection on root traits, and is there evidence that within-species competition 

(specifically, I. hederacea-I. hederacea competition) similarly acts as an agent of selection? 

Because the adaptive potential of traits can be obscured by plasticity when in competition, we 

also examine the potential that the presence of a competitor can directly impact root phenotypes. 
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To our knowledge, this is the first study to explicitly test the potential that root traits may exhibit 

evidence of selection as a result of competitive interactions. 

 

 

Materials and methods 

Study system—The common morning glory, Ipomoea purpurea (L.) Roth (Convolvulaceae) and 

ivy leaf morning glory, I. hederacea (L.) Jacquin are self-compatible annual climbing vines that 

commonly co-occur throughout the eastern United States. The two closely related sister species 

occur in similar habitat types (e.g., side of train tracks, agricultural fields, road sides and waste 

areas). Both species germinate between the months of May and August and begin to flower about 

six weeks after germination and continue to flower until they die at first frost. The species have 

similar above-ground growth patterns and produce long stems that branch occasionally. I. 

purpurea is larger (up to 3 m long) compared to I. hederacea (up to 1.82 m long). Belowground, 

I. purpurea and I. hederacea have fibrous root systems consisting of a primary root with 

branched lateral roots, and both species vary greatly in the degree of lateral root branching 

(personal observation; see fig. 2-1).  

 

The history of coexistence between I. purpurea and I. hederacea is only partially known. 

Evidence suggests that I. purpurea is native to Central America (Gray 1886; Barkley 1986; 

Hickman 1993, Fang et al. 2013b), and it has been present in the eastern United States since at 

least the early 1700s (Pursh 1814). In contrast, I. hederacea has been in the United States for at 

least 150 years (Bright 1998) but whether I. hederacea is native to the United States (Mohr 1901; 

Stevens 1948) or was introduced from tropical America is uncertain (Shreve et al. 1910; 

Strausbaugh and Core 1964; Wunderlin 1982; Mahler 1984). 

 

Plant material and growth conditions—We performed complementary greenhouse and field 

studies to investigate the potential that root traits of these two sister Ipomoea species could 

respond to natural selection. To generate experimental seeds for our common garden and field 

experiments we selfed 25 and 35 maternal lines of I. purpurea and I. hederacea, respectively, 

which were previously sampled as seed from five populations located in Pennsylvania and Ohio. 

Seeds were scarified and planted in a randomized design in the Matthaei Botanical Gardens (Ann 
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Arbor, MI) greenhouse in November of 2015 and plants were allowed to set seed from selfing 

for all subsequent experiments. 

 

Greenhouse experiment 

We performed a greenhouse experiment to characterize early growth root traits between 

and within I. purpurea and I. hederacea in the summer of 2016. We planted replicate once-selfed 

seeds in custom built rhizotrons containing generic potting soil (fig. 2-1) in greenhouse 

conditions at the Matthaei Botanical Gardens (Ann Arbor, MI). Rhizotrons consisted of 20.32 cm 

x 25.4 cm frames made out of cut pieces of corrugated plastic and a transparent polystyrene sheet 

held to the frame by duct tape. Each rhizotron was filled with 20.45 grams of soil and a single 

seed was placed in the center of the rhizotron approximately one inch below the soil surface 

against the transparent polystyrene sheet.  

 

We planted three replicates per maternal line per species in the rhizotrons and positioned the 

rhizotrons in custom-built wooden frames at 30° in a completely randomized design (see fig. 2-

A1 in appendix A for root image from rhizotron, and instructions on building rhizotron frames in 

app. fig. 2-B2; both apps. A and B are available online). We replicated this experiment in its 

entirety, twice. Thus, we planted 150 individuals of I. purpurea (3 biological replicates × 25 

maternal lines × 2 experimental replicates) and 210 individuals of I. hederacea (3 biological 

replicates × 35 maternal lines × 2 experimental replicates) for a total of 360 individuals. We 

watered each individual daily by hand to standardize water availability across all individuals for 

three weeks.  

 

Greenhouse root phenotyping—Two weeks after germination, we scanned each rhizotron to 

measure below-ground root traits using a CanoScan LIDE 110® scanner bed. For each image, we 

traced the roots in Photoshop version CS6 to facilitate automated quantification of root size 

based on their pixels in ImageJ version 3.0 (Abràmoff and Magalhães 2004). 

 

We focused on root size and root architecture by measuring root system pixels (root size), root 

system width, primary root length and root angle on the two week old seedlings (fig. 2-1). We 

elected to focus on these specific traits because they are relatively straightforward to measure 
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across different growing conditions and they also play a vital role in plant resource use and 

uptake (Wasson et al. 2012; Paez-Garcia, et al. 2015). Prior to data collection, ImageJ was first 

globally calibrated with the set scale tool in order to obtain measurements in metric units for all 

of the following procedures. To obtain primary root length, root system width and root angle, 

first we used the multi-pointer tool and placed a total of four points along the root tips of the root 

system image in the following order: 1) primary root at the root stem surface, 2) root tip of the 

left outermost root, 3) primary root tip and 4) root tip of the right outermost root.  

 

We used the statistical programming language R (R Core Team, 2017) to calculate primary root 

length, root system width and root angle (the script is available in the Dryad Digital Repository  

https://doi.org/10.5061/dryad.jh9w0vt6s). For primary root length, we calculated the vertical 

distance between the primary root at the soil surface and the tip of the primary root. We 

estimated root system width as the euclidean distance between the outermost lateral root tips. To 

estimate root angle (θ) we used the cosine formula, 

θ = cos-1(  
b2+c2-a2

2bc
),  

 on a right triangle formed by the primary root (the longest root perpendicular to the soil surface), 

and each of the outer lateral roots. Here, b is the distance between the primary root and the 

outermost lateral root tip, c is a measure of the length of the primary root calculated above, and a 

is the length between the outermost lateral root tip and the primary root tip (fig. 2-1). Root angle 

was calculated for both the right and left lateral roots, separately averaged, and reported in 

degrees. We elected to use the angle made between the primary root and the outermost left and 

right lateral roots because previous research has shown that this trait is indicative of root 

architecture types (Lynch and Brown, 2001; Uga et al. 2013; Colombi et al. 2015). Finally, to 

obtain root size, we converted the traced root images into binary images, selected ‘area’ as a 

measurement output in the ‘measurement’ option, and performed the ‘Analyze Particles’ 

function in ImageJ. This function quantified the total number of black pixels (all pixels from the 

root system) and reported the values in centimeters squared. We separated the belowground root 

system of all plants from aboveground structures at three weeks of growth. We cleaned the roots, 

dried them for three days at 60C, and then weighed them to obtain belowground biomass. 

 

 

https://doi.org/10.5061/dryad.jh9w0vt6s
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Field experiment 

Field design and planting—We conducted a field experiment in the summer of 2017 to 

characterize root trait variation in I. purpurea and I. hederacea grown in field conditions and to 

determine if natural selection acts on root traits in the context of interspecific competition. We 

planted replicate selfed seed from maternal lines of I. purpurea and I. hederacea in two 

treatments: ‘alone’ and interspecific competition (fig. 2-2) in a field plot at Matthaei Botanical 

Gardens (Ann Arbor, MI) on June 2, 2017. We likewise planted replicate selfed seed from I. 

hederacea maternal lines in the presence of intraspecific competition to determine if, at least for 

this species, within-species competition could influence the evolution of root traits. We used 

eight maternal lines of I. purpurea and I. hederacea from a single population from Pennsylvania 

(PA4). We decided to use maternal lines from this population since preliminary greenhouse data 

demonstrated high phenotypic overlap between both species for this population (fig. S1-3). The 

field was plowed two days prior to planting, however, we did not fertilize the field beforehand, 

nor is it land that has crop rotation. We planted eight replicates of each maternal line per species 

across four blocks for our alone treatment (8 maternal lines × 2 biological replicates × 4 blocks × 

2 species = 128 plants). For our interspecific competition treatment we paired each maternal line 

of I. purpurea with each maternal line of I. hederacea for each possible pairwise combination, 

and planted 2 replicates of each pairing across 4 blocks (64 unique interspecific competition 

combinations × 2 biological replicates × 4 blocks = 512 individuals × 2 species = 1024 plants). 

For our intraspecific competition treatment we planted 2 replicates of each unique combination 

of the 8 I. hederacea maternal lines within each block (28 unique interspecific competition 

combinations × 2 biological replicates × 4 blocks = 224 experimental units × 2 plants = 448 

plants). Each pairwise competition pairing was replicated 8 times across the experiment. It is 

important to note that although we were likewise interested in the potential that intraspecific 

competition in I. purpurea could influence root trait evolution in this species, we elected to 

examine this only in I. hederacea due to both field space limitations and the experimental 

difficulty of phenotyping large numbers of root systems in the field. 

 

Seeds were planted into experimental units (i.e., cell with either a single plant for the absence of 

competition, or two plants for the competition environment), which were arrayed across the four 

spatial blocks in a completely random block design. Experimental units were spaced uniformly 
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1m from each other; individuals in competition treatments were planted 8 cm apart from each 

other within their experimental unit. One week after planting we scored germination. Due to 

intense drought < 48% of seeds germinated overall. The average precipitation for June in 2017 in 

Ann Arbor, MI was 0.10 cm. In comparison, the average precipitation was 0.18 cm and 0.20 cm 

in 2016 and 2018, respectively based on data collected online from National centers for 

Environmental Information (NCEI; Menne et al. 2012). We thus planted a second experimental 

cohort (cohort 2) on June 19, 2017 to increase sample size, and this cohort was planted to 

conserve the same level of replication across all experimental units. We had 86 % germination 

success with replanted individuals, and ended with a total 1177 plants of which 670 plants were 

in interspecific competition, 341 plants were in intraspecific competition, and 166 plants in the 

alone treatment; of our final sample, 56% came from cohort 1 and 44% came from cohort 2. 

Throughout the timespan of the field experiment we kept the immediate surroundings of each 

experimental unit (~15 cm from base of plants) clear of weeds. Three weeks after the first 

planting date we placed 1m tall bamboo stakes at the base of every experimental plant at a 45° 

angle, which allowed us to train vines of competing plants away from another, thus removing the 

potential for above-ground competition. 

 

Field root excavation—To characterize the phenotypic variation of root traits of I. purpurea and 

I. hederacea grown in field conditions with and without competition, we adapted the 

‘shovelomics’ excavation method described by Colombi et al. (2015). We harvested roots after 

three weeks of growth on a subset of plants in the field. For root phenotyping, we sampled 

individuals only from cohort 1 because individuals from cohort 2 were small and not 

reproductively mature, whereas most individuals of cohort 1 had developed flower buds. We 

sampled between two to four replicates per maternal line from both competition treatments—

specifically, we sampled a total of 165 I. purpurea individuals, (N = 23 and N = 142 from the 

alone and interspecific competition treatments, respectively), and a total of 304 I. hederacea 

individuals (N = 31, N = 132,  N = 141 from alone, interspecific and intraspecific competition 

treatments, respectively). To excavate roots, we cut the stem 5 cm from the soil surface, marked 

the side of the stem facing the competitor with a permanent marker and then dug the root system 

with a shovel by placing the shovel head at 45 degree angle, 15 cm from the plant stem. This 

method unearthed the first 15 cm of the root system. The excavated root core was then shaken 
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gently to remove adhering soil and placed in plastic bags for root imaging.  After imaging, we 

dried the root system at 60C, and weighed them to record belowground biomass. 

 

Field root imaging and phenotyping—Root imaging was carried out indoors with the use of a 

cubic photo shooting tent (MVPOWER, 40 cm x 40 cm x 40 cm) in order to standardize imaging 

between samples and facilitate the use of REST (Colombi et al. 2015), an automated root 

phenotyping program developed to characterize the root systems of plants grown in the field. To 

image the root system, roots were hung in the center of the photo shooting box and photographed 

with a Canon EOS Rebel XSi 12.2 MP (18-55 mm IS Lens). Images were imported into REST 

(Colombi et al. 2015), and we manually specified where the stem at the soil surface was for each 

image (shown in fig. 2-3). After user specification of the stem/soil surface, REST draws a 

rectangular region of interest for pixel analysis to standardize measurements across images. All 

root measurements were quantified from the pixels lying within this region of interest. REST 

returned the root angle (right and left root angle), root system width (‘Max width’) and a root 

system size proxy (‘Area convex hull’), among other morphological and architectural traits. We 

focused on these three root traits because they are similar to the traits captured in our greenhouse 

study. Root angle (left and right) are determined by calculating the outermost angle between the 

top most lateral root and the soil surface plane at the plant stem, and then subtracting this value 

from a perpendicular line (i.e., 90°) drawn at the plant stem. The root system width captured in 

REST is the same measurement as taken in the greenhouse rhizotron study as they were both 

estimated as the Euclidean distance between the root tips of the left and right outermost lateral 

roots. In contrast, root system size estimated from the greenhouse rhizotron study and REST 

program were similar, but not identical. Root size from the greenhouse rhizotron study was based 

on the total area of root derived pixels, and root size in REST was based on the convex hull of all 

root derived pixels. Preliminary linear regression analysis showed that these two variables 

predicted variation in belowground biomass, albeit the relationships were moderate (Rhizotron 

study: R2= 0.30, p-value < 0.001; Field study: R2= 0.12, p-value < 0.001). We do not have data 

for primary root length from plants grown in the field because this trait was destroyed in the 

process of sampling the roots.  
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Field plant fitness data—We began to collect mature fruit in the month of September and 

continued to do so until late October when all plants have senesced. The entire aboveground 

structure of all remaining plants were collected by first frost and seeds were manually removed, 

cleaned, and counted with a seed counter to obtain an estimate of total fitness. We sampled 165 

individuals of I. purpurea (N = 23 and N = 142, from alone and competition treatments, 

respectively), and 304 individuals of I. hederacea (N = 31, N = 132, and N = 141, from alone, 

interspecific and intraspecific competition treatments, respectively). Ultimately, we sampled 

seeds from a total of 508 plants; 27% of these individuals came from cohort 1 and 72% from 

cohort 2.  

 

Data analysis 

Greenhouse experiment—All statistical analyses were carried out in R (version 3.3.1). We fit 

separate linear mixed models using the ‘lmer’ function of the lme4 package (Bates et al. 2015) 

for each of the root traits measured to test for the presence of variation in root traits between 

species, populations, and maternal lines. Each respective linear mixed model consisted of the 

root trait as the response variable, species, population and experimental replicate (i.e., temporal 

replicate; ‘Experiment’) as fixed effects and maternal line as a random effect; 

i.e., Root trait ~ Experiment +  Population + Species + (1|Population: Maternal line) + 𝜀. 

We treated ‘Experiment’ and ‘Population’ as fixed because there were few levels of each 

(Experiment N = 2, Population N = 4). To ascertain the significance of the predictor variables we 

used F-statistics for the fixed effects, with Satterthwaite’s method to estimate denominator 

degrees of freedom, and a log likelihood ratio test to estimate chi statistic (χ2)  for the random 

effect (using the ‘anova’ and ‘ranova’ functions from the lmerTest package; Kuznetsova et al. 

2017). We ran additional linear mixed models for each species separately to test for evidence of 

maternal line variation within I. purpurea and I. hederacea, where root trait was the response 

variable, population and experimental replicate were fixed effects and maternal line was a 

random effect. We further examined how roots varied between species in trait space by 

performing principal component analysis (PCA) using a correlation matrix of all root traits 

measured in the greenhouse with the ‘PCA’ function from the FactoMineRPackage (Lê et al, 

2008).  
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Field experiment—To examine how root traits vary between I. purpurea and I. hederacea grown 

in field conditions, and to determine if root phenotypes were influenced by competitive 

interactions, we ran mixed linear models as above. We fit a separate model for each root trait 

where the trait was the response variable and block, treatment, and block × treatment interaction 

were fixed effects and maternal line and maternal line × treatment interaction were random 

effects, i.e.,  Root trait ~ Block + Treatment + Block ×  Treatment + (1|Maternal line) + 𝜀. 

Preliminary analyses indicated that there were no significant maternal line × treatment 

interactions for any trait. We thus elected to exclude these effects from our final models. As 

above, we visualized phenotypic variation in root traits between species when grown in field 

conditions by performing principal component analysis (PCA) with a correlation matrix on all 

traits including root system size, root system width and average root angle. In addition, we 

generated a correlation matrix using the family mean values for all the root traits measured for 

each species separately to examine relationships between the three traits.  

 

Selection analyses—We used genotypic selection analyses (Lande and Arnold, 1983; Rausher 

1992) to estimate selection gradients on each root trait in each competition environment, and 

ANCOVA to determine if competition and experimental block altered selection on root traits of 

the two species. We elected to perform a joint selection analysis using maternal line averages of 

the root traits because it allowed us to examine direct selection acting on each trait while 

controlling for environmentally induced biases (Rausher 1992). We estimated selection gradients 

on root system width, root system size, and root angle of both species in each competitive 

treatment environment (alone and, interspecific and intraspecific competition) by performing 

multiple regression with the focal root traits included as predictor variables and relative fitness as 

the dependent variable. Relative fitness was calculated as the total seed number divided by the 

mean seed number by species, cohort and treatment. For all selection analysis we mean 

standardized root traits (i.e., subtracted the mean and divide by the standard deviation) and used 

untransformed values of relative fitness. Preliminary analysis indicated that individuals of both 

species from the second cohort produced significantly fewer total seeds than individuals from the 

first cohort (I. purpurea: F1 = 100.3, p-value < 0.001; I. hederacea: F1 = 213.9, p-value < 0.001), 

but preliminary analyses also provided no evidence that selection gradients differed between 

cohorts within either species for any root trait. Thus, we elected to combine cohorts in the 
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genotypic selection analyses (cohort 1 N = 141 and cohort 2 N = 367). Further, while we 

examined the potential for non-linear selection influencing root traits in preliminary analyses, we 

did not find evidence of either stabilizing or disruptive selection acting and thus present only the 

results of linear selection analyses. 

 

We used analysis of covariance (ANCOVA) to determine if the direction and/or intensity of 

selection varied between the presence and absence of competition (Wade and Kalisz, 1990) 

separately for each species. For I. purpurea, we compared selection gradients between plants 

grown in interspecific competition or grown alone, and for I. hederacea, we compared selection 

gradients from inter- or intraspecific competition with that of plants grown alone. In each 

analysis, models included competition treatment, block, the standardized root trait values, and all 

interactions as predictors of relative fitness. Significant interactions between the competition 

treatment and standardized root traits indicate that selection gradients differed between 

treatments. Block and block × treatment interactions were likewise included within the 

ANCOVAs.  

 

Results 

Greenhouse experiment—In our greenhouse rhizotron study assessing early root traits, we found 

significant variation between species in root system width and average root angle (table 2-1). 

The root system of I. hederacea was wider (8.49 cm, table 2-1) than that of I. purpurea (6.92 cm, 

table 2-1) and the overall root size of I. hederacea was on average greater (3.95 cm2, table 2-1) 

than I. purpurea (2.37 cm2, table 2-1). I. purpurea exhibited lateral roots that were closer to the 

soil surface (root angle: 37.33 degrees on average, table 2-1) compared to I. hederacea (30.44 

degrees on average, table 2-1). Although species varied in the above traits (table 2-1), a 

visualization of the four root traits in a PCA identified considerable overlap of root phenotypes 

between species (fig. S1-2A). The root system width, root angle and primary root length loaded 

most strongly on the first principal component, which captured 37.3% of the total variation (fig. 

S1-2B), and root size loaded most strongly on the second principal component, which explained 

29.1% of the total variation (fig. S1-2C). These first two PCA’s can thus serve as descriptors of 

root system architecture (i.e., spatial arrangement of root system) and root size, respectively.  
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Additionally, we found evidence for both population and maternal line variation in root traits. 

