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ABSTRACT

How can we align accounts of the same user across social networks? Can we identify the

professional role of an email user from their patterns of communication? Can we predict

the medical effects of chemical compounds from their atomic network structure? Many

problems in graph data mining, including all of the above, are defined on multiple networks.

The central element to all of these problems is cross-network comparison, whether at the level

of individual nodes or entities in the network or at the level of entire networks themselves.

To perform this comparison meaningfully, we must describe the entities in each network

expressively in terms of patterns that generalize across the networks. Moreover, because the

networks in question are often very large, our techniques must be computationally efficient.

In this thesis, we propose scalable unsupervised methods that embed nodes in vector

space by mapping nodes with similar structural roles in their respective networks, even if they

come from different networks, to similar parts of the embedding space. We perform network

alignment by matching nodes across two or more networks based on the similarity of their

embeddings, and refine this process by reinforcing the consistency of each node’s alignment

with those of its neighbors. By characterizing the distribution of node embeddings in a graph,

we develop graph-level feature vectors that are highly effective for graph classification. With

principled sparsification and randomized approximation techniques, we make all our methods

computationally efficient and able to scale to graphs with millions of nodes or edges. We

demonstrate the effectiveness of structural node embeddings on industry-scale applications,

and propose an extensive set of embedding evaluation techniques that lay the groundwork

for further methodological development and application.

xiv



CHAPTER I

Introduction

Graphs or networks are a natural structure for modeling complex connections between all

kinds of entities, whether users making friendships in social networks, scientists collaborating

on academic projects, or atoms forming bonds in chemical compounds. The central goal of

graph mining is to uncover meaningful insights about the network entities in terms of the

connections they form.

To model entities or nodes in a graph, methods for node embedding or representation

learning have risen to prominence in recent times due to their success in many graph mining

tasks. These methods embed each node in a graph in vector space, so that the node can

be compactly represented by a low-dimensional feature vector. For maximum applicability

to any data mining task, these methods may be unsupervised: their objective is not to

directly learn embeddings that maximize performance on a particular task, but to preserve

similarity in the embedding space for nodes or entities whose connections are similar in the

graph. Most commonly, connection similarity is taken to mean that the entities themselves

are connected, indirectly or directly. For example, nodes that are connected by an edge, or

are in indirect proximity through shared neighboring nodes, would be assumed to be similar

and would have similar feature representations after embedding.

Such embedding methods have modeled the interactions within a single graph very pre-

cisely. They excel at comparing nodes within individual networks and often achieve the state

of the art on learning tasks defined over a single network. But where do such methods leave

us in a collective graph mining context with multiple completely separate networks? Nodes

in different networks do not share connections with nodes in other networks, nor do any of
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their neighbors: whether direct or indirect, there is no notion of cross-network proximity to

which we can turn to guide the embedding process.

Our solution is to reconsider what it means for nodes’ connections to be similar. Instead

of assuming that the nodes share a connection—with each other or with mutual neighbors–we

characterize nodes’ patterns of connectivity in their respective graphs. We can think of this

as the structural role that each node plays in its own network. For instance, two nodes that

tend to make large numbers of connections have a similar role, even if those connections are

not with each other. As proximity-preserving embedding methods do, we can learn from not

just nodes’ immediate connections but also their neighbors’ connections, and more general

higher-order patterns of connectivity.

These structural node embeddings form the underpinnings of this thesis work. Collective

network mining hinges on the problem of cross-network comparison: while this cannot be

done meaningfully modeling the nonexistent proximity between nodes in different networks,

it is meaningful to compare nodes based on their structural roles. Our methods consist

of two parts: an embedding learning phase where we model the structural roles of nodes

using embeddings, and an embedding comparison phase where we perform the cross-network

comparison using the features learned in the previous phase. To be effective in the comparison

stage, our goal is to model structural roles expressively in the embedding learning stage, so

that we capture each node’s distinctive structural role in its own network precisely while

remaining generalizable to different networks.

A key consideration in all our work is computational efficiency, which is necessary for our

methods to scale to large networks. Whether within or across networks, a natural approach

to determining node similarity is to compare all pairs of nodes. This automatically leads

to a requirement of runtime (and possibly space) that scales quadratically in the number

of nodes, which limits the applicability of any method using such a subroutine to large

real-world graphs, which may contain millions of nodes. A theme throughout our work,

both in the embedding learning and the embedding comparison phase, is to circumvent

the computational bottlenecks that would be caused by a naive “all pairwise comparison”

strategy. Indeed, it is generally not necessary to compare each node to all other nodes, as

the vast majority of nodes are dissimilar and thus need not be compared. We use strategic
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sparsification and randomized approximation techniques that allow us to make only a small

number of relevant comparisons for each node.

1.1 Overview

Following a presentation of preliminary material in Chapter II, this thesis is organized into

three parts: node-level comparison, graph-level comparison, and applications and guidelines

for future praxis. We summarize these parts in more detail in Table 1.1.

Table 1.1: Thesis Overview

Part Scale Objective Chapter

Methodology
Node-level

Align networks by matching nodes with similar
structural roles

III

Refine a node matching by reinforcing consistency
between neighboring nodes’ matchings

IV

Graph-level Aggregate node-level role information into graph-
level features

V

Praxis

Node-level Infer professional roles of email users from their
structural patterns of email communication

VI

Node/Graph-level
Establish evaluation methodology that reveals what
structural embedding methods learn, and identify
best practices as well as cautionary insights

VII

1.1.1 Node-Level Comparison

In Chapter III, we introduce a new structural embedding method, Cross-Network Matrix

Factorization or xNetMF, in the context of one of the most fundamental cross-network node

comparison problems: network alignment. Here, the task is to find counterparts in one net-

work for nodes in another network, for example to align users across social networks. Our

solution to this problem, REGAL, formulates this problem as a greedy feature matching:

a node’s alignment in another network is considered to be the node in that network with

the most similar feature representation. The problem then boils down to learning an appro-

priate feature representation, which we do with xNetMF. Our greedy matching of xNetMF

embeddings often outperform baselines that solve more complicated optimization problems,

indicating that xNetMF finds node feature representations that are very comparable across

networks.
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While REGAL obtains high accuracy at aligning topologically similar graphs because it

detects subtle structural similarities very precisely, we see that as noise obscures the graphs’

topological similarity, its accuracy in network alignment decreases sharply. Our goal in Chap-

ter IV is to develop a more robust approach to network alignment. REGAL’s greedy node

matching procedure means that each node is matched independently of how its neighbors

have been matched: thus, two nodes that are close by in one graph may be matched far apart

in the other graph. Instead, we would prefer to preserve matched neighborhood consistency,

keeping nodes that are neighbors in one graph matched to neighbors in another graph. Our

solution is to refine the initial network alignment found by REGAL, or for that matter any

other network alignment method. Our proposed refinement algorithm RefiNA iteratively

increases the alignment scores of nodes whose neighbors align, where matched neigbhorhood

consistency is better satisfied. It is conceptually simple yet yields dramatic improvements in

accuracy and robustness for REGAL and other network alignment methods.

1.1.2 Graph-Level Comparison

Having established the feasibility of cross-network comparison at the node level in Chap-

ters III and VI, we turn our attention to a larger scale of comparison at the graph level in

Chapter V. Here, we need to aggregate the node-level information that our node embeddings

can capture in order to describe an entire graph. We do so in the form of a graph-level feature

map that captures the distribution of its node embeddings in vector space. Our proposed

feature construction, RGM, forms a randomized histogram of node embeddings: the dot

product between any two graphs’ histograms approximates the mean (kernelized) distance

between node embeddings in two graphs. This technique is a theoretically principled way

of avoiding embedding-based comparison of all pairs of nodes in two graphs, and avoiding

computing and manipulating a kernel matrix for all pairs of graphs. Our formulations can

handle any node embeddings; however, for good performance, the embeddings again need to

be comparable across networks.

We apply our methods to the problem of graph classification. In this setting, we want

handle an inductive setting where some of the nodes are not embedded at training time. This

is because we assume a training and a test set of graphs, where the graphs in the test set are
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not provided at training time. (This is in contrast to the transductive setting in Chapter III,

where we assumed both graphs to align were given up front and could be embedded jointly.)

To allow for inductive learning, we need to embed graphs in an unseen test set in the same

subspace as those in a training set. We extend our method xNetMF to the fully inductive

setting, where it becomes iNetMF.

1.1.3 Applying Structural Node Embeddings

Chapters III-V develop methodological solutions to several multi-network data mining

methods for structural embeddings. The last two research works in this dissertation are

intended to pave the way for further application of structural node embeddings to real-world

problems.

In Chapter VI, we detail a large-scale problem we solve in collaboration with industry

partners by using structural node embeddings, namely the problem of identifying the profes-

sional roles of users in email networks. In these networks, nodes are users and edges represent

email exchanges. Such exchanges have a sender and a receiver and may be weighted by the

number of messages exchanged between the two, meaning that these graphs are weighted and

directed. Our hypothesis is that the professional role of a user is related to their structural

role in a network. For example, executives at different companies, even if they never talk

directly to each other, likely have similar patterns of communication compared to lower-level

employees (who likely have less extensive email contacts). Here, we extend xNetMF from

Chapter III (where we considered unweighted and undirected graphs) to incorporate weight

and direction of communication in an email-centric manner. Doing so, we retain our scala-

bility (we can mine actionable insights from subnetworks of individual companies consisting

of only a few dozen nodes to the full email network consisting of millions of email users)

while obtaining structural role information that is further enhanced by the edge weights and

directions. This work serves as a motivating example of the potential of structural node

embeddings to be used for large-scale data mining problems in real-world scenarios.

Finally, having seen (and developed) many applications of structural node embeddings,

in Chapter VII we introduce new methods and insights to help guide further study. Our

work draws back to decades-old sociological concepts of role equivalencs in networks, which
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the literature on structural node embedding methods often refers to loosely without drawing

rigorous connections. We curate an extensive collection of synthetic and real datasets that

allow us to study three different role equivalence concepts, and propose intrinsic evaluations

that measure a node embedding method’s ability to preserve these equivalences decoupled

from any downstream data mining task. We compare a large number of structural embedding

methods, our own and others, using this intrinsic evaluation as well as extrinsic evaluation

on a large number of downstream individual and collective graph mining tasks. This work

gives the research community tools to thoroughly evaluate structural embedding methods,

identifies some design choices that are promising for futher methodological development, and

outlines best practices and pitfalls of current conventions.

1.2 Contributions

This thesis work makes several contributions to the rapidly growing area of node embed-

ding, in particular structural node embedding:

New embedding methods: We introduce several new structural node embedding methods.

We introduce xNetMF in Chapter III, which we extend to a fully inductive setting under the

name iNetMF (Chapter V) and weighted and directed graphs under the name EMBER

(Chapter VI). We show that it yields competitive results on many single-network tasks to

which structural embeddings have been applied (Chapter VII).

New methods using embeddings: We formulate solutions for several collective network

problems using node embeddings. These formulations motivate the development of structural

node embeddings, as embeddings preserving proximity within a single graph are not naturally

comparable across graphs. We introduce frameworks for network alignment based on node-

level comparison (REGAL and the network alignment refinement method RefiNA) and

graph classification based on graph comparison using aggregated node embeddings (RGM).

Evaluation methods and insights: based on our experience developing new structural

embedding methods and applying them in various contexts, we lay the groundwork to guide

future research into structural node embedding. We present new synthetic and real bench-

mark datasets as well as new evaluation paradigms and methods. Along the way, we identify
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best practices and promising design choices in current praxis of structural embeddings and

provide cautions of which future research works should be mindful.

Impact Several works in this thesis have had an impact in academia and/or industry:

• Our network alignment method REGAL (Chapter III) has been taught in graduate

classes at multiple universities (e.g. the University of Michigan, Purdue University). It

is the first to perform unsupervised network alignment with node embeddings, and the

conference paper [HSSK18] is one of the most highly cited works on network alignment

in the last five years.

• Our graph classification method RGM (Chapter V) won the best student paper award

at ICDM 2019.

• The node embedding method EMBER (Chapter VI) was developed in conjunction

with industry collaborators and applied to large-scale complex network data from that

company.
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CHAPTER II

Preliminaries & Related Work

In this chapter, we introduce notation preliminaries on graphs and node embedding. Ta-

ble 2.1 summarizes this notation, along with some symbols that are common to the node

embedding methodology in multiple chapters of this thesis. We then provide a concep-

tual overview of the difference between two important kinds of node similarity in networks:

proximity and structural. This distinction is crucial to motivating our embedding work in

subsequent chapters.

Table 2.1: Major symbols and definitions.

Symbols Definitions

Gi(Vi, Ei,Ai) graph i with nodeset Vi, edgeset Ei, adjacency matrix Ai

Fi optional matrix of attributes for each node in graph Gi
wuv weight of edge (u, v)
ni number of nodes in graph Gi
∆avg,∆max average and maximum node degree, respectively
U ⊆ V Set of nodes to embed
N k
u set of k-hop neighbors of node u
N k+
u , N k−

u k-step in-/out-neighborhoods of node u, respectively, in a directed graph
Pk+u→v k-step directed path from u to v (i.e., ordered edge set)
dku vector of node degrees in a single set N k

u

du =
∑K
k=1 δ

k−1dku combined neighbor degree vector for node u
bu = [d+

u d−u ] Concatenated ingoing and outgoing structural behavior histograms for node u in
a directed graph

B number of buckets for degree binning
fu F -dimensional attribute vector for node u
S combined structural and attribute-based similarity matrix
S̃ approximation of S
Y matrix with node embeddings as rows
Yi Node embedding matrix for graph Gi in Rni×p

Yi,j Vector embedding in Rp of node j in graph Gi
p embedding dimension
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2.1 Preliminaries on Graphs

Let Gi(Vi, Ei,Ai) be a graph with a set of ni nodes Vi, pairs of which are connected by a

set of edges Ei. We use the subscript i for disambiguation of different graphs, embeddings,

and so on, as in collective network mining we have several graphs by definition. Edges in a

graph Gi may be represented by an adjacency matrix Ai, whose u, v-th entry is nonzero

if and only if there is an edge between nodes u and v. In an unweighted graph, Ai is a

binary matrix whose u, v-th entry is 1 if and only if there exists an edge between u and v; in

a weighted graph, Ai is real-valued and its u, v-th entry is equal to w(u, v), the weight of

the edge between nodes u and v. In an undirected network, Ai is a symmetric matrix–an

edge from u to v entails an edge from v to u, while this may not be the case in a directed

network.

A node’s degree is given the total weight of all edges incident to it. (In an unweighted

graph, we assume all edge weights are one, and this amounts to the number of neighbors

the node has.) The average degree of nodes in a dataset of one or more networks is given

by ∆avg, and the maximum node degree is ∆max. In a directed network, we may further

distinguish indegree and outdegree, which are based on the weights of edges pointing to

or from a node, respectively. The total degree counts all edges incident to a node, whether

originating from it or pointing to it. We make no distinction between indegree, outdegree,

and total degree in undirected graphs, where there is no distinction between the source and

the target of an edge.

In a weighted or unweighted graph, if node u forms an edge with node v, then v is

a neighbor of u, and the set of all nodes v with which u shares an edge constitutes u’s

neighborhood. We can generalize the concept of a neighborhood beyond a node’s immediate

connections to a k-hop neighborhood N k
u , which includes all nodes with which node u is

connected by a path of length at most k.

Optionally, nodes may have features or attributes that constitute side information

beyond the graph structure alone. If these are available, we can construct a matrix of node

attributes Fi, whose j-th row contains the features of node j.
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2.2 Node Similarity: Proximity versus Structural

Figure 2.1: Proximity ver-
sus Structural Node Simi-
larity. In graph G1, nodes
A and B are in closer prox-
imity than B and C, but
nodes B and C have simi-
lar structural roles. None of
the nodes in G1 are in prox-
imity with the nodes in G2,
but we can see, for instance
that node E in G1 and node
1 in G2 share similar struc-
tural roles.

In order to compare nodes in a graph or in different graphs,

we need to define a measure of node similarity. Often, the simi-

larity of nodes is related to their proximity to each other: nodes

that are close to each other in a network (for example, those

that share an edge) should have more similar embeddings than

those that are not in close proximity in the network. Proxim-

ity is not necessarily a shortest-path distance between nodes,

and may take into account higher-order connections between

nodes beyond just the first-order connections to neighboring

nodes. For instance, nodes with many second-order connec-

tions, or mutual neighbors of neighbors, are often considered

to be more similar than nodes with fewer second-order connec-

tions [TQW+15]. Classic graph mining problems that depend

on modeling (higher-order) node proximity, to name a few, in-

clude belief propagation, semi-supervised learning, and random walk with restart, whose

formulations share a unified theoretical framework [KKK+11] and practical matrix methods

for fast computation [YHJK18].

Comparing the similarity of their nodes based on their proximity makes sense when the

network exhibits homophily, where similar nodes (for instance, social network users shar-

ing similar interests or demographic information) do in fact connect to each other in the

graph. However, it is necessary to rethink such methods when the graph exhibits het-

erophily [ZYZ+20] and similar nodes may not directly connect. Moreover, proximity-based

measures of similarity cannot be used to compare nodes that are not connected by a path of

any length: notable cases of this are pairs of nodes in completely separate networks.

Structural similarity, on the other hand, does not compare nodes based on their relative

position to each other, but on patterns in their relationships to other nodes. For instance,

nodes that form similar numbers of connections may be structurally similar even if they do

not form connections with each other. As with proximity, we need not just analyze a node’s
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immediate connections (counting these gives us the node’s degree, which is just one simple

statistic with which structural similarity can be compared), but we can perform higher-order

analysis that compares nodes not just on the basis of their own connectivity but on their

neighbors’ (or k-hop neighbors’) connectivity. Intuitively, structurally similar nodes play

similar “roles” in their respective parts of their networks (e.g. well-connected “hub” nodes,

peripheral nodes with few connections, etc.)

In network science, structural roles of nodes have often been captured by hand-engineered

statistics such as degree, centrality measures such as PageRank or betweeness centrality, re-

cursive definitions such as SimRank [JW02], and others. Similarly, mathematical sociologists

have defined concepts of role equivalence of nodes in networks, from the strict definition of

structural equivalence to more relaxed definitions of automorphic and regular equivalence.

In Chapter VII, we investigate the extent to which the family of methods we study in this

thesis capture several well-studied network-scientific statistics and sociological concepts of

equivalence.

Example 2.1. To illustrate node similarity in a single network, in Figure 2.1, note that in

graph G1, nodes A and B are in close proximity, being connected by an edge. Even nodes B

and C, which do not share an edge, both have A as a neighbor, which makes them somewhat

in each other’s proximity. On the other hand, nodes B and E are located very far apart in the

network and would be considered dissimilar by a proximity-based method of node comparison.

However, nodes B and E are structurally similar: node B has only one connection (to node

A), just like node E has only one connection (to node D). Indeed, nodes B and E are much

more comparable based on structural similarity than B and A, the latter being much more

highly connected than the former.

Across networks, we cannot compare nodes by proximity, but we can compare them by

structural similarity. For instance, node E in graph 1 is connected to node D (also in graph

1) and node 1 is connected to node 2 (also in graph 2), but the fact that each node has only

one connection to a node of degree 2 may indicate that the nodes share a similar structural

role.

A proximity-based notion of node similarity is useful for many applications. For instance,
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consider the application in Chapter VI of an email communication network consisting of users

who work at multiple companies. If such a network were represented (at a small scale) by

Figure 2.1, with G1 and G2 representing two different companies, node proximity could be

used to compare all the users within each company, while users in different companies would

be dissimilar. Thus, proximity-preserving node embeddings could be used to predict which

company a user belonged to.

On the other hand, if we were trying to learn about the professional role each individual

serves at its respective company, we would be better served by comparing the structural roles

of users in their respective communication networks, not their proximity to each other. In

Figure 2.1, node A and node B might be in close proximity to each other, but node A is

a “hub” node connected to many other nodes (including nodes such as D that have several

independent connections of their own). Rather than assuming A and B are similar because

the edge they share makes them in close proximity, we should recognize the difference in

their structural role. In Chapter VI we will see that this corresponds to real-world insight;

for instance, B is likely a lower level employee reporting mainly to A, a supervisor with more

connections. Moreover, we can perform this analysis across companies. For example, even

though nodes E in G1 and 1 in G2 represent employees at different companies and are not

in proximity, the similarity of their structural role indicates that they may share the same

professional role (they are likely lower-level employees with fewer direct connections except

an immediate supervisor.)

2.3 Preliminaries on Node Embeddings

Figure 2.2: Mapping nodes
in graphs into vector space
(dimension p = 2).

Node embedding maps each node in one or more graphs into

a low-dimensional vector space; that is, it embeds the nodes of

each graph into that space. We denote the dimensionality of

this space as p, where p is a small number, often a constant

or at least asymptotically smaller than the total number of

nodes. In Figure 2.2, we visualize the node embedding process

in two dimensions. It can be useful to conceptualize the node
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embeddings as a set of points in vector space, as we do in Chapter V. However, many of

our mathematical operations will represent the embeddings of nodes in graph Gi as a matrix

Yi ∈ Rni×p, where the embedding of an individual node j in graph Gi is the row vector

Yi,j. If we do not need to specify the graph from which a node comes, we may also write its

embedding vector simply as yj.

2.4 Node Embedding: Related Work

The objective of node embedding is to learn similar representations for similar nodes [GF18].

That is, if sim(u, v) is a graph-based similarity score between nodes u and v and and s(yu,yv)

a vector-based similarity score (such as cosine similarity or dot product) between their re-

spective node embedding vectors, ideally sim(u, v) ∝ s(yu,yv). Here, graph-based node

similarity may be determined based on node proximity or structural roles. For a distinction

between the two types of embeddings, see the recent survey [RJK+20].

2.4.1 Proximity-Preserving Embeddings

Proximity-preserving node embeddings may be learned with shallow [GL16] or deep archi-

tectures [WCZ16], and the various methods may discern neighborhood structure by sampling

node context through random walks [PARS14] or modeling first- and second-order connec-

tions [TQW+15]. Extensions may include incorporating textual or other node attributes

[HLH17, YLZ+15]. These methods all optimize objectives that encourage nodes in close

proximity to have similar features, which is helpful only in the context of a single network. As

such, the above methods are transductive, being formulated for a single graph. Recent work

inductively learns representations [HYL17, CMX18] using graph convolutional networks.

Methods based on graph convolutions can also learn node features in a semi-supervised set-

ting, as opposed to the majority of methods which are unsupervised. However, these methods

work by aggregating features for each node based on the features of nodes within their neigh-

borhoods. Thus, nodes in close proximity to each other end up with similar features, and

graph neural networks are usually classified as proximity-preserving [RJK+20]. Other neural

network models have been used to learn node embeddings, such as LSTMs [TCW+18]; such
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methods take inspiration from sociological concepts of role equivalence [BE92] but primarily

model node proximity, as characterized by recent work [RJK+20] and empirically confirmed

by our study in Chapter VII.

2.4.2 Structural Embeddings

Unlike these methods, the recent work struc2vec [RSF17] preserves structural similarity of

nodes, regardless of their proximity in the network. Prior to this work, existing methods for

structural role discovery mainly focused on hand-engineered features [RA15]. However, for

structurally similar nodes, struc2vec embeddings were found to be visually more comparable

[RSF17] than those learned by state-of-the-art proximity-based node embedding techniques

as well as existing methods for role discovery [HGER+12].

struc2vec uses the same skip-gram neural model used by proximity-preserving embedding

methods DeepWalk [PARS14] and node2vec [GL16], but samples node context by performing

random walks on an auxiliary graph where nodes are connected according to multiple levels

of structural similarity. Thus, context nodes (for which similar embeddings are learned)

are structurally similar to each other, not necessarily close in the original graph. Other

methods using the skip-gram model to learn structural node embeddings [XQQ+19, ARL+19]

perform random walks on the original graph, but define a procedure to relabel nodes in the

graph according to a structural type. Thus, nodes that are embedded similarly to the same

structural types of nodes will have similar embeddings.

Another related structural node embedding method is GraphWave [DZHL18], which relies

on heat wavelet diffusion patterns to capture structural representations. Like struc2vec, it is

also relatively inefficient on large networks in practice and cannot natively handle attributed

graphs. It also assumes a possibly weighted but undirected graph. GraphWave differs from

most embedding methods in that it essentially captures a statistical feature descriptor of

each node, rather than explicitly modeling relative similarities between some nodes. We

show (Chapters VI & VII) that GraphWave can be used for multi-network tasks, although

its memory requirements limit its application to large networks.

Our proposed method xNetMF is based on matrix factorization; we implicitly factorize a

structural node similarity matrix based on the connectivity patterns within local neighbor-
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hoods (see Chapter III for details). Since we first introduced xNetMF, it has been generalized

by additional works. Two such methods that we empirically study in Chapter VII are Mul-

tiLENS [JRK+19], which can model the distribution of arbitrary node attributes in local

neighborhoods, and SEGK [NV19], which uses state-of-the-art kernel methods for compar-

ing entire graphs [SSL+11] to compare local neighborhoods of nodes.

2.4.3 Node Embeddings and Matrix Factorization

Many proximity-preserving node embedding methods based on shallow neural architec-

tures (such as skip-gram) have been shown to implicitly optimize a matrix factorization

objective [QDM+18]. Matrix factorization proves an efficient way to analyze a number of

node embedding methods [PARS14, TQW+15, GL16, YLZ+15] using nominally diverse

techniques. Additionally, using random walks to sample node context before optimizing a

skip-gram objective on the context, as the random walk sampling procedure can add some

variance to the learned embeddings. Another downside to random walks is that the time

taken to sample nodes can grow quite high on large graphs, often far exceeding the cost of

learning the embeddings from the sampled context [GL16]. Using matrix factorization to

learn embeddings avoids both these downsides, and thus we design structural embedding

methods based on matrix factorization.
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Part I: Methodology
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CHAPTER III

Network Alignment with Structural Node Embedding

Chapter based on work that appeared at CIKM 2018 [HSSK18].

3.1 Introduction

In this chapter, we study network alignment or matching, which is the problem of

finding corresponding nodes in different networks. Network alignment is crucial for iden-

tifying similar users in different social networks, analyzing chemical compounds, studying

protein-protein interaction, and various computer vision tasks, among others [BGSW13].

Many existing methods try to relax the computationally hard optimization problem, as de-

signing features that can be directly compared for nodes in different networks is not an easy

task. However, recent advances [GL16, PARS14, TQW+15, WCZ16] have automated the

process of learning node feature representations and have led to state-of-the-art performance

in downstream prediction, classification, and clustering tasks. These methods produce node

embeddings of a graph in a low-dimensional latent space so that “similar” nodes in a single

network are embedded close together.

Motivated by the recent advances in node representation learning, which have been shown

to far outperform hand-crafted features, we propose network alignment via matching latent,

learned node representations. Formally, the problem can be stated as:

Problem 3.1. Given two graphs G1 and G2 with node-sets V1 and V2 and possibly node

attributes A1 and A2 resp., devise an efficient network alignment method that aligns
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Figure 3.1: Pipeline of proposed graph alignment method, REGAL, based on our xNetMF
representation learning method.

nodes by learning directly comparable node representations Y1 and Y2, from which a node

mapping π : V1 → V2 between the networks can be inferred.

To this end, we introduce REGAL, or REpresentation-based Graph ALignment, a

framework that efficiently identifies node matchings by greedily aligning their latent feature

representations. REGAL is both highly intuitive and extremely powerful given suitable node

feature representations. For use within this framework, we propose Cross-Network Matrix

Factorization (xNetMF), which we introduce specifically to satisfy the requirements of the

task at hand. xNetMF differs from most existing representation learning approaches that

(i) rely on proximity of nodes in a single graph, yielding embeddings that are not compa-

rable across disjoint networks [HK17], and (ii) often involve some procedural randomness

(e.g., random walks), which introduces variance in the embedding learning, even in one net-

work. By contrast, xNetMF preserves structural similarities rather than proximity-based

similarities, allowing for generalization beyond a single network.

To learn node representations through an efficient, low-variance process, we formulate

xNetMF as matrix factorization over a similarity matrix that incorporates structural simi-

larity and attribute agreement (if the latter is available) between nodes in disjoint graphs.

To avoid explicitly constructing a full similarity matrix, which requires computing all pairs of

similarities between nodes in the multiple input networks, we extend the Nyström low-rank

approximation commonly used for large-scale kernel machines [DM05]. xNetMF is thus a

principled and efficient implicit matrix factorization-based approach, requiring a fraction of
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the time and space of the naïve approach while avoiding ad-hoc sparsification heuristics.

Our contributions may be stated as follows:

• Problem Formulation: We formulate the important unsupervised graph alignment prob-

lem as a problem of learning and matching node representations that generalize to multiple

graphs. To the best of our knowledge, we are the first to do so.

• Principled Algorithms: We introduce a flexible alignment framework, REGAL (Fig-

ure 3.1), which learns node alignments by jointly embedding multiple graphs and com-

paring the most similar embeddings across graphs without performing all pairwise com-

parisons. Within REGAL we devise xNetMF, an elegant and principled representation

learning formulation. xNetMF learns embeddings from structural and, if available, at-

tribute identity, which are characteristics most conducive to multi-network analysis.

• Extensive Experiments: Our results demonstrate the utility of representation learning-

based network alignment in terms of both speed and accuracy. Experiments on real graphs

show that xNetMF runs up to 30× faster than several existing network embedding tech-

niques, and REGAL outperforms traditional network alignment methods by 20-30% in

accuracy.

For reproducibility, the source code of REGAL and xNetMF is publicly available at

https://github.com/GemsLab/REGAL.

3.2 Related Work

Here we cover related work for the problem of network alignment or graph matching.

This problem comes up in many application domains: from data mining to security

and re-identification [ZT16, KTL13, BGSW13], chemistry, bioinformatics [VM17, SXB08,

Kla09], databases, translation [BGSW13], vision, and pattern recognition [ZBV09]. Network

alignment is used to align users’ accounts across social networks [LCLL16], reveal biological

functions shared by different organisms [KMM+10], and integrate multiple data sources to

create a holistic worldview network [DZK+18]. We identify two groups of network alignment
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methods: those that find a joint assignment via optimization and those that directly compare

nodes and match them one at a time.

Optimization. Network alignment is usually formulated as an optimization problem that

tries to find a matching that leads to the greatest topological consistency between the net-

works. One common objective is minM ||MA1M
T −A2||2F [KTL13], where A1 and A2 are

the adjacency matrices of the two networks to be aligned, and M is a permutation ma-

trix or a relaxed version thereof, such as doubly stochastic matrix [VCP+11] or some other

concave/convex relaxation [ZBV09]. Umeyama’s algorithm [Ume88] directly optimizes this

objective using the Hungarian algorithm [PS98], but the cubic time complexity prevents its

application to large graphs.

Newer approaches formulate alternative topological consistency objectives using a range

of techniques. the intuition of NetAlign [BGSW13] as a message-passing algorithm based on

belief propagation, is to “complete squares” by aligning two nodes that share an edge in one

graph to two nodes that share an edge in another graph. Similarly, FINAL [ZT16] has an

objective of preserving topological consistency between the graphs that may be augmented

with node and edge attribute information, if available. MAGNA [SM14] is a genetic algorithm

that can evolve network populations to maximize topological consistency criteria such as

edge correctness. Recent works frame the network alignment problem in terms of kernel

methods [ZXW+19] or optimal transport [XLZD19], but these approaches suffer from high

(cubic) computational complexity.

Direct Comparison. Networks can also be aligned by comparing nodes directly. Such

approaches may avoid the rigidity of optimization-based methods, which are often difficult

to customize when graphs have different sizes, node or edge attributes, and so on, and

may be susceptible to poor local minima. GRAAL [KMM+10] computes graphlet degree

signatures for each node based on the number of occurrences of various small network motifs

in the node’s local neighborhood. GHOST [PK12] defines a multiscale spectral signature

for each node and, like GRAAL, uses a seed-and-extend heuristic to align nodes across

graphs, where very similar nodes are matched first and their neighborhoods are then aligned.

UniAlign [KTL13] extracts features for each node from graph statistics (such as degree and

various centralities of a node) and uses their similarity to perform network alignment.

20



Figure 3.2: Proposed REGAL approach, consisting of 3 main steps. In the example, for the
structural identity, up to K = 2 hop away neighborhoods are taken into account (the 1-hop
and 2-hop neighborhoods for nodes A and 1 are shown with dashed and dash-dotted lines,
respectively). The discount factor is set to δ = 0.5. For simplicity, no logarithmic binning is
applied on dku.

In contrast to the hand-engineered features in previous work, we use latent features

learned by node embedding (for a review of node embedding works, see Chapter II) that

better capture subtleties of the graph structure. Prior to this work, using node embeddings

designed for social networks to align users [LCLL16] has required the graph to be partially

aligned already, so that proximity can be defined between nodes in different networks. Our

work in this chapter [HSSK18] was the first to use node embeddings to align graphs in an

unsupervised setting, where no node matchings are known in advance. Following the work

in this chapter, we proposed another method to use node embeddings for unsupervised net-

work alignment [CHVK20]; here we use node embeddings that preserve proximity within

each network separately, but align the embedding spaces so that they are comparable across

networks before using the node embeddings to align individual nodes. A similar effect was

recently achieved using adversarial training [DKL+19]. Another followup work of ours re-

placed the implicit matrix factorization with which we learn node embeddings in this chapter

with graph convolutional networks using random weights: along with compressing the graph

to perform the alignment on a smaller graph, this approach led to comparable accuracy at

decreased running time [QSR+20].
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3.3 REGAL: REpresentation-based Graph ALignment

In this section we introduce our representation learning-based network alignment frame-

work, REGAL, for Problem 3.1. For simplicity we focus on aligning two graphs (e.g., social

or protein networks), though our method can easily be extended to more networks. Let

G1(V1, E1) and G2(V2, E2) be two unweighted and undirected graphs with node sets V1 and

V2; edge sets E1 and E2; and possibly node attributesA1 andA2, respectively. Note that these

graphs do not have to be the same size, unlike many other network alignment formulations

that have this restriction. Let n be the number of nodes across graphs, i.e., n = |V1|+ |V2|.

