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ABSTRACT

In the first main section of this thesis, I investigate superirreducible polynomials over

fields of positive characteristic and also over Q and Z. An n-superirreducible polynomial

f(x) is an irreducible polynomial that remains irreducible under substitutions f(g(x)) for

g of degree at most n. I find asymptotics for the number of 2-superirreducible polynomials

over finite fields. Over the integers, I give examples of both families of superirreducible

polynomials and families of irreducible polynomials which have an obstruction to su-

perirreducibility. The writing and results on finite fields in this section have come from

a collaboration with Jonathan Bober, Dan Fretwell, Gene Kopp and Trevor Wooley. The

results over Z and Q are my own independent work.

In the second section I determine the asymptotic growth of certain arithmetic functions

A(n), B(n) and C(n), related to digit sum expansions. I consider these functions as sums

over primes p up to n. I obtain unconditional results as well as results with better error

terms conditional on the Riemann Hypothesis. The results over primes have come from

collaboration with Jeff Lagarias. I also independently solved the analogous problem of

summing over all positive integers b ≤ n.

Finally in the third section, I discuss mathematical education via the lens of interviews

and interactions. I consider my role as a teacher through multiple real-life anecdotes and

what those stories have taught me. My interviews were conducted with young mathemati-

cians from Bronx, NY that I got the opportunity to talk to as a result of my employment

with Bridge to Enter Advanced Mathematics during the summer of 2019. The anecdotes

I give are from working with teenaged students from a variety of different cultural, socio-

economical and mathematical backgrounds.
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CHAPTER I

Introduction

1.1 Polynomial Related Definitions

Definition 1.1.1. A polynomial over a ring R is an expression built from constants and

variables. A polynomial in the single variable x has form f(x) =
∑n

k=0 akx
k, where the

coefficients ak are constant elements in the ring R. The degree of the polynomial is n: the

highest power of x occurring with a nonzero coefficient multiplying it.

Polynomials are ever-present in the world around us. For example, if we throw an ob-

ject, the arc made by its path can be modelled by a quadratic (degree 2) polynomial. Since

polynomials are some of the nicest functions to visualise, approximate and work with,

we often approximate other functions using polynomials. In fact the Stone-Weierstrass

Theorem, proven in 1937 states that any continuous function on a closed interval can be

approximated to any degree of accuracy by a polynomial function. Therefore interest

rates, in economics, which are modelled by exponential functions can be approximated

by polynomials. So can trigonometric functions, which come up frequently in physics

and engineering, for example to describe water ripples in a lake, or a bridge reacting to a

hurricane.

A polynomial f(x) is reducible over R if it can be written as f(x) = g(x)h(x) with g

and h polynomials of degree at least one with coefficients in R. f is said to be irreducible

1
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otherwise. A value a in the ring R is a root of the polynomial f if f(a) = 0. This

is equivalent to saying that f(x) can be written as f(x) = (x − a)h(x) for some other

polynomial h(x) with coefficients in R.

1.2 Finding Roots for Polynomials of Degree at Most 4

Finding roots of polynomials and determining irreducibility are problems that have

been studied throughout history. The ancient Greeks discovered that a quadratic polyno-

mial ax2 + bx+ c is reducible over the rationals if and only if b2− 4ac is a perfect square.

Later on, in the 7th century, the Indian mathematician Brahmagupta discovered that the

two roots for a quadratic polynomial are given by the formula

x =
−b±

√
b2 − 4ac

2a

taking the positive square root for one root and the negative square root for the other.

If b2 − 4ac = 0 then the quadratic has a repeated root. We can arrive at this formula

algebraically by setting ax2 + bx+ c = 0 and completing the square.

Just increasing the degree of the polynomial by one already makes finding roots much

more difficult. Many generations of mathematicians pondered how to solve cubics, making

slow partial progress in understanding cubics that had specific forms. It wasn’t until the

sixteenth century when a general method was discovered by Tartaglia. There now exist a

few different methods of solving the cubic. Here I’ll illustrate Tartaglia’s method.

Tartaglia’s method consists purely of algebraic manipulation. The first step is to com-

plete the cube: by replacing y+ 1
3
a by x in y3 +ay2 +by+c, we can assume that any cubic

equation can be reduced to one of the form x3 +px+ q. Tartaglia’s method then splits into

two cases: p > 0 and p < 0 (clearly if p = 0, we can just directly take cube roots). We’ll

show how to find the roots when p > 0. The solution with p < 0 is handled similarly.
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Let f(x) = x3 + px+ q. Suppose that p > 0 and that r is a root of f . We write r in the

form r = 3
√
u− 3
√
v for some u and v. We see that

r3 = ( 3
√
u− 3
√
v)3

= u− v − 3 3
√
v( 3
√
u)2 + 3 3

√
u( 3
√
v)2

= (u− v)− 3 3
√
u 3
√
v( 3
√
u− 3
√
v)

= (u− v)− 3( 3
√
u 3
√
v)r.

Rearranging, we see that we get a cubic in r with no r2 term:

r3 + 3( 3
√
u 3
√
v)r − (u− v) = 0.

Since we know that f(r) = 0, we can equate coefficients to get a pair of equations:

p = 3( 3
√
u 3
√
v), q = −(u− v).

By substituting, we can come up with quadratics satisfied by u and v:

u2 + qu−
(p

3

)3
= 0,

v2 − qv −
(p

3

)3
= 0.

Now using the quadratic formula on each, we can solve for u and v. This allows us to find

three (not necessarily distinct) solutions for r, recalling that r = 3
√
u− 3
√
v. We get that

r =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
− 3

√
q

2
+

√(q
2

)2
+
(p

3

)3
.

There’s also an algebraic way to solve the quartic. Similar to what we did with the

cubic, we can complete the fourth power and assume that our quartic has form

x4 + ax2 + bx+ c
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with a, b, c ∈ Q. We look for a root of the form u + iv ∈ C, where u, v are complex

numbers with v 6= 0. Substituting in we obtain:

(u+ iv)4 + a(u+ iv)2 + b(u+ iv) + c.

We can expand this out and set both the coefficient of 1 and the coefficient of i equal to

0. Although this is not a necessary condition, it is a sufficient one: both coefficients being

zero will be enough for u+ iv to be a root. We get the following pair of equations:

u4 − 6u2v2 + v4 + au2 − av2 + bu+ c = 0,

4u3v − 4uv3 + 2auv + bv = 0.

Since we assumed that v 6= 0, we can factor it out of the second equation to conclude that

4u3 − 4uv2 + 2au + b = 0. And so we solve for v2 to get that v2 = 4u3+2au+b
4u

. We now

substitute this into the first equation and obtain

u4−6u2
4u3 + 2au+ b

4u
+

(
4u3 + 2au+ b

4u

)2

+au2−a4u3 + 2au+ b

4u
+bu+c = 0. {∗}

We see that amazingly, the odd degree terms of u in this equation cancel to 0, so that

multiplying through {∗} by u2 we get a rational degree 6 polynomial with only even degree

terms, making it a cubic in u2. Since we know how to solve cubics, we can obtain solutions

for u2. Taking the square root, we obtain solutions for u. This then gives us solutions for

v2 and so v. Putting all this together, we’ve solved our quartic.

1.3 Impossibility of the quintic and Galois Theory

We’ve outlined ways to find roots of all polynomials from degree up until 4 in the previ-

ous section. Unfortunately from degree 5 onwards, there aren’t such methods. Here we’ll

discuss the theory behind why this is the case. To begin with, we’ll need the following two

definitions from group theory.
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Definition 1.3.1. A simple group is one that has no non-trivial normal subgroups.

Definition 1.3.2. For a group G, a composition series is a sequence of normal subgroups

{e} = G0 E G1 E · · · E Gn E G such that each of the factor groups Gi+1/Gi is simple.

A finite group being solvable means that all of its factor groups Gi+1/Gi are abelian.

Solvability of a polynomial is determined by solvability of the Galois group of its splitting

field. We state this more precisely via the following two theorems and in the subsequent

corollary conclude unsolvability of degree n polynomials for n ≥ 5.

Theorem 1.3.3. (Jordan-Hölder) Every finite group has a composition series. Any two

composition series have the same factor groups (up to rearrangement).

Theorem 1.3.4. (Abel-Ruffini) Let F be a field of characteristic 0. A polynomial f(x) ∈

F [x] is solvable by radicals over F if and only if its splitting field K/F has a solvable

Galois group.

Corollary 1.3.5. For any n ≥ 5, there exist degree n polynomials which cannot be solved

by radicals.

To prove Corollary 1.3.5, we’ll need to make use of the following three lemmas from

Group and Field Theory:

Lemma 1.3.6. For n ≥ 5, the alternating group An is simple.

Lemma 1.3.7. (Dedekind’s Theorem) Let f(x) be a monic polynomial of degree n, with

integer coefficients. Let k ≤ n be an integer. Suppose there exists a prime p such that f

(mod p) has a an irreducible irreducible factor of degree k. Then the Galois group G for

the splitting field of f contains a permutation with a cycle of length k.

Lemma 1.3.8. IfH is a subgroup of Sn acting transitively on {1, 2, . . . , n} andH contains

both an (n− 1)-cycle and a transposition, then H must be equal to Sn.
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We can now begin the proof of Corollary 1.3.5.

Proof. We use Lemma 1.3.7 to show that there are degree n polynomials with Galois group

Sn. First, we take three polynomials g(x) (of degree n, irreducible modulo 2), h(x) (of

degree (n− 1), irreducible modulo 3) and k(x) (of degree 2, irreducible modulo 5). Next,

we choose integers a and b such that a is congruent to 1 (mod 2) and 0 modulo 3 and 5 and

b is congruent to 1 (mod 3) and 0 modulo 2 and 5. By Chinese remainder Theorem, this

is possible. Given these choices, we finally build a degree n polynomial f(x) by taking

f(x) = ag(x) + bxh(x) + (1− a− b)xn−2k(x).

By reducing modulo 2, we see that f(x) ≡ g(x) is irreducible (mod 2) and therefore

is irreducible over Q. However by considering the factorisations modulo 3 and 5, we get

that

f(x) ≡ xh(x) (mod 3),

f(x) ≡ xn−2k(x) (mod 5).

By properties of h(x) and k(x), we get that the Galois group for the splitting field

of f(x) must contain an (n − 1)-cycle and a transposition. Since the Galois group acts

transitively on the roots of f (because f(x) is irreducible), by Lemma 1.3.8 it must be the

entire symmetric group Sn.

The symmetric group Sn has normal subgroup An. However by lemma 1.3.6 An is

simple for n ≥ 5. This tells us that (up to rearrangement), the composition series for Sn is

Sn D An D {e}.

Since An is nonabelian, this tells us that Sn is not solvable, so that a polynomial with

Galois group Sn can’t be solvable by radicals.
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Despite this apparent snag in finding roots of polynomials, there is hope of at least iden-

tifying when a polynomial is reducible. One such technique is the rational root theorem:

Theorem 1.3.9. A polynomial f(x) = cnx
n + cn−1x

n−1 + · · · + c1x + c0 ∈ Z[x] has a

rational root a
b

with gcd(a, b) = 1 only if a|c0 and b|cn.

We note that the rational root is far from sufficient for proving irreducibility: a poly-

nomial that has no roots can still be reducible. For example the quintic polynomial

f(x) = x5 + x4 + 3x3 + 3x2 + 3x+ 1 has no rational roots: by rational root theorem, any

rational root would have form a
b

with gcd(a, b) = 1, a|1 and b|1. Therefore we just need to

verify that 1 and −1 are not roots and indeed they’re not. However f(x) is reducible over

Q: f(x) = (x2 + x+ 1)(x3 + 2x+ 1).

1.4 Methods for showing irreducibility

Now instead of trying to find roots of polynomials, we consider the opposite problem:

proving polynomials are irreducible over a given field. One method to show irreducibil-

ity for a polynomial f(x) is to find a p prime and a finite field Fp over which f(x) is

irreducible. This then gives us that f(x) is irreducible over Z (because if it wasn’t, a

factorisation in Z would give a factorisation over Fp. This method is effective because it

reduces the problem to checking whether f(x) is divisible by finitely many lower degree

polynomials over Fp, instead of having to check infinitely many over Z.

Another tool that is used to show irreducibility is Newton Diagrams, which we’ll use

as a first approach in Subsection 2.2.1 to tackle superirreducibility over Z. The Newton

diagram for a polynomial f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with respect to the

prime p is a subset of R2. It’s constructed by plotting degrees along the x axis (from 0 to

n) and the maximum power of p dividing ai for each i, 0 ≤ i ≤ n along the y axis and then

taking the lower convex hull of these points. This lower convex hull follows the perimeter
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of the convex hull from (0, vp(a0)) to (n, vp(an)). We call the set of lines in this lower

convex hull the system of vectors for the Newton diagram of f(x) and note that if a line

has interior integer points, then it can be expressed as the union of several shorter vectors.

Using Newton Diagrams, we can appeal to the Dumas criterion below:

Theorem 1.4.1. (Dumas) Let f = gh, where f, g and h are polynomials with integer

coefficients. Then the system of vectors of the segments for f is the union of the systems of

vectors of the segments for g and h in their respective Newton Diagrams (provided p is the

same for all the polynomials).

The Dumas criterion is applicable to show us that multiple families of polynomials are

irreducible. It is proved in [23], page 53, Theorem 2.2.1 . We give a few examples of its

applications below.

Example 1.4.2. (Eisenstein’s criterion) Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

be a polynomial with integer coefficients. Suppose that there exists a prime p such that

p|a0, p|a1, . . . , p|an−1 but p 6 | an and p2 6 | a0. Then f(x) is irreducible over Z.

Proof. The Newton diagram of f consists simply of one vector with endpoints (0, 1) and

(n, 0). This has no interior integer points, so can’t be written as the union of multiple

vectors.

Example 1.4.3. We can apply Eisenstein’s criterion (with p = 3) on the polynomial

f(x) = x5 + 18x4 + 81x3 + 21x2 + 6x+ 3 to get the following Newton Diagram:
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Figure 1.1: Newton Diagram for the polynomial f(x) = x5 + 18x4 + 81x3 + 21x2 + 6x+ 3 with p = 3

We see that the Newton diagram consists of a single line segment with slope −1
5
. This

line segment contains no interior points, so f(x) must be irreducible.

Example 1.4.4. According to the Dumas criterion, we can give a condition for irreducibil-

ity that’s a little more general than Eisenstein’s criterion. Namely, that if the Newton di-

agram for a polynomial f consists of exactly one segment with no interior integer points,

then f must be irreducible. For example a polynomial having the following Newton dia-

gram must be irreducible:

Figure 1.2: Newton Diagram consisting of exactly one segment

We see that this Newton diagram has a single line segment with endpoints at (0, 3) and

(5, 0), with slope −3
5
. Therefore, there are no interior integer points.

Example 1.4.5. In contrast to Example 1.4.4, a polynomial having the following similar

Newton diagram need not be irreducible:
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Figure 1.3: Newton Diagram with interior integer points

Although this appears to again to only consist of one line segment, we observe that

the line segment has endpoints at (0, 3) and (6, 0), with slope −1
2
. Therefore this line

segment has two interior integer points: at (2, 2) and at (4, 1). Therefore, the most that

a polynomial with such a Newton diagram could factor is as a product of irreducible

quadratics. Indeed if we take p = 2, we can find such a polynomial. Letting f(x) =

x6 + 2x4 + 4x2 + 8, we get the Newton diagram above and indeed, f(x) is the product of

three irreducible polynomials: f(x) = (x2 + 2)(x2 − 2x+ 2)(x2 + 2x+ 2).

1.5 Substitutions that preserve irreducibility

Superirreducible polynomials are polynomials that resist factorization under polyno-

mial substitutions. More precisely, for a positive integer k, a k-superirreducible polyno-

mial f(x) is not only irreducible, but remains irreducible after any substitution x = g(t)

where the degree of g(t) is at most k. The concept of superirreducibility was introduced

(although not by name) by Bober, Fretwell, Martin, and Wooley in [4] as a potential limi-

tation on (poly)smoothness of polynomial compositions.

We note that a polynomial f(x) is irreducible over R if and only if for every a ∈ R,

f(x + a) is irreducible over R. This is because f(x) = g(x)h(x) if and only if f(x +
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a) = g(x + a)h(x + a). Therefore the condition of 1-superirreduciblility is equivalent to

irreducibility. A 0-superirreducible polynomial will turn out to be precisely a (possibly

reducible) polynomial with no roots in the base ring. 2-superirreducibility is when things

start to get tricky: if f(x) is an irreducible polynomial and g(x) is a quadratic polynomial,

it’s not apparent whether f(g(x)) will be irreducible. As we increase the degree of g,

answering such a question seems to get increasingly difficult.

1.6 Infinite Descent

The method of infinite descent was originally developed by Fermat in the 17th century

to show that certain equations have no integer solutions. We appeal to this method in sub-

sections 2.2.3 and 2.2.4 to prove that certain families of polynomials are 2-superirreducible

over Z. To apply this method, we show that if a given equation has an integer solution then

we can always construct another solution out of it that’s strictly smaller in magnitude. This

is impossible if we’re working within the integers and so the given equation must have no

integer solutions at all. We’ll illustrate how the method of infinite descent works via a

couple of examples.

Example 1.6.1. We can show via infinite descent that
√

2 is irrational.

Proof. Suppose that
√

2 is rational, so for some p, q ∈ Z it can be written as
√

2 = p
q
.

Squaring both sides yields 2 = p2

q2
so that p2 = 2q2. Since the right hand side of this

equation is an even integer, the left hand side must be too, so that p is divisible by 2. This

tells us p2 is divisible by 4, so 2q2 is divisible by 4 and q is even as well. But then we can

replace p by the integer p′ := p
2

and q by the integer q′ := q
2

and write
√

2 as p′

q′
. This

process can continue indefinitely, which is impossible inside the integers.

Example 1.6.2. Using infinite descent, we can prove the case n = 4 of Fermat’s Last

Theorem: that the equation X4 + Y 4 = Z4 has no nontrivial integer solutions.
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Proof. It suffices to show that the equation X4 + Y 4 = Z2 has no nontrivial integer so-

lutions. Assume it has solution (x, y, z). Then by dividing through by common factors,

we can assume that (x, y) = 1, (x, z) = 1 and (y, z) = 1. We see that exactly one of x

and y are odd (for if they’re both odd, then z2 ≡ 2 (mod 4), which is impossible). As-

sume without loss of generality that x is odd and y is even. Then we can parametrise the

Pythagorean triple (x2, y2, z) using coprime positive integers m and n by

x2 = m2 − n2, y2 = 2mn, z = m2 + n2.

From this, we receive x2 + n2 = m2 giving rise to another Pythagorean triple where

x,m, n are all pairwise coprime. We parametrise again, remembering that x is odd, via

the coprime positive integers k, l:

x = k2 − l2, n = 2kl, m = k2 + l2.

Now taking in both parametrisations together, we can write

y2 = 2mn

= 4kl(k2 + l2)

so that
(
y
2

)2
= kl(k2 + l2). Since k and l are coprime, they must each be coprime with

k2 + l2. Since y is even
(
y
2

)2 is a square integer, so that k, l and k2 + l2 must all be perfect

squares. We can write

k = a2, l = b2, k2 + l2 = c2

for a, b, c positive integers and observe that this gives us c2 = a4 + b4. We now note

that c2 = m so c ≤ m < z. Therefore given any positive integer solution (x, y, z) to

X4 + Y 4 = Z2, we can construct another positive integer solution (a, b, c) with c < z.

Over the positive integers it isn’t possible that this process continue indefinitely.
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1.7 The Theory of Characters

Our analysis of superirreducibles over finite fields in Section 2.1, relies on the technique

of characters on unit groups of finite fields. We’ll give a brief overview of characters here.

Definition 1.7.1. For m ≥ 1, a multiplicative character χ : (Z/mZ)∗ → C is a multi-

plicative group homomorphism satisfying χ(ab) = χ(a)χ(b) for (ab,m) = 1.

We define the trivial character by χ(g) = 1 for all g ∈ (Z/mZ)∗. We can extend the

notion of multiplicative characters to unit groups of all finite fields:

Definition 1.7.2. Let G be any finite abelian group. A character of G is a group homo-

morphism χ : G→ C∗

The set of characters forms a finite group with composition given by function multi-

plication. The identity element is the trivial character. The inverse for each character is

given by χ−1(x) = (χ(x))−1. Since G is finite, we see that all characters must take values

that are nth roots of unity in C, for some n. Therefore, the value the inverse of a character

takes is exactly its complex conjugate.

We have the following nice orthogonality relations for characters:

Proposition 1.7.3. (i) Let χ1, χ2 be characters on a finite abelian groupG. Then, summing

over all group elements x, we have

∑
x∈G

χ1(x)χ2(x) =


|G| if χ1 = χ2

0 otherwise

(ii) If instead we sum over all characters, then we have

∑
χcharacter of G

χ(x)χ(y) =


|G| if x = y

0 otherwise
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Proof. The proofs of (i) and (ii) are very similar, so we’ll just show how to prove (i).

Since the set of characters form a group, we see that χ1χ2 is a character. If χ1 = χ2, then

χ1χ1 is the trivial character, so that
∑

x∈G χ1(x)χ1(x) =
∑

x∈G 1 = |G|.

We suppose that χ1 6= χ2. Then we call χ1χ2 = ψ a fixed character of G, so that∑
x∈G

χ1(x)χ2(x) =
∑
x∈G

ψ(x).

We can choose an element g ∈ G such that ψ(g) 6= 1 (this is possible because χ1 6= χ2).

Then we have that ∑
x∈G

ψ(x) =
∑
x∈G

ψ(g)ψ(g−1x)

= ψ(g)
∑
x∈G

ψ(g−1x)

= ψ(g)
∑
x∈G

ψ(x).

Since ψ(g) 6= 1, we’ve established that
∑

x∈G ψ(x) = 0.

1.8 Superirreducibility Results over Finite Fields

With my collaborators Jonathan Bober, Dan Fretwell, Gene Kopp and Trevor Wooley

I’ve counted the number of 2-superirreducible polynomials over finite fields and come

up with the following asymptotic formulas. We began with classical Möbius inversion

arguments and then used analytic methods from [29] and [27] to bound character sums.

Definition 1.8.1. We let s2(q, d) denote the number of 2-superirreducible polynomials of

degree d over Fq.

Theorem 1.8.2. Let d be odd. Then s2(q, d) = 0.

Theorem 1.8.3. Let d be even and q an odd prime power. If we let d→∞, then we have

s2(q, d) =
qd

d2q
+O

(
1

d
qd/2

)
.



15

Theorem 1.8.4. For q � d2, we have that s2(q, d) = 0.

We also found that our problem of counting 2-superirreducibles over finite fields is

equivalent to counting points on affine curves. Specifically, the number of 2-superirreducibles

of degree n has main term equal to 1
d2q

multiplied by the number of points on

Cn := {(x, y1, . . . , yn} ∈ An+1 : δy2j = x+ uj for 1 ≤ j ≤ n},

where δ denotes some quadratic non-residue and the uj are some points in Fq. In Sub-

section 2.1.5, we show that these curves are complete intersections and we’re also able to

compute the genus of each Cn to be 1 + 2n−1(n − 2). We would like to use Weil bounds

in Theorem 8.1 from [11]:

Theorem 1.8.5. Let X be a non-singular complete intersection over Fq of dimension n.

Let b′ be the nth Betti number of X . We take b = b′ for n odd and b = b′ − 1 for n even.

Then we have that

|#X(Fq)−#Pn(Fq)| ≤ bq
n
2 .

Knowing the genus allows us to compute the Betti numbers, which would ideally give

us an explicit upper bound for the error in approximating the number of points on the

complex intersection by the number of points in Pn. Unfortunately these curves are not

smooth so Weil bounds are not directly applicable. However we show in Subsection 2.1.5

that there’s a workaround to this problem using methods of Ghorpade and Lachaud [14].

This gives us an alternative proof to Theorem 1.8.3 .

1.9 Superirreducibility Results over Q and Z

As in the proofs of specific cases of Fermat’s Last Theorem, I have used infinite de-

scent arguments to show that certain families of Fermat type polynomials must be 2-

superirreducible over Z and Q. Specifically:
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Theorem 1.9.1. For any nonzero a ∈ Z, all the polynomials in the following families are

2-superirreducible over Z:

{x4 + a4} and {x4 + 2a4}.

The polynomials above all have even degrees and so we must ask ourselves whether

there exist any odd degree 2-superirreducibles. Clearly there are none of degree 1, for if

f(x) = x+a, we may simply set g(x) = x2−a and get that f(g(x)) = x2, which factors.

Schinzel proved in [24] that there are no 2-superirreducible polynomials of degree 3. In

fact, he went further than this and managed to prove that for d ≥ 3, there are no (d − 1)-

superirreducibles of degree d. Therefore the first odd-degree case that’s of interest to us is

when deg(f) = 5.

I don’t know whether there are any 2-superirreducible polynomials of degree 5. I sus-

pect that there are. For example, by testing over several finite fields, the irreducible poly-

nomial x5 + 2x + 1 remains irreducible under monic quadratic substitutions, making it a

good candidate for 2-superirreducibility over Z. In fact I’ve proven that all of the polyno-

mials in the family{x2k+1 + 2x + 1} are irreducible and remain irreducible under a large

number of quadratic substitutions.

Theorem 1.9.2. For k ≥ 2, all the polynomials in the family {x2k+1 + 2x + 1} are ir-

reducible and stay irreducible under every polynomial substitution of the form g(x) =

ax2 + b with a, b ∈ Z.

As well as infinite descent, this proof also required tools from Complex Analysis and

some Algebraic Number Theory in analysing the set of discriminants.

Conjecture 1.9.3. For k ≥ 2, all the polynomials in the family {x2k+1 + 2x + 1} are

2-superirreducible.
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In the opposite direction, there are many cases where we can find an obstruction to

superirreducibility. In such cases, the polynomial f has a form which we can exploit to

find an explicit substitution g that gives a reducible f(g(x)). Indeed, this is what Schinzel

did to prove that over Z and for d ≥ 3, there are no (d− 1) superirreducibles of degree d.

