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Abstract

Multirobot systems have great potential to change our lives by increasing efficiency

or decreasing costs in many applications, ranging from warehouse logistics to con-

struction. They can also replace humans in dangerous scenarios, for example in a

nuclear disaster cleanup mission. However, teleoperating robots in these scenarios

would severely limit their capabilities due to communication and reaction delays.

Furthermore, ensuring that the overall behavior of the system is safe and correct

for a large number of robots is challenging without a principled solution approach.

Ideally, multirobot systems should be able to plan and execute autonomously. More-

over, these systems should be robust to certain external factors, such as failing robots

and synchronization errors and be able to scale to large numbers, as the effectiveness

of particular tasks might depend directly on these criteria. This thesis introduces

methods to achieve safe and correct autonomous behavior for multirobot systems.

Firstly, we introduce a novel logic family, called counting logics, to describe the

high-level behavior of multirobot systems. Counting logics capture constraints that

arise naturally in many applications where the identity of the robot is not important

for the task to be completed. We further introduce a notion of robust satisfaction

to analyze the effects of synchronization errors on the overall behavior and provide

complexity analysis for a fragment of this logic.
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Secondly, we propose an optimization-based algorithm to generate a collection of

robot paths to satisfy the specifications given in counting logics. We assume that

the robots are perfectly synchronized and use a mixed-integer linear programming

formulation to take advantage of the recent advances in this field. We show that this

approach is complete under the perfect synchronization assumption. Furthermore,

we propose alternative encodings that render more efficient solutions under certain

conditions. We also provide numerical results that showcase the scalability of our

approach, showing that it scales to hundreds of robots.

Thirdly, we relax the perfect synchronization assumption and show how to generate

paths that are robust to bounded synchronization errors, without requiring run-time

communication. However, the complexity of such an approach is shown to depend

on the error bound, which might be limiting. To overcome this issue, we propose

a hierarchical method whose complexity does not depend on this bound. We show

that, under mild conditions, solutions generated by the hierarchical method can be

executed safely, even if such a bound is not known.

Finally, we propose a distributed algorithm to execute multirobot paths while avoid-

ing collisions and deadlocks that might occur due to synchronization errors. We recast

this problem as a conflict resolution problem and characterize conditions under which

existing solutions to the well-known drinking philosophers problem can be used to

design control policies that prevents collisions and deadlocks. We further provide

improvements to this naive approach to increase the amount of concurrency in the

system. We demonstrate the effectiveness of our approach by comparing it to the

naive approach and to the state-of-the-art.
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Chapter 1.

Introduction

There are several advantages of using multirobot systems over a single-robot sys-

tem. The same task could be achieved using multiple simpler robots, instead of a

single highly-capable robot, making the overall system easier and cheaper to build

and maintain. Moreover, the overall system would be more reliable as simpler designs

would be less prone to failures, and the loss of a single robot might be tolerated. Dis-

tributing capabilities among robots enables more modular designs and thus, making

multirobot systems more flexible. Furthermore, certain tasks can only be achieved

using a team of robots due to spatial constraints, such as surveilling a large area. To

exemplify a few applications, multirobot systems could be used in critical search and

rescue missions [8, 66, 69], surveillance [2, 47], construction automation [63, 76] and

warehouse logistics [57, 115].

One school of thought focuses on the teleoperation of multirobot teams to achieve

the aforementioned tasks [29, 43, 83, 92]. However, there are several issues with this
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approach, such as degraded performance due to latency, decreased situational aware-

ness [16]. Furthermore, as the mission specifications get more involved, they require

coordination of a large number of robots, making the problem even more challeng-

ing. Ideally, multirobot systems should be able to plan and execute autonomously to

overcome these shortcomings.

Multirobot systems are studied in different communities from different viewpoints.

For example, multirobot path planning (MRPP), also called multi-agent path plan-

ning (MAPP), on discrete graphs has been a popular subject of interest in artifi-

cial intelligence and robotics communities. This problem is concerned with finding

collision-free paths that take each robot from their initial locations to target loca-

tions, while minimizing a cost function such as time or distance. This problem can

be solved optimally using reductions to other known problems such as satisfiability

[102, 103], answer set programming [27], integer-linear programming [118, 119], in-

cremental sequential convex programming [18], or using search-based methods [12,

93, 94, 110]. However, finding optimal solution is shown to be NP-hard [101, 120].

Therefore, suboptimal solutions are used when the number of robots is large [49, 56,

58, 96, 100, 113].

MRPP in the continuous domain is also studied in the literature. Some examples

include sampling-based methods [13, 50], velocity-obstacle approach [28, 108], vector

fields [34, 44]. Algorithms for discrete path planning are also used in continuous

domain after obtaining a discrete abstraction of the workspace [48, 98, 109]. However,

a complex task, such as a search and rescue mission, cannot be formulated as a

MRPP problem as it also requires high-level decisions. One needs to choose multiple

2



waypoints and solve multiple MRPP instances.

The first step in achieving autonomy is to be able to express multirobot tasks in a

high-level language. Recently, the use of temporal logics for this purpose has attracted

considerable attraction. In this framework, specifications are expressed in a certain

formalism, such as linear temporal logic (LTL) [38, 39, 40, 45, 46, 55, 105, 106],

metric temporal logic (MTL) [41], signal temporal logic (STL) [52], spatial-temporal

logic (SpaTeL) [53]. Then, controllers are algorithmically generated such that the

satisfaction of the specifications is guaranteed. However, several factors prevent these

techniques to be applied more frequently in multirobot setting. Firstly, commonly

used temporal logics, such as LTL and STL, are not originally designed to express

multirobot tasks. As a result, capturing certain specifications might require lengthy

formulas. This is not desired as the complexity grows exponentially with the length

of the formula. Secondly, the curse of dimensionality limits the number of robots that

can be handled within this framework.

Another important aspect of multirobot coordination problems is the robustness

of the solutions. Unlike single robot systems, multirobot systems might tolerate the

failure of individual robots without sacrificing task fulfillment. Such a notion of ro-

bustness is examined in [23, 74, 75, 80]. On the other hand, multirobot systems might

suffer from synchronization errors. If robots are not perfectly synchronized, collisions

might occur, or the specifications might not be satisfied. Different strategies are pro-

posed to avoid collision avoidance in this case, such as using buffered Voronoi cells

[91, 121], reciprocal velocity-obstacles [4, 7], potential functions [36], model predictive

control [30], temporal specifications [46]. However, these techniques require deviation

3



from the nominal paths or even replanning, which might lead to deadlocks or viola-

tion of other temporal specifications. If an upper bound on the synchronization error

is known, paths could be generated so that collisions and deadlocks are avoided [22].

This approach does not require replanning, but, as a result, conservative. Alterna-

tively, robots might be forced to stop and resume [58, 97, 99, 122]. These methods can

guarantee both collision and deadlock avoidance without deviating from the nominal

paths. The challenge here is to increase concurrency and reduce waiting times.

1.1. Contributions and Outline

In this thesis, we study the coordination of multirobot systems under temporal con-

straints to address the aforementioned issues. We start by providing preliminary

information that is used throughout the thesis in Section 1.2. In Chapter 2, we in-

troduce counting logics, which enable concise expression of multirobot specifications

and provide complexity analysis. Furthermore, we offer a formal definition of robust

satisfaction of counting logic formulas. In Chapter 3, we assume that robots move syn-

chronously and propose optimization-based algorithms to generate multirobot paths

that ensure the satisfaction of specifications given in counting logics. In Chapter 4,

we relax the synchronization assumption and show how to generate plans that are

robust to synchronization errors. In Chapter 5, we propose a distributed approach to

execute multirobot plans in a way that guarantees to avoid collisions and deadlocks

even when the upper bound on synchronization error is not known. Finally, Chapter

6 concludes the thesis and provides some future research directions.
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Chapter 2: Counting Logics

Existing methods that use temporal logic, such as LTL, to define multirobot spec-

ifications require that each robot be assigned an independent task, a tedious and

error-prone process when the number of robots is large. In many applications, com-

pletion of a task depends not on identities of robots, but on the number of robots

satisfying a property. Take, for example, an emergency response scenario where hun-

dreds of autonomous vehicles are deployed to locate and help the victims. In such a

scenario, it is reasonable to assume that most of the vehicles would have identical ca-

pabilities and that the identity of the vehicle is not important to the rescuers, as long

as the given tasks are accomplished. On the other hand, tasks might depend on the

number of robots satisfying a property. For instance, one might require sufficiently

many robots to surveil a particular area to look for victims. Or, one might need to

limit the number of rescuers in certain regions to avoid unsafe areas or congestion.

We call this type of specification temporal counting constraints and propose a novel

logic called counting linear temporal logic plus (cLTL+) to specify them. This logic

consists of two layers. The inner logic defines tasks that can be satisfied by a single

robot, for instance, surveiling an area in the previous emergency response scenario.

The outer logic requires sufficiently many (or not too many) robots to satisfy tasks

given as inner logic formulas. For example, one might express a task that “at least 2

and not more than 5 robots to surveil an area” using cLTL+.

We then formally define a notion of robust satisfaction of cLTL+ formulas, similar

in spirit to [25]. Since perfect synchronization of robots might not be possible in
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real-life applications, we need tools to analyze the effects of synchronization errors on

the satisfaction of a cLTL+ formula. The notion of robust satisfaction allows rigorous

analysis of this phenomenon.

Around the same time that cLTL+ was first introduced, similar two-layered tem-

poral logics were proposed in [65] and [116]. The logic proposed in [116], called Cen-

susSTL, uses Signal Temporal Logic (STL) semantics instead of LTL but is otherwise

similar to cLTL+. However, the focus in that paper is to infer multirobot behavior

from data, and neither controller synthesis nor asynchrony are discussed. On the

other hand, the authors of [65] present a decentralized controller synthesis method,

but cLTL+ is strictly more expressive compared to the logic of choice. Moreover, [65]

ignores collision avoidance at the synthesis-level and shifts the burden to an online

lower-level controller. This approach might result in deadlocks during execution. In

this thesis, we provide optimization-based solution methods for controller synthesis

in Chapter 3 and in Chapter 4 such that cLTL+ specifications are satisfied, and

collisions and deadlocks are avoided even when the robots move asynchronously.

We also provide an interesting fragment of cLTL+, namely counting linear temporal

logic (cLTL). The logic cLTL can be seen as an extension of a particular class of

counting problems that deal with invariant specifications, first proposed in [67, 68].

We show that the cLTL satisfiability problem is PSPACE-complete.

6



Chapter 3: Path Planning Subject to Counting Constraints

After defining cLTL+, we propose optimization-based algorithms to generate indi-

vidual paths that collectively satisfy specifications given in this formalism. In this

chapter, we assume that robots move synchronously and show how to synthesize paths

by using a mixed-integer linear programming (MILP) formulation. This approach, re-

casting the synthesis problem as an optimization problem, is inspired by the bounded

model-checking literature [5, 42]. We demonstrate the efficacy of the MILP-based

approach via numerical and experimental results.

Subsequently, we propose an alternative formulation for the particular case where

the specifications are given in cLTL, and the robots have identical dynamics. The

alternative solution is shown to scale much better with the number of robots. We

provide numerical results showing that the number of robots has almost no effect on

the solution time, and problems with hundreds of robots can be solved.

Chapter 4: Path Planning Robust to Synchronization Errors

An important consideration in multirobot coordination problems is the robustness

against synchronization errors. In practical implementations, robots cannot execute

their paths perfectly and might move slower or faster than intended due to various

factors such as low battery levels, calibration errors and other failures. These syn-

chronization errors might lead to collisions or deadlocks if not appropriately handled.

In this chapter, we discuss how to generate trajectories that can be asynchronously

executed. We first show, when the synchronization error is bounded, how to generate

7



paths that collectively avoid collisions and deadlocks while preserving the satisfac-

tion of the desired cLTL+ specification. Furthermore, we show that our formulation

is partially complete. However, this formulation requires a priori knowledge of the

bound on the synchronization error, and its complexity depends on the upper bound

on the synchronization error.

To overcome the shortcomings mentioned above, we propose a hierarchical method

where we limit the properties to counting temporal logic plus without ‘next’ operator

(cLTL+\©). In this hierarchy, a coarse plan that satisfies the logic constraints is

computed first at the upper-level, followed by a lower-level task of solving a sequence

of generalized multirobot path planning problems. Collision avoidance and poten-

tial asynchronous executions are also dealt with at the lower-level. When lower-level

planning problems are found to be infeasible, these infeasibility certificates are incor-

porated into the upper-level problem to re-generate plans. With this hierarchy, we

shift the computational burden of avoiding collisions (due to synchronization errors)

to the lower-level, where it can be handled much more efficiently. We show that the

hierarchical method ensures the satisfaction of the specifications, and its complexity

does not depend on the synchronization error bound.

Chapter 5: Multirobot Plan Execution

When robots are allowed to move asynchronously, control strategies must be devised

to avoid inter-robot collisions and deadlocks. In Chapter 4, we handled these problems

by either assuming a bound on the synchronization errors or setting a fixed priority

8



order between robots. Both of these ideas shift the burden of collision and deadlock

avoidance to the offline planning part, and thus, are conservative. In this part of

the thesis, we aim to design a distributed online protocol for collision and deadlock

avoidance for multirobot systems. Given a collection of paths, we focus on devising

a distributed protocol so that the robots are guaranteed to reach their targets and

avoid all collisions along the way. We call this the multirobot plan execution (MRPE)

problem.

Our key contribution is to recast a MRPE problem as an instance of the well-

known drinking philosophers problem (DrPP) [15], an extension of the well-known

dining philosophers problem [24]. By partitioning the workspace into a set of dis-

crete states and treating each state as a shared resource, we derive conditions on

the collection of paths such that the MRPE problem can be solved using any existing

DrPP solution, such as [15, 31]. This algorithm enjoys nice properties such as fairness

(starvation freeness) and deadlock freeness while also guaranteeing collision avoidance

when applied to multirobot setting. However, we show that such a naive approach

is conservative. It requires strong conditions on the collection of robot paths to hold

and unnecessarily limits the amount of concurrent behavior. To improve the system

performance and allow more concurrent behavior, we propose a new algorithm. We

show that, when fed by the same paths, our algorithm achieves competitive results

with the state-of-the-art [58].
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1.2. Preliminaries

Traditional algorithms for multirobot coordination tend to focus on relatively simple

tasks such as reaching a goal state while avoiding collisions and unsafe regions [85,

111, 118], formation control [70], reaching a consensus [37, 64]. However, to be

able to complete complex tasks such as warehouse logistics or construction, these

useful building blocks are not enough. Moreover, such applications require multirobot

systems to work in the vicinity of humans, and thus, ensuring correct and safe behavior

is of utmost importance.

The field referred to as formal methods is a promising candidate to address the

shortcomings mentioned earlier. Initially developed by computer scientists to ensure

correct behavior of software systems, the use of formal methods to solve control prob-

lems attracted attention from the academic community in recent years [9, 71]. Briefly,

a system model and a formal specification are given such that one can verify that the

system either satisfies or violates the specifications. Alternatively, one can synthesize

correct-by-construction controllers such that the overall system achieves the specifi-

cations, or provide a proof that it is not possible to do so. In this chapter, we first

provide a summary of Linear Temporal Logic (LTL), a commonly used specification
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formalism, in Section 1.2.1. We then provide the syntax and semantics of Constraint

LTL (CLTL) in Section 1.2.2, which is used in the complexity analysis of cLTL in

Section 2.4. Finally, we provide a summary of transition systems that are used to

model the robot dynamics in Section 1.2.3.

1.2.1. Linear Temporal Logic

An LTL formula over a set AP of atomic propositions is defined recursively as follows:

φ ::= True | ap | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2, (1.1)

where ap ∈ AP is an atomic proposition and φ, φ1 and φ2 are LTL formulas defined

according to (1.1). The symbols ¬,∧,© and U correspond to the logical operators

negation and conjunction, and the temporal operators next and until, respectively.

Other commonly used operators can be derived from these operators, such as disjunc-

tion (φ1 ∨ φ2
.
= ¬(¬φ1 ∧ ¬φ2)), release (φ1 R φ2

.
= ¬ (¬φ1 U ¬φ2)), eventually

(♦φ
.
= True U φ), always (�φ

.
= ¬(♦¬φ)), etc.

The satisfaction of an LTL formula is evaluated over infinite traces. Given a set AP

of atomic propositions, a trace is an infinite sequence σ = σ(0), σ(1), · · · ∈ (2AP )ω.

Given a trace σ and an LTL formula φ, satisfaction of φ by σ at step t is denoted by

σ, t |= φ, and is defined as follows:

• σ, t |= True,

• for any atomic proposition a ∈ AP , σ, t |= a if and only if a ∈ σ(t),
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• σ, t |= φ1 ∧ φ2 if and only if σ, t |= φ1 and σ, t |= φ2,

• σ, t |= ¬φ if and only if σ, t 6|= φ,

• σ, t |=©φ if and only if σ, t+ 1 |= φ, and

• σ, t |= φ1 U φ2 if and only if there exists l ≥ 0 such that σ, t + l |= φ2 and

σ, t+ l′ |= φ1 for all 0 ≤ l′ < l.

If σ, 0 |= φ, then we say that σ satisfies φ and write σ |= φ for short. For more

information on LTL, we refer the reader to [5].

We now provide definitions for stutter equivalence and stutter invariance that are

used in Chapter 4.

Definition 1.1. A pair σ1 and σ2 of traces is said to be stutter equivalent, if

removing consecutive repetition of identical steps makes them identical. For example,

σ1 = ({a}, {a}, {a}, {b}, {a}, {c}, {c})ω and σ2 = ({a}, {b}, {b}, {b}, {a}, {a}, {c})ω

are stutter equivalent, whereas σ1 and σ3 = ({a}, {a}, {a}, {b}, {b}, {c}, {c})ω are not.

Definition 1.2. An LTL formula is called stutter invariant if its satisfaction does

not depend on stuttering.

The fragment of LTL without the next operator (denoted LTL\©) is stutter invari-

ant [5]. That is, given any LTL formula φ ∈ LTL\©, and stutter equivalent traces σ1

and σ2, σ1 satisfies φ if and only if σ2 satisfies φ.
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1.2.2. Constraint Linear-Time Temporal Logic

Regular LTL can capture tasks such as “current value of x is non-negative”, however,

LTL lacks in its expressiveness when it comes to tasks such as “current value of x

is eventually greater than some future value of y”. Several temporal logics extending

the expressiveness of LTL are proposed to overcome this shortcoming. This section

introduces one of those temporal logics, namely Constraint Linear-Time Temporal

Logic, which can be found in [20].

Let V ar be a set of variables where each v ∈ V ar takes values from the domain

D such that v(t) ∈ D for each t ∈ N. A tuple D = (D,R1, . . . , Rm, I) is called

a constraint system where each D-term constraint ci = Ri(v1, . . . , vn) is a relation

over the elements of D and is associated with a set I(Ri) ⊆ Dn. To exemplify, let

V ar = {x, y} take values from the domain D = N. The symbol < (x, y) is a D-

term constraint, and it defines an ordering relation between pairs of values from N2.

Associated I(Ri) = {(0, 1), (0, 2), . . . } ⊆ N2 is a countably infinite set, which is a

set of all pairs from N2 where the first element is less than the second element. The

syntax of the constraint linear temporal logic parameterised by the constraint system

D, denoted CLTL(D), is defined as follows:

φ ::= c | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2, (1.2)

where c is a D-term constraint over the variables V ar and the symbols ¬,∧,© and

U are defined in the same way as regular LTL. Other commonly used operators, such

as ∨, ♦ and �, can be derived from these operators in the usual way.
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Let σ denote a particular realization of the values assigned to each variable. We

say that σ satisfies ci at time t, denoted σ, t |=D ci if (v1(t), . . . , vn(t)) ∈ I(Ri).