We found significant population variation for root system width and root system size, and 

variation among maternal lines for root system width, root angle, and primary root length (table 

2-1). Separate mixed models, performed per species, identified significant maternal line variation 

within I. purpurea for root system width (χ2  = 7.46, p-value = 0.01) and root angle  (χ2  =  4.05, 

p-value = 0.04), and marginally significant maternal line variation for root size (χ2  =  3.63, p-

value = 0.06). We identified maternal line variation within I. hederacea for root angle (χ2  =  

8.63, p-value < 0.01), and marginally significant maternal line variation for primary root length 

(χ2  =  3.10, p-value = 0.08).  

 

Field experiment—A visualization of root system width, size, and root angle in a principal 

component analysis showed a high overlap between species in root phenotypes (fig. S1-1) in 

plants grown in the field. We identified maternal line variation in root system width (table 2-B1); 

a within species examination revealed this result to be driven by I. purpurea (χ2  = 4.69, p-value = 

0.03). We further found a significant and strong correlation between root size and root width (r = 

0.85, p-value < 0.001; table 2-B2) in I. purpurea, whereas there was evidence for strong and 

significant positive correlations between all root traits within I. hederacea (root width and root 

angle r = 0.59; root size and root angle  r = 0.60; root size and root width r = 0.80; p-value < 

0.001 for all pairwise traits; table 2-B2).  

 

With the exception of a marginally significant treatment effect on root size (F2, 455.74 = 2.33, p-

value = 0.10; table 2-B1), we found that interspecific competition in the field did not strongly 

influence root phenotypes of either species. A closer examination of the linear mixed models 

within species suggested that this treatment effect likely impacts I. hederacea (F2,298 = 2.10, p-

value = 0.12) but not I. purpurea (F1,12.58 = 0.04, p-value = 0.84). However, there was a strong 

effect of competition on fitness, with I. purpurea experiencing a fitness reduction of 30.31% and 

I. hederacea a reduction of 36.47% when in interspecific competition. I. hederacea planted in 

intraspecific competition likewise experienced a significant fitness reduction (39.67 % lower 

than plants grown alone). Intraspecific competition between I. hederacea plants led to slightly 

lower fitness than when grown in interspecific competition (i.e., 6.16% reduction in intra- versus 

interspecific competition), but this difference was not significant (table 2-2).  
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Selection on root traits in field conditions—From our selection gradient analyses, we identified 

positive linear selection on root angle in I. hederacea in the presence of interspecific competition 

(β = 0.23, p-value = 0.03; fig. 2-4; table 2-B3) but no evidence of selection when grown alone (β 

= 0.01, p-value = 0.86; table 2-B3). ANCOVA revealed a significant treatment interaction for 

root angle in I. hederacea (F1, 70 = 4.37, p-value = 0.04; table 2-B4), supporting the idea that the 

pattern of selection for root angle differs according to competitive context for this species. 

Further, we found a marginally significant block × treatment interaction (F3, 70 = 2.28, p-value = 

0.09; fig. 2-4; table 2-B2) for root angle in I. hederacea when in interspecific competition, 

suggesting that environmental differences can influence the strength and/or direction of selection 

on this trait. In comparison, we found no evidence of selection when I. hederacea was grown in 

intraspecific competition (β = -0.27, p-value = 0.29; fig. 2-4; table 2-B3 and table 2-B4).  

 

For I. purpurea, we found marginally significant positive selection for root system size when 

grown in the absence of interspecific competition (β = 0.56, p-value = 0.08; table 2-B3), but no 

evidence of selection on root size when in the presence of competition (β = -0.15, p-value = 0.51; 

table 2-B3). ANCOVA revealed a significant treatment interaction with root size (F1, 53 = 4.88, 

p-value = 0.03; table 2-B4) indicating that selection on root size differs according to competitive 

context in this species. We likewise found a significant treatment × block interaction for root 

system width within I. purpurea (F3, 53 = 6.29, p-value <0.01; table 2-B4) and a marginally 

significant treatment × block effect for root angle (F3, 53 = 2.20, p-value = 0.10; table 2-B4), 

indicating that the pattern of selection on these two traits are impacted by both competitive 

context and other unmeasured environmental variables (i.e., block effect).  

 

Discussion 

Given the functional importance of root systems, we hypothesized that competition 

between two closely related species could impose selection on root traits, and that selection 

could promote divergence in such traits. However, there are few, if any, examinations of the 

potential for selection on root traits in field conditions. Thus, we characterized the phenotypic 

variation in root traits of two closely related species, determined if genetic variation in these 

traits was present both within the greenhouse and in the field, and examined the potential that 
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competition changed the pattern of selection on roots. From our greenhouse experiment, we 

found early growth root traits to differ significantly between the species and found evidence for 

genetic variation underlying traits—both between population variation and maternal line 

variation. Results from our manipulative field experiment showed that in the absence of 

competition there was a trend for positive linear selection acting on root size in I. purpurea, but 

no evidence for the same pattern of selection in the presence of competition. Interestingly, we 

found selection acting on different traits in I. hederacea: in this species, we found positive 

selection acting on root angle when in the presence of competition with I. purpurea, but no 

evidence of selection on this trait in the absence of competition. Somewhat surprisingly, we 

found no evidence of selection on root angle (or any root trait) in I. hederacea when in the 

presence of intraspecific competition (i.e., I. hederacea-I. hederacea competition). Thus, 

competition below-ground from I. purpurea promotes the evolution of broader root angles (i.e., a 

more shallow root system) in I. hederacea, but the same effect is not seen in I. hederacea when 

in within-species competition.  

 

Because water, ion and minerals are heterogeneously spread in the soil according to their 

chemical and physical properties, differences in root architecture between plants determine what 

specific resources are readily available for uptake and in turn how plants compete for such 

resources (Ho et al. 2005). This provides a likely explanation for the pattern of selection we 

identified for I. hederacea in the presence of interspecific competition; because shallow lateral 

roots enable the exploitation of nutrients near the soil surface, individuals with shallow roots 

may be at a fitness advantage when in the presence of a competitor compared to individuals with 

deeper root systems. In support of this idea, shallow rooting systems have been shown to be 

advantageous in common bean, maize and rice when grown in environments that are limited by 

phosphorus and other resources that accumulate in the topsoil (Rubio et al. 2003; Lynch and 

Brown, 2001; York et al. 2015;  Sandhu et al. 2016).  

 

From an ecological standpoint, it is somewhat puzzling that selection favors a larger root system 

in I. purpurea when competition is absent, but not when competition is present. Larger root 

systems allow for greater exploitation of soil nutrients and water and have been shown to be 

correlated with increased fitness in other species (Svačina and Chloupek, 2014; Ehdaie and 
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Waines, 2008). As such, we expected to identify selection for larger root systems regardless of 

competitive environment. A potential explanation for our findings is that root traits that were not 

measured here—primary root length, lateral root placement, and/or hair root density—may play 

an important role in resource uptake in the presence of competition. An investment in greater 

root foraging precision, as well as selection on traits that optimize resource uptake efficiency 

could potentially reduce the deleterious effects of competition. Thus, it is possible that root size 

is not under direct selection when these two species compete because selection is instead acting 

on traits that increase resource uptake efficiency (Fitter et al. 1991; Hodge et al. 1999; York et al. 

2015).  

 

Although we identified selection on only two traits—root size and angle—the strong correlations 

we uncovered between root width, size, and root angle suggests traits not under direct selection 

will likely evolve due to indirect selection. We identified strong positive correlations between 

root width, size, and angle in I. hederacea, indicating that width and size may evolve indirectly 

given selection on root angle. In I. purpurea, the strong positive correlation between root width 

and size, and pattern of positive selection on root size, suggests that root width should likewise 

experience indirect positive selection. That we found no evidence of correlations between root 

angle and root width and size in I. purpurea suggests root angle may evolve with fewer 

constraints in this species. It is likewise notable that we uncovered genetic variation underlying 

only root width in I. purpurea in the field experiment; however, this result is not particularly 

surprising given that genetic variation in field conditions is often obscured by high 

environmental variation (Conner and Stewart, 2003). Notably, in our greenhouse experiment, we 

found evidence for both population and maternal line variation on root traits in both species, 

suggesting these traits have the capacity to evolve either through selective pressures or as a result 

of genetic drift.  

 

Further, while we identified different patterns of selection across the competitive environments 

between the two species, we found suggestive, but limited, evidence for plasticity in the root 

traits of either species as a result of competition. Plant root systems can impact the root growth 

of other closely neighboring plants either indirectly via altering the physical and chemical soil 

environment and/or directly through the excretion of signaling and/or allelopathic molecules 
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(Schenk 2006; reviewed in Cahill and McNickle 2011 & Depuydt, 2014). As such, we expected 

to find a significant treatment effect on root trait phenotypes, and thus evidence of phenotypic 

plasticity in root architecture and size traits. Other experiments characterizing root phenotypes in 

a range of species have found mixed results when plants are grown in competition, ranging from 

genotypic- and species-specific responses in root growth to no response whatsoever (Mahall and 

Callaway 1991; Falik et al. 2003; Bartelheimer et al. 2006; Dudley and File, 2007; Fang et al. 

2013a; Belter and Cahill 2015; Litav and Harper 1967; Semchenko et al. 2007). Therefore, the 

results we report here suggest that these two Ipomoea species may lack a mechanism to modify 

their root growth in competition, that plasticity may be occurring in other, unmeasured traits, 

including aboveground traits, or simply that the effect sizes on root trait changes due to 

competition were small, and high variance due to other environmental factors (e.g., potentially 

the influence of drought in the 2017 field season) reduced our ability to identify significant 

plasticity in root traits given competition.  

 

Importantly, the belowground plant-plant competition imposed by our experimental design led to 

reduced fitness of both species—around 35% fewer seeds produced by each species in the 

presence of competition (whether interspecific and intraspecific)—indicating that although we 

did not uncover root trait plasticity, there was clearly a cost imposed by the presence of 

belowground competition between and within species. We note, however, that the strongest trend 

in reduced root size occurred when I. hederacea was planted in intraspecific competition relative 

to interspecific competition. This suggests I. hederacea may potentially be decreasing overall 

plant growth as an adaptive response to reduce intraspecific competition. Such a potential plastic 

response within I. hederacea when in competition with a congener may explain why we did not 

detect evidence for selection from intraspecific competition on root traits in this species. 

 

Overall, our finding of different patterns of selection acting on root traits in the different 

competitive treatments indicates that plant-plant competition can act as a selective agent on root 

traits. That we identified selection on different root traits between species is consistent with the 

idea of niche partitioning, which predicts greater divergence in resource associated traits between 

species to reduce competition for limiting resources (MacArthur and Levins 1967). Multiple 

field studies examining the relationship between different rooting depths of various co-occurring 
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plant species have shown that a decrease in overlap between rooting zones of neighboring plants 

positively impacts plant yield and biomass (i.e., plant fitness; Fargione and Tilman 2005; 

Mueller et al. 2013). Our results extend this finding to show that interactions between two 

closely related, co-occurring species elicits selection for different patterns of root traits. Hence, it 

is possible that competition between the two Ipomoea sister species promotes the divergence in 

resource-related root traits.  

 

Finally, although our research provides the first experimental evidence that belowground 

competition can influence the evolution of root traits in these two related species, we are not 

showing the outcome of such competitive interactions across many natural populations. More 

specifically, while our study supports the idea that the adaptive process can occur in root traits as 

a response to belowground competition, we do not explicitly test for broad-scale patterns that 

would suggest such interactions have led to trait divergence (i.e., divergence in root traits where 

the species co-occur versus similarity in areas where they do not co-occur). Future work testing 

for patterns of phenotypic evolution in root traits between multiple naturally occurring 

populations of these two species is thus needed to draw conclusions for, if and how competition 

belowground has influenced the evolution of root traits in natural populations across the 

landscape.  
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Figures and Tables 

 

 

 
 

Figure 2-1: Example of an Ipomoea individual growing in rhizotron containing soil (left) and root traced 

in photoshop (right). Landmarks are placed to estimate root system width (distance between landmark B 

and D), primary root length (vertical distance between la 
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Figure 2-2 Diagram of the field experiment showing Ipomoea plants grown in the presence of competition 

(inter- or intraspecific) or alone. Inter- or intraspecific competition treatments are indicated by white circles 

with a black dotted pattern, or grey solid circles with diagonal lines, respectively. The alone treatment is 

indicated by a white solid circles.  Each experimental unit (i.e., each unique competition pairing and alone 

treatments) was replicated eight times and randomly arrayed with two biological replicates per experimental 

unit per block.  
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Figure 2-3 REST output showing the original image of an Ipomoea species excavated from the field (A) 

and its binary form with an arc superimposed by REST to obtain the outer right and left root angles  (here 

30 degrees on the left and 48.3 degrees on the right) from the horizontal place in red. (B) The blue box 

shows the region of interest detected automatically by REST program of which total root based pixels were 

quantified from within to obtain root size (‘area convex hull’ in REST) and measure root system width 

(‘max root width’ in REST) based on the distance between the right and left outermost roots in the box. 
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Figure 2-4 Interspecific belowground competition alters the pattern of selection for root size in I. purpurea 

(A), and root angle in I. hederacea (B). Solid grey and solid black circles represent the family mean values 

of standardized root traits (root size in I. purpurea (A) and root angle in I. hederacea (B)), with family 

mean values of relative fitness regressed onto each trait when plants were grown in interspecific competition 

or grown alone, respectively. Solid grey lines and dashed black lines represent the slope (β) for plants grown 

in interspecific competition, and plants grown alone.) The β for root size in I. purpurea grown alone (0.56 

± 0.29) differed significantly (F1,53=4.88, p-value=0.03; Table B4) from the β of I. purpurea grown in 

interspecific competition (-0.15 ± 0.22). The β for root angle in I. hederacea grown alone (0.01 ± 0.08), 

differed significantly (F1,70=4.37, p-value=0.04; Table B4) from the β of I. hederacea grown in interspecific 

competition (0.23 ± 0.09). 
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NOTE.—Least-squares means ±1 SE for each trait by species and F-statistics and likelihood ratio test 

statistics (χ2) values showing the effects of experimental replicate, species, population, and maternal line 

variation on plant phenotypes.  Maternal lines were nested within populations. 

 

* p< .05 

** p< .01 

*** p< .001 

  

 Species F-statistics χ2 

Trait I. purpurea I. hederacea Experiment 

df = 1 

Species 

df = 1 

Population 

df = 4 

Maternal 

Line 

df = 1 

Root system width 

(cm) 

6.90 ± 0.28 8.49 ± 0.22 315.79*** 17.18*** 6.82*** 5.10* 

Primary root length 

(cm) 

11.30 ± 0.61 11.40 ± 0.46 22.52*** < 0.01 0.76 5.22* 

Root angle 

(degrees) 

37.40 ± 1.33 30.40 ± 1.01 61.42*** 15.04*** 0.22 12.47*** 

Root system size 

(cm2) 

2.36 ± 0.21 3.95 ± 0.16 35.22*** 31.41*** 7.29*** 2.22 

 

 

 

Table 2-1: SPECIES DIFFERENCES IN I. PURPUREA AND I. HEDERACEA ROOT TRAITS 

MEASURED FROM 
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Table 2-2 INFLUENCE OF COMPETITIVE TREATMENT ON I. PURPUREA AND I. HEDERACEA ROOT 

TRAITS WHEN GROWN IN THE FIELD 
 

 I. purpurea I. hederacea  

Trait Alone Competition Alone 
Competition 

(inter) 

Competition 

(intra) 

Root system width (cm) 7.12 ± 0.37 7.00 

± 0.25 

7.43 

± 0.36 

7.31 

± 0.25 

7.03 

± 0.25 

Root system size (cm2) 77.50 ± 3.94 76.69  

± 2.16 

78.08 ± 

3.77 

77.28 

± 2.22 

71.07 

± 2.23 

Root angle (degrees) 26.62 ± 2.05 24.43  

±1.14 

27.00 

±1.96 

24.81  

±1.16 

22.63  

±1.17 

Seed number  750.01 

±75.69 

491.15 

±53.88 

709.84 

±68.42 

450.98 

±53.48 

428.26 

±55.10 

NOTE.—Least-squares means ±1 SE for each trait in each treatment. 
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Chapter 3. Potential for Character Convergence, but Not Displacement, to Influence the 

Evolution of the Root System of the Common Morning Glory 

 

 

Abstract 

Character displacement describes a type of phenotypic evolution by natural selection where 

competition between closely related species results in the phenotypic divergence of resource 

associated traits. Although character displacement can have important repercussions on plant 

evolution and ecology, research into character displacement as a potential driver of root trait 

evolution remains untested. Here we investigated the potential for the process of character 

displacement to result in the evolution of root traits using two closely related morning glory 

species, Ipomoea purpurea and I. hederacea. We performed a field experiment where we grew 

replicate maternal lines of I. purpurea in the presence and absence of competition from I. 

hederacea and determined if the phenotypic distance in multivariate measures of 33 root traits 

between competitors was positively associated with increased fitness, which would indicate that 

character displacement can lead to root trait evolution. We found maternal line variation in root 

morphology as a modular trait and in specific root architecture and morphology traits, as well as 

evidence that belowground competition acts as an agent of selection on these traits. Our test for 

the prediction of character displacement, however, showed evidence for character convergence 

in root architecture (i.e., an increase in relative fitness with a decrease in phenotypic distance 

between competitors) rather than a pattern of character displacement. This result suggests that 

plants are either responding plastically to their specific competitive environment and/or indicates 

the possibility that phenotypic plasticity in root architecture may represent an important 

mechanism for how plants compete and acquire multiple essential resources belowground. 
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Introduction  

Character displacement, where closely related species diverge in their resource-associated 

traits as a response to competition, has long been considered an important mechanism that may 

facilitate species coexistence, result in the evolution of novel phenotypes, and potentially 

promote the adaptive radiation of species (Brown and Wilson, 1956; Losos 2000; Pfennig et al. 

2006; Pfennig and Pfennig 2009). Character displacement is hypothesized to occur due to high 

phenotypic similarity between related species, which leads to increased competition and a 

concomitant reduction in fitness (Schluter 2000; Pritchard and Schluter 2001; Day and Young 

2004; Dayan and Simberloff 2005). Despite the importance of character displacement in 

evolutionary processes, the majority of character displacement work has been performed in 

animal systems (Schluter and Grant 1984; Schluter et al.1985; Losos 1990 & 2009; Schluter and 

McPhail 1992; Pritchard 1998; Martin and Pfennig 2011). Comparatively fewer well-supported 

studies of character displacement exist in plants (Levin 1985; Muchhala and Potts 2007; 

Muchhala 2008; Hopkins and Rausher 2011; Beans, 2014).  

 

Of the available research on character displacement in plants, the majority (if not all) is focused 

on competition for pollinators, e.g., the evolution of floral morphology and color as a response to 

competition for pollinators (Armbruster 1985 & 1986; Muchhala and Potts 2007; Muchhala 

2008; Smith and Rausher 2008; Beans 2014). Other plant traits contribute to fitness and mediate 

plant-plant competition, however, and these remain largely unstudied as targets of character 

displacement. For example, the belowground root system plays a critical role in the acquisition 

of minerals and water from the soil (Fitter,1987; Fitter, 2002) and in mediating belowground 

plant-plant competition (Casper and Jackson 1997, Kroon et al. 2003 and Schenk 2006; Ravenek 

et al. 2016). Thus, the belowground root system could likely respond to selection via competition 

between closely related, co-occurring species, potentially leading to character displacement in 

root traits. However, research examining the potential for character displacement on the root 

system remains a significant gap in evolutionary ecology. 