The steps of REGAL may be summarized as:

1. Node Identity Extraction: The first step extracts structure- and attribute-related

information for all n nodes.

2. Efficient Similarity-based Representation: The second step obtains the node em-

beddings, conceptually by factorizing a similarity matrix of the node identities from the

previous step. To avoid the expensive computation of pairwise node similarities and ex-

plicit factorization, we extend the Nyström method for low-rank matrix approximation to

perform an implicit similarity matrix factorization by (a) comparing the similarity of each

node only to a sample of p� n “landmark” nodes, and (b) using these node-to-landmark

similarities to construct our representations from a decomposition of its low-rank approx-

imation.

3. Fast Node Representation Alignment: Finally, we align nodes between graphs by

greedily matching the embeddings with an efficient data structure that allows for fast

identification of the top-α most similar embeddings from the other graph(s).

In the rest of this section we discuss and justify each step of REGAL, the pseudocode

of which is given in Algorithm 3.1. Note that the first two steps, which output a set of node

embeddings, comprise our xNetMF node embedding method, described in Algorithm 3.2.

In later chapters, we will use and extend xNetMF for additional individual and collective

network mining tasks. Thus, we present it here as an algorithm that accepts a single in-

put graph. To embed multiple networks, we combine their adjacency matrices as blocks
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as a single block-diagonal adjacency matrix. We can thus embed all the nodes in all the

input graphs jointly by embedding this combined graph. Embedding matrices for the nodes

in an individual input graph can be recovered by selecting rows of the combined graph’s

embeddings corresponding to nodes in that input graph.

3.3.1 Node Identity Extraction

The goal of REGAL’s representation learning module, xNetMF, is to define node “iden-

tity” in a way that generalizes across networks. This step is critical because many existing

works define identity based on node-to-node proximity, but collective network mining in-

volves comparing nodes that have no direct connections to each other and thus cannot be

sampled in each other’s contexts by random walks on separate graphs. To overcome this

problem, we focus instead on more broadly comparable, generalizable quantities: structural

identity, which relates to structural roles [HGER+12], and attribute-based identity.

Structural Identity. In network alignment, the well-established assumption is that aligned

nodes have similar structural connectivity or degrees [KTL13, ZT16]. Adhering to this

assumption, we propose to learn about a node’s structural identity from the degrees of its

neighbors. To gain higher-order information, we also consider neighbors up to k hops from

the original node.

For a node u ∈ V , we denote N k
u as the set of nodes that are exactly k ≥ 0 steps away

from u in its own graph. We want to capture degree information about the nodes in N k
u . A

basic approach would be to store the degrees in a ∆max-dimensional vector dku, where ∆max is

the maximum degree in the original graph G, with the i-th entry of dku, or dku(i), the number

of nodes in N k
u with degree i. For simplicity, an example of this approach is shown for the

vectors dA,dB, etc. in Figure 3.2. However, real graphs have skewed degree distributions.

To prevent one high-degree node from inflating the length of these vectors, we bin nodes

together into b = dlog2 ∆maxe logarithmically scaled buckets such that the i-th entry of dku

contains the number of nodes u ∈ N k
u such that blog2(deg(u))c = i. This has two benefits:

(1) it shortens the vectors dku to a manageable dlog2 ∆maxe dimensions, and (2) it makes

their entries more robust to small changes in degree introduced by noise, especially for high

degrees when more different degree values are combined into one bucket.
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Attribute-Based Identity. Node attributes, or features, have been shown to be useful

for cross-network tasks [ZT16]. Given F node attributes, we can create for each node u

an F -dimensional vector fu representing its values (or lack thereof). For example, fu(i)

corresponds to the ith attribute value for node u. Since we focus on node representations,

we mainly consider node attributes, although we note that statistics such as the mean or

standard deviation of edge attributes on incident edges to a node can easily be turned into

node attributes. Note that while REGAL is flexible to incorporate attributes, if available,

it can also rely solely on structural information when such side information is not available.

Cross-Network Node Similarity. We now incorporate the above aspects of node identity

into a combined similarity function that can be used to compare nodes within or across

graphs, relying on the comparable notions of structural and attribute identity, rather than

direct proximity of any kind:

sim(u, v) = exp [−γs · ||du − dv||22 − γa · dist(fu, fv)], (3.1)

where γs and γa are scalar parameters controlling the effect of the structural and attribute-

based identity respectively; dist(fu, fv) is the attribute-based distance of nodes u and v,

discussed below (this term is ignored if there are no attributes); du =
∑K

k=1 δ
k−1dku is the

neighbor degree vector for node u aggregated over K different hops; δ ∈ (0, 1] is a discount

factor for greater hop distances; and K is a maximum hop distance to consider (up to

the graph diameter). Thus, we compare structural identity at several levels by combining

the neighborhood degree distributions at several hop distances, attenuating the influence

of distant neighborhoods with a weighting schema that is often encountered in diffusion

processes [KVF13].

The distance between attribute vectors depends on the type of node attributes (e.g.,

categorical, real-valued). A variety of functions can be employed accordingly. For categorical

attributes, which have been studied in attributed network alignment [ZT16], we propose using

the number of disagreeing features as a attribute-based distance measure of nodes u and v:

dist(fu, fv) =
∑F

i=1 1fu(i) 6=fv(i), where 1 is the indicator function. Real-valued attributes can

be compared by Euclidean or cosine distance, for example.
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3.3.2 Efficient Similarity-based Representation

As we have mentioned, many representation learning methods are stochastic [TQW+15,

PARS14, WCZ16, GL16, RSF17]. A subset of these rely on random walks on the original

graph [PARS14, GL16] or a generated multi-layer similarity graph [RSF17]) to sample con-

text for the SGNS embedding model. For cross-network analysis, we avoid random walks

for two reasons: (1) The variance they introduce in the representation learning often makes

embeddings across different networks non-comparable [HK17]; (2) They can add to the

computational expense. Although the computation of node similarity via random walk with

restart can be accelerated in some contexts [YHJK18], actually sampling these random walks

requires considerable time and space. Indeed node2vec’s total runtime is dominated by its

sampling time [GL16].

To overcome the aforementioned issues, we propose a new implicit matrix factorization-

based approach that leverages a combined structural and attribute-based similarity matrix

S, which is induced by our similarity function in Eq. (3.1) and considers affinities at different

neighborhoods. Intuitively, the goal is to find n× p matrices Y and Z such that: S ≈ YZ>,

where Y is the node embedding matrix and Z is not needed for our purposes. We first

discuss the limitations of traditional approaches, then propose an efficient way of obtaining

the embeddings without ever explicitly computing S.

Limitations of Existing Approaches. A natural but naïve approach is to compute

combined structural and attribute-based similarities between all pairs of nodes within and

across both graphs to form the matrix S, such that Sij = sim(i, j) ∀i, j ∈ V . Then S can

be explicitly factorized, for example by minimizing a factorization loss function given S as

input, (e.g., the Frobenius norm ||S−YZ>||2F [LS01]). However, both the computation and

storage of S have quadratic complexity in n. While this would allow us to embed graphs

jointly, it lacks the needed scalability for multiple large networks.

Another alternative is to create a sparse similarity matrix by calculating only the “most

important” similarities, for each node choosing a small number of comparisons using heuris-

tics like similarity of node degree [RSF17]. However, such ad-hoc heuristics may be fragile

in the context of noise. We will have no approximation at all for most of the similarities,
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and there is no guarantee that the most important ones are computed.

Reduced n × p Similarity Computation. Instead, we propose a principled way of ap-

proximating the full similarity matrix S with a low-rank matrix S̃, which is never explicitly

computed. To do so, we randomly select p� n “ landmark ” nodes chosen across both graphs

G1 and G2 and compute their similarities to all n nodes in these graphs using Eq. (3.1).

This yields an n × p similarity matrix C, from which we can extract a p × p “landmark-to-

landmark” submatrix W. As we explain below, these two matrices suffice to approximate the

full similarity matrix and allow us to obtain node embeddings without actually computing

and factorizing S̃.

To do so, we extend the Nyström method, which has applications in randomized matrix

methods for kernel machines [DM05], to node embedding. The low-rank matrix S̃ is:

S̃ = CW†C>, (3.2)

where C is an n × p matrix formed by sampling p landmark nodes from V and computing

the similarity of all n nodes of G1 and G2 to the p landmarks only, as shown in Figure 3.2.

Meanwhile, W† is the pseudoinverse of W, a p × p matrix consisting of the pairwise simi-

larities among the landmark nodes (it corresponds to a subset of p rows of C). We choose

landmarks randomly; more elaborate (and slower) sampling techniques based on leverage

scores [AM15] or node centrality measures offer little, if any, performance improvement.

Because S̃ contains an estimate for the similarity between any pair of nodes in either

graph, it would still take Ω(n2) time and space to compute and store. However, as we

discuss below, to learn node representations we never have to explicitly construct S̃ either.

From Similarity to Representation. Recall that our ultimate interest is not in the

similarity matrix S or even an approximation such as S̃, but in the node embeddings that

we can obtain from a factorization of the latter. We now show that we can actually obtain

these from the decomposition in Eq. (3.2):

Theorem 3.1. Given graphs G1(V1, E1) and G2(V2, E2) with n × n joint combined struc-

tural and attribute-based similarity matrix S ≈ YZT , its node embedding matrix Y can be
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Figure 3.3: Proposed xNetMF (using the SVD of W†) vs. typical matrix factorization for
computing the node embeddings Y. Our xNetMF method leads to significant savings in space
and runtime.

approximated as

Y = CUΣ1/2,

where C is the n × p matrix of similarities between the n nodes and p randomly chosen

landmark nodes, and W† = UΣV> is the full rank singular value decomposition of the

pseudoinverse of the small p× p landmark-to-landmark similarity matrix W.

Proof. Given the full-rank SVD of the p× p matrix W† as UΣV>, we can rewrite Eq. (3.2)

as S ≈ S̃ = C(UΣV>)C> = (CUΣ1/2) · (Σ1/2V>C>) = YZ̃>.

Now, we never have to construct an n×n matrix and then factorize it (i.e., by optimizing

a nonconvex factorization objective). Instead, to derive Y, the only node comparisons we

need are for the n× p “skinny” matrix C, while the expensive SVD is performed only on its

small submatrix W. Thus, we can obtain node representations by implicitly factorizing S̃, a

low-rank approximation of the full similarity matrix S. The p-dimensional node embeddings

of the two input graphs G1 and G2 are then subsets of Y: Y1 and Y2, respectively. This

construction corresponds to the explicit factorization (Figure 3.3), but at significant runtime

and storage savings.

As stated earlier, xNetMF, which we summarize in Alg. 3.2, forms the first two steps of

REGAL. The postprocessing step, where we normalize the magnitude of the embeddings,

makes them more comparable based on Euclidean distance, which we use in REGAL.

3.3.2.1 Connections: xNetMF and SGNS

Here we unpack the key components of the struc2vec framework [RSF17], a random

walk-based structural representation learning approach, and we find a matrix factorization
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interpretation at the heart of it.

Given a (single-layer) similarity graph S, for each node v, struc2vec samples context

nodes C with m random walks of length ` starting from v. The probability of going from

node u to node v is proportional to the nodes’ (structural) similarity suv. This yields a

co-occurrence matrix D: duv = #(u, v) is the number of times node v was visited in context

of node u. Afterward, struc2vec optimizes a skip-gram objective function with negative

sampling (SGNS):

max
Y,C

∑
y∈V,c∈C

#(y, c) log σ(y>c) + ` · Ec′∼PD log σ(−y>c′) (3.3)

where y and c are the embeddings of a node y, and its context node c, resp.; PD(c) =∑
y∈V #(y, c)/

∑
y∈V,c∈C #(y, c) is the empirical probability that a node is sampled as some

other node’s context; and σ(x) = (1 + e−x)−1 is the sigmoid function. Analysis of SGNS

for word embeddings [LXT+15] showed under some assumptions on the upper bound of the

co-occurrence count between two words that the objective of SGNS in Eq. (3.3) is equivalent

to matrix factorization of the co-occurrence matrix D, or MF(D,Y>C). Here MF is the

objective of matrix factorization on D (formally defined in [LXT+15], but in practice other

matrix factorization techniques work well).

Now, under these assumptions, we show a connection between optimizing Eq. (3.3) with

context sampled from the similarity graph (as in struc2vec), and factorizing the graph (as

in xNetMF).

Lemma 3.1. Equation (3.3), defined over a context sampled by performing m length-1 ran-

dom walks per node over S, is equivalent to MF(S,Y>C) in the limit as m goes to ∞, up

to scaling of S.

Proof. This follows from the Law of Large Numbers. As m→∞, the co-occurrence matrix

D converges to its expectation. This is just m · S, since dij is the # of times node vj is

sampled in a random walk of length 1 from vi, which is equal to the # of walks from node

vi times the probability that the walk goes to vj from vi, or m · sij. (Since MF is invariant

to scaling, we normalize D w.l.o.g.)
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Algorithm 3.1 REGAL
Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2), dimensionality p, maximum step K, discount
factor δ ∈ (0, 1], coefficients on structural and attribute information γs and γa
Output: n1 × n2 matrix M specifying alignments between nodes in G1 and G2

S1-2: Structural Node Representation Learning
1: G = CombineGraphs(G1, G2) . Make each input graph is a component of one large graph
2: Y = xNetMF (G1, G2, p,K, δ, γs, γa) . Learn p-dimensional embeddings jointly

. for each node in both graphs
3: [Y1,Y2] = SplitEmbeddings(Y) . Split combined embeddings into embeddings for

. nodes in each original graph
S3: Fast Node Representation Alignment

4: M = empty . sparse n1 × n2 matrix M of possible alignments
5: T = KDTree(Y2) . Build a k-d tree on the node embeddings of G2

6: /* Match embeddings to infer alignments */
7: for i = 1→ n1 do
8: /* For embedding i in G1, get the α most similar embed. in G2 and distances*/
9: [TOP-α, TOP-dist] = QueryKDTree(T, Y1[i], α) . Y1[i]: ith embedding
10: for j in TOP-α do
11: mij = e−TOP-dist[j] . Populating alignment matrix M with embed.

. similarities: eTOP-dist[j] = e−||Y1[i]−Y2[j] ||22

12: return M . alignments are largest entries in each row or column (Figure 3.1)

Note that in struc2vec, increasing m to sample more context reduces variance in D, but

increasing ` simply causes the random walks to move further from the original node v and

sample context based on similarity to more structurally distant nodes. Lemma 3.1 connects

xNetMF to a version of struc2vec with maximal m and minimal `, further justifying its

success by comparison.

3.3.3 Fast Node Representation Alignment

The final step of REGAL is to efficiently align nodes using their representations, assum-

ing that two nodes u ∈ V1 and v ∈ V2 may match if their xNetMF embeddings are similar.

Let Y1 and Y2 be matrices of the p-dimensional embeddings for nodes in graphs G1 and

G2. We take the likeliness of (soft) alignment to be proportional to the similarity between

the nodes’ embeddings. Thus, we greedily align nodes to their closest match in the other

graph based on embedding similarity, as shown in Figure 3.2. This method is simpler and

faster than optimization-based approaches, and works thanks to high-quality node feature

representations.

Data structures for efficient alignment. A natural way to find the alignments for each
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Algorithm 3.2 xNetMF
Input: Graph G = (V,E), dimensionality p, maximum step K, discount factor δ ∈ (0, 1], coefficients on
structural and attribute information γs and γa
Output: n1 × p and n2 × p matrices of embeddings for nodes in G1 and G2 respectively
S1: Node Identity Extraction

1: for node u in V do
2: for hop k up to K do . counts of node degrees of k-hop neighbors of u
3: dku = CountDegreeDistributions(N k

u ) . 1 ≤ K ≤ graph diameter
4: du =

∑K
k=1 δ

k−1dku . discount factor δ ∈ (0, 1]

S2: Efficient Similarity-based Representation

S2a: Reduced n× p Similarity Computation
5: L = ChooseLandmarks(G1, G2,p) . choose p nodes from G
6: for node u in V do
7: for node v in L do
8: cuv = e−γs·||du−dv||22− γa·dist(fu,fv)

. Used in low-rank approx. of similarity graph (not constructed)
S2b: Similarity to Representation

9: W = C[L,L] . Rows of C corresponding to landmark nodes
10: [U,Σ,V] = SVD(W†)
11: Y = CUΣ−

1
2 . Embedding: implicit factorization of similarity graph

12: Y = Normalize(Y) . Postprocessing: make embeddings have magnitude 1
13: return Y

node is to compute all pairs of similarities between node embeddings (i.e., the rows of Ỹ1 and

Ỹ2) and choose the top-1 for each node. Of course, this is not desirable due to its inefficiency.

Since in practice only the top-α most likely alignments are used, we turn to specialized data

structures for quickly finding the closest data points. We store the embeddings Ỹ2 in a

k-d tree, a data structure used to accelerate exact similarity search for nearest neighbor

algorithms and many other applications [B+10].

For each node in G1, we can quickly query this tree with its embedding to find the α� n2

closest embeddings from nodes in G2. This allows us to compute “soft” alignments for each

node by returning one or more nodes in the opposite graph with the most similar embeddings,

unlike many existing alignment methods that only find “hard” alignments [BGSW13, ZT16,

SXB08, Kla09]. Here, we define the similarity between the p-dimensional embeddings of

nodes u and v as simemb(Y1[u],Y2[v]) = e−||Y1[u]−Y2[v] ||22 , which converts the Euclidean

distance to similarity. Since we only want to align nodes to counterparts in the other graph,

we only compare embeddings in Y1 with ones in Y2. If multiple top alignments are desired,

they may be returned in sorted order by their embedding similarity; we use sparse matrix

notation in the pseudocode just for simplicity.
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Randomized Techniques and Multiple Network Alignment. While k-d trees enable

exact nearest-neighbor search, we can also leverage fast techniques for approximate nearest-

neighbor search, namely locality-sensitive hashing (LSH). LSH is a randomized technique

that maps feature vectors into hash buckets using randomized hash functions : similar data

points will, with high probability, be mapped to the same bucket, while very different data

points will with high probability be mapped to different buckets. Thus, when we apply LSH

to the node features, the hash buckets group each node along with its nearest neighbors,

which represent possible alignments.

Using handcrafted structural network statistics as well as node and edge attributes to

form features for each node, we have performed accurate and fast multiple network align-

ment [HLP+18] with locality-sensitive hashing. In multiple network alignment, we must find

correspondences between several networks (three or more) simultaneously. We accelerate

this process by using LSH to align all networks to a center network, for which we choose the

network whose structural and attribute feature distributions are most similar to those of all

the other networks. Alignments between all other pairs of peripheral networks (other than

the center network) are found by transitivity: nodes in the peripheral networks that align

to the same node in the center network are aligned to each other [ZY15].

In this thesis, we present experiments with latent features learned by node embedding,

instead of handcrafted features. When applied to node embeddings, exact neighbor search

accelerated with k-d trees is highly scalable and allows us to consider million-node graphs

(an unprecedented size for network alignment). We refer the reader to [HLP+18] for a greater

discussion and evaluation of hashing-based network alignment.

3.3.4 Complexity Analysis

Here we analyze the computational complexity of each step of REGAL. To simplify

notation, we assume both graphs have n1 = n2 = n′ nodes.

1. Extracting node identity: It takes approximately O(n′K∆2
avg) time, finding neighbor-

hoods up to hop distanceK by joining the neighborhoods of neighbors at the previous hop:

formally, we can construct N k
u =

⋃
v∈Rk−1

u
R1
v −
⋃k−1
i=1 Ri

u. We could also use breadth-first
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search from each node to compute the k-hop neighborhoods in O(n′3) worst case time—

in practice significantly lower for sparse graphs and/or small K—but we find that this

construction is faster in practice.

2. Computing similarities: We compute the similarities of the length-b features (weighted

counts of node degrees in the k-hop neighborhoods, split into b buckets) between each

node and p landmark nodes: this takes O(n′pb) time.

3. Obtaining representations: We first compute the pseudoinverse and SVD of the p× p

matrix W in time O(p3), and then left multiply it by C in time O(n′p2). Since p � n′,

the total time complexity for this step is O(n′p2).

4. Aligning embeddings: We construct a k-d tree and use it to find the top alignment(s)

in G2 for each of the n′ nodes in G1 in average-case time complexity O(n′ log n′).

The total complexity is O(n′max(pb, p2, K∆2
avg, log n′)). As we show experimentally, it

suffices to choose small K as well as p and b logarithmic in n′. With ∆avg often being small

in practice, this can yield sub-quadratic time complexity. It is straightforward to show that

the space requirements are sub-quadratic as well.

3.4 Experiments

We answer three important questions about our methods:

• Q1 How does REGAL compare to baseline methods for network alignment on noisy real

world datasets (Table 3.1), with and without attribute information, in terms of accuracy

and runtime?

• Q2 How scalable is REGAL?

• Q3 How sensitive are REGAL and xNetMF to hyperparameters?
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3.4.1 Experimental Setup.

Data. Following the network alignment literature [KTL13, ZT16], for each real network

dataset (Table 3.1) with adjacency matrix A, we generate a new network with adjacency

matrix A∗ = PAP>, where P is a randomly generated permutation matrix with the nonzero

entries representing ground-truth alignments. We add structural noise to A′ by removing

edges with probability ps without disconnecting any nodes.

Table 3.1: Real data used in our experiments.

Name Nodes Edges Description

Facebook [VMCG09] 63 731 817 090 social network
Arxiv [LK14] 18 722 198 110 collaboration network
DBLP [PPRB13] 9 143 16 338 collaboration network
PPI [BSR+08] 3 890 76 584 protein-protein interaction
Arenas Email [Kun13] 1 133 5 451 communication network

For experiments with attributes, we generate synthetic attributes for each node if the

graph does not have any. We add noise to these by flipping binary values or choosing

categorical attribute values uniformly at random from the remaining possible values with

probability pa. For each dataset and noise level, noise is randomly and independently added.

All experiments are performed on an Intel(R) Xeon(R) CPU E5-1650 at 3.50GHz with

256GB RAM, with hyperparameters δ = 0.01, K = 2, γs = γa = 1, and p = b10 log2 nc

unless otherwise stated. Landmarks for REGAL are chosen arbitrarily from among the

nodes in our graphs, in keeping with the effectiveness and popularity of sampling uniformly

at random [DM05]. In Sec. 3.4.4, we explore the parameter choices and find that these

settings yield stable results at reasonable computational cost.

Baselines. We compare against six baselines. Four are well known existing network align-

ment methods and two are variants of our proposed framework that match embeddings

produced by existing node embedding methods (i.e., not xNetMF). The four existing net-

work alignment methods are: (1) FINAL, which introduces a family of algorithms

optimizing quadratic objective functions [ZT16]; (2) NetAlign, which formulates align-

ment as an integer quadratic programming problem and solves it with message passing

algorithms [BGSW13]; (3) IsoRank, which solves a version of the integer quadratic pro-
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gram with relaxed constraints [SXB08]; and (4) Klau’s algorithm (Klau), which imposes

a linear programming relaxation, decomposes the symmetric constraints and solves it iter-

atively [Kla09]. These methods all require as input a matrix containing prior alignment

information, which we construct from degree similarity, taking the top blog2 nc entries for

each node; REGAL, by contrast, does not require prior alignment information.

For the two variants of our framework, which we refer to as (5) REGAL-node2vec

and (6) REGAL-struc2vec, we replace our own xNetMF embedding step (i.e., Steps 1

and 2 in REGAL) with existing node representation learning methods node2vec [GL16] or

struc2vec [RSF17]: two recent, state-of-the-art node embedding methods that make a claim

about being able to capture some form of structural equivalence. To apply these embedding

methods, which were formulated for a single network, we create a single input graph G by

combining the graphs with respective adjacency matrices A and A∗ into one block-diagonal

adjacency matrix [A 0; 0 A∗]. Beyond the input, we use their default parameters: 10 random

walks of length 80 for each node to sample context with a window size of 10. For node2vec, we

set p = q = 1 (other values make little difference). For struc2vec, we use the recommended

optimizations [RSF17] to compress the degree sequences and reduce the number of node

comparisons, which were found to speed up computation with little effect on performance

[RSF17]. As we do for our xNetMF method, we consider a maximum hop distance of K = 2.

Metrics. We compare REGAL to baselines with two metrics: alignment accuracy, which

we take as (# correct alignments) / (total # alignments), and runtime. When computing

results, we average over 5 independent trials on each dataset at each setting (with different

random permutations and noise additions) and report the mean result and the standard

deviation (as bars around each point in our plots.) We also show where REGAL’s soft

alignments contain the “correct” similarities within its top α � n choices using the more

general top-α accuracy: (# correct alignments in top-α choices) / (total # alignments).

This metric does not apply to the existing network alignment baselines that do not directly

match node embeddings and only find hard alignments.
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Figure 3.4: Accuracy of network alignment methods with varying ps. REGAL (in dark blue)
achieves consistently high accuracy and runs faster than its closest competitors (Table 3.2).

Table 3.2: Average (stdev) runtime in sec of alignment methods from 5 trials. The two fastest
methods per dataset are in bold. REGAL is faster than its closest competitors in accuracy
(Figure 3.4).

Dataset Arxiv PPI Arenas

FINAL 4182 (180) 62.88 (32.20) 3.82 (1.41)
NetAlign 149.62 (282.03) 22.44 (0.61) 1.89 (0.07)
IsoRank 17.04 (6.22) 6.14 (1.33) 0.73 (0.05)
Klau 1291.00 (373) 476.54 (8.98) 43.04 (0.80)
REGAL-node2vec 709.04 (20.98) 139.56 (1.54) 15.05 (0.23)
REGAL-struc2vec 1975.37 (223.22) 441.35 (13.21) 74.07 (0.95)
REGAL 86.80 (11.23) 18.27 (2.12) 2.32 (0.31)

3.4.2 Comparative Alignment Performance

To assess the comparative performance of REGAL versus existing network alignment

methods on a variety of challenging datasets, we perform two experiments studying the

effects of structural and attribute noise, respectively.

3.4.2.1 Effects of structural noise

In this experiment we study how well REGAL matches nodes based on structural identity

alone. This also allows us to compare to the baseline network alignment methods NetAlign,

IsoRank, and Klau, as well as the node embedding methods node2vec and struc2vec, none of

which was formulated to handle or align attributed graphs (which we study in Sec. 3.4.2.2).

As we discuss further below, REGAL is one of the fastest network alignment methods,

especially on large datasets, and has comparable or better accuracy than all baselines.
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Results. (1) Accuracy. The accuracy results on several datasets are shown in Fig-

ure 3.4. The structural embedding REGAL variants consistently perform best. Both RE-

GAL (matching our proposed xNetMF embeddings) and REGAL-struc2vec are significantly

more accurate than all non-representation learning baselines across noise levels and datasets.

As expected, REGAL-node2vec does hardly better than random chance because rather than

preserving structural similarity, it preserves similarity to nodes based on their proximity to

each other, which means there is no way of identifying similarity to corresponding nodes

in other, disconnected graphs (even when we combine them into one large graph, because

they form disconnected components.) This major limitation of embedding methods that use

proximity-based node similarity criteria [HK17] justifies the need for structural embeddings

for cross-network analysis.

Between REGAL and REGAL-struc2vec, the two highest performers, REGAL performs

better with lower amounts of noise. This is likely because struc2vec’s randomized context

sampling introduces some variance into the representations that xNetMF does not have,

as nodes that should match will have different embeddings not only because of noise, but

also because they had different contexts sampled. With higher amounts of noise (4-5%),

REGAL outperforms REGAL-struc2vec in speed, but at the cost of some accuracy. It

is also worth noting that their accuracy margin is smaller for larger graphs. On larger

datasets, our simple and fast logarithmic binning scheme (Step 1 in Sec. 3.3.1) provides

a robust enough way of comparing nodes with high expected degrees. However, on small

graphs with a few thousand nodes and edges, it appears that struc2vec’s use of dynamic time

warping (DTW) better handles misalignment of degree sequences from noise because it is a

nonlinear alignment scheme. Still, we will see that REGAL is significantly faster than its

struc2vec variant, since DTW is computationally expensive [RSF17], as is context sampling

and SGNS training.

Observation 3.1. Matching structural node embeddings leads to high network alignment

accuracy. By avoiding the variance induced by random walks, REGAL obtains particularly

high accuracy when noise is low.

(2) Runtime. In Table 3.2, we compare the average runtimes of all different methods
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across noise levels. We observe that REGAL scales significantly better using xNetMF than

when using other node embedding methods. Notably, REGAL is 6-8× faster than REGAL-

node2vec and 22-31× faster than REGAL-struc2vec. This is expected as both dynamic time

warping (in struc2vec) and context sampling for SGNS (in struc2vec and node2vec) come

with large computational costs. REGAL, at the cost of some robustness to high levels of

noise, avoids both the variance and computational expense of random-walk-based sampling.

This is a significant benefit that allows REGAL to achieve up to an order of magnitude

speedup over the other node embedding methods. Additionally, REGAL is able to leverage

the power of node representations and also use attributes, unlike the other representation

learning methods.

Comparing to baselines that do not use representation learning, we see that REGAL

is competitive in terms of runtime as well as significantly more accurate. REGAL is con-

sistently faster than FINAL and Klau, the next two best-performing methods by accuracy

(NetAlign is virtually tied for third place with Klau on all datasets). Although NetAlign

runs faster than REGAL on small datasets like Arenas, on larger datasets like Arxiv NetAl-

ign’s message passing becomes expensive. Finally, while IsoRank is consistently the fastest

method, it performs among the worst on all datasets in accuracy. Thus, we can see that our

REGAL framework is also one of the fastest network alignment methods as well as the most

accurate.

Observation 3.2. REGAL is faster than the most competitive baseline methods, particularly

on large datasets.

3.4.2.2 Effects of attribute-based noise

In the second experiment, we study REGAL’s comparative sensitivity to pa when we

use node attributes. Here we compare REGAL to FINAL because it is the only baseline

that handles attributes. We also omit embedding methods othen than xNetMF, since they

operate on plain graphs.

We study a subnetwork of a larger DBLP collaboration network extracted in [ZT16]

(Table 3.1). This dataset has 1 node attribute with 29 values, corresponding to the top

conference in which each author (a node in the network) published. This single attribute
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(a) 1 synthetic binary attribute (b) 3 synthetic binary attribute (c) 5 synthetic binary attributes

(d) Real attribute (29 values) (e) Runtime with attributes

Figure 3.5: DBLP Network alignment with varying pa: REGAL is more robust to attribute
noise (plots a-d) and runs faster (plot e) than FINAL for various numbers and types of at-
tributes. In (e) the x-axis consists of <# of attributes: # of values> pairs corresponding to
plots (a)-(d).

is quite discriminatory: with so many possible attribute values, a comparatively smaller

number of nodes share the same value. We add ps = 0.01 structural noise to randomly

generated permutations.

We also increase attribute information by increasing the number of attributes. To do

so, we simulate different numbers of binary attributes. We study somewhat higher levels of

attribute noise, as they are not strictly required for network alignment.

Results. In Figure 3.5, we see that REGAL mostly outperforms FINAL in the presence

of attribute noise (both for real and multiple synthetic attributes), or in the case of limited

attribute information (e.g., only 1-3 binary attributes in Figure 3.5a-3.5c). This is because

FINAL relies heavily on attributes, whereas REGAL uses structural and attribute informa-

tion in a more balanced fashion.

While FINAL achieves slightly higher accuracy than REGAL with abundant attribute

information from many attributes or attribute values and minimal noise (e.g. the real at-

tribute with 29 values in Figure 3.5d, or 5 binary attributes in Figure 3.5c), this is expected

due to FINAL’s reliance on attributes. Also, in Figure 3.5e where we plot the runtime with
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respect to <number of attributes : attribute values>, we see FINAL incurs significant run-

time increases as it uses extra attribute information. Even without these added attributes,

REGAL is up to two orders of magnitude faster than FINAL.

Observation 3.3. REGAL is more robust to attribute noise and takes less time to use

attribute information effectively compared to the existing attributed network alignment method

FINAL.

3.4.3 Scalability

To analyze the scalability of REGAL, we generate Erdös-Rényi graphs with n = 100

to 1,000,000 nodes and constant average degree 10, along with one binary attribute. We

generate a randomized, noisy permutation (ps = 0.01, pa = 0.05) and look for the top α = 1

alignments. Thus, we embed both graphs–double the number of nodes in a single graph.

Figure 3.6 shows the runtimes for the major steps of our methods.

Figure 3.6: REGAL is sub-
quadratic.

Results. We see that the total runtimes of REGAL’s steps

are clearly sub-quadratic, which is rare for alignment tasks. In

practice this means that REGAL can scale to very large net-

works. The dominant step is computing O(n log n) similarities

to landmarks in C and using this to form the Nyström-based

representation. The alignment time complexity grows the most

steeply, as the dimensionality p grows with the network size

and increasingly affects lookup times. In practice, though, the alignment adds little over-

head time, even for the largest graph, because of the k-d tree. Without it, REGAL runs out

of memory on 100K or more nodes.