Drawing inspiration from his arguments, I went on to prove the following list of theorems

which give families of polynomials that have an obstruction to superirreducibility.

Theorem 1.9.4. If f(x) is a polynomial of degree n with rational coefficients, then f is

not (n+ k)-superirreducible over Z, nor Q for any integer k ≥ 0.

Theorem 1.9.5. For N odd, there are no 2-superirreducibles over Q of the form axN − b.

Theorem 1.9.6. If f(x) is a polynomial over Q of degree 2N , its linear term has nonzero

coefficient and all of its other odd degree terms have zero coefficients, then f(x) is not

N -superirreducible.

This last theorem is of particular interest, because it says that the only quartics which

could be 2-superirreducible are biquadratic ones. This tells us that ‘most’ irreducible quar-

tics are not 2-superirreducible. It also tells us that the Galois group of a 2-superirreducible

quartic must have order at most 8, which is much smaller than |S4|. This gives us the

intuition that somehow Galois groups for superirreducible polynomials should be ‘small.’

However, the polynomial x5+2x+1 has Galois group S5, which is ‘big’ and it’s irreducible

under all quadratic substitutions of form ax2 + b.

1.10 Future work with Superirreducibility

1.10.1 Galois Groups

I’d like to gain a better understanding of 2-superirreducibility for quintics. One strategy

for doing this involves delving deeper into Fermat type equations and their proofs of non-
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existence of solutions and utilising infinite descent arguments combined with Theorem 6.1

from [4].

I’m interested in investigating the connection between the size of Galois groups of

polynomials and the probability that the polynomials are superirreducible. Data so far

seems to suggest that Galois groups need to be relatively small for 2-superirreducibility.

In the quartic case, by Theorem 2.2.8 for f(x) to be 2-superirreducible over the rationals,

we need it to be of the form ax4 + bx2 + c. Such biquadratic quartics are known to have

small Galois groups (size at most 8). Something I’m interested in doing for polynomials

of degree d is counting the fraction of Galois groups of order at least d and at most 2d.

One approach is do this over number fields of bounded discriminant (studied in [30]) and

look for asymptotics as the size of the discriminant goes to infinity. Another is to consider

polynomials with coefficients in bounded intervals [−H,H] and study the asymptotics as

H →∞.

1.10.2 Analysis over function fields

Another direction I’d like to take is investigating superirreducibility over function fields.

I.e. I’ll take polynomials in x with coefficients in another variable t and investigate how

substituting in other polynomials of this form affects irreducibility. There has been quite

a bit of machinery developed for understanding irreducibility of polynomials over func-

tion fields, for example in [1] and [22], that I plan to use as a starting point. Similar

to my work over finite fields, I’d like to come up with asymptotics for the number of 2-

superirreducibles over the function fields Fq(t). It’s my hope that work over function fields

will shed light on higher degree superirreducibility over the fields Fq and Q.
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1.11 Classical Analytic Number Theory Techniques

In Chapter 3, I find asymptotics for certain arithmetic functions related to Farey frac-

tions and to products of binomial coefficients. To do this, I mainly use classical Analytic

Number Theory methods. The purpose of this subsection is to give a brief introduction to

such methods.

One of the main techniques I’ll use in chapter 3 is the Euler-Maclaurin summation

formula. The formula, proven in [26], is as follows

Theorem 1.11.1. For any integer k ≥ 0 and for any function f ∈ Ck+1[a, b], where

a, b ∈ Z, we have

∑
a<n≤b

f(n) =

∫ b

a

f(t) dt+
k∑
r=0

(−1)r+1Br+1

(r + 1)!
(f (r)(b)− f (r)(a))

+
(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f
(k+1)(t) dt.

In this formula, theBm(t) denote the Bernoulli functions, discovered by Jacob Bernoulli

in the seventeenth century. To build these, we first take the Bernoulli polynomials bm(t)

obtained via the generating function

∞∑
m=0

bm(t)
ym

m!
=

yety

ey − 1
.

The Bernoulli functionBm(t) is the period 1 function which coincides with bm(t) on [0, 1).

Finally, the Bm denote the Bernoulli numbers obtained from the Bernoulli functions by

taking Bm := Bm(0). The Bernoulli numbers and functions have many beautiful applica-

tions. A nice exposition is given in [5], chapter 5.8. One such application is that they give

us a relatively straightforward way to calculate values of the Riemann Zeta function at all

positive even integers.

The Euler-Maclaurin summation formula lets us approximate sums with integrals to

a high degree of accuracy, allowing us to make sense of the error terms. For example, in
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Theorem I.5 of [26], the Euler Maclaurin summation formula is used to find an asymptotic

formula for the truncated harmonic series:

Theorem 1.11.2. For n ≥ 1 we have

∑
m≤n

1

m
= log n+ γ +

1

2n
− 1

12n2
+

θ

60n4

where γ is Euler’s constant and θ = θ(n) ∈ [0, 1].

Euler’s constant γ ≈ 0.577 is conjectured to be transcendental. Since its discovery, γ

has been ubiquitous across Analytic Number Theory, showing up in relation to Bernoulli

Numbers and the Riemann Zeta function, among other places. A thorough exposition on

Euler’s constant and its applications is given in [18].

Another technique I use extensively in chapter 3 is the prime number theorem, which

says that the number of primes less than n is asymptotic to n
logn

. We define the indicator

function on primes via

IP (n) =


1 if n is prime

0 otherwise

and the prime counting function via π(x) :=
∑

n≤x IP (n).

Theorem 1.11.3. (Prime Number Theorem) There exists a constant c > 0 such that

π(x) =
x

log x
+O(xe−c

√
log x).

The prime number theorem has a long and rich history. That π(x) was about x
log x

was originally conjectured by Gauss in the late eighteenth century. In 1838, Legendre

connected the prime counting function to the logarithmic integral
∫ x
2

1
log t

dt. The prime

number theorem was eventually proven independently by Hadamard [15] and de la Vallée

Poussin [8] in the late 20th century, using complex analysis methods.
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Finally, in chapter 3, we’ll get various expressions containing factorials arising from

repeated integration by parts of the logarithmic integral function li(x) =
∫ x
2

1
log t

dt. To

bound such expressions, I’ll use Stirling’s formula which provides an accurate estimate of

the size of n!:

Theorem 1.11.4. For all n ≥ 1, we have

√
2πnn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n.

1.12 Digit Sum Expansions

We define the base b expansion of a positive integer n to be
∑k

i=0 aib
i, where each

ai = ai(b, n) ≤ b− 1 and ak ≥ 1 so that bk ≤ n < bk+1.

Example 1.12.1. 1. If n = 93, the base 2 expansion would be 1 + 22 + 23 + 24 + 26, so

that a0 = 1, a1 = 0, a2 = 1, a3 = 1, a4 = 1, a5 = 0, a6 = 1.

2. If n = 132, the base 3 expansion would be 2 ∗ 3 + 2 ∗ 32 + 33 + 34, so that a0 =

0, a1 = 2, a2 = 2, a3 = 3, a4 = 4.

Base b expansions are unique for positive integers. We construct it by first taking the

highest multiple of the highest power of b which is smaller than n. Say this is akbk. We

then do the same for n−akbk, to get the highest multiple of the highest power of b smaller

than n − akbk, say ajbj . We continue this process until it terminates. We observe for all

k ≥ 0 that

k−1∑
i=0

aib
i ≤

k−1∑
i=0

(b− 1)bi by definition of the ai

= (b− 1)
bk − 1

b− 1

< bk.

From the base b expansion, we can build the following functions:
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Definition 1.12.2. 1. The sum of digits function db(n) (to base b) is given by:

db(n) :=
∑
i≥0

ai(b, n).

2. The running digit sum function Sb(n) (to base b) is given by:

Sb(n) :=
n−1∑
j−0

db(j).

Sb(n) gives an ‘average’ sum of digits for integers between 0 and n.

The functions in definition 1.12.2 have been extensively studied by number theorists

in the past century. In 1940, Bush proved in [6] (with slightly different notation) that as

n → ∞, the quantity Sb(n) is asymptotically equivalent to n(b−1) logn
2 log b

. Over time, other

people found better and better error terms for this asymptotic. In 1975, in [10], Delange

found a closed form expression for Sb(n):

Theorem 1.12.3. (Delange, 1975) For every integer b ≥ 2, we have

Sb(n) =

(
b− 1

2

)(
n logb n+ f̃b(logb n)

)
where the f̃b(x) are non-positive continuous, nowhere differentiable functions that have

Fourier series expansions

f̃b(x) =
∑
k∈Z

c̃b(k)e2πikx

whose Fourier coefficients are

c̃b(k) = − 1

kπi

(
1 +

2kπi

log b

)−1
ζ

(
2kπi

log b

)
for k 6= 0

c̃b(0) =
1

log b
(log(2π)− 1)−

(
b+ 1

2(b− 1)

)
.

1.13 Binomial Coefficients and Farey Fractions–Past Work

Definition 1.13.1. The Farey sequence of order n is a finite set of fractions{
k

m
:
k

m
∈ (0, 1],m ≤ n

}
.
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The distribution of Farey fractions approaches the uniform distribution on [0, 1] as n

tends to∞.

The complete products of binomial coefficients of order n are the integers

Gn :=
n∏
k=0

(
n

k

)
.

Lagarias and Mehta showed that Gn is equal to the reciprocal of the product of all the

elements in the Farey sequence of order n. We can verify this explicitly for small values

of n.

Example 1.13.2. If n = 5 we have that

Gn =
∏5

k=0

(
5
k

)
. The reciprocal of the product of all the elements of the Farey sequence

of order 5 is

1(
1
2

) (
1
3

) (
2
3

) (
1
4

) (
2
4

) (
3
4

) (
1
5

) (
2
5

) (
3
5

) (
4
5

) .
Both of these expressions simplify to 2500.

There’s a connection between Farey fractions, products of binomial coefficients and the

sum of digit and running digit sum functions db(n) and Sb(n). This connection was found

by Lagarias and Mehta in their paper [19], Theorem 5.1:

Theorem 1.13.3. (Lagarias and Mehta, 2014) Let the prime p be fixed. Then for all n ≥ 1,

νp(Gn) := ordp(Gn) =
1

p− 1
(2Sp(n)− (n− 1)dp(n)) .

1.14 Binomial Coefficients and Farey Fractions–Main Results

Using Theorem 1.13.3, my collaborator Jeff Lagarias and I found asymptotics for

other arithmetic functions related to Farey fractions and products of binomial coefficients.

Namely, we took logarithms in the expression for νp(Gn), so that

logGn = A(n)−B(n)



24

where

A(n) =
∑
p≤n

2

p− 1
Sp(n) log p

B(n) =
∑
p≤n

n− 1

p− 1
dp(n) log p

and analysed both pieces to understand the magnitude of the contribution from each of

A(n) andB(n) toG(n). We found asymptotics for these functions as n→∞, considering

what the error term would be unconditionally and assuming the Riemann Hypothesis. An

interesting note is that Euler’s constant γ appears in the main terms of our asymptotics for

both functions.

The theorems we proved are:

Theorem 1.14.1. Let A(n) =
∑

p≤n
2
p−1Sp(n) log p

1. There is a constant c > 0, such that for n ≥ 4

A(n) =

(
3

2
− γ
)
n2 +O

(
n2 exp(−c

√
log n)

)
where γ denotes Euler’s constant.

2. Assuming the Riemann Hypothesis, for n ≥ 4 and any ε > 0

A(n) =

(
3

2
− γ
)
n2 +O

(
n7/4(log n)2

)
.

Theorem 1.14.2. Let B(n) =
∑

p≤n
n−1
p−1dp(n) log p

1. There is a constant c > 0, such that for n ≥ 4

B(n) = (1− γ)n2 +O
(
n2 exp(−c

√
log n)

)
where γ denotes Euler’s constant.

2. Assuming the Riemann Hypothesis, for n ≥ 4 and any ε > 0

B(n) = (1− γ)n2 +O
(
n7/4(log n)2

)
.
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Theorem 1.14.3. Let C(n) =
∑

p≤n f̃p(logp n) log p

1. For all n ≥ 4,

C(n) =

(
1

2
− γ
)
n−

m∑
k=1

k!
n

(log n)k
+O

(
2m+1(m+ 1)!

n

(log n)m+1

)
.

2. Assuming the Riemann Hypothesis, for n ≥ 4 and any ε > 0

C(n) =

(
1

2
− γ
)
n−

b 1
2
lognc∑
k=1

k!
n

(log n)k
+O

(
n3/4(log n)2

)
.

I’ve also independently extended the ideas in the proofs of these theorems and proven

asymptotics for analogous functions A′(n), B′(n) and C ′(n). For these new functions,

instead of considering base p radix expansions over the primes, I considered expansions

over all integers b with 1 < b ≤ n and came up with the following theorems:

Theorem 1.14.4. Let A′(n) =
∑

2≤b≤n
2 log b
b−1 Sb(n) For all n ≥ 4 we have

A′(n) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + α− 7

4

)
n2 +O(n3/2 log n)

where γ denotes Euler’s constant and α denotes the first Stieltjes constant given by

α := lim
n→∞

(
n∑
k=1

log k

k
−
∫ n

1

log t

t
dt

)
.

Theorem 1.14.5. Let B′(n) =
∑

2≤b≤n
n−1
b−1 db(n) log b. For all n ≥ 4 we have

B′(n) = (1− γ)n2 log n+ (γ + α− 1)n2 +O(n3/2 log n).

Theorem 1.14.6. Let C ′(n) =
∑

2≤b≤n
2 log b
b−1 fb(logb(n)) For all n ≥ 4 we have

C ′(n) =

(
1

2
− γ
)
n log n+

(
3

2
γ + α− 7

4

)
n+O(

√
n log n).

Summing over all integers, the unconditional results for A′(n), B′(n) and C ′(n) have

error terms which save a power of n. This is a big improvement from the unconditional

results for A(n), B(n) and C(n), whose error terms were only able to save a logarithm.

In these Theorems, Euler’s constant γ has value approximately equal to 0.5772 and the

first Stieltjes constant α has numerical value approximately equal to −0.0728.
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1.15 Stories from my classroom

When I’ve thought of my thesis, I’ve always wanted it to be a representative collection

of my graduate school work. As well as being a researcher, being a teacher has been an

integral part of my graduate school experience, both at the University of Michigan where

I’ve been blessed to have been the instructor of record for multiple calculus classes and

also through the various non-university math outreach opportunities I’ve had. Accordingly,

it’s impossible for me to catalogue the past six years without reflecting on the challenges,

unique learning opportunities and indescribable happiness my students have given me.

And so, I devote one chapter of my thesis to reflect, to tell their stories and to let their

voices be heard through direct interviews and through my indirect recollections.

I’ve written this chapter using the social science qualitative technique of autoethnogra-

phy [13], which first appeared in the 1970’s works of American anthropologists. I don’t

make generalisations to education as a whole, cite figures to try to prove hypotheses or give

techniques for other educators to implement. I just reflect on and analyse my experiences

and interactions, in an effort to extract more meaningful depth from my memories.

One of my literary inspirations is Mel Levine’s ‘A Mind at a Time’ [20], where a lot of

emphasis is put on case studies, describing each student as an individual learner and tech-

niques the author used to work with that student. In his book, Levine writes at length about

different types of learning disabilities. However, instead of giving instructions for how a

generic student with a given disability should be handled, he focuses on understanding

each student as their own person and techniques for helping them succeed in their classes.

In my stories, I try to take a similar approach, being mindful to not identify ‘trends’, or

give guidelines for how to work with ‘similar types’ of students. From the educator’s

perspective, I also avoid saying that any given approach I used with one specific student
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should be used by all teachers, or even all teachers ‘similar to me.’

My teaching chapter is loosely divided into two main sections. In the first, I share

some of the challenges faced in math by three college students (all three are people of

colour, from Bronx NY) that I interviewed, linking them to the challenges I’ve faced. I

also talk about the role that positive mathematical mentorship has played in our lives. In

the second section, I share a series of stories about my interactions with students, to the

best of my ability to recall them. Within this section, I showcase some of my most precious

interactions with students and reflect on what they’ve taught me.



CHAPTER II

Superirreducibility of Polynomials

2.1 Superirreducibility over finite fields

2.1.1 Preliminary definitions and observations

Superirreducible polynomials are polynomials that resist factorization under polyno-

mial substitutions. More precisely, for a positive integer k, a k-superirreducible polyno-

mial f(x) is not only irreducible, but remains irreducible after any substitution x = g(t)

where the degree of g(t) is at most k.

The condition of 1-superirreduciblility is equivalent to irreducibility. A 0-superirreducible

polynomial will turn out to be precisely a (possibly reducible) polynomial with no roots in

the base ring.

The concept of superirreducibility was introduced (although not by name) by Bober,

Fretwell, Martin, and Wooley [4] as a potential limitation on (poly)smoothness of polyno-

mial compositions.

Definition 2.1.1. Let R be a commutative domain with unity, and let F be its field of

fractions. A polynomial f(x) ∈ R[x] is k-superirreducible over R if, for all g(t) ∈ R[t] of

degree deg g ≤ k, the composition f(g(t)) is irreducible in F [t].

We are interested in counting superirreducible polynomials over the finite field Fq.

Definition 2.1.2. Define Sk(q, d) to be the set of monic k-superirredible polynomials of

28
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degree d over Fq. Denote the size of Sk(q, d) by sk(q, d) = #Sk(q, d).

2.1.2 Elementary cases

Proposition 2.1.3. Let p be a prime number. Then for all ` ≥ 1, we have sp(p`, d) = 0.

Proof. We let f(x) ∈ Fp` [x] be a monic irreducible polynomial of degree d, and write

f(x) =
d∑
j=0

ajx
j.

We note that aj = ap
`

j . By the linearity of the Frobenius automorphism α 7→ αp,

f(tp) =
d∑
j=0

ap
`

j t
pj =

(
d∑
j=0

ap
`−1

j tj

)p

Therefore, no such f(x) is p-superirreducible. Hence sp(p`, d) = 0.

Choosing p = 2 in the above proposition gives us that there are no 2-superirreducibles

over finite fields of characteristic 2. So in terms of understanding 2-superirreducibility

over finite fields, we can move to consider the case when q is odd.

Proposition 2.1.4. Let f(x) ∈ Fq[x] be a monic irreducible polynomial of degree d, and

let α be a root of f(x) in Fqd . If g(t) is a quadratic polynomial, the composition f(g(t))

factors in Fq[t] if and only if g(t) = α has a solution in Fqd [t].

Proof. ( =⇒ ) Suppose that f(g(x)) splits in Fq[x]. We note that for this to happen, it

must split as the product of two irreducible polynomials, each of degree d. If this were not

the case then we’d have a factor h(x) ∈ Fq[x] of f(g(x)) with deg(h) = e < d. Let β be

a root of h. We know that Fq(g(β)) ⊂ Fq(β) and [Fq(β) : Fq] < d. Therefore the minimal

polynomial of g(β) has degree strictly smaller than d. However since f is irreducible, it is

the minimal polynomial of g(β), giving a contradiction.

From now we may suppose that f(g(x)) = h1(x)h2(x) with each hj irreducible of

degree d. We look at the set of roots of both of the hj’s: {β1, β2, . . . β2d}. Then for each i,
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[Fq(βi) : Fq] = d. Since g(βi) is a root of f for all i, we have that [Fq(g(βi)) : Fq] = d, so

that Fq(g(βi)) = Fq(βi) and βi must be inside the splitting field for f .

We show that all the βi’s are distinct. If hj has a root βi, then since hj is irreducible,

it’s the minimal polynomial for βi. If the root is repeated then βi would also be a root of

h′j . This tells us that hj divides h′j , which is impossible. Next we consider a βi which is

a singular root of both h1 and h2. The Galois group of the splitting field for f(g(x)) acts

transitively on βi. For the action to be well defined we need the set of roots of h1 and h2 to

be exactly the same, so the only case left to consider is f(g(x)) = c(h(x))2. In this case,

every root of f(g(x)) is a repeated root and so must be a root of g′(x)f ′(g(x)). For each

such βi we have that g(βi) is a root of f . We know that g′(βi) 6= 0, because otherwise h

(the minimal polynomial of βi) would divide g′. Therefore f ′(g(βi)) = 0 and so g(βi) is a

repeated root for f , contradicting the fact that f is irreducible.

Next we see that for all elements βi, we have that g(βi) is a root of f . Since g is

quadratic, each value taken by g can only be obtained from at most two distinct inputs, i.e.

from plugging in at most two distinct βi’s. Since there are 2d of them and f has only d

roots, by pigeonhole principle, α must be equal to g(βi) for some i.

( ⇐= ) Suppose g(t) = α has a solution in Fqd [t]. This means f(g(t)) has a zero in

Fqd . Let’s call this zero β, so that Fq(β) ⊂ Fq(α) = Fqd . However, Fq(α) = Fq(g(β)) so

the reverse inclusion Fq(α) ⊂ Fq(β) holds. This tells us that Fq(α) = Fq(β), so that Fq(β)

is a degree d extension over Fq, generated by {1, β, β2, . . . , βd−1}. We can then write βd

as an Fq-linear combination of elements in this set, telling us the minimal polynomial of

β over Fq has degree at most d.

Since β is a root of f(g(t)), the minimal polynomial of β must divide f(g(t)). Since

f(g(t)) is of degree 2d and the minimal polynomial of degree at most d we get a proper

factorisation of f(g(t)).
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Remark 2.1.5. An analogous line of reasoning establishes Proposition 2.1.4 in the case

that Fq is replaced by Q

Proposition 2.1.6. If q is odd and d is odd, then s2(q, d) = 0.

Proof. Let f(x) ∈ Fq[x] be a monic irreducible polynomial of degree d, and let α be a root

of f(x) in Fqd . By Proposition 2.1.4, if g(t) is a quadratic polynomial, the composition

f(g(t)) factors in Fq[t] if and only if g(t) = α has a solution in Fqd .

If α is a square in Fqd , then taking g(t) = t2 gives a solution to g(t) = α lying inside

Fqd and shows that f(x) is not 2-superirreducible.

If α is not a square in Fqd , choose any nonsquare b ∈ Fq. Because d is odd, b is also a

nonsquare in Fqd . This is because if z2 = b was solvable over Fqd then Fq(
√
b) would be

a subfield of Fqd . This is impossible by multiplicativity of field extension degrees. Thus,

b−1α is a square in Fqd; that is, bt2 = α has a solution over Fqd . Taking g(t) = bt2 shows

that f(x) is not 2-superirreducible.

Thus, there are no 2-superirreducible polynomials of degree d in Fq[x] and so

s2(q, d) = 0

2.1.3 Heuristic count for the number of 2-superirreducibles

By a classic argument using Möbius inversion, the number of monic irreducible poly-

nomials of degree d in Fq[x] is about qd/d. For completeness, we present the argument.

We know that xqd−x is equal to the product of all the irreducibles dividing it. Therefore,

by looking at degrees, we have

qd =
∑
e|d

e · (#monic irreducibles of degree e)
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where the sum is taken over all monic irreducibles dividing xqd − x. Applying Möbius

inversion, we arrive at

d · (#monic irreducibles of degree d) =
∑
e|d

µ

(
d

e

)
qe

where we note that the term on the right hand side with the largest power of q is qd.

Dividing both sides by d, we get the desired approximation.

Next, we’ll use this estimate for the number of irreducible polynomials to approximate

the number of 2-superirreducibles of degree d over Fq.

Let f(x) ∈ Fq[x] be a monic irreducible polynomial of degree d, and let α ∈ Fqd

be a root of f(x). For a quadratic polynomial g(t) ∈ Fq[t], by Proposition 2.1.4 the

composition f(g(t)) factors if and only if g(t) = α has a solution.

The conditions ‘g(t) = α has a solution’ are not all independent for different g(t). In

particular, g(t) = α has a solution in Fqd if and only if g(t+ v) = α has a solution, for any

v ∈ Fq; after such a substitution, we may assume g(t) is of the form g(t) = at2 + c for

a, c ∈ Fq. Because d is even, a is a square in Fqd , so it actually suffices to consider only

the polynomials g(t) = t2 + c.

To recap, f(x) is 2-superirreducible if and only if f(t2 + c) is irreducible for all c ∈ Fq,

that is, if and only if for any c, the polynomial t2 + c = α has no solution. To rephrase,

we are asking that all the additive shifts α − c of α by elements in the base field are not

squares in Fqd . Half the elements of Fqd are squares, so, heuristically, this happens for

each c ‘with probability 1
2
’. There are q choices for c and so by treating ‘α− c is a square’

as ‘independent events’, we predict that f(x) is 2-superirreducible with probability 1/2q.

After multiplying by the number of choices of irreducible f(x), our heuristic predicts

s2(q, d) ≈ qd

d2q
.

We’ll show in the next section that this heuristic gives the correct answer as d→∞.
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2.1.4 The large d limit

The asymptotic formula predicted by the heuristic will follow in the large d limit from

Weil’s theorem resolving the Riemann hypothesis for curves—specifically, the Weil bound

for higher autocorrelations of the quadratic character.

Theorem 2.1.7. Fix q an odd prime power. As d→∞,

s2(q, d) =
qd

d2q
+O

(
1

d
qd/2

)
.

The proof of this asymptotic formula that we give in this section is a more rigorous

version of the heuristic argument given in Section 2.1.3.

Definition 2.1.8. Let χq be the nontrivial quadratic character χq : F×q → {1,−1}, where

χq(n) =


1 if n is a nonzero square in Fq

−1 if n is not a square in Fq

χq is extended to all of Fq by setting χq(0) = 0.

Definition 2.1.9. We define the order n autocorrelations of χq with offsets u1, . . . , un ∈ Fq

to be the numbers

aq(u1, . . . , un) :=
∑
α∈Fq

χq(α + u1) · · ·χq(α + un).

Note that aq(u1, . . . , un) ∈ Z. As the order of the uj doesn’t matter, we will also use the

notation aq(U) = aq(u1, . . . , un) where U = {u1, . . . , un}.

