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ABSTRACT

Understanding human behavior is crucial for any autonomous system which in-

teracts with humans. For example, assistive robots need to know when a person is

signaling for help, and autonomous vehicles need to know when a person is waiting

to cross the street. However, identifying human actions in video is a challenging and

unsolved problem. In this work, we address several of the key challenges in human

action recognition. To enable better representations of video sequences, we develop

novel deep learning architectures which improve representations both at the level

of instantaneous motion as well as at the level of long-term context. In addition,

to reduce reliance on fixed action vocabularies, we develop a compositional repre-

sentation of actions which allows novel action descriptions to be represented as a

sequence of sub-actions. Finally, we address the issue of data collection for human

action understanding by creating a large-scale video dataset, consisting of 70 million

videos collected from internet video sharing sites and their matched descriptions.

We demonstrate that these contributions improve the generalization performance of

human action recognition systems on several benchmark datasets.

xv



CHAPTER I

Introduction

As human beings, we are constantly acting and interacting with the world around

us. This serves several important functions. First, and most obviously, this is how

we enact change in our environment; we build things, and we and work to achieve

our goals. Second, this is how we learn about our environment; we actively explore

the world around us, conduct small experiments, and test our predictions about the

future. Finally, this is how we communicate our knowledge, beliefs, and desires to

others; we signal what we know, both explicitly with our words, and implicitly with

our actions. Humans are a product of the actions they perform.

Because actions are such a key part of human life, understanding these actions

is a crucial skill for any intelligent system which coexists with humans. At the very

least, such a system would need to be able to perform action recognition, that

is, identifying what actions are being performed. Action recognition allows systems

to respond to actions in their environment. For example, an autonomous car could

identify when someone is waiting to cross the street, and then stop to allow them to

cross. Broadly, action recognition allows an intelligent system to better understand

their environment as more than just a collection of people and objects. Action

recognition allows the system to see how these people and objects interact with one

1
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another, identify their intent, and respond to their needs.

Action recognition in computer vision has been studied extensively for several

decades, and significant strides have been made towards accurate and robust action

recognition systems [125, 188]. In recent years, such systems typically have fallen

into the framework of deep learning, which leverages large amounts of data to train

multi-layer model architectures. However, there are many unanswered questions that

arise from this framework, specifically regarding two key areas: datasets and models.

Datasets have been shown to be crucially important for training deep learning sys-

tems. Such datasets need to be large and diverse, and sufficiently general datasets

can be used to train models which then transfer well to many down-stream tasks [72].

However, in the domain of video action recognition, datasets are particularly expen-

sive to collect because of the sheer amount of time it takes to watch and label video

content. This is particularly problematic because of the models that are often used

for video action recognition, which typically have many more parameters, and there-

fore require more data to train, than models that perform other computer vision

tasks. One reason for this is that models for video action recognition must be able

to understand low-level motion (that is, movements that take place over a fraction

of a second) as well as long-term context (over periods of minutes or hours). This

means that models need to recognize complex patterns of appearance, motion, and

context, all simultaneously, and integrate these signals effectively. How to do this

effectively is still very much an unsolved problem.

In this work, we present several novel model architectures and datasets for action

recognition. In Chapters II, III, and IV, we contribute novel model architectures

which address the issues of instantaneous motion interpretation (II), and long-term

context (III, IV). In Chapter V, we address the challenge of collecting large-scale data
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for video action recognition, and demonstrate how such data can then improve the

performance of models. Additionally, our various approaches for action recognition

each approach a progressively more challenging version of the task, each demonstrat-

ing a progressively richer representation of actions. In Chapter II, we model action

recognition simply as a video classification task, where each short video clip contains

exactly one action from a pre-defined list of human actions. In Chapter III, we treat

action recognition as a detection task, where multiple actions may take place con-

currently and at different points in a longer video. Finally, in Chapters IV and V,

we treat action recognition as a natural language grounding task, where the actions

are no longer taken from a pre-defined list, but instead are described in an open-

ended fashion using natural text. This progression represents an advance towards

more practically useful video action recognition systems, that is, ones which apply

to realistic scenarios with fewer assumptions.

1.1 Scope of this Work

Throughout our work, we focus on understanding actions using only their visual

content, as opposed to using audio signals or other additional cues. This is primarily

for simplicity, as the vast majority of human actions can be recognized from visual

cues alone and therefore adding audio needlessly complicates the model architec-

tures. While it is probable that additional cues from audio may be useful for many

action recognition systems, this question is beyond of the scope of our work. Our

work primarily focuses on building visual representations of actions, and using these

representations to perform recognition and understanding.

In addition, our models all act on videos, as opposed to static images. This is

because actions inherently involve motion and the passage of time, and therefore
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Figure 1.1: Modeling actions requires modeling motion. From the single image above, it is ambigu-
ous whether the action is “opening a door” or “closing a door”. Motion is necessary to
model such actions.

cannot be fully addressed without modelling their temporal component. To see this,

consider the examples from Figure 1.1. These examples each present a single frame

from a video which demonstrate an ambiguous action, such as “opening a door” or

“closing a door” . Because the temporal component is missing, it is nearly impossible

to accurately determine which action is being performed in each frame. However,

just a small amount of motion information would make this task possible. Because of

the tight coupling between actions and time, a large portion of our work is concerned

with representing video content in a way which preserves the temporal properties of

actions. While single-image action recognition is itself an interesting line of research,

we do not consider this task in our work.

1.2 Applications

In addition to its importance to visual intelligence more broadly, action under-

standing is an area rich with immediate practical applications. Here, we briefly

present a few illustrative examples. While our work does not directly address these

applications, we demonstrate in our experiments that our models are capable of
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learning a broad vocabulary of actions, and therefore can be used in a wide range of

real-world applications, including those listed below.

1.2.1 Video Retrieval

Video retrieval is a classic task at the intersection of computer vision and database

design. In this task, we seek to query a database of videos using key terms about their

content. For example, we may search the database for videos containing for broad

concepts such as “basketball”, or more narrow concepts such as “Michael Jordan

dunking a basketball”. This task has practical utility for users on social media and

video sharing websites, and can also be useful for creative applications such as video

editing.

Current large-scale approaches to video retrieval rely heavily on user-generated

metadata such as video titles, descriptions, and tags. The accuracy of video retrieval

therefore depends on the accuracy of the user-generated metadata. However, anno-

tating video content is cumbersome, particularly now that video content is becoming

easier to capture and share online. For reference, more than 500 hours of video are

uploaded to YouTube every minute [49], and it is likely that the majority of this

content has limited annotations available for retrieval.

Because of the difficulty of collecting accurate video labels at scale, recent work

has considered the task of content-based video retrieval [201, 41, 164]. In this task,

only video content, rather than user-annotated metadata, is used to retrieve results

from the database. While this task is much more challenging than its predecessor, it

is a much more flexible framework for video retrieval, as it removes any reliance on

specific video tags or categories. Conceptually, all of the video representations we

build in our work could be used for video retrieval, and in Chapter IV, we present a

model for text-to-clip retrieval, a related task.
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1.2.2 Pedestrian Detection

Computer vision, in general, is of significant practical importance for autonomous

driving, which involves many perceptual tasks such as lane identification, and sign

and vehicle recognition. Current systems are quite successful at driving in highly

predictable environments such as highways, but significant progress needs to be made

before autonomous vehicles can drive in crowded city environments without human

intervention.

Action recognition specifically is useful in this situation, and in any mode of

driving where pedestrians may be present. In city driving, it is crucial to understand

the motions and intentions of pedestrians, which may make sudden moves, such as

crossing the street in front of the vehicle. To prevent collisions in such situations,

the system can monitor nearby pedestrians and infer their intent from their actions,

such as looking both ways before crossing the street.

1.2.3 Human-robot Interaction

Naturally, a robot that interacts with humans needs to be able to recognize and

respond to human actions. Ideally, we expect a robot assistant to perform and recog-

nize new actions from only a small number of demonstrations, or from a description

alone. Current systems are far from achieving this level of ability, but our work

presents a necessary step towards this goal.

1.3 Related Work

Action recognition is a well-studied problem in computer vision which has drawn

the attention of researchers for decades. In recent years, approaches towards video

action recognition have generally fallen into the framework of deep learning, in which

feature representations of videos are learned in an end-to-end fashion, using deep
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neural networks trained on large amounts of labeled data. Broadly, this means

that there are two main areas in which such deep learning approaches can make

progress. First, there are the models themselves, and specifically how these models

are designed and optimized for a given dataset. Second, there are the datasets on

which these models are trained, and in particular how datasets can be made larger

and more varied to meet the needs of data-intensive deep learning models. Here, we

give a broad overview of the progress in these two areas in recent years. For a more

complete picture of the related work, we additionally provide a related work section

in each of the forthcoming chapters.

1.3.1 Models

In the simplest case, models for video action recognition can simply treat a video as

a bag of images, paying no attention to the sequence in which these images appear.

This approach often provides a strong baseline on many action recognition tasks,

but they fail to identify actions for which temporal context is important. To fully

reason about videos, models for action recognition must carefully integrate temporal

information over a wide range of timescales, all the way from instantaneous motion

that occurs over fractions of a second, to long-term dependencies between moments

that are minutes or hours apart. In this work, we demonstrate advances in integrating

both short-term context (Chapter II) as well as long-term context (Chapters III, IV).

1.3.2 Short-term Context

One common approach is to simply augment single-image CNNs (2D CNNs) to

allow for motion feature learning, specifically by changing the input modality to be a

representation of local motion such as optical flow. When combined with a standard

2D CNN which takes RGB video frames as input, the approach is called two-stream
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CNNs [143]. However, this is not a purely end-to-end approach, and therefore can

suffer if the input motion representation fails to capture useful features for action

recognition. To remedy this, 2D CNNs can be generalized to include 3D filters (which

operate across small groups of adjacent frames) as opposed to 2D (single-frame)

filters. This approach is called 3D CNNs [67], and conceptually, 3D filters should

allow CNNs to model motion. However, 3D CNNs have many more parameters

and therefore require more data to train than their 2D counterparts. Additionally,

3D CNNs lack some of the machinery used in optical flow estimation, specifically

the ability to find correspondences between pairs of adjacent frames. Therefore,

it is not clear whether 3D CNNs can and do learn sufficiently generalizable motion

representations, which is the focus of our work on Distilled 3D Networks (Chapter II).

1.3.3 Long-term Context

Approaches which examine short-term context, such as optical flow estimation and

3D CNNs, do not scale well to long timescales. Therefore, prior work which examine

long- and short-term context have taken markedly different directions. To integrate

long-term context, prior work often begins with pre-extracted frame-level feature

vectors, and treats the sequence of features as a multivariate time series. Commonly,

this series is processed using a recurrent model such as an LSTM [58]. In principle,

such a model can integrate information over arbitrary long sequences, however, in

practice, these models often fail to identify such relationships. Another approach

is to use graphical models such as CRFs [80]. However, these approaches generally

require the system to solve hard optimization problems during inference that do not

scale to arbitrarily-long temporal contexts. In Temporal Hourglass Networks (Chap-

ter III) we provide an end-to-end learnable network architecture which can integrate

long-term context at multiple scales throughout a video. In Compositional Tem-
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poral Grounding (Chapter IV) we introduce another end-to-end architecture which

explicitly integrates information across multiple sub-actions within a long video.

1.3.4 Datasets

Deep architectures for video action recognition require large amounts of data to

train. As a result, there has been signficant effort over the past decade to construct

ever-larger datasets. In 2011, the state of the art dataset contained fewer than 10,000

videos, while in 2019 the Kinetics-700 dataset was released with 650,000 labeled

videos [79, 11]. These advances in dataset size have tracked with performance on

many down-stream tasks, and enabled data-intensive models such as 3D CNNs to

emerge as the dominant paradigm. However, Kinetics required over 10,000 human

hours to annotate [13], and it is unlikely that this figure could be scaled by another

factor of 10 or 100, which would require over one million hours of human time.

1.3.5 Webly-Supervised Learning

To combat the need for large labeled datasets, much prior work has turned towards

the internet as a source of free labeled datasets. In general, these approaches use

metadata found on the Internet, such as using search results, as a form of labels.

These approaches have consistently demonstrated that webly-supervised learning is

scalable, and has the potential to outperform strongly-supervised methods if given

a large enough pool of data. In Web Video Text (Chapter V), we collect the largest

video dataset ever used for webly-supervised learning, and demonstrate state-of-the-

art results on various downstream tasks.



CHAPTER II

Distilled 3D Networks for Video Action Recognition

Motion is often a necessary cue for recognizing actions. For example, it may be

difficult to tell two actions apart from a single frame, like “open a door” and “close

a door”, because the interpretation of the action depends on the direction of mo-

tion. To handle this, recent work treats recognition from motion as its own task,

in which a “temporal stream” observes only a hand-designed motion representation

as input, while another network, the “spatial stream”, observes the raw RGB video

frames [143]. However, when the spatial stream is a 3D Convolutional Neural Net-

work, it has spatiotemporal filters that can respond to motion in the video [12, 189].

Conceptually, this should allow the spatial stream to learn motion features, a claim

echoed in the literature [169, 90, 122]. However, we still see strong gains in accuracy

by including a “temporal” 3D CNN which takes an explicit motion representation,

typically optical flow, as input. For example, we see a 6.6% increase in accuracy on

HMDB-51 when we ensemble a 3D CNN that takes RGB frames with a 3D CNN

that takes optical flow frames [12]. It is unclear why both streams are necessary. Is

the temporal stream capturing motion features which the spatial stream is missing?

If so, why is the 3D CNN missing this information? In this chapter, we examine the

spatial stream in 3D CNNs to see what motion representations they learn, and we

10
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Optical Flow
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RGB
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Actions

Student NetworkTeacher Network
(training only)

Figure 2.1: Distilled 3D Networks (D3D). We train a 3D CNN (the student) to recognize actions
from RGB video while also distilling knowledge from a network (the teacher) that
recognizes actions from optical flow sequences. The teacher network is only used during
training, so optical flow is not needed for inference.

introduce a method, depicted in Figure 2.1, that combines the spatial and temporal

streams into a single RGB-only model that achieves comparable performance.

Because 3D CNNs include temporal filters, we hypothesize that they should be

able to produce motion representations such as optical flow. Recent work has shown

that it is possible for 3D CNNs to learn optical flow, but in these studies, the net-

work structure is designed specifically for this purpose [112]. Instead of designing

a network specifically for learning motion representations, we study a network that

is designed for action recognition, and we test whether it is capable of producing

motion representations. To do this, we train 3D CNNs on an optical flow prediction

task, described in Section 2.2.1, and we demonstrate experimentally that 3D CNNs

are indeed capable of learning motion representations in this way.

However, while 3D CNNs are capable of learning motion representations when

optimized for optical flow prediction, it is not necessarily true that these motion

representations will arise naturally when 3D CNNs are trained to perform other
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tasks, such as action recognition. To answer whether this is the case, we evaluate

the same state-of-the-art 3D CNNs on the optical flow prediction task, but we use

models with fixed spatiotemporal filters that are trained on an action recognition

task. We find that these models underperform those that are fully fine-tuned for

optical flow prediction, suggesting that 3D CNNs have much room for improvement

to learn higher-quality motion representations.

To improve these motion representations, we propose to distill knowledge from

the temporal stream into the spatial stream, effectively compressing the two-stream

architecture into a single model. In Section 2.3, we train this Distilled 3D Network

(D3D) by optimizing an auxiliary loss which encourages the spatial stream to match

the temporal stream’s output, a technique often used for model compression [57].

During inference, we only use the distilled spatial stream, and we find that D3D

achieves improved performance on the optical flow prediction task. This suggests

that distillation improves motion representations in 3D CNNs.

We apply D3D to five datasets using three backbone architectures, and we find

in Section 2.5 that D3D strongly outperforms single-stream baselines, achieving ac-

curacy on par with the two-stream model with only a single stream. We train and

evaluate D3D on Kinetics [72], and we show that the weights learned by distillation

also transfer to other tasks, including HMDB-51 [79], UCF-101 [150], and AVA [48].

D3D does not require any optical flow computation during inference, making it less

computationally expensive than two-stream approaches. D3D can also benefit from

ensembling for better performance, still without the need for optical flow. We com-

pare D3D to a number of strong baselines, and D3D outperforms these approaches.

In summary, we make the following contributions:

1. We investigate whether motion representations arise naturally in the spatial
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stream of 3D CNNs trained on action recognition.

2. We introduce a method, Distilled 3D Networks (D3D), for improving these

motion representations using knowledge distillation from the temporal stream.

3. We demonstrate that D3D achieves competitive results on Kinetics, UCF-101,

HMDB-51, and AVA, without the need to compute optical flow during inference.

2.1 Related Work

We broadly categorize video action recognition methods into two approaches.

First, there are 2D CNN approaches, where single-frame models are used to process

each frame individually. Second, there are 3D CNN approaches, where a model learns

video-level features using 3D filters. As we will see, both categories of methods often

take a two-stream approach, where one stream captures features from appearance,

and another stream captures features from motion. Our work considers Two-Stream

3D CNNs.

2.1.1 2D CNNs for Action Recognition

Many approaches leverage the strength of single-image (2D) CNNs by applying a

CNN to each individual video frame and pooling the predictions across time [143, 25,

141]. However, näıve average pooling ignores the temporal dynamics of video. To

capture temporal features, Two-Stream Networks introduce a second network called

the temporal stream, which takes a sequence of consecutive optical flow frames as

input [143]. The outputs of these networks are then combined by late fusion, or

in other approaches by early fusion, by allowing the early layers of the spatial and

temporal streams to interact [28]. Other methods have taken different approaches

to incorporating motion by changing the way the features are pooled across time,

for example, with an LSTM or CRF [25, 141]. These approaches have proven very
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effective, particularly in the case where video data is limited and therefore training

a 3D CNN is challenging. However, recently released large-scale video datasets have

spurred advances in 3D CNNs [72].