From a practical perspective, while our current implementation is single-threaded, many

steps—including the expensive embedding construction and alignment steps—are easily and

trivially parallelizable, offering possibilities for even greater speedups.

Observation 3.4. REGAL scales sub-quadratically with respect to the input size and thus

can handle extremely large graphs.
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(a) Discount factor δ (b) Maximum hop distance K (c) Coeff. γs (structural sim.)

(d) Coeff. γs (attribute sim.) (e) top-α scores on Face-
book [VMCG09]

Figure 3.7: Robustness of REGAL to hyperparameters on different datasets: REGAL is
generally robust for a range of values, without fine tuning.

3.4.4 Sensitivity Analysis

To understand how REGAL’s hyperparameters affect performance, we analyze accuracy

by varying hyperparameters in several experiments. For brevity, we report results at ps =

0.01 and with a single binary noiseless attribute, although further experiments with different

settings yielded similar results. Overall we find that REGAL is robust to different settings

and datasets, indicating that REGAL can be applied readily to different graphs without

requiring excessive domain knowledge or fine-tuning.

Results. (1) Discount factor δ and max hop distance K. Figures 3.7a and 3.7b

respectively show the performance of REGAL as a function of δ, the discount factor on

further hop distances, and K, the maximum hop distance to consider. We find that some

higher-order structural information does help (thus K = 2 performs slightly better than K =

1), but only up to a point. Beyond approximately 2 layers out, the structural similarity is so

tenuous that it primarily adds noise to the neighborhood degree distribution (furthermore,

computing further hop distances adds computational expense). Choosing δ between 0.01–

0.1 tends to yield best performance. Larger discount factors δ tend to do poorly, though
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(a) Accuracy w.r.t. # of landmarks (b) Runtime w.r.t. # of landmarks

Figure 3.8: Robustness of REGAL to t, which controls the number of landmarks p = bt log2 nc:
choosing more landmarks is more computationally expensive but can slightly increase accuracy.

extremely small values may lose higher-order structural information.

(2) Weights of structural γs and attributed γa similarity. Next, we explore how

to set the coefficients on the terms in the similarity function weighting structural and at-

tribute similarity, which also governs a tradeoff between structural and attribute identity.

In Figs. 3.7c and 3.7d we respectively vary γs and γa while setting the other to be 1. In

general, setting these parameters to be 1, our recommended default value, does fairly well.

Significantly larger values yield less stable performance.

(3) Dimensionality of embeddings p. To study the effects of the rank of the implicit

low-rank approximation, which is also the dimensionality of the embeddings, we set the

number of landmarks p equal to bt log2 nc and vary t. Figure 3.8a shows that the accuracy is

generally highest for the highest values of t, but Figure 3.8b shows the expected increase in

REGAL’s runtime as more similarities are computed in C and higher-dimensional embed-

dings are compared. To spare no expense in maximizing accuracy we use t = 10. However,

fewer landmarks still yield almost as high accuracy if computational constraints or high

dimensionality are issues.

(4) Top-α accuracy. It is worth studying not just the proportion of correct hard alignments,

but also the top-α scores of the soft alignments that REGAL can return. We perform

alignment without attributes on a large Facebook subnetwork [VMCG09] and visualize the

top-1, top-5, and top-10 scores in Figure 3.7e. Across noise settings, the top-α scores are

considerably several percentage points higher than the top-1 scores, indicating that even

when REGAL misaligns a node, it often still recognizes the similarity of its true counterpart.

REGAL’s ability to find soft alignments could be valuable in many applications, like entity
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resolution across social networks [KTL13].

Observation 3.5. It is easy to set parameters for REGAL that achieve a balance of good

performance and computational efficiency, making REGAL a good practical approach for

network alignment.

3.5 Conclusion

Motivated by the numerous applications of network alignment in social, natural, and other

sciences, we proposed REGAL, a network alignment framework that leverages the power of

node representation learning by aligning nodes via their learned embeddings. To efficiently

learn node embeddings that are comparable across multiple networks, we introduced xNetMF

within REGAL. To the best of our knowledge, we are the first to propose an unsupervised

representation learning-based network alignment method.

Our embedding formulation captures node similarities using structural and attribute

identity, making it suitable for cross-network analysis. Unlike other embedding methods

that sample node context with computationally expensive and variance-inducing random

walks, our extension of the Nyström low-rank approximation allows us to implicitly factorize

a similarity matrix without having to fully construct it. Furthermore, we showed that our

formulation is a matrix factorization perspective on the skip-gram objective optimized over

node context sampled from a similarity graph. Experimental results showed that REGAL is

up to 30% more accurate than baselines and 30× faster in the representation learning stage.
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CHAPTER IV

Refining Network Alignment

4.1 Introduction

In this chapter, we continue to study the problem of unsupervised topological network

alignment, in particular focusing on the setting where no node or edge attributes are available

and network topology alone must be used to align the networks. With neither anchor links to

seed the alignment process nor side information to guide it, the main objective for this task is

to preserve some kind of topological consistency in the alignment solution. We theoretically

analyze the principle of matched neighborhood consistency (MNC), or how well a node’s

neighborhood maps onto the neighborhood of its counterpart in the other graph (illustrated

in Figure 4.1), and show its connection to alignment accuracy. On the other hand, we find

that when network alignment methods are inaccurate, the MNC of their solutions breaks

down (e.g., Figure 4.1 left).

To address this, we introduce RefiNA, a method for refining network alignment solu-

tions post hoc by iteratively updating nodes’ correspondences to improve their MNC. By

strategically limiting the possible correspondences per node to update in each iteration, we

can sparsify the computations to make RefiNA scalable to large graphs. The update rule of

our method can be interpreted as a graph filtering procedure that smooths the cross-network

alignments until they are consistent within local neighborhoods in each graph—a mechanism

similar to the underpinnings of graph neural networks [WSZ+19].

Our method RefiNA can be succinctly expressed as matrix operations in a few lines

of code, making it easy-to-adopt by practitioners. In this compact formulation, we incor-
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Figure 4.1: RefiNA refines an initial network alignment solution, which maps node A and its
neighbors in G1 far apart in G2. The refined alignment solution has higher matched neighbor-
hood consistency : neighbors of A are aligned to neighbors of a, to which A itself is aligned.

porate several insights that we verify are useful guiding principles for network alignment.

Experimentally, we show that RefiNA significantly improves a variety of network alignment

methods on many highly challenging datasets, even when starting a network alignment solu-

tion with limited accuracy. In particular, when paired with REGAL, it can be viewed as an

alternative embedding comparison step for network alignment, one that is more accurate and

robust than the greedy matching we performed individually for each node in Chapter III.

Our contributions are as follows:

• New Algorithm: We propose RefiNA, a post-processing step that can be applied to

the output of any network alignment method. Its compact design incorporates several

important insights for network alignment, and it permits a sparse approximation that is

scalable to large graphs.

• Theoretical Connections: We show a rigorous connection between matched neighbor-

hood consistency, the property that RefiNA improves, and alignment accuracy. We also

connect RefiNA’s technical underpinnings to other graph mining techniques.

• Experiments: We conduct thorough experiments on real and simulated network align-

ment tasks and show that RefiNA improves the accuracy of many methodologically diverse

network alignment methods by up to 90%, making them robust enough to recover match-

ings in 5× noisier datasets than those considered in prior work. We extensively drill down

RefiNA to justify the insights that inspire its design.

Code for RefiNA is available at https://github.com/GemsLab/RefiNA.
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4.2 Theoretical Analysis

We start with the key definitions for network alignment that we use throughout the paper

and a list of symbols in Table 4.1. Then, we theoretically justify topological consistency,

which is leveraged in some network alignment techniques and is the basis of our refinement

approach, RefiNA (§ 4.3).

Table 4.1: Major symbols and definitions.

Symbols Definitions

π(·) An alignment between graphs G1 and G2; a function mapping a node in V1
to a node in V2

M n1 × n2 matrix specifying correspondences of nodes in V1 to those in V2
NG(i) Neighbors of node i in graph G
Ñ π
G2

(i) “Mapped neighborhood” of node i in G2; counterparts in G2 (mapped by π)
of nodes in NG1(i)

4.2.1 Preliminaries

Graphs. Following the network alignment literature [HSSK18, SM14], we consider two

unweighted and undirected graphs G1 = (V1, E1) and G2 = (V2, E2) with their corresponding

nodesets V1, V2 and edgesets E1, E2. We denote their adjacency matrices as A1 and A2. Since

they are symmetric, A>1 = A1 and A>2 = A2, and we simplify our notation below.

Alignment. Alignment is a function π : V1 → V2 that maps the nodes of G1 to those of

G2. It is also commonly represented as a |V1| × |V2| alignment matrix M, where Mij is

the (real-valued or binary) similarity between node i in G1 and node j in G2. M can be

used to encode a mapping π, e.g., greedy alignment π(i) = arg maxj Mij. We note that

alignment between two graphs should be sought if the nodes of the two graphs meaningfully

correspond.

Neighborhood & Consistency. Let NG1(i) = {j ∈ V1 : (i, j) ∈ E1} be the neighbors

of node i in G1, i.e., the set of all nodes with which i shares an edge. We define node

i’s “mapped neighborhood” in G2 as the set of nodes onto which π maps i’s neighbors:

Ñ π
G2

(i) = {j ∈ V2 : ∃k ∈ NG1(i) s.t. π(k) = j}. For example, in Figure 4.1 (first panel), node

A’s neighbors in G1 are B,G, and D, which are respectively mapped to nodes f, g, and e,

so Ñ π
G2

(A) = {f, g, e}.
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Also, we denote the neighbors of i’s counterpart as NG2

(
π(i)

)
. In Figure 4.1, node A’s

counterpart is node a, whose neighbors are b, g, and d. Thus, NG2

(
π(A)

)
= {b, g, d}.

Using the terminology of [CHVK20], matched neighborhood consistency (MNC) of

node i in G1 and node j in G2 is the Jaccard similarity of the sets Ñ π
G2

(i) and NG2(j):

MNC(i, j) =
|Ñ π

G2
(i) ∩NG2(j)|

|Ñ π
G2

(i) ∪NG2(j)|
. (4.1)

4.2.2 Justification of Matched Neighborhood Consistency

Several unsupervised network alignment algorithms attempt to enforce some notion of

topological consistency in their objective functions. We justify this intuition by showing that

a specific form of topological consistency, matched neighborhood consistency or MNC, has

a close relationship with alignment accuracy.

Our first result considers alignment of (corrupted) isomorphic graphs. It is common to

evaluate unsupervised network alignment in such a paradigm, where the graphs are isomor-

phic except one graph has noisy or missing edges compared to the other [HSSK18, DKL+19,

SM14, KTL13, ZT16, ZTT+17]. When edges are removed independently with probability p,

we show that an accurate network alignment entails high MNC.

Theorem 4.1. For isomorphic graphs G1 = (V1, E1) and G2 = (V2, E2), let π(·) be the

isomorphism. Let G2 = (V2, Ẽ2) be a noisy version of G2 created by removing each edge from

E2 independently with probability p. Then for any node i in G1 and its counterpart π(i) in

G2, E
(
MNC(i, π(i))

)
= 1− p.

Proof. By Eq. (4.1), MNC(i, π(i)) =
|Ñπ
G2

(i)∩NG2
(π(i))|

|Ñπ
G2

(i)∪NG2
(π(i))| . By definition, Ñ π

G2
(i) = Ñ π

G2
(i); it does

not change as neither π nor G1’s adjacency matrix A1 is affected by the noise. However,

NG2
(π(i)) ⊆ NG2(π(i)), since under edge removal π(i) can only lose neighbors in G2 compared

to G2.

Now Ñ π
G2

(i) = NG2(π(i)) since by definition an isomorphism is edge preserving, and so

NG2(π(i)) = Ñ π
G2

(i), which is the same as Ñ π
G2

(i). Thus, NG2
(π(i)) ⊆ Ñ π

G2
(i). We can simplify

MNC(i, π(i)) =
|NG2

(π(i))|
|Ñπ
G2

(i)| =
|NG2

(π(i))|
|NG2

(π(i))| . However, every node j′ ∈ NG2(π(i)) is also in NG2
(π(i))

as long as the edge
(
π(i), j′)

)
∈ E2 has not been removed from Ẽ2, which happens with

probability p. So, E
( |NG2

(π(i))|
|NG2

(π(i))|

)
= E

(
MNC(i, π(i))

)
= 1− p.
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However, this result does not prove that a solution with high MNC will have high accu-

racy. In fact, we can construct examples where a solution can have perfect MNC and still

misaligned nodes. One such (simple) example involves two “star” graphs, each consisting of

one central node connected to n − 1 peripheral nodes (of degree one). Whatever the true

correspondence of the peripheral nodes, aligning them to each other in any order would lead

to perfect MNC. Prior network alignment work [KTL13] has observed a few such special

cases and in fact gives up on trying to distinguish such nodes from a purely topological

perspective, simply compressing nodes it cannot hope to distinguish into supernodes.

We formalize these specially challenging cases [KTL13] under the concept of structural

indistinguishability :

Definition 4.1. Let Nk(u) be the subgraph induced by all nodes that are k or fewer hops/steps

away from node u. Two nodes u and v are structurally indistinguishable if for all k, Nk(u)

and Nk(v) are isomorphic.

Note that nodes in the same graph or different graphs can be structurally indistinguish-

able, since all we require is an isomorphism between their neighborhoods and not that they

have exactly the same neighbors. Our next result proves that for isomorphic graphs, struc-

turally indistinguishable nodes are the only possible failure case for a solution with perfect

MNC.

Theorem 4.2. For isomorphic graphs G1 = (V1, E1) and G2 = (V2, E2), suppose there exists

π(·) that yields MNC = 1 for all nodes. Then, if π misaligns a node v to some node v∗

instead of the true counterpart v′, it is because v∗ is structurally indistinguishable from v′.

Proof. Since for isomorphic graphs, a node v is structurally indistinguishable from its true

counterpart v′, and since graph isomorphism is transitive, it suffices to show that v∗ is also

structurally indistinguishable from v. Suppose for some k, Nk(v) is not isomorphic toNk(v∗).

Then by definition there exists neighboring nodes a, b ∈ Nk(v) where either π(a) or π(b) is

not in Nk(v∗), or π(a) and π(b) do not share an edge.

In case 1, without loss of generality π(b) /∈ Nk(v∗). Then no bijective mapping exists

between a shortest path between v∗ and π(b) and a shortest path from v∗ to π(b). There

47



will thus be neighbors on one path whose counterparts are not neighbors on the other path,

making MNC less than 1: a contradiction.

In case 2, since π(b) is the counterpart of a neighbor of a, it must also be a neighbor of

the counterpart of a, which is a contradiction of the assumption that π(a) and π(b) do not

share an edge, or else MNC(a, π(a)) < 1, another contradiction. Thus, we conclude that the

k-hop neighborhoods are isomorphic, that is, v and v∗ are structurally indistinguishable.

Formalizing the intuitions of prior work: MNC was recently used to motivate the

intuition of using node embeddings to preserve intra-graph proximity even when the goal is

to align them across graphs [CHVK20]. Before that, it was also used (not by that name)

as a heuristic in a recent work on embedding-based network alignment [DYZ19], which

multiplied the embedding similarities of nodes in different graphs by the nodes’ MNC (using

the embedding-based mapping π). Our analysis provides a theoretical justification for both

works.

4.3 RefiNA

We consider an unsupervised network alignment setting, where an initial alignment solu-

tion, M0, is provided by any network alignment method. Our goal is to improve the accuracy

of this solution by leveraging insights from our theoretical analysis in Section 4.2.2. We note

that this setup is different from network alignment with ground-truth or seed node corre-

spondences known a priori [LCLL16, ZTX+19] since the initial solution does not contain

information about which or how many nodes it aligns correctly. Formally, we tackle:

Problem 4.1. Given a sparse initial alignment matrix M0 between the nodes of two graphs

G1 and G2, we seek to refine this initial solution into a new, real-valued matrix M of refined

similarity scores that encodes a more accurate alignment.

4.3.1 RefiNA: Improving Matched Neighborhood Consistency

Our theoretical results pave a path to solving Problem 4.1 by increasing the initial

solution’s MNC. While our results characterize “ideal” cases (perfect accuracy or MNC),
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heuristic solutions in prior works have found that increasing MNC tends to increase accu-

racy [CHVK20, DYZ19].

Given an alignment matrix returned by a network alignment method, how can we improve

its MNC in a principled way? We first derive a matrix-based form for MNC:

Theorem 4.3. For binary alignment matrix M, its MNC can be written as a matrix SMNC

such that MNC(i, j) = SMNC
ij as:

SMNC = A1MA2 � (A1M1n2 ⊗ 1n2 + 1n1 ⊗A21
n2 −A1MA2) (4.2)

where � denotes Hadamard or elementwise division and ⊗ is outer product.

Proof. Ñ π
G2

(i) = {` : ∃k ∈ V1 s.t. A1ikMk` 6= 0}, and of course NG2(j) = {` : A2j` 6= 0}.

Since the product of two numbers is nonzero if and only if both numbers are nonzero,

Ñ π
G2

(i) ∩ NG2(j) = {` : A1ikMk`A2j` 6= 0}. For binary A1,A2, and M, the cardinality of this

set, which is the numerator of Eq. (4.1), is
∑

k∈V1,`∈V2 A1ikMk`A2j` = (A1MA2)ij. Mean-

while, the denominator of Eq. (4.1) is |Ñ π
G2

(i) ∪ NG2(j)| = |Ñ π
G2

(i)| + |NG2(j)| − |Ñ π
G2

(i) ∩

NG2(j)|. Plugging in for each individual term, we obtain
∑

k∈V1
∑

`∈V2 A1ikMk`+
∑

`∈V2 A2j`−∑
k∈V1

∑
`∈V2 A1ikMk`A2j` . Substituting matrix products, this becomes

∑
`∈V2(A1M)i`+

∑
`∈V2 A2j`−

(A1MA2)ij. Using all-1 vectors to sum over columns, this is (A1M1n2)i+(A21
n2)j−(A1MA2)ij .

Then, expanding the two left vectors into matrices with outer product: (A1M1n2 ⊗ 1n2)ij +

(1n1 ⊗A21
n2)ij − (A1MA2)ij . Adding everything together, the denominator is the ij-th entry

of the matrix A1M1n2 ⊗ 1n2 + 1n1 ⊗A21
n2 −A1MA2.

Given this notation, we can compute refined alignments M′ by performing a multiplicative

updating of each node’s alignment score (in M) with its matched neighborhood consistency:

M′ = M ◦ SMNC (4.3)

where ◦ denotes Hadamard product. Repeating over several iterations can take advantage of

an improving alignment solution. The high-level idea of our proposed refinement scheme is

to iteratively increase alignment scores for nodes that have high matched neigh-

borhood consistency.
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The simplest possible refinement algorithm is to repeatedly iterate Eq. (4.3). However,

we can introduce some mechanisms that maintain this simplicity while leveraging a set of

insights:

• I1: Prioritize high-degree nodes. Higher degree nodes are easier to align [KTL13],

and so it is desirable to give them higher scores particularly in early iterations. To do so,

we use only the (elementwise) numerator of Eq. (4.2), which counts the number of matched

neighbors shared by a pair of nodes (the denominator normalizes by the neighborhood size,

so excluding it increases the score for high degree nodes). Thus, instead of using Eq. (4.3),

we simplify our update rule to:

M′ = M ◦A1MA2 (4.4)

Additionally, this spares us the excess matrix operations required to compute the denomi-

nator of Eq. (4.2).

• I2: Do not overly rely on the initial solution. At every iteration, we add a small

ε to every element of M. This gives each pair of nodes a token match score whether or not

the initial alignment algorithm identified them as matches, which helps us correct the initial

solution’s false negatives.

• I3: Allow convergence. Finally, to keep the scale of the values of M from exploding,

we normalize the rows and columns of M. Specifically, we row-normalize M followed by

column-normalizing it at every iteration. While previous methods [GR96] require full nor-

malization per iteration using the Sinkhorn algorithm [Sin64] to produce a doubly stochastic

matrix, with RefiNA a single round of normalization suffices and avoids this much greater

computational expense (cf. Section 4.4).

Putting it all together, we give the pseudocode of our method RefiNA in Algorithm 4.1.

RefiNA is powerful and significantly improves the accuracy of a wide range of alignment

methods (cf. experiments in Section 4.4), yet it remains conceptually simple and straight-

forward to implement. It requires only a few lines of code, with each line implementing an

important insight.

Complexity. To simplify notation, we assume that both graphs have n nodes [HSSK18].

For K iterations, our algorithm computes the left and right multiplication of a dense n× n
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Algorithm 4.1 RefiNA
Input: adjacency matrices A1,A2, initial alignment matrix M0, number of iterations K, token match
score ε
Output: Refined alignment matrix MK

1: for k = 1→ K do . Number of iterations
2: Mk = Mk−1 ◦A1Mk−1A2 . MNC-based update
3: Mk = Mk + ε . Add token match scores
4: Mk = RowNormalize(Mk)
5: Mk = ColumnNormalize(Mk)

6: return MK

matching matrix with two adjacency matrices of graphs with average degree (number of

nonzero entries per row of the adjacency matrix) ∆avg1 and ∆avg2, respectively. Thus, the

time complexity of this update step is O(n2(∆avg1 +∆avg2)). Normalizing the matrix at each

iteration and adding in token match scores requires O(n2) time. Therefore, the overall time

complexity is O
(
Kn2(∆avg1 + ∆avg2)

)
. While the number of iterations and average node

degree are in practice constant or asymptotically smaller than the graph size, the quadratic

time and space complexity of RefiNA’s dense matrix operations makes it harder to apply to

large graphs. We discuss a faster variant of RefiNA next.

4.3.2 Optimizations: Sparse RefiNA

To scale RefiNA to larger graphs, we seek to sparsify it by updating only a small number

of alignment scores for each node. Intuitively, we can afford to forego updating alignment

scores of pairs of nodes when the updates are small and thus the nodes likely do not align.

Concretely, sparse RefiNA replaces Line 3 of Algorithm 4.1 with

Mk|Uk
= Mk−1|Uk

◦Uk

where the update matrix Uk = top-α(A1MA2) is a sparse version of A1MA2 containing

only the largest α entries per row. Mk|Uk
selects the elements of Mk (pairs of nodes)

corresponding to nonzero elements in Uk. These are the only elements on which we perform

an MNC-based update, and the only ones to receive a token match score (Line 4):

Mk|Uk
= Mk|Uk

+ ε

As the elements to update are selected by the size of their update scores, which are
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computed using the previous alignment solution M, sparse RefiNA relies somewhat more

strongly on the initial solution. However, we still comply with I2 by updating multiple,

i.e. α possible alignments for each node. In practice, we show (§4.4) that a small α gives

comparable accuracy to the dense update and is much faster.

Complexity. For K iterations, we compute a sparse update matrix with O(nα) nonzero

entries by multiplying matrices with O(n∆avg1), O(Knα), and O(n∆avg2) nonzero entries,

respectively. It takes O(nKα∆avg1) time to compute Ã1 = A1Mk−1 and O(nKα∆avg1∆avg2)

time to compute Ã1A2. We then compute Mk by updating O(nα) entries in Mk−1 per

iteration. Thus, Mk may have O(Knα) nonzero entries and requires O(Knα) time to update

and normalize. Altogether, the runtime is now O(nK2α∆avg1∆avg2), i.e. linear in the number

of nodes. (This is a worst-case analysis and in practice the runtime scales close to linearly

with K.) We can also avoid storing a dense matching matrix, leading to subquadratic space

complexity.

4.3.3 Theoretical Connections to Other Graph Methods

We show additional connections between RefiNA and other diverse graph methods:

first, seed-and-extend as an alignment strategy, and second a graph filtering perspective

on RefiNA’s update rule similar to the analysis of graph neural networks.

Seed-and-extend alignment heuristic. Many global network alignment methods [KMM+10,

PK12] use this heuristic to find node correspondences between two or multiple networks.

Given initial pairwise similarities (or alignment costs) between nodes of the compared graphs

as M, a pair of nodes i and j with high probability to be aligned (e.g., whose similarity

according to M is above some confidence threshold) are set as the seed regions of the align-

ment. After the seed (i, j) is selected, the k-hop neighborhoods of i and j (i.e., N k
i,G1

and

N k
j,G2

) in their respective graphs are built. Next, the selected seed (i, j) is extended for

the final alignment M′ by greedily matching nodes in N k
i,G1

and N k
j,G2

, searching for the

pairs (i′, j′) : i′ ∈ N k
i,G1

and j′ ∈ N k
j,G2

that are not already aligned and can be aligned

with the maximum value of similarity according to M. The process can be written as

∀v ∈ N k
i,G1

,M′
v` 6= 0 if ` = arg max`∈N kj,G2

Mv`.

By setting k = 1 to consider each seed’s direct neighbors, and M′
u∗v∗ 6= 0 if u∗, v∗ =
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arg maxu∈V1,v∈V2 A1iuMuvA2jv , we see that the seed-and-extend heuristic analyzes the same

set of elements used to compute the update in RefiNA (Eq. (4.4)). However, instead of

summing them to update the similarity of seed nodes i and j, it takes the argmax over them

to adaptively select the next pair of alignments. Thus, seed-and-extend aligns less well with

I1 by relying heavily on a correct initial solution, as the early alignments are irrevocable

and used to restrict the scope of subsequent alignments.

Graph Filtering. The matching matrix M can also be interpreted as a high-dimensional

feature matrix. For example, for each node in G1, a row of M may be regarded as an n2-

dimensional feature vector consisting of the node correspondences to each of the nodes in G2,

and similarly the n2× n1 matrix M> contains n1-dimensional cross-network correspondence

features for each node in G2. For challenging alignment scenarios, these are likely highly

noisy features. However, recent works have shown that multiplying a node feature matrix

by the graph’s adjacency matrix corresponds to a low-pass filtering operation, which is of

interest in explaining the mechanisms of graph neural networks [WSZ+19].

We can write our update rule in Eq. (4.4) as a feature matrix left multiplied by adja-

cency matrices: A1MA2 = A1(A2M
>)> (for undirected graphs, A>2 = A2), where A2M

>

produces a filtered set of n1-dimensional features. By taking the transpose, these may be

interpreted as n2-dimensional features for each node of G1, which are then filtered again by

left multiplication with A1.1

Interpreting RefiNA’s updates as graph filtering explains its strong performance, as well

as the success of recent supervised graph matching work [ZTX+19, FLM+20] using graph

neural networks. Of course RefiNA does not have the learnable parameters and nonlinearities

of a graph neural network. However, just as SGC [WSZ+19] recently compares favorably

to graph neural networks by replacing their deep nonlinear feature extraction with repeated

multiplication by the adjacency matrix, we find that that unsupervised “alignment filtering”

is highly effective.

1Graph convolutional networks use the augmented normalized adjacency matrix D̃−
1
2 ÃD̃−

1
2 where Ã =

A + I, which we have not found helpful.
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4.4 Experiments

In this section, we first seek to demonstrate the effectiveness of RefiNA: its ability to

improve a diverse range of established network alignment methods in a variety of challenging

alignment scenarios at reasonable computational cost. We next perform a deep study of

RefiNA that verifies the various insights that inspired its design.

4.4.1 Experimental Setup

Data. We choose network datasets from a variety of domains (biological, social, communi-

cation networks) and levels of sparsity (Table 4.2).

Table 4.2: Description of the datasets used.

Name Nodes Edges Description

Arenas Email [Kun13] 1 133 5 451 communication network
Hamsterster [Kun13] 2 426 16 613 social network
PPI-H [BSR+08] 3 890 76 584 PPI network (Human)
Facebook [LK14] 4 039 88 234 social network
PPI-Y [SM14] 1 004 8 323 PPI network (Yeast)
LiveMocha [Kun13] 104 103 2 193 083 social network

We consider two scenarios for network alignment: (1) Simulated noise. To create

a controlled experiment with networks that exhibit real-world structure yet have a known

ground truth alignment, we follow an experimental procedure used in many prior works

[HSSK18, CHVK20, DKL+19, ZTT+17]. For each network with adjacency matrix A, we

create a random permuted copy A∗ = PAP>, where P is a random permutation matrix. To

make the problem more challenging, we add noise by removing each edge with probability

p ∈ [0.05, 0.10, 0.15, 0.20, 0.25]. 2 The task is to align each network to its noisy permuted

copy A∗(p), with the ground truth alignments being given by P. (2) Real noise. Our PPI-Y

dataset is a collection of protein-protein interaction (PPI) networks that is commonly used to

evaluate biological network alignment [SM14]. The original network is the largest connected

component of the yeast (S.cerevisiae) PPI network, which has 1,004 proteins (nodes) and
2Note that this is 5× more noisy than [HSSK18], which considered noise levels between 1% and 5%. We

want to demonstrate that RefiNA can make network alignment possible even in considerably more noisy
scenarios.
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8,323 PPIs (edges). The standard task is to align this network to copies of itself augmented

with 5, 10, 15, 20, and 25 percent additional low-confidence PPIs (added in order of their

confidence) [SM14].

Base Network Alignment Methods. As we cannot exhaustively evaluate every network

alignment method, we choose a set of base network alignment methods to pair with RefiNA

that represent a diverse range of techniques (belief propagation, spectral methods, genetic

algorithms, and node embeddings): (1) NetAlign [BGSW13], (2) FINAL [ZT16], (3)

REGAL [HSSK18], (4) CONE-Align [CHVK20], and (5) MAGNA [SM14]. We consider

the output of all methods to be a binary matrix M consisting of the “hard” (one-to-one)

alignments they find, to treat methods consistently and to show that RefiNA is capable of

refining the most general network alignment solution. It is worth noting that some methods

(e.g. REGAL, CONE-Align) can also produce “soft” alignments (real-valued node similarity

scores) and our formulation is capable of using those.

Settings of Base Methods. For REGAL’s own xNetMF embeddings, we used default embed-

ding dimension b10 log2(n1 + n2)c [HSSK18], maximum neighborhood distance 2, neighbor-

hood distance discount factor δ = 0.1, and resolution parameter γstruc = 1, all recommended

parameters. For the NetMF [QDM+18] embeddings used in CONE-Align, we set embed-

ding dimension d = 128, context window size w = 10, and negative sampling parameter

α = 1. We used n0 = 10 iterations and regularization parameter λ0 = 1.0 for the con-

vex initialization of the subspace alignment, which we performed with T = 50 iterations

of Wasserstein Procrustes optimization with batch size b = 10, learning rate η = 1.0, and

regularization parameter λ = 0.05 as were suggested by the authors [CHVK20]. For RE-

GAL and CONE-Align, we computed embedding similarity with dot product followed by

softmax normalization [FLM+20], using k-d trees to perform fast 10-nearest neighbor search

for REGAL on LiveMocha [HSSK18].

NetAlign and FINAL require a matrix of prior alignment information, which we computed

from pairwise node degree similarity. Then following [HSSK18, DKL+19], we constructed

this matrix by taking the top k (k = log2 n1) entries for each node in G1; that is, the top k

most similar nodes in G2 by degree.

For MAGNA, starting from a random initial population with size 15000, we simulated the
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evolution for 2000 steps following [SM14] using edge correctness as the optimizing measure

as it is similar to the objectives of our other methods. We used 3 threads to execute the

alignment procedure.

• RefiNA Settings. By default, we perform K = 100 refinement iterations and set the token

match score ε to be the reciprocal of the smallest power of 10 larger than the number of

nodes, which ensures that the token scores added to a node’s matches will sum to less than

1 and thus will not drown out the actual update scores. For sparse refinement, we update

α = 10 entries per node. We justify these choices by sensitivity analysis.

Hardware Configurations. We ran all experiments on an Intel(R) Xeon(R) CPU E5-1650 at

3.50GHz, 256GB RAM.

Metrics. Our primary metric of alignment success is alignment accuracy: the number of

correctly aligned nodes. We consider datasets where ground truth alignments are known so

that we can objectively measure how successfully the nodes have been matched. While the

primary goal of network alignment is to uncover the true alignments, we also give matched

neighborhood consistency (MNC, Eq. (4.1)) as a secondary metric, as our analysis showed

its importance (Section 4.2.2).

4.4.2 Alignment Performance: Simulated-noise Scenarios

In Figure 4.2 we report the alignment accuracy of all network alignment methods both

with (solid/dashed lines) and without (dotted lines) refinement. For each dataset and each

level of noise, we plot the average accuracy and standard deviation across five random align-

ment scenarios for the simulated noise experiments.

Results. Across all datasets, the accuracy of all methods improves dramatically with re-

finement. A striking example of this is NetAlign on the PPI-H dataset with 5% noise.

Getting just 4% of alignments initially correct, after refinement with RefiNA it achieves 94%

accuracy–going from a nearly completely wrong to a nearly completely correct solution. Sim-

ilarly, CONE-Align achieves well over 90% accuracy on Arenas and PPI-H with refinement

and sees only a slight drop even at the highest noise levels.

Observation 4.1. RefiNA greatly improves the accuracy of diverse network alignment meth-
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(a) Arenas (b) Hamsterster (c) PPI-H

(d) Facebook (e) PPI-Y

Figure 4.2: Alignment accuracy as a function of topological difference via synthetically gener-
ated noise in (a-d) or added low-confidence interactions in (e). With all different base methods
and noise levels, refinement with RefiNA improves alignment accuracy, in many cases quite
dramatically. While all alignment methods improve in accuracy, embedding-based methods in
particular become very robust to noise. Sparse refinement, although slightly less accurate at
low noise levels, is in some cases actually more accurate at high noise levels. (We run MAGNA
only on PPI-Y, the dataset with real noise, due to its high runtime—cf. Figure 4.3b.)

ods across datasets.