Proposition 2.1.10. Let q be an odd prime power, and let d be even. The number s2(q, d)

of monic 2-superirreducible polynomials of degree d over Fq has the following expression

in terms of autocorrelations of the quadratic character χqd .

s2(q, d) =
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

)qd′ + ∑
{}6=U⊆Fq

(−1)|U |aqd′ (U)

 .
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Proof. Consider a monic irreducible polynomial f(x) ∈ Fq[x] of degree d. Let α be a root

of f(x) in Fqd [x]. The polynomial f(x) is 2-superirreducible if and only if f(t2 − u) is

irreducible in Fq[t] for every u ∈ Fq. This happens when t2 − u = α has no solutions in

Fqd; in other words, when χqd(α + u) = −1 for all u ∈ Fq.

The indicator function for 2-superirreducibility can thus be expressed algebraically:

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
=

 1, if f is 2-superirreducible,

0, otherwise.

Each irreducible polynomial of degree d has d roots α1, . . . , αd ∈ Fqd , and the αi that

arise are exactly the elements of Fqd not living in any proper subfield. This is because

any proper subfield of Fqd is a normal extension of Fq, so if a polynomial had a root in

such a subfield, it would split completely in that subfield. Counting over all irreducible

polynomials of degree d, we get all the α’s in Fqd not living in any proper subfield. Thus,

we divide by d to avoid overcounting and obtain the following formula for s2(q, d):

s2(q, d) =
1

d

∑
α∈F

qd

α/∈F
qd
′

for d′|d, d′ 6= d

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
.

Using Möbius inversion, we can remove the condition that α does not live in a proper

subfield of Fqd in the following way.

s2(q, d) =
1

d

∑
α∈F

qd

α/∈F
qd
′

for d′|d, d′ 6= d

∏
u∈Fq

1

2

(
1− χqd(α + u)

)

=
1

d

∑
α∈F

qd

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
− 1

d

∑
d′|d
d′ 6=d

∑
α∈F

qd
′

α/∈Fqe

for e|d′, e 6= d′

∏
u∈Fq

1

2

(
1− χqd(α + u)

)

=
1

d

∑
α∈F

qd

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
− 1

d

∑
d′|d
d′ 6=d

d′s2(q, d
′).
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Therefore we have

1

d

∑
α∈F

qd

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
=

1

d

∑
d′|d

d′s2(q, d
′).

Applying Möbius inversion now we get

s2(q, d) =
1

d

∑
d′|d

µ

(
d

d′

) ∑
α∈F

qd
′

∏
u∈Fq

1

2

(
1− χqd(α + u)

)
=

1

d2q

∑
d′|d

µ

(
d

d′

) ∑
α∈F

qd
′

∏
u∈Fq

(
1− χqd(α + u)

)
.

The quadratic character χqd on Fqd restricts to the trivial character on Fqd′ when d
d′

is even

and to χqd′ when d
d′

is odd. The product over u vanishes in the former case. Thus,

s2(q, d) =
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

) ∑
α∈F

qd
′

∏
u∈Fq

(
1− χqd′ (α + u)

)

=
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

)qd′ + ∑
{}6=U⊆Fq

(−1)|U |aqd′ (U)

 .

This is the desired formula for s2(q, d).

When n = 1, we have aq(u) = 0. When n = 2 and u1 6= u2, instead aq(u1, u2) is

a quadratic Jacobi sum, so aq(u1, u2) = ±1. (See Chapter 8 of [16] for the elementary

theory of Jacobi sums.) The higher-order correlations become more complicated, but they

can be bounded.

[There is actually no need to fix the base field in the following argument. The uj could

be taken to live in a field extension of Fq, and we could send q →∞ rather than d→∞.]

Lemma 2.1.11. Fix q, and fix u1, . . . , un ∈ Fq. The following asymptotic holds as d→∞:

aqd(u1, . . . , un) ≤ (n− 1)qd/2.
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Proof. We consider the hyperelliptic curve C with affine equation

y2 = (x+ u1) · · · (x+ un).

The number of points on the affine locus of C is

∑
α∈F

qd

(
1 + χqd ((α + u1) · · · (α + un))

)
= qd + aqd(u1, . . . , un)

where on each occasion χqd ((α + u1) · · · (α + un)) = 1, we add 2 to the sum, accounting

for the two possible square roots of each y2 giving two distinct points.

The curve C has genus at most g = bn−1
2
c. This is because y2 = (x+ u1) · · · (x+ un),

where the right hand side is a degree n polynomial in x and the genus of a hyperelliptic

curve is completely determined by the degree ([3], Proposition 12.9). Thus, by the Weil

bound [11], ∣∣aqd(u1, . . . , un)
∣∣ ≤ 2gqd/2 ≤ (n− 1)qd/2.

Now we complete the proof of Theorem 2.1.7.

Proof. By Proposition 2.1.10,

s2(q, d) =
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

)qd′ + ∑
{}6=U⊆Fq

(−1)|U |aqd′ (U)

 .

By Lemma 2.1.11, there exists a constant C, dependent on q but independent of d and d′,

such that ∣∣aqd′ (U)
∣∣ ≤ Cqd

′/2
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for all nonempty subsets U of Fq. Thus,∣∣∣∣s2(q, d)− qd

d2q

∣∣∣∣ ≤ 1

d2q

∑
d′|d
2- d

d′
d′ 6=d

qd
′
+

1

d2q

∑
d′|d
2- d

d′

(2q − 1)Cqd
′/2

≤ 1

d2q

∑
d′≤d/2

qd
′
+

1

d2q

∑
d′≤d

2qCqd
′/2

=
1

d2q

(
q

q − 1
qd/2

)
+
C

d

(
q1/2

q1/2 − 1
qd/2

)
=
C ′

d
qd/2

for some constant C ′ dependent on q but independent of d. We have now proven Theorem

2.1.7.

2.1.5 Genus Calculation and An Alternative Way to Compute the Large d Limit

The number of 2-superirreducibles can also be counted using the point counts for the

affine curves

Cn({u1, . . . , un}; δ) = {(x, y1, . . . , yn) ∈ An+1 : δy2j = x+ uj for 1 ≤ j ≤ n}.

More specifically, let the uj range over all of Fq, and let δ ∈ Fqd be a quadratic nonresidue.

We note that we don’t have to divide by 2 in the product since for each δ−1(α+u) that is a

square in Fqd , there are two possible square roots. Therefore this gives rise to two points.

Then,

#Cn(Fq; δ)(Fqd) =
∑
α∈F

qd

∏
u∈Fq

(
1 + χqd

(
δ−1(α + u)

))
=
∑
α∈F

qd

∏
u∈Fq

(
1− χqd(α + u)

)
= qd +

∑
{}6=U⊆Fq

(−1)|U |aqd(U).
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Thus, Proposition 2.1.10 may be rephrased as

s2(q, d) =
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

)
#Cn(Fq; δd′)(Fqd′ )(2.1.1)

where δd′ is any quadratic nonresidue in Fqd′ .

We next show that the projectivisation of Cn is a complete intersection in Pn+1. We can

then use this fact to calculate its arithmetic genus.

Lemma 2.1.12. For any value of n ≥ 1, the projectivisation of Cn is a complete intersec-

tion.

Proof. Let I be the ideal generated by Cn. For each n, we define the rings Rn by

Rn :=
Fqd [X,Z, Y1, . . . , Yn]

I
.

To show that Cn is a complete intersection, we need to show that Rn has Krull dimension

2. In order to do this, we use the fact that Rn is an Fqd [X,Z]-module. More precisely we

have

Rn
∼= ⊕

1≤i1<i2<···<il≤n
Fqd [X,Z]Yi1Yi2 . . . Yil .

I.e. the Rn are built out of polynomials where each monomial term can contain any power

of X or Z, but can only contain each Yi to at most the first power.

By definition of Krull dimension of a module, we have

dimF
qd

[X,Z](Rn) := dim

(
Fqd [X,Z]

Ann(R)

)
= dim

(
Fqd [X,Z]

)
= 2.

The above is because Fqd [X,Z] appears as a summand of Rn, so Ann(Rn) = {0}. The

Krull dimension of Fqd [X,Z] is 2 since it’s just a polynomial ring in 2 variables.
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Since Rn is a direct sum, we know that its Krull dimension as a ring is just the Krull

dimension of Fqd [X,Z]. Therefore we conclude that Rn has the same Krull dimension

as a ring and as an Fqd [X,Z]-module. This tells us Rn is a complete intersection, as

desired.

The next formula we will write down is due to Pieter Belmans and given in [2]. We’ll

use it to find the genera of our curves {Cn}.

Theorem 2.1.13. A complete intersection of degrees (d1, d2, . . . , dk−1) inside Pk has genus

g = 1 +
1

2

(
k−1∏
i=1

di

)(
k−1∑
i=1

di − k − 1

)
.

This formula gives us the following theorem:

Theorem 2.1.14. For each n, the curve Cn has genus 1 + 2n−1(n− 2).

Lemma 2.1.15. For each fixed set (δ, u1, u2, . . . , un) in C we can write down explicitly the

singular points for the corresponding curve Cn. These are isolated over C.

Proof. We begin by finding the points not at infinity. We find the partial derivatives for the

polynomials defining Cn and consider the Jacobian matrix. The set of polynomials are

{fi(x, y1, y2, . . . , yn) := δy2i − x− ui}ni=1.

Each fi has the set of partial derivatives

∂fi
∂x

= −1,
∂fi
∂yi

= 2δyi,
∂fi
∂yj

= 0 for j 6= i.

Therefore the Jacobian matrix corresponding to Cn is
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

−1 2δy1 0 0 . . . 0 0

−1 0 2δy2 0 . . . 0 0

−1 0 0 2δy3 . . . 0 0

−1 · · · . . . · 0

−1 · · · . . . · 0

−1 · · · . . . · 0

−1 0 0 0 · · · 0 2δyn


This matrix is n × (n + 1) and so Cn has singularities at exactly the points where this

matrix has rank strictly less than n. We know that δ is a quadratic non-residue, so it has

to be non-zero. Therefore looking at the n × n minors, we see that rank strictly smaller

than n is achieved if and only if at least two of the yj’s are zero at the same time. We can

explicitly compute these points. For example if y1 = y2 = 0 the set of points are(
−u1, 0, 0,±

√
u3 − u1

δ
,±
√
u4 − u1

δ
, . . . ,±

√
un − u1

δ

)
where the choice of ± in each case gives 2n−2 possible points.This also covers the case

with more than two of the ui = 0, for example if u1 = u2 = u3 = 0. We get similar sets

when restricting yl = ym = 0: points that have 0’s in the lth and mth coordinates, −ul

in the first coordinate and ±
√

uk−ul
δ

in the kth coordinate for all k not equal to 1, l or m.

Finally we realise that there’s one more point in the projectivisation of Cn: the point at

infinity. This is also a singular point. Combining all the sets we’ve come up with gives the

collection of singular points, which we can see are isolated over C.

Remark 2.1.16. Since the singularities for the Cn are isolated over C it means that they

must be isolated over FqN for some N large enough.

Corollary 7.2 in [14] gives us a way to bound the number of points on the curve Cn,

which is a complete intersection with only isolated singular points over FqN . The corollary
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tells us that

|#Cn(FqN )− qN)| ≤ b′n−2(n,d)qN/2 + (b′n−1(n+ 1,d) + 1)q(N−1)/2(2.1.2)

where d= (2, 2, . . . , 2) is the multidegree of Cn and b′j denotes the jth primitive Betti

number computed using the formula

b′j(n,d) = (−1)j+1(j + 1) + (−1)n+1

n+1∑
c=r

(−1)c
(
n+ 1

c+ 1

) ∑
ν∈M(c)

dν

whereM(c) denotes the set of r-tuples (ν1, . . . , νr) of positive integers such that ν1+ · · ·+

νr = c and dν = dν11 . . . dνrr

We can now complete an alternative proof to Theorem 2.1.7

Proof. We have from (2.1.1) that

s2(q, d) =
1

d2q

∑
d′|d
2- d

d′

µ

(
d

d′

)
#Cn(Fq; δd′)(Fqd′ ).

For d large enough we have that the main term in this sum arises when d′ = d and is equal

to 1
d2q

#Cn(Fqd), which we see from (2.1.2) is qd

d2q
+O(qd/2). Since 2 - d

d′
, the next largest

possible term in the sum would come from when d′ = d
3
, in which case 1

d2q
#Cn(Fqd/3) is

O(qd/3). Therefore we’re able to conclude that s2(q, d) = qd

d2q
+O(qd/2).

Remark 2.1.17. In fact given our fixed d, we know for all m ≤ d that

|#Cn(Fqm)− qm)| ≤ b′m−2(m, d)qm/2 + (b′m−1(m+ 1, d) + 1)q(m−1)/2

will hold. This is because the bounds arise from the primitive Betti numbers which

are computed from the roots of the Hasse-Weil functions in Fqd . If the set of roots are

{α1, . . . α`} in Fqd , then they’re {α1/d
1 , . . . α

1/d
` } in Fq, giving us corresponding Betti num-

bers and bounds in Fq. A more complete explanation of this process is given in [28].
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2.1.6 Vanishing in the large q limit

If we fix the degree d, the heuristic argument suggests that s2(q, d) = 0 for all q suffi-

ciently large, because ∑
q≥N

qd

d2q
→ 0 as N →∞.

Based on the heuristic as well as ample numerical evidence, we conjecture that in fact

s2(q, d) = 0 for q large enough. In particular, we can prove that s2(q, d) = 0 for q � d2.

The idea for proving s2(q, d) = 0 for q � d2 is as follows. We saw in Subsection 2.1.3

for f ∈ Fq[t] irreducible of degree d and α a root of f in Fqd , that f is 2-superirreducible

over Fq iff α + c is a nonsquare in Fqd for every c ∈ Fq. This means the nontrivial

quadratic character χ on Fqd is identically equal to −1 on {α + c : c ∈ Fq}. So for

there to be no 2-superirreducibles of degree d, it’s enough to show for every α ∈ Fqd that

there exists some c ∈ Fq such that χqd(α + c) = 1. This will be true as long as we have

|
∑q−1

k=0 χqd(α + uk)| < q, where the sum is over all uk ∈ Fq.

Before proving s2(q, d) = 0 for q � d2, we introduce a few definitions which we’ll

use in the proof.

Definition 2.1.18. Suppose q = pn. Let {β1, . . . , βn} be a basis of Fq over Fp. For each

integer k with 0 ≤ k < q, we define ζk by ζk := k1β1 + · · ·+ knβn where the ki are given

by the p-adic expansion of k: k = k1 + k2p+ · · ·+ knp
n−1.

Definition 2.1.19. Let k and j be integers with k ≥ 0 and j < q. We define k ⊕ j by

k ⊕ j = i ⇐⇒ ζk + ζj = ζi for 0 ≤ i < q.

Theorem 2.1.20. Let χ be the nontrivial quadratic character on Fqd . Let α ∈ Fqd be such

that Fqd = Fq(α). Then we have that |
∑q−1

k=0 χ(α + uk)| < q, where the sum is over all

nonzero uk ∈ Fq.
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Proof. We use the idea from the proof of Theorem 3.1 in Winterhof [29] and Corollary 2.4

in Wan [27]. Denote
∑q−1

k=0 χ(α + uk) by S(α). We fix j with 0 ≤ j ≤ q − 1. We can see

that each uk can be written ζj⊕l for some unique l with 0 ≤ l ≤ q − 1. This is because the

β’s form a basis for Fqd/Fq and if l1 6= l2 then ζl1⊕j 6= ζl2⊕j . This tells us that:

S(α) =

q−1∑
l=0

χ(α + ζl⊕j).

Next we restrict the j’s such that 0 ≤ j ≤ J − 1. We sum over all such j’s in this

interval to get:

J |S(α)| ≤

∣∣∣∣∣
q−1∑
l=0

J−1∑
j=0

χ(α + ζl⊕j)

∣∣∣∣∣.
We define

W :=

q−1∑
l=0

J−1∑
j=0

χ(α + ζl⊕j).

The triangle inequality tells us that∣∣∣∣∣
q−1∑
l=0

J−1∑
j=0

χ(α + ζl⊕j)

∣∣∣∣∣ ≤
q−1∑
l=0

∣∣∣∣∣
J−1∑
j=0

χ(α + ζl⊕j)

∣∣∣∣∣.
Next by Cauchy-Schwarz, we obtain

W 2 ≤ (q − 1)

q−1∑
l=0

∣∣∣∣∣
J−1∑
j=0

χ(α + ζl⊕j)

∣∣∣∣∣
2

≤ (q − 1)
∑
ζ∈Fq

∣∣∣∣∣
J−1∑
j=0

χ(ζ + α + ζj)

∣∣∣∣∣
2

= (q − 1)
J−1∑

j1,j2=0

∑
ζ∈Fq

χ ((ζ + α + ζj1) (ζ + α + ζj2))

where we got the last line using the fact that χ takes values in {−1, 1} and has order 2 (so

that χ = χ).

For each α+ ζj1 ∈ Fqd , there are at most d indices j2 such that α+ ζj1 and α+ ζj2 are

Galois conjugates over Fq. For these indices, the inner sum can simply be estimated by q.
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If α + ζj1 and α + ζj2 are not Galois conjugates, then their minimal polynomials (call

them f1 and f2 respectively) are coprime and squarefree over Fq. Let f(t) := f1(t)f2(t).

We can define a multiplicative character χf on
(
Fqd [t]/(f)

)∗ via the formula

χf (g(t)) = χ(N(g(α + ζj1))N(g(α + ζj2)))

where χ is again the quadratic character on Fqd . In this formula, we’re lettingN(β) denote

the norm of the β (i.e. the product of all of its Galois conjugates) over Fq. We observe for

a ∈ Fq that

χf (a− t) = χ(N(a− α− ζj1)N(a− α− ζj2))

= χ(f1(a)f2(a)).

We show that χf can’t be trivial. The fi’s have degrees dividing d (odd) and each

a−α− ζji is a square in Fqd iff its Galois conjugates are squares. Therefore, since the fi’s

have odd degrees, we can rewrite χf (a−t) as χ(a−α−ζj1)χ(a−α−ζj2). By assumption,

χ is non-trivial on each of the sets {a − α − ζj1 : a ∈ Fq} and {a − α − ζj2 : a ∈ Fq}

(otherwise every element in one of these sets is a square and there’s nothing to prove). By

Chinese remainder theorem on the coprime fi, we see that χf is non-trivial and so Weil’s

theorem on characters is applicable to χf .

We end up with the bound

W 2 < (q − 1)Jdq + (q − 1)J2(2d− 1)
√
q.

To make this bound as strong as possible, we choose J =
⌈√

q
⌉

This tells us

W 2

J2
< (q − 1)(3d− 1)

√
q.

Finally we substitute this into J |S(α)| ≤ W to get |S(α)| < 2.2q1/4
√
qd, which gives us

|S(α)| < q as long as q � d2.
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2.2 2-Superirreducibility over Z and Q

2.2.1 Using Newton Diagrams to Understand 2-Superirreducibility

The technique of Newton Diagrams and the Dumas Criterion from Section 1.4 allows

us to make some progress towards superirreducibility, however they don’t suffice to com-

pletely prove superirreducibility. We give an example of how we can use this technique to

show that a given irreducible polynomial remains irreducible under a non-trivial family of

polynomial substitutions.

Example 2.2.1. Using Dumas criterion and Newton Diagrams, we can prove that the

irreducible polynomial x5 + 2x+ 1 remains irreducible over Z after substitution by

g(x) = 5x2 + a

for all a ∈ Z.

Proof. We let f(x) = x5 + 2x+ 1 and g(x) = 5x2 + a. Then we have

f(g(x)) = 55x10 + 55ax8 + 2 · 54a2x6 + 2 · 53a3x4 + 5(5a4 + 2)x2 + (a5 + 2a+ 1).

We first note that if f(g(x)) splits over Z, then it must do so as the product of two

quintics. We can see this by assuming otherwise. Suppose that h(x) is a factor of f(g(x))

of degree strictly less than 5. Then h(x) has a root β and the extension Q(β) over Q is of

degree strictly less than 5. But then g(β) ∈ Q(β) would be a root of f , which is impossible

as f is an irreducible quintic.

Next, we consider the Newton diagram for p = 5. We’re not sure what power of 5 will

divide the constant term a5 + 2a + 1 but we are able to draw the Newton diagram for the

x2 term onwards:
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Figure 2.1: Partial Newton Diagram for f(g(x)) where f(x) = x5 + 2x+ 1, g(x) = 5x2 + a and p = 5

We don’t know exactly where the points are on the Newton diagram for the x4, x6 and

x8 terms, but we note from the expansion of f(g(x)) that they must be strictly above the

line. We suppose that f(g(x)) splits as h1(x)h2(x) for irreducible quintics h1 and h2. Then

by Dumas criterion, from the x-term onwards, their Newton diagrams must look like:

Figure 2.2: Partial Newton Diagrams for factors of f(g(x)), if f(g(x)) factors into two quintics, where
f(x) = x5 + 2x+ 1, g(x) = 5x2 + a and p = 5

From these diagrams, we receive the expressions:

h1(x) = a0 + k1x+ 5a2x
2 + 5a3x

3 + 52a4x
4 + 52x5,

h2(x) = b0 + 5j1x+ 52b2x
2 + 52b3x

3 + 53b4x
4 + 53x5

where j1 and k1 are some integers not divisible by 5 and the ai and bi can be any integers.

However we observe that if 5 doesn’t divide b0, then f(g(x)) has for its x-term a coefficient

of 5j1a0 + k1b0 which can’t be equal to 0 (since 5j1a0 is divisible by 5 but k1b0 is not.)
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Therefore 5 must divide b0.

From using f(g(x)) = h1(x)h2(x), equating coefficients and remembering that b0 must

be divisible by 5, we receive:

x2 : j1k1 ≡ 2 (5)

x4 : 5|b3k1 + a3j1

x6 : 5|a3b3 + k1 + j1

x8 : 5|a3 + b3.

From the x8 term, we get that b3 = −a3 + 5r3 for some integer r3. If we substitute this

into the expression for x4, we receive (−a3 + 5r3)k1 + a3j1 ≡ 0, so that a3(j1 − k1) ≡ 0.

This tells us that either a3 ≡ 0 (mod 5) or that j1 − k1 ≡ 0 (mod 5).

Considering the first possibility, if a3 ≡ 0 (mod 5), then from the x8 term, we’d also

have b3 ≡ 0 (mod 5). Next from the x6 term, we’d deduce that k1 ≡ −j1 (mod 5).

Substituting this into the x2 term, we receive −j21 ≡ 2 (mod 5) so that j21 ≡ 3 (mod 5),

which is impossible.

Now considering the second possibility, j1 ≡ k1 (mod 5). But this time, substituting

into the x2 term, we receive j21 ≡ 2 (mod 5), which is also impossible. Therefore, such

h1 and h2 can’t exist and f(g(x)) must be irreducible.

Remark 2.2.2. As a generalisation of this example, we’ll prove later in Subsection 2.2.4

that all polynomials in the family {x2k+1 + 2x+ 1} (for k ≥ 2) are irreducible and remain

irreducible under every substitution of form g(x) = ax2 + b.

2.2.2 Cases where there are no superirreducibles

We can identify families of polynomials over Q and Z that have obstructions to being

superirreducible. In the next two theorems, we demonstrate that there are no degree n
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polynomials which are k-superirreducible for any k ≥ n− 1.

Theorem 2.2.3. If f(x) is a polynomial of degree n with rational coefficients, then for any

integer k ≥ 0, f is not (n+ k)-superirreducible over Z or over Q.

Proof. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 and g(x) = xkf(x) + x. Then we

have

f(g(x)) = f(xkf(x) + x)

= an(xkf(x) + x)n + an−1(x
kf(x) + x)n−1 + · · ·+ a1(x

kf(x) + x) + a0

≡ anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (mod f(x))

≡ 0 (mod f(x))

so that f(g(x)) is divisible by f(x) and so reducible.

Corollary 2.2.4. There are no 2-superirreducible quadratic polynomials over Z or over

Q.

Theorem 2.2.5. For every d ≥ 3, there are no (d − 1)-superirreducibles over Q or over

Z of degree d.

A slightly more general version of this is a Theorem of Schinzel’s [24]. For complete-

ness, we give the proof specific to our case.

Proof. Let f(x) be an irreducible polynomial of degree d with integer coefficients. Sup-

pose first that f is monic, so that f(x) = xd+ad−1x
d−1+· · ·+a1x+a0. Now we let α be a

root of f in its splitting field over Q and β = 1
α

. Then αd = −(ad−1α
d−1+ · · ·+a1α+a0).

Dividing both sides by αd−1 we find that α = −(ad−1 + ad−2β + · · ·+ a1β
d−2 + a0β

d−1).

Therefore α = g(β) for a polynomial g(x) ∈ Z[x] of degree d − 1. So by Proposition

2.1.4, f(g(β)) splits over Z. This tells us there are no monic (d− 1)-superirreducibles of

degree d over the integers.
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Now suppose that f is irreducible over the integers but not necessarily monic. Let

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0. Drawing inspiration from the monic case, we

let h(x) = xdf
(

1
x
− ad−1

(d−1)a0

)
. Next we define g(x) (our polynomial of degree d− 1 to be

substituted into f ) as g(x) = −h(x)
adx

+ 1
x
− ad−1

(d−1)ad
. We note that by adding the 1

x
term, g(x)

is a polynomial. We also notice

f(g(x)) = f

(
−h(x)

adx
+

1

x
− ad−1

(d− 1)ad

)
≡ 0 (mod h(x)).

I.e. we’ve found a factorisation of f(g(x)) that has a degree d factor. This is a factorisation

over the rationals. To get a factorisation over the integers, we simply need to rescale

things. We see that if we rescale by (d − 1)a2d, then we get a factorisation over Z. I.e. if

h̃(x) = h((d − 1)2a2dx) and g̃(x) = g((d − 1)2a2dx), then g̃(x) and h̃(x) are polynomials

in Z[x] such that f(g̃(x)) is divisible by h̃(x).

Corollary 2.2.6. There are no 2-superirreducible polynomials of degree 3.