Satisfaction of a CLTL(D) formula is defined inductively as follows:

• σ, t |= c, if σ, t |=D c,

• σ, t |= φ1 ∧ φ2 if and only if σ, t |= φ1 and σ, t |= φ2,

• σ, t |= ¬φ if and only if σ, t 6|= φ,

• σ, t |=©φ if and only if σ, t+ 1 |= φ, and

• σ, t |= φ1 U φ2 if and only if there exists l ≥ 0 such that σ, t + l |= φ2 and

σ, t+ l′ |= φ1 for all 0 ≤ l′ < l.

To exemplify, let V ar = {x, y} take values from the domain D = N and let D-term

constraint < be defined in the usual way. Let σ denote a particular realization where

x(t) = t and y(t) = 2t. Then, σ, t |= (x < y) for all t. Therefore, σ, t |= �(x < y) as

well. On the other hand σ, t 6|= (y < x) for any t.

Note that the semantics of CLTL(D) are almost identical to that of LTL, with the

exception of the satisfaction of D-term constraints. In fact, CLTL(D) is a general-

ization of the regular LTL. That is, LTL is equivalent to CLTL(D) for the particular

constraint system D = ({0, 1}, true, I) and I(true) = 1. Other commonly used con-

straint systems are of the form N = (N, <,=) and Z = (Z, <,=). When the syntax

of CLTL(D) is extended by allowing constants to be used, to capture tasks such as

(♦x < 5), the resulting logic is denoted by CLTLcon(D). For more information on the

Constraint Linear-Time Temporal Logic, we refer the reader to [20].
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1.2.3. Transition Systems

We mainly use transition systems to model the dynamics of robots in this thesis.

Definition 1.3. A transition system is a tuple T = (V, E , AP, L) where V is a

finite set of states, E ⊆ V × V is a transition relation, AP is a finite set of atomic

propositions, and L : V → 2AP is a labeling function. A transition system is called

deterministic if all transitions are controllable, i.e., if (v, v′) ∈ E, then there exists

a controller that can steer a robot from state v ∈ V to state v′ ∈ V . Otherwise, a

transition system is called non-deterministic.

We say that v satisfies a or a holds at v if a ∈ L(v) for v ∈ V and a ∈ AP .

Transition systems could be obtained using abstraction methods [79, 114] or motion

primitives [32, 62, 73]. Such abstract graph-based representations are commonly used

for describing the behavior of robotic teams [6, 118]. In Chapter 3, we assume that

robot dynamics are modeled by action deterministic transition systems. In Chapter 4

and Chapter 5, we allow a particular type of non-determinism such that (v, v′) ∈ E

guarantees the existence a controller that can steer a robot from state v ∈ V to state

v′ ∈ V , but the duration of the transition might take an arbitrary number of finite

steps.

Definition 1.4. Given a transition system T = (V, E , AP, L), an infinite sequence

π : π(0), π(1), π(2), . . . ∈ V ω of states such that (π(k), π(k + 1)) ∈ E is called a path

(or trajectory, or T−path). For a given trajectory π, the corresponding trace is

defined as σ(π) = L(π(0)), L(π(1)), · · · ∈ (2AP )ω.

15



We say that a path π satisfies an LTL specification φ if the corresponding trace

σ(π) |= φ, and write π |= φ. We now define stutter bisimulation equivalence between

transition system. Roughly speaking, two transition systems are called stutter bisimi-

lar if they have the same branching structure and every step taking by one transition

system can be matched by the other, barring repetition. Formally, stutter bisimula-

tion equivalence can be seen as a relation that maps the states and transitions of one

transition system to the other.

Definition 1.5. Transition systems T1 = (V1, E1, AP, L1) and T2 = (V2, E2, AP, L2)

are said to be stutter bisimilar if there exists an equivalence relation ∼ ⊆ E1 × E2

such that for all (v1, v2) ∈ ∼:

• L1(v1) = L2(v2),

• If (v1, v
′
1) ∈ E1, then there exists a finite T2-path v2, u1, . . . , un, v

′
2 for some n ≥ 0

such that (v1, ui) ∈∼ for all i ∈ {1, . . . , n} and (v′1, v
′
2) ∈∼,

• If (v2, v
′
2) ∈ E2, then there exists a finite T2-path v1, u1, . . . , un, v

′
1 for some n ≥ 0

such that (ui, v2) ∈∼ for all i ∈ {1, . . . , n} and (v′1, v
′
2) ∈∼.

By Definition 1.5, if T1 and T2 are stutter bisimilar, for every trace σ1(π1) where

π1 is a T1−path, there exists a T2−path π2 such that σ1(π1) and σ2(π2) are stutter

equivalent.
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Chapter 2.

Counting Logics

The motivation behind counting logics is multirobot planning tasks that are fairly

complex, but that have a particular structure that allows scalability. Consider an

emergency response scenario, for instance after an earthquake, that requires deploy-

ment of hundreds of autonomous (ground and air) vehicles to provide supplies to

victims. In such a scenario, the robotic team needs to provide supplies to certain

areas, surveil different areas for survivors, and avoid certain regions of danger. The

tasks may require sufficiently many robots to be in a given region simultaneously

to provide the necessary support. Similarly, narrow passageways or the potential to

trigger further destruction to damaged structures may require not too many robots

to be in certain regions at the same time. The role or identity of individual robots

are not essential for the satisfaction of such constraints. For instance, as long as the

supplies reach their target, it does not matter which subset of the robots provides

them. On the other hand, there might be additional requirements on each or some
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subset of robots. To exemplify, consider the following two tasks: each robot needs to

visit a charging station every now and then or at least one robot needs to visit region

A, pick up an object and drop it at region C. Such constraints are called temporal

counting constraints and can be captured using cLTL+, a novel logic introduced in

this thesis.

Capturing temporal counting constraints using LTL or STL, most commonly used

temporal logics for multirobot systems, requires a formula whose length grows combi-

natorially with the number of robots. Therefore, scaling to a large number of robots

is challenging. The logic cLTL+ consists of two-layers. The inner logic is identical to

LTL and is used to describe tasks that can be satisfied by a single robot. For example,

tasks such as “avoid collisions with obstacles at all times" or “eventually visit region

A" can be described by the inner logic. The outer layer then specifies the evolution

of the number of robots required to satisfy an inner logic formula. For example, we

can specify tasks such as “All robots must avoid collisions with obstacles" or “At least

five robots should eventually visit region A" using cLTL+.

Chapter overview

We provide the syntax and semantics of cLTL+ and cLTL in Section 2.1 and Sec-

tion 2.3, respectively. We also introduce a notion of robust satisfaction of cLTL+

specifications in Section 2.2, and provide complexity results for cLTL in Section 2.4.

Finally, we provide conclusions in Section 2.5.
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2.1. Counting Linear Temporal Logic Plus (cLTL+)

This section provides the syntax and semantics for a novel two-layered logic called

Counting Linear Temporal Logic Plus (cLTL+).

2.1.1. Inner Logic

An inner logic formula over a set AP of atomic propositions is defined recursively as

follows:

φ ::= True | a | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2, (2.1)

where a ∈ AP is an atomic proposition and φ, φ1 and φ2 are inner logic formulas. We

use Φ to denote the set of all inner logic formulas defined according to (2.1). The

semantics of inner logic is identical to LTL and can be found in Section 1.2.1.

2.1.2. Outer Logic

After defining the inner logic, we now present the syntax for cLTL+ which is based

on a new proposition type: a temporal counting proposition (tcp) is an inner logic

formula paired with a nonnegative integer, i.e., tcp = [φ,m] ∈ Φ×N. The inner logic

formula φ defines a task and m specifies the number of robots needed to satisfy it.

For example, tcp = [♦a, 5] is a temporal counting proposition that evaluates to True

if the task “♦a” is satisfied by at least five robots.

The following grammar can now be used to recursively define cLTL+ formulas:

µ ::= True | tcp | ¬µ | µ1 ∧ µ2 | ©µ | µ1 U µ2, (2.2)
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where tcp ∈ Φ × N is a temporal counting proposition and µ, µ1 and µ2 are cLTL+

formulas. Identical to inner logic, other commonly used operators can be derived

from (2.2).

We now provide the semantics with the assumption that robots move synchronously.

We later relax this assumption in Section 2.2. Given a collection Σ = {σ1, . . . , σN}

of N infinite traces, the satisfaction of a cLTL+ formula µ at time t is denoted by

Σ, t |= µ and inductively defined as follows:

Σ, t |= [φ,m] if and only if |{n | σn, t |=LTL φ}| ≥ m,

Σ, t |= ¬µ if and only if Σ, t 6|= µ,

Σ, t |= µ1 ∧ µ2 if and only if Σ, t |= µ1 and Σ, t |= µ2,

Σ, t |=©µ if and only if Σ, t+ 1 |= µ

Σ, t |= µ1 U µ2 iff there exists l ≥ 0 such that Σ, t+ l |= µ2

and Σ, t+ k |= µ1 for all k < l.

(2.3)

The semantics of the outer logic, with the exception of satisfaction of a tcp, is

similar to regular LTL. The intuition is that Σ represents the behaviors of N robots,

where σn corresponds to the behavior of robot Rn. Robot Rn is said to satisfy the

inner logic formula φ at time t if σn, t |= φ. Then [φ,m] is satisfied at time t if

the number of robots satisfying φ at time t are greater than or equal to m, i.e.,

|{n | σπn , t |= φ}| ≥ m.

We say that the collection Σ = {σ1, . . . , σN} of N infinite traces satisfies the cLTL+

µ and denote it by Σ |= µ when Σ, 0 |= µ. Given a collection Π = {π1, . . . , πN} of N
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infinite paths with corresponding traces Σ = {σ(π1), . . . , σ(πN)}, we also write Π |= µ

if Σ |= µ.

Example 2.1. Assume the following specification for N robots is given in plain

English: “Every robot should regularly visit the charging station and the number

of robots in region A should be less than 5 until region B is populated by at least

2 robots". Mark region A, region B and the charging station, with atomic propo-

sitions a, b and c, respectively. Then the specification is expressed in cLTL+ as

µ = [�♦c,N ] ∧ (¬[a, 5] U [b, 2]).

The inner logic formula �♦c is satisfied by any robot if that robot regularly visits

the charging station, marked by c. Then [�♦c,N ] is satisfied if at least N robots (all

robots) regularly visit the charging station. Similarly, ¬[a, 5] (or [b, 2]) is satisfied at

time t, if less than 5 (or at least 2) robots satisfy proposition a (or proposition b) at

that time. Combining all, µ specifies the same task that is given in plain English.

2.1.3. Comparison with Regular LTL

Given a multirobot system with N robots and a cLTL+ formula µ, we now show

how to rewrite the same specifications in LTL. Doing so highlights the advantages of

using cLTL+ in scenarios where robot identity is not critical for accomplishing the

collective task.

Let µ be a cLTL+ formula over the set AP of atomic propositions. We first define

a new set of atomic propositions AP ′ =
⋃
a∈AP{a1, a2, . . . aN} such that there are N

new atomic propositions for each atomic proposition a ∈ AP , one for each robot.
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Then, for each temporal counting proposition tcp = [φ,m] in µ, we define a new

set {φ1, φ2, . . . φN} of LTL formulas over AP ′, where φn is obtained by replacing

every atomic proposition a ∈ AP with the corresponding an ∈ AP ′. We then define

tcp′
.
=
∨I
i=1(
∧
j∈Ji φj), where J = {J1, . . . , JI} is the set of all m-element subsets of

[N ], hence I =
(
N
m

)
. Note that, tcp′ is equivalent to tcp, meaning that any collective

execution that satisfy one will also satisfy the other.

Note that, as a result of the conversation from cLTL+ to regular LTL, the number

of atomic propositions increases linearly and the length of the formula increases com-

binatorially with the number of robots. Since the complexity of synthesis algorithms

depend on the size of the formula [5], such an approach would not scale well with the

number of robots.

2.2. Robustness Against Asynchrony

Our definitions so far assume perfect synchronization of robots. However, perfect

synchronization of robots is a challenging task and synchronization errors, if not

handled with care, might result in violation of the specifications. For instance, assume

there are 2 robots and the specification requires a certain property p to be satisfied

by at least one robot at all times, i.e., µ = �[p, 1]. Let πi denote a path for robot ri

and

σ(π1) = {p} {¬p} {¬p} {¬p} . . . ,

σ(π2) = {¬p} {p} {p} {p} . . .
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be corresponding traces. Property p is satisfied by robot R1 only at time t = 0

and by R2 at all times except t = 0. If robots are perfectly synchronized, the

specification µ would be satisfied. However, if R2 moves slower than intended and

causes a synchronization error, µ would be violated.

When robots are allowed to move asynchronously, there are infinitely many ways

a collection of infinite paths {π1, . . . , πN} could be executed. To reason about asyn-

chronous executions, we define the following concepts.

Definition 2.1. A mapping k : N → N is called a local counter if it satisfies the

following:

k(0) = 0, k(t) ≤ k(t+ 1) ≤ k(t) + 1, lim
t→∞

k(t) =∞. (2.4)

The set of all local counters is denoted by K.

A local counter is used to keep track of how far single robot has moved along its

trajectory. If πn denotes the trajectory and kn denotes the local counter of robot Rn,

the position of Rn at time t is given by πn(kn(t)). Equation (2.4) guarantees that

initial conditions are respected, the order of states in a trajectory is preserved, and

that robots eventually make progress.

Given a collection of trajectories, a collective execution is uniquely identified by a

collection of local counters:

Definition 2.2. An N-dimensional collective execution K : N→ NN is a mapping

from global time to local counters, i.e., K .
= [k1 . . . kN ] where kn ∈ K for all n ∈ [N ].

The set of all N-dimensional collective executions is denoted by KN .
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Figure 2.1: Illustrative example for local counters and anchor time. Frames (a)
to (e) correspond to snapshots of a possible asynchronous execution
taken at times t = 0 to t = 5. Robots are enumerated in the order of
red, green, blue and local times of robots at each time step are shown
below the corresponding frame. Anchoring robots are highlighted
with a black circle and the anchor time is shown in bold.

The following example illustrates the concept of asynchronous execution and the

corresponding local counters.

Example 2.2. Let the following three trajectories

π1 =

π2 =

π3 =

s2 s3 s4 s8 s12 . . .

s13 s9 s5 s6 s7 . . .

s16 s12 s11 s10 s9 . . . .

denote the trajectories of a red, green, and a blue robots, respectively. An arbitrary

collective execution is illustrated in Figure 2.1. Local counters are initially set as

K(0) = [0 0 0] at time t = 0; that is, each robot Rn is initially positioned at πn(0).
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Every robot completes a transition by time t = 1, so local counters are updated as

K(1) = [1 1 1]. The red and the blue robots move slower than expected and fail

to complete two transitions by time t = 2. The green robot, on the other hand,

successfully completes two transitions by time t = 2. Thus, local counters are updated

as K(2) = [1 2 1]. Similarly, the values of the local counters up to t = 5 can be seen

from Figure 2.1.

Given a collection of N infinite traces Σ = {σ1, . . . , σN} and a collective execution

K = [k1, ..., kN ], the pair (Σ, K) is called a collective trace. Semantics in (2.3) are

stated with the assumption that robots move synchronously. To generalize to asyn-

chronous executions, we replace every Σ of (2.3) with (Σ, K) and modify the first line

as follows:

(Σ, K), t |= [φ,m] if and only if |{n | σn, kn(t) |=LTL φ}| ≥ m. (2.5)

As stated before, when robots are allowed to move asynchronously, there are in-

finitely many collective executions associate with a collection of trajectories. Without

a bound on asynchrony, it might be impossible to achieve meaningful tasks. For this

reason, we introduce the following definition.

Definition 2.3. A collective execution K = [k1 . . . kN ] is called τ -boundedly asyn-

chronous (or, τ-bounded, in short) if

max
t∈N,n,m∈[N ]

(|kn(t)− km(t)|) ≤ τ.

25



The set of all τ -bounded N-dimensional collective executions is denoted by KN(τ).

A collective execution K ∈ KN(0) is called a synchronous execution. In a syn-

chronous execution, all robots start and complete their transitions simultaneously.

The synchronous execution K∗ = [k∗1 . . . k
∗
N ] where k∗n(t) = t for all n and t is called

globally synchronous.

To reason about robust satisfaction of a formula, we further need to define the

concept of anchor time for collective executions.

Definition 2.4. For a given collective execution K = [k1 . . . kN ], the anchor time

mapping bK maps the time index t to the smallest local counter value kn(t), i.e.,

bK(t) = minn kn(t).

For a τ -bounded collective execution K ∈ KN(τ) and a given time step t, at least

one local counter has the value bK(t) and all other local counters are limited to an

interval: kn(t) ∈ [bK(t), bK(t) + τ ] for all n. For the globally synchronous collective

execution K∗, the anchor time mapping is the identity mapping on N. In Figure 2.1,

“anchoring robots” at each time step are highlighted with a black circle and anchor

times are written in bold.

Having defined the “anchor time”, we now formally define the concept of robust

satisfaction for a collection of trajectories.

Definition 2.5. A collection of trajectories Σ = {σ1, . . . , σN} τ -robustly satisfies

µ at time t, denoted

Σ, t |=τ µ, (2.6)
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if and only if for all K ∈ KN(τ) and for all T ∈ b−1
K (t),

(Σ, K), T |= µ. (2.7)

In other words, a specification µ is τ -robustly satisfied at time t by Σ if every

τ -bounded collective execution K of Σ satisfies µ at all time instances T for which

the anchor time is t. Consider the set of trajectories Π = {π1, π2, π3} and an asyn-

chronous collective execution K given in Example 2.2. Let Σ = {σ1, σ2, σ3} be the

corresponding traces for Π. For Σ, 1 |=τ µ to hold; we must have (Σ, K), T |= µ, for

all T ∈ {1, 2, 3} since b−1
K (1) = {1, 2, 3}. Additionally, the same argument must hold

for every possible K ′ ∈ KN(τ). If Σ, 0 |=τ µ, we say that the collection Σ satisfies

cLTL+ formula µ and write Σ |=τ µ for short. With a slight abuse of notation we

also write Π |=τ µ when a collection Π of paths is given and corresponding traces Σ

are clear from the context.

2.3. Counting Linear Temporal Logic (cLTL)

In this section, we introduce a fragment of cLTL+, namely counting linear temporal

logic (cLTL). The syntax of cLTL over a set AP of propositions is shown below:

µ ::= True | tcpcLTL | ¬µ | µ1 ∧ µ2 | ©µ | µ1 U µ2. (2.8)

where temporal counting proposition tcpcLTL are restricted such that the inner logic

formulas are atomic propositions, instead of general LTL formulas. Temporal counting
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propositions of this special form tcpcLTL = [a,m] ∈ AP × N are called counting

constraints.

As a result of the restriction on the inner logic formulas, cLTL enforces robots to

“synchronize”. Furthermore, counting constraints render the overall control problem

permutation invariant. This structural property was first exploited in [67] for coor-

dination of large collections of systems in the context of scheduling thermostatically

controlled loads with time-invariant counting constraints on system modes.

The following example depicts the differences between cLTL and cLTL+ formulas:

Example 2.3. Consider the following cLTL+ formulas: µ1
.
= �♦[a,m], µ2

.
= [�♦a,m],

and µ3
.
= �[♦a,m] for a ∈ AP .

