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ABSTRACT 

 

Advances in large-scale genomic data production have led to a need for better methods 

to process, interpret, and organize this data. Starting with raw sequencing data, 

generating results requires many complex data processing steps, from quality control, 

alignment, and variant calling to genome wide association studies (GWAS) and 

characterization of expression quantitative trait loci (eQTL). In this dissertation, I present 

methods to address issues faced when working with large-scale genomic datasets. 

In Chapter 2, I present an analysis of 4,787 whole genomes sequenced for the 

study of age-related macular degeneration (AMD) as a follow-up fine-mapping study to 

previous work from the International AMD Genomics Consortium (IAMDGC). Through 

whole genome sequencing, we comprehensively characterized genetic variants 

associated with AMD in known loci to provide additional insights on the variants 

potentially responsible for the disease by leveraging 60,706 additional controls. Our 

study improved the understanding of loci associated with AMD and demonstrated the 

advantages and disadvantages of different approaches for fine-mapping studies with 

sequence-based genotypes. 

 In Chapter 3, I describe a novel method and a software tool to perform Hardy-

Weinberg equilibrium (HWE) tests for structured populations. In sequence-based 

genetic studies, HWE test statistics are important quality metrics to distinguish true 
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genetic variants from artifactual ones, but it becomes much less informative when it is 

applied to a heterogeneous and/or structured population. As next generation 

sequencing studies contain samples from increasingly diverse ancestries, we developed 

a new HWE test which addresses both the statistical and computational challenges of 

modern large-scale sequencing data and implemented the method in a publicly 

available software tool. Moreover, we extensively evaluated our proposed method with 

alternative methods to test HWE in both simulated and real datasets. Our method has 

been successfully applied to the latest variant calling QC pipeline in the TOPMed 

project. 

In Chapter 4, I describe PheGET, a web application to interactively visualize 

Expression Quantitative Trait Loci (eQTLs) across tissues, genes, and regions to aid 

functional interpretations of regulatory variants. Tissue-specific expression has become 

increasingly important for understanding the links between genetic variation and 

disease. To address this need, the Genotype-Tissue Expression (GTEx) project 

collected and analyzed a treasure trove of expression data. However, effectively 

navigating this wealth of data to find signals relevant to researchers has become a 

major challenge. I demonstrate the functionalities of PheGET using the newest GTEx 

data on our eQTL browser website at https://eqtl.pheweb.org/, allowing the user to 1) 

view all cis-eQTLs for a single variant; 2) view and compare single-tissue, single-gene 

associations within any genomic region; 3) find the best eQTL signal in any given 

genomic region or gene; and 4) customize the plotted data in real time. PheGET is 

designed to handle and display the kind of complex multidimensional data often seen in 

our post-GWAS era, such as multi-tissue expression data, in an intuitive and convenient 

https://eqtl.pheweb.org/
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interface, giving researchers an additional tool to better understand the links between 

genetics and disease.
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Chapter 1  
 

Introduction 

 

1.1 Background 
 

Genome-wide association studies (GWAS), in which variants across the whole genome 

are surveyed for connections to phenotypes, are widely used to study diseases 

(FRITSCHE et al. 2016; XUE et al. 2018), traits (WOOD et al. 2014; LOCKE et al. 2015), and 

many other measurable phenotypes, including biomarkers, biomedical images, and 

survey results (BYCROFT et al. 2018). In 1996, Risch and Merikangas (1996) argued that 

association could be more powerful than linkage analysis with larger sample sizes, 

which would be feasible with developments in genomic technology. In 2005, the first 

successful genome wide association study for age-related macular degeneration (KLEIN 

et al. 2005) contained 103,611 variants in 96 cases and 50 controls. As genotyping 

arrays and next-generation sequencing technologies improved and became much 

cheaper over time, studies rapidly increased in size and diversity: from thousands of 

samples of mainly European ancestry (HAKONARSON et al. 2007; SLADEK et al. 2007) to 

hundreds of thousands of samples (LOCKE et al. 2015; BYCROFT et al. 2018; TALIUN et 

al. 2019), for hundreds of millions of variants from samples across a range of 

ancestries. With this comes an increase in power to discover associations, with the 
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largest studies finding dozens to hundreds of independent genetic loci for complex 

traits. While GWAS has successfully discovered thousands of associated loci, we are 

still in the early days of connecting them to biological mechanisms underlying many 

disease-related traits (FARASHI et al. 2019; ORMEL et al. 2019; CLAUSSNITZER et al. 

2020). One of the next steps in unraveling the role of genetics in biology lies in 

understanding tissue-specific gene expression’s biological consequences, the next 

major focus for human genomic studies (THE GTEX CONSORTIUM 2015). Genetic studies 

now encompass a much larger range of data, including genotypes, gene expression 

values (MCDERMAID et al. 2019), methylation and other epigenetic modifications (LAM et 

al. 2016; BAKUSIC et al. 2017), and somatic mutations (LEIJA-SALAZAR et al. 2018), for 

bulk tissue and single-cell analyses. The size and nature of genetic data in the current 

post-GWAS era promises vast new opportunities for biological discoveries, but also 

comes with many technical and scientific challenges. 

 

Challenges for genetic studies in the post-GWAS era 

As GWAS cohorts continue to grow in size, so does the number of associated loci. In 

single-variant association tests, the top signals will often not fall within exons, promoter, 

or enhancer regions of genes, with well-defined functional effects on the transcription 

and translation of the protein product; instead, the most significant associated variants 

often lie in intronic regions, and are assumed to be in high linkage disequilibrium with 

true causal variants (WANG et al. 2010). While group-based association tests can 

provide additional insight, they require additional assumptions and contain pitfalls which 

must be carefully avoided. Properly interpreting associated loci and identifying causal 

variants have become enormous challenges of their own. 
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As genetic studies become both larger and more diverse, previous quality control 

methods for variant calling are no longer sufficient both statistically and computationally, 

prompting a need for an improved method to deal with the more diverse nature of the 

data and a better implementation of that method to handle the larger data files found in 

modern genetic studies. 

With the growing popularity of multi-tissue expression studies, the resulting 

expression quantitative trait loci (eQTL) data has become much more common. This 

kind of data involves millions of variants, each affecting up to dozens of genes in 

multiple tissues. The multidimensional nature of eQTL data makes them difficult to 

display using traditional tools, such as GWAS or phenome-wide association study 

(PheWAS) plots, just when visualization becomes a fundamental tool for understanding 

the structure of such data. With three different data dimensions—variant position, 

affected gene, and tissue—visualization must necessarily hold one dimension constant 

to display the other two, but this will limit our ability to find correlation patterns within our 

data for that dimension, i.e. for nearby variants, proximal genes, and biologically similar 

tissues. With an increasing number of publicly available genetic resources, it is even 

more difficult to get a more complete picture of known information for any particular 

eQTL. There is a need for an eQTL browser which allows for convenient and intuitive 

navigation across data dimensions, while also cross-referencing data from other 

existing databases, to give researchers a more comprehensive understanding of the 

results, facilitating the characterization of disease-related traits to generate new 

hypotheses and the exploration of biological mechanisms underlying those traits. 

Purpose 
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In this dissertation, we develop and apply statistical methods and approaches to 

evaluate single-variant and set-based approaches for case-control genome wide 

association for sequencing data using data with an emphasis on the interpretation of 

significant associated loci and rare loss-of-function variants, develop and implement a 

robust and unified Hardy-Weinberg test for quality which can handle both the increasing 

size and diversity of genetic studies, and develop an interactive, intuitive, and 

convenient web-based application for the browsing of multi-tissue eQTL data, designed 

to facilitate the interpretation of expression association signals. 

1.2 Quality control for variant calls in diverse genetic data 

With large genetic studies comes the need for reliable quality control of genetic 

data. Accurate genetic association analyses require high quality genotypes, but 

genomic technologies are susceptible to errors. Wall et al. (2014) estimated genotype 

error rates ranging from 0.1% to 6%, depending on allele frequency and sequencing 

platform. Sample contamination can further increase errors in genotype calls (JUN et al. 

2012; FLICKINGER et al. 2015; ZAJAC et al. 2019). Filtering erroneously called variants 

from downstream analysis is necessary to prevent spurious association signals.  

Partly due to concerns about inflated Type I errors caused by population 

stratification (MARCHINI et al. 2004; NEED AND GOLDSTEIN 2009), early genetic studies 

often used only samples from participants of European ancestry. With samples of 

largely homogeneous ancestry, simple tests of HWE proved effective as a quality 

control metric for genotyped markers (GOMES et al. 1999; ANDERSON et al. 2010). HWE 

tests have since become one of the most common metrics for variant quality and are 

still widely used to this day. 
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For many years, the vast majority of participants in genetic research were of 

European ancestry. One study found that by 2016, 81% of studied samples were of 

European ancestry, and another 14% were of Asian ancestry (POPEJOY AND FULLERTON 

2016). Unfortunately, this lack of diversity in genetic research has directly led disparities 

in translational medicine. For example, using results from genetic research based only 

on samples of European ancestry led to genetic misdiagnoses for patients of non-

European ancestries (MANRAI et al. 2016). This lack of diversity has become a major 

hurdle for precision medicine (LANDRY et al. 2018), such as in the use of polygenic risk 

scores to gauge genetic risk for patients with non-European ancestry (DUNCAN et al. 

2019; MARTIN et al. 2019; SIRUGO et al. 2019). The field of genetics is at risk of 

generating results that are only useful for improving health outcomes in Europeans and 

Asians (WANG et al. 2018). To address these concerns, recent studies such as the 

Trans-Omics Precision Medicine (TOPMed) project (TALIUN et al. 2019) and the All of 

Us Research Program (2019) made an effort to collect and sequence genetic samples 

from considerably more diverse populations. 

However, the size and diversity of these recent genetic studies present new 

challenges for data processing and quality control. As genetic studies participants 

became both more numerous and more diverse, the same HWE tests were used for 

variant quality control, but with more stringent P-value thresholds (LOCKE et al. 2015; 

FRITSCHE et al. 2016; TALIUN et al. 2019). Though the traditional HWE test will still 

identify variants which wildly depart from HWE, it will fail to distinguish variants with 

significant errors (variants we want to filter) from those under the effect of population 

stratification (variants which are otherwise high-quality and which we want to keep for 
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downstream analysis). A better HWE-based method for variant quality control is needed 

to ensure high quality genotype data is available for downstream analysis. 

In Chapter 3, we propose and implement a robust and unified Hardy-Weinberg 

test for variant calling quality control in sequencing data. Our method is designed to 

handle the diverse samples found in modern genetic studies by leveraging ancestry 

information from raw sequencing data to adjust for population stratification, with the 

ability to directly process commonly-used file formats for genotype data with a 

computationally- and memory-efficient implementation. 

1.3 Variant interpretation and causal variant discovery with whole 
genome sequence data 
 

With our ability to discover large numbers of associated loci, we must now confront the 

gap between association and biological function: first, within each locus, identifying 

causal variants responsible for the association; and second, pinpointing the genes 

affected by these causal variants (GALLAGHER AND CHEN-PLOTKIN 2018). The early 

successes of GWAS on age-related macular degeneration (AMD), which identified the 

complement system as a key component of disease, were encouraging. However, as 

genetic studies exploded in popularity in subsequent years, the gap widened for 

estimates of the proportions of phenotypic variance explained by genetic differences 

(commonly called heritability) between GWAS-based and traditional epidemiological 

methods, especially for complex traits such as human height (MAHER 2008; MANOLIO et 

al. 2009), highlighting the limitations of GWAS in identifying the biological mechanisms 

behind association signals. Larger sample sizes and more variants, from denser 
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genotyping and next-generation sequencing technologies, can help close part of that 

gap. 

Foreseeing the increasing availability of genomic data, Cooper and Shendure 

(2011) argued that the main roadblock for finding causal variants will not simply be 

identifying more and more loci, but will instead be the interpretation of association 

results. As studies increased in both sample size and variant count, more associated 

loci were indeed identified, from dozens (LOCKE et al. 2015; SANDERS et al. 2015; 

FRITSCHE et al. 2016; OKBAY et al. 2016) to over a hundred (WILLER et al. 2013; WOOD et 

al. 2014; SCOTT et al. 2017; YENGO et al. 2018). With so many associated loci, 

connecting association signals to underlying biological mechanisms became 

correspondingly complicated. Recent approaches include using kernel methods for 

aggregated association testing (LARSON et al. 2019), constructing polygenic risk models 

using machine learning algorithms (OH et al. 2017), and using network and pathway-

based methods to characterize function and biochemical pathway enrichment (HU et al. 

2017). 

There is some disagreement about the assumptions underlying genetic research 

design. Chakravarti and Turner (2016) emphasized the importance of understanding 

gene regulatory networks to properly interpret GWAS results, using Hirschsprung 

disease as an example of how complex traits can be affected by cis-regulatory elements 

in multiple genes. Boyle et al. (2017) argued for an “omnigenic” model, in which genes 

are divided into a small set of “core” genes and a large set of “peripheral” genes, and 

variants across the entire genome can affect phenotypic traits, such that peripheral 

genes are generally responsible for the majority of the genetic effect on phenotypes, if 
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we assume gene regulatory networks have structures resembling the highly-connected 

“small world” network model (WATTS AND STROGATZ 1998). On the other hand, Wray et 

al. (2018) thought that the core genes assumption “may underestimate the true 

biological complexity” of common diseases, instead emphasized increasing sample 

sizes to maximize the discovery of common associated variants. Despite their 

differences, all parties largely agreed that cell-specific gene regulatory networks remain 

an important target for genomic research, and that identifying significant associations in 

genetic studies is only the first step in elucidating the underlying biology of the 

associated traits. 

In Chapter 2, we evaluate different methods and approaches to analyze genetic 

association data in a case-control study of a complex disease, identifying the strengths 

and weaknesses of single-variant and grouped association tests in the context of trying 

to understand the underlying biology of age-related macular degeneration. We also 

evaluated the feasibility of leveraging publicly available genetic data in improving the 

ability to find association signals for rare loss-of-function variants in our effort to identify 

potential core genes for the disease. Finally, we give recommendations for how to 

interpret significantly associated loci with results from different association tests. 

1.4 Visualization of multi-tissue expression data and the future of 
genetic studies 
 

It has long been understood that discovering associated loci is just the first step towards 

disentangling the biological links between genes and disease (MANOLIO et al. 2009). 

Since all somatic cells in the human body generally share the same DNA sequence, 

differences between tissues were long assumed to be caused by tissue-specific 
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expression (BRITTEN AND DAVIDSON 1969), decades before the technology existed to 

accurately map and quantify mRNA. With the development of more affordable DNA 

technology, it was possible to finally put this hypothesis to the test for various diseases. 

While some Mendelian diseases, such as Huntington’s Disease and phenylketonuria, 

have well-understood loss-of-function and missense risk variants which directly modify 

translated protein products, complex traits and diseases tend to be much less 

straightforward: very often, the most significant variants within each locus in a GWAS 

are either in linkage disequilibrium with rarer exonic variants which directly affect the 

translated protein product, or play a part in modifying the regulatory behavior of the 

gene. Group-based association tests in GWAS can test for the first case, but gene 

expression studies are needed in the second case.  

The study of gene expression requires the quantification of RNA. Adapting the 

same technology used for reading DNA, RNA quantification initially used array-based 

and Sanger sequencing methods. Early expression arrays suffered from non-specific 

hybridization, leading to spurious results (OKONIEWSKI AND MILLER 2006), while Sanger 

sequencing-based methods were expensive, preventing them from being used widely. 

Eventually, the development of RNA-seq (WANG et al. 2009) provided a method for 

high-throughput, accurate, and affordable expression quantification, sparking a 

prodigious increase in the amount of expression data generated in genetic studies. For 

example, in a study of gene expression in immune cells from 91 subjects (SCHMIEDEL et 

al. 2018), cis-eQTLs were identified for over 12,000 unique genes, 41% of which with 

strong cis-associations in only a single cell type. The largest project to catalogue 
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expression data is the GTEx project, with expression data for up to ~700 subjects in 49 

different tissues in the latest data freeze (AGUET et al. 2019). 

This new bounty of expression data, in which a single variant can be associated 

with multiple genes and tissues, creates new challenges for data visualization. Existing 

tools for showing genome-wide (Manhattan plots and GWAS locus plots) and phenome-

wide association data (PheWAS plots) can only properly show one tissue or gene at a 

time, and are insufficient for showing a more complete picture of the relationships 

between a variant and all affected genes and tissues. Notably, the GTEx Portal 

(gtexportal.org) hosts a suite of services designed to display their latest data set. While 

comprehensive, the information is divided between multiple different and separate 

visualizations which cannot be easily viewed together, and it can be difficult to navigate 

between the different views. 

At the same time, with the increasing availability of publicly-available genomic 

data on a variety of platforms—for example, dbSNP (SHERRY et al. 1999), UCSC 

(HAEUSSLER et al. 2019), GTEx Portal (AGUET et al. 2019), gnomAD (KARCZEWSKI et al. 

2020), UK Biobank (BYCROFT et al. 2018), and the Expression Atlas (PETRYSZAK et al. 

2016)—the basic task of retrieving all available information for a given variant or gene 

has become increasingly difficult. Together, these serve as unnecessary speed bumps 

for researchers for effectively interpreting tissue-specific eQTLs, in order to understand 

their effects on disease-related traits and the biological mechanisms underlying those 

effects. 

In Chapter 4, we propose and implement PheGET, a browser for eQTLs 

designed to be intuitive, convenient, and flexible for displaying complicated multi-
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dimensional data, such as that found in multi-tissue cis-eQTL GTEx data. Using 

extended functionality from the popular visualization tool LocusZoom (PRUIM et al. 

2010), the browser provides a simple way to navigate to any variant to view all available 

associated cis-eQTL information, or browse to any genomic region for gene-specific 

eQTLs in any of the 49 tissues found in GTEx. Our browser also offers links to other 

large public genetic databases, making it easier to cross-reference all available 

information on the variant or gene in question. The underlying tools and technology 

allow anyone with expression data to set up their own eQTL browser, making it easier to 

create and share visualizations of eQTLs of interest.  
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Chapter 2  
 

Whole Genome Sequencing and Analysis of 4,787 Individuals for Age-

Related Macular Degeneration 

 
A paper covering most of the material in this chapter is in preparation, with myself as 
first author. 
 

2.1 Introduction 
 

Age-related macular degeneration, one of the leading causes of blindness in the elderly 

(FRIEDMAN et al. 2004), has been the target of many genetic association studies, leading 

to ~30 significantly associated loci (MCKAY et al. 2011; YU et al. 2011; FRITSCHE et al. 

2013; FRITSCHE et al. 2016). In most cases, the specific genetic and molecular functions 

affected by associated variants are not yet understood (FERRARA AND SEDDON 2015; 

HUANG et al. 2015; KAVANAGH et al. 2015). The most significant signals in many of the 

loci come from common single-nucleotide polymorphisms (SNPs) with no known 

function (FRITSCHE et al. 2014). Recent studies have explored the contribution of rare 

coding variants to disease, especially those variants found in genes in the complement 

system (SEDDON et al. 2013; ZHAN et al. 2013; FERRARA AND SEDDON 2015; KAVANAGH et 

al. 2015; TRIEBWASSER et al. 2015). A common theme among past studies is that the 

molecular mechanisms linking these variants to disease is complex (DU et al. 2016), 
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and there remains a gulf between genome association results and biological 

interpretation.  

So far, most studies either focused on genome wide scans of common variants 

(FRITSCHE et al. 2013; MIYAKE et al. 2015) or targeted explorations of specific loci 

(SEDDON et al. 2013; RATNAPRIYA et al. 2014; HUANG et al. 2015; DUVVARI et al. 2016). 

The largest previous study from Fritsche et al. (FRITSCHE et al. 2016) used genotyping 

arrays on 439,350 markers and used an existing population variant panel (1000 

Genomes) for imputation to fill in the gaps, adding an additional 11,584,480 variants. 

Though this approach yields very good results for common variants, it can only find 

variants present in the array or the reference panel, potentially missing many variants 

which were not present in the reference panel or genotyping array because they are 

rare in the general population. Larger reference panels and reference panels that are 

specifically enriched for disease cases are both expected to improve power for 

genomewide association studies that rely on imputation. 

We set out to more fully characterize AMD-associated variants, including those 

that could not be studied using the standard array-and-imputation approach. To 

accomplish this, here we use whole-genome sequencing to enable more 

comprehensive studies of genetic variation, including both single-variant and gene-

based association tests. This allows us to systematically assess both common and rare 

variants across the genome, with the potential to identify strongly associated rare 

variants with large predicted effects, such as strongly associated loss-of-function (pLoF) 

variants (TRIEBWASSER et al. 2015; FRITSCHE et al. 2016), and to identify sets of 

candidate functional variants for each common variant signal. By sequencing AMD 
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cases, we improve our chances of finding AMD-associated rare variants not found in 

previous reference panels and have the opportunity, through imputation, to study these 

variants in additional genotyped samples. To further increase power to discover gene-

based associations due to very rare variants, we compare our variant list and allele 

counts with those from the Exome Aggregation Consortium (ExAC), (Lek et al. 2016), 

the Genome Aggregation Database (gnomAD) (Karczewski et al. 2020), and TOPMed 

(Taliun et al. 2019). Our study shows the advantages and limitations of a low-coverage 

sequencing study of a complex disease and examines the power of several different 

approaches to discover genetic association signals.  

 

2.2 Methods 

2.2.1 Sample characteristics 

Our primary data consisted of whole genome sequence samples for 2,394 AMD cases 

and 2,393 controls, matched by age and sex, with an average depth of 6x. Their ages 

ranged from 50 to 101, with an average of 75, with 55% females and 45% males. There 

were no significant differences in age or sex between cases and controls (Table 2.1). 

We obtained samples of European ancestry with advanced AMD (defined as 

subjects diagnosed as having large drusen, choroidal neovascularization [CNV], 

geographic atrophy [GA], or mixed CNV/GA in at least one eye) from the University of 

Michigan Kellogg Eye Center, the AREDS1 and AREDS2 studies from the National Eye 

Institute, and the Scheie Eye Institute at the University of Pennsylvania Perelman 

School of Medicine. The AREDS1 study included their own matched controls, while 
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additional matched control samples for the other studies were obtained from the 

Michigan Genomics Initiative (MGI; Table 2.1) as follows: first, we calculated propensity 

scores for all available samples, using age and sex as covariates and treatment group 

as outcome; then, we used a 1-to-1 greedy matching algorithm to match each 

unmatched case to the best-matching MGI control sample (PARSONS 2001). The 

matched pair was removed from the selection pool, and the matching continued 

iteratively until all cases were matched. Samples from MGI used for matching were 

restricted to subjects who were not diagnosed with AMD at the time of sample 

collection. Study participants provided informed consent, and all protocols were 

reviewed and approved by the University of Michigan Institutional Review Board. 

2.2.2 Whole genome sequencing data processing and quality control 
 

We used BWA-MEM to align the genomes using the NCBI RefSeq hg19 human 

genome reference assembly, GotCloud to call single nucleotide polymorphisms (SNPs) 

and short insertions and deletions (indels) (JUN et al. 2015), and beagle4 (BROWNING 

AND BROWNING 2007) for phasing and genotype refinement. We used the called 

genotypes for all summaries and downstream analyses. To annotate the variants, we 

used Variant Effect Predictor (VEP), build 84 (YATES et al. 2016), using the combined 

transcripts from both RefSeq and Ensembl as reference. 

For quality control, we used LASER (CHAOLONG WANG et al. 2014) to project 

principal components (PCs) from our variants onto reference samples from the Human 

Genome Diversity Project (HGDP) (CANN et al. 2002) to estimate ancestry. To filter out 

samples of non-European ancestry, we calculated an acceptance region for samples 
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with European ancestry as follows: first, using the first two PCs, we calculated the mean 

coordinates for European, African, East Asian, and all HGDP samples; next, we defined 

a circular region using the mean European HGDP coordinates as the center, with a 

radius equal to one-quarter the distance from the mean European HGDP coordinates 

and the mean all-samples HGDP coordinates (Figure 2.1). Thirty-two samples outside 

of this circular region were removed from downstream analyses. Furthermore, we used 

VerifyBamID (Jun et al. 2012) to estimate sample-level contamination, and excluded 42 

samples with estimated contamination above 3%. A subset of our sequenced samples 

had array genotypes available, which we used to identify sample labeling errors in our 

sequence data, identifying 4 pairs of sample swaps, one duplicated sample, and 19 

other samples with mismatches between sequencing and array data. We relabeled the 

swapped samples, combined the duplicated samples, and removed the mismatched 

samples.  

2.2.3 Association analyses 
 

We defined a single binary outcome, “advanced AMD”, which included samples with 

large drusen, geographic atrophy (GA), and/or choroidal neovascularization (CNV). We 

used the most likely called genotypes in our association tests. Because we used age- 

and sex- matched case-control samples, we did not include covariates in our 

association models. We used P ≤ 5 x 10-8 as our genome wide significance threshold for 

all single-variant tests. We tested the advanced AMD cases against control samples 

using Firth bias-corrected logistic regression using a likelihood ratio test (MA et al. 

2013), as implemented in EPACTS (KANG 2012) to perform single-variant GWAS.  
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Next, to identify statistically independent loci, we used a chromosome-based 

sequential forward selection approach: first, we identified the most significantly 

associated variant by P-value in each chromosome; if that variant was genome wide 

significant (P-value < 5 x 10-8), then we performed a conditional analysis on all variants 

in that chromosome by adding the genotypes at that variant as a covariate. If the most 

significant variant in this analysis was also genome wide significant, then we added it as 

an additional covariate and repeated the analyses of all variants in that chromosome 

until no significant variants remained. Each of the variants selected in this sequential 

procedure was matched to the nearest locus among the 34 AMD-associated loci 

described by Fritsche et al.(all variants were within 434 kb of one of these previously 

reported loci). 

For gene-based tests, we used SKAT-O (LEE et al. 2012) for all predicted 

nonsynonymous variants with allele frequency less than 5% in each gene. Predicted 

nonsynonymous variants were defined as any variant annotated as missense, 

nonsense, frameshift, or essential splice site. We applied the Bonferroni correction for 

22,502 tests to get a significance threshold of 0.05 / 22,502 = 2.22 x 10-6. 