2.1.2 3D CNNs for Action Recognition

Single-frame CNNs can be generalized to video by expanding the filters to three

dimensions and applying them temporally, an approach called 3D CNNs [67]. Con-

ceptually, 3D filters should allow CNNs to model motion, but this comes at a cost;

3D CNNs have more parameters and therefore require more data to train. Large-

scale video datasets such as Sports-1M enabled the first 3D CNNs, but these were

often not much more accurate than 2D CNNs applied frame-by-frame, calling into

question whether 3D CNNs actually model motion [71]. To compensate, many 3D

CNN approaches use additional techniques for incorporating motion. In C3D, mo-

tion is incorporated using Improved Dense Trajectory (IDT) features, which leads to

a substantial improvement of 5.2% absolute accuracy on UCF-101 [169, 176]. In I3D,

S3D-G, and R(2+1)D, using a two-stream approach leads to absolute improvements

of 3.1%, 2.5%, and 1.1% on Kinetics, respectively [12, 189, 171]. The fact that 3D

CNNs benefit from a hand designed motion representation suggests that they do not

learn to model motion naturally when trained on action recognition tasks. More

evidence has shed light on this, for example recent work discovered that 3D CNNs

are largely unaffected in accuracy on Kinetics when their input is reversed [189].

In addition, it has been shown that using only a single frame from Kinetics videos

with C3D achieves only 5% lower accuracy than using all frames [61]. These results

suggest that 3D CNNs do not sufficiently model motion, a hypothesis we explore

further in this work.
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2.1.3 Uses of Optical Flow

If 3D CNNs do not model motion when trained on action recognition, we naturally

ask whether motion is even necessary for this task, and if not, what other benefits

optical flow may offer. Recent work has explored several possible explanations for

why optical flow is so effective for 3D CNNs [136]. One hypothesis is that optical flow

is invariant to texture and color, making it difficult to overfit to small video datasets.

To support this, recent work demonstrates that action recognition performance is not

well correlated with optical flow accuracy, except near motion boundaries and areas

of small displacement [136]. This work, as well as others, have shown that better

or cheaper motion representations can be used in place of optical flow, suggesting

that, while motion representations are important, optical flow itself is not crucial [27,

199, 204, 38, 136]. However, optical flow has been shown to be useful as a source

of additional supervision, which is shown by ActionFlowNet [112]. This work, like

ours, trains a 3D CNN to incorporate motion by using an auxiliary task. However,

our work uses a different auxiliary task, distillation, which we show is more effective.

2.1.4 Incorporating Motion in 3D CNNs

Many other approaches incorporate motion information into 3D CNNs using

changes to the network architecture. Motion Feature Networks, Optical Flow-Guided

Features, and Representation Flow all accomplish this by introducing modules into

the network which explicitly compute motion representations [90, 161, 122]. These

approaches typically add machinery into the 3D CNN architecture that is “missing”

from 3D filters, such as the ability to match to motion templates or find correspon-

dences between spatial locations in pairs of nearby frames, which were common in

pre-deep learning approaches to action recognition [134]. Alternatively, several ap-
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proaches have proposed to replace the optical flow inputs for the temporal stream

with a CNN which produces a learned motion representation. For example, Hidden

Two-Stream and TVNet use a motion representation that is trained end-to-end for

action recognition [27, 204]. In our work, we show that distillation is more effective

at improving accuracy than these architectural changes. However, distillation is not

in conflict with these changes, and can in fact be applied in combination with any

network architecture. Furthermore, the approaches which introduce new modules do

not answer whether “vanilla” 3D CNNs are capable of learning motion representa-

tions. In our work, we present a study which demonstrates that 3D CNNs do have

this ability, and show that distillation improves these representations.

2.1.5 Distillation

In this work we propose to incorporate motion representations into 3D CNNs using

distillation. Distillation was first introduced as a way of transferring knowledge from

a teacher network to a (typically smaller) student network by optimizing the student

network to reconstruct the output of the teacher network [9, 57]. Recent work on

distillation has demonstrated that this technique is widely applicable and can be used

to transfer knowledge between different tasks or modalities [32, 199, 128, 99, 39]. Our

work is related to Motion Vector CNNs, which distill knowledge from the temporal

stream into a new motion stream which uses a cheaper motion representation in place

of optical flow [199]. By contrast, our work distills the temporal stream into the

spatial stream, which allows us to avoid using hand-designed motion representations

altogether.

The most similar work to ours is concurrent work on Motion-Augmented RGB

Streams (MARS) [20]. This work proposes a similar distillation approach, but ours

presents several additional analyses which shed light on the method. Specifically, in
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Section 2.2, we propose a flow prediction task to study the motion representation

capacity of 3D CNNs, and we demonstrate the effect of distillation on this ability. In

addition, we show that our approach can transfer to spatio-temporal action localiza-

tion (Section 2.5.4) as well as different backbone architectures (Table 2.7). Finally,

in our ablation studies in Section 2.5.5 we propose and evaluate some alternatives to

distillation, and we show that distillation outperforms these alternatives.

2.2 Motion Representations in 3D CNNs

Two-stream methods rely on optical flow, a hand-designed motion representation,

in order to learn features from motion. This begs the question: are 3D CNNs capable

of learning sufficient motion representations on their own? To answer this, we train

a spatial stream 3D CNN to produce optical flow. If the spatial stream is able

to produce optical flow, it suggests that the temporal stream is unnecessary, since

it does not have access to any information that the spatial stream cannot learn to

produce on its own. On the other hand, if the 3D CNN is not able to produce optical

flow, it could be due to one of two possibilities. First, it could be a fundamental

limitation of 3D CNNs, that is, they are unable to learn optical flow from video.

Second, it could suggest a limitation in the training procedure, that is, they are able

to learn optical flow, but do not.

We will show that the second possibility is true: 3D CNNs do not learn motion

representations such as optical flow naturally, and the issue lies with the training

procedure. Specifically, we demonstrate that 3D CNNs do not learn sufficiently

accurate optical flow when trained on action recognition, and that they can learn

much more accurate optical flow when trained explicitly to do so.
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2.2.1 Optical Flow Decoder

To predict optical flow, we use the hidden features from an intermediate layer in

a 3D CNN and pass them through a decoder, as depicted in Figure 2.2. Since our

goal is to evaluate the motion representations in the hidden features, we constrain

the decoder such that it is unable to learn motion patterns beyond what is already

learned by the 3D CNN. Specifically, the decoder contains no temporal convolutions,

and operates on a single frame at a time.

In our experiments, the optical flow decoder is designed to mimic the optical flow

prediction network from PWC-Net [159], but without the cost volume and warping

layers. For more details on the architecture of this decoder, please refer to the

appendix.

The output of the decoder is a motion representation introduced by Im2Flow [38],

which consists of three channels that encode optical flow: (mag , sin θ, cos θ), where

mag and θ are the magnitude and angle, respectively, of the flow vector at each

pixel. The decoder is trained to minimize the squared error between the predicted

and target optical flow. For numerical stability, we weight the loss for the sin θ, cos θ

channels by mag . This encoding and training procedure have been shown in prior

work to be more effective than directly regressing the optical flow vectors.

To match prior work, we use TV-L1 optical flow [198] as the motion representa-

tion [38, 175, 123]. TV-L1 optical flow is commonly used as the input to the temporal

stream in many two-stream approaches [12, 136]. Therefore, it is known to be a useful

motion representation for action recognition, and reconstructing it with a 3D CNN

demonstrates how well the 3D CNN can capture useful motion representations.
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Figure 2.2: The network used to predict optical flow from 3D CNN features. We apply the decoder
at hidden layers in the 3D CNN (depicted here at layer 3A). This diagram shows
the structure of I3D/S3D-G, where blue boxes represent convolution (dashed lines) or
Inception blocks (solid lines), and gray boxes represent pooling blocks [12, 189]. Layer
names are the same as those used in Inception [163].

2.2.2 Evaluation Metrics

After training the optical flow decoder, we evaluate the learned optical flow using

endpoint error (EPE), a common metric that is adopted in prior work [38, 175, 123].

We evaluate in two settings. In the first setting, we freeze the 3D CNN and train

the decoder. This setting tests what motion representations are learned by the 3D

CNN naturally by training on action recognition. In the second setting, we fine-tune

the decoder and 3D CNN end-to-end. This setting tests what motion representations

can be learned by a 3D CNN when optimized specifically for this purpose.

In Section 2.5.1, we demonstrate much better results in the second setting than

in the first, suggesting there is room for improvement in the training procedure for

spatial stream 3D CNNs. We also demonstrate that our proposed distilled method

achieves improvements in this direction.

2.3 Distilled 3D Networks

Our goal is to incorporate motion representations from the temporal stream into

the spatial stream. We approach this using distillation, that is, by optimizing the

spatial stream to behave similarly to the temporal stream. Our approach uses the
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learned temporal stream from the typical two-stream pipeline as a teacher network,

and the spatial stream as a student network. During training, we distill the knowledge

from the teacher network into the student network, as depicted in Figure 2.1. This is

accomplished by introducing a new loss function, which penalizes the outputs of the

spatial stream if they are dissimilar to those of the temporal stream. More concretely,

we train the network parameters θ to minimize the sum of two losses La and Ld,

(2.1) L(θ) = La(θ) + λLd(θ)

where the action classification loss La is the cross-entropy and the distillation loss

Ld is the mean squared error between the pre-softmax outputs of the spatial stream

fs(x; θ) and that of the fixed temporal stream ft(x), i.e.

(2.2) Ld(θ) =
1

N

N−1∑
i=0

(fs(x
(i); θ)− ft(x(i)))2,

where {x(0), ..., x(N−1)} are the video clips. The hyperparameter λ allows us to flexibly

rescale the contribution of the distillation loss. In our experiments, we find that

λ = 1 conveniently serves as a good setting in many cases. Note that we use a mean

squared error loss, as opposed to the cross-entropy loss proposed in prior work [57].

We find that this approach achieves similar results, and can be more flexibly applied

to intermediate layers in the network.

We refer to a spatial stream fs trained using distillation as a Distilled 3D Network

(D3D). For inference, we discard the temporal stream ft, skipping the optical flow

step and relying only on RGB input. As we show in Section 2.5, D3D is able to

achieve accuracy on par with two-stream methods without the need for two separate

spatial and temporal streams. In addition, unlike other approaches for incorporating

motion representations, we add no additional computational overhead to the spatial

stream [122, 184, 161, 90]. We use S3D-G as the backbone architecture for both
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the spatial and temporal stream, since it achieves comparable accuracy at lower

computational cost than competing architectures such as I3D and Non-local I3D [12,

184].

2.3.1 Implementation Details

We train D3D in two steps. First, we train the temporal stream using TV-

L1 optical flow inputs. Second, we train the spatial stream using the distillation

procedure described in Section 2.3. For inference, we discard the temporal stream.

When training the temporal stream, we use the same hyperparameters as those

described in prior work [189]. When training the spatial stream, we also use the

same hyperparameters as prior work, with the only change being the addition of our

distillation loss. We use scaling parameter λ = 1 unless otherwise specified. We train

the model for 140k steps on 56 GPUs with a batch size of 6 clips per GPU. For more

details, please refer to prior work on S3D-G [189].

2.4 Datasets

We train and evaluate D3D on several datasets in Section 2.5.

2.4.1 Kinetics

Kinetics is a large-scale video classification dataset with approximately 500K 10-

second clips annotated with one of 600 action categories [72, 10]. Kinetics has two

variants: Kinetics-600 is the full dataset, and Kinetics-400 is an approximate subset

containing 400 categories.

Kinetics consists of publicly available YouTube videos, which can be deleted by

their owners at any time. Thus, Kinetics, like similar large-scale Internet datasets,

gradually decays over time. Our experiments were conducted on a snapshot of the

Kinetics dataset captured in October 2018, when Kinetics-400 contained 226K of
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the original 247K training examples (-8.4%) and Kinetics-600 contained 369K of the

original 393K training examples (-6.1%). The change in both training and validation

sets generates a small discrepancy between experiments conducted at different times.

We explicitly denote results on the original Kinetics dataset with an asterisk (*) in

all tables and provide the list of videos available at the time of our experiments to

enable others to reproduce our results.

2.4.2 HMDB-51 and UCF-101

HMDB-51 and UCF-101 are action classification datasets composed of brief video

clips, each containing one action [79, 150]. HMDB-51 contains 7,000 videos from 51

classes, and UCF-101 contains 13,320 videos from 101 classes. For both datasets, we

report classification accuracy on the first test split.

2.4.3 AVA

AVA is a large-scale spatiotemporal action localization dataset that consists of

430 15-minute movie clips [48]. Each clip contains bounding box annotations at 1-

second intervals for all actors in frame, and each actor is annotated with one or more

action labels. In our experiments, we train on AVA v2.1, and report results on the

validation set.

2.5 Experiments

In the following experiments, we demonstrate that D3D outperforms single-stream

models and achieves accuracy on par with that of two-stream models that require

explicit optical flow computation.
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Features Modality EPE

All zeros - 2.92
S3D-G RGB 2.08
D3D RGB 1.76
S3D-G+FT RGB 1.34
S3D-G Flow 0.63

Table 2.1: Effect of feature extractor on optical flow prediction. “All zeros” is a trivial decoder.
“S3D-G” and “S3D-G+FT” refer to the 3D CNN with and without end-to-end fine-
tuning. We add the optical flow decoder to the “3A” layer of S3D-G and train it to
predict optical flow. Fine-tuning vastly improves performance, showing that motion
representations can be improved during training.
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Figure 2.3: Predicting optical flow from multiple layers in S3D-G and D3D. The horizontal axis
indicates which layer (see Figure 2.2) is used as input to the decoder. D3D features are
able to more accurately reproduce optical flow across the board. Fine-tuning S3D-G
end-to-end for flow prediction (indicated “ft”) serves as a lower bound.
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2.5.1 Predicting Optical Flow

In this experiment, we decode optical flow from the intermediate layers of a 3D

CNN as described in Section 2.2.1. For the 3D CNN, we use the spatial stream of

S3D-G, which is pretrained on Kinetics-400 and takes RGB videos as inputs. We train

the decoder on 2 GPUs with a batchsize of 6 clips per GPU for 100K iterations, and

otherwise use the same hyperparameters as S3D-G [189]. We measure performance

using endpoint error (EPE) between the predicted and ground truth optical flow.

Fixed vs. Finetuning In Table 2.1, we demonstrate that the decoder can reproduce

optical flow, but also that there is significant room for improvement. To bracket

performance, we evaluate three baselines: (1) a trivial flow model that predicts “All

zeros”, (2) a decoder that is trained end-to-end with the 3D CNN, and (3) a decoder

trained on the activations of a temporal stream model, which is provided TV-L1 flow

as input. Compared to the baselines, the decoder trained on spatial stream S3D-G is

able to approximately estimate optical flow. However, we find that the decoded flow

is improved by finetuning the model end to end, meaning that motion representations

could be improved by changing the training procedure of the 3D CNN.

Distillation and Flow Prediction In Figure 2.3, we compare the flow prediction

performance of S3D-G and D3D when the decoder is applied at earlier layers. We

observe lower error across the board when attempting to predict optical flow from

D3D activations versus S3D-G activations.

While distillation improves optical flow prediction, it does not improve it to the

same extent as full end-to-end fine-tuning. This shows that the two objectives,

flow prediction and distillation, are complimentary but not completely overlapping.

As we will show in Section 2.5.5, distillation improves action recognition accuracy

while fine-tuning does not. This result leads to an important finding: improving
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Figure 2.4: Examples of optical flow produced by S3DG and D3D (without fine-tuning) with the
decoder applied at layer 3A. Top left: RGB image. Top right: TV-L1 optical flow.
Bottom left: S3D-G predicted flow. Bottom right: D3D predicted flow. The color and
saturation of each pixel corresponds to the angle and magnitude of motion, respectively.
Optical flow is displayed at 28×28px, the output resolution of the decoder. Both S3D-G
and D3D miss fine details, but D3D makes fewer mistakes.

motion representations directly does not improve action recognition performance,

but improving action recognition performance does improve motion representations.

Therefore, in order to improve action recognition performance, it is not sufficient to

optimize directly for better optical flow prediction. Distillation takes an alternative

approach. By imitating the behavior of the temporal stream, we are able to capture

the motion features that are used by the temporal stream while ignoring those that

are not.

In Figure 2.4, we give examples of optical flow estimates given using our method.

Both S3D-G and D3D can capture coarse motion, but miss fine details. Results using

D3D appear to have slightly more accurate motion boundaries, a quality which is

known to be useful for temporal stream action recognition [27, 136], explaining the
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Method Modality Kinetics-400

ARTNet [179] RGB+Flow 72.4*
TSN [170] RGB+Flow 73.9*
R(2+1)D [171] RGB+Flow 75.4*
NL I3D [184] RGB 77.7*
SAN [8] RGB+Flow+Audio 77.7*
I3D [12] RGB 70.6 / 71.1*
I3D [12] Flow 62.1 / 63.9*
I3D [12] RGB+Flow 72.6 / 74.1*
S3D-G [189] RGB 74.0 / 74.7*
S3D-G [189] Flow 67.3 / 68.0*
S3D-G [189] RGB+Flow 76.2 / 77.2*
D3D RGB 75.9
D3D+S3D-G RGB 76.5

Table 2.2: D3D on Kinetics-400. All numbers given are top-1 accuracy on the validation set.
“D3D+S3D-G” refers to an ensemble of D3D and S3D-G. Numbers marked with an
asterisk (*) are reported on the full Kinetics-400 set, those without are reported on the
subset available as of October 2018 as described in Section 2.4.

quantitative improvements in Table 2.1 and Figure 2.3. We provide more qualitative

examples in the appendix.

These results confirm our original hypothesis: 3D CNNs provided with RGB input

have a limited natural tendency to capture the motion signal present in optical flow

when trained on action classification. The ability to capture motion signal can be

significantly enhanced with modified training objectives, such as distillation loss or

by fine-tuning for optical flow prediction.

2.5.2 Distillation on Kinetics

Kinetics-400. In Table 2.2, we compare D3D with several competitive baselines. We

report accuracy for I3D and S3D-G trained and evaluated on the reduced Kinetics-

400 dataset described in Section 2.4. These replications were run with code provided

by the original authors and use identical settings to the published papers. Direct

comparison with S3D-G shows that the distillation procedure leads to a 1.9% im-

provement in top-1 accuracy, without any additional computational cost during in-

ference. Per-class accuracy is provided in the appendix. Furthermore, we ensemble
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Method Modality Kinetics-600

I3D [10] RGB 73.6 / 71.9*
S3D-G [189] RGB 76.6
S3D-G [189] Flow 69.7
S3D-G [189] RGB+Flow 78.6
D3D RGB 77.9
D3D+S3D-G RGB 79.1

Table 2.3: D3D on Kinetics-600. All numbers given are top-1 accuracy on the validation set.
“D3D+S3D-G” refers to an ensemble of D3D and S3D-G. Numbers marked with an
asterisk (*) are reported on the full Kinetics-600 set, those without are reported on the
subset available as of October 2018 as described in Section 2.4. Results on I3D use
different settings than in Table 2.2 [10].