Here temporal counting constraint of µ1 is [a,m] where a is an atomic proposition.

Hence, µ1 classifies also as a cLTL formula. Task “a” can be satisfied by any robot,

simply by visiting a state where a holds. The temporal counting proposition “[a,m]”

is satisfied at time t if at least m robots to satisfy a at time t. Moreover, the temporal

operators “�♦” in the outer layer necessitate that the temporal counting proposition

is satisfied infinitely many times. Thus, there should be an infinite number of in-

stances where a is simultaneously satisfied by more than m robots in order for µ1 to

be satisfied.

On the other hand, neither µ2 nor µ3 can be specified in cLTL. In both formulas,

the inner formula contains temporal operators which are not allowed in the cLTL

syntax. The difference between µ1 and µ2 is that the latter relaxes the simultaneity

requirement. The inner formula �♦a can be satisfied by any robot if the robot sat-
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isfies a infinitely many times. The integer m is the smallest number of robots that

needs to satisfy the inner formula. Hence, the cLTL+ formula µ2 requires at least

m robots to satisfy a infinitely many times, but as opposed to µ1 they need not do so

simultaneously. For any given time the number of robots that satisfy a might never

exceed m, or even 1. Note that any collective trajectory that satisfies µ1 also satisfies

µ2, but the converse is not true.

The difference between µ2 and µ3 is more subtle. Any collective trajectory that

satisfies µ2 would also satisfy µ3. The converse is also true if the number of robots is

finite. However, in the hypothetical scenario where there are infinitely many robots,

µ3 can be satisfied even if no robot satisfies a more than once. �

2.4. Complexity Analysis for cLTL

In this section, we examine the complexity of the cLTL satisfiability problem. Com-

plexity results are important as they give an estimate on how hard the problem we

are interested in is. We now formally define the cLTL satisfiability problem:

Problem 2.1. Given a cLTL specification µ over atomic proposition set AP =

{a1, a2, . . . , ak}, does there exist a collection Σ = {σ1, . . . , σN} of traces for some

N > 0 such that Σ |= µ?

The complexity of Problem 2.1 gives us an estimate of how hard the problem we are

interested in is. The following Theorem shows that cLTL and LTL are in the same

complexity class. This is an encouraging result since it shows that cLTL provides

benefits over LTL without paying penalties.
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Theorem 2.1. The cLTL satisfiability problem is PSPACE-complete.

Proof. Firstly, we provide an upper bound by showing that satisfiability of cLTL

specifications can be reduced to satisfiability of CLTLcon(N, <,=), which is shown to

be solvable in PSPACE in [21]. Let µ be a cLTL formula over atomic proposition

set AP . Without loss of generality, we can express µ in PNF. To transform µ into

PNF, treat each counting proposition as an atomic proposition and use standard

techniques used to transform LTL formulas as in [5]. Then replace each counting

proposition tcpcLTL = [ai,m] with negated atomic constraint ¬(xi < m). Then, take

the conjuction of the resulting formula with
∧
xi

(xi < N+1) and denote it by µ′. Solve

the resulting CLTLcon(N, <,=) satisfiability problem for µ′. This conservation can

be done by introducing 2|AP | variables and same number of constraints as counting

propositions.

Once a solution is found for the xi values, one can extract a collection Σ =

{σ1, . . . , σN} as follows. For each t and for each xi, choose the first xi(t) traces.

Let σn be one of those traces. Adjust σn such that ai ∈ σn(t) and ai 6∈ σm(t) for all

m 6= n. Consequently xi(t) ≤ m implies |{n | σn, t |=LTL µ}| ≤ m, and xi(t) > m

implies |{n | σn, t |=LTL µ}| > m. The rest of the semantics in Equation (1.2)

and Equation (2.3) are identical. Therefore, if a solution exists for µ′, collection Σ

obtained by this approach satisfies the cLTL formula µ, i.e., Σ |= µ.

To provide a lower bound, we can reduce satisfiability of LTL into satisfiability of

cLTL by replacing every atomic proposition ai of a given LTL formula with [ai > 1].

Since satisfiability of LTL is PSPACE-complete.
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2.5. Summary

This section introduced temporal counting constraints for multirobot systems. Such

constraints are encountered when the number of robots satisfying a particular prop-

erty needs to be bounded either from above or below. Existing temporal logics cannot

capture counting constraints efficiently, requiring formulas whose length grows com-

binatorially with the number of robots as shown in Section 2.1. To overcome this

problem, we introduced a new formalism, namely counting linear temporal logic plus

(cLTL+).

We then introduced a notion of robust satisfaction of cLTL+ formulas. Since it

might not always be possible to synchronize robots perfectly, solutions should be

robust to synchronization errors. Robust satisfaction definition is useful in analyzing

the effects of synchronization errors on the satisfaction of the specifications.

We also introduced a fragment of cLTL+, called cLTL. The logic cLTL can be seen

as an extension of a particular class of counting problems that deal with invariant

specifications. Solutions to cLTL specifications are permutation invariant. That is,

the identity of robots is not important, and trajectories of any two robots can be

swapped without affecting the satisfaction of the specifications. This property is

later exploited in Chapter 3, to provide an optimization-based solution, which scales

to systems with hundreds of robots when robots have identical dynamics. We also

showed that cLTL belongs to the same complexity class as LTL and is PSPACE-

complete.
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Chapter 3.

Path Planning with Counting

Constraints

This chapter provides the formal definition of the synchronous multirobot coordina-

tion problem with cLTL+ constraints and provides an optimization-based solution.

Subsequently, an alternative solution is proposed for the special case where the spec-

ifications are given in cLTL and the robots have identical dynamics. The alternative

solution is shown to scale much better with the number of robots. In fact, the number

of robots has almost no effect on the solution time and problems with hundreds of

robots can be solved with the alternative method as demonstrated in Section 3.7.

3.1. Synchronous coordination problem

In this short section, we formally state the problem we are interested in solving.
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Problem 3.1. Given N robots with dynamics {Tn = (Vn, En, AP, Ln)}, initial condi-

tions {πn(0)}, and a cLTL+ formula µ over AP , synthesize a collection Π = {πn}

such that the globally synchronous execution of Π satisfies µ, i.e., (Π, K∗) |= µ.

In order to solve Problem 3.1, we generate individual trajectories in a centralized

fashion. Robots then follow these trajectories in a distributed fashion, using local con-

trollers without runtime communication. As the wording of the Problem 3.1 suggests,

we assume that robots will execute their paths synchronously.

3.2. Path Planning with cLTL+ Specifications

To generate trajectories we encode the robot dynamics and the cLTL+ constraints

using integer linear constraints and pose the synthesis problem as an integer linear

program (ILP). This approach is inspired by the bounded model-checking literature

[11]. In particular, we focus the search on individual trajectories in prefix-suffix form.

That is, for a given integer h, we aim to construct individual trajectories of the form

πn = πn(0)πn(1) . . . πn(h) . . . and find an integer l ∈ {0, . . . , h − 1} such that for all

k ≥ h, πn(k) = πn(k+ l−h). We later show in Theorem 3.2 that this assumption that

the trajectories are in prefix-suffix form is without loss of generality. In the following,

we present ILP encodings of dynamic and temporal constraints.

3.2.1. Globally synchronous robot dynamics

Given the transition system Tn = (Vn, En, AP, Ln) that represents the dynamics of

robot Rn, consider the matrix An defined as Aj,in = 1 if and only if (vi, vj) ∈ En
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where Aj,in is the term in the jth row and ith column of An. We use a Boolean vector

wn(t) ∈ {0, 1}|Vn| with a single nonzero component to denote the state of robot Rn

at time t. For example, if Vn = {v1, v2, v3} and that robot Rn is at v2 at time t,

then wn(t) =

[
0 1 0

]T
. With a slight abuse of notation, we equivalently write

wn(t) = v2.

Given matrices {An} corresponding to {Tn}, and a set of inital conditions {πn(0)},

the dynamics of robot Rn are captured as follows:

wn(t+ 1) ≤ Anwn(t), 1Twn(t) = 1, wn(0) = πn(0), (3.1)

for all n ∈ [N ] and for all t ∈ {0, . . . , h − 1}. The first inequality in (3.1) ensures

that robots respect the transitions En, the second term guarantees conservation of the

number of robots, and the last term results from the initial condition. The trajectory

πn corresponding to the sequence wn = wn(0)wn(1) . . . can then be extracted by

locating the nonzero component in each wn(t).
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3.2.2. Loop constraints

To ensure that the generated trajectories are in prefix-suffix form, we introduce h

binary variables zloop = {zloop(0), . . . zloop(h− 1)} and the following constraints:

wn(h) ≤ wn(t) + 1(1− zloop(t)),

wn(h) ≥ wn(t)− 1(1− zloop(t)),
h−1∑
t=0

zloop(t) = 1,

(3.2)

for all n ∈ [N ] and for all t ∈ {0, . . . , h − 1}. When these constraints are satisfied,

there exists a unique l < h such that zloop(l) = 1 and wn(h) = wn(l). For all other

time instances t 6= l, the first two inequalities are trivially satisfied.

3.2.3. Inner logic constraints

We next recursively describe how temporal counting logic constraints can be trans-

lated into integer constraints. Let φ ∈ Φ be an inner logic formula given according

to (2.1) and let h be the horizon length. For each robot Rn, we introduce h binary

decision variables zφn(t) ∈ {0, 1} for t ∈ {0, 1, . . . , h − 1}, and ILP constraints such

that zφn(t) = 1 if and only if πn, t |= φ. Hence, satisfaction of an inner formula φ by

Rn is equivalent to zφn(0) = 1. We use the following encodings to recursively create

the corresponding ILP constraints:

a (atomic proposition): Let φ ∈ AP be an atomic proposition and let the states of

Tn be given by the set Vn = {v1
n, v

2
n, . . . , v

|Vn|
n }. We define the vector vφn ∈ {0, 1}|Vn|
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such that the ith entry of vφn is 1 if and only if φ ∈ L(vin). That is, vφn encodes the

labeling function Ln. Then we introduce the following constraints for all n ∈ [N ]:

(vφn)Twn(t) ≥ zφn(t),

(vφn)Twn(t) < zφn(t) + 1.

(3.3)

When φ ∈ L(wn(t)), we have (vφn)Twn(t) = 1 and zφn(t) = 1 must hold due to the

second inequality in (3.3). Conversely, if φ 6∈ L(v), the first inequality requires that

zφn(t) = 0. The following encodings of Boolean and temporal operators are consistent

with those in [11]:

¬ (negation): Let ϕ = ¬φ. Then for all n ∈ [N ],

zϕn (t) = 1− zφn(t), t = 0, . . . , h− 1. (3.4)

∧ (conjunction): Let φ =
∧I
i=1 φi. Then for all t = 0, . . . , h− 1 and for all n ∈ [N ],

zφn(t) ≤ zφin (t), for i = 1, . . . , I and,

zφn(t) ≥ 1− I +
I∑
i=1

zφin (t).

(3.5)

∨ (disjunction): Let φ =
∨I
i=1 φi. Then for all t = 0, . . . , h− 1 and for all n ∈ [N ],

zφn(t) ≥ zφin (t), for i = 1, . . . , I and,

zφn(t) ≤
I∑
i=1

zφin (t).

(3.6)
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With a slight abuse of notation, when φ =
∨I
i=1 φi, we write zφn(t) =

∨I
i=1 z

φi
n (t)

instead of stating the inequalities in (3.6). Encoding of the temporal operators is

then as follows:

© (next): Let ϕ =©φ, then for all n ∈ [N ]

zϕn (t) = zφn(t+ 1), t = 0, . . . , h− 2 and,

zϕn (h− 1) = for
h−1∨
t=0

(zφn(t) ∧ zloop(t)).
(3.7)

U (until): if φ = φ1 U φ2, then for all n ∈ [N ]

zφn(t) = zφ2n (t) ∨
(
zφ1n (t) ∧ zφn(t+ 1)

)
, for all t ≤ h− 2,

zφn(h− 1) = zφ2n (h− 1) ∨

(
zφ1n (h− 1) ∧

(
h−1∨
t=0

(
zloop(t) ∧ z̃φn(t)

)))
,

z̃φn(t) = zφ2n (t) ∨
(
zφ1,nt ∧ z̃φn(t+ 1)

)
, for all t ≤ h− 2,

z̃φn(h− 1) = zφ2n (h− 1),

(3.8)

where z̃φn(t) are auxiliary binary variables. As shown in [11], not introducing auxiliary

variables results in trivial satisfaction of the until operator.

3.2.4. Outer logic constraints

Similar to the inner logic, we proceed by transforming a cLTL+ formula into ILP

constraints. Given a cLTL+ formula µ and a time horizon h, we create h binary

decision variables ycLTL+ = {yµ(t)}, where t ∈ {0, 1, . . . , h− 1} and ILP constraints

ILP (µ). While doing so, we ensure that yµ(t) = 1 if and only if (Π, K∗), t |= µ where
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K∗ is the globally synchronous collective execution. We remind the reader that since

ILP constraints are created recursively, creating the constraints for formula µ requires

first creating constraints for all inner logic formulas that appear in µ. We denote by

ILP (µ) the set of all resulting constraints that encode the satisfaction of µ, and by

(z,y)cLTL+ the set of all variables created in this process.

We provide encodings only for counting propositions since the rest of the semantics

are identical. Let µ = [φ,m] ∈ AP × N be a temporal counting proposition. Then

m >
N∑
n=1

zφn(t)−Myµ(t) ≥ m−M, (3.9)

where M is a sufficiently large positive number, in particular, M ≥ N + 1. Note that

when yµ(t) = 1, the inequality on the right reduces to
∑N

n=1 z
φ
n(t) ≥ m. Moreover,

the inequality on the left is trivially satisfied since M ≥ N + 1. Conversely, when

yµ(t) = 0, the inequality on the right is trivially satisfied and the inequality on the

left reduces to
∑N

n=1 z
φ
n(t) < m. Therefore, yµ(t) = 1 if and only if the number of

robots that satisfy φ at time t is greater than or equal to m. Conversely, (yµ(t) = 0)

if and only if the number of robots that satisfy φ at time t is less than m. Therefore,

the ILP constraints in (3.9) are correct and consistent with the semantics of cLTL+.
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3.2.5. Overall optimization problem and its analysis

The following optimization problem is formed to generate a solution to an instance

of Problem 3.1 given a horizon length h:

Find {wn}, zloop, (z,y)cLTL+

s.t. (3.1), (3.2), ILP (µ) and yµ(0) = 1.

(3.10)

Next we analyze this solution approach. The following theorem shows that the

solutions generated by (3.10) are sound.

Theorem 3.1. If the optimization problem in (3.10) is feasible for a cLTL+ formula

µ, then a collection Π = {πn}n∈[N ] of trajectories can be extracted from {wn} such

that (Π, K∗) |= µ.

Proof. Constraint (3.1) guarantees that the collection Π of trajectories generated

from {wn} are feasible, consistent with the initial conditions and with the system

dynamics. Furthermore, (3.2) ensures that these solutions can be extended to infi-

nite trajectories of the form πn = πn(0) . . . πn(l − 1) (πn(l) . . . πn(h− 1))ω. The ILP

encodings (3.3)-(3.8) of LTL formulas are sound [11], and the same encodings are

also used for cLTL+ formulas by replacing zφn(t) with yµ(t), where µ is any cLTL+

formula. The only exception is that (3.3) is replaced with (3.9), which we showed

to be correct. Therefore, the constraint yµ(0) = 1 together with ILP (µ) guarantees

that (Π, K∗) |= µ. Thus, if (3.10) is feasible, then the globally synchronous execution

of Π solves Problem 3.1.

As a corollary, it is easy to show that stutter invariance of formulas (see Defini-
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tion 1.2) allows the generalization of the soundness result from globally synchronous

executions to all synchronous executions.

Corollary 3.1. If µ does not contain any next operator ©, neither in the inner nor

in the outer logic, then (Π, K) |= µ for all synchronous executions K ∈ KN(0).

The following theorem shows that encodings presented in (3.1)-(3.10) are complete:

Theorem 3.2. If there is a solution to Problem 3.1, then there exists a finite h such

that (3.10) is feasible.

Proof. In order to show that prefix-suffix form solutions are complete, we reduce Prob-

lem 3.1 to a regular LTL control synthesis problem, for which prefix-suffix solutions

have been shown to be complete [5].

Section 2.1 shows that any cLTL+ formula µ over the set AP of atomic propositions

can be rewritten as an equivalent LTL formula µ′ over a new set AP ′. Next, we create

a product transition system T ′
.
= ΠnTn with the set AP ′ as its atomic propositions.

Now Problem 3.1 is reduced to a standard LTL synthesis problem and it can be

solved using a model-checker to generate a prefix-suffix solution or to declare the

non-existence of solutions (see e.g., [10]).

The proof of Theorem 3.2 highlights the advantages of using cLTL+ in scenarios

where robot identity is not critical for accomplishing the collective task. Although the

problem can be reduced to a standard LTL synthesis problem as the proof suggests,

the reduction results in a synthesis problem on a product transition system with size

exponential in the number of robots, and with an LTL formula that is combinatorially
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longer than the cLTL+ formula. Indeed, without a convenient logic, just writing down

that LTL formula would be a tedious and error-prone task.

Remark 3.1. The complexity of solving ILPs is known to be NP-complete, yet there

are efficient heuristics and corresponding software packages (see, e.g., [33]) that reli-

ably solve relatively large instances with ease. An instance of (3.10) has O(hN(|Vn|+

|µ|)) decision variables and constraints, where h is the solution horizon, N is the

number of robots, |Vn| is the number of states of the largest transition system, and

|µ| is the length of the cLTL+ formula µ. Enforcing collision avoidance, as shown in

Section 3.4, introduces O(hN2|Vn|) additional constraints.

Remark 3.2. For practical implementations, we want solutions to satisfy the spec-

ifications even if ε number of robots fail unexpectedly during run-time. This type of

robustness can easily be incorporated into the optimization formulation by modifying

(3.9) as follows:

m+ ε >
N∑
n=1

zφn(t)−Myµ(t) ≥ m− ε−M. (3.11)

In order to find the “most robust” solution possible, the feasibility problem in Equa-

tion (3.10), where Equation (3.11) is used instead of Equation (3.9), can be posed as

an optimization problem with ε as a variable to be maximized.

Note that, solutions generated using Equation (3.11) would be robust to unexpected

failures if the failing robots do not block others from progressing. This assumption is

reasonable for a team of drones, but it might be limiting for team of ground robots.
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3.3. Path Planning with cLTL Specifications

Given an instance of Problem 3.1, if the specification µ can be expressed in cLTL

and all robots have identical dynamics, the overall coordination problem becomes

permutation invariant. Then, we can define aggregate dynamics and generate an

aggregate solution instead of individual trajectories. This structural property was

first exploited in [67] for coordination of large collections of systems in the context of

scheduling thermostatically controlled loads with time-invariant counting constraints

on system modes. This aggregate solution can be found using more efficient encodings

and then mapped to individual trajectories.

In the following, we first define a class of cLTL problems and provide the corre-

sponding efficient encodings:

Problem 3.2. Given N robots with identical dynamics T = (V, E , AP, L), initial

conditions {πn(0)}, and a cLTL formula µ over AP , synthesize a collection Π =

{π1, . . . , πN} of trajectories such that the globally synchronous collective execution of

Π satisfies µ, i.e., (Π, K∗) |= µ.