We are also able to align networks that are much noisier than those that previous works

had considered. Note that our lowest level of noise is 5%, which corresponds to the highest

level of noise in [HSSK18]. With refinement, it is possible to get meaningfully better results

at up to 10% noise on most datasets with FINAL, up to 15% noise with NetAlign, up to

20% with REGAL, and up to the full 25% noise that we consider with CONE-Align.

Observation 4.2. Refinement with RefiNA can make network alignment methods consider-

ably more robust to noise.

We summarize our results in Table 4.3, where we show the maximum improvement in

mean accuracy thanks to RefiNA for each base method on each dataset (across refinement

types and noise levels, averaged over five trials). We also show the maximum noise level at

which RefiNA is able to yield a noticeable improvement (3% or more). Different methods

not only improve by different amounts from RefiNA, but also the maximum noise level at
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(a) Arenas (b) Hamsterster (c) PPI-H

(d) Facebook (e) PPI-Y

Figure 4.3: Runtime for different refinement variations. Sparse refinement is appreciably
faster than dense refinement. Both refinements offer a modest computational overhead, often
on par with or faster than the time taken to perform the original network alignment.

which they appreciably improve varies (in general, CONE-Align is the most robust, followed

by REGAL, followed by NetAlign and then FINAL.)

The fact that at high noise levels, some methods but not others can be improved im-

plies that RefiNA is indeed improving an initial alignment and not merely performing the

alignment from scratch regardless of the initial solution. Precisely characterizing the initial

solutions that best lend themselves to refinement is an interesting question for future work.

With this said, our goal here is not to rank base methods according to their performance

with or without RefiNA (indeed, REGAL and FINAL, which can use node and/or edge

attributes, would likely do better if these were available.) Instead, we note that all base

methods benefit dramatically from refinement compared to their own unrefined solutions.

Observation 4.3. Different base network alignment methods benefit differently from refine-

ment, although all benefit considerably.

Compared to dense refinement, sparse refinement is slightly less accurate overall, but the

gap between the two variants decreases as the noise level increases. In some cases, for high

noise levels, sparse refinement even outperforms dense refinement (e.g., REGAL on Arenas

and Hamsterster). One explanation is that the update of all pairwise node similarities may
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Table 4.3: Maximum improvement thanks to RefiNA for each base method on each dataset,
and maximum noise level at which RefiNA brings noticeable improvement. For all methods
and all datasets, RefiNA brings dramatic increases in accuracy and can often bring significant
improvement even at very high noise levels.

REGAL NetAlign FINAL CONE-Align MAGNA

Arenas 82.18%
20% noise

84.63%
10% noise

86.93%
5% noise

58.02%
25% noise N/A

PPI-H 80.53%
20% noise

90.02%
10% noise

79.57%
5% noise

83.28%
25% noise N/A

Hamsterster 47.86%
20% noise

55.85%
15% noise

52.68%
10% noise

39.50%
25% noise N/A

Facebook 61.22%
15% noise

23.76%
15% noise

17.03%
5% noise

48.51%
25% noise N/A

PPI-Y 32.17%
20% noise

34.67%
25% noise

18.83%
25% noise

45.72%
25% noise

6.77%
25% noise

add small amounts of noise when updating the similarities of clear misalignments. Thus the

effect of sparse alignment, which only updates nodes with the highest update scores, could

be akin to a kind of regularization, which is worth further study.

Figure 4.3 shows the runtime of sparse and dense refinement as well as the time taken to

perform the initial network alignment with each base method. We see that sparse refinement

is faster than dense refinement (these graph sizes are manageable for the various base network

alignment methods and both refinement variants, but we show more pronounced scalability

benefits of sparse refinement on larger graphs in Section 4.4.6). Both also offer a reasonable

overhead compared to the time for initial alignment; they are modestly slower than NetAlign

and REGAL, two methods that are well-known to be scalable; generally on par with CONE-

Align; and generally faster than FINAL and much faster than MAGNA.3

Observation 4.4. Sparse refinement is fast and effective.

4.4.3 Alignment Performance: Real-World PPI Networks

We now consider the real-world PPI-Y dataset [SM14], where the structural differences

between graphs are no longer random noise but instead reflect a real-world phenomenon.

Results. In Figure 4.2e, we once again see that all methods are more accurate with re-

finement (sparse or dense) compared to their original solutions. In this case, the network

alignment method MAGNA, which was developed for this domain (biological network align-
3Actual average runtime for MAGNA on PPI-Y is 9612 seconds; we truncate to 100 to avoid distorting

the scale of the plot. On account of this high runtime, this is the only dataset on which we run MAGNA.
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ment), is more robust (although with refinement, CONE-Align is most accurate). With that

said, MAGNA’s refined solution is always slightly more accurate than its initial solution, so

we see that in real-world problems, RefiNA’s refinement benefits methods that were tailored

for a specific problem domain.

4.4.4 Convergence: Accuracy and Consistency

One of the parameters of RefiNA is K, the number of iterations for which the initial

matching is refined. In Figure 4.4, we plot the performance at each iteration, up to our

maximum value of 100, for all methods and datasets (at lowest and highest noise levels, or

number of added low-confidence PPIs in the case of PPI-Y). For brevity, we show accuracy

and MNC for dense refinement only on the first three datasets (Arenas, Hamsterster, and

PPI-H), and the per-iteration accuracy only for sparse and dense refinement on the remaining

datasets.

Results. For both accuracy and matched neighborhood consistency, we see similar trends for

the same colored curves. As for RefiNA variations, dense refinement of CONE-Align grows in

accuracy slightly more steeply than sparse refinement. For MNC, we see that accuracy and

MNC tend to have very similar values at 5% noise (thus the lines of the same color are close

to overlapping). At 25% noise, MNC is lower than accuracy for highly accurate methods like

CONE-Align—this is to be expected because Theorem 4.1 proved that the expected average

MNC under even for a perfect alignment solution is bounded by the noise ratio. For the

remaining methods which struggle to achieve high accuracy, MNC is higher than accuracy.

As Theorem 4.2 showed, it is possible to find a high-MNC alignment that is still not perfectly

accurate (due to structural indistinguishability). Indeed, here we see this happening in some

especially challenging settings starting from less favorable initial solutions. Nevertheless, in

most cases, improving MNC is a successful strategy for accurate network alignment.

We do find differences between different methods as well as different methods on the same

dataset. For example, FINAL is generally the slowest method to converge, taking close to 70

iterations to fully converge on the Arenas dataset, with NetAlign taking around 20, REGAL

around 10, and CONE-Align around 5. On the PPI-H dataset with 5% noise, FINAL sees

slow progress for nearly the full 100 iterations before making rapid progress at the end. While
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(a) Arenas 5% noise (b) Hamsterster 5% noise (c) PPI-H 5% noise

(d) Arenas 25% noise (e) Hamsterster 25% noise (f) PPI-H 25% noise

(g) Facebook 5% noise (h) PPI-Y 5% added edges

(i) Facebook 25% noise (j) PPI-Y 25% added edges

Figure 4.4: Analysis of RefiNA as a function of number of iterations (0 = performance of
base method before refinement). Arenas, PPI-H, and Hamsterster datasets show accuracy
and MNC, and Facebook and PPI-Y datasets show accuracy of sparse and dense RefiNA
versions. Convergence rates are different for different methods, but often happen well before
100 iterations for both sparse and dense RefiNA. Accuracy and MNC consistently increase
and follow similar trends, as per their theoretical connection.

we allow all methods 100 iterations of refinement in our experiments, the elbow-shaped curves

indicate that in practice, convergence often happens in far fewer than 100 iterations (with

some exceptions for a few methods on the PPI-Y and Facebook datasets). In practice, early
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(a) Arenas 5% noise: Distribution of
MNC and accuracy by node degree
before refinement.

(b) Arenas 5% noise: Distribution of
MNC and accuracy by node degree
after refinement.

(c) Accuracy with varying token match
score ε: Arenas, 5% noise. The meth-
ods almost overlap.

(d) Accuracy/runtime per iteration
with limited vs full Sinkhorn normal-
ization: NetAlign, Hamsterster 5%
noise.

Figure 4.5: Drilldown of RefiNA in terms of our three insights that inspired its design. (a-b)
For I1, we see that before and after alignment, high degree nodes are more likely to have high
MNC and be correctly aligned. (c) For I2, our token match score admits a wide range of values
that yield good refinement performance. (d) For I3, we see that our proposed normalization is
just as effective as full Sinkhorn normalization while not incurring the additional computational
expense.

convergence can be ascertained by small changes in the discovered alignments.

Observation 4.5. Accuracy and MNC, sparse and dense refinement tend to trend similarly

on each method on each dataset. Although convergence rates differ for different methods and

datasets, convergence is quite fast in practice.

4.4.5 Drilldown: Network Alignment Insights

In this section, we perform a drilldown of RefiNA that gives a deeper understanding into

its specific design choices in light of the three insights we laid out in Section 4.3. Unless

otherwise specified, we analyze the dense variant.
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4.4.5.1 Aligning High Degree Nodes (I1)

One of the network alignment insights inspiring RefiNA’s design (Section 4.3) is that

high-degree nodes are easier to align. To test this, we analyze the accuracy and MNC

on a node-level basis, grouping nodes by degree. In Figs. 4.5a-b, we display our analysis

for NetAlign on the Arenas dataset for brevity. We split the nodes into three buckets

by degree: with ∆max being the maximum node degree in the dataset, the buckets are

[0, ∆max
3

), [∆max
3
, 2∆max

3
), [2∆max

3
,∆max]. Within each group, we visualize the distribution of

MNC for each node, among all those correctly aligned and all those incorrectly aligned.

Results. High-degree nodes are rarely misaligned even before refinement, and the few nodes

that are still misaligned after alignment are low-degree nodes. These often still have a high

MNC, probably because it is easier for smaller node neighborhoods to be (nearly) isomorphic

and thus the nodes to be (nearly) structurally indistinguishable. Recall that Theorem 4.2

showed that such nodes could remain a problem case for alignment accuracy even when MNC

is high.

Observation 4.6. It is easier to align high-degree nodes, verifying I1 that motivates RefiNA’s

design choice that especially encourages alignment of high-degree nodes in early iterations.

4.4.5.2 Token Match Score (I2)

Adding a token match score even to nodes that do not initially align is a simple way

to overcome some of the limitations of an erroneous initial solution (our second network

alignment insight in §4.3). We study the effects of this parameter ε on the Arenas dataset

with 5% and 25% noise (we observe similar trends on other datasets), where we vary ε from

10−2 to 10−6 and average RefiNA’s performance over five trials.

Results. In Figure 4.5c, we see that the performance can dramatically drop with too large ε,

where the token match scores overwhelm the alignments that are being discovered. However,

it is robust to smaller values of ε, and our criterion (Section 4.4.1), which would set ε = 10−4

for this dataset, works well.

Observation 4.7. RefiNA is robust to the token match score, as long as it is not so large

that it would drown out the actual node similarity scores.
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(a) Accuracy/total runtime of sparse
refinement vs sparsity level α: CONE-
Align, Facebook 5% noise.

(b) Top-α accuracy on a time budget:
REGAL, LiveMocha 5% noise.

Figure 4.6: Sparse RefiNA. (a) Changing the sparsity of RefiNA’s update step allows us to
interpolate between an accuracy-runtime tradeoff. (b) Sparse RefiNA can run on large graphs
and more than double the accuracy in the same amount of time taken for the initial network
alignment. We also see that it can recognize additional meaningful similarities beyond the top
1 alignments.

4.4.5.3 Alignment Matrix Normalization (I3)

RefiNA normalizes the row and columns of the alignment matrix at each iteration, cor-

responding to our third network alignment insight in §4.3. Sinkhorn’s algorithm iteratively

repeats this process and converges to a doubly stochastic matrix [Sin64]. Some of the oldest

iterative network alignment methods [GR96] need to do this at every iteration, which we

consider here. We run RefiNA on NetAlign’s initial alignment of the Hamsterster social

network with 5% noise, both as proposed, and using the Sinkhorn’s algorithm (converging

when reaching a tolerance of 10−2 or terminating after 1000 iterations of normalization).

Results. We see in Figure 4.5d that our proposed normalization (essentially limited Sinkhorn

normalization) yields virtually the same accuracy at every iteration. However, with our pro-

posed normalization, the computation time remains low (well under a second per iteration)

and approximately fixed. Meanwhile, Sinkhorn’s algorithm takes longer to converge (par-

ticularly as the refinement continues) and dominates the running time. It is to RefiNA’s

advantage compared to previous work [GR96] that we can eschew the full Sinkhorn proce-

dure.

Observation 4.8. RefiNA can avoid the expensive matrix normalization required by optimization-

based alignment approaches.
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4.4.6 Sparse Updates and Scalability

Sparsity Level of Refinement. RefiNA has two versions: a dense version where all nodes’

alignment scores are updated, and a sparse version where for each node we only update a fixed

number of possible alignments with the largest update scores (Section 4.3.2). By changing α,

the number of updates to make per node, we can interpolate between the sparse and dense

versions. We study this on Facebook with 25% noise.

Results. Updating just one alignment per node leads to poor performance, which corrob-

orates I2: we should not blindly trust the initial solution so much to only consider its top

choice. However, the initial solution does provide enough information that using it to make

a small number of updates per node greatly improves the accuracy. Further quantities of

updates add marginal accuracy returns compared to the extra runtime they require. Thus,

sparse refinement offers a favorable balance of accuracy and speed.

“Soft” Alignments, Large Graphs. The favorable computational complexity of sparse

RefiNA allows it to scale to large graphs, as we show by using RefiNA to improve the

performance of top-α scores on a large dataset: LiveMocha, which has over 100K nodes and

a million edges4. We consider our simulated alignment scenario with 5% noise. As this is a

large dataset, we only use REGAL, the most scalable base alignment method we consider,

together with sparse refinement (dense refinement runs out of memory). REGAL takes just

over 2600 seconds. We consider a budgeted computation scenario for RefiNA, running it for

the same amount of time (2600s) and evaluating the resulting solution.

We use this opportunity to explore the top-α accuracy, that is, the proportion of correct

alignments that fall in the top α choices per node [HSSK18]. While RefiNA starts with a

binary alignment matrix, it produces a real-valued cross-network node similarity matrix M

as output. We treat these similarities as soft alignments and rank a node’s top alignments

by the similarities given by M.

Results. In Figure 4.6b, we see that RefiNA is able to scale to large graphs and yield

considerable improvements in accuracy. Indeed, it can more than double the accuracy of
4To the best of our knowledge, this is one of the largest graphs on which network alignment has been

evaluated; [HSSK18, ZTT+17] used million-node graphs only to benchmark runtime, and [ZT16] considers
very large graphs but only performs the alignment on small subnetworks.
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REGAL in the same amount of time it took REGAL to obtain its initial solution. Looking

at the top-α scores, we see that RefiNA finds more approximate matches as we consider

more top matches per node (up to 10, the number of matches we update per node.) This

indicates that for applications like cross-platform recommendation, where top-α similarities

may be useful [HSSK18], RefiNA produces usable “soft” alignments. Moreover, it indicates

that even some of the alignments that RefiNA misses are still near-matches.

Observation 4.9. Sparse refinement offers a favorable tradeoff of accuracy and runtime,

and it allows RefiNA to achieve very good practical performance on extremely large graphs.

4.5 Conclusion

We have proposed RefiNA, a powerful post hoc method for refining existing network

alignment methods–including our methods that greedily match nodes based on embedding

similarity (Chapter III)–that yields great improvements in accuracy and robustness. Its com-

pact formulation encodes several insights for network alignment, supported by our extensive

theoretical and empirical analysis, and can scale up to large graphs by sparsifying its itera-

tive updates. Moreover, it has connections to other network alignment alignments and graph

filtering in graph neural networks. We expect the simplicity of implementation combined

with the considerable effectiveness for a wide variety of base network alignment methods to

make RefiNA easy-to-adopt. Future work includes exploring the theoretical connection to

graph neural networks and incorporating node and edge attributes.
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CHAPTER V

Graph-Level Structural Similarity: Network

Classification

Chapter based on work that won the Best Student Paper award at ICDM 2019 [HSK19].

5.1 Introduction

Thus far, this thesis has considered data mining problems at the node level: cross-network

comparison for network alignment, or intra-network comparison for user stitching. Given

that node embeddings are feature vectors that describe individual nodes, it makes sense to

use them to compare individual nodes. However, graphs themselves are, after all, comprised

of nodes. Thus, the collection of embeddings of the nodes in a graph should contain useful

information about the graph itself. In particular, we should be able to compare entire graphs

based on the node embeddings that they contain. We now show how to use node embeddings

to perform graph-level collective network mining, focusing on the particular task of graph

classification.

Graph classification has a wide range of applications from bioinformatics to computer

vision to the social sciences. The problem can be solved with supervised machine learning

given a suitable means of graph comparison. A strong and practical method for graph

comparison must (P1) expressively and inductively compare graphs; (P2) efficiently handle

many graphs with many non-aligned nodes; (P3) enable the downstream use of fast machine

learning models for graph classification.

67



Figure 5.1: Overview of our framework. Given an input graph, node representations are
learned via an appropriate embedding technique (Section 5.3.2). Our proposed feature map-
ping RGM then aggregates the graph’s node embeddings in vector space (Section 5.4).

The first property (P1) implies that an ideal method should be flexible in character-

izing graphs, and must handle unseen graphs. In terms of flexibility, many methods are

constrained to compare topological graph properties via a small number of hand-engineered

substructures. For example, most popular graph kernels are instances of the R-convolution

framework, which decomposes a graph into substructures such as shortest paths, random

walks, or graphlets, and compares graphs on the basis of these substructures [VSKB10].

Similarly, some works simply aggregate statistics (mean, standard deviation) of the distri-

butions of hand-engineered node or edge features [BKERF13]. Moreover, not all methods

readily generalize to out-of-sample nodes or graphs, often assuming that the graphs are de-

fined on the same sets of vertices [KF17]. Likewise, optimal assignment kernels [KGW16] are

computed by inducing a hierarchy over the training and test data and are thus necessarily

transductive.

Furthermore, to perform graph classification effectively on large input graphs, it is nec-

essary to compare graphs not only expressively but also efficiently (P2). This means that

computing a graph feature representation or evaluating the kernel function between pairs

of graphs must be scalable, ideally linear in the number of nodes across graphs. However,

many existing feature representations are quadratic in the number of nodes [VZ17], and R-

convolution graph kernels can be even slower. For instance, the random walk graph kernel

can take O(n3) time in the number of nodes across graphs [VSKB10].

While the domain-specific challenge to graph classification relies mainly on defining a

means of graph comparison, the efficiency of the final graph classifier is also important (P3).

For instance, graph kernels rely on comparatively slow kernel methods, for which specialized

solvers take quadratic time or more in the number of inputs [Joa06]. This limits their
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applicability to problems with large numbers of graphs. Meanwhile, deep neural networks

often take many epochs to train and require specialized hardware. Unsupervised graph

feature representations remain a practical, more scalable choice [TMK+18].

In this work, we propose Randomized Grid Mapping or RGM, a feature map for

graphs that enjoys all of the desiderata mentioned above. RGM characterizes each graph

by the distribution of its node embeddings at multiple levels of resolution in vec-

tor space, where node embeddings may be obtained from any unsupervised approach that

generalizes across graphs. We justify RGM with novel theoretical connections to existing

implicit kernels. RGM is flexible and capable of handling node labels within the powerful

Weisfeiler-Lehman label expansion framework [SSL+11], making it highly expressive (P1).

Moreover, RGM approximates an implicit kernel in a fast, randomized fashion, leading

to graph features that can be constructed in time linear in the number of nodes in that

graph (P2). Finally, unlike exact kernel methods, RGM yields explicit features that can be

used with linear SVMs [Joa06] for scalable classification with many graphs (P3).

The contributions of this work include:

• Feature mappings: We propose Randomized Grid Mapping (RGM) feature maps, which

characterize graphs by the distribution of their node embeddings at multiple levels of res-

olution. We generalize RGM to the Weisfeiler-Lehman label refinement scheme [SSL+11].

• Theoretical analysis: We justify RGM by proving that the dot product of its histograms

of node embeddings approximate the Laplacian kernel mean map computed on sets of node

embeddings between pairs of graphs. We also prove that we can extend our feature maps

to more powerful composite kernels.

• Extensive experiments: Our experiments demonstrate that RGM achieves strong clas-

sification performance, efficiency, and scalability compared to a wide variety of competitive

baselines including graph kernels, unsupervised feature representations, and deep neural

networks.

Code for RGM is available at https://github.com/GemsLab/RGM.

The rest of this paper is structured as follows. In Section 5.3 we give the preliminaries

necessary to introduce RGM. In Section 5.4 we propose and theoretically analyze RGM. In
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Section 5.5 we present an extensive range of experimental results. We discuss related work

in Section 5.2, and offer concluding takeaways in Section 5.6.

5.2 Related Work

In this section we outline related literature in three directions; see [SERG14] for an

overview of network similarity methods from a practitioner’s perspective. Table 5.1 qualita-

tively compares RGM to selected baselines with respect to our three desiderata: (P1) ex-

pressive and inductive graph comparison; (P2) efficient comparison; (P3) downstream use

of fast machine learning models for graph classification.

Graph kernels. Some graph kernels capture graph similarity from substructures, such as

walks [VSKB10], shortest paths [BK05], subtrees [MV09], graphlets [SVP+09], or other sub-

graphs [KP16]. Others leverage dependencies between these substructures [YV15], study

propagation patterns [NGBK16], or characterize a restricted, strictly transductive class of

valid optimal assignment kernels [KGW16]. Finally, recent work has considered the trade-

offs between using explicit features and the implicit feature mappings of a kernel function

[KNKM14], also for a restricted class of graph kernels.

Some works do consider node embeddings for graph classification: [JD15] considers opti-

mal assignment of geometric embeddings, but produces indefinite similarity matrices. RetGK

graph kernels [ZWX+18] compute return probabilities of random walks in cubic time. The

faster of the two proposed methods, RetGKII, simply averages node feature maps and still

applies the kernel trick at the end. More relevant to our work is [NMV17], which apply

the PM kernel [GD07] to embeddings formed from the top eigenvectors of a graph’s adja-

cency matrix. We achieve a similar design in a flexible explicit feature map that allows for

faster training. Finally, RGM compares largely favorably to the concurrently proposed RGE

random feature map [WYZ+19] that approximates an EMD-like transportation distance be-

tween eigenvector embeddings. RGE samples node embeddings without discerning how they

are distributed in vector space, the very information that RGM captures.

Techniques inspired by the Weisfeiler-Lehman test of isomorphism [SSL+11] can improve

the performance of methods that use node labels, including ours. Further extensions cap-
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ture global and local structure, although they require approximation to be computationally

practical [MKM17]. In general, computing graph kernel functions and using them in kernel

machines falls short on computational properties laid out in P2 and P3.

Other graph similarity functions (besides kernels) include graph edit distance [BG18],

whose computational impracticality for all but small graphs violates P2. The scalable graph

similarity function DeltaCon [KVF13] is designed for graphs defined over the same set of

vertices, limiting its expressivity (P1).

Unsupervised feature mappings. An early graph feature map, NetSimile, consists of ba-

sic summary statistics from distributions of hand-engineered node and edge features. Such

features may be useful for aligning graphs [HLP+18] or exploratory graph analysis with do-

main knowledge [JK17] but are limited in expressivity. More recently, FGSD [VZ17], uses his-

tograms to characterize a graph based on its biharmonic kernel. However, its practical limita-

tions include quadratic time complexity and inability to use node labels. NetLSD [TMK+18]

was shown to be more powerful and scalable, but it too cannot use node label information.

These all fall short on P1 at minimum.

Like our method RGM, all of the above works are unsupervised, which makes training

simpler and generally faster. Representations for graphs or subgraphs [AZRP18, IB18] may

also be learned by analogy to paragraph or document representation learning in NLP [LM14].

However, these methods require excessive amounts of graph sampling (a computational chal-

lenge for P2) to achieve competitive results and/or have high variance.

Deep neural networks. Deep neural networks have grown in popularity and have been

extended to graph classification tasks. Diffusion-convolution neural networks [AT16] adapt

graphs for use with existing convolutional architectures by scanning a diffusion process across

each node, which had empirical limits for graph classification. PATCHY-SAN [NAK16]

extracts fixed-sizes patches from graphs and then uses graph canonization tools to define a

vertex ordering for use with CNNs, which the recent work DGCNN [ZCNC18] does in an

end-to-end fashion.

It is also possible to adapt node classification architectures with specialized graph convo-

lutions, such as GraphSAGE [HYL17] and GCN [KW17a], by aggregating the node features.

We showed that given the same set of node embeddings, RGM aggregation is often more
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Table 5.1: Qualitative comparison of various methods. Existing graph kernels and unsuper-
vised feature representations lack one or more desirable properties that RGM has.

Expressive Inductive Fast Comparison Fast ML

NetLSD 7 3 3 3

WLOA 3 7 3 7

RETGK 3 3 7 7

WLPM 3 3 3 7

RGM 3 3 3 3

effective than the mean- and max-pooling operations that are often used in neural network

architectures. The recent hierarchical method DiffPool [YYM+18] performs supervised node

pooling at greater computational expense.

It is challenging to make precise statements regarding P1, P2, and P3 for deep learning-

based methods, as all three depend on how well the training converges. In general, however,

neural networks are heavily parametrized and thus more difficult to train, requiring addi-

tional computational resources such as GPUs (a practical efficiency issue regarding P2 and

P3) and risking overfitting especially on smaller datasets (a concern for expressivity, i.e.

P1) [ZCNC18]. Only recently have neural network models been designed for limited, noisy

data in specific domains such as neuroscience [YZD+19].

5.3 Preliminaries

Table 5.2: Major symbols and definitions.

Symbols Definitions

Yi Node embedding matrix for graph Gi in Rni×p

Yi,j Row-vector embedding in Rp of node j in graph Gi
δ,µ Vectors in Rp of grid cell widths and offsets, resp.
G[δ,µ] Random grid parametrized by cell width δ and offset µ
hi Histogram induced by grid G on Gi’s embeddings Yi

We begin by outlining necessary background on embedding and kernel techniques for

graph comparison. For reference, Table 5.2 gives our main symbols.
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5.3.1 Problem Definition and Terminology

In graph classification, we are given a collection of training and test graphs of different

sizes, with or without node labels. Each graph has a class that must be predicted. The

i-th graph (in either the training or test set) is denoted Gi = (Vi, Ei), where Vi and Ei are

respectively the nodes and edges of graph Gi. We denote the number of nodes in Gi as

ni ≡ |Vi|.

Using node embedding, the graph Gi may be represented as a matrix Yi ∈ Rni×p of

p-dimensional vector embeddings. The vector embedding of node j in graph Gi is denoted

Yi,j ∈ Rp. Without loss of generality, we assume embeddings are normalized to be in [0, 1]p.

Our goal is to train a machine learning hypothesis that can successfully predict the classes

of the test graphs, given these embeddings.

5.3.2 Node Embedding Techniques

Our proposed feature mapping RGM characterizes the distribution of a graph’s node

embeddings in latent feature space. While RGM can utilize any existing method for node

embedding that inductively generalizes to multi -network settings, here we focus on three

in particular. The first two have been previously used for graph classification [NMV17,

ZWX+18], and the third extends a structural node feature descriptor with subquadratic

time complexity previously used for graph alignment [HSSK18]:

Eigenvector Embeddings (EIG). Many graph similarity functions take as embeddings the

eigenvectors of the adjacency matrix or the graph Laplacian, with node i represented by the

absolute values of the i-th components of the top p eigenvectors [JD15, NMV17]. Eigenvec-

tors capture global properties of the graph [NMV17], which may generalize across graphs.

Return Probability Features (RPF). This method describes each node by a vector whose i-th

entry represents the probability that an i-step random walk starting at that node returns to

itself. This was shown to be an effective structural node feature descriptor [ZWX+18], albeit

requiring a full eigendecomposition of the adjacency matrix to compute exactly.

iNetMF. We extend the xNetMF [HSSK18] embedding technique, which was originally used
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for multi-network alignment. At a high level, xNetMF constructs a histogram per node that

captures the degree distribution in that node’s (weighted) k-hop neighborhood. xNetMF

efficiently computes embeddings using these histograms by comparing each node to a small

sample of landmark nodes randomly chosen from all training graphs, then constructing a

low-rank implictit factorization of a structural node similarity matrix leveraging the Nys-

tröm method [DM05]. We make xNetMF inductive (i.e., iNetMF) by reusing the same

“landmark nodes” from the training set to embed the test graphs, in effect embedding the

test graphs into the same subspace as the training graphs. This can be viewed as a simplified

version of latent network summarization [JRK+19] using the fast Nyström decomposition.

Our approach learns node embeddings and derives a graph representation in separate

steps. While recent deep learning methods optimize both steps in an end-to-end fash-

ion [XHLJ19], an important advantage of our multi-step framework is that it can readily

handle special kinds of graphs using embedding methods tailored for that format of graph:

for instance, signed networks [JDE+20], heterogeneous networks [DCS17], dynamic net-

works [TBL+20], higher-order networks modeling non-Markovian dependencies [BKTK19],

and others.

5.3.3 Kernels on Sets of Features

We briefly overview existing kernel methods that operate on sets of features, in this

case the node embeddings of pairs of graphs. Such kernels accept node embedding matrices

Y1 ∈ Rn1×p and Y2 ∈ Rn2×p for graphs G1 and G2, respectively, as input. Embeddings may

be compared in two different ways:

Distance-based. One way to compare G1 and G2 is to compute the (continuous) distances

between pairs of their node embedding vectors. While many such comparison methods exist,

such as the Earth Mover’s Distance (used in [NMV17]), here we focus on the Laplacian ker-

nel mean map [SGSS07], which, for embedding matrices Y1 and Y2 and hyperparameter

γ controlling the kernel’s resolution, is

kLKM(Y1,Y2; γ) =
1

n1n2

n1∑
i=1

n2∑
j=1

exp (−γ||Y1,i −Y2,j ||1) . (5.1)
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Equation (5.1) corresponds to the average Laplacian kernel similarity between all pairs of

embeddings in graphs G1 and G2 and has O(n1n2d) complexity to compute for p-dimensional

node embeddings.

Grid-based. An alternative (discretized) approach is to compute the embeddings’ spatial

overlap on a grid or histogram. Discrete binning-based approaches have been used to estimate

information-theoretic (dis)similarity between datasets [NH18]. Here we focus on the pyramid

match or PM kernel [GD07], which fits a set of increasingly finer resolution grids to the

p-dimensional unit hypercube. As used in graph classification [NMV17], the grid at each

level ` ∈ 0, . . . , L has 2` cells of equal width without offset from the origin. At each level

`, these grids induce histograms h
(`)
1 and h

(`)
2 capturing the number of node embeddings

from Y1 and Y2 that map into each grid cell. The intersection of pairs of histograms at

level ` across cells c is given as I(h
(`)
1 ,h

(`)
2 ) =

∑
c min{h(`)

1,c, h
(`)
2,c}. The PM kernel, which

takes O((n1 +n2)pL) time to compute, is a weighted sum of new intersections found at each

increasingly coarse grid:

kPM(Y1,Y2;L) =
L−1∑
`=0

1

2L−`

[
I
(
h

(`)
1 ,h

(`)
2

)
− I
(
h

(`+1)
1 ,h

(`+1)
2

)]
. (5.2)

5.4 RGM: Randomized Grid Mapping

With the necessary background given, we now discuss how we aggregate a collection

of node embeddings into a unified explicit feature map for a graph. We first propose our

histogram-based mapping RGM and prove its connection to the Laplacian kernel mean

map. We then generalize RGM to a multiresolution feature map, and further extend it to

incorporate node labels within the Weisfeiler-Lehman framework.

5.4.1 Randomized Features of Graphs

In this section we propose our feature mapping RGM, and theoretically justify it by

connecting it to the existing kernel techniques discussed in Section 5.3.3.

Histograms of Node Embeddings. RGM builds on the intuition of grid-based binning (Section
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5.3.3) for a fast-to-compute feature mapping that can be used with linear SVMs for efficient

graph classification. Let G [δ,µ] be a randomized grid specified by p-dimensional random

vectors δ and µ, which respectively specify the cell width and offset of the grid along each

dimension. Given graph Gi with node embedding matrix Yi, with a hash function φ(·)

mapping each node’s embedding to a cell in G [δ,µ] we induce a histogram hi. The value of

the j-th element of hi is

hi,j =

ni∑
p=1

1

{
φ
(
d(Yi,p − µ)/δe

)
= j

}
. (5.3)

We can use hi as a feature vector for graph Gi. Intuitively, each cell in the histogram

represents a region of p-dimensional embedding space, so these features count the number of

embeddings that fall into each region of the space. In other words, we describe Gi in terms

of the distribution of its node embeddings in vector space.