Theorem 2.2.7. For a, b ∈ Q and N odd, there are no 2-superirreducibles over Q of the

form axN − b.

Proof. We first deal with the case f(x) = xN − b with b > 0. We substitute in g(t) = bt2

to get the following factorisation for f(g(t)):

f(g(t)) = bN t2N − b

= b(bN−1t2N − 1)

= b(b
1
2
(N−1)tN + 1)(b

1
2
(N−1)tN − 1).

Next we consider the case f(x) = xN + b with b > 0. This time, we let g(t) = −bt2
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and get the following factorisation:

f(g(t)) = (−b)N t2N + b

= −bN t2N + b

= −b(bN−1t2N − 1)

= −b(b
1
2
(N−1)tN + 1)(b

1
2
(N−1)tN − 1).

Finally we look at the case axN − b with a and b rationals. We make the substitution

g(t) = b
a
t2 to get:

f(g(t)) = a

(
b

a
t2
)N
− b

=
bN

aN−1
t2N − b

= b

((
b

a

)N−1
t2N − 1

)

= b

(
b

a

)N−1(
t2N −

(a
b

)N−1)
.

The expression we get in this final line can be handled by the first two cases, completing

the proof.

Next we discuss how a family of polynomials fails to be superirreducible.

Theorem 2.2.8. If f(x) is a polynomial over Q of degree 2N , its linear term has nonzero

coefficient and all of its other odd degree terms have zero coefficients, then f(x) is not

N -superirreducible.

Proof. Let f(x) = a2Nx
2N + a2N−2x

2N−2 + · · · + a2x
2 + a1x + a0, where in particular

a1 6= 0. Let α be a root of f in its splitting field. Then we see that

α = − 1

a1

(
a2Nα

2N + a2N−2α
2N−2 + · · ·+ a2α

2 + a0
)
.
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We now set β = α2. Then α = − 1
a1

(
a2Nβ

N + a2N−2β
N−1 + · · ·+ a2β + a0

)
. So if we

now define a degreeN polynomial by g(x) = − 1
a1

(
a2Nx

N + a2N−2x
N−1 + · · ·+ a2x+ a0

)
,

we see that β is a solution to g(x) = α in Q(α) and so by Lemma 2.1.4, f(g(x)) splits

over Q.

Corollary 2.2.9. Let f(x) = x4 + ax3 + bx2 + cx + d be a monic quartic polynomial

with rational coefficients and nonzero linear term. If −a3 6= 16c, then f(x) cannot be

2-superirreducible over the rationals.

Proof. By completing the fourth power, we can assume f has a zero coefficient for its third

degree term. The condition−a3 6= 16c ensures that the linear term has nonzero coefficient.

We conclude by Theorem 2.2.8.

We note that in the last corollary, since we’re considering superirreducibility over Q,

if f was not monic, we could still divide out by the leading coefficient and apply the

corollary.

2.2.3 Discussion of 2-superirreducibility for degree 4 polynomials

Theorem 2.2.10. The polynomial f(x) = x4 + 1 is 2-superirreducible over the integers.

Proof. Let α be a root of f in its splitting field. Let g(x) = ax2 + bx+ c with a, b, c ∈ Z.

Suppose that f(g(x)) factors over the integers so that it’s the product of two polynomials,

h1(x) and h2(x), say.

We show that the hi must each be of degree 4. Suppose that deg(h1(x)) < 4 and

that it has a root γ. Then g(γ) is a root of f and since f is irreducible, it’s the minimal

polynomial for g(γ). However, we have that Q(g(γ)) ⊂ Q(γ). Since deg(h1) < 4 we

know [Q(γ) : Q] < 4, so that [Q(g(γ)) : Q] < 4. This is impossible since f has degree 4

and is the minimal polynomial of g(γ).
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Let β be a root of g(x)−α in the splitting field for f . We observe that Q(α) = Q(g(β))

so that Q(α) is a subfield of Q(β). However g(β) = α implies that β must be a root of

either h1 or h2, so that [Q(β) : Q] = d. This tells us that Q(α) = Q(β).

Using the fact that g(β) = α, we have that (2aβ + b)2 = 4aα + (b2 − 4ac), which we

can rewrite as mα + n with m,n integers. Taking norms we find:

(N(2aβ + b))2 = N(mα + n)

= m4N(α) +N(n).

Since 2aβ+b is an algebraic integer, its norm must be an integer. This gives us the equation

m4 + n4 = z2 where m,n and z are all integers. However it’s known by infinite descent

(for example, we showed it in Example 1.6.2)) that this equation has no non-trivial integer

solutions.

Since z is a norm of a nonzero element, it can’t be zero. For g to be a quadratic , we

know that a 6= 0 so that m = 4a 6= 0. The only possibility left is that n = 0, but then

this would mean that g has a repeated root. I.e. g(x) = r(sx − t)2 for some r, s ∈ Z.

This would then mean f(g(x)) = r4(sx − t)8 + 1 which is irreducible over the rationals.

We see this is the case because we can rewrite f(g(x)) as r4y8 + 1. This polynomial has

roots
{√

1
r
exp

(
(2k+1)πi

8

)}7

k=0
. The set of permutations on these roots contains the Galois

group for y8 +1, which acts transitively on the set
{
exp

(
(2k+1)πi

8

)}7

k=0
. Therefore the set

of permutations for the roots of f(g(x)) acts transitively, so we see that it’s really a Galois

group and f(g(x)) is irreducible.

So we conclude that in all cases f(g(x)) can’t have a factorisation over Z and so f(x)

is 2-superirreducible over the integers.

Corollary 2.2.11. For any a ∈ Z, the polynomials f(x) = x4 + a4 are 2-superirreducible
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over Z.

Proof. We run the same argument as for Theorem 2.2.10. This time we end up with

z2 = m4 + (an)4

which has no non-trivial solutions over the integers.

Theorem 2.2.12. The polynomial x4 + 2 is 2-superirreducible over the integers.

Proof. We run the argument from Theorem 2.2.10 to get the equation t4 + 2y4 = z2. We

see that for some relatively prime integers p and q, we can write z = t2+ 2p
q
y2. Substituting

this into t4 + 2y4 = z2, we get that t2

y2
= q2−2p2

2pq
. Now assuming t and y are coprime, we

get the parametrisation

t2 = q2 − 2p2, y2 = 2pq.

Putting this parametrisation into our original equation gives us z2 = q4 + 4p4, which we’ll

show has no non-trivial integer solutions.

We see that (q2, 2p2, z) is a Pythagorean triple, which gives us the parametrisation

q2 = m2 − n2, 2p2 = 2mn, z = m2 + n2. Dividing through by common factors, we can

assume that q2, 2p2 and z are pairwise coprime. For example if k divides both q4 and 4p4,

then k divides q2 so k divides q. We can then assume that m and n are coprime, since if

k divides both m and n, we’d have that k divides q, 2p and z. But since p2 = mn, this

tells us m and n must both be perfect squares, allowing us to write q2 as a difference of

fourth powers. By a known infinite descent (1.6) argument (such as the one given in [7]),

the equation q2 = a4− b4 has no non-trivial solutions over the integers. The case of trivial

solutions can be disregarded by exactly the same reasoning as in the proof of Theorem

2.2.10
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We observe that our technique used in the last proof doesn’t work to show that f(x) =

x4 + 3 is 2-superirreducible because the equation m4 + 3n4 = z2 has nontrivial integer

solutions (e.g. m = 1, n = 1, z = 2). Similarly f(x) = x4 + 5 gives rise to the equation

m4 + 5n4 = z2 which has m = 1, n = 2, z = 9 as a solution. However, what we just

showed does give the following corollary.

Corollary 2.2.13. For a ∈ Z, all the polynomials in the set {x4+2a4} are 2-superirreducible

over the integers.

Remark 2.2.14. If an integer is a 4k-th power, then it is automatically a 4th power. There-

fore all the polynomials in the families {x4k + a4} and {x4k + 2a4} are 2-superirreducible

over the integers.

We can also say something about 2-superirreducibility of a large family of non-monic

quartic polynomials.

Theorem 2.2.15. The polynomial f(x) = ax4 + b is 2-superirreducible if it’s irreducible

and a is a non-square mod b, or b is a non-square mod a.

Proof. We first note that ax4 + b is almost always irreducible over the integers. In fact it’s

only reducible when it can be written as c(x4− k2) for some c, k ∈ Z. We’re then done by

Legendre’s Theorem (presented in [16]), which says that the equation ax4 + by4 − z2 = 0

has nontrivial integer solutions if and only if a is a square mod b and b is a square mod

a.

2.2.4 A family of weakly 2-superirreducible polynomials

Definition 2.2.16. Let R be a commutative domain and F its field of fractions. The poly-

nomial f(x) ∈ R[x] is weakly k-superirreducible over R if for all g(t) ∈ R[t] of form

axj + b with a, b ∈ Z and j ≤ k, the composition f(g(t)) is irreducible over R.
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We now state the main theorem of this section, which we’ll prove at the end of the

section.

Theorem 2.2.17. For k ≥ 2, all the polynomials in the family {x2k+1+2x+1} are weakly

2-superirreducible over the integers.

Remark 2.2.18. Concretely, Theorem 2.2.17 is saying that all the polynomials in the fam-

ily are irreducible (and so remain irreducible after linear substitutions) and that under a

substitution of the form g(x) = ax2 + b, they remain irreducible.

Lemma 2.2.19. For k ≥ 1, any polynomial of the form x2k+1 + 2x+ 1 is irreducible over

Z.

Proof. Let f(x) = x2k+1 + 2x + 1 and F (x) = x2k+1f
(
1
x

)
= x2k+1 + 2x2k + 1. We see

that f(x) is reducible over the integers if and only if F (x) is.

Next we define h(x) by h(x) = F (x)−1. We see that h(x) can be factored as x2k(x+2).

Considering h(x) as a polynomial over C, we see that it has all but one of its roots inside

the unit disk. Our goal is to use the symmetric Rouché Theorem to conclude that F has all

but one of its roots inside the unit disk.

According to the symmetric Rouché Theorem (presented in [23]), the condition we

need to verify for the above to be true is that the strict inequality |F −h| < |F |+ |h| holds

on the unit circle. We see that |F − h| is identically 1. However we have

|F |+ |h| ≥ |h|

= |x2k||x+ 2|

= |x+ 2|.

We see that when x 6= −1, we have that |x + 2| > 1. But direct computation at x = −1

shows that F (−1) = 2 and h(−1) = 1, so here we also have |F − h| < |F | + |h|.
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Therefore the symmetric Rouché is applicable and we conclude that F (x) has at most one

root outside the unit disk.

IfF (x) was reducible over the integers, then there would exist two polynomials j1(x), j2(x)

in Z[x] such that F (x) = j1(x)j2(x). By looking at their zero order terms, j1 and j2 must

both have a product of roots that is a nonzero integer. Therefore they must both have at

least one root outside the unit disk, resulting in F (x) having at least two roots outside the

unit disk. This gives a contradiction, so we can conclude that F (x) must be irreducible

over the integers. Now we see that our original polynomial x2k+1 + 2x + 1 must also be

irreducible over Z.

Next, we aim to understand the ring of algebraic integers in the splitting field of x2k+1+

2x+ 1. We’ll do this by computing its discriminant.

Lemma 2.2.20. The discriminant of the polynomial f(x) = x2k+1 + 2x+ 1 is

(−1)k
(
(2k + 1)2k+1 + 22k+1(2k)2k

)
.

Proof. Let θ be a root of f(x) = x2k+1 + 2x + 1. We’ll use {1, θ, θ2, . . . , θ2k} as a basis

for Q(θ) over Q. By definition, the discriminant of f(x) is the determinant of the matrix

whose (ij)-entry is given by tr (θi−1θj−1).

We have that tr(1) = 2k+ 1 (for it’s just the trace of the (2k+ 1)-dimensional identity

matrix). Then we use the fact that θ2k+1 = −2θ − 1 to see that tr(θ) = 0 since it’s the
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trace of the matrix 

0 0 0 0 . . . −1

1 0 0 0 . . . −2

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

· · · · . . . ·

· · · · . . . ·

· · · · . . . ·

0 0 0 . . . 0 0


Next, the matrix for multiplication by θ2 in our basis is

0 0 0 . . . −1 0

0 0 0 . . . −2 −1

1 0 0 . . . 0 −2

0 1 0 . . . 0 0

0 0 1 . . . 0 0

· · · . . . · 0

· · · . . . · 0

· · · . . . · 0

0 0 0 · · · 0 0


This pattern continues until θ2k−1 so that the elements θ, θ2, θ3, . . . , θ2k−1 all have trace

zero.
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Next we see that the matrix for multiplication by θ2k in our basis is

0 −1 0 . . . 0 0

0 −2 −1 . . . 0 0

0 0 −2 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0

· · · . . . · 0

· · · . . . · 0

· · · . . . · −1

1 0 0 · · · 0 −2


which has trace −4k. The matrix for multiplication by θ2k+1 in our basis is

−1 0 0 . . . 0 2

−2 −1 0 . . . 0 4

0 −2 −1 . . . 0 0

0 0 −2 . . . 0 0

0 0 0 . . . 0 0

· · · . . . · 0

· · · . . . · 0

· · · . . . −1 0

1 0 0 · · · −2 −1


which has trace −(2k+ 1). Continuing onwards, the matrix for multiplication by θ2k+2 in
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our basis is 

0 0 0 . . . 2 1

−1 0 0 . . . 4 4

−2 −1 0 . . . 0 4

0 −2 −1 . . . 0 0

0 0 −2 . . . 0 0

· · · . . . · 0

· · · . . . · 0

· · · . . . 0 0

1 0 0 . . . −1 0


which has trace 0. This pattern continues, similarly to what happened above with θ, θ2, . . . , θ2k−1,

with columns shifting to the left (and more and more columns of mostly zeros except the

elements (1, 4, 4) appearing on the right). We see that this will result in zeros along the

diagonal until the (1, 4, 4) has shifted so that the second four is the bottom-rightmost entry

of our matrix. This happens exactly at the element θ4k, so this element has trace 8k. This

is because its matrix will be: 

0 2 1 0 . . . 0

0 4 4 1 . . . 0

0 0 4 4 . . . 0

0 0 0 4 . . . 0

· · · · . . . ·

0 0 0 0 . . . 1

−1 0 0 0 . . . 4

−2 −1 0 0 . . . 4


which has (1, 1)-entry zero and has 4 as all of its other diagonal entries.
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We see that to get the discriminant of f(x), we need to compute the determinant of the

following (2k + 1)-dimensional square matrix:

2k + 1 0 0 . . . 0 −4k

0 0 0 . . . −4k −(2k + 1)

0 0 . . . −4k −(2k + 1) 0

· · · . . . · ·

· · · . . . · ·

· · · . . . · 0

· · · . . . 0 0

0 −4k −(2k + 1) . . . 0 0

−4k −(2k + 1) 0 . . . 0 8k


We expand along the first row to see that the discriminant is exactly

(−1)k
(
(2k + 1)2k+1 + 22k+1(2k)2k

)
as desired. We note that this value is odd for all k.

Corollary 2.2.21. Let θ be a root of the polynomial x2k+1 +2x+1. Since the discriminant

of x2k+1 + 2x + 1 is odd, elements of the ring of algebraic integers for the splitting field

can all be expressed in the form{
a0 + a1θ + · · ·+ a2kθ

2k

m
, ai ∈ Z,m odd

}
.

We’re now ready to prove Theorem 2.2.17.

Proof. Let f(x) = x2k+1 + 2x+ 1 and g(x) = ax2 + c. Then

f(g(x)) = (ax2 + c)2k+1 + 2(ax2 + c) + 1.
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For this composition to be reducible, we need ax2 = θ − c to be solvable in the splitting

field for f . However we note that

ax2 = θ − c =⇒ a2x2 = aθ − ac.

By replacing ax with x̃, we see that x̃2 = Mθ+N is an algebraic integer with M dividing

N .

By Corollary 2.2.21, we can write x̃2 =
(
A2kθ

2k + A2k−1θ
2k−1 + · · ·+ A1θ + A0

)2,

with the Ai’s rational numbers having odd denominators. Therefore we can consider them

all as 2-adic integers. By the argument in the previous paragraph, we can set

(
A2kθ

2k + A2k−1θ
2k−1 + · · ·+ A1θ + A0

)2
= Mθ +N.

Examining this expression, we see that after simplification, we need all of θ2, θ3, . . . , θ2k−1, θ2k

to end up with zero coefficients.

We now consider the expansion of
(
A2kθ

2k + A2k−1θ
2k−1 + · · ·+ A1θ + A0

)2. We

will make use of the following relations (that are valid because θ is a root of f ):

θ2k+1 = −2θ − 1

θ2k+2 = −2θ2 − θ

. . .

. . .

θ4k−1 = −2θ2k−1 − θ2k−2

θ4k = −2θ2k − θ2k−1.

These relations tell us that when we expand out the parentheses, eliminate any terms of

θ with powers higher than 2k and reduce modulo 2, we get two possible terms involving

θj for each j. One term is
(
A j

2
θ

j
2

)2
, which arises whenever j is even. The other term

arises because of the above relations.
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The expressions θ2, θ3, . . . , θ2k all need to end up with zero coefficients. So then, we get

from looking at even powers of θ that A1, A2, . . . , Ak, A2k−1 and A2k are all zero modulo

2 and from looking at odd powers of θ that Ak+2, Ak+3, . . . , A2k−2 are all zero modulo 2.

For example, let’s take j = 2. Upon expansion, the first term involving θ2 is A2
1θ

2. The

second term is from θ2k+3 = −2θ3 − θ2. However since 2k + 3 is odd, θ2k+3 can only

come out of multiplying together θr and θs where r+ s = 2k+ 3 and r 6= s. Therefore all

terms involving θ2k+3 must come with even coefficients, so disappear modulo 2. This tells

us that A1 ≡ 0 (mod 2)

The only coefficients we have left to deal with are A0 and Ak+1. Using the relations we

have, the coefficient of θ2 is

2A0A2 + A2
1 − 2A2

k+1 − 4
∑

i+j=2k+2
i 6=j

AiAj − 2
∑

i+j=2k+3
i 6=j

AiAj.

We note that A0 doesn’t appear in either of the sums and that this whole expression should

be even for the coefficient of θ2 to vanish. Since 4 divides every other term in the expres-

sion, 4 must also divide 2A2
k+1, so thatAk+1 is even. Finally, sinceM dividesN and we’re

now able to conclude that N ≡ A2
0 (mod 2), we have that A0 is also even.

We’ve managed to conclude that, considered as 2-adic integers, all theAi’s are divisible

by 2. Therefore we can divide through the whole system of homogeneous Diophantine

equations to get a new system with M
2

dividing N
2

. By infinite descent, we are done.

2.2.5 Galois Groups

It’s somehow intuitive to guess that for 2-superirreducibility, we should have large Ga-

lois groups and for non 2-superirreducibility, we should have small Galois groups. We

have examples to the contrary going both ways.



63

Example 2.2.22. By Theorem 2.2.5, there are no 2-superirreducible cubics over Z. There-

fore x3 + 2x+ 1 is definitely not 2-superirreducible. However it has Galois group S3.

Example 2.2.23. x4 +16 has Galois group C2×C2, which has the smallest possible order

for the Galois group of a degree 4 irreducible. However by Corollary 2.2.11, x4 + 16 is 2

superirreducible over Z.



CHAPTER III

Binomial Coefficient Asymptotics

3.1 Introduction

3.1.1 Definitions and Preliminaries

Definition 3.1.1. We write a positive integer n in base b ≥ 2 as

n :=
k∑
i=0

aib
i for bk ≤ n < bk+1

with digits 0 ≤ ai ≤ b− 1. Here k = blogb(n)c and ai := ai(n) with ak(n) ≥ 1

(1)The sum of digits function db(n) (to base b) is

db(n) :=
k∑
i=0

ai(n)

with k = blogb(n)c

(2) The running digit sum function Sb(n) (to base b) is

n∑
j=0

db(j).

Delange’s Theorem [10] then gives an expression for the running digit sum function:

Theorem 3.1.2. (Delange) We have

Sb(n) =

(
b− 1

2

)
n logb(n) + fb(logb(n))n

64
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where fb(x) are non-positive continuous but not differentiable functions that have Fourier

series expansions

fb(x) =
∑
k∈Z

cp(k)e2πikx

whose Fourier coefficients are,

cb(k) = −b− 1

2kπi

(
1 +

2kπi

log b

)−1
ζ

(
2kπi

log b

)
for k 6= 0

cb(0) =
b− 1

2 log b
(log(2π)− 1)−

(
b+ 1

4

)
.

Definition 3.1.3. The Farey sequence of order n is a finite set of fractions{
k

m
:
k

m
∈ (0, 1],m ≤ n

}
.

Definition 3.1.4. We define G(n) :=
∏n

k=0

(
n
k

)
.

The quantities Gn are interesting to study because not only is Gn the product of the

binomial coefficients in the nth row of Pascal’s triangle, but it’s also the product of all the

elements in the Farey sequence of order n.

The next theorem combines Theorems 3.2 and 5.1 from Lagarias and Mehta’s paper

[19]

Theorem 3.1.5. We have two expressions for logGn:

logG(n) =
1

2
n2 +O (n log n)(3.1.1)

and

logG(n) =
∑
p≤n

2 log p

p− 1
Sp(n)−

∑
p≤n

n− 1

p− 1
dp(n) log p.(3.1.2)

3.1.2 Main Results over Primes

Definition 3.1.6. Let

A(n) =
∑
p≤n

2 log p

p− 1
Sp(n)
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and

B(n) =
∑
p≤n

n− 1

p− 1
dp(n) log p.

According to (3.1.2) in Theorem 3.1.5, we have that

logG(n) = A(n)−B(n).

B(n) can be thought of as a ‘scaled average’ function. Indeed B(n)
n(n−1) gives exactly

the average behaviour of log p
p−1 dp(n) over all the primes up to n. Although dp(n) itself

is difficult to average, this allows us to say something about its average value when we

scale it by a fairly elementary function log p
p−1 . Similarly A(n) can be thought of as ‘scaled

double average function’: first averaging over the dp(n) to get Sp(n) and then taking

another scaled average over the Sp(n). A(n) and B(n) both have asymptotics that make

a significant contribution to logGn. We can state this precisely via the following main

theorems:

Theorem 3.1.7. Let A(n) =
∑

p≤n
2
p−1Sp(n) log p. There is a constant c > 0, such that

for n ≥ 4

A(n) =

(
3

2
− γ
)
n2 +O

(
n2 exp(−c

√
log n)

)
where γ denotes Euler’s constant

Theorem 3.1.8. Let B(n) =
∑

p≤n
n−1
p−1dp(n) log p. There is a constant c > 0, such that

for n ≥ 4

B(n) = (1− γ)n2 +O
(
n2 exp(−c

√
log n)

)
where γ denotes Euler’s constant.

Theorem 3.1.9. Let C(n) =
∑

p≤n
2 log p
p−1 fp(logp(n)). For a fixed integer m, for all n ≥ 4

C(n) =

(
1

2
− γ
)
n−

m∑
k=1

k!
n

(log n)k
+O

(
2m+1(m+ 1)!

n

(log n)m+1

)
where γ denotes Euler’s constant.
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We can also prove analogous theorems with better error terms when assuming the Rie-

mann Hypothesis.

3.1.3 Outline of Proofs

We give a sketch of the series of steps used to prove the Theorems 3.1.7, 3.1.8 and

3.1.9.

First we find asymptotics for Bn. We break the proof of Theorem 3.1.8: that

B(n) = (1− γ)n2 +O
(
n2e−

c
2

√
logn
)

into the following series of steps:

1. We show that the contribution of primes that are small relative to n (i.e. primes that

are no more than
√
n) to B(n) is negligible.

2. We then simplify the expression for B(n), expressing dp(n) purely in terms of ele-

mentary functions. This is done by splitting the interval (
√
n, n] into smaller subin-

tervals, where on each subinterval, dp(n) has a simple expression. We then sum over

all of the subintervals to get B(n).

3. Next we write the expression for B(n) as the difference of two sums of elementary

functions. By invoking the Prime Number Theorem [9], we analyse each of these

sums in turn, getting main terms 1
2
n2 log n and 1

2
n2 log n + (γ − 1)n2 respectively

and an error term that is in each case o(n2). The theorem is proved by taking the

difference of the sums.

To prove the asymptotics for A(n) and C(n): 3.1.7: that

A(n) =

(
3

2
− γ
)
n2 +O

(
n2 exp(−c

√
log n)

)
and

C(n) =

(
1

2
− γ
)
n−

m∑
k=1

k!
n

(log n)k
+O

(
2m+1(m+ 1)!

n

(log n)m+1

)
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we use the following series of steps:

1. We can deduce the asymptotics for A(n) from the asymptotics for B(n) because

logGn = A(n) − B(n). At this stage, we’ll have asymptotics for both logGn and

Bn from Theorems 3.1.5 and 3.1.8.

2. We break down A(n) into A(n) = π(n)n log n− nC(n).

3. We invoke the prime number theorem to write π(n)n log n in terms of the logarithmic

integral
∫ n
2

1
log t

dt, which we can analyse via integration by parts, bounding the error

terms. This will give us asymptotics for C(n).

3.1.4 Main results over general non-prime base b

As an extension problem, we consider the analogous functionsA′(n), B′(n) and C ′(n),

when instead of restricting to primes p, we sum over all integers b ≤ n. Precisely, they’re

defined as

Definition 3.1.10.

A′(n) =
∑

2≤b≤n

2 log b

b− 1
Sb(n) B′(n) =

∑
2≤b≤n

n− 1

b− 1
db(n) log b

and

C ′(n) =
∑

2≤b≤n

2 log b

b− 1
fb(logb(n)).

We can prove the following theorems for the asymptotic expansions of A′(n), B′(n)

and C ′(n):

Theorem 3.1.11. For all n ≥ 4

A′(n) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + α− 7

4

)
n2 +O(n7/4).

Theorem 3.1.12. For all n ≥ 4

B′(n) = (1− γ)n2 log n+ (γ + α− 1)n2 +O(n7/4).
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Theorem 3.1.13. For all n ≥ 4

C ′(n) =

(
1

2
− γ
)
n log n+

(
3

2
γ + α− 7

4

)
n+O(n3/4).