D3D with S3D-G (“D3D+S3D-G”) by averaging their softmax scores, and achieve a

small boost in performance over the two-stream S3D-G approach which uses optical

flow. Our ensemble achieves better performance than the two-stream equivalent,

without the need to compute optical flow.

Kinetics-600. In Table 2.3, we compare D3D with baseline methods on Kinetics-

600. Both the teacher and student network are trained using Kinetics-600 in these

experiments. We achieve a 1.3% improvement in single-model performance using

D3D, and further improvements by ensembling D3D and S3D-G together, outper-

forming two-stream S3D-G without the need for optical flow.

2.5.3 Transfer to UCF101, HMDB51

We demonstrate that D3D transfers to other action recognition datasets by fine-

tuning D3D on UCF-101 and HMDB-51. For these experiments, we initialize the

model using D3D pretrained on Kinetics. However, during fine-tuning, we use only

the action classification loss, and not distillation. This avoids the temporal stream

altogether, during both training and inference. While we could potentially benefit

from applying distillation during fine-tuning as well, these experiments demonstrate

that it is not necessary to do so. Each model is fine-tuned for 10k steps on 10 GPUs
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Method UCF-101 HMDB-51

P3D [128] 88.6 -
C3D [169] 82.3 51.6
Res3D [170] 85.8 54.9
ARTNet [179] 94.3 70.9
I3D [12] 95.6 74.8
R(2+1)D [171] 96.8 74.5
S3D-G [189] 96.8 75.9
I3D Two-Stream [12] 98.0 80.7
ActionFlowNet [112] 83.9 56.4
MFNet [90, 122] - 56.8
Rep. Flow [122] - 65.4
MV-CNN [199] 86.4 -
TVNet+IDT [27] 95.4 72.6
Hidden Two-Stream [204] 97.1 78.7
D3D (Kinetics-400 pretrain) 97.0 78.7
D3D (Kinetics-600 pretrain) 97.1 79.3
D3D Ensemble 97.6 80.5

Table 2.4: Fine-tuning D3D on UCF-101 and HMDB-51. Our numbers are top-1 accuracy on test
split 1 for both datasets. “D3D Ensemble” refers to an ensemble of the two D3D models
with different pretraining. No distillation is performed during fine-tuning.

with a batch size of 6 per GPU, as described in [189].

In Table 2.4, we demonstrate that fine-tuning D3D outperforms many competi-

tive baselines. The models in the top section of the table are strong baselines based

on 3D CNNs, including S3D-G, which serves as a direct comparison to show that

the benefit of distillation during pretraining persists after fine-tuning. The models

in the middle section of the table all specifically address the problem of learning

motion features without the use of optical flow. D3D outperforms all baselines and

achieves essentially equal performance to Hidden Two-Stream when pretrained on

Kinetics-400. Hidden Two-Stream uses two I3D models plus an optical flow predic-

tion network, so for fair comparison we also ensemble two D3D models together, and

show that this ensemble outperforms Hidden Two-Stream [204].
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Method Pretraining AVA

I3D w/ RPN [43] Kinetics-600 21.9
I3D w/ RPN + JFT [43] Kinetics-400 22.8
S3D-G w/ ResNet RPN [48] Kinetics-400 22.0
D3D w/ ResNet RPN Kinetics-400 23.0

Table 2.5: Performance on AVA using different backbone networks. All numbers are frame-mAP
on the validation set. Models with “+ ResNet RPN” use a separate pretrained RPN
stream based on ResNet, while the others use the 3D features directly for the RPN. The
S3D-G baseline includes changes over the previously published numbers, described in
Section 2.5.4.

2.5.4 Transfer to AVA

We fine-tune D3D on the spatiotemporal localization dataset AVA, and demon-

strate that D3D transfers to this new task. We use a similar approach to the baseline

described in the original AVA paper [48], but adopt some changes introduced by a

top entry in the 2018 AVA competition [43]. Like the AVA baseline, we use a Faster

RCNN-style approach, with a pretrained region proposal network (RPN) based on

ResNet, and video feature extractor backbone network based on 3D CNNs. Unlike

this work, we use D3D in place of I3D as the backbone network. We also adopt the

three key changes introduced in the competition entry [43]. First, we regress only

one set of bounding box offsets per region proposal, rather than a different set of

offsets per action class. Second, we train for 500k steps using synchronous training

on 11 GPUs using a higher learning rate. Third, we add cropping and flipping aug-

mentation during training. Unlike [43], we do not remove the ResNet RPN in either

D3D or the S3D-G baseline.

In Table 2.5, we compare the use of D3D as a backbone network with S3D-G

and I3D. Our approaches use 50 RGB frames and no optical flow. Direct comparison

between S3D-G and D3D shows that using D3D leads to a 1% improvement in Frame-

mAP over S3D-G. We also see comparable gains over I3D, and we still outperform

the I3D-based approach when it includes additional ResNet features pretrained on
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Method Kinetics-400

S3D-G spatial stream 74.0
S3D-G temporal stream 67.3
S3D-G with 3D CNN flow 69.7
S3D-G with flow loss 74.3

D3D distilled at layer 2C 74.4
D3D distilled at layer 4C 74.5

D3D distilled from spatial stream 74.3
D3D 75.9

Table 2.6: Ablation studies. All numbers given are top-1 accuracy on the reduced Kinetics-400
validation set described in Section 2.4. D3D using our proposed approach outperforms
all other approaches listed. See Section 2.5.5 for details.

JFT, an internal Google dataset [158].

2.5.5 Ablation study

In the top section of Table 2.6, we experiment with two alternative approaches

to distillation, and demonstrate that D3D outperforms both alternatives. In both

cases, we make slight modifications to prior work, described below, to allow for fair

comparison with distillation.

S3D-G with 3D CNN Flow. Recent approaches, such as TVNet and Hidden

Two-Stream networks, improve the temporal stream by learning their motion repre-

sentations end-to-end [204, 27]. To compare, we use the first few layers of S3D-G as

an optical flow prediction network, and use this learned flow as input to the temporal

stream. We use the optical flow prediction network as described in Section 2.2.1, and

train this end-to-end with an S3D-G temporal stream. we use S3D-G pretrained to

predict actions from optical flow. In our experiments, we find that this approach out-

performs the temporal stream applied to TV-L1 optical flow, but still underperforms

the spatial stream and D3D.

S3D-G with Flow Loss. Similar to ActionFlowNet [112], we use optical flow pre-

diction as an auxiliary task to improve the spatial stream. We use the flow prediction
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network described in Section 2.2.1, but we optimize the model to jointly minimize

the flow prediction loss and action classification loss. This is a more direct way of

encouraging the network to learn motion representations. However, we find that

this does not generally lead to better results on action classification, and distillation

gives significantly better results. This is possibly due to the fact that the flow loss

is dominated by background pixels, which take up most of the field of view but are

not typically important cues for action recognition.

Distillation at Other Layers. The middle section of Table 2.6 demonstrates apply-

ing the distillation loss at intermediate layers. We find that applying the distillation

loss at intermediate layers is not as effective as at the network outputs.

Distilling from the Spatial Stream. In the bottom section, “D3D distilled from

spatial stream” uses the S3D-G spatial stream as the teacher network in place of the

temporal stream. This shows that distillation alone does not explain the improve-

ment of D3D over S3D-G. Crucially, we only see benefits when distilling from the

temporal stream.

Different Backbones. Distillation is agnostic to the 3D CNN architecture, and

therefore can be used in combination with any architecture. In Table 2.7, we show

that D3D improves I3D, S3D-G, and a modified version of S3D-G which includes 2

non-local blocks [184]. More details about non-local S3D-G are given in the appendix.

In all cases, we use S3D-G as the teacher network, showing that distillation can still

work with cross-model transfer.

Ensembling D3D with Spatial and Temporal Streams. In Tables 2.2, 2.3,

and 2.4, we demonstrate that it is beneficial to ensemble D3D with an additional

spatial stream model. However, in Table 2.8, we find that there is no similar benefit

when ensembling D3D with a temporal stream model. This suggests that D3D
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Method Modality Kinetics-400

I3D [12] RGB 70.6
S3D-G [189] RGB 74.0
NL S3D-G RGB 74.7
D3D (I3D) RGB 72.3
D3D (S3D-G) RGB 75.9
D3D (NL S3D-G) RGB 76.0

Table 2.7: Backbone architectures. All numbers given are top-1 accuracy on the validation set.
“D3D (I3D)” and “D3D (NL S3D-G)” refer to D3D with I3D and Non-Local S3D-G as
the backbone architectures, respectively. Distillation gives a boost in performance in all
architectures.

Method Modality Kinetics-600

S3D-G RGB 76.6
D3D RGB 77.9
D3D+S3D-G RGB+Flow 77.6
D3D+S3D-G RGB+RGB 79.1

Table 2.8: Ensembling. D3D benefits from ensembling with an additional spatial stream, but not
a temporal stream.

already captures the signal present in S3D-G Flow, otherwise we would expect to see

benefits by performing this ensemble.

2.6 Conclusions

We introduce D3D, a distilled 3D CNN which does not require optical flow during

inference and still outperforms two-stream approaches. D3D does not require any

changes to the network architecture, and therefore can be used in combination with

any backbone network. Furthermore, we show that D3D transfers to other action

recognition datasets without the need for further distillation. Finally, we study the

ability to predict optical flow with 3D CNNs, and we show that while 3D CNNs

have some limited capacity to learn motion representations, D3D improves these

representation, and distillation is a more effective objective than directly optimizing

for optical flow prediction. Our work shows that the optical flow stream can be

discarded during inference for no penalty, calling into question whether optical flow
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is really necessary for action recognition. However, further work in this area needs

to be done to see whether optical flow can be avoided during training as well.
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CHAPTER III

Temporal Hourglass Networks for Temporal Action
Localization

THG Module PredictionsCNN

Figure 3.1: Sketch of the Temporal Hourglass Network (THG) architecture. THGs use temporal
convolutions at multiple scales to perform video-level inference. We apply multiple
THG modules in sequence to perform repeated top-down, bottom-up inference.

3.1 Introduction

In action detection, we must not only identify if an action occurs in a particular

video, we must also identify when it takes place. This task requires a rich under-

standing of the visual cues present in each video frame, such as the pose of the person

performing the action and the location of the objects the person is interacting with.

However, frame-level features alone are not sufficient to perform this task. In order

to perform precise localization of actions, we additionally require contextual under-

standing of the video that is both local and global. Local context between neighboring

video frames provides cues about instantaneous motion, allowing us to distinguish

34
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between actions like “sit down” and “stand up” that appear (Figure 3.2). Global

context provides cues about the natural sequence and interplay between actions in

each clip, allowing us to disambiguate actions via their sequential relationships with

other actions. By considering both the rich visual characteristics of each individual

video frame, as well as their global context in the video, we can achieve the level of

understanding necessary to perform accurate action detection.

We propose Temporal Hourglass Networks (THGs), a novel convolutional neural

network architecture which is able to reason about videos in both of these crucial

aspects (Figure 3.1). Our model builds a rich understanding of an entire video clip by

performing temporal convolutions on frame-level image features at multiple temporal

resolutions simultaneously, and gradually incorporates these multi-scale features at

every timestep. This architecture is a temporal analog to Hourglass Networks [111],

which similarly apply convolutions at multiple scales simultaneously, but on images

rather than videos. Hourglass networks elegantly incorporate both local and global

context for pixel-level prediction in images, making them incredibly versatile. In

their original application, hourglass networks were used to predict the location of

human pose keypoints [111], but they have since been applied to a number of other

tasks, including instance segmentation [110] and depth estimation [16]. These tasks,

along with many other tasks in computer vision, require both a global and local

understanding of each image. The hourglass network provides both types of context.

For this reason, we hypothesize that temporal hourglass networks will similarly be

able to incorporate both local and global context for action detection in videos.

As is also the case with hourglass networks, our model can be repeatedly applied

in sequence, such that the output of each THG is the input to the next. Each

THG “module” performs a single round of bottom-up, top-down inference, which
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“Open Refrigerator”
✓✕ ✓ ✓✕ ✕✕ ✕✕ ✕

“Close Refrigerator”
✓✕ ✓✕ ✕ ✕ ✕✕ ✕ ✕

Figure 3.2: Global context in action detection. The natural sequence of actions provides an im-
portant cue for detection, in this case “close the fridge” naturally follows “open the
fridge”.

creates features with access to both local and global context. Repeating this process

many times allows many iterations of features to be produced and improved upon

during inference. Conceptually, this allows the THG to perform video-level inference

repeatedly, providing a rich understanding of the global context necessary for action

detection.

We implement THGs for action detection and demonstrate their performance on

Charades, a recent benchmark dataset for action detection [142]. This dataset is

particularly challenging, because each video contains several (often overlapping) ac-

tions, and occur in typical indoor scenes. This is in stark contrast to prior datasets

for action detection, such as THUMOS [46] and ActivityNet [54], where action in-

stances do not overlap, and actions often take place in atypical environments, such

as sports games or musical performances. All action classes in Charades are com-

posed of a verb and an object, and each verb is matched with multiple objects and

vice-versa. This ensures that, to classify each action, it is not sufficient to simply

detect the corresponding object. This is often not the case in previous action detec-

tion datasets, for example in ActivityNet, the direct object “guitar” only appears in
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the action “playing guitar”, so detecting the guitar object is sufficient to detect the

action. This distinction makes Charades an ideal benchmark for action detection.

In summary, this work introduces Temporal Hourglass Networks, a novel convo-

lutional neural network architecture for action detection. Furthermore, we achieve

competitive performance on the challenging Charades dataset.

3.2 Related Work

Action detection and recognition have a rich history of prior work [125, 188].

Initial approaches relied on hand-designed descriptors, such as space-time interest

points (STIP), Histograms of Optical Flow (HOF), and Motion Boundary Histograms

(MBH), among others [85, 74, 86, 21, 114]. More recently, several approaches have

relied on mid-level representations constructed from these descriptors [134, 148, 65,

82, 83, 195]. Trajectory-based descriptors, such as Trajectons and Improved Dense

Trajectories (IDT) have also shown considerable success [103, 177, 22, 70]. While

powerful, these descriptors cannot be learned in an end-to-end fashion, limiting their

effectiveness on complex action detection tasks, where the detector must identify

actors and objects in a wide variety of scenes and conditions. Despite this limitation,

trajectory-based methods long remained the state-of-the-art method for classifying

and detecting human actions.

Convolutional Neural Networks. More recently, approaches based on CNNs

have seen success because of their ability to be trained end-to-end for action classi-

fication and detection. Initial approaches simply classified each frame individually,

relying on postprocessing to incorporate temporal context as an afterthought. Many

of these approaches are based on the two-stream design of Simonyan and Zisser-

man, where two parallel CNNs extract features from color frames and optical flow
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channels [144]. The reason for incorporating optical flow is that it provides some

local context, indicating the direction of motion behind neighboring frames. While

optical flow is able to provide some cues about instantaneous motion, it does not

provide global context, limiting the amount of temporal context available during

prediction [71, 87, 194, 166]. Other versions apply a sliding-window CNN template

across the video, often at multiple timescales, and detect actions by classifying each

window location [180, 181]. While this is intended to permit inference at multiple

time-scales, many sliding-window classifiers simply perform frame-wise classification

within the window, the same method employed by two-stream networks, and rely on

action duration priors to select which scale to use. In a similar vein, some approaches

first predict action proposals, and then classify these proposals using sliding-window

architectures [147, 190]. Despite the severe limitations of these frame-by-frame meth-

ods, they remain competitive with existing models that account for temporal context.

Graphical Models. Some approaches have leveraged context by modeling the

temporal structure of actions and training these models jointly with frame-level CNN

features. These models may explicitly define actions as a sequence of action parts [33],

use of existing sequence models for language [124, 130], or implicitly model the

sequence of actions using graphical models such as CRFs [165, 19, 156, 140]. As

in THGs, graphical models are able to reason about video-level context. However,

graphical models rely on fixed message-passing updates to perform inference with

this context, while THGs learn their own inference function. In principle, THGs can

learn to approximate the message-passing procedure, but are strictly more flexible.

Recurrent Neural Networks. Another common approach for incorporating con-

text for action is to use recurrent neural networks, such as LSTMs [157, 146, 151, 25,

197]. In principle, RNNs can remember information over arbitrary long sequences,
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and bi-directional RNNs can pass this information both backwards and forwards

through the video. However, in practice it is difficult for RNNs to remember infor-

mation over long sequences, and LSTMs applied to Charades have not outperformed

frame-by-frame baselines [140].

3D and Temporal Convolutions. Another class of models, which includes THGs,

avoids graphical models and RNNs, and instead uses convolutions to reason about

context.

Many of these approaches utilize 3D convolutions [67, 169, 139]. 3D CNNs are

difficult to train, as they have many more parameters and require much more memory

than traditional CNNs. To combat these difficulties, 3D CNN architectures typically

rely on high amounts of temporal downsampling early in the processing pipeline,

which limits the temporal resolution afforded by the CNN features. Recently, Shou

et al. proposed Convolutional De-Convolutional Networks (CDC), which somewhat

avoids this limitation by attaching several layers of successive temporal upsampling

and spatial convolutions on top of the first few layers of a 3D CNN [137]. Also notable

is R-C3D, which effectively uses 3D CNN features to create coarse feature maps, and

uses these to classify and fine-tune action proposals for precise localization [192].

This method, however, relies on scoring a high number of action proposal windows,

adding to the high cost of 3D convolutions.

Other approaches use temporal convolutions in favor of 3D convolutions [160, 88].

Notably, Temporal Convolution Networks (TCNs) apply temporal convolutions to

frame-wise CNN features in an encoder-decoder style architecture for action segmen-

tation [88]. This allows TCNs to incorporate video-level contex. However, TCNs

do not maintain high-resolution skip connections, meaning that they must sacrifice

local context in order to incorporate more global context, and vice versa. THGs do
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not have to optimize for this tradeoff, because they maintain high-resolution features

throughout.

3.3 Temporal Hourglass Networks

We propose Temporal Hourglass Networks (THGs), a novel CNN architecture

that detects actions at each frame in a video. The goal of this architecture is to

perform repeated inference at multiple temporal scales, which we accomplish with

temporal convolutions applied to frame-level image features. Our model first extracts

these frame-level image features by applying CNNs to each video frame individually

(Sec 3.3.2). Second, we apply several THG “modules” in sequence, which perform

repeated inference over the entire video (Sec 3.3.1). Finally, we use the features

produced by the final THG module to predict the presence or absence of each action

at each video frame (Sec 3.3.3).