 

The belowground root system is a complex organ composed of diverse and developmentally 

interdependent traits that are often cataloged into ‘functional groups’ that influence resource 

uptake in different ways (Fig. 3-1; Fitter 1987; Lynch 1995; Bucksch et al. 2014). Phenotypic 
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diversity in the traits within functional groups can influence how plants explore the soil and 

acquire nutrients – e.g., the morphology of individual root traits (e.g., root diameter), how 

components of traits are arranged spatially (architecture, e.g., angles), the size of these traits and 

the volume they take up (root system size) and the distribution of these elements over space (root 

system topology; Fig. 3; Lynch and Brown, 2001; Fitter et al. 2001; Lynch 2005; Nguyen and 

Stangoulis 2019; Canales et al. 2019). Despite the important ecological and functional role of the 

root system, only a few studies have explicitly investigated the potential that natural selection 

can lead to the phenotypic evolution of root traits (Ferguson et al. 2016; Murren et al. 2020; 

Colom and Baucom 2020). Even, fewer have considered the role that belowground competition 

may play in the evolution of the root system (Colom and Baucom 2020).  

 

Previously, we demonstrated that competitive belowground interactions can act as an agent of 

selection on root traits in Ipomoea purpurea and I. hederacea, two closely related species of 

morning glory that are found to co-occur, and compete, in agricultural fields and other areas of 

high disturbance (Colom and Baucom 2020). We found evidence of genetic variation underlying 

traits associated with both root morphology and architecture (i.e., primary root length, angle and 

width), and additionally showed that competition between the two species influenced the pattern 

of selection on root traits. Specifically, when in competition with I. purpurea, I. hederacea 

individuals with shallower root architectures -- a trait associated with increased topsoil foraging 

(Fitter 1987; Lynch 1995) -- exhibited higher fitness. In contrast, belowground competition from 

I. hederacea altered the pattern of selection on root system size in I. purpurea. When I. purpurea 

was grown in the absence of I. hederacea competitors, selection favored individuals with larger 

root systems, whereas there was no detectable selection on root system size in I. purpurea in the 

presence of competition with I. hederacea (Colom and Baucom, 2020). These findings indicate 

that root traits can respond to selection, and that belowground competition acts as an agent of 

selection, potentially influencing the evolution of root traits.  

 

Here, we build on our previous research and ask, “Can belowground competition between 

closely related species potentially result in character displacement of their root system traits?” 

We addressed this question by growing maternal lines of I. purpurea in the presence and absence 

of I. hederacea and determining if there is a relationship between fitness and the phenotypic 
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distance of multivariate measures of root topology, architecture, size and morphology between 

these two species. We adopted part of the criteria used to evaluate evidence for the pattern of 

character displacement (McPhail and Schluter, 1992; Losos 2000) and focused on testing 

evidence for the process of character displacement. We examined the following core components 

of character displacement: Criterion 1) belowground competition influences fitness, Criterion 2) 

traits under selection must have a genetic basis, Criterion 3) belowground competition generates 

non-random fitness differences as a function of phenotypic variation (i.e., competition is the 

agent of selection on phenotype), and Criterion 4) when in competition, the fitness of individuals 

increases with greater phenotypic distance in root traits compared to their competitor. Criterion 4 

is the hallmark prediction of character displacement. 

 

Materials and Methods 

Study system--We used the closely related morning glory species, I. purpurea (L.) Roth and I. 

hederacea (L.) Jacquin (Convolvulaceae) as our experimental system. These Ipomoea species 

commonly co-occur in eastern United States (personal observation, RS Baucom). Historical 

records indicate the presence of I. purpurea as early as 1700’s (Pursh 1814) and the presence of 

I. hederacea since mid 1800’s (Bright 1998). I. hederacea and I. purpurea are both annual, self 

compatible weedy climbing vines that reside in similar habitats (e.g., sides of train tracks, 

agricultural fields) and exhibit high within species morphological diversity in aboveground and 

belowground traits (Baucom et al. 2011; personal observation Colom and Baucom). Both species 

germinate between the months of May and August, begin to flower about six weeks after 

germination and continue to flower until they are killed at first frost. In this experiment, we used 

I. purpurea as our focal species to have a sufficiently high number of replicates to examine the 

potential for maternal line and thus genetic variation in root traits in the field while maintaining a 

feasibly sized experiment.  

 

Field design and planting --We obtained ten maternal lines of I. purpurea, and six maternal lines 

of I. hederacea from a single population located in Pennsylvania and selfed them for one 

generation in greenhouse conditions to reduce maternal effects. We planted once-selfed seeds of 

I. purpurea in both the presence of interspecific competition with I. hederacea, hereafter, 

‘competition’ treatment, and in the absence of competition, hereafter, ‘alone’ treatment at a 42m 
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× 40m field plot located at the Matthaei Botanical Gardens, Ann Arbor, MI on June 2nd of 2018. 

The field plot was tilled one week prior to planting. For the competition treatment, we used ten 

maternal lines of I. purpurea paired with each combination of six maternal lines of I. hederacea 

to yield 60 ‘unique combination pairings’ which allowed us to obtain variation in phenotypic 

distance between individuals in competition. We replicated each of these pairings sixteen times. 

For the alone treatment, we replicated each I. purpurea maternal line sixteen times.  

 

All seeds were planted in a complete random block design in which we arrayed four replicates of 

each unique pairing and maternal lines grown alone in each of four 10 m × 30 m spatial blocks. 

Blocks were separated from each other by approximately two meters, and seeds planted in the 

competition treatment were placed three inches away from each other. All plant pairs in the 

competition treatment and individual plants in the alone treatments were planted 1 m2 apart from 

one another. We placed 1 m tall bamboo stakes next to each experimental seedling and later 

trained them to grow onto the bamboo sticks to prevent experimental plants from tangling and 

competing aboveground, following Colom and Baucom, 2020. Although both species may 

respond to selection given belowground competition, our focal species in this experiment was I. 

purpurea, and thus our data collection and analysis centered on this species with I. hederacea as 

the closely related competitor.  

 

We watered seeds and recorded germination daily for the first two weeks, and subsequently, 

relied on rainfall to water our plants. Vole herbivory, which killed some plants during the course 

of the experiment, was recorded. We kept the soil within a six-inch radius around each 

experimental plant free of weeds and removed any non-experimental morning glories from the 

field. One month after planting we counted leaves of each I. purpurea plant to serve as a proxy 

of plant size. 

 

Root excavation and phenotyping--When experimental plants were reproductively mature, we 

excavated a subsample of individuals to obtain root phenotype data from individuals grown 

alone and in competition. We sampled between four to eight biological replicates of each 

maternal line of I. purpurea in the alone treatment, and four to eight biological replicates of I. 

purpurea and I. hederacea planted in competition for each of the unique 60 combination 
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pairings. In total we excavated and phenotyped 511 plants. We adopted the shovelomics method 

for root excavation (Colombi et al. 2015) as previously described (Colom and Baucom 2020) and 

imaged their roots with a high resolution camera, Canon EOS Rebel XSi 12.2 MP (18-55mm IS 

Lens).  

 

Each of the images was imported to DIRT (Das et al, 2015), a fully automated online program 

designed to phenotype various basic and complex root traits from plants sampled in field 

conditions. DIRT enables users to phenotype monocot and dicot root structures and analyze 

either the whole root system or single excised roots. We removed traits from this output that 

were not applicable for our study system, such as monocot root traits, as well as highly redundant 

(i.e., represented a mathematical combination of two or more traits). All trait measurements 

computed by DIRT rely on estimates of root length, diameters, branching angles, density and 

spatial root distribution that are quantified from the pixels of an image mask of the root system 

(binarized image of the root system) and a structural description of the root system or ‘skeleton’. 

The structural description (‘root tip path’ in DIRT) of the root system is a curve representation of 

the root system based on different samples points that allows the program to capture multiple 

measurements (‘skeleton’ traits in DIRT) that are otherwise occluded or confounded—e.g., the 

network of a mature root system occludes its interior and smaller roots may bind together and 

appear as a single root.   

 

Specific root traits analyzed--We examined a total of 33 traits, which we a priori classified into 

the four functional classes of root architecture, morphology, size and topology, e.g., root angle 

and horizontal/vertical length, lateral root number and diameter, total root system surface area 

and maximum width of the root system for a given soil depth, respectively (see Table S2-1 and 

Fig. S2-1).  

 

Fitness data--We began to collect mature fruit of experimental I. purpurea in September and 

continued to do so until all plants senesced in mid-October. We sampled between three to eight 

replicates for each maternal line per I. purpurea in the alone treatment, and between two and 

nine replicates of I. purpurea for every unique pairing in competition; in total we sampled seed 

from 429 I. purpurea (Num. alone = 62 and Num. in competition = 367).  
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Statistical analysis 

All statistical analyses were performed in R version 3.0 (R core team 2018).  

 

Modular root traits-- Because preliminary assessment of trait correlations uncovered significant 

and strong pairwise correlations (r > 0.8, p-value < 0.5) we elected to perform a principal 

component analysis (PCA) to reduce the high dimensionality/redundancy of our root phenotypes 

(see Root system traits section). we performed the PCA with the correlation matrix of 33 root 

traits rendered by DIRT (Table S2-1) using the ‘PCA’ function from the ‘factoMiner’ package 

(Le et al, 2008). Prior to PCA we mean centered each trait to zero, scaled the standard deviation 

to a value of one, and applied a box cox transformation to reduce skewness in the data with the 

‘preProcess’ function of the ‘caret’ package (Khun, 2019). Since preliminary visualization of the 

PC’s showed strong grouping by block, we performed the PCA on the indexed residuals of each 

root trait after controlling for block in a one-way ANOVA. A scree plot performed on the output 

of this PCA showed that each of the first four PC’s explained at least 10.0% of the total 

phenotypic variation (Fig. S2-2). Therefore, we focused our analysis on the first four PC’s as 

modular root traits. To evaluate how each individual root trait contributed to each PC (PC1-4), 

we calculated the proportion of squared loading coefficients to the sum of squares with the 

‘fviz_contrib’ function in the ‘factoextra’ package (see Fig S2-2; Kassambara and Mundt, 2017. 

We found that the first four PCs were associated generally by traits that describe topological, 

architectural, size and morphological aspects of the root system, respectively, (see Fig. 3-3; 

Table S2-1). As such, we hereafter refer to PC1, PC2, PC3 and PC4 as root topology, 

architecture, size and morphology, respectively.  

 

Evidence of belowground competition—To test whether belowground competition influences 

fitness, we performed a linear mixed model where we used the observed seed number as our 

response variable, block, treatment and block × treatment as fixed effects, and maternal line and 

treatment by maternal line interaction as a random effects. We excluded treatment by maternal 

line interaction in our final model because we found that the inclusion of this term was not 

significant in a preliminary analysis, nor did it improve akaike information criterion (AIC) when 

we compared it to a model that lacked this interaction term. Because preliminary analysis 
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showed a strong correlation between leaf number, a proxy for plant size, and seed number, we 

also included leaf number as a covariate in our model. We did F-tests with type three sums of 

squares using Satterthwaite's method to evaluate the significance of fixed effects, and log-

likelihood ratio χ2 tests to test for the random effect using the ‘anova’ and ‘ranova’ functions of 

the ‘lmerTest’ package (Kuznetsova et al, 2017), respectively. We estimated the least square 

means of seed number for each treatment averaged across block and block × treatment 

interaction with the ‘emmeans’ function as above (Length, 2019).  

 

Maternal line variation of root traits—To determine if there was evidence of maternal line 

variation in modular root traits of plants grown in the field, as well as how phenotypes differed 

between competition treatments, we performed separate linear mixed models for each of the four 

PC’s. We ran separate models for each PC as block, treatment and treatment by block interaction 

as fixed effects, and maternal line and maternal line × treatment interaction were random effects. 

Because we found that maternal line × treatment and block × treatment interactions did not have 

a significant effect on any of the PC’s examined, nor did their inclusion improve the AIC when 

we compared it to a model that lacked these interaction terms, we removed these factors from 

our final models. F-tests with type three sums of squares using Satterthwaite's method and log-

likelihood ratio χ2 tests were performed to assess the significance of fixed and random effects for 

each model using the ‘anova’ and ‘ranova’ functions of the ‘lmerTest’ package (Kuznetsova et 

al, 2017), respectively. We also evaluated evidence for block, treatment and maternal line 

variation on eight individual root morphology traits and two individual root architecture traits 

post hoc within I. purpurea because we detected evidence for selection on these traits in our 

focal species (see Selection on root traits below).  

 

Calculating standardized relative fitness—To test for selection on root traits and that fitness 

increases with phenotypic distance, we used standardized relative fitness as our response 

variable. For our calculation of standardized relative fitness, we divided the observed seed 

number by the mean seed number for I. purpurea, within each competition treatment, (e.g., 

Relative fitness = 
𝑛 𝑜𝑏𝑠.  𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛

X ̄ 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
, where n represents the number of observed seeds from each 

individual in competition, and X̄ represents the mean seed number of plants in competition). 

Then we averaged the output by maternal line and treatment for the selection analysis and 
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averaged the output by maternal line, and unique combination pairing for the test that fitness 

increases with phenotypic distance. Then we standardized values of average relative fitness to 

control for block and plant size (i.e., leaf number) by using the residuals of a two-way ANOVA 

that included only block and leaf number as explanatory variables of average relative fitness. 

 

Testing for selection on root traits--To examine if competition imposes selection on root 

architecture, topology and morphology as modular traits, we performed genotypic selection 

analysis (Lande and Arnold, 1983). To do so, we averaged the PC scores (block standardized) of 

root architecture, topology and morphology by maternal line and treatment, and then performed 

separate regressions for each root system trait onto standardized relative fitness (averaged by 

treatment and maternal line) for each treatment. We elected to exclude root size (PC3) from this 

and subsequent analysis because we did not find evidence for maternal line variation or 

directional selection on this trait in the presence of competition in previous work (Colom and 

Baucom 2020), or in the preliminary analysis of the present research. Preliminary assessment of 

quadratic selection on individual PCs did not reveal any significant effect of those terms, 

indicating little evidence for either stabilizing or divergent selection, and thus we report only 

linear terms. To test whether the pattern of directional selection differed between treatments, we 

combined both treatments and performed ANCOVAs for each PC, wherein treatment, trait and 

treatment × trait interaction were included as our independent variables, and standardized 

relative fitness was our response variable. 

 

Because not all root traits necessarily contribute to fitness, the effect of selection on any 

individual trait contributing to a PC can be obscured (Mitchell-Olds and Shaw 1987; Chong et al. 

2018). Therefore, we performed ‘PC back regression’, which is a linear transformation technique 

where we can input PC’s of interest --i.e., root topology, architecture, and morphology--and their 

corresponding eigenvectors to recover the selection gradients acting on specific root traits in 

their original trait space. More specifically, selection gradients on the original root traits are 

reconstructed by projecting the regression coefficients from our selection analysis onto their 

corresponding eigenvectors (Jolliffe 2002, p. 169; Chong et al. 2019). We used a matrix with the 

eigenvectors of PC1, PC2, and PC4 (i.e., root topology, architecture and morphology) 

standardized for block, and a vector of their corresponding selection gradients (R script available 
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in supplementary). We performed matrix multiplication as shown by the formula, β = EA, where 

β represents a vector of the reconstructed selection gradients on the original root traits, E is the 

matrix of the three PC’s eigenvectors standardized by block, and A is a vector of the regression 

coefficients obtained from regressing relative fitness on these PC scores. We calculated 

reconstructed βs for individuals of I. purpurea grown alone and in competition separately. To 

test the uncertainty that the reconstructed selection gradients are significantly different from 

zero, we first calculated a standard error for each reconstructed trait by taking the square root of 

the difference between the squared standard errors obtained from the regression of PC’s onto 

relative fitness and their eigenvectors squared for each treatment. We estimated confidence 

intervals for each β at an alpha of 0.05% based on plus or minus two standard errors from each β 

(i.e., β ± 1.96 × SE). If the confidence interval of β did not include zero, we interpreted those 

slopes as different from zero and reported it (Table 3-2). We evaluated whether the confidence 

intervals in the absence of competition and in the presence of competition did not overlap to infer 

if slopes differed according to treatment. We interpreted those selection gradients that did not lie 

within the 95% confidence interval of the other treatment as evidence that belowground 

competition imposes selection on that trait. The traditional approach to compare whether 

selection gradients differ between treatments would be to apply an ANCOVA and calculate an F-

statistic. However, we compared slopes in this manner since PC back regression method applied 

to a subspace results in a loss of information and consequently impacts our ability to estimate the 

degrees of freedom required to calculate its corresponding F-statistics (personal communication, 

J. Stinchcombe). 

 

Fitness increases with phenotypic distance--To test whether the phenotypic distance between 

root system traits between competitors positively associated with fitness in I. purpurea, we 

regressed of I. purpurea standardized relative fitness on the phenotypic distance between root 

traits of competing plants. For each PC we calculated the Euclidean distances between 

competitors with the ‘cdist’ function from the ‘rdist’ R package (Blaser, 2018). Specifically, the 

calculation of phenotypic distance was done by finding the linear distance within the same 

modular root system traits: 

√𝑃𝐶2 (𝑓𝑜𝑐𝑎𝑙) − 𝑃𝐶2(𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟), where 𝑃𝐶 represents the prinicpal component of a given axis

), for phenotypic distances of root topology, architecture and morphology respectively). We also 
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evaluated phenotypic distance between different types of traits--e.g., phenotypic distance 

between PC1 and PC2--but did not uncover any evidence that different trait combinations 

influenced fitness, and thus we do not include these results here. Each metric of phenotypic 

distance was averaged according to each unique combination pairing and regressed onto our 

values of standardized relative fitness (averaged by maternal line, treatment and combination). 

We used F-statistics to ascertain whether the slope was significantly different from zero.  

 

We also evaluated evidence for the prediction of character displacement on eight individual root 

morphology traits and three individual root architecture traits post hoc (within I. purpurea) 

because we detected evidence for selection on these traits at the individual level--i.e., 

√𝑅𝑜𝑜𝑡 𝑡𝑟𝑎𝑖𝑡2 (𝑓𝑜𝑐𝑎𝑙) − 𝑅𝑜𝑜𝑡 𝑡𝑟𝑎𝑖𝑡2(𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟)), see Selection on root traits above.  

 

Because we had multiple biological replicates per sample point in this analysis (N= 2-6 pairwise 

comparisons between maternal lines of each species), and our main goal was to examine changes 

in relative fitness given phenotypic distance in root traits, we elected to retain all samples to 

evaluate the relationship between fitness and phenotypic distance of modular and specific root 

traits. Preliminary analysis indicated that two such pairings may be outliers, however, we 

retained them in the final analysis because we found that they had a low amount of variation 

around the mean (see Fig. S2-4), indicating that these points are not biased by an extreme 

phenotypic value.  

 

Results 

Describing the root system as modular root traits--PCA showed that the first four PC’s 

contributed to 22.5%, 20.0%, 13.7% and 10.9% of the total variation, respectively. Because the 

traits driving the variation in PC1, PC2, PC3 and PC4 were mainly descriptors of root topology, 

architecture, system size and morphology, respectively, we refer to them as corresponding 

modular root traits. For PC1 we found that accumulated root width per soil depth explained most 

of the variation on this axis (‘root topology’; Fig. 3-3A). Since each measure of accumulated root 

width per soil depth loaded positively on this axis, higher scores correspond to a root system 

with greater root width per soil depth. 
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Higher scores for PC2 were associated with broader stems, root tips emerging from deeper in the 

soil, wider and more shallow root system and a decrease in vertical root growth. 

In general, these results indicate that a higher score correspond to a root system that tends to 

grow more narrowly near the soil surface and indicate a trade-off in the spatial arrangement of 

the root system, where the ability to grow deeper is constrained to individuals with a narrower 

root system and vice versa.  