Here, as before, γ denotes Euler’s constant. α is the first Stieltjes constant, analysed

in [21] among other places, with numerical value approximately equal to −0.0728. It’s

defined by the following limit:

α := lim
n→∞

(
n∑
k=1

log k

k
−
∫ n

1

log t

t
dt

)
.(3.1.3)

It’s also of note that if we look at the Laurent Series expansion of the Riemann Zeta

function around s = 1 we receive

ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
cn(s− 1)n

where c0 = γ (Euler’s constant) and c1 = α (the first Stieltjes constant). For n ≥ 2 each

cn has value equal to the nth Stieltjes constant defined by

cn := lim
m→∞

(
m∑
k=1

(log k)n

k
− (logm)n+1

n+ 1

)
.

3.2 A Preliminary Reduction

Let C(n) =
∑

p≤n
2 log p
p−1 fp(logp(n)).

Lemma 3.2.1. A(n) = π(n)n log n+ nC(n).
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Proof. We invoke Delange’s Theorem (Theorem 3.1.2).

A(n) =
∑
p≤n

2 log p

p− 1
Sp(n)

=
∑
p≤n

2 log p

p− 1

(
p− 1

2

)
n

log n

log p
+ n

∑
p≤n

2 log p

p− 1
fp(logp(n))

= n log n
∑
p≤n

1 + n
∑
p≤n

2 log p

p− 1
fp(logp(n))

= π(n)n log n+ n
∑
p≤n

2 log p

p− 1
fp(logp(n))

= π(n)n log n+ nC(n).

3.3 Asymptotics for B(n)

3.3.1 Asymptotics for the sum over small primes

To find asymptotics for the function B(n) =
∑

p≤n
n−1
p−1dp(n) log p, our first step is to

notice that small values of p (relative to n), give small contributions that do not affect the

main term in the asymptotics.

Lemma 3.3.1. ∑
p≤
√
n

n− 1

p− 1
dp(n) log p = O(n3/2).

Proof. We first note for each prime p that if n =
∑k

i=0 ai(n)pi with each ai ≤ p− 1 and

k ≤
⌊

log(n)

log p

⌋
+ 1 ≤ log(n)

log p
+ 1
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then

∑
p≤
√
n

n− 1

p− 1
dp(n) log p ≤

∑
p≤
√
n

n− 1

p− 1
(p− 1)

(
log n

log p
+ 1

)
log p

=
∑
p≤
√
n

(n− 1)

(
log n

log p
+ 1

)
log p

=
∑
p≤
√
n

(n− 1) log(n) +
∑
p≤
√
n

(n− 1) log(p).

We can deal with the first sum using the prime number theorem (Theorem 1.11.3):

∑
p≤
√
n

(n− 1) log(n) = (n− 1) log(n)(π(
√
n))

= (n− 1) log(n)

( √
n

log
√
n

+O

(
exp

(
−a
√

log
√
n

)))
= 2
√
n(n− 1) + (n− 1)(log n)O(n

1
4 )

= O(n3/2).

And since we have that

∑
p≤
√
n

(n− 1) log(n) ≥
∑
p≤
√
n

(n− 1) log(p)

we know that
∑

p≤
√
n
n−1
p−1dp(n) log p = O(n3/2).

So we have the result that B(n) =
∑
√
n≤p≤n

n−1
p−1dp(n) log p+O(n3/2).

3.3.2 Writing the sum in terms of elementary functions

dp(n) is much simpler for primes in the interval (
√
n, n] than over the whole interval

[1, n] because it is the sum of at most 2 digits (since if p >
√
n then p2 > n), so n = a+bp

for some 0 ≤ a, b ≤ p− 1.)
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We will split the interval (
√
n, n] into blocks ( n

j+1
, n
j
] for each j ≤

√
n. This will allow

us to express dp(n) in terms of elementary functions on each block. We can then analyse

the sum of these functions more easily than we could dp(n) itself.

Lemma 3.3.2. We have that∑
√
n≤p≤n

n− 1

p− 1
dp(n) log p =

∑
√
n≤p≤n

n(n− 1)

p− 1
log p− (n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
.

Proof. First we suppose n
2
< p ≤ n. We notice at first that we must have b > 0 since if

b = 0 then n = a ≤ p − 1 ≤ n − 1 which can’t happen. And if b ≥ 2 then n ≥ 2p

so n
2
≥ p contradicting the fact that n

2
< p ≤ n. So we must have that b = 1 and

dp(n) = 1 + (n− p) = n− (p− 1).

Now we suppose n
3
< p ≤ n

2
. This time we notice that we must have b > 1 since

if b ≤ 1 then n ≤ (p − 1) + p = 2p − 1 ≤ n − 1. And if b ≥ 3 then n ≥ 3p

so n
3
≥ p contradicting the fact that n

3
< p ≤ n

2
. So we must have that b = 2 and

dp(n) = 2 + (n− 2p) = n− 2(p− 1).

We continue inductively to see that on each interval ( n
j+1

, n
j
], dp(n) = n− j(p− 1). So

the result follows.

Definition 3.3.3. Let’s call

B1(n) =
∑

√
n≤p≤n

n(n− 1)

p− 1
log p, B2(n) = (n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
.

We see that to find asymptotics for
∑
√
n≤p≤n

n−1
p−1dp(n) log p, it suffices to find asymp-

totics for B1(n) and B2(n).

3.3.3 Asymptotics for B1(n)

We will find an expression for B1(n) =
∑
√
n≤p≤n

n(n−1)
p−1 log p that consists of a main

term and an error term, where the error term is o(n2). To do this, we’ll analyse B1(n) by
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using partial summation and invoking the Prime Number Theorem (Theorem 1.11.3).

Theorem 3.3.4. B1(n) = 1
2
n2 log(n) +O(n2e−

c
2

√
logn) for an absolute constant c > 0

We’ll break the proof of Theorem 3.3.4 into a series of steps, first factoring out the

n(n − 1) and considering
∑
√
n≤p≤n

log p
p−1 . We see that it will be easier to use summation

by parts on
∑
√
n≤p≤n

log p
p

than on
∑
√
n≤p≤n

log p
p−1 , so our first step will be to see that∑

√
n≤p≤n

log p

p− 1
=

∑
√
n≤p≤n

log p

p
+

(
log p

p− 1
− log p

p

)
and that the difference ∑

√
n≤p≤n

log p

p− 1
−

∑
√
n≤p≤n

log p

p

is negligible.

Lemma 3.3.5. We have that∑
√
n≤p≤n

log p

p− 1
−

∑
√
n≤p≤n

log p

p
= O

(
log n√
n

)
.

Proof. ∑
√
n≤p≤n

(
log p

p− 1
− log p

p

)
=

∑
√
n≤p≤n

log p

p(p− 1)
≤

∑
√
n≤m≤n

logm

m(m− 1)

where we sum over all integers m between
√
n and n.

We consider the following function and its derivative:

f(x) =
log x

x(x− 1)
, f ′(x) =

x− 1− 2x log x+ log x

x2(x− 1)2
.

Note f ′(x) is negative for large enough x because of the −2x log x term.

Therefore if we consider large enough n,∑
√
n≤m≤n

logm

m(m− 1)
≤ log n

∫ n+1

√
n−1

1

x(x− 1)
dx

≤ log n

∫ n+1

√
n−1

1

(x− 1)2
dx = O

(
log n√
n

)
.
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Now we look at the function
∑
√
n<p≤n

log p
p

. In the next Lemma, we use integration

by parts and the Prime Number Theorem to gain an understanding of its asymptotic be-

haviour. Specifically we will see that this function behaves like 1
2

log n. We will then use

this information and look at the difference:
[∑

√
n<p≤n

log p
p

]
− 1

2
log n to obtain a better

asymptotic for
∑
√
n<p≤n

log p
p

with a smaller error term.

Lemma 3.3.6.
∑
√
n<p≤n

log p
p

= 1
2

log(n)− 1
log(n)

+O
(

1
(logn)2

)
.

Proof. By partial summation

∑
√
n≤p≤n

log p

p
=

∫ n

√
n

log t

t
dπ(t)

= π(n)
log n

n
− π(
√
n)

log(
√
n)√
n
−
∫ n

√
n

π(t)
d

dt

(
log t

t

)
dt.

By Prime Number Theorem, we have that π(x) = x
log x

+ x
(log x)2

+O( x
(log x)3

). So

π(n)
log n

n
− π(
√
n)

log(
√
n)√
n

=

(
n

log n
+

n

(log n)2
+O

(
n

(log n)3

))
log n

n

−
( √

n

log
√
n

+

√
n

(log
√
n)2

+O

( √
n

(log
√
n)3

))
log
√
n√

n

= (1− 1) +

(
1

log n
− 2

log n

)
+O

(
1

(log n)2

)
= − 1

log n
+O

(
1

(log n)2

)
.

This implies

∑
√
n≤p≤n

log p

p
= − 1

log n
+O

(
1

(log n)2

)
−
∫ n

√
n

π(t)
d

dt

(
log t

t

)
dt.

So now we analyse
∫ n√

n
π(t) d

dt

(
log t
t

)
dt. Again using the Prime Number Theorem, this

time with t = x, we get:∫ n

√
n

π(t)
d

dt

(
log t

t

)
dt =

∫ n

√
n

(
t

log t
+

t

(log t)2
+O

(
t

(log t)3

))
d

dt

(
log t

t

)
dt.
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We can do the first integral by inspection:∫ n

√
n

t

log t

d

dt

(
log t

t

)
dt = log

(
log t

t

) ∣∣∣∣∣
n

√
n

= log(
log n

n

√
n

1
2

log n
)

= log(
2√
n

)

= log 2− 1

2
log(n).

Next we use d
dt

( log t
t

) = 1−log t
t2

to do the other integrals:∫ n

√
n

t

(log t)2
d

dt

(
log t

t

)
dt =

∫ n

√
n

t

(log t)2
1− log t

t2
dt

=

∫ n

√
n

(
1

t(log t)2
− 1

t log t

)
dt

=

(
− 1

log t
− log log t

) ∣∣∣∣∣
n

√
n

= − 1

log n
− log log n+

2

log n
+ log log

√
n

=
1

log n
− log 2.

We treat
∫ n√

n
t

(log t)3
d
dt

( log t
t

)dt similarly.∫ n

√
n

t

(log t)3
d

dt

(
log t

t

)
dt =

∫ n

√
n

t

(log t)3
1− log t

t2
dt

=

∫ n

√
n

(
1

t(log t)3
− 1

t(log t)2

)
dt

=

(
−1

2

1

(log t)2
+

1

log t

) ∣∣∣∣∣
n

√
n

= −1

2

1

(log n)2
+

1

log n
+

1

2

1

(log
√
n)2
− 2

log n

= − 1

log n
+O

(
1

(log n)2

)
.
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So finally we add all of these to conclude∫ n

√
n

π(t)
d

dt

(
log t

t

)
dt =

(
log 2− 1

2
log n

)
+

(
1

log n
− log 2

)
−
(

1

log n
+O(

1

(log n)2

)
= −1

2
log n+O

(
1

(log n)2

)
.

So ∑
√
n≤p≤n

log p

p
=

1

2
log n− 1

log n
+O

(
1

(log n)2

)
.

Definition 3.3.7. We define ψ(n) the second Chebyshev function by ψ(n) =
∑

pk≤n log p

where the sum is over all prime powers less than or equal to n

Our goal is to use the second Chebyshev function ψ(n) which we have better asymp-

totics for than the prime counting function π(n) to provide us with a better asymptotic for∑
√
n<p≤n

log p
p

. We know from Lemma 3.3.6 that
∑
√
n<p≤n

log p
p
≈ 1

2
log n. Our idea is

to look at the difference
[∑

√
n<p≤n

log p
p

]
− 1

2
log n and to apply summation by parts to

bound it.

Proposition 3.3.8. ([17], section 2.1, page 63) (Summation by parts formula) Given two

sequences {am} and {bm}, if we define An =
∑n

m=1 am, then we have the following

formula:
n∑

m=k

ambm = Anbn − Ak−1bk−1 −
n−1∑

m=k−1

Am(bm+1 − bm).

We rewrite
[∑

√
n<p≤n

log p
p

]
− 1

2
log n in such a way that this formula is applicable. We

expect
∑
√
n<p≤n log p ≈ 1

2
log n. So we consider ∑

√
n<p≤n

log p

p

− 1

2
log n =

 ∑
√
n<m≤n

logm

m
IP (m)

− 1

2
log n
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where IP (m) is the characteristic function of the set of primes and we sum over all integers

inside (
√
n, n]. But ∑

√
n<m≤n

logm

m
IP (m)

− 1

2
log n =

∑
√
n<m≤n

(
logm

m
IP (m)− 1

m

)
+O(1)

=
∑

√
n<m≤n

1

m
((logm)IP (m)− 1) +O(1).

We can set am = (logm)IP (m)−1, bm = 1
m

and k = b
√
nc+1 in this last expression and

apply the summation by parts formula given in Definition 3.3.8 to find asymptotics for the

difference
[∑

√
n<p≤n

log p
p

]
− 1

2
log n.

Lemma 3.3.9.

∑
m≤n

((logm)IP (m)− 1) =
∑
p≤n

log p− n = O
(
ne−c

√
logn
)
.

Proof. We look at the second Chebyshev function ψ(n) [26]

ψ(n) : =
∑
pk≤n

log p (where the sum is over all pth powers less than or equal to n)

=
∑
p≤n

log p+
∑
pk≤n
k≥2

log p

=
∑
p≤n

log p+O

∑
p≤
√
n

log p


=
∑
p≤n

log p+O
(√

n log n
)
.

We know by Prime Number Theorem that ψ(n) − n = O
(
ne−c

√
logn
)

. So putting these

together we get that

∑
p≤n

log p = n+O
(√

n log n
)

+O
(
ne−c

√
logn
)
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so that ∑
p≤n

log p− n = O
(
ne−c

√
logn
)
.

Proof. of Theorem 3.3.4

So far, we’ve shown that B1(n) = n(n − 1)
∑
√
n<p≤n

log p
p

+ O
(

logn√
n

)
. We’ve also

shown that the sum
∑
√
n<p≤n

log p
p

is asymptotically equivalent to the function 1
2

log n.

All that remains to do is prove that the difference between
∑
√
n<p≤n

log p
p

and 1
2

log n is

bounded by O
(
e−c
√
logn
)

. In the work above we’ve just rewritten this difference as

∑
√
n<m≤n

((logm)IP (m)− 1)
1

m

on which we’ll use the summation by parts formula from Definition 3.3.8. In the formula,

we set am = (logm)IP (m)− 1, bm = 1
m

and k = b
√
nc+ 1.

∑
√
n<m≤n

((logm)IP (m)− 1)
1

m

=
1

n

n∑
m=1

((logm)IP (m)− 1)− 1√
n

 √
n∑

m=1

(logmIP (m)− 1)


−

n−1∑
j=
√
n

(
1

j + 1
− 1

j

) j∑
m=1

(logmIP (m)− 1) +O

(
1√
n

)

= O

(
1

n
ne−c

√
logn

)
+O

(
1√
n

√
ne−c
√

log
√
n

)

+O

 n−1∑
j=
√
n

1

j(j + 1)
je−c

√
log j

+O

(
1√
n

)

= O
(
e−c
√
logn
)

+O
(
e−c
√

log
√
n
)

+O

 n−1∑
j=
√
n

1

j
e−c
√
log j


= O

(
e
− c√

2

√
logn
)

+O

 n−1∑
j=
√
n

1

j
e−c
√
log j

 .
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Now we see that

n−1∑
j=
√
n

1

j
e−c
√
log j = O

(∫ n

√
n
2

1

x
e−c
√
log x dx

)
.

We can then evaluate this integral using the substitution y =
√

log x so that

dy

dx
=

1

2x
√

log x
=

1

2xy

and ∫ n

√
n
2

1

x
e−c
√
log x dx =

∫ √logn√
log
√
n
2

1

x
2xye−cy dy

=

∫ √logn√
log
√
n
2

2ye−cy dy

=
−2

c
ye−cy

∣∣∣√logn√
log
√
n
2

+

∫ √logn√
log
√
n
2

2

c
e−cy dy

= O

(√
log ne−c

√
log 1

2

√
n +

2

c2
e−c

√
log
√
n
2

)
= O

(√
log ne−c

√
log
√
n
2

)
= O

(
elog(

√
logn)−c

√
log
√
n
2

)
= O

(
e

1
2
log logn−c

√
1
2
logn−log 1

2

)
= O

(
e−

c
2

√
logn
)

so we receive our desired error term and conclude our proof of the Theorem.

3.3.4 Asymptotics for B2(n)

We need to analyse

B2(n) = (n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
.

To do this, we simplifyB2(n) and write it in terms of Chebyshev summatory functions,

which because of the Prime Number Theorem, we know asymptotics for.
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Theorem 3.3.10. We have that

(n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
=

1

2
n2 log n+ (γ − 1)n2 +O

(
n2e−

c
2

√
logn
)
.

Proof.
√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
=

√
n−1∑
j=1

j

(
θ

(
n

j

)
− θ

(
n

j + 1

))

=

√n−1∑
j=1

θ

(
n

j

)− (
√
n− 1)θ(

√
n)

where θ(m) =
∑

p≤m log p is the first Chebyshev summatory function [26].

Consider the second Chebyshev summatory function ψ(x) where

ψ(x) : =
∑
pk≤x

log p (where the sum is over all pth powers less than or equal to x)

=
∑
p≤x

log p+
∑
pk≤x
k≥2

log p.

We look at the function ψ instead of θ because the Prime Number Theorem gives better

asymptotics for it. We can relate ψ to θ in the following way for large x:

θ(x) =
∑
p≤x

log p = ψ(x) +O(
√
x log x).(3.3.1)

This is because

ψ(x) =
∑
p≤x

log p+
∑
pk≤x
k≥2

log p

= θ(x) +O
(√

x log x
)
.

So

θ(x) =
∑
p≤x

log p = ψ(x) +O(
√
x log x).
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Thus
√
n−1∑
j=1

θ

(
n

j

)
=

√
n−1∑
j=1

ψ

(
n

j

)
+O

 √
n∑

j=1

√
n

j
log

n

j


=

√
n−1∑
j=1

ψ

(
n

j

)
+O

√n log n

√
n∑

j=1

1√
j


=

√
n−1∑
j=1

ψ

(
n

j

)
+O

(
√
n log n

∫ √n
1

1√
t
dt

)

=

√
n−1∑
j=1

ψ

(
n

j

)
+O

(
n3/4 log n

)
.

Now the Siegel- Walfisz Theorem ([26], page 255, Theorem 8.2.5) gives ψ(x) = x +

O(xe−c
√
log x) for some positive constant c. Since 1 ≤ j ≤

√
n, we have that

√
n ≤ n

j
≤ n.

So in particular for 1 ≤ j ≤
√
n, we see that

O

(
n

j
e−c
√

log(n
j
)

)
= O

(
n

j
e
− c√

2

√
log(n)

)
.

This gives
√
n−1∑
j=1

ψ

(
n

j

)
=

√
n−1∑
j=1

[
n

j
+O

(
n

j
e
− c√

2

√
logn

)]

= n

 √
n∑

j=1

1

j

+O

ne− c√
2

√
logn

√
n∑

j=1

1

j

 .

Given the asymptotics for the harmonic series (Theorem 1.11.2), we know that this last

expression is equal to

n(log
√
n+ γ) +O

(
n log(n)e

− c√
2

√
logn
)
.

Finally we write (
√
n− 1)θ(

√
n) also in terms of ψ using equation 3.3.1 to get

(
√
n− 1)θ(

√
n) = (

√
n− 1)(ψ(

√
n) +O(n1/4 log n))

= (
√
n− 1)(

√
n+O(

√
ne−c

√
logn))

= n+O
(
ne−c

√
logn
)
.
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So putting all this together, we have that√n−1∑
j=1

θ

(
n

j

)− (
√
n− 1)θ(

√
n) = n(log

√
n+ γ) +O

(
n log(n)e

− c√
2

√
logn
)

−
(
n+O

(
ne−c

√
logn
))

=
1

2
n log n+ (γ − 1)n+O

(
n log(n)e

− c√
2

√
logn
)
.

And so

(n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
=

1

2
n2 log n+ (γ − 1)n2 +O

(
n2 log(n)e

− c√
2

√
logn
)

=
1

2
n2 log n+ (γ − 1)n2 +O

(
n2e

log log(n)− c√
2

√
logn
)

=
1

2
n2 log n+ (γ − 1)n2 +O

(
n2e−

c
2

√
logn
)

as desired.

3.3.5 Proving the Asymptotics for B(n)

Combining the estimates for B1(n) and B2(n) given by Theorems 3.3.4 and 3.3.10, The-

orem 3.1.8 is proved:

We have that

B(n) = B1(n)−B2(n)

=

(
1

2
n2 log(n) +O(n2e−

c
2

√
logn)

)
−
(

1

2
n2 log n+ (γ − 1)n2 +O

(
n2 log(n)e

− c√
2

√
logn
))

)

= (1− γ)n2 +O
(
n2e−

c
2

√
logn
)
.
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3.4 Asymptotics for C(n)

3.4.1 Asymptotics for π(n)n log n

We recall the indicator function on primes to be

IP (k) =


1 if k is prime

0 otherwise

and the prime counting function to be π(n) :=
∑

k≤n IP (k). We also recall the logarithmic

integral function

li(n) =

∫ n

2

1

log t
dt.

This section is devoted to finding asymptotics for the expression π(n)n log n, where

our main theorem is the following:

Theorem 3.4.1. For a fixed integer m and all n ≥ 4,

π(n)n log n = n log n
m∑
k=1

(k − 1)!
n

(log n)k
+O

(
2m+1(m+ 1)!

n2

(log n)m

)
.

By the Prime Number Theorem (Theorem 1.11.3), we can connect the prime counting

function to the logarithmic integral.

Lemma 3.4.2. For all positive integers n, π(n) = li(n) +O(n exp(−c
√

log n)).

This tells us that asymptotics for li(n) will give us asymptotics for π(n). We state and

prove the following lemma which gives us asymptotics for li(x) (that holds for all x, not

just integers).

Theorem 3.4.3. For fixed m and all x ≥ 4, we have the following asymptotics for li(x)

li(x) =
m∑
k=1

(k − 1)!
x

(log x)k
+O

(
2m+1(m+ 1)!

x

(log x)m+1

)
where the O-constant is absolute and independent of m.
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To prove (1), we’ll first break the integral up to get

li(x) =

∫ x

2

1

log t
dt =

∫ √x
2

1

log t
dt+

∫ x

√
x

1

log t
dt

and show that contribution from the short interval [2,
√
x] is negligible. Next we’ll inte-

grate by parts over [
√
x, x], plug in the upper bound to get the finite sum

m∑
k=1

(k − 1)!
x

(log x)k

and plug in the lower bound to get an error of size O
(

2m+1(m+ 1)! x
(log x)m+1

)
.

Lemma 3.4.4. The contribution
∫ √x
2

1
log t

dt is O
(

2m+1(m+ 1)! x
(log x)m+1

)
where the O-

constant is absolute and independent of m.

Proof. Bounding the integrand above by the constant 1
log 2

, we have that∫ √x
2

1

log t
dt = O(

√
x).

We need to show that this is O
(

2m+1(m+ 1)! x
(log x)m+1

)
. To prove this claim, it’s enough

to show that
√
x ≤ 2m+1(m+ 1)!

x

(log x)m+1

for all x, which is the same as showing that

2m+1(m+ 1)!

√
x

(log x)m+1
≥ 1

for all x. To do this, we consider the following function f(x) and its derivative:

f(x) = 2m+1(m+1)!

√
x

(log x)m+1
, f ′(x) = 2m+1(m+1)!

1√
x(log x)m+2

[
1

2
log x− (m+ 1)

]
.

We see that f ′(x) = 0 at exactly one point: x = e2(m+1), which is a global minimum.

Plugging in this value of x, we have

f
(
e2(m+1)

)
= 2m+1(m+ 1)!

em+1

(2(m+ 1))m+1

=
em+1(m+ 1)!

(m+ 1)m+1
.
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Now appealing to Stirling’s approximation (Theorem 1.11.4), we can bound (m + 1)!

below by (m+ 1)(m+1)e−(m+1)
√

2π(m+ 1), giving us a lower bound of
√

2π(m+ 1) for

f
(
e2(m+1)

)
, which is always greater than 1. Since we got this by plugging in the minimum

value, we conclude as desired for all x ≥ 4 that

2m+1(m+ 1)!

√
x

(log x)m+1
≥ 1.

We now state and prove two more lemmas. In our first lemma, we evaluate the integral∫ x√
x

1
log t

dt, getting our desired main term, one other term and our stated error term. In

our second lemma, we’ll show that the extra term we got from the first lemma can also be

absorbed into the stated error term.

Lemma 3.4.5. We have that∫ x

√
x

1

log t
dt =

m∑
k=1

(k−1)!
x

(log x)k
−

m∑
k=1

(k−1)!

√
x

(log
√
x)k

+O

(
2m+1(m+ 1)!

x

(log x)m+1

)
where the O-constant is absolute and independent of m.

Proof. Applying integration by parts m times, we arrive at∫ x

√
x

1

log t
dt =

m∑
k=1

(k − 1)!
x

(log x)k
−

m∑
k=1

(k − 1)!

√
x

(log
√
x)k

+

∫ x

√
x

m!

(log t)m+1
dt.

To get the stated result, we just need to bound
∫ x√

x
m!

(log t)m+1 dt. This is done by∫ x

√
x

m!

(log t)m+1
dt ≤ m!

∫ x

√
x

1

(log
√
x)m+1

dt

= 2m+1m!

∫ x

√
x

1

(log x)m+1
dt

= 2m+1m!
x−
√
x

(log x)m+1

= O

(
2m+1(m+ 1)!

x

(log x)m+1

)
.
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Lemma 3.4.6. We have that

m∑
k=1

(k − 1)!