When solving Problem 3.2, instead of finding a trajectory for each robot, we

compute a collective behavior by deciding how many robots that should move be-

tween each pair of states at each time step. To further clarify, let the set V of

states be enumerated such that V = {v1, v2, . . . , v|V |}. We define an aggregate

state vector w = [w1, w2, . . . w|V |]T where the ith row of w denotes the number

of robots at state vi. Similarly, the aggregate input is defined as a vector u =

[u1
1, u

2
1, . . . , u

|V |
1 , u1

2, . . . u
|V |
2 , . . . u

|V |
|V |]

T where uji denotes the number of robots that tran-
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sition from state vi to vj. Note that the aggregate input is state-dependent since the

total number of robots sent from a particular state to others cannot be greater than

the number of robots in that state. Furthermore, the number of robots sent from

a state can only be a non-negative integer. An input satisfying these conditions is

called admissible and Υ(w) denotes the set of all admissible inputs for a given state

w. The set Υ(w) is captured by the following set of equalities:

Υ(w) =

{uji} :

|S|∑
j=1

uji = wi, uji = 0 if (vi, vj) 6∈→, uji ∈ N

 . (3.12)

The evolution of the aggregate state is described by the following linear constraints:

w(t+ 1) = Bu(t), u(t) ∈ Υ(w(t)), (3.13)

where B is defined as B .
= I|V | ⊗ 1T|V |, I|V | is the identity matrix of size |V |, and ⊗ is

the Kronecker product.

Compared to (3.1) where the state evolution of each robot is computed individually,

in (3.12) and (3.13), the decision variables are aggregate inputs, representing how

many robots that move along each edge. The identity of robots is not important since

cLTL specifications are permutation invariant. As a result, the number of decision

variables is independent of the number of robots, which makes cLTL encodings scale

well with the number of robots.
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Loop constraints for aggregate states can be written as

w(h) ≤ w(t) + 1(1− zloopt ),

w(h) ≥ w(t)− 1(1− zloopt ).

(3.14)

Inner logic constraints for individual robots are no longer needed since the cLTL

inner logic is constrained to the grammar φ ∈ AP . In the outer logic, only the

encoding of temporal counting propositions in (3.9) needs modification. Let µ = [φ,m]

be a tcpcLTL and let V = {v1, . . . , v|V |} be the set of states. As in (3.3) we introduce a

vector vφ ∈ {0, 1}|S| such that the ith entry of vφ is 1 if and only if φ ∈ L(vi). Then,

for all t = 0, . . . , h, the constraints

vφw(t) ≥ m−M(1− yµt ),

vφw(t) ≤ m+Myµt ,

(3.15)

ensure that yµ(t) = 1 if and only if the number of robots that satisfy φ ∈ AP is

greater than or equal to m. The rest of the outer logic encodings are not modified

and used as before.

Given a time horizon h, the following optimization problem is formed to generate

solutions to an instance of Problem 3.2:

Find u(0), . . . ,u(h− 1), zloop,ycLTL,

s.t. (3.12), (3.13), (3.14), ILP (µ) and yµ(0) = 1

(3.16)

where ILP (µ) is the set of all resulting constraints that encode the satisfaction of µ,
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and ycLTL the set of all variables created by Equation (3.15).

We now show how a solution of (3.16) can be mapped to a collection {πn} of

individual trajectories. Given initial conditions πn(0), and u(0), randomly choose

uji robots from state vi and assign their next state as vj. This is always possible

since w(0) is well defined and u(0) ∈ Υ(w(0)). Continuing in this manner, we can

generate the collection {πn} whose globally synchronous collective execution satisfies

the specification µ. Details of a similar construction of individual trajectories can be

found in [68].

Before proceeding to the asynchronous problem, we remind the reader of two im-

portant things: (i) the ILP constraints in (3.16) are consistent with cLTL+ semantics,

therefore soundness and completeness guarantees follow from Theorems 3.1 and 3.2.

(ii) An instance of (3.16) has O(h(|E|+ |µ|)) decision variables and constraints where

|E| is the number of transitions and |µ| is the length of the formula. Crucially,

the number of decision variables and constraints does not depend on the number of

robots. Therefore, it easily scales to very large numbers of robots as demonstrated in

Section 3.7.

3.4. Collision Avoidance

We say that two robots are in collision if they occupy the same state at the same

time, or if they swap their positions between two consecutive time steps. Existing

approaches for collision avoidance include forcing robots to wait and resume when

necessary [58, 99, 122] or deviating minimally from the nominal trajectories [4, 7, 36,
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91, 121]. Although such methods would guarantee collision avoidance and progress

through the synthesized paths, they might lead to violation of other specifications

expressed in cLTL+. Therefore, we propose to directly incorporate collision avoidance

into the trajectory synthesis.

Expressing collision avoidance as a cLTL+ specification is also not practical, in

general. To clarify, consider a cLTL+ specification that limits the number of robots

in each discrete state to at most 1, which can be written by introducing atomic propo-

sitions for each discrete state. Such a specification would enforce collision avoidance

at discrete time instances, however, collisions can still occur if two robots swap their

position. One can also try being more conservative by defining atomic propositions

for sets of states and limiting the number of robots in each set to be at most 1,

but this will require many atomic propositions in addition to being conservative. To

avoid such issues, we handle collisions outside the logical specification by introducing

additional constraints to the optimization problem.

For synchronous executions, we introduce the following constraints:

wm(t) + wn(t) ≤ 1,

(wm(t+ 1) + wn(t) ≤ 1) ∨ (wm(t) + wn(t+ 1) ≤ 1),

(3.17)

for all 0 ≤ t < h and for all n,m pairs. The first inequality in Equation (3.17) ensures

that no robots occupy the same state at the same time step, and the second line of

inequalities prevents robots from “swapping" states. That is, if robots Rm and Rn

are at states vm and vn, respectively, they cannot swap their positions in the next
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time step.

On the other hand, when specifications are given in cLTL and all robots have

identical dynamics, collision avoidance can effectively be encoded as an additional

cLTL formula. In this case, one can define a new atomic proposition for each

state and limit the number of robots to at most 1. As in the cLTL+ case, this

requirement prevents collisions in discrete time steps. To avoid inter-sample col-

lisions, the individual trajectories extracted from the aggregate solution are modi-

fied as follows. Assume two robots swap their positions at some point in time, i.e.,

πm(t) = πn(t + 1) and πm(t + 1) = πn(t). Instead of their positions, we swap their

paths. That is, both paths are cut into two pieces at time t and Rm is assigned the

path π̃m : πm(0), πm(1), . . . , πm(t), πn(t+ 1), πn(t+ 2), . . . and vice versa. This mod-

ification prevents robots from swapping their positions. Furthermore, specifications

are still satisfied since cLTL is permutation invariant with respect to robot identity.

3.5. Extension to Continuous-State Dynamics

Up to now, we assumed that robot dynamics are modeled by discrete transition sys-

tems. Given continuous dynamics, discrete abstraction techniques can be leveraged to

obtain transition systems. However, abstraction computations are costly and do not

scale well with the number of dimensions. This section provides slight modifications

to the earlier encodings that allow direct treatment of continuous-state discrete-time
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dynamics. Assume that the robot dynamics are given as

wn(t+ 1) = fn(wn(t), un(t)), (3.18)

where wn(t) ∈ Rdw and un(t) ∈ Rdu denote the state and input of robot n at time t,

respectively.

The first modification is to replace the constraints in (3.1) with (3.18) for all n ∈ [N ]

and for all t. The loop constraints in (3.2) are then modified as follows:

wn(h) ≤wn(t) +M(1− zloop(t)),

wn(h) ≥wn(t)−M(1− zloop(t)),
(3.19)

where M is a sufficiently large number. Equation (3.19) creates a loop by forcing

wn(h) to be equal to wn(t) for some t.

Remark 3.3. Achieving a perfect loop closure as in (3.19) is not realistic in the

presence of modeling errors and disturbances. Instead, these trajectories should be

seen as waypoints to be tracked by a feedback controller. Ideas similar to funnel

libraries [59, 117] can be used to generate such feedback control laws that can track

the path computed by our MILP solution with a pre-specified bound. Such a bound can

also be incorporated by appropriately expanding and shrinking continuous propositions

to guarantee overall correctness as is done in [51, 117].

Next, we modify (3.3) to accommodate continuous states. We assume that each

atomic proposition a ∈ AP corresponds to a convex polytope {w ∈ Rdw | Haw ≤ ha},
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where Ha ∈ Rda×dw and ha ∈ Rda . Then for each atomic proposition and for all t and

n ∈ [N ], we replace the inequality constraints in (3.3) with the following:

Hawn(t) ≤ ha +M(1− ean(t)), (3.20a)

Hawn(t) ≥ ha + ε−Mean(t), (3.20b)

zan(t) =
∧
i

ea,(i)n (t), (3.20c)

where ε is infinitesimally small,M is sufficiently large, and ean is a binary vector of size

da. The ith row of ean is denoted by ea,(i)n (t) and represents the satisfaction of the ith

linear constraint of the convex polytope. That is, (3.20a) and (3.20b) ensure that the

ith linear constraint is satisfied if and only if ea,(i)n (t) = 1. Then, (3.20c) guarantees

that wn(t) ∈ {w ∈ Rdw | Haw ≤ ha} if and only if zan(t) = 1, i.e., all linear constraints

are satisfied. No other modifications are needed to use zan(t) in (3.4)-(3.9).

Finally, we modify the optimization problem to account for auxiliary variables.

Let ecLTL+ denote the set of all auxiliary variables created by (3.20). We form the

following optimization problem to find solutions:

Find {un(0) . . . un(h− 1)}, zloop, (e, z,y)cLTL+

s.t. (3.18), (3.19), ILP (µ) and yµ(0) = 1.

(3.21)

Remark 3.4. Given initial condition wn0 and inputs {un(0) . . . un(h−1)}, state wn(t)

can be found by (3.18). Hence, no decision variables are needed for the states.

Remark 3.5. The resulting feasibility problem is a mixed integer linear program
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(MILP) if dynamics in (3.18) are linear.

As stated above, obtaining discrete abstractions from continuous dynamics is com-

putationally expensive: the size of the transition system typically grows exponentially

with the dimensionality of robot states. Since each discrete state in the transition

system introduces a binary decision variable in the discrete-space formulation, the

size of the optimization problem in (3.10) can grow quickly. On the other hand, in

(3.21), each continuous state is represented with a single continuous decision vari-

able. Therefore, the number of decision variables is independent from the size of the

environment. While the number of auxiliary binary decision variables introduced by

(3.20) depends on the specific problem instance, the continuous approach might be

favorable when compared to an abstraction approach.

As for collisions, they can be avoided by introducing additional constraints, similar

to 3.4, potentially by defining a safe distance and using approaches as in [82].

3.6. Extension of cLTL+ Syntax

This section provides a straightforward extension of the cLTL+ syntax inspired by

censusSTL [116]. Up to now, the logic is oblivious as to which robot satisfies what

atomic proposition, or task. In practice, robots might have heterogeneous capabilities

and certain tasks might only be performed by a specific subset of robots. For example,

imagine a collection of drones and a reconnaissance mission that includes, among other

things, taking aerial photos of a region. If not all of the drones have cameras, one

might want to identify those that can take photos and require subtasks that involve
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photography to be completed by this subset. Similarly, in a collective of robots where

one robot is designated to be the leader it may be desirable to specify that the other

robots periodically have to report to the leader.

To be able to specify such tasks, the temporal counting propositions (tcp) can be

modified to contain the subset of robots that are designated with satisfaction of the

inner logic formula. Redefine tcp as a tuple consisting of an atomic proposition, a

non-empty set of robots and a non-negative integer, i.e., µ = [φ,S,m] ∈ Φ×2[N ]×N.

Here satisfaction of µ at time t requires at least m robots from the subset S ∈ 2[N ] to

satisfy φ at time t. By modifying tcp’s in this manner we can assign individual tasks

to a specific subset of robots. To exemplify, given a collective S of drones, let Sc ∈ S

denote those with camera. Then the temporal counting proposition tcp = [a,Sc,m]

would be satisfied if at least m drones from Sc visit regions marked by a ∈ AP to

take aerial photos.

Let µ = [φ,S,m]. We modify (3.9) as follows to account for the change in tcp

definition:

m >
∑
n∈S

zφn(t)−Myµ(t) ≥ m−M. (3.22)

Similarly, for the robustness case, we modify (4.3) as follows:

m >
∑
n∈S

rφn(t)−Myµ(t) ≥ m−M. (3.23)

It is straightforward to see that (3.22) and (3.23) preserve all of the soundness and

completeness guarantees for this extension.
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3.7. Examples

All experiments are run on a computer with 3.6 GHz Intel Core i7 and 128 GB

RAM and YALMIP [54] is used to setup the optimization problems with Gurobi

[33] as the underlying ILP solver. Our implementation can be accessed from https:

//github.com/sahiny/cLTL-synth.

3.7.1. Emergency response example

Let N = 10 robots be deployed in a the workspace depicted in Figure 3.1. We assume

that only half of these robots—the even-numbered ones—are equipped with cameras.

The workspace is discretized into 10 × 10 cells and each robot is modeled with a

transition system with 100 states, each corresponding to a single cell. At each step,

robots can either choose to stay put or to travel to any of the four neighboring cells

without leaving the workspace. We remark that a monolithic LTL solution for this

problem would have required constructing a transition system with 10010 states.

Let S = {R1,R2, . . . ,RN} be the set of all robots and S̃ = {R2,R4, . . . } be the

set of robots equipped with cameras. The specification is given by

µ =
8∧
i=1

µi, (3.24)

where each µi and the reasoning behind them is as follows:

• µ1 = �¬[D,S, 1] : collision with obstacles, which are marked with D, should

be avoided,
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E

Figure 3.1: Emergency response example. Regions A, C, and E represent dif-
ferent neighborhoods, B represents a fragile bridge, F represents
charging stations and D represents inaccessible zones.

• µ2 = �¬[B,S, 3] : the bridge, marked by B, must not be occupied by more

than 2 robots,

• µ3 = [�♦F,S, N ] : each robot should visit charging stations, marked by F ,

infinitely many times,

• region A and C must be populated with at least half of the robots and should
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be left empty, infinitely many times:

µ4 = �♦[A,S, N/2], µ5 = �♦[C,S, N/2],

µ6 = �♦(¬[A,S, 1]), µ7 = �♦(¬[C,S, 1],

• µ8 = (¬[B,S, 1]) U
(

[B1, S̃, 1] ∧ [B2, S̃, 1]
)

: bridge should be empty until it is

inspected from both sides by robots equipped with cameras.

In addition to these specifications, we require that robots avoid collisions with each

other. We assume robots move synchronously, posit a time horizon h = 35, and

solve the optimization problem (3.1). The resulting optimization problem, which is

encoded in YALMIP, has 36042 optimization variables and 13502 constraints, and is

solved in 1038 seconds. Important frames obtained from the obtained solution are

shown in Figure 3.2.

Even though all specifications are met by this solution for a synchronous execution,

it could easily break with the introduction of asynchrony. For instance, note that

region A is emptied (resp. region C is populated with more than 5 robots) only for a

single time step at t = 16 (resp. t = 18). Hence, a single-step delay of a single robot

could result in violation of µ6 (resp. µ5). Similarly, a robot enters the bridge for the

first time at t = 11, which is the exact same time step when the bridge is inspected

from both sides. If one of the robots inspecting the bridge moves slower than intended,

µ8 would be violated. These concerns motivated the study in Chapter 4 where we

show how to overcome these shortcomings.

Note that all subspecifications of µ except µ3 can be expressed in cLTL. If this
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Figure 3.2: Important frames from the non-robust solution of the emergency
response example. Arrows indicate the direction of movement. The
loop starts at frame t = 4, thus the state at t = 4 is identical to the
state at t = 36. Time t = 16 and t = 18 are the only time steps where
region A and C are emptied and populated with more than 5 robots,
respectively. The bridge is empty until two robots inspect it from
different sides at t = 11. Every robot visits the charging station and
avoids collisions.

requirement is removed, cLTL encodings can also be used to solve the same problem.

In fact, a video simulating the synthesized plans, when µ3 is removed cLTL encodings

of Section 3.3 are used, can be seen at https://youtu.be/EJ-v2yD-6_I.

3.7.2. Numerical examples

To examine the scalability of the proposed approach with respect to different factors,

we use the emergency response example explained in Section 3.7.1 and specifications

in (3.24). The base example uses the following parameters: the number of robots

N = 10 and solution horizon h = 35. We then vary one of these parameters at a

time, and report the average solution times with 95% confidence interval values and

the maximum solution times (in parentheses) in Table 3.1. These results are obtained

over 20 runs with random initial conditions.
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We report results for three different implementations in Table 3.1. The first imple-

mentation encodes dynamics as in Section 3.2.1. The second implementation, which

is explained shortly, encodes dynamics slightly differently by taking advantage of the

4-connected grid environments. Finally, we implement the continuous-state exten-

sion proposed in Section 3.5. There are several important results that can be seen

from Table 3.1. Firstly, we show that the proposed framework can handle complex

temporal specifications and large number of robots. Secondly, we see that solution

times scale reasonably well with N and h. Interestingly, we see that solution times

change significantly with the encodings. Although, the encodings proposed in this

thesis presented for arbitrary transitions system, solution times can be significantly

reduced by exploiting the structure of the problem (such as using grid encodings for

4-connected workspaces).

We also note that one needs to do a binary search on h to find a solution horizon

that leads to a feasible problem. For this example, we observed that the infeasibility

is certified in less than a second for h ≤ 10, and h ≥ 25 leads to a feasible solution for

all initial conditions. The minimum feasible h is dependent on the initial condition.

There is usually an increase in solution times at the boundary of feasibility and

infeasibility, yet this may also depend on the specific ILP solver and heuristics it

implements.

In 4-connected grid environments, robots move in a two-dimensional gridded envi-

ronment only horizontally or vertically. This structure can be exploited to decrease

the number of decision variables as follows. Let x and y denote the length and width

of this environment. For each robot and for each time step, encodings in (3.1) define a
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Boolean decision variable vector of size x×y where the only non-zero entry represents

the state of the robot at that time. In grid-encodings, we define two Boolean vectors

with dimensions x and y for each robot and for each time step. Both vectors have

only one non-zero entry, denoting the coordinates of the robot at that time. As a

result, the number of decision variables in the optimization problem is significantly

reduced. For example, given the parameters N = 10 and h = 35, the grid encoding

has 18057 (as opposed to 36042) decision variables and 26928 (as opposed to 13502)

constraints. From Table 3.1, we can see that this encoding almost always leads to

faster solution times compared to the regular encoding.

For the continuous-state implementation, we use the following dynamics for each

robot: xn(t+ 1)

yn(t+ 1)

 =

1 0

0 1


xn(t)

yn(t)

+

1 0

0 1


u1

n(t)

u2
n(t)

 (3.25)

where (xn(t), yn(t)) represent the coordinates of Rn at time t. We also bound the

control input as |uin(t)| ≤ 1 for i = 1, 2. For parameters N = 10 and h = 35, the

resulting optimization problem has 22767 decision variables and 49271 constraints.

Results in Table 3.1 show that continuous-state implementation scales reasonably well

with the number of robots N and the solution horizon h.