 

For PC3 (‘root system size’; Fig. 3-3C) we found that the total surface area (i.e., total number of 

root derived pixels) of the root system (‘projected root area’) explained most of the variation and 

loaded positively on this axis, therefore indicating that higher scores correspond to an overall 

larger root system. Multiple traits that describe overall root system morphology (e.g., root 

diameter and root tip count) contributed mainly to PC4 (‘root morphology’; Fig. 3-3D). Overall, 

higher scores on the morphology axis correspond to a root system that has multiple lateral roots 

and smaller lateral root diameter (i.e., thinner lateral roots) and exhibits a greater range in the 

rooting angles relative to the soil surface and to the tap root (i.e., develops roots that grow both 

obtuse and acute relative to soil surface and tap root). As such, within I. purpurea, individuals 

that produce many lateral roots tend to produce smaller roots with less diverse rooting angles 

(i.e., lateral roots grow mainly at an acute angle or mainly at an obtuse angle).  

 

Evidence of belowground competition--We found a significant effect of treatment (F1,370.05 = 

3.98, p-value = 0.046) with I. purpurea producing 18% fewer seeds when in the presence of 

competition with I. hederacea compared to growing alone. We also uncovered a significant 

treatment × block interaction (F3,371.54 = 2.62, p-value = 0.05). These results indicate that I. 

purpurea competed with I. hederacea belowground and that the intensity of competition was 

environmentally dependent.  

 

Maternal line variation in root traits--From our linear mixed model ANOVA on each of the PCs, 

we uncovered evidence for maternal line variation in root morphology (χ2 = 6.31, p-value = 0.01; 

Table 3-1) but no evidence for maternal line variation in root topology, architecture or size 

(Table 3-1). In addition, all four modular traits differed with environment (block), but not with 

competition (Table 3-1).  
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In addition, we performed post hoc linear mixed models on eight individual root morphology 

traits and three individual root architecture traits because we found evidence that belowground 

competition altered selection on these traits (see results below). This analysis uncovered 

significant maternal line variation for soil tissue angle range (χ2 = 4.66, p-value = 0.03; Table S2-

3), root tissue angle range (χ2 = 4.22, p-value  = 0.04; Table S2-3) and maximum soil tissue 

angle (χ2 = 5.17, p-value = 0.02; Table S2-3), indicating that these individual root traits can 

potentially respond to selection. The block effect explained a significant proportion of variation 

in all these specific traits while competition did not. 

 

Testing for selection on root traits--Selection analysis on the modular root traits showed 

evidence for negative directional selection on root morphology (PC4) (β = -0.17, p-value = 0.03; 

Table S2-3; Fig. 3-4) when I. purpurea was grown in the presence of competition, and positive 

(albeit non-significant) directional selection on root morphology in the absence of competition (β 

= 0.12, p-value = 0.10; Table S2-3; Fig. 3-4). ANCOVA revealed a significant treatment × trait 

interaction (F1,16 = 5.33, p-value = 0.03; Table S2-3), providing evidence that the pattern of 

selection on root morphology was altered by belowground competition. These results indicate 

that belowground competition is generating selection for root systems that exhibit smaller root 

morphology (i.e., a decrease in overall lateral root production with an increase in lateral root 

diameter along with selection for a decreased range of root angles). We did not find evidence for 

selection on root topology, or architecture (i.e., PC1 and PC2) in either the presence or absence 

of competition (Table S2-3), suggesting that these traits are not under selection regardless of the 

competitive environment, or alternatively, that the signal of selection on specific traits 

contributing to each PC was diluted.  

 

We next evaluated evidence for selection on individual root traits via PC back regression since 

the absence of selection at the modular level does not necessarily reflect absence of selection on 

specific root traits. In the absence of competition, we uncovered positive selection on skeleton 

node number, root tip count, the number of adventitious roots, and negative selection on average 

root density (Table 3-2). In the presence of competition, however, we found evidence for 

positive selection on mean root tip diameter, hypocotyl diameter, tap root diameter and 
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maximum diameter 90-100% soil depth, and negative selection on soil tissue angle range, 

maximum soil tissue angle and root tissue angle range within I. purpurea (Table 3-2). Although 

maximum soil root tissue angle and soil and root tissue angle range describe spatial 

characteristics of the root system, they contribute mainly to PC4 (root morphology) (Fig. 3-3; 

Table S2-1), therefore contributing to selection acting on root morphology in the presence of 

competition. The 95% confidence intervals on selection gradients each of these traits did not 

overlap between treatments, indicating that, with the exception of skeleton node number, 

belowground competition altered the pattern of selection on these traits.  

 

Test of character displacement (i.e. Fitness increases with phenotypic distance)--We found a 

negative linear relationship between phenotypic distance in root architecture (PC2) and 

standardized relative fitness (β = -0.06, p-value = 0.03; Table 3-3; Fig. 3-5), suggesting that 

competitor individuals with similar root architectures (i.e., more shallow root architecture with 

decreased maximum root width or more narrow root architecture with increased maximum root 

width) exhibited higher fitness than competitor individuals with more divergent architectural 

traits (i.e., character convergence rather than displacement). We found no evidence of a linear 

relationship between standardized relative fitness and phenotypic distances in root topology 

(PC1) or morphology (PC4) (Table 3-3), and did not evaluate character displacement in root size 

(PC3) since previous work found no evidence for selection on size in the presence of competition 

nor evidence of genetic variation underlying this trait.  

 

Finally, since we found evidence that belowground competition altered selection on a handful of 

individual root traits (see Testing for selection on root traits above), we performed post hoc tests 

to examine the pattern of character displacement on eight individual root morphology traits and 

three individual root architecture traits. However, we found no evidence for a significant linear 

relationship between phenotypic distance between these traits and relative fitness (results not 

shown).  
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Discussion 

Our research examined the potential that root traits may evolve via the process of 

character displacement. We performed a field experiment where we grew I. purpurea (focal 

species) in the presence and absence of I. hederacea and determined if the process of character 

displacement could influence the evolution of root traits by testing four key criteria. We found 

that I. purpurea grown in the presence of I. hederacea experienced a significant reduction in 

fitness, thus providing evidence that these species compete belowground, a result that is in 

alignment with our previous field study (Criterion 1; Colom and Baucom, 2020). We uncovered 

evidence for genetic variation in the modular trait root morphology and for three individual traits 

(soil root tissue angle range, root tissue angle range and maximum soil tissue angle). Therefore, 

that multiple root traits represent viable targets of selection (Criterion 2). Further, we found that 

belowground competition imposed selection on root morphology as a modular trait and on 

multiple individual root traits, indicating that belowground competition can act as an agent of 

selection (Criterion 3, also in alignment with previous work). Most importantly, our test for the 

hallmark prediction of character displacement (Criterion 4) revealed a significant linear 

association between plant fitness and phenotypic distance for root architecture as a modular trait. 

However, this analysis did not show evidence for the potential for character displacement as we 

hypothesized--instead, we found evidence for the potential for character convergence in root 

architecture. Below, we expand on the implications of our findings and our interpretations in 

light of current experimental and theoretical work in root trait biology and ecology.  

 

Genetic variation in root traits suggests evolutionary potential  

Our finding of significant maternal line and thus genetic variation in root morphology as 

a modular trait and in individual root traits shows that these traits exhibit the potential to respond 

to selection and evolve (Criterion 2). These results are in line with previously reported evidence 

for maternal line variation in root traits associated with root system architecture and morphology 

in both I. purpurea and I. hederacea (Colom and Baucom, 2020). Interestingly, these previous 

results were based on measurements taken from individuals that were grown in greenhouse 

conditions, where environmental conditions are fairly simple. That we also uncovered maternal 

line variation for specific root architecture traits, and root morphology as a modular trait under 
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field conditions strengthens support for these traits as viable targets of selection that can 

potentially evolve given selection from belowground competition. 

 

Belowground competition generates selection on root traits 

Although we found evidence that multiple root traits have the potential to respond to 

selection, evidence that interspecific competition alters the pattern of selection on these same 

root phenotypes (Criterion 3) is necessary for making a strong case that belowground 

competition can lead to character displacement. To this end, we examined selection on root traits 

using two approaches: selection at the modular level (i.e., selection on PC’s), and selection on 

specific root traits. Selection analysis on each PC is appropriate for studying the root system 

given that many root traits are strongly correlated (Chong et al. 2018). However, if traits that 

load strongly on a single PC axis do not contribute to fitness, the signal for selection on traits that 

may contribute to that PC could go undetected (Mitchell‐Olds and Shaw 1987; Chong et al. 

2018). Therefore, we also performed PC back regression, a linear algebra transformation 

technique that allows us to project selection gradients back into original trait space, and compute 

estimates of selection coefficients on specific traits (Chong et al. 2018). We found that 

directional selection acted on root morphology as a modular trait, and that the direction of 

selection was altered according to competitive context. Specifically, our results show a pattern of 

negative selection on root morphology in the presence of competition, and positive (albeit 

nonsignificant) selection on root morphology in the absence of competition. This result indicates 

that competition was selecting on thicker but fewer number of lateral roots, whereas in the 

absence of competition we did not uncover any evidence of selection.   

 

One potential reason we uncovered a pattern of selection for smaller values of root morphology 

in the presence of competition may be due to specific foraging strategies that provide a benefit in 

this environment. For example, the production of fewer and thicker lateral roots has been linked 

with resource conservation, suggesting that selection is favoring individuals of I. purpurea that 

may acquire nutrients efficiently (Eissenstat and Yanai 2002; Paula and Pausas 2011). This 

explanation is in line with theoretical models of belowground plant-plant competition which 

predict that when soil resources are low, efficient root foraging phenotypes are favored over 

exploitative ones because the ‘per-root’ costs are high relative to resource uptake (Hutchings and 
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John 2007; O’Brien et al. 2007; McNickle and Brown, 2012). Our results also suggest that 

belowground competition is selecting for a wider root system (i.e., decrease in the angle formed 

between the soil surface and a given lateral root; see sketch of ‘soil tissue angle’ in Fig. S2-1) 

and decrease in the rooting angle range relative to the soil surface and tap root. The finding of 

negative selection on these root angle traits may reflect increased competition for topsoil 

resources when I. purpurea and I. hederacea grow close to each other.  

 

In previous work we found evidence for selection for shallower root systems in I. hederacea as a 

response to belowground competition from I. purpurea, but no evidence of selection when 

considering I. purpurea as the focal species in competition with I. hederacea (Baucom and 

Colom 2020). At first glance it appears the results presented here contradicts our previous work, 

however, in our present study we measured more and different architectural traits than in Colom 

and Baucom (2020). In our present study we found evidence of negative directional selection 

acting on a similar trait, the maximum angle formed between lateral roots and the soil surface 

(i.e., maximum soil tissue angle) when I. purpurea was grown in the presence of competition but 

not in the absence of competition. This result implies that belowground competition from I. 

hederacea is generating selection for a decrease in the maximum rooting angle formed across 

lateral roots relative to the soil surface, or a more shallow root system. Collectively, our past and 

present results indicate that root architecture plays an important role in how these plants compete 

and access to belowground resources and it indicates that competition for topsoil resources is 

strong between these two Ipomoea species. 

 

Consistent with our results for selection on root morphology at the modular level, PC back 

regression analysis revealed evidence that belowground competition altered selection on traits 

that contribute mainly to this axis, including: soil root tissue angle range, maximum soil root 

tissue angle and root tissue angle range and multiple root diameter and lateral root number traits 

(Table S2-2). Therefore, selection on these individual root traits are driving the patterns of 

selection observed on root morphology at the modular level. In contrast, we did not detect 

evidence for selection on specific root traits that contributed to root topology or architecture at 

the modular level, which is consistent with the lack of evidence for selection on root topology 

and architecture as modular traits.  
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Character convergence but not displacement on root traits  

Traditional hypotheses of character displacement predict that when two co-occurring, 

closely related species overlap in their resource associated traits, selection should favor 

divergence as that would lead to lower resource overlap between species, thus reducing the 

harmful effects of competition (Losos 2000; Pfennig and Pfennig 2009). As such, we predicted 

that fitness should increase with increasing phenotypic distance to a competitor (Criterion 4). 

However, we actually found the reverse result, indicating evidence for character convergence 

rather than displacement. If root architecture influences soil exploration and what resources are 

readily available for uptake, why did we find support for character convergence instead of 

divergence? 

 

For plants, phenotypic plasticity in root architecture has been argued to represent an adaptive 

strategy that allows plants to access and compete for key nutrients, and further, root architecture 

has been shown to respond plastically to nutrient availability across multiple plant species (Fitter 

et al. 1991; Nicotra and Davidson 2010; Yu et al. 2014). Therefore, one plausible explanation 

behind our result of character convergence in root architecture is that I. purpurea individuals 

capable of recognizing and responding plastically to both their immediate resource environment 

and to the presence of a competitor individual would be able to maximize fitness, whereas 

individuals less capable of sensing and responding to these environmental constraints would 

exhibit lower fitness. Soils are complex and heterogeneous, and plants may be selected to 

respond plastically to very local soil conditions. If both I. purpurea and I. hederacea benefit 

from similar plastic responses to a given local soil environment, we might expect to see patterns 

of trait convergence associated with higher fitness. In short, the local environment may constrain 

morning glories into expressing convergent phenotypes. Such constraints operating on behavior 

and morphology are well known from studies of competition among animal species (Gibson 

1980; Hunter and Willmer 1989; Hunter et al. 1997). 

 

Moreover, it is well established that plant root growth can respond to the presence of competitors 

(Cahill et al 2010), with neighbor recognition hypothesized to be due to either sensing of root 

exudates (Bais et al. 2006; Biedrzyckie et al. 2010; reviewed in Pierik et al. 2013; Semchenko 
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and Lepik 2014) or more simply from feedback given the internal nutrient status of the plant 

(reviewed in Pierik et al. 2013; McKnickle and Brown, 2014), i.e., the plant is capable of 

maximizing the balance between the costs and benefits of root production given the availability 

of nutrients (McKnickle and Brown 2012). Consistent with the idea that individuals can respond 

to the presence of a neighbor, supplementary analysis showed that the root architecture of I. 

purpurea varied depending on the presence of specific I. hederacea competitors after the 

removal of block effects (Table S2-5). Additionally, while we focused here on fitness in I. 

purpurea, we found preliminary evidence for a negative linear trend between plant size and 

phenotypic distance in root architecture within I. hederacea (Fig. S2-5). Given that plant size is 

often a strong correlate of fecundity (Aarssen and Taylor, 1992), this result suggests that the 

pattern of convergence is potentially present in both species, and perhaps that both species may 

modify their root architecture to acquire and compete for varying limiting resources.  

 

Phenotypic plasticity of root traits can have important implications for the evolution of the 

belowground root system. For example, phenotypic plasticity can obscure selection from acting 

on phenotypes that are genetically variable, and hence, impede traits from responding to 

selection thus leading to character displacement. However, reaction norms of functional traits 

can be genetically variable, and therefore, phenotypic plasticity itself can represent an important 

target of selection that can evolve in response to different environmental stressors (e.g., 

competition; Via and Lande 1985; Schlichting 1986; Scheiner 1993). Testing whether plasticity 

in root traits is a viable target of selection and whether belowground competition-imposed 

selection on phenotypic plasticity in root traits was beyond the scope of our current research. 

However, literature in the field of plant breeding has demonstrated that plasticity in root 

architecture can be genetically variable (reviewed in Jung and McCouch 2013), opening up the 

possibility that phenotypic plasticity in root architecture is a viable target of selection. Whether it 

is possible that belowground plant-plant competition can promote the evolution of phenotypic 

plasticity in root architecture remains an elusive and unaddressed question.  

 

Conclusion 

In summary, our study shows that belowground competition results in a pattern of 

character convergence rather than divergence in root architecture between competing pairs of I. 
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purpurea and I. hederacea. Moreover, we found evidence to suggest that root architecture 

responds plastically to its specific competitive environment (i.e., effect of competitor; Table S2-

5), which may reflect an adaptive mechanism that allows plants to compete for multiple key 

nutrients. Additional research will be required to assess whether phenotypic plasticity in root 

architecture can potentially evolve as a response to belowground competition and result in 

patterns of character displacement or convergence in plasticity. Although our work did not show 

evidence that character displacement can influence the evolution of root traits, it emphasizes the 

importance of belowground competition to potentially influence the evolution of the root system 

and considers the complex and integrated nature of the root system. Therefore, we encourage 

other researchers to examine the potential for character convergence/displacement in different 

study systems/environments, and further, to consider phenotypic plasticity as a target of 

selection. Future work and experimental replication will allow us to understand how widespread 

and viable these evolutionary processes are in nature; e.g., it could depend on the natural history 

of species and their specific environmental conditions (temporal and spatial nutrient availability 

and substitutability).  

 

Data availability statement 

The R code is available at https://github.com/SaraMColom/CharacterDisplacement, and the data 

will be uploaded to the Dryad Digital Repository. 
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Figures and Tables 

 

 

Figure 3-1 A depiction of four distinct functional root trait classes, (A) root topology, (B) architecture, (C) 

size, and (D) morphology. Root topology describes the general shape of the root system--e.g., root system 

width with soil depth as indicated with the dashed red arrows of varying lengths beneath the soil line, shown 

by the grey dashed line. Root architecture is a suite of traits that describe the spatial arrangement of the 

root system including root angle formed between tissues (‘Root tissue angle’, indicated with the red arrows), 

overall root system width and length, and branching patterns (distances between lateral root nodes). Root 

size encompasses root traits such as root surface area and volume of the root system beneath the soil line 

(indicated with grey dashed line). Root morphology is a suite of traits that describes characteristics of 

individual root traits (e.g., lateral root length, root diameter), and the relative number of individual root 

traits such as lateral root number and diameter. These traits are emphasized here with a close up depiction 

of a single lateral root where root length, diameter and number of second order branching roots are more 

readily visible.  
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Figure 3-2 A positive linear relationship between phenotypic distance of competitors’ root traits and 

relative fitness would support the hypothesis that character displacement can influence the evolution of root 

traits. Superimposed on the plot are sketches of two pairs of competitors with low (left pair) and high (right 

pair) phenotypic distance, respectively.  
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Figure 3-3 Bar graphs demonstrating the contribution of individual root traits to the first four PC’s (A-D) 

after removing Block effects. We refer to these four PC’s as topology (PC1), root architecture (PC2), root 

size (PC3) and root morphology (PC4). Individual traits that contribute to each modular root trait are 

defined in Table S1. 
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Figure 3-4 Linear regression of root morphology onto relative fitness by treatment. Root morphology was 

mean standardized and averaged by maternal line and treatment. There is nonsignificant positive selection 

on root morphology when I. purpurea is in the absence of competition (A) (β = 0.12, p-value = 0.10), and 

a significant negative selection (B) (β = -0.17, p-value = 0.03) when I. purpurea is in competition with I. 

hederacea. ANCOVA showed that the Treatment × root morphology is significant (F1,16 = 5.33, p-value = 

0.03; Table S4), indicating that competition influences the pattern selection on root morphology as a 

modular trait. 
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Figure 3-5 Negative relationship (β = -0.06 ± 0.03, p-value = 0.04; Table 4) between phenotypic distance 

of root architecture (PC2) and standardized relative fitness for I. purpurea when in competition with I. 

hederacea. The phenotypic distance of root architecture was calculated as the Euclidean distance in PC2 

between competing pairs of I. purpurea and I. hederacea after the removal of Block effects, and then 

averaged by maternal line and species by maternal line combination type. Each point represents two to eight 

biological replicates.  
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 F-statistics χ2 

Trait Block 

DF = 3 

Treatment 

DF = 1 

Maternal Line 

DF = 1 

Root topology 

(PC1) 

1660.90 

(2e-16) 

0.77 

(.38) 

-6.82e-13  

(.99) 

Root architecture 

(PC2) 

23.66 

(1.51e-13) 

1.42  

(.23) 

2.22  

(.14) 

Root size (PC3) 5.04 

(.002) 

2.32  

(.13) 

0.48 

 (.49) 

Root morphology 

(PC4) 

5.50 

(0.001) 

0.08 

 (.78) 

6.31  

(.01) 

 

