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ABSTRACT

The focus of this dissertation is to develop a framework of L0 regularized statisti-

cal procedures to identify subgroups among regression coefficients and estimation

of subgroup-specific parameters. The proposed constrained discrete optimization

methodology estimates group labels by solving mixed integer programming problem

(MIP) via efficient algorithms. I develop key large-sample theory for the proposed

methods, including subgroup selection consistency and estimation consistency using

some new non-asymptotic bounds. Also, the R statistical software is made available

to the public for the proposed methods.

In the first project presented in Chapter II, I consider a high-dimensional regression

setting. The primary objective is to develop a dimension reduction method that

can identify homogeneous subgroups among regression coefficients and sparse feature

selection simultaneously. The resulting estimates of regression coefficients in each

subgroup share the same value. To encourage sparsity, a large subgroup of coefficients

is allowed to be estimated exactly as zero. To achieve this objective, I propose a

new L0 constrained optimization method, which is formulated as a MIP problem.

To implement this MIP method, I develop a novel algorithm with warm start via

both a discrete first-order method and segment neighborhood method, and establish

its convergence properties. This new approach is able to solve the MIP problem

with satisfactory accuracy in short time. To attain global optimality of the MIP

method, I reformulate the constrained optimality as another MIP problem that can

then be solved efficiently by Kelley’s cutting plane method. A sufficient condition for

x



consistent estimation of group labels is affirmed, which is proved to be the necessary

condition under which any method attains consistency of subgroup clustering up to

a constant factor. Surprisingly, to achieve the clustering consistency, the sample

size only needs to grow at the same rate as the sum of logarithm of the number of

regression coefficients and the logarithm of the true number of subgroups. A real data

analysis is used to illustrate the performance of the proposed method and algorithms.

In the second project presented in Chapter III, I consider a structural equation model,

and aim to estimate model parameters in causal mediation pathways in the presence

of high-dimensional potential mediators. I develop statistical procedures to select

sparse important mediators and to identify sparse causal pathways simultaneously. To

address the technical challenge, I propose a new L0 constrained optimization method,

which leads to an MIP formulation. To solve this MIP problem, I develop a new warm

start algorithm by using the discrete first-order method and establish its convergence

properties. This new algorithm is able to quickly attain a near-optimal solution. To

achieve the global optimality of the MIP problem, I reformulate it, so that I can

solve this MIP problem efficiently using Kelley’s cutting plane method. I present a

sufficient condition for the proposed method for the selection consistency of causal

pathways, which is proved as the necessary condition under which any method can

achieve the causal pathway selection consistency up to a constant factor. Simulation

studies and real world data analyses are used to demonstrate the performance of the

proposed method and algorithms.

xi



CHAPTER I

Introduction

1.1 Motivation

Constrained maximum likelihood (CML) is a methodology to enforce constraints on

the parameter space when finding maximum likelihood estimators (Schoenberg , 1997).

It utilizes prior knowledge as constraints to get more sensible estimators and generates

data driven hypotheses for further testing. In CML, continuous constraints have been

thoroughly studied and widely applied to a variety of fields (Hathaway et al., 1985;

Molenberghs and Verbeke, 2007). In contrast, discrete constraints are circumvented

by continuous surrogates due to its NP-complete computational nature. Some famous

continuous surrogates are Lasso (Tibshirani , 2011), truncated L1 (Shen et al., 2012)

and SCAD (Tibshirani , 2011). Although the continuous surrogates are popular in

practice, they face a lack of expressiveness when the discrete constraints they try to

approximate become complicated. For example, to approximate a discrete constraint

involving the basic “and” boolean operation or counting the number of discrete values

in estimators, the continuous surrogates either exert strong assumptions (Tibshirani

et al., 2005; Friedman et al., 2010; Ke et al., 2015) or introduce too many penalty

terms and tuning parameters (Shen and Huang , 2010). Fortunately, recent develop-

ments in optimization suggest that directly solving CML with discrete constraints

is not as formidable as statistics community thinks (Bertsimas et al., 2016, 2020).
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In fact, the discrete constraint formulation of a high dimensional feature selection

problem in (Bertsimas et al., 2020) can often be solved faster than its Lasso coun-

terpart. Inspired by this computational advance, my dissertation aims to solve CML

with complicated discrete constraints.

1.2 Statistical Challenges

Complicated discrete constraints give rise to new difficulties in CML. This section

makes a list of the complicated discrete constraints of interest and the entailed tech-

nical difficulties.

1.2.1 Homogeneity Pursuit in Coefficients in Regression

In high-dimensional regression, homogeneity in coefficients is pursued in addition to

sparse feature selection to achieve dimension reduction. Homogeneity emerges when

coefficients are divided into disjoint groups such that coefficients in each group are

approximately the same. As a special case, sparsity enforces a large group fixed at

zero. Moreover, homogeneity pursuit in coefficients is helpful in scientific discov-

ery and gives rise to higher predictive performance (Bondell and Reich, 2008; Shen

and Huang , 2010; Ke et al., 2015; Zhu et al., 2013; Jeon et al., 2017). In the cur-

rent literature, discretely constrained CML estimators for homogeneity pursuit are

approximated by continuous surrogates of discrete constraints. The continuous sur-

rogates are constructed by either penalizing distance between any two coefficients or

penalizing distance between neighbouring coefficients based on additional assump-

tions. The former over-penalize the distance between different groups especially for

large groups. The latter relies on high quality prior knowledge. In my dissertation, I

proposed a new L0 constraint formulation and analyze a new algorithm via modern

optimization technique and segment neighborhood method to explore homogeneity

in Chapter II.

2



1.2.2 Limit Number of Mediators in Exploratory Mediator Analysis

Structural equation models (SEM) play a central role in modeling causal pathways

in the literature (Hernán and Robins ; Fritz and MacKinnon, 2007; Preacher , 2015).

As a special case, SEMs are applied in exploratory mediation analysis to identify true

mediators among high-dimensional potential mediators, whose adjacent causal paths

directed from exposure and to outcome are both associated with non-zero coefficients.

Sparsity of selected mediators in estimator not only serves as a prior knowledge but

also is crucial to generate data-driven hypotheses to test whether the sparse mediator

assumption is true. In current literature, little attention is given to limit number of

mediators in exploratory mediation. In Serang et al. (2017), exploratory mediation

analysis is treated as feature selection and it limits the number of selected causal

paths from exposure to potential mediators and from potential mediators to outcome

in two separate steps. In Derkach et al. (2019), exposure is assumed to directly

influence a group of latent factors, which are associated with both the outcome and

a sparse subset of the potential mediators. The number of latent factors and the

number of their associated potential mediators are limited by Lasso penalty. However,

this method introduces strong assumptions on existence of latent factors. In my

dissertation, I proposed a new L0 constraint optimization method and analyze a new

algorithm via modern optimization technique to do exploratory mediator analysis in

Chapter III.

1.3 Summary of Objectives

With a focus on the key challenges presented above, I organized this dissertation as

follows.

Aim 1: To develop an L0 constraint formulation, analyze a new algorithm via mod-

ern optimization technique and derive conditions for grouping consistency to explore

3



homogeneity.

Aim 2: To devise a new L0 constraint optimization method, create a new algorithm

to solve the optimization problem and obtain conditions for mediator selection con-

sistency to do exploratory mediator analysis.

Two projects are presented to address the above challenges, respectively, in Chapter II

and Chapter III. More details on backgrounds, literature review, existing methodol-

ogy and numerical illustrations can be found in the respective introduction sections

of the two chapters.
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CHAPTER II

Supervised Homogeneity Fusion in Regression

Analysis

2.1 Introduction

Identifying homogeneous subgroups of regression coefficients sharing the same value

has received increasing attention due to its flexibility of integrating with present bio-

logical knowledge for data analysis and its higher predictive performance. Moreover,

the homogeneous groups naturally provides a structure that can be helpful in scien-

tific discoveries. Regression under the homogeneity setting can be summarized into

two types: subgroup analysis and grouping pursuit. For the former, homogeneity

assumption is crucial to explore the individual attributes and account for the simi-

larity among some individuals at the same time. See, Ke et al. (2016); Shen and He

(2015); Ma and Huang (2017); Lian et al. (2017), among others; For the latter, the

homogeneity lies among covariates. In this sense, covariates having similar effects are

aggregated together to reduce estimation error and improve interpretation, especially

in high-dimensional analysis. Related literature include Bondell and Reich (2008);

Shen and Huang (2010); Zhu et al. (2013); Ke et al. (2015); Jeon et al. (2017). It is

grouping pursuit that we shall focus on in this paper.

In environmental health sciences, forming exposure mixtures of toxic agents such as

5



endocrine disrupting compounds (EDCs) (e.g. PBA, phthalates and heavy metals)

remains an unsolved problem. A analytic task of interest is to identify forms of toxic

agents and evaluate their effects on human health outcomes. Consider a set of p

toxicants denoted by, say, X1, . . . , Xp. We may consider a linear regression analysis

Y ∼
∑p

j=1 βjXj+Zα to evaluate effect of a mixture (i.e. a predictor) A =
∑p

j=1 βjXj

on outcome Y , where Z is a set of covariates. In this model, this mixture
∑p

j=1 βjXj

serves as a predictor, where coefficients βj may take zero, so only a subset of the p

toxicants is used in the configuration of X. In the current literature, principal com-

ponent (PC) analysis approach has been the default choice of the method to derive

A. This however, has never gained popularity in environmental health sciences due to

an implicit cancellation among toxic agents. This is because a PC type mixture has

both positive and negative loading coefficients, which are determined in an unsuper-

vised learning fashion with no use of outcome Y . Thus, such PC-type mixtures often

lack meaningful scientific interpretations. Alternatively, in practice scientists often

consider a cumulative exposure by a sum of certain selected toxicants, called a sum-

mixture. For example, SumDEHP is a sum of four phthalates, MECPP, MEOHP,

MEHHP, and MEHP, which quantifies DEHP exposure from products such as PVC

plastics used in food processing/packaging materials as well as building materials and

medical devices Schettler (2006); Kobrosly et al. (2012); Braun et al. (2012); also see

Marsee et al. (2006); Marie et al. (2015) for another sum-mixture SumAA that adds

three extra phthalates MBP, MiBP, and MBzP on the sum-mixture SumDEHP. Tech-

nically, a sum-mixture takes a form of
∑p

j=1 βjXj, where coefficients βj are binary,

taking values of 0 or 1. The objective is to make an optimal selection of a subset of

Xj’s in the regression model. This paper is motivated by this scientific problem, and

plans to solve it using an L0 sparsity penalty on βj’s.

The new statistical method developed in this project will be applicable not only in our

motivating example but in many other practical studies to answer important scientific

6



questions, which otherwise cannot be answered with existing methods. The salient

feature of grouping pursuit is simultaneous estimation of grouping and sparseness

structures. Now consider a linear model with homogeneity assumption as follows,

Y =

p∑
j=1

Xjβj +ZTα+ ε, βj ∈ {0, γ1, γ2, . . . , γK}, j = 1, . . . , p, (2.1.1)

where ε follows from a normal distribution with mean 0 and variance σ2, and the

coefficient βj, j = 1, . . . , p belongs to a set including 0 and K unknown different

nonzero values γk, k = 1, . . . , K. Here both α = {αj, j = 1, . . . , q}, β = {βj, j =

1, . . . , p} and γ = {γk, k = 1, . . . , K} are unknown parameters. The goal of this

paper is to develop an approach to estimate γ, β and α simultaneously. Clearly, a

straightforward optimization problem can be written as follows,

min
α,β,γ

n∑
i=1

(Yi −Xijβj −ZT
i α)2, (2.1.2)

subject to: βj ∈ {0, γ1, γ2, . . . , γK}, j = 1, . . . , p,

‖β‖0
def
=

p∑
j=1

I(βj 6= 0) ≤ s,

where the first constraint is used to control the degree of grouping and the second

constraint is for the sparsity. Here, K, s ≥ 0 are two tuning parameters. The opti-

mizing problem without the grouping constraint degenerates to the well known best

subset problem (Miller , 2002) with subset size s. The cardinality constraint makes it

widely dismissed as being intractable as NP-hard (Natarajan, 1995). Instead of the

best subset problem, the regularized counterpart (2.1.3), which is,

n∑
i=1

(Yi −XT
i β −ZT

i α)2 + λ‖β‖0, (2.1.3)

obtain considerable interests due to its computational merits. Different alternatives

7



have been proposed to overcome the computational problem, like LASSO (Tibshirani ,

1996), SCAD (Fan and Li , 2001), MCP (Zhang et al., 2010), among others. Recently,

Liu and Li (2016) propose an efficient EM algorithm to approximate problem (2.1.3).

However, as pointed out in (Shen et al., 2013), the best subset problem and its

regularized counterpart (2.1.3) may not be equivalent in their global minimizers due

to the non-convex property. Moreover, tuning involves discrete parameters K in the

best subset problem, which is easier than that for its regularized counterpart (2.1.3)

with a continuous parameter λ > 0. This phenomenon has been also observed in (Gu,

1998). Shen et al. (2012) proposed to use a truncated L1 function as a computational

surrogate to approximate the L0 function in the best subset problem, which however

involves extra tuning parameters to control the approximate error. Bertsimas et al.

(2016) first demonstrate that Mixed Integer Optimization (MIO) could be a tractable

solution method for the best subset problem.

The best subset problem is only a simplified version of our problem (2.1.2). The

solution of the optimization problem (2.1.2) gives us all distinctive values, γ, sparse-

ness structure, as well as corresponding subgroups of homogeneous predictors. As

will be shown in both the theoretical results and the numerical results, recovering

oracle estimator in the sense of simultaneous grouping pursuit and feature selection is

more difficult than that of feature selection alone. There is a paucity of literature for

guiding practice. Shen and Huang (2010) rewrote the problem as minimizing S(β)

with respect to β, where

S(β) = n−1

n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

+ λ1

∑
j<j′

Jτ (|βj − βj′ |),

where λ1 is a tuning parameter corresponding to K in problem (2.1.2) and Jτ (z) =

min(zτ−1, 1) is a surrogate of the L0-function, with τ > 0 being another tuning

parameter. It is easy to see that sparsity was not considered in their work. In addition,

8



an additional tuning parameter τ was included to evaluate the approximation error

between the truncated penalty with the exact condition in problem (2.1.2). Besides,

the pairwise differences penalties usually lead to redundant comparisons and extra

computational complexity. As an extension, Zhu et al. (2013) considered simultaneous

grouping pursuit and feature selection by adding additional penalties on the individual

coefficient, that is,

S(β) = n−1

n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

+ λ1

∑
(j,j′)∈E

Jτ (||βj| − |βj′ ||) + λ2

p∑
j=1

Jτ (|βj|).

Zhu et al. (2013) extended the method proposed by (Shen et al., 2012) to do pursuit

grouping and feature selection simultaneously under a much stronger condition with

a prior knowledge about the E-net. Proper prior knowledge no doubt will reduce the

computation burden and improve the estimation efficiency. However, as will shown

later in the numerical studies, inappropriate knowledge of the E-net usually causes

biased estimation and then leads to wrong group structures. It is always challenging

in practice to seek for a proper E-net, which makes the method less appealing. To

avoid exhaustive pairwise searching, Ke et al. (2015) proposed clustering algorithm in

regression via data-driven segmentaion (CARDS). They used a preliminary estimate

to determine “adjacent” coefficient pairs, thus their estimators depend on the initial

ordering of the coefficients, which could be not reliable when the value of coefficients

is small.