2.2.4 External data sets 

We used several other data sets for gene-based pLoF comparison (detailed below). For 

external controls, we used pLoF allele count data from ExAC (Lek et al. 2016), 

consisting of 60,706 exome-sequenced samples; gnomAD (KARCZEWSKI et al. 2020), 

with 125,748 sequenced exomes and 15,708 sequenced genomes; and TOPMed 

(TALIUN et al. 2019) (via the BRAVO browser (NHLBI 2018)) with 62,784 sequenced 

genomes. We also obtained summary data for pLoF allele counts in five genes (CFH, 
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CFI, ORMDL2, SLC16A8, and TIMP3) from Regeneron, with 1,714 AMD cases and 

7,356 controls, for a follow-up replication analysis. 

2.2.5 Gene-level comparison of rare pLoF variants with the Exome Aggregation 
Consortium 
 

We annotated both the ExAC variant list and our own variant list using Variant Effect 

Predictor (VEP) build 84, using the merged RefSeq/Ensembl human database as 

reference. We generated a subset of rare pLoF variants, defined as variants with an 

allele frequency of less than 0.1% in our samples and annotated as stop-gained, 

frameshift, splice donor, or splice acceptor, from our sequenced data. Rare pLoF 

variants are especially informative for genetic association studies, because they can 

point to very specific effector genes and disease mechanisms. To increase power, we 

compared frequencies of rare pLoFs in our case and controls to variant frequencies in 

ExAC. We have 𝑁𝑐𝑡𝑟𝑙 = 2,393 total controls, 𝑁𝑐𝑎𝑠𝑒 = 2,394 total cases, and 𝑁𝐸𝑥𝐴𝐶 = 

60,706 total ExAC samples. One complication is that the ExAC data consists of variant-

level allele summaries with no individual-level data. Thus, to tally the number of rare 

pLoF carriers in each gene, we summed the number of pLoF carriers for each variant in 

the gene. In this model, we assumed that all alternate alleles were present in different 

individuals in ExAC due to the rarity of the alleles, so that the number of rare pLoF 

variants represented our approximation of the number of pLoF carriers. This number 

could produce a small overestimate, since for some genes the same individual might 

carry multiple pLoF variants, leading to a larger estimated pLoF carrier count than the 

number of individuals with a pLoF in those genes. For the ith variant in the jth gene, we 

estimated the number of pLoF variant carriers by obtaining allele counts for all rare 
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pLoF variants in three sets of samples—our controls (𝐴𝑐𝑡𝑟𝑙,𝑖,𝑗), our cases (𝐴𝑐𝑎𝑠𝑒,𝑖,𝑗), and 

ExAC (𝐴𝐸𝑥𝐴𝐶,𝑖,𝑗); next, we summed up the total number of alleles in each of our three 

cohorts as our estimate of the number of pLoF carriers (c) for the jth gene:  

𝑐𝑐𝑜ℎ𝑜𝑟𝑡,𝑗 =  ∑ 𝐴𝑐𝑜ℎ𝑜𝑟𝑡,𝑖,𝑗

𝑖

 𝑓𝑜𝑟 𝑐𝑜ℎ𝑜𝑟𝑡 ∈ {𝑐𝑡𝑟𝑙, 𝑐𝑎𝑠𝑒, 𝐸𝑥𝐴𝐶} 

We filtered out all genes for which 𝑐𝑐𝑜ℎ𝑜𝑟𝑡,𝑗 = 0 in all cohorts. We then calculated the 

number of non-carriers (w) in the jth gene for each cohort: 

𝑤𝑐𝑜ℎ𝑜𝑟𝑡,𝑗 = 𝑁𝑐𝑜ℎ𝑜𝑟𝑡 −  𝑐𝑐𝑜ℎ𝑜𝑟𝑡,𝑗 𝑓𝑜𝑟 𝑐𝑜ℎ𝑜𝑟𝑡 ∈ {𝑐𝑡𝑟𝑙, 𝑐𝑎𝑠𝑒, 𝐸𝑥𝐴𝐶}  

With these estimates, we created two 2x2 contingency tables for allele carriers vs. non-

carriers: controls vs. ExAC (wctrl,j and cctrl,j vs. wExAC,j and cExAC,j) and cases vs. ExAC 

(wcase,j and ccase,j vs. wExAC,j and cExAC,j).  

Since our sequenced data had a lower average coverage than ExAC, we 

expected fewer rare pLoF alleles per sample to be called in our data compared to 

ExAC, leading to a lower pLoF carrier frequency. Therefore, while a higher pLoF carrier 

frequency in our cases compared to ExAC would provide evidence to suggest an 

association, we do not attempt to interpret situations where our sample shows fewer 

pLoF carriers than ExAC. We calculated P-values for these contingency tables using a 

one-sided Fisher’s Exact Test (PFETA-vs-B,j), representing the probability of our tested 

cohort (AMD controls or AMD cases) having a lower pLoF carrier frequency compared 

to ExAC, given a fixed total number of pLoF carriers between the tested cohort and 

ExAC. A significant P-value is therefore evidence supporting a higher pLoF carrier 

frequency in our tested cohort compared to ExAC. Due to differences in sequencing 

method, sequencing depth, variant calling algorithms, and experimental conditions, we 
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restricted our comparison to only those genes for which the distribution of pLoF alleles 

in our sequenced controls was not significantly higher than that in ExAC.  

We performed a simulation study by varying effect size, carrier frequency, and P-

value threshold to characterize the balance between false discovery rate and power 

under different thresholds. We found that the less stringent threshold of 0.01 had good 

power to discover gene-level associations across a variety of allele frequencies and 

effect sizes while maintaining a low false discovery rate (Table 2.2). We retained the 

subset of genes found in IAMDGC risk loci for which 𝑃𝐹𝐸𝑇𝐶𝑡𝑟𝑙𝐸𝑥𝐴𝐶,𝑗 > 0.01, representing 

the set of genes in which the pLoF carrier frequencies in our control samples were not 

statistically significantly higher than the pLoF carrier frequencies in ExAC. Following 

these results, we filtered the gene subset for those with 𝑃𝐹𝐸𝑇𝐶𝑎𝑠𝑒𝐸𝑥𝐴𝐶,𝑗 < 0.01. 

To test the validity of using pLoF allele counts as an estimate of pLoF carrier 

counts, we estimated both the proportion of genes in which at least one sample had 

multiple pLoF variants and the proportion of samples containing multiple rare pLoF 

variants in a single gene in our sequencing data. Starting with 21,351 genes, we 

identified a subset of 8,222 genes in which our AMD cases or AMD controls had at least 

one rare pLoF variant, where “rare” was defined as any given variant having an allele 

frequency of less than 0.1% (in our samples, this translated to having an allele count of 

9 or fewer out of 4,787 x 2 = 9,574 total alleles). Of these 8,222 genes, we observed 

two or more rare pLoF variants in the same individual in 59 out of 4,787 samples 

(1.2%), distributed across 26 genes (0.3% of genes). None of these genes are found in 

our list of potentially associated genes.  
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2.2.6 Replication analysis of gene-level rare pLoF alleles from Regeneron 
samples 
 

We repeated our rare pLoF association study using samples from Regeneron for the 

genes in which we found a difference between cases and controls in our ExAC 

comparison, along with genes which contained previously-discovered large-effect pLoF 

variants, totaling five genes: CFH, CFI, ORMDL2, SLC16A8, and TIMP3. This data set 

contained 1,714 cases and 7,356 controls. The AMD phenotypes for these samples 

were predicted using the eMERGE Network EMR Phenotype Algorithm(WEI AND DENNY 

2015). We used Fisher’s Exact Test to compare rare pLoF variants in the cases vs. 

controls within the Regeneron samples, where rare was defined as an allele frequency 

less than 1%. We also compared the rare pLoF variants in Regeneron cases and 

controls to ExAC in the same way we compared our AMD WGS sequencing samples to 

ExAC above: for each gene, we compared controls to ExAC first to determine whether 

the two samples were different, then compared cases to ExAC if the controls were not 

statistically different from ExAC. 

2.3 Results 

2.3.1 Variant calling 
 

From our initial data set of 4,869 samples, we removed samples with over 3% 

contamination (20 samples), samples of non-European ancestry (32 samples), samples 

which did not match array genotypes (11 samples), and samples which did not conform 

to our disease criteria (19 samples). Our final data set contained 4,787 samples, with 

2,394 cases and 2,393 controls. We were successful in finding a large number of rare 
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variants: our final variant call set contained 46,946,619 variants in all, of which 

43,596,300 were SNPs and 3,350,319 were indels. About three-quarters of variants had 

an allele frequency below 0.5%, and about half of all variants were either singletons or 

doubletons (among SNPs: 17,157,068 singletons, 5,129,082 doubletons, and 

11,320,032 others with allele frequencies less than 0.5%; among indels, 692,506 

singletons, 267,158 doubletons, and 974,289 others with allele frequencies less than 

0.5%; Table 2.3). We discovered 27,352,890 variants not found in dbSNP build 138 

(SHERRY et al. 2001). Among these, over 98% had an allele frequency of less than 

0.5%, and over 73% were either singletons or doubletons. This substantial increase in 

rare variants compared to the previous largest AMD GWAS (FRITSCHE et al. 2016) was 

due to our use of whole genome sequencing: of our 46.9 million variants, 37,090,168 

(79%) had an allele frequency of <1%; of the 12,023,830 variants in IAMDGC, 

3,050,013 (25%) had an allele frequency of <1%. Our study discovered 31,584,812 

autosomal variants not found by IAMDGC: 13,627 pLoF, 174,611 nonsynonymous, 

112,050 synonymous, and 31,284,524 intronic and intergenic variants. 

Our final data set contained 301,288 nonsynonymous variants, 165,161 

synonymous variants, 19,276,755 intronic variants, and 27,203,395 variants that 

belonged to other categories (including intergenic, upstream, downstream, and 

untranslated region variants). Of our exonic variants, 282,834 were missense, 7,043 

were nonsense, 6,805 were frameshifts, and 4,606 were essential splice site variants 

(Table 2.4). Most of these were very rare: 92.2% of stop gains and 81.7% of other pLoF 

variants had an allele frequency of less than 0.5% (Table 2.5).  

2.3.2 Single-variant association tests 
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Using a genome wide significance threshold of 5 x 10-8, we found 1,854 significant 

variants in our single-variant tests, located in four known loci with very strong 

association signals in previous studies (CFH, C2/CFB/SKIV2L, ARMS2/HTRA1, and 

C3; Table 2.6 and Figure 2.2). There was no evidence of population stratification 

(genomic control λGC = 1.021, Figure 2.3). Sequential forward selection led to 4 

significant independent signals in the CFH locus, 2 in C2/CFB/SKIV2L, 2 in C3, and 1 in 

ARMS2/HTRA1 (Table 2.7).  

As was found in past studies, the most significant signals we discovered in each 

locus were generally common variants not predicted to be functionally disruptive in the 

translated protein, except in C3: our top variant in the C3 locus was the previously-

known nonsynonymous top variant (rs2230199, 19:6718387 G>C, C3 Arg102Gly, case 

allele frequency = 0.28, control allele frequency = 0.20, odds ratio = 1.55, P-value 2.6 x 

10-2). This was not true for the other 3 loci: in the CFH locus, the most significant signal 

was rs6688272 (1:196684392 G>T, case allele frequency = 0.20, control allele 

frequency = 0.42, odds ratio = 0.36, P-value = 4.6 x 10-114), an intronic variant in very 

high linkage disequilibrium (LD) with the most significant signal in the same locus from 

Fritsche et al (rs10922109) in our samples (R2 = 0.995; Table 2.6). Similarly, the top 

variant in the ARMS2/HTRA1 locus, rs144224550 (10:124214600 G>GGT, case allele 

frequency = 0.41, control allele frequency = 0.22, odds ratio = 2.44, P-value = 2.1 x 10-

92), was also in high LD with the top variant for the same locus in Fritsche et al. 

(rs3750846, R2 = 0.994). 

While prior results show that signals in the C2/CFB/SKIV2L locus could be 

explained by two coding variants in CFB, our more complete dataset highlighted an 
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independent signal in C2. Our top variant in the C2/CFB/SKIV2L locus, rs556679 

(6:31894355 C>T, case allele frequency = 0.051, control allele frequency = 0.11, odds 

ratio = 0.48, P-value = 4.0 x 10-25), which was previously identified by Zhan et al. as 

exhibiting strong evidence of association, was only in moderate LD (R2 = 0.659) with the 

known top variant in Fritsche et al. (rs116503776, 6:31930462 G>A, intronic in SKIV2L). 

Whereas previous studies suggested that variant associations in C2 could be explained 

by LD with causal variants in CFB (GOLD et al. 2006; MALLER et al. 2006; FRITSCHE et al. 

2016), our haplotype analysis showed that rs556679 was associated with AMD 

independent of the two known coding variants in CFB (Table 2.8). 

We tested the robustness of our results by repeating our single-variant 

association tests using the first two principal components of each sample as covariates, 

analyzing only GA or CNV samples, and performing the analysis on the subset of 2,300 

pairs of matched samples only. The results largely agreed with our original single-

variant analysis and did not change the discovered loci or significant association signals 

(results not shown). 

2.3.3 Gene-based association tests 
 

We used SKAT-O to test for evidence of an excess of rare nonsynonymous alleles in 

our samples. Grouping together nonsynonymous variants with allele frequencies below 

5% and using a Bonferroni correction for 22,502 tests to get a P-value significance 

threshold of 0.05/22,502 = 2.22 x 10-6, 2 genes in the CFH locus, 4 genes in the 

C2/CFB/SKIV2L locus, and 2 genes in the C3 locus, including NRTN, showed 

significant associations (Table 2.9). Thus, our results show how, through linkage 

disequilibrium, multiple genes in the same locus can show a rare variant association 



30 
 

signal. After conditioning on the top single variant signals in CFH and C2/CFB/SKIV2L, 

the SKAT-O signals for these genes disappeared. The two signals in C3 remained after 

conditioning on the top variant in that locus, and the signal for NRTN remained after 

conditioning on the top two variants, indicating that the NRTN signal might be 

independent of the signal in C3. In Fritsche et al., one of the three independent signals 

in the C3 locus (rs12019136, 19:5835677 G>A, intronic) was found to be near 

NRTN/FUT6, and their nonsynonymous variant enrichment analysis yielded a 95% 

credible set for this locus, which included a variant in NRTN (rs79744308, 19:5827765 

G>A, p.Ala59Thr) as one of two signals with over 5% posterior probability of being 

causal (along with a variant in FUT6). This same variant had the strongest signal in our 

single-variant conditional analysis in the C3 locus after conditioning on the first two 

independent signals, though it did not pass the threshold for genome wide significance 

(conditional P = 5.85 x 10-7, OR = 0.59, case AF = 0.031, control AF = 0.051). The 

SKAT-O signal for NRTN disappeared when we conditioned on the NRTN 

nonsynonymous variant rs79744308 (P = 2.8 x 10-7 when not conditioning on 

rs79744308; P = 0.32 when conditioning on rs79744308), suggesting the variant is a 

major contributor to the signal. 

 To verify our SKAT-O results, we repeated our gene-based analysis using the 

variable threshold (VT) burden test (PRICE et al. 2010) as implemented in EPACTS 

using a 5% threshold. Only two genes remained significantly associated with AMD by 

the Bonferroni-corrected P-value threshold of 0.05/22,502 = 2.22 x 10-6: C2 (P = 

7.0 x 10-7) and NRTN (P = 4.0 x 10-7). To test the sensitivity of the analysis with respect 

to the variant threshold, we repeated the SKAT-O and VT analysis at the AF<1% level. 
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The only gene that remained significant in the 1% SKAT-O analysis was C3 (P = 

1.7 x 10-11); no genes were significant in the 1% VT analysis. 

2.3.4 Rare pLoF rate comparison with a large external panel (ExAC) 
 

To further test our rarer variants for enrichment in cases, we performed an analysis 

restricted to very rare (allele frequency < 0.1% in our samples) pLoF variants and 

aggregated results at the gene level. We performed this analysis by comparing our data 

against the variant list from the Exome Aggregation Consortium (ExAC) (LEK et al. 

2016), with 60,706 population-based sequenced samples. 

Using estimated rare pLoF carrier counts, we generated contingency tables using 

pLoF carrier counts and case-control status. First, restricting our analysis to genes 

found in the 34 known risk loci from IAMDGC removed 20,538 out of 22,502 genes, 

narrowing the list down to 845 genes. Next, we removed genes with no rare pLoF 

alleles in both AMD cases and AMD controls, which accounted for an additional 538 

genes, leaving us with 307. We kept only genes for which the control samples and 

ExAC samples were not significantly different, using P > 0.01 as the criterion, which 

removed 249 additional genes, with 289 remaining. We narrowed this list down further 

to include only genes in which the case samples and ExAC samples were significantly 

different, using P < 0.01 as the criterion, removing 279 genes, leaving 10 genes. We 

filtered this list of genes for those in which the case pLoF allele frequency was greater 

than the control pLoF allele frequency in our sequenced samples, which suggested an 

association of deleterious rare pLoF alleles with AMD. This removed 7 more genes, 

leaving us with 3 genes with evidence of association (Table 2.10). 
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 Two of these three genes (CFH and CFI) had been identified in previous studies 

to contain rare coding variants (including missense and pLoF variants) associated with 

AMD (SEDDON et al. 2013; FERRARA AND SEDDON 2015; KAVANAGH et al. 2015; 

TRIEBWASSER et al. 2015). In our data, five out of 2,394 case samples each carried a 

pLoF allele in CFH (a pLoF rate of about 1 in 500), distributed across four different 

variants, while none of our 2,393 control samples carried any alternate alleles in the 

same variants. Similarly, five case samples each carried a pLoF allele in CFI, distributed 

across three different variants (about 1 in 500), while no control samples carried any 

alternate allele. In comparison, ExAC contains nine pLoF allele carriers in CFH (about 1 

in 7,000) and 30 in CFI (about 1 in 2,000). The third gene, ORMDL2, was found in the 

RDH5/CD63 locus, and no previous study had examined the effect of rare variants in 

this locus on AMD. The credible set analysis for the RDH5/CD63 locus in Fritsche et al. 

did not find any nonsynonymous variant likely to be causal within this locus, with the 

lead variant (rs3138141) lying downstream of BLOC1S1, and the only exonic variant 

being a synonymous SNP in RDH5 (rs3138142, p.Ile14=) (FRITSCHE et al. 2016). There 

was a significant difference in pLoF allele frequencies in ORMDL2 between our cases 

and the large population-based samples from ExAC based on pLoF variants, but not for 

controls vs. ExAC (P-value = 3.9 x 10-3 and 0.79, respectively): three of our case 

samples carried a pLoF allele in ORMDL2 (about 1 in 800) with none found in our 

control samples, while ExAC contains six pLoF alleles in the same gene (about 1 in 

2,000). 

2.3.5 Replication study of rare pLoF carrier frequencies using Regeneron samples 
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Comparing 1,714 cases with 7,356 controls in the Regeneron samples, and comparing 

pLoF carrier rates for variants with an allele frequency <1% in these samples, we 

replicated our rare pLoF signal in CFH, with a significant difference between cases and 

controls in CFH (case allele frequency = 4.1 x 10-3, control allele frequency = 2.7 x 10-4, 

P-value = 2.1 x 10-4, OR = 15.1, 95% CI = 2.9-148.7; Table 2.11). Only two of the five 

tested genes (CFH and SLC16A8) contained rare pLoF variants in the Regeneron 

samples (7 and 39 case carriers, and 2 and 139 control carriers, in CFH and SLC16A8, 

respectively). We did not find evidence for a significant difference between cases and 

controls in the other four genes (CFI, ORMDL2, SLC16A8, and TIMP3) in the 

Regeneron samples.  

2.4 Discussion 
 

Our sequencing sample represents the largest whole-genome sequencing study for 

age-related macular degeneration to date. We were able to discover a large number of 

novel rare variants across the whole genome in a set of samples enriched for AMD 

cases, providing a valuable resource for future AMD studies. Because our data spanned 

the entire genome, it may be useful for future studies involving regions outside the 

exome: for example, past studies have found regulatory roles for non-coding RNA in the 

complement pathway (LUKIW et al. 2012; ZOU et al. 2016). Using our disease-specific 

panel to accurately impute rare non-exonic variants may help in the discovery of 

regulation-specific variants in future AMD association studies. A subset of our samples 

was submitted to the Haplotype Reference Consortium (MCCARTHY et al. 2016), 

allowing future GWA studies to impute AMD-specific variants into their samples using a 
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web-based imputation service (DAS et al. 2016). We have contributed rare variant data 

to other AMD studies (AL-KHERSAN et al. 2018; PIETRASZKIEWICZ et al. 2018). 

 In our single variant association results, we replicated the most significant signals 

from IAMDGC. We found evidence supporting results from past studies which found 

clinically significant variants in both CFB and C2 (SUN et al. 2012; THAKKINSTIAN et al. 

2012), and that most significant signals in both of these genes were often in high 

linkage disequilibrium with each other (SPENCER et al. 2007). 

 Our results from grouped association tests generally recapitulated previous 

results. The elimination of our SKAT-O signals in CFH and C2/CFB/SKIV2L after 

conditioning on the top variants in each locus provides support for the hypothesis that 

the top single-variant signals served to tag a larger set of rare nonsynonymous variants 

in linkage disequilibrium with those top variants. Similarly, in NRTN, the elimination of 

our SKAT-O signal after conditioning on rs79744308 (NRTN p.Ala59Thr) indicates that 

the SKAT-O signal was largely driven by this variant. The nonsynonymous nature of this 

variant, along with previous mouse studies which found functional relationships between 

NTRN and neuron development and activity in the retina (JOMARY et al. 1999; HARADA et 

al. 2003; SONG et al. 2003; JOMARY et al. 2004; BRANTLEY et al. 2008; HOOVER et al. 

2014), suggest that rs79744308 in NRTN may have a protective effect on AMD 

independent of the effects of variants in C3. 

Using a large publicly available data set as an external panel, we were able to 

further improve our association analysis. Our analysis of very rare pLoF variants 

provides us with association evidence not found by other methods. We found 

confirmatory signals in CFH and CFI. The signal in CFI was especially interesting, since 
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we could not find significant signals in this gene otherwise in either single-variant or 

grouped association tests. These results agree with previous studies, which found pLoF 

variants in CFH to be significantly associated with early-onset macular drusen, a severe 

AMD subtype (Taylor et al. 2019), while pLoF variants in CFI were associated with 

advanced AMD (Kavanagh et al. 2015). Additionally, we found a similar signal in 

ORMDL2, whose function is still not well understood, though a study using knockout 

mice suggests that the Ormdl protein family may play an important part in preventing 

damage to the nervous system (Clarke et al. 2019), making ORMDL2 a potentially 

interesting new gene for future AMD studies. 

 Our findings provide several insights for designing and performing future 

sequencing studies. First, the use of well-matched cases and controls can greatly 

reduce the potential problem of population stratification. In our study, we were 

aggressive about matching cases and controls on age, sex, and ancestry, which led to a 

relatively low genomic control (λGC = 1.021). The consistency of our results after 

replicated analyses using traditional controls for stratification showed that our strategy 

helped us greatly reduce noise from population structure.  

 Second, the limitations of traditional association methods highlight the 

importance of a more holistic approach in interpreting GWAS results. For example, our 

SKAT-O test of nonsynonymous variants showed that there was no additional 

significant gene-based signal in the C2/CFB/SKIV2L locus after conditioning on the top 

variant, rs556679, yet our haplotype analysis of the same locus showed that there was 

evidence of additional haplotype effect on disease beyond the top variant even after 

controlling for two known nonsynonymous variants. This suggests the real risk factors 
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may involve more complex interactions between different variants, including but not 

limited to nonlinear interaction effects between multiple variants, including enhancers, 

promoters, and variants not called by the sequencing pipeline. As another example, the 

significant SKAT-O signal in NRTN remained after conditioning on the only significant 

(p < 5 x 10-8) independent variants in the C3 locus. The signal disappeared after 

conditioning on rs79744308, a nonsynonymous variant in NRTN with a single-variant 

association p-value of 9.3 x 10-7. Though this variant was not genome wide significant, it 

was responsible for driving the entire NRTN SKAT-O signal, suggesting a possible 

biological connection. Identification of this variant as potentially interesting was only 

possible after combining the results from both the single-variant and grouped tests. 

 Third, to supplement traditional association techniques, we leveraged of a large, 

publicly available, population-based variant list to supplement association tests within 

our sequenced samples. In studies with modest samples sizes, both single-variant tests 

and gene-based tests will be underpowered to find associations. This will be especially 

true for rare variants. To partially mitigate this problem, we chose to prioritize genes 

within known risk loci and focused on extremely rare predicted loss-of-function variants, 

ones with major, well-defined effects on the translated products, with a better chance of 

leading to biological explanations for genetic associations. Though individual genotypes 

usually cannot be shared due to privacy concerns, variant lists with allele counts are 

often available to the public. The availability of the ExAC variant list and our focus on 

rare pLoF variants led to our discovery of a difference in loss-of-function allele 

frequencies between our cases and the samples in ExAC in the ORMDL2 gene, 

suggesting a possible functional role for this gene in AMD. Additionally, though we had 
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very few rare pLoF alleles in each gene, by targeting genes in known loci and using a 

less stringent FDR threshold, our method was able to recover the known CFI signal that 

SKAT-O was underpowered to detect. To test the robustness of our approach, we 

repeated our pLoF analysis with the larger gnomAD dataset (Karczewski et al. 2020). 