The specifications of the emergency example cannot be expressed in cLTL. There-

fore, we use a different example to illustrate the efficiency of cLTL encodings. Assume

that robots have identical dynamics and the transition system T = (V, E , AP, L),

where E is generated from an Erdös-Rényi graph with edge probability 0.25, repre-

sents the dynamics of N robots. The set V of states is partitioned into two sets of
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same size and labeled with a1 ∈ AP and a2 ∈ AP . Each robot is assigned an initial

state that is randomly selected from those labeled with a1. Three goal regions are

created such that each has |V |
10

randomly selected states and are labeled with gi ∈ AP

for i = 1, 2, 3. The specification is given by the cLTL formula µ:

µ = (♦�[a2, N/2]) ∧

(
3∧
i=1

�♦[gi, N/3]

)
. (3.26)

The specification µ requires at least half of the robots to reach states marked by a2

and stay there indefinitely. Also, each goal region must be populated by at least N/3

robots, infinitely often over time. The results in Table 3.2 are obtained by varying

either the number of robots N = 10 or the time horizon h = 20 while keeping all the

other parameters intact. Solution times in the first and second column are obtained

by alternative cLTL encodings proposed in Section 3.3 and regular cLTL+ encodings,

respectively. Regular cLTL+ encodings could not find solutions for N = 500 within

the timeout threshold of 60 minutes. On the other hand, cLTL encodings scale much

better with the number of robots and easily handle hundreds of robots in a matter of

seconds. In fact, solution times are almost unaffected by the number of robots.

3.8. Summary

In this chapter, we presented an optimization-based method to provide multirobot

paths to satisfy the specifications given in cLTL+. We assumed that robot dynam-

ics are captured with deterministic transition systems and that robots move syn-
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Table 3.1: Average solution times for the emergency response example with
varying parameters. For each setting, 95% confidence intervals are
obtained over 20 trials. Times are given in seconds and maximum
solution times are written in parantheses.

cLTL+ cLTL+ cLTL+
(regular) (grid) (continuous)

N

4
6.6± 3.0 7.9± 5.7 46.1± 13.2

(15.3) (18.3) (71.9)

6
15.5± 12.3 18.9± 11.3 86.2± 64.0

(68.0) (37.1) (313.9)

8
27.8± 8.9 27.3± 10.2 99.7± 48.8

(48.5) (39.4) (225.1)

10
273.6± 229.2 75.8± 25.9 128.4± 88.6

(1056.8) (121.1) (420.8)

h

35
273.6± 229.2 75.78± 25.9 128.4± 88.6

(1056.8) (121.1) (420.8)

40
371.9± 277.5 82.91± 25.7 205.2± 112.6

(1513.3) (118.1) (545.8)

45
781.5± 885.3 128.62± 45.8 189.1± 68.5

(2855.9) (216.8) (318.6)

50
593.4± 829.9 145.57± 41.1 271.8± 134.1

(3713.2) (236.5) (743.6)

55
836.3± 1018.8 163.38± 55.3 275.2± 133.8

(3721.4) (272.8 ) (735.1)

60
1188.2± 1758.1 202.42± 92.5 468.4± 358.0

(5917.7) (410.5) (2037.6)

Table 3.2: Comparison of average solutions times (in seconds) of cLTL and
cLTL+ encodings.

cLTL cLTL+

N

10 10.86 2.64

20 10.12 5.87

50 8.99 56.13

500 12.72 TO

h
20 10.86 2.64

40 26.84 5.32

60 60.93 7.87
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chronously. We showed how to encode dynamic constraints, temporal counting con-

straints and collision constraints as mixed-integer linear constraints. This encoding

allows us to generate a collection of trajectories by solving a feasibility problem such

that the specifications are satisfied. We proved that such an approach is sound and

complete.

We also proposed an alternative method for the particular case when the specifica-

tions are given in the cLTL fragment, and all robots have identical dynamics. Due to

the structure of the problem—permutation invariance property of cLTL constraints—

the alternative method’s solution times do not depend on the number of robots. We

further discussed how to generate solutions that are robust to failing robots and

presented an extension to the cLTL+ syntax to allow more expressiveness.
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Chapter 4.

Path Planning Robust to

Synchronization Errors

In Chapter 3, we solved Problem 3.1 with the assumption that robots move syn-

chronously. However, it is difficult to perfectly synchronize the motion of robots in

real-life applications. Ideally, generated solutions should continue satisfying the spec-

ifications in the presence of “small disturbances”, such as bounded synchronization

errors. To reason about such time-robustness, robust satisfaction of cLTL+ formulas

are introduced in Section 2.2.

In this section, we present two different methods to generate solutions that satisfy

cLTL+ specifications robustly. Firstly, we show how to generate solutions that are

robust to bounded synchronization errors, where the upper bound can be arbitrary

but assumed to be known. We then use encodings similar to those of Chapter 3, but

ensure that the solutions are robust via slight modifications. This solution method
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is shown to be partially complete but its computational complexity depends on the

synchronization error bound. In the second part of this chapter, we propose a hierar-

chical method whose computational complexity do not depend on the synchronization

error bound. However, as a trade-off, this approach is shown to be partially complete.

Synchronous execution assumes that multiple robots can transition from one dis-

crete state to another at the same time. However, this is not always possible in real-

ity where robots may move slower or faster than intended, leading to asynchronous

switching times as illustrated in Figure 2.1. To exemplify, consider a task µ = ♦[φ,m]

that requires multiple robots to simultaneously satisfy a certain proposition φ at some

time in the future. Let Π be a collection of trajectories andK be a synchronous collec-

tive execution. Assume that tcp [φ,m] holds for a single time step t and fails to hold

for any other time instance, i.e., (Π, K), t |= [φ,m] for some t and (Π, K), t′ 6|= [φ,m]

for all t′ 6= t. While such a Π satisfies µ for the synchronous execution it is not always

a desirable collection. If K becomes asynchronous due to one of the robots moving at

a different speed than intended, correctness guarantees would no longer be valid and

µ would not be satisfied. This fact motivates searching for solutions that are robust

to such asynchrony.

For most non-trivial specifications, finding a collection of trajectories that is robust

to unbounded asynchrony is challenging if not impossible. However, if an upper

bound on the asynchrony is assumed, one can generate robust solutions such that

satisfaction of the task is guaranteed even under the worst-case scenario.

Before presenting modified encodings that incorporate robustness to asynchrony,

we remind the reader that the robots are allowed to stutter as indicated by the
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definition of the local counter in (2.4). Therefore, any inner logic formula containing

‘©’ can easily be violated by a single robot. Hence, we restrict our attention to the

case where inner logic formulas are given in LTL without the “next (©)” operator

(LTL\©). We further assume that a cLTL+ formula is given in positive normal form

(PNF) according to the following syntax:

µ ::= True | tcp | µ1 ∧ µ2 | µ1 ∨ µ2 | ©µ | µ1 U µ2 | µ1 R µ2. (4.1)

Remark 4.1. The negation operator can be omitted without loss of generality for

two reasons. First, any LTL formula can be transformed into positive normal form

(PNF) [5], where the negation operator appears only before atomic propositions. Since

the syntax of cLTL+ is identical to LTL, hence any cLTL+ formula can also be

written in PNF where negation only appears before tcp’s. Second, given an arbitrary

temporal counting proposition µ = [φ,m], the statement ¬µ can be replaced by µ′ =

[¬φ,N + 1−m]. Clearly, if there are at least N + 1−m robots satisfying ¬φ, then φ

is satisfied by less than m robots; hence, µ ≡ µ′. Thus, the omission of the negation

operator is without loss of generality.

Finally, we formally define the robust version of Problem 3.1 as follows:

Problem 4.1. Given N robots with dynamics {Tn = (Vn, En, AP, Ln)}, initial condi-

tions {πn(0)}, a cLTL+ formula µ given in PNF over LTL\©, and an upper bound

on the asynchrony τ , synthesize a collection Π = {π1, . . . , πN} of trajectories πn that

τ -robustly satisfies µ, i.e., Π |=τ µ.
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4.1. Robust Encodings

We propose slight modifications to the encodings presented in Section 3.1 to generate

a collection of trajectories that are τ -robust. Firstly, we define τ new Boolean vectors

wn(h+ 1), wn(h+ 2) . . . wn(h+ τ) to represent the state of robot Rn “after the loop”

such that wn(h + k) = wn(l + k) for all k = 0, 1, . . . , τ where l < h is the first index

of the suffix loop. Secondly, given a temporal counting proposition µ = [φ,m], we

introduce a new decision variable rφn(t) for each zφn(t):

rφn(t) =
τ∧
k=0

zφn(t+ k), for 0 ≤ t < h. (4.2)

These new variables rφn(t) can be seen as the “robust" versions of zφn(t). In order

for rφn(t) = 1 to hold, robot Rn needs to satisfy the inner logic formula φ not only

at time step t, but also for the next τ steps, i.e., zφn(k′) = 1 for all t ≤ k′ ≤ t + τ .

Consequently, rφn(t) = 1 implies that Rn satisfies φ at all time steps for which the

anchor time is t.

To further clarify, let K ∈ KN(τ) be an arbitrary τ -bounded execution and T be

an arbitrary time step such that bK(T ) = t. Firstly, the state of Rn at this time step

is given by its local counter kn(T ). Therefore, Rn satisfies φ at time T if and only if

zφn(kn(T )) = 1. Secondly, t ≤ kn(T ) ≤ t+ τ must hold for all n due to τ -boundedness

of K. Then, rφn(t) = 1 implies zφn(kn(T )) = 1. That is, Rn satisfies φ at time T if

rφn(kn(T )) = 1. Note that, this is true for all T for which the anchor time is t, i.e., for

all T ∈ b−1
K (t). Therefore, rφn(t) = 1 ensures that Rn satisfies φ at all time steps for
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which the anchor time is t.

We now define the modified outer logic constraints. As before, these constraints are

constructed recursively. Let µ = [φ,m] be a tcp with m > 1. Then (3.9) is modified

as

m >
N∑
n=1

rφn(t)−Myµ(t) ≥ m−M. (4.3)

In Equation (4.3), the term yµ(t) = 1 if and only if
∑N

n=1 r
φ
n(t) ≥ m. Thus,

yµ(t) = 1 implies that there are at least m robots that satisfy φ at any time step

T for which the anchor time is t. The last statement is true for every τ -bounded

execution and for every time step. Thus, yµ(t) = 1 implies that µ is τ -robustly

satisfied at anchor time t.

For the special case where µ = [φ, 1], we use

1 >
N∑
n=1

rφn(t)−Mỹµ(t) ≥ 1−M, (4.4a)

N >
N∑
n=1

zφn(t)−Mȳµ(t) ≥ N −M, (4.4b)

yµ(t) = ỹµ(t) ∨ ȳµ(t). (4.4c)

The inequalities in (4.4a) are identical to (4.3) for m = 1. For ỹµ(t) = 1 to hold, at

least 1 robot needs to satisfy φ for at least τ + 1 consecutive time steps. While this is

sufficient for τ -robust satisfaction of µ, as shown in Theorem 4.1, it is not necessary.

The collection can robustly satisfy µ for m = 1, even if rφn(t) = 1 fails to hold for any

robot. Intuitively, m = 1 is a special case due to the definition of anchor time. For a

τ -bounded asynchronous execution at anchor time t, all local counters are restricted

65



to an interval but none of them are precisely known, a priori. However, at least one

of the local counters must be equal to t by definition of the anchor time. Therefore,

if every robot satisfies φ at the tth step of their trajectory, there would be at least

one robot satisfying φ at all time steps for which the anchor time is t. That is, µ is

τ -robustly satisfied if the inequalities in Equation (4.4b) are satisfied for ȳµ(t) = 1.

Equation (4.4c) states that either one of these conditions is enough to robustly satisfy

µ.

In the synchronous setting, satisfying a temporal counting proposition µ only for

an instant would be enough. However, this is not desirable since robots might not be

perfectly synchronized. Equations (4.3) and (4.4) ensure that all τ -bounded execu-

tions satisfy µ at all time instances with anchor time t, by replacing each zφn(t) with

its robust counterpart rφn(t). As a result, even in the worst case of asynchrony, there

is an instant where µ is satisfied.

Encodings of some of the outer level operators are also modified slightly. Using en-

codings from Section 3.1 might lead to conservatism due to robust encodings of inner

logic formulas. While such conservatism is expected due to the unknown nature of

asynchronous executions, we can mitigate the conservatism to some extent by modi-

fying the outer logic encodings. For conjunction and next operators, no modification

is needed: if µ = µ1 ∧ µ2 and η = ©µ where each µi is a cLTL+ formula in PNF

form, then yµ(t) = yµ1(t) ∧ yµ2(t) and yη(t) = yµ(t+ 1).

Disjunction is encoded in two different ways: For general formulas µ =
∨
i µi, we
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use the standard disjunction encodings:

yµ(t) =
∨
i

yµi(t). (4.5)

For the special case where all arguments are temporal counting propositions, i.e,

µ =
∨
i µi such that µi = [φi,mi], the encoding

yµ(t) =
∨
i

yµi(t) ∨

(
N∑
n=1

r(
∨

i φi)
n (t) >

∑
i

(mi − 1)

)
(4.6)

is used. The motivation behind the additional term in (4.6) is that a collection {πn}

might not τ -robustly satisfy neither µ1 nor µ2 but can still τ -robustly satisfy µ1 ∨ µ2

as demonstrated by the following example:

Example 4.1. Let µ = µ1 ∨ µ2 = [φ1, 2] ∨ [φ2, 2] be a cLTL+ formula and let a

collection Π = {π1, π2, π3} be given with the following traces:

σ(π1) = {φ1} {φ1} {φ1} . . .

σ(π2) = {φ1} {φ2} {φ2} . . .

σ(π3) = {φ2} {φ2} {φ2} . . .

For τ = 1, any arbitrary τ -bounded asynchronous execution satisfies either µ1 or µ2

for all time steps for which the anchor time is t = 0. Therefore, Π |=τ µ by Definition

2.5. On the other hand, the collection Π does not robustly satisfy neither µ1 nor µ2

at anchor time t = 0.
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Equation (4.6) limits the number of robots who neither satisfy φ1 nor φ2 at anchor

time t. By doing so, it ensures that either µ1 or µ2 is satisfied by the collection.

Furthermore, (4.6) reduces to standard encodings for τ = 0 as expected. If the

disjunction µ contains both tcps and other formulas, then one can re-write µ as

µtcp ∨ µor where µtcp =
∨
i[φi,mi] to leverage the less conservative encodings in (4.6).

Due to changes in the outer disjunction encodings, the outer “until” operator is

modified as well. Let η = µ1 U µ2 where µi is a cLTL+ formula for i = 1, 2. Then

yη(t) = yµ1∨µ2(t) ∧ (yµ2(t) ∨ yη(t+ 1)) , for all t ≤ h− 2,

yη(h− 1) = yµ1∨µ2(h− 1) ∧

(
yµ2(h− 1) ∨

(
h−1∨
t=0

(
zloop(t) ∧ ỹη(t)

)))
,

ỹη(t) = yµ1∨µ2(t) ∧ (yµ2(t) ∨ ỹη(t+ 1)) , for all t ≤ h− 2,

ỹη(h− 1) = yµ2(h− 1).

(4.7)

The encodings in (4.7) are obtained by first using the distributive property of the

Boolean disjunction operator and then rewriting the expression using the new robust

disjunction encodings. As a sanity check, assume yµ2(t) = 1, i.e. that µ2 is τ -robustly

satisfied at anchor time t. Then, yµ1∨µ2(t) = 1 must hold due to (4.6) and (4.5), and

yη(t) = 1 must hold due to first line of (4.7). This is expected as when µ2 is satisfied,

η is satisfied by definition of cLTL+ semantics. If µ2 is not τ -robustly satisfied at

anchor time t, (4.7) enforces η and µ1 ∨ µ2 (instead of only µ1 as in (3.8)) to be τ -

robustly satisfied at anchor times t+1 and t, respectively. During execution, at anchor

time t, if µ2 is satisfied, η is satisfied due to the semantics of cLTL+. Otherwise, if

µ1 is satisfied, we require η to hold at the next time step, similar to the standard
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encodings of “until". As with the robust disjunction encodings, (4.7) reduces to the

standard encodings for τ = 0.

Furthermore, we provide encodings for the “release” operator that are identical to

the standard encodings used in the literature: if η = µ1 R µ2, then

yη(t) = yµ2(t) ∧ (yµ1(t) ∨ yη(t+ 1)) , for all t ≤ h− 2,

yη(h− 1) = yµ2(h− 1) ∧

(
yµ1(h− 1) ∨

(
h−1∨
t=0

(
zloop(t) ∧ ỹη(t)

)))
,

ỹη(t) = yµ2(t) ∧ (yµ1(t) ∨ ỹη(t+ 1)) , for all t ≤ h− 2,

ỹη(h− 1) = yµ2(h− 1).

(4.8)

The release operator requires that µ2 is satisfied up to and including the first time step

where µ1 is satisfied for the first time. The key difference from the until operator is

that η may hold even if µ1 is never satisfied, provided that µ2 is satisfied indefinitely.

Given an instance of Problem 4.1 and a horizon length h, let ILPτ (µ) be the

set of ILP constraints and (z, r,y)cLTL+ the decision variables created by using the

robust encodings (4.3)-(4.8). We obtain the robust solution by solving the following

optimization problem:

Find {wn}, zloop, (z, r,y)cLTL+

s.t. (3.1), (3.2), ILPτ (µ) and yµ(0) = 1.

(4.9)

The following theorems show that the solution method proposed for the asyn-

chronous case is sound, and also complete under certain conditions. The proofs are

provided in the Appendix A.

69



Theorem 4.1. If the optimization problem in (4.9) is feasible for a cLTL+ formula

µ given in PNF over LTL\©, then a collection Π = {π1, . . . , πN} of trajectories can be

extracted such that Π |=τ µ. That is, the modified encodings in (4.2)-(4.8) are sound.

As shown in Example 4.1, the disjunction operator introduces some conservatism.

Furthermore, the disjunction operation is used in the encodings of “until” and “re-

lease”. Therefore, completeness results from Section IV are no longer valid in the

asynchronous setting. The next result clarifies the conditions when the robust encod-

ings are complete:

Theorem 4.2. Given a cLTL+ formula µ given in PNF over LTL\©, if all of the

following hold, then there exists a finite h such that (4.9) has a solution (i.e., the

modified encodings are complete).

• there exists a collection Π = {π1, . . . , πN} of trajectories in prefix-suffix form

that τ -robustly satisfies µ, i.e., Π |=τ µ,

• AP is a set of mutually exclusive atomic propositions, i.e., for all φ1, φ2 ∈ AP ;

φ1 ∧ φ2 = False,

• the specification µ over AP is on the form

µ = True | tcp | µ1 ∧ µ2 | tcp1 ∨ tcp2 | tcp1 U tcp2 | ©µ (4.10)

where tcp, tcp1, tcp2 ∈ AP × N and µ, µ1, µ2 are obtained according to (4.10).

The commonly used “♦(eventually)” operator can also be defined without losing

completeness: ♦[φ,m]
.
= [¬φ,N −m + 1] U [φ,m]. In most real world applications,
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several tasks are required to be completed in conjunction, which can be expressed as

in (4.10). Furthermore, many interesting specifications including safety (�), liveness

(�♦), etc., can be captured in the form of (4.10) for a given time horizon h. For

example, safety specifications can be encoded as �[φ,m] = [φ,m] ∧©[φ,m] ∧ · · · ∧

©h−1[φ,m]1.

Remark 4.2. The alternative solution method proposed in Section 2.3 uses more

efficient encodings when the specifications are given in cLTL. However, these en-

codings use aggregate dynamics, therefore it is not possible to keep track of identities

of the robots during synthesis. Hence, robust solutions cannot be generated with this

alternative method.