This article proposes a homogeneity fusion method to solve the problem (2.1.2) di-

rectly through MIO. Our main contributions are summarized in four folds: (a) To

the best of our knowledge, it is the first time that we formulate the group pursuit as

an MIO problem, which reduces the computation complexity to O(KP ) from O(P 2)

for the pairwise searching. This also provides a new framework for similar problems,

like parameter merging in meta-analysis. (b)The proposed method shares the merit

9



of integer programming in the way that it obtains a global solution instead of a local

solution. As we all known, those approximation surrogates, like CARDS in (Ke et al.,

2015), are usually only able to find a local solution. (c) Theoretically we establish

both finite-sample misselection error bounds for homogeneity pursuit problem (2.1.2)

and asymptotic normality for the estimates of parameters. Zhu et al. (2013) also

considered the theoretical investigation of constrained L0-version with strong condi-

tions on the prior knowledge E-net. Moreover, we give the necessary condition for the

structure consistency. (d) Nevertheless, the global solution is paid at the price of more

computation time. However, the difference convex (DC) programming used in (Zhu

et al., 2013) involves additional tuning parameters which requires extra workload. In

our implementation procedure, following a similar spirit of (Bertsimas et al., 2016),

we provide a warm start algorithm to reduce the computational time significantly.

Further, the convergence of the algorithm is theoretically assured.

2.2 Formulations for the Homogeneity Fusion

We present a brief overview of MIO, including the simply astonishing advances it

has enjoyed in the last twenty-five years. We then introduced the proposed MIO

formulations for the homogeneity fusion problem.
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2.2.1 Brief Background on MIO

The general form of a Mixed Integer Quadratic Optimization (MIO) problem is given

as follows:

min
α
αTQα+αTa (2.2.1)

s.t. Aα ≤ b,

αi ∈ {0, 1}, i ∈ I,

αj ≥ 0, j /∈ I,

where α ∈ Rm, A ∈ Rk×m, b ∈ Rk and Q ∈ Rm×m (positive semidefinite) are the

given parameters of the problem: the symbol “≤” denotes element-wise inequalities

and we optimize over α ∈ Rm containing both discrete (αi, i ∈ I) and continuous

(αi, i /∈ I) variables, with I ⊂ {1, · · · ,m}.For background on MIO, see (Bertsimas

and Weismantel , 2005; Jünger and Reinelt , 2013). Subclasses of MIO problems in-

clude convex quadratic optimization problems (I = ∅), mixed integer (Q = 0m×m)

and linear optimization problems (I = ∅,Q = 0m×m). Some examples of modern

integer optimization solvers include CPLEX, GLPK, MOSEK and GUROBI.

Cutting plane theory (Dantzig et al., 1954; Gouonr , 1958; Gomory , 1960), disjunc-

tive programming for branching rules (Markowitz and Manne, 1957; Eastman, 1958;

Land and Doig , 1960), improved heuristic methods (Berthold , 2006), techniques for

preprocessing MIOs (Savelsbergh, 1994), using linear optimization methods have all

contributed greatly to the speed imptovements in MIO solvers. Branch-and-cut search

is a complete procedure designed to find the optimal solution of a given problem in-

stance or prove infeasibility thereof. See (Cook et al., 1995) for a review on the history

of branch-and-bound. Preprocessing, or presolving, means to transform a given prob-

lem instance into a different but equivalent problem instance that is hopefully easier

to solve by the subsequently invoked solution algorithm. In contrast, the goal of
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primal heuristics is to find good feasible solutions quickly. It is often sufficient in

practice to provide a good solution whereas a proof of optimality may not even be

computationally tractable. MIO solvers provide both feasible solutions as well as

lower bounds to the optimal value. As the MIO solver progresses toward the optimal

solution, the lower bounds improve and provide an increasingly better guarantee of

suboptimality, which is especially useful if the MIO solver is stopped before reaching

the global optimum. In contrast, heuristic methods do not prove such a certificate

of suboptimality. The detailed introduction about the foregoing algorithms can be

found in (Wolsey , 2008).

2.2.2 MIO Formulations For the Homogeneity Fusion

We first present a simple reformulation to problem (2.1.2) as a MIO problem:

min
α,β,γ,η

n∑
i=1

(Yi −Xijβj −ZT
i α)2, (2.2.2)

subject to: ηjk ∈ {0, 1}, k = 0, . . . , K; j = 1, . . . , p,

ηjk(βj − γk) = 0, k = 0, . . . , K; j = 1, . . . , p,

γk < γk+1, k = 1, . . . , K − 1, γ0 = 0,
K∑
k=0

ηjk = 1, j = 1, . . . , p,

p∑
j=1

ηj0 ≥ p− s,

where the number of groups K and the degree of sparsity s are two predetermined

tuning parameters. {ηjk, j = 1, . . . , p, k = 1, . . . , K} are 0/1 binary variables. With

constraint ηjk(βj−γk) = 0, ηjk actually is the group membership indicator in the sense

that ηjk = 1 (ηjk = 0) represents the j-th covariate (not) belongs to the k-th group,

that is, βj = γk (βj 6= γk). The constraint ηjk(βj − γk) = 0 is also called as specially

ordered sets of type 1 (SOS-1) in (Bertsimas and Weismantel , 2005). The constraint
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γk < γk+1 is for the identification issue such that {γk, k = 1, . . . , K} could be uniquely

determined as long as the number of the groups K is given. γ0 = 0 indicates the 0-

th group in which all the members have exactly zero effects on the response. Each

covariate Xj if and only if belongs to one group according to the condition
∑K

k=1 ηjk =

1. The constraint
∑P

j=1 ηj0 ≥ p− s is for the sparsity assumption, which ensures the

size of the 0-th group must be bigger than p − s. It is worthwhile to note that the

final solution of the problem (2.2.2) could have Kf groups with Kf ≤ K.

Any standard software can be used to solve the problem, such as, GUROBI. This

problem can be easily extended to accommodate more reliable practical situations by

incorporating biology prior informations. For example,

• Some covariates are known in advance that belong to the same group. Denote

the index set to be J , that is, βj∈J are equal. Then this information can be

formulated as using
∑

j∈J Xj instead of {Xj, j ∈ J } in the design matrix.

• According to their practical meanings, some covariates {Xj, j ∈ J } should not

belong to the same group. Then the information can be written as
∑

j∈J ηjk ≤

1, k = 0, . . . , K. Further, if those covariates could only have the same zero ef-

fects, this information can be simply formulated as
∑

j∈J ηjk ≤ 1, k = 1, . . . , K.

To build a connection to the conventional pairwise search approach, we transform
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problem (2.2.2) into the following big-M formulation:

O1 = min
α,β,γ,η

n∑
i=1

(Yi −
p∑
j=1

Xijβj −
q∑

d=1

ZT
ijαd)

2, (2.2.3)

subject to: ηjk ∈ {0, 1}, k = 0, . . . , K; j = 1, . . . , p,

ηjk(βj − γk) = 0, k = 0, . . . , K; j = 1, . . . , p,

γk < γk+1, k = 1, . . . , K − 1, γ0 = 0,

−M ≤ γk ≤M,k = 1, . . . , K,

−M ≤ αd ≤M,d = 1, . . . , q,

K∑
k=0

ηjk = 1, j = 1, . . . , p,

p∑
j=1

ηj0 ≥ p− s,

where M is a constant such that if θ is a minimizer of problem (2.2.3), then M ≥

‖θ̂‖∞, where θ = (βT ,αT )T , and ‖θ‖∞ = max{θj : 1 ≤ j ≤ q} for θ = (θ1, . . . , θp+q)
T .

Provided that M is choose to be sufficiently large, a solution to problem (2.2.3) will

be a solution to problem (2.2.2). Clearly, M is not known a prior, and a small value

of M might lead to a solution different from (2.2.2). The choice of M affects the

strength of the formulation and is critical for obtaining solution quickly in practice.

For formulation (2.2.3), the structure of the convex hull of its constraints is:

Conv

({
θ : βj = ηTj·γ, |γj| ≤M,ηTj·1 = 1, j = 1, . . . , p, |αd| ≤M,d = 1, . . . , q,

p∑
j=1

ηj0 ≥ p− s

})

⊂ Conv

({
θ : ‖θ‖∞ ≤M,

∑
i 6=j

|βi − βj| ≤ C1M, ‖β‖1 ≤ sM

})

⊂

{
θ :
∑
i 6=j

|βi − βj| ≤ C1M, ‖β‖1 ≤ sM

}
,

where C1 = [s(p− s)I(s < p/2) + p2/4I(s ≥ p/2)] + 2(1 − 1/K)s2. Thus, the mini-
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mum of problem (2.2.3) is lower-bounded by the optimum objective value of both the

following convex optimization problems:

O2 = min
θ
‖Y −Xβ −Zα‖2

2,

subject to ‖θ‖∞ ≤M,
∑
i 6=j

|βi − βj| ≤ C1M, ‖β‖1 ≤ sM, (2.2.4)

O3 = min
θ
‖Y −Xβ −Zα‖2

2,

subject to
∑
i 6=j

|βi − βj| ≤ C1M, ‖β‖1 ≤ sM, (2.2.5)

where (2.2.5) is the conventional pairwise fusion and LASSO in constrained form.

This is a weaker relaxation than formula (2.2.4), which in addition to the pure `1

and pairwise `1 constraints on β, has box constraints controlling the values of the

θi’s. Obviously, the following ordering exists: O3 ≤ O2 ≤ O1, with the inequalities

being strict in most instances. In terms of approximating the optimal solution to

problem (2.2.3), the MIO solver begins by first solving a continuous relaxation of

problem (2.2.3). The pairwise fusion (2.2.5) is weaker than this root node relaxation.

Moreover, MIO is typically able to significantly improve the quality of the root node

solution as the MIO solver progresses toward the optimal solution.

2.2.3 Warm Start

As we said earlier, the constant bound M is not necessarily required, but if it is pro-

vided, it improves the strength of the MIO formulation. In other words, formulations

with tightly specified bounds provide better lower bounds to the global optimization

problem in a specified amount of time, when compared to a MIO formulation with

loose bound specification. Following (Bertsimas et al., 2016), we now describe a simi-

lar discrete first-order method to provide good upper bounds to problem (2.1.1). The

solutions when supplied as a warm-start to the MIO formulation (2.2.2) are often

improved by MIO, thereby leading to high quality solutions to problem (2.1.1) within
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several minutes.

Consider the following optimization problem:

min
θ,γ

g(θ), (2.2.6)

s.t. βj ∈ {γ0, γ1, . . . , γK}, j = 1, . . . , p

‖β‖0 ≤ s,

where θ = (αT ,βT )T , α = (α1, . . . , αq)
T , β = (β1, . . . , βp)

T , γ = (γ0, γ1, . . . , γK)T ,

and g(θ) ≥ C2 is convex and has Lipschitz continuous gradient: ‖∇g(θ)−∇g(θ̃)‖2 ≤

l‖θ− θ̃‖2 with C2 and l being some finite number and positive constant respectively.

Denote the feasible region of θ in Problem (2.2.6) as

Θ(K, s) = {θ : βj ∈ {0, γ1, . . . , γK}, j = 1, . . . , p; ‖β‖0 ≤ s}.

Obviously, Θ(K, s) is a closed set. Let HK,s(c) be the set of optimal solutions to

problem (2.2.6) with g(θ) = ‖θ − c‖2
2 and some constant vector c = (c1, . . . , cq+p)

T .

Clearly, for any solution, say (θ̂T , γ̂T )T ∈ HK,s(c), we have γ̂ = {all different values in β̂}.

That is, γ̂ could be uniquely determined by the values of β̂. For ease of presentation,

we generally omit parameters γ̂, and say θ̂ ∈ HK,s(c) if θ̂ is the solution minimizing

the problem (2.2.6), except where necessary. Denote the index operator for the el-

ements of β with value r by G(β; r) = {j : βj = r, j = 1, . . . , p} and the grouping

operator by G(β) = {G(β; r) | r 6= 0,G(β; r) 6= ∅}. Let |G(β; r)| and |G(β)| be the

cardinality of G(β; r) and G(β), respectively.

Definition II.1. (first-order stationary point). Given problem (2.2.6) and certain

positive constant L ≥ l, a vector θ ∈ Θ(K, s) is said to be a first-order stationary

point if θ ∈ HK,s(θ − 1
L
∇g(θ)).

We first show that the optimal solution set has only one element θ who satisfies a
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first-order stationary point.

Proposition II.2. Suppose a positive constant L > l,

1. if θ is a solution to problem (2.2.6), then it is a first-order stationary point.

2. if θ satisfies a first-order stationary point, then the set HK,s(θ − 1
L
∇g(θ)) has

exactly one element θ.

Next we present Algorithm 1 to find a feasible point whose objective function value

is the same as a first-order stationary point of problem (2.2.6).

Algorithm 1.

Input: g(θ), number of groups: K, sparsity constraint: s, parameter: L and conver-

gence tolerance: ε.

Output: A feasible point θ∗ such that g(θ∗) = g(θ) where θ is a first-order stationary

point.

1. Initialize with θ1 ∈ Rp+q.

2. For m ≥ 1, θm+1 ∈ HK,s(θm − 1
L
∇g(θm)).

3. Repeat Step 2, until g(θm)− g(θm+1) ≤ ε.

4. Return θm+1.

To obtain an element in HK,s(c) in Step 2, we give the subroutine Algorithm 0 in

Appendix A.1.1, which is a generalization of segment neighbourhood method (Auger

and Lawrence, 1989).

Now we describe the asymptotic convergence property and convergence rate of Algo-

rithm 1 through Proposition II.3 and Theorem (2.2.1), respectively.

Proposition II.3. For problem (2.2.6) and some positive constant L > l, let θm,m ≥

1 be the sequence generated by Algorithm 1, we have
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1. g(θm)− g(θm+1) ≥ L−l
2
‖θm − θm+1‖2

2.

2. ‖θm+1 − θm‖2 → 0 as m→∞.

Theorem 2.2.1. Let some constant L > l, and θ∗ denote a first-order stationary

point of Algorithm 1. After M iterations, Algorithm 1 satisfies

min
m=1,...,M

‖θm+1 − θm‖2
2 ≤

2(g(θ1)− g(θ∗)

M(L− l)
,

where g(θm) ↓ g(θ∗) as m→∞.

Finally, we show that Algorithm 1 outputs a point whose objective value is the same

as some first-order stationary point under mild conditions:

Proposition II.4. Consider problem (2.2.6) and some constant L > l, let θm,m ≥ 1

be the sequence generated by Algorithm 1. If

1. g has second order derivative and,

2. there exists l′ > 0 such that l′
∥∥∥θ − θ̃∥∥∥

2
≤
∥∥∥∇g(θ)−∇g(θ̃)

∥∥∥
2

for any θ, θ̃ ∈

Θ(K, s) satisfying G(β) = G(β̃) and,

3. {θ ∈ Θ(K, s) | g(θ) ≤ C} is bounded for any C ∈ R,

then g(θm) converges to g(θ) where θ is a first-order stationary point.

The detailed proof of Proposition II.4 is in Proposition A.1 and Remark A.1.1 in

Appendix A.1.2.

2.3 Theoretical Investigation

With regard to simultaneous grouping pursuit and feature selection, in this section

we will prove the global minimizers of problem (2.1.2) reconstruct the ideal “ora-

cle estimator ” as if the true grouping were available in advance, under a “degree-

of-separation” condition. To understand how the proposed method performs in a
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high-dimensional situation, it is imperative that we study necessary and sufficient

conditions for achieving grouping pursuit consistency as well as feature selection con-

sistency.

2.3.1 A “Degree of Separation” Measure

Throughout this section, we write the n× p design matrix X = (x1, . . . ,xp) and the

n × q matrix Z = (z1, . . . ,zq), where xj and zd are the jth and dth columns of X

and Z, respectively. Define a0 to be the true value of a. For example, θ0 is the true

parameter of θ.

We first define a distance between two groupings corresponding to estimators β and

β′ denoted by d(β,β′):

Definition II.5. (distance between groupings)

d(β,β′) = max

{
min
f∈F

∣∣∣∪w∈G(β′)w\ ∪w∈G(β)

(
w ∩ f(w)

)∣∣∣, 1}, (2.3.1)

where |G(β)| ≤ |G(β′)|, F = {all injective functions f : G(β) → G(β′)}, and θ,θ′ ∈

Θ(K, s) with θ = (αT ,βT )T and θ′ = (α′T ,β′T )T .