The 141,456 gnomAD samples had 32 pLoF alleles in CFH (~1 in 4,400), 100 in CFI 

(~1 in 1,400), and 28 in ORMDL2 (~1 in 5,000), all lower than in our AMD cases (~1 in 

500 in CFH, ~1 in 500 in CFI, and ~1 in 800 in ORMDL2). The difference in CFH 

remained significant (P = 3.6 x 10-4 using the Exact Test), while the differences in CFI 

and ORMDL2 were attenuated (P = 0.031 and 0.015, respectively). The same 

comparison with pLoF alleles in TOPMed data led to similar results (~1 in 4,000 pLoF 

alleles in CFH, ~1 in 900 in CFI, and ~1 in 2,700 in ORMDL2). We note that our use of 

low-pass sequencing limited our ability to discover and call rare pLoF variants in our 

samples, likely leading to an underestimation of pLoF counts in our cases. Moreover, 

our ability to replicate the CFH signal in an independent data set from Regeneron was 

an encouraging sign of the viability of our approach. As the number of sequencing 

studies increases, our new group-based approach will be able to leverage new sources 

of data to uncover associations that could not be detected using traditional methods. 

 Finally, our study highlights the importance of high-quality phenotypes for 

genomic studies. The 2,394 cases in our study had diagnoses from ophthalmologists for 

advanced AMD, and our single-variant association tests confirmed four previously 

discovered loci with highly significant results. In comparison, the UK Biobank (SUDLOW 

et al. 2015) contained a phenotype with similar power (2,524 cases and 106,293 

controls), “6148_5”, which consisted of all respondents who answered “Eye 
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problems/disorders: Macular degeneration” to the question “Has a doctor told you that 

you have any of the following problems with your eyes?”, obtained via a self-reported 

touchscreen questionnaires. The association tests for this phenotype was only able to 

confirm the top two loci, with greatly reduced significance for the top signals in each 

locus (pCFH = 4.6 x 10-114 vs. 1 x 10-18 and pARMS2 = 2.1 x 10-92 vs. 1.9 x 10-24 for our 

study vs. UK Biobank, respectively). The high quality of our phenotypes, along with age- 

and sex-matching cases and controls and filtering for ancestral background, may have 

improved our study’s ability to discover associations. 

Our study had a few limitations which decreased our ability to find associations. 

First, our sample size was relatively modest compared to IAMDGC, decreasing our 

power to discover associations. Second, low sequencing depth (~6x) means we may 

have been unable to call millions of very rare variants from the sequence data. Third, 

using only samples with European ancestry means our results are not easily 

generalizable to other populations. Fourth, the allele frequency threshold in our 

replication study using samples from Regeneron was higher than that used in our initial 

analysis with ExAC (1% instead of 0.1%), which might lead to overestimating the 

number of carriers, leading to larger Type I errors in gene-level carrier tests and adding 

noise to the results. Finally, the differences in sequencing depths, variant calling 

algorithms, and phenotype definition between our case-control data, ExAC, and 

Regeneron samples increased the difficulty to jointly analyze variants in these data sets. 

Despite these limitations, we were able to expand on results from previous studies and 

highlight potentially novel gene-level associations.   
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Table 2.1 Sample summary 

In our association analysis, the cases have been combined for comparisons against controls. P-value for age was obtained via a two-sample t-test; P-value for 

male proportion was obtained using Pearson’s Chi-squared test with Yates’ continuity correction 

 

  

AMD Status Controls Cases P-value 

None 2,393  - 

Large Drusen  583 - 

Geographic Atrophy (GA)  419 - 

Choroidal Neovascularization (CNV)  1,122 - 

Mixed GA+CNV  270 - 

Total 2,393 2,394 - 

Age, mean (range) 74.9 (50.0-94.2) 75.1 (50.4-101.0) 0.49 

Males (%) 45.2 44.9 0.86 
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Table 2.2 Power simulation for Fisher’s exact test using external controls 

Studies were simulated with pLoF carrier frequencies of 0.0001, 0.0005, and 0.001; effect sizes (odds ratios, “OR”) of 1 (no effect), 5, 10, and 30; with 2,394 

cases, and either 2,394 (1:1 matched) or 60,706 (external ExAC) controls (“Case-Control” and “Case-ExAC”, respectively), with 1,000 simulated studies of 845 

genes for each combination of carrier frequency and odds ratio. Powers were calculated either with a Bonferroni-corrected threshold of P < 0.05 / 845 = 5.9 x 10-5 

(for testing 845 genes in the 34 known IAMDGC loci), or with P < 0.01. We also present examples of genes with pLoF carrier frequencies close to our simulation 

values, as estimated from pLoF allele counts in ExAC. There is substantial power gain by using external controls when the carrier frequency is low but the effect 

size is high, as would be expected for loss-of-function variants 

  P < 5.9 x 10-5 P < 0.01 Example Gene 

pLoF carrier freq. OR Case-Control Case-ExAC Case-Control Case-ExAC (ExAC pLoF carrier freq) 

1.0 x 10-4 

1 0 1.5 x 10-5 0 0.0032 

CFH (7.4 x 10-5) 
5 0 0.008 2.8 x 10-5 0.13 

10 0 0.087 0.0025 0.42 

30 0.0024 0.82 0.36 0.97 

5.0 x 10-4 

1 0 1.2 x 10-5 9.1 x 10-5 0.0049 

ARMS2 (4.6 x 10-4) 
5 1.3 x 10-4 0.19 0.094 0.64 

10 0.06 0.86 0.62 0.99 

30 0.996 1.00 1.00 1.00 

0.001 

1 0 2.4 x 10-5 0.0013 0.0056 

MMP9 (8.1 x 10-3) 
5 0.024 0.57 0.40 0.92 

10 0.62 0.998 0.97 1.00 

30 1.00 1.00 1.00 1.00 
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Table 2.3 Variant counts across all samples by allele frequency 

About half of all called variants were singletons or doubletons, and about three-quarters had an allele frequency of less than 0.5%. A majority of our variants that 

are in dbSNP (build 138) were common: 54.5% of them had an allele frequency of 0.5% or higher, and 83.8% of them had at least three copies of the allele in our 

samples. Meanwhile, the vast majority of our variants outside of dbSNP are very rare: over 98% of them have an allele frequency of less than 0.5%, and about 

73.4% of them are either singletons or doubletons. 

 All Variants SNPs Indels in dbSNP outside dbSNP 

 
Allele frequency Count (%) Count (%) Count  (%) Count (%) 

 

Count (%) 

Singletons 17,849,574 38.0 17,157,068 39.4 692,506 20.7 1,970,011 10.2 15,879,563 58.1 

Doubletons 5,396,240 11.5 5,129,082 11.8 267,158 8.0 1,189,381 6.1 4,206,859 15.4 

[Tripleton, 0.5%) 12,494,321 26.6 11,520,032 26.4 974,289 29.1 5,751,081 29.7 6,743,240 24.7 

[0.5%, 1.0%) 1,350,033 2.9 1,195,594 2.7 154,439 4.6 1,165,205 6.0 184,828 0.7 

[1.0%, 5.0%) 2,873,308 6.1 2,415,580 5.5 457,728 13.7 2,654,177 13.7 219,131 0.8 

[5.0%, 100%) 6,983,143 14.9 6,178,944 14.2 804,199 24.0 6,863,874 35.4 119,269 0.4 

Total 46,946,619 100 43,596,300 100 3,350,319 100 19,393,729 100 27,352,890 100 
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Table 2.4 All variants discovered, by annotation and allele frequency 

Variants were annotated using Variant Effect Predictor (VEP) build 84, using the merged RefSeq/Ensembl reference for humans. For variants with multiple 

annotations, the most severe consequence was used. Allele frequencies were defined as allele counts divided by the total number of alleles. 

Allele frequency Nonsense Frameshift E.Splice a Nonsyn b Synonymous Intron Intergenic and others c 

Singletons 3,987 2,747 2,420 131,532 65,331 7,403,632 10,239,925 

Doubletons 967 777 552 37,264 20,515 2,230,800 3,105,365 

[Tripleton, 0.5%) 1,537 1,804 1,027 74,223 45,331 5,157,955 7,212,444 

[0.5%, 1.0%) 109 199 107 6,773 4,665 556,154 782,026 

[1.0%, 5.0%) 172 485 164 11,810 8,945 1,180,033 1,671,699 

[5.0%, 100%) 271 793 336 21,232 20,374 2,748,201 4,191,936 

Total 7,043 6,805 4,606 282,834 165,161 19,276,775 27,203,395 

 

a splice acceptor and splice donor; b missense, start loss, stop loss, inframe deletion, and inframe insertion; c includes 5-prime UTR, 3-prime UTR, upstream, 

downstream, and other non-coding variants that do not belong in the other listed categories 
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Table 2.5 Nonsynonymous variants by consequence type and allele frequency 

Annotated consequences were generated by Variant Effect Predictor (build 84). The majority of the nonsynonymous variants were very rare: 85.9% of all 

nonsynonymous variants (92.2% of all stop gains, 81.7% of other pLoF, and 85.9% of other nonsynonymous variants) had an allele frequency of less than 0.5%. 

 

 

 

 

 

 

 

 

a Frameshift variants and essential splice variants. b Missense variants, in-frame insertions, in-frame deletions, start-loss variants, and stop-loss variants. 

  

Allele frequency 
All 

nonsyn. 
(%) Stop gain (%) Other pLoF a (%) Other nonsyn. b (%) 

Singleton 140,686 46.7 3,987 56.6 5,167 45.3 131,532 46.5 

Doubleton 39,560 13.1 967 13.7 1,329 11.6 37,264 13.2 

[Tripleton, 0.5%) 78,591 26.1 1,537 21.8 2,831 24.8 74,223 26.2 

[0.5%,1.0%) 7,188 2.4 109 1.5 306 2.7 6,773 2.4 

[1.0%,5.0%) 12,631 4.2 172 2.4 649 5.7 11,810 4.2 

[5.0%, 100%) 22,632 7.5 271 3.8 1,129 9.9 21,232 7.5 

Total 301,288 100.0 7,043 100.0 11,411 100.0 282,834 100.0 
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Table 2.6 Single variant association tests for advanced AMD 

We compared 2,394 cases of AMD—including large drusen, CNV, GA, and mixed GA/CNV—to 2,393 controls using Firth bias-corrected logistic regression. Alleles 

indicate the major and minor alleles for the given variants. P-values were obtained from Firth bias-corrected logistic regression. IAMDGC top variant indicates the 

top variant in the given locus in Fritsche et al. (FRITSCHE et al. 2016). R2 with IAMDGC indicates the genotype R2 between our top variant and the top variant for the 

same locus in IAMDGC, as found in our data. Our most significant signal in the C2 locus is only in moderate linkage disequilibrium with the top variant found in 

IAMDGC: in the previous study, the top variant (rs116503776) was found in a haplotype analysis to tag two previously-described CFB missense variants, which 

appear to be the risk-carrying variants (Supplementary Figure 4 of Fritsche et al. 2016). In the C3 locus, our most significant signal was rs2230199 (c.304C>G, 

p.Arg102Gly), the same one found in IAMDGC and previous studies. 

Chr Top var. pos. Alleles Locus P-value Annotation IAMDGC top variant R2 w/ IAMDGC 

1 196,684,392 G/T CFH 4.62 x 10-114 Intron-CFH 196,704,632_C/A (rs10922109) 0.995 

6 31,894,355 C/T C2/CFB/SKIV2L 4.04 x 10-25 Intron-C2 31,930,462_G/A (rs116503776) 0.659 

10 124,214,600 G/GGT ARMS2/HTRA1 2.13 x 10-92 Intron-ARMS2 124,215,565_T/C (rs3750846) 0.994 

19 6,718,387 G/C C3 2.55 x 10-20 Nonsyn-C3 6,718,387_G/C (rs2230199) - 
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Table 2.7 Sequential forward selection single variant association tests for advanced AMD 

Sequential forward selection results for 2,394 AMD cases and 2,393 controls. Firth bias-corrected single-variant association. For association results in each locus, 

the top-most variant did not use any variants as covariates; each subsequent variant uses all variants above it in the same locus as covariates. The variants below 

represent statistically independent signals across the entire genome. Locus names correspond to names given to the equivalent loci in IAMDGC. 

Lead variant   Major/minor  Allele Frequencies Association results 

RS number Chr Position Alleles Locus name Cases Controls OR Cond. P-value 

rs6688272 1 196,684,392 G/T 

CFH 

0.201 0.418 0.36 2.90 x 10-113 

rs10922094 1 196,661,505 G/C 0.388 0.619 0.6 1.03 x 10-20 

- 1 196,024,122 TG/T 0.00497 0.000209 32.8 2.06 x 10-10 

rs79436252 1 196,358,288 A/G 0.0655 0.0224 1.95 5.72 x 10-9 

rs556679 6 31,894,355 C/T 
C2/CFB/SKIV2L 

0.051 0.109 0.48 2.05 x 10-25 

rs28383438 6 32,609,038 C/T 0.166 0.123 1.52 5.81 x 10-13 

rs144224550 10 124,214,600 G/GGT ARMS2/HTRA1 0.414 0.217 2.44 5.08 x 10-91 

rs2230199 19 6,718,387 G/C 
C3 

0.281 0.2 1.55 2.58 x 10-20 

rs181290250 19 6,722,565 C/T 0.0157 0.00251 6.9 3.46 x 10-14 
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Table 2.8 Haplotype analysis in the CFB locus 

We examined six different haplotypes that included our top variant in the CFB locus (31894355 C>T) along with two known nonsynonymous variants in the CFB 

gene to determine whether our observed variant had an effect on AMD independent of known variants. The odds ratio for haplotype H4, which contained the 

alternate allele for our top variant but the reference allele for both nonsynonymous variants, had attenuated effect compared to haplotypes with the alternate allele 

in either of the nonsynonymous variants, but was still significantly different from the null, suggesting that our top variant may be in high linkage disequilibrium with 

other variants causal for AMD. Odds ratios and P-values were calculated by comparing the case and control haplotype counts for H1 against the case and control 

haplotype counts for each of the alternate haplotypes (H2-H6) using Fisher’s exact test. 

 Haplotype Haplotype Frequency (%)   

 rs641153 rs4151667 rs556679     

Haplotype 

No. 
p.Arg32Gln p.Leu9His 31894355_C/T Cases Controls OR P-value 

H1 G T C 92.4 83.9 Reference 

H2 A T T 2.6 5.5 0.43 2.55E-15 

H3 A T C 1.7 3.7 0.42 4.46E-11 

H4 G T T 1.4 2.6 0.51 7.11E-06 

H5 G A T 1.1 2.8 0.36 3.74E-11 

H6 G A C 0.8 1.5 0.47 0.000167 
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Table 2.9 Gene-based tests on nonsynonymous variants for advanced AMD using SKAT-O 

Significant signals from gene-based associations of 2,394 AMD cases vs 2,393 controls from SKAT-O were found in multiple genes in three of the four significant 

loci found in single-variant association tests. We used a Bonferroni correction for 22,502 tests to obtain a significance threshold of 2.22 x 10-6. No significant gene-

based signal was found in the ARMS2/HTRA1 locus. Conditioning on the top variants in CFH (rs6688272, 1:196684392 G/T) and C2/CFB/SKIV2L (rs556679, 

6:31894355 C/T) eliminated the SKAT-O signals in those loci, while conditioning on the top two independent variants in C3 (rs2230199, 19:6718387 G/C and 

rs181290250, 19:6722565 C/T, respectively) eliminated the signal in C3 but not NRTN. The NRTN signal disappeared after conditioning on the relatively common 

nonsynonymous variant rs79744308 (19:5827765 G/A, p.Ala59Thr, allele frequency = 4.1% in our samples), indicating that the NRTN signal was largely driven by 

this variant. 

Chr Gene Locus 
Frac. with 

rare vars a 

# of 

variants 

# of 

singletons 
P-value 

SKAT-O 

Rho b 

Number of 

conditioning variants 

1 CFH CFH 0.069 94 56 2.33 x 10-10 0 0 

1 CFHR2 CFH 0.12 16 2 4.24 x 10-9 0 0 

6 CFB C2/CFB/SKIV2L 0.23 80 47 3.90 x 10-11 0 0 

6 C2 C2/CFB/SKIV2L 0.11 54 38 8.29 x 10-10 0 0 

6 NOTCH4 C2/CFB/SKIV2L 0.23 114 68 7.15 x 10-9 0 0 

19 C3 C3 0.036 50 36 1.70 x 10-11 0 0 

19 NRTN C3 0.082 12 8 5.67 x 10-7 0.4 0 

19 C3 C3 0.036 50 36 7.37 x 10-13 0 1 

19 NRTN C3 0.082 12 8 1.34 x 10-7 0.5 1 

19 NRTN C3 0.082 12 8 2.83 x 10-7 0.5 2 

19 NRTN C3 0.082 12 8 0.318 1 3 

 
a The fraction of samples with rare variants, defined as having an allele frequency of less than 5%. b The estimated weight parameter for SKAT-O, indicating the 
proportion of the weight assigned to the burden test. A Rho of 0 means the SKAT-O test is equivalent to a SKAT test, while a Rho of 1 means the SKAT-O test is 
equivalent to a burden test.   
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Table 2.10 Comparing rare pLoF allele carriers in AMD cases and controls with ExAC 

The 2x2 contingency tables between case-control/ExAC status and pLoF carrier status were constructed as follows: allele carriers = pLoF count; allele non-

carriers = N – pLoF count, where N = the number of samples in each data source (cases, controls, or ExAC); then two 2x2 tables can be constructed, one between 

cases and ExAC and one between controls and ExAC. (For example, the 2x2 table for CFH had 5 carriers and 2,389 non-carriers in cases, and 9 carriers and 

60,697 non-carriers in ExAC.) We used one-sided Fisher’s Exact Tests with null hypotheses that the odds ratio for the effect of ExAC vs. the tested cohort was 

less than 1 (that is, the gene had a lower pLoF frequency in the tested cohort than in ExAC). We analyzed a subset of genes for which the Case-ExAC P-value 

were significant (p-value < 0.01) but the Control-ExAC P-value were not significant (p-value > 0.01), and which lay within known AMD risk loci, totaling 3 genes. 

These genes had a higher case carrier frequency than control carrier frequency, consistent with what would be expected from rare deleterious loss-of-function 

variants. 

Gene Case carriers Control carriers ExAC carriers Case vs. ExAC 

 (N=2,394) (N=2,393) (N=60,706) P-value OR 

CFH 5 0 9 1.2 x 10-4 14.1 

ORMDL2 3 0 6 3.9 x 10-3 12.7 

CFI 5 0 30 9.8 x 10-3 4.2 
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Table 2.11 Replication gene-level association study of rare pLoF variants using Regeneron samples 

Predicted LoF variants in 1,714 cases and 7,356 controls with allele frequency <1% were used to estimate rare pLoF carrier counts in five genes. Only two of the 

five genes (CFH and SLC16A8) contained rare pLoF variants in the Regeneron samples. We were able to replicate the signal in CFH. The pLoF frequency in 

SLC16A8 was significantly different between Regeneron controls and ExAC, indicating that the significant SLC16A8 result for case vs. ExAC could be a false 

positive, possibly arising from the differences in sequencing depth, variant calling algorithms, or population structure between the Regeneron and ExAC samples. 

Gene 
Case 

alleles 

Control 

alleles 

ExAC 

alleles 
Case vs. Control Case vs. ExAC Control vs. ExAC 

 (N=1,714) (N=7,356) (N=60,706) P-value OR P-value OR P-value OR 

CFH 7 2 9 2.14 x 10-4 15.1 1.07 x 10-7 27.7 0.34 1.8 

CFI 0 0 30 1 n/a 1 n/a 1 n/a 

ORMDL2 0 0 6 1 n/a 1 n/a 1 n/a 

SLC16A8 39 139 159 0.29 1.21 <2.2 x 10-16 6.1 <2.2 x 10-16 7.3 

TIMP3 0 0 33 1 n/a 1 n/a 1 n/a 
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Figure 2.1 Filtering samples with non-European ancestry with LASER and samples from the Human Genome Diversity Project  

 

First, we calculated the average coordinates for the first two PCs of the European, African, East Asian, and all samples. Next, we defined the radius of the 
acceptance region for European samples to be one-quarter of the distance from the coordinates of the average European samples and the average coordinates of 
all samples. This led to the exclusion of 32 samples from our analysis.  
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Figure 2.2 Manhattan plot of AMD case-control single-variant genome wide association 

 
Association signals can be found in CFH (chromosome 1), C2/CFB/SKIV2L (chromosome 6), ARMS2/HTRA1 (chromosome 10), and C3 (chromosome 19) using 
the genome wide significance threshold 5 x 10-8. 
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Figure 2.3 QQ plots of single variant association P-values for variants inside and outside of known loci 

 
(a) QQ Plot of single-variant association P-values for variants within known AMD risk loci. All significant signals (P-value < 5 x 10-8) were found within these 

previously-discovered AMD risk loci. The most significant signals were all common variants (AF > 5%). (b) QQ Plot of single-variant association P-values for 

variants outside known AMD risk loci. There was no evidence of population stratification when we considered all variants with AF > 0.1% outside of known loci (λGC 

= 1.021). 
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Chapter 3  

Robust, Flexible, and Scalable Tests for Hardy-Weinberg Equilibrium 
Across Diverse Ancestries 

 

A paper covering most of the material in this chapter is in preparation, with myself as 

first author 

3.1 Introduction 
 

Hardy-Weinberg equilibrium (HWE) is a fundamental theorem of population genetics 

and has been one of the key mathematical principles to understand the characteristics 

of genetic variation in a population for more than a century (HARDY 1908; WEINBERG 

1908). HWE describes a remarkably simple relationship between allele frequencies and 

genotype frequencies which is constant across generations in a homogeneous, random-

mating populations. Genetic variants in a homogeneous population typically follow HWE 

except for unusual deviations due by very strong case-control association and 

enrichment (NIELSEN et al. 1998), sex linkage, or non-random sampling (WAPLES 2015).  

HWE tests are often used to assess the quality of microsatellite (VAN 

OOSTERHOUT et al. 2004), SNP-array (WIGGINTON et al. 2005), and sequence-based 

(DANECEK et al. 2011) genotypes. Testing for HWE may reveal technical artifacts in 

sequence or genotype data, such as high rates of genotyping error and/or missingness 

or sequencing/alignment errors (NIELSEN et al. 2011). HWE testing may also be used to 

identify structural variants in which hemizygotes are incorrectly called as homozygotes, 
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especially when multiple variants deviating from HWE occur close together (MCCARROLL 

et al. 2006). Quality control for array-based or sequence-based genotypes typically 

includes a HWE test to detect and filter out artifactual or poorly genotyped variants 

(LAURIE et al. 2010; NIELSEN et al. 2011).  

While HWE tests are commonly and reliably used for variant quality control in 

samples from homogenous populations, applying them to more diverse samples 

remains challenging.  When analyzing individuals from a heterogeneous population, the 

standard HWE tests may falsely flag real, well-genotyped variants, unnecessarily 

filtering them out for downstream analyses (HAO AND STOREY 2019). This problem is 

important since genetic studies increasingly collect data from heterogeneous 

populations. In principle, HWE tests in these structured populations can be performed 

on smaller cohorts with homogenous backgrounds (BYCROFT et al. 2018), and the test 

statistics combined using Fisher’s or Stouffer’s method (MOSTELLER AND FISHER 1948; 

STOUFFER 1949). However, such a procedure requires much more effort than using a 

single HWE test across all samples and information that may be imperfect or 

unavailable.  

Here, we describe RUTH (Robust Unified Test for Hardy-Weinberg Equilibrium) 

which tests for HWE under heterogeneous population structure. Our primary motivation 

for developing RUTH is to robustly filter out artifactual or poorly genotyped variants 

using HWE test statistics. RUTH is (1) computationally efficient, (2) robust against 

various degrees of population structure, and (3) flexible in accepting key 

representations of sequence-based genotypes including best-guess genotypes and 

genotype likelihoods. We perform systematic evaluations of RUTH and alternative 
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methods for HWE testing using simulated and real data to explore the advantages and 

disadvantages of these methods for samples of diverse ancestries.  

3.2 Materials and Methods 

3.2.1 Unadjusted HWE tests  
 

Consider a study of 𝑛 participants with true (unobserved) genotypes 𝑔1, 𝑔2, ⋯ , 𝑔𝑛 at a bi-

allelic variant coded as 0 (reference homozygote), 1 (heterozygote), or 2 (alternate 

homozygote). Represent the best-guess/hard-call (observed) genotypes as 

𝑔̂1, 𝑔̂2, ⋯ , 𝑔̂𝑛. A simple HWE test uses the chi-squared statistic to compare the expected 

and observed genotype counts assuming no population structure and no genotype 

uncertainty. The chi-squared HWE test statistic is defined as  𝑇𝜒2 = ∑
(𝑐𝑘−𝑐̂𝑘)2

𝑐̂𝑘

2
𝑘=0  where 

𝑐𝑗 = ∑ 𝐼(𝑔̂𝑖 = 𝑗)𝑛
𝑖=0  (ignoring missing genotypes), 𝑝̂ =

𝑐1+2𝑐2

2𝑛
, 𝑞̂ = 1 − 𝑝̂ , 𝑐̂0 = 𝑛𝑞̂2, 𝑐̂1 =

2𝑛𝑝̂𝑞̂, and 𝑐̂2 = 𝑛𝑝̂2. Under HWE, the asymptotic distribution of 𝑇𝜒2 is usually assumed 

to follow 𝜒1
2 (ROHLFS AND WEIR 2008). An exact test is known to be more accurate for 

finite samples, particularly for rare variants (WIGGINTON et al. 2005). HWE tests stratified 

by case-control status are known to prevent an inflation of Type I errors for disease-

associated variants (LI AND LI 2008). Widely used software tools such as PLINK 

(PURCELL et al. 2007) and VCFTools (DANECEK et al. 2011) implement an exact HWE 

test based on best-guess genotypes. We will refer to the exact test as the unadjusted 

test. 