√
x

(log
√
x)k

= O

(
2m+1(m+ 1)!

x

(log x)m+1

)
.

Proof. It suffices to show for every k that (k − 1)!
√
x

(log
√
x)k
≤ 2m+1m! x

(log x)m+1 . Summing

over k from 1 to m on both sides will then give the desired result. This is the same as

showing that

2k(k − 1)!

√
x

(log x)k
≤ 2m+1m!

x

(log x)m+1

which is the same as showing

2m−k+1 m!

(k − 1)!

√
x

(log x)m−k+1
≥ 1.

Using the same trick as in the last lemma, we take the derivative. We see that the func-

tion f(x) = 2m−k+1 m!
(k−1)!

√
x

(log x)m−k+1 has a minimum at x = e2(m−k+1). Plugging in this

minimum value, we see that showing f(x) ≥ 1 amounts to showing that

2m−k+1 m!

(k − 1)!

em−k+1

2m−k+1(m− k + 1)m−k+1
≥ 1.(3.4.1)

Again invoking Stirling’s approximation (Theorem 1.11.4), we have that

(m− k + 1)m−k+1 ≤ (m− k + 1)!em−k+1√
2π(m− k + 1)

so to show that (3.4.1) is true, it suffices to show that

m!

(k − 1)!

√
2π(m− k + 1)

(m− k + 1)!
≥ 1.

However this last expression is equal to
(
m
k−1

)√
2π(m− k + 1), which is a product of

terms which are all at least 1, proving the lemma.

The last three lemmas together prove Theorem 3.4.3 and also Theorem 3.4.1.
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3.4.2 Getting the Asymptotics for C(n)

Using the results of Theorems 3.1.7 3.1.8 and 3.4.1 we arrive at the asymptotics for

C(n), stated in Theorem 3.1.9.

Proof. Using Theorem 3.1.5 and Lemma 3.2.1 we have that

1

2
n2 +O(n log n) = A(n)−B(n)

= π(n)n log n+ nC(n)−B(n)

= π(n)n log n+ nC(n)− (1− γ)n2 +O
(
n2e−

c
2

√
logn
)

(by Theorem 3.1.8).

So

nC(n) =
1

2
n2 − π(n)n log n+ (1− γ)n2 +O

(
n2e−

c
c

√
logn
)

=

(
3

2
− γ
)
n2 − n2 log n

m+1∑
k=1

(k − 1)!

(log n)k
+O

(
2m+1(m+ 1)!

n2

(log n)m+1

)
+O

(
n2e−

c
2

√
logn
)

=

(
1

2
− γ
)
n2 − n2

m∑
k=1

k!

(log n)k
+O

(
2m+1(m+ 1)!

n2

(log n)m+1

)
.

3.5 An improved error term assuming the Riemann Hypothesis

If we assume the Riemann Hypothesis then we can improve the errors in our asymptotic

formulas for A(n), B(n) and C(n). Instead of only saving a log term, we’re able to save

power functions.
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3.5.1 Improved Asymptotics for A(n) and B(n)

On assuming the Riemann Hypothesis, we get the following asymptotic formula with

a small error term for the first Chebyshev function from [25], Theorem 10.

θ(n) :=
∑
p≤n

log p = n+O
(√

x(log x)2
)
.(3.5.1)

We recall that B(n) = B1(n)−B2(n) with

B1(n) =
∑

√
n≤p≤n

n(n− 1)

p− 1
log p, B2(n) = (n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]
.

Lemma 3.5.1. Assuming the Riemann Hypothesis

B1(n) =
1

2
n2 log n+O

(
n7/4(log n)2

)
.

Proof. We analyse
∑
√
n≤p≤n

log p
p−1 . We showed in Lemma 3.3.5 that

∑
√
n≤p≤n

log p

p− 1
=

∑
√
n≤p≤n

log p

p
+O

(
log n√
n

)
.

Next we see

∑
√
n≤p≤n

log p

p
=

∫ n

√
n

1

x
dθ(x), where θ(x) =

∑
p≤x

log p

=
1

n
θ(n)− 1√

n
θ(
√
n)−

∫ n

√
n

θ(x)
d

dx

(
1

x

)
dx

= O

(
(log n)2

n1/2
+

(log n)2

n1/4

)
+

∫ n

√
n

θ(x)

x2
dx by (3.5.1)

=

∫ n

√
n

1

x
dx+O

(
(log n)2

n1/4

)
+O

(
(log n)2

∫ n

√
n

1

x3/2
dx

)
=

1

2
log n+O

(
(log n)2

n1/4

)
.

Upon multiplying by n(n− 1) and accounting for the error terms, the lemma is proven.
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Lemma 3.5.2. Assuming the Riemann Hypothesis

B2(n) =
1

2
n2 log n+ (γ − 1)n2 +O

(
(log n)2

n1/4

)
.

Proof.

B2(n) = (n− 1)

√
n−1∑
j=1

j

[ ∑
n

j+1
<p≤n

j

log p

]

= (n− 1)

[√
n−1∑
j=1

j

(
θ

(
n

j

)
− θ

(
n

j + 1

))]

= (n− 1)

[√
n−1∑
j=1

θ

(
n

j

)
− (
√
n− 1)θ(

√
n)

]
.

We see

(n− 1)(
√
n− 1)θ(

√
n) = n2 +O

(
n7/4(log n)2

)
.

And using asymptotics for harmonic series,

(n− 1)

√
n−1∑
j=1

θ

(
n

j

)
= (n− 1)

[√
n−1∑
j=1

n

j
+O

(log n)2

√
n−1∑
j=1

(
n

j

)1/2
] by (3.5.1)

=
1

2
n(n− 1) log n+ n(n− 1)γ +

√
n

2
(n− 1)

+O(n) +O

(n− 1)(log n)2

√
n−1∑
j=1

(
n

j

) 1
2


=

1

2
n2 log n+ n2γ +O

(
n3/2

)
+O

(
n3/2(log n)2

(∫ √n
1

1

x1/2
dx+ 1

))

=
1

2
n2 log n+ n2γ +O

(
n7/4(log n)2

)
.

Putting the previous two lemmas together, we have the following theorem:

Theorem 3.5.3. Assuming the Riemann Hypothesis,

B(n) = B1(n)−B2(n) = (1− γ)n2 +O
(
n7/4(log n)2

)
.(3.5.2)
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Since we know from Theorem 3.1.5 that logG(n) = 1
2
n2 + O (n log n) and we have

by definition that logGn = A(n)− B(n), we now arrive at an asymptotic formula with a

better error term for A(n).

Theorem 3.5.4. Assuming the Riemann Hypothesis,A(n) =
(
3
2
− γ
)
n2+O

(
n7/4(log n)2

)
.

3.5.2 Improved Asymptotics for C(n)

To find improved asymptotics for C(n), we use two main ingredients. The first is that

on assuming the Riemann Hypothesis, we get the following asymptotic formula with small

error term for the prime counting function:

π(n) = li(n) +O(
√
n log n).(3.5.3)

The second ingredient is a formula for the logarithmic integral that we’ll get by modifying

the formula in Theorem 3.4.3. The formula is as follows.

Lemma 3.5.5. Taking a variable truncation at m0 := b1
2

log xc, it holds for all x ≥ 4 that

li(x) =

m0(x)∑
k=1

(k − 1)!
x

(log x)k
+O(

√
x log x)

where the O-constant is absolute.

Proof. We have that

li(x) =

m0∑
k=1

(k−1)!
x

(log x)k
+

m0∑
k=1

(k−1)!

√
x

(log
√
x)k

+O(
√
x) +O

(∫ x

√
x

m0!

(log t)m0+1
dt

)

where m0 = b1
2

log xc. First we look at
∑m0

k=1(k − 1)!
√
x

(log
√
x)k

. We see by Stirling’s

approximation (Theorem 1.11.4) that

(k − 1)!

√
x

(log
√
x)k
≤ ekke−k

√
k

√
x

(log
√
x)k

.
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Noting that on
[
1, b1

2
log xc

]
, it holds that kk ≤

(
1
2

log x
)k we have

m0∑
k=1

(k − 1)!

√
x

(log
√
x)k
≤

m0∑
k=1

e

(
1

2
log x

)k
e−k
√
k

√
x(

1
2

log x
)k

= e
√
x

m0∑
k=1

√
k

ek

= O(
√
x).

Next we use Stirling’s formula to bound m0!, allowing us to bound
∫ x√

x
m0!

(log t)m0+1 dt. We

know that m0! ≤ emm0
0 e−m0

√
m0, giving us∫ x

√
x

m0!

(log t)m0+1
dt ≤ m0!

∫ x

√
x

1(
1
2

log x
)m0+1 dt

≤ m0!
x(

1
2

log x
)m0+1

≤ emm0
0 e−m0

√
m0

x(
1
2

log x
)m0+1

= O
(
e−m0

√
m0x

)
= O

(√
x log x

)
.

We’re now ready to prove an improved asymptotic formula for C(n).

Theorem 3.5.6. Assuming the Riemann Hypothesis,

C(n) =

(
1

2
− γ
)
n−

b 1
2
lognc∑
k=1

k!
n

(log n)k
+O

(
n3/4(log n)2

)
.

Proof. We have from Theorem 3.1.5 that

1

2
n2 +O(n log n) = π(n)n log n+ nC(n)−B(n)
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so that

nC(n) =
1

2
n2 − π(n)n log n+B(n) +O(n log n)

=
1

2
n2 −

(
li(n) +O(

√
n log n)

)
n log n+B(n) +O(n log n) by (3.5.3)

=
1

2
n2 − li(n)n log n+B(n) +O

(
n3/2(log n)2

)
.

Therefore assuming the Riemann Hypothesis, we have that

C(n) =
1

2
n− li(n) log n+

B(n)

n
+O

(
n1/2(log n)2

)
=

(
3

2
− γ
)
n− li(n) log n+O

(
n3/4(log n)2

)
by 3.5.2

=

(
1

2
− γ
)
n−

b 1
2
lognc∑
k=1

k!
n

(log n)k
+O

(
n3/4(log n)2

)
where in this last line, we’ve made use of Lemma 3.5.5.

3.6 A variant of the problem: Base b Radix Expansions

We ask ourselves what happens to the quantities A(n) B(n) and C(n) when instead of

restricting to primes p, we sum over all the integers smaller than n.

Definition 3.6.1. In this section, we let

A′(n) =
∑

2≤b≤n

2 log b

b− 1
Sb(n) B′(n) =

∑
2≤b≤n

n− 1

b− 1
db(n) log b

and

C ′(n) =
∑

2≤b≤n

2 log b

b− 1
fb(logb(n))

where we’re taking the sum over the same expressions as before, but this time we’re sum-

ming over all positive integers greater than 1 and less than or equal to n, instead of just

the primes.
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Remark 3.6.2. We exclude the integer b = 1 from the sums for A′(n), B′(n) and C ′(n)

for two reasons:

• The denominator b− 1 means that the sums are not well-defined at b = 1.

• d1(n) is not well defined, since 1 raised to any power is still 1 and there are no

positive integers less than 1, so there’s no way to choose the ai in the radix expansion.

Remark 3.6.3. The result in Theorem 3.1.5, equation (3.1.2) stated over primes does not

hold when we sum over all numbers, including composites. I.e.

logGn 6= A′(n)−B′(n).

This is because the proof of Theorem 3.1.5, where we just summed over primes relies

heavily on the fact that for any integer n and any prime p, the p-adic valuation of n! is

given by the formula
∑∞

i=1

⌊
n
pi

⌋
. However for a non-prime base b, it’s very much not the

case that the b-adic valuation of n! is
∑∞

i=1

⌊
n
bi

⌋
.

The main results in this section are the following asymptotic formulas for A′(n), B′(n)

and C ′(n). In this case, it turns out that once we obtain asymptotics for B′(n), the asymp-

totics forA′(n) and C ′(n) are straightforward to write down. We recall the theorems given

in the introduction.

Theorem 3.6.4. For all n ≥ 4

A′(n) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + α− 7

4

)
n2 +O(n3/2 log n).

Theorem 3.6.5. For all n ≥ 4

B′(n) = (1− γ)n2 log n+ (γ + α− 1)n2 +O(n3/2 log n).

Theorem 3.6.6. For all n ≥ 4

C ′(n) =

(
1

2
− γ
)
n log n+

(
3

2
γ + α− 7

4

)
n+O(

√
n log n).



94

Remark 3.6.7. We note that the coefficients of the main terms in these expressions are the

same as in Theorems 3.1.7, 3.1.8 and 3.1.9 respectively. However, now that we’re summing

over all integers smaller than n, the orders of magnitude of the main terms in these new

expressions are a multiple of log n larger than the main terms for A(n), B(n) and C(n).

3.6.1 Asymptotics for B′(n)

To prove Theorem 3.6.5, we break the sum into two pieces, one piece summing up to
√
n (which has negligible contribution) and the other summing between

√
n and n which

we analyse. I.e. we write B′(n) = B′1(n) +B′R(n) where

B′1(n)=
∑
√
n<b≤n

n− 1

b− 1
db(n) log b B′R(n) =

∑
b≤
√
n

n− 1

b− 1
db(n) log b.

This decomposition is analogous to the one in the proof of Theorem 3.1.8.

We’ll first show that B′R(n) is negligible compared to the main term.

Lemma 3.6.8. B′R(n) = O
(
n3/2 log n

)
.

Proof. We use the definition of digit sum expansions to note that for every b,

db(n) ≤ (b− 1)

(
log n

log b
+ 1

)
.

This allows us to say

B′R(n) =
∑
b≤
√
n

n− 1

b− 1
db(n) log b

≤
∑
b≤
√
n

(n− 1) log n+
∑
b≤
√
n

(n− 1) log b

≤ n3/2 log n+ (n− 1)
∑
b≤
√
n

log b

= O

(
n3/2 log n+ n

∫ √n
1

log x dx

)

= O
(
n3/2 log n

)
.
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Next we see that just as in the prime case, for 1 < j ≤
√
n and b ∈

(
n
j+1

, n
j

]
, we have

that db(n) = n − j(b − 1). This allows us to break down B′1(n) into B′11(n) − B′12(n)

where

B′11(n) = n(n− 1)
∑
√
n<b≤n

log b

b− 1
, B′12(n) = (n− 1)

b
√
nc∑

j=1

j

 ∑
n

j+1
<b≤n

j

log b


and we analyse each part separately.

Lemma 3.6.9. B′11(n) = 3
8
n2 log2 n+O

(
n3/2 log n

)
.

Proof. We first see that
∑
√
n<b≤n

log b
b−1 =

∑
√
n<b≤n

log b
b

+ O
(

logn√
n

)
. This is because∑

√
n<b≤n

log b
b−1 =

∑
√
n<b≤n

log b
b

+
∑
√
n<b≤n

log b
b(b−1) and we have that

∑
√
n<b≤n

log b

b(b− 1)
= O

log n
∑
b≥
√
n

1

b2


= O

(
log n

∫ ∞
√
n

1

x2
dx

)
= O

(
log n√
n

)
.

Next we note that the error in approximating this sum with the integral is small, namely

that ∣∣∣∣∣∣
∑
√
n<b≤n

log b

b
−
∫ n

√
n

log x

x
dx

∣∣∣∣∣∣ ≤ log
√
n√

n
− log n

n

= O

(
log n√
n

)
where we’ve used the error term from Riemann sum approximations:

|f(b)− f(a)|∆x.(3.6.1)
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This is valid because for n ≥ 9, we have that log b
b

is a decreasing function on the interval

[
√
n, n]. Therefore we have∑

√
n<b≤n

log b

b
=

∫ n

√
n

log x

x
dx+O

(
log n√
n

)

=
1

2
(log x)2

∣∣∣n√
n
O

(
log n√
n

)
=

3

8
log2 n+O

(
log n√
n

)
and so the lemma is proved.

Next we analyse

B′12(n) = (n− 1)

b
√
nc∑

j=1

j

 ∑
n

j+1
<b≤n

j

log b

 .

Again using the error term in the Riemann sum approximations for monotone functions:

(3.6.1) we get

B′12(n) = (n− 1)

b
√
nc∑

j=1

j

 ∑
n

j+1
<b≤n

j

log b


= (n− 1)

b
√
nc∑

j=1

j

(∫ n
j

n
j+1

log x dx+O

(
log

(
n

j

)
− log

(
n

j + 1

)))

= (n− 1)

b
√
nc∑

j=1

j

(∫ n
j

n
j+1

log x dx+O

(
1

j

))

= (n− 1)

b√nc∑
j=1

j

(∫ n
j

n
j+1

log x dx

)+O(n3/2)

= (n− 1)

b√nc∑
j=1

j

(
n

j
log

(
n

j

)
− n

j + 1
log

(
n

j + 1

))
+

b
√
nc∑

j=1

j

(
n

j + 1
− n

j

)
+O

(
n3/2

)
.

We call

B′12a(n) =

b
√
nc∑

j=1

j

(
n

j
− n

j + 1

)
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and

B′12b(n) =

b
√
nc∑

j=1

j

(
n

j
log

(
n

j

)
− n

j + 1
log

(
n

j + 1

))

so that B′12(n) = (n− 1)(B12b(n)−B′12a(n)) +O(n3/2).

Lemma 3.6.10. B′12a(n) = 1
2
n log n+ (γ − 1)n+O(

√
n).

Proof. We can simplify
∑b√nc

j=1 j
(
n
j
− n

j+1

)
= n

∑b√nc
j=1

1
j+1

= n
∑b√nc+1

j=2
1
j
. This is

the truncated harmonic series, for which the asymptotics, obtained by Euler-Maclaurin

summation formula are given in Theorem 1.11.2. We get that

n

b
√
nc+1∑
j=2

1

j
= n

(
log(b

√
nc+ 1) + (γ − 1) +O

(
1√
n

))
.

All that’s left to note is that

∣∣log(b
√
nc+ 1)− log

√
n
∣∣ ≤ 1√

n

giving us the stated asymptotic formula.

Next we look at B′12b(n) =
∑b√nc

j=1 j
(
n
j

log
(
n
j

)
− n

j+1
log
(

n
j+1

))
. In order to analyse

B′12b(n), we will need the following estimate.

Lemma 3.6.11. We have that

b
√
nc∑

j=1

log(j + 1)

j + 1
=

1

8
log2 n+ α +O

(
log n√
n

)
.

Here α is the constant defined in (3.1.3) by

α := lim
n→∞

(
n∑
k=1

log k

k
−
∫ n

1

log t

t
dt

)
.

Proof. We reindex the sum as
∑b√nc+1

j=2
log(j)
j

. The Euler-Maclaurin summation formula
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(Theorem 1.11.1) gives us:

b
√
nc+1∑
j=2

log(j)

j
=

∫ b√nc+1

1

log t

t
dt+

1

2

(
log(b

√
nc+ 1)

b
√
nc+ 1

)
− 1

12

(
1− log(b

√
nc+ 1)

(b
√
nc+ 1)2

− 1

)

+
1

120

(
−6 log(b

√
nc+ 1) + 11

(b
√
nc+ 1)4

− 11

)
−
∫ b√nc+1

1

B4(t)

(
−50 + 24 log t

t5

)
dt

=
1

2
log2 t

∣∣∣∣∣
b
√
nc+1

1

+
1

12
− 11

120
−
∫ b√nc+1

1

B4(t)

(
−50 + 24 log t

t5

)
dt

+O

(
log n√
n

)
=

1

2
(log2(b

√
nc+ 1)) +

1

12
− 11

120
−
∫ b√nc+1

1

B4(t)

(
−50 + 24 log t

t5

)
dt

+O

(
log n√
n

)
.

We note by the difference of two squares that

log2(b
√
nc+ 1)− log2(

√
n) = (log(b

√
nc+ 1)− log

√
n)(log(b

√
nc+ 1) + log

√
n)

= O

(
1√
n

log n

)
.

Therefore
b
√
nc+1∑
j=2

log(j)

j
=

1

2
log2(

√
n) +

1

12
− 11

120
−
∫ b√nc+1

1

B4(t)

(
−50 + 24 log t

t5

)
dt

+O

(
log n√
n

)
.

Noting that when j = 1, log j
j

= 0 and letting n tend to infinity, we obtain

α = lim
n→∞

b√nc+1∑
j=2

log(j)

j
− 1

2
log2(

√
n)


=

1

12
− 11

120
−
∫ ∞
1

B4(t)

(
−50 + 24 log t

t5

)
dt.

where the first of these two lines comes from the limit definition of α in (3.1.3) as the first

Stieltjes constant. We just need to note finally that∫ ∞
√
n

B4(t)

(
−50 + 24 log t

t5

)
dt = O

(
1

n

)
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to arrive at the desired result.

We’re now ready to give asymptotics for B′12b(n):

Lemma 3.6.12. B′12b(n) = 3
8
n log2 n+

(
γ − 3

2

)
n log n− αn+O(

√
n log n)

Proof. We’ll first rewrite the expression for B′12b(n) so that it’s easier to analyse.

B′12b(n) =

b
√
nc∑

j=1

j

(
n

j
log

(
n

j

)
− n

j + 1
log

(
n

j + 1

))

= n

b
√
nc∑

j=1

(
log n− log j − j

j + 1
log n+

j

j + 1
log(j + 1)

)

= n log n

b
√
nc∑

j=1

1

j + 1
+ n

b
√
nc∑

j=1

(
j

j + 1
log(j + 1)− log j

)
.

From the Theorem 1.11.2 we know the asymptotics for the first of these sums:

n log n

b
√
nc∑

j=1

1

j + 1
= n log n

(
1

2
log n+ (γ − 1) +O

(
1√
n

))
.

For the second sum we have

n

b
√
nc∑

j=1

(
j

j + 1
log(j + 1)− log j

)
= n

b
√
nc∑

j=1

(log(j + 1)− log j)− n
b
√
nc∑

j=1

1

j + 1
log(j + 1)

= n log(b
√
nc+ 1)− n

b
√
nc∑

j=1

1

j + 1
log(j + 1)

=
1

2
n log n− n

b
√
nc∑

j=1

1

j + 1
log(j + 1) +O(

√
n).
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Putting all this together, we obtain:

B′12b(n) = n log n

b
√
nc∑

j=1

1

j + 1
+ n

b
√
nc∑

j=1

(
j

j + 1
log(j + 1)− log j

)
= n log n

(
1

2
log n+ (γ − 1) +O

(
1√
n

))
+

1

2
n log n

− n
b
√
nc∑

j=1

1

j + 1
log(j + 1) +O(

√
n)

=
1

2
n log2 n+

(
γ − 1

2

)
n log n− n

b
√
nc∑

j=1

1

j + 1
log(j + 1) +O(

√
n log n)

=
1

2
n log2 n+

(
γ − 1

2

)
n log n− 1

8
n log2 n− αn+O(

√
n log n)

=
3

8
n log2 n+

(
γ − 1

2

)
n log n− αn+O(

√
n log n).

Proof of Theorem 3.6.5

Since

B′(n) = B′11(n)−B′12(n) +O(n3/2 log n)

= B′11(n)− (n− 1)(B′12b(n)−B′12a(n)) +O(n3/2 log n)

and we have from Lemma 3.6.9 that

B′11(n) =
3

8
n2 log2 n+O

(
n3/2 log n

)
.

we can rewrite this as

B′(n) =
3

8
n2 log n+O(n3/2 log n)− (n− 1)(B′12b(n)−B′12a(n)).

Finally, we can use the asymptotics for B′12a(n) and B′12b(n) found in Lemmas 3.6.10 and

3.6.12 to conclude the given asymptotics for B′(n). �
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3.6.2 Asymptotics for A′(n) and C ′(n)

We now find the asymptotics for A′(n). Given the size of B′(n), we conjecture that

A′(n) will have terms of order n2 log n and n2 as well as a power-saving error term. Di-

rectly from its definition, we have

A′(n) =
∑

2≤b≤n

2 log b

b− 1
Sb(n)

=
∑

2≤b≤n

2 log b

b
Sb(n) +

∑
2≤b≤n

2 log b

b(b− 1)
Sb(n).

To find asymptotics for A′(n), we’ll make use of Drazin and Griffith’s theorem, which

gives an upper bound for the running digit sum function:

Theorem 3.6.13. [12] (Drazin and Griffith) Let b ≥ 2 be an integer. Then for all n ≥ 1,

Sb(n) ≤ b− 1

2
n logb n

and equality holds if and only if n = bk for k ≥ 0.

Lemma 3.6.14. We have that

A′(n) =
∑

2≤b≤n

2 log b

b

n∑
j=0

db(j) +O(n log2 n).

Proof. From Drazin and Griffith’s theorem (Theorem 3.6.13), we know that

Sb(n) ≤ b− 1

2
n

log n

log b
.

Applying it, we have

A′(n) =
∑

2≤b≤n

2 log b

b
Sb(n) +O

( ∑
2≤b≤n

2 log b

b(b− 1)

b− 1

2
n

log n

log b

)

=
∑

2≤b≤n

2 log b

b
Sb(n) +O

(
n log n

∑
2≤b≤n

1

b

)

=
∑

2≤b≤n

2 log b

b
Sb(n) +O(n log2 n)

=
∑

2≤b≤n

2 log b

b

n∑
j=0

db(j) +O(n log2 n).
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Noting that db(0) = 0 and db(1) = 1 for any b ≥ 2 we have that

A′(n) =
∑

2≤b≤n

2 log b

b

n∑
j=2

db(j) +O(n log2 n)

leaving us to estimate the sum
∑

2≤b≤n
2 log b
b

∑n
j=2 db(j). We’ll do this by switching the

order of summation and using what we know about the quantities B′(j) in the following:

∑
2≤b≤n

2 log b

b

n∑
j=2

db(j) =
n∑
j=2

∑
2≤b≤n

2 log b

b
db(j)

=
n∑
j=2

(∑
2≤b≤j

2 log b

b
db(j) +

∑
j+1≤b≤n

2 log b

b
db(j)

)

=
n∑
j=2

2

j − 1
B′(j)−

n∑
j=2

∑
2≤b≤j

2 log b

b(b− 1)
db(j)

+
n∑
j=2

∑
j+1≤b≤n

2 log b

b
j

where we’ve used the identity 2 log b
b

= 2 log b
b−1 −

2 log b
b(b−1) and gotten the third sum from the fact

that for b > j, the base b digit expansion of j has just one digit: j itself.