This distance is the least number of modifications to the selected features in β′ in-

volved in changing G(β′) into G(β), where each modification is changing the mem-

bership of some βj to some other group.

Then we can define a measure of easiness level for simultaneous grouping pursuit and

feature selection as follows:

Definition II.6. (degree of separation)

Cmin ≡ Cmin(θ0,X,Z, s) = min
θ∈Θ(K0,s)
G(β)6=G(β0)

‖X(β − β0) +Z(α−α0)‖2
2

nmax (d(β,β0), 1)
. (2.3.2)
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Here, Cmin measures the degree of separation between the true signal and the esti-

mated signals based on wrong groupings. More specifically, it is the least difference

between the true signal and an estimated signal based on a wrong grouping per dis-

tance between the true grouping and the wrong grouping. If Cmin is small, then

estimating the true grouping is difficult due to the estimated signals based on some

wrong grouping is very similar to the true signal. Thus Cmin characterizes the easiness

level of the underlying problem.

2.3.2 Necessary Condition

We first characterize consistent grouping pursuit and feature selection for any method

through one simple necessary condition in the L2-metric, which is sufficient up to a

constant factor. By the necessary condition in Theorem 1 of (Shen et al., 2013), the

necessary condition for feature selection alone requires that

Cmin ≥ d1
log p

n
σ2, as n, p→∞,

for some positive constant d1 ≤ 1/4 that may dependent on X. In short, the mini-

mal degree of separation is required for correct identification of informative features,

translating to an upper bound on p that is in an order of exp(nCmin/(d1σ
2)), for any

method and (β0,X).

As pointed out in (Zhu et al., 2013), the problem of recovering oracle estimator in

the sense of simultaneous grouping pursuit and feature selection is more difficult

than that of feature selection alone. To derive a lower bound requirement for Cmin,

we construct an approximate least favorable situation under P , over B0(K, s, `) =

{θ : θ ∈ Θ(K, s), Cmin(θ,X,Z, s) ≥ `} to avoid super-efficiency.

Theorem 2.3.1. For any K ≥ 2, p ≥ s ≥ K − 1, ` > 0, for any estimator β̂ of β0,
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we have

sup
θ0∈B0(K,s,`)

P(G(β̂) 6= G(β0))→ 0, as n, p→∞,

implying that

` ≥ σ2

r(X,Z, K, s)

log(pK)

2n
,

where r(X,Z, K, s) =
max1≤j≤p n

−1‖xj‖22
min θ∈Θ(K,s)
|βj−βj′ |≥1/K,∀βj 6=βj′

Cmin(θ,X,Z,s)
.

The detailed proof of Theorem III.16 is in Appendix A.1.3. Theorem III.16 shows that

the necessary condition of uniformly attaining grouping consistency in simultaneous

homogeneity pursuit and feature selection for a collection of easy problems requires

a lower bound of the level of easiness of those problems. More specifically, it requires

Cmin ≥ d2
log(pK)

n
σ2, (2.3.3)

for some constant d2 that may dependent on (X,Z).

2.3.3 Sufficient Condition

Given G(β), define XG(β) as (
∑

k∈G(β;γ1) xk, . . . ,
∑

k∈G(β;γK) xk) to be a collapsed ma-

trix by summing columns of X according to G(β). Given B = (i1, . . . , i|B|) ∈ I,

where i1 < · · · < i|B|, define XB as (Xi1 , . . . , Xi|B|) to be a submatrix of X and βB

to be vector (βi1 , . . . , βi|B|) for any θ = (αT ,βT )T ∈ Θ(K, s).

Definition II.7. (Oracle estimator). Given the true coefficient β0, the oracle esti-

mator θ̂ol = (α̂ol,T , β̂ol,T )T is defined as

arg min
G(β)=G(β0)

∥∥Y −Xβ −Zα∥∥2

2
.

More specifically, in β̂ol = (β̂ol1 , . . . , β̂
ol
p )T , β̂olj is γ̂k if j ∈ G(β0; γ0,k); k = 1, . . . , K0,
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and β̂olj is 0 if j ∈ G(β0; 0), where

(γ̂T , α̂T ) = (γ̂1, . . . , γ̂K0 , α̂
T ) = arg min

(γT ,αT )∈RK0+q

∥∥Y −XG(β0)γ −ZTα
∥∥2

2
.

We now derive a nonasymptotic probability error bound for simultaneous grouping

pursuit and feature selection, based on which we prove the oracle estimator. The

next theorem says that a global minimizer of problem (2.2.2) consistently reconstructs

the oracle estimator at a degree of separation level that is slightly higher than the

minimal in Theorem III.16. Without loss of generality, assume that a global minimizer

of (2.2.2) exists.

Denote the solution to problem (2.2.2) as θ̂ = (α̂T , β̂T )T .

Theorem 2.3.2. In 2.2.2, when K = K0 and s = s0, we have that

P(θ̂ 6= θ̂ol) ≤
( 2

1− e−2/3
+ 1
)

exp

{
− n

18σ2

(
Cmin − 36σ2 log(pK0) + 1− log 4

2

n

)}
,

which implies that when Cmin > 36σ2 log(pK0)+1− log 4
2

n
, θ̂ consistently reconstructs θ̂ol,

i.e., as n, p,K0 →∞, P(G(θ̂) 6= G(θ̂ol))→ 0.

Theorem III.18 says that θ̂ consistently reconstructs the oracle estimator θ̂ol as long

as the degree-of-separation condition is satisfied, which is,

Cmin ≥ d3

log(pK0) + 1− log 4
2

n
σ2, (2.3.4)

where d3 > 36 is a constant. The lower bound of Cmin in necessary condition (3.4.1)

and that in sufficient condition (3.4.2) they are at the same order.
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2.4 Real Data Analysis

The proposed method is used to analyze data from the Early Life Exposure in Mexico

to ENvironmental Toxicants (ELEMENT) project. The ELEMENT project consists

of four mother-child pregnancy and birth cohorts originally initiated in the mid-1990s

to explore early life chemical exposures and developmental outcomes. In this analysis,

we focus on two cohorts of infants whose mothers’ exposure to phthaltes has been

measured. We are interested in investigating how prenatal exposures to mixtures (or

groups) of phthalates, which are known endocrine disruptive compounds measured

by mother’s blood biospecimen during pregnancy, may affect infant’s length at birth.

It is know that phthalates are naturally grouped according to types of chemicals (i.e.

plasticizers) used as additives in plastics to make products more resilient, cosmetic

products (e.g. lotions and perfumes) and other products (e.g. food processing equip-

ment, adhesives, and rainwear). There are 191 mother-child pairs in the data and 10

phthalates measured for each mother across three trimesters, respectively, which are

log-transformed. Additionally, we standardize log-transformed phthalates, and adjust

for confounding factors including a binary cohort indicator, the total years of school in

mother’s education, gender of child and mother’s gestational age in the model. Based

on 10-fold cross validation as shown in Figure 2.1 (the lightest cell with λ = 4), the

chosen model contains two mixtures (or groups) of 4 phthalates measured during the

first trimester of pregnancy, each with two phthalates; see Table 2.1. One phthalate

mixture consists of MBP and MEHHP with associated coefficient 0.23, and the other

mixture contains MBzP and MEOHP with coefficient −0.28. The first mixture does

not appear to be statistically significant, while the second mixture has a negative

association with birth length. These p-values are obtained by refitting the regression

model after these mixtures have been identified. It suggests that higher exposure to

the second mixture the shorter the length an infant has at birth. In addition, both

sex and gestational age are both statistically significant; girls tend to be taller at
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Figure 2.1: 10-fold cross-validation suggested two mixtures (K = 2) determined by
the lightest cell with λ = 4.

birth, and the longer the pregnancy duration the talker an infant at birth.

2.5 Discussion

This paper developed a dimension reduction method that can identify homogeneous

subgroups among regression coefficients and sparse feature selection simultaneously in

the high-dimensional regression setting. We invoked the L0 constrained optimization

MIP method whose implementation was carried out by well-chosen initial values and

then the Kelley’s cutting plane method to search for optimal solutions. We estab-

lished both algorithmic convergence properties as well as clustering and estimation

consistency. We showed that to achieve the clustering consistency, the sample size
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Table 2.1: The estimation results from the association study of birth length and
prenatal exposure to PBA and phthalates during the first trimester of pregnancy.

estimate s.e. lower upper p-value mixture member
intercept 35.40 3.43 28.63 42.17 0.00

cohort -0.71 0.39 -1.48 0.07 0.07
sex 0.82 0.27 0.28 1.35 0.00

school year 0.05 0.05 -0.04 0.15 0.26
gestage 0.36 0.09 0.18 0.53 0.00

mixture1 0.23 0.13 -0.04 0.49 0.09 MBP,MEHHP
mixture2 -0.28 0.13 -0.54 -0.02 0.04 MBzP,MEOHP

only needs to grow at the same rate as the sum of logarithmic of the number of regres-

sion coefficients and logarithmic of the true number of subgroups. Simulation studies

are used to illustrate the performance of the proposed method and algorithms.

The proposed upper bound in the search of warm start may be generalized to a gen-

eral convex objective function with little effort. However, generalization of the lower

bound to a setting beyond the least square objective function is not that straightfor-

ward due to the complexity of the kernel function used in the formulation. This is

worth a future exploration. Also, due to the use of the ridge penalty in the formation

of the lower bound problem, the resulting lower bound solution is just an approximate

to the original optimization problem, but this approximation can be asymptotically

diminished if the tuning parameter is chosen in the order of o(1/n), under which the

clustering consistency is warrant.

Obviously this new group fusion method may be extended to the framework of gener-

alized linear models where iterative procedures used in the parameter estimation are

essentially relied on weighted least squares objective functions. Thus, this extension

is technically manageable but it may require substantial computational effort. Also,

we would consider an extension of this method to the setting of estimating equa-

tions, which could cover a broad range of important statistical models, such as GEE

regression, Cox regression and quantile regression.

25



CHAPTER III

L0 Regularized Selection and Estimation of

High-dimensional Mediators in Structural

Equation Models

3.1 Introduction

In this paper, we consider the structural equation models (SEM) that have played

a central role in modeling causal pathways in the literature (Hernán and Robins ;

Fritz and MacKinnon, 2007; Preacher , 2015). This is because such model provides a

representation of a causal graphical model and natural interpretation of both direct

and indirect effects of exposure variables on outcomes, which are the key estimates to

explain causality (MacKinnon and Dwyer , 1993; MacKinnon et al., 1995). However,

this methodological framework is greatly challenged by high-dimensional mediators,

especially in the case where the sample size n is smaller than the number of media-

tors p. For simplicity, we assume the dimension of exposure variables is high. Thus,

new statistical methods are called for to solve this large p small n problem. Techni-

cally speaking, in order to develop a viable solution to this challenge, it is necessary

to invoke regularization methods that enable us to identify a handful of important

mediators predominantly influencing the underlying causal pathways.

For ease of exposition, let us first introduce the SEM whose graphic representation is
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shown in Figure 3.1.

X

M

Y

α β

γ

Figure 3.1: A graphic illustration of the causal pathways among exposure X, outcome
Y and mediators M . Vertices indicate variables and edges indicate causal
paths directed from causes to effects. Dotted edges indicates possible
causal paths whose existence is to be determined in the analysis.

In the context of a mediation analysis, a primary task is to assess which mediators

from the collection M = (M1, . . . ,Mp)
> alter the causal relationships between expo-

sure variables X = (X1, . . . ,Xq)
> and outcome variables Y = (Y1, . . . ,Ym)>. In this

paper, we focus on a setting with a large number of potential mediators or a large

p, but only a handful of them are the true mediators. Analytically such a graphical

model in Figure 3.1 may be formulated by a structural equation model of the following

form:


X

M

Y

 =


0 0 0

α 0 0

γ β 0




X

M

Y

+ ε,

where ε is a (q + p + m) × 1-dimensional multivariate normal (MVN) random vec-

tor following MVN(0,Σ) with covariance matrix Σ, and α = (α>1 , . . . ,α
>
p )>,β =

(β1, . . . ,βp) and γ = (γ>1 , . . . ,γ
>
m)> are p× q, m× p and m× q unknown parameter

matrices, respectively. Interpretations of these model parameters have been discussed

extensively in the literature. For example, a nonzero coefficient αi indicates a causal

relationship from exposure variables X to the mediator Mi, while a nonzero coefficient

βi suggests a causal link from the mediator Mi to outcome Y . More importantly, if
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both αi 6= 0 and βi 6= 0 hold simultaneously, then Mi is a mediator of interest re-

sponsible for a so-called causal pathway. Configurations with the parameter sparsity

define causal subgroups of mediators, leading to different scientific understandings of

causality and interpretations. This subgroup topology is the core of knowledge that

we aim to attain from the available data. To achieve this, we need to overcome the

key technical difficulty that pertains to the need of two simultaneous regularization

procedures, one concerning the mediator selection and the other relating to estimation

for causal effects of important mediators.

To facilitate the subsequent discussion, we rewrite the above model as follows via the

operation of Kronecker’s matrix product:


X

M

Y

 =


0 0 0

Ip ⊗X> 0 0

0 M> ⊗ Im Im ⊗X>

 (α1, . . . ,αp,β
>
1 , . . . ,β

>
p ,γ1, . . . ,γm)> + ε,

(3.1.1)

where ⊗ denotes the Kronecker’s matrix product (Van Loan, 2000). It is worth

mentioning that in this paper, without loss of generality, we assume the covariance

matrix Σ to be known; otherwise, we may use a consistently estimated version of the

matrix from the residuals obtained by the proposed method with independent errors.

Then, we may apply a de-association transformation by multiplying Σ−1/2 to the left

of both sides of the above model, we obtain a transformed model:

V = Dθ + ε, (3.1.2)

where V is a (q + p + m)× 1 response vector, D is a (q + p + m)× (qp + pm + qm)

design matrix, θ is (α1, . . . ,αp,β
>
1 , . . . ,β

>
p ,γ1, . . . ,γm)> and ε is a (q + p + m) × 1

noise vector following MVN(0, I). This is the SEM model that will be used in the
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rest of this paper for the proposed regularization method and algorithms. With a

slight abuse of notation, we may refer to the forms of V, D and ε of equation (3.1.2)

as those corresponding terms in equation (3.1.1). Given of a dataset of n independent

samples, we stack n SEMs together, each from one sample, and obtain the following

SEM regression model:

V = Dθ + (ε>1 , . . . , ε
>
n )>. (3.1.3)

We propose to perform a constrained statistical analysis by minimize the objec-

tive function (V − Dθ)>(V − Dθ) over the feasible region Θ(Uαβ, Uα+β) defined as

{θ |
∑p

i=1 I(αi 6= 0 and βi 6= 0) ≤ Uαβ,
∑p

i=1 I(αi 6= 0) + I(βi 6= 0) ≤ Uα+β}. In

other words, we optimize

min
θ∈Θ(Uαβ ,Uα+β)

(V− Dθ)>(V− Dθ), (3.1.4)

where the constraint θ ∈ Θ(Uαβ, Uα+β) is imposed to achieve two goals simultane-

ously. They are, (i) to identify subgroup labels for each of the p mediators in one

of the four subgroups: Gα = {i : αi 6= 0,βi = 0}, Gβ = {i : αi = 0,βi 6= 0},

Gαβ = {i : αi 6= 0,βi 6= 0}, and Ḡ = {i : αi = 0,βi = 0}, and (ii) to estimate αi and

βi’s that are not zero. Unlike the existing group lasso approach (Yuan and Lin, 2006;

Simon et al., 2013), in our optimization problem in (3.1.4) the group memberships are

unknown, and will be estimated by the proposed L0 regularization method described

in section 3.2.