Table 3-1 Linear mixed model results for the modular root system traits obtained from the first four 

principal components within I. purpurea. F-statistics and χ2 values show the effects of Block, Treatment, 

and Maternal Line variation, respectively. p-values of fixed and random effects are reported within 

parentheses. Bolded values indicate p-value < 0.05.  
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Traits Alone Competition 

Trait description β  SE CIU CIL β  SE CIU CIL 

Skeleton nodes 

(morphology) 

0.04 0.02 0.08 0.00

3 

-

0.04 

0.01 0.04 <0.001 

Average root 

density 

(morphology) 

-0.02 0.01 -0.001 -0.03 0.02 0.01 0.04 <-0.001 

Mean tip diameter 

(morphology) 

-0.05 0.03 0.001 -0.10 0.07 0.02 0.13 0.02 

Root tip count 

(morphology) 

0.04 0.02 0.08 0.00

2 

-

0.05 

0.03 0.01 -0.09 

Soil tissue angle 

range 

(architecture) 

0.03 0.02 0.07 -

0.00

2 

-

0.05 

0.01 -0.01 -0.09 

Maximum soil 

tissue angle 

(architecture) 

0.03 0.02 0.07 -

0.00

3 

-

0.05 

0.02 -0.02 -0.09 

Root tissue angle 

range 

(architecture) 

0.03 0.02 0.06 -

0.00

2 

-

0.04 

0.02 -0.01 -0.07 

Number of 

Adventitious roots 

(morphology) 

0.03 0.01 0.05 0.00

2 

-

0.03 

0.02 0.01 -0.06 

Hypocotyl 

diameter 

(morphology) 

-0.03 0.02 0.004 -0.07 0.06 0.02 0.10 0.03 

Tap root diameter 

(morphology) 

-0.04 0.02 0.001 -0.08 0.06 0.02 0.11 0.02 

Maximum 

diameter at 90-

100% percent 

depth 

(morphology) 

-0.04 0.02 0.002 -0.08 0.06 0.02 0.10 0.02 

 

Table 3-2 Results of PC back regression of selection gradient projected back onto original traits (β) and 

corresponding ± 1 standard error (SE) and upper and lower confidence intervals (CI) based on β ± 1.96 × 

SE. Bolded values indicate a confidence interval of 95% for β that does not include zero. Each root trait 

was cataloged into four functional trait classes indicated within parenthesis a priori.  
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Phenotypic distance  

(√𝑃𝐶𝐼.𝑝𝑢𝑟𝑝𝑢𝑟𝑒𝑎
2 − 𝑃𝐶𝐼.ℎ𝑒𝑑𝑒𝑟𝑎𝑐𝑒𝑎

2 ) 

β coefficient 

Root topology (PC1) 0.03 ± 0.03 (.24) 

Root architecture (PC2) -0.06 ± 0.06 (.03) 

Root morphology (PC4) 0.04 ± 0.07 (.62) 

 

 

Table 3-3 Test for the hallmark prediction of character displacement in modular root system traits of I. 

purpurea. Phenotypic distance was calculated as the absolute Euclidean distance between competitor 

pairs of I. purpurea and I. hederacea for root topology (PC1), root architecture (PC2) and root 

morphology (PC4). Phenotypic distances were averaged by maternal Line and maternal line × species 

combination, and then regressed onto standardized values of relative fitness; ± 1 standard error is reported 

next to its corresponding linear regression slope (β coefficient). p-values are indicted within parentheses. 

Bolded values indicate a p-value < 0.05. 
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Chapter 4. Exploring Links Between the Rhizosphere Microbiome, Root Traits and 

Plant Fitness in Light of Belowground Competition 

 

Abstract 

Understanding if and how root phenotypes and the rhizosphere microbiome can influence 

each other and alter plant responses to belowground competition remains an important and 

elusive challenge in evolutionary ecology. Abundant research, however, has begun to indicate 

that plants may potentially shape the rhizosphere microbiome via their root traits and vice versa. 

Further, disparate lines of evidence suggest that specific root traits and the rhizosphere 

microbiome can play an important role in modulating belowground competition between plants. 

Research explicitly linking root phenotypes to variation in the rhizosphere microbiome, however, 

are limited. Moreover, research testing whether root phenotypes and rhizosphere community 

structure and composition alter plant fitness according to competitive environment, are lacking. 

To address this gap we asked, Does the rhizosphere bacterial community composition and 

structure vary with root phenotypes and what are their relative effects on plant fitness according 

to competitive environment? We used rhizosphere soil samples taken from our focal species, 

Ipomoea purpurea, that was grown in the presence and absence of competition with a closely 

related competitor, I. hederacea. We found evidence for linear associations between root traits 

and the rhizosphere microbiome, providing initial evidence that root phenotypes and the 

rhizosphere microbiome may influence each other. Further, our work uncovered a significant 

interaction effect between competitive environment and bacterial species richness on plant 

fitness. More specifically, we found that an increase in bacterial richness was associated with an 

increase in plant fitness when plants are grown in the presence of competition but found no 

evidence of a relationship in the absence of competition. Thus, this result indicates that 

rhizosphere bacterial richness may have a direct and positive impact on how I. purpurea 

competes for belowground competition. We discuss the ecological and evolutionary implications 

of our results and how future work can help uncover the underlying mechanisms behind our 

findings.  
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Introduction  

A major and unresolved challenge in plant evolutionary ecology is understanding the relative 

role that plant-microbe interactions may play in the feedbacks between plant ecology and 

evolution. Evidence is accumulating that plant community structure and composition are driven 

by complex interactions between plant functional traits, the associated microbial communities of 

plants and environmental conditions (e.g., soil quality, nutrient stress, or competitive 

interactions; Reynolds et al. 2014; Bever et al. 2012; Bardgett et al. 2014; Fitzpatrick et al. 

2018). Recent research has indicated that belowground root traits may play an important role in 

shaping the root microbiome (Saleem et al. 2018), by significantly altering soil biophysical and 

edaphic properties (e.g., aggregation, structure, pH and moisture). As a result, variation in root 

traits may promote variation in rhizosphere community structure and phenotypic differences in 

root traits may potentially lead to greater differentiation in the rhizosphere community between 

plants, i.e., influence community composition. Further, recent research demonstrates that 

interactions between plant phenotypes and the microbial community can alter plant fitness linked 

traits (e.g., flowering phenology) and therefore potentially alter plant evolution (Lau and Lennon 

2011; Wagner et al. 2014; Panke-Buisse et al. 2015; discussed in Rebolleda‐Gómez et al. 2019; 

Chaney and Baucom 2020). Despite the ecological and evolutionary implications of root-

microbe interactions for plant systems, much of the published work examines root phenotypes of 

crop species (Roeland et al. 2012) and does not consider the interaction of root phenotypes and 

plant-plant competition, an important and ubiquitous agent of plant stress. Furthermore, evidence 

demonstrating that plant phenotypes can influence the root microbiome, and research reconciling 

the additive and synergistic effects of root phenotypes and the soil microbial community to 

feedback into belowground plant-plant competition (belowground competition hereafter) are 

lacking. 

 

Due to its primary function in acquiring essential nutrients and water from the soil environment, 

a plant’s root system plays a pivotal role in mediating competition for limiting resources 

belowground. The root system is a complex multicellular organ composed of many traits that can 

be broadly classified into four functional groups including traits that capture the spatial 

distribution of the root system, or root architecture (e.g., angle formed between roots, root width 

and length) and traits that describe specific characteristics of individual roots, or root 
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morphology (e.g., root diameter, lateral root number). The root system can also be more coarsely 

described based on its overall size, including traits such as root surface area and/or 

biomass/volume and general shape, or topology (e.g., root system width with soil depth). 

Because traits linked to each of these functional groups tend to behave in an integrated manner, 

their accumulated effects can therefore impact the resources that are readily available to plants 

and the extent to which plants can exploit and compete for them (e.g., uptake efficiency; Lynch 

1995; York et al. 2013). In recent work, we demonstrated that belowground competition can 

potentially influence the evolution of root traits and therefore may play an overlooked role in 

driving patterns of plant diversity and distributions (Colom and Baucom, 2020; Colom and 

Baucom In Prep). In our past work, however, we did not consider whether the microbial 

community in the root-soil interface (rhizosphere microbiome hereafter) was associated with root 

phenotypes nor did we test for evidence that the rhizosphere microbiome could alter plant fitness 

according to competitive environment. 

 

The rhizosphere microbiome may influence plant function via facilitating plant nutrient uptake, 

stimulating plant growth, increasing tolerance to stressful environments and protecting against 

pathogens (Grichko and Glick 2001; Mayak et al. 2004; van der Heijden et al. 2008; Upadhyay 

et al. 2009; Verbon and Liberman, 2016; Jacoby et al. 2017; Kwak et al. 2018). In addition, the 

rhizosphere microbiome can also elicit phenotypic plasticity of root traits, potentially influencing 

root function (discussed in Friesen et al. 2011). Consequently, the rhizosphere microbiome may 

directly impact belowground competition by altering a plant’s extended niche (i.e., microbes 

may mediate resource partitioning between plants; reviewed in Reynolds et al. 2002 and Bever et 

al. 2010) and/or indirectly by modulating root phenotypes. Root traits, however, can also 

influence the rhizosphere microbiome indirectly through their effects on the immediate soil 

environment or directly through carbon turnover of root biomass (Stres et al. 2008; Bach et al. 

2010; Brockett et al 2012; Peralta et al. 2013; Wang et al. 2013; Spohn et al. 2014; Van Horn et 

al. 2014; Yan et al. 2015; Erktan et al. 2018). Therefore, root traits and the rhizosphere 

microbiome may impose additive and/or synergistic effects on plant fitness and function. As a 

result, this may have important consequences on how plants compete for resources belowground 

and may potentially alter phenotypic selection on plant traits, linking ecology and evolution. 

However, research examining if and how root phenotypes and the rhizosphere microbiome can 
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potentially influence each other is limited. Furthermore, research taking into account both root 

traits and variation in the microbial community structure and composition of the rhizosphere as 

important predictors of plant fitness in the context of competitive environment remains 

unexplored. Here, as a first step, we addressed the broad question, Does rhizosphere bacterial 

community composition and structure vary with root phenotypes and what are their relative 

effects on plant fitness according to competitive environment?  

 

Here, we extended our previous analysis of belowground competition (Colom and Baucom in 

Prep) to that of the rhizosphere microbiome. We used rhizosphere soil samples taken from our 

focal plant species, Ipomoea purpurea, grown in the presence and absence of competition from 

its sister species, I. hederacea, and asked two main questions: (1) Does the rhizosphere 

microbiome vary with phenotypic variation in root traits? (2) Does plant fitness vary as a 

function of root trait and rhizosphere bacterial community structure and/or composition, 

according to competitive environment (presence vs absence of belowground competition)? 

Addressing the first question would provide initial evidence that root phenotypes and the 

rhizosphere microbiome may influence each other, whereas addressing the second question 

would provide preliminary evidence for the potential for root phenotypes and/or the rhizosphere 

microbiome to influence plant fitness in context of belowground competition. Together, 

answering these main questions would provide evidence for the potential that the structure of 

plant roots and their rhizosphere microbiome may feedback into competitive belowground 

dynamics.  

 

Materials and methods 

Field experiment, rhizosphere soil collection--We subsampled rhizosphere soil from individuals 

of I. purpurea and I. hederacea planted in the presence and absence of competition, with I. 

purpurea as the focal species in this experiment. For the competition treatment, we planted ten 

maternal lines of I. purpurea with six maternal lines of I. hederacea, for each possible maternal 

line by maternal line combination between species, which led to 60 unique competition pairings. 

We planted seeds 8 cm apart with 1 m2 between experimental units. For the alone treatment, we 

planted a single replicate seed of the ten maternal lines of I. purpurea 1 m2 apart. Each 

experimental unit was replicated sixteen times to yield a total of 2080 seeds. Seven weeks post 
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planting, when plants began to show signs of reproductive maturity, we excavated a subset of 

individuals to quantify root system traits (Colom and Baucom, In Prep; Chapter 3).  We 

sampled the rhizosphere soil from 173 plants; 27 plants grown alone and 146 plants grown in 

competition. We randomly selected between 2 and 4 biological replicates of each I. purpurea 

maternal line grown alone, and between 5-12 biological replicates of each I. purpurea maternal 

line grown in competition, with the exception of one maternal line that had only one biological 

replicate. To isolate the rhizosphere soil from plant roots, we gently shook the roots from the soil 

cores of excavated plants to remove loose soil, sampled a random lateral root with small pieces 

of soil (~25mg) attached to its immediate surface (~1mm) with a 15mL sterile plastic tube, 

separated it from the rest of the root system with a razor that was cleaned with 90% ethanol, 

stored the tube immediately on dry ice, and later transferred all tubes to a -80C freezer until 

further use.  

 

DNA extraction and processing--We extracted DNA from approximately 0.25g of rhizosphere 

soil per plant per standard procedures of the DNeasy PowerSoil Kit (QIAGEN, Hilden 

Germany), and then randomized 1uL of the DNA samples across two 96 well plates. The 

bacterial V4 region of the 16S rRNA gene was amplified and barcoded at the University of 

Michigan Medical School, and pooled libraries were sequenced on Illumina MiSeq sequencer, 

using v2 chemistry 2 × 250 (500 cycles) paired-end reads. Sequence quality processing was 

performed with mothur v1.43.0 using the MiSeq standard operating protocol (accessed on 31 

October 2019) for the generation of the operational taxonomic unit (OTU 97% sequence 

similarity). For sequence alignment and classification, we used the SILVA release taxonomy 

(v132, Quast et al 2013; accessed August 2019), and only bacterial sequences were retained.  

 

Statistical analysis 

All analyses were carried out in the statistical programming language R (R Core, 2019). 

 

Calculation of rhizosphere microbiome community composition and structure--We aggregated 

our total OTU’s (52,565) at the genus taxonomic level to reduce patchiness in our data with the 

‘tax_glom’ function of the ‘phyloseq’ package (McMurdie and Holmes, 2013) which produced a 

total of 1,097 OTUs. We examined the distribution of sequencing depths of all our samples and 
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filtered out extreme outliers (< 20,000 read counts) for all subsequent analyses. Sequence counts 

were used to compute different metrics of community composition including evenness, richness, 

Simpson diversity and Inverse Simpson diversity. Evenness quantifies how evenly represented 

different Bacterial taxa are as a proportion ranging from 0 to 1, where a value of 0 indicates lack 

of evenness in the community and towards 1 indicates a more even community. Richness is the 

total number of unique Bacterial taxa. Simpson diversity is a measure of community diversity 

that accounts for both species richness and their relative abundance. A Simpson Diversity 

measure of 0 indicates no diversity and increasing values indicates higher diversity within a 

given community. We also estimated the ‘effective’ species diversity (Inverse Simpson 

Diversity), a measure based on the Simpson Diversity at an order of 2 because it quantifies the 

effective number of different Bacterial taxa, wherein the weighted arithmetic mean is used to 

quantify average proportional abundance of types in the community. In practice, the Simpson 

Diversity Index can be used to measure the probability that two samples taken at random from 

the dataset represent the same taxon, whereas the Inverse Simpson Index can inform us the 

number of unique species weighted by their relative abundance. To estimate these metrics of ɑ-

diversity, we used the function ‘estimate_richness’ from the phyloseq package (McMurdie and 

Holmes, 2013), and specified the ‘measures’ argument for the corresponding metrics above. For 

each metric of ɑ-diversity we rarified to the number of sequences in the smallest sample. Then 

we normalized our sequences based on OTU read count data scaled to the smallest library size 

(Denef et al. 2017) and used the scaled data to compute community composition with the Bray–

Curtis dissimilarity inter-community metric with phyloseq’s ‘ordinate’ function (McMurdie and 

Holmes, 2013).  

 

Characterizing sources of variation in bacterial community composition and structure—We first 

examined how metrics of species structure and composition varied as a function of block, 

treatment and maternal line from rhizosphere microbiome collected from our focal species, I. 

purpurea. Preliminary histogram plots of bacterial species richness, evenness, Simpson 

Diversity, and Inverse Simpson Diversity showed normal distributions, hence, we elected to 

perform linear mixed model ANOVAs to test for these effects on our metrics of ɑ-diversity. We 

performed separate ANOVAs with the ‘lmer’ function from the lmerTest package (Kuznetsova 

et al. 2017), where we treated each ɑ-diversity metric as a response variable and included 
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treatment and block as fixed effects and maternal line as a random effect. We excluded the 

interaction term between treatment and block because preliminary analysis did not show that 

these explained a significant portion of variation, nor did it improve the Akaike Information 

Criterion (AIC) of the model. Further, because none of our linear mixed models uncovered a 

significant maternal line effect on ɑ-diversity, we excluded this term in our final model and 

report the results of the two-way ANOVA, ɑ-diversity ~ Treatment + Block. 

 

We performed a permutational ANOVA (PERMANOVA) to examine effects of block, treatment 

and maternal line on community composition using the ‘adonis’ function of the ‘vegan’ package 

(Oksanen et al. 2019) with default parameters and used 999 × permutations to access the 

significance of these variables for I. purpurea only. For this test, we treated community 

composition as our response variable and treatment, block and maternal line as fixed effects. 

Because preliminary analysis showed that maternal line did not explain a significant amount of 

variation in community composition, we excluded this term from our final model and report the 

results of the model, β -diversity ~ Treatment + Block. 

 

Does bacterial community composition and structure vary with root traits? To examine if and 

how different metrics of the rhizosphere microbiome community composition and structure are 

associated with phenotypic variation in root traits, we performed separate linear regressions for 

root architecture, size, topology and morphology, onto each metric of ɑ-diversity. We elected to 

focus on root architecture, size, topology and morphology because these traits can have direct 

impact on soil structure and plant resource uptake (Fitter 1987; Lynch 1995). To obtain our root 

traits, we applied multivariate statistics that transformed 33 root traits previously quantified from 

our experimental plants (Colom and Baucom, In Prep), into four modular traits. Specifically, we 

applied a Box-Cox transformation to all 33 root traits to normalize their distributions and 

standardized them by subtracting the mean and dividing by their standard deviations. Then we 

applied a PCA to their correlation matrix and elected to use the first four principal components 

(PCs) as our four modular traits because they each captured at least 10% of the total phenotypic 

variation each. We found that the first four PCs served as four important indicators of the root 

system: topology (PC1), or traits that describe the overall shape of the root system, architecture 

(PC2), or traits that capture the spatial arrangement of the root system (e.g., different root tissue 
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angle measurements, horizontal/vertical root distribution), size (PC3) (e.g., root area) and 

morphology (PC4), or traits related to the individual characteristics of the root system (e.g., root 

diameter estimates, basal root number and adventitious root number).  

 

Briefly, a greater value of root topology (PC1), corresponds to a root system that exhibits a larger 

root width with a concomitant increase in soil depth. A greater value of root architecture (PC2) 

corresponds to a root system that grows more narrowly near the soil surface with an increase in 

the maximum root tissue angle. A greater value of root size (PC3) describes a root system that 

has a larger root surface area, and greater values of root morphology (PC4) correspond to a root 

system that has multiple lateral roots and smaller lateral root diameter and exhibits a greater 

range in the rooting angles relative to the soil surface and to the tap root. More details about how 

specific root traits contributed to each PC can be found in Chapter 3, Describing the root system 

as modular root traits). 

 

To analyze the relationship between measures of bacterial community structure and phenotypic 

variation of root traits we performed separate linear regression analyses of root topology, 

architecture, size and morphology. We used our estimates of ɑ-diversity (i.e., species richness 

and evenness and Simpson index, and Inverse Simpson index) as our predictor variables, and 

included treatment and block as covariates in all models. If we uncovered a significant linear 

relationship between a given root trait on ɑ-diversity, we also performed an ANCOVA using the 

‘Anova’ function from the ‘car’ package (Fox and Weisberg, 2019) that included the interaction 

term of treatment by root trait. A significant root trait by treatment interaction would provide 

evidence that the competitive environment alters the relationship between a given root trait and 

measure of ɑ-diversity. We used F-statistics and Type III Sums of Squares to determine the 

statistical significance of fixed effects in the ANCOVAs.  