Robustifying the trajectories increases the complexity as a function of τ . In par-

ticular, an instance of (4.9) has O(τN(|Vn|+ h|µ|)) additional decision variables and

O(τN2h|Vn|) additional constraints compared to (3.10). The effect of these additional

variables and constraints on solution time is investigated in Section 4.1.1.

4.1.1. Emergency Response Example Revisited

This section demonstrates that the encodings in Section 4.1 generate solutions that are

robust to bounded synchronization errors. All experiments are run on a computer

with 3.6 GHz Intel Core i7 and 128 GB RAM and YALMIP [yalmip] is used to

setup the optimization problems with Gurobi [33] as the underlying ILP solver. Our

implementation can be accessed from https://github.com/sahiny/cLTL-synth.
1The notation ©h−1 corresponds to (h− 1) concatenated © operators
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Figure 4.1: Important frames from robust solution of the emergency response
example. Arrows indicate direction of movement. The loop starts
at frame t = 1, which is identical to frame t = 36. The number of
robots in region A (C) is 5 (0) between t = 1 and t = 3 and 0 (5)
between t = 20 and t = 22, which implies that µ4 to µ7 are robustly
satisfied at anchor time t = 1. No robots use the narrow passage
until it has been examined by both sides between t = 11 and t = 13,
and the number of robots on the bridge never exceeds 2; hence µ2

and µ8 are robustly satisfied. Every robot visits the charging station
and avoids collisions.

We revisit the emergency response example from Section 3.7. To prevent violation

of specifications due to asynchronous motion of robots, we set τ = 2 and solve the

resulting instance of Problem 4.1. As it is shown in Fig. 4.1, this time the number

of robots in A (resp. in C) is greater than or equal to 5, starting from t = 1 until

t = 3 (resp. from t = 20 until t = 22). Furthermore, when the number of robots in

region A is greater than or equal to 5, there are no robots in region C, and vice versa.

Therefore, even in the worst case of bounded asynchrony, there will be at least one

time instance where A is populated with 5 robots and another time instance where

A is empty. The same arguments hold for region C, as well. Additionally, the robots

are more careful when crossing and the bridge: the bridge is first inspected at t = 11

and no robots enter the bridge until t = 13. Thus, the specification µ is satisfied even

in the worst case of asynchrony.

72



We have implemented the trajectories extracted from the robust solution on real

ground robots in the Robotarium [77]. In this experiment, robots track their respec-

tive trajectories using feedback from a top-mounted camera, and do not communicate

with each other during runtime. The asynchrony bound τ is taken to be 2. To ensure

this bound is satisfied, we implemented a monitor that enforces “leading robots" to

wait when necessary. While we used the top-mounted camera in a centralized manner

for the monitoring purpose, an asynchrony bound can be learned by analyzing the

system behavior or can be enforced using only local controllers. For example, assume

Tmax is an upper-bound on the time it takes to complete one transition. Then, at

time T , each robot is guaranteed to complete at least bT/Tmaxc transitions, where

bT/Tmaxc is the greatest integer that is less than or equal to T/Tmax. To limit the

asynchrony to τ discrete steps, one can implement local controllers such that a robot

is forced to wait if it were to complete k ≥ (bT/Tmaxc + τ) steps up to time T . The

video of the experiment can be viewed from https://youtu.be/u8G-ewEEO6E. As

can be seen from the video, robots satisfy their tasks and avoid collisions despite the

asynchrony.

We know show the effect of robustness parameter on solution times. To do so,

we keep every other parameter intact and solve the emergency scenario example for

τ = {0, 1, 2}. The results from Table 4.1 show that solution times greatly increase

as the parameter τ increases. In particular for the continuous-state implementation,

solution times do not scale well with the robustness parameter τ . This might be

explained by the high number of constraints, which is due to the additional constraints

introduced by each polytopic obstacle in the continuous-state setting, compared to
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Table 4.1: Average solution times for the emergency response example with vary-
ing parameters. Also shown is 95% confidence interval values obtained
over 20 trials. Times are given in seconds and maximum solution
times are written in parantheses.

τ cLTL+ cLTL+ cLTL+
(regular) (grid) (continuous)

0
273.6± 229.2 75.8± 25.9 128.4± 88.6

(1056.8) (121.1) (420.8)

1
635.3± 548.8 120.3± 44.4 1859.1± 2319.1∗

(1733.4) (195.6) (6000)

2
4638.2± 874.8 98.5± 52.5 4420.5± 2343.7∗∗

(5967.7) (225.4) (6000)

∗ 5 runs exceeded the time threshold of 6000 seconds.
∗∗ 14 runs exceeded the time threshold of 6000 seconds.

(Solution times for timed-out runs are taken to be 6000 seconds.)

the regular discrete-state implementation. We address this scalability problems in

Section 4.2.

4.2. Hierarchical Approach

The complexity of the method proposed in Section 4.1 is shown to depend on the

synchronization error bound τ . As a result, this method is computationally expensive.

The problem becomes intractable if the size of a transition system Tn is large. In this

section, we propose a hierarchical approach that scales better with the size of the

transition systems. For the simplicity, assume all Tn are identical, and use T to

denote this transition system. All the results in this section generalize to the case

where Tn are not identical. We show that, under mild assumptions, the complexity

of this hierarchical method does not depend on τ . However, as a trade-off, we need
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to limit the specifications to temporal logic plus without ‘next’ operator (cLTL+\©).

Our method is illustrated in Algorithm 4.1. In the following, we give an overview of

the algorithm and then explain its parts in detail.

Let T = (V, E , AP, L) be a transition system, R = {R1, . . . ,RN} be a set of

robots, S0 : R → V be the mapping that maps robots to their initial conditions,

µ be a (cLTL+\©) formula and τ = 0. From now on, we refer to an instance of

Problem 4.1 by a tuple (T,R, S0, µ, τ). Given (T,R, S0, µ, 0), we first compute a new

transition system T abs, called abstraction of T . How to compute T abs is described

in Section4.2.1. The motivation behind computing an abstraction is that it has a

smaller size compared to the original transition system; hence, it would decrease the

computational resources required to solve Problem 4.1. After adjusting the initial

conditions of T abs as Sabs0 and we solve a slightly modified version of Problem 4.1

instance (T abs,R, Sabs0 , µ, 1), relaxing the collision avoidance constraint. A solution

to this instance is called an abstract plan, which is a collection of T abs-paths. These

abstract paths satisfy the logic constraints and can be seen as guidelines. Rather than

explicitly assigning each robot a path, they indicate what propositions it needs to

satisfy and in which order. We then replace each abstract path with a stutter trace

equivalent T -path to generate a solution to (T,R, S0, µ, 0).

Construction of the abstraction ensures the existence of stutter trace equivalent

T -paths. However, a collection of such paths is not guaranteed to be collision free.

To prevent collisions, we solve a sequence of path planning problems in the lower

level. If all the path planning problems are feasible, a solution to (T,R, S0, µ, 0) can

be extracted. On the other hand, if the abstract plan is not feasible, we generate a
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counter example to be used in the higher level and obtain a different abstract plan.

These steps are repeated until a solution is found or the algorithm terminates with

no solution. In the following, we explain the steps of the main algorithm in greater

detail.

4.2.1. Abstraction

Given a transition system T = (V, E , AP, L), we define an equivalence relation ∼ on

V as follows:

u ∼ v if and only if u = v, or L(u) = L(v) and there exist T -paths πuv and πvu

from u to v and from v to u such that σπuv(t) = σπvu(t) = L(u) for all t.

(4.11)

Relation ∼ partitions V into equivalence classes V1, ..., VC , for some C ∈ N, such

that all Vi are pairwise disjoint and all states in each Vi are equivalent, with V =

∪Ci=1Vi. In words, nodes in a class satisfy the same property and are strongly con-

nected. We create a state vabsi for each equivalence class Vi and denote the set of all

such states by V abs. To map the states of V to states of V abs, we defineM : V → V abs:

M(v)
.
= vabsi if v ∈ Vi. (4.12)

By definition, inverse of M maps the states of V abs to equivalence classes, i.e.,

M−1(vabsi ) = Vi. Next we define abstraction of T , denoted by Tabs
.
= (V abs, Eabs, AP, Labs),
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such that:

Eabs .={(vabsi , vabsj ) | ∃(u, v) ∈ E , u ∈M−1(vabsi ) and v ∈M−1(vabsj )},

Labs(vabsi )
.
=L(v) for any v ∈M−1(vabsi ).

(4.13)

The mapping Labs is well-defined because L(v) is guaranteed to be the same no matter

which v ∈M−1(vabsi ) is chosen, by definition of equivalence (4.11). Furthermore, the

existence of T abs is guaranteed because equivalence classes form a partition of V and

in the worst case, each state v ∈ V would belong to a different equivalence class. In

that case, T abs would be identical to T . Computation of abstractions can be done

efficiently (see Algorithm 37 in [5]). Initial conditions can be adjusted simply defining

Sabs0 (Rn)
.
=M(S0(Rn)) for each Rn ∈ R.

Equivalence relation defined in (4.13) is the coarsest stutter bisimulation for T (see

Lemma 7.96 in [5]) and abstraction T abs is stutter bisimulation equivalent to T (see

Theorem 7.102 in [5]) as stated by the following theorem:

Theorem 4.3. Let T be a transition system and T abs be its abstraction. For any

T -path π, there exists a stutter trace equivalent T abs-path πabs. Conversely, for any

T abs-path πabs, there exists a stutter trace equivalent T -path π.

Proof of Theorem 4.3 can be found in Appendix A.

4.2.2. Higher Level Solution

In the higher-level, we solve a slightly different version of Problem 4.1 instance

(T abs,R, Sabs0 , µ, 1) to generate a collection of paths {πabs1 , . . . , πabsN }. First, we do
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not enforce collision avoidance since each state in V abs corresponds to a set of states

in the original transition system and could hold more than a single robot. Second,

we impose additional constraints coming from counter-examples. These constraints

are explained in more detail in Section4.2.4. We then form an integer linear program

(ILP) as it is explained in [89]. Solving the subsequent feasibility problem gener-

ates a collection Πabs = {πabsn , . . . , πabsN } of T abs-paths that 1-robustly satisfies µ, i.e.,

Πabs |=1 µ. We call such a collection an abstract plan. We remind the reader that

each abstract path πabsn has a prefix-suffix form as cLTL+\©formulas are interpreted

over infinite horizons, i.e., there exists a non-negative integer labs < habs such that for

all n

πabsn = πabsn (0) . . . πabsn (labs)(πabsn (labs + 1) . . . πabsn (habs))ω. (4.14)

In other words, each robot is assigned a lasso shaped path that can be traversed

indefinitely. As shown in [5], if (T abs,R, Sabs0 , µ, 1) has a solution, then there exists a

large enough habs such that there exists a solution in the form of (4.14).

4.2.3. Lower Level Solution

Theorem 4.3 guarantees that, for each T abs-path πabsn , there exists a stutter trace

equivalent T -path πn. Each state of the abstraction T abs corresponds to a set of

states in the original transition system T . If an robot moves one from one state to

another in the abstraction, it needs to move from one region to another in the original

transition system. By construction of the T abs, the existence of a path between such

two regions is guaranteed. However, a collection of these paths might be in collision.
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To generate a collection of collision-free and stutter trace equivalent T -paths, we solve

a sequence of generalized multirobot path planning (GMRPP) problems. Following is

the formal definition of GMRPP that we use:

Problem 1. Let a transition system T = (V, E , AP, L), a set of robotsR = {R1, . . . ,RN},

a time horizon h ∈ N and injective mappings xI , xG, XI , XG : R → 2V be given.

Find a collection of collision-free T -paths {π1, . . . πN} such that for all Rn ∈ R,

πn(0) ∈ xI(Rn), πn(h) ∈ xG(Rn) and for each robot there exists a positive integer

0 < ln < h where πn(t) ∈ XI(Rn) for all 0 ≤ t ≤ ln and πn(t) ∈ XG(Rn) for all

ln < t ≤ h.

We characterize an instance of Problem 1 by a tuple (T,R, h, xI , xG, XI , XG). Each

robot Rn ∈ R needs to start from state within xI(Rn) ⊂ XI(Rn) ⊂ V and reach

a state in xG(Rn) ⊂ XG(Rn) ⊂ V . While doing so, robot Rn should stay in set of

states XI(Rn) ∪XG(Rn) for all times and it should not return back to XI(Rn) once

in XG(Rn). Furthermore, collisions with other robots must be avoided. The intuition

here is that set of states XI(Rn) and XG(Rn) correspond to two consecutive states

on an abstract path. We use xI(Rn) (and xG(Rn)) in case initial (and final) state

needs to be explicitly specified. As it moves from one abstract state to the other, to

prevent jittering, an robot leaving XI should not return back.

GMRPP is a generalization of the classical multi robot path planning (MRPP)

problem where one assigns a single initial state and a single goal state to each robot

and assumes that the set of ‘safe’ states are same for all robots. Despite that, many

efficient MRPP algorithms, such as [58, 100, 118], can easily be modified to accom-
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modate for these differences. We use an ILP based method similar to [118] to solve

GMRPP problems. For all Rn ∈ R and for all 0 ≤ t ≤ habs, we set

x0
I(Rn) = S0(Rn), X t

I(Rn) =M−1(πabsn (t)),

xtG(Rn) = X t
G(Rn) =M−1(πabsn (t+ 1))

(4.15)

Starting from t = 0, let {βt1, . . . , βtN} be a solution to (T,R, h, xtI , xtG, X t
I , X

t
G). For

all t > 0 and Rn ∈ R, we set

xtI(Rn) = βt−1
n (h) (4.16)

and solve the next GMRPP instance. For the special case t = habs, we set xtG(Rn) =

βl
abs

n (0) to ‘close the loop’. If all GMRPP instances can be solved, we define for all

integers 0 ≤ t < habs and 0 ≤ α < h

πn(th+ α)
.
= βtn(α), πn(habsh)

.
= πn(lh). (4.17)

Intuitively, πn is concatenation of βtn. Each πn, similar to πabsn , is in prefix-suffix

form, i.e., πn = πn(0), . . . , πn(lh)
(
πn(lh+ 1), . . . , πn(habsh)

)ω. Note that πn(t) is

well-defined for all t and is a valid T -path.

If (R, T, h, xtI , xtG, X t
I , X

t
G) has no solutions for some t, we roll back and update

xt−1
G (Rn)← xt−1

G (Rn) \ {βt−1
n (h)}. (4.18)
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Algorithm 4.1 Hierarchical algorithm

1: input : (T,R, S0, µ, 0), habs, h
2: Counter_Examples← {}
3: T abs ← abstract(T )
4: top:
5: if is_high_level_feasible then
6: {πabs1 , . . . , πabsN } = high_level(T abs,R, Sabs0 , µ, 1, Counter_Examples)
7: else
8: return Infeasible
9: t← 0

10: xtI(Rn)← S0(Rn)
11: while t < habs do
12: X t

I(Rn)← πabsn (t)
13: xtG(Rn)← X t

G(Rn)← πabsn (t+ 1)
14: rollback :
15: if is_GMRPP_feasible then
16: {βtn} = GMRPP (R, G, h, xtI , xtG, X t

I , X
t
G)

17: xt+1
I (Rn)← βtn(h)

18: t← t+ 1
19: else
20: if t > 0 then
21: xtG(Rn)← xt−1

G (Rn) \ {xtI(Rn)}
22: t← t− 1
23: goto rollback
24: else
25: Counter_Examples← Counter_Examples ∪ {πabs1 , . . . , πabsN }
26: goto top
27: πn = concatenate(β0

n, . . . , β
habs

n )
28: return {π1, . . . , πN}

We call an abstract plan infeasible if instance (T,R, h, x0
I , x

0
G, X

0
I , X

0
G) has no so-

lutions. In that case, we generate a counter example that prevents the same abstract

plan to be generated. Details of this process are explained in Section4.2.4.

4.2.4. Counter Examples

Given a collection of T abs-paths {π̃abs1 , . . . , π̃absN }, assume the lower level algorithm

failed. In that case, the following constraints are generated and added to the higher
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level:

¬

(∧
n

(∧
t

πabsn (t) = π̃absn (t)

))
(4.19)

Constraint (4.19) imposes that the same abstract plan will not be encountered again.

However, this method removes only one abstract plan at a time, which might be

inefficient. Algorithm would converge faster if a number of infeasible abstract plans

can be eliminated all at once, similar to Irreducibly Inconsistent Set idea in [95].

When lower level fails for an abstract plan {π̃abs1 , . . . , π̃absN }, we generate instances

(R, T, h, xtI , xtG, X t
I , X

t
G) for all t such that xtI(Rn) = X t

I(Rn) = π̃absn (t) and xtG(Rn) =

X t
G(Rn) = π̃absn (t). If (R, T, h, xtI , xtG, xtS) is infeasible, generate the following con-

straint to prevent such an abstract step from being generated in the future:

∧
i

((∧
n

πabsn (i) = π̃absn (t)

)
=⇒ ¬

(∧
n

πabsn (i+ 1) = π̃absn (t+ 1)

))
. (4.20)

Additionally, if more than |Vi| robots are assigned to abstract state vabsi at any time,

it is obvious that collisions cannot be avoided. We impose appropriate constraints to

prevent such trivial counter examples.

4.2.5. Correctness of the Hierachical Method

Following proposition shows that the hierarchical method proposed in Section 4.2 is

sound for synchronous executions.

Theorem 4.4. Given a Problem 4.1 instance (T,R, S0, µ, 0) where µ is a cLTL+\©

formula, assume the collection Π = {π1, . . . , πN} is generated by Algorithm 4.1. Then

82



Π is a solution to (T,R, S0, µ, 0), that is, Π are collision-free, πn(0) = S0(Rn) for all

Rn ∈ R, and Π |=0 µ.

Proof of Theorem 4.4 can be found in Appendix A.

4.2.6. Handling Asynchrony

This section shows how to deal with asynchrony. First, a small modification to Algo-

rithm 4.1 necessary to solve Problem 4.1 for τ = 1 is presented. Next, we show that,

Problem 4.1 can be solved for arbitrary τ under mild assumptions.

Given (T,R, S0, µ, 0), assume an abstract plan is generated at the higher level. For

all t and all pairs of n,m ∈ [N ], we enforce in each GMRPP

βn(t+ 1) 6= βm(t). (4.21)

With this modification, when the asynchrony between robots is 1-bounded, these

paths can be executed without collisions in an open-loop fashion, no communication or

sensing needed at run-time. Furthermore, as shown in the following proposition, any

1-bounded asynchronous execution of collection {π1, . . . , πN}, generated according to

(4.17), would satisfy the specification µ.

Theorem 4.5. Given a Problem 4.1 instance (T,R, S0, µ, 1), assume the collection

Π = {π1, . . . , πN} is generated by Algorithm 4.1 where 4.21 is enforced in the lower

level solution. Then Π is a solution to (T,R, S0, µ, 1), that is, Π are collision-free,

πn(0) = S0(Rn) for all Rn ∈ R, and Π |=1 µ.
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Proof of Theorem 4.5 can be found in Appendix A.

Remark 4.3 (Termination). Algorithm 4.1 is guaranteed to successfully terminate

as the number of abstract plans for a given habs is finite. If a solution does not exist

for a certain habs, the higher-level problem will eventually become infeasible as more

counter examples are generated and the algorithm will terminate.

Next, we show that, under mild assumptions, these trajectories can be implemented

such that Problem 4.1 can be solved for arbitrary τ .