We make two new contributions to the literature. First, we formulate the above L0

penalization problem in the form of a mixed integer programming (MIP) optimization

problem, which enables us to estimate group memberships as part of mediation anal-

ysis for causal pathway identification. Such characterization of mediator subgroups

is not only useful to identify causal pathways, but also helpful to improve the power
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of existing methods of hypothesis testing for causal effects, such as the Sobel test

(Sobel , 1982), the joint significant method (MacKinnon et al., 2002), the bootstrap

method (Fritz and MacKinnon, 2007) and the difference method (MacKinnon et al.,

1995) in which test statistics follow different distributions over the four subgroups

. The power improvement is due to the fact that our method provides estimated

subgroup sizes that are of critical importance to weigh subgroup-specific test statis-

tics in the construction of an overall test. Second, we develop a fast algorithm with

both computationally efficient upper and lower bounds to solve the L0 optimization

problem. In this way, we come up with an appealing approximation to the solution

of the NP-hard problem. Our approach is indeed new in the literature of SEM-based

causal analyses since only L1 penalty has been previously considered (Serang et al.,

2017; Derkach et al., 2019). As shown analytically in the paper, the proposed L0 reg-

ularized approach produces consistently estimated group labels and asymptotically

normally distributed estimators of the model parameters, with asymptotically ignor-

able estimation bias. These properties, unfortunately, cannot be directly obtained

from the L1 penalty without further work on bias correction.

This paper is organized as follows. Section 3.2 discusses an MIP formulation for the

regularized estimation defined in equation (3.1.4). Section 3.3 presents our algorithms

to obtain an approximate solution of the MIP optimization, with both upper and lower

bounds, in which we established algorithmic convergence. We also established both

estimation and selection consistency for the proposed method in Section 3.4. Some

numerical illustrations, including both simulation studies and data analysis examples,

are given in Sections 3.5 and 3.6. We make some concluding remarks in Section 3.7.

Some technical details such as proofs of propositions and theorems are included in

the appendix.
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3.2 Notation and Optimization Formulation

As mentioned above, we propose an L0 regularization to identify and estimate im-

portant mediators in the SEM. To proceed, in a similar spirit to (Bertsimas et al.,

2016), we want to find the sparse solution of the parameters in equation 3.1.3 by

the following mixed integer programming (MIP) problem. First, we introduce latent

indicator variables, denoted by the binary variable vectors ηα, ηβ and ηαβ. They

are ηα = (ηα1 , . . . ,η
α
p )>, ηβ = (ηβ1 , . . . ,η

β
p )> and ηαβ = (ηαβ1 , . . . ,ηαβp )>, respectively.

Each pair of binary variables can uniquely determine the subgroup membership of a

mediator. For example, when both ηαi and ηβi are 1 if αi and βi are non-zero vectors,

mediator i belongs to subgroup Gαβ. Likewise, we have

Gα = {i : ηαi = 1,ηβi = 0}, Gβ = {i : ηαi = 0,ηβi = 1}, Ḡ = {i : ηαi = 0,ηβi = 0}.

The presence and absence of a pathway may be characterized by ηαβi = ηαi η
β
i . Clearly,

Gαβ = {i : ηαβi = 1} corresponding to the collection of mediators with causal pathways

present, and the union Gα ∪ Gβ ∪ Ḡ is the collection of absent causal pathways. This

dual-task optimization problem takes the following form:
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Problem III.1.

min
θ,ηα,ηβ ,ηαβ

(V− Dθ)>(V− Dθ);

ηαi ,η
β
i ∈ {0, 1}; i = 1, . . . , p;

ηαβi ∈ [0, 1]; i = 1, . . . , p;

SOS-1: (1− ηαi )αi = 0; i = 1, . . . , p;

SOS-1: (1− ηβi )βi = 0; i = 1, . . . , p;

ηαβi ≤ ηαi ; i = 1, . . . , p;

ηαβi ≤ η
β
i ; i = 1, . . . , p;

ηαi + ηβi − 1 ≤ ηαβi ; i = 1, . . . , p;
p∑
i=1

ηαβi ≤ Uαβ;

p∑
i=1

ηαi + ηβi ≤ Uα+β.

In Problem III.1 above , the objective function is the sum of squares, which is known

to be a convex function. The model parameter vector θ defined as in equation (3.1.3)

are continuous, while the latent vectors of indicators η =
(
(ηα)>, (ηβ)>, (ηαβ)>

)>
are binary. (ηα1 , . . . ,η

α
p )>, (ηβ1 , . . . ,η

β
p )> and (ηαβ1 , . . . ,ηαβp )>, respectively. Binary

variables ηαi and ηβi are 1 if αi and βi are non-zero vectors, respectively. In addition,

there are two tuning parameters Uαβ and Uα+β to control the sparsity of the solution.

We let θ[αi] denote the subvector of θ with elements selected according to αi. Let

θ[ηαi ], θ[ηβi ] and θ[ηαβi ] denote, respectively, the nonzero elements of θ according

to nonzero subvector θ[αi] 6= 0, θ[βi] 6= 0 and θ[αi] 6= 0,θ[βi] 6= 0, respectively.

Let Θ(Uαβ, Uα+β) denote the feasible parameter space, {(θ,θ[ηα],θ[ηβ],θ[ηαβ])} in

Problem III.1. By feasibility, we mean that given the sparsity Uαβ, Uα+β, a θ ∈

Θ(Uαβ, Uα+β) is a viable solution of Problem III.1.
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3.3 Algorithm for L0 Regularized Estimation

Due to the NP-hard nature of Problem III.1, there is little hope for any efficient

algorithm to yield the global optimal solution. As a comprise widely adopted in prac-

tice, one attempts to pursue a solution of near-optimality in a reasonable amount of

computation time. For example, in the literature general solvers such as Gurobi (Op-

timization, 2019b) and CPlex (Optimization, 2019a) are developed by the branch and

bound algorithm (Morrison et al., 2016) to handle integer programming problems.

To handle the high-dimensional mediators in the causal pathway analysis, in this

section we want to develop a highly scalable algorithm that enables us to solve Prob-

lem III.1 efficiently. Our improvement is achieved by two sharp and computationally

easy bounds that can fast find a warm start near the solution to Problem III.1. It

is nontrivial to develop such good upper and lower bounds of the optimal objective

value, which is one of the key technical gap to be filled in this paper. In short, our

algorithmic strategy to solve Problem III.1 consists of two steps: First, we develop

two bounds to generate near-optimal starting values, and then, we apply the Kelley-

Cheney-Goldstein method algorithm (Kelley , 1960) to push the search result as close

to the global optimality as possible.

3.3.1 Upper Bound

In this subsection, the solution point corresponding to a near-optimal upper bound

of the optimal objective value is pursued to provide a warm start in solving Prob-

lem III.1. In fact, such upper bound may be derived from a more general class of

objective functions with the same feasible region Θ(Uαβ, Uα+β) than that given in

Problem III.1. This leads to Problem III.2, of which Problem III.1 is a special case.

Problem III.2. Suppose function g(θ) is convex, and has a finite lower bound,

and satisfies the condition of Lipchitz continuous gradient, ‖∇g(θ1)−∇g(θ2)‖2 ≤
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Figure 3.2: An illustration of Algorithm 2 searching for a near-optimal upper bound of
the optimal objective value in Problem III.1. Solid line is g(θ). Starting
from θt ∈ Θ(Uαβ, Uα+β), we construct GL(θ,θt) tangent to g(θ) at θt
(the dotted line) . The minimizer of GL(θ,θt) in the feasible region
Θ(Uαβ, Uα+β) is θt+1. Then g(θt+1) ≤ g(θt).

l ‖θ1 − θ2‖2 where l is a constant. Solve the following minimization:

min
θ∈Θ(Uαβ ,Uα+β)

g(θ).

As illustrated in Figure 3.2, to attain a good upper bound, we start at θt ∈ Θ(Uαβ, Uα+β)

and create a quadratic curve GL(θ,θt) above g(θ) and tangent to g(θ) at θt. A form

of such quadratice function is given in Proposition III.3. An optimal solution θt+1

to the quadratic function GL(θ,θt) in the feasible region Θ(Uαβ, Uα+β) is very easy

to get numerically. This leads to a better upper bound because of the descending

property, g(θt+1) ≤ g(θt). We keep iterating this search until ‖θt − θt+1‖2 shrinks to

0. At the convergence, we hope to obtain a value near the global minimum.

Proposition III.3. For a convex function g(θ) having Lipschitz continuous gradient
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and for any L ≥ l, we have

g(θ) ≤ GL(θ, θ̃) : = g(θ̃) +∇g(θ̃)>(θ − θ̃) +
L

2
‖θ − θ̃‖2

2

=
L

2
‖θ − (θ̃ − 1

L
∇g(θ̃))‖2

2 −
1

2L
‖∇g(θ̃)‖2

2 + g(θ̃)

for all θ, θ̃ with equality holding at θ = θ̃.

To get θt+1, the following algorithm will return an element in HUαβ ,Uα+β(c), which

denotes the set of optimal points of Problem III.1 when g(θ) = ‖θ − c‖2
2.

Algorithm 1 (Ω(p log p)).

Input: c ∈ Rqp+qm+pm, Uαβ and Uα+β.

Output: θ ∈ HUαβ ,Uα+β(c).

1. θ[γ] = c[γ].

2. Let δ be a bijection from {1, . . . , 2p} to {α1, . . . , αp, β1, . . . , βp} such that ‖c[δ(1)]‖2 ≥

. . . ≥ ‖c[δ(2p)]‖2.

3. Let Γ be a bijection from {α1, . . . , αp, β1, . . . , βp} to itself such that Γ(αi) = βi

and Γ(βi) = αi for i = 1, . . . , p.

4. θ[α] = 0,θ[β] = 0, uαβ = 0, uα+β = 0.

5. For i from 1 to 2p:

If uα+β < Uα+β:

If θ[(Γ ◦ δ)(i)] = 0:

θ[δ(i)] = c[δ(i)].

set uα+β to uα+β + 1.

Else if θ[(Γ ◦ δ)(i)] 6= 0 and uαβ < Uαβ:

θ[δ(i)] = c[δ(i)].

set uαβ to uαβ + 1, uα+β to uα+β + 1.
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6. Return θ.

To describe the value g(θt+1) converges to, we define the first-order stationary point

in Definition III.4.

Definition III.4 (first-order stationary point). Given Problem III.1 and L ≥ l,

the vector θ ∈ Θ(Uαβ, Uα+β) is said to be a first-order stationary point if θ ∈

HUαβ ,Uα+β(θ − 1
L
∇g(θ)).

The following proposition presents the relation between a first-order stationary point

and a solution to Problem III.1:

Proposition III.5. Suppose L > l. We have the following:

1. If θ is a first-order stationary point, then the set HUαβ ,Uα+β(θ − 1
L
∇g(θ)) has

only one element: θ.

2. If θ is a solution to Problem III.1, then it is a first-order stationary point.

3. Consider a first-order stationary point θ of Problem III.1. If θ satisfies the

following two conditions:

(a)
∑p

i=1 θ[ηαβi ] < Uαβ;

(b)
∑p

i=1 θ[ηαi ] + θ[ηβi ] < Uα+β.

then θ is a solution to Problem III.1.

We formally present the following algorithm to search for objective value of a first-

order stationary point as a good upper bound:

Algorithm 2.

Input: g(θ), Uαβ, Uα+β, L such that L > l, convergence tolerance ε.

Output: A feasible point θ∗ such that g(θ∗) = g(θ) where θ is some first-order sta-

tionary point.
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1. Randomly draw θ1 ∈ Rqp+qm+pm.

2. For t ≥ 1, θt+1 ∈ HUαβ ,Uα+β(θt − 1
L
∇g(θt)).

3. Repeat Step 2, until ‖θt − θt+1‖2 ≤ ε.

4. Return θt+1.

The following shows that Algorithm 2 terminates after finite iterations:

Proposition III.6. Consider Problem III.1. Let θt, t ≥ 1 be the sequence generated

by Algorithm 2. Then we have:

1. For any L ≥ l, the sequence g(θt) is decreasing, converges and satisfies

g(θt)− g(θt+1) ≥ L− l
2
‖θt+1 − θt‖2

2 .

2. If L > l, then ‖θt+1 − θt‖2 → 0 as t→∞.

Given a feasible θ, the following definition introduces two values: θ[τ ] which is the

norm of the weakest pathway selected in θ and θ[ρ] which is the norm of the weakest

pathway among pathways directed from or to the selected mediators in θ.

Definition III.7. Given θ ∈ Θ(Uαβ, Uα+β), we define

θ[τ ] =


min

(
mini:θ[ηαi ]=1

∥∥θ[αi]
∥∥

2
,mini:θ[ηβi ]=1

∥∥θ[βi]
∥∥

2

)
, if

∑p
i=1 θ[ηαi ] + θ[ηβi ] > 1,

0, otherwise.

θ[ρ] =


mini:θ[ηαβi ]=1

{
min

(∥∥θ[αi]
∥∥

2
,
∥∥θ[βi]

∥∥
2

)}
, if

∑p
i=1 θ[ηαβi ] > 1,

0, otherwise.

The following shows that under mild conditions Algorithm 2 outputs a feasible point

whose objective function value is the same with some first-order stationary point:
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Proposition III.8. Consider Problem III.1. Let {θt}t>1 be the sequence generated

by Algorithm 2 and L > l. Then we have:

1. If lim inft→∞ θt[τ ] > 0, then θt[η
α] and θt[η

β] converge for i = 1, . . . , p.

2. In addition to the condition in Statement 1a, if there exists convergent subse-

quence θf(t), then limt→∞ θf(t) is a first-order stationary point.

3. If there exists a subsequence θf(t) such that limt→∞ θf(t)[ρ] = 0 and limt→∞ θf(t)[τ ] =

0, then limt→∞∇g(θf(t)) = 0.

4. If there exists a convergent subsequence θf(t) such that limt→∞ θf(t)[ρ] = 0 and

limt→∞ θf(t)[τ ] = 0, then limt→∞ g(θt) = minθ∈Rqp+qm+pm g(θ).

5. If lim inft→∞ θt[ρ] > 0, then θt[η
αβ] converges. And if θf(t) satisfies limt→∞ θf(t)[τ ] =

0, then for any s ∈ {α1, . . . , αp, β1, . . . , βp} we have:

lim
t→∞

{
1− I

(
θf(t)[s] = 0,θf(t)[Γ(s)] 6= 0

)}(
∇g(θf(t)−1)

)
[s] = 0.

6. If lim inft→∞ θt[τ ] = 0, lim inft→∞ θt[ρ] > 0 and there exists a convergent sub-

sequence θf(m) such that limm→∞ θf(t)[τ ] = 0 and lim infm→∞ θf(t)[ρ] > 0, then

θf(m) converges to a first-order stationary point.

Remark III.9. In Proposition III.8 Statement 1a, the convergence of θt[η
α] and θt[η

β]

implies that the selected causal pathways remain after finite iterations.

Remark III.10. The convergent subsequence conditions in Proposition III.8 State-

ment 1b, 2b and 3b are satisfied under fairly weak condition, such as {θ ∈ Θ(Uαβ, Uα+β) | g(θ) ≤

a} is bounded for any a ∈ R.
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Remark III.11. In Proposition III.8 Statement 1b and 3b, a subsequence’s convergence

to a first order stationary point θ is adequate since our aim is to find a feasible point,

not necessarily a first-order stationary point, attaining g(θ).

Remark III.12. In summary of Proposition III.8, under some mild condition as stated

in Remark III.10, Algorithm 2 will always find a feasible point attaining g(θ), where

θ is some first-order stationary point.

3.3.2 Lower Bound

In this subsection, a near-optimal lower bound of the optimal objective value is pur-

sued for Problem III.13. Problem III.13 has an additional ridge penalty term with

tuning paremeter ∆ in the objective function and an equivalent feasible region but

with a different formulation compared to Problem III.1. More specifically, η’s control

over mediator sparsity and causal pathway sparsity in θ are expressed as SOS-1’s

in Problem III.1 while expressed as B(ηα,ηβ)θ by direct multiplication in Prob-

lem III.13, where “diag(·)” is a diagonal matrix whose diagonal entries is the variable.