 

Because root traits can significantly alter their immediate soil environment, we reasoned that 

greater phenotypic differentiation in root traits between plants could potentially promote greater 

differences in their corresponding rhizosphere communities. Accordingly, we evaluated whether 

greater phenotypic distance for a given root trait between individuals, was linearly linked to 

greater dissimilarity in their rhizosphere community composition. We used a Mantel test to 
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evaluate evidence of a linear relationship between root phenotypes and community composition. 

For this analysis we calculated the Euclidean distance of root topology, architecture, size and 

morphology-- i.e., ‘phenotypic distances’--between all plant samples (i.e., across treatment and 

species), and then regressed each phenotypic distance onto the untransformed Bray-Curtis 

dissimilarity matrix with the ‘Mantel’ function from the vegan package (Oksanen et al. 2019) 

with the Spearman correlation method and 999 permutations. Because our PERMANOVA above 

did not uncover significant treatment effects on community composition (Table 4-2), we ran this 

test across treatment within I. purpurea (Table 4-4).  

 

Testing the effects of root traits and bacterial diversity measures on plant fitness– We performed 

an ANCOVA to evaluate whether root traits and/or measures of bacterial diversity have direct 

effects on the fitness of I. purpurea according to treatment. A model that includes all root traits 

and metrics of ɑ-diversity controls for their correlations and provides us with an estimate of their 

direct linear effect on plant fitness, respectively. To estimate relative fitness, we used values of 

observed seed number collected from I. purpurea plants that were maintained until senescence 

(Colom and Baucom, In Prep), and divided this by the mean seed number by treatment. Then we 

averaged the relative finesses by treatment, block and maternal line. Before analysis, we scaled 

our measures of ɑ-diversity to a mean of zero and standard deviation of one. We fit a linear 

model that included treatment, block, root traits and standardized measures of bacterial species 

evenness, richness and Inverse Simpson Diversity and each of their two-way interactions with 

treatment and block as explanatory fixed effects (Relative fitness ~ Treatment + Block +  Root 

topology + Root architecture + Root morphology + Sp. Richness + Sp. Inverse Simpson 

Diversity + Treatment × Block + Root topology × Treatment + Root architecture × Treatment + 

Root morphology × Treatment + Sp. Richness × Treatment + Sp. Inverse Simpson Diversity × 

Treatment + Root topology × Block + Root architecture × Block + Root morphology × Block + 

Sp. Richness × Block + Sp. Inverse Simpson Diversity × Block; Supplementary Information 

Table S3-1 for full model details). We did not include three-way interactions between treatment, 

block and root traits or between treatment, block and root traits and ɑ-diversity due to our limited 

sample size within block and treatment. Further, we excluded Simpson Diversity from this 

analysis as a predictor variable because it is strongly correlated to Inverse Simpson Diversity (r = 

0.92, p-value < 0.001). We simplified our full model by doing a backwards model selection 



 82 

approach using the ‘stepAIC’ function from the MASS package (Venables and Ripley 2002) and 

retained the model with the lowest AIC (Relative fitness ~ Treatment + Block +  Root topology 

+ Root architecture + Root morphology + Sp. Richness + Sp. Inverse Simpson Diversity + 

Treatment × Block + Root topology × Treatment + Root architecture × Treatment + Root 

morphology × Treatment + Sp. Richness × Treatment + Sp. Inverse Simpson Diversity × 

Treatment + Root topology × Block + Root architecture × Block + Root morphology × Block + 

Sp. Richness × Block + Sp. Inverse Simpson Diversity × Block; Table S3-1). We used F-tests 

with Type III Sums of Squares to evaluate the significance of interaction terms using the 

‘Anova’ function from the ‘Car’ package (Fox and Weisburg, 2019). A significant root trait by 

treatment or ɑ-diversity by treatment term would provide evidence that belowground competition 

alters the direct effects of root trait or ɑ-diversity on plant fitness, respectively. Likewise, a 

significant root trait by treatment or ɑ-diversity by treatment term would provide evidence that 

the competitive environment influences the direct effects of root trait or ɑ-diversity on plant 

fitness, respectively.  

 

Since our ANCOVA showed evidence of a significant treatment by richness interaction effect on 

relative fitness (see Evidence of linear relationships between root traits and bacterial diversity 

below), we performed a linear regression of relative fitness as a function of nontransformed 

richness values for each treatment separately. We used t-tests to assess the significance of the 

linear relationship. 

 

Testing the effects of root traits and bacterial community composition on plant fitness–To 

evaluate whether relative fitness of I. purpurea varies with its rhizosphere bacterial community 

composition) and/or root traits, according to treatment, we performed a series of Mantel partial 

regressions. For each root trait we correlated the Bray-Curtis Dissimilarity matrix as a predictor 

variable and a vector of the Euclidean distances of a given root trait as a covariate (i.e., 

‘phenotypic distances’) onto a vector of the Euclidean distances of relative fitness of I. purpurea, 

for each treatment, separately. As above, analyzing community composition and root traits in the 

same model allow us to control for correlations between root traits and community composition 

and estimate their direct effects on plant fitness.  
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Results 

Main effects of bacterial community composition and structure--ANOVAs demonstrated that 

block was the biggest source of variation in ɑ-diversity metrics when examined across treatments 

(Richness: F-value3,167 = 5.71, p-value < 0.01; Inverse Simpson: F-value3,167 = 4.23, p-value < 

0.01; Simpson: F-value3,95 = 2.86, p-value = 0.03; Evenness: F-value3,95 = 4.77, p-value < 0.001; 

Table 4-1). Likewise, PERMANOVAs showed that block explained the biggest proportion of 

variation in species composition (F-value3,95 = 3.48, p-value < 0.001; Table 4-2). Competition 

treatment did not explain a significant proportion of the variation in ɑ-diversity metrics (Table 4-

1) or species composition (Table 4-2). Together, these results show that the immediate soil 

environment is the main driver underlying the community composition and structure of the 

rhizosphere microbiome.  

 

Evidence of linear relationships between root traits and bacterial diversity—We uncovered a 

significant negative linear relationship between root architecture and bacterial species richness 

(R2  = 0.18, 𝛣 = -5.54 ± 2.24, p-value = 0.02; Table 4-3, Figure 4-1A), and significant positive 

relationships between root architecture and species evenness (R2 = 0.12, 𝛣 = 7.29 e-05 ±  3.28 e-

05, p-value = 0.03; Table 4-3, Figure 4-1B) and root morphology and Inverse-Simpson diversity 

(R2 = 0.10, 𝛣 = 2.08 ± 1.05, p-value = 0.053; Table 4-3, Figure 4-2). We also uncovered a 

significant positive relationship between root morphology and Simpson diversity (R2 = 0.14, 𝛣 = 

2.41 e-03 ± 8.98 e-03, p-value < 0.01), however, visual inspection revealed an outlier (Simpson 

diversity = 0.94) that was driving the linear trend between these two variables, and after 

removing the point the relationship was no longer significant (R2 = 0.01, 𝛣 = 0.001 ± 0.001, p-

value 0.42; Table 4-3). These results provide evidence that an increase in traits associated with 

root architecture (e.g., the maximum root tissue angle, basal root angle, root system width and 

root system length) is linked to a reduction in bacterial richness, and that an increase in these 

traits likewise is linked to increased bacterial evenness in the rhizosphere. Further, it shows that 

an increase in traits associated with root morphology, including traits such as root diameter, basal 

root number and adventitious root number, is linked to an increase in the Inverse-Simpson 

diversity. Interestingly, we uncovered no evidence that the presence of a competitor changed the 
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direction of the relationship between root architecture and species richness and evenness or root 

morphology and Inverse Simpson diversity. 

 

We conducted Mantel tests to examine the potential for a linear relationship between Bray-Curtis 

Dissimilarity matrix, i.e., community composition, and phenotypic distance in root topology, 

architecture, size and morphology. We did not find evidence of significant correlations between 

phenotypic distances of these root traits and community composition. However, we found a 

weak and marginally significant correlation between root architecture and community 

composition (r2 = 0.07, p-value = 0.07; Table 4-4). These results indicate that while differences 

in root topology, size and morphology are not linearly associated with greater differences in the 

bacterial community composition, root architecture may be.  

 

Bacterial community structure effects plant fitness according to treatment--We found evidence 

for a treatment by bacterial  species richness interaction effect (F-value1,57 = 7.70, p-value = 

0.01; Table 4-5) on fitness, indicating that the bacterial  community composition plays a 

significant role in the outcome of competition in I. purpurea. We found a significant positive 

relationship in the presence of competition between relative fitness and bacterial  species 

richness (β = 0.003 ± 0.001, p-value = 0.03; Figure 4-3), but no evidence of a relationship in the 

absence of competition (β = 0.004 ±0.003, p-value = 0.25; Figure 4-3). This suggests that an 

increase in bacterial  species richness may have a positive effect on plant fitness when I. 

purpurea is grown in the presence of competition, but there is no evidence for such an effect 

when I. purpurea is grown in the absence of competition. Furthermore, we found evidence of an 

interaction between block and root topology (F-value3,57 = 5.02, p-value = 0.04; Table 4-5) and 

root morphology (F-value3,57 = 6.14, p-value = 0.001; Table 4-5), indicating that that the direct 

effects of root topology and morphology on plant fitness depend on environmental context. We 

likewise found a significant interaction between block and bacterial  species richness (F-value3,57 

= 2.73, p-value = 0.05; Table 4-5), and evenness (F-value3,57 = 2.69, p-value = 0.05; Table 4-5) 

indicating that the direct effects the rhizosphere community structure on plant fitness depend on 

environmental context.   
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We found no evidence of direct effects of root traits and measures of bacterial community 

composition, or β-Diversity, on relative fitness between treatments (results not shown). 

 

Discussion 

The main goal of our work was to evaluate the potential for a relationship between 

modular root traits and the rhizosphere microbiome and to determine the relative impact of the 

rhizosphere bacterial community on plant fitness in context of belowground competition. Our 

findings reveal that multiple metrics of ɑ-diversity (bacterial  richness, evenness and Inverse 

Simpson diversity) were linearly associated with different root traits, and that bacterial species 

richness may play an important role in belowground competition, as indicated by evidence for a 

significant two-way interaction effect between bacterial  richness and competitive treatment on 

the relative fitness of I. purpurea. We also found a significant influence of block on the 

rhizosphere microbiome community composition and structure, but no evidence for an effect of 

competition, indicating that the community structure and composition of the rhizosphere 

microbiome in this species is influenced largely by the environment. Below we expand on the 

interpretation of our main findings and discuss their eco-evolutionary implications and directions 

for future research 

Associations between root traits and the rhizosphere microbiome  

The belowground root system of plants can play a major role in altering the physical and 

chemical profile of its surrounding soil environment (Orwin et al. 2010; Bodner et al. 2014) and 

therefore may serve as a passive filter of the bacterial  community assemblage in the rhizosphere. 

For instance, lateral root type, seminal or nodal roots, has been found to influence the 

composition of rhizosphere bacterial  communities in Brachypodium (Kawasaki et al., 2016). In 

turn, microbes residing in the rhizosphere can alter phenotypic plasticity of root traits by 

producing growth stimulating molecules and/or altering the chemical profile of the soil 

environment (discussed in Friesen et al. 2011). As such, we reasoned that root traits and the 

rhizosphere microbiome community are likely to influence each other, which may potentially 

impact downstream effects on plant function and fitness. In line with this broad expectation, we 

found a significant positive linear relationship between root architecture – a modular trait that 

captures the spatial arrangement of the root system – and bacterial  evenness, and likewise a 
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negative linear relationship between root architecture and bacterial  richness. These results 

suggest that narrower, but deeper-growing root systems (i.e., increased values of ‘root 

architecture’), are linked to a decrease in the presence of rare bacterial taxa (and vice versa). This 

would explain the simultaneous increase in bacterial evenness and decrease in bacterial richness 

with an increase in a more narrow/deep root system. Consistent with these results, we also found 

evidence of linear relationships between community composition and root traits, with a 

marginally significant positive correlation between community composition and root 

architecture, suggesting that specific root architectures in I. purpurea may play a role in 

differentiating the rhizosphere community between plants. 

While we have identified these relationships between root architecture and bacterial richness and 

evenness, we have yet to test their mechanism. One plausible explanation for these findings is 

that root architecture influences its rhizosphere microbiome indirectly by altering soil moisture 

and/or access to nutrients, since root architecture can impact mineral aggregation and water flow 

in the soil (reviewed in Ghestem et al. 2011). Regardless of mechanism, our result that 

rhizosphere microbiome diversity varies with root architecture is in line with research from other 

plants, where research has uncovered associations between root system architecture traits and 

variation in rhizosphere bacterial  communities (Szoboszlay et al. 2015; discussed in Saleem et 

al. 2018). For example, one study that compared the root system architecture and rhizosphere 

bacterial  community of Balsas teosinte (progenitor of maize, Zea mays subsp. Parviglumis) and 

two domesticated corn cultivars, showed concurrent differences in rooting length and 

rhizosphere bacterial richness, composition and structure (Szoboszlay et al. 2015). In addition to 

bacterial community associations with architecture traits, we also found a significant positive 

relationship between Inverse Simpson Diversity and root morphology, indicating that root 

systems with an increase in lateral root number and decrease in overall root diameter (i.e., 

thinner roots), support an increase in bacterial  richness and relative abundance in the 

rhizosphere (and vice versa). This result may possibly reflect an increase in bacterial  diversity 

through an increase in the available source of organic carbon in the soil from root litter 

(discussed in Reeder et al. 2001; Wardle et al. 2004; Bardgett et al. 2014), since thinner roots 

tend to have higher turn-over rates.  
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Consistent with this hypothesis, multiple studies have shown that root derived sources of carbon 

can alter soil bacterial  community composition and structure (discussed in Reeder et al. 2001; 

Allison et al. 2006; Steenwerth et al. 2007) and some studies have reported positive associations 

between the abundance of particular bacteria (e.g., Bacteroidetes) to thin root phenotypes in wild 

accessions of bean (Brown et al. 2012; Filippo et al. 2010; Pérez Jaramillo et al. 2017). These 

associations between root traits and rhizosphere bacterial communities, however, could also be 

due (at least partially) to rhizosphere linked microbes eliciting phenotypic plasticity of root 

architecture and/or morphology. For instance, many microbial taxa have been shown to influence 

root system architecture and morphological traits by synthesizing molecules that modulate the 

auxin pathway, e.g., the production of phytohormones enhancing lateral root branching by plant 

growth promoting rhizobacteria (reviewed in Ortíz-Castro et al. 2009, Vacheron et al. 2013 and 

Sukumar et al. 2013; Bailly et al. 2014). Further, these patterns are also likely driven to some 

extent by microenvironmental changes in soil conditions because it can trigger both phenotypic 

plasticity of root traits and alter microbial niches and influence microbial communities (Bonser 

et al. 1996; Hodge 2004; Gruber et al. 2013; Tian et al. 2014; Yu et al. 2014; Bach et al. 2010; 

Brockett et al. 2012; Zhalnina et al. 2015).  

Evidence for the potential of the rhizosphere microbiome to impact belowground competition 

Given that the primary role of root traits is to acquire nutrients and water from the soil 

environment, and that the rhizosphere microbiome can strongly influence the bioavailability of 

key resources and thus plant fitness, we hypothesized that root traits and/or bacterial  diversity 

may influence how plants respond to the stress of competition. We found that bacterial species 

richness had a significant positive linear relationship with plant fitness in the presence of 

competition, but no relationship in the absence of competition, suggesting that an increase 

rhizosphere species richness improves I. purpurea’s fitness when in competition. Thus, while 

belowground competition negatively impacts I. purpurea’s fitness (Colom and Baucom 2020; 

results in Chapter 3), our findings perhaps indicate that bacterial richness can ameliorate the 

negative effects of plant competition. However, we also identified a relationship between 

rhizosphere diversity metrics and root phenotypes, meaning that the effect on fitness we have 

identified here could simply be due to the effect of root phenotypic traits on plant fitness. To 

delineate the importance of the root phenotype versus metrics of rhizosphere diversity on plant 
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fitness, we would need to assess the fitness of plants with different root architectures while 

experimentally altering both the bacterial diversity in the soil and the competitive environment. 

If bacterial richness does indeed influence plant fitness while in competition, one possible 

explanation is that the bacterial community may lead to an increase in the bioavailability of 

essential nutrients via an increase in bacterial functional richness. For instance, Singh and others 

(2015) performed a controlled greenhouse experiment where they grew Ocimum sanctum (basil) 

plants in potting soil that was inoculated with different levels of bacterial species diversity and 

richness and found that richness was an important predictor of increased plant biomass. Further, 

they found that the functional group richness of bacterial species was positively associated with 

plant biomass, suggesting the potential for increase in rhizosphere bacterial richness to promote 

plant growth via an increase in bacterial function. While research examining the influence of 

both root traits and the rhizosphere microbiome on plant fitness remains scarce, multiple studies 

have shown that altering the soil microbial community can alter plant performance according to 

competitive environment (Callaway et al. 2004; Lankau 2010; discussed in Bever et al. 2010; 

Larios et al. 2015), highlighting the importance of plant-microbial interactions to influence 

belowground competition.  

Conclusion 

Understanding how root traits and their associated microbial communities may influence 

belowground competition and feedback into plant ecology and evolution is an elusive challenge 

in evolutionary ecology. As a first step, we demonstrated here that root traits and the rhizosphere 

microbiome are related, providing initial evidence that root phenotypes and the rhizosphere 

bacterial community may influence each other. We also found evidence that an increase in 

bacterial species richness can have a positive impact on plant fitness when plants experience 

belowground competition, suggesting that the rhizosphere microbiome can potentially mitigate 

the harmful effects of belowground competition. Therefore, our work provides preliminary 

evidence that interactions between root traits and the rhizosphere bacterial community may 

perhaps feedback into belowground competition thus potentially alter plant ecology and 

evolution. We emphasize, however, that the underlying mechanisms producing many of the 

patterns we uncovered are yet to be determined because we did not manipulate the rhizosphere 

microbial community and/or root traits. Furthermore, we also found that unmeasured aspects of 
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the environment (i.e., block effects) significantly influence the rhizosphere microbiome. 

Therefore, future work that manipulates the rhizosphere microbiome, soil conditions and/or root 

traits will be essential for disentangling different ecological factors and drawing causal 

inferences.  

While our work serves as a first step towards understanding the potential for plants and their 

rhizosphere microbiome to feedback into dynamics of belowground competition, we are 

considerably limited in that fungal organisms were not evaluated as part of the rhizosphere 

microbiome here. As a result, we excluded many functionally relevant species that contribute to 

plant resource use and fitness (Jonsson et al. 2001; Bassirad 2005; van der Heijden et al. 2006 

and 2008; Jacoby et al. 2017). Thus, consideration of both bacterial and fungal species in future 

work will be required in order to develop a more realistic view on how root traits and the 

rhizosphere microbiome may potentially feed back into processes that shape plant evolution and 

diversity. 

 

Data availability statement: 

The R code is available at GitHub at https://github.com/SaraMColom/Microbiome_2018 and the 

data will and the data will be uploaded to the Dryad Digital Repository. 
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Figures and Tables 

 

ɑ-Diversity  Treatment 

df = 1 

Block 

df = 3 

Richness 0.86 (0.36) 5.71 (<0.01) 

Inverse 

Simpson 

<0.01 (0.95) 4.23 (<0.01) 

Simpson 0.36 (0.55) 2.86 (0.04) 

Evenness 0.58 (0.45) 4.77 (<0.001) 

 

Table 4-1 Results from separate ANOVAs to test for Treatment effects on different alpha diversity metrics 

(ɑ-Diversity Metric) of the rhizosphere microbiome of I. purpurea (Num. I. purpurea in competition = 73; 

Num. I. purpurea alone = 27). F-values are reported with their corresponding p-values in parentheses. Each 

modelǂ evaluated metrics of ɑ-Diversity as response variables, and Treatment and Block as fixed effects. 