Probabilistic Interpretation. Our randomized grid construction, given a suitable choice of

parameters δ and µ, gives RGM a probabilistic kernel interpretation. Specifically, the dot

product of two graphs’ RGM histograms approximates the Laplacian kernel mean map

between the graphs. We first state a foundational result about random features for general

kernel methods:

Lemma 5.1 (Adapted from [RR08]). For vectors x1,x2 ∈ Rp, the probability that x1 and

x2 map to the same cell in random grid G [δ,µ] with cell widths δi drawn from a Gamma

distribution with shape 2 and scale 1
γ
, and offsets µi ∼ Uniform(0, δi) sampled independently

along each dimension i is equal to the Laplacian kernel exp(−γ||x1 − x2||1).

Using this lemma, we connect the embedding histograms of Equation (5.3) and the Lapla-

cian kernel mean map:

Theorem 5.1. Let h1 and h2 be the normalized histograms induced via RGM on graph node

embedding matrices Y1 and Y2 respectively, by a grid G [δ,µ] with random cell widths δi drawn

from a gamma distribution with shape 2 and scale 1
γ
, and offsets µi ∼ Uniform(0, δi) sampled
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independently along each dimension i. Then

E
[
〈h1,h2〉

]
=

1

n1n2

n1∑
i=1

n2∑
j=1

exp(−γ||Y1,i −Y2,j||1),

where the right-hand side is equivalent to the Laplacian kernel mean map (5.1) between

embedding matrices Y1 and Y2.

Proof. For each node i ∈ V1, let fi be a binary indicator vector with fic = 1{Y1,i ∈ G[δ,µ][c]};

i.e., 1 if i’s embedding falls into grid cell c. We define the indicator vectors for V2 similarly.

Then we have that

〈h1,h2〉 =
1

n1n2

∑
c∈G

n1∑
i=1

n2∑
j=1

fic fjc =
1

n1n2

n1∑
i=1

n2∑
j=1

f>i fj,

since the product of the numbers of nodes in G1 and G2 that fall into the same cell c is the

number of the corresponding cross-graph node pairs. This can be determined by multiplying

the corresponding indicator vectors for all these pairs, since the product will be 0 when the

nodes do not fall into the same cell. Recall that the vectors fi and fj depend on the parameter

γ governing the distribution from which the components of δ and µ are sampled. Their dot

product is 1 iff the embeddings of node i in G1 and node j in G2 map to the same cell in G.

Thus, E[f>i fj; γ] = exp(−γ||Y1,i −Y2,j||1), and the theorem follows from Lemma 5.1.

This result offers a theoretical connection between our feature maps based on node embed-

ding distributions and graph kernels, namely the Laplacian kernel mean map. Indeed, we see

a new connection between distance-based and grid-based embedding comparison techniques

(Section 5.3.3): with appropriate grid construction, the latter can be used to approximate

the former, in linear time in the number of nodes in each graph. An important advantage

that our explicit feature maps have over both kernels is that faster linear machine learning

algorithms may be used, which scale better to large numbers of graphs.

5.4.2 Multiresolution Feature Maps

Representing each graph using embedding histograms from Equation (5.3) with grid

construction as in Theorem 5.1 allows us to construct a feature map that approximates the
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Laplacian kernel mean map for a particular resolution given by a fixed γ. A large value of

γ drives the kernel similarity function closer to zero, meaning only extremely similar nodes

will contribute meaningfully to the kernel mean map. Meanwhile, a small value drives the

kernel similarity function close to one, in which case even rather dissimilar nodes may still

measure a relatively high similarity.

Composite Kernels and Composite Feature Maps. Any single kernel or parametrization has

strengths and drawbacks, and a feature map that approximates that single kernel shares

that kernel’s limitations. A powerful and arguably more flexible technique, then, is to create

composite kernels from linear combinations of single kernels. Defining αi as the contribution

of the i-th kernel ki, composite kernels have the form

K(Y1,Y2) =
M∑
i=1

αiki(Y1,Y2). (5.4)

Similarly, we can create composite feature maps with similarly greater expressive power.

Specifically, we show that if the individual kernels comprising a composite kernel are approx-

imable by random features, we have a (random) feature map for the corresponding composite

kernel:

Lemma 5.2. Given kernels k1(Y1,Y2), . . . , kM(Y1,Y2) with approximate feature maps, the

composite kernel K =
∑M

i=1 αiki(Y1,Y2) (i.e., Equation (5.4)) has a corresponding approx-

imate feature map.

Proof. Let ψi(·) be a function that, for embeddings Yi, constructs features approximating the

individual kernel ki: ki(Y1,Y2) ≈ ψi(Y1)>ψi(Y2). We define the feature map for embedding

Yi as hi = [
√
α1ψ1(Yi) || . . . ||

√
αMψM(Yi)], where || denotes vector concatenation. Then

h>1 h2 =
M∑
i=1

αiψi(Y1)>ψi(Y2)

≈
M∑
i=1

αiki(Y1,Y2) = K(Y1,Y2).

Multiresolution RGM Features. With Lemma 5.2, we now have the tools to develop our
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RGM features based on histograms of node embeddings that overcome the limitations of

any fixed resolution by combining multiple levels of resolution. That is, by concatenating

node embedding histograms across L levels of resolution, we achieve the effect of a composite

Laplacian kernel mean map with different values of γ.

At each level of resolution ` ∈ [0, 1, . . . , L], we construct component histograms h
(`)
i from

Yi using Equation (5.3), with cell widths drawn from a gamma distribution with shape 2

and scale 1
2`+1 along with uniform offsets (recall that the scale corresponds to the inverse of

γ in the Laplacian kernel mean map, by Theorem 5.1). The expected cell width along each

dimension for h
(`)
i is 1

2`
. The earlier histograms will thus have coarse cells that capture many

matches, while later histograms will have fine cells that only bin together embeddings very

close in vector space, as demonstrated in Figure 5.2.

As in [NMV17], we use a weighing scheme to prioritize matches found at more dis-

criminative finer resolutions: a histogram with expected cell width 1
2`

has weighing factor√
1/2L−`. The dot product of two component histograms with this weighing factor will then

be weighed by 1/2L−`. Putting it all together, for a graph Gi with node embeddings Yi, our

RGM feature map for a set of node embeddings is

hi = [
√

1/2Lh
(0)
i ||

√
1/2L−1h

(1)
i || . . . || h

(`)
i ] (5.5)

This multiresolution design recalls the design of the pyramid match kernel (Section 5.3.3)

while retaining the theoretical connections to the Laplacian kernel mean map discussed in

the previous section. However, it should be noted that the multiresolution RGM is not

approximating the PM kernel, but rather has a similar design that compares graphs at mul-

tiple levels of resolution in vector space. Two key differences between multiresolution RGM

and PM are: (1) PM compares embeddings via histogram intersection versus RGM’s dot

product, and (2) PM excludes nodes matched at finer levels of granularity before comparing

coarser levels of granularity. Concerning the former, RGM’s dot product permits the use of

faster (linear) machine learning algorithms. Concerning the latter, by including matches in

all levels, RGM places further weight on matches found in fine levels of granularity, which

are likely to be matched at coarser levels of granularity as well, amplifying the effect that

PM attempts to achieve.
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Figure 5.2: Multiresolution feature maps for graphs. We create histograms by binning a
graph’s node embeddings using grids with randomly chosen cell widths and offsets along each
dimension. We use multiple grids parametrized differently in expectation to produce his-
tograms of coarser (left) and finer (right) levels of resolution. The final graph features are a
weighted concatenation of these histograms.

Complexity Analysis. Each level of RGM hashes ni nodes per graph Gi, and each graph is

represented by features of p dimensions. Therefore, a single level of RGM is O(nip). With

L total levels of resolution, RGM’s complexity is O(nipL).

5.4.3 Handling Node Labels

Node labels may provide an additional source of information beyond the graph topology

alone. Without loss of generality, it suffices to consider discrete node labels, as continu-

ous attributes may be hashed into discrete labels [MKKM16]. We review techniques that

transform unlabeled graph kernels into labeled ones and make simple labeled kernels more

powerful. For each technique, we show that using Lemma 5.2, RGM feature maps can have

equivalent capabilities.

Composite Labeled Kernels. Given a kernel between sets of embeddings k(Y1,Y2), a corre-

sponding composite labeled kernel is

KB(Y1,Y2) =
∑
b∈B

k(Y
{b}
1 ,Y

{b}
2 ), (5.6)

where B is the set of unique node labels, Y
{b}
i consists of the embeddings in Gi of nodes

with label b, and k is the (unlabeled) base kernel, such as the pyramid match kernel [NMV17],

or our multiresolution weighted sum of Laplacian kernel mean maps approximated by RGM.
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Intuitively, the idea is to use the base kernel to only compare nodes with the same label.

We follow this intuition to design labeled features by forming multiresolution histograms

using Equation (5.5) for embeddings of nodes with each label and concatenating them. From

Lemma 5.2, it follows that this labeled version of RGM corresponds to the labeled kernel

built on the (multiresolution) Laplacian kernel mean map using Equation (5.6).

Corollary 5.1. Given graph Gi with embeddings Yi, the feature map

hi = [h
{b1}
i || . . . || h{b|B|}i ] (5.7)

approximates the labeled Laplacian kernel mean map.

Each h
{b}
i refers to an RGM feature map constructed using Equation (5.5) for nodes with

label b only, with embeddings Y
{b}
i . As each node is still mapped to only one cell in the

corresponding grid, the worst-case complexity of RGM is unchanged. Thus, we can maintain

linear-time feature construction and training even with node labels using RGM.

RGM with Weisfeiler-Lehman Framework. We can further generalize the labeled feature

maps from Equation (5.7) to the Weisfeiler-Lehman (WL) framework [SSL+11], a state-

of-the-art graph kernel framework that over H iterations assigns each node a new label

by hashing its neighbors’ labels in the previous iterations. Given a labeled graph kernel

KB(Y1,Y2) as in Equation (5.6), the corresponding WL kernel is

KWL(Y1,Y2;H) =
H∑
h=0

KBh(Y1,Y2), (5.8)

where for H iterations, Bh is the Weisfeiler-Lehman labeling at iteration h, and B0 is the set

of original node labels. In the above, we sum individual kernels that use the WL labelings at

each iteration. Thus, applying Lemma 5.2 and Corollary 5.1, we design a version of RGM

corresponding to the labeled Laplacian kernel mean map enhanced with the WL framework:

Corollary 5.2. For a graph Gi, the feature map hi = [h
{B0}
i || . . . || h{BH}i ] is an approxi-

mate feature map for the H-iteration Weisfeiler-Lehman Laplacian kernel mean map, where

Bh is the WL labeled at iteration h and B0 is the original set of node labels.
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Table 5.3: Real data [KKM+16] used in our experiments. We give the total number of
nodes/edges across all graphs per dataset.

Name Nodes Edges GraphsClassesNode labels Domain

MUTAG 3371 3 721 188 2 Y bioinf
PTC-MR 4916 5 053 344 2 Y bioinf
NCI1 122 765 132 753 4 110 2 Y bioinf
IMDB (binary) 19773 96531 1000 2 N collab
IMDB (multi) 19 502 98 910 1 500 3 N collab
COLLAB 372 474 12 286 733 5000 3 N collab

Here, the component histograms h
{Bh}
i that we concatenate for each relabeling are con-

structed using Equation (5.7).

Complexity Analysis. WL RGM takes O(nipLH) time for H label expansions. Therefore,

by designing linear feature maps to approximate WL graph kernels using node embeddings,

we can use the well-documented strengths of WL label expansion [SSL+11] to achieve good

performance faster than exact kernel methods.

5.5 Experiments

We now study RGM across a range of extensive experiments. We focus on the following

research questions:

Q1 How accurately can we classify graphs with RGM feature maps?

Q2 How efficient and scalable is RGM relative to related kernel methods with respect to the

number and/or size of the input graphs?

Q3 Can other node embedding or aggregation choices be used in RGM, particularly in an

inductive setting?

5.5.1 Experimental Setup

Data. We evaluate our methods on six benchmark graph classification datasets from differ-

ent domains commonly studied in graph classification–bioinformatics and social collaboration–

all publicly available with detailed descriptions at [KKM+16]. Table 5.3 presents aggregate

information about each dataset.
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Embedding Methods. As discussed in Section 5.3.2, we use three embedding methods

with RGM feature maps:

1. EIG: Following [NMV17], we take the top 6 eigenvectors of the adjacency matrix to form

the embeddings (if a graph has size n < 6, we repeat the last features 6− n times).

2. RPF: To compute the return probability features, we use the recommended p = 50 [ZWX+18].

3. iNetMF: We set the maximum hop distance K = 2 and discount factor δ = 0.1,

following [HSSK18], with embedding dimensionality p = 100, as per the literature.

For brevity, in our results we report RGM’s performance with the most accurate embed-

ding method for each dataset among EIG, RPF, and iNetMF. In general, they perform

comparably across datasets.

Baselines. We compare RGM against several popular baselines from the graph kernel

literature:

1. SP [BK05], or the shortest paths kernel;

2. GR [SVP+09], or the graphlets kernel. We follow the literature and using graphlets of

size 3 [NMV17];

3. WL-ST [SSL+11], or the Weisfeiler-Lehman subtree kernel;

4. WL-OA [KGW16], or the Weisfeiler-Lehman optimal assignment kernel;

5. LWL-3 [MKM17] kernel;

6. WL-PM [NMV17], which computes the Weisfeiler-Lehman pyramid match kernel on

eigenvector embeddings;

7. RetGK [ZWX+18], a graph kernel based on the return probabilities of random walks as

captured by RPF. We use RetGKII, which uses approximate random features techniques to

avoid a quadratic-time comparison of graphs using RPF and thus conceptually resembles

our approach.

From the unsupervised feature mapping literature, we compare to:
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a) NetLSD [TMK+18], which achieved superior performance and scalability over unsuper-

vised feature representations such as NetSimile [BKERF13] and FGSD [VZ17]. We use

both the heat and the wave kernel to obtain graph representations, and report the best

results for each dataset.

Finally, following existing practice [ZWX+18], we compile reported numbers for deep neural

networks for further comparison:

i) DCNN [AT16], or diffusion-convolutional neural networks;

ii) PSCN [NAK16], or the PATCHY-SAN neural network;

iii) DCGNN [ZCNC18], a neural architecture that performs end-to-end graph classifica-

tion.

Note that NetLSD, SP, and GR do not use node labels, while the other baselines do. For

datasets without node labels, we give all nodes the same label to start [KGW16]. We fix

the number of WL iterations for RGM and WL baselines to H = 2 [KNKM14] and the

number of levels in PM and RGM to 4 [NMV17]. Other parameters specific to particular

baseline methods are set to values recommended by their authors in the papers and/or official

implementations.

We used MATLAB public implementations of the SP, GR, and WL-ST baselines [She18].

We used the official implementations of NetLSD, LWL-3, and RetGK written in Python,

C++, and MATLAB respectively, as well as a MATLAB implementation of WL-OA from

the authors of the paper [KGW16]. We implemented the PM kernel following [NMV17] in

Python, along with RGM. All experiments ran on an Intel(R) Xeon(R) CPU E5-1650 at

3.50GHz with 256GB RAM.

5.5.2 Accuracy of RGM

Task. We perform 10-fold cross validation averaged over five trials and report the average ac-

curacy and standard deviation.We use a linear SVM to classify feature mappings and a kernel

SVM classifier for kernel matrices, all from scikit-learn [PVGea11], limiting the solver to 104

iterations and choosing the SVM parameter C by cross-validation from {10−3, 10−2, . . . , 103}.
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Table 5.4: Accuracy of RGM versus graph kernels, feature learning algorithms, and deep
neural networks. We see that RGM is one of the most accurate methods on all datasets,
compared to baselines from many different fields. (*: Results reported from original papers.
For DCNN, we report results, which did not include standard deviations, from the original
paper [AT16] on datasets used in that paper. We report the remaining results from [ZCNC18].
>12hr means that computation was not finished within 12 hours.)

Method MUTAG PTC-MR NCI1 IMDB-BINARY IMDB-MULTI COLLAB

DCNN* 67.0 55.3 62.6 49.1 ± 1.37 33.5 ± 1.42 52.1 ± 0.71
PSCN* 89.0 ± 4.37 62.3 ± 5.68 76.3 ± 1.68 71.0 ± 2.29 45.2 ± 2.84 72.6 ± 2.15
DGCNN* 85.8 ± 1.66 58.6 ± 2.47 74.4 ± 0.47 70.0 ± 0.86 47.8 ± 0.85 73.8 ± 0.49

NETLSD 82.9 ± 0.58 58.7 ± 1.06 62.6 ± 0.25 64.6 ± 0.39 45.9 ± 1.04 66.7 ± 0.11

GR 83.1 ± 0.77 56.7 ± 0.65 62.8 ± 0.08 55.1 ± 0.83 37.0 ± 1.99 60.4 ± 0.08
SP 88.2 ± 0.24 57.6 ± 0.49 66.2 ± 0.44 51.9 ± 1.31 35.4 ± 1.08 43.0 ± 3.27
WL-ST 86.3 ± 1.13 63.0 ± 1.54 82.2 ± 0.19 72.3 ± 0.35 47.7 ± 0.55 78.4 ± 0.15
LWL3 84.0 ± 1.14 58.8 ± 1.52 77.8 ± 2.12 72.3 ± 0.63 46.0 ± 1.22 >12hr
WL-OA 86.0 ± 0.82 62.2 ± 1.10 82.9 ± 0.23 73.3 ± 0.15 48.2 ± 1.04 80.6 ± 0.29
RETGK 86.3 ± 1.22 61.4 ± 0.87 80.7 ± 0.19 72.6 ± 0.83 45.5 ± 0.79 80.8 ± 0.32
WL-PM 88.4 ± 1.10 82.6 ± 0.21 73.0 ± 0.48 49.1 ± 0.73 81.5 ± 0.35

RGM 87.8 ± 1.05 63.6 ± 1.53 83.7 ± 0.19 73.0 ± 1.04 51.5 ± 0.40 78.6 ± 0.13

(a) Small datasets: MUTAG &
PTC-MR

(b) Mid-size datasets: IMDB-B &
IMDB-M

(c) Large datasets: NCI & COL-
LAB

Figure 5.3: Upper left quadrant is best: Accuracy vs runtime for RGM and its closest com-
petitor WL-PM. We denote datasets by marker shape and methods by color. Across all sizes
of datasets, RGM has comparable accuracy and considerably faster runtime.

Results. We report graph classification accuracy over all baselines and RGM in Table 5.4.

RGM yields highly competitive performance against existing graph kernels. It is the most

accurate method on two datasets: the most of any method, tied only with WL-PM. The only

dataset where WL-PM outperforms RGM significantly is COLLAB, as it only ekes ahead on

PTC-MR. However, RGM outperforms WL-PM significantly on both NCI1 and IMDB-M.

Moreover, RGM is never lower than fourth best out of all the baselines on each dataset: a

consistent performance (all other baselines besides WL-ST and WL-PM finish in the bottom

half at least once).
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Compared to the recent feature representation NetLSD, RGM is more accurate on all

datasets under consideration. A partial explanation for this may be that NetLSD does not

use node labels. However, even on datasets that do not have node labels (the three collabo-

ration datasets), the Weisfeiler-Lehman framework can be used to generate meaningful label

expansions that RGM can capitalize on but NetLSD cannot.

Finally, compared to published results from recent and widely used deep neural network

methods, RGM performs highly favorably. It is more accurate than all of them on almost all

datasets, in many cases (NCI, COLLAB) by a wide margin. One note is that on the smallest

datasets MUTAG and PTC-MR, we see extremely high variances especially for PSCN. Many

deep learning models for graph classification have been noted [ZCNC18] to overfit on smaller

datasets in particular, which is one of the practical difficulties of training them.

Observation 5.1. RGM is among the most accurate methods for graph classification, com-

pared to a variety of powerful recent baselines. It is competitive with leading techniques from

all three major areas of graph classification literature: unsupervised feature learning, kernels,

and deep neural networks.

5.5.3 Efficiency of RGM

We now focus on the runtime of RGM, as this is a significant practical benefit afforded

by explicit feature maps compared to many other methods such as kernels. Here we focus

on the pyramid match kernel, which is the most related baseline both conceptually and in

terms of results (Table 5.4).

Task. We study the accuracy versus runtime taken to compare embeddings using RGM

and WL-PM on our six benchmark datasets. We group the two smallest datasets (the

bioinformatics datasets MUTAG and PTC-MR), the two medium-size datasets (the two

IMDB datasets), and the two largest datasets (the NCI bioinformatics dataset and the

COLLAB dataset) together so that the plots include comparable magnitudes of runtime.

Results. In Figure 5.3, we see that not only does RGM lead to highly accurate graph clas-

sification, its runtime is favorable compared to implicit kernel methods that must compute

and manipulate a quadratic kernel matrix. The speedup afforded by RGM is apparent on
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(a) Runtime w.r.t. number of nodes (b) Runtime w.r.t. of graphs

Figure 5.4: Scalability of RGM. Dotted linear and quadratic slopes plotted for reference.
RGM scales linearly with respect to both the number and size of the input graphs. In
contrast, the PM kernel does not scale with the number of graphs.

all sizes of datasets, but is particularly noticeable on large datasets. Meanwhile, accuracy is

very comparable, as also seen in Table 5.4.

Observation 5.2. RGM achieves a favorable balance of accuracy and speed compared to

exact kernel methods.

We further illustrate this point by constructing large datasets and studying the scalability

of the two methods as the number or size of the graphs increases in a controlled manner.

Task. To evaluate the scalability of RGM compared to PM, we measure both methods’

runtime for graph classification based on comparing embeddings of increasingly large Erdős-

Rényi graphs with random binary labels. We use eigenvector embeddings for RGM as well

as PM and do not use WL label expansion. For our first experiment, the datasets consist

of 100 graphs of 100-100K nodes each. In the second experiment, the datasets consist of

100-100K graphs of 100 nodes each.

Results. We plot the runtime averaged over five independent trials in Figure 5.4. In Figure

5.4a, we see that both methods scale approximately linearly with the number of nodes in

the input graphs, as their asymptotic complexities suggest. However, in Figure 5.4b, the

kernel-based classifier used by PM is much slower than the linear SVM that can be used

with RGM. Indeed, we cannot even compute the quadratic 100K by 100K kernel matrix for

PM within 12 hours. However, RGM finishes well within this timeframe on 100K graphs,

and is indeed faster for all numbers of graphs we consider in this experiment. We see that it

scales approximately linearly with the number of graphs, in accordance with its asymptotic

complexity [Joa06].
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Observation 5.3. RGM is an efficient method for graph comparison and classification,

scaling linearly in both the number and the size of graphs. It can be used on datasets with

too many graphs for exact kernel methods such as PM.

5.5.4 Study of Embedding and Aggregation Methods

Given that RGM takes node embeddings as input, it can be seen as a two-step process

consisting of learning node representations and aggregating them into a feature map for a

graph. Here we consider alternative design choices per step.

Task. First, we compare three embedding approaches before constructing RGM feature

maps: node2vec [GL16], struc2vec [RSF17], and xNetMF [HSSK18]. These choices

reflect different network embedding objectives [RJK+20]: node2vec preserves proximity be-

tween nodes, whereas the latter two preserve structural similarity. Moreover, xNetMF is

designed for multi-network settings, whereas the other two are designed for single-network

settings.

We embed all graphs in training folds together, followed by embedding all test graphs in a

separate step (i.e., inductive learning). To embed graphs jointly using the single-network

formulation of node2vec ands struc2vec, we combine their adjacency matrices as blocks as

a single block-diagonal adjacency matrix. We perform 10 random walks of length 80, use a

window size of 10, and set the embedding dimensionality to p = 100. For node2vec we set

p = q = 1.

Results. We see in Figure 5.5a that off-the-shelf node2vec, struc2vec, and xNetMF all

perform poorly as base node embedding methods for RGM. node2vec and struc2vec are

designed for a single-graph setting, and even xNetMF, although designed for cross-network

tasks, assumes a transductive setting where all graphs are given up front. In all cases, the

feature space learned for the training graphs is not guaranteed to be comparable to that learned

for the test graphs. However, our modification of xNetMF, iNetMF, performs dramatically

better than its transductive counterpart, as well as node2vec and struc2vec. It succeeds in

embedding nodes in test data into the subspace spanned by the training landmarks.

Observation 5.4. RGM can successfully use advances in node embedding to classify graphs.

The most important change that existing embedding methods may need, however, is a way to
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(a) Node embedding methods for inductive
classification

(b) RGM vs. embedding pooling methods

Figure 5.5: Best choices for node embedding and aggregation. An inductive graph classification
setting shows that node embedding methods designed to preserve relative similarities between
nodes that are being jointly embedded (e.g. at training or test time) may lead to incompara-
bility between training and test graphs’ embeddings. Given suitable node embeddings, RGM
works better than simple pooling methods, which less fully capture the distribution of node
embeddings.

ensure continuity of the latent feature space across training and test networks.

For iNetMF, there is little difference in performance compared to a transductive setting.

This would also be true of RPF and EIG embeddings, where the computation can be done

separately for each graph. However, most work in node representation learning optimizes an

objective to preserve relative similarities between nodes [GF18]. Without care, such methods

may be led astray in an inductive setting.

Next, we consider alternatives for aggregating embeddings.

Task. We compare our RGM feature maps using iNetMF embeddings to two alternative

graph representations using feature pooling, which we call AVG and MAX. These create

a p-dimensional feature vector by taking the average or maximum value, respectively, along

each feature dimension.

Results. We see that in Figure 5.5b, in terms of constructing feature representations of

graphs, the pooling operations MAX and AVG yield inferior performance to our RGM vari-

ants. The margin is larger on graphs with node labels, as we illustrate with the largest labeled

graph NCI1; it is smaller on the unlabeled collaboration network IMDB-MULTI. These re-

sults confirm the benefits of capturing the embedding distribution more comprehensively

with RGM.

Observation 5.5. Capturing the full distribution of embeddings using RGM is more ex-
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pressive than pooling the embeddings using simple summary statistics such as mean or max.

5.6 Conclusion

In this chapter we propose RGM, a feature map that captures the distribution of a graph’s

node embeddings at multiple levels of resolution. We demonstrate theoretical connections

between RGM and existing kernel methods, enhancing its performance with node labels

using Weisfeiler-Lehman label expansion. We show that RGM is up to 20% more accurate

than competitive baselines from graph kernels, feature learning, and deep neural networks.

Furthermore, RGM is up to an order of magnitude faster and scales to larger datasets than

the most relevant and competitive exact kernel baseline. RGM thus bridges the gap between

node-level tools (node embedding) and graph-level tasks (graph classification), efficiently

turning feature descriptors of nodes into a principled and powerful feature descriptor for the

network.
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Part II: Praxis
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CHAPTER VI

Node Similarity Application: Professional Role Inference

Chapter based on work that appeared at KDD 2019 [JHS+19].

6.1 Introduction

This thesis has introduced new data mining methodology using node embeddings: we

proposed the structural embedding method xNetMF and formulate solutions to collective

network mining tasks at the node and graph level. We verified the effectiveness of our

methods using well-established benchmark scenarios; here, the focus is less the solution we

obtain and more the methods we propose (we care about our success on the data mining task

mainly to demonstrate our method’s effectiveness). The remainder of this thesis focuses on

the question: what does the praxis of node embeddings look like? How are node embeddings

used to mine actionable new insights on new datasets?

In this chapter, we the problem of inferring employees’ roles in an organizational hierarchy,

using a unique new dataset comprising billions of emails across thousands of organizations

collected by the email-based application of Ann Arbor startup Trove1, with whom we col-

laborated on this work. This work has the possibility to inform the multitude of existing

third-party email clients and applications that leverage emails to help recommend contacts,

suggest responses, and organize and filter inboxes. While such applications typically have

access to limited metadata about user emails, such as the sender and received time, they

often do not have complete information about the users themselves. Therefore, inferring
1https://trove.com/
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characteristics about users, such as their professional roles, can inform the personalization

of “smart” email applications.

We formulate this problem as role inference for nodes in networks. Building on our work

in Chapter III, our goal is to learn embeddings that reflect the structural of roles in a network

and also preserve additional information captured in edge weights and directionality. We then

show that these embeddings can be used to characterize nodes according to properties that

are related to their structural role in the network.

Our approach to professional role inference relies on the inherent network structure of

an email corpus, wherein employees are nodes in the email graph and edges capture email

exchanges between employees. These edges may be directed (from sender to receiver) and

weighted by the number of emails exchanged between the sender and receiver. In contrast

to Chapter III, where we found a one-to-one mapping from nodes in one network to nodes

in another network, we want to classify nodes according to their professional role (which

will of course map many nodes to the same professional role). Note that these roles may be

different across companies; for example, a managerial role does not look the same at a tech

giant versus a small startup.

Importantly, to ensure a high level of user privacy, our email network is totally anonymized.

It does not use incorporate any sensitive data from the email corpus, such as text, sent/re-

ceived time, or subject line. Thus, we do not use any additional attributes about the nodes

in this work, although if such information were available, it could be incorporated into the

embedding as in Chapter III. Using this generalized email network, we build on recent ad-

vances in network representation learning, which have been shown to be state-of-the-art in

difficult supervised learning tasks on networks. Specifically, we propose EMBER, short for

Embedding Email-based Roles and named for our motivating application.

Our approach efficiently learns node representations that preserve structural similarity

of the nodes, which allows us to infer the structural roles of the nodes in the network.

Intuitively, a node’s structural role in an email network corresponds with the professional

role of the employee represented by that node. In our email network dataset, we then predict

the professional roles of employees by leveraging multi-class classification over their nodes’

embeddings, as shown in Figure 6.1.
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Figure 6.1: EMBER leverages communication volume and reciprocity to (1) compute email-
specific structural embeddings, and then (2) infer professional roles via multi-class classifica-
tion.

The contributions of this work include:

• Weighted, directed structural embeddings: We propose EMBER, a powerful and

fast approach for embedding some or all of the nodes in a graph in a way that preserves

structural similarity. We measure the structural similarity of nodes in terms of both their

incoming and outgoing edges as well as the strength (edge weight) of the connections they

form.

• Analysis and insights: We show that EMBER is effective and efficient in inferring pro-

fessional roles on several large-scale email corpora. We work with a unique email dataset

collected by the Trove email application, comprising several billion email exchanges that

span multiple organizations and sectors, unlikely previously analyzed email corpora. Re-

garding each organization as a network, we thus show that it is meaningful to compare

structural roles of nodes across networks.

Code for EMBER is available at https://github.com/GemsLab/EMBER.

This chapter is structured as follows. In Section 6.2 we discuss related work.Motivated

by our findings, we introduce EMBER in Section 6.4 and then apply it on several large-scale

experiments in Section 6.6. Finally, we conclude in Section 6.7 with future directions.
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6.2 Related Work

Relevant areas of work include email network analysis, embeddings, and semi-supervised

learning over networks. We survey related works on node embeddings in Chapter II. Here

we give an overview of alternative approaches to email-network analysis, based on hand-

engineered features or supervised learning without features. We qualitatively compare related

methods, whether or not they use node embeddings, that can be applied to our problem in

Table 6.1, and also compare them experimentally in Section 6.6.

Email network analysis. User behaviors in email networks have been studied for model-

ing [YDBA17, HL12, ARKG13, Wan14], spam and fraud detection [THC07, KVF13, ATK15],

and email ranking [ZWW09] purposes. Most works leverage textual features such as email

addresses, body sentiment words, length of subjects [YDBA17], recipients [ZWW09], reply

time, and email size [OLJT13] to characterize email behaviors. Recent work learns represen-

tations of personal information items (like files, search queries, appointments, etc.) to model

user behavior even more comprehensively [SFS+20]. However, to maintain user privacy in

the real-world scenarios that interest us, we avoid methods that rely on textual features of

email data.

Another direction involves the computation of network centralities. For example, Zhu et

al. [ZWW09] propose Inner- and Outer-Pagerank centrality to distinguish nodes that mainly

interact within and across communities. Aliabadi et al. [ARKG13] classifies professional roles

based on graph centralities including in-/out-/total degree, clustering coefficient, PageRank,

HITS, and betweenness.There are other works [SHH+06, RCHS07] combining textual (e.g.,

mean response time) and network features (e.g., hubs, authorities, cliques). We compare

such networked approaches to our own in Section 6.6.

Semi-supervised learning. Professional role inference in email networks (from a tech-

nical standpoint, multi-class classification) can also be modeled as semi-supervised learn-

ing [Zhu05, BC01] or belief propagation [YFW03, ?]. The key idea is to leverage not only

labeled, but also unlabeled data, during the classification task. One related work from this

domain is LinBP [GGKF15], a linearized version of belief propagation that can handle a mix

of homophily and heterophily in multi-class settings. It should be noted, though, that such
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Table 6.1: Qualitative comparison of EMBER to alternatives. (1-2) Directionality & con-
nection strength: Can the method handle directed and weighted edges? (3) Node specific:
Can it embed only a subset of nodes? (4) Proximity independence: Is it independent of node
proximity? (5) Scalable: Is it subquadratic in the number of nodes?

Directionality Conn. strength Node specific Prox. indep. Scalable
SNA [ARKG13] 3 3 7 7 7
Rolx [HGER+12] 3 3 7 3 3
LINE [TQW+15] 3 3 7 3 3
node2vec [GL16] 3 3 7 7 3
struc2vec [RSF17] 7 7 7 3 7
GraphWave [DZHL18] 3 3 7 3 ?
DNGR [CLX16] 3 3 7 7 7
LinBP [GGKF15] 7 3 7 7 3

EMBER 3 3 3 3 3

Figure 6.2: Illustrative example of structure in email networks. Employee u’s 2-step out-
neighborhood N 2+

u consists of employee v, and the weight of the path (Section 6.4.1) from u
to v is 10 ∗ 5 = 50.

methods require explicitly specifying the amount of homophily between connected nodes,

which may not be known in advance.