So B(ηα,ηβ)θ in Problem III.13 has the same feasible region as θ in Problem III.1.
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Problem III.13.

min
θ,η

1

∆

∥∥B(ηα,ηβ)θ
∥∥2

2
+
∥∥V− DB(ηα,ηβ)θ

∥∥2

2
;

ηαi ,η
β
i ∈ {0, 1}; i = 1, . . . , p;

ηαβi ∈ [0, 1]; i = 1, . . . , p;

ηαβi ≤ ηαi ; i = 1, . . . , p;

ηαβi ≤ η
β
i ; i = 1, . . . , p;

ηαi + ηβi − 1 ≤ ηαβi ; i = 1, . . . , p;
p∑
i=1

ηαβi ≤ Uαβ;

p∑
i=1

ηαi + ηβi ≤ Uα+β;

B(ηα,ηβ) =


diag(ηα)⊗ Iq 0 0

0 diag(ηβ)⊗ Im 0

0 0 Ip ⊗ Iq

 .

Ξ denotes the feasible region of η described by all the constraints in Problem III.13,

and D[B(ηα,ηβ)] denotes the matrix whose columns are the non-zero columns in

DB(ηα,ηβ). By fixing ηα and ηβ, we can solve θ directly. Then we can simplify

Problem III.13 as the following by Woodbury matrix identity (Higham, 2002):

min
η∈Ξ

V>
{
I − D[B(ηα,ηβ)]

(
I/∆ + D[B(ηα,ηβ)]>D[B(ηα,ηβ)]

)−1

D[B(ηα,ηβ)]>
}
V

= min
η∈Ξ

V>
{
I + ∆D[B(ηα,ηβ)]D[B(ηα,ηβ)]>

}−1V

= min
η∈Ξ

V>
(
I + ∆

p∑
i=1

ηαi D[αi]D[αi]
> + ∆

p∑
i=1

ηβi D[βi]D[βi]
> + ∆D[γ]D[γ]>

)−1

V(3.3.1)

By the Schur complement condition in (Zhang , 2006), the epigraph of the objective

function in Equation 3.3.1 of
(
(ηα)>, (ηβ)>

)>
on domain R2p

+ can be written as the
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following :

{
ηα

ηβ

x

 ∈ R2p+1
+

∣∣∣∣
x V>

V Q

 ∈ Sn(q+p+m)+1
+

}
,

where

Q = I + ∆

p∑
i=1

ηαi D[αi]D[αi]
> + ∆

p∑
i=1

ηβi D[βi]D[βi]
> + ∆D[γ]D[γ]>.

where R2p+1
+ is the set of all 2p+ 1 dimensional non-negative vectors and S

n(q+p+m)+1
+

is the convex set of all n(q+p+m)+1 dimensional positive semi-definite matrices. It

is easy to check this epigraph is convex. Then the objective function in Equation 3.3.1

is a convex function of
(
(ηα)>, (ηβ)>

)>
on domain R2p

+ .

To further simplify Equation 3.3.1, by the following Theorem III.14, we can reformu-

late Problem III.13 as its dual problem Equation 3.3.2.

Theorem III.14. (Vapnik, 1998) The problem

min
θ∈Rqp+qm+pm

1

∆
‖θ‖2

2 + ‖V− Dθ‖2
2

can equivalently be formulated as the unconstrained maximization problem

max
Z∈Rn(q+p+m)

−∆Z>DD>Z− Z>Z + 2V>Z.

min
η∈Ξ

max
Z∈Rn(q+p+m)

−∆

p∑
i=1

ηαi Z>D[αi]D[αi]
>Z−∆

p∑
i=1

ηβi Z>D[βi]D[βi]
>Z

−∆Z>D[γ]D[γ]>Z− Z>Z + 2V>Z (3.3.2)

To reduce the dimension of Z in Equation 3.3.2, we utilize the fact that the optimal Z
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of the inner maximization question is always in the linear space generated by columns

in (D,V) and have the following equivalent formulation:

min
η∈Ξ

max
U∈Rqp+min(p,n)m+qm+1

−∆U>B>D[B(ηα,ηβ)]D[B(ηα,ηβ)]>BU

−U>B>BU + 2V>BU, (3.3.3)

where B is a matrix whose columns are a set of maximal linearly independent columns

in (D,V).

To get a lower bound of the optimal objective value of Equation 3.3.3, we relax

Equation 3.3.3 by dropping the integer constraints in Ξ. It is easy to check that

the resulting relaxed Ξ is Conv(Ξ). By the minimax theorem in (Sion et al., 1958),

the convex relaxation of Equation 3.3.3 shares the optimal objective value with the

following:

max
U∈Rqp+min(p,n)m+qm+1

min
η∈Conv(Ξ)

−∆

p∑
i=1

ηαi U>B>D[αi]D[αi]
>BU−∆

p∑
i=1

ηβi U>B>D[βi]D[βi]
>BU

−∆U>B>D[γ]D[γ]>BU−U>B>BU + 2V>BU. (3.3.4)

For fixed U, the optimal η of the inner minimization problem in Equation 3.3.4 is

θ[η] where θ is the output of Algorithm 1 with D>BU as input. Then Equation 3.3.4

has an optimal point with integer η. Note that the objective function of the outer

maximization problem in Equation 3.3.4 is a non-differentiable concave function of U .

Then Equation 3.3.4 can be solved by a subgradient method (Shor , 1985). However,

the subgradient method converges slowly compared to an interior point method, since

it is a first order method (Boyd et al., 2003). In order to apply an interior point

method, we further reformulate Equation 3.3.4 into a differentiable concave function

maximization problem by converting the inner minimization problem, which is a linear

programming problem, to its dual. As a result, we get the following Second Order
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Cone Programming (SOCP) problem equivalent to Equation 3.3.4:

max
U∈Rqp+min(p,n)m+qm+1

ξ∈R6p+2

C>ξ −∆U>B>D[γ]D[γ]>BU−U>B>BU + 2V>BU (3.3.5)

A·i
>ξ ≤ −∆U>B>D[αi]D[αi]

>BU, i = 1, . . . , p,

A·p+i
>ξ ≤ −∆U>B>D[βi]D[βi]

>BU, i = 1, . . . , p,

A·2p+i
>ξ ≤ 0, i = 1, . . . , p,

ξ ≥ 0,

where the linear constraints equivalent to η ∈ Conv(Ξ) are

A((ηα)>, (ηβ)>, (ηαβ)>)> ≥ C,

((ηα)>, (ηβ)>, (ηαβ)>)> ≥ 0.

Then we solve the SOCP problem in Equation 3.3.5 by interior point method and

use its optimal point and objective value as a warm start and lower bound of Prob-

lem III.13 respectively.

3.3.3 Global Optimality

After getting an upper bound and a lower bound of Problem III.13 in Subsection 3.3.1

and 3.3.2 respectively, we finally try to get global solution to Problem III.13. Note that

the formulation of Equation 3.3.1 is the same as the one in Theorem 1 in (Bertsimas

et al., 2020) except a minor difference that Equation 3.3.1 has extra linear constraints

for ηαβ. So we can apply the Kelley’s cutting plane method (Kelley , 1960; Duran and

Grossmann, 1986) described in Section 3 in (Bertsimas et al., 2020) to get a global

solution to Equation 3.3.1.
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3.4 Theoretical Guarantees

We now present the sufficient and necessary conditions for the selection and estimation

consistency for the proposed method.

3.4.1 A “degree of separation” measure

Throughout this section, define a0 to be the true value of a. For example, θ0 is the

true parameter of θ.

We define a measure of easiness for feature selection as follows:

Definition III.15. (degree of separation)

Cmin ≡ Cmin(θ0,D, Uαβ, Uα+β)

= min
θ∈Θ(Uαβ ,Uα+β)

θ[ηα] 6=θ0[ηα] or θ 6=θ0

∥∥Dθ − Dθ0

∥∥2

2

nmax
(∑p

i=1 I(θ[ηαi ] = 0,θ0[ηαi ] = 1) + I(θ[ηβi ] = 0,θ0[ηβi ] = 1), 1
) .

Here, Cmin measures the degree of separation between the true signal and the esti-

mated true signals based on wrong feature selections. More specifically, it is the least

difference between the true signal and an estimated true signal based on a wrong

feature selection per number of false negative features. If Cmin is small, then recovery

of the true feature selection is difficult due to the estimated true signal based on some

wrong feature selection is very similar to the true signal. Thus Cmin characterizes the

easiness level of the underlying problem.

3.4.2 Necessary Condition

To derive a necessary condition for selection consistency, we first define the set of all

easy problems with Cmin ≥ ` as

B0(Uαβ, Uα+β, `) =
{
θ : θ ∈ Θ(Uαβ, Uα+β), Cmin(θ,D, Uαβ, Uα+β) ≥ `

}
.
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The following theorem gives a necessary condition for all problems in B0(Uαβ, Uα+β, `)

uniformly attaining selection consistency:

Theorem III.16. (Shen et al., 2013) In Problem III.1, for any Uαβ ≥ 0, 1 ≤ Uα+β ≤

2p and ` > 0, for any estimator θ̂ of θ0, we have

sup
θ0∈B0(Uαβ ,Uα+β ,`)

P (θ̂[η] 6= θ0[η])→ 0, as n, p→∞,

implying that

` ≥ 1

r(D, Uαβ, Uα+β)

log(2p)

4n(q + p+m)
,

where r(D, Uαβ, Uα+β) =
max1≤j≤p n

−1‖D·j‖22
min

θ∈Θ(Uαβ ,Uα+β)
‖θ[αj ]‖∞≥θ[ηαj ],∀1≤j≤p
‖θ[βj ]‖∞≥θ[ηβj ],∀1≤j≤p

Cmin(θ,D,Uαβ ,Uα+β)
.

The proof of Theorem III.16 is applying the proof of the necessary condition in The-

orem 1 of (Shen et al., 2013) to Problem III.1.

Theorem III.16 shows that the necessary condition of uniformly attaining selection

consistency for a collection of easy problems requires a lower bound of the level of

easiness of those problems. More specifically, it requires

Cmin ≥ d2
log(2p)

n(q + p+m)
, (3.4.1)

for some constant d2 that may dependent on D.

3.4.3 Sufficient Condition

Definition III.17. (Oracle estimator). Given the true coefficient θ0, the oracle

estimator θ̂
ol

is defined as

arg min
θ[η]=θ0[η]

∥∥V− Dθ
∥∥2

2
.

We now derive a nonasymptotic probability error bound for feature selection in me-

diation analysis. Based on this, we prove the oracle property. The next theorem
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says that a global minimizer of Problem III.1 consistently reconstructs the oracle

estimator at a degree of separation level that is slightly higher than the minimal

in Theorem III.16. Without loss of generality, assume that a global minimizer of

Problem III.1 exists. Denote the solution to Problem III.1 as θ̂.

Theorem III.18. (Shen et al., 2013) In Problem III.1, when Uαβ = Uαβ
0 and Uα+β =

Uα+β
0 , we have that

P (θ̂ 6= θ̂
ol

) ≤ e+ 1

e− 1
exp

{
−n(q + p+m)

18

(
Cmin − 36

log(2p)

n(q + p+m)

)}
,

which implies that when Cmin > 36 log(2p)
n(q+p+m)

, θ̂ consistently reconstructs θ̂
ol

, i.e., as

n, p→∞, P (θ̂[η] 6= θ0[η]ol)→ 0.

Theorem III.18 says that θ̂ consistently reconstructs the oracle estimator θ̂
ol

as long

as the degree-of-separation condition is satisfied, which is,

Cmin ≥ d3
log(2p)

n(q + p+m)
, (3.4.2)

where d3 > 36 is a constant. The lower bound of Cmin in the necessary condi-

tion (3.4.1) and in the sufficient condition (3.4.2) they are of the same order.

3.5 Simulation Studies

3.5.1 Small-Scale L0 method Simulation Experiment

We begin with a small-scale simulation study to numerically illustrate the performance

of the proposed L0 regularized procedures for estimation of both subgroup labels and

subgroup effects. This type of small-scale problem is often seen in practical studies

such as omics’ causal pathway analysis with a specific group of omic variants (e.g.

lipids). We want to demonstrate numerically two types of consistency, namely in
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subgroup identification and parameter estimation. We consider a one-dimensional

continuous exposure variable q = 1 and a one-dimensional continuous outcome with

m = 1, and set the dimension of mediators p at 100 or 200, which is of central interest

in environmental health science real data analysis. To check the grouping consistency,

we vary sample size n from 500, 1000 to 2000. We draw the summary statistics from

the simulations with 200 replicates. Table 3.1 lists the results, including estimation

bias, mean squared error (MSE), sensitivity and specificity for both variable selec-

tion and subgroup identification, and warm start gap as an indicator of algorithmic

convergence.

We design the following structural equation model for data simulation. The p-

dimensional exposure vector X is comprised of n iid draws from Bernoulli(0.5) and

each entry in the m-dimensional parameter vector α is assigned the value 0 or 0.2.

The same procedure is used on the specification of the m-dimensional parameter vec-

tor β ∈ {0, 0.2}. The one-dimensional parameter of the direct effect γ is set at 1.

We consider a block-diagonal covariance matrix Σ = diag(0, Ip, 2). Subsequently,

we simulate the data of mediators M, and outcome Y from the structural equation

model (3.1.1).

Among the p potential mediators, the following sparsity scenarios are considered:

10% being the true mediators ( α = β = 0.2), 10% being not associated with either

X or Y (α = β = 0), 40% being only associated with X (α = 0.2, β = 0), and 40%

being only associated with Y (α = 0, β = 0.2).

In each of 200 replicates, we use 5-fold cross-validation to choose the tuning param-

eters Uαβ in {5, 10, 15} and Uα+β in {95, 100, 105}. When solving the MIP problem,

we ran the first-order discrete algorithm with 1000 random start points chosen ran-

domly from a uniform distribution on interval (−2, 2), which helped to attain a warm

start point and a upper bound of the optimal value. Using the warm start point, we

then ran the integer programming software Gurobi for 10 minutes to search for better
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parameter values that would be much closer to the global optimal solution than those

obtained from the acceleration algorithm.

Table 3.1: Simulation results for q = 1, p ∈ {100, 200}, m = 1, n ∈ {500, 1000, 2000}
across 200 replicates. “α MSE is the average MSE over all entries in α. “α Bias”
is the average absolute value of bias over all entries in α. “Warm start gap” means
(warm start algorithm’s upper bound-Gurobi’s lower bound)/(Gurobi’s lower bound).

n 500 1000 2000 500 1000 2000
p 100 100 100 200 200 200
αj MSE 3.51e-03 1.31e-03 5.35e-04 3.43e-03 1.31e-03 5.54e-04
βj MSE 4.43e-03 1.48e-03 5.83e-04 5.82e-03 1.63e-03 6.16e-04
γ MSE 1.52e-02 6.62e-03 2.93e-03 3.25e-02 1.11e-02 3.02e-03
αj Bias 3.39e-02 2.02e-02 1.30e-02 3.32e-02 1.99e-02 1.30e-02
βj Bias 3.78e-02 2.13e-02 1.31e-02 4.40e-02 2.20e-02 1.36e-02
γ Bias 9.43e-02 6.50e-02 4.25e-02 1.42e-01 8.21e-02 4.47e-02
α true positive 47.130 49.615 49.955 94.650 99.005 99.800
β true positive 45.705 49.360 49.845 87.080 98.130 99.670
α true negative 44.540 47.745 48.940 90.300 97.005 99.470
β true negative 45.220 47.830 49.785 90.205 96.305 98.850
αj 6= 0,βj 6= 0 true positive 6.445 9.400 9.905 13.105 18.535 19.730
αj 6= 0,βj = 0 true positive 37.175 39.065 39.885 73.340 78.080 79.475
αj = 0,βj 6= 0 true positive 36.370 38.725 39.765 69.120 77.840 79.525
αj = 0,βj = 0 true positive 4.565 7.460 9.010 11.110 16.265 19.070
warm start gap 0.300% 0.196% 0.119% 0.462% 0.357% 0.263%

From Table 3.1 it is evident that the proposed L0 regularization method and algo-

rithms worked very well. Estimation bias is small, indicating that the L0 regulariza-

tion method is clearly advantageous over the popular L1 penalty. More importantly,

both sensitivity and specificity of parameter sparsity and subgroup identification are

very satisfactory, and as the sample size increase the selection accuracy tends to the

true proportions.