4.2.7. Generalization to Arbitrary Asynchrony

Assume all robots can communicate with each other and can indefinitely stay in any

state, i.e., (v, v) ∈ E for all v ∈ V . Also assume that paths generated at the low level

satisfy (4.21). Specification µ would be satisfied for all τ by {π1, . . . , πN} when all

robots use the following execution policy. If πn(t) = πm(t′) for some t > t′, robot

Rn does not enter state πn(t) until robot Rm reaches πm(t′ + 1). Otherwise, Rn

moves to the subsequent state on its path. Note that, generated paths might not

be collision-free under τ -bounded asynchrony. Nonetheless, the policy above would

prevent collisions and would not result in deadlock as shown in [58]. We further

require that robots ‘synchronize at abstract steps’, meaning that robot Rn move to

πn(ht+ 1) only after all robots Rm reach πm(ht).

Note that the complexity of this hierarchical method does not depend on τ . The

higher level problem is solved for τ = 1 and this is enough to satisfy the specification

for any τ as long as robots avoid collisions and synchronize at abstract steps.
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4.2.8. Examples

In this section, we demonstrate the efficacy of the hierarchical method by compar-

ing its performance to both the robust encodings in Section4.1 and to [95]. All

experiments are run on a laptop with 2.5 GHz Intel Core i7 and 16 GB RAM.

Gurobi [33] is used as the underlying ILP solver. Our code is accessible at https:

//github.com/sahiny/cLTL-hierarchical.

We borrow the multirobot scenario from [95] and compare the performance of SMC-

based method of [95] with the methods presented in Section 4. Results show that

the non-hierarchical method of Section 4.1 can only solve the problem up to N = 2

robots because it suffers from the size of the transition system and consequently long

solution horizon. On the other hand, the hierarchical method in Section 4.2 performs

better than [95].

Example 1:

Assume N robots share the same workspace that is illustrated in Fig. 4.2. For each

trial, robots are randomly initialized from the region marked with xI , and specifica-

tions are given as:

µ = �♦[r1, N ] ∧�♦[r2, N/2] ∧�♦[r3, N/2]. (4.22)

In words, we require all robots to regularly (infinitely many times) meet at r1. Sim-

ilarly, at least half of the robots should regularly meet both at r2 and r3. In [95],

robot dynamics are modeled as chains of integrators and a satisfiability modulo con-
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vex (SMC) programming based method is proposed. Non-hierarchical method in

Section 4.1 and the hierarchical method Section 4.2 in do not directly handle conti-

nuous dynamics. Hence, we grid the workspace into 30 by 30 squares of same size.

Robots are allowed to move horizontally or vertically to neighboring states or stay

in their current position. Note that this behavior is consistent with the continuous

dynamics. The abstract transition system for this example is illustrated in Figure

4.4, where transitions are shown with solid black arrows. We solve the problem for

increasing N . Computation times averaged over 10 trials are shown in Table 4.2.

SMC-based method in [95] can solve the problem only up to N = 5 robots under 30

minutes as it can be seen from the second column. Hierarchical method proposed in

Section 4.2, on the other hand, can solve the same problem up to N = 12 robots.

Example 2:

We then modify the specifications and add the additional constraint that region

marked with r3 should be empty until both g1 and g2 are populated with at least

one robot at the same time:

µ′ = µ ∧ (¬[r3, 1] U ([g1, 1] ∧ [g2, 1])) (4.23)

Note that [95] cannot handle arbitrary cLTL+\©formulas and expressing the same

specification using regular LTL is not trivial. While any cLTL+\©formula can be

transformed into regular LTL, as shown in Section 2.1.3, the length of the LTL formula

specifying the same task could be exponentially longer, significantly increasing the
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Figure 4.2: A simple workspace. Taken
from [95]

Figure 4.3: A sample workspace with
randomly generated obsta-
cles

Figure 4.4: Coarsest stutter bisimulations of the workspaces. Transition system
obtained for Figure 4.2 is shown with solid arrows, and additional
transitions for Figure 4.3 are shown in dashed arrows

computation times. Computation times for varying N are shown in Table 4.2.

Example 3:

Next, we keep xI , r1, r2, r3, g1 and g2 as they are and randomly select 20% of the states

as obstacles. The abstract transition system for this example is illustrated again in

Figure 4.4, where the difference from Example 1 is the addition of two dashed arrows.

Computation times for varying number of robots, and both specifications µ and µ′ are
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Table 4.2: Run-time comparison of different implementations (seconds)
SMC-based Hierarchical Non-hierarchical

[95] Section4.2 Section4.1
Fig 1 Fig 1 Fig 2 Fig 1

N (µ) (µ) (µ′) (µ) (µ′) (µ)
4 444.35 92.52 121.69 95.16 86.85 timeout
6 timeout 236.74 439.41 199.24 242.35 timeout
8 timeout 507.97 619.02 664.94 729.58 timeout
10 timeout 801.64 1665.95 1139.82 1275.62 timeout
12 timeout 1727.47 timeout 1499.17 timeout timeout

again shown in Table 4.2. A video simulating the synthesized plans with synchronized

robots can be seen at https://www.youtube.com/watch?v=SrPDQMRmcNU. We then

assume same plans are executed asynchronously. At each step robots are delayed

with p = 0.3 probability. Using the policy proposed in Section 4.2.7, robots are

able to satisfy the specifications while avoiding collisions, as it can be seen from

https://www.youtube.com/watch?v=xO8xK9pXUKI.

4.3. Summary

In this chapter, we proposed two different methods to solve Problem 4.1. While the

non-hierarchical method is shown to be partially complete, its complexity depends on

the synchronization error bound, thus, its scalability is limited for large syncronization

error bounds. On the other hand, the hierarchical method’s complexity does not

depend on the synchronization error bound. Moreover, due to the use of abstraction,

the hierarchical method can scale to very large transition systems. However, as a

trade-off, the specifications are limited to cLTL+\© and the robots need to be able

to stay indefinitely at any state for solutions to be correct. Furthermore, there is
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another trade-off between solving logic constraints and path planning while using the

hierarchical method. Using a smaller abstraction, high-level plans can be generated

faster and more complex specifications can be handled. On the other hand, a more

refined abstraction can be used if lower-level path generation is the bottleneck, as it

results in easier multirobot reachability problems.
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Chapter 5.

Multirobot Plan Execution

We discussed the possible effects of synchronization errors in Chapter 4 and proposed

methods to generate robust solutions by assuming that the synchronization errors are

bounded. In real-life scenarios, the robots can move on their individual paths with

different and time-varying speeds and their speed profiles are not known a priori.

Therefore, it might not be possible to know or limit the synchronization error in

practice.

Let us focus our attention to the following simple case. Given a collection of paths,

one for each robot, devise a distributed protocol so that the robots are guaranteed to

reach their targets and avoid all collisions along the way. We call this the multirobot

plan execution problem. In fact, we encountered this problem in Section 4.2.7, and

presented a potential execution policy, which is taken from [58], to prevent collisions

and deadlocks.

Collision and deadlock prevention methods can be divided into two main groups.
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In the first group, robots are allowed to replan their paths at run-time [72, 91, 107].

In this case, simpler path planning algorithms can be used, leaving the burden of

collision avoidance to the run-time controllers. However, this approach might lead to

deadlocks in densely crowded environments. Moreover, when the specifications are

complex, changing paths might even lead to violations of the specifications. Therefore,

replanning paths on run-time is not always feasible.

Alternatively, collisions and deadlocks can be avoided without needing to replan on

run-time [22, 58, 81, 84, 87, 123, 124]. For instance, if the synchronization errors can

be bounded, [22] and Section 4.1 show how to synthesize paths that are collision and

deadlock-free. This is achieved by overestimating the positions of robots and treating

them moving obstacles. However, this is a conservative approach as the burden of

collision and deadlock avoidance is moved to the offline planning part.

In [58], authors provide a control policy, which is shown to be collision and deadlock-

free under mild conditions on the collection of paths. This method is based on finding

a fixed ordering of the robots for all possible conflicts. Such a fixed ordering prevents

collisions and deadlocks, however, it is limiting as the performance of the multirobot

system depends highly on the exact ordering. If one of the robots experiences a

failure at run-time and starts moving slowly, it might become the bottleneck of the

whole system. In fact, we demonstrate the effects of such a scenario on the system

performance and provide numerical results that show the robustness of our method.

When the collection of paths are known a priori, one can also find all possible

collision and deadlock configurations, and prevent the system from reaching those.

For instance, distributed methods in [123] and [124] find deadlock configurations by
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abstracting robot paths into a edge-colored directed graph. However, this abstaction

step might be conservative. Imagine a long passage which is not wide enough to fit

more than one robot, and two robots crossing this passage in the same direction.

The entire passage would be abstracted as a single node, and even though robots can

enter the passage at the same time and follow each other safely, they would not be

allowed to do so. Instead, robots have to wait for the other to clear the entire passage

before entering. Moreover, [124] require that no two nodes in the graph are connected

by two or more different colored edges. This strong restriction limits the method’s

applicability to classical multirobot path execution problems where robots move on a

graph and same two nodes might be connected with multiple edges in each direction.

As connectivity and autonomous capabilities of vehicles improve, cooperative in-

tersection management problems draw significant attention from researchers [1, 14,

26, 125]. These problems are similar to MRPE problem as both require coordinating

multiple vehicles to prevent collisions and deadlocks. Compared to traditional traffic

light-based methods, cooperative intersection management methods offer improved

safety, increased traffic flow and lower emissions. We refer the reader to [17] for a

recent survey on this topic and main solution approaches. Although they seem simi-

lar, the setting of intersection management problems are tailored specifically for the

existing road networks, and thus, cannot be easily generalized to MRPE problems

where robots/vehicles might be moving in non-structured environments.

The key insight of the chapter is to recast the MRPE problem as a resource allo-

cation problem. There are similar methods such as [81], which requires a centralized

controller, and [84], which needs cells to be large enough to allow collision-free travel
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of up to two vehicles, instead of only one. We base our method on the well-known

drinking philosopher algorithm [15], an extension of the well-known dining philoso-

phers problem [24]. We show that any existing DrPP solution can be used to solve the

MRPE problem if drinking sessions are constructed carefully. However, such methods

require strong conditions on a collection of paths to hold, and limit the amount of

concurrency in the system. To relax the conditions and to improve the performance,

we provide a novel approach by taking the special structure of MRPE problems into

account. We show that our method is less conservative than the naive approach, and

provide numerical results to confirm the theoretical findings. Our approach leads to

control policies that can be deployed in a distributed form.

5.1. Multirobot Plan Execution Problem

We first define the multirobot plan execution problem formally: Let a set R =

{R1, . . . ,RN} of robots share a workspace that is partitioned into set V of discrete

cells. Two robots are said to be in collision if they occupy the same cell at the same

time. We assume that a finite path is given for each robot, and πn denotes the path

associated with Rn. We use πnend and curr(rn) to denote the final cell of πn and

the number of successful transitions completed by Rn, respectively. We also define

next(Rn)
.
= curr(rn) + 1. The motion of each robot is governed by a control policy,

which issues one of the two commands at every time step: (1) STOP and (2) GO.

The STOP action forces a robot to stay in its current cell. If the GO action is cho-

sen, the robot starts moving. This robot might or might not reach to the next cell
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within one time step, however, we assume that a robot eventually progresses if GO

action is chosen constantly. This non-determinism models the uncertainities in the

environment, such as battery levels or noisy sensors/actuators, which might lead to

robots moving faster or slower than intended. We now formally define the problem

we are interested in solving:

Problem 5.1. Given a collection Π = {π1, . . . πN} of paths, design a contol policy

for each robot such that all robots eventually reach their final cells while avoiding

collisions.

There are many control policies that can solve Problem 5.1. For the sake of perfor-

mance, policies that allow more concurrent behavior are preferred. In the literature,

two metrics are commonly used to measure the performance: makespan (latest arrival

time) and flowtime (total arrival times). Given a set of robots R = {R1, . . . ,RN}, if

robot Rn takes tn time steps to reach its final state, makespan and flowtime values

are given by max1≤n≤N tn and
∑N

n=1 tn, respectively. These values decrease as the

amount of concurrency increases. However, it might not be possible to minimize both

makespan and flowtime at the same time, and choice of policy might depend on the

application.

We reformulate Problem 5.1 as an instance of drinking philosophers problem. For

the sake of completeness, this problem is explained briefly in Section 5.2.
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5.2. Drinking Philosophers Problem

The drinking philosophers problem is a generalization of the well-known dining philoso-

phers problem proposed by [24]. These problems capture the essence of conflict reso-

lution, where multiple resources must be allocated to multiple processes. Given a set

of processes and a set of resources, it is assumed that each resource can be used by

at most one process at any given time. In our setting, processes and resources corre-

spond to robots and discrete cells that partition the workspace, respectively. Similar

to mutual exclusive use of the resources, any given cell can be occupied by at most

one robot to avoid collisions. In the DrPP setting, processes are called philosophers,

and shared resources are called bottles. A philosopher can be in one of the three

states : (1) tranquil, (2) thirsty, or (3) drinking. A tranquil philosopher may stay in

this state for an arbitrary period of time or become thirsty at any time it wishes. A

thirsty philosopher needs a non-empty subset of bottles to drink from. This subset,

called drinking session, is not necessarily fixed, and it could change over time. After

acquiring all the bottles in its current drinking session, a thirsty philosopher starts

drinking. When it no longer needs any bottles, after using them for a finite time,

the philosopher goes back to tranquil state. The goal of the designer is to find a set

of rules for each philosopher for acquiring and releasing bottles. A desired solution

would have the following properties:

• Liveness: A thirsty philosopher eventually starts drinking. In our setting live-

ness implies that each robot is eventually allowed to move.

• Fairness: There is no fixed priority or partial ordering of philosophers or bottles
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and the same set of rules apply to all philosophers. In multirobot setting,

fairness indicate that all robots are treated equally.

• Concurrency: Any pair of philosophers must be allowed to drink at the same

time, as long as they drink from different bottles. Analogously, no robot waits

unnecessarily if it wants to move to an empty cell.

We base our method on the DrPP solution proposed in [31]. For the sake of

completeness, we provide a brief summary of their solution, but refer the reader to

[31] for the proof of correctness and additional details.

Each philosopher has a unique integer id and keeps track of two non-decreasing

integers: session number s_num and the highest received session number max_rec.

These integers are used to keep a strict priority order between the philosophers.

Conflicts are resolved according to this order, in favor of the philosopher with the

higher priority. To ensure liveness and fairness, this priority order changes according

to the following rules.

Let p and r be two philosophers and b be a bottle shared between p and r. Define

reqb as the request token associated with b. It is said that p has higher priority than

r (denoted p ≺ r) if and only if s_nump < s_numr, or s_nump = s_numr and

idp < idr. That is, smaller session number indicates higher priority, and in the case

of identical session numbers, philosopher with the smaller id has the higher priority.

Assume that p needs b (denoted needp(b)) to start drinking and does not currently

hold b (denoted ¬hold(b)). Then, p sends the message (reqb, s_nump, idp) to r. Upon

receiving such a message, r releases b if (i) r does not need b or (ii) r is not drinking
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and p ≺ r. If r does not immediately release b, then b is released once r no longer needs

it. All philosophers are initialized in tranquil state with s_nump = max_recp = 0

and follow the rules in Algorithm 5.1 to satisfy the aforementioned requirements.

Algorithm 5.1 Drinking Philosopher Algorithm by [31]
1: R1: becoming_thirsty with session S
2: for each bottle b ∈ S do needp(b)← true
3: s_nump ← max_recp + 1

4: R2: start drinking
5: when holding all needed bottles do
6: become drinking
7: R3: becoming_tranquil, honoring deferred requests
8: for each consumed bottle b do
9: [needp(b)← false;

10: if holdp(reqb) then [Send(b);holdp(b)← false]

11: R4: requesting a bottle
12: when needp(b);¬holdp(b);holdp(reqb) do
13: Send(reqb, s_nump, idp);holdp(reqb)← false

14: R5: receiving a request from r, resolving a conflict
15: upon reception of (reqb, s_numr, idr) do
16: holdp(reqb)← true;
17: max_recp ← max(max_recp, s_numr)
18: if
19: 1) ¬needp(b) or,
20: 2)

(
p is thirsty and (s_numr, idr) < (s_nump, idp)

)
21: [Send(b);holdp(b)← false]

22: R6: receive bottle
23: upon reception of b do
24: holdp(b)← true
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5.3. Multirobot Plan Execution as a Drinking

Philosophers Problem

In this section we recast the multirobot plan execution problem as an instance of

drinking philosophers problem. We first show that naive reformulation using existing

DrPP solutions leads to conservative control policies. We then provide a solution that

is based on Algorithm 5.1.

Given a set V = {v1, . . . , v|V|} of cells and a collection Π = {π1, . . . πN} of paths,

cells that appear in more than one path are called shared. We denote the set of

shared cells by Vshared, and define the set of free cells as Vfree
.
= V \Vshared. To avoid

collisions, a shared cell must be occupied at most by one robot at any given time.

Inspired by this mutual exclusion requirement, we see the robots as philosophers and

shared cells as the bottles.

Given any two arbitrary robots, we define a bottle for each cell that is visited

by both. For example, if the kth cell vk ∈ V is visited both by Rm and Rn, we

define the bottle bkm,n. We denote the set of cells visited by both Rm and Rn by

Vm,n
.
= {v | ∃ tm, tn : πmtm = πntn = v ∈ Vshared}. It must be noted that for a

shared cell vk ∈ Vm,n, there exists a single bottle shared between Rn and Rm, and

both bkm,n and bkn,m refer to the same object. We use Bm,n and Bm to denote the set

of all bottles Rm shares with Rn and with all other robots, respectively. With slight

abuse of notation, we use Bm(V ) to denote all the bottles associated with the cells in

V ⊆ V that Rm share with others, that is, Bm(V ) = {bkm,n ∈ Bm | vk ∈ V }. We use

the following example to illustrate the concepts above.
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Example 5.1. In the scenario depicted in Figure5.1, the robot R1 shares one bottle

with R2, B1,2 = {b2
1,2}, three bottles with R4, B1,4 = {b1

1,4, b
2
1,4, b

4
1,4}, and one bottle

with R5, B1,5 = {b6
1,5}. The set B1 is the union of these three sets, as R1 does not

share any bottles with R3. Given V = {v2}, then B1(V ) = {b2
1,2, b

2
1,4}.

Bottles are used to indicate the priority order between robots over shared cells.

For instance, if the bottle bkm,n is currently held by robot Rm, then Rm has a higher

priority than Rn over the shared cell vk. Note that, this order is dynamic as bottles

are sent back and forth. However, as long as a philosopher is drinking, it would

not send any of the bottles in its current drinking session. Then, collisions can be

prevented simply by the following rule: “to occupy a shared cell vk, the robot Rn must

be drinking from all the bottles in Bn(vk)." Upon arriving at a free cell, a drinking

robot would become tranquil. If Rn is drinking from all the bottles in Bn(vk), it

has a higher priority than all other robots over vk. Moreover, Rn would keep all

of the bottles in its current drinking session and would be the only robot allowed

to occupy vk until it stops drinking. Therefore, the aforementioned rule prevents

collisions. However, this is not sufficient to ensure that all robots reach their final

cells. Without the introduction of further rules, robots might end up in a deadlock.

We formally define deadlocks as follows:

Definition 5.1. A deadlock is any configuration where a subset of robots, which

have not reached their final cell, wait cyclically and choose STOP action indefinitely.