6.3 Preliminaries

We consider a weighted, directed graph G = (V,E). In an email network such as the

one we consider, the graph’s nodes V represent employees or, more generally, users of the

email client in question, and the edges E ⊆ V × V corresponds to directed communications

between employees. An edge has weight wuv, which captures the number of emails employee

u has sent employee v, and vice versa for wvu. Let U ⊆ V be the subset of nodes (employees)

in V for whom we want to infer roles (those for whom we do not have ground-truth labels).

Next, we define directed neighborhoods in the email network. Given a node u, let N k+
u

be u’s k-step out-neighborhood, or the nodes that can be reached in a directed path of k

edges from u. For example, u’s out-neighborhood for k = 1 are all the nodes toward which

u has outgoing edges. Likewise, let N k−
u be u’s k-step in-neighborhood, or the employees
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from which u is reachable by a directed path of k edges. We give an illustrative example

of directed neighborhoods in the context of email networks in Figure 6.2, where employee

(node) u’s 2-step out-neighborhood N 2+
u consists of employee v.

Finally, let Pk+
u→v be a directed k-step shortest path from node u to v ∈ N k+

u . In Figure 6.2,

the path P2+
u→v consists of two edges: one from u to the intermediary gray employee, and one

from the intermediary employee to v. Ingoing paths are similarly defined.

6.4 EMBER: Embedding Email-based Roles

Our proposed method, EMBER, is motivated by our observation that outgoing and in-

coming edges have different semantic meaning (e.g. sending versus receiving an email) and

should thus be analyzed separately. Moreover, edge weights should be used when analyz-

ing the effect of a node’s connections within its neighborhood: intuitively, a if a node has

a (strong) high-weight connection to a neighbor, then that neighbor should influence its

structural identity more than a neighbor to which the original node only has a tenuous (low-

weight) connection. In the context of email, properties of an employee’s regular contacts

are probably more informative than properties of the people with whom the employee only

exchanges emails a few times.

The steps of EMBER are:

S1 Capturing weighted and directed local network structure around each node (Section 6.4.1),

S2 Learning embeddings that preserve node similarity based on this local structure (Section

6.4.2),

S3 Role inference via multi-class classification (Section 6.4.3).

In this section, we describe each step in detail, and conclude with the asymptotic com-

plexity of EMBER in Section 6.4.4.

6.4.1 Structural Behavior in Weighted, Directed networks

First, we want to mathematically capture local structure around each node (step S1),

with the ultimate goal of later obtaining embeddings that preserve the similarity between
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nodes with similar local structure, which we will show lends itself very well to professional

role inference.

Capturing active communication. Intuitively, an important part of characterizing the

neighborhood of each mpde u is identifying important neighbors with which u has strong

direct or indirect connections.Given node u’s k-step in and out neighborhoods N k+
u and

N k−
u (Section 6.3), we propose to capture this intuition by weighting paths between u and

its (in/out) neighbors. These path weights will be used in our final definition of structural

behavior, when we formulate a unified version of “what the neighborhood around u looks

like” (Section 6.4.1).

We define the weight of an outgoing k-step path Pu→v as the product of all edge weights

in the path, i.e.,

path_weight
(
Pk+
u→v
)

=
∏

(i,j) ∈ Pk+u→v

wij, (6.1)

There are other ways to define path weights, for example with summations instead of prod-

ucts, but this is not essential to our work and we find empirically that products work well.

In our simple example in Figure 6.2, the path weight from employee (node) u to employee v

is 10 ∗ 5 = 50. Note that it is not the exact value of the path weight, but rather the relative

values of path weights as compared to each other, that will be important.

Structural behavior histograms. As a reminder, our ultimate goal is to define a mathe-

matical notion of “structural behavior” that captures the local structure surrounding each em-

ployee in the email network, where local structure includes edge directionality (received/sent

emails) and weights (volume of communication). We propose to do this by creating a

weighted histogram (i.e., a vector of counts) per node u that captures what the neighborhood

around u looks like, using the previously defined path weights, as well as the degrees of u’s

neighbors, which themselves capture how well-connected those neighbors are.

Let dk+
u (dk−u ) be employee u’s outgoing (ingoing) structural behavior vector in her k-step

neighborhood. Each entry of this vector, or histogram, captures the employees in u’s k-step

neighborhood of a certain level of connectedness (i.e., of degree ∆), and also incorporates the

weight of the path from u to each node of that degree, which can be seen as the importance
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of those nodes to u. Here, we use a logarithmic grouping scheme to group larger ranges of

high-degree nodes together, to reflect the skewed (power law) distribution of communication

commonly observed in real-world social and information networks.

Let Dk+
u be the set of nodes in u’s k-step out-neighborhood with degree ∆. In other

words, Dk+
u = {v ∈ N k+

u | blog2(deg(v))c = ∆}. Then, we define the ∆-th entry of u’s

outgoing structural behavior histogram at k steps as

dk+
u,∆ =

∑
v∈Dk+u

path_weight
(
Pk+
u→v
)
, (6.2)

with ingoing structural behavior at k steps defined similarly.

Putting it all together. To capture higher-order information in the network beyond

direct connections, we want to capture local structure for each node in the network across

different distances k. Therefore, we propose a formulation to this end that captures the

diminishing importance at higher step distances k (i.e., for nodes not as closely connected

to u in the network). As such, given a maximum step distance K (limited by the diameter

of the network), we define the overall outgoing structural behavior d+
u—note the absence of

the k superscript here, which distinguishes from the definitions in Section 6.4.1—as a linear

combination of k-step structural behaviors dk+
u :

d+
u =

∑K
k=0 δ

k dk+
u , (6.3)

where δk is a “discount factor” to capture thet diminishing importance of higher step dis-

tances. As with all previously described equations, the ingoing behavior histogram dk−u is

constructed similarly. Finally, to unify the ingoing and outgoing histograms, which will allow

us to obtain embeddings as discussed in the next section, we simply concatenate the in- and

out-histograms to obtain the final structural behavior vector for node u as bu = [d+
u ,d

−
u ].

6.4.2 From Structural Behavior to Embeddings

So far we have constructed per-node structural behavior histograms bu by following

ingoing and outgoing paths. Our next goal is to use these histograms to obtain latent features

via embeddings, which we will show in Section 6.6 are powerful tools for role inference. As
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it has been shown that many existing embedding methods implicitly or explicitly factorize

a node-to-node similarity matrix S, whose construction varies by method [QDM+18], we

take advantage of this connection and turn to fast and theoretically-sound implicit matrix

factorization for a scalable approach (step S2).

To distinguish the conceptual differences between explicit and implicit matrix factoriza-

tion for node embedding, consider that in the explicit matrix factorization approach, we

would need to construct and factorize a node-to-node similarity matrix S that captures

the similarity between nodes’ structural behavior histograms bu. But instead of exactly con-

structing the full matrix S, which is quadratic in the number of nodes to embed, and learning

an approximate factorization of S, we utilize a low-rank approximation of S that never has

to be computed, because its decomposition has a known, exact factorization. Here, we adapt

our method from Chapter III for constructing embeddings from the Nyström decomposition:

Theorem 6.1. Given a network G with a |V| × |V| structural similarity matrix S ≈ YZT ,

its node embedding matrix Y can be approximated as Y = CUΣ1/2 , where C is the matrix

of similarities between the |V| nodes and p landmark nodes [DM05], and W† = UΣV> is

the SVD of the pseudoinverse of the p× p landmark-to-landmark similarity matrix W.

The key takeaway is that we select a small number p of nodes called landmarks, and com-

pare the nodes for whom we want to learn embeddings to infer roles against the landmarks.

Let us assume that we want to infer the roles for all the nodes V in the network. Therefore,

to obtain structural embeddings via the technique above, we only need to perform a small

fraction of node-to-node comparisons |V| × p stored in C (p� |V|), and a few “expensive” ’

computations on the small p× p (sub)matrix W.

Now, it is only left for us to discuss: (1) how we compute structural similarity between

two nodes’ structural behavior histograms bu,bv; (2) how we select the landmarks; and

(3) how we embed only a set of nodes of interest, which makes EMBER even more scalable

than the technique described in Theorem 6.1.

Structural user similarity. We define the similarity between two nodes u and v based on

their structural email behaviors as sim(u, v) = e−||bu−bv ||, where || · || is a vector norm, for

example Euclidean distance. Recall that our setting assumes no additional side information
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for nodes beyond the structural information in the graph. (This is done for privacy reasons

in our email application. However, we could include a term to incorporate the attribute

similarity of nodes if this information were available, as in Chapter III.)

Landmark selection. In EMBER the number of landmark nodes p determines the di-

mensionality of the generated embeddings. The landmark nodes, used for the construction

of the “thin” C similarity matrix, can be sampled uniformly at random [WS01] or accord-

ing to more sophisticated matrix theoretic methods [KMT12]. Domain-specific heuristics,

such as sampling nodes with probability proportional to their degrees, are fast to compute

and thus plausible to use. Indeed, for the problem of professional role inference, they lead

to more competitive and stable classification accuracy than random selection. Intuitively,

since the embeddings preserve similarity with respect to the landmarks, to capture diverse

structural behavior in the embeddings it is advantageous to ensure structural diversity in

the landmarks.

User subset embedding. In many applications, it is only necessary to embed some of the

nodes U ⊆ V , where |U| � |V|. For example, in our application, an email client might only

need to infer the organizational roles of a small subset of employees of interest.

As the embedding computations in Theorem. 6.1 involve direct comparison only to land-

marks, we can embed any subset of nodes, as opposed to the entire network, which makes

EMBER unique among representation learning techniques. Specifically, C can easily be

adapted to be a |U| × p matrix that holds the user-to-landmark similarities only for employ-

ees of interest.

6.4.3 Professional Role Classification

Given the embeddings from §6.4.2, we infer organizational roles via multi-class classifi-

cation (step S3). We assume that the roles of some nodes are known, and predict the roles

of the remaining nodes using supervised machine learning techniques on their embeddings.

We give more details on the task setup in Sec. 6.6.2. The overview of EMBER is given in

Algorithm 6.1.
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Algorithm 6.1 EMBER: EMBedding Email-based Roles
Input: Email network G = (V,E), nodes of interest U ⊆ V , maximum step K, discount factor δ ∈ (0, 1]
Output: Roles for the node of interest U
S1: Capture structural behavior in email network

1: Outgoing / incoming structural behavior histograms bu ← 0
2: for k = 1 . . .K do
3: Construct k-step outgoing / incoming histograms bku . Eq. 6.2
4: Update outgoing / incoming histograms to bu ← bu + δkbu
5: Concatenate final histograms into bu ← [b+

u ,b
−
u ]

S2: Embed nodes in network
6: Select set of p landmark nodes . Section 6.4.2
7: Compute C as |V| × p similarity matrix of behavior histograms bu,bv
8: Compute the SVD of the pseudoinverse of the small submatrix W of C
9: Obtain embeddings Y ← CUΣ1/2 . Theorem 6.1

S3: Role inference
10: Learn a classifier with embeddings Y and the known roles

6.4.4 Computational Complexity

Here, we analyze the complexity of EMBER steps S1 and S2, since S3 can be imple-

mented with well-studied supervised machine learning methods. Recall that scalability is

an important requirement of our approach, since our task is motivated by the prevalence of

third-party email applications that handle large amounts of data.

Assuming that we are obtaining embeddings for |U| employees, step S1 of EMBER is

O(|U|K∆2
avg + |U|p log2 ∆max). Here, ∆avg is the maximum between the average user in-

degree and average user out-degree in the email network. In the second term, the factor of

log2 ∆max in the second term comes from logarithmic binning (Section 6.4.1), with ∆max is

the maximum total degree in the graph and p being the number of landmarks (Section 6.4.2).

Step S2 requires O(p3) time to compute the pseudoinverse of the p× p similarity matrix W,

and then O(|U|p2) time to left multiply it by C. Since p << |U|, the total time complexity

for this step is O(|U|p2). For large-scale problems, p, ∆avg, and K are all asymptotically

much smaller than |U|, meaning that EMBER runs in time subquadratic to |U|.

6.5 Data

In this section, we introduce our datasets and discuss how we standardized and cleaned

them.
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6.5.1 Email Corpora

New email dataset. Our new dataset, collected by the Trove AI email application, consists

of over 3.51 billion post-2014 emails from ∼ 130 000 users and their contacts. As far as

we know, this is the first dataset studied in email network analysis that contains both

intra- and inter -organization emails: exchanges between employees of the same company

and exchanges between employees of different companies, respectively. Per record, we retain

only a datestamp and the anonymized sender and receiver IDs. We also collected ground-

truth organizational roles by gathering email-to-organizational role mappings using an email

signature parsing tool and information from a third-party data provider, with the consent

of app users. This information is used only for evaluating EMBER.

We construct several weighted, directed email subnetworks from Trove’s email corpus. In

each network, each node is an employee and directed, weighted edges represent the number

of emails from the sender to the receiver. We give some descriptive statistics of the following

subnetworks in Table 6.2:

• Trove: All email exchanges between employees from several thousand companies during

2017.

• Trove-19, ..., Trove-318: Each of the five subnetworks captures the internal (intra-

organization) emails during 2017 within one company. The number after the dash indicates

the number of employees in the respective dataset.

• Trove-2K: All email exchanges between the employees of the five companies (Trove) and

all their contacts (within and across organizations) in 2017.

Established email dataset. We also use the well-studied Enron email dataset. This

dataset consists of email exchanges in 1999-2002 between the 116 Enron staff [SA06,

HHB+03] and their external contacts, for a total of 75 415 email users in the network. This

is the only publicly available email corpus containing employee role information. The basic

statistics of the Enron corpus are given in Table 6.2.
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Table 6.2: Overview of our datasets, consisting of sub-networks of Trove and Enron. We give the
number of employees (nodes), connections (unweighted, undirected edges), email exchanges
(weighted, directed edges), and the ground-truth distribution of roles (Section 6.5.2: O =
Officer; M = middle management; W = worker).

Employees Connections Emails Max in-degree Max out-degree # O | M | W

Trove-19 19 47 274 7 (115) 6 (103) 4 | 10 | 5
Trove-98 98 101 1769 20 (204) 4 (226) 53 | 32 | 13
Trove-141 141 1 242 9565 45 (644) 55 (1659) 23 | 79 | 39
Trove-183 183 3136 21 655 56 (827) 75 (1853) 16 | 133 | 34
Trove-318 318 1026 12 643 51 (2365) 46 (1306) 30 | 210 | 78
Trove-2K 2 414 16 281 183 443 97 (4197) 118 (4392) 495 | 1 300 | 620
Trove 9 989 507 40 290 044 568 678 419 51 425(12 066 716) 150 481 (30809076) 495 | 1 300 | 620
Enron 75 416 319 935 2 064 442 1 442 (19198) 1 389 (65675) 31 | 44 | 41

6.5.2 Professional Roles

Standardization. While the categorization of professional roles may differ by organization

and domain area, we follow established literature [Har90, CB06] in organizational studies to

define three hierarchical professional roles. We adopt the terminology of [CB06] in particular,

and classify all employees as one of:

• Officers: These are “C-Suite” employees, meaning top-level officers such as CEO, COO,

and other executives. We also grouped co-founders of organizations into this class.

• Middle management: These are middle-level managers responsible for coordinating the

vision of officers by directing lower-level employees [CB06]. We included all non-officer

employees with titles including “Manager” in this class.

• Workers: These are employees who directly contribute to the day-to-day work of the

company. As to be expected, the titles in this category are more diverse, and include

associates, assistants, engineers, salespeople, etc.

Note that while some organizations may be more or less hierarchical than the categorization

we adopt, we use these well-established groupings to delineate between clearly distinguish-

able roles (e.g., salesperson versus CEO) while avoiding arbitrary distinctions (e.g., project

manager versus senior project manager), which differ between organizations and change over

time.

To categorize each employee into a hierarchical role, we match each professional role to

a set of manually curated keywords. We manually validate the categorizations due to the
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complexity of real-world job descriptions: for example, a “front office executive” is likely a

“worker”, not “officer”. We categorized all employees in both the Trove and Enron datasets.

If an employee’s role changed during the period of time that is captured in the email network

representation, we use her latest role as ground-truth. We give the distribution of professional

roles per dataset in Table 6.2.

6.6 Analysis and Insights

In this section we present analysis and insights by putting EMBER into practice. Our

main research questions are:

Q1 How does EMBER compare to the state-of-the-art in professional role inference?

Q2 How efficiently can EMBER infer professional roles?

Q3 Do roles across organizations of different sizes and sectors compare? What insights can

we gain from role correspondences across organizations?

We ran all our analyses on a machine with a 6-core 3.50GHz Intel Xeon CPU and 256GB

memory.

6.6.1 Experimental Setup

Here we briefly describe how we set up our experiments, including variants of EMBER

we studied, baselines to which we compared EMBER, and choices of parameters for all

methods compared.

EMBER variants. One of the main hypotheses of this work is that capturing email-

specific behavior via sent/received emails and the volume of communication in the network

is important in professional role inference. To test this hypothesis, we conduct our role

inference experiments with three variants of EMBER beyond the one proposed in Section

6.4: EMBER-U operates on unweighted, undirected graphs; EMBER-D only uses edge

directions; and EMBER-W only considers edge weights. We run all variants of EMBER

with maximum step distance K = 2 and discount parameter δ = 0.1. We select the p

landmark nodes with probability proportional to their degrees.
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Baselines. Professional role inference can be approached with a variety of techniques.

In our evaluation we consider nine baselines spanning well-known social network analysis,

unsupervised and semi-supervised learning, and network embedding techniques. From the

non-embedding literature, we compare to:

1. SNA or Social Network Analysis [ARKG13] classifies roles based on graph statistics in-

cluding degree, clustering coefficient, PageRank, HITS, and betweenness. To make the

computation on the two largest networks (Enron and Trove) feasible, we estimate the

betweenness centrality by sampling 1 000 users.

2. RolX [HGER+12] is an unsupervised method that automatically infers structural roles

via non-negative matrix factorization. We use the default settings provided in the paper.

3. LinBP [GGKF15] is a belief propagation approach that leverages both the input labels

and the network structure for classification. As input it requires a matrix of potentials

H, which defines the homophily between the different professional roles. We set it to

[.45 .35 .2; .25 .5 .25; .25 .3 .35] based on the frequency of interactions between officers,

middle managers, and workers in Trove-2K.

The embedding methods that we compare to are:

4. LINE [GL16] We use 2nd-LINE to incorporate 2-order proximity and set other parameters

to the provided defaults.

5. DeepWalk [PARS14] is a proximity-based embedding method that obtains node context

via random walks.

6. Node2vec [GL16] is a generalization of DeepWalk that strikes a balance between ho-

mophily and structural equivalence. We set its random walk hyperparameters p = 1 and

q = 100 to put more emphasis on structural equivalence, as other settings resulted in

worse performance.

7. DNGR [CLX16] uses a deep neural network on the positive pointwise mutual information

matrix to embed weighted graphs. We use a 3-layer neural network model and set the

random surfing probability α = 0.98, as recommended in the paper.
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8. Struc2vec [RSF17] is an embedding method that preserves structural similarity, unlike the

previous approaches. It is the most related to EMBER and RolX. We keep the default

settings stated by the authors with all 3 optimizations.

9. GraphWave [DZHL18] computes structural embeddings based on heat wavelet diffusion.

To evaluate the characteristic functions we use τ = p timepoints (equal to the dimension-

ality), and the default values for all the other parameters.

For all the embedding methods, including ours, we follow the literature by setting the di-

mension p = 128 for the email networks with more than 128 employees. Note that in the

case of EMBER, the number of landmarks p corresponds to the embedding dimensionality

p. For the smaller networks Trove-98 and Trove-19, we set dimension p = 64 and p = 16,

respectively.

6.6.2 Predicting Professional Roles

In this section, we address question Q1, the key application and driver of our work: How

accurately can EMBER infer employees’ professional roles from email network data?

Methodology. As discussed in Section 6.5.2, we cast the professional role inference prob-

lem as a multi-class classification task with three roles: officers, middle management, and

workers. We evaluate all methods using the ground truth organizational roles per dataset

(Table 6.2). For all the supervised methods, we feed the generated node representations

(hand-crafted features for SNA, and embeddings learned from the rest) as inputs to the

classifier. Our classification model is a one-vs-all SVM with linear kernel (penalty C=1, 106

iterations, and 10−6 tolerance); other models yielded similar results.

We perform 5-fold cross-validation across methods and datasets, and report the average

(across folds) micro-AUC over all classes. For LinBP, which is semi-supervised, to imitate

the 5-fold CV setting for the supervised methods, we select 80% of employees with ground

truth to construct the explicit beliefs matrix E—i.e., the known employee roles. LinBP then

directly assigns a class to each user based on her maximum final belief. For RolX, which

is an unsupervised method, we report the accuracy of the best match between the identified

(structural) roles and the ground truth classes. Table 6.3 presents the micro-AUC results.
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Table 6.3: Performance (AUC) of role inference across datasets and methods. “—” means that
the method failed to finish within our time limit (12 hrs). EMBER and its variants prove
strong in the role inference task. Moreover, EMBER outperforms its unweighted/undirected
variants, demonstrating the importance of accounting for the volume and reciprocity of email
exchanges in role inference. The asterisk, ∗, denotes statistically significant improvement
over the best baseline at p < 0.05 in a two-sided t-test.

SNA RolX LinBP LINE DW n2v s2v DNGR GW E-U E-D E-W EMBER

TR-318 .7605 .5670 .6908 .6618 .7602 .7648 .7799 .7131 .7685 .7749 .7563 .7625 .8045∗

TR-183 .7648 .5787 .7718 .5657 .8071 .8223 .8264 4925 .6391 .7986 .7838 .8186 .8241
TR-141 .6738 .5591 .7409 .7102 .7191 .7474 .7391 .6235 .7112 .7291 .7309 .6971 .7568∗

TR-98 .6676 .5177 .6323 .6872 .5587 .6198 .6498 .5329 .7177∗ .6040 .5857 .6333 .6911
TR-19 .5429 .6981 .6248 .7184 .5531 .5959 .6102 .6089 .7157 .6837 .7204 .6939 .7337∗

TR-2K .6305 .5212 .6622 .6771 .6769 .6780 .6802 .6527 .6594 .6689 .6345 .6677 .6745
Trove .6633 .5280 5454 — .6866 .6951 — — — .6905 .7141 .7122 .7162∗

Enron .6205 .5197 .5000 .6931 .7201 .7389 — .5709 — .7393 .7347 .7305 .7305

Findings. We immediately observe from Table 6.3 that while professional role inference is

challenging, EMBER is clearly well-suited to the task, justifying our email-centric embed-

ding approach over more generic techniques. Indeed, the email-centric design of EMBER

leads to a statistically significant improvement over other methods on most datasets, by an

average of 2-20%. In the cases where EMBER is not the highest performer, it is a close sec-

ond by a statistically insignificant margin. The good performance of EMBER is expected, as

it is tailored to email networks and their rich structural information. Note that DNGR and

GraphWave failed to finish within our time limit (12hrs) on Trove and Enron (Table 6.4).

LINE and struc2vec failed to finish on Trove.

Observation 6.1. Structural roles of users as nodes in email networks are strongly indicative

of their professional roles. EMBER captures these well with its email-specific design choices.

Importantly, we find that for all networks other than Enron, EMBER performs best when

using both edge connection strengths and directionality. This confirms our initial hypotheses

that the volume and reciprocity of email activity both characterize behaviors, which in

turn distinguish professional roles, and justifies our use of such characteristics in the design

of EMBER. That said, the Enron dataset is an exception. Here, both edge weights and

directionality lead to marginal (< 1%) decreases in EMBER’s accuracy. We hypothesize

that this may be due to diverse, erratic email exchange behavior during the company’s fraud

crisis, which has been well-documented in the media and literature [WB09].
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Table 6.4: Average runtime in seconds, capped at 12h. While RoLX is faster for the smaller
datasets, EMBER proves uniquely scalable on the Trove and Enron networks, which have up
to millions of edges.

Trove-318 Trove-2K Trove Enron

SNA 6.32 16.45 3193.26 333.33
RolX 0.14 0.16 2150.53 205.92
LinBP 0.54 2.88 14607.44 1038.09
LINE 171.95 153.12 >12h 267.48
DeepWalk 3.12 21.59 2464.13 255.84
node2vec 2.85 24.55 3484.05 254.60
struc2vec 17.48 188.65 >12h 29286.38
DNGR 21.05 72.83 >12h >12h
Graphwave 2.73 5.66 >12h >12h

EMBER 2.50 16.87 830.80 84.98

Observation 6.2. Modeling edge weights and directions generally improves professional role

inference.

6.6.3 Efficiency of Inference

We now turn to question Q2: How fast is EMBER? Recall that our initial problem

is motivated by the prevalence of third-party email applications that can benefit from role

inference over email networks. Therefore, here we investigate whether EMBER is scalable

enough to be practical in real-world scenarios.
Methodology. We measured the time required to obtain the roles of employees in email

networks of different size in the previously discussed role inference task. In Table 6.4 we

report the average runtime in seconds across the 5 folds, and the average across 5 runs of

the unsupervised RolX method.

Findings. We find that EMBER proves uniquely scalable for the large-scale Trove and

Enron datasets, being 2.5 − 344× faster than all other methods that complete. This is

especially true for the representation learning approaches that are most competitive with

EMBER. Indeed, EMBER is over 4× faster than node2vec, and 508× faster than DNGR

and GraphWave, based on their (incomplete) runtime of over 12 hours. This is not surprising

given that EMBER relies on implicit factorization and can embed a given subset of nodes

(Section 6.4.2). As a representative example, on the Trove network, which has over 40

million edges, EMBER needs less than 14 minutes to infer professional roles. EMBER is
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(a) Mapping similar employee behav-
iors from Trove-318 to Trove-98.

(b) Mapping similar employee behav-
iors from Trove-98 to Trove-318.

(c) Mapping professors to industry
roles.

(d) Mapping graduate students to in-
dustry roles.

Figure 6.3: Mapping roles across companies and sectors. (a) and (b) indicate that employees
in the bigger company Trove-318 are similar to positions at and above “management” in the
smaller company Trove-98, and employees in Trove-98 are similar to positions at and below
“management” in Trove-318. (c) and (d) show how similar “Professors” and “Graduate Stu-
dents” are to job titles in different-sized companies: professors become more “important” in
smaller companies (mapping to officers), while students are more similar to the management
(or other positions) across companies.

thus highly scalable, making it a practical candidate for real-world analysis of organizational

communication, and for third-party email clients that recommend contacts and help prioritize

emails.

Observation 6.3. EMBER is an extremely practical choice for large-scale tasks, much more

so than the most competitive baseline methods.

6.6.4 Comparing Professional Roles

Finally, we address question Q3 by performing a qualitative study of whether we can

use the EMBER embeddings to compare professional roles across organizations. This task
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is motivated by the unique nature of our Trove dataset, which comprises emails from many

organizations of different sizes and sectors.

Methodology. For the questions we asked in this study specifically, we used both the

Trove-2K dataset studied in the previous sections as well as an academia-specific dataset

collected from a university that collaborates with some of the companies in the Trove dataset.

For reference, the academic email network consists of 3 078 users and 231 470 email exchanges.

First, we use EMBER to embed all employees in the Trove-2K network and the academia-

specific network. Then, for all pairs of employees, we compute the `2 norm of the differences

between the respective embeddings. We say that employee u at organization A “maps” to

employee v at organization B if the `2 distance between u and v is minimal for all employees

compared to u in B: v = arg minj∈B ||yu − yj||2, where yu and yj correspond to EMBER

embeddings of employees u and j, respectively. In Figures 6.3a-6.3b, we show mappings of

officers, middle managers, and workers across Trove-318 and Trove-98. The darker the

color in the heatmaps, the more frequent is the corresponding employee mapping between

the companies.

Findings. Interestingly, most employees at the bigger company (Trove-318) map to high-

ranking positions at the smaller company (Trove-98), whereas most employees at Trove-98

map to lower -ranking positions at Trove-318. One potential explanation is that employees

in larger companies may be more well-connected, in and outside of their own companies,

and thus appear “higher-ranking” as compared to less well-connected employees at smaller

companies. We also observe that middle management roles are similar to all other roles across

companies, which may be because managers take on many fluid roles in the workplace, from

core leadership to more basic day-to-day activities. We see similar patterns across all pairs

of companies in the Trove dataset.

Using the academia email network, we also evaluate the similarity between academic

roles and industry roles. Here we compare “professors” and “graduate students” to officers,

middle management, and workers across the five companies in Trove. We find that professors

are indeed similar to CEOs of smaller companies (Trove-98 and Trove-19), and more like

managers in bigger companies (Trove-318 through Trove-141). We find this result fairly

intuitive, given the day-to-day roles of university professors, who usually manage a (relatively
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small) group of students and staff, similar to higher-ranking employees in small companies

and middle-ranking employees in large companies. Likewise, we find that graduate students

are more like lower-level employees in small companies, suggesting that academic roles have

some hierarchical equivalence with industry roles, and especially so in startups.

Observation 6.4. Professional roles look different at differently sized companies due to

the larger overall scale of communication at larger companies. Academic and corporate job

hierarchies meaningfully correspond.

Our analysis has shown that the email-based behaviors of employees are indeed related

to the size of the organizations for which they work. Therefore, changes in these role corre-

spondences may inform company dynamics. For example, they may imply ongoing structural

shifts which need to be addressed via reorganization [DA79]. We believe that our findings

have significant potential to inform business choices in the real world.

6.7 Conclusion

Motivated by the prevalence of email in the workplace and the myriad of third-party

email applications that could benefit from inferring characteristics about users, in this paper

we study professional role inference in email networks. This chapter serves as a case study

for the application of structural node embeddings on a new dataset with both intra- and

inter -organization email exchanges, which enables our unique and extensive experiments and

analyses.

We introduce EMBER, which infers roles by leveraging embeddings learned from the

structural behavior of employees in the network. Our results showed the effectiveness of

EMBER, which is 4− 25% more accurate and 2.5− 344× faster than a wide range of base-

lines consisting of diverse techniques, from network-scientific feature engineering to node

embedding to semi-supervised learning. Our node embeddings also allowed us to uncover

interesting new insights about the nature of organizational hierarchy across companies, re-

vealing differences and similarities in roles across companies and employment sectors in a

unique case study. We can see that structural node embedding is a powerful tool enabling
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a variety of useful qualitative and quantitative insights on large-scale, complex real-world

problems.

113



CHAPTER VII

Evaluating Structural Embeddings

Chapter based on work that appeared at KDD MLG Workshop [JHJK20].

7.1 Introduction

Our final research chapter of this thesis concludes our study of the praxis of node em-

beddings. In the previous chapter, we saw the effectiveness of structural node embeddings

at mining new insights on an industry-scale task, and throughout the thesis we have seen

structural embeddings applied in the context of many downstream collective network mining

tasks. We hope that the methodology we have introduced in this thesis, and the example

use case we have laid out in Chapter VI, will inspire many more effective use cases. To

look forward, however, we must first look closely at the current praxis of structural node

embeddings. What are current methods learning, and how can we evaluate what a method

is learning or should learn? Are the current practices in structural node embedding research

optimal for identifying methodological progress?

Though the focus of the previous chapters have largely been on collective graph mining,

we focus on the individual graph mining tasks that other research works commonly use

to evaluate structural node embedding. (In Section 7.8, we do evaluate a large collection

of existing structural embedding methods in the context of our frameworks for collective

network mining.) To understand structural node embeddings more deeply, we return to

decades-old concepts of network roles and positions in sociology from which many modern

methods claim loose inspiration. A position or equivalence class describes a collection of
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individuals with similar roles, i.e., similar functions, ties or interactions with individuals in

other positions [WF94]. Depending on the type of equivalence (e.g., automorphic, regular—

cf. Section 7.3.1), different positions and roles arise that enable both multi-network tasks

(e.g., network alignment and classification [HSSK18, RJK+20], transfer learning [HGER+12])

and single-network tasks, including structural role classification, anomaly detection, and

identity resolution [JHRK19]. To capture the notion of roles in the network, structural

embeddings are typically based on feature-based matrix factorization [HGER+12, HSSK18]

or random walks [RSF17], graphlets [ARL+19], or more recently LSTMs [TCW+18].

While proximity-based methods are evaluated rigorously on a set of well-understood tasks

using established datasets, the evaluation of structural embeddings is less mature. It relies

mostly on limited experiments on a barbell graph, or structural node classification / clus-

tering of small real datasets (mainly air-traffic networks) with node labels whose definitions

are contrived. It also lacks rigorous connections to the types of equivalence from which role

discovery in networks stems.

Our goal in this work is to contribute toward the systematic evaluation of unsuper-

vised feature representations of nodes. In natural language processing, evaluation of un-

supervised word representations has long been recognized as an important area of study.

Prominent works have as their objective the standardization of evaluation of word embed-

dings [SLMJ15]. Other works have pointed out additional evaluation methods and challenges

to the point where a multi-year workshop has arisen dedicated to the evaluation of word

embeddings1, and the field of word embedding evaluation now warrants a survey [Bak18].

Node embedding, being a comparatively newer area of study, is only now starting to see

similar growth, and the recent works that have focused on intrinsic [DG18] or extrinsic

evaluation [GHG+19, GVS+19] of node embeddings focus only on proximity-preserving em-

beddings. Interest in structural embeddings, has been growing, however, and a recent survey

distinguishes them from proximity-preserving embeddings [RJK+20]. A standardized anal-

ysis of structural embedding methods is essential to ensure that the problem area indeed

continues to see forward progress.