3.5.2 Large-Scale L0 + L2 Simulation Experiment

3.5.2.1 Computational Efficiency

The above small-scale simulation experiment has shown the desirable approximate

solution to the MIP problem. Gurobi may fail to deliver solutions due to excessive
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computational burden. Instead, we propose to use the L0 +L2 method to get solution

using the cutting plane algorithm that requires good warm starting values. Here

we consider three algorithms to deliver warm starting values: Subgradient Method,

Second-Order Cone Programming (SOCP), and Discrete First-Order Method. All

these algorithms find approximate solutions close to the global optimal. In other

words, these three algorithms will first send the search result near the orbit of the

true values, and then the cutting algorithm will follow to refine the search, leading to

solutions much closer to the true values. The goal of this simulation study is twofold:

(i) to demonstrate the performance of the proposed L0 + L2 regularization in large-

scale setting, and (ii) to show the computational efficiency of the proposed two-stage

cutting plane method with a comparison to the commercial package Gurobi (MIO).

To fulfill such objectives, we utilize the same SEM design as that given in the small-

scale simulation experiment above, except setting the dimension of mediators p ∈

{500, 1000, 5000, 10000, 50000} and the sample size n ∈ {500, 1000, 5000, 10000, 500000}.

The variance of the error term, Σ, is diag(1, CS(0.1), 1), where CS(0.1) is a compound

symmetry correlation matrix with correlation set as 0.1. True number of mediators

Uαβ
0 is set as

⌊
Uα+β

0 /4
⌋
. Both Uαβ

0 and Uα+β
0 are assumed known in each method.

The ridge penalty coefficient ∆ in the lower bounder objective function is set as 1/n.

For each method, computation is terminated when runtime exceeds 1200 seconds or

relative gap, defined as upper bound−lower bound
upper bound

, is less than 1‱.

Let us first investigate the computational efficiency in terms of average runtime.

Figure 3.3 displays the log-mean runtime in seconds of 10 replicates for the four

methods in the comparison under large-scale problems p ∈ {500, 1000, 5000} and the

sample size n ∈ {500, 1000, 5000}.. The white number on each bar indicates the mean

relative gap (‱) attained by the time of the corresponding method’s termination.

“NA” means that the method fails to generate relative gap by the time of termination.

Clearly, the fourth method “discrete first-order method+cutting plane method” is the
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winner. Runtime is measured on one core in a Dell PowerEdge R430 with Intel Xeon

E5-2690 v4 @2.60GHz and 384GB of memory.

Figure 3.4 shows the log-mean runtime in seconds of 10 replicates of “discrete first-

order method+cutting plane method” for the ultra large-scale problems with p ∈

{5000, 10000, 50000} and the sample size n ∈ {5000, 10000, 500000}. The white num-

ber on each bar indicates the mean relative gap (‱) attained by the time of termi-

nation. “NA” means that the method fails to generate relative gap by the time of

termination. Runtime is measured on one core and three cores for p = 20000 cases

and p = 50000 cases respectively in a Dell PowerEdge R430 with Intel Xeon E5-2690

v4 @2.60GHz and 384GB of memory.

3.5.2.2 Selection Efficiency

Now we assess the performance of the proposed L0 + L2 method for its estimation

and identification using the following metrics: the average number of true positive

and average false positive among 100 replicates. We assess the sample size needed to

achieve selection consistency and its change when number of potential mediators p,

the true number of non-zero coefficients Uα+β
0 , correlation of potential mediators ρ and

variance of error term σ2 change separately. We use 10-fold cross validation to choose

Uαβ and Uα+β in [Uαβ
0 − 2, Uαβ

0 + 2] and [Uα+β
0 − 2, Uα+β

0 + 2] respectively. Table 3.2

shows the parameters and their values used in this section. Note that the value with

asterisk is the default value when simulations focus on other parameters. We choose

“SOCP + cutting plane” method when p = 500 and “discrete first-order method +

cutting plane” method in other cases. Computation time limit is 10 minutes for each

fold of each tuning parameter combination as well as the final fit.

First, we focus on different dimensions of mediators p. Figure 3.5 shows the average

number of true positive and false positive over 100 replicates when varying p and

n. In all three p values, sample size 500 is able to perfectly detect all signals and
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Figure 3.3: Log mean runtime in seconds of 10 replicates for various method, sample
size n, number of potential mediators p and true number of non-zero
signals Uα+β

0 .

51



Figure 3.4: Log mean runtime in seconds of 10 replicates of “discrete first-order
method+cutting plane method” for various sample size n, number of po-
tential mediators p and true number of non-zero signals Uα+β

0 . Runtime is
measured on one core and three cores for p = 20000 cases and p = 50000
cases respectively in a Dell PowerEdge R430 with Intel Xeon E5-2690 v4
@2.60GHz and 384GB of memory.
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Table 3.2: Parameter values used in simulations in Section 3.5.2.2. The value with
asterisk is the default value when simulations focus on other parameters. CS(ρ) is a
compound symmetry correlation matrix with correlation set as ρ.

parameter values
n 50, 100, 200, 500, 1000
p 500∗, 1000, 5000
m 1∗

q 1∗

Σ σ2diag(1, CS(ρ), 1)∗

ρ 0.1∗, 0.3, 0.5
σ2 1∗, 2, 5

Uα+β
0 10∗, 20, 30

Uαβ
0

⌊
Uα+β

0 /4
⌋∗

αi,βi,γi 0 or 1
∆ 1/n∗

Uα+β tuning range [Uα+β
0 − 2, Uα+β

0 + 2]∗

Uαβ tuning range [Uαβ
0 − 2, Uαβ

0 + 2]∗

cross validation fold number 10∗

replicate 100∗

algorithm termination time limit 10min∗

nearly perfectly avoid false positive. The sample size needed to achieve selection

consistency is larger when the number of potential mediators grows. Second, the

focus is varying the true number of signals Uα+β
0 . Figure 3.6 shows that sample size

500 is adequate to attain selection consistency. When Uα+β
0 increases, the selection

accuracy increase more slowly as sample size increases. Third, with different inter-

mediator correlations as the focus, Figure 3.7 shows that sample size 500 is enough to

get selection consistency. When inter-mediator correlations ρ rises, selection quality

is getting better more slowly as sample size is increasing.

Fourth, the parameter of focus is the variance of the error term σ2. Once again,

Figure 3.8 suggests 500 samples is enough to attain perfect true positive detection

and very small false positive. The selection performance of the proposed method is

insensitive to the varying variances.

In summary, the above simulation results suggest that the sample size 500, which

is one tenth of the largest dimension of mediators (5000), seems to be sufficient to
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Figure 3.5: Average number of true positive and false positive of 100 replicates of
the proposed method for various sample size n and number of potential
mediators p.

Figure 3.6: Mean number of true positive and false positive of 100 replicates of the
proposed method for various sample size n and number of true signals
Uα+β

0 .
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Figure 3.7: Mean number of true positive and false positive of 100 replicates of the
proposed method for various sample size n and inter-mediator correlations
ρ.

Figure 3.8: Mean number of true positive and false positive of 100 replicates of the
proposed method for various sample size n and different variances of the
error term σ2.
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ensure a stable and desirable performance of the proposed method over different types

of model parameters and data generation scenarios.

3.6 Data Analysis

The proposed method is used to analyze the ELEMENT project data to study the

causal mediation pathways with the group of 149 lipids measured from blood samples

using the technique of mass spectrometry, the largest metabolites. Metabolomics

pertain to a key component of system biology, and are essentially responsible for

cellular energy via substances produced during metabolism such as digestion and

other bodily chemical processes. As a matter of fact, metabolomics may be altered

by environmental factors such as nutrients or toxicants (e.g. phthalates). Many lipids

are fatty acids that carry a special kind of energy needed in various cellular operations.

Excessive expressions of certain lipids may lead to high body mass index (BMI) or

even obesity. Thus, it is of great interest to study how the association of exposure to

phthalates with BMI may be mediated by some of lipids. Here, individual phthalates

are used in the detection of causal mediation pathway with the BMI outcome. Age

and gender are two confounding factors are used to adjust both direct and indirect

effects. This analysis assumes no unmeasured confounders for the causal relations

from phthalates to lipids, from lipids to BMI and from phthalates to BMI.

The data contains 381 adolescents aged 8-18, out of which 191 subjects are boys and

190 subjects are girls. We use 12 phthalates measured from blood samples of mothers,

and take a log-transformation in the data preprocessing to correct the skewness of

the exposure variables. We process the data and fit the structural equation model for

each phthalate separately by the following steps:

1. Impute the missing phthalate data by the fully conditional specification method

using the MICE R package.
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2. Use inverse normal transformation to make all variables normally distributed

other than gender.

3. Using the WHO BMI chart , we adjust BMI for age and gender to produce a

BMI z-score.

4. Begin with a working independence covariance Σ = I and tune Uαβ and Uα+β

using cross validation in the model.

5. Fit the model with the selected sparsity tuning parameters Uαβ and Uα+β, and

use residuals to estimate the covariance of the errors Σ̂ which allows to perform

a deassociation transformation of the data.

6. After the deassociation transformation, and retune Uαβ and Uα+β using cross

validation.

7. Refit the model with the updated sparsity tuning parameters Uαβ and Uα+β.

In addition to the analysis with all subjects, we further stratify the data by gender

where the above steps are repeated for boys and girls separately. All causal media-

tion pathways from phthalate through lipids to BMI discovered in both the analysis

of all subjects and the stratified analyses of boys and girls, respectively, are shown in

Table 3.6. We have found many causal pathways through fatty acids (the metabo-

lites starting with “FA”). In particular, the pathway: MEOEP → lipid “FA.5.0.OH”

→ BMI occurs in both the combined analysis and the stratified analysis of boys.

FA.5.0.OH is a fatty acid with 5 carbons, no double bonds, and a hydroxy group, is

of special interest. Based on the results, We came up with the following conjecture of

how phthalate MEOHP affects obesity through FA.5.0.OH. In the literature, obesity

and insulin resistance are related to elevation of leucine in plasma, where leucine is

an essential amino acid whose primary metabolic end product is acetoacetate (an

energy source in blood) (She et al., 2007). As shown in Figure 3.6, the elevation of
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Figure 3.9: Blockage of the chain of metabolism from leucine to its end product
acetoacetate results in byproduct 3-(OH)-Isovalerylcarnitine, which is
FA.5.0.OH in Table 3.6.

leucine is caused by blockage of the chain of metabolism from leucine to acetoac-

etate. And FA.5.0.OH is a byproduct of this blockage. In summary, exposure to

phthalate MEOHP removes blockage of leucine’s metabolism and causes reduction

of FA.5.0.OH, then reduces obesity. Note that this conjecture is based on the “no

unmeasured confounders” assumption.

3.7 Concluding Remarks

This project developed a fast L0 regularized estimation method to detect causal me-

diation pathways in the context of structural equation models. Although this project

is motivated from mediation analysis of metabolomic biomarkers, the entire frame-

work is general and it can be applied to analyze other structural equation models

with high-dimensional correlated mediators. Using extensive simulation studies, we

showed that the proposed methods are numerically flexible and stable to search for

the exact solution of the constrained nonconvex objective functions. We compare
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Table 3.3: Causal pathways from phthalates through metabolites to BMI found in
combined analysis and gender stratified analysis. α, β and γ indicate the coefficients
associated with phthalate → metabolite, metabolite → BMI and phthalate → BMI,
respectively. The bold lines are related to FA.5.0.OH, which is of special interest.
strata phthalate lipid α× 10−2 β × 10−2 γ × 10−2

combined MEOHP FA.5.0.OH -3.29 9.12 -1.55
combined MEHP FA.5.0.OH -5.35 1.17 -1.14
boy MCPP FA.18.0.OH 1 6.34 8.31 -2.65
boy MECPP FA.8.0.NH2.2.aminooctanoate 2 6.67 -7.74 -1.71
boy MECPP FA.9.0.OH -7.28 6.61 -1.71
boy MECPP MG.0.0.14.0.0.0 8.99 8.81 -1.71
boy MEHHP FA.8.0.NH2.2.aminooctanoate 2 5.72 -7.31 -1.67
boy MEHHP FA.20.2.0.072688. 22.9894 -3.95 7.68 -1.67
boy MEHHP FA.9.0.OH -3.12 6.29 -1.67
boy MEHHP MG.0.0.14.0.0.0 9.42 7.72 -1.67
boy MIBP X1.OLEOYL.RAC.GLYCEROL 6.15 8.13 -3.66
boy MIBP FA.20.2.0.072688. 22.9894 6.97 7.98 -3.66
boy MEOHP FA.5.0.OH -4.25 8.78 -7.29
boy MEOHP MG.0.0.14.0.0.0 3.27 7.71 -7.29
boy MBP FA.18.0.OH 1 4.41 9.19 -4.45
boy MBP FA.20.2 0.072688. 22.9894 1.51 8.41 -0.445
boy MBP FA.27.5 0.112886. 22.761 -2.33 5.63 -0.445
boy MBP MG.0.0.14.0.0.0 4.70 7.38 -0.445
boy MBzP Keto.18.0 2 3.73 7.19 -2.28
boy MNP FA.27.5.0.112886. 22.761 -5.47 6.73 -3.12
boy MCOP FA.27.5.0.112886. 22.761 -6.30 6.61 4.91
girl MCPP X1.OLEOYL.RAC.GLYCEROL 2.52 5.92 -1.23
girl MEOHP FA.12.0.OH 1 4.95 -8.28 0.895
girl MEOHP FA.18.0.OH 4 4.90 7.41 0.895
girl MEOHP Keto.14.0 1 5.15 -8.49 0.895
girl MEOHP FA.14.0.OH.0.068835. 20.7795 -1.86 -7.42 0.895
girl MCOP FA.14.0.OH.0.068835. 20.7795 -5.34 -7.80 0.647

59



different algorithms to generate warm starting values in both small-scale, large-scale

and ultra large scale settings. These proposed algorithms can be very appealing to

handle a broad range of practical problems that cannot be easily solved using existing

toolboxes.

This project established a rigorous theoretical framework, including both sufficient

and necessary conditions for the subgroup selection consistency. Such conditions are

all related to the concept of easiness of an optimization problem, which defines the

boundary for viable optimal solutions. All the theoretical results are given under

the condition of high-dimensional mediators, namely, large p small n, where p is the

number of potential mediators under screening and n is the sample size.

From both theoretical and numerical work, we showed that the proposed algorithm

can handle a large-scale problem of causal mediation pathway detection. In the simu-

lation study, we demonstrated success in running our method with 50,000 mediators,

which is very challenging to any existing MIP type solvers.

Finally, the selected subgroups are very useful to perform hypothesis testing in causal

mediation analysis because it is known that test statistics are different under different

types of scenarios according to α and/or β being zero or not. The application of

the established selection consistency to develop better hypothesis testing methods is

worth a serious investigation.
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CHAPTER IV

Summary and Future Work

4.1 Summary

This dissertation developed a rigorous statistical methodology based on the L0 reg-

ularization to carry out both subgroup label detection and group-specific parameter

estimation. This proposed methodology has been established in the context of linear

regression models and structural equation models. The proposed optimization algo-

rithms have justified for their large-sample properties such as selection consistency in

which both sufficient and necessary conditions are given. In addition, the proposed

algorithms have been examined using extensive simulation studies, and illustrated by

real world data analyses.