We’ll write

A′1(n) =
n∑
j=2

2

j − 1
B′(j),

A′R(n) =
n∑
j=2

∑
2≤b≤j

2 log b

b(b− 1)
db(j),

A′2(n) =
n∑
j=2

∑
j+1≤b≤n

2 log b

b
j

where we’ll show that the contribution from A′R(n) is negligible and conclude that

A′(n) = A′1(n) + A′2(n) +O(n3/2 log n).

First we consider A′1(n) =
∑n

j=2
2
j−1B

′(j).

Lemma 3.6.15. A′1(n) = (1− γ)n2 log n+
(
3
2
γ + α− 3

2

)
n2 +O(n3/2 log n).
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Proof. By Theorem 3.6.5 we can write
∑n

j=2
2
j−1B

′(j) as

n∑
j=2

2

j − 1
B′(j) = 2

n∑
j=2

1

j − 1

(
(1− γ)j2 log j + (γ + α− 1)j2 +O(j3/2 log j)

)
.

We’ll approximate j2

j−1 by j where the error in approximation is of magnitudeO(1), giving

us

A′1(n) = 2
n∑
j=2

((1− γ)j log j + (γ + α− 1)j) +O

(
n∑
j=2

log j

)
+O(n3/2 log n)

= 2
n∑
j=2

(1− γ)j log j + (γ + α− 1)n2 +O(n3/2 log n).

Next we’ll note that for x ≥ 2, the function x log x is strictly increasing so that we may

approximate remaining sum via its corresponding integral, with an error no larger than

n log n. Therefore

A′1(n) = 2(1− γ)

∫ n

2

x log x dx+O(n log n) + (γ + α− 1)n2 +O(n3/2 log n)

= 2(1− γ)

(
1

2
x2 log x

∣∣∣∣∣
n

2

−
∫ n

1

1

2
x dx

)
+ (γ + α− 1)n2 +O(n3/2 log n)

= 2(1− γ)

(
1

2
n2 log n− 1

4
n2

)
+ (γ + α− 1)n2 +O(n3/2 log n)

= (1− γ)n2 log n+

(
3

2
γ + α− 3

2

)
n2 +O(n3/2 log n).

Next we need to consider A′2(n) =
∑n

j=2

∑
j+1≤b≤n

2 log b
b
j.

Lemma 3.6.16. A′2(n) = 1
2
n2 log n− 1

4
n2 +O(n log2 n).

Proof. As in the proof of Lemma 3.6.15, we’ll approximate sums via integrals. We first

use the fact that 2 log x
x

is decreasing for x ≥ e giving us that∑
j+1≤b≤n

2 log b

b
=

∫ n

j+1

2 log x

x
dx+O

(
log j

j

)

= log2 n− log2(j + 1) +O

(
log j

j

)
.
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Considering the difference of two squares

log2(j + 1)− log2(j) = (log(j + 1) + log j)(log(j + 1)− log j)

= O

(
log j log

(
j + 1

j

))
= O

(
log j

j

)
.

This now allows us to write

n∑
j=2

∑
j+1≤b≤n

2 log b

b
j =

n∑
j=2

j

(
log2 n− log2 j +O

(
log j

j

))

=
n(n+ 1) log2 n

2
−

n∑
j=2

j log2 j +O(n log n)

where we’ll again do an integral approximation for the remaining sum, getting us

A′2(n) =
1

2
n2 log2 n−

∫ n

2

x log2 x dx+O(n log2 n)

=
1

2
n2 log2 n− 1

2
x2 log2 x

∣∣∣∣∣
n

2

+

∫ n

2

x log x dx+O(n log2 n)

=
1

2
x2 log x

∣∣∣∣∣
n

2

−
∫ n

2

1

2
x dx+O(n log2 n)

=
1

2
n2 log n− 1

4
n2 +O(n log2 n).

Finally we need to show that the contribution from A′R(n) =
∑n

j=2

∑
2≤b≤j

2 log b
b(b−1)db(j)

is negligible.

Lemma 3.6.17. A′R(n) = O(n log2 n).

Proof. We can bound
∑n

j=2

∑
2≤b≤j

2 log b
b(b−1)db(j) above by

∑
2≤b≤n

n∑
j=2

2 log b

b(b− 1)
db(j).
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However, this last expression is O
(∑

2≤b≤n
2 log b
b(b−1)Sb(n)

)
, which using the bound from

Drazin and Griffith’s theorem (Theorem 3.6.13) is O
(
n log n

∑
2≤b≤n

1
b

)
and this is just

O
(
n log2 n

)
.

Putting everything together from Lemmas 3.6.15, 3.6.16 and 3.6.17 we can prove The-

orem 3.6.4. We recall that

A′(n) = A′1(n) + A′2(n) + A′R(n) +O(n7/4)

so utilising the asymptotics we obtained in the lemmas we have

A′(n) =

(
(1− γ)n2 log n+

(
3

2
γ + α− 3

2

)
n2 +O(n3/2 log n)

)
+

(
1

2
n2 log n− 1

4
n2 +O(n log2 n)

)
=

(
3

2
− γ
)
n2 log n+

(
3

2
γ + α− 7

4

)
n2 +O(n3/2 log n).

Delange’s Theorem (Theorem 3.1.2) (which holds in base b as well as base p) tells us

A′(n) =
∑

2≤b≤n

n log n+ nC ′(n)

= n(n− 1) log n+ nC ′(n)

giving us the result of Theorem 3.6.6:

C ′(n) =

(
1

2
− γ
)
n log n+

(
3

2
γ + α− 7

4

)
n+O(

√
n log n).



CHAPTER IV

Stories from my Classroom: Reflections and Narratives from
Different Types of Mathematicians

4.1 Introduction

A thesis reflecting my graduate work would not be complete without a chapter about

my teaching experiences. I’ve been extremely lucky to have taught in multiple different

settings over the past six years. My wonderful experiences in the classroom have been

challenging, fulfilling and extremely informative. Being a teacher and mentor, especially

to those students who seem at first a little different from the stereotypical mathematician,

has grown to be an integral part of my professional life and personal identity.

Starting in fall 2014, during all but two semesters, I’ve been in charge of my own class

in Precalculus, Calculus I or Calculus II at the University of Michigan. In addition, I’ve

worked for Canada/USA Mathcamp and Bridge to Enter Advanced Mathematics, as well

as founded my own math club for middle school students.

My purpose in writing this chapter is to record some of my students’ and my own

experiences, so that the lessons I’ve learned from them may stay with me through time.

I’ll explore some of the challenges we’ve overcome together as well as the challenges that

remain for them, as non-conventional mathematicians or non-conventional learners. This

chapter doesn’t claim to be formal ‘education research’ and isn’t written to identify any

broad trends in math education, nor to give instruction to other educators. It’s simply a
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collection of my reflections, that may also have a chance of being useful for readers to

reflect on.

In my stories, instead of assigning fake names to students, I’ve used random letters to

denote their names. This was an intentional choice I made stemming from the fact that

names often carry connotations, which can colour the way a story is perceived before it’s

even told. Just as I think of my students as individuals, it is my hope that their stories

can serve as a spotlight for meeting each student where they’re at, rather than making

assumptions based on any groups they appear to belong to.

4.2 Reflection through Conversation

During the summer of 2019, I interviewed three young mathematicians about their

mathematical life and journey 1. All three are people of colour, from Bronx, NY and are

currently undergraduate college students. Although at first glance, we seem different, I

wanted to identify some of the things we have in common, as non-conventional mathe-

maticians.

4.2.1 Barriers to Success

I know first hand what it’s like to feel doubt and discouragement about my place in

math. Throughout my childhood, I always attended public schools, where I was never by

any means the ‘math kid’ in the class. It was especially difficult during my middle school

years, being a girl of colour at an all-white school, where with my cultural identity I really

struggled to find my place. Once I decided that I liked math and wanted to pursue a math

degree, I often felt like I struggled to fit in or be taken seriously since I’d begun so late and

other students knew so much more than I did. One of the hardest and also most rewarding

things I’ve ever done is find the path that’s right for my mathematical journey. Throughout
1The interviews were conducted under the eResearch ID HUM00167368 and given a determination of ‘Not Regulated’ status by

the University of Michigan Health Sciences and Behavioral Sciences Institutional Review Board.
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this process, I’ve learned to find peace with learning at the pace that’s suitable for me,

instead of feeling intimidated by those who had a head start, seek guidance from excellent

mentors, ask questions unashamedly and treasure each opportunity that’s been presented

to me.

As non-conventional mathematicians who haven’t always necessarily fitted in inside

math spaces, my interviewees spoke about external barriers that made it difficult for them

to get help or to work with other people. These barriers mainly centred around not receiv-

ing encouragement from authority figures and also not having the means to take advantage

of resources. A few examples of what they said are given below:

• ‘I couldn’t go to office hours during high school since I travelled more than an hour

for a specialised school. I couldn’t stay after school since I had to leave immediately

to take care of my younger siblings. I felt discouraged: they didn’t have time to help

me and didn’t accommodate for my needs. My only incentive was to get good grades

to get to a good college.’

• ‘My teachers said to us that if you don’t feel confident in your math ability, then

you shouldn’t be in an advanced math class. The message ran close to home for

me: it’s been passed around in my community since elementary school that math

isn’t for you. A lot of black and latino kids I knew at school could have handled

high level math, but didn’t sign up for those classes because the messaging told them

they couldn’t handle it. Kids in upper math classes were from richer backgrounds.

They could get a tutor who could help them. Because I felt like I didn’t have time to

develop understanding, it discouraged me from asking for help. I’ve always had to

be independent, so was never comfortable asking for help.’

• ‘Most college STEM classes are filled with white males. It’s difficult for me. Some-

times I know what I’m talking about but people don’t listen. Once in class I knew the
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answer and had an explanation, but explaining out loud is sometimes difficult for me.

I was with a group of boys who wouldn’t listen to me- they assumed I was wrong. I

was frustrated and then started doubting myself. When they finally got it, they said

‘good job’ to someone else. They didn’t accept me for what I was saying. I thought

it was because I’m a woman, or because I’m a person of colour they talked over me.

It made me feel like a minority. ’

• ‘My college counsellors who were supposed to help me were not encouraging. They’d

encourage you to transfer school if you struggled with a class but asked white kids

how they could help them. The first thing they did when I was struggling with a

personal issue was ask me to transfer schools. ’

I remember struggling earlier in my mathematical journey as a result of feeling out

of my depth. Sometimes, just like my interviewees, I’d feel discouraged by not having

the background or vocabulary to express my mathematical ideas, or by how other people

expressed their perceptions of me.

4.2.2 Asking for Help

My interviewees and I talked about how external factors would feed into our percep-

tions of ourselves and of the math space around us and how such feelings of isolation

would make external factors hit harder and so make it difficult to ask for help even when

we needed it:

• ‘I was the only black girl in advanced math class again at my school. Sometimes you

just want someone who gets where you’re coming from. None of my friend group

did that level of math, so I felt isolated. As a black girl, even if you know you’re

right, you still bring yourself down and don’t feel ok raising your hand in class.’

• ‘There were two other boys from my school at a summer math programme I went to.
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Everyone knew them to be the best. I was the only girl from my school. I felt like I

had to live up to them. They would get things quicker than me. I’d try my best, but

wasn’t where they were at. The teachers didn’t know I was struggling. I wanted to

keep it to myself. I felt that once they knew they’d start pitying me and I didn’t want

that. Growing up in the Bronx, I learned to do things by myself so I wanted to do

math by myself. Even to this day, I want to do things for myself. ’

• ‘I took a stats class in senior year of high school. I was very lost. We were using

a computer programme and I couldn’t understand how to do it. I didn’t feel com-

fortable asking questions because I’d fallen off in school. I didn’t feel motivated in

school-I didn’t feel it would matter in the long run. I had a problem asking questions

because I didn’t feel like I deserved attention and I felt like I should just be able to

do it myself. I liked the teacher, but I did find him intimidating. I’m intimidated by

authority in general.’

• ‘I knew working by myself that I couldn’t feel like I didn’t fit in or make other people

mad. In math I don’t necessarily have the right vocab, so I don’t feel comfortable

talking.’

The underlying theme that my interviewees really helped vocalise for me through these

reflections, is that as a teacher, I need to be constantly aware of how different learners

will ask for help and support. By the time I have a student in my class, their learning

journey will already have taken a unique, complex series of twists and turns. These will

have shaped them into the incredible individual that I meet on the first day of class. My

job as a teacher is to work with them, starting from where they are and not from where one

may assume they ‘should be’.

In the next section, I talk about many explicit examples of what working with different

types of students has looked like for me. Here I’ll give just a couple of brief examples of
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very talented young mathematicians who have approached asking for and accepting help

in unique ways.

1. I was really excited to work with C because I’d seen some of her past work and

knew that she’d achieved some outstanding test scores. However she came into my

class very quiet and reserved, never drawing attention to herself. It was a class where

almost every student was taking full advantage of office hours, but C had never shown

up. One day I went to find her. I asked how class was going and if she had any

questions. She said no, so I asked if she was comfortable with us just being in the

same space as we got work done: she’d work on her homework and I’d work on my

grading. C said she was, so I took out my grading and worked away at it. A few times,

C looked over at me and after about half an hour, she spoke up: ‘Actually, maybe I

do have a question...’ We had a happy math conversation that day and from then on,

she was a regular attendee of office hours, where she asked many great questions and

really showcased her amazing mathematical ability.

2. On the surface, it seemed like M didn’t care. She was defiant about following instruc-

tions and would often interrupt to ask for the answer. When I upheld my boundary of

never giving out solutions (since it doesn’t help students with actually understanding

the material), but made it clear I would help her problem-solve, she told me that she

had no time for this. I pushed a little for when she would have time and she suggested

a time very early one morning. Once we met, I learned that M was a student from

a low-income background who spent most of her time outside classes at work. She

struggled to juggle her work-study lifestyle and had availability at odd hours that she

wasn’t used to being accommodated. To work with M’s needs, I held many study

sessions at odd hours during the course of the semester, that actually ended up being

very well-attended by other students too. M really opened up during these sessions,
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becoming a friendly, communicative member of the class and a very diligent student

that went above and beyond in exploring the subject matter independently.

An analogy that comes to mind when thinking about students who struggle to ask for

help is that of one of my favourite animals: the rabbit. Something I learned from spending

time with rabbits is that if I chase them with carrots, they’ll always run and hide, but that

if I appear as quiet and non-threatening as possible, their curiosity will always take over

and they’ll come closer to explore. Things that make students curious and excited about

exploring vary so much on an individual basis. However I’ve found that this curiosity

comes out best when I give students space to be true to themselves. When I put all my

focus into listening to a student, it doesn’t just mean hearing the words they’re saying. To

me, it means constantly recalibrating my energy levels with what they’re showing me. It

means honouring those hardships they encountered when doing what they’re ‘supposed

to do’ didn’t work out for them and the subsequent rebellion this may have sparked. It

means acknowledging that to many students, asking for help in a math class feels like a

frightening privilege, rather than a simple right for everyone and taking concrete steps to

bring that privilege to them. In sum, it means to me that connecting with my students as

humans is just as essential as believing in them as mathematicians.

4.2.3 Positive Mentorship

By listening to the simple, but sometimes unique things that my students need to suc-

ceed and acting on them, I’ve watched them rise beyond my highest expectations. Indeed,

my interviewees talked to me about how life-changing it was for them to just encounter

one or two positive mentors.

• ‘My first vivid math experience was in second grade. My teacher was very excited

about math and we just explored what she thought was cool. We sang math songs!



113

It made me think numbers are cool. I’m very competitive and like knowing I’m

doing my best. I like to compare myself to others to see where I am now and think

about how I could grow. Math allows me to do that: there’s always so much more to

know and so many aspects to math and different ways to do problems. Logic based

stuff appeals to me more than straight-out calculus. I learned to play through math

programmes where I learned there was a variety of math.’

• ‘In middle school, I saw my 7th grade math teacher as my ‘dad’ at school. He was

always there for us within math class. If you felt bad and didn’t want to do something,

he’d find out what was wrong instead of just disciplining you. He made sure we had

one to one attention and we understood why the math worked, not just the procedures.

As much as he could, he introduced you to different kinds of math. He took us to

a college to introduce us to college students in STEM and told us that students of

colour could succeed in STEM. He also showed us a commercial encouraging girls

to do engineering. He was white. I think if he was black, he’d explain it from his own

experience. My teacher couldn’t do that, but he was always aware of his position and

never overstepped the boundary, which was awesome. Sure, the message may have

been a little more impactful from a person of colour, but I did still take his words

with me. ’

• ‘My math teacher in 7th grade was a woman from Jamaica. I was so excited! I’d

never had a woman of colour as a math teacher before. She pushed me really hard to

be in an advanced class. She’d also give me math puzzles and didn’t want us to be

bored. She tried to make sure everyone was trying their best. ’

• ‘In college, I really enjoyed my linear algebra class. I could relate to my teacher

because she was a woman teaching a college class, which is great. She also actually

acknowledged me, understood that I knew stuff and kept her office hours consistent.
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She was always patient with me, spent a long time talking to me and let me figure

things out. She’s the best math teacher I’ve had in college so far. Whenever I wasn’t

getting a topic, she’d recommend websites, notes and more problems. She was al-

ways open to giving advice for how to improve. ’

• ‘When I was a kid, I always looked up to my older brother. I was his shadow! His

friends were the only people I wanted to hang out with. He thought I was annoying

sometimes, but I did eventually make friends of my own. My brother and I did

puzzles together. He went to a math summer programme and I did his puzzles that

he brought home. He got me hooked on math puzzles, so when I was old enough, I

applied for the same programme.’

Just like my interviewees, there have been a few mentors along my mathematical path

who really believed in me. It’s from their work ethic and positivity that I’ve gained the

self-belief to persevere through concepts I’ve found challenging. I’ve learned to focus on

the good things in the mathematical community around me and to work on math with other

people. Despite encountering many negative experiences that caused me to doubt myself,

the encouragement from my role models has really shone through. It’s been a huge factor

in me continuing to pursue the wonderful subject of math and to pass on what I know to

my students. It’s true that there are very real limits to what one teacher or one professor

can do, but in my life and in my interviewees’ lives, those interactions have made all the

difference in the world. As a teacher, I’ve learned to accept those limitations, but also

to mentor with optimism and with so much hope for my students’ futures. By looking

back into my life and the lives of my interviewees, I try my best to look forward into my

students’ mathematical lives and to impact them with all the positivity that I’m capable of.
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4.3 Reflection through Teaching

This section isn’t intended as any sort of guide on how to teach, or what interactions

with students should look like. It’s just a collection of stories: my stories and my students’

stories, during times when we’ve inspired each other.

4.3.1 Stories of discipline

The math classroom is a human place. Just like any other human place, it’s filled with

people who have different needs, emotions and triggers. Because of this, things may not

fall into place and students may not fall in line the way one could initially expect. In this

section, I discuss examples of when I’ve needed to discipline a student. If I were to pick

out one underlying theme in these stories, it would be the effectiveness in providing space

for a student’s emotions before trying to implement any sort of change.

Story 1

It was a summer’s day when I took a teenage boy named K for a walk. He’d punched

another student and much to his teachers’ dismay wouldn’t admit he was wrong. I didn’t

ask any questions. I simply made sure he had his water bottle with him because of the

warm weather and we walked side by side in silence. His silence felt quizzical, as if he

was testing me. I stayed silent until I was sure of what I wanted to say.

‘You know, K’, I told him, ‘We all have things that are important to us. I remember an

incident when I was in middle school...I felt I had no option at that time but to punch the

other kid as hard as I could.’ Abruptly K stopped walking and gave me a hug so tight it

knocked the wind out of me. ’You understand!’ he declared.

After that moment K opened up completely. We talked candidly about the internal

forces that drove him to his decision. We problem-solved and came up with strategies for

the future together. As his teacher, once we had mutual understanding and dialogue, I did
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hold K accountable and enforce consequences for him using violence on another student.

Something that I understood immediately when it became my task to work with K was

that it shouldn’t be about winning any debate with K about right or wrong. Rather, it

should be simply about winning K over: not to my point of view or to agree with my

values, but to the notion that the two of us are on the same team. I feel that too often,

when teachers discipline a student, they jump too fast to explaining why the student was

wrong. For K, the only step of the journey he needed my guidance on was from a place

of defensiveness to a place of curiosity. The empathy and responsibility he took on next

were all decisions he made independently.

Story 2

From the moment I began teaching her, I really liked B. Despite being young in years,

it was clear B had a great awareness of who she was and what she wanted. The outward

message B always projected (as one of my colleagues so eloquently put it to me once),

was ‘If you’re respectful, I’ll be really sweet. But if you mess with me, I’m going to f**k

you up’.

One occasion I remember so clearly was during a class period where I wasn’t teaching.

B had disagreed with another teacher on how a learning activity should be run and refused

to back down. The situation became messier and messier and eventually B had been

dismissed from the class and I had been tasked with getting through to her.

As soon as I met with B, it was incredibly clear that she felt so very angry: she was

standing in the hallway kicking the wall and cursing rapidly under her breath. Accordingly,

I said ’Hi B’ to alert her of my presence. I said nothing else for the time being. Instead,

I sat on the floor of that hallway, began grading papers and just allowed the two of us to
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feel what needed to be communicated but didn’t need to be said: that her energy levels

were dropping gradually from boiling anger to a place where she felt more in control and

communicative and that I was happy to meet her there when she was ready.

Eventually once B had reached a level of calm and engagement, she slid down to sit on

the floor next to me. At this point, I pulled out a loose sheet of paper from my pile and

began a few games of tic-tac-toe with her. When B cracked a smile at having beaten me

for the second time in a row I asked her: ‘B, You know that I think you’re fantastic and that

I have your back, right?’ I waited for her to nod before continuing. ‘The incident that just

happened in class, what’s up with that?’ I asked for her version. No sooner had the words

left my mouth that B’s expression darkened again and she uttered a few choice expletives.

I paused a few seconds to let the atmosphere relax a little more again before continuing:

‘It’s totally ok to feel the way you do’ I reassured her, ‘But we need to figure out together

what we can do next.’ B again expressed adamantly that she didn’t want to do the activity

the teacher’s way. ‘Ok,’ I thought for a few seconds, ‘Well, what if we do it *slightly

different way that still meets the teacher’s learning objectives but is a bit closer to what

B wanted*.’ ‘No,’ she responded, this time thoughtfully, ‘But we could.....’ And so a

constructive dialogue began.

After our conversation, B went back and talked things through with her teacher. From

what I was happy to hear, it was a productive conversation that gave them both insight into

collaborating more successfully in that class. B taught me through her non-verbal signals

about the importance of giving students the space they need, while still being present for

them. I felt a temptation initially to get an explanation from B for her behaviour, but then

came to understand that I never needed one after all. So often, understanding a student

isn’t about forcing them to explain complex feelings and decisions that they themselves

don’t even fully get. It’s simply about the two of us teaming up and saying ‘what’s next?’
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4.3.2 Stories in different languages

I often tell my students that learning math is equivalent to learning a different language.

It gives us a whole new vocabulary to discuss the beautiful patterns and phenomena we

observe in the world around us with pinpoint precision. The language of mathematics

has been evolving over many centuries into an extensive set of conventions now embraced

through academia, dictating how mathematics should be written, thought about and ex-

pressed.

If we think in terms of languages of the world, whether a student’s first language is

English or Swahili or Korean has no bearing on their intelligence or ability. I believe the

same is true about the language in which a student expresses mathematical thinking. How

well-versed a student is in the conventions of academia and how easily they pick up on

these conventions varies vastly depending on the individual. In this subsection, I discuss

learning journeys with specific students who were strong mathematicians but who initially

spoke math in different languages.

Story 1

At face value, E seemed to fit the stereotype of ‘difficult student’ perfectly. He was

unengaged and uncooperative in class and wasn’t turning in homework assignments. When

I reached out to his other teachers, they uniformly reported that this behaviour was also

typical in their classes.

Following up with E about homework was like pulling teeth. He shrugged, gave one

word responses and asked repeatedly if he could leave. After pairing E with multiple

members of the class and never seeing his productivity increase, it was time to dig deep

and really try to understand him. ‘E,’ I approached him at the end of class one day, ‘Could

we meet up this afternoon? I’d like us to check in.’ Cue shuffling and nervous glances

everywhere but at me. ‘Ok’ he replied.
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When E arrived, I asked him to explain how to do the first problem on the latest home-

work assignment. As he began to talk, in a tone that wasn’t without enthusiasm, I noticed

clear logical reasoning, good attention to detail and signs that he had in fact given the

problem previous thought. I twisted the problem on the fly and asked E how he would

approach the new modified problem. Again, his answers were coherent. He was reflective

and coming up with fresh new ideas himself.

‘Good job, E!’ I high-fived him. ‘Could you write down what you just told me on your

worksheet?’ E picked up a pen and looked blankly at his worksheet for a while. ‘I don’t

know how,’ he declared hopelessly. ‘Well what did you just tell me? What’s the first step

to beginning the problem?’ Slowly, painstakingly we arrived together at a written answer.

During this process, I gained a little insight into how E’s mind worked. Although an imag-

inative mathematician and a very able problem solver, E struggled with the multitasking

process of holding complex layers of ideas in his head while simultaneously turning them

into words to transcribe onto paper.

‘Would you like to turn in future assignments as oral presentations?’ I asked E at the

end of our meeting. For a brief second, I saw his eyes light up as I’d never seen before.

Outwardly, he simply shrugged and said ‘Ok, I can do that.’ From that day onwards, E

came to every single one of my office hours without me ever needing to ask him to. Each

time, he declared understatedly that he’d come to give his presentation. After reasoning

through each problem out loud, we’d work to write at least one full answer down together.

I became more mindful to direct E’s time during class to coming up with ideas with his

partner and just jotting them down as mind maps, allowing him to turn those into a more

coherent written form after class, away from time pressure or fear of judgement from his

peers. As time went on, E’s in-class participation improved dramatically.