Toward this end, we provide a novel, comprehensive evaluation methodology for
1https://repeval2019.github.io/
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systematic analysis of structural embedding methods with respect to the socio-

logical theories of equivalence. Our main contributions are:

• Evaluation Methodology. This is the first paper to introduce a variety of evaluation

methods for unsupervised structural node embeddings. These are based on: (i) intrinsic

measures related to equivalence definitions (§ 7.3.1), which help us decouple the effec-

tiveness of methods from classifiers in downstream tasks, and (ii) extrinsic measures that

characterize their performance in the context of high-value tasks, for which we rethink the

ground truth used in prior work.

• Appropriate Datasets. We introduce new benchmark datasets, and ways to obtain

ground truth roles (§ 7.4). We hope that these datasets will change the way structural

embeddings are evaluated.

• Understanding. Our empirical analysis of 11 methods (§ 7.3.5) on 35 real and synthetic

datasets (§ 7.4) and a variety of tasks shows that different methods win based on different

metrics, label definitions, downstream machine learning models, or embedding similarity

functions (e.g., cosine vs. Euclidean). This analysis highlights that there is no one optimal

structural embedding. Moreover, we evaluate the extent to which sociological equivalences

are captured by different structural embedding methods (§ 7.6). Also, besides merely

comparing the performance of different methods on downstream tasks, we further analyze

their performance at a finer granularity to understand for which types of nodes current

methods perform best (§ 7.7.4).

• New Design Insights. We find that degree distribution in nodes’ local neighborhoods is

effective as a feature representation in its own right as well as the building block for some of

the most successful embedding methods. This can influence the design of future structural

embedding methods and/or serve as a standalone baseline for structural embedding tasks.

We have made code that can be used to reproduce our experiments publicly available at

https://github.com/GemsLab/StrucEmbeddingGraphLibrary.

After reviewing the related work, we present key concepts from social science that have

inspired the work on structural embeddings.
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7.2 Related Work

Understanding Latent Representations. Unsupervised latent feature representations

or embeddings have been applied to a wide variety of objects2, having been shown to yield

powerful performance on downstream tasks. However, because these are latent features, it is

difficult to interpret them, thus it is unclear why certain methods do well or how to evaluate

them. The NLP community has taken this challenge very seriously. Prominent works have

as their objective the standardization of evaluation of word embeddings [SLMJ15]. Other

works have pointed out additional evaluation methods and challenges to the point where a

multi-year workshop has arisen dedicated to the evaluation of word embeddings3, and the

field of word embedding evaluation now warrants a survey [Bak18].

Node embedding, being a comparatively newer area of study, is only now starting to

see similar growth. A few recent works [GHG+19, GVS+19] benchmark the performance of

popular node embedding algorithms on a variety of tasks and datasets. This can be seen

as a form of extrinsic evaluation of the embeddings in the context of downstream tasks.

Large-scale intrinsic evaluation of node embedding is not as common, but another work

has sought to understand various proximity-based node embedding methods by seeing what

common centralities they are capable of predicting [DG18]. All of the above works, however,

focus exclusively on embedding methods that preserve similarity in the latent feature space

between nodes that are in close proximity in the network. Interest in structural embeddings,

has been growing, however, and a recent survey distinguishes them from proximity-preserving

embeddings [RJK+20]. A standardized analysis of structural embedding methods is essential

to ensure that the problem area indeed continues to see forward progress.

Node Embeddings. For more background information on node embeddings, see Chapter II.

In Section 7.3.5, we provide a detailed description of the proximity-preserving and structural

node embeddings we empirically evaluate in this chapter.
2https://github.com/MaxwellRebo/awesome-2vec
3https://repeval2019.github.io/
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Figure 7.1: Different types of equivalence. Nodes filled with the same color belong to the same
equivalent roles.

7.3 Methodology

In this section, we first introduce node embedding and describe in more detail several

methods that we will empirically analyze in this work. To understand better what structural

node embeddings learn, we turn to concepts introduced in other academic disciplines to

analyze the structural roles of nodes: role equivalences in mathematical sociology, as well as

statistics developed by network scientists to measure node connectivity and centrality. We

then present the tasks for which we evaluate node embeddings, and finally the goals of our

research study.

7.3.1 Equivalence in Social Science

Structural embeddings are related to the notions of social roles or positions, which are

central in sociology for understanding how the society or groups are organized. Role refers to

the patterns of relations between individuals, or the ways in which individuals relate to each

other. Position or equivalence class describes a collection of individuals with similar activity,

ties or interactions with individuals in other positions [WF94]. The formal definitions of these

terms are based on network methods, which led to their wide adoption in social network

analysis. In network analysis, (structural) roles of nodes include centers of stars, peripheral

nodes, bridge nodes, members of cliques, and more [HGER+12].

There are different types of equivalence, each of which is based on an equivalence relation

that defines a partition of a node-set to mutually exclusive and exhaustive equivalence classes

such that the nodes that are equivalent are assigned to the same class. Among the various

types of equivalence, we focus on three main types: structural, automorphic, and regular

equivalence.

Structural equivalence [LW71] is the simplest and most restrictive notion of equiva-
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lence:

Definition 7.1. Two nodes are structurally equivalent iff they have identical connections

with identical nodes.

For example, in Figure 7.1 nodes 0 and 1 are structurally equivalent. Structural equivalence

is rarely seen in real-world networks, and it is very strict form of structural similarity that is

closely related to proximity: two structurally equivalent nodes are at most two hops away from

each other [WF94, RA15]. We confirm empirically that proximity-preserving embedding

methods best capture this in Section 7.6.

Automorphic equivalence [BE92] was proposed to relax the notion of structural equiv-

alence. Intuitively, two automorphically equivalent nodes are identical with respect to all

graph theoretic properties (e.g., in-/out-degree, centralities) and may differ only in terms of

their labels. Examples include the nodes in each node-set {0, 1}, {2, 4}, and {5, 6, 8, 9} of

Figure 7.1. More formally:

Definition 7.2. Two nodes are automorphically equivalent iff there is an automorphism

(i.e., an isomorphism in the same graph) that maps one node to the other.

Although automorphic equivalence is less restricted than structural equivalence (and

also a superset of structural equivalence), its exact format is still expected to be rare in real

networks.

Regular equivalence [BE92] is among the most interesting and prevalent types of

equivalence in real networks:

Definition 7.3. Two nodes are regularly equivalent if they relate in the same way to equiv-

alent nodes.

This definition is more meaningful in multi-relational networks (e.g., heterogeneous graphs),

but it also applies to networks with a single relation. For example, similarly colored nodes

in Figure 7.1 correspond to regularly equivalent classes—e.g., nodes {2,3,4} are regularly

equivalent because they connect to nodes of the ‘red’ and ‘purple’ roles, although they do

not have the same degree (and, thus, it is more relaxed notion than automorphic equivalence).
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7.3.2 Network Statistics

7.3.3 Tasks

Node embeddings may be used for a variety of downstream tasks. To evaluate the utility

of various methods, we compare them based on several families of tasks which we discuss

here.

Single-Network Tasks. Structural node embeddings are often used to predict the la-

bels of nodes, when these are thought to correspond to a node’s structural role in a net-

work [RSF17]. The problem of node classification can be modeled as a supervised ma-

chine learning problem that can be solved with any off-the-shelf downstream machine learning

classifier [PVGea11] applied to the embeddings of the nodes. A related unsupervised task is

node clustering [DZHL18], which again can also be solved with standard machine learning

methods applied to the features of the nodes obtained via embeddings.

Link prediction seeks to infer whether two unconnnected nodes should share an edge.

It is a common task for node embeddings [GL16]; however, the fundamental insight needed

for link prediction is the proximity of the nodes (whether or not they should share an edge

and be in close proximity). This task is thus more suitable for proximity-preserving node

embeddings, and we do not study it further in this work.

Multi-Network Tasks. Structural node embeddings have also been shown to be useful for

tasks defined over multiple networks, as structural roles can be compared across networks.

A task that exemplifies node comparison across networks is network alignment, where the

objective is to find correspondences betwen nodes in different networks. REGAL [HSSK18]

was shown to yield strong results on this task by computing structural embeddings of nodes

in each network and matching nodes simply based on the similarity of their structural roles.

The structural embeddings for each node in a network can also be aggregated into a single

feature vector for the entire network, which may be used for graph-level tasks like graph

classification. RGM [HSK19] is a method for constructing graph feature maps from node

embeddings that was shown to yield competitive results on graph classification compared to

leading graph kernels and graph neural networks, with significantly faster runtime. Thus,

given a structural node embedding method, we can use it for graph alignment or classification
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by directly substituting it into the REGAL or RGM frameworks, respectively.

7.3.4 Research Goals

In this work, our goal is to help the research community understand and evaluate struc-

tural node embeddings. We contribute to the understanding and evaluation of existing

structural node embedding methods, but also with our analysis pave the way for better

understanding and evaluation of methods that are subsequently developed.

Understanding. Fundamentally, we want to learn what aspects of a “structural role”

do node embedding capture. Here, we turn to concepts of role equivalence developed in

mathematical sociology (Section 7.3.1), as well as network-scientific statistics (Section 7.3.2),

to see how well each embedding method captures these properties.

Evaluation. We propose new methods for intrinsic as well as extrinsic evaluation of struc-

tural node embeddings. Intrinsic evaluation directly evaluates the geometry of the node

embedding space, independent of any downstream task or method (e.g. a machine learning

classifier). The goal is to see how similarities between nodes in the embedding space correlate

to similarities defined by a ground-truth task or by the sociological and network scientific

concepts we introduce. Extrinsic evaluation, on the other hand, analyzes the performance

of a downstream task using the node embeddings. We cast our objectives for understanding

as an extrinsic evaluation, by using machine learning to predict role equivalences or network

statistics from the node embeddings. We also consider the single- and multi-network tasks

discussed in Section 7.3.3.

To study structural embedding methods meaningfully, we need datasets that highlight

what they are able to capture. Toward this end, we collect real datasets on which the data

mining task of interest (e.g. node labels for classification) relates to the structural roels of

each node. We also design an extensive collection of synthetic datasets, going beyond the

simpler constructions of previous works [RSF17, DZHL18] specifically to illustrate clear role

equivalences (Section 7.3.1).

While we empirically study a large majority of existing structural embedding methods,

the purpose of our evaluation is not primarily to choose a “winner” from existing structural

embedding methods. We see that various methods have their own strengths and weaknesses,
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and indeed our contributions are forward-looking with the goal of positively influencing the

development of future structural embedding methods. To be most constructive for future

developments in structural embedding methods,

• Identify factors unrelated to the node embeddings that may influence the ranking embed-

dings. In Section 7.7, we show that on the same graph, different structural embedding

methods may appear to be better or worse due to a variety of factors, like the perfor-

mance metric, distance metric used to compare node embeddings, downstream machine

learning model, or definition of node labels. Future works should be mindful of these to

avoid reporting apparent gains that are due to some factor other than the quality of the

embeddings.

• Highlight successful (and unsuccessful) design choices for different tasks. We design a

simple set of baselines, local degree histograms, that are based on design choices that

appear to perform well in many of the tasks we consider. Future works can not only

compare against these baselines, but also use the ideas they incorporate to develop more

effective methodology.

7.3.5 Selection of Structural Embedding Methods

In this work, we propose techniques for evaluating structural node embeddings in par-

ticular. We demonstrate these by analyzing a large number of existing node embeddings

methods, predominantly structural embeddings but with a few proximity-preserving node

embedding methods as well for contrast. In contrast to most of the recent works on graph

neural networks [KW17b], all node embedding methods that we consider in this work are

unsupervised, as we propose intrinsic evaluation that is not dependent on a downstream

task.

• Proximity methods. In our analysis, we consider two embedding methods that are

primarily proximity-based. (1) node2vec [GL16] uses the skip-gram architecture [MSC+13]

to learn an embedding for each node that preserves its similarity to other nodes in its context,

sampled with biased random walks. (2) LINE [TQW+15] optimizes an embedding objective

that maximizes the probability of the first and second-order proximities in the network
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(direct edges between any two nodes and mutual neighbors that any two nodes share, resp.).

Proximity methods are the topic of numerous surveys [GF18, RJK+20], and we refer the

interested reader to those.

• Structural methods. We also evaluate eight structural embedding approaches:

(3) struc2vec [RSF17] uses the same skip-gram architecture, but samples context with

random walks performed over an auxiliary multilayer graph capturing structural similar-

ity (mainly degree) of nodes’ neighborhoods at several hop distances. (4) GraphWave

[DZHL18] computes the heat kernel matrix for a graph and embeds each node by sam-

pling the empirical characteristic function of the distribution of heat it sends to other nodes.

(5) xNetMF [HSSK18] draws on the connection between the skip-gram architecture matrix

factorization [LG14] to find node embeddings that implicitly factorize a structural similarity

matrix, defined by comparing the distribution of node degrees in k-hop neighborhoods. Sub-

sequently, (6) SEGK [NV19] factorizes a structural similarity matrix using graph kernels

to compare the nodes’ k-hop neighborhoods. (7) role2vec [ARL+19] applies the skip-gram

model to a corpus sampled using attributed random walks which record the structural type

of each node. The method learns the same embedding for nodes of each structural type,

which enhances space efficiency. (8) RiWalk [XQQ+19] also uses the skip-gram model, but

learns an embedding for each node based on the structural types of nodes in its context.

(9) DRNE [TCW+18] contends that feature propagation is similar to the recursive defi-

nition of regular equivalence, and uses an LSTM to learn node embeddings by aggregating

the features of their neighbors sorted sequentially by degree. (10) MultiLENS [JRK+19],

similar to xNetMF, derives embeddings based on matrix factorization that captures the

distribution of structural features in nodes’ local neighborhoods. While we focus on un-

supervised methods in this paper and thus do not consider common graph neural network

models [KW17b, HYL17], it has been noted that MultiLENS performs local feature aggre-

gation akin to that of a graph neural network [JRK+19].

In addition to these ten ‘hybrid’ and structural methods, we also construct variants of

degree distributions over different neighborhoods, which can be seen as simple, yet strong,

baselines for embedding nodes. We represent each node with the degree distribution of its

k-hop neighbors—i.e, a histogram of dimension dmax, the maximum node degree in each
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dataset, in which the i-th entry counts the number of neighbors that are k hops away with

degree i. We refer to the 11th family of structural approaches that we consider as degree

that is simply the node’s degree, and degree1 and degree2 that are histograms based on 1-

and 2-hop neighborhoods.

Embedding Implementations and Hyperparameters. Unless otherwise mentioned,

our parameter settings for all methods follow default values suggested in the papers and/or

official/available author implementations. For convenience, below we cite the links to exact

versions of the code and data we used for our experiments. In order to make the comparison

between the embedding methods fair, we transform all the input networks to be undirected

and unweighted. For all methods, we learn 128-dimensional embeddings by default following

common practice.

• For node2vec [GL16], we bias the random walks with parameters p = 1 and q = 4 to tune

the walks to capture more structural equivalence using parameter values considered in the

original paper [GL16].

• For the skip-gram methods (node2vec, struc2vec [str], RiWalk [riw], and role2vec [rol]), we

sample context by performing 10 random walks (80 for struc2vec, which performs these

walks on a more complex multi-layer structural similarity network) of length 80 per node.

We set the skip-gram window size to 10 and optimize the objective using 10 iterations of

gradient descent. Taking care of scalability, we use all three optimizations for struc2vec

and degree (or motifs, if applicable) as the feature for role2vec.

• For LINE [LIN], we set the order to be 2 and the total number of training samples to be

100 million and negative samples to be 5.

• For GraphWave [gra], we use the automatic selection method of the scale parameter [DZHL18]

and exact heat kernel matrix calculation.

• For struc2vec, xNetMF [xne], and SEGK [seg], we consider up to 2-hop neighborhoods. In

RiWalk, which also has a node neighborhood radius parameter k, we used default setting

k = 4. We discount the information of distant neighborhoods in xNetMF using a discount

factor of 0.1 and set the structural similarity resolution parameter γ = 1. For SEGK, we
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compare neighborhoods using the Weisfeiler-Lehman graph kernel [SSL+11]. We also use

the Weisfeiler-Lehman graph kernel in RiWalk to identify structural roles of nodes based

on their local neighborhoods (RiWalk-WL in [XQQ+19]).

• For DRNE [DRN], we follow the example usage to set the batch size to be 256 and the

learning rate to be 0.0025.

• For MultiLENS [mul], we set the cat input with all nodes having the same category/type.

7.4 Data and Ground Truth Roles

To gain insights into the type of information that is encoded in structural embeddings, we

consider several real datasets (Table 7.1), and introduce synthetic data (Figure 7.3, Tab. 7.4),

the structure of which we can control and understand better than that of real networks.
Table 7.1: Real Datasets: Single-Network Tasks

Dataset # Nodes # Edges Labels

BlogCatalog [GL16] 10,312 333,983 centralities
Facebook [GL16] 4,039 88,234 equivalences (Section ??)
ICEWS [BLO+18] 1,255 1,414 military vs media entities
Email-300 318 752 professional roles
Email-2K 2,414 11,995 professional roles
PPI [HYL17] 56,944 818,786 protein cellular functions
BR air-traffic [RSF17] 131 1,038 # landings & take-off, equival. (Section ??)
EU air-traffic [RSF17] 399 5,995 # landings & take-off, equival. (Section ??)
US air-traffic [RSF17] 1,190 13,599 # passengers, equivalences (Section ??)
DD6 [BK05] 4,152 20,640 amino acid properties

(a) Strong connection between the node degree and the class labels in
the BR and EU air-traffic data.

(b) Vertex similarity [LHN06] is re-
lated to proximity. Lighter color
represents higher similarity to node
0 (white node).

Figure 7.2: Limitations of some node labeling methods.
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Figure 7.3: Per synthetic base graph, nodes with the same color are automorphically equivalent
on the left & regularly equivalent on the right.

7.4.1 Real Network Data: Single-Network Tasks

Limitations of existing datasets. The most commonly used real datasets for evaluating

the quality of structural embeddings are air-traffic networks from [RSF17], which capture

the existence of commercial flights (edges) between airports (nodes) and are thus undirected

and unweighted [RSF17]. Their node labels are defined based on either the number of

landings and take-offs, or the number of passengers passed by each airport in a given time

period: four labels are obtained by splitting the data into quartiles. Although the balanced

classes simplify the evaluation, this arbitrary labeling has two drawbacks: (1) it is not clear

that splitting the data into four quartiles reflects a real-world phenomenon; and (2) to a

large extent, the labels simply capture degree information (Figure 7.2a).

To experiment with the effect of different node labelings to the performance, we also con-

struct an alternative set of node labels constructed by splitting the airport-related statistics

(number of landings and take-offs, or passengers) into logarithmic bins (Figure 7.9b). This

results in imbalanced classes but produces a distribution of “roles” following the well-known

power-law distribution.

More recent work [TCW+18] also used a Jazz collaboration network and BlogCatalog,

creating labels using the vertex similarity measure [LHN06] as ground truth for regular equiv-

alence. However, as we show in Figure 7.2b, the vertex similarity captures distances between

nodes rather than similarity in their structural properties, and thus is not an appropriate

measure for regular equivalence.

New datasets for structural embeddings. Besides the existing datasets used in prior

works on structural embeddings, we also consider large real-world datasets (Tab. 7.1),

where we can define the node labels based on the different definitions of equivalence (Sec-

tion 7.3.1,7.6). We use the BlogCatalog and Facebook networks from [GL16], which are

both social network datasets containing various structural roles.
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Real-world data mining tasks are often defined in terms of external node labels, so to this

end we propose the use of additional datasets where this information may be better predicted

by structural rather than proximity-preserving node features. The first is a knowledge graph

of the relationships among socio-political actors from the Integrated Crisis Early Warning

System (ICEWS) [BLO+18]; it is constructed from events on October 4, 2018 that are au-

tomatically extracted from news articles. We group the entity types into broad categories,

and our task is to distinguish between “media” entities and “military” entities. We expect

that these will have distinct structural roles from each other. Another real dataset we use

is the PPI network from [HYL17], a multi-network dataset which is claimed to have node

labels corresponding to structural roles rather than communities. Finally, we use a network

called DD6, one of the larger networks from the D&D dataset commonly used to benchmark

graph classification [BK05]. This dataset is a protein structure and its nodes, which represent

amino acids, have labels representing various properties of the amino acid [BK05]. These

labels exhibit very low homophily and are known to be challenging for proximity-based node

representation learning methods [LRK+19]. We also use two proprietary email communica-

tion networks, Email-300 and Email-2K, for the users in which we have professional roles

(e.g., CEO, manager) that are known to be related to regular equivalence [WF94].

Ground-truth Node Equivalences or Roles. For our intrinsic evaluation, instead of

arbitrarily defining roles in networks, we leverage existing (exact or approximate) algorithms

that aim to identify equivalence classes. All sociological notions of equivalence are computed

using the implementations of the CONCOR, MAXSIM, and CATREGE algorithms in the

popular UCINET package [BEF02]. The default settings in UCINET are adopted.

Given the adjacency matrix A of a graph, these approaches produce a pairwise node

similarity matrix S based on their respective equivalence definitions. For structural equiv-

alence, CONCOR [BBA75] creates a similarity matrix with entries sij = sji corresponding

to the Pearson correlation between nodes i and j (i.e., the correlation of their respective

rows, Ai,: and Aj,:). For automorphic equivalence, MAXSIM [EB88] first creates a matrix of

geodesic proximities from the adjacency matrix A, and then creates S by comparing the node

distributions of geodesic proximities pairwise. For regular equivalence, CATREGE [BE93]

searches for matches in successive node neighborhoods, and encodes in S the iteration in
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Table 7.2: Graph classification datasets [KKM+16]. We give the total number of nodes/edges
across all graphs per dataset.

Name Nodes Edges GraphsClassesNode labels Domain

PTC-MR 4916 5 053 344 2 Y bioinformatics
IMDB-M 19 502 98 910 1 500 3 N collaboration
NCI1 122 765 132 753 4 110 2 Y bioinformatics

which two nodes were separated into different groups or classes.

CONCOR also produces a partition that we use as the ground-truth equivalence classes

(i.e., groups of nodes with similar roles). To obtain the ground truth for MAXSIM and

CATREGE, we apply hierarchical clustering on S (with default settings).

7.4.2 Real Network Data: Multi-Network Tasks

While structural node embeddings are often used for single-network tasks such as node

classification and clustering, recent works have used them for multi-network tasks such as

network alignment [HSSK18] and classification [HSK19]. In Section7.8, we comprehensively

evaluate a large number of structural embedding methods within the embedding-based frame-

works proposed to solve these downstream tasks. Here we describe the standard benchmark

datasets we use for each tasks.

For graph classification, we use three well-known and publicly available [KKM+16] graph

classification benchmark datasets, PTC-MR, IMDB-M, and NCI1 . These correspond to

small, medium, and large graph classification datasets as used in recent work [HSK19].

IMDB-M is a social network dataset where the graphs represent actor collaboration networks,

and in other two the networks represent small molecules. The molecular datasets also have

node labels, which to fairly compare all embedding methods we do not use in the embeddings,

but which can be used by a downstream graph classification method. We give detailed

descriptions of the datasets in Table 7.2.

For network alignment, we use two datasets from [HSSK18], which again represent social

and biological phenomena. We describe the process of constructing a network alignment

scenario with known ground-truth correspondences between nodes, which is commonly used

in the network alignment literature, in Section7.8.
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Table 7.3: Graph alignment datasets.

Name Nodes Edges Description

Arenas Email [Kun13] 1 133 5 451 communication network
PPI [BSR+08] 3 890 76 584 PPI network (Human)

7.4.3 Synthetic Network Data

We also evaluate structural embedding techniques on a variety of synthetically-generated

networks—beyond just the commonly-used barbell graph—, as shown in Figure 7.3 (left).

We define two sets of roles per node, based on structural and automorphic—using the

methods CONCOR and MAXSIM (Section 7.4.1), respectively. We also enlarge the small

synthetic graphs to enable further extrinsic evaluation (Table 7.4). For regular equivalence,

since nodes should be assigned to different classes according to their roles, we generate the

synthetic graphs accordingly (Figure 7.3, right). Similarly, we enlarge the synthetic graphs

by adding more nodes with different roles and connecting them following the rules in the

base case (Table 7.4). For all the synthetic graphs generated for the regular equivalence

evaluation, the edge type is indicated by the pre-defined roles of the end-points (e.g., hub vs.

clique node). The output of CATREGE (Section 7.4.1) generates the same role assignment

as the pre-defined roles.

7.5 Embeddings and Structural Properties

Many of the existing structural embedding methods (Section 7.3.5) leverage node degree

information in various ways. While it is expected that embeddings are related to the node

degrees, it is not well-understood to which extent they capture the degree or other structural

information (e.g., centralities). In this section, we seek to gain insights into this via corre-

lation and predictive analysis. While such an analysis will not completely characterize the

information captured in structural embeddings, it can help us understand which ones are

comparatively interpretable in the sense that they encode common network metrics used to

characterize a node’s structural role.

Methodology. First, to see if similarly embedded nodes have similar structural properties,

we perform the following analysis: (1) For each node v in graph G, we calculate a property
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Table 7.4: Enlarged synthetic graphs

Large Graph Base Generation
H10_S_L H5 10 H5 on a circle with 2 circular nodes be-

tween each connecting circular node with
house’s side.

H10_T_L H5 10 H5 on a circle with 2 circular nodes be-
tween each connecting circular node with
house’s roof.

Barbell L-A B5 Connecting the out-most nodes on the
chain of B5 into a circle.

Barbell L-B B5 Connecting the out-most nodes on the
chain of B5 into a circle. Additional 5-
clique at each connector.

Ferris Wheel C8 Enlarged version of C8 with similar pertur-
bation.

City of Stars S5 10 normal stars and 5 binary stars as in S5
PB-L PB5 10 half-sided PB5 connected to each node

of a 10-node circular graph. All the node
degrees are 3.

Conference A-P-V Mimicking the real-world scenario, we sim-
ulate 80 papers with 4∼6 collaborators out
of the 120 authors, and assign them to one
of the 30 venues.

Reg-Syn-L Reg-Syn Based on the connection rules in Reg-Syn,
we connect 9 stars, 7 cliques and 7 chains
of different sizes.

Knitting Wheel B5 10 different sized cliques connected onto a
circle with three circular nodes apart each
connection.

of interest pi(v). We consider four properties: degree, PageRank (with damping parameter

α = 0.85 [PBMW99]), clustering coefficient, and betweenness centrality. (2) We identify v’s

k-nearest neighbors (k-NN) in the embedding space Rd using cosine or Euclidean distance,

and compute the average value for each structural property, pi,kNN(v). (3) Per property pi,

we calculate the Pearson correlation between the structural property of a node and its k-NN

across all nodes.

Second, to better understand the extent to which degree is encoded in the structural

embeddings, we also perform a predictive task. Given a subset of nodes with their structural

embeddings and degrees, we apply k-NN regression and compute the error between the

predicted and original degree for the remaining nodes. We report the mean RMSE across 5

folds, using one fold for training and four folds for testing.
Results. Since this task is based on the intrinsic properties of the embeddings, and not the

node labels, theoretically we can use any dataset here. We report results on the prevailing
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(a) EU air-traffic: correlation between structural
properties of a node and the structural properties
of its 5-NN in the embedding space.

(b) BlogCatalog: correlation between structural
properties of a node and the structural properties
of its 5-NN in the embedding space.

Figure 7.4: Correlation of embeddings with structural properties: Generally, structural
methods—except role2vec—do well in preserving the node structural properties in the em-
bedding space Rd. Degree and PageRank are better captured than betweenness and clustering
coefficient. As expected, proximity-based embedding methods don’t perform well. Differences
are observed between Euclidean distance and cosine similarity.

Figure 7.5: RMSE of predicting the node degree from the structural embeddings for two
datasets: BlogCatalog (top, max degree=3,992) and EU Air-traffic network (bottom, max
degree=202). Error bar shows standard deviation on 5 fold CV with one fold as training
and four folds as testing. Performance on the predictive task aligns with the correlation
task. Choice of distance metric influences the performance of some methods significantly
(e.g., DRNE, role2vec_d).
BlogCatalog and EU air-traffic network datasets. The results are consistent on other data

(real and synthetic). The cosine distance is not defined between pure scalars so we leave the

result for the degree variant with cosine as N/A (Not Applicable) in all the results.

Based on Figure 7.4, for most structural embedding methods, except role2vec, closely

embedded nodes have similar degree/PageRank centralities. These embeddings also contain

information about betweenness and clustering coefficient, but less so. On the BlogCatalog
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dataset, RiWalk preserves betweenness and clustering coefficient almost as well as degree

and pagerank; most other methods have a significant drop in at least one of the two former

metrics, as does RiWalk on the EU Air-traffic dataset. Proximity-based embedding methods

such as node2vec and LINE do not encode structural properties well.

Observation 7.1. Current structural node embeddings capture node importance measures

such as degree and pagerank well, but discern less clearly the density of connectivity as given

by betweenness and clustering coefficient.

The results for correlation in Figure 7.4a snd 7.4b differ for Euclidean distance and cosine

similarity, especially for proximity methods. A further discussion on the usage of similarity

measurement is in Section 7.9.

Similar patterns can be observed from the RMSE in the predictive task (Figure 7.5) with

5-NN regression. The maximum node degree for BlogCatalog is 3,992 and EU air-traffic

network is 202. With only 20% of the node’s degrees as training, struc2vec, GraphWave,

xNetMF and MultiLENS can perform well on the predictive task.

7.6 Embeddings and Equivalences

In the literature, there are various claims about the types of equivalence that embedding

methods capture, some of which are imprecise. We investigate this by designing experiments

for both intrinsic and extrinsic evaluation. Our intrinsic evaluation aims to evaluate the

quality of embeddings in the context of different types of equivalences directly, decoupled

from a downstream task. Here, ground-truth labels are defined by the equivalence methods

(Section 7.3.1, 7.4.1). Our extrinsic evaluation relies on classification and clustering, both

of which are typically used to evaluate embeddings.

7.6.1 Intrinsic Evaluation

The intrinsic evaluation of structural embeddings seeks to characterize the agreement

between the similarities of nodes defined by the different types of equivalence and the node

similarities in the embedding space Rd.
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Methodology. Given a similarity matrix S based on a notion of role equivalence, for each

node we calculate the Kendall rank correlation coefficient between its embedding similarity

(based on Euclidean distance or cosine similarity4) and its structural similarity to all other

nodes given by S.

For structural and automorphic equivalence, we perform analysis on a total of 16 synthetic

networks (Figure 7.3 left plus the enlarged datasets in the top section of Table 7.4, CH35

excluded as near-duplication of Small Town-S) and 4 real networks (three air-traffic networks

+ Facebook). One exception is that for structural equivalence, CONCOR encounters an

error for City of Stars, for which we skipped evaluation. For regular equivalence, we perform

analysis on a total of 5 synthetic datasets (Figure 7.3 right plus the enlarged datsets in the

bottom section of Table 7.4, A-P-V excluded as duplication of Conference). None of our

real networks can be used with CATREGE to compute regular equivalence for an intrinsic

evaluation, as the algorithm requires relationship types and the implementation handles up

to 255 nodes. For each type of equivalence, we report the average and the standard deviation

of the Kendall rank correlation coefficient across different subsets of our datasets.

Results. Figure 7.6 gives a summarized view of our intrinsic evaluation. It shows, per

embedding method, the rank correlation and its standard deviation averaged over all the

corresponding datasets. LINE and node2vec rank top in our intrinsic evaluation for struc-

tural equivalence. This is expected, as despite its name, structural equivalence is actually

by definition best captured by proximity-based embedding methods [WF94]. It is defined

between two nodes in terms of how many neighbors they share: two nodes are structurally

equivalent if they are connected to the exact same nodes. Structural equivalence as defined

in mathematical sociology is distinct from the structural similarity that role-based node

embeddings try to capture.

Observation 7.2. Structural equivalence depends on node proximity and in fact cannot be

captured well by structural embeddings, but automorphic equivalence does not depend on node

proximity and may be better captured by structural embeddings than by proximity-preserving

embeddings.

On the other hand, structural embedding methods such as GraphWave, xNetMF and
4Cosine similarity is not defined for a scalar (e.g., degree), in which case we list “N/A” in Figs. 7.6-7.7.
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(a) Synthetic data

(b) Real data (no ground truth for regular equivalence)

Figure 7.6: Summarized view of intrinsic evaluation: Average correlation (and stdev) between
node embeddings and different types of equivalences across all synthetic data (top) and all real
data (bottom). Structural embeddings tend to capture automorphic and regular equivalence,
while primarily proximity embeddings capture structural equivalence. The choice of distance
affects the results. 134



(a) Synthetic data (only cosine similarity shown for brevity)

(b) Real data (no ground truth for regular equivalence)

Figure 7.7: [Best viewed in color] Detailed view of intrinsic evaluation: correlation with differ-
ent types of equivalence for specific synthetic (top) and real (bottom) datasets. Performance
of embedding methods varies across different datasets and distance choices.
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SEGK, as well as degree2, work well in terms of automorphic equivalence, while the

proximity-based methods, like LINE and node2vec do not. This is also expected, as auto-

morphically similar nodes need not be in close proximity in the graph. We conjecture that

the difference of role2vec on the synthetic datasets and real world datasets might result from

the difference in degree distribution and network structure between the synthetic and real

datasets.