The main contribution in the first project is the methodology of homogeneity pur-

suit that allows us to identify a group of covariates with the same effect size. This

is well motivated by the open problem of developing a mixture of toxic agents in

environmental health sciences. As shown in the data analysis, we are able to form

interpretable mixtures using our proposed model formulation and L0 solver.

The main contribution in the second project is the methodology of identifying causal

mediation pathways in the presence of high-dimensional potential mediators. We

developed a two-stage search algorithm; in stage I, using the upper bound of the

objective function, we can generate high-quality warm starting values that are shown
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to be near the true values; and in stage II, we use cutting plane algorithm to deliver a

finer solution using the lower bound of the constrained objective function. We tested

the computational efficiency of the proposal algorithm, and demonstrated that our

proposed algorithm is able to handle as many as 50,000 mediators in the optimization.

This presents a useful toolbox that can be handed into the hands of practitioners to

solve a broad range of problems that currently cannot be solved by existing algorithms.

4.2 Future Work

There are many possible future directions that can advance the proposed methodol-

ogy. Below are a few problems of interest to us.

• In the methodology of homogeneity pursuit, it is of great interest to generate

the linear model considered in this dissertation to generalized linear models for

nonnormal outcomes, such as logistic regression model for binary outcome. In

addition, given the importance of the Cox proportional hazards model, a gen-

eralization of the proposed methodology in survival analysis would be valuable.

As far as the ELEMENT study concerns, the participants are also measures

with their timing of sexual maturation, an interesting setting where the asso-

ciation of hazard for sexual maturation with mixtures of phthalates may be

examined.

• Another direction of future work for the homogeneity pursuit is to consider lon-

gitudinal outcomes, either in generalized estimating equations (GEE) or mixed-

effects models. The ELEMENT cohort study contains repeated measurements

of somatic growth variables during age 0 to 5 years. Identifying mixtures af-

fecting somatic growth trajectories is of great interest.

• In the methodology for the identification of causal mediation pathway, it is

of great interest to establish statistical inference such as hypothesis testing in
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addition to estimation. The proposed L0 regularized solution provides an ideal

setting to further develop this needed inference theory, methods, and software

packages.

• Similar to those generalizations considered in Project I, we may consider the

structural equation models for nonnormal variables, time-to-event outcomes,

and repeated measurements. These generalizations shall make the proposed

methodology even broader impacts in practice.

• For both homogeneity pursuit and mediation pathway identification, tuning the

L0 penalized model is difficult compared to Lasso methodology. It is of great

interest to study the counterpart of solution path in Lasso methodology.

• Note that the structural equation model is the simplest directed acyclic graph

(DAG), which may be further extended to account for more complex DAGs.

This seems to be a long-term future work given that the statistical theory and

algorithms for the SEM with high-dimensional mediators has not been fully

known yet.
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APPENDIX A

Appendices for Chapter II

A.1 Appendices for Chapter II

A.1.1 Algorithm 0

Algorithm 0 (Ω(Ks2 + p log p+ q)).

Input: c ∈ Rq+p, the number of groups K and the sparsity restriction s;

Output: a member in HK,s(c).

1. α̂ = (c1, c2, . . . , cq)
T .

2. Let δ be a bijection on {q+1, . . . , q+p} such that cδ(q+1) ≤ cδ(q+2) ≤ . . . ≤ cδ(q+p).

3. set xlk, ylk, x
′
lk and y′lk to 0 for l = 0, . . . , p+ 1 and k = 0, . . . , K.

4. For l from 1 to s:

For k from 1 to K:

xlk = arg max1≤i≤l{yi−1,k−1 +
(
∑l
j=i cδ(q+j))

2

l−i+1
}.

ylk = max1≤i≤l{yi−1,k−1 +
(
∑l
j=i cδ(q+j))

2

l−i+1
}.
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5. If s < p:

For l from p to p− s+ 1:

For k from 1 to K:

x′lk = arg maxl≤i≤p{y′i+1,k−1 +
(
∑i
j=l cδ(q+j))

2

i−l+1
}.

y′lk = maxl≤i≤p{y′i+1,k−1 +
(
∑i
j=l cδ(q+j))

2

i−l+1
}.

6.

(k∗, l∗,m∗) = arg max
0≤k≤K
0≤l≤s

p−min(s,p)+l+1≤m≤p

ykl + y′K−k,m

7. For l from l∗ + 1 to m∗ − 1:

β̂δ(q+l) = 0.

8. Set t = l∗

For k from k∗ to 1:

For l from t to xt,k:

β̂δ(q+l) =
∑xtk
j=t cδ(q+j)
t−xtk+1

.

t = xtk − 1.

9. Set t = m∗

For k from K − k∗ to 1:

For l from t to x′tk:

β̂δ(q+l) =
∑x′tk
j=t cδ(q+j)
x′tk−t+1

.

t = x′tk + 1.

10. Return (α̂T , β̂T )T .
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A.1.2 Proof of Proposition II.4

Proposition A.1. Consider problem (2.2.6) and some constant L > l, let θm,m ≥ 1

be the sequence generated by Algorithm 1. Define

ρm =


min βm,j 6=βm,j′

βm,j ,βm,j′ 6=0

|βm,j − βm,j′|, if there are K distinct non-zero values in βm,

0, otherwise;

τm =

 minβm,j 6=0 |βm,j|, if there is some non-zero value in βm,

0, otherwise.

1. When lim infm→∞ ρm > 0 and lim infm→∞ τm > 0:

(a) G(βm) converges.

(b) If g has second order derivative and there exists l′ > 0 such that l′
∥∥∥θ − θ̃∥∥∥

2
≤∥∥∥∇g(θ)−∇g(θ̃)

∥∥∥
2

for any θ, θ̃ ∈ Θ(K, s) satisfying G(β) = G(β̃), then

the sequence θm is bounded and converges to a first-order stationary point.

2. When lim infm→∞ τm = 0:

(a) lim infm→∞ ‖∇g(θm)‖∞ = 0.

(b) If there exists a convergent subsequence {θf(m)} such that limm→∞ τf(m) =

0, then limm→∞ g(θm) = minθ g(θ).

3. When lim infm→∞ ρm = 0 and lim infm→∞ τm > 0:

(a) G(βm; 0) converges and lim infm→∞
∥∥(∇g(θm))Gc(βm;0)

∥∥
∞ = 0.

(b) If there exists a convergent subsequence {θf(m)} such that limm→∞ ρf(m) =

0, then θf(m) converges to a first-order stationary point.

Remark A.1.1. The convergent subsequence condition could be satisfied under some

weak conditions, like, {θ ∈ Θ(K, s)|g(θ) ≤ C} is bounded for any C ∈ R.
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Proof. 1. (a) For large enough m, if G(βm) 6= G(βm+1), then ‖βm+1 − βm‖2 >

min(lim infm→∞ ρm, lim infm→∞ τm)/
√

2, in contradiction to Proposition II.3

Statement 2.

(b) Due to Statement 1a, there exists M such that for any m ≥M , G(βm) are

the same. Then for any m > M :

‖θm+2 − θm+1‖2 =

∥∥∥∥HK,s(θm+1 −
1

L
∇g(θm+1))−HK,s(θm −

1

L
∇g(θm))

∥∥∥∥
2

=

∥∥∥∥∥∥∥
A 0

0 Iq

 [(θm+1 − θm)− 1

L
(∇g(θm+1)−∇g(θm))]

∥∥∥∥∥∥∥
2

where Ap×p is an idempotent matrix

(
I(βm,p′ = βm,p′′)

|G(βm;βm,p′)|

)
p′,p′′∈{1,...,p}

=

∥∥∥∥∥∥∥
A 0

0 I

 (I − 1

L
∇2g(θ′))(θm+1 − θm)

∥∥∥∥∥∥∥
2

≤
√

1− l′2

L2
‖θm+1 − θm‖2

Since 0 < l′

L
≤ 1, θm converges to a first order stationary point.

2. (a) Since θm+1−θm converges, we have limm→∞

∥∥∥∂g(θm)
∂α

∥∥∥
∞

= 0. There exists a

subsequence {θf(m)} that limm→∞ τf(m) = 0. Without loss of generality, we

assume |G(βf(m); τf(m))| = t > 0. Let us use cm to denote θm − 1
L
∇g(θm).

Fix m, for any p′ ∈ {1, . . . , p} such that |G(βf(m); βf(m),p′)| = t′ > 1, we

create θ̃ whose grouping is the same as θf(m) except that the 0-group and

τf(m)-group in θf(m) are merged as the new 0-group and that βf(m),p′ is

singled out as a new group. Then

GL(θf(m), θf(m)−1)−GL(θ̃, θf(m)−1) =
−tτ 2

f(m) + c2
f(m)−1,p′ ≤ 0, if βf(m),p′ = 0 or τf(m);

−tτ 2
f(m) + (1 + 1

t′−1
)(βf(m),p′ − cf(m)−1,p′)

2 ≤ 0, otherwise.
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So for any p′ ∈ {1, . . . , p}, we have 1
L
|∂g(θf(m)−1)

∂βp′
| = |βf(m)−1,p′−cf(m)−1,p′ | ≤

|βf(m)−1,p′ − βf(m),p′ |+ |βf(m),p′ − cf(m)−1,p′| ≤
∥∥θf(m) − θf(m)−1

∥∥
2

+ (
√
s+

1)τf(m). Thus limm→∞

∥∥∥∂g(θf(m)−1)

∂β

∥∥∥
∞

= 0.

(b) Due to Statement 2a, we have limm→∞
∥∥∇g(θf(m)−1)

∥∥
∞ = 0. Since limm→∞ θf(m)−1 =

θ′, we have g(θ′) = minθ g(θ). Since g(θm) converges, we have limm→∞ g(θm) =

minθ g(θ).

3. (a) Due to the proof of Statement 1a, if lim infm→∞ ρm = 0, then G(βm; 0)

converges. There exists sequences {θf(m)}, {pm} and {p′m} such that for

any m > 0 we have βf(m),pm 6= 0, βf(m),p′m 6= 0, βf(m),pm 6= βf(m),p′m and

limm→∞ βf(m),pm−βf(m),p′m = 0. Fixm, let t and t′ denote |G(βf(m); βf(m),pm)|

and |G(βf(m); βf(m),p′m)|. For any p′′ ∈ {1, . . . , p} such that βf(m),p′′ 6= 0 and

|G(βf(m); βf(m),p′′)| = t′′ > 1, we create θ̃ whose grouping is the same as

θf(m) except that the βf(m),pm-group and βf(m),p′m-group in θf(m) are merged

as a new group and that βf(m),p′′ is singled out as a new group. Then

GL(θf(m),θf(m)−1)−GL(θ̃,θf(m)−1)

=


−(1

t
+ 1

t′
)−1(βf(m),pm − βf(m),p′m)2 + t+t′

t+t′−1
(
tβf(m),pm+t′βf(m),p′m

t+t′
− cf(m)−1,p′′)

2 ≤ 0,

if βf(m),p′′ = βf(m),pm or βf(m),p′m ;

−(1
t

+ 1
t′

)−1(βf(m),pm − βf(m),p′m)2 + t′′

t′′−1
(βf(m),p′′ − cf(m)−1,p′′)

2 ≤ 0, otherwise.

So for any p′′ ∈ {1, . . . , p} such that βf(m),p′′ 6= 0, we have 1
L
|∂g(θf(m)−1)

∂βp′′
| =

|βf(m)−1,p′′ − cf(m)−1,p′′| ≤ |βf(m)−1,p′′ − βf(m),p′′| + |βf(m),p′′ − cf(m)−1,p′′| ≤∥∥θf(m)−1 − θf(m)

∥∥
2

+ (s+ 1)|βf(m),pm − βf(m),p′m|.

(b) On top of the proof of Statement 3a, for fixed m and any p′, p′′ ∈ {1, . . . , p}

such that βf(m),p′ = 0 and βf(m),p′′ 6= 0, we create θ̃ whose grouping is the

same with θf(m) except that the βf(m),pm-group and βf(m),p′m-group in θf(m)
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are merged as a new group and that βp′ is singled out as a new group and

βp′′ is put in 0-group. Let t′′ denote |G(βf(m); βf(m),p′′)|. Then

and

GL(θf(m), θf(m)−1)−GL(θ̃, θf(m)−1)

=



−(1
t

+ 1
t′

)−1(βf(m),pm − βf(m),p′m)2 + t+t′

t+t′−1
(
tβf(m),pm+t′βf(m),p′′m

t+t′
− cf(m)−1,p′)

2

−c2
f(m)−1,p′′ + c2

f(m)−1,p′ ≤ 0, if βf(m),p′′ = βf(m),pm or βf(m),p′m ;

−(1
t

+ 1
t′

)−1(βf(m),pm − βf(m),p′m)2 + I(t′′>1)t′′

t′′−1
(βf(m),p′′ − cf(m)−1,p′′)

2

−c2
f(m)−1,p′′ + c2

f(m)−1,p′ ≤ 0, otherwise.

Since θf(m) converges to θ′, we have limm→∞ θf(m)−1 = θ′ and ∇g(θf(m)−1)

and c2
f(m)−1,p′ − c2

f(m)−1,p′′ converge. So limm→∞ c
2
f(m)−1,p′ − c2

f(m)−1,p′′ ≤ 0.

So θ is a first-order stationary point.

A.1.3 Proof of Theorem III.16

Proof. By Fano’s lemma in (Ibragimov and Has’minskii , 1981), for all sequences of

t ≥ 2 probability distributions {P1, . . . , Pt} on the same measurable space, and events

A1, . . . , At that form a partition of the space, we have that

t−1

t∑
j=1

Pj(Aj) ≤
∑

1≤j,k≤t

K(Pj, Pk) + log 2

t2 log(t− 1)
,

where K(Pj, Pk) is the Kullback-Leibler information for distributions Pj versus Pk.

Let S = {β(j)}Kpj=0 be a collection of parameters of distinct groupings with components

belonging to V ∈ { 1
K
γmin,

2
K
γmin, . . . ,

K
K
γmin, 0} such that for any 0 ≤ j, j′ ≤ Kp, we

have
∥∥β(j) − β(j′)

∥∥2

2
≤ 4γ2

min. For example, we can set β(0) as any parameter with

components belonging to V such that |G(β(0); 0)| = p−s+1 and has at least K−1 non-
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empty non-zero groups. at most one empty non-zero group. Then we can get elements

in S by switching each component in β(0) to other K − 1 values in V . There are two

possible situations where this switching will generate duplicate groupings. One is that

switching the only component in a non-zero group to another one-component non-

zero group. We fix it by switching both one-component groups to zero. The other is

that switching the only component in a non-zero group to an empty non-zero group.

We fix it by switching a component in zero group to the empty group additionally.

Note that

K(N(Xβ(j),σ2In), N(Xβ(j′), σ2In)) =
1

2σ2

∥∥X(β(j) − β(j′))
∥∥2

2

≤
2 max1≤j≤p ‖xj‖2

2 γ
2
min

σ2
≤ 2nr(X,Z, s) maxθ:β∈S Cmin(θ,X,Z, s)

σ2
.

Fano’s lemma with probability distributions {N(Xβ, σ2In) |β ∈ S} shows that for

any estimator β̂ of β0 we have

(Kp+1)−1
∑
j∈S

Pj
(
G(β̂) = G(β(j))

)
≤ 2nr(X,Z, s) maxθ:β∈S Cmin(θ,X,Z, s) + σ2 log 2

σ2 log(Kp)
.

Thus

sup
θ0∈Θ(K,s),

Cmin(θ0,X,Z,s)≤
maxθ:β∈S Cmin(θ,X,Z,s)

P(G(β̂) 6= G(β0)) ≥ 1− 2nr(X,Z, s) maxθ:β∈S Cmin(θ,X,Z, s) + σ2 log 2

σ2 log(Kp)
.

When γmin varies from 0 to ∞, maxθ∈S Cmin(θ,X,Z, s) varies from 0 to ∞, too.