3.2.2 Existing HWE tests accounting for structured populations 
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The unadjusted HWE test assumes that the population is homogeneous. If a study is 

comprised of a set of discrete structured subpopulations, a straightforward extension of 

the unadjusted test is to (1) stratify each study participant into exactly one of the 

subpopulations, (2) perform the unadjusted HWE test for each subpopulation 

separately, and (3) meta-analyze test statistics across subpopulations to obtain a 

combined p-value using Stouffer’s method (STOUFFER et al. 1949). More specifically, let 

𝑧1, 𝑧2, ⋯ , 𝑧𝑠 be the z-scores from HWE test statistics for s distinct subpopulations with 

sample sizes 𝑛1, 𝑛2, ⋯ , 𝑛𝑠. A combined meta-analysis HWE test statistic across the 

subpopulations is then 𝑇𝑚𝑒𝑡𝑎 =
∑ 𝑧𝑖√𝑛𝑖

𝑠
𝑖=1

√∑ 𝑛𝑖
𝑠
𝑖=1

 , which asymptotically follows a standard normal 

distribution when each subpopulation follows HWE. 

When the population cannot be easily stratified into distinct subpopulations (e.g. 

intra-continental diversity or an admixed population), a quantitative representation of 

genetic ancestry, such as principal component (PC) coordinates or fractional mixture 

over subpopulations, can be more useful for representing each study participant’s 

genetic diversity (ROSENBERG et al. 2002; PRICE et al. 2006). HWES takes PCs as 

additional input to perform HWE tests under population structure with logistic regression 

(SHA AND ZHANG 2011), and a similar idea was suggested by Hao and colleagues 

(2016). However, existing implementations do not support for sequence-based 

genotypes (where genotype uncertainty may remain when sequencing depth is low or 

moderate) or commonly used formats for genetic array data. A recent method, 

PCAngsd estimates PCs from uncertain genotypes represented as genotype likelihoods 

(MEISNER AND ALBRECHTSEN 2019) and uses these estimates to perform a likelihood 
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ratio test (LRT) for HWE, which is similar to the LRT version of RUTH with differences in 

computational performance (see below).  

3.2.3 Robust HWE testing with RUTH 
 

Here we describe RUTH (Robust and Unified Test for Hardy-Weinberg equilibrium) to 

enable HWE testing under structured populations, which is especially useful for large 

sequencing studies. We developed RUTH to produce HWE test statistics to allow 

quality control of sequence-based variant callsets from increasingly diverse samples. 

RUTH models the uncertainty encoded in sequence-based genotypes to robustly 

distinguish true and artifactual variants in the presence of population structure, and 

seamlessly scales to millions of individuals and genetic variants.  

We assume the observed genotype for individual 𝑖 can be represented as a 

genotype likelihood (GL)  𝐿𝑖
(𝐺)

= Pr (𝐷𝑎𝑡𝑎𝑖|𝑔𝑖 = 𝐺), where 𝐷𝑎𝑡𝑎𝑖 represents observed 

data (e.g. sequence or array), and 𝑔𝑖 ∈ {0,1,2} the true (unobserved) genotype. For 

example, GLs for sequence-based genotypes can be represented as 𝐿𝑖
(𝐺)

=

∏ Pr (𝑟𝑖𝑗|𝑔𝑖 = 𝐺; 𝑞𝑖𝑗)
𝑑𝑖
𝑗=1  where 𝑑𝑖 is the sequencing depth, 𝑟𝑖𝑗 is the observed read, and 

𝑞𝑖𝑗 is the corresponding quality score  (EWING AND GREEN 1998; JUN et al. 2012). We 

model GLs for best-guess genotypes 𝑔̂𝑖 from SNP arrays as 𝐿𝑖
(𝐺)

= (1 − 𝑒𝑖)2,

2𝑒𝑖(1 − 𝑒𝑖),  𝑒𝑖
2  for 𝑔̂𝑖 = 2, 1, 0 where 𝑒𝑖 is assumed per-allele error rate. Imputed 

genotypes may also be approximately modeled using this framework, but the current 

implementation requires creating a pseudo-genotype likelihood to describe this 

uncertainty (see Discussion). 
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3.2.4 Accounting for population structure with individual-specific allele 
frequencies 
 

We account for population structure by modeling individual-specific allele frequencies 

from quantitative coordinates of genetic ancestry such as PCs, similar to the model 

(HAO et al. 2016). For any given variant, instead of assuming that genotypes follow 

HWE with a single universal allele frequency across all individuals, we assume that 

genotypes follow HWE with heterogeneous allele frequencies specific to each 

individual, modeled as a function of genetic ancestry. Let 𝒙𝒊 ∈ ℝ𝑘 represent the genetic 

ancestry of individual 𝑖, where 𝑘 is the number of PCs used. We estimate individual-

specific allele frequency 𝑝 as a bounded linear function of genetic ancestry  

𝑝(𝒙𝑖; 𝜷) = {

𝜷𝑻𝒙𝑖 𝜀 ≤ 𝜷𝑻𝒙𝑖 ≤ 1 − 𝜀

𝜀 𝜷𝑻𝒙𝑖 < 𝜀

1 − 𝜀 𝜷𝑻𝒙𝑖 > 1 − 𝜀

 , 

where 𝜀 is the minimum frequency threshold. We used 𝜀 =
1

4𝑛
 in our evaluation. Even 

though we used a linear model for 𝑝(𝒙𝑖; 𝜷) for computational efficiency, it is 

straightforward to apply a logistic model, which is arguably better (YANG et al. 2012; HAO 

et al. 2016). 

 Let 𝑝𝑖 = 𝑝(𝒙𝑖; 𝜷) and 𝑞𝑖 = 1 − 𝑝𝑖  be the individual specific allele frequencies of 

the non-reference and reference alleles for individual 𝑖. Under the null hypothesis of 

HWE, the frequencies of genotypes (0, 1, 2) are [𝑞𝑖
2, 2𝑝𝑖𝑞𝑖 , 𝑝𝑖

2]. Under the alternative 

hypothesis, we assume these frequencies are [𝑞𝑖
2 + 𝜃𝑝𝑖𝑞𝑖, 2𝑝𝑖𝑞𝑖(1 − 𝜃), 𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖] 

where 𝜃 is the inbreeding coefficient. This model is a straightforward extension of a fully 
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general model where 𝑝𝑖, 𝑞𝑖 is identical across all samples. Then the log-likelihood across 

all study participants is 

𝑙(𝜷, 𝜃) = ∑ log[𝐿𝑖
(0)(𝑞𝑖

2 + 𝜃𝑝𝑖𝑞𝑖) + 𝐿𝑖
(1)

 2𝑝𝑖𝑞𝑖(1 − 𝜃) + 𝐿𝑖
(2)(𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖)]
𝑛

𝑖=1
 

Under both the null (𝜃 = 0) and alternative (𝜃 ≠ 0) hypotheses, we maximize the 

log-likelihood using an Expectation-Maximization (E-M) algorithm (DEMPSTER et al. 

1977). As we empirically observed quick convergence within several iterations in most 

cases, we used a fixed (n=20) number of iterations in our implementation.  

3.2.5 RUTH Score Test 
 

The score function of the log-likelihood is 

𝑈(𝜃) = ∑
𝑝𝑖𝑞𝑖[𝐿𝑖

(0)
− 2𝐿𝑖

(1)
+ 𝐿𝑖

(2)
]

𝐿𝑖
(0)(𝑞𝑖

2 + 𝜃𝑝𝑖𝑞𝑖) + 𝐿𝑖
(1)

  2𝑝𝑖𝑞𝑖(1 − 𝜃) + 𝐿𝑖
(2)(𝑝𝑖

2 + 𝜃𝑝𝑖𝑞𝑖)

𝑛

𝑖=1
= ∑ 𝑢𝑖(𝜃)

𝑛

𝑖=1
 

Since  𝑢𝑖
′(𝜃) = −𝑢𝑖

2(𝜃), we construct a score test statistic of 𝐻0: 𝜃 = 0 vs 𝐻1: 𝜃 ≠ 0 as: 

𝑇𝑠𝑐𝑜𝑟𝑒 =
[𝑈(0)]2

𝐼(0)
=

[∑ 𝑢𝑖(0)𝑛
𝑖=1 ]2

∑ 𝑢𝑖
2(0)𝑛

𝑖=1

 

where I(0) is the Fisher information under the null hypothesis. Under the null, 𝑇𝑠𝑐𝑜𝑟𝑒 has 

an asymptotic chi-squared distribution with one degree of freedom, i.e. 𝑇𝑠𝑐𝑜𝑟𝑒~𝜒1
2. We 

estimate 𝜷̂ with an E-M algorithm. 
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3.2.6 RUTH Likelihood Ratio Test 
 

The log-likelihood function 𝑙(𝜷, 𝜃) can also be used to calculate a likelihood ratio test 

statistic: 

𝑇𝐿𝑅𝑇 = 2 [max
𝜷,𝜃

𝑙(𝜷, 𝜃) − max
𝜷

𝑙(𝜷, 0)]. 

Like the score test, we estimate MLE parameters 𝜷, 𝜃 iteratively using an E-M algorithm 

to test 𝐻0: 𝜃 = 0 vs 𝐻1: 𝜃 ≠ 0. Under the null hypothesis, the asymptotic distribution of 

𝑇𝐿𝑅𝑇 is expected to follow 𝜒1
2. This test is very similar to the likelihood-ratio test proposed 

by PCAngsd (MEISNER AND ALBRECHTSEN 2019), except PCAngsd does not re-estimate 

𝜷 under the alternative hypothesis. In principle, the RUTH LRT should be slightly more 

powerful due to this difference; we expect the practical difference in power to be small, 

as deviations from HWE usually do not change the estimates of 𝜷 substantially.  

3.2.7 Simulation of genotypes and sequence reads under population structure 
 

We simulated sequence-based genotypes under population structure using the 

following procedure. First, for each variant, we simulated an ancestral allele frequency 

and population-specific allele frequencies. Second, we sampled unobserved (true) 

genotypes based on these allele frequencies. Third, we sampled sequence reads based 

on the unobserved genotypes. Fourth, we generated genotype likelihoods and best-

guess genotypes based on sequence reads. 

To simulate ancestral and population-specific allele frequencies, we followed the 

BALDING AND NICHOLS (1995) procedure, except we sampled ancestral allele frequencies 

from 𝑝 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) instead of 𝑝 ~ Uniform(0.1, 0.9) to include rare variants. For 
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each of 𝐾 ∈ {1, 2, 5, 10} populations, we sampled population-specific allele frequencies 

from 𝑝𝑘 ~ 𝐵𝑒𝑡𝑎 (
𝑝(1−𝐹𝑠𝑡)

𝐹𝑠𝑡
,

(1−𝑝)(1−𝐹𝑠𝑡)

𝐹𝑠𝑡
), where 𝑘 ∈ {1, ⋯ , 𝐾}, and 𝐹𝑠𝑡 ∈ {.01, .02, .03, .05, .10} 

was the fixation index to quantify the differentiation between the populations, as 

suggested by Holsinger (HOLSINGER 1999) and implemented in previous studies 

(HOLSINGER et al. 2002; BALDING 2003). Because 𝑝𝑘 no longer follows the uniform 

distribution, we used rejection sampling to ensure that 𝑝̅ =  
1

𝐾
∑ 𝑝𝑘

𝐾
𝑘=1  is uniformly 

distributed across 100 bins across simulations to avoid artifacts caused by systematic 

differences in allele frequencies.  

The unobserved genotype 𝐺𝑖 ∈ {0,1,2} for individual 𝑖 ∈ {1, ⋯ , 𝑛𝑘}, belonging to 

population 𝑘 with sample size 𝑛𝑘, was simulated from genotype frequencies 

(𝑞𝑘
2 + 𝜃 𝑝𝑘𝑞𝑘, 2𝑝𝑘𝑞𝑘(1 − 𝜃), 𝑝𝑘

2 + 𝜃 𝑝𝑘𝑞𝑘), where 𝑞𝑘 = 1 − 𝑝𝑘 and 𝜃 ∈ [− min (
𝑞𝑘

𝑝𝑘
,

𝑝𝑘

𝑞𝑘
) , 1] 

quantifies deviation from HWE; 𝜃 = 0 represents HWE, while 𝜃 < 0 and 𝜃 > 0 represent 

excess heterozygosity and homozygosity compared to HWE expectation, respectively. 

In our experiments, we evaluated 𝜃 ∈ {0, ±.01, ±.05, ±.1, ±.5}. When 𝜃 was smaller than 

the minimum possible value for a specific population, we replaced it with the minimum 

value.  

We simulated sequence reads based on unobserved genotypes, sequence 

depths, and base call error rates. To reflect the variation of sequence depths between 

individuals, we simulated the mean depth of each sequenced sample to be distributed 

as 𝜇𝑖~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 2𝐷 − 1), where 𝐷 is the expected depth and 𝐷 = 5 and 𝐷 = 30 

representing low-coverage and deep sequencing, respectively. For each sequenced 

sample and variant site, we sampled the sequence depth from 𝑑𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖). Each 
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sequence read carried either of the possible unobserved (true) alleles 𝑟𝑖𝑗 ∈ {0,1}, where 

𝑗 ∈ {1, ⋯ , 𝑑𝑖}. Given unobserved genotype 𝐺𝑖, we generated 𝑟𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝐺𝑖

2
), with 

observed allele 𝑜𝑖𝑗 = (1 − 𝑒𝑖𝑗)𝑟𝑖𝑗 + 𝑒𝑖𝑗(1 − 𝑟𝑖𝑗) flipping to the other allele when a 

sequencing error occurs with probability 𝑒𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜖). We used 𝜖 = 0.01 throughout 

our simulations (which corresponds to phred-scale base quality of 20) and assumed that 

all base calling errors switched between reference and alternate alleles.  

We then generated genotype likelihoods and best-guess genotypes from the 

simulated alleles. Let 𝑡𝑖 = ∑ 𝑜𝑖𝑗
𝑑𝑖
𝑗=1  be the observed alternate allele count. The GLs for 

the three possible genotypes are 𝐿𝑖
(0)

= (1 − 𝜖)𝑑𝑖−𝑡𝑖  (𝜖)𝑡𝑖 , 𝐿𝑣
(1)

= 0.5𝑑𝑖  , 𝐿𝑖
(2)

=

(𝜖)𝑑𝑖−𝑡𝑖  (1 − 𝜖)𝑡𝑖. We called best-guess genotypes by using the overall ancestral allele 

frequency 𝑝̅ for a given variant as the prior, then calling the genotype corresponding to 

the highest posterior probability among (𝐿𝑖
(0)

(1 − 𝑝̅)2, 2𝐿𝑖
(1)

𝑝̅(1 − 𝑝̅)2, 𝐿𝑖
(2)

𝑝̅2) for each 

sample. For each possible combination of 𝐹𝑠𝑡, 𝐾, and 𝜃, we generated 50,000 

independent variants across a set of 𝑛 = 5,000 samples with per-ancestry samples 

sizes 𝑛𝑘 =
𝑛

𝐾
.  

3.2.8 Evaluation of Type I error and statistical power 
 

We used different p-value thresholds, 𝐹𝑠𝑡 values, number of ancestry groups 𝐾, and 

average sequencing depth 𝐷 to determine the number of variants significantly deviating 

from HWE. To evaluate Type I error, we simulated sequence reads under HWE (𝜃 = 0) 

and calculated the proportion of significant variants at each p-value threshold. In RUTH 

tests, we assumed PCs were accurately estimated using true genotypes unless 
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indicated otherwise. For real data, we summarized ancestral information by projecting 

PCs estimated from their full genomes onto the reference PC space of the Human 

Genome Diversity Panel (HGDP) (LI et al. 2008) using verifyBamID2 (ZHANG et al. 

2020), similar to the procedure for variant calling in the TOPMed Project, which has 

already integrated RUTH as part of its quality control pipeline 

(https://github.com/statgen/topmed_variant_calling).  

3.2.9 Real data 

We used variants from two different real data sets in our evaluations: the 1000 

Genomes Project (1000G) (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015) and 

the Trans-Omics Precision Medicine (TOPMed) project. We restricted our test to 

variants on chromosome 20. The 1000G data consists of 2,504 individuals from 26 

populations, sequenced at an average depth of 6x, with 5,041,480 total variants. The 

TOPMed data consists of variants from 53,831 individuals from the TOPMed 

sequencing study (TALIUN et al. 2019), sequenced at an average depth of 37x, with . 

12,983,576 total variants. 

3.2.10 Application to 1000 Genomes data 

We evaluated all tests using 1000G data. Unlike the simulated data, variants in 1000G 

are not clearly classified into “true” or “artifactual”, so evaluation of false positives and 

power is less straightforward. We focused on two specific subsets of variants in 

chromosome 20. We selected 17,740 variable sites found in both the Illumina Infinium 

Omni2.5 genotyping array and in HapMap3 (THE INTERNATIONAL HAPMAP CONSORTIUM et 

al. 2010), which we expect to be “high-quality” (HQ) variants that mostly follow HWE 

https://github.com/statgen/topmed_variant_calling
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after controlling for ancestry. Similarly, we selected 10,966 variants that displayed high 

discordance between duplicates or Mendelian inconsistencies within family members in 

TOPMed sequencing study as “low quality” (LQ) variants that show be enriched for 

deviations from HWE, even after accounting for ancestry. Among 329,699 LQ variants 

from TOPMed in chromosome 20, we found that only 10,966 overlap with 1000 

Genome samples because likely artifactual variants were stringently filtered prior to 

haplotype phasing. We suspect that a substantial fraction of these 10,966 LQ variants 

are true variants since they passed all of the 1000G Project’s quality filters. 

Nevertheless, we still expect a much larger fraction of these LQ variants to deviate from 

HWE compared to HQ variants.  

We evaluated multiple representations of sequence-based genotypes from 

1000G. As 1000G samples were sequenced at relatively low-coverage of 6 × on 

average, best-guess genotypes inferred only from sequence reads (raw GT) tend to 

have poor accuracy. Therefore, the officially released best-guess genotypes in 1000G 

were estimated by combining genotype likelihoods (GL), calculated based on sequence 

reads, with haplotype information from nearby variants through linkage-disequilibrium 

(LD)-aware genotype refinement using SHAPEIT2 (DELANEAU et al. 2013). This 

procedure resulted in more accurate genotypes (LD-aware GT), but it implicitly 

assumed HWE during refinement. As different representations of sequence genotypes 

may result in different performance in HWE tests, we evaluated all three different 

representations—raw GT, LD-aware GT, and GL. In all tests of RUTH using hard 

genotype calls, we assumed the error rate for GT-based genotypes to be 0.5%, which is 

representative of a typical non-reference genotype error rate for SNP arrays. We 
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restricted our analyses to biallelic variants. The positions and alleles of 1000G and 

TOPMed variants were matched using the liftOver software tool (KUHN et al. 2013). 

We evaluated all tests as described above. For meta-analysis with Stouffer’s 

method, we divided the samples into 5 strata, using the five 1000G super population 

code labels – African (AFR), Admixed American (AMR), East Asian (EAS), European 

(EUR), and South Asian (SAS). To obtain PC coordinates for 1000G samples, we 

estimated 4 PCs from the aligned sequence reads (BAM) with verifyBamID2 (ZHANG et 

al. 2020), using PCs from 936 samples from the Human Genome Diversity Project 

(HGDP) panel as reference coordinates. The RUTH score test and LRT used these PCs 

as inputs, along with genotypes in raw GT, LD-aware GT, and GL formats. For 

PCAngsd, we used GLs from all variants tested as the input. We limited the analysis to 

a single chromosome due to the heavy computational requirements of PCAngsd. 

3.2.11 Application to TOPMed data 
 

We evaluated all tests using TOPMed samples, which came from multiple studies from 

a diverse spectrum of ancestries, leading to substantial population structure. Using the 

same criteria as our 1000G analysis, we identified 17,524 high-quality variants and 

329,699 low-quality variants across chromosome 20. Since TOPMed genomes were 

deeply sequenced at 37.2 × (±4.5 ×), LD-aware genotype refinement was not 

necessary to obtain accurate genotypes. Therefore, we used two genotype 

representations – raw GT and GL – in our evaluations. 

Similar to 1000G, for best-guess genotypes (raw GT), we used PLINK for the 

unadjusted test. For meta-analysis, we assigned each sample to one of the five 1000G 
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super populations as follows. First, we summarized the genetic ancestries of aligned 

sequenced genomes with verifyBamID2 by estimating 4 PCs using HGDP as reference. 

Second, we used Procrustes analysis (DRYDEN AND MARDIA 1998; WANG et al. 2010) to 

align the PC coordinates of HGDP panels (to account for different genome builds) so 

that the PC coordinates were compatible between TOPMed and 1000G samples. Third, 

for each TOPMed sample, we identified the 10 closest corresponding individuals from 

1000G using the first 4 PC coordinates with a weighted voting system (assigning the 

closest individual a score of 10, next closest a score of 9, and so on until the 10th 

closest individual is assigned a score of 1, then adding up the scores for each super 

population) to determine the super population code that had the highest sum of scores, 

and therefore best described that sample. In this way, we classified 15,580 samples as 

AFR, 4,836 as AMR, 29,943 as EUR, 2,960 as EAS, and 716 as SAS. Among these 

samples, 94.5% had the same super population code for all 10 nearest 1000G 

neighbors. To evaluate the RUTH score test and LRT for both raw GT and GL, we used 

4 PCs estimated by verifyBamID2 (ZHANG et al. 2020), consistent with the method 

applied for the 1000G data. 

3.2.12 Impact of ancestry estimates on adjusted HWE tests 
 

We examined the effect of changing the number of PCs used as input for RUTH tests 

by using 2 PCs as opposed to 4 PCs. We also evaluated the impact of using different 

approaches to classify ancestry when adjusting for population structure with meta-

analysis. By default, our analysis classified the 1000 Genomes subjects into 5 

continental super populations based on published information (THE 1000 GENOMES 

PROJECT CONSORTIUM et al. 2015). For TOPMed, the best-matching 1000 Genomes 
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continental ancestry was carefully determined using the PCA-based matching strategy 

described above. However, in practice, ancestry classification may be performed with a 

coarser resolution (JIN et al. 2019). To mimic such a setting, we used k-means 

clustering on the first 2 PCs of our samples to divide individuals into 3 distinct groups, 

and performed meta-analyses based on this coarse classification for both 1000G and 

TOPMed data.  

3.2.13 Evaluation of sensitivity and specificity  
 

In all datasets, we evaluated the tradeoff between Type I Error and power for each 

method using precision-recall curves (PRCs) and receiver-operator characteristic 

curves (ROCs). In simulated data, we considered variants with θ = 0 to be true 

negatives and variants with θ = -0.05 to be true positives. In both our 1000G and 

TOPMed data, we labeled HQ variants as negative and LQ variants as positive. 

3.3 Results 

3.3.1 Simulation: Effect of genotype uncertainty 
 

To evaluate the impact of genotype uncertainty, we first compared tests in the absence 

of population structure (i.e. single ancestry). For the unadjusted test, we used only best-

guess genotypes (GTs). For PCAngsd, we used only genotype likelihoods (GLs). For 

RUTH score and likelihood ratio tests, we used both.  

Using GLs over GTs substantially reduced Type I errors in HWE tests, especially 

in low-coverage data (Figure 3.1A-C). For example, the standard HWE test based on 

GTs resulted in a 229-fold inflation (22.9%) at p < .001 (Figure 3.1B, Supplemental 
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Table 3.1), which is a threshold to evaluate Type I error with a reasonable precision with 

50,000 variants (50 expected false positives under the null). GT-based RUTH-Score 

and RUTH-LRT tests showed similar inflations. When GLs were used instead of best-

guess genotypes, RUTH-Score and RUTH-LRT had Type I errors close to the null 

expectation (.0010 and .0011, respectively). PCAngsd, which also accounts for 

genotype uncertainty (MEISNER AND ALBRECHTSEN 2019), had similar performance. The 

severely inflated Type I errors with best-guess genotypes can largely be attributed to 

high uncertainty and bias towards homozygote reference genotypes in single site calls 

from low-coverage sequence data, resulting in apparent deviations from HWE. For high-

coverage sequence data, inflation of Type I error with GTs was substantially attenuated 

(.0040 and .0021 for RUTH-Score and RUTH-LRT, respectively); inflation nearly 

disappeared when using GLs (.0014 and .0010 for RUTH-Score and RUTH-LRT, 

respectively; Figure 3.1D-F).  

Next, we evaluated the power to identify variants truly deviating from HWE at 

various levels of inbreeding coefficient (θ). For low-coverage sequence data, we skip 

interpretation of power of GT-based tests owing to their extremely inflated false positive 

rates. All GL-based tests behaved similarly, achieving ~19-21% power at p < .001 with 

moderate excess heterozygosity (θ = -0.05) (Figure 3.2B, Supplementary Table 3.1). 

For high-coverage sequence data, the power of GL-based tests at the same p-value 

threshold increased to ~56-60%, comparable to corresponding GT-based tests. 

Interestingly, the unadjusted GT-based test showed much lower power than RUTH and 

PCAngsd tests under excess heterozygosity (θ < 0) while demonstrating much higher 

power with excess homozygosity (θ > 0). Upon further investigation, we observed that 
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the tests behave very differently for rare variants for which an asymptotic approximation 

performs poorly.   

 We also generated precision-recall curves (PRC) and receiver-operator 

characteristic (ROC) curves to better understand the tradeoff between the Type I errors 

and power under moderate excess heterozygosity (θ = -.05) (Supplementary Figure 

3.1C-D). Again, accounting for genotype uncertainty resulted in better empirical power 

and Type I error, especially for low-coverage data, for which, at an empirical false 

positive rate of 1%, GL-based tests had 41-45% power, as opposed to 4-10% for GT-

based tests. For high-coverage data, GL-based tests had 1-2% greater power than GT-

based tests at the same false positive rate. These results suggest that ignoring 

genotype uncertainty in HWE tests is reasonable for high-coverage sequence data.  

3.3.2 Simulation: Impact of population structure on HWE test statistics 
 

As expected, the unadjusted HWE test had substantially inflated Type I errors under 

population structure based on the Balding-Nichols (1995) model (Figure 3.1, 

Supplementary Table 3.1). Even for an intra-continental level of population 

differentiation (FST = .01), the Type I errors at p < .001 were inflated 13.5-fold even for 

high-coverage data. With an inter-continental level of differentiation (FST = .1), we 

observed orders of magnitude more Type I errors across different simulation conditions. 