Similarly, the proximity-based node2vec and LINE struggle to capture regular equiv-

alence, which among structural embedding methods is generally best captured by degree,

DRNE, and GraphWave based on Euclidean distance, and degree2, MultiLENS, and struc2vec

based on cosine similarity. The strong performance of degree distribution features in the in-

trinsic evaluation using automorphic and regular equivalence is noteworthy.

Observation 7.3. Node degree, generalized to include the distribution in its k-hop neigh-

borhood, may indeed be a good indicator of the structural position or role of the node in the

network.

In Figure 7.7, we look deeper into these results on a per-dataset basis. While trends

are largely similar, some datasets are worth noting individually. For example, we see that

the base “L5” has a distinctive “lollipop” shape, where equivalent nodes (in the head) and

comparatively near-equivalent nodes (in the stem) are also in close proximity. As a result,

proximity-preserving and structural embeddings do comparably well at capturing both struc-

tural and automorphic equivalence. We see larger gaps on the remaining synthetic datasets.

On real datasets, GraphWave and DRNE capture extremely high automorphic equivalence

on the air-traffic datasets, but the difference between them and the other methods disappears

on Facebook, a social network dataset.

Observation 7.4. None of the structural embedding methods are optimized to capture soci-

ological concepts of role equivalence.

Although we find that structural embedding methods do capture sociological role equiv-

alence to some extent incidentally, it depends on how well the equivalences correspond in

any given dataset with the types of similarities each embedding is optimized to preserve (the

choice of distance, Euclidean or cosine, has significant impact for some methods, especially

in the real data.)
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(a) Synthetic data (b) Real data
Figure 7.8: Extrinsic evaluation on downstream tasks. Mean and standard deviation is pre-
sented for each method on all corresponding synthetic datasets and real datasets for three
types of equivalence. Generally, the extrinsic evaluation aligns with the intrinsic evaluation.

7.6.2 Extrinsic Evaluation

We also evaluate the structural embeddings extrinsically by defining equivalence-specific

node labels.

Methodology. As described in Section 7.6.1, we consider the equivalence-specific similarity

matrix S and the node embeddings Y. To obtain the ground-truth equivalence classes (i.e.,

node labels), we perform hierarchical clustering on S for MAXSIM and CATREGE, and use

the CONCOR partitioning output directly. Again, for the synthetic datasets used for au-

tomorphic equivalence evaluation, we manually define the exact automorphically equivalent

classes (instead of using MAXSIM, which is an approximation). With the classes generated

or pre-defined, we perform classification and clustering for extrinsic evaluation.

In Figure 7.8 we show the results for all three types of equivalence on synthetic (left) and

real (right) data. For structural and automorphic equivalence evaluation, we use the enlarged

synthetic graphs described in the top section of Table 7.4. Again, we exclude City of Stars for

structural equivalence evaluation for the same reason explained in Section 7.6.1. For the real

data evaluation, we use the three air-traffic networks and Facebook. For regular equivalence,

we use the enlarged synthetic graphs described in the bottom section of Table 7.4. No real

world dataset is appropriate for regular equivalence evaluation as discussed before.

Results. We generally see similar trends to the intrinsic evaluation. For example, proximity-
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based methods node2vec and LINE are generally best at capturing structural equivalence in

both real and synthetic datasets, in supervised and unsupervised downstream tasks. They

take a backseat to most other methods, however, at predicting automorphic or regular equiv-

alences. We observe, however, that MultiLENS improves considerably in downstream tasks.

Differences between methods are often more pronounced in synthetic datasets, which are

designed to exhibit highly distinctive structural roles. For instance, LINE and node2vec

are over 4× more accurate at predicting structural equivalence than structural embed-

dings GraphWave and xNetMF, a gap that remains but shrinks considerably in the real

datasets. Similarly, in synthetic datasets, GraphWave and xNetMF achieve near-perfect

clustering scores, as do degree distribution features from 1-hop and 2-hop neighborhoods

(which perform competitively with other structural embedding methods at capturing equiv-

alences across our extrinsic evaluations).

Observation 7.5. The clear structural roles of our synthetic datasets are a good way to

expose differences between structural embedding methods.

In general, we observe similar results between intrinsic and extrinsic evaluation as well

as synthetic versus real networks. This suggests that intrinsic evaluation of structural em-

beddings can often be a good proxy of its ability to perform in a downstream task, without

adding the additional variable of the downstream machine learning algorithm. Similarly,

synthetic networks that can be manufactured to exhibit distinctive structural roles that are

known a priori are a good controlled experimental environment for structural node embed-

ding. However, researchers should be mindful that there may be exceptions to these trends:

MultiLENS is one in both cases, performing far better in extrinsic evaluation and on real

data. The word embedding literature has noted that intrinsic evaluations of embeddings

may not always accurately predict performance in downstream tasks [CKP16]. Thus, both

forms of analysis are worthwhile to perform.

Observation 7.6. Intrinsic evaluation and/or synthetic datasets are often a good approxi-

mation of a method’s performance on graph mining tasks, but are not a complete substitute

for extrinsic evaluation on real datasets.
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(a) Effect of the classifier across the real data: large standard
deviations in the embedding rankings over different classifiers
show that they may dramatically affect relative performance.

(b) Different labeling schemes: Numbers
represent decrease in ranking under new la-
beling. Most embeddings’ rankings change.

Figure 7.9: The performance of different embedding methods in downstream classification
tasks heavily depends on the choice of the classifier and the definition of the ground-truth
labels.

7.7 Mining with Structural Embedding

We now compare methods for structural node embedding on real-world networks and

task-specific settings on graph mining tasks with externally given node labels (unlike Sec-

tion 7.6.2 that relied on equivalence-defined labels). Specifically, we consider the task of

node classification, which can be formulated as a well-studied supervised machine learning

problem. Before presenting comparative results, we identify two important real-world obser-

vations that can confound the fair evaluation of structural embeddings on real datasets. We

thus perform analysis of how methods’ performance varies as a function of these factors.

7.7.1 Basic Experimental Configuration

Data. We use all the real datasets in Table 7.1 except for the BlogCatalog and Facebook

datasets, which do not have node labels that reflect structural roles of nodes and as the

basis for extrinsic evaluation are usually reserved for proximity-preserving node embeddings.

The remaining datasets all come with node labels, which we use various machine learning

classifiers to predict given the features derived from node embedding.

Classifiers. Our classifiers are all popular machine learning models and have been used to

evaluate node embeddings on downstream tasks. Along with their hyperparameter settings,

they are:
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• Logistic regression and linear SVM: these are two commonly used linear models. We set

the parameter C = 1.0, and use a one-vs-rest strategy for multiclass classification. The

other parameters are set as default from the scikit-learn packages [PVGea11].

• k-nearest neighbors (k-NN): This classifier arguably provides the purest measurement of

the geometry of the embedding space, as no additional learning is provided. We use k =

5 and Euclidean distance for distance measurement.

We introduce any additional protocols specific to a particular experiment as it becomes

relevant.

7.7.2 The Effect of the Classifier

Since the structural embedding methods we consider are unsupervised, they are not

optimized for performance on a particular downstream task. Furthermore, we can use any

of several different common machine learning metrics to measure task-specific performance.

We now study how these downstream variables affect the assessment of the “upstream”

embedding methods that are our primary interest.

Methodology. Importantly, we note that the downstream machine learning models used to

classify node labels from embeddings can have a significant effect on the results. We illustrate

this point through the use of several classifiers: logistic regression, k-nearest neighbors, and

a linear SVM. In Figure 7.9a, we report results on all datasets where we average the relative

ranks of all of our methods across all classifiers (based on different metrics). We use two

different metrics: (micro)-AUC and F1 score.

Results. We see that there is a considerable standard deviation in the rankings, indicating

that with simply using a different downstream machine learning model atop the same em-

beddings can change the evaluation of which embedding method is “better.” We also observe

a difference between the two metrics, indicating that different embedding methods may be

better or worse depending on the evaluation metric used. With many different classifiers

and metrics being used in the literature, it is important to keep in mind that these too are

variables that may affect the performance.
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Figure 7.10: [Best viewed in
color] Performance by node
degree and participating tri-
angles on the original la-
bel on EU air-traffic: nodes
with more “extreme” degrees
are more accurately classified.
Box plot based on 5-fold CV
results.

7.7.3 The Effect of Label Definitions.

Methodology. In Figure 7.9b, we show the results of different embedding methods on the

air-traffic datasets for two different labeling schemes: the original ones resulting in balanced

classes, and our relabeling in Section 7.4.1. For brevity, we report Micro-F1 scores obtained

using logistic regression, and annotate the decrease in ranking under the new labeling, per

method.

Results. We see noticeable differences in performance under the two different labeling

methods; In several cases, this can change the comparative ranking of the different methods.

For example, MultiLENS and RiWalk are in the middle of the pack under the old labels but

the best methods at predicting the new labels.

Recent works have observed that node classification involves a labeling process that

may be uncorrelated with the graph itself, which may complicate evaluation [EP19]. In

these airport datasets, where the labels were arbitrarily discretized, this issue is even more

pronounced. The fact that two (reasonable) ways of generating node labels can yield different

results among structural embedding methods suggest that each structural embedding method

best captures certain structural roles in the network, and it then becomes an empirical

question how well these roles are correlated with the labels. (Note that the airport labels

are not connected to any particular roles.) This is the reason why we have performed our

previous analysis dissecting the structural role information that each embedding method

best captures.

Observation 7.7. Many factors unconnected to the node embedding process can affect the

apparent relative effectiveness of unsupervised structural node embedding methods on down-

stream graph mining tasks, including:

• The downstream machine learning classifier
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• The metric used to evaluate performance

• The way that node labels are defined

7.7.4 Deeper View Into the Performance Scores

Aggregate performance of a classifier over the whole dataset does not tell the whole story.

It is also worth exploring what kinds of nodes (e.g., high degree) can be most easily classified

by the various structural embedding methods.

Methodology. For degree-based analysis, per dataset with maximum degree ∆max, we

categorize the nodes into low-degree [0,∆
1
3
max), medium-degree [∆

1
3
max,∆

2
3
max) and high-degree

[∆
2
3
max,∆max] buckets. We then perform classification evaluation per bucket. We apply the

same partitioning methodology for the analysis of participating triangles.We use as a case

study the EU air-traffic network (we see similar trends in other data). Its maximum degree

and maximum number of participating triangles are 202 and 3450, respectively.

Results. In Figure 7.10, we observe that in general, all methods perform best at classifying

nodes with high connectivity, as measured by either degree and/or participating in a large

number of triangles. This is not surprising and corroborates the literature, as these nodes’

local neighborhoods contain richer information [NM16]. Slightly more surprisingly, the least-

connected nodes are the next easiest to classify.

Observation 7.8. Current structural embedding methods are most effective at distinguishing

“extreme” network positions in the latent feature space compared to moderate ones.

Some network positions are easy to identify. For instance, simply using the node degree

as a feature (degree) performs best at classifying high degree nodes, but is less effective

at classifying low- and medium-degree nodes even compared to degree1, where neighbors’

degrees are considered as features. In general, however, relative ranks of methods are fairly

well-preserved across buckets.

7.7.5 A Comprehensive Embedding Comparison: Single-Network Tasks

Having carefully considered the effects of several external factors, we now offer a more

comprehensive comparison of embedding methods in Figure 7.11: we give their general
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Figure 7.11: Lower is better: performance summarized across all the real datasets. While
there is no clear winner, methods based on local degree distribution tend to be consistently
top performers.

rankings (lower is better) per classifier and metric across all real datasets. We observe that

there is no clear winner of an embedding method, particularly as datasets, labels, classifiers,

and metrics may all change. However, we can see that node embedding methods designed

to preserve proximity in the network—node2vec and LINE—generally have poorer rankings,

as is to be expected for a task where the nodes’ structural role carries most of the signal.

Other methods are more mixed: e.g., GraphWave achieves a more competitive ranking by

both metrics displayed with an SVM and less so with logistic regression.

Some of the best-ranking methods across the board are MultiLENS, SEGK and varia-

tions of our degree distribution features. Significantly, they all share common design choices,

explicitly modeling a node’s position within a local neighborhood using degree-based con-

nectivity (after one iteration, the Weisfeiler-Lehman graph kernel used by SEGK gives nodes

the same label if and only if they have same degree, in the absence of other node label in-

formation). We believe that the expressive power of local degree distributions has strong

implications for future work in structural embedding, as a baseline and an inspiration for

methodological design.

Observation 7.9. Current individual network mining tasks depending on the structural
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roles of nodes can be solved effectively with local aggregation of degree-based connectivity

information.

7.8 Multi-Network Tasks

One important benefit of structural embedding methods is that they can be used to

compare nodes across graphs [HGER+12, HSSK18, HSK19]. In this section, we apply differ-

ent structural embeddings to two graph mining tasks involving cross-network comparison:

network alignment, which finds node-level matchings between different graphs, and graph

classification, which involves comparing entire graphs.

7.8.1 Network Alignment

Methodology. Network alignment can be formulated as nearest-neighbor search given com-

parable structural node embeddings [HSSK18]. We follow established procedures for simu-

lating a network alignment problem with known ground truth correspondences [HSSK18]:

we align a graph with adjacency matrix A to a randomly permuted version of itself given by

PAP> for random permutation matrix P, to which we add noise by removing edges with

probability p. We use a k-d tree to quickly match all the nodes in one graph to the nearest

neighbor in another graph by embedding similarity, and compute the resulting accuracy.

We perform this experiment on the two datasets used in previous works [HSSK18] and de-

scribed in Section 7.4, using 1% and 5% noise, the lowest and highest noise levels considered

in [HSSK18].

Results.

In Figure 7.12, we see that xNetMF, which was originally proposed for graph alignment,

captures cross-network node similarities. Proximity-preserving node embedding methods

LINE and node2vec are unable to succeed on this task. Neither are role2vec, DRNE or

MultiLENS, which may be regarded as hybrids of proximity-preserving and structural em-

beddings. Node degree alone is too weak a structural descriptor to meaningfully align nodes

(many nodes in a network have the same degree), but degree distributions of higher-order lo-

cal neighborhoods (2nd-order is always better than first-order) are also sufficiently expressive
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Figure 7.13: Deeper view into performance scores for network alignment.

structural descriptors to perform on par with xNetMF (which also preserves distributional

information of neighbor degrees) in many cases.

Figure 7.12: Graph alignment results.

For this task, some of the most suc-

cessul methods are successors of xNetMF:

SEGK and RiWalk. Both methods general-

ize the structural connectivity measure be-

tween nodes beyond degree alone, which Ri-

Walk notes can be ambiguous [XQQ+19]. In

particular, both methods use the Weisfeiler-

Lehman neighborhood aggregation method,

a well-known heuristic for graph-level simi-

larity which has its roots in a graph isomorphism test [SSL+11]. The neighborhood ag-

gregation process iteratively relabels each node, capturing degree-based statistics in early

iterations but gradually building up higher-order information.

Especially in the more challenging alignment settings with 5% noise, RiWalk performs

better than all other methods, even SEGK. One reason for this may be because RiWalk is not

restricted to local neighborhoods, while methods like SEGK (and xNetMF, struc2vec) model

only k-hop neighborhoods of each nodes. Concurrent method GraphWave is also successul

(close to SEGK and ahead of xNetMF on the Arenas dataset); GraphWave also considers

patterns of local connectivity using heat diffusion processes rather than degree. We note,

however, that a partial explanation of the success of structural embedding methods that do

not explicitly model node degree may be in part due to the noise model [HSSK18]. The

removal of edges may affect the degree distribution more obviously than it affects diffusion

processes on graphs.
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Observation 7.10. For alignment of noisy networks, degree-based connectivity alone can be

brittle, and the most robust methods generalize the notion of node connectivity beyond degree.

7.8.2 Graph Classification

Methodology. To classify networks from the structural embeddings of nodes, we use RGM,

an unsupervised graph feature map that captures the distribution of the node embeddings in

feature space [HSK19]. We then train a linear SVM on the resulting graph features. RGM

was shown to work with different choices of node embeddings and yielded comparable or bet-

ter accuracy to a large variety of baseline graph kernels, neural networks, and unsupervised

feature construction methods at faster runtime [HSK19]. We use recommended settings of

4 levels of resolution and 2 iterations of Weisfeiler-Lehman label expansion (when no node

labels are available, we begin this process with uniform labels [HSK19]) for RGM. This label

expansion helps RGM aggregate the node embeddings more accurately, but we do not use

node labels during embedding. For the downstream classification, we consider a linear SVM,

as it was shown that RGM with a linear SVM approximates a kernel machine [HSK19].

Results. We plot the results for the different embedding methods in Figure 7.14. For ease of

inspection, we also report the numbers in tabular format (Table 7.5). We also give additional

context relative to competing methods representing other families of techniques, by including

results from the state-of-the-art Weisfeiler-Lehman subtree graph kernel [SSL+11] along with

GIN [XHLJ19], a state-of-the-art graph neural network (we use the numbers for the best-

performing GIN-0 variant reported in the original paper [XHLJ19]).

Figure 7.14: Graph classification results. Em-
bedding methods modeling local neighbor-
hoods tend to do best.

We see that particularly on the social

networks dataset IMDB-M, skip-gram based

methods whose context sampling is not

locally restricted (node2vec, role2vec, Ri-

Walk) yield poor performance. node2vec’s

performance is also explained by the fact

that node proximity information does not

lead to comparable representations between

different graphs, as is confirmed by [HSK19] and by the poor performance of LINE. How-
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Table 7.5: Accuracy of various structural embeddings used in the RGM framework [HSK19]
for graph classification, plus strong baselines from other graph classification techniques. (OOM
= Out of Memory.) Most accurate embedding method in RGM marked in bold. Average rank
computed by accuracy, with ties broken by standard deviation if applicable. Tied methods
given rank of highest tie, OOM given a rank below all methods that completed.

Method PTC-MR IMDB-M NCI1 Average Rank

degree 56.3 ± 1.1 49.7 ± 0.9 77.5 ± 0.4 4.33
degree1 54.1 ± 1.0 54.0 ± 0.5 78.2 ± 0.1 4.67
degree2 55.5 ± 0.6 54.9 ± 0.4 80.0 ± 0.3 3.33
node2vec 50.0 ± 3.0 33.1 ± 0.6 53.5 ± 0.1 9.67
LINE 50.1 ± 3.1 33.3 ± 0.6 53.5 ± 0.1 8.67
struc2vec 50.0 ± 3.0 33.0 ± 0.6 53.5 ± 0.1 10
GraphWave 58.5 ± 0.7 47.2 ± 0.4 OOM 7
xNetMF 53.9 ± 0.6 55.5 ± 0.7 80.5 ± 0.4 3
role2vec 50.1 ± 3.1 33.5 ± 0.5 53.5 ± 0.1 8.33
DRNE 52.6 ± 1.7 47.9 ± 0.4 71.5 ± 0.2 7
MultiLENS 55.7 ± 1.3 54.9 ± 0.5 82.1 ± 0.1 2.67
RiWalk 50.0 ± 3.0 33.0 ± 0.6 53.5 ± 0.1 10
SEGK 53.3 ± 0.8 55.0 ± 0.6 OOM 7

ever, RiWalk and role2vec’s struggles may be because on these graphs, the random walks

oversample the graph and wash out distinguishing structural information.

Observation 7.11. For graph classification, sampling structural context with random walks

risks blurring too much structural information on the small graphs commonly used as bench-

marks.

This generalizes the finding in [HSK19] that methods such as node2vec and struc2vec

perform poorly. There, the explanation was that such methods were not inductive; we

see that this is true, as LINE, which does not use random walks but does depend on a

transductive notion of proximity, also performs equally poorly. However, even structural

embedding methods like RiWalk and role2vec, which we saw were useful for cross-network

tasks like network alignment, perform poorly here: indicating that the mechanism they all

use to sample context may be at fault. Note that the more memory-intensive baselines

GraphWave and SEGK are unable to run on the largest NCI1 dataset.

On the other hand, the best performing methods are those that explicitly model local

neighborhoods: xNetMF and SEGK. Degree variants also do well, with higher-order hop

distances achieving more accuracy on IMDB-M and NCI1. However, in the PTC-MR dataset,

which consists of smaller molecular graphs that may not contain the complex structural roles
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arising from social behavior, we see less of a gap between all methods, and in fact of the

three degree-based methods, Degree does best (by a marginal amount). This indicates that

on this dataset, limited local structural information is sufficient.

Observation 7.12. For graph classification, the best methods locally modeling the connec-

tivity of each node. Considering each node’s higher-order connectivity does slightly improve

performance on medium to large datasets.

As an aside, while it is not our goal to set a task-specific state of the art, within RGM the

structural embeddings yield competitive performance to other leading methods. Compared

to results from the state of the art graph isomorphism networks reported in [XHLJ19] and

Weisfeiler-Lehman graph kernels [SSL+11] reported in [HSK19], the best embedding-based

methods yield clearly higher numbers on IMDB-M and trail by a fraction of a percentage

point on NCI1 (they trail further on PTC-MR). Note that our feature learning method is

completely unsupervised (unlike the GIN neural network) and we do not tune the parameters

(e.g. number of binning levels) of RGM, which could further improve performance.

7.8.3 A Comprehensive Embedding Comparison: Multi-Network Tasks

For graph classification, the results resemble the results from the single-network tasks

in Section 7.7.4. The best methods aggregate local connectivity information for each node,

including xNetMF, MultiLENS, SEGK (when it is able to run), and variants of the local

degree histograms. On the large datasets, considering second-order neighbors for each node

improves over considering only the nodes’ features or that of its immediate neighbors, indi-

cating that modeling higher-order connectivity does somewhat help for this task.

For graph alignment, generalizing node connectivity beyond degree is helpful, which is

why the most successul methods are RiWalk, SEGK, and GraphWave. This may be in part

because the noise model of edge removal [HSSK18] throws off the degree distribution of

the graphs, making the degrees in the noisy graph slightly lower. RiWalk and GraphWave

are not explicitly confined to modeling any k-hop neighborhood, but SEGK is. This implies

that modeling local structural information does not necessarily hurt performance, but using a

statistic like degree to assess structural identity that is particularly brittle under the common
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noise model is more likely to lower a structural embedding method’s performance on network

alignment, particularly when the noise is higher.

Observation 7.13. Multi-network tasks can be solved using node embeddings that capture lo-

cal structural information. For graph classification, degree is a sufficiently expressive measure

of connectivity, but graph alignment requires a more generalized measurement of connectivity.

.

7.9 Discussion and Conclusions

We conducted a comprehensive empirical study to gain a better understanding of the

equivalence of the nodes in the networks within the context of embeddings. Our study of

the various sociological equivalences confirms that structural equivalence is best captured by

proximity-preserving embedding methods like node2vec and LINE, as its definition implies

despite its name. On the other hand, methods like struc2vec, xNetMF and GraphWave per-

form well in automorphic and regular equivalence (though the definition of the latter depends

on edge types and is challenging to define in a principled way without this information).

We have split our analysis into two parts (Section 7.6): intrinsic evaluation, which ex-

plores the relationship of nodes’ embedding similarities and other measures of similarity

given by sociological equivalence, and extrinsic evaluation of the embeddings’ performance

in the context of downstream tasks such as classification or clustering. Our work is one of

the first to perform intrinsic and extrinsic evaluation of node embeddings (either structural

or proximity-based).

While we largely observe similar performance trends in intrinsic and extrinsic evaluation,

we also notice some inconsistent trends, a phenomenon which has also been observed in word

embedding [CKP16]. For example, MultiLENS is far from a standout in intrinsic evaluation

but a top runner in extrinsic evaluation. In both intrinsic and extrinsic clustering evaluation,

we have found a complex relationship between the distance metric used (cosine or Euclidean)

and the results, which perhaps surprisingly is not always consistent with the metric used in

the various embedding objectives.

149



More generally, we have found that the performance of structural node embedding meth-

ods is highly sensitive to many factors that are often chosen seemingly arbitrarily: choice

of classifier, performance metric, or node labeling method (Section 7.7). Changing any of

these can not only change methods’ absolute performance but also their rankings relative to

each other, arbitrarily making one embedding method appear better or worse than another.

Comparing comprehensively across classifiers, performance metrics, datasets, and labeling

schemes, we see that the simple structural property, node degree, can be the building block

for some of the most effective methods. Our local degree histograms are a simple baseline

that proves surprisingly effective across all of our experiments. They may inspire the design

of future methods: indeed, they are highly related to xNetMF and MultiLENS, two existing

embedding methods that also exhibit generally strong performance.

Overall, our methods provide the structural node embedding research community with

new evaluation tools, new insights, and surprising findings about choices in current node

embedding praxis that, though they are often made automatically, may significantly impact

the apparent success of new methods. We hope that our findings can influence the design

of further node embedding methods and also pave the way for future evaluation of existing

methods. With new node embedding methods being developed at a breakneck pace, proper

evaluation will, as the word embedding community has found, be essential to progress.
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CHAPTER VIII

Conclusion

Graphs are a powerful representation of complex interactions between entities. Many

real-world problems involve mining data from multiple large graphs collectively, in which

case it is desirable to compare entities across networks. This thesis has formulated solutions

to several collective graph mining problems using node embeddings, which are expressive,

efficient techniques for learning features representations for each node in each network. Most

embedding objectives preserve proximity between nodes in a network, which is not suitable

for comparing nodes in different networks. Instead, we have introduced structural node em-

bedding methods that learns similar feature representations for nodes with similar structural

roles in their respective network. Such structural roles are comparable across networks,

and with embeddings such as xNetMF that preserve structural roles, we have a powerful

tool for cross-network comparison at the node and graph level. This thesis has contributed

principled, scalable methods both for learning structural node embeddings and for using

them to perform collective network mining at the node and graph level. In addi-

tion to methodology, we also advanced the praxis of structural node embedding, by not

only showing the success of our methods in solving challenging industry-scale problems, but

also providing a suite of benchmark datasets and tasks along with insights that will enable

rigorous, standardized development of future works.
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8.1 Node-Level Methodology

Network alignment, the task of finding a correspondence between nodes in different net-

works, is a canonical problem for cross-network node comparison. We proposed a network

alignment solution called REGAL, a simple greedy matching of nodes using xNetMF em-

bedding similarity that can achieve high network alignment accuracy. However, because

xNetMF models nodes’ structural roles and not their relative proximities, nodes that are in

close relative proximity in one graph may not remain in close relative proximity when they

are mapped to the other graph, violating a desirable principle we defined called matched

neighborhood consistency. We thus contributed an iterative matrix algorithm called RefiNA

that refines an initial network alignment solution to improve matched neighborhood con-

sistency. With RefiNA, REGAL and other network alignment methods achieve up to 90%

higher accuracy and allow us to consider 5× noisier graphs than before.

8.2 Graph-Level Methodology

With node embeddings, not only can we compare nodes, but we can also compare entire

graphs. Just as a node is well represented by the location of its embedding in vector space,

a graph can be well represented by the distribution of its node embeddings in vector space.

We designed feature maps for graphs that preserve this information. Our graph feature map,

RGM, is a randomized feature construction that elegantly allows us to approximate graph

kernel methods. Specifically, the dot product of two graphs’ RGM features approximates

the Laplacian kernel mean map, or the average pairwise similarity between all the nodes in

the two graphs. Again, computing this statistic exactly would involve comparing all nodes

between graphs, which as discussed above would incur quadratic time complexity in the

number of nodes. With RGM, we can approximate this statistic in linear time. Moreover,

we can also avoid the problem of comparing all pairs of graphs, another computational

bottleneck faced by methods that compute and train a kernel machine on a graph kernel

matrix. Thus, our proposed solution scales to large graphs and large numbers of graphs, while

remaining highly accurate compared to state-of-the-art methods for graph classification.
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8.3 Praxis

While our thesis has contributed new algorithmic methods, we also envision the appli-

cations of structural node embeddings to important real-world problems. We demonstrated

their use on a large-scale problem: inferring the professional roles of email users. Although

we cannot view the text of their emails for privacy reasons, just the network structure of

users’ communication provides a powerful signal of their professional role: users with similar

professional roles may not interact directly (like executives in different industries) but likely

play similar structural roles in their respective parts of the larger who-emails-whom net-

work. We proposed EMBER, which extends xNetMF to handle edge weights and directions

to model email communication behavior more precisely. Our proposed solution outperforms

a variety of graph mining solutions and allows us to mine email behavior at several scales.

We applied EMBER to subnetworks corresponding to individual companies, which allow

us to study how professional roles compare and contrast across different size companies.

Additionally, EMBER also scales efficiently to infer professional roles in email networks

consisting of millions of users.

All of our previous works have demonstrated that structural node embeddings are useful

for a wide variety of data mining problems. Thus, we contributed new techniques to evaluate

structural node embeddings so that the research community can continue to develop effective

methods. We evaluated a comprehensive collection of structural node embedding methods,

ours and others. We first contributed several new synthetic and real datasets as benchmarks

for structural node embedding methods. Our evaluation consisted of two parts: intrinsic

evaluation of the properties that they capture and extrinsic evaluation (evaluating their

performance on downstream graph mining tasks). Our insights showed how the structural

roles each method models correspond to three different notions of sociological role equivalence

of nodes in networks. We also uncovered pitfalls in current evaluation praxis, identified

effective methodological design choices, and proposed new best practices.
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8.4 Future Directions

This thesis work has shown that structural node embeddings are useful for a variety of

graph mining tasks on one or more networks. We now describe two interesting directions for

future work.

8.4.1 Evolving Structural Roles in Dynamic Networks

Graphs in the real world are often dynamic, with nodes being added or dropped and

new edges forming and disappearing as time goes on. In this thesis, we focused on static

graphs with a fixed network structure. Other work of ours [JHRK19] has introduced node

embeddings that capture structural behavior in temporal networks with heterogeneous node

and edge types. There, we consider a user modeling task in which we seek to learn a structural

role for each user (node) that respects its temporal interactions in the network.

An alternative perspective is to study how the structural roles of node change over time,

a problem which has been studied using hand-engineered node statistics [RGNH12] but

not, to the best of our knowledge, with more powerful node embeddings. Understanding

how the structural roles of entities in networks change can yield many important real-world

insights. For instance, in Chapter VI, where we modeled structural roles of email users in

a communication network in order to predict the users’ professional roles, the change in a

user’s structural network role might reflect changes in the user’s professional role. As an

example, a manager starting to exhibit communication patterns more and more similar to

that of an executive might be due for a promotion to an executive position–or may be about

to leave the company for a more senior role elsewhere. Widespread changes in structural roles

of nodes may also indicate how a graph itself is evolving. In Chapter V, we characterized

a graph by the distribution of its (structural) node embeddings in vector space. If many

of the structural roles of nodes change, this distribution would also change. Returning to

the problem of email users at companies from Chapter VI, we could form a graph-level

representation of a company from the distribution of its employee’s structural roles. Recall

that we saw small startups where even the executives’ communication behavior resembled

that of managers at larger companies. However, as such a startup grew, we might see its
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executives’ communication habits change to reflect their increasing professional importance,

which would correspondingly reflect on the company’s graph-level representation. More

generally, changing structural roles at the node and graph level may represent different

kinds of exceptional or noteworthy phenomena – whether healthy behavioral evolution, or

unhealthy and anomalous activity – in social and information networks.

8.4.2 Complementing Structural Roles with Node Proximities

Structural embeddings are a natural choice for multi-network tasks because the structural

roles of nodes do not depend on their proximity to any specific node. However, we showed

in Chapter IV that modeling intra-network proximity is still helpful for the cross-network

task of network alignment: our principle of matched neighborhood consistency encourages

nodes that are connected (in close proximity) in one graph to remain in close proximity

after the cross-graph mapping. The broader question is: can we still benefit from modeling

node proximities in individual networks even in collective network mining tasks? Our recent

work [CHVK20] provides evidence that proximity-preserving node embeddings can be used

for cross-network comparison, if we first align the embedding subspaces.

In Chapter IV, our method RefiNA used the proximity of nodes to enforce consistency

in an initial network alignment solution, such as one found using structural embeddings by

REGAL. In RefiNA, the node proximities are given by the adjacency matrices. However,

the success of proximity-preserving embeddings on single-network tasks shows that such

embeddings may better model higher-order proximity beyond the mere existence of direct

connections given by the adjacency matrix. Thus, using proximity-preserving embeddings to

complement structural node embeddings, whether for network alignment or other collective

graph mining tasks, is a promising direction for future work.

Proximity-preserving and structural embeddings may have interesting methodological

connections. The structural embedding method GraphWave [DZHL18] derives a structural

embedding for each node from the heat kernel, a diffusion process which models proximity

between nodes. While a proximity-preserving node embedding method might learn similar

embeddings for nodes that send each other a large amount of heat, in GraphWave, a node’s

embedding models the distribution of heat it sends to all other nodes. Emerging theoretical
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work [SR20] suggests that structural and proximity-preserving node embeddings may have

more in common than was previously realized, and likens their relationship to that of a dis-

tribution and its samples. Fully characterizing the methodological connection of proximity-

preserving and structural node embeddings may lead to interesting new proximity-preserving

and structural node embeddings methods and applications.
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8.5 A Confectionery Recap

Following the defense of this dissertation, a celebration ensued, as is commonplace, with

cake. The collection of cakes in Figure 8.1 not only celebrates but also illustrates this

dissertation’s methodological contributions, particularly those in Chapters III and V. The

cake decorations display high-level ideas and a few technical details that could be articulated

within the limits of the author’s baking ability.

Figure 8.1: The “Dessertation”
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