Then for any L > 0 we have:

sup
θ0∈Θ(K,s),

Cmin(θ0,X,Z,s)≤L

P
(
G(β̂) 6= G(β0)

)
≥ 1− 2nr(X,Z, s)L+ σ2 log 2

σ2 log(Kp)
.
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When L ≤ (1−c)σ2 log(Kp)
2nr(X,Z,s)

, we have sup θ0∈(K,s),
Cmin(θ0,X,Z,s)≤L

P
(
G(β̂) 6= G(β0)

)
≥ c. Then

supθ0∈B0(K,s,`) P
(
G(β̂) 6= G(β0)

)
→ 0, as n, p→∞ implies l ≥ σ2 log(Kp)

2nr(X,Z,s)
.

A.1.4 Proof of Theorem III.18

Proof. For any θ ∈ Θ(K0, s0), define PG(θ) as the projection matrix of (XG(θ),Z).

P

(
min

θ∈Θ(K0,s0)
G(β) 6=G(β0)

∥∥Y − (X,Z)θ
∥∥2

2
<
∥∥Y − (X,Z)θ̂ol

∥∥2

2

)

=P
(

2εT (I − PG(β))(X,Z)θ0 +
∥∥(I − PG(β))(X,Z)θ0

∥∥2

2
− εT (PG(β) − PG(β0))ε < 0

)
≤P
(

2εT (I − PG(β))(X,Z)θ0 + δ
∥∥(I − PG(β))(X,Z)θ0

∥∥2

2
< 0
)

+

P
(

(1− δ)
∥∥(I − PG(β))(X,Z)θ0

∥∥2

2
− εT (PG(β) − PG(β0))ε < 0

)
, for any 0 < δ < 1

≤E
[
exp

{
−

2t1ε
T (I − PG(β))(X,Z)θ0

σ2

}]
exp

{
−
t1δ
∥∥(I − PG(β))(X,Z)θ0

∥∥2

2

σ2

}
+

E
[
exp

{
t2ε

T (PG(β) − PG(β0))ε

σ2

}]
exp

{
−
t2(1− δ)

∥∥(I − PG(β))(X,Z)θ0

∥∥2

2

σ2

}
,

for any 0 < t1, t2 < 1/2 by Markov’s inequality

≤ exp

{
2t21 − t1δ

σ2
nd(β,β0)Cmin

}
+

exp

{
−(1− δ)t2nd(β,β0)Cmin

σ2
+ 2t2|G(β)\G(β0)|

}
,

when 2t1 < δ due to Lemma 4 in (Shen et al., 2013) and proof of Theorem 2 in (Shen et al., 2013)

≤2 exp

{
−nd(β,β0)Cmin

18σ2
+

2

3
|G(β)\G(β0)|

}
, when t1 = t2 =

1

3
and δ =

5

6
.
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P(θ̂ 6= θ̂ol)

≤
∑

ω∈{G(β)|θ∈Θ(K0,s0),G(β)6=G(β0)}

P
(

min
θ∈Θ(K0,s0)
G(β)=ω

∥∥Y − (X,Z)θ
∥∥2

2
<
∥∥Y − (X,Z)θ̂ol

∥∥2

2

)

≤
s0∑
i=1

i∑
j=0

(
s0

i

)
Ki

0

(
p− s0

j

)
Kj

0 2 exp

(
−niCmin

18σ2
+

2

3
(2i+ j)

)

≤
s0∑
i=1

2 exp

(
−niCmin

18σ2
+

4

3
i+ i log(K0s0)

) i∑
j=0

exp
[
j
{2

3
+ log

(
K0(p− s0)

)}]
≤ 2

1− e−2/3

s0∑
i=1

exp

{
−niCmin

18σ2
+

4

3
i+ i log(K0s0) +

2

3
i+ i log

(
K0(p− s0)

)}
≤ 2

1− e−2/3

s0∑
i=1

exp

{
−niCmin

18σ2
+ (2− log(4))i+ i log

(
K0p

)}
,

due to log
(
K0(p− s0)

)
+ log(K0s0) ≤ log

(K2
0p

2

4

)
≤ 2 log(K0p)− log(4)

≤ 2

1− e−2/3

exp

{
− n

18σ2

(
Cmin − 36σ2 log(K0p)/n− 18(2− log 4)σ2/n

)}
1− exp

{
− n

18σ2

(
Cmin − 36σ2 log(K0p)/n− 18(2− log 4)σ2/n

)}
when Cmin ≥ 36σ2 log(pK0) + 1− log 4

2

n
.

Due to P(θ̂ 6= θ̂ol) ≤ 1, we have

P(θ̂ 6= θ̂ol) ≤
( 2

1− e−2/3
+ 1
)

exp

{
− n

18σ2

(
Cmin − 36σ2 log(pK0) + 1− log 4

2

n

)}
.
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APPENDIX B

Appendices for Chapter III

B.1 Proofs for Chapter III

B.1.1 Proof of Proposition III.3

Given θ̃ ∈ HUαβ ,Uα+β(c), obviously we have θ̃[γ] = c[γ], θ̃[αi] = c[αi] or 0 and

θ̃[βi] = c[βi] or 0 for i = 1, . . . , p. Let θ denote the output of Algorithm 1. If

g(θ) > g(θ̃), then there exists a smallest j ∈ {1, . . . , 2p} s.t. θ[δ(j)] = 0 and

θ̃[δ(j)] = c[δ(j)] 6= 0. There are two possible situations in the jth for loop of Step 5.

One is uα+β = Uα+β. Since c[δ(j)] 6= 0, then
∑p

i=1 θ[ηαi ]+θ[ηβi ] = Uα+β. This implies

θ[δ(k)] = 0 for k ≥ j. Thus if θ[δ(k)] = 0 and θ̃[δ(k)] = c[δ(k)] 6= 0 then k ≥ j.

If θ[δ(k)] = c[δ(k)] 6= 0 and θ̃[δ(k)] = 0 then k < j. Due to θ̃ ∈ HUαβ ,Uα+β(c), we

have g(θ) ≤ g(θ̃). Contradiction. The other is uα+β < Uα+β and θ[(Γ ◦ γ)(j)] 6= 0

and uαβ = Uαβ. This implies
∑p

i=1 θ[ηαβi ] = Uαβ. Since θ̃ ∈ HUαβ ,Uα+β(c), there

exists k < j such that θ[δ(k)] 6= 0, θ[(Γ ◦ δ)(k)] 6= 0 and θ̃[δ(k)] = 0. Then we

have g(θ̃′) ≤ g(θ̃), where θ̃′ ∈ HUαβ ,Uα+β(c) equals to θ̃ except that θ̃′[δ(j)] = 0,

θ̃′[δ(k)] = c[δ(k)]. We restart the above discussion for θ̃′ instead of θ̃. Note that in

this new discussion the j is larger. Repeat this routine until j > 2p. Contradiction.
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B.1.2 Proof of Proposition III.5

1. It follows by Proposition III.6 Statement 1.

2. If θ is a solution to Problem III.1 but not a first-order stationary point, then

exists θ̃ ∈ Θ(Uαβ, Uα+β) s.t. g(θ̃) ≤ GL(θ̃,θ) < GL(θ,θ) = g(θ). Contradic-

tion.

3. If the first-order stationary point θ satisfies the two conditions, then θ = θ −
1
L
∇g(θ), due to Algorithm 1. Thus ∇g(θ) = 0. Since g is convex, then θ is a

solution to the problem.

B.1.3 Proof of Proposition III.6

1. By Proposition III.3, we have:

g(θt) = GL(θt,θt) ≥ GL(θt+1,θt) = Gl(θt+1,θt) +
L− l

2
‖θt+1 − θt‖2

2

≥ g(θt+1) +
L− l

2
‖θt+1 − θt‖2

2.

The above inequality implies g(θt) is decreasing. Since g(θ) has finite lower

bound, g(θt) is convergent.

2. Obvious due to Proposition III.6 Statement 1.

B.1.4 Proof of Proposition III.8

1. If θt[η
α
i ] does not converge and lim inft→∞ θt[τ ] > 0, then there exists subse-

quence θf(t) s.t. lim inft→∞
∥∥θf(t)+1 − θf(t)

∥∥
2
≥ lim inft→∞ θt[τ ] > 0. Contradic-

tion to Proposition III.6 Statement 2.

2. Let θ = limt→∞ θf(t), ct = θt− 1
L
∇g(θt), c = θ− 1

L
∇g(θ) and θ̃ denote output

of Algorithm 1 with c as input. From Proposition III.8 Statement 1a, we have
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θ[ηα] = limt→∞ θt[η
α] and θ[ηβ] = limt→∞ θt[η

β].

For any s ∈ {α1, . . . , αp, β1, . . . , βp} s.t. θ[s] = 0, there are two possible

situations. One is θ[Γ(s)] = 0, then for any s′ ∈ {α1, . . . , αp, β1, . . . , βp}

s.t. θ[s′] 6= 0, we have
∥∥c[s′]

∥∥
2

= limt→∞
∥∥cf(t)[s

′]
∥∥

2
≥ limt→∞

∥∥cf(t)[s]
∥∥

2
=∥∥c[s]

∥∥
2
. If

∑p
i=1 θ[ηαi ] + θ[ηβi ] = Uα+β, by Algorithm 1, then θ̃[s] = 0. If∑p

i=1 θ[ηαi ] + θ[ηβi ] < Uα+β, then c[s] = limt→∞ cf(t)[s] = 0, thus θ̃[s] = 0. The

other is θ[Γ(s)] 6= 0, then c[s] ≤ c[Γ(s)] and for any j ∈ {1, . . . , p} s.t. θ[αj] 6= 0

and θ[βj] 6= 0, we have
∥∥c[αj]

∥∥
2

= limt→∞
∥∥cf(t)[αj]

∥∥
2
≥ limt→∞

∥∥cf(t)[s]
∥∥

2
=∥∥c[s]

∥∥
2

and
∥∥c[βj]

∥∥
2

= limt→∞
∥∥cf(t)[βj]

∥∥
2
≥ limt→∞

∥∥cf(t)[s]
∥∥

2
=
∥∥c[s]

∥∥
2
. If∑p

i=1 θ[ηαβi ] = Uαβ, by Algorithm 1, then θ̃[s] = 0. If
∑p

i=1 θ[ηαβi ] < Uαβ,

then for any s′ ∈ {α1, . . . , αp, β1, . . . , βp} s.t. θ[s′] 6= 0, we have
∥∥c[s′]

∥∥
2

=

limt→∞
∥∥cf(t)[s

′]
∥∥

2
≥ limt→∞

∥∥cf(t)[s]
∥∥

2
=
∥∥c[s]

∥∥
2
, thus θ̃[s] = 0.

For any s ∈ {α1, . . . , αp, β1, . . . , βp} s.t. θ[s] 6= 0, by Algorithm 1, we have

θ̃[s] = c[s]. From Proposition III.8 Statement 1a, we have
(
∇g(θ)

)
[s] =

limt→∞
(
∇g(θf(t))

)
[s] = 0. Then θ̃[s] = θ[s].

So θ̃ = θ.

3. Let ct = θt− 1
L
∇g(θt). Given s ∈ {α1, . . . , αp, β1, . . . , βp} and t, there are three

situations. First, if θf(t)[s] 6= 0, then

∥∥(∇g(θf(t)−1)
)
[s]
∥∥

2
= L

∥∥θf(t)[s]− θf(t)−1[s]
∥∥

2
.

Second, if θf(t)[s] = θf(t)−1[s] = 0, then

∥∥(∇g(θf(t)−1)
)
[s]
∥∥

2
≤ Lθf(t)[ρ] + Lθf(t)[τ ].
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Third, if θf(t)[s] = 0 and θf(t)−1[s] 6= 0, then

∥∥(∇g(θf(t)−1)
)
[s]
∥∥

2
≤ L

∥∥cf(t)−1[s]
∥∥

2
+ L

∥∥θf(t)[s]− θf(t)−1[s]
∥∥

2

≤ Lθf(t)[ρ] + Lθf(t)[τ ] + L
∥∥θf(t)[s]− θf(t)−1[s]

∥∥
2
.

Due to Proposition III.8 Statement 1b, we have limt→∞∇g(θf(t)−1) = limt→∞∇g(θf(t)) =

0.

4. Obvious due to Proposition III.8 Statement 2a.

5. If θt[η
αβ] does not converge and lim inft→∞ θt[ρ] > 0, then there must exists

subsequence θh(t) s.t.
∥∥θh(t) − θh(t)−1

∥∥
2
≥ θh(t)[ρ] > 0. Contradiction to Propo-

sition III.6 Statement 2.

Let ct = θt− 1
L
∇g(θt) and limt→∞ θf(t)[τ ] = 0. Given s ∈ {α1, . . . , αp, β1, . . . , βp}

and t, consider two situations. One is that if θf(t)[s] 6= 0, then

∥∥(∇g(θf(t)−1)
)
[s]
∥∥

2
= L

∥∥θf(t)[s]− θf(t)−1[s]
∥∥

2
.

The other is that if θf(t)[s] = θf(t)[Γ(s)] = 0, then

∥∥(∇g(θf(t)−1)
)
[s]
∥∥

2
≤ L

∥∥cf(t)−1[s]
∥∥

2
+ L

∥∥θf(t)[s]− θf(t)−1[s]
∥∥

2

≤ Lθf(t)[τ ] + L
∥∥θf(t)[s]− θf(t)−1[s]

∥∥
2
.

Due to Proposition III.8 Statement 1b, we have

lim
t→∞

{
1− I

(
θf(t)[s] = 0,θf(t)[Γ(s)] 6= 0

)}(
∇g(θf(t)−1)

)
[s] = 0.

6. Let θ = limt→∞ θf(t), ct = θt− 1
L
∇g(θt), c = θ− 1

L
∇g(θ) and θ̃ denote output

of Algorithm 1 with c as input.
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For any s ∈ {α1, . . . , αp, β1, . . . , βp}, if I
(
θf(t)[s] = 0,θf(t)[Γ(s)] 6= 0

)
does

not converge to 1, then from Proposition III.8 Statement 3a there exists a

subsequence θh(t) of θf(t) such that limt→∞
(
∇g(θh(t)−1)

)
[s] = 0. Since θf(t)

converges and Proposition III.6 Statement 2,

(
∇g(θ)

)
[s] = lim

t→∞

(
∇g(θf(t))

)
[s] = lim

t→∞

(
∇g(θf(t)−1)

)
[s] = lim

t→∞

(
∇g(θh(t)−1)

)
[s] = 0.

For any s ∈ {α1, . . . , αp, β1, . . . , βp}, if limt→∞ I
(
θf(t)[s] = 0,θf(t)[Γ(s)] 6= 0

)
=

1, then

lim
t→∞

∥∥cf(t)−1[s]
∥∥

2
≤ lim

t→∞

∥∥cf(t)−1[Γ(s)]
∥∥

2

and there are two situations. One is
∑p

i=1 θ[ηαβi ] = Uαβ, then for any i ∈

{1, . . . , p} such that limt→∞ θf(t)[η
αβ
i ] = 1 we have

∥∥c[s]
∥∥

2
= lim

t→∞

∥∥cf(t)−1[s]
∥∥

2
≤ lim

t→∞

∥∥cf(t)−1[αi]
∥∥

2
=
∥∥c[αi]

∥∥
2
,∥∥c[s]

∥∥
2

= lim
t→∞

∥∥cf(t)−1[s]
∥∥

2
≤ lim

t→∞

∥∥cf(t)−1[βi]
∥∥

2
=
∥∥c[βi]

∥∥
2
.

Thus θ̃[s] = 0 by Algorithm 1. The Other is
∑p

i=1 θ[ηαβi ] < Uαβ, then

∥∥c[s]
∥∥

2
= lim

t→∞

∥∥cf(t)[s]
∥∥

2
= lim

t→∞

∥∥cf(t)−1[s]
∥∥

2
≤ lim

t→∞
θf(t)[τ ] = 0.

Thus θ̃[s] = 0 by Algorithm 1. So θ = θ̃.
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