This inflation is expected to increase with larger sample sizes, suggesting that 

adjustment for population structure is important even if a study focuses on a single 

continental population. 
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One simple approach to account for population structure is to stratify individuals 

into distinct subpopulations to apply HWE tests separately (BYCROFT et al. 2018), and 

meta-analyze the results (Figure 3.3B). Type I errors were appropriately controlled with 

this approach in high-coverage but not low-coverage data, likely due to unmodeled 

genotype uncertainty (Figure 3.1, Supplementary Table 3.1). Instead of classifying 

individuals into distinct subpopulations, RUTH incorporates PCs to jointly perform HWE 

tests (Figure 3.3C). For both low- or high-coverage data, GL-based RUTH tests and 

PCAngsd showed well-controlled Type I errors, while GT-based tests showed slight 

(high-coverage) or severe (low-coverage) inflation.  

Although meta-analysis resulted in well-controlled Type I errors for high-coverage 

data, it was considerably less powerful than RUTH. For example, with moderate excess 

heterozygosity (θ = -.05) across five ancestries (FST = .1), RUTH tests identified 20-27% 

more variants as significant at p < .001 (Figure 3.2, Supplementary Table 3.1) 

compared to meta-analysis. PRCs also clearly showed better operating characteristics 

for RUTH and PCAngsd compared to meta-analysis (Supplementary Figure 3.2). For 

example, at an empirical false positive rate of 1%, RUTH showed much greater power 

(66-68%) than meta-analysis (43%), even though the simulation scenario favors meta-

analysis because samples were perfectly classified into distinct subpopulations.  

3.3.3 Application to 1000 Genomes WGS data 
 

Next, we evaluated the performance of various HWE tests in low-coverage (~6x) 

sequence data from the 1000 Genomes Project. We evaluated three representations of 

genotypes—(1) raw GT, (2) LD-aware GT, and (3) GL, as described in Materials and 
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Methods. Among chromosome 20 variants, we selected 17,740 high-quality (HQ) 

variants that are polymorphic in GWAS arrays, and 10,966 low-quality (LQ) variants 

enriched for genotype discordance in duplicates and trios. Unlike simulation studies, not 

all LQ variants are necessarily expected to violate HWE, so we consider the proportion 

of significant LQ variants as a lower bound on the sensitivity to identify significant 

variants. Similarly, not all HQ variants are necessarily expected to follow HWE, although 

we expect most to do so, so that the proportion of significant HQ variants serves as an 

upper bound for the false positive rate. 

 Consistent with our simulation results, all tests based on raw GTs generated from 

low-coverage sequence data had severe inflation of false positives (Figure 3.4A, Table 

3.1). This was true even for HQ variants, presumably due to genotyping error and bias 

in raw GTs. Standard HWE tests, which model neither genotype uncertainty nor 

population structure, showed the highest inflation of false positives at 44% for p < 10-6, a 

threshold commonly used for HWE testing in large genetic studies (LOCKE et al. 2015; 

FRITSCHE et al. 2016). Modeling population structure substantially reduced inflation, with 

RUTH tests showing fewer false positives (0.7-1.0% at p < 10-6) than meta-analysis 

(2.0% at p < 10-6). False positives were inflated across all methods when using raw 

GTs.  

Consistent with our simulation studies, GL-based RUTH tests reduced false 

positives even further (0.034% at p < 10-6). In contrast to our simulations, PCAngsd 

demonstrated considerably higher false positives than RUTH (2.1% at p < 10-6), likely 

because PCAngsd estimates PCs from the input data without the ability to use 

externally provided PCs (see Discussion). The sensitivity for detecting significant LQ 
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variants was also consistent with our simulations (Figure 3.4B, Table 3.1). GL-based 

tests, which showed better control of false positives, identified 22-25% of LQ variants as 

significant at p < 10-6. 

 Strikingly, while using LD-aware GTs reduced false positives with adjusted tests, 

it was at the expense of substantially reduced sensitivity to detect LQ variants. The false 

positive rates of any adjusted test with LD-aware GTs were uniformly lower than those 

of any GL- and raw GT-based tests across all p-value thresholds (Figure 3.4A). 

However, sensitivity was also substantially reduced with LD-aware genotypes (Figure 

3.4B). For example, at p < 10-6, GL-based RUTH tests identified 22-23% of LQ variants 

significant, while using LD-aware GTs halved the proportions. Running meta-analysis 

with LD-aware GTs reduced sensitivity even further, likely because the implicit HWE 

assumption in the LD-aware genotype refinement algorithms may have further reduced 

false positives and sensitivity by altering the LD-aware genotypes to conform to HWE. 

We evaluated PRCs between HQ and LQ variants to further evaluate this 

tradeoff. The results clearly demonstrated that HWE tests using LD-aware GTs are 

substantially less robust than tests on other genotype representations (Supplementary 

Table 3.2, Supplementary Figure 3.3A). For example, for the RUTH score test, when 

LD-aware GTs identified 0.1% of HQ variants as significant, 17% of LQ variants were 

identified as significant. However, with raw GT and GL, 24~27% were identified as 

significant at the same threshold. Even fewer were significant in meta-analysis with LD-

aware GTs (13%). Similar trends were observed across all thresholds, suggesting that 

using LD-aware GTs results in substantially poorer operating characteristics than other 

genotype representations. As more accurate genotyping in LD-aware genotype 



78 
 

refinement is expected to improve the performance of QC metrics compared to raw 

GTs, these results are quite striking, and highlight a potential oversight in using LD-

aware genotypes in various QC metrics for sequence-based genotypes. 

3.3.4 Application to TOPMed deep WGS data  
 

We evaluated the various HWE tests on a subset of the Freeze 5 variant calls from the 

high-coverage (~37×) whole genome sequence (WGS) data in the TOPMed Project 

(TALIUN et al. 2019). We identified 17,524 HQ variants and 329,699 LQ variants using 

the same criteria used for 1000G variants and evaluated raw GTs and GLs. We did not 

evaluate PCAngsd due to excessive computational time (see “Evaluation of 

computational cost” below). 

We first evaluated the false positive rates of different HWE tests indirectly by 

using HQ variants. With a >20-fold larger sample size than 1000G, we identified more 

significant HQ variants, while the false positive rates were still reasonable with adjusted 

tests. At p < 10-6, 74% of HQ variants were significant with unadjusted tests, while the 

adjusted GL-based tests identified ~0.3% at p < 10-6 (Figure 3.4C-D, Table 3.2). 

Adjusted GT-based tests had only slightly higher levels of false positives at p < 10-6. 

However, inflation was more noticeable at less stringent p-value thresholds suggesting 

that GL-based tests may be needed for larger sample sizes. 

Next, we evaluated the proportions of LQ variants found to be significant by 

different tests to indirectly evaluate their statistical power. GT- and GL-based RUTH 

tests showed similar power, while meta-analysis showed considerably lower power. For 

example, at p < 10-6, meta-analysis identified 47% of LQ variants as significant, while 
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RUTH tests identified 54-58%. This pattern was similar across different p-value 

thresholds (Figure 3.4C-D) or choices of LQ variants (Supplementary Table 3.3, 

Supplementary Figure 3.4). Our results suggest that GL-based RUTH tests are suitable 

for testing HWE for tens of thousands of deeply sequenced genomes with diverse 

ancestries, but that using raw GTs will also result in a comparable performance at 

typically used HWE p-value thresholds (e.g. p < 10-6) when performing QC without 

access to GLs. 

We used PRCs to evaluate the tradeoff between empirical false positive rates 

and power. Consistent with previous results, the GL-based RUTH test showed the best 

tradeoff between false positives and power, while the GT-based RUTH test and meta-

analysis were slightly less robust but largely comparable (Supplementary Figure 3.3). 

Notably, when we evaluated the different methods at an empirical false positive rate of 

0.1%, RUTH score tests had ~4% higher power than RUTH LRT for both raw GTs and 

GLs (Supplementary Figures 3.5 and 3.6). 

3.3.5 Impact of ancestry estimation accuracy on HWE tests 
 

So far, our evaluations relied on genetic ancestry estimates carefully determined with 

sophisticated methods (see Materials and Methods). However, simpler approaches may 

be used instead during the variant QC step, which may affect the performance of 

adjusted HWE tests. We evaluated whether the number of PC coordinates affected the 

performance of RUTH tests by comparing the performance of RUTH tests when using 2 

PCs to using 4 PCs (default). The results from both simulated and real datasets 

consistently demonstrated that using 4 PCs led to substantially reduced Type I errors 
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compared to using 2 PCs at a similar level of power (Supplementary Table 3.2 and 3.4, 

Supplementary Figure 3.7). PRCs also clearly showed that using 4 PCs was more 

robust against population structure across both simulated and real datasets 

(Supplementary Figure 3.8).  

 We also evaluated whether the classification accuracy of subpopulations affected 

the performance of meta-analysis. Instead of assigning 1000 Genomes individuals into 

five continental populations, we used the k-means algorithm on those samples’ top 2 

PCs to classify them into 3 crude subpopulations (Supplementary Figure 3.9). This led 

to a much higher false positive rate with virtually no increase in true positives 

(Supplementary Figure 3.10, Supplementary Table 3.2). We saw the same pattern in 

simulated data (Supplementary Figure 3.8, Supplementary Table 3.5). 

3.3.6 Computational cost  
 

We compared the computational costs of RUTH and PCAngsd for simulated and real 

data. RUTH has linear time complexity to sample size, while PCAngsd appears to have 

quadratic time complexity (Table 3.3, Supplementary Table 3.6). RUTH also has low 

memory requirement compared to PCAngsd (for example, 14 MB vs 2 GB for 1000 

Genomes data). Extrapolating our results to the whole genome scale, analyzing 1000 

Genomes (i.e. 80 million variants) is expected to take 120 CPU-hours for RUTH, and 

3,200 CPU-hours for PCAngsd (with >1 TB memory consumption). Additionally, RUTH 

can be parallelized into smaller regions in a straightforward manner. 

3.4 Discussion 
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RUTH is a unified, flexible, and robust approach to incorporate genetic ancestry 

and genotype uncertainty for testing Hardy-Weinberg Equilibrium capable of handling 

large amounts of genotype data with structured populations. Sha and Zhang (2011) 

proposed HWES, an HWE test for structured populations, to address some of these 

challenges, but it has not been widely used due to the lack of an implementation that 

supports widely used genotype data formats (e.g. PED, BED, VCF, or BCF) and inability 

to handle imputed or uncertain genotypes. Hao and colleagues (2016) proposed sHWE 

which can only handle best-guess (hard call) genotypes (i.e. 0, 1, or 2 for biallelic 

variants) and does not account for genotype uncertainty. MEISNER AND ALBRECHTSEN 

(2019) proposed PCAngsd to address some of these issues, but it does not support the 

standard VCF/BCF formats for sequence-based genotypes, and its current 

implementation scales poorly with genome-wide analyses of large samples.  

Similar to previous studies (SHA AND ZHANG 2011; HAO et al. 2016), our proposed 

framework uses individual-specific allele frequencies rather than allele frequencies 

pooled across all samples to systematically account for population structure in HWE 

tests. Unlike previous studies, we model genotype uncertainty in sequence-based 

genotypes in a likelihood-based framework. We implemented two RUTH tests – a score 

test and a likelihood ratio test (LRT) – to test for HWE under population structure for 

genotypes with uncertainty. While RUTH LRT is similar to the independently developed 

PCAngsd, the software implementation of RUTH is more flexible, scales much better to 

large studies, and supports the standard VCF format. 

We provide a comprehensive evaluation of various approaches for testing HWE 

using simulated and real data. Our results demonstrated that modeling population 
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stratification is necessary for HWE tests on heterogenous populations. We showed that 

accounting for genotype uncertainty via genotype likelihoods performs substantially 

better than testing HWE with best-guess genotypes, especially for low-coverage 

sequenced genomes. Importantly, we included the evaluations for an unpublished but 

commonly used approach – meta-analysis across stratified subpopulations, cohorts, or 

batches. Our results demonstrate that meta-analysis may be effective in reducing false 

positives, but at the expense of substantially reduced power compared to RUTH.  

We observed that the current implementation of PCAngsd does not scale well to 

large-scale sequencing data, though in principle it can be implemented more efficiently, 

because the underlying HWE test itself is similar to RUTH LRT. PCAngsd requires 

loading all genotypes into memory, which is often infeasible for large sequencing 

studies. For example, loading all of 1000 Genomes will require ~4.8 TB of memory. In 

our evaluation of 1000G chromosome 20 variants, the inability of PCAngsd to estimate 

PCs from the whole genome may have contributed to the observed difference in results 

from RUTH compared to our simulation studies.  

Although our 1000G experiments demonstrated the unexpected result that using 

raw GTs had better sensitivity than using LD-aware GTs at the same empirical false 

positive rates for low-coverage data, we do not advocate using raw GTs for low-

coverage sequence data. First, the results for raw GTs were still consistently less robust 

than GL-based RUTH tests. Moreover, it would be tricky to determine an appropriate p-

value threshold when the false positives are severely inflated. Therefore, we strongly 

advocate using GL-based RUTH tests for robust HWE tests with low-coverage 

sequence data. For the now more typical high-coverage sequence data, GL-based tests 
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are still preferred, but GT-based RUTH tests should be acceptable for cases in which 

genotype likelihoods are unavailable. 

Our experiment compared using 2 vs 4 PCs only because verifyBamID2 software 

tool estimated up to 4 PCs projected onto HGDP panel by default (ZHANG et al. 2020). 

Because our method focuses on testing HWE during the QC steps in sequence-based 

variant calls, a curated version of PCs, estimated from sequenced cohort themselves, 

may not be readily available at the time of HWE test. However, it is possible to use a 

larger number of PCs (e.g. >10 PCs) if available at the time of HWE test. We expect 

that a larger number of PCs will account for finer-grained population structure and may 

benefit the performance of HWE test, but additional experiments are needed to quantify 

the impact of using larger number of PCs. 

 Our results demonstrate that RUTH score and LRT tests perform similarly in 

simulated and experimental datasets. Overall, the RUTH-LRT was slightly more 

powerful than the RUTH-score test at the expense of slightly greater false positive rates, 

although this tendency was not consistent. We observed that the RUTH tests tended to 

be slightly more powerful in identifying deviation from HWE in the direction of excess 

heterozygosity than excess homozygosity when compared to adjusted meta-analysis. 

These results might be caused by the difference between our model-based asymptotic 

tests compared to the exact test used in meta-analysis. 

 We did not evaluate our methods on imputed genotypes in this manuscript. 

Because imputed genotypes implicitly assume HWE, we suspect that HWE tests based 

on imputed genotypes may have reduced power compared to directly genotyped 

variants. It is possible to use approximate genotype likelihoods instead of best-guess 
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genotypes for imputed genotypes, but this requires genotype probabilities, not just the 

genotype dosages. If genotype probabilities Pr (𝑔𝑖 = 𝐺|𝐷𝑎𝑡𝑎𝑖) are available, they can be 

converted to genotype likelihoods 𝐿𝑖
(𝐺)

= Pr (𝐷𝑎𝑡𝑎𝑖|𝑔𝑖 = 𝐺) using Bayes’ rule by 

modeling Pr(𝑔𝑖 = 𝐺) as a binomial distribution based on allele frequencies (which 

implicitly assumes HWE). However, similar to LD-aware genotypes in low-coverage 

sequencing, the power of HWE tests with imputed genotypes may be poor. Further 

evaluation is needed to understand how useful this approximation will be compared to 

alternative methods including the use of best-guess imputed genotypes.   

Our methods have room for further improvement. First, we used a truncated 

linear model for individual-specific allele frequencies for computational efficiency. 

Although such an approximation was demonstrated to be effective in practice (ZHANG et 

al. 2020), applying a logistic model or some other more sophisticated model may be 

more effective in improving the precision and recall of RUTH tests. Second, we did not 

attempt to model or evaluate the effect of admixture in our method. Because HWE is 

reached in two generations with random mating, accounting for admixed individuals 

may only have marginal impact. However, systematic evaluations focusing on admixed 

populations are needed to ensure that RUTH works robustly on such samples. Third, 

RUTH tests do not account for family structure. We suspect that the apparent inflation of 

Type I error for the TOPMed data was partially due to sample relatedness. Accounting 

for family structure in other ways, for example using variance components models, will 

require much longer computational times and may not be feasible for large-scale 

datasets. Fourth, RUTH currently does not directly support imputed genotypes or 

genotype dosages. In principle, it is possible to convert posterior probabilities for 
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imputed genotypes into genotype likelihoods to account for genotype uncertainty (by 

using individual-specific allele frequencies). However, because most genotype 

imputation methods implicitly assume HWE, we suspect that HWE tests on imputed 

genotypes will be underpowered, similar to our observations with LD-aware genotypes 

in the 1000 Genomes dataset, even though explicitly modeling posterior probabilities 

may slightly mitigate this reduction in power.  

In summary, we have developed and implemented robust and rapid methods and 

software tools to enable HWE tests that account for population structure and genotype 

uncertainty. We performed comprehensive evaluations of both our methods and 

alternative approaches. Our tools can be used to evaluate variant quality in very large-

scale genetic data sets, with the ability to handle standard VCF formats for storing 

sequence-based genotypes. Our software tools are publicly available at 

http://github.com/statgen/ruth. 

3.5 Acknowledgements 
 

This work was supported by NIH grants HL137182 (from NHLBI), HG009976 (from 

NHGRI), HG007022 (from NHGRI), DA037904 (from NIDA), HL117626-05-S2 (from 

NHLBI), and MH105653 (from NIMH). Molecular data for the Trans-Omics in Precision 

Medicine (TOPMed) program was supported by the National Heart, Lung and Blood 

Institute (NHLBI). Core support including centralized genomic read mapping and 

genotype calling, along with variant quality metrics and filtering were provided by the 

TOPMed Informatics Research Center (3R01HL-117626-02S1; contract 

HHSN268201800002I). Core support including phenotype harmonization, data 

http://github.com/statgen/ruth


86 
 

management, sample-identity QC, and general program coordination were provided by 

the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract 

HHSN268201800001I). We gratefully acknowledge the studies and participants who 

provided biological samples and data for TOPMed. 

TOPMed source studies and sample counts are described in Supplementary Table 3.7. 

Acknowledgements for TOPMed omics support are detailed in Supplementary Table 

3.8. Full TOPMed study acknowledgements are listed in Supplementary Text 3.1. 

  



87 
 

Figure 3.1 Evaluation of Type I errors between variant HWE tests on simulated genotypes 

 

Under each combination of simulation conditions (number of ancestries, sequencing coverage, and fixation index), 
we simulated 5,000 samples with 50,000 variants that follow HWE within each of the subpopulations and determined 
the Type I error performances of different HWE tests based on the proportion of variants labeled as having significant 
p-values. Five HWE tests—(1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in PLINK-1.9 (PURCELL et 
al. 2007) using hard genotypes, (2) meta-analysis using Stouffer’s method across ancestries using hard genotypes 
(GT), (3) RUTH test using hard genotypes, (4) RUTH test using phred-scale likelihood (GL) computed from simulated 
sequence reads, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019)—were tested under HWE with various 
parameter settings. Gray dotted lines indicate targeted Type I Error rates. Top panels (A-C) represent results from 
shallow sequencing (5x), and the bottom panels (D-F) represent results from deep sequencing (30x). Using GL-
based genotypes resulted in Type I Error rates closer to the targeted rate than using GT-based genotypes across 
different numbers of ancestries (A, D), P-value thresholds (B, E), and fixation indices (C, F). The difference is 
especially large for low-coverage genotypes.  
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Figure 3.2 Evaluation of power between different HWE tests on simulated genotypes 

 

Under each combination of simulation conditions (number of ancestries, sequencing coverage, fixation index, and 
deviation from HWE), we simulated 50,000 variants for 5,000 samples and evaluated the ability of different HWE 
tests to find the variants significant. Unless otherwise specified, the default simulation parameters are 5 ancestries, 
with FST=.1, P-value threshold=.001, and Theta=-0.05. Tests that can find a larger proportion of significant variants 
are considered more powerful. Five HWE tests— (1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in 
PLINK-1.9 using hard genotypes (2) RUTH test using hard genotypes, (3) RUTH test using phred-scale likelihood 
(PL) computed from simulated sequence reads, (4) meta-analysis using Stouffer’s method across ancestries using 
hard genotypes, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019)—were tested for variants deviating from HWE 
with various parameter settings, for low coverage (A-D) and high coverage (E-H) data. (A, E) Theta controls the 
degree of deviation from HWE, with negative values indicating excess heterozygosity and positive values indicating 
heterozygote depletion. The high Type I Error rates in GT-based tests (Figure 2) lead to those methods appearing to 
have higher power in some scenarios. The unadjusted test suffers from this problem the most. GL-based methods 
have slightly lower powers than GT-based methods in exchange for a much better controlled Type I error rate. This 
pattern mostly holds across different numbers of ancestries (B, F), p-value thresholds (C, G), and fixation indices (D, 
H). Meta-analysis had the lowest power in the presence of excess heterozygosity. 
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Figure 3.3 Schematic diagrams of different methods to test HWE under population structure 

 

Three different methods to test HWE under population structure are described. (A) In the standard (unadjusted) HWE 
test, all samples are tested together using best-guess genotypes. This test does not adjust for sample ancestry. (B) In 
a meta-analysis of stratified HWE tests, the samples must first be categorized into discrete subpopulations, 
determined a priori based on their genotypes or self-reported ancestries. Next, standard HWE tests (based on best-
guess genotypes) are performed on each of these subpopulations. Then, the resulting HWE statistics are converted 
into Z-scores and combined in a meta-analysis using Stouffer’s method, with the sample sizes of the subpopulations 
as weights. (C) In our proposed method (RUTH), either best-guess genotypes or genotype likelihoods can be used as 
input for HWE test. We assume that the genetic ancestries of each sample are estimated a priori, typically as 
principal components (PCs). We combine the genotypes and PCs to perform either a score test or a likelihood ratio 
test to obtain a joint ancestry adjusted HWE statistic for each variant across all samples. 
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Figure 3.4 Evaluation of different HWE tests on 1000 Genomes and TOPMed variants 

 

In 1000 Genomes data (A, B), we identified 17,740 “high quality” (HQ) variants and 10,966 “low quality” (LQ) variants 
in chromosome 20. In TOPMed data (C, D), we identified 17,524 HQ variants and 329,699 LQ variants in 
chromosome 20. A well-behaved HWE test should maximize the proportion of significant LQ variants while controlling 
the false positive rate for HQ variants. Dotted gray lines represent targeted Type I error levels if we assume all HQ 
variants follow HWE. (A) Both the unadjusted test and PCAngsd found substantially more significant variants than 
expected in the 1000G HQ variant set, while both RUTH and meta-analysis were more conservative. Methods that 
used raw GTs showed substantial false positive rates, while methods that used GLs and LD-aware GTs had much 
better control of false positives. (B) In 1000G LQ variants, meta-analysis lagged behind RUTH and the unadjusted 
test in discovering significant deviation from HWE. RUTH behaved well for HQ variants while having more power to 
find low-quality variants significantly deviating from HWE. (C) In TOPMed data, the unadjusted test resulted in an 
excess of false positives. Tests using GL-based genotypes outperformed tests using GT-based genotypes. (D) 
Methods using GL-based genotypes were able to discover more LQ variants than methods using GT-based 
genotypes, demonstrating the advantage of accounting for genotype uncertainty in HWE tests. 
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Table 3.1 Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000 Genomes 
chromosome 20 variants. 