For E and I, it was never about avoiding the problem. It was about tackling it head
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on, while still honouring the type of learner E was and the type of mind he had. Once we

found an environment that was right for him, E’s dedication and resilience were incredible

to witness.

Story 2

When people ask me why I love to teach, one story I often share is S’s story. S is

a student I’ll never forget, because of his unwavering positivity, because of his shining

mathematical talent, because of his generosity in helping other students, but above all,

because of his incredibly unique background and style of communication...which actually

held him back for so long.

The first time I talked to S outside of class was after the first quiz of the semester, which

he had bombed: he hadn’t even been able to get ten percent of the points. My goal was

to find out if S had somehow been misplaced into the class, or if there was some other

circumstance holding him back. I remarked gently that this quiz probably hadn’t been his

finest mathematical moment and handed him a piece of chalk. ‘I’m just not good at math’

S said dejectedly. ‘Well, could we try the first problem again? I want to see a bit more of

your thinking and I promise I’ll help you if you get stuck.’ S stared at the question for a

long moment and told me that he just didn’t know how to begin. I read the problem to S

a few different ways. On the final reading, his eyes seem to light up and he made a tiny

motion towards the board, only to draw back with an ‘I’ll probably get it wrong.’ ‘Well if

that happens, we’ll fix it together,’ I prodded. To my amazement, S shyly picked up the

chalk, began talking and within a minute had a perfect solution. We proceeded similarly

through the rest of the quiz. ‘Feeling a bit better about this quiz?’ I asked S. ‘Lots better,’

he nodded.



121

After this one to one conversation, I began paying attention to S in class through a

slightly different lens. Often I’d approach him and ask what question he was solving,

since it was unrecognisable through looking at his work. He’d show me the question and

I’d step back and remark: ‘S, you’re clearly solving something, but it’s not this.’

As I got to know S’s background, I realised we had a lot in common. He’d grown up

speaking English (as had I), but, just like for me, it was a different form of English than

white American English that textbooks and exam questions are written in. During my first

semester living and teaching in the US, one of the biggest culture shocks for me was how

differently math problems were worded than what I was used to-different enough that I’d

often have trouble parsing what they were asking. The saving grace for me was that I knew

all the math content I was teaching very solidly, I just had to get at what the questions were

asking. For S, he was required to do both at the same time. The language that he spoke

at home and with his friends simply never matched up to the language he saw on official

exams at school. Through all his struggles, his mind had never quite identified the problem,

nor figured out how to bridge the gap. To make matters worse, S’s confidence took such

a battering that often, even when he did understand the question, he’d still second-guess

himself, convince himself he was wrong and either leave it blank or write something else

entirely. And so, S had always struggled on tests. He told me that he wasn’t good at math,

but really, once he understood the English he was outstanding mathematically.

I began assessing S orally. It was essentially the same as giving him written assess-

ments. He didn’t need mathematical hints. What he did need was for us to read through

the problems together before he began and to be able to ask a couple of clarifying ques-

tions about wording. Just by making this change, his scores began showing dramatic

improvement. Even better, since parsing questions was a collaborative exercise each time,

he began getting better and better at doing this himself. By the end of the semester, his
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written assignments and tests were unrecognisable from what he’d been turning in at the

beginning. As his grades improved, so did his confidence. More and more, I started send-

ing confused students to S, because he was growing into such an excellent resource to his

classmates. It was clear he never forgot where he started off, because the patience and

level of encouragement he displayed with his peers were simply inspirational. Over the

course of the semester, S’s tests improved by multiple letter grades and S himself grew

into a mathematician who explained sophisticated ideas with clarity and self-belief.

Why do we need to make math a more diverse and inclusive space? There are many

good answers to question, but one answer I’d give personally is ‘because of young men

like S.’ There are many languages to express math in and many ways students can show

flashes of brilliance. For those flashes to grow into a more constant light, different young

mathematicians require different forms of mentorship.

4.3.3 Stories of getting to know each other

I wrote this section because I think it’s of vital importance to first think of students as

humans before considering their role in a math classroom and of myself as a human before

my role as a teacher. I don’t think that making my classroom a human place should involve

pushing that any given level of ‘openness’ is the optimal one. What I do believe in is that

it is just as important to get to know each of my students as people, as it is to get to know

them as mathematicians. To me, this means honouring their boundaries, showing a little

bit of vulnerability where appropriate and creating a space where learning is fun. I think

in the end, we’re all more authentic and more curious when we feel free to be ourselves.

Story 1

After working with several hundred uniquely wonderful students, whenever someone

asks me for a story about a student who’s inspired me, A is one who jumps out immedi-

ately. When I first met A, she was a quiet girl who flew under the radar. At the time, I was
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teaching a large, advanced math class in which A was one of only four female students.

She never spoke in class, which prompted me to try to get to know her outside of class.

A and I understood each other straightaway. We found early on that we had multiple

shared non-mathematical interests and also that we both felt the struggle of being an in-

troverted woman of colour in math. At first our interactions were mainly talking through

homework problems during office hours but they quickly grew into more broad math men-

torship through walks on campus and ice cream sessions. The thing I appreciated mathe-

matician A for the most was her amazing versatility: her ability to jump effortlessly from

the discrete (as in topics from abstract algebra), to the continuous (as she explored real

analysis problems). A showed herself to be a formidable on-the spot problem solver, who

could also sit down for hours to untangle the complex details of someone else’s jumbled

proof. One of my favourite moments ever as a teacher is the first time, after several weeks

of working together outside of class, A raised her hand during an in-class discussion.

Around the time when A began teaching herself topology and wowing me with how

fast she was progressing, I started trying to get A more mathematical mentorship. How-

ever, whenever I brought her up to my colleagues, I received the same answer (in slightly

different words) each time: ‘I don’t really know A. She’s just so quiet and she never talks

to me.’ Over the next several months, I advocated for A for various opportunities, both

verbally and through letters of recommendation. As A took hold of her opportunities, her

mathematical confidence grew. Much later, she came back to TA for one of my classes

and did an outstanding job, where she really listened hard to what each student had to

say. Through our own experiences, A and I both knew what it was like to be a mathemati-

cian who wasn’t heard. I’ll forever treasure those precious people that listened to me when

I first tentatively began and set me up on a journey to discover and fall in love with math.

Years later, standing in my mentors’ positions and listening to A was one of the biggest
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privileges I’ve ever had. If I could ask one thing of math teachers and professors, perhaps

I’d phrase it as: ‘give each of your students an opportunity to surprise you.’

Story 2

From my first class with him, I could tell that H was bright, talented and wanted to

succeed. I could also tell that he was unhappy in the class. He was very much used to

math being a solo activity where he had to do everything himself and so was resistant to

asking for or giving help. H didn’t participate in class discussions. Almost every time I

heard H speak, it was to vent his frustrations about not understanding something, or not

being able to solve a problem. The uncertainty of math problems being too challenging

to solve by oneself, but becoming more manageable as a collaborative effort was an idea

H struggled to come to terms with. I summoned H to a couple of meetings outside of

class where we tried talking through making the transition and what this could look like.

However I could still feel resistance from H.

It was around this time that I learned from another teacher that H had signed up for a

small extra-curricular activity with only a few other students in it. Immediately, I saw this

as my opportunity for an ‘in’ with him and so I signed up to TA for this activity, which

actually proved to be fun and instructive in its own right. During this activity, I got to

know H in a setting completely removed from a math classroom. Slowly H began to open

up and I really got to know him as a person. From stories about his family, to which video

games he liked to play, H transitioned from a student who would give one word responses

to my questions in math class, to someone who was animated, excitable and very talkative.

As I hung out with H regularly during the extracurricular activity, I saw his engagement

in class improve correspondingly. He began to participate in group discussions and if
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he was unhappy about a concept or a learning activity, he became more forthcoming in

articulating what would make him more comfortable.

I really saw the turning point of this class for H to be midway through the semester,

when I’d given out a worksheet with a particularly difficult challenge problem. There was

something appealing in the problem to H and he became instantly hooked on it. I’d see him

thinking about it and scribbling in his notebook between classes. Often he’d come to me

to share new progress or to ask a clarifying question. It was clear that he was frustrated by

the problem, but this frustration was different: it was productive, collaborative and rooted

in curiosity. After a few days of hard work, H had solved the problem entirely. Since

he’d now had some experience of speaking out loud about math to me and getting more

comfortable with being stuck, I challenged him to step up as an informal TA and help other

students with the problem. When the semester first began, H wouldn’t work with anyone,

but what he did at this point was outstanding. He thought about the problem from different

angles and handled working with his classmates in such an encouraging, positive way. If

their approach was different from his, instead of dismissing them, he really put in effort

to understand their thought process and to see it through with them. This problem set

launched H into a much more active class participant, who worked very well with multiple

other students for the second half of the semester.

For me, I think there’s nothing wrong with a student being an introvert, or often en-

joying math in a setting of solitary contemplation. Indeed, this is something many math-

ematical researchers enjoy. However, I really believe that different students get to know

authority figures at different speeds and the setting in which they’re comfortable doing so

may vary a lot. I would have been doing H a disservice if I had made negative assumptions

about him, without providing him the setting he needed to challenge those assumptions.

Getting to know H was wonderfully rewarding, both for myself and for what a huge posi-
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tive contribution he grew to make as a member of my class.

4.3.4 Stories of not speaking, but simply understanding

Something that I think is absolutely wonderful about working with teenagers is that

they’re incredibly communicative and very real about how they’re feeling. However, this

communication is varied in style and medium and unravelling it can take profound listen-

ing and reflection. Just as students can communicate in different languages, they can also

communicate without words. Sometimes finding the right words can be difficult, certain

emotions seem not to have words and sometimes being required to speak can feel like too

much to a student. In such scenarios, I think forcing the student to verbalise in any given

way almost always does more harm than good to the their well-being. In fact, each time

it’s been necessary, I’ve found it a challenging but massively rewarding puzzle, to word-

lessly communicate everything which needs to be said. Cracking such a puzzle in the past

has led my students and I to the huge upside of an improved mutual connection.

Story 1

W was never a particularly vocal or outspoken student, but there was a certain charm

about him that made him popular and well-liked among his peers. Often, I’d see him

chilling with a small group of students, eyes twinkling, as if thinking about some private

joke. In my classes, W was always that kid who sat quietly in the back, never causing

trouble, never drawing attention to himself. When assessing his contribution to group

work or his written assignments, they were always fair: never outstanding, never poor.

W never raised his hand in class, nor chose to attend office hours. Once I established

from his other teachers that this was a pattern, I took it upon myself to just poke him once

in a while and talk math. And so around once a week when I ran into him, I’d ask casually:

‘Hey W! Want to talk math soon?’ or ‘How’s this week’s assignment for you? People have

been telling me it’s tricky. Want to stop by and tell me how it’s going for you?’ W would
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always accept such invitations quite cheerfully, but would never initiate such interactions

himself.

Just like this, I had the privilege of getting to know W. I never felt I knew him too

deeply, but I was very happy to know him at the level he seemed comfortable opening up.

I got to know him as a young mathematician through sitting and listening to him explain

his ideas to homework once a week. Once I put him at the board, he was surprisingly

comfortable there and I learned that he’s a student who catches onto new ideas remarkably

quickly: much faster than I had known by just looking at his assignments. In addition, I

got to know him a little as a person as he talked about his hobbies and once in a while, the

ins and outs of his friendship group.

When I wrapped up my final class of the semester, my students very generously gave

me a round of applause. A few students remarked that they’d miss the class. W didn’t

say anything. He put his things in his backpack and it seemed as if he’d simply walk out.

However as W passed my desk, he stopped, made eye contact with me and stretched out

his arms and hugged me. It was a long hug that lasted maybe 20-30 seconds, where I

simply stood and allowed it to continue, where W non-verbally communicated the things

he wanted to say. Prior to that interaction, W had never hugged me. After it was over, W

walked silently out of my classroom and we haven’t talked since. I feel really blessed to

have been W’s teacher. I really saw through him that student-teacher conversations don’t

always have to be with words or answered questions-sometimes just being present and

authentic is enough.

Story 2

The first time I met R, she was crying. Another teacher had asked her what was in-
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tended to be a routine question, but this question had caused such anxiety that she’d shut

down. Unable to speak, she’d retreated to a corner where she was unresponsive and further

prodding had simply led to her cry harder. Since the teacher had multiple other students to

attend to at the time, I volunteered to work with R. I walked over to her and said ‘R, let’s

get out of here for a bit,’ simply removing her temporarily from the physical setting she’d

felt so much pressure in.

I took R to a pretty part of campus and we walked around that area in laps. At the be-

ginning of the first lap, I told her: ‘I’m not going anywhere. I promise we have all the time

in the world. You do you.’ And so, we walked for a long time. Once every few minutes,

I’d make a friendly remark, ensuring it was never a question, or something R would feel an

obligation to respond to before she was ready. I told her that I taught math and a little bit

about the sort of math I found interesting. I pointed out one of the campus buildings that

I knew. During this time, R had started to present as a little more relaxed. She made eye

contact with me increasingly often. Eventually she declared without prompting: ‘I think

I’m ready to go back now.’

Later, I filled in R’s teacher on how our interaction had gone. Because I’d been able to

build a bit of rapport, R’s other teachers enlisted my help a few more times in communi-

cating with her. As I spent more time with her, I learned a little more about who she was.

R wasn’t a shy student by any means. She got very good results academically and loved

to raise her hand in class and participate in discussions. However a couple of scenarios

terrified her.

For R, making decisions was often a frightening and stressful process. When asked

a question that required a decision to be made, she’d often shut down. And so, R and I

would make decisions together. Often, I’d simply sit with her and help her list out what

the options were. When I saw her grow more tense and speak less, I relied on her non-
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verbal cues. Observing her micro-expressions as I slowly read through each option helped

us eliminate certain things. Another thing that helped when talking became more difficult

was writing things down. I remember several silent conversations I’ve had with R where

we just scribbled notes to each other on scratch paper. Some of these notes consisted

of words, but other times, they would just be pictures: a face with an expression on it

communicating how R felt at the time, or cartoon animals to lighten the mood and take a

break from our task when things got too stressful.

Another aspect of classroom life that R found difficult was when she encountered a

difficult math problem that she couldn’t reason through on her own. The shame she ex-

perienced with this made her panic so much that eventually, it shut down her ability to

continue working or communicating productively. In this case, having her write down

what was confusing, instead of having to talk about it helped her articulate. I found that

she also found it intimidating to just work with a a teacher one on one when this was going

on, so I enlisted help from her friends. This just involved me sitting with R and one other

student and asking that other student to give a few thoughts on the problem. Hearing a

peer talk through things gently helped ground R to focusing on the problem at hand. It

also often helped the other student understand the problem just that bit more deeply.

I really enjoyed all my conversations with R. She often had fresh, interesting ideas

on how to think about math concepts. I also discovered she was a very well-rounded

academic, often telling me exciting things she’d learned in other classes and how she’d

embarked on independent mini-projects taking these concepts further. While many of our

conversations were non-verbal and communicated via drawing pictures or through body

language, I appreciated her candour and how she always tried her best to be open with me.

So often, as teachers, we can fall into the trap of pushing a student to give an immediate

answer to a question, or of communicating in a way we’re expecting. I was privileged to
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meet in R an interesting, thoughtful young woman whose only difference from her peers

was that sometimes she spoke without words. Through her, I learned a different way of

talking.

4.3.5 Stories of setting differences aside

I find that my classroom is a more curious, accepting and connected place when there is

room for disagreement. Some of the most interesting and important lessons I’ve learned as

a teacher have been from students who have very different views from me on learning or

on the world around them. Putting myself in these students’ shoes, I’ve reflected on how

I can get the best out of them despite our differences. I’ve worked to help them find their

place and sense of belonging in my class and do good productive work, within a culture

of mutual respect. Throughout this process, I’ve really internalised that the more I give

my students the space they need to decide on their own opinions, the more willing they

become to adjust those in light of what they learn from me and from their peers.

Story 1

What causes racism? Many incredibly wise people have already tried to answer this

question and so, I don’t necessarily feel qualified to give an answer. In my opinion, al-

though racism is widespread and often systemic, just like anything else in the world, each

individual’s opinions are informed by their unique circumstances and then by the choices

they make inside those circumstances.

A student that I’ll never forget is T, a white boy who I tried my best with as a teacher

and who I really believe eventually tried his best too. When T first came into my class, it

was clear he was taken aback to have me, a woman of colour, as his math teacher. Even

when I gave an instruction that had been understood by all his classmates, he’d sometimes

accuse me (a native English speaker) of not speaking English well enough for him to

follow. He often challenged my authority. Several times, he was outwardly aggressive
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and I remember one occasion when he responded to a difference in opinion with me by

throwing chalk at me. T’s disrespect for his classmates of colour was clear. When assigned

to a group with a student of colour, he would refuse to work with them. When I inquired

why, he told me that cooperation was impossible because the student in question (despite

actually being a native English speaker) didn’t speak English.

Despite T’s viewpoints and his outward hostility, I picked up early on that this was a

student who really wanted to do well in my class. I also realised that having an ethics

debate with him would only antagonise the situation. I needed to challenge T’s viewpoints

not through words, but through actions. And so the first thing I did was meet with T

individually, where I communicated exactly what my expectations were for his conduct

and what the precise consequences would be in cases when they weren’t met. I identified

a mutual starting point: ‘T, do you agree that the classroom should be a space where every

student has the right to feel safe?’ and pointed out a few specific behaviours I’d observed

from him, without voicing any opinions or judgements. ‘Here’s what I’m going to do

going forward,’ I informed him. ‘If you raise your voice or throw objects when speaking

to me or to another student during class, I’ll send you out for a short five minute time out.

There’s no judgement here, just a chance for you to reset and think about how you want

the rest of the class period to go. If it happens again, you’re out for the rest of that class.

We’ll talk after class about whether it’s appropriate for you to come back the following

class and what changes need to be made.’

After our conversation, it was very important to act on my words. Whenever T over-

stepped boundaries, I always responded immediately by enforcing time out. To his credit,

he responded well, always returning from time out ready to work and I never had to dis-

miss him for an entire class period. Although sometimes it felt like one step forward, two

steps back, things did improve slowly. One thing I noticed at this point was that T was
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having trouble finding his footing socially in the class and his lack of support compounded

his frustrations. After considering my roster for a very long time, I switched up seating in

that class. The student I placed T next to was mild-mannered and mellow individual, who

clearly exuded a quiet, unshakeable confidence. I was optimistic, but by no means certain

it would work well so I was definitely excited when it did.

T started to do good work with this classmate and through him began having more

positive interactions with other students. They’d come to office hours together and slowly

T started to open up. T came from a small, rural midwestern town where he’d never had a

non-white classmate before, let alone a person of colour as an authority figure. His family

struggled financially and so T valiantly balanced schoolwork and taking on odd jobs to

help his family out. He saw a good education as a ticket out of poverty and so put a lot

of pressure on himself to succeed academically. I really came to admire T’s courage and

persistence and I feel that I earned his respect over time by consistently communicating

and holding him to high standards behaviourally, while never telling him which opinions

he ‘should have’ or how he ‘should feel.’

Once T had a small group of classmates he worked well together with, I started slowly

helping him integrate into the class community as a whole, getting to know those students

who he’d originally believed were so different from him. I started small: if T asked me a

question, I’d call on another student to give a one-line hint. This built up to having that

student sit with T for a couple of minutes under my supervision and explain their solution

and eventually the two of them working on a difficult problem together from beginning to

end. Throughout this I felt T’s viewpoints on race shift little by little, just from gaining

first-hand experience of being in a diverse group of people, helping and motivating each

other inside a math classroom.

T definitely had opinions that I found challenging and strongly disagreed with. How-
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ever, I learned that unfamiliarity and fear of the unknown played a bit part in forming

those opinions. When I look back, I feel like it was one of my most rewarding teaching

experiences finding ways to challenge T’s world views and broaden his perspective and in

that process, actually broaden my own perspective. I learned that my math classroom can

be about learning so much more than just math. Through choices and actions it can be a

space where students take a step forwards from who they are as a person towards who they

can become.

Story 2

From the first day of class, it was clear that J didn’t want to be there. He was unco-

operative and mutinous in so many ways. When asked to work on problem X, he’d make

comments just loud enough to be heard that problem Y would be a better choice. When

asked to stand, he’d remain in his seat and during times when asked to sit at his desk, he’d

suddenly have the most important reason to walk across the classroom. When asked to

work in a pair, he’d inevitably form a group of four or five and then waste no time telling

his whole group that he thought the whole exercise was pointless.

After an unsuccessful first quiz, I met one to one with J and asked him to do his correc-

tions in front of me. J laughed sheepishly, a first sign of vulnerability and insight into his

classroom attitude so far. ‘You see’ he said ‘It’s been a while since I did math and when

I did it before, it was different from this.’ ‘How so?’ I asked him. I came to understand

that while J had done well at his previous math classes, they had all been very much in the

flavour of memorising formulas and solving a very narrow set of problems on tests just

like the ones in class. ‘I’m on your side and I want you to do well,’ I reassured J, ‘But I

wonder...do you have any ideas why we do things the way we do in our class?’ We talked
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a little about growth mindset and mathematical independence before completing the rest

of J’s corrections.

After that initial talk, J’s attitude in class was noticeable better and his quiz scores

began showing encouraging early signs of improvement. However what I noticed from

J was that the confidence still wasn’t there. He was still overall a passive participant in

his own learning, often just nodding along as he watched the math happen. One day, as

I passed J and his partner in class, I suggested they switch over writing so that J held the

chalk and put their ideas on the board. Although initially reluctant, I noticed that he did

great and as the class went on, I saw him happier and more confident than I’d ever observed

before. However this didn’t last: after a class or two, J reverted back to passivity.

Determined to hold onto the progress we’d made, I wrote J a note one day and slipped

it onto his desk before class started. My note simply said ‘Did you know that I ask you

to write on the board because you’re great at it? I really enjoy seeing your awesome ideas

in action.’ As J read the note, his expression changed. He got out of his seat, turned to

his partner and said ‘Give me the chalk!’ From that moment onwards, J took control of

his own learning. Often he and his partner would both be working at the board together,

each brainstorming their ideas and bringing them together to get a final polished set of

solutions. However J never relinquished his chalk, nor his initiative to think hard and to

put his own ideas on the board ever again.

By the end of the semester, J had grown into an excellent young mathematician: confi-

dent and assertive, curious and exploratory. He brought a struggling friend from a different

class to our final class together. When his friend inquired why I wasn’t telling them how

to solve the problem, J’s response made me so proud to have taught him. He said: ‘That’s

not how we do things in this class. Here, let me show you!’ before taking his now-familiar

spot at the blackboard and continuing on right where he’d left off last class with his math-
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ematical exploration.

Change is scary to all of us, as teachers and as students. Sometimes there can be quite

a bit of pain in growth and I’ve come to appreciate just how important it is to honour that

when asking students to adapt. There are so many students like J out there: who can rise to

expectations higher than they’d ever imagined, just as long as those expectations are built

out of concrete tangible goals. ‘J, I need you to take more initiative’ is a hard unattainable

goal that’s in the sky, but ‘J, I would like you to brainstorm your ideas for this problem on

the board’ is very attainable and gave both of us a solid starting point.

4.4 Conclusion

For a long time, I thought about how I should conclude this chapter. I guess the hardest

part was that it didn’t feel right to conclude something which is by no means over for me.

So in the end, maybe instead of a conclusion, I should think of this as a new beginning.

It’s a beginning where I’ll take the memories from my wonderful, inspiring students I’ve

taught in the past into my teaching future.

As I leave graduate school, the place where I discovered the infinite joy in being a

teacher, I’ll carry forward with me the wise words of one of my teaching mentors: ‘Teach-

ing is about living in the grey area.’ Through time, I’ve reflected and come up with my own

interpretations to these thought-provoking words. If I were to summarise here, I would say

it means letting each individual student’s personality come out and allowing each collec-

tive class to shape what they want the culture of their learning environment to look like.

It means very occasionally throwing plans out of the window and even more occasion-

ally needing to break hard rules. In sum, I think of the ‘grey area’ as avoiding telling my

students ‘you should...’ and instead saying ‘why don’t you show me?’

When I set out to write this chapter, I had no lofty aspirations of judging or talking
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about math education as a whole, I simply wanted to give myself space to reflect. I’ve

reflected on my classrooms, on office hours, on taking walks with my students, on eating

dessert, dancing, making paper airplanes, cooking, writing silly poetry with them and on

those raw, authentic moments when I’ve walked the line between being an authority figure

and a human mentor with vulnerabilities, not so far from my students’ own. Similarly, as I

now think about what my ‘grey area’ looks like, I think of a space with infinite possibility

and only a few absolutes. My absolutes are the following:

1. Students will always communicate, but it may be at an unexpected level, or in an

unexpected language. The best I can do is to hear them in the way they’re asking to

be heard.

2. Students will always rise to high expectations, just as long as we’re ascending to-

gether, staying grounded in reality and starting from a place that they know.

3. Students will always be amazing, in their own fresh, unique, individualistic ways.

The best I can do is to help them tap into that, so that they can make decisions which

they themselves believe in.

I’ve learned to hold the unconditional belief that my students are the best, regardless

of how much math they know at the beginning of the semester, or how their struggles

outside the classroom affect them as learners. This doesn’t mean that I should turn a blind

eye to discipline issues, or that I should always agree with them or always give them the

highest grades. Rather, it means holding them to the highest standards behaviourally as

members of my classroom community and being consistent in communicating what my

expectations are. It means challenging them to become more independent, more empathic

and more curious about their academics and about the world around them. It means taking

action to hold clear boundaries. Above all, it means really hearing my students when they

disagree with me and letting them make their own mistakes and experience consequences
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(good or bad!) for their choices. Through all this, it’s my job to instil in my students the

conviction that I have their backs and that as a classroom community, we’re always on the

same team. My students have shown me time and time again just how high they can climb

and how much our belief in each other fuels them to succeed. They’ve also shown me that

when we look back, such success nearly always began with just one conversation, or one

worksheet that seemed so insignificant at the time.
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