Values in bold indicate a significant p-value < 0.05. 

 
ǂɑ-diversity ~ Treatment + Block 
 

 

Effect DF SS MeanSS F-value R2 p-value 

Treatment 1 0.03 0.02 0.85 0.01 0.55 

Block 3 0.32 0.10 3.48 0.10 <0.001 

 

Table 4-2 Results of PERMANOVA of Bray-Curtis distances (community composition) to test for 

Treatment effects on community composition of the rhizosphere microbiome of I. purpurea (Num. I. 

purpurea in competition = 73; Num. I. purpurea alone = 27). The modelǂ included community composition 

as a response variable, with Treatment and Block as fixed effects.  

 
ǂCommunity composition ~ Treatment + Block 
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Linear Association Between Rhizosphere Microbiome ɑ-Diversity and Root Traits 

ɑ-Diversity  Root topology  

(PC1) 

Root architecture 

(PC2) 

Root size  

(PC3) 

Root 

morphology 

(PC4) 

Inverse 

Simpson 

1.60  

± 1.42  

-0.67  

± 0.72  

0.87  

± 0.86  

2.08*  

± 1.05  

Simpson 1.50 e-03  

± 1.24 e-03 

-8.49 e-04  

± 6.27 e-04  

-8.49 e-04 

± 6.27 e-04 

2.41 e-03**  

± 8.98 e-04  

Richness  5.74  

± 0.23 

-5.54*  

± 2.24 

3.18  

± 2.79  

2.69  

± 3.54  

Evenness -5.47 e-05  

± -6.74 e-05 

7.29 e-05*  

± 3.28 e-05 

-2.22 e-05  

± 4.09 e-05 

4.47 e-05  

± 5.12 e-05 

 

Table 4-3 Results of separate linear regression between different metrics (ɑ-Diversity Metric) of the 

rhizosphere microbiome (Inverse Simpson, Simpson, Richness and Evenness) and four root traits (Root 

topology, Root architecture, Root size and Root morphology) examined in I. purpurea. ɑ-Diversity metrics 

were treated as response variables for each root trait, and Block and Treatment were included in the final 

modelǂ as fixed main effects. Linear regression coefficient slopes (𝛣) are reported with ± 1 standard error. 

 

 p-value < 0.05 *; p-value <0.01 **; p-value <0.001***; p-value <0.08 ^ 

 
ǂModel: ɑ-Diversity ~ Root trait + Block +Treatment 

 

Table 4-4 Mantel test Bray-Curtis and root 

phenotypes within I. purpurea 

Root trait r2 p-value 

Root topology -0.04 0.77 

Root 

architecture 

0.07 0.07^ 

Root size 0.07 0.12 

Root 

morphology 

-0.04 0.76 

 

p-value <0.08 ^ 
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Fixed effect DF SS F-value P-value 

Treatment 1 0.006 0.10 0.48 

Block 3 0.82 4.51 0.01 

Treatment × Block 3 0.27 1.48 0.23 

Root topology × Treatment 1 0.19 3.16^ 0.08 

Root size × Treatment 1 0.13 2.20 0.14 

Richness × Treatment 1 0.46 7.70 0.01 

Evenness × Treatment 1 0.20 3.26 0.08 

Root topology × Block 3 0.91 5.06 0.003 

Root architecture × Block 3 0.23 1.29 0.29 

Root size × Block 3 0.24 1.35 0.27 

Root morphology × Block 3 1.11 6.14 0.001 

Richness × Block 3 0.49 2.73 0.05 

Inverse Simpson diversity × Block 3 0.45 2.49 0.07 

Evenness × Block 3 0.49 2.69 0.05 

 

Table 4-5 Results of ANCOVA to test the effects of root traits (root topology, architecture, size and 

morphology, respectively), measures of alpha diversity of the rhizosphere microbial community, and their 

two way interactions with Treatment and Block on relative fitness of I. purpurea (N = 100). Degrees of 

Freedom (DF), sum of squares (SS) and F-values and corresponding p-value in parentheses are reported 

for each fixed effect. For this analysis, we extrapolated observed values of root traits and alpha diversity 

metrics scaled to a mean of zero and standard deviation of one, onto relative fitness of I. purpurea averaged 

by maternal line and treatment. The final model included all the Fixed Effects listed in the table regressed 

onto relative fitness and F-tests with Type III Sums of Squares were used to estimate their statistical 

significance. p-value < 0.05 *; p-value <0.01 **; p-value <0.001***; p-value <0.11 ^ 
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Figure 4-1 Linear regression plots between root architecture, and rhizosphere bacterial richness (A) and 

evenness (B). Plotted linear regression line, colored blue, and grey shading represent the linear regression 

slope and ± 1 standard error of the linear regression between root trait (predictor X variable) and alpha 

diversity metric (response Y variable). We found a significant negative relationship between root 

architecture as a modular trait (PC2, i.e., collective increase in root tissue angle traits, horizontal/vertical 

distribution, root system width and root system length) and Species richness (R2 = 0.18, 𝛣 = -5.54 ± 2.24, 

p-value = 0.02; Table 4-3), and a significant positive relationship with Species evenness (R2 = 0.12, 𝛣 = 

7.29 e-05 ± 3.28 e-05, p-value = 0.03; Table 4-3). Near the Y-axis are schematic representations of the 

corresponding community composition variable according to low (bottom) and high (top) values, 

respectively, where each diamond represents an OTU, and the color a unique OTU. 
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Figure 4-2 Linear regression plot between root morphology, and rhizosophere bacterial Inverse Simpson 

diversity indices. Plotted linear regression line, colored blue, and grey shading represent the linear 

regression slope and ± 1 standard error of the linear regression between root trait (predictor X variable) and 

alpha diversity metric (response Y variable). We found a significant positive relationship between root 

morphology as a modular trait (PC4, i.e., collective increase in root diameter, basal root number and 

adventitious root number) and Inverse Simpson diversity (R2 = 0.10, 𝛣= 2.08 ± 1.05, p-value = 0.053; Table 

4-3). Near the Y-axis are schematic representations of the corresponding community composition variable 

according to low (bottom) and high (top) values, respectively, where each diamond represents an OTU, and 

the color a unique OTU. 
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Figure 4-3 Linear regression plot between relative fitness and untransformed values of microbial species 

Richness from I. purpurea grown in the absence of competition, or ‘Alone’, (golden points) and in the 

presence of competition, or ‘Competition’, (green points) treatments, respectively. The gold and green line 

shows the corresponding linear regression slope between Richness and relative fitness estimated within the 

Alone and Competition treatments, respectively. We uncovered a significant positive relationship between 

Richness and relative fitness in the Competition treatment (𝛣 = -0.28 ± 0.17, p-value = 0.08), and no 

evidence of a significant linear relationship in Alone treatment (𝛣 = -0.47 ± 0.75, p-value = 0.54). 

ANCOVA demonstrated that the regression slope between Richness and relative fitness was significantly 

different according to treatment (F-value1,57 = 3.26, p-value = 0.08; Table 4-5). 
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Discussion and Future Directions 

 

The overarching goal of my dissertation was to evaluate the potential for character 

displacement to drive phenotypic evolution in root traits. I tested for the core criteria needed for 

the process of character displacement to occur using the closely related morning glories, 

Ipomoea purpurea and I. hederacea, as my study system. The findings of my dissertation 

demonstrate that belowground competition is a potentially overlooked agent of natural selection 

acting on root traits, and that root traits themselves are viable targets of selection (Chapter 2 and 

Chapter 3). Therefore, satisfying two major criteria for character displacement. My evaluation 

for the hallmark prediction of character displacement (fitness increases with phenotypic distance 

in root traits) did not uncover evidence for character displacement as I expected, but evidence for 

the pattern of character convergence in root architecture (modular trait). Moreover, my findings 

indicate support that phenotypic plasticity in root architecture may be an important mechanism 

for how plants adapt to mitigate the harmful effects of belowground competition. 

 

Although the main focus of my dissertation was to explore whether or not character displacement 

can lead to the evolution of the belowground root system, the microbial community that interacts 

at the immediate root-soil interface (‘rhizosphere microbiome’), can play an important role in 

how plants acquire and compete for belowground resources (Glick 2012; Olanrewaju et al. 2017; 

Rodriguez et al. 2019). Further, the rhizosphere microbiome can influence root traits and vice 

versa and result in complex plant-microbial interactions that can feedback into ecological and 

evolutionary processes (e.g., belowground competition, character displacement; Fitzpatrick et al. 

2018). To this end, for my third data chapter I explored the potential for the rhizosphere 

microbiome and root traits to influence each other and alter plant fitness in context of 

belowground competition (Chapter 4).  

 

In summary, my dissertation is the first to examine evidence for the potential for character 

displacement to influence the evolution of root traits as a response to belowground competition. 
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In addition, because studying belowground root traits as potential targets of selection is nascent 

in the field evolutionary ecology, this dissertation also represents a novel framework for 

addressing important questions pertaining to root trait evolution. In addition, my dissertation 

provides a basis for considering the potential for root-microbe interactions to influence each 

other and belowground competition. Thus, each of my chapters merits discussion on how to 

improve our outstanding gap in root trait evolution as a response to plant-plant competition, 

whether competition between closely related plants is may result in character displacement and 

if/how the rhizosphere microbiome can feedback into these processes. Addressing these gaps 

will prove invaluable to our general understanding of the mechanisms that drive species 

diversity. 

 

A closer look at root traits as a target of selection for belowground competition 

It is widely accepted that belowground competition can have drastic effects on plant 

fitness (Cahill and McNickle 2011) but can and does this influence the evolution of root traits, 

and if so, what are its implications on species diversity? Research from Chapter 2 suggests that 

belowground competition can potentially alter the evolution of root traits, specifically root angle 

(a specific root architecture trait), because this trait was genetically variable (i.e., exhibit 

maternal line variation), and the pattern of selection that acted on this trait was altered according 

to competitive treatment (absence versus presence of competitor). Although I did not find 

belowground competition imposed selection on primary root length and root system width I did 

find that these traits were viable targets for evolution by natural selection--i.e., they exhibited 

maternal line variation. These findings provide support that belowground competition may lead 

to the evolution of root architecture and size in weedy annual plants. Notwithstanding, my 

research is the first to my knowledge to test for belowground competition as a causal agent of 

selection on root traits and provide evidence of root traits as viable targets of selection. Hence, in 

order to determine its generalization across other plant species and environments merits more 

investigation. In this vein, abundant theoretical and empirical work has shown the existence of 

trade-offs between rapid acquisition of resources and resource conservation according to plant 

species, therefore I can expect selection to act differently according to a plant’s natural and 

evolutionary history. For example, Warembourg and others (2006) compared root traits linked to 

resource uptake between plants of different life histories (annuals and perennials) and families 
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(Fabaceae, Asteraceae and Poaceae) and found significant differences between life histories in 

root morphology (e.g., specific root length and root tissue density) but no differences in root 

topology, as well as differences between plant family in root topology. Moreover, because 

selection from belowground competition will ultimately depend on what resources are limiting in 

that environment (e.g., water, phosphorus, nitrogen) and other ecological factors (e.g., 

herbivory), testing for the potential for belowground competition to impose selection should be 

repeated in different field settings. The former tests will provide insight on how general selection 

from belowground competition is across different plant species, whereas the latter will elucidate 

how different environmental contexts influence the strength and direction of selection on root 

traits. In short, replication and adaptation of my research with plants from different natural 

histories and taxonomic representation is essential in order to gauge the evolutionary 

repercussions of belowground plant-plant competition on plant diversity. Whereas, performing 

experiments in different environments will inform us on how differences in the ecology may 

impact the former.  

 

Closing the gap of character displacement vs convergence as a driver in the evolution of root 

traits 

Despite the evidence indicating that root traits are critical for mediating plant-plant 

competition and that they can potentially respond to selection, our understanding of whether 

character displacement has played an important role in the evolution of root traits remains largely 

unknown (Beans 2014). Here, my dissertation addressed this overall gap in the literature of 

evolutionary ecology. Chapter 3 is very similar to Chapter 2 in that they both examine for 

evidence of selection from belowground competition. In contrast to Chapter 2, Chapter 3 focuses 

more on testing the main prediction of character displacement--i.e., phenotypic distance between 

plant competitors positively associated with increase in plant fitness--while Chapter 2 

demonstrates evidence for the potential for belowground competition to ensue phenotypic 

evolution on root traits more generally which are prerequisites for character displacement. Further, 

Chapter 3 uses I. purpurea as the focal species, and reconciles the complex and integrated nature 

of the root system by evaluating 33 root traits with multivariate statistics to transform them into a 

few ‘modular traits’ and then emphasizing a few specific root traits. We also investigate for 

evidence of maternal line variation in our root traits using mature field grown plants. Whereas 
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Chapter 2 examined both I. purpurea and I. hederacea, considered four specific root traits and 

measured greenhouse grown seedlings to uncover a basis for maternal line variation. The fact that 

I found maternal line variation in adult plants grown in the field, and evidence of selection from 

belowground competition for both specific and modular root traits in Chapter 3, corroborates our 

findings in Chapter 2. Together, these findings strengthen the general argument that belowground 

competition can lead to phenotypic evolution in root traits. Notably and most importantly, 

however, is that I did not find evidence for the hallmark prediction of character displacement as I 

expected. Instead I found evidence for a pattern of character convergence on root architecture a 

modular trait.  

 

A finding for a pattern of character convergence, however, may be expected if there are 

constraints imposed by the local environment that favor a particular phenotype. In context of 

belowground plant-plant competition, competing species would benefit from a similar 

phenotypic response to a local soil environment. In Chapter 3 I expand on this line of thought 

and discuss how a pattern for character convergence in root architecture may reflect evidence 

that plants are responding plastically to resources differences and the presence of a particular 

competitor, where individuals that can respond to both nutrients and competitors may be able to 

maximize fitness. Unfortunately, characterizing and manipulating the soil environment was 

beyond the scope of my overarching goal, and hence, I cannot draw any mechanistic inferences 

underlying my findings for character convergence. Future experimental work such as a 

competition field experiment where soil nutrients are manipulated, can help uncover if and how 

limiting resources influences the potential for character displacement (or convergence) to alter 

the evolution of root traits. Studying the reaction norms of root traits across environmental 

gradients and between competitive treatments, can help us understand the potential for 

phenotypic plasticity in root traits itself to undergo character displacement.  

 

While demonstrating evidence for the process of character displacement/convergence to influence 

phenotypic evolution of root traits can implicate that belowground competition can drive plant 

species diversity (Chapter 2 and Chapter 3), it is insufficient to make claims about whether 

character displacement/convergence is actually impacting plant diversity. As such, researchers 

should strive to test for both process and pattern in future work.  
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Considering relationships between the rhizosphere microbiome and root traits and their 

potential to influence belowground competition  

The rhizosphere microbiome can alter plant function and fitness and potentially feedback 

into plant ecology and evolution (Berendsen et al. 2012; Backer et al. 2018). Further, the 

rhizosphere microbiome may influence root phenotypes and vice versa. Consequently, 

interactions between the rhizosphere microbial community and the plant root system may 

influence how plants compete belowground and adapt to competitive stress. Research testing 

if/how root traits and the rhizosphere microbiome vary with each other and impact plant fitness 

in context of belowground competition, however, is lacking. As such, for Chapter 4 I addressed 

the broad question, Does rhizosphere bacterial community composition and structure vary with 

root phenotypes and what are their relative effects on plant fitness according to competitive 

environment? I used individuals of I. purpurea grown in the presence and absence of 

competition from I. hederacea and extended my analysis from Chapter 3 to consider if variation 

in the rhizosphere microbiome was linked with variation in multiple modular root traits and 

relative fitness. For this study I focused on the bacterial microbiome and found that multiple 

metrics of bacterial community structure were linked with different root traits, and evidence that 

bacterial species richness may have a positive impact when plants experience belowground 

competition. I also demonstrated that community structure and composition of the rhizosphere 

microbiome is influenced mainly by the environment. Together, my work provides preliminary 

evidence that interactions between root traits and the rhizosphere microbial community may 

perhaps feedback into belowground competition thus potentially altering plant ecology and 

evolution. 

Due to limitations to my experimental design, however, I could not draw causal conclusions 

about the significant patterns I found between metrics of the rhizosphere microbiome and host 

plant fitness and root phenotypes (discussed in Chapter 4). Therefore, as a future step, I 

recommend that researchers evaluate for potential causal effects driving the linear patterns 

between root traits and microbial community structure in the rhizosphere, e.g., manipulating the 

rhizosphere microboime and or root traits. For example, one could sterilize their experimental 

seeds and grow them in soil where the microbial community has been disrupted via autoclaving 
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or other sterilizing methods. Then, compare how the relationship between root phenotypes and 

the rhizosphere microbiome vary according to different levels of soil disruption. Albeit, 

controlling for root phenotypes will be more difficult than manipulating the soil environment 

because it would require knowing a priori plant genotypes for different root phenotypes, and 

altering the genes underlying the root trait(s) of interest. If one has access to nearly isogenic lines 

(NILs) in respect to genes that code for root trait(s) of interest, however, one can take advantage 

that NIL’s share a common genetic background to evaluate the effect of different root traits on 

the rhizosphere microbiome (Ambrose and Purugganan, 2012). In this vein, NIL’s have been 

developed for different root traits including, rooting depth, root angle and branching, number 

(Shen et al. 2001; Loudet et al. 2005; Tuberosa et al. 2011). 

Closing remarks 

My dissertation shows that research on character displacement merits further 

investigation in order to fully expand our understanding on the mechanisms driving plant 

diversity and evolution. Namely, researchers should begin to consider how differences in soil 

resources influence competition between closely resembling plants, and in turn, how changes in 

resource availability alters selection on root traits and the propensity for character divergence 

versus convergence to transpire as an evolutionary driver. Likewise, it demonstrates that 

combining greenhouse and field experiments can serve as a two-step approach to studying root 

traits in non-model organisms, and test for the main criteria of character displacement. Finally, 

incorporating information about the root associated microbiome, namely the rhizosphere 

microbiome, into studies of character displacement in root traits will prove invaluable for 

elucidating if and how the microbial community may affect how plants compete and adapt as a 

response to belowground competition, i.e., influence the potential for character displacement to 

drive phenotypic evolution of root traits. And, in turn, shed light on how the eco-evolutionary 

feedback between plants and microbes’ shapes plant diversity as a result of plant-plant 

competition for limiting resources belowground. 
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Appendix S1 Supplementary Figures and Tables to Chapter 2 

 

 

Figure S1-1 Procedure and materials required for construction of rhizotron frames. Four wood boards of 

8” x 1” x 10’, 80 ½” x 4’ wooden dowels, wood glue, power drill, measuring tape, and a pencil will be 

required to build a total of four rhizotron frames. First saw each 10’ wooden board in half to obtain a total 

of eight 5’ boards and then saw each 4’ wooden dowel in half to obtain a total of 160 2’ dowels. Measure 

and draw out 40 evenly spaced dots on the 10’ board approximately two inches from the top edge. For 

every of the 40 evenly spaced dots, draw a dot 4” beneath it at 30 degrees relative to the dots above. Drill 

a ½” hole where each dot is located. Make sure that each board looks identical with their holes matching 

up. Finally, line up two boards 2’ apart and insert the ends of the dowels on the corresponding holes of 

the boards using wood glue at the tips to make sure they stay in place. Repeat this process until dowels 

have been placed in all the holes in order to create the frame. 
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Figure S1-2 The rhizotron greenhouse experiment.  Each rhizotron was maintained at a thirty degree angle 

with the use of custom built wooden frames. 
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Figure S1-3 PCA summarizing root trait space between I. hederacea and I. purpurea from population PA4 

grown in field conditions where 65.2 % and 25.2% of the phenotypic variation is explained by PC 1 and 

PC 2, respectively. Bar graphs (B & C) show the loading scores of each root trait for PC 1 and PC 2. B) 

root system size and root system width load heaviest in PC 1, C) and average root angle loads heaviest in 

PC 2. 
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Figure S1-4 PCA results summarizing the variation of all the root traits measured in the greenhouse 

experiment (primary root length, root angle, root system size and root system width) between I. 

hederacea and I. purpurea. A) The PCA plot shows the first two PCs’ and how individuals of I.purpurea 

(black solid circles) and I.hederacea (grey solid triangles) vary in this trait space. A) 37.2% and 29.1% of 

the phenotypic variation is explained by PC 1 and PC 2, respectively, and the overlapping ellipses 

representing the 95 % confidence intervals of each species indicates high phenotypic similarity between 

I.purpurea and I.hederacea. Bar graphs (B & C) show the loading scores that each root trait contributes to 

PC 1 and PC 2, respectively. B) Root angle, root system width and primary root length load strongest in 

PC 1, C) whereas root system size loads strongest in PC 2. PC 1 can be used as an indicator of root 

system architecture and PC 2 can serve as an indicator of root size. 
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Table S1-1: INFLUENCE OF COMPETITIVE TREATMENT ON I. PURPUREA AND I. 