3.3.1 THG Module

Each THG module (Figure 3.3) takes as input d features for each of L video

frames, which we concatenate to form an L× d feature map. We successively apply

n alternating layers of temporal convolutions and temporal max-pooling, producing

a series of feature maps with sizes {L × d, L
2
× d, L

4
× d, . . . , L

2n
× d}. Each of these

feature maps is additionally passed through a skip connection, which applies tem-

poral convolutions, but not max-pooling. These skip connections therefore maintain

features at a high resolution, which is typically lost to repeated max-pooling. The

1 × d video-level feature vector is then passed through alternating layers of tempo-

ral convolutions and nearest-neighbor upsampling until it is restored to its original

temporal resolution. At each level during this phase, we add the skip connections

element-wise to the corresponding feature map of the same size, which reincorporates
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CNN

CNN

CNN

CNN

Input Features

Skip Connections

Next THG

Figure 3.3: Detailed look at a single Temporal Hourglass (THG) module. Each connection between
blocks is a residual unit with temporal convolutions, optionally followed either by max-
pooling (in the earlier layers) or nearest-neighbor upsampling and element-wise addition
(in the later layers, denoted ⊕). Skip connections (dashed lines) also contain residual
units.

these local features with the global context afforded by the video-level feature vector.

We adopt residual units [53] as the primary building block of the THG archi-

tecture. Residual units learn an additive transformation of their inputs, that is,

Resid(x) = x + f(x). This has been repeatedly shown to greatly increase perfor-

mance and ease optimization when training very deep CNNs [52]. In each layer

where we apply temporal convolutions, we apply a residual unit with the following

configuration: f(x) : Conv(1, d/2) − BN − ReLU − Conv(3, d/2) − BN − ReLU −

Conv(3, d)−BN−ReLU, where BN is Batch Normalization [63], ReLU is the recti-

fied linear activation, and Conv(k, d) is a temporal convolutional layer with d filters

of width k. The first Conv(1, d/2) layer serves to perform dimensionality reduc-

tion, while the following convolutional layers apply temporal convolutions in this

reduced-dimension space.

The complexity of the THG is controlled by several flexible hyperparameters.
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This includes the feature dimension d, which we typically set to d = 256 and keep

constant through all layers of the hourglass module. Additionally, we can control

the hourglass depth n, which we set to n = log(L), so that the feature map at the

thinnest part of the hourglass has length L
2log(L) = 1. Finally, we can tune the input

length L, which we fix to L = 64 during training. Note, however, that THGs are

fully convolutional in time, meaning that L can be made arbitrarily large during

inference, even when fixed during training.

When we stack multiple THGs, the output of one THG simply becomes the output

to the next. Each module has the same structure, regardless of its position in the

network. We do not share weights between modules.

3.3.2 Input features

We use the two-stream architecture of Simonyan and Zisserman to extract fea-

tures from each video frame [144]. This architecture consists of two parallel CNNs,

called spatial- and motion-CNN, which extract features from RGB video frames and

dense optical flow, respectively. Both the spatial-CNN and motion-CNN follow the

standard VGG16 architecture.

In addition to RGB and optical flow, we include two streams for pose and ob-

ject features (Figure 4a). These channels are produced by two standard (spatial)

hourglass networks that are trained for human pose estimation and object detection.

Intuitively, objects and human pose are useful features for action detection, and we

can make use of these pre-existing systems to locate key features in complex videos.

Pose Heatmaps. We detect the locations of 17 human body joints using the multi-

person pose system of Newell et al. [110]. This system uses an hourglass network to

produce heatmaps which estimate the probability that a given human joint appears

at each pixel in the input image. In practice, these estimates are highly accurate,
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even in cases of severe occlusion and motion blur.

Object Heatmaps. We produce heatmaps for 45 object classes using the same

stacked hourglass architecture of Newell et al. . In these heatmaps, we predict

whether a given object class appears at each pixel in the input image. We train this

detector is on a collection of object instances from Imagenet [133] and MSCOCO [94],

comprising of over 157K examples. These objects were specifically chosen because

they appear in the Charades dataset.

Pose and Object Streams. We train two additional CNNs, pose-CNN and object-

CNN, to produce frame-wise feature vectors from pose and object heatmaps. These

CNNs have the following architecture: Conv(1 × 1, 64) − BN − ReLU − Conv(1 ×

1, 64)−BN−ReLU−Resid(d)−Pool−Resid(d)−Pool−Resid(d)−Pool−Resid(d),

where the residual block Resid(d) is a standard spatial residual unit with d output

features.

Late Fusion. We train separate THG architectures for each of the four input

feature types. After training, we fuse the predictions of each model by averaging

their outputs. In principle, it is possible to train all THG streams jointly along

with their respective input CNNs. However, the associated GPU memory costs are

prohibitive.

3.3.3 Prediction

Common human actions, like “open a door” are composed of a verb (“open”)

and a direct object (“door”). This structure is informative, when a less common

action class, like “open a refrigerator”, has few examples, but shares a concept with

a common action class, like “open a door”. The verb “open” is shared between these

two classes, and therefore we can transfer knowledge between them. We incorporate

this structure by predicting actions and their associated verbs and objects separately
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RGB Flow

Pose Objects
Figure 3.4: Input streams. In addition to RGB frames and optical flow, we include heatmaps for

human pose and objects.

PredictionsTHG Features

Action

Object

Verb

Tr
ain

in
g

Loss

Inference

Figure 3.5: Output module. We apply a loss to actions, verbs, and objects separately during
training, and only use action predictions during inference.

during training (Figure 4b). For each individual output frame, we apply three parallel

output streams, which each consist of three fully-connected layers in the following

configuration: FC(256) − BN − ReLU − FC(256) − ReLU − FC(K), where FC(d)

is a fully-connected layer with d outputs and K is the number of classes for that

particular output stream. During training, we apply a separate loss to each of these
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three output streams. During inference, we discard the verb and object predictions,

and only consider the action predictions.

3.4 Training Details

During training, the input to the THG is L = 64 video frames, which are evenly-

spaced from the input video. The THG produces L×K outputs for K = 157 action

classes, to which we apply a sigmoid transformation to obtain action predictions.

In the Charades dataset, the median video duration is 30 seconds, meaning that we

typically observe frames at slightly higher than 2 frames per second. For each frame,

we apply a sigmoid transformation to the network output to produce a prediction

for each action between 0 and 1. We then apply a binary cross-entropy loss to each

prediction. We use a mini-batch size of 4 videos and optimize using RMSprop [168].

The learning rate is 10−4 for 42 epochs and then drops to 10−5. We do not adopt

any regularization strategies such as dropout or weight decay, and we train for a

maximum of 50 epochs.

Pretraining. Before training the THG, we pretrain the Spatial- and Motion-CNNs

on Charades to predict actions frame-by-frame. We then extract their learned fea-

tures, and train a separate THG for each feature type, without fine-tuning the

Spatial-CNN and Motion-CNN. We do not pretrain pose-CNN and object-CNN,

and instead train these end-to-end jointly with their respective THG streams.

Data Augmentation. For RGB and optical flow, we extract features for 10 crops

in each frame. These include the center crop, 4 corners and their flipped versions.

We randomly pick one crop during training, and always use the center crop during

testing. We extract 128 frames per video and randomly use 64 of them during

training. For object and pose heatmaps, we have random flipping, cropping and
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random contrast to each video during training. Each random crop is 85% of the

original frame size, and then rescaled with bilinear sampling to a fixed size of 64×64.

We randomly perturb the contrast by 15%. We observe that data augmentation is

crucial to prevent overfitting.

Intermediate Supervision. When stacking multiple THG modules, we produce

predictions independently at each module, and compute a loss for each resulting set

of predictions. During backpropagation, we average these losses when computing

gradients. Prior work has shown that this approach allows gradient information to

more directly reach the earlier layers of the network, and motivates the network to

learn relevant features earlier in the pipeline. This strategy was employed previously

in stacked hourglass networks [111].

Post-Processing. Prior work on Charades [142, 192] has employed a post-processing

step which smooths all predictions by averaging in a temporal window of ±15 frames

around each timepoint. We find that this step slightly reduces the performance of the

THG across the board in all experiments. In certain cases, this step has accounted

for large improvements in performance (9.6 This is likely because the temporal hour-

glass already has the ability to reason about local context, and can itself learn to

smooth predictions in regions of high uncertainty. We do not use post-processing in

experiments using the THG.

3.5 Experiments

In our experimental evaluation of THGs, we perform comparisons with state-of-

the-art systems (Sec. 3.5.3) and perform a study on the effect of stacking multiple

THG modules with different input features (Sec. 3.5.4).

Our implementation is built in TensorFlow [1] and will be released upon publica-
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tion. All experiments are run on a single NVIDIA TitanX GPU.

3.5.1 Charades Dataset

The Charades dataset [142] is a recent action detection benchmark which con-

tains nearly 10,000 videos of 157 everyday human actions. Videos in Charades are

approximately 30 seconds long and often contain several simultaneous actions from

multiple action classes. Each action is composed of one of 33 verbs and one of 38

direct objects, leading to a rich set of action classes. Furthermore, each video is

recorded by crowdsourced workers in natural home environments, which leads to a

wide variety in scenes and actors across videos. In our experiments, we train and

evaluate on the official Charades training and testing splits, which contain 7985 and

1996 videos, respectively.

3.5.2 Evaluation Metric

We report mean Average Precision (mAP), which is the recommended evaluation

metric for localization on Charades [140]. We select 25 evenly-spaced time points in

each video, that is, t0 . . . t24 such that ti = i/T , where T is the video duration. At

each timepoint, we predict a score for each of the 157 actions. Using these scores, we

compute the average precision (AP) for each of the 157 action classes individually. To

get the mean Average Precision (mAP), we simply take the mean of these computed

APs across all classes.

We note that certain classes in this dataset are signficiantly more difficult than

others. This is likely due to high class imbalance in the training set, as we observe

that the number of positive action instances is highly correlated with the final per-

formance. Because of this, we additionally report the normalized AP (APN) for each

class, in which the precision is normalized by the average number of positive instances
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Depth mAP

RGB (Single-frame) [140] 8.8
Two-Stream [140] 10.0
Two-Stream+LSTM [140] 8.8
CTF [140] 12.1
R-C3D [192] 12.7
Two-Stream+Audio+Kinetics 17.96
I3D+Kinetics 20.72
THG (ours) 13.09
THG++ (ours) 18.03

Table 3.1: Comparison with state-of-the-art Mean Average Precision (mAP) on the Charades
dataset. Top section: baseline methods. Middle section: top competitors from the
Charades Challenge at CVPR 2017. Both competing teams used additional training
data from Kinetics. Bottom section: Temporal Hourglass Networks, our submission to
the Charades Challenge.

for all classes, rather than total number of positives instances for that class [59]. This

has been used for other detection problems to reduce the effect of class imbalance on

evaluation.

3.5.3 Comparison with State of the Art

We compare the performance of our full model with that of several established

benchmarks (Table 3.1). All results (excluding our own) use the post-processing step

described by Sigurdsson et al. [140].

RGB (Single-frame) and Flow (Single-frame) denote the performance of Spatial-

CNN and Motion-CNN, respectively, applied frame-by-frame to each video. Two-

Stream is the fusion of Spatial-CNN and Motion-CNN, implemented in the same fash-

ion as Simonyan and Zisserman [144]. Two-Stream+LSTM applies a single LSTM

layer on top of the Two-Stream features. These baselines are adopted from the

implementation of Sigurdsson et al. [140].

Connected Temporal Fields (CTF) [140] employs a fully-connected CRF on top

of the Two-Stream video features. This CRF reasons jointly about many aspects of

each action, including the verb, object, scene, and the intent of the human actor.
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RGB Flow Pose Objects Two-Stream All
Single-Frame 7.7 4.9 5.24 4.20 7.7 -
Single-Frame w/ Post 8.8 6.6 5.80 4.39 10.0 -
Ours 8.61 9.31 6.31 4.55 11.38 13.09

Table 3.2: Effect of input streams. THG improves performance over frame-by-frame methods for
all input modalities except RGB.

Region Convolutional 3D Network (R-C3D) [192] is another recent benchmark that

uses 3D-CNN features to classify action proposals.

3.5.4 Ablation Study

In these experiments, we perform a comprehensive evaluation of the hyperparam-

eter choices that are involved in designing the THG module. In addition, we explore

the effect of the individual input streams and their fused counterparts.

Input Streams. We compare the performance of the single-stack THG with a

frame-by-frame classifier (with and without post-processing) for each of the four

input modalities in Table 3.2. In addition, we compare fused models for both the

Two-Stream modalities (RGB and Flow) and all four modalities together.

We find that the THG module improves upon the single-frame classifier for all

four input types. In addition, we find that pose and objects alone are less predictive

than RGB and optical flow. However, when we ensemble all four modalities, we are

able to improve upon the performance of the two-stream THG.

Stacking. We train four variants of the THG architecture, each with an additional

stacked THG module. To ensure that each architecture has equal capacity, we tune

the feature dimension d such that each variant has a roughly equal number of total

free parameters. In all experiments, we use intermediate supervision, and all four

input modalities with late fusion.

We find that THGs do not benefit from an increased number of stacked hourglass
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# of THGs # features RGB+Flow All

1 256 11.38 13.09
2 200 8.7 10.37
3 175 8.11 8.72
4 150 6.52 7.60

Table 3.3: Effect of stacking. We control the feature dimensionality for multi-stack hourglasses
such that each THG has the same order of parameters. We find that adding multiple
hourglass modules reduces performance.

Action Class RGB RGB+Pose Change

Sitting at a table 6.80 36.82 (+30.02)
Sitting on sofa/couch 6.15 32.64 (+26.49)
Lying on a bed 5.59 30.84 (+25.24)
Sitting in a chair 7.62 32.44 (+24.82)
Someone is going from standing to sitting 5.65 30.27 (+24.62)

Action Class RGB+P RGB+P+O Change
Opening a refrigerator 8.92 31.33 (+22.40)
Someone is cooking something 23.95 45.82 (+21.87)
Lying on a sofa/couch 20.86 42.68 (+21.82)
Washing a window 9.84 27.46 (+17.62)
Someone is going from standing to sitting 30.27 47.72 (+17.45)

Table 3.4: Effect of Pose and Object heatmap features on performance of individual action classes.
We show the five classes with the highest absolute improvement in normalized Average
Precision (APN ). (Top) Pose features are helpful for detecting sitting, standing, and
lying down. (Bottom) Object features are useful for detecting interactions with objects.

modules (Table 3.3). This is in stark contrast to prior work on spatial hourglass

networks, where increased stacking significantly improved performance [111]. While

our experiments control for the total number of parameters, it is possible that the

increased number of stacked modules leads to more extreme overfitting.

Additionally, we report performance for each successive module individually, and

find that each module has similar performance. This also contradicts the results of

spatial hourglass networks, where it was found that each successive module typically

has better performance than the last.

3.6 Conclusions

We propose Temporal Hourglass Networks, a CNN architecture that uses tem-

poral convolutions to learn from both local and global context in videos. We find
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that Temporal Hourglass networks achieve competitive performance on the Cha-

rades action detection dataset. While we find that stacking THGs leads to decreased

performance, we show that we can leverage features from human pose and object

detectors to further improve performance.
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CHAPTER IV

Compositional Temporal Visual Grounding of Natural
Language Event Descriptions

In this chapter, we consider the task of temporally grounding natural language

event descriptions in videos. In this task, we are given a video and a natural language

query, and we must locate the point in time that corresponds to the query. For

example, we may have a video of a baseball game, along with the query “the batter

hits the ball, and a player tags him out at first base.” The system must find the

point in time that best corresponds with the event described in the query. A system

that can accomplish this task would have many applications, such as video retrieval

and human-robot interaction.

Like many tasks at the intersection of vision and language, temporal grounding

requires that we generalize to both unseen videos and unseen queries. Since we make

no assumptions about the content of a particular video or query, it is possible for

them to depict a completely novel scene or event. This presents a challenge, and

one way to overcome it is to leverage our prior knowledge; these modalities have

structural properties which can be encoded into a model, which allows us to make

better use of training data and generalize more effectively. In our work, we focus on

two structural properties inherent to temporal grounding, which we leverage in our

model.

52
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Girl in pink walks by after baby touches red object

Figure 4.1: Example query and video. Queries are often compositional, and they impose a temporal
ordering over their components.

The first property is compositionality, that is, a single query may be composed of

many events. Consider the example in Figure 4.1, which contains two events (“walks

by” and “touches”). Conceptually, there is no limit to the number of events that

a query could describe. We can take advantage of this structure by breaking up a

query into atomic components, and localizing each of them individually. This makes

the problem more manageable; while the full query may be a novel combination of

components, it is likely that we will have seen some of these components before.

The second property is temporal ordering, that is, each query designates a par-

ticular ordering of its components. Often, the events must occur in the video in the

same order that they appear in the sentence, like in “this then that”. But this is not

always the case, as in the example in Figure 4.1, where the order is reversed. De-

termining the ordering is non-trivial, as natural language is complex and orderings

can be implied from context. However, a model that can determine this ordering

can then use it to its advantage, as it allows the model to prune spurious detections

which do not match the temporal constraints.

We propose a model, called Compositional Temporal Grounding Network or CTG-

Net, which explicitly leverages both compositional and temporal structure for tem-

poral grounding, depicted in Figure 4.2. Specifically, our model first segments the

query into discrete sub-events, leveraging compositionality (Section 4.2). Next, we
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Figure 4.2: Overview of our proposed CTG-Net. We represent the input query as several sub-events
(depicted as red and blue boxes) using our Event Representation Network (Section 4.2).
We match these sub-events to video segments, and then combine and refine these match-
ings using our Temporal Grounding Network (Section 4.3).

ground each sub-event in the video, and then refine these groundings to enforce

temporal ordering (Section 4.3). We apply our model on three temporal grounding

datasets: DiDeMo, TEMPO-TL, and TEMPO-HL [55, 56], and demonstrate that

our approach outperforms state-of-the-art methods (Section 4.4). Concretely, we

improve Recall@1 from 26.8% to 28.7% on TEMPO-TL and from 20.8% to 21.5%

on TEMPO-HL.

4.1 Related Work

Temporal grounding is a recently-introduced task, and it is often referred to in

prior work as moment retrieval or action localization with natural language queries

[55, 37]. Prior work on this task generally takes one of two approaches: sliding

window or single-shot.