To exemplify the insufficiency of the aforementioned rule, imagine the scenario

shown in Fig. 5.1. Robots R1 and R4 traverse the neighboring cells v1 and v2 in
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the opposite order. Assume R4 is at v4 and wants to proceed into v2, and, at the

same time, R1 wants to move into v1. Using the aforementioned rule, robots must be

drinking from the associated bottles in order to move. Since they wish to drink from

different bottles, both robots would be allowed to start drinking. After arriving at

v1, R1 has to start drinking from B1(v2) in order to progress any further. However,

R4 is currently drinking from b2
1,4 ∈ B1(v2) and cannot stop drinking before leaving

v2. Similarly, R4 cannot progress, as R1 cannot release b1
1,4 before leaving v1. Con-

sequently, robots would not be able to make any further progress, and would stay in

drinking state forever.

5.3.1. Naive Formulation

We now show that deadlocks can be avoided by constructing the drinking sessions

carefully. For the correctness of DrPP solutions, all drinking sessions must end in

finite time. If drinking sessions are set such that a robot entering a shared cell is

free to move until it reaches a free cell without requiring additional bottles along the

way, then all drinking sessions would end in finite time. That is, if a robot is about

to enter a segment which consists only of consecutive shared cells, it is required to

acquire not only bottles associated with the first cell, but also all the bottles on that

segment. To formally state this requirement, let Sn(t) denote the drinking session

associated with the cell πtn for the robot Rn. That is, to occupy πtn, the robot Rn

should be drinking from all the bottles in Bn(Sn(t)). Now set
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Sn(t) = {πtn, . . . πt
′

n} (5.1)

where πkn ∈ Vshared for all k ∈ [t, t′] and πt
′+1
n ∈ Vfree is the first free cell after

πtn. No other robot could occupy any of the cells in Sn(t) once Rn starts drinking.

Constantly choosing the action GO, Rn would eventually reach the free cell πt′+1
n

and stop drinking in finite time. If the drinking sessions are constructed as in (5.1),

any existing DrPP solution, such as [15, 31, 112], can be used to design the control

policies that solve Problem 5.1.

However, the control policies resulting from the aforementioned approach are con-

servative and lead to poor performance in terms of both makespan and flowtime. To

illustrate, imagine the scenario shown in Fig. 5.1. To be able to move into v1, R1

must be drinking from all the bottles associated with cells B1({v1, v2, v4, v6}). Assume

that R1 starts drinking and moves to v1. If at this point in time, R5 wants to move

into v6, it would not be allowed to do so since b6
1,5 ∈ B1({v1, v2, v4, v6}) is held by R1.

Note that, this is a conservative action as R5 cannot cause a deadlock by moving to

v6, as it moves to a free cell right after. To allow more concurrency, we propose the

following modifications.

5.3.2. New Drinking State and New Rules

In this subsection, we propose a method based on Algorithm 5.1. In particular, we

introduce a new drinking state for the philosophers, namely insatiable. This new

state is used when robot moves from a shared cell to another shared cell. We also
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add an additional rule regarding this new state and modify the existing rule R5 of

Algorithm 5.1:

R7: becoming insatiable with session S

become insatiable

for each bottle b ∈ S do needp(b)← true

for all other bottles b do needp(b)← false

R’5: receiving a request from r, and resolving a conflict

upon reception of (reqb, s_numr, idr) do

holdp(reqb)← true;

max_recp ← max(max_recp, s_numr)

if

1. ¬needp(b) or,

2. p is thirsty and

a) r is thirsty and (s_numr, idr) < (s_nump, idp)
)
or,

b) r is insatiable,

3. (p is insatiable and b 6∈ Sp(curr(Rp)) and (s_numr, idr) < (s_nump, idp)

[Send(b);holdp(b)← false]

In the naive formulation, drinking sessions are set such that a robot entering a

shared cell is free to move until it reaches a free cell, without requiring additional
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bottles along the way. The insatiable state is intended to soften this constraint.

Assume robot Rn wants to move to shared cell πtn, and the first free cell after πtn is

πt
′+1
n for some arbitrary t′ > t, all the cells in between are shared. If Rn enters the

first shared cell without acquiring all the bottles until πt′+1
n , it would need to acquire

those bottles at some point along the way. If Rn becomes thirsty to acquire those

bottles, it risks losing the bottles it currently holds. If another robot Rm with a

higher priority needs and receives the bottles associated with the cell Rn currently

occupies, two robots might collide.

Insatiable state allows a robot to request new bottles without risking to lose any of

the bottles it currently holds. In this state, the robot does not hold all the bottles it

needs to start drinking, similar to thirsty state. The difference between two states is

that an insatiable philosopher always has a higher priority than a thirsty philosopher

regardless of their session numbers, and does not release any of the needed bottles

under any circumstance.

The insatiable state and the rule R7 regarding its operation might lead to deadlocks

without careful construction of drinking sessions. We now explain how to construct

drinking sessions to avoid deadlocks.

5.3.3. Constructing Drinking Sessions

To compute drinking sessions, we first need to define a new concept called Path-Graph:

Definition 5.2. The Path-Graph induced by the collection Π = {π1, . . . πN} of paths

is a directed edge-colored multigraph GΠ = (V , EΠ, C) where V is a set of nodes, one
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per each cell in Π, EΠ = {(πnt, cn, πnt+ 1) | πn ∈ Π} is the set of edges, representing

transitions of each path, and C = {c1, . . . , cN} is the set of colors, one per each path

(i.e., one per each robot).

A Path-Graph is a graphical representation of a collection of paths, overlayed on

top of each other. The nodes of this graph correspond to discrete cells that partition

the workspace, and edges illustrate the transitions between them. Color coding of

edges indicate which robot is responsible from a particular transition. In other words,

if πn has a transition from u to v, then there exists a cn colored edge from u to v in

GΠ, i.e., (u, cn, v) ∈ EΠ.

Path-Graphs are useful to detect possible deadlock configurations. Intuitively,

deadlocks occur when a subset of robots wait cyclically for each other. We first

show that such configurations correspond to a rainbow cycle in the corresponding

Path-Graph. A rainbow cycle is a closed walk where no color is repeated. Let Π

be a collection of paths and GΠ be the Path-Graph induced by it. Assume that

a subset {R1, . . . ,RK} ⊆ R of robots are in a deadlock configuration such that

Rn waits for Rn+1 for all n ∈ {1, . . . , K} where RK+1 = R1. That is, Rn cannot

move any further, because it wants to move to the cell that is currently occupied

by Rn+1. Let vn denote the current cell of Rn. Since Rn wants to move from vn

to vn+1, we have en = (vn, cn, vn+1) ∈ EΠ. Then, ω = {(v1, c1, v2), . . . , (vK , cK , v1)}

is a rainbow cycle of GΠ. For instance, there are two rainbow cycles in Fig. 5.1:

ω1 = {(v1, c1, v2), (v2, c4, v1)} and ω2 = {(v2, c1, v4), (v4, c4, v2)}.

The first idea that follows from this observation is to limit the number of robots
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Figure 5.1: An illustrative example for multirobot path execution problem.
Robots, each assigned a unique color/pattern pair, are initialized
on free cells that are drawn as solid circles. Shared cells are shown
as hollow black rectangles. Each path eventually reaches a free cell
that is not shown for the sake of simplicity.

in each rainbow cycle to avoid deadlocks. However, this is not enough as rainbow

cycles can intersect with each other and robots might end up waiting for each other

to avoid eventual deadlocks. For instance, in the scenario illustrated in Fig. 5.1, let

R1 and R4 be at v1 and v4, respectively. The number of robots in each rainbow cycles

is limited to one, nonetheless, this configuration will eventually lead to a deadlock.

We propose Algorithm 5.2 to construct the drinking sessions, which are used to

prevent such deadlocks. Given a collection Π of paths let GΠ = (V , EΠ, C) denote

its Path-Graph. We first define equivalence relation ∼ on V such that each node is

equivalent only to itself. We then find all rainbow cycles in GΠ. Let W denote the

set of all rainbow cycles. For each rainbow cycle W ∈ W , we expand the equivalence

relation ∼ by declaring all nodes in W to be equivalent. That is, if u and v are two

nodes of the rainbow cycle W , we add the pair (u, v) to the equivalence relation ∼.

105



Algorithm 5.2 find_equivalence_classes
Input GΠ return G̃Π

1: ∼← ∅
2: for u ∈ GΠ do
3: expand ∼ such that (u, u) ∈ ∼
4: W ← find_rainbow_cycles(GΠ)
5: if W = ∅ then
6: G̃Π ← GΠ

7: return
8: else
9: for W ∈ W do

10: for u, v ∈ W do
11: expand ∼ such that (u, v) ∈ ∼
12: find_equivalence_classes(G̃Π)

Note that, due to transitivity of the equivalence relation, nodes of two intersecting

rainbow cycles would belong to the same equivalence class. The relation ∼ partitions

V by grouping the intersecting rainbow cycles together. We then find the quotient set

V
/
∼ and define a new graph G̃Π = (V

/
∼, ẼΠ, C) where ([u], cm, [v]) ∈ ẼΠ if [u] 6= [v],

and there exists α ∈ [u], β ∈ [v] such that (α, cm, β) ∈ EΠ. That is, we create a node

for each equivalence class. We then add a cm colored edge to G̃Π between the nodes

corresponding [u] and [v] if there is a cm colored edge in GΠ from a node in [u] to a

node in [v]. We repeat the same process with G̃Π in a recursive manner until no more

rainbow cycles are found.

Proposition 5.1. Algorithm 5.2 terminates in finite steps.

Proof. Since all paths are finite, the number of nodes in the Path-Graph GΠ, |V|,

is finite. At each iteration, Algorithm 5.2 either finds a new graph G̃Π which has a

smaller number of nodes, or returns GΠ. Therefore, Algorithm 5.2 is guaranteed to

terminate at most in |V| steps.
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Remark 5.1. Algorithm 5.2 needs to find all rainbow cycles of an edge-colored multi-

graph at each iteration, which can be done in the following way. Given G = (V , E , C),

obtain E ∈ V × V from E by removing the coloring and replacing multiple edges

between the same two nodes with a single edge. Then, find all simple cycles in the

graph (V , E). Finally, check if these cycles can be colored as a rainbow cycle. As for

the complexity of these steps, finding all simple cycles up to length N can be done

O(NVE) time [3], and deciding if a cycle can be rainbow colored can be posed as

an exact set cover problem, which is NP-complete. This is essentially due to the fact

that, in the worst-case, the number of cycles in a multi-graph can be exponential in the

number of colors compared to the corresponding directed graph. However, the number

of nodes decrease at each iteration of Algorithm 5.2, making computations easier.

Moreover, while the worst-case complexity is high, these operations can usually be

performed efficiently in practice.

When the Algorithm 5.2 finds the fixed point, we set

S̃n(t)
.
= Sn(t) ∩ [πtn] (5.2)

where Sn(t) is defined as in (5.1) and [πtn] is the equivalence class of πtn. That is,

Rn must be drinking from all the bottles in Bn(S̃n(t)) to be able to occupy πtn. If

S̃n(t) = ∅, Rn is allowed to occupy πtn regardless of its drinking state, as robots in

free cells cannot lead to collisions or deadlocks.

Example 5.2. Let GΠ be given as in Figure 5.1. After the first recursion of Algo-

rithm 5.2, [v1] = {v1, v2, v4} and [vi] = {vi} for i ∈ {3, 5, 6}. After the second recur-
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sion, [v1] = {v1, v2, v3, v4, v5} and [v6] = {v6}. No rainbow cycles are found after the

second recursion, therefore, S̃1(1) = {v1, v2, v4, v6} ∩ {v1, v2, v3, v4, v5} = {v1, v2, v4}.

Remark 5.2. Sessions constructed by (5.2) are always contained in the sessions

constructed by (5.1). That is, when drinking sessions are found as in (5.2), robots

would need fewer bottles to move, and the resulting control policies would be more

permissive.

We now propose a control policy that prevents collisions and deadlocks when drink-

ing sessions are constructed as in (5.2).

5.3.4. Control Strategy

We propose Algorithm 5.3 as a control policy to solve Problem 5.1. We first briefly

explain the flow of the control policy, which is illustrated in Figure 5.2, and then

provide more details. All robots are initialized in tranquil state. If the final cell is

reached, STOP action is chosen as the robot accomplished its task. Otherwise, if a

robot is in either tranquil or drinking state, the control policy chooses the action GO

until the robot reaches to the next cell. When a robot moves from a free cell to a

shared cell, it first becomes thirsty and the control policy issues the action STOP

until the robot starts drinking. When moving between shared cells, a robot becomes

insatiable if it needs to acquire additional bottles, and STOP action is chosen until

the robot starts drinking again. When a robot’s path terminates at a shared cell, it

must be careful not arrive early and block others from progressing. Therefore, when

a robot is about to move to a segment of consecutive shared cells which includes its
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final cell, it needs to wait for others to clear its final cell.

All robots are initialized in tranquil state. Let Rn be an arbitrary robot. Lines

1 − 2 of Algorithm 5.3 ensure that Rn does not move after reaching its final cell.

Otherwise, let πtn denote the next cell on Rn’s path. If πtn is a free cell, the control

policy chooses the GO action until the robot reaches πt+1
n (lines 3 − 9). When πtn is

a shared cell, there are two possible options: (i) If there is no free cell between the

next cell and the final cell of Rn, i.e., πendn ∈ Sn(t) where Sn(t) is defined as in (5.1),

the robot must wait for all other robots to clear this cell (lines 10 − 14). This wait

is needed, otherwise, Rn might block others by arriving and staying indefinitely at

its final cell. When all others clear its final state, Rn can start moving again. (ii) If

the final cell is not included in the drinking session, Rn checks its drinking state. If

tranquil, Rn becomes thirsty with the drinking session S̃n(t) and waits until it starts

drinking to move to the next cell (lines 15−18). When the robot starts drinking, it is

allowed to move until it reaches πtn (lines 19−23). Upon reachingπtn, the robot checks

πt+1
n . If it is a shared cell, the robot becomes insatiable with Bn(S̃n(t) ∪ S̃n(t + 1))

(lines 24− 25) and waits until it starts drinking again. Otherwise, robot moves until

reaching πt+1
n and updates its drinking state as tranquil (lines 26− 31).

We now show the correctness of Algorithm 5.3.

Theorem 5.1. Given an instance of Problem 5.1, using Algorithm 5.3 as a control

policy solves Problem 5.1 if

1. Initial drinking sessions are disjoint for each robot, i.e., S̃m(0) ∩ S̃n(0) = ∅ for

all m,n and
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Figure 5.2: Flowchart of Algorithm 5.3.

2. Final drinking sessions are disjoint for each robot, i.e., Sm(end) ∩ Sn(end) = ∅

for all m,n and

3. There exists at least one free cell in each πn.

As mentioned in Remark 5.2, constructing drinking sessions as in (5.1) leads to more

conservative control policies. Furthermore, doing so also imposes stricter assumptions

on the collection of paths due to the conditions (1) and (2) of Theorem 5.1. Due to

larger drinking sessions, fewer collections would satisfy the condition that the initial

drinking sessions must be disjoint for each robot.

Remark 5.3. The control policy given in Algorithm 5.3 can be implemented by the

robots in a distributed manner. In order to achieve this, we require the communication
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Algorithm 5.3 Control policy for Rn

1: if Rn.is_final_cell_reached then
2: Rn.STOP
3: else
4: t ← next(Rn)
5: if is_free(πtn) then
6: while ¬Rn.is_reached(πtn) do
7: Rn.GO

8: next(Rn) ← next(Rn) + 1
9: else

10: if πendn ∈ Sn(t) then
11: while ¬cleared(πendn ) do
12: Rn.STOP

13: else if Rn.is_tranquil then
14: Rn.get_thirsty(Sn(t))
15: else if Rn.is_thirsty or Rn.is_insatiable then
16: Rn.STOP
17: else if Rn.is_drinking then
18: while ¬Rn.is_reached(πtn) do
19: Rn.GO

20: next(Rn) ← next(Rn) + 1
21: if is_shared(πt+1

n ) then
22: Rn.get_insatiable(Bn(Sn(t) ∪ Sn(t+ 1)))
23: else
24: while ¬Rn.is_reached(πtn) do
25: Rn.GO

26: next(Rn) ← next(Rn) + 1
27: Rn.get_tranquil()
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graph to be identical to the resource dependency graph. That is, if two robots visit a

common cell, there must be a communication channel between them.

5.4. Examples

In this section, we compare our method, which is explained in Sections 5.3.2-5.3.4

and referred to as Rainbow Cycle, with the Minimal Communication Policy (MCP)

of [58] using identical paths. To judge the improvement in the amount of concur-

rency better, we also provide comparisons with the Naive method which is explained

in Section 5.3.1. Our implementation can be accessed from https://github.com/

sahiny/philosophers.

To explain briefly, MCP prevents collisions and deadlocks by maintaining a fixed

visiting order for each cell. A robot is allowed to enter a cell only if all the other

robots, which are planned to visit the said cell earlier, have already visited and left

the said state. It is shown that, under mild conditions on the collection of the paths,

keeping this fixed order prevents collisions and deadlocks. We refer the reader to [58]

for more details.

To capture the uncertainty in the robot motions, each robot is assigned a delay

probability. When the action GO is chosen, a robot either stays in its current cell

with this probability, or completes its transition to the next cell before the next time

step.
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Figure 5.3: Randomly generated example. This example is named random1 and
consists of 35 robots on a 30×30 grid with 10% blocked cells. Blocked
cells are shown in black. Initial and final cells are marked with a solid
and a hollow circle of a unique color, respectively.

Randomly Generated Examples

There are 10 MRPE instances in [58], labelled random 1-10, where 35 robots navigate

in 4-connected grids of size 30× 30. In each example, randomly generated obstacles

block 10% of the cells, and robots are assigned random but unique initial and final

locations. All control policies use the same paths generated by the Approximate

Minimization in Expectation algorithm of [58]. Delay probabilities of robots are

sampled from the range (0, 1 − 1/tmax). Note that, higher delay probabilities can

be sampled as tmax increase, resulting in slow moving robots. Figure 5.4 reports the

makespan and flowtime statistics averaged over 1000 runs for varying tmax values.

The delay probabilities are sampled randomly for each run, but kept identical over

different control policies. As expected, both makespan and flowtime statistics increase
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with tmax, as higher delay probabilities result in slower robots.

From Fig. 5.4, we first observe that the Rainbow Cycle DrPP based control policy

always performs better than the Naive method. This is expected as drinking sessions

for the Naive method, which are computed by (5.1), are always larger than the ones

of Rainbow Cycle methods, which are computed by (5.2). Consequently, robots need

more bottles to move, and thus, wait more. Moreover, Naive method requires stronger

assumptions to hold for a collection of paths. For instance, only one random example

satisfy the the assumptions in Theorem 5.1 for the Naive method, whereas this number

increases to four for the Rainbow Cycle method. The example illustrated in Fig. 5.3

originally violates the assumptions, but this is fixed for both drinking based methods

by adding a single cell into a robot’s path. We here note that, the set of valid paths

for MCP and DrPP algorithms are non-comparable. There are paths that satisfy the

assumptions of one algorithm and violate the other, and vice versa.

We also observe that makespan values are quite similar for Rainbow Cycle and

MCP methods, although MCP often performs slightly better in this regard. Given

a collection of paths, the makespan is largely determined by the “slowest” robot,

a robot with a long path and/or a high delay probability, regardless of the control

policies. The makespan statistics do not necessarily reflect the amount of concurrency

allowed by the control policies. Ideally, in the case of a slow moving robot, we

want the control policies not to stop or slow down other robots unnecessarily, but to

allow them move freely. The flowtime statistics reflect these properties better. From

Figure 5.4, we see that flowtime values increase more significantly with tmax for MCP,

compared to Rainbow Cycle policy. This trend can be explained with how priority