HEDERACEA ROOT TRAITS WHEN GROWN IN THE FIELD  

 

 

 

 Block Species Competition ML 

Trait F  F  F  χ2 

Root system width (cm) 1.50 0.87 0.76 5.81* 

Root system size (cm2) 29.91 0.04 2.33 0.02 

Root angle (degrees) 2.54 0.06 2.04 0.07 

Seed number  9.41***  0.30 9.81*** 5.43* 

 

NOTE.—F-statistics showing the effects of block, species and competitive environment, and chi 

statistics(χ2) showing maternal line variation on plant phenotypes. Degrees of freedom for the 

linear mixed model the following: Block: 3; Species: 1; Competition: 2; Maternal line: 1. 

Maternal line is abbreviated as ‘ML’. 

 

* p< .05 

** p< .01 

*** p< .001 
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Table S1-2 GENETIC CORRELATION MATRIX BETWEEN ROOT TRAITS FOR I. PURPUREA 

(ABOVE DIAGONAL) AND FOR I. HEDERACEA (BELOW DIAGONAL) 

 

 

 Root angle  Root width  Root size 

Root angle —  -0.01  0.1  

Root system width  0.59*** —  0.85*** 

Root system size 0.60*** 0.80*** —  

NOTE.—Pearson correlations were calculated on the family means of non-transformed root 

traits for each species separately, and across treatments. Significant correlations (p-value < 0.05) 

are indicated in bold. 

 

*** p< .001 
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Table S1-3 INFLUENCE OF INTERSPECIFIC AND INTRASPECIFIC COMPETITIVE 

ENVIRONMENT ON SELECTION GRADIENTS (MULTIVARIATE ANALYSES) IN I. PURPUREA 

AND I. HEDERACEA 

 

 I. purpurea I. hederacea  

Trait Alone 

Competition 

(Inter) 

Alone 

Competition 

(Inter) 

Competition 

(Intra) 

Root system 

width (cm) 

-0.24 ±0.21 0.37 ±0.21 0.16 ±0.12 -0.22 ±0.16 -0.03 ±0.13 

Root system 

size (cm2) 

0.56^ ±0.29 -0.15 ±0.22 -0.09 ±0.13 0.07 ±0.11 0.03 ±0.17 

Root angle 

(degrees) 

0.02 ±0.10 -0.09 ±0.08 0.01 ±0.08 0.23 ±0.09* -0.27 ±0.24 

 

NOTE.—Standard errors of the estimate presented as ±1 SE. Values in bold indicate significant selection 

gradient. 

 

^ =/< 0.10 

* p< .05 
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Table S1-4 INFLUENCE OF INTERSPECIFIC COMPETITION WITHIN I. PURPUREA AND 

INTERSPECIFIC AND INTRASPECIFIC COMPETITION IN I. HEDERACEA, ON THE PATTERN 

OF SELECTION ACTING ON SPECIFIC ROOT TRAITS IN THESE SPECIES 

 

 I. purpurea I. hederacea (alone-inter) I. hederacea (alone-intra) 

Root system width (cm) F  p-value F  p-value F  p-value 

Competition 2.51 0.12 0.84 0.36 1.34 0.25 

Block 1.27 0.30 0.28 0.84 0.45 0.72 

Competition × Block 4.80** <0.01** 0.17 0.92 0.55 0.65 

Root system size (cm2) F  p-value F  p-value F  p-value 

Competition 4.88* 0.03* 0.81 0.37 1.14 0.29 

Block 0.45 0.72 0.36 0.78 0.09 0.97 

Competition × Block 1.00 0.40 0.13 0.94 0.29 0.84 

Root angle F  p-value F  p-value F  p-value 

Competition 1.14 0.29 4.37* 0.04* 0.01 0.91 

Block 0.46 0.71 1.45 0.24 3.18* 0.03* 

Competition × Block 2.20^ 0.10 2.28^ 0.09 0.08 0.97 

 

NOTE.—F-statistics from the ANCOVA testing the effects of competition, block, and root trait × 

competition on selection gradients are shown. Degrees of freedom for the ANCOVA are the following: 

Competition: 1, Block: 3; Competition × Block: 3.  

 

^ =/< 0.10 

* p < .05 

** p < .01
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Appendix S2 Supplementary Figures and Tables to Chapter 3 

 

 

Trait name Functional 

Class 

Description Trait Code  PC 

Contribution 

(%) 

Accumulated 

width* 

Topology Percentage of width 

accumulation at 10-90 

% depth 

D10-D90 PC1: 7.00-

10.69 % 

Skeleton width Architecture Width calculated from 

the medial axis of the 

root system. 

SKL WIDTH PC2: 7.50 % 

Skeleton depth Architecture Depth calculated from 

the medial axis of the 

root system. 

SKL DEPTH PC2: 10.84 % 

Maximum soil 

tissue angle 

  

Architecture Maximum soil tissue 

angle measured over 

all root tips. 

STA MAX PC4: 6.94 % 

Maximum width of 

the root system 

Architecture Maximum root system 

width measured from 

first to last horizontal 

foreground pixel. 

WIDTH MAX PC2: 7.53 % 

Maximum root 

tissue angle 

Architecture Maximum root tissue 

angle measured over 

all root tip paths. 

RTA MAX PC2: 9.02 % 

Root top angle 

range 

Architecture Range of root tissue 

angles present in the 

root system. 

RTA RANGE PC4: 5.73 % 
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Spatial root 

distribution X 

Architecture Spatial distribution of 

the root shape in the x-

axis. This is the x 

component of the 

vector pointing from 

the center of the 

bounding box of the 

root shape to the center 

of mass of the root 

shape. 

RDISTR X PC2: 0.22 % 

Spatial root 

distribution Y 

Architecture Spatial distribution of 

the root shape in the y-

axis. This is the x 

component of the 

vector pointing from 

the center of the 

bounding box of the 

root shape to the center 

of mass of the root 

shape. 

RDISTR Y PC2: 8.01 % 

Adventitious root 

angle 

Architecture Adventitious root angle 

estimated from the 

paths detected in the 

number of adventitious 

roots. 

ADVT ANG 

  

PC2: 4.83 % 

Basal root angle Architecture Basal root angles 

estimated from the 

paths detected in the 

number of basal roots. 

BASAL ANG PC2: 6.61 % 

50 percent drop Architecture Depth value where 

50% of the root tip 

paths emerged from the 

central path. 

DROP 50 PC2: 10.85 % 

Projected root area Size Number of foreground 

pixels belonging to the 

root system. 

AREA PC3: 13.49 % 

Skeleton nodes Morphology Nodes calculated from 

the medial axis of the 

root system. 

SKL_NODES PC4: 8.25 % 
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Stem diameter Morphology Stem diameter derived 

from medial axis. 

DIA STM PC3: 2.31 % 

Simple stem 

diameter  

Morphology Simple stem diameter 

calculated in root 

estimator for 

shovelomics 

DIA STM SIMPLE PC2: 11.51 % 

Average root 

density 

Morphology Ratio of foreground to 

background pixels 

within 

AVG DENSITY PC4: 1.43 % 

Mean tip diameter Morphology Mean tip diameter 

estimated from the 

medial circle at the 

tips. 

TD AVG PC4: 14. 53 

% 

Root tip count Morphology Overall number of tips 

detected in the image 

RTP COUNT PC3: 9.37 % 

Number of 

Adventitious 

Morphology Number of root tip 

paths emerging from 

root segment 1. 

ADVT COUNT PC4: 3.47 % 

Number of basal 

roots 

Morphology Number of basal roots 

estimated as emerging 

root tip bundles from 

root segment 2. 

BASAL COUNT PC4: 5.64 % 

Basal root angle Architecture Basal root angles 

estimated from the 

paths detected in the 

number of basal roots. 

BASAL ANG PC2: 6.61 % 

Hypocotyl diameter Morphology Hypocotyl diameter 

estimated over detected 

hypocotyl region as the 

average diameters of 

medial circles. 

HYP DIA PC4: 8.46 % 
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Tap root diameter Morphology Tap root diameter 

estimated over detected 

taproot region as the 

average diameters of 

medial circles. 

TAP DIA PC4: 10.97 % 

Maximum diameter 

at 90-100% percent 

depth 

Morphology Maximum diameter 

found in the interval of 

90-100% rooting depth 

MAX DIA 90 PC4: 9.42 % 

 

Table S2-1 Lists the full root trait name and its corresponding abbreviated name (‘Code’) assigned by DIRT 

software for the 33 traits that were analyzed in the study. Each root trait was cataloged into four functional 

trait classes indicated within parenthesis a priori. We report the PC axis where a given individual root trait 

contributed the most variance and report its percent contribution to that axis (‘PC Contribution’). Traits 

with ‘*’ indicate multiple traits and a corresponding range in their percent (%) contribution to a given PC 

axis. 
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Figure S2-1 Sketch for some root traits captured by DIRT. Root area represents the ‘AREA’ trait, estimated 

as the total number of pixels of the root system as indicated by a light yellow circle encapsulating the entire 

sampled root system. Accumulated root width with soil depth is captured with the two-way dashed light 

red arrows (‘D%’; Table S1). Different diameter traits are indicated with two-way solid black arrows 

including, tap root diameter (‘TAP_DIA’), root tip diameter (‘TD_AVG’; Table S1), stem diameter 

(‘DIA_STEM’; Table S1) and hypocotyl diameter (‘HYP_DIA’; Table S1). Root tips are colored in light 

blue, and an example of soil root tissue angle and root tissue angle are shown by the pink and green shaded 

regions, respectively. 
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Trait Selection gradient F-values 

 Alone Competition Treatment × Trait 

Root topology 

(PC1) 

0.05 ± 0.04 

(.27) 

0.01 ± 0.11 

(.92) 

0.04  

(.85) 

Root 

architecture 

(PC2) 

-0.002 ± 0.05 

(.97) 

0.08 ± 0.07 

(.28) 

0.50  

(.51) 

Root 

morphology 

(PC4) 

0.12^ ± 0.06 

(.10) 

-0.17 ± 0.07 

(.03) 

5.33  

(.03) 

 

Table S2-2 Results of linear selection gradient for root topology (PC1), architecture (PC2), and morphology 

(PC4), for each Treatment is presented with their respective linear regression slopes (β), its corresponding 

± 1 standard error and p-value in parentheses. F-values and their corresponding p-values from ANCOVA 

are also shown to indicate the effect of Treatment on the pattern of selection for each trait (Treatment × 

Trait). Bolded values indicate a p-value < 0.05 and ‘^’ indicates a marginally significant p-value = 0.10. 

 

Figure S2-2 Scree plot demonstrating the percentage of variance explained by each principal 

component computed on the correlation matrix of the transformed root traits after the 

removal of Block effects. The first four principal components contribute to more than 10.0% 

of the total variation. 
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Traits F-statistics χ2 

Trait description Block 

DF = 3 

Treatment 

DF = 1 

Maternal Line 

DF = 1 

Skeleton nodes (morphology) 130.59 (<.001) 2.13  

(.15) 

0.47  

(.50) 

Maximum diameter at 90-100% percent depth 

(morphology) 

1011.34 (<.001) 1.62 (.20) <0.001 

(.99) 

Average root density (morphology) 113.94 (<.001) 0.02 

 (.88) 

0.13 

(.72) 

Mean tip diameter (morphology) 1208.57 (<.001) 2.09  

(.15) 

<0.001 

(.99) 

Root tip count (morphology) 13.60 (<.001) 1.31  

(.25) 

1.66 

(.20) 

Soil tissue angle range (architecture) 5.70  

(.001) 

2.78 

(.10) 

4.66 

(.03) 

Maximum soil tissue angle (architecture) 7.33 (<.001) 2.36 (.13) 5.17 (.02) 

Root top angle range (architecture) 2.29 

 (.08) 

1.82 (0.18) 4.22 

(.04) 

Number of Adventitious roots (morphology) 1.29  

(.28) 

0.01 (0.91) <0.001 

(.99) 

Hypocotyl diameter (morphology) 1116.61 (<.001) 3.47 (.06)^ <0.001 

(.99) 

Tap root diameter (morphology) 840.17 (<.001) 0.52  

(.47) 

<0.001 

(.99) 

 

Table S2-3 Results for post hoc linear mixed model analysis on a subset of individual root traits. F-values 

and their corresponding p-values from ANOVA are also shown to indicate the effect of Block and 

Treatment on original root traits. Bolded values indicate a p-value < 0.05 and ^ indicates p-value < 0.07. 

 

 

Root trait Competitor 

DF = 5 

Combination Pairing 

DF = 54 

Root topology (PC1) 1.55 (.17) 1.33 ^ (.07) 

Root architecture (PC2) 2.09^ (.07) 1.38 (.04) 

Root size (PC3) 2.55 (.03) 1.75 (.001) 

Root morphology (PC4) 0.65 (.66) 1.47 (.02) 

 

Table S2-4 Supplementary results for linear model ANOVA on root topology, architecture and morphology 

to evaluate the effect of Competitor and Combination Pairing on root architecture standardized for Block 
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effects. Root trait was treated as the response variable and Competitor and Combination Pairing were fixed 

effects, we ran separate models for each root trait (root topology, architecture, size and morphology), 

respectively. F-values and their corresponding p-values are shown to indicate the effect of Combination 

Pairing and Treatment on root architecture. Bolded values indicate a p-value < 0.05. 

 

 

 
 

Figure S2-3 Negative relationship (β = -0.06 ± 0.03, p-value = 0.04; Table 4) between phenotypic distance 

of root architecture (PC2) and standardized relative fitness for I. purpurea when in competition with I. 

hederacea. The phenotypic distance of root architecture was calculated as the Euclidean distance in PC2 

between competing pairs of I. purpurea and I. hederacea after the removal of Block effects, and then 

averaged by maternal line and species by maternal line combination type. Each point represents two to eight 

biological replicates. For each point, error bars were drawn based on observed values of relative fitness (Y-

axis) and root architecture (X-axis) for a given maternal line within competition treatment, respectively. 

Colored points (yellow and blue) indicate two outliers that were maintained in our final analysis because 

of their low intraspecific variation. 
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Figure S2-4 Evidence of a marginally significant negative linear relationship (β = -0.27 ± 0.15, p-value = 

0.07) between phenotypic distance of root architecture (PC2) and plant size (i.e., leaf number averaged by 

combination pairing and maternal line) for I. hederacea when in competition with I. purpurea. The 

phenotypic distance of root architecture was calculated as the Euclidean distance in PC2 between competing 

pairs of I. purpurea and I. hederacea after the removal of Block effects, and then averaged by maternal line 

and species by maternal line combination type. Each point represents two to eight biological replicates. For 

each point, error bars were drawn based on observed values of relative fitness (Y-axis) and root architecture 

(X-axis) for a given maternal line within competition treatment, respectively, for I. hederacea. 
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Traits F-statistics χ2 

Trait description Trait Code Block 
DF=3 

Treatment 
DF=1 

Maternal 

Line 
DF=1 

Skeleton nodes (morphology) SKL_NODES 130.59  

(<.001) 
2.13  
(.15) 

0.47  
(.50) 

Stem diameter (morphology) DIA_STM 619.97  

(<.001) 
0.03  
(.85) 

1.56 
(.21) 

Average root density (morphology) AVG_DENSITY 113.94  

(<.001) 
0.02 
 (.88) 

0.13 
(.72) 

Mean tip diameter (morphology) TD_AVG 1208.57 

(<.001) 
2.09  
(.15) 

<0.001 
(.99) 

Root tip count (morphology) RTP_COUNT 13.60  

(<.001) 
1.31  
(.25) 

1.66 
(.20) 

Soil tissue angle range (architecture) STA_RANGE 5.70  
(.001) 

2.78 
(.10) 

4.66 
(.03) 

Root top angle range (architecture) RTA_RANGE 2.29 
 (.08) 

1.82 

(0.18) 
4.22 
(.04) 

Number of Adventitious roots 

(morphology) 
ADVT_COUNT 1.29  

(.28) 
0.01 

(0.91) 
<0.001 
(.99) 

Number of basal roots (morphology) BASAL_COUNT 10.53  

(<.001) 
3.43 
 (.06) 

3.71 
(.054) 

Tap root diameter (morphology) TAP_DIA 840.17  

(<.001) 
0.52  
(.47) 

<0.001 
(.99) 

 

Table S2-5 Results for post hoc linear mixed model analysis on a subset of individual root traits. F-values 

and their corresponding p-values from ANOVA are also shown to indicate the effect of Block and 

Treatment on original root traits. Bolded values indicate a p-value < 0.05. 
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Appendix S3 Supplementary Figures and Tables to Chapter 4 

 

Step Deviance Residual DF AIC 

-Root morphology × Treatment 0.004 55 -240.78 

-Inverse Simpson × Diversity Treatment 0.005 56 -242.65 

- Root architecture × Treatment 0.02 57 -244.06 

 

Table S3-1 Backwards model selection statistics of the ‘dropped’ variables based on a full multivariate 

linear modelA of relative fitness of I. purpurea where we included Treatment, Block, all root traits and 

scaled values of microbial species richness, evenness, Inverse Simpson Diversity and their two-way 

interactions with Treatment and Block as predictor variables. We used the ‘stepAIC’ function of the 

‘MASS’ package (Venagles and Ripley, 2002) to perform the backwards model selection computation and 

obtain a reduced modelB with the lowest AIC score. 

 

AFull model: Relative fitness ~ Treatment + Block +  Root topology + Root architecture + Root morphology + Sp. Richness + Sp. 

Inverse Simpson Diversity + Treatment × Block + Root topology × Treatment + Root architecture × Treatment + Root morphology 

× Treatment + Sp. Richness × Treatment + Sp. Inverse Simpson Diversity × Treatment + Root topology × Block + Root architecture 

× Block + Root morphology × Block + Sp. Richness × Block + Sp. Inverse Simpson Diversity × Block 

 

BReduced model: Relative fitness ~ Treatment + Block +  Root topology + Root architecture + Root morphology + Sp. Richness 

+ Sp. Inverse Simpson Diversity + Treatment × Block + Root topology × Treatment + Root architecture × Treatment + Root 

morphology × Treatment + Sp. Richness × Treatment + Sp. Inverse Simpson Diversity × Treatment + Root topology × Block + 

Root architecture × Block + Root morphology × Block + Sp. Richness × Block + Sp. Inverse Simpson Diversity × Block 

 

 