Sliding Window. In this approach, we embed the query and video segments into

the same low-dimensional space, such that the query embedding is similar to the

video embedding for the correct segment, and dissimilar for other segments. To

ground a query, we slide its embedding across the video and find the most similar

segment. Three notable sliding window approaches include Moment Context Net-

works (MCN) and Moments Localized with Latent Context (MLLC) by Hendricks



55

et al. [55, 56], Cross-modal Temporal Regression Localizers (CTRL), introduced by

Gao et al. [37], and Activity Concepts-based Localizer (ACL), by Ge et al. [40].

While these approaches have been successful, they fail to account for compositional

events. MLLC makes a step towards this goal, by representing each query as two

sub-events, the “base” and the “context”. However, it is restrictive to assume that

every event description has exactly two sub-events. Our approach lifts this restriction

by allowing any number of sub-events.

Single-Shot. In this approach, we compare each token in the query to each segment

in the video, and then aggregate these comparisons to classify each segment as a cor-

rect or incorrect grounding. This includes Temporal GroundNet (TGN), by Chen et

al. [15], Moment Alignment Networks (MAN), by Zhang et al. [200], and Temporal

Modular Networks (TMN), introduced by Liu et al. [95]. These approaches do lever-

age compositionality, but only at the level of individual words, and they generally

do not account for temporal relationships. Temporal Modular Networks make signif-

icant improvements in terms of compositionality, in that they use the parse tree of

the query to gradually aggregate more refined groundings. However, TMN is limited

by the use of a fixed dependency parser, while we demonstrate that our method can

work both with a fixed parser or in an end-to-end architecture.

Compositional Representations. It is well known that events are compositional,

and this observation has inspired many prior works in action recognition [131, 34, 93],

captioning [193], and temporal grounding [95]. Leveraging compositional structures

is central to many tasks in computer vision [29]. To the best of our knowledge, our

work is the first to leverage explicit compositional structure for temporal grounding.

Temporal Relationships. There is a large body of work that addresses temporal

relationships in natural language, enabled by corpora with labeled temporal rela-
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tions [127, 108]. Prior approaches have used formal logic [126, 76] in addition to

machine learning [101, 84, 14]. Few papers have approached this problem utilizing

the most recent developments in deep learning for NLP, however there has been

some recent work on determining temporal ordering from clinical notes [129, 66].

We provide a mechanism for incorporating temporal relations which does not rely

on hand-designed features or formal logic, by creating a “position embedding” for

each sub-event. We find that this mechanism, while simple, is effective for reasoning

about temporal relations.

Weakly-Supervised Temporal Localization. Our work is related to the task of

weakly-supervised temporal localization, a well-studied problem in which a system

must learn to perform temporal action localization when given only video-level labels

[120, 138, 113, 182, 60]. Similarly, in our work, we do not have individual temporal

labels for each atomic sub-event, and must learn to localize these without labels.

However, we do have temporal labels for each query. In addition, these prior works

use action category labels, as opposed to natural language queries, as the description

for each labeled event. Only recently has weakly-supervised temporal localization

been studied in the context of natural language queries [164].

Relation to MCN and MLLC. Our work is a generalization of Moment Context

Networks (MCN) [55]. Specifically, we use the same encoders for embedding words

(Section 4.2.2) and video segments (Section 4.2.3), as well as the same distance metric

to compute matching scores (Section 4.3). We generalize MCN by allowing multiple

sub-events to each be localized simultaneously, incorporating compositional struc-

ture, and later combining and refining their matching scores, incorporating temporal

structure. Moments Localized with Latent Context (MLLC) [56] similarly builds

off of MCN, but is limited to localizing just two sub-events, and does not include
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Figure 4.3: Event Representation Network with the parser approach. The Sub-Event Segmentation
module produces masks that indicate which words belong to each detected sub-event
(Section 4.2.1). The Sub-Event Representation module produces a triplet representation
for each sub-event (Section 4.2.2).



58

S

SBAR

IN S

NP VP

before the men stand up, man flips over four people

Figure 4.4: Result of segmenting sub-events with a parser. This query contains three clauses (with
tags S, SBAR, and S). Each word is assigned to the lowest-level clause to which it be-
longs, and length-1 clauses are discarded. Two sub-events are detected in this example,
depicted by the red and blue outlines.

temporal refinement. Our model, therefore, is more flexible and performs well with

both simple and complex queries.

4.2 Event Representation Network

We represent each natural language query as a set of one or more sub-events,

where the number of sub-events is chosen flexibly depending on the query. We

produce this representation using a novel network architecture, which is depicted in

Figure 4.3 and has two primary components. The first component is the sub-event

segmentation module, which determines the number of sub-events as well as which

words belong to each. The second component is the sub-event representation module,

which creates a vector representation for each sub-event.

4.2.1 Sub-Event Segmentation Module

We propose two methods for segmenting a query into sub-events.

Parser. In this approach, we use the Stanford Parser [75] to segment the sentence

into clauses, and we consider each clause to be a sub-event. We define “clauses”

to include all clause-level tags in the Penn Treebank (S, SBAR, SINV), as well as

fragment tags (FRAG). Since clauses can themselves contain subordinate clauses, we

assign each word to the lowest-level clause to which it belongs. For an example of
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this, see Figure 4.4. We discard all sub-events that contain only one word, as these

are typically due to a conjunction such as “after,” which we do not consider to be

events.

Bi-directional LSTM. While the parser approach allows us to segment reason-

able sub-events, it imposes some limitations. First, all sub-events are contiguous

in the query, and cannot overlap. This introduces an issue when a clause contains

a pronoun, as we cannot resolve the reference of the pronoun without the broader

context of the sentence. By removing the restrictions of contiguity and overlap, we

can replace a pronoun with its referent, making it more easy to localize. Another

limitation is that the parser is fixed, and therefore any noise in its output cannot be

fine-tuned away during training.

As a flexible and end-to-end learnable alternative to the parser, we propose a

simple attention mechanism using a bi-directional LSTM. We feed the word-level

features fi ∈ RM (Section 4.2.2) into the Bi-LSTM, and then apply K linear clas-

sifiers to its output to get a set of attention masks corresponding to K sub-events.

Unlike in the parser approach, this always results in an equal number of sub-events.

Specifically, we set K = 6, since this is the maximum number of sub-events identi-

fied by the parser in our experiments. However, as we will explain in the following

section, each sub-event is later associated with a weight, and it is ignored when its

weight is zero. This way, we still can flexibly represent the query as any number of

sub-events.

Output. Mathematically, both segmentation approaches result in a set of masks

mk ∈ [0, 1]N for k ∈ {1, . . . , K}, where N is the number of tokens in the input query

and K ≤ 6 is the number of detected sub-events.
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4.2.2 Sub-Event Representation Module

To create the sub-event representations, we first compute GloVe embeddings [121]

for each word in the query, and then pass these into an LSTM [58]. The output of

the LSTM is a sequence of feature vectors fi ∈ RM for i ∈ 1, . . . , N where N is the

number of words and M is a hyperparameter corresponding to the hidden feature

dimension. To convert these word-level features to sub-event-level features, we pool

them via a weighted average using the sub-event masks from Section 4.2.1. That is,

ek =
∑N

i=1mkifi, resulting in ek ∈ RM , the feature vector for the kth sub-event.

We then create a triplet representation for each sub-event. Specifically, we repre-

sent the sub-event k as (lk,pk, wk), where lk ∈ RMembed is the language embedding,

pk ∈ RMpos is the position embedding, and wk ∈ [0, 1] is a scalar weight. The lan-

guage embedding lk is used to co-embed the sub-event features in the same space

as the visual features in Section 4.2.3. The position embedding, pk, represents the

position of the sub-event in time, and is used to enforce temporal consistency in

Section 4.3.1. The weight wk allows the model to ignore sub-events which describe

something non-visual, or sub-events which are used purely as context for describing

another event (Section 4.3). Each of these embeddings is created by passing the

sub-event features ek through a single fully-connected layer. We normalize each lk

with L2 normalization, and we normalize the weights wk with a softmax across the

K sub-events.

4.2.3 Video Representation

We represent each video segment as an embedding vt ∈ RMembed , where t = (s, e)

is the start and end-point of the segment. To create the embeddings, we adopt

the approach introduced by [55]. In this approach, either RGB or Optical Flow
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frames are passed into a CNN to create frame-level feature vectors. These features

are averaged within each segment t to create local features, and averaged across

the entire video to get global features. We then concatenate the local and global

feature vectors along with the start and end-points (s, e) (called temporal end-point

features, or TEF) into a (2Dvideo + 2)-length feature vector, where Dvideo depends

on whether RGB or Optical Flow features are used. This vector is then fed into a

2-layer multi-layer perceptron (MLP) to get the video segment embedding vt.

4.3 Temporal Grounding

When queries are compositional, it is not always straightforward to define the

expected output of temporal grounding. Consider a query of the form “X after Y.”

Should the grounding include the temporal extent of both X and Y, or only X ?

Some datasets (DiDeMo [55]) encode the answer using the former option, opting to

ground the full extent of events described by the query. Other datasets (Tempo-TL,

Tempo-HL [56]) however, use the latter, since Y in this case is used only to refer

to a particular instance of X. We propose a method which is agnostic the particular

grounding scheme and can be trained end-to-end for either scenario.

Intuitively, our proposed temporal grounding procedure leverages the sub-event

representations, as well as their temporal ordering, to find a matching between the

query and the video. We first attempt to localize each individual sub-event in the

video. Then, we apply a refinement network which updates these locations to ensure

temporal consistency, and combines them to compute the final grounding. Con-

cretely, this network takes as input the sub-event representations (Section 4.2.2) and

video segment representations (Section 4.2.3), and as output, it produces a score for

each time segment t, which corresponds to how well that time segment matches the
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query.

To locate each sub-event k, we compare their embeddings lk with the embedding

of each video segment vt. We compute the Euclidean distance between each pair,

that is, dkt = ‖lk − vt‖2, where pairs with smaller distances between them are

considered better matches. The distance dkt therefore serves as a matching score

between sub-event k and video segment t.

We then combine these matching scores across sub-events to compute an initial

matching score for the entire query. Specifically, we perform a weighted average of

the sub-event matching scores, where the weights are given by wk from the event

representation network, that is, Dt =
∑K

k=1 dktwk. The weights allow the matching

to favor particular sub-events over others, or exclude a sub-event entirely. This is

helpful when a sub-event is used only for context, or when a sub-event is not visible

in the video.

4.3.1 Refinement Network

The initial matching score Dt accounts for compositional structure, but does not

account for temporal structure. To leverage temporal structure, we propose an addi-

tional step, where the matching scores and expected positions of each sub-event are

used to update the matching score for the entire query. This phase allows the model

to downweight segments that do not match the expected position of each sub-event

in the video, which is encoded using the position embedding pk (Section 4.2.2).

More precisely, for all video segments t, we apply a refinement function φ which

takes as input the matching score Dt, the matching score for a particular sub-event

dkt, the position embedding for that sub-event pk, and the temporal extent of the

segment t = (s, e). We apply the refinement function to each sub-event k and add

the results to the matching score Dt to get a refined score D̃t. That is,
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(4.1) D̃t = Dt +
K∑
k=1

φ(Dt, dkt,pk, t).

For the refinement function φ, we use a 2-layer MLP. The inputs are concatenated

along the feature dimension, which results in an input with dimension 1+1+Membed+

2. The final matching score D̃ is used to rank the candidate segments, and as the

final grounding we choose the segment that results in the lowest distance D̃. That

is, t̂ = arg mint D̃t.

4.3.2 Training

CTG-Net is fully end-to-end differentiable and can be optimized via gradient

descent. We adopt the triplet ranking loss Ltriplet from Hendricks et al. [55] and

apply it directly to the refined matching scores D̃. This loss imposes a penalty when

the score for an incorrect segment D̃t′ is lower than that of a correct segment D̃t′

(recall that lower scores are better), or if they are within some margin b, that is,

L(D̃t, D̃t′) = max(0, D̃t − D̃t′ + b). For every positive example, we compare it with

two negative examples: one is a segment chosen randomly from the same video D̃tintra ,

and the other is a segment chosen from a random video at the same timepoint D̃tinter .

The loss is a weighted sum of the ranking losses for these two negative examples,

that is, Ltriplet = L(D̃t, D̃tintra) + λL(D̃t, D̃tinter).

Implementation Details. We optimize CTG-Net using stochastic gradient descent

with a batch size of 120, an initial learning rate of 0.05, and we decay this learning

rate by a factor of 10 every 33 epochs (50 for Tempo-HL). We multiply the learning

rate by a factor of 10 when updating the LSTM used to create word-level features.

We train each network for a maximum of 100 epochs, with early stopping if the

validation accuracy plateaus.
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We choose hyperparameters from MCN [55] where applicable, that is, the word

feature dimension M = 1000, the embedding dimension Membed = 100, the inter-

video loss weight λ = 0.2. The remaining hyperparameters, including the dimension

of the position embedding Mpos = 100 and the size of the hidden layer in the refine-

ment MLP Mφ = 100, are selected using the validation set.

As in Hendricks et al. [55], we divide each video into 5-second clips, and consider

all segments which consist of one or more contiguous clips. For a 30-second video,

this gives 6 possible segments of length 1, 5 possible segments of length 2, and so on.

The number of segments for a video with T clips is therefore T (T + 1)/2.

Late Fusion. We use two sets of visual features, one extracted from RGB video

frames, and the other extracted from Optical Flow sequences. For RGB, we pass each

frame of the video through a pretrained VGG16 network up to the fc7 layer [145],

producing a feature vector for each frame. For Optical Flow, we use the penultimate

layer of a Temporal Segment Network [183] trained on action recognition. For each

experiment, we train two networks, one for each of the two visual modalities, and

then perform a weighted average of their refined correspondences λRGBD̃RGB + (1−

λRGB)D̃Flow, λRGB = 0.3 to get a fused result. All results include late fusion.

Code. Our implementation is built in PyTorch [118], and uses GloVE embeddings

and visual features (both RGB and Flow) provided by the original creators of the

datasets [55, 56]. Our implementation will be made publicly available.

4.4 Experiments

DiDeMo. Distinct Describable Moments (DiDeMo) is a recent dataset introduced

by Hendricks et al. [55] as a benchmark for temporal grounding. This dataset con-

sists of over 10K unedited videos from Flickr and 40K unique queries. Each query
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describes a distinct moment in the corresponding video, and its temporal location

is annotated independently by four annotators. The queries describe a rich range

of events that are not limited to human activities, such as camera and object mo-

tion. The dataset includes a high percentage of queries (18.4%) that include words

about temporal relationships, such as “first”, “begin”, “after”, and “final”. These

properties make DiDeMo a realistic benchmark dataset for temporal grounding.

Tempo-TL and Tempo-HL. Temporal Template Language (Tempo-TL) and Tem-

poral Human Language (Tempo-HL) are two recent temporal grounding datasets

which build off of DiDeMo [56]. These datasets contain complex queries which

are constructed specifically to test compositional grounding, making them an ideal

testbed for our method.

Tempo-TL queries are procedurally constructed from pairs of DiDeMo queries.

They are constructed using one of five templates: X before Y, Y, before X, X after Y,

Y, after X, and X then Y, depending on the temporal relationship of the two events.

While this procedure sometimes results in unnatural sentences, it enables fine-grained

evaluation of grounding under specific temporal relationships. Depending on the

template, the system must localize the base moment X (“before” and “after”), or

the concatenation of both events X and Y (“then”).

Tempo-HL queries are constructed by asking each annotator to describe an event

relative to an existing query from DiDeMo. The resulting queries include all of the

same temporal relationships as Tempo-TL, as well as “while” relationships, which are

not covered by Tempo-TL. Because these queries are rewritten in natural language

from scratch, they include coreference statements and a wider range of temporal

prepositions. Tempo-HL is therefore a much more realistic and challenging dataset.

DiDeMo+Tempo. When training on Tempo-TL or Tempo-HL, we also include
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Tempo-TL Splits - R@1 Average
Method DiDeMo Before After Then R@1 R@5
Prior 10.7 17.9 22.4 0.0 12.7 52.6
MCN [55] 24.9 32.3 25.1 27.1 73.4 26.1
TALL [37] 21.0 27.1 26.3 4.8 19.8 64.7
MLLC [56] 25.9 32.0 24.3 25.0 26.8 74.0
CTG-Net-P 26.8 34.1 27.6 26.4 28.7 76.0
CTG-Net-A 26.6 35.1 26.1 23.6 27.9 75.5

Tempo-HL Splits - R@1 Average
Method DiDeMo Before After Then While R@1 R@5
Prior 19.4 29.3 0.0 0.0 4.7 10.7 37.6
MCN [55] 26.1 26.8 14.9 18.6 10.7 19.4 70.9
TALL [37] 21.8 25.9 14.4 2.5 8.1 14.6 60.7
MLLC [56] 27.4 32.3 14.4 19.6 10.4 20.8 71.7
CTG-Net-P 27.6 27.9 16.9 18.7 10.5 20.3 71.3
CTG-Net-A 27.6 28.6 18.8 20.8 11.6 21.5 72.7

Table 4.1:
Results on (Top) Tempo-TL and (Bottom) Tempo-HL. We compare against prior work,
using two variants of our model: with the fixed parser (CTG-Net-P), and with the
Bi-LSTM attention mechanism (CTG-Net-A). For both Tempo-TL and Tempo-HL, we
train on the DiDeMo+Tempo-TL and DiDeMo+Tempo-HL training sets, respectively,
and evaluate on the test sets. Average refers to the average of each metric across the
splits (Section 4.4).

training examples from DiDeMo, as suggested by the original creators. This is re-

ferred to as ”DiDeMo+Tempo-TL” or ”DiDeMo+Tempo-HL.”

Evaluation. We adopt the suggested evaluation metrics for both DiDeMo and

Tempo. In both datasets, four annotators are each given a video and query and are

asked to select the temporal segment which corresponds best with the query. In some

cases, there is disagreement between the annotators. To account for disagreement,

each metric is computed by comparing the prediction to each of the four annotations,

and the annotation that most disagrees with the prediction is discarded. Using this

method, we compute three metrics: Recall@1 (R@1), Recall@5 (R@5), and Mean

Intersection over Union (mIOU). We note that prior works use the names Rank@1

and Rank@5 when computing these metrics. Our Recall@1 and Recall@5 metrics

are equivalent to these.