Variant 

Category 

Genotype 

Format 
HWE Test 

Proportion of Significant Variants Total 

Variant 

Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 

Variants 

raw GT 

Unadjusted 0.487 0.432 0.394 0.366 0.339 10,966 

Meta-analysis 0.392 0.343 0.307 0.283 0.262 10,966 

RUTH-Score 0.418 0.367 0.333 0.305 0.284 10,966 

RUTH-LRT 0.431 0.373 0.335 0.305 0.280 10,966 

LD-aware 

GT 

Unadjusted 0.479 0.395 0.336 0.292 0.259 10,966 

Meta-analysis 0.184 0.149 0.127 0.111 0.098 10,966 

RUTH-Score 0.211 0.172 0.147 0.130 0.112 10,966 

RUTH-LRT 0.215 0.177 0.151 0.131 0.115 10,966 

GL 

RUTH-Score 0.336 0.295 0.264 0.242 0.223 10,966 

RUTH-LRT 0.358 0.306 0.270 0.243 0.225 10,966 

PCAngsd 0.380 0.331 0.300 0.275 0.255 10,920 

HQ 

Variants 

raw GT 

Unadjusted 0.755 0.657 0.573 0.501 0.443 17,740 

Meta-analysis 0.298 0.161 0.084 0.042 0.020 17,740 

RUTH-Score 0.183 0.083 0.036 0.015 7.4 x 10-3 17,740 

RUTH-LRT 0.200 0.095 0.044 0.021 0.010 17,740 

LD-aware 

GT 

Unadjusted 0.623 0.507 0.422 0.361 0.311 17,740 

Meta-analysis 0.019 3.1 x 10-3 5.6 x 10-4 1.7 x 10-4 1.1 x 10-4 17,740 

RUTH-Score 0.011 1.9 x 10-3 1.1 x 10-4 0 0 17,740 

RUTH-LRT 0.011 1.1 x 10-3 2.3 x 10-4 5.6 x 10-5 0 17,740 

GL 

RUTH-Score 0.026 3.3 x 10-3 7.9 x 10-4 4.5 x 10-4 3.4 x 10-4 17,740 

RUTH-LRT 0.036 6.4 x 10-3 1.3 x 10-3 5.1 x 10-4 3.4 x 10-4 17,740 

PCAngsd 0.059 0.032 0.026 0.022 0.021 17,740 

The numbers within cells represent the proportions of significant variants under the corresponding testing conditions 
at the given P-value threshold. We expect our LQ variants to violate HWE at a higher rate than our HQ variants. A 
well-behaved test is expected to find a high proportion of LQ variants to be significant while maintaining the targeted 
Type I Error rate in HQ variants. The unadjusted test consistently shows the highest false positive rate among all the 
tests. HWE tests that rely on raw GTs also show much higher false positive rates than tests that use other genotype 
representations. RUTH tests were the best at controlling false positives while still maintaining comparable power to 
the other methods. PCAngsd had a much higher false positive rate than RUTH-based methods, especially at more 
stringent p-value thresholds. 
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Table 3.2 Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5 chromosome 20 
variants 

Variant 

set 

Genotype 

Format 
HWE Test 

Proportion of Significant Variants Total 

Variant 

Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 

Variants 

raw GT Unadjusted 0.592 0.561 0.539 0.521 0.506 329,699 

raw GT Meta-analysis 0.554 0.524 0.502 0.485 0.471 329,699 

raw GT RUTH-Score 0.608 0.587 0.572 0.559 0.549 329,699 

GL RUTH-Score 0.635 0.608 0.590 0.575 0.563 329,699 

raw GT RUTH-LRT 0.610 0.580 0.556 0.538 0.522 329,699 

GL RUTH-LRT 0.653 0.615 0.588 0.567 0.550 329,699 

HQ 

Variants 

raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 17,524 

raw GT Meta-analysis 0.065 0.022 9.0 x 10-3 4.8 x 10-3 3.3 x 10-3 17,524 

raw GT RUTH-Score 0.145 0.047 0.172 7.1 x 10-3 3.5 x 10-3 17,524 

GL RUTH-Score 0.034 0.011 4.9 x 10-3 3.1 x 10-3 2.5 x 10-3 17,524 

raw GT RUTH-LRT 0.125 0.036 0.012 5.0 x 10-3 2.7 x 10-3 17,524 

GL RUTH-LRT 0.041 0.018 8.5 x 10-3 4.3 x 10-3 3.1 x 10-3 17,524 

The numbers within cells represent the proportions of significant variants under the corresponding testing conditions 
at the given P-value threshold. These results are based on tests that used likelihood-based genotype representations 
as input. A well-behaved test should reduce the number of significant high-quality (HQ) variants while increasing the 
number of significant low-quality (LQ) variants. The unadjusted test had a greatly inflated false positive rate for HQ 
variants while showing a lower true positive rate for LQ variants. While meta-analysis performed better for HQ 
variants, it had reduced power to find LQ variants to be significant. RUTH performed the best, with fewer false 
positives (significant HQ variants) compared to both the unadjusted test and meta-analysis, while at the same time 
finding more true positives (significant LQ variants).  
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Table 3.3 Runtimes for RUTH and PCAngsd on simulated data 

Sample Size Wall Time (s) User Time (s) 

RUTH-LRT RUTH-

Score 

PCAngsd RUTH-LRT RUTH-

Score 

PCAngsd 

1,000 16.21 27.24 173.11 16.16 27.09 172.37 

2,000 32.19 54.63 347.10 31.94 54.51 345.58 

5,000 82.80 136.44 1,124.83 81.81 136.20 1,102.85 

10,000 165.48 273.67 7,396.00 163.88 273.27 7,235.91 

20,000 336.75 553.92 38,807.67 332.06 553.05 37,338.69 

50,000 902.81 1,438.32 461,971.33 886.67 1,435.87 403,296.5 

 

We simulated 10,000 genotype likelihood-based variants for varying numbers of samples. Wall time indicates total 
runtime, while user time is the amount of time the CPUs spent running each program. All programs were run in 
single-threaded mode. System processes make up the difference between the two values, with a majority consisting 
of file I/O. We used VCF files with GL fields in RUTH and converted them to Beagle3 format for PCAngsd. The RUTH 
likelihood ratio test (LRT) was the fastest method, with the score test about 60% slower. PCAngsd was about 10 
times slower than RUTH-LRT with the smallest sample sizes and over 400 times slower with our largest tested size of 
50,000 samples.  
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3.6 Appendix: Supplementary Figures and Tables 
 

Supplementary Figure 3.1 ROC and PRC for simulated single-ancestry data 

 

For both low coverage (A, C) and high coverage (B, D) settings, 500,000 variants were generated from 5,000 
samples arising from a single ancestry, with half of the variants as true positives (θ = -0.05) and half of the variants as 
true negatives (θ = 0). The colors of the lines correspond to the different HWE tests, while the colors of the points 
correspond to different P-value thresholds. In all cases, the unadjusted test performed the worst. For low-coverage 
data, tests using GT-based genotypes performed poorly due to their inability to capture the effects of genotype 
uncertainty, whereas tests using GL-based genotypes performed much better. The difference was negligible in high-
coverage genotype data. 
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Supplementary Figure 3.2 Precision-recall curves for simulated data with multiple ancestries 

 

We generated Precision-recall curves to evaluate the tradeoff between the different HWE tests’ ability to identify true positive variants while minimizing the 
misidentification of true negative variants as significantly departing from HWE. We analyzed 50,000 true positive and 50,000 true negative variants in 5,000 
samples arising from 5 different ancestries with an average simulated depth of (A) 5x and (B) 30x. True negative variants are defined as variants with the HWE 
deviation parameter θ = 0. True positives are defined as variants with θ = -0.05. The True Positive Rate (TPR) is defined to be the proportion of variants with θ = -
0.05 that are significant at a given P-value threshold, while the Positive Predictive Value (PPV) is defined as the proportion of significant variants with θ = -0.05 at 
the same P-value threshold. Selected p-value thresholds are indicated with colored circles. For low-depth genotypes, in the presence of high genotype uncertainty, 
GL-based HWE tests performed relatively well, while GT-based tests performed poorly. For high-depth genotypes, with low genotype uncertainty, all methods 
adjusting for population structure performed relatively well.  
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Supplementary Figure 3.3 Precision-recall curves for 1000G and TOPMed variants 

 

We defined positive variants as those with a high level of Mendelian inconsistency in family-based TOPMed data, and negative variants as those found in the 
intersection of the Illumina Omni2.5 and HapMap3 variant site lists. (A) For low-coverage sequence data found in 1000G, tests using GL-based genotypes (solid 
lines) generally performed better than tests using any GT-based genotypes (dotted and dashed lines). Both the unadjusted test and meta-analysis performed 
much worse than all other methods. (B) For high-coverage sequence data found in TOPMed, tests using GL-based genotypes retained their improved 
performance over tests using GT-based genotypes. 
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Supplementary Figure 3.4 Results of testing TOPMed variants found in 1000G variant list 

 

This analysis contains 10,966 TOPMed variants found to be discordant in TOPMed family data and overlapping with 
1000G discordant variants, as opposed to all 329,699 discordant TOPMed variants (as seen in Figure 3.4D). Our 
results are similar to those for 1000G discordant variants (Figure 3.4B), suggesting that the differences between the 
patterns observed in 1000G and TOPMed results may have been caused by the difference in allele frequency 
distributions in the two data sets (Supplementary Table 1). 
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Supplementary Figure 3.5 ROC curves for TOPMed variants found in 1000G variant list 

 

GL-based tests have the best overall performance among the different methods. 
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Supplementary Figure 3.6 PRC curves for TOPMed variants found in 1000G variant list 

 

RUTH tests using GLs offer the best balance between finding true positives and maximizing positive predictive value. 
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Supplementary Figure 3.7 Results of testing 1000G and TOPMed variants with RUTH using two vs. four PCs 

 

Using only 2 PCs lead to noticeably worse performance, especially for GL-based tests. (A) In 1000 Genomes data, 
using only 2 PCs leads to much higher false positives in HQ variants for both RUTH-Score and RUTH-LRT compared 
to using 4 PCs. (B) Tests on LQ variants with 2 PCs appear to have modestly higher power than tests using 4 PCs, 
but this is mainly due to the much higher false positive rate. (C) For HQ variants in TOPMed, tests using only 2 PCs 
have substantially higher false positive rate than tests using 4 PCs for GL-based tests, while GT-based tests are 
comparable. (D) Surprisingly, GL-based tests using 4 PCs discovered more significant LQ variants compared to GL-
based tests using 2 PCs, even though GL-based tests using 2 PCs had a higher false positive rate in HQ variants.  
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Supplementary Figure 3.8 Effect of ancestry estimation accuracy on Precision-Recall Curves 

 

We evaluated the effect of using 2 vs. 4 principal components on the performance of RUTH-LRT, and the effect of 
using our nearest-neighbor algorithm (“curated”) vs. k-means for subpopulation classification of samples on the 
performance of meta-analysis on (A) low-depth simulated data, (B) high-depth simulated data, (C) 1000G variants, 
and (D) TOPMed variants. We simulated null variants with θ = 0 and alternative variants with θ = -0.05, with a fixation 
index of 0.1 for 5,000 samples from 5 ancestries (1,000 samples each). RUTH-LRT used GL-based genotypes, and 
meta-analysis used raw GT-based genotypes. K-means classification for simulated data was performed assuming 3 
subpopulation clusters. 
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Supplementary Figure 3.9 Principal component plots and group assignments for 1000 Genomes and TOPMed 
samples 

 

Ancestry group assignments for samples in 1000G (A, B) and TOPMed (C, D) samples used either a high-quality 
ancestry estimation method (A, C) or a crude k-means based method (B, D). In meta-analysis, samples within a 
group were first analyzed together using the unadjusted test. Then, the group-level results were combined using 
Stouffer’s method. Meta-analyses using the cruder k-means groupings performed much worse than those using the 
high-quality ancestry estimates due to population stratification within the cruder groups. 
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Supplementary Figure 3.10 Results of testing 1000G and TOPMed variants with meta-analysis using K-means 
to generate ancestry groups 

 

We generated three subpopulations for 1000G and TOPMed separately by applying k-means to the first two principal 
components of each group. Next, we calculated subpopulation-specific HWE statistics, which were converted to Z-
scores and combined using Stouffer’s method, using each subpopulation’s size as the weights. (A) K-means-based 
meta-analysis had much higher false positive rates in 1000G compared to meta-analysis that used more accurate 
population labels, which (B) confounds its seemingly higher power to discover true positives. (C) We see the same 
increased false positive rate in K-means-based meta-analysis in TOPMed, but surprisingly (D) it also reduced the 
power to discover true positives in TOPMed. High-quality ancestry groups can substantially improve the performance 
of ancestry-based meta-analysis.  
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Supplementary Table 3.1 Simulation results for the unadjusted test, meta-analysis, RUTH, and PCAngsd for 
HWE 

  
 

This table can be found at the following link: 
https://docs.google.com/spreadsheets/d/1zdn7jOWgOMG_wwqwgDD4b1i0a2clGlyNFKmI5xR_DoE/edit?usp=sharing  

Results from various HWE tests for simulations with 50,000 variants for 5,000 samples. Samples were generated 
using a population fixation index (FST) between .01 and .1. “GL” indicates a method using genotype likelihoods, while 
“GT” indicates a method using best-guess genotypes. Theta denotes deviation from HWE: Theta = 0 indicates no 
deviation from HWE, Theta < 0 indicates excess heterozygosity, and Theta > 0 indicates heterozygote depletion. 
When the samples were generated from a single ancestry, meta-analysis and the unadjusted test were identical. 
*Combined FST indicates the combined results for FST=.01, .02, .03, .05, and .1. This is available only when the 
number of ancestries is 1, because FST should not affect the results with single ancestry, so the results may be 
combined.  

https://docs.google.com/spreadsheets/d/1zdn7jOWgOMG_wwqwgDD4b1i0a2clGlyNFKmI5xR_DoE/edit?usp=sharing
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Supplementary Table 3.2 Results from using lower quality ancestry estimations on meta-analysis and RUTH 

Data set 
Variant 

set 

Genotype 

Format 
HWE Test PCs 

Proportion of Significant Variants Total 

Variant 

Count P < 0.01 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

1000G 

LQ 

raw GT 

Meta-analysis n/a 0.392 0.343 0.307 0.283 0.262 10,966 

Meta-analysis 

(k-means) 
n/a 0.405 0.356 0.319 0.292 0.269 10,966 

LD-aware 

GT 

Meta-analysis n/a 0.184 0.149 0.127 0.111 0.098 10,966 

Meta-analysis 

(k-means) 
n/a 0.221 0.169 0.136 0.116 0.102 10,966 

HQ 

raw GT 

Meta-analysis n/a 0.298 0.161 0.084 0.042 0.020 17,740 

Meta-analysis 

(k-means) 
n/a 0.427 0.279 0.180 0.112 0.067 17,740 

LD-aware 

GT 

Meta-analysis n/a 0.019 3.1 x 10-3 5.6 x 10-4 1.7 x 10-4 1.1 x 10-4 17,740 

Meta-analysis 

(k-means) 
n/a 0.107 0.043 0.020 9.5x10-3 5.0 x 10-3 17,740 

TOPMed 

LQ 

GT 

Meta-analysis n/a 0.553 0.523 0.501 0.485 0.471 329,699 

Meta-analysis 

(k-means) 
n/a 0.557 0.526 0.505 0.488 0.474 329,699 

HQ 

Meta-analysis n/a 0.064 0.022 9.2 x 10-3 5.0 x 10-3 3.3 x 10-3 17,524 

Meta-analysis 

(k-means) 
n/a 0.224 0.121 0.074 0.047 0.033 17,524 

1000G 

LQ 

GL 

RUTH-LRT 

2 0.357 0.304 0.271 0.243 0.224 10,966 

4 0.358 0.306 0.270 0.243 0.225 10,966 

RUTH-Score 

2 0.336 0.293 0.263 0.241 0.221 10,966 

4 0.336 0.295 0.264 0.242 0.223 10,966 

LD-aware 

GT 

RUTH-LRT 

2 0.220 0.177 0.149 0.128 0.113 10,966 

4 0.215 0.177 0.151 0.131 0.115 10,966 

RUTH-Score 

2 0.211 0.169 0.143 0.124 0.109 10,966 

4 0.211 0.172 0.147 0.130 0.112 10,966 

raw GT 

RUTH-LRT 

2 0.438 0.377 0.338 0.308 0.284 10,966 

4 0.431 0.373 0.335 0.305 0.28 10,966 

RUTH-Score 

2 0.424 0.372 0.335 0.309 0.286 10,966 

4 0.418 0.367 0.333 0.305 0.284 10,966 

HQ 

GL 

RUTH-LRT 

2 0.110 0.040 0.016 7.3 x 10-3 3.3 x 10-3 17,740 

4 0.036 6.4 x 10-3 1.3 x 10-3 5.1 x 10-4 3.4 x 10-4 17,740 

RUTH-Score 

2 0.087 0.026 9.2 x 10-3 3.4 x 10-3 1.6 x 10-3 17,740 

4 0.026 3.3 x 10-3 7.9 x 10-4 4.5 x 10-4 3.4 x 10-4 17,740 

RUTH-LRT 2 0.041 0.014 5.4 x 10-3 2.4 x 10-3 1.4 x 10-3 17,740 
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LD-aware 

GT 

4 0.011 1.1 x 10-3 2.3 x 10-4 5.6 x 10-5 0 17,740 

RUTH-Score 

2 0.034 9.5 x 10-3 2.8 x 10-3 1.2 x 10-3 5.1 x 10-4 17,740 

4 0.011 1.9 x 10-3 1.1 x 10-4 0 0 17,740 

raw GT 

RUTH-LRT 

2 0.299 0.176 0.098 0.055 0.03 17,740 

4 0.200 0.095 0.044 0.021 9.7 x 10-3 17,740 

RUTH-Score 

2 0.276 0.155 0.083 0.044 0.023 17,740 

4 0.183 0.083 0.036 0.015 7.4 x 10-3 17,740 

TOPMed 

LQ 

GL 

RUTH-LRT 

2 0.646 0.610 0.584 0.563 0.547 329,699 

4 0.652 0.614 0.588 0.567 0.55 329,699 

RUTH-Score 

2 0.634 0.607 0.589 0.574 0.562 329,699 

4 0.635 0.608 0.590 0.575 0.562 329,699 

GT 

RUTH-LRT 
2 0.603 0.573 0.551 0.533 0.518 329,699 

4 0.610 0.580 0.556 0.538 0.552 329,699 

RUTH-Score 
2 0.608 0.586 0.571 0.558 0.548 329,699 

4 0.608 0.587 0.572 0.559 0.549 329,699 

HQ 

GL 

RUTH-LRT 
2 0.130 0.067 0.039 0.024 0.016 17,524 

4 0.041 0.018 8.7 x 10-3 4.2 x 10-3 3.1 x 10-3 17,524 

RUTH-Score 
2 0.130 0.065 0.036 0.021 0.014 17,524 

4 0.034 0.011 4.9 x 10-3 3.1 x 10-3 2.5 x 10-3 17,524 

GT 

RUTH-LRT 
2 0.079 0.028 0.012 7.6 x 10-3 5.9 x 10-3 17,524 

4 0.125 0.036 0.012 5.0 x 10-3 2.7 x 10-3 17,524 

RUTH-Score 
2 0.093 0.033 0.015 8.8 x 10-3 6.0 x 10-3 17,524 

4 0.145 0.047 0.017 7.1 x 10-3 3.5 x 10-3 17,524 

In both 1000G and TOPMed, the false positive rate was much higher when k-means-based groupings were used for 
meta-analysis, compared to when high quality ancestry groupings were used. Similarly, the false positive rate was 
much higher when only 2 PCs were used, compared to when 4 PCs were used. Surprisingly, in TOPMed, using 4 
PCs led to both a lower false positive rate and higher true positive rate when compared to using 2 PCs.  
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Supplementary Table 3.3 Performance of the unadjusted test, meta-analysis, and RUTH on the subset of 
TOPMed freeze 5 chromosome 20 variants that are also found in 1000G 

Variant 

set 

Genotype 

Format 
HWE Test 

Proportion of Significant Variants Total 

Variant 

Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

HQ 

Variants 

raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 16,924 

raw GT Meta-analysis 0.062 0.020 8.0x10-3 3.8x10-3 2.3x10-3 16,924 

raw GT RUTH-Score 0.145 0.046 0.016 6.3x10-3 2.8x10-3 16,924 

GL RUTH-Score 0.032 9.3x10-3 3.7x10-3 2.0x10-3 1.5x10-3 16,924 

raw GT RUTH-LRT 0.125 0.035 0.011 4.2x10-3 1.9x10-3 16,924 

GL RUTH-LRT 0.039 0.016 7.4x10-3 3.1x10-3 2.2x10-3 16,924 

LQ 

Variants 

raw GT Unadjusted 0.762 0.728 0.702 0.683 0.667 10,513 

raw GT Meta-analysis 0.649 0.616 0.592 0.575 0.560 10,513 

raw GT RUTH-Score 0.727 0.693 0.673 0.656 0.640 10,513 

GL RUTH-Score 0.698 0.669 0.648 0.631 0.618 10,513 

raw GT RUTH-LRT 0.719 0.686 0.663 0.643 0.627 10,513 

GL RUTH-LRT 0.693 0.662 0.639 0.621 0.605 10,513 

For HQ variants, GL-based HWE tests had much better control of false positives than GT-based tests. Conversely, 
for LQ variants, GT-based HWE tests had a slightly better true positive rate than GL-based tests. Overall, GL-based 
tests had the best performance when considering the tradeoff between false positives and true positives 
(Supplementary Figure 3.5-3.6). 
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Supplementary Table 3.4 Simulation results for RUTH tests using 2 vs 4 principal components 

  
 

This table can be found at the following link: 

https://docs.google.com/spreadsheets/d/1Ac9rveZax5Y8NlKQ47wBaJNELqeJkFuNUpa1sNgnsno/edit?usp=sharing

We tested the effect of using different numbers of PCs in RUTH on Type I Error (θ = 0) and power (θ ≠ 0) for 

simulated samples with different numbers of ancestries, fixation indices, sequencing depths, and genotype 

representations. We simulated 50,000 variants for each combination of simulation parameters. 

  

https://docs.google.com/spreadsheets/d/1Ac9rveZax5Y8NlKQ47wBaJNELqeJkFuNUpa1sNgnsno/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Ac9rveZax5Y8NlKQ47wBaJNELqeJkFuNUpa1sNgnsno/edit?usp=sharing
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Supplementary Table 3.5 The effect of high vs. low quality subpopulation classification on meta-analysis in 
simulated samples 

Grouping Depth Theta 
Proportion of significant variants 

P < 10-6 P < 10-5 P < 10-4 P < 10-3 P < 0.01 

True 
ancestry 

labels 

5 
-0.05 0.0073 0.0125 0.0235 0.05 0.1145 

0 0.0147 0.0388 0.0919 0.1955 0.3519 

30 
-0.05 0.0139 0.04 0.1048 0.2389 0.4594 

0 0 0 0.0001 0.0016 0.0127 

k-means 
(3 

groups) 

5 
-0.05 0.1201 0.149 0.19 0.2509 0.3513 

0 0.2907 0.3496 0.4195 0.4977 0.5826 

30 
-0.05 0.0919 0.1122 0.1447 0.2017 0.3097 

0 0.2183 0.2553 0.3054 0.3734 0.4747 

We simulated 50,000 variants in 5,000 samples arising from 5 distinct subpopulations (1,000 samples each), at low 
(5x) and high (30x) depth, with no deviation from HWE (θ = 0) and moderate excess heterozygosity (θ = -0.05). We 
used one of two different groupings for our samples: for high-quality labels, we used the original true ancestry labels 
from which we simulated our data; for low-quality labels, we ran k-means classification on the first 2 principal 
components of genetic variation for all our samples to generate 3 groups. We meta-analyzed all data sets using 
Stouffer’s method. Type I error rates for low-depth samples were greatly inflated. For high-depth samples, when we 
used the true ancestry labels, Type I errors were well-controlled, with reasonable power to discover deviations from 
HWE, while when we used the crude k-means labels, Type I errors were greatly inflated, with surprisingly less power 
to discover deviations from HWE at less stringent P-value thresholds. These results highlight the importance of high-
quality subpopulation classification for meta-analysis. 
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Supplementary Table 3.6 Comparison of runtimes and memory requirements for RUTH and PCAngsd in 
simulated and 1000G data 

Data set 
Genotype 

Format 
Software Test N 

Total 

Variant 

Count 

Runtime 

(s) 

Memory 

requirement 

(MB) 

Simulated 

GT PLINK Unadjusted 5,000 50,000 22 10 

GT RUTH RUTH LRT 5,000 50,000 348 15 

GL RUTH RUTH LRT 5,000 50,000 341 15 

GT RUTH RUTH Score 5,000 50,000 460 15 

GL RUTH RUTH Score 5,000 50,000 469 15 

Simulated 

(5x) 
GL PCAngsd PCAngsd 5,000 50,000 6,068 6,946 

Simulated 

(30x) 
GL PCAngsd PCAngsd 5,000 50,000 5,337 6,872 

1000G 

GT PLINK Unadjusted 2,504 28,706 2 8 

GL RUTH RUTH LRT 2,504 28,706 147 14 

GT RUTH RUTH LRT 2,504 28,706 96 13 

GL RUTH RUTH Score 2,504 28,706 216 14 

GT RUTH RUTH Score 2,504 28,706 177 13 

GL PCAngsd PCAngsd 2,504 28,660 4,105 2,073 

TOPMed 
GT RUTH RUTH LRT 53,831 347,223 158,731 57 

GL RUTH RUTH LRT 53,831 347,223 196,169 57 

Simulation runtimes for PLINK and RUTH are averaged over 360 runs, across combinations of different simulation 
parameters. Simulation results for PCAngsd are averaged over 66 runs each for 5x and 30x coverage data. The 
higher uncertainty in low depth simulated data appears to have led to slower convergence in PCAngsd. All results for 
1000G were from single runs. The listed TOPMed runtimes and memory requirements are for single-threaded 
analyses of all variants. 
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Supplementary Table 3.7 Sample contributions from each of the participating TOPMed studies 

TOPMed Study Name TOPMed 

Accession 

Sample 

Size 

Genetics of Cardiometabolic Health in the Amish phs000956 1,025 

Trans-Omics for Precision Medicine Whole Genome Sequencing Project: ARIC phs001211 3,585 

The Genetics and Epidemiology of Asthma in Barbados phs001143 944 

Cleveland Clinic Atrial Fibrillation Study phs001189 328 

The Cleveland Family Study (WGS) phs000954 919 

Cardiovascular Health Study phs001368 69 

Genetic Epidemiology of COPD (COPDGene) in theTOPMed Program phs000951 8,733 

The Genetic Epidemiology of Asthma in Costa Rica phs000988 1,040 

Diabetes Heart Study African American Coronary Artery Calcification (AA CAC) phs001412 322 

Whole Genome Sequencing and Related Phenotypes in the Framingham Heart Study phs000974 3,725 

Genes-environments and Admixture in Latino Asthmatics (GALA II) Study phs000920 912 

GeneSTAR (Genetic Study of Atherosclerosis Risk) phs001218 1,633 

Genetic Epidemiology Network of Arteriopathy (GENOA) phs001345 1,069 

Genetic Epidemiology Network of Salt Sensitivity (GenSalt) phs001217 1,680 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) phs001359 892 

Heart and Vascular Health Study (HVH) phs000993 64 

HyperGEN - Genetics of Left Ventricular (LV) Hypertrophy phs001293 1,752 

Jackson Heart Study phs000964 3,074 

Whole Genome Sequencing of Venous Thromboembolism (WGS of VTE) phs001402 1,250 

MESA and MESA Family AA-CAC phs001416 4,804 

MGH Atrial Fibrillation Study phs001062 916 

Partners HealthCare Biobank phs001024 109 

San Antonio Family Heart Study (WGS) phs001215 1,478 

Study of African Americans, Asthma, Genes and Environment (SAGE) Study phs000921 450 

African American Sarcoidosis Genetics Resource phs001207 606 

Genome-wide Association Study of Adiposity in Samoans phs000972 1,198 

The Vanderbilt AF Ablation Registry phs000997 154 

The Vanderbilt Atrial Fibrillation Registry phs001032 1016 

Novel Risk Factors for the Development of Atrial Fibrillation in Women phs001040 97 

Women's Health Initiative (WHI) phs001237 9,984 

Total  53,831 
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Supplementary Table 3.8 TOPMed acknowledgements for omics support 