For DiDeMo, the three metrics are computed for all videos in the dataset. For
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TEMPO, we use a modification suggested by the original creators [56]: we split the

dataset into subsets based on the temporal words (“before”, “after”, “then”, “while”)

which are present in the queries. We compute the metrics within each subset, and

then average the results with equal weight to get a final set of metrics. This allows

us to get a fine-grained understanding of how our model performs under different

temporal relationships.

4.4.1 Comparison with State of the Art

Tempo-TL. In Table 4.1, we compare CTG-Net with several prior works and base-

lines on Tempo-TL. All methods outperform the Prior baseline, which always selects

the first video segment. Our model outperforms MCN [55] and TALL [37], two

sliding-window approaches which do not account for the compositional structures

present in Tempo. We also outperform MLLC [56], the previous state-of-the-art on

Tempo-TL, which achieves an average R@1 of 26.8% compared to 27.9% for our

method with the Bi-LSTM attention mechanism (CTG-Net-A) and 28.7% for ours

with the parser (CTG-Net-P). In terms of average R@5, we also find that CTG-

Net-P outperforms MLLC (+2.0%, from 74.0% for MLLC to 76.0% for ours), and

performs comparably in terms of mIOU (-0.3%, from 42.3% for MLLC to 42.0% for

ours). We perform particularly well on queries containing “before“ (+3.1%, from

32.0% of MLLC to 35.1% of ours) and and “after” (+3.3%, from 24.3% of MLLC to

27.6% of ours), demonstrating our robustness to different temporal relationships.

Tempo-HL. In Table 4.1, we also perform the same set of comparisons on Tempo-

HL. We find that Tempo-HL is more challenging for all temporal words, likely because

of the wider range of temporal prepositions and coreferences present in natural lan-

guage. Our model with the Bi-LSTM (CTG-Net-A) outperforms all prior work on

this challenging dataset. We note that our model performs well on the less common
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temporal relations “after” and “while”. These relations are particularly challenging

because they require the model to perform temporal reasoning about sub-events that

occur out of order (“after”) and simultaneously (“while”). Our temporal refinement

procedure allows the model to take this into account.

We find that, while our model with the fixed parser (CTG-Net-P) outperforms

that with the Bi-LSTM attention mechanism (CTG-Net-A) on Tempo-TL, the op-

posite is true on Tempo-HL. This is likely due to the rigid, procedurally constructed

queries in Tempo-TL, which lend themselves well to parsing. Tempo-HL queries,

on the other hand, contain more variation in sentence structure, which may not be

accounted for by the parser. However, we find that both methods are competitive,

demonstrating that compositional structure is useful, regardless of the method of de-

composition. Concretely, CTG-Net-A achieves 21.5% Average R@1 on Tempo-HL,

an improvement over MLLC (20.8%), the previous state-of-the-art. As with Tempo-

TL, we also find that CTG-Net outperforms MLLC in terms of R@5 (+1.0%, from

71.7% for MLLC to 72.7% for ours), but performs worse in terms of mIOU (-1.4%,

from 44.6% for MLLC to 43.2% for ours). This drop in mIOU is because our model,

when compared to MLLC, tends to be over-confident when predicting shorter seg-

ments. These shorter segments may contain important components of the event, but

this is not reflected in the mIOU metric.

DiDeMo. In Table 4.1, we demonstrate that CTG-Net outperforms MLLC on

DiDeMo when trained on both DiDeMo and Tempo-TL (R@1 +1.0%, from 25.8%

to 26.8%) and on DiDemo and Tempo-HL (+0.2%, from 27.4 to 27.6%). This

demonstrates that CTG-Net performs well on the relatively simple queries present

in DiDeMo, in addition to the complex queries present in Tempo.

Prior work on DiDeMo does not use the additional training data from Tempo-TL
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Tempo-HL - Average (Val)
Method R@1 R@5 mIOU
Ours w/o mk, φ 20.75 71.91 41.68
Ours w/o mk 20.69 71.54 41.72
Ours w/o φ 21.24 72.09 42.55
Ours w/o pk, wk 21.49 72.46 42.31
Ours w/o pk 21.37 71.68 42.58
Ours w/o wk 21.27 71.89 42.88
Ours-A (Full) 21.83 72.98 43.25

Table 4.2:
Ablation studies. Top section: to demonstrate the impact of compositional and temporal
structure, we remove the sub-event masks mk and temporal refinement network φ. Mid-
dle section: we remove the position embedding pk and weights wk from the sub-event
representations. Our full model outperforms all variants. All numbers are reported on
the Tempo-HL validation set.

and Tempo-HL, so for fair comparison we additionally report performance of CTG-

Net trained on DiDeMo only. When trained on DiDeMo only, CTG-Net-A (27.8%)

outperforms several recent baselines, including Temporal Modular Networks (22.9%)

[95] and Moment Alignment Networks (27.0%) [200], both of which are competitive

recent baselines which leverage compositional reasoning as part of their approach.

We additionally achieve competitive results with MCN (28.1%), MLLC (28.4%), and

Temporal GroundNet (28.2%) [55, 55, 15]. We observe that, suprisingly, CTG-Net-A

performs slightly below MCN and MLLC when trained on DiDeMo only, while the

opposite is true when we use additional data from Tempo. A simple explanation for

this discrepancy is that our model is more complex, and therefore requires more data

than is available in the DiDeMo-only setting. In support of this, we observe that

our model performs similarly on DiDeMo when trained using the additional data

from Tempo-HL (-0.1%), while other models experience steep drops in performance

when using this additional data, such as -2.0% for MCN, and -1.0% for MLLC. This

demonstrates that our model has higher capacity and is more robust to changes in

distributions between datasets, both of which are important qualities in practice.
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Figure 4.5: Recall@1 on DiDeMo+Tempo-HL as a function of query complexity (above) and query
novelty (below). Complexity: queries with a high number of clauses are more complex
and are therefore more difficult to ground, and our method outperforms prior work
at all levels. Novelty: Queries which are dissimilar to previously-seen queries are also
more difficult to ground, and our model outperforms prior work at all levels. Error bars
depict one standard deviation.
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Figure 4.6: Examples of sub-event localization on Tempo-TL. The highlighted portions of each
query indicate the sub-event masks, and the colored boxes below the video frames
indicate the predicted locations of each sub-event (the location with the lowest matching
score dkt). In both cases, CTG-Net correctly identifies both sub-events, both in the
query and in the video.

4.4.2 Complex & Novel Queries

We expect CTG-Net to generalize well to a broad range of queries. Two challeng-

ing areas are complex queries, which have many sub-events, and novel queries, which

are dissimilar to queries seen during training. To test our model in these scenarios,

we evaluate its performance on subsets of queries from DiDeMo and Tempo-HL with

increasing complexity and novelty.

Complexity. To measure complexity, we count the number of clauses in each query,

using the results of the Stanford Parser [75]. We divide the queries into categories

based on the number of clauses, and we give the performance on each split in Fig-
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ure 4.5. We find that queries with more clauses are more challenging to ground. We

also find that our full model (Ours-A) achieves better performance than MCN and

MLLC [55, 56] at all levels, demonstrating that we are able to generalize to both

simple and complex queries.

Novelty. To measure novelty, we compute the average GloVe embedding for each

query in the test set, find the most similar average embedding in the training set,

and take the Euclidean distance between their embeddings. We consider queries with

a high GloVe distance to be more novel. We divide the queries into four categories

based on the quartile of the GloVe distance and give the performance in Figure 4.5.

Novel queries are more challenging, and again we find that our full model achieves

better performance at all levels, demonstrating that it is robust to novel queries.

In these experiments, we use Recall@1 over the entire Tempo-HL+DiDeMo test

set, not the Average R@1 metric (Section 4.4) that separates by temporal words.

This allows us to fairly compare queries based only their complexity and novelty,

rather than their source dataset. We use our own implementations of MCN and

MLLC, and verify that these implementations achieve similar or better performance

than that reported by the original authors: specifically we find that MCN and MLLC

achieve Average R@1 scores of 20.6% and 20.6% on Tempo-HL, respectively, com-

pared to 19.4% and 20.8% in the original work.

4.4.3 Ablation Study

We perform an in-depth ablation study in Table 4.2. In these experiments, we

demonstrate the contribution of the novel components of our model, namely our

use of compositional and temporal structure, and our use of weights and position

embeddings in the sub-event representation. In all ablation experiments, we use

CTG-Net with attention (Ours-A) trained on DiDeMo+TempoHL, and we report
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results on the validation set.

Compositional and Temporal Structure. In the top section of Table 4.2, we

demonstrate the effect of eliminating compositional and temporal reasoning from our

model. Ours w/o mk refers to our model without sub-events masks. This model still

has the temporal refinement step, but it does not have the benefit of receiving re-

finement updates from multiple sub-events. Ours w/o φ refers to our model without

the temporal refinement step, which still uses compositional structure by combining

sub-event matching scores. Ours w/o mk, φ has both components removed, and is

equivalent to MCN [55]. We find that removing both compositional and temporal

structure lead to decreased performance (-1.1%), and that removing compositional

structure alone (-1.1%) is more detrimental than removing temporal structure (-

0.6%). Interestingly, we see no benefit to including temporal refinement without also

including sub-event decomposition, demonstrating that temporal refinement lever-

ages updates from multiple sub-events as intended.

Sub-Event Representation. In the middle section of Table 4.2, we demonstrate

the effect of removing two pieces of our proposed sub-event representation. Ours w/o

pk refers to our model without the position embeddings, which are later used as part

of the refinement step. Ours w/o wk refers to our model without sub-event weights,

meaning that each sub-event is weighted equally under this scheme. Ours w/o pk,

wk refers to a model with neither of these components. We find that removing either

of these components leads to decreased performance (-0.46% and -0.56%), but that

removing them both does not lead to further decreased performance, demonstrat-

ing that there is still utility in including a sub-event decomposition without these

components.

Qualitative Examples. In Figure 4.6, we present examples of CTG-Net correctly
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identifying the locations of individual sub-events in complex queries. For more ex-

amples, please refer to the appendix.

4.5 Conclusions

We demonstrate that compositional and temporal structure are useful for temporal

grounding. Specifically, show that event descriptions are composed of sub-events, and

that they impose an ordering on these sub-events. To leverage these structures, we

propose Compositional Temporal Grounding Networks (CTG-Net), and show that

this model leads to higher performance on challenging datasets when compared with

models which do not leverage such structure. We make our code publicly available.
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CHAPTER V

Learning Video Representations from Textual Web
Supervision

Video representations are typically learned in a fully-supervised fashion. For this

approach to be successful, we require large amounts of labeled data, typically on

the order of hundreds of thousands of labels. Acquiring these labels can cost tens

of thousands of hours of human time to annotate [47, 13], and furthermore, when

datasets become large, the benefit of gathering more labels appears to diminish [62].

At a certain point, it becomes too costly to simply label more data to improve

performance. In this regime, we look to alternative sources of supervision to learn

video representations without costly manual labels.

In this chapter, we draw this supervision from textual metadata available pub-

licly on the Internet. Specifically, we use web videos from popular sites, where videos

are associated with freeform text in the form of titles, descriptions, tags, and chan-

nel/creator names. These four pieces of textual metadata provide rich information

about each video’s content. Frequently, they describe the exact types of information

which labelers are asked to annotate in labeled datasets, such as objects, scenes,

and human actions. For example, consider the title, “Learning how to swim!” or the

channel name “PotteryMaker”. Both of these indicate what actions will take place in

their respective videos, and we can leverage this information to learn representations,

75
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in much of the same way we use labels in supervised learning.

The primary idea behind our approach is to use these pieces of text directly. This

stands in contrast to recent work [42] in which the metadata is used indirectly, by

using it to infer a class label for each example. Class labels seem like a natural choice

for webly-supervised learning, as these are the most common form of supervision in

strongly-supervised learning. However, class labels come from a closed vocabulary,

while text is open-ended and therefore is necessarily more descriptive. Consider

the title “Outdoor free-climbing in Yosemite”. If we reduce this title to the class

label “rock climbing”, we are ignoring important information about the scene and

the specific type of action, potentially missing out on valuable supervisory signal.

In our experiments, we demonstrate that using text, and using multiple sources of

text, translates into improved downstream performance. We compare our method

with other webly-supervised approaches, showing that our method produces video

representations which improve downstream performance by 2.2% on HMDB-51 [79]

(Section 5.4).

Another advantage of this approach is that the amount of available data is im-

mense; e.g. over 500 hours of content is uploaded every minute to YouTube alone [50],

and each video is labeled with text. Due to this, we are able to perform experiments

on a large scale, and we collect and learn from a dataset of 70 million videos. This

dataset, Web Videos and Text (WVT-70M), is over 100 times larger than Kinet-

ics [72], a commonly used large-scale video dataset, and is, to the best of our knowl-

edge, the largest existing video dataset for webly-supervised learning. To acquire

this data, we use a text-based video search engine to query for common words and

collect a large, uncurated video dataset (Section 5.2).

Our goal with this data is to learn video representations—feature vectors which
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encode a video clip—which are then useful for downstream tasks. To learn these

representations, we propose a training scheme in which the video representation are

used to pair each video with its associated metadata. We use powerful 3D Convo-

lutional Neural Network (3D CNN) architectures to produce these representations,

and train the video representations end-to-end on WVT-70M (Section 5.3). We

evaluate the representations’ effectiveness by fine-tuning them on a suite of down-

stream tasks. We find that pre-training with this approach significantly improves

downstream performance, and that webly-supervised pre-training is complementary

to strongly-supervised pre-training (Section 5.4).

Our key finding is that textual metadata is a rich source of supervision which

can be acquired freely from public sources. Specifically, in this work, we make the

following contributions:

• We collect a large-scale, uncurated dataset (WVT-70M), consisting of 70 million

web video clips and their associated metadata, including titles, descriptions,

tags, and channel names.

• We propose a method for learning video representations by learning to match

these representations with their associated metadata.

• We demonstrate that our approach outperforms other webly-supervised and

self-supervised approaches, achieving an improvement of 2.2% on HMDB-51.

5.1 Related Work

Webly-Supervised Learning. Many prior works have leveraged webly-labeled

data for visual representation learning, both for images as well as videos. In general,

these approaches use metadata found on the Internet to infer weak labels for a set

of images or videos, and they differ in how these weak labels are created. The
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most commonly-used approach is to use image search results, and label each image

with the query that was used to find it [186, 30, 135, 7, 18, 24, 45, 17, 36, 78].

Another approach is to use captions, and label each image with key words present

in the caption [115, 69, 91, 107]. Other approaches use user-defined keywords or

tags [44, 64, 100, 42] or algorithmically-generated topics [2, 71] to the same end.

These approaches have consistently demonstrated that webly-supervised learning is

scalable and that it improves performance on downstream tasks, suggesting that

webly-acquired class labels provide a valuable source of supervision.

A key observation in our work is that one does not need to infer class labels in

order to learn from webly-acquired metadata. In our approach, we instead use the

textual metadata directly, allowing for richer information to be used as supervision.

This approach is similar to that of concurrent work [92] which uses titles as a form

of textual supervision. Our work differs in that we also use other forms of metadata,

such as descriptions. In addition, this prior work uses curated data from Kinetics-

400, while we introduce an uncurated dataset as our source of videos. These videos

provide a more realistic reflection of the webly-supervised videos available in the

wild.

Unsupervised and Self-Supervised Learning. Our work is also related to meth-

ods of unsupervised and self-supervised learning, which do not use metadata from the

Internet, and instead only use the video and its associated audio. Video (without au-

dio) is already a valuable source of self-supervision, and varied approaches have suc-

cessfully leveraged supervision from clip and frame ordering [106, 31, 89, 187, 191, 73],

geometry [35, 68], motion [119, 81], colorization [174], cycle consistency [26, 185],

and video prediction [102, 97, 173, 172, 178]. Generally, these approaches are out-

performed by those leveraging supervision mined from external metadata, or from
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the audio channel.

Audio is a convenient and strong source of supervision: convenient because videos

are almost always paired with an audio channel, and strong because the audio is

tightly correlated with what is happening in the video. Prior works have leveraged

ambient sound [117, 6, 5, 202, 77, 116, 132], dialogue [109], and narration [196, 3, 203,

205, 105, 104, 4], all of which of which serve as useful signals. Those approaches using

narration typically do so with instructional videos, such as in the recent HowTo100M

dataset [105], since instructional videos typically contain narration which describes

the actions being performed. These approaches, like ours, reap the benefits offered by

rich, descriptive supervision. However, they rely on a specific genre of video content

(instructional videos), which poses a potential limitation. Our work, by contrast,

can work with any genre of videos.

5.2 Dataset

To benchmark our approach, we collect a dataset of 70 million videos by searching

for common action categories using a text-based web-video search engine. We begin

by manually selecting the set of action categories; in our experiments we use the 700

action categories in Kinetics-700 [11]. We choose these categories because they cover

a broad range of human actions, and also because this allows for fair comparison

with fully-supervised approaches which pre-train on Kinetics (since the specific class

categories used are known to have an effect on downstream performance [42]). We

use the class names as search terms and collect the resulting videos from the web.

We then apply two selection criteria to filter videos. First, we discard videos which

are less than 10 seconds long, since we use 10-second clips during training (a choice

also made to match Kinetics). Second, we discard videos which were uploaded in the



80

Title: Quick Meals On the Grill Episode #1 (Chicken Tenders)
Desc: Follow BACKYARD BBQ-R on Social Media …
Tags: Barbeque, smoking, weber, bbq, bbqing ...  +17
Channel:  Backyard 'Bbq-R' 

Title: Lipstick Tutorial Compilation | New Amazing Lip … 
Desc: Lipstick Tutorial Compilation | New Amazing Lip ...
Tags: Makeup, DIY, Makeup Tutorial, Tutorial, How To, … +4 
Channel:  Life & Beauty 

Title: The First Mowing of The Spring Lawn (timelapse)
Desc: It's a nice spring day and the grass needs mowing …
Tags: mow, lawn, grass, time, lapse, mower, push, … +13
Channel:  tallt66

Title: Lower Carb Chicken Bacon Ranch Mac and Cheese
Desc: This high protein, low carb chicken bacon ranch … 
Tags: None
Channel:  Mason Woodruff

Figure 5.1: Examples of video frames and metadata from WVT-70M. Metadata typically contains
references to actions (mowing, bbqing) as well as objects (grill, lipstick, bacon) which
are present in the scene. We collect four types of metadata for each video: titles,
descriptions, tags, and channel names. Metadata is truncated where necessary for ease
of visualization. All videos used under CC BY 2.0 license.

past 90 days, because older videos are less likely to be deleted in the future, allowing

for improved reproducibility of our experiments. In total, we collect 100K videos

from each of the 700 queries, resulting in a dataset of 70M videos. From each video,

we randomly select a 10-second clip to download and later use for training.

Each video is paired with four pieces of textual metadata: its title, description,

tags, and channel name. These were chosen for two reasons. First, these pieces of text

are all manually written by the user, as opposed to being automatically generated.

This is desirable because the inner workings of automatically generated metadata

(such as YouTube’s “topics” [2]) are unknown, and could potentially be generated

via content-based models trained on our target datasets, allowing these labels to leak

into the training set. By relying only on manually-annotated metadata, we avoid

this potential issue. Second, from manual inspection, we see that these pieces of text
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consistently contain informative references to content in the video. These references

are written deliberately by the user, who generally will choose a title, description,

and tags which help other users find their video. The user will also select a channel

name (an identifier used to represent the user) which is informative, typically one

which is indicative of the types of videos that the channel contains. The channel

name provides context which the other signals may not, for example, a channel for

guitar lessons, “Jeff’s Guitar Lessons”, may not explicitly say “guitar lesson” in each

video title, but the channel name makes this obvious. For some examples of videos

and their metadata, see Figure 5.1.

Like many approaches towards webly-supervised learning, we rely on a search

engine to collect data. This again raises the question of “leakage” from the test

set into the training set: if content-based models (possibly trained on our target

datasets) are used to generate the search results, does this introduce the possibility

of labels (in the form of search terms) leaking into our training set? In our case, no,

since we do not use the search terms as labels, labels cannot leak into the training

set through the search engine. This still allows for the possibility that the videos are

indirectly “curated”, that is, the resulting videos may be more neatly divided into

class categories than what could be achieved without content-based search. However,

it is still standard practice to use search results for “uncurated” data collection [105],

because search provides a practical method for acquiring large amounts of data from

the Internet.

In Table 5.2, we compare WVT-70M to other webly-supervised datasets for video

representation learning. In terms of the number of videos, WVT-70M is on par with

the largest datasets in prior work, with 5M more unique source videos than [42]. We

acknowledge that, conceptually, any of these prior datasets could be scaled to much
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Dataset #Videos Duration (hrs) Supervision

Sports-1M [71] 1.1M 15K Topics
Youtube-8M [2] 8M 500K Topics
HowTo100M [105] 1.2M 136K Speech
IG-Kinetics [42] 65M 72K Hashtags

WVT-70M (ours) 70M 194K Text Metadata

Table 5.1: Datasets for webly-supervised video representation learning. WVT-70M contains 70
million clips, each from a unique source video, and each video is paired with textual
metadata.

Figure 5.2: Scaling properties of WVT-70M. Left: Rate of missing descriptions and tags, and
number of tags. Both descriptions and tags are empty for a large number of videos, at
all dataset sizes. Right: Mean length (in words) of each metadata type. Descriptions
and tags tend to get shorter with larger dataset sizes, but titles and channel names tend
to get longer.

larger sizes simply by collecting more data, making dataset size a dubious method of

comparison. However, it is still important to study how these methods behave when

scaled to extreme dataset sizes, and therefore our experiments on 70M videos are a

valuable contribution in this space. These experiments are particularly important

because there are non-trivial issues associated with scaling webly-supervised learning

to extreme dataset sizes. The key issue is that we use search results to collect data,

and the quality of these results declines as we move deeper into the search rankings

to collect more videos.

To analyze the scaling properties of WVT-70M, we collect increasingly-large sub-



83

sets of the dataset and measure indicators of their quality, shown in Figure 5.2. The

dataset size is scaled up as one would do in practice, by selecting more and more of

the top search results from each query, rather than by performing a random sample

from the full WVT-70M dataset. The indicators measure, for each piece of metadata,

the mean length (in words), the rate of missing-ness (for descriptions and tags, which

can be omitted by the user), and the mean number of tags. We find that search re-

sults are imbalanced in terms of how these indicators are distributed. Specifically,

descriptions and tags tend to get shorter with larger dataset sizes, but titles and

channel names in fact get longer. We also find that the percentage of videos which

have any tags or a description stays relatively constant, but the average number of

unique tags drops. These analyses indicate that the quality of descriptions and tags

tend to decrease, that is, they get shorter and therefore less descriptive, for larger

dataset sizes. Notably, we do not see the same for titles or channel names, indicating

that these may be a more reliable source of supervision at the largest dataset sizes.

This is reflected in our experiments in Section 5.4.2, where we find that using all

sources of metadata is helpful for smaller dataset sizes, but that these additional

sources of metadata reduce performance when scaled to the largest dataset sizes.

Implementation Details. Since Kinetics videos are also collected from the Inter-

net, we discard videos from WVT-70M which appear in the Kinetics validation or

test sets. Since many videos do not contain a description or tags, we code the miss-

ing information as an empty string, rather than discarding these videos. We perform

all searches in English, so WVT-70M contains primarily (though not exclusively)

English-language videos and metadata. However, our approach is extensible to any

language.
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Frames

Title (Positive)

Quick Meals On the Grill 
Episode #1 (Chicken Tenders)

BERT
(Frozen)

S3D-G fv

ft’

Wfv+b

Ranking 
Loss

Title (Negative)

The First Mowing of The 
Spring Lawn (timelapse)

BERT
(Frozen)

ft

Figure 5.3: Model architecture for webly-supervised learning from textual metadata. We encode
the video using S3D-G [189], and the metadata using BERT [23]. We then train the
video representation by matching it with the correct metadata representation.

5.3 Model

At a high level, our approach (Figure 5.3) learns video representations by creating

representations of the video’s metadata, and encouraging the video representations to

match these metadata representations. The video representation is a vector fv ∈ RDv ,

and the metadata representation is a vector ft ∈ RDt , where the vector dimensions

Dv and Dt are dependent on the models used to extract each representation and do

not need to be the same.

Intuitively, the video and its metadata contain similar information, and therefore

their representations fv and ft should contain similar information. However, the

information contained in the video and its metadata are not exactly the same. The

video will always contain information which is not present in the metadata. For

example, the description of a rock climbing video will not list every hold the climber

uses on their route. Likewise, the text will provide context which is not present in

the video, such as listing the time and location where the video was shot. With our
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approach, we leverage this observation by encouraging the video representations to

be similar, but not the same as, the corresponding metadata representation.

Specifically, the video representations are trained by predicting the metadata rep-

resentations. We predict the metadata representations from the video representations

by applying a simple linear transformation, that is f̂t = Wfv +b, where W ∈ RDt×Dv

and b ∈ RDt . We then apply a ranking loss which penalizes fv if f̂t is similar to the

metadata representation for another video f ′t . That is, max(0,m+d(f̂t, ft)−d(f̂t, f
′
t)),

where d is a distance metric, and m is the minimum allowable margin between

d(f̂t, ft) and d(f̂t, f
′
t). In our experiments, we set d as the cosine distance, d(u, v) =

1− uT v
‖u‖2‖v‖2 , and choose the margin to be m = 0.1 with the validation set.

Negative Examples. For the loss, we require a “negative” metadata representation

f ′t , that is, one drawn from a different video than fv. We draw the negative example

f ′t from another video in the dataset uniformly at random. In addition, we use

multiple negative examples {f ′ti | i = 1 . . . K} for each positive example, and take

the mean of their respective losses to get the loss,

(5.1) L(fv, ft, {f ′ti}) =
1

K

K∑
i=1

max(0,m+ d(f̂t, ft)− d(f̂t, f
′
ti)).

In practice, we use K = 15, giving a ratio of 1 positive example for every 15

negative examples. We do not perform any hard-negative mining; we find that

uniformly sampled negatives are sufficient. These negative examples are taken from

the same batch of SGD training for convenience of implementation.

Multiple Sources of Metadata. When using more than one source of metadata for

pre-training, we compute separate metadata representations ft for each source. Then,

for each source, we apply a different set of linear transformation parameters W, b to

the video representation fv, to compute a source-specific f̂t. We then separately
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compute a loss for each source as in Equation 5.1. The final loss is the sum of these

losses.

End-to-End Training. We train the video representation fv end-to-end with the

linear transformation parameters W and b. Since our goal is to learn video repre-

sentations, not text representations, we do not train the metadata representations ft

end-to-end. Instead, we use a pre-trained state-of-the-art text feature extractor to

generate these embeddings (Section 5.3.2).

We train the model using stochastic gradient descent, with Nesterov momentum

of 0.9 [162] and a weight decay of 1e-5. We apply dropout with a rate of 0.5 to the

video features. We use a batch size of 2048 split into chunks of 16 videos across

each of 128 accelerators, trained synchronously. The learning rate schedule begins

with 1500 warmup steps (exponentially increasing from .001 to 1.0), followed by a

cosine-decaying [96] schedule for the remaining steps. We train on 70M videos for

only 140K steps in total, which translates into just over 4 full epochs. Due to the

accelerators and large batch size, this model takes less than 4 days to train.

5.3.1 Video Representation

We create the video representation fv ∈ RDv using a 3D Convolutional Neural

Network (3D CNN) which operates directly on the RGB video frames. The input to

the 3D CNN is therefore a H ×W × T × 3 tensor which represents the video clip.

To get the video representation, we take the final hidden layer of the network and

(when necessary) mean-pool across the spatial and temporal dimensions, resulting

in a vector of length Dv.

In our work, we use S3D-G [189] as the backbone 3D CNN architecture. We

choose this architecture because it outperforms the commonly-used I3D architec-

ture [12] at lower computational cost. We do not train on larger-capacity models



87

such as R(2+1)D-152 (118M params, 10x that of S3D-G) due to the significant com-

putational cost of training such a model on 70M videos. In addition, our goal in this

work is to demonstrate the utility of textual metadata, rather than of any partic-

ular backbone 3D CNN. Prior work has shown that pre-training a higher-capacity

model on a large dataset leads to a similar change in accuracy as pre-training a

lower-capacity model [42], suggesting that our results could be also be applied to

larger-capacity models. However, this comparison is beyond the scope of this work.

During training (both pre-training and fine-tuning), we apply the 3D CNN on

64-frame clips drawn uniformly at random from the video at 25fps. We resize the

frames to 256px on the shortest edge, and then take a random 224 × 224 crop.

We additionally perform random brightness, contrast, and flipping augmentation.

During inference, we use 250-frame clips (using circular padding where necessary),

and take a center 224× 224 crop.

5.3.2 Metadata Representation

For each piece of textual metadata, we create a metadata representation ft ∈ RDt

using BERT [23], a state of the art text encoder. BERT returns a 768-dimensional

embedding for each token in the text, and we take the mean of these token-level

embeddings to get a single 768-dimensional representation of the metadata, that is,

Dt = 768.

Specifically, we use the multilingual, cased version of BERT which was pre-trained

on 104 languages, and has 12 layers and 110M parameters. We use the multilingual

version because non-English text appears frequently in WVT-70M. Since our goal

is to learn video representations, we do not fine-tune the BERT model. This also

significantly alleviates the computational cost of training; otherwise fine-tuning the

text model would dominate the computational cost.
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When computing features for tags (where each video can have zero to many tags),

we compute a BERT embedding for each individual tag and take the mean of the

results. For videos with no tags, we replace it with an empty string. Each of the

three other pieces of metadata (titles, descriptions, and channel names) are treated

the same.

5.4 Experiments

For many of our experiments, we use a subset of the full 70M-video dataset. These

subsets are denoted by the approximate number of videos they include: 500K, 1M, 6M,

12M, 40M, and 70M. These subsets are not selected at random, instead each subset is

chosen by selecting a smaller number of the top search results from each query, such

that the 500K subset contains approximately the top 700 results per query (recall

that the 70M dataset contains 100K results per query). This reflects the way that

such a method could be used in practice; one would search for queries relevant to

their particular downstream task and collect as many of the top search results as

they can, subject to space or bandwidth constraints.

We do not segment WVT-70M into a validation or test split, and instead evaluate

our learned model purely by its performance on downstream tasks. We evaluate on

four downstream video classification tasks:

HMDB-51. HMDB-51 [79] is an action recognition dataset consisting of short video

clips associated with one of 51 classes. It contains 7000 videos, and is commonly

used as a benchmark for video representation learning. We report results on the first

test split, except where otherwise noted. When fine-tuning on HMDB-51, we use a

learning rate of 1e-3 with a cosine decay schedule, a weight decay of 1e-4, and we

train for 1000 iterations.
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UCF-101. UCF-101 [149] is a similar action recognition dataset consisting of video

clips associated with one of 101 classes. It is larger than HMDB-51, consisting of

over 13,000 videos. We report results on the first test split, except where otherwise

noted. When fine-tuning on UCF-101, we use a learning rate of 1e-3 with a cosine

decay schedule, a weight decay of 1e-3, and we train for 1000 iterations.

Kinetics-400, 600, 700. Kinetics is a widely-used action recognition dataset con-

sisting of 10-second clips drawn from videos annotated with action categories [72].

Kinetics-400, 600, and 700 are increasingly larger versions of the dataset, contain-

ing 400, 600, and 700 action categories, respectively [10, 11]. Kinetics contains over

545,000 videos, and due to its scale, it is commonly used to pre-train video represen-

tations. We compare against Kinetics as a pre-training scheme, in addition to using

it as a downstream task.

Kinetics videos can be deleted by their uploaders at any time, and afterwards can

no longer be recovered by researchers. Therefore, Kinetics gradually deteriorates over

time, which generates discrepancies between both training and evaluation performed

at different times. Our experiments were conducted using a snapshot of the Kinetics

dataset collected in February 2020, when Kinetics-400 contained 225K of the original

247K training examples (-8.9%), Kinetics-600 contained 378K of the original 393K

training examples (-3.8%), and Kinetics-700 contained 541K of the original 545K

training examples (-0.7%).

5.4.1 Different Forms of Metadata

We collect four types of metadata for each video: the title, description, tags,

and channel name (Section 5.2). We observe that each type of metadata contains

a different level of detail and is affected by different sources of noise (Figure 5.1).

Therefore, we expect the different types of metadata to have different impacts on
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Supervision HMDB-51

Scratch 27.9

Titles 43.2
Descriptions 37.7
Tags 36.2
Channel Name 29.1
Titles + Desc. 43.9
Titles + Desc. + Tags 46.5
All 50.0

Table 5.2: Sources of metadata used and their effect on downstream performance, as measured on
HMDB-51. Each source of metadata contributes individually to the final accuracy. For
these experiments, we pre-train on WVT-500K. All reported accuracies are on HMDB-51
split 1.

Title: HOW TO CHANGE SCOOTER ENGINE OIL … 
Desc: HOW TO CHANGE SCOOTER ENGINE OIL … 
Tags: N/A
Channel: Repair PH

Title: Episode 2 - "Scrumptious Scallop Salsa"
Desc: INGREDIENTS: 6 scallops, 1 avacado diced, ...
Tags: food, recipe, cooking, scallops, salsa, Kalamazoo
Channel: ChewiesChow

Title: WOW 20 WAXING DEPILATION | VIRAL BEAUTY ...
Desc: If you have any questions with our video, please ...
Tags: waxinglessons, waxingdepilations, waxdepilations, ...
Channel: Viral Beauty

Figure 5.4: Additional examples of metadata, demonstrating complementary information. One
source of metadata is not usually sufficient to fully understand the video content. All
metadata used under CC BY 2.0 license.

downstream performance. We investigate which of these are the most useful for pre-

training in Table 5.4.1 and Figure 5.4.1. For these experiments, we pre-train the

model on WVT-500K and fine-tune on HMDB-51.

We find that all types of metadata are useful sources of supervisory signal for pre-

training. Titles are the most effective, achieving an increase in downstream accuracy

of 15.3% over a from-scratch baseline. Channel names are the least effective, resulting

in only a 1.2% improvement over the baseline. However, we find that these sources of

supervision provide complementary signals, and that we achieve the best performance
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by including all of them during pre-training. This achieves a down-stream accuracy

of 50.0% on HMDB-51, a 22.1% improvement over the from-scratch baseline.

In addition, these experiments can be used to show the relative utility of webly-

supervised learning and fully-supervised learning. These experiments are conducted

using WVT-500K, which is approximately the same size as Kinetics-700 (545K

videos). For comparison, a fully-supervised model pre-trained on Kinetics-700 achieves

67.4% accuracy on HMDB-51, a 17.4% improvement over training on all four sources

of metadata. As expected, web supervision suffers from noise and therefore is not as

effective, video for video, as supervised pre-training. However, web supervision does

not incur any labeling cost, making it an effective option for pre-training.

5.4.2 Scaling to 70M Videos

To demonstrate the scalability of our method, we apply it to increasingly large

subsets of the full 70M-video dataset in Figure 5.5. We compare two metadata

configurations for this experiment: (1) only titles, and (2) all metadata. We find that

the titles-only approach scales significantly better than the all-metadata approach;

although using all metadata leads to higher downstream accuracy with 500K pre-

training videos, this is reversed when using more than 1M pre-training videos. This

is likely due to the poor scaling properties of tags and descriptions as shown in

Figure 5.2, and suggests that too much noise can become a burden on training.

For the titles-only approach, we find that using more pre-training data sharply

improves performance. Using all 70M videos for pre-training achieves an HMDB-

51 accuracy of 67.4%, a 13.2% improvement over using 500K videos. In addition,

this accuracy is the same as that of an equivalent model trained on Kinetics-700,

demonstrating that our approach can match the performance of fully-supervised

pre-training, without any labeling cost.
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Dataset Iters HMDB-51

Scratch N/A 27.9

500K 20K 43.2
1M 25K 50.5
6M 30K 58.9
12M 50K 63.2
40M 100K 65.2
70M 140K 67.4

K700 30K 67.4

Figure 5.5: Performance of our approach on HMDB-51 (split 1) for increasingly larger pre-training
dataset sizes, compared to a baseline model trained from scratch and a model pre-
trained on Kinetics-700. Left: Comparison of titles-only and all-metadata approaches.
Titles-only scales better than all-metadata. Right: Number of pre-training iterations
and resulting accuracy. K700 = Kinetics-700. Our approach with 70M videos matches
that of fully-supervised pre-training.

We do not expand the model capacity or adjust the pre-training hyperparame-

ters when scaling to 70M videos. The only difference is the number of pre-training

iterations, which we list in Figure 5.5. We found that increasing the number of

iterations further lowered down-stream performance, for the smaller-scale datasets.