TOPMed 

Accession # TOPMed Project Parent Study 

TOPMed 

Phase Omics Center Omics Support 

phs000956 Amish Amish 1 Broad Genomics 3R01HL121007-01S1 

phs001211 AFGen ARIC AFGen 1 Broad Genomics 3R01HL092577-06S1 

phs001211 VTE ARIC 2 Baylor 
3U54HG003273-12S2 / 

HHSN268201500015C 

phs001143 BAGS BAGS 1 Illumina 3R01HL104608-04S1 

phs001189 AFGen CCAF 1 Broad Genomics 3R01HL092577-06S1 

phs000954 CFS CFS 1 NWGC 3R01HL098433-05S1 

phs000954 CFS CFS 3.5 NWGC HHSN268201600032I 

phs001368 CHS CHS 3 Baylor HHSN268201600033I 

phs001368 VTE CHS VTE 2 Baylor 
3U54HG003273-12S2 / 

HHSN268201500015C 

phs000951 COPD COPDGene 1 NWGC 3R01HL089856-08S1 

phs000951 COPD COPDGene 2 Broad Genomics HHSN268201500014C 

phs000951 COPD COPDGene 2.5 Broad Genomics HHSN268201500014C 

phs000988 CRA_CAMP CRA 1 NWGC 3R37HL066289-13S1 

phs000988 CRA_CAMP CRA 3 NWGC HHSN268201600032I 

phs001412 AA_CAC DHS 2 Broad Genomics HHSN268201500014C 

phs000974 AFGen FHS AFGen 1 Broad Genomics 3R01HL092577-06S1 

phs000974 FHS FHS 1 Broad Genomics 3U54HG003067-12S2 

phs000920 ATGC GALAII ATGC 3 NWGC HHSN268201600032I 

phs000920 PGX_Asthma GALAII 1 NYGC 3R01HL117004-02S3 

phs001218 AA_CAC GeneSTAR AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001218 GeneSTAR GeneSTAR legacy Illumina R01HL112064 

phs001218 GeneSTAR GeneSTAR 2 Psomagen 3R01HL112064-04S1 

phs001345 HyperGEN_GENOA GENOA 2 NWGC 3R01HL055673-18S1 

phs001345 AA_CAC GENOA AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001217 GenSalt GenSalt 2 Baylor HHSN268201500015C 

phs001359 GOLDN GOLDN 2 NWGC 3R01HL104135-04S1 

phs000993 AFGen HVH 1 Broad Genomics 3R01HL092577-06S1 

phs000993 VTE HVH VTE 2 Baylor 
3U54HG003273-12S2 / 

HHSN268201500015C 

phs001293 HyperGEN_GENOA HyperGEN 2 NWGC 3R01HL055673-18S1 

phs000964 JHS JHS 1 NWGC HHSN268201100037C 

phs001402 VTE Mayo_VTE 2 Baylor 3U54HG003273-12S2 / 

HHSN268201500015C 

phs001416 AA_CAC MESA AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001416 MESA MESA 2 Broad Genomics 3U54HG003067-13S1 

phs001062 AFGen MGH_AF 

1.4; 1.5; 

2.4 Broad Genomics 

3U54HG003067-12S2 / 

3U54HG003067-13S1; 

3U54HG003067-12S2 / 

3U54HG003067-13S1; 

3UM1HG008895-01S2 

phs001062 AFGen MGH_AF 1 Broad Genomics 3R01HL092577-06S1 

phs001024 AFGen Partners 1 Broad Genomics 3R01HL092577-06S1 

phs001215 SAFS SAFS 1 Illumina 3R01HL113323-03S1 

phs001215 SAFS SAFS legacy Illumina R01HL113322 

phs000921 ATGC SAGE ATGC 3 NWGC HHSN268201600032I 

phs000921 PGX_Asthma SAGE 1 NYGC 3R01HL117004-02S3 

phs000972 Samoan Samoan 1 NWGC HHSN268201100037C 

phs000972 Samoan Samoan 2 NYGC HHSN268201500016C 

phs001207 Sarcoidosis Sarcoidosis 2 Baylor 3R01HL113326-04S1 

phs001207 Sarcoidosis Sarcoidosis 3.5 NWGC HHSN268201600032I 
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phs000997 AFGen VAFAR 

1.5; 2.4; 

5.3 Broad Genomics 

3U54HG003067-12S2 / 

3U54HG003067-13S1; 

3UM1HG008895-01S2; 

3UM1HG008895-01S2 

phs000997 AFGen VAFAR 1 Broad Genomics 3R01HL092577-06S1 

phs001032 AFGen VU_AF 1 Broad Genomics 3R01HL092577-06S1 

phs001040 AFGen WGHS 1 Broad Genomics 3R01HL092577-06S1 

phs001237 WHI WHI 2 Broad Genomics HHSN268201500014C 
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Supplementary Text 3.1 

TOPMed Study Acknowledgements 

NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish 

The Amish studies upon which these data are based were supported by NIH grants R01 AG18728, U01 HL072515, 
R01 HL088119, R01 HL121007, and P30 DK072488. See publication: PMID: 18440328  

NHLBI TOPMed: Trans-Omics for Precision Medicine Whole Genome Sequencing Project: ARIC 

Genome Sequencing for “NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)” (phs001211) was performed 
at the Baylor College of Medicine Human Genome Sequencing Center (HHSN268201500015C and 3U54HG003273-
12S2) and the Broad Institute of MIT and Harvard (3R01HL092577-06S1).  

The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the 
National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services 
(contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and 
HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their important 
contributions.  

NHLBI TOPMed: The Genetics and Epidemiology of Asthma in Barbados 

The Genetics and Epidemiology of Asthma in Barbados is supported by National Institutes of Health (NIH) National 
Heart, Lung, Blood Institute TOPMed (R01 HL104608-S1) and: R01 AI20059, K23 HL076322, and RC2 HL101651. 
For the specific cohort descriptions and descriptions regarding the collection of phenotype data can be found at: 
https://www.nhlbiwgs.org/group/bags-asthma. The authors wish to give special recognition to the individual study 
participants who provided biological samples and or data, without their support in research none of this would be 
possible.  

NHLBI TOPMed: Cleveland Clinic Atrial Fibrillation Study 

The research reported in this article was supported by grants from the National Institutes of Health (NIH) National 
Heart, Lung, and Blood Institute grants R01 HL090620 and R01 HL111314, the NIH National Center for Research 
Resources for Case Western Reserve University and the Cleveland Clinic Clinical and Translational Science Award 
(CTSA) UL1-RR024989, the Department of Cardiovascular Medicine philanthropic research fund, Heart and Vascular 
Institute, Cleveland Clinic, the Fondation Leducq grant 07-CVD 03, and The Atrial Fibrillation Innovation Center, State 
of Ohio.  

NHLBI TOPMed: The Cleveland Family Study (WGS) 

Support for the Cleveland Family Study was provided by NHLBI grant numbers R01 HL46380, R01 HL113338 and 
R35 HL135818.  

NHLBI TOPMed: Cardiovascular Health Study 

This research was supported by contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, 
N01-HC85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, 
N01-HC-85086, N01-HC-35129, N01-HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-45133, and N01-HC-
85239; grant numbers U01 HL080295, U01 HL130114 and R01 HL059367 from the National Heart, Lung, and Blood 
Institute, and R01 AG023629 from the National Institute on Aging, with additional contributions from the National 
Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and institutions can be found at 
https://chs-nhlbi.org/pi. Its content is solely the responsibility of the authors and does not necessarily represent the 
official views of the National Institutes of Health.  

NHLBI TOPMed: Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program 

https://www/
https://chs/
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This research used data generated by the COPDGene study, which was supported by NIH Award Number U01 
HL089897 and Award Number U01 HL089856 from the National Heart, Lung, and Blood Institute. The content is 
solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, 
Lung, and Blood Institute or the National Institutes of Health. 

The COPDGene project is also supported by the COPD Foundation through contributions made to an Industry 
Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens and 
Sunovion.  

NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica 

This study was supported by NHLBI grants R37 HL066289 and P01 HL132825. We wish to acknowledge the 
investigators at the Channing Division of Network Medicine at Brigham and Women’s Hospital, the investigators at 
the Hospital Nacional de Niños in San José, Costa Rica and the study subjects and their extended family members 
who contributed samples and genotypes to the study, and the NIH/NHLBI for its support in making this project 
possible.  

NHLBI TOPMed: Diabetes Heart Study African American Coronary Artery Calcification (AA CAC) 

This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01 DK071891, R01 
AG058921, the General Clinical Research Center of the Wake Forest University School of Medicine (M01 RR07122, 
F32 HL085989), the American Diabetes Association, and a pilot grant from the Claude Pepper Older Americans 
Independence Center of Wake Forest University Health Sciences (P60 AG10484). 

NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham Heart Study 

The Framingham Heart Study (FHS) is a prospective cohort study of 3 generations of subjects who have been 
followed up to 65 years to evaluate risk factors for cardiovascular disease.13-16 Its large sample of ~15,000 men and 
women who have been extensively phenotyped with repeated examinations make it ideal for the study of genetic 
associations with cardiovascular disease risk factors and outcomes. DNA samples have been collected and 
immortalized since the mid-1990s and are available on ~8000 study participants in 1037 families. These samples 
have been used for collection of GWAS array data and exome chip data in nearly all with DNA samples, and for 
targeted sequencing, deep exome sequencing and light coverage whole genome sequencing in limited numbers. 
Additionally, mRNA and miRNA expression data, DNA methylation data, metabolomics and other ‘omics data are 
available on a sizable portion of study participants. This project will focus on deep whole genome sequencing (mean 
30X coverage) in ~4100 subjects and imputed to all with GWAS array data to more fully understand the genetic 
contributions to cardiovascular, lung, blood and sleep disorders. 

The FHS acknowledges the support of contracts NO1-HC-25195 and HHSN268201500001I from the National Heart, 
Lung, and Blood Institute and grant supplement R01 HL092577-06S1 for this research. We also acknowledge the 
dedication of the FHS study participants without whom this research would not be possible.  

NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA II) Study  

The Genes-environments and Admixture in Latino Americans (GALA II) Study was supported by the National Heart, 
Lung, and Blood Institute of the National Institute of Health (NIH) grants R01HL117004 and X01HL134589; study 
enrollment supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical 
Faculty Development Program, Harry Wm. And Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II 
and the National Institute of Environmental Health Sciences grant R01ES015794. 
 
The GALA II study collaborators include Shannon Thyne, UCSF; Harold J. Farber, Texas Children’s Hospital; Denise 
Serebrisky, Jacobi Medical Center; Rajesh Kumar, Lurie Children’s Hospital of Chicago; Emerita Brigino-
Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley Meade, UCSF Benioff Children’s 
Hospital, Oakland; William Rodriguez-Cintron, VA Hospital, Puerto Rico; Pedro C. Avila, Northwestern University; 
Jose R. Rodriguez-Santana, Centro de Neumologia Pediatrica;  Luisa N. Borrell, City University of New York; Adam 
Davis, UCSF Benioff Children’s Hospital, Oakland; Saunak Sen,  University of Tennessee and Fred Lurmann, 
Sonoma Technologies, Inc. 
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The authors acknowledge the families and patients for their participation and thank the numerous health care 
providers and community clinics for their support and participation in GALA II. In particular, the authors thank study 
coordinator Sandra Salazar; the recruiters who obtained the data: Duanny Alva, MD, Gaby Ayala-Rodriguez, Lisa 
Caine, Elizabeth Castellanos, Jaime Colon, Denise DeJesus, Blanca Lopez, Brenda Lopez, MD, Louis Martos, Vivian 
Medina, Juana Olivo, Mario Peralta, Esther Pomares, MD, Jihan Quraishi, Johanna Rodriguez, Shahdad Saeedi, 
Dean Soto, Ana Taveras; and the lab researcher Celeste Eng who processed the biospecimens. 
 
NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy (GENOA)  

Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457, HL054464, HL054481, 
HL119443, and HL087660) of the National Institutes of Health. WGS for “NHLBI TOPMed: Genetic Epidemiology 
Network of Arteriopathy” (phs001345) was performed at the Mayo Clinic Genotyping Core, the DNA Sequencing and 
Gene Analysis Center at the University of Washington (3R01HL055673-18S1), and the Broad Institute 
(HHSN268201500014C) for their genotyping and sequencing services. We would like to thank the GENOA 
participants. 

NHLBI TOPMed: Genetic Epidemiology Network of Salt Sensitivity (GenSalt) 

The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) was supported by research grants (U01HL072507, 
R01HL087263, and R01HL090682) from the National Heart, Lung, and Blood Institute, National Institutes of Health, 
Bethesda, MD.  

NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) 

GOLDN biospecimens, baseline phenotype data, and intervention phenotype data were collected with funding from 
the National Heart, Lung and Blood Institute (NHLBI) grant U01 HL072524. Whole-genome sequencing in GOLDN 
was funded by NHLBI grant R01 HL104135 and supplement R01 HL104135-04S1.  

NHLBI TOPMed: Heart and Vascular Health Study (HVH) 

The research reported in this article was supported by grants HL068986, HL085251, HL095080, and HL073410 from 
the National Heart, Lung, and Blood Institute.  

NHLBI TOPMed: Hypertension Genetic Epidemiology Network (HyperGEN) 

The HyperGEN Study is part of the National Heart, Lung, and Blood Institute (NHLBI) Family Blood Pressure 
Program; collection of the data represented here was supported by grants U01 HL054472 (MN Lab), U01 HL054473 
(DCC), U01 HL054495 (AL FC), and U01 HL054509 (NC FC). The HyperGEN: Genetics of Left Ventricular 
Hypertrophy Study was supported by NHLBI grant R01 HL055673 with whole-genome sequencing made possible by 
supplement -18S1.  

NHLBI TOPMed: The Jackson Heart Study 

The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State University 
(HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health 
(HHSN268201800015I/HHSN26800001) and the University of Mississippi Medical Center (HHSN268201800010I, 
HHSN268201800011I and HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute 
(NHLBI) and the National Institute for Minority Health and Health Disparities (NIMHD). The authors also wish to thank 
the staffs and participants of the JHS.  

NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis 

MESA and the MESA SHARe projects are conducted and supported by the National Heart, Lung, and Blood Institute 
(NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, 
HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 
75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 
75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-
000040, UL1-TR-001079, and UL1-TR-001420. Also supported by the National Center for Advancing Translational 
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Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease 
Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research 
Center. 

NHLBI TOPMed: Whole Genome Sequencing of Venous Thromboembolism (WGS of VTE) Funded in part by 
grants from the National Institutes of Health, National Heart, Lung, and Blood Institute (HL66216 and HL83141) and 
the National Human Genome Research Institute (HG04735).  

NHLBI TOPMed: MGH Atrial Fibrillation Study 

This work was supported by the Fondation Leducq (14CVD01), and by grants from the National Institutes of Health to 
Dr. Ellinor (1RO1HL092577, R01HL128914, K24HL105780). This work was also supported by a grant from the 
American Heart Association to Dr. Ellinor (18SFRN34110082). Dr. Lubitz is supported by NIH grant 1R01HL139731 
and AHA 18SFRN34250007. 

NHLBI TOPMed: Partners HealthCare Biobank 

We thank the Broad Institute for generating high-quality sequence data supported by the NHLBI grant 
3R01HL092577-06S1 to Dr. Patrick Ellinor. The datasets used in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001024.  

NHLBI TOPMed: Study of African Americans, Asthma, Genes and Environment (SAGE) 

The Study of African Americans, Asthma, Genes and Environments (SAGE) was supported by the National Heart, 
Lung, and Blood Institute of the National Institute of Health (NIH) grants R01HL117004 and X01HL134589; study 
enrollment supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical 
Faculty Development Program, Harry Wm. And Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II. 

The SAGE study collaborators include Harold J. Farber, Texas Children’s Hospital; Emerita Brigino-Buenaventura, 
Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley Meade, UCSF Benioff Children’s Hospital, 
Oakland; Luisa N. Borrell, City University of New York; Adam Davis, UCSF Benioff Children’s Hospital, Oakland and 
Fred Lurmann, Sonoma Technologies, Inc. 

The authors acknowledge the families and patients for their participation and thank the numerous health care 
providers and community clinics for their support and participation in SAGE. In particular, the authors thank study 
coordinator Sandra Salazar; the recruiters who obtained the data: Lisa Caine, Elizabeth Castellanos, Brenda Lopez, 
MD, Shahdad Saeedi; and the lab researcher Celeste Eng who processed the biospecimens. 

E.G.B was supported by National Heart, Lung, and Blood Institute (NHLBI): U01HL138626, R01HL117004, 
R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845; the National Human Genome 
Research Institute (NHGRI): U01HG009080; the National Institute of Environmental Health Sciences (NIEHS): 
R01ES015794, R21ES24844; the National Institute on Minority Health and Health Disparities (NIMHD): 
P60MD006902, R01MD010443, RL5GM118984,R56MD013312; the Eunice Kennedy Shriver National Institute of 
Child Health and Human Development (NICHD): R01HD085993; and the Tobacco-Related Disease Research 
Program (TRDRP): 24RT-0025 and 27IR-0030. 

NHLBI TOPMed: San Antonio Family Heart Study (WGS) 

Collection of the San Antonio Family Study data was supported in part by National Institutes of Health (NIH) grants 
R01 HL045522, MH078143, MH078111 and MH083824; and whole genome sequencing of SAFS subjects was 
supported by U01 DK085524 and R01 HL113323. We are very grateful to the participants of the San Antonio Family 
Study for their continued involvement in our research programs.  

NHLBI TOPMed: The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OlaGA) Group 

Financial support for the Samoan Obesity, Lifestyle and Genetic Adaptations Study (OlaGA) Group comes from the 
U.S. National Institutes of Health Grant R01-HL093093 and R01-HL133040. We acknowledge the assistance of the 
Samoa Ministry of Health and the Samoa Bureau of Statistics for their guidance and support in the conduct of this 

http://www/


118 
 

study. We thank the local village officials for their help and the participants for their generosity. The following 
publication describes the origin of the dataset: Hawley NL, Minster RL, Weeks DE, Viali S, Reupena MS, Sun G, 
Cheng H, Deka R, McGarvey ST. Prevalence of Adiposity and Associated Cardiometabolic Risk Factors in the 
Samoan Genome-Wide Association Study. Am J Human Biol 2014. 26: 491-501. DOI: 10.1002/jhb.22553. PMID: 
24799123.  

Our study name: ‘The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OlaGA) Group’. 

Ranjan Deka, Department of Environmental and Public Health Sciences, College of Medicine, University of 
Cincinnati, Cincinnati, OH 45267-0056. Email: dekar@uc.edu.  

Nicola L Hawley, Department of Epidemiology (Chronic Disease), School of Public Health, Yale University, New 
Haven, CT 06520-0834. Email: nicola.hawley@yale.edu. 

Stephen T McGarvey, International Health Institute, Department of Epidemiology, School of Public Health, and 
Department of Anthropology, Brown University. 02912. Email: stephen_mcgarvey@brown.edu.    

Ryan L Minster, Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, 
PA 15261. Email: rminster@pitt.edu.  

Take Naseri, Ministry of Health, Government of Samoa, Apia, Samoa. Email: taken@health.gov.ws. 

Muagututi‘a Sefuiva Reupena, Lutia I Puava Ae Mapu I Fagalele, Apia, Samoa. Email:  smuagututia51@gmail.com. 

Daniel E Weeks, Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, 
Pittsburgh, PA 15261. Email: weeks@pitt.edu.  

NHLBI TOPMed: The Vanderbilt AF Ablation Registry 

The research reported in this article was supported by grants from the American Heart Association to Dr. Shoemaker 
(11CRP742009), Dr. Darbar (EIA 0940116N), and grants from the National Institutes of Health (NIH) to Dr. Darbar 
(R01 HL092217), and Dr. Roden (U19 HL65962, and UL1 RR024975). The project was also supported by a CTSA 
award (UL1 TR00045) from the National Center for Advancing Translational Sciences. Its contents are solely the 
responsibility of the authors and do not necessarily represent the official views of the National Center for Advancing 
Translational Sciences or the NIH.  

NHLBI TOPMed: The Vanderbilt Atrial Fibrillation Registry 

The research reported in this article was supported by grants from the American Heart Association to Dr. Darbar (EIA 
0940116N), and grants from the National Institutes of Health (NIH) to Dr. Darbar (HL092217), and Dr. Roden (U19 
HL65962, and UL1 RR024975). This project was also supported by CTSA award (UL1TR000445) from the National 
Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not 
necessarily represent the official views of the National Center for Advancing Translational Sciences of the NIH.  

NHLBI TOPMed: Novel Risk Factors for the Development of Atrial Fibrillation in Women 

The Women’s Genome Health Study (WGHS) is supported by HL 043851 and HL099355 from the National Heart, 
Lung, and Blood Institute and CA 047988 from the National Cancer Institute, the Donald W. Reynolds Foundation 
with collaborative scientific support and funding for genotyping provided by Amgen. AF endpoint confirmation was 
supported by HL-093613 and a grant from the Harris Family Foundation and Watkin’s Foundation.  

NHLBI TOPMed: Women’s Health Initiative (WHI) 

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. 
Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, 
HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C.  

NHLBI TOPMed: GeneSTAR (Genetic Study of Atherosclerosis Risk) 

The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) was supported by grants from the National 
Institutes of Health through the National Heart, Lung, and Blood Institute (U01HL72518, HL087698, HL112064) and 
by a grant from the National Center for Research Resources (M01-RR000052) to the Johns Hopkins General Clinical 
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Research Center. We would like to thank the participants and families of GeneSTAR and our dedicated staff for all 
their sacrifices. 

NHLBI TOPMed: Genetics of Sarcoidosis in African Americans (Sarcoidosis) 

National Institutes of Health (R01HL113326, P30 GM110766-01) 
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Chapter 4  
 

PheGET: An Interactive Multi-Tissue eQTL Browser 

A paper covering most of the material in this chapter is in preparation, with myself as 

first author 

4.1 Introduction 

Expression quantitative trait loci (eQTLs) are an important piece of the puzzle for 

understanding the regulatory mechanisms underlying genetic associations (GALLAGHER 

AND CHEN-PLOTKIN 2018). The continuing advances in genomic technology have allowed 

researchers to generate enormous amounts of molecular profiles across many 

individuals and tissues. For example, the Genotype Tissue Expression (GTEx) 

Consortium analyzed transcriptomic profiles of 49 different tissues across 838 samples 

and identified >4 million eQTLs across >10 million genetic variants (AGUET et al. 2019). 

The sheer number of eQTLs produced in datasets such as this require scalable, 

custom-designed visualization tools as aids for interpretation and analysis. Such eQTL 

resources allow the exploration of a wide range of clinically relevant hypotheses, such 

as interpreting potential regulatory mechanisms in individual GWAS signals (ROSELLI et 

al. 2018; YENGO et al. 2018), understanding tissue-specific epigenetic architecture of 

complex traits (EHRLICH et al. 2019), and pinpointing likely causal variants by 

colocalizing GWAS and eQTL signals (LIU et al. 2018; WU et al. 2019). 
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 Functional interpretation of disease-associated regulatory variants can be 

facilitated by the interactive exploration of large transcriptomic profiles. However, 

existing web tools provide only a limited range of information that requires additional 

effort to address scientific questions elucidating the tissue-specific relationship between 

the variants and genes. For example, the GTEx Portal (https://gtexportal.org) allows us 

to visualize expression levels or list significant cis-eQTLs across tissues to understand 

the regulatory landscape of the gene. However, the GTEx Portal does not readily 

address many questions relevant to functional interpretation of regulatory variants. For 

example, the marginal p-values and effect sizes of eQTLs do not directly inform whether 

a trait-associated genetic variant also likely regulate the expression of a gene in a 

particular tissue. Other online resources, such as PheWeb (GAGLIANO TALIUN et al. 

2020), BRAVO (NHLBI 2018), gnomAD (KARCZEWSKI et al. 2020), and the UCSC 

browser (HAEUSSLER et al. 2019) can also provide clues for the functional interpretation, 

so it is crucial to connect these resources in the context of tissue-specific regulation of 

disease-associated variants. 

 To facilitate functional interpretation of regulatory variants from population-scale 

transcriptomic resources like GTEx, we developed PheGET, an eQTL-focused web 

application that leverages the widely used tools LocusZoom (PRUIM et al. 2010), 

PheWeb (https://github.com/statgen/pheweb/), and LD server 

(https://github.com/statgen/LDServer). PheGET visualizes the genomic landscape of 

cis-eQTLs across multiple tissues, focusing on a variant, a gene, or a genomic locus. 

PheGET is designed to aid the interpretation of the regulatory function of genetic 

variants by providing answers to functionally relevant questions, for example, (1) how 

https://github.com/statgen/LDServer
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likely is a specific genetic variant causal for a cis-eQTL; (2) is a cis-eQTL is tissue-

specific or shared across tissues; (3) what is the linkage disequilibrium (LD) structure 

around the variant or gene; (4) which nearby genes are likely co-regulated by the 

variant and in which tissues; (5) are there additional information from other resources, 

such as biobank-based PheWAS (phenome-wide association) results, variant 

databases, or regulatory genomic resources, that corroborate the functional 

interpretation. PheGET provides interactive visualizations of cis-eQTLs with relevant 

context and connects to relevant external resources. PheGET complements existing 

transcriptomic resources such as the GTEx Portal and serves as a centralized tool for 

interpreting regulatory variants. 

 

4.2 Key Features 

PheGET allows investigators to query an eQTL database for a variant, gene, or locus to 

interactively visualize multi-tissue cis-eQTLs from various viewpoints, either in a 

comprehensive single-variant view showing all its cis-eQTLs, or in a LocusZoom-based 

region view specific to a gene and a tissue. When a variant is queried for, PheGET 

visualizes the cis-regulation landscape of all nearby genes across all available tissues; 

PheGET also identifies the likely regulatory effects of the variant. When a locus is 

queried for, PheGET offers multi-tissue and/or multi-gene LocusZoom visualization of 

strongly associated cis-eQTLs. These visualizations support exploratory analysis to help 

investigators interpret the regulatory functions of the associated variants. 