Interestingly, we achieve good performance on the 70M dataset using only 4 epochs

of training, while on the 500K dataset we require over 80 epochs of training. This

suggests that increased model capacity and longer training could further improve

performance for the 70M dataset.

5.4.3 Comparison with Prior Work

In Table 5.4.3, we compare our approach, pre-trained on WVT-70M, against other

methods for self-supervised and webly-supervised learning. We strongly outperform

all existing methods for self-supervised learning which use video as the only source

of supervision, suggesting that the textual metadata provides a supervisory signal

that cannot be obtained from video alone. We find that our approach outperforms
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Method Data Model HMDB-51 UCF-101

Baseline None S3D-G 27.9 58.5

Video-only

Geometry [35] FC FlowNet 23.3 55.1
OPN [89] UCF VGG 23.8 59.6
CMC [167] UCF CaffeNet 26.7 59.1
ClipOrder [191] UCF R(2+1)D 30.9 72.4
O3N [31] UCF AlexNet 32.5 60.3
MASN [178] K400 C3D 33.4 61.2
DPC [51] K400 3D-R34 35.7 75.7
Shuffle&Learn [106]* K600 S3D 35.8 68.7
3DRotNet [68]* K600 S3D 40.0 75.3
CBT [155] K600 S3D 44.6 79.5

Video+Audio
AVTS [77] K600 I3D 53.0 83.7
MIL-NCE [104] HT100M S3D 61.0 91.3
XDC [4] IG65M R(2+1)D 63.1 91.5

Webly-Sup.
Sports-1M [71] S-1M AlexNet - 65.4
Gan et al. [36] YouTube VGG - 69.3
CPD [92] K400 3D-R34 57.7 88.7

Ours WVT-70M S3D-G 65.3 90.3

Table 5.3: Comparison with self-supervised and webly-supervised pre-training prior work on
HMDB-51 and UCF-101. “Data” refers to the source of pre-training videos, however,
these approaches do not use the available labels. All numbers are quoted directly from
the original authors. Our results are averaged across all three splits of HMDB-51 and
UCF-101. *Reimplemented by [155].

all prior methods for webly-spervised approaches on HMDB-51, and performs on-par

with state-of-the-art methods on UCF-101 which use audio as a primary source of

supervision. Notably, we outperform MIL-NCE [104], a recent method for learning

video representations from instructional videos in the HowTo100M dataset [105], on

HMDB-51 (+4.3%). We also outperform two prior approaches on UCF-101 (+24.9%,

+21.0%) which learn video representations using web supervision from YouTube [71,

36].

In Table 5.4.3, we present results on Kinetics. We find that our pre-training

improves performance by 1-3% over a from-scratch baseline, depending on the par-

ticular version of Kinetics. These improvements are much smaller than what we

found on HMDB-51 and UCF-101, however, this is to be expected, as Kinetics is
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Method Model K400 K600 K700

Baseline S3D-G 68.9 74.3 62.2
Baseline [104] I3D - - 57.0
Baseline [42] R(2+1)D-18 69.3 - -

MIL-NCE [104] I3D - - 61.1
IG65M [42] R(2+1)D-18 76.0 - -

Ours S3D-G 72.0 76.0 63.4

Pre-training HMDB-51

70M 67.4
K700 67.4

70M+K400 72.2
70M+K600 74.5
70M+K700 75.9

Table 5.4: Experiments on Kinetics. KX = Kinetics-X. Left: Comparison with prior work on
webly-supervised learning on Kinetics-400, -600, and -700. We use numbers quoted
directly from the authors. Right: Complementary nature of webly-supervised and fully-
supervised learning. We pre-train the model on WVT-70M, then fine-tune it on Kinetics,
then apply it to HMDB-51 (split 1).

already a large-scale dataset, and therefore has less to gain from pre-training. We

compare against two prior works on Kinetics, MIL-NCE [104] (which uses supervi-

sion from narration) and IG65M [42] (which uses hashtags from Instagram). We find

that we outperform MIL-NCE on Kinetics-700, however, we underperform IG65M on

Kinetics-400. This suggests that hashtags are a stronger source of supervision than

textual metadata. This could be due to a number of factors, such as the relative

amount of noise in the two types of signals.

5.4.4 Complementary Strong- and Web-Supervision

Webly-supervised learning has the capacity to meet the performance of strongly-

supervised learning, without any labels (Section 5.4.2). However, in practice, one

would use all sources of supervision available, including labeled datasets. Therefore,

we ask whether webly-supervised and strongly-supervised learning can be applied

in combination, to further improve the performance on down-stream tasks. We test

this in Table 5.4.3 by training in a three-step process: first, we pre-train our model

on WVT-70M. Then, we fine-tune this model on Kinetics. Finally, we apply the

resulting model to HMDB-51.

We find that strongly-supervised learning and webly-supervised learning are in-
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deed complementary. When using both WVT-70M and Kinetics-700 are in combi-

nation, the down-stream accuracy on HMDB-51 increases by a further 8.5%. This

demonstrates that our method is effective even in situations where labeled data is

already plentiful.

5.4.5 Extensions and the Kinetics 2020 Challenge

We achieve first place in the Kinetics-700 Challenge at CVPR 2020 [98] using

WVT-70M with improved backbone architectures, extensively tuned hyper-parameters,

and model ensembling. The final winning solution includes an ensemble of five back-

bone models, two of which are pre-trained on WVT-70M. The highest-performing

individual RGB model is pre-trained on WVT and achieves 74.9% top-1 validation

accuracy on Kinetics-700, compared to 71.2% when trained from scratch and 63.4%

in Table 5.4.3. The final model model ensemble achieves a top-1 validation accuracy

of 78.6% and a top-1 test accuracy of 77.2%, establishing a new state-of-the-art for

the Kinetics-700 dataset.

For more details on this extension, please refer to the presentation [98].

5.5 Conclusions

We demonstrate that textual metadata serves as a useful signal for pre-training

video representations, without the need for any manually annotated labels. Specifi-

cally, we find that each textual signal is complementary (Section 5.4.1), and that this

approach matches the performance of supervised pre-training when scaled to tens of

millions of videos (Section 5.4.2). We also show that it outperforms competitive

approaches for both self-supervised and webly-supervised learning (Section 5.4.3).

Finally, we demonstrate that it is complementary to existing supervised pre-training

methods (Section 5.4.4). These findings suggest that textual metadata can be used
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as an effective pre-training strategy for a wide variety of downstream tasks.
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CHAPTER VI

Conclusion

In this work, we introduced four novel techniques for performing action recog-

nition, each addressing the task from different angles and at different scales. We

introduced Distilled 3D Networks (Chapter II), an algorithm for learning motion

features from RGB videos, addressing the issue of learning to recognize actions from

instantaneous motion. We introduced Temporal Hourglass Networks (Chapter III),

which address the opposite issue of learning video features at long timescales. These

techniques only consider actions which come from a fixed vocabulary, so we intro-

duce Compositional Temporal Grounding (Chapter IV), which allows actions to be

recognized from arbitrary natural language descriptions. Finally, to address the im-

mense need for training data for these techniques, we introduce Web Video Text

(Chapter V), which uses paired text and video data freely available on the internet

to learn video representations.

These advances represent broad strides in the direction of robust action recogni-

tion systems. Using these techniques, we demonstrate improved performance on a

wide variety of benchmark datasets, including those with small amounts of labeled

data (Section 5.4), and those with open-ended action descriptions (Section 4.4). In

addition, we analyze properties of current state of the art models, identifying when

97
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such models fail to learn adequate motion representations (Section 2.5.1). Finally,

our work advances the state of the art on the most challenging benchmark dataset

in the field (Section 5.4.5).

6.1 Future Directions

While our contributions make significant strides towards learning features from

both short and long-term temporal context, there is much research yet to be done on

the integration of these two signals. In Chapter II, we leverage 3D CNNs for motion

representation learning, however in Chapters III and IV, we find that 3D CNNs are

no longer scalable to problems involving long-term temporal context. This suggests

a need for cohesive video architectures which can seamlessly deal with both short

and long-term temporal context.

Our work, and much work in the field today, focuses on solving action recognition

in constrained settings, such as in the case where the action classes are mutually

exclusive and known in advance. However, these constraints are rarely met in real

world scenarios. Therefore, it is not clear how well these architectures can be directly

applied to video “in the wild”. To overcome this challenge, we must move beyond

fixed action classes and instead allow for new actions to be learned from simple

representations, such as demonstrations, examples, or descriptions. Our work in

Chapter IV establishes strong results in this area compared to prior work, but it is

clear from the overall accuracy of the current approaches that more work is needed.

Finally, we have focused entirely on action recognition, while it is debatable

whether this constitutes true action understanding. One might argue that under-

standing requires more than simply recognizing an action, for example, the ability

to describe or perform an action. To achieve this, the system would need to have an
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altogether new form of action representation, one which includes the intention which

motivates the action. This area is mostly unexplored in the current literature, as

the current datasets are not suited for evaluating such abilities, and therefore it is

unclear whether current models are sufficient. Moving forward in this area will likely

require significant exploration in the space of both models and datasets for video

action recognition.
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APPENDIX A

Supplementary Materials for Distilled 3D Networks

A.1 Predicted Optical Flow Visualizations

Figure A.1: Examples of optical flow produced by S3DG and D3D by adding the optical flow de-
coder applied at layer 3A. From top to bottom: RGB Frames, TV-L1 optical flow,
S3D-G flow, D3D flow, D3D flow with finetuning. TV-L1 optical flow is shown down-
sampled to 28× 28 px, which is the decoder output resolution used during training.
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A.2 Performance on Kinetics-400 Categories

D3D per-class accuracy

doing nails
riding mechanical bull

surfing crowd
playing chess

sled dog racing
windsurfing

playing squash or 
pull ups

diving cliff
front raises
golf putting

skateboarding
milking cow

paragliding
shearing sheep
feeding goats

punching bag
scuba diving

filling eyebrows
hurling (sport)

presenting weather 
pole vault

jetskiing
playing harp

country line dancing

moving furniture
yawning

shaking hands
hugging

sticking tongue out
somersaulting

tying bow tie
jogging

making a sandwich
singing

answering questions
throwing ball

applauding
sneezing

faceplanting
headbutting

making a cake
eating doughnuts

sniffing
recording music

slapping
fixing hair

drinking
smoking

drinking beer
smoking hookah

drinking shots

0.000 0.250 0.500 0.750 1.000

Figure A.2: Accuracy on individual Kinetics-400 categories using D3D. We show the per-class accu-
racy for D3D trained on Kinetics-400. Only the top and bottom 25 classes are shown.
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D3D per-class accuracy - S3D-G per-class accuracy

dunking basketball
exercising arm

sticking tongue out
wrestling

tasting food
salsa dancing

finger snapping
tossing coin

catching or throwing 
driving car

bending back
playing organ

stretching arm
pushing car

long jump
drop kicking

sign language interpreting
air drumming

dribbling basketball
robot dancing

answering questions
baby waking up

dancing charleston
shaking head
reading book

shaving head
folding paper

playing basketball
unboxing

parasailing
catching or throwing 

drumming fingers
playing drums

garbage collecting
writing
dining

petting cat
eating carrots

making a sandwich
playing guitar

cooking egg
doing laundry

playing keyboard
playing kickball

riding or walking with 
drinking shots

sweeping floor
eating cake

drinking
drinking beer

-0.400 -0.200 0.000 0.200 0.400

Figure A.3: Accuracy difference on individual Kinetics-400 categories by adding distillation. We
compare the difference between per-class accuracy for D3D and per-class accuracy
for S3D-G. Only the top and bottom 25 classes are shown. In total, D3D leads to
improvements on 203 of the 400 classes (50.8%) and degradations on 103 of the 400
classes (27.3%), with less than a ±.1% difference on the remaining classes.

A.3 Optical Flow Decoders

A.4 Non-Local S3D-G

For our experiments with Non-Local S3D-G (NL S3D-G), we include two non-

local blocks [184] into the S3D-G architecture, immediately before blocks 5B and
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Conv
3x3,128

Conv
3x3,128

Conv
3x3,96

Conv
3x3,32

Conv
3x3,64

Conv
3x3,3

Figure A.4: The optical flow decoder architecture. This is equivalent to that of PWC-Net [159],
but with two changes: (1) we do not include warping or cost volume layers, and (2)
the output is represented using three channels.

5C. We make no changes to the training procedure or hyper-parameters for these

experiments.

We implement non-local blocks similarly to [184], but with two known differences:

1. We do not apply batch norm inside the nonlocal block. Adding batch norm

slightly reduced performance.

2. We do not use the sub-sampling trick to reduce the feature map size in the

non-local block. This is because the 5X layers in S3D-G already have a small

feature map size (7x7x8).
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APPENDIX B

Supplementary Materials for Compositional Temporal
Grounding

B.1 Qualitative Examples

B.1.1 Comparison with MCN and MLLC

In Figure B.1, we provide examples of challenging instances from Tempo-HL and

DiDeMo, and show the temporal segment chosen by our model compared to prior

work. Our model reliably localizes difficult queries that are missed by both MCN

[55] and MLLC [56].

B.1.2 Examples of Compositional Grounding

In Figure B.2, we provide examples of instances from Tempo-HL and DiDeMo, and

show the temporal segments that we identify as sub-events. We show that CTG-Net

identifies sensible sub-events, and later uses these to create a final grounding.

B.1.3 Examples Before and After Refinement

In Figure B.3, we provide examples of instances from Tempo-HL and DiDeMo,

grounded using CTG-Net before and after the refinement step. Refinement improves

groundings.
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B.2 Dependency Parser

B.2.1 Example Segmentations

In Figure B.4, we show examples of sub-events identified by CTG-Net with the

parser approach. This model identifies sensible sub-events, which can each be grounded

in the video.

B.2.2 Distribution of Sub-Events

In Figure B.5, we show the distribution of the number of sub-events identified by

the parser in each of the three datasets: DiDeMo, Tempo-TL, and Tempo-HL.
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Figure B.1: Example results from the Tempo-HL and DiDeMo training sets. We compare CTG-Net
with the Bi-directional LSTM attention mechanism against results from MCN [55] and
MLLC [56].
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Figure B.2: Example results of temporally grounded sub-events from Tempo-HL and DiDeMo.
We CTG-Net model with the dependency parser, and show the individual temporal
groundings before combination and refinement. The top 3 examples depict examples
of accurate compositional groundings, and the bottom 2 depict incorrect groundings.
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Figure B.3: Example results of CTG-Net before and after the refinement step, shown on Tempo-HL
and DiDeMo. In the top 3 examples, we see that the refinement step is able to improve
the prediction. In the bottom example, we show a difficult case where the refinement
process leads to incorrect predictions.
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(ROOT
  (S
    (NP (EX there))
    (VP (VBZ is)
      (NP
        (NP (DT a) (NN camera) (NN flash))
        (SBAR
          (ADVP (RB then))
          (S
            (S
              (NP
                (NP (CD one))
                (PP (IN of)
                  (NP (DT the) (NNS dancers))))
              (VP (VBZ is)
                (VP (VBN left)
                  (ADVP (IN behind)))))
            (CC and)
            (S
              (NP (DT the) (NNS runs))
              (TO to)
              (VP (VB catch)
                (PRT (RP up))))))))))

there is a camera flash then one of the dancers is left behind and the runs to catch up

(ROOT
  (S
    (SBAR (IN before)
      (S
        (NP (DT the) (NNS men))
        (VP (VBP stand)
          (PRT (RP up)))))
    (, ,)
    (NP (NN man))
    (VP (VBZ flips)
      (PP (IN over)
        (NP
          (NP (CD four) (NNS people))
          (VP (VBG kneeling)
            (ADVP (RP down))
            (PP (IN in)
              (NP (DT a) (NN row)))))))))

before the men stand up , man flips over four people kneeling down in a row

after a white piece of paper is shown , and removed from the corner , the camera shakes

(ROOT
  (FRAG
    (SBAR (IN After)
      (S
        (NP
          (NP (DT a) (JJ white) (NN piece))
          (PP (IN of)
            (NP (NN paper))))
        (VP (VBZ is)
          (VP (VBN shown)))))
    (FRAG
      (INTJ
        (PRN (, ,)
          (CC and)
          (VP (VBN removed)
            (PP (IN from)
              (NP (DT the) (NN corner))))
          (, ,))
        (SBAR
          (S
            (NP (DT the) (NN camera))
            (VP (VBZ shakes))))))))

Figure B.4: Example sub-event segmentations produced by the dependency parser.
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Figure B.5: Distribution of number of sub-events in DiDeMo (left), Tempo-TL (middle) and Tempo-
HL (right), as identified by our dependency parser approach. DiDeMo queries are
typically shorter and contain few sub-events. Tempo-TL and Tempo-HL are strongly
biased towards two sub-events per query.
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APPENDIX C

Supplementary Materials for Textual Web Supervision

C.1 Metadata Analysis

We present additional analyses and examples of the metadata in the WVT-70M

dataset in Tables C.1, C.1, and C.1.

Metadata Num. Unique % Unique

Titles 43.0M 61.5
Descriptions 29.3M 41.9
Tags 34.0M 48.6
Channel Name 21.0M 29.9

Table C.1: Number of unique instances for each metadata type in WVT-70M. All metadata types
contain repeats though some are repeated more often than others. Many channels are
repeated, and we on average collect 3.3 videos per channel.
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Metadata Min 25 50 75 Max

Titles 0 2 4 6 158
Descriptions 0 0 3 12 4249
Tags 0 0 0 5 161
Channel Name 0 1 2 2 306

Table C.2: Quartiles of length (in words) of each metadata type. All have a long-tailed distribution,
meaning that in extreme cases, the metadata may be hundreds or thousands of words
long. However, all metadata types also contain examples which are empty or contain
zero words. Titles are shortest in the most extreme cases, but longest in the median
case.

Metadata Text # of Instances

Titles

“Free fire” 92K
“Dance” 50K
“Dancing” 47K
“Baby” 34K
“Bottle flip” 31K
“Free Fire” 29K
“Cute baby” 29K
“Playing games” 27K
“Games” 21K
“Snow” 20K

Tags

“PlayStation 4” 752K
“Sony Interactive Entertainment” 695K
“funny” 672K
“video” 547K
“mobile” 539K
“YouTube Capture” 523K
“#PS4Live” 490K
“how to” 467K
“tutorial” 442K
“fun” 371K

Table C.3: Top ten most often-repeated titles and tags. For titles, these are descriptive and reflect
the content of the video. For tags, these often contain automatically-generated metadata
which reflect the method by which the video was uploaded.
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