To illustrate the capabilities of PheGET, we will use cardiovascular disease as a 

motivating example. Low-density lipoprotein cholesterol (LDL) level in blood has been 
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strongly associated with cardiovascular disease, with hundreds of significantly 

associated loci (KLARIN et al. 2018). For example, in a UK Biobank (UKB) genome-wide 

association study (GWAS) of total cholesterol in LDL, the strongest trait-marker 

associations are found near APOE, PCSK9, LDLR, and APOB (Figure S1A-B). The 

mechanism behind the APOB association is currently unclear (NIU et al. 2017) We use 

PheGET to explore this relationship  using the GTEx (v8) data, and provide two 

examples with step-by-step instructions (Figure S2-S4). 

PheGET’s variant-centric visualization helps users understand the potentially 

causative role of a variant in tissue-specific regulation beyond the marginal summary 

statistics. For example, if a user searches for rs934197, the top (normalized) LDL-

associated variant in UKB (NRM_LDL_C) near APOB, PheGET provides a single 

variant view similar to PheWAS, in which the variant is plotted against multiple traits. In 

this view, the traits are grouped by proximal (<1Mb) genes and tissues (Figure 1A, S5-

6). It is clear that rs934197 is strongly associated with APOB expression levels in 

several tissues, including subcutaneous adipose (p = 4.0 x 10-17), tibial artery (p = 7.9 x 

10-11), and esophagus gastroesophageal junction (p = 6.9 x 10-9). However, it is unclear 

whether the variant is causal to these eQTL signals or a shadow of other causal 

variants via LD. Using posterior inclusion probabilities (PIPs) under the DAP-G model 

(Wen et al. 2017), PheGET shows that the strongest eQTL in subcutaneous adipose is 

not included in the credible set of putative causal variants (Figure S7). Instead, it can be 

best explained as a shadow signal of another cis-eQTL, most likely rs4665178 (p = 

1.4x10-28, PIP=0.35), located 54kb upstream. Meanwhile, rs934197 has the strongest 

PIPs in esophagus gastroesophageal junction (0.90), esophagus muscularis (0.71), 



127 
 

tibial artery (0.83), and sigmoid colon (0.73) tissues even though marginal p-values 

were weaker than subcutaneous adipose. These results provide a more complete 

picture of tissue-specific cis-regulation potentially caused by a specific variant (Figure 

S8-10). 

PheGET can display multiple parallel LocusZoom plots to visualize results across 

tissues and/or expression across multiple nearby genes to visualize the complex 

structure of gene regulation entangled with LD. For example, searching for APOB in 

PheGET displays a LocusZoom view for APOB expression in the tissues with the 

strongest PIPs for variants with p < 10-6 (Figure S11). PheGET also provides users with 

a sortable table of all cis-eQTLs associated with the gene with PIP > 10-5. Users can 

add other tissues of interest, or proximal genes on demand (Figure 1B, S12). When we 

set rs934197 as the index variant in our LocusZoom view of APOB, we can easily see 

that this variant is the top signal in four different tissues in the gastrointestinal or lower 

circulatory systems, while other tissues—heart (rs661665), adipose (rs4665178), skin 

(rs579826), and muscle (rs56327713)—feature different nearby top variants, with only 

rs934197 co-localized as a peak association signal with any phenotype in UKB 

PheWAS. Together, these observations suggest that the lipid association signal near 

APOB may be explained by gene regulation in specific gastrointestinal and/or 

circulatory systems. 

PheGET also allows users to identify and visualize nearby genes sharing a cis-

eQTL. For example, one of the peak signals associated with self-reported high 

cholesterol in the UK Biobank (biobank_20002_1473) is rs12740374 near the SORT1-

PSRC1-CELSR2 locus (Figure S3A). Querying this variant in PheGET demonstrates 
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that the variant is also a strong cis-eQTL, specifically in liver (Figure S14-15). 

Interestingly, all three genes (SORT1, PSRC1, CELSR2) regulated by this variant have 

high PIPs (Figure 1C), with the association appearing to be highly liver-specific for 

SORT1 and PSRC1 and shared across tissues for CELSR2 (Figure S3B-D). This is 

presumably due to tissue-specific regulatory elements shared between these genes 

(SCHADT et al. 2008; MUSUNURU et al. 2010; WANG et al. 2018) and it provides an 

important insight to understand the functional mechanism underlying the association 

between the variants and lipid traits. As shown in our examples, PheGET provides 

investigators intuitive and interactive representations of expression data and posterior 

probabilities across genes and tissues, largely complementary to the GTEx Portal and 

other online resources to help with functional interpretation of eQTLs and trait-

associated variants. 

4.3 Discussion 
 

Understanding the function of trait-associated non-coding variants is becoming 

increasingly important as more genomes, transcriptomes, and epigenomes are 

sequenced. Gene regulation is believed to be involved in a large fraction of such 

associations, but there are limited resources for trait experts to generate hypotheses to 

explain regulatory mechanisms underlying the association signals. PheGET offers new 

interactive ways to visualize and summarize eQTLs in a tissue-specific manner by 

combining key features from LocusZoom and PheWeb, focusing on putative causal 

eQTLs through PIPs (Figure S4). We plan to implement additional useful features in the 

near future, including the abilities to import new data generated by individual 
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investigators, to perform conditional analysis on the fly, to integrate with biobank-driven 

PheWeb resources more seamlessly, to visualize isoform-aware eQTLs, and to include 

chromatin-accessibility QTLs and other epigenetic resources. We expect PheGET will 

aid with translating GWAS associations into underlying regulatory mechanisms by 

enabling the exploration of plausible hypotheses through our intuitive and practical user 

interface. As more online resources like PheGET become available to address tailored 

scientific questions on functional variants, precise and integrative translation of genomic 

findings will be more accessible to broader scientific community. 
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Figure 4.1 Examples of PheGET views 

 

(A) A variant-centric view of PheGET as an outcome of searching for rs934197, the most strongly associated variant with LDL cholesterol near APOB in UK 

Biobank. In the top panel, the x-axis is ordered by genes overlapping with 1Mb window by genomic coordinates, each representing an individual tissue. The y-axis 

represents p-values in log-scale, which can be toggled between effect sizes and PIPs. The gene panel annotate the genomic location of genes and exon, with the 

position of the queried variant marked with a red dotted line. In the middle panel, the basic information of the variant is shown with external links to easily navigate 

to online resources relevant to the variant. The table in the bottom summarizes the strongest cis-eQTLs. (B) A locus-centric view of PheGET when querying APOB 

and adding relevant tissues using the dropdown menu at the top. The cis-eQTLs for different tissues near APOB are shown using LocusZoom. The first two 

tissues share the same peak cis-eQTLs, while the other two tissues do not. (C) Another variant-centric view of PheGET when querying rs12740374, the most 

strongly associated variant with self-reported high cholesterol level in UK Biobank near the SORT1 locus. The results show that the variant is a strong cis-eQTL 

regulating multiple genes (SORT1, PSRC1, CELSR2), particularly in liver tissue, illustrating the benefit of PheGET to identify co-regulation of proximal genes. 
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4.4 Appendix: Supplementary Figures and Table 
 

Supplementary Figure 4.1 Exploring LDL-associated eQTLs in the APOB locus 

 

(A) Using an external resource (the Oxford Brain Imaging Genetics Server) to search for variants associated with total 

cholesterol in LDL, the variant with the strongest association on chromosome 2 is rs934197, in the APOB locus. (B) A 

PheWAS view of this variant reveals multiple strong association signals, with both traits and medication use directly 

related to LDL cholesterol. (C) When searching for this variant in the GTEx Portal, we are given a list of eQTLs sorted 

by P-value, but with no context about whether this variant is the strongest eQTL for each tissue and gene, or whether 

it is in linkage disequilibrium (LD) with a stronger nearby eQTL. (D) The multi-tissue comparison view in the GTEx 

Portal provides m-values, which evaluates cross-tissue effects for this variant, but provides no context about whether 

the signals are confounded by the LD structure of the genomic region. 
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Supplementary Figure 4.2 PheGET provides genomic context for tissue-specific expression 

 

(A) When we view PIPs for different tissues in the APOB locus in PheGET’s region view, and use the top signal in esophagus - gastroesophageal junction (EGJ) 

tissue as the reference variant to compare with signals in other tissues, we see that it is also the top variant in tibial arterial tissue, but is distinct from the signal 

cluster in subcutaneous adipose and skeletal muscle, showing tissue-specific expression differences associated with distinct LD blocks. (B) When we view by 

effect sizes, we see that variants associated with lower APOB expression in EGJ and tibial artery tissues, but higher expression in subcutaneous adipose tissue, 

highlighting the heterogeneous effects one variant can have on the same gene in different tissues. 
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Supplementary Figure 4.3 PheGET shows multiple genes associated with a single variant 

 

(A) Using UK Biobank as a reference, we searched for variants strongly associated with cholesterol-related traits. The 

variant rs12740374, located in the SORT1-PSRC1-CELSR2 locus, has strong associations with multiple cholesterol-

related traits. (B) In PheGET’s single variant view with PIPs on the y-axis, we can see strong associations with liver 

tissue for all three genes, along with multiple other tissues, evidence for both tissue-specific and cross-tissue 

regulatory effects. (C) The pattern of effect sizes of the associations indicate that this variant has strong upregulation 

effects on all three genes in liver tissue. (D) The strong P-values in liver across all three tissues provide additional 

evidence for liver-specific regulatory mechanisms associated with this variant. 
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Supplementary Figure 4.4. Navigating PheGET. 

 

An illustration of navigating eQTL data in PheGET. A researcher may wish to learn more about gene regulation 

related to a variant, gene, or region of interest. A variant query will send the user to a single variant view with 

extensive information about all eQTL information related to one variant, while a gene or region query will send the 

user to a LocusZoom view of the gene or region for the tissue with the strongest eQTL association. The user can 

manipulate the displayed data within each view in real time to show different metrics of association: P-values for 

evidence of association, effect sizes for strength of regulatory effect, or PIPs for a modeled probability of a variant 

being causal for an eQTL. 
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Supplementary Figure 4.5. Step-by-step tutorial on reproducing examples in the PheGET main text. 

 

We will first enter ‘rs934197’, the Rsid for the top LDL-associated variant located ~500 bp upstream of APOB, in the 

search box. PheGET will send us to a single variant view. 
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Supplementary Figure 4.6. Dynamically change the grouping variable on the x-axis. 

 

 

The first dropdown menu gives us the ability to change the x-axis grouping of the data in real time. Currently, 
the points are grouped by gene, arranged by the genomic positions of their TSS. Grouping by gene will make 
it easier to see multi-tissue regulation of specific genes, while grouping by tissue will make it easier to see 
multi-gene regulation in specific tissues. Grouping by system will further group tissues for a more general 
overview of gene regulation in different tissue systems.
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Supplementary Figure 4.7. Dynamically changing the displayed Y-axis variable.

 

The second dropdown menu allows us to show y-axis variables other than P-values. For example, we can view PIPs, 

which take into account the LD structure around a variant to calculate a posterior probability that a variant is causal 

for an eQTL. For example, subcutaneous adipose, which has a highly significant P-value for its association with the 

expression of APOB, does not have a corresponding PIP signal. 
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Supplementary Figure 4.8. Toggling labels for the strongest signals. 

 

The third dropdown menu allows us to toggle labels for significant signals. Here we turned off the labels to give us a 

better look at the PIP signals in APOB. When the results are grouped on the x-axis by gene, labels will show the 

tissues for the data points; when the results are grouped by tissue or system, labels will show genes instead. 
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Supplementary Figure 4.9. Changing the viewing window using maximum TSS distance. 

 

The fourth dropdown menu allows us to change the amount of data displayed by setting a maximum transcription 

start site (TSS) distance from the current variant. For example, setting this to ±200k means displaying only the eQTLs 

for genes with a TSS within 200kbp of the current variant. 
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Supplementary Figure 4.10. Dynamic highlighting of points with a shared attribute. 

 

Clicking on any point highlights all other points which share the same labeled attribute. Here, we see all other eQTLs 

in subcutaneous adipose tissue highlighted in red. It also brings up a tooltip window which displays detailed 

information about the eQTL, with a link to a region view around this signal. We will follow the link to a LocusZoom 

view of the region around rs934197 in gastroesophageal junction tissue. 
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Supplementary Figure 4.11. A LocusZoom view is defined by an anchor gene and tissue. 

 

The LocusZoom view around our variant is “anchored” around one gene and one tissue. In our example, the anchors 

are APOB and Esophagus – Gastroesophageal Junction, respectively. Anchors give us stable pivot points around 

which we can explore additional genes and tissues. We can change our anchor gene and tissue via the first pulldown 

menu. 
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Supplementary Figure 4.12. Adding additional tracks in LocusZoom view to facilitate comparison. 

 

  

The second pulldown menu allows us to add genes or tissues with respect to one of the anchors. For example, we 

can add a track to see eQTLs for APOB, our anchor gene, in a different tissue. Similarly, we can add a track to see 

eQTLs for a different gene in our anchor tissue. We will add tibial artery and subcutaneous adipose as additional 

tissue tracks. 
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Supplementary Figure 4.13. Setting a reference variant to obtain linkage disequilibrium information. 

 

  

The tooltip window in region view allows us to set a variant as the index for linkage disequilibrium (LD), which will 

recolor the points in all the displayed plots to reflect their LD with the index. LD information is based on data from the 

1000 Genomes Project. The index variant is indicated by a purple diamond. We see that our index variant is the top 

signal in esophageal and arterial tissues, but is a shadow of a stronger signal in adipose. 

  



144 
 

Supplementary Figure 4.14. Dynamic y-axis variables in LocusZoom view.

 

 

The third pulldown menu changes the Y-axis variable just like in our single variant view. In PIP view, we see that in 

esophageal and arterial tissues, there is only one signal cluster and our index variant is the strongest contributor. 

However, in adipose, the PIP signal is distributed more evenly between two different variant clusters, indicating more 

uncertainty about the potentially causal variant for eQTLs in this tissue. 
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Supplementary Figure 4.15. Comparing expressions of multiples genes in one tissue via LocusZoom view. 

 

 

We can also compare the eQTL signals for multiple genes in the same tissue. Here, we searched for the top variant 

for cholesterol-related association signals in the SORT1-PSRC1-CELSR2 locus, rs12740374, and navigated to a 

region view. Using liver tissue and SORT1 as anchors, we added the other two genes to compare the eQTL signals 

between them. We see that rs12740374 is the strongest signal for these three genes, both for P-values and PIPs, 

suggesting a regulatory pathway involving all three.  
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Supplementary Table 4.1 Comparison of top PIP variants for APOB across different tissues  

Tissue Max-PIP Variant Max PIP Min p-value 

Skin – Sun-Exposed Lower leg rs579826 0.451 4.6E-58 

Skin – Not Sun-Exposed Suprapubic rs579826 0.342 7.9E-35 

Heart – Left Ventricle rs661665 0.748 1.1E-30 

Adipose – Subcutaneous rs4665178 0.354 1.4E-28 

Nerve – Tibial rs66984774 0.412 1.5E-15 

Heart – Atrial Appendage rs661665 0.748 1.1E-11 

Artery – Tibial rs934197 0.833 8.0E-11 

Esophagus – Gastroesophageal Junction rs934197 0.901 6.9E-09 

Esophagus– Muscularis rs934197 0.711 1.1E-08 

Colon – Sigmoid rs934197 0.730 7.3E-07 

Muscle – Skeletal rs56327713 0.138 8.5E-07 
 

Tibial artery, gastroesophageal junction, sigmoid colon, and skeletal muscle tissues share the same top PIP signal (rs934197) for affecting the expression of 

APOB. Both skin tissues share a different variant as the top signal (rs579826), while subcutaneous adipose tissue has a third variant (rs4665178) with the 

strongest PIP. This highlights differences in regulatory mechanisms between different tissues for the same gene, providing clues for a better understanding of 

tissue-specific gene expression. 
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Chapter 5  
 

Conclusion 

5.1 Summary 
 

In this dissertation, we assessed the strengths and weaknesses of different approaches 

in genome wide association studies, developed and implemented a robust Hardy-

Weinberg test adjusting for sample ancestry to aid in variant calling quality control, and 

created a browser for eQTL data designed for clarity and ease of use. Here we review 

these works, discuss their limitations, placing them in the context of the current trends in 

genetic studies, and explore future directions for research. 

 

5.2 The analysis and interpretation of GWAS 

In Chapter 2, we performed a genome wide association study for age-related macular 

degeneration and assessed different approaches in analyzing and interpreting 

association results. Matching cases and controls by age and restricting our samples to 

those of European ancestry helped mitigate problems with population stratification. 

From single-variant association tests, taking into account the difference in sample size 

of our study when compared to larger studies (FRITSCHE et al. 2016), we were still able 

to replicate some of the strongest known loci. Using group-based association tests, we 

were able to assess the importance of loss-of-function variants in several genes. We 
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were also able to identify an additional risk variant in the C2/CFB/SKIV2L locus by 

comparing the haplotypes within the region with respect to two known risk variants. We 

explored approaches to incorporate external data to improve the power of discovering 

very rare loss-of-function variants. Finally, we followed up on existing studies on likely 

causal variants within the C3 locus, providing evidence of association for a missense 

variant in NRTN. 

 Our approach in analysis was informed by previous studies which identified a 

larger set of risk loci, most importantly the analysis from the International AMD 

Genomics Consortium from (FRITSCHE et al. 2016). With these studies serving as the 

vanguard in defining a broad set of associated loci, we were then able to both 

systematically scan the whole genome to confirm previous findings while aiming follow-

up association tests to a narrower and more targeted set of potential risk loci. We were 

able to use several different approaches—single-variant associations, group-based 

associations, and an augmented Fisher’s exact test—to confirm association signals in 

genes belonging to the complement system, long known to be important factors for 

AMD (GEERLINGS et al. 2017). By disentangling the signals between C3, which has been 

extensively studied, and NRTN, which has received much less attention, we were then 

able to provide additional insight into the possible functional role of the latter with the 

help from the results of a mouse-based study, highlighting the importance of integrating 

the results from multiple types of association tests with functional studies in living cells 

or organisms to provide a better understanding of the observed signals. In the current 

era of large consortium-based GWAS, with decreasing per-sample sequencing costs 

and larger sample sizes, the discovery of loci has become a less daunting issue, 
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supplanted by the much more complex task of interpreting the association signals to 

generate testable hypotheses about gene functions, which will be useful for guiding 

future biological studies.  

 While there is some existing work on using external control samples to boost 

association power (LEE et al. 2017; HENDRICKS et al. 2018), the problem of how to 

identify true differences between cases and controls due to disease association while 

controlling for batch- or ancestry-based differences between internal and external 

samples has proven to be quite difficult. Our Fisher’s exact test-based approach 

requires case and control samples to have matched ancestries, and for internal and 

external samples to not significantly differ in the frequency of loss-of-function variants, 

assumptions which can be relaxed with the development of better ways to adjust for 

ancestry and batch effects for external samples. While a statistically complicated 

problem, using external genetic samples to improve power for very rare variant 

associations could prove to be very powerful in generating new insights from existing 

genetic studies, and would be especially valuable for moderately-sized disease-specific 

sequencing studies which are generally underpowered to find associations for loss-of-

function variants with large effect sizes, which are typically very rare due to negative 

selection (MACARTHUR et al. 2012). 

 Future studies of age-related macular degeneration will require much more focus 

on functional fine-mapping, such as family-based linkage studies (RATNAPRIYA et al. 

2020) and expression studies (MENON et al. 2019; STRUNZ et al. 2020). To close the gap 

between genetics and disease will require a holistic approach, combining results from 

different kinds of studies to provide testable hypotheses for in vitro and in vivo genetic 
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studies. With the development of CRISPR-based gene editing technologies (JINEK et al. 

2012), much more rapid and targeted laboratory-based genetic studies are now 

possible, finally allowing researchers to bridge the gap between association results and 

biological function. 

5.3 Quality control for diverse genetic data 

In Chapter 3, we developed a robust and unified test for Hardy-Weinberg equilibrium 

(HWE) with a computationally efficient implementation capable of processing tens of 

thousands of samples for millions of variants and evaluated its performance along with 

existing methods. With larger and more diverse samples for increasing numbers of 

variants found in modern genetic studies, the traditional HWE test, in its use as a quality 

control metric for variant calling, has been stretched to its limit. A common strategy used 

in large genetic studies is to perform HWE tests either within processed batches or 

within each contributing cohort, setting a strict p-value threshold (typically 10-6), and 

using the minimum p-value for a given variant across all batches or cohorts as the 

filtering criterion. If substantial population structure exists within a tested batch or 

cohort, then this procedure will remove otherwise high-quality variants from downstream 

analysis. Moreover, if a cohort contains both population stratification (which generally 

decreases heterozygosity) and technical errors (which generally increases 

heterozygosity), then some low-quality variants may not be significant at the chosen p-

value threshold. Our proposed method addresses these issues by explicitly modeling 

and adjusting for the deviation from HWE caused by differences in genetic ancestry, for 

a more reliable metric for the quality of variant calls. In addition, our software 

implementation can directly process commonly used file formats, with the ability to 
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handle the large sample sizes and variant counts typical in modern genetic studies. Our 

software was designed to be easy to integrate into pipelines for variant calling quality 

control in large-scale genetic studies and is currently used in the TOPMed variant 

calling pipeline. 

 Our method can be improved in a few ways. Our model assumptions may be 

further refined to improve performance (for example, a more accurate model for the 

relationship between ancestry summary statistics and individual-specific allele 

frequencies can improve the accuracy of our model), Also, an efficient method to 

account for family structure for closely related samples can further help reduce false 

positives. In principle, it is possible for our method to support genotype dosages 

obtained from imputation, though in practice both genotype scaffolds (target panels) and 

imputation reference panels should undergo strict QC before genotype imputation. 

 It may be possible to relax our model assumptions to allow for more flexibility in 

our data. For example, our method currently assumes a constant inbreeding coefficient 

across all samples after adjusting for global ancestry. A more general model could allow 

for individual-level differences in inbreeding coefficients to better model the data, though 

it would require modifying the statistical tests, because the null hypothesis would now 

involve an individual-level inbreeding estimate instead of a global inbreeding coefficient. 

5.4 Visualization of eQTLs in multiple tissues 

In Chapter 4, we developed a web-based browser for displaying eQTL data for multiple 

tissues and genes, with a focus on providing a convenient and intuitive navigation 

interface designed to provide useful information clearly. Using the latest GTEx data as a 
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proof of principle, the eQTL browser has two main visualization modes: a single variant 

view and a region view. For the single variant view, we provide a comprehensive picture 

of the queried variant’s effect on the expression of all surrounding genes in all tissues, 

while for the region view, the user can explore the effects of variants in a region on the 

expression of a given gene within any tissue, and compare different tissues or genes. 

We also provide an easy way to navigate between the two views. Additionally, for each 

view, the user can customize the value displayed on the plot, between p-values, effect 

sizes, and posterior inclusion probabilities (PIP) from DAP-G (WEN et al. 2017). Finally, 

we provide a unified search box capable of handling variant, region, or gene queries, 

facilitating the retrieval of eQTL information of interest to their particular field of 

research. 

 While the current implementation of the browser (https://eqtl.pheweb.org) was 

designed with GTEx as the data source, the underlying technology can be used to 

display any multi-tissue gene expression dataset. The same technology can be adapted 

to show other multi-dimensional genomic data, for which typical GWAS or PheWAS 

plots are insufficient. For example, single-cell expression data can be shown using the 

same views as our browser, with predicted clusters in place of tissues and boxplots in 

place of data points, to allow for convenient comparison of expression levels between 

different clusters for any given gene. 

The visualization elements of the browser can be improved in several ways. For 

example, a new genome-wide tissue-focused view, in the form of a Manhattan plot of 

the most significant signals across all genes in any given tissue, can provide another 

intuitive starting point for data exploration, especially for researchers interested in a 

https://eqtl.pheweb.org/
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specific tissue. Other related data—for example, raw or normalized gene expression 

levels—can be incorporated into existing views, or in new views designed to best 

display that particular data. Additionally, to help in identifying colocalization of GWAS 

and eQTL signals, a helpful new feature could support the uploading of GWAS and 

eQTLs results, showing both in a comparative region view, to simplify the task of 

identifying variants with significant associations in both GWAS and eQTLs. 

A natural extension of PheGET’s functionality is the ability to perform real-time 

conditional analysis using linkage disequilibrium (LD) information. Given eQTL 

information within a genomic region for any gene and tissue, alongside LD information 

between an index variant and other variants within the region, we can calculate the 

conditional expression associations within the region via linear regression, with the LD 

value as an additional covariate. This will allow researchers to quantify variant-specific 

LD effects on other signals within the same locus, making it easier to identify different 

LD blocks within the same region, as a step towards identifying the biological 

mechanisms underlying eQTL signals. 

5.5 Closing remarks 

The development of genomic technology in the last two decades has been nothing short 

of revolutionary, enabling DNA and RNA studies on a scale near unimaginable back in 

2003, when the Human Genome Project released the finished draft of the first 

sequenced human genome at a cost of $2.7 billion. Seventeen years later, the 

sequencing of a whole genome costs about $1,000 per sample. Genetic studies have 

gone from dozens of samples to over a million. We have gone from studying thousands 
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of variants to hundreds of millions. In addition to DNA extracted from blood or cell 

culture, we can now perform transcriptome-wide RNA sequencing on multiple tissues, 

and even for single cells. By any measure, this is an astonishing amount of progress in 

a very short amount of time. With the growing size and complexity of genomic data—

which promises to continue apace—statistical methods and tools that were once 

essential now face major challenges in both theoretical and practical performance. The 

need for better methods for data processing and analysis has become an essential and 

inextricable part of genomics research. 

The work presented in this dissertation addresses a few of these issues, from 

variant calling quality control in data generation to data interpretation and visualization 

for variant and expression data in downstream analysis. With the continuing 

development of genomic technologies, genetics research will be able to explore 

hypotheses previously thought impossible to test. It is a privilege to contribute to 

improvements in statistical genetics methods and techniques, in pursuit of our common 

mission of improving human health by unlocking the mysteries of genomics, one 

discovery at a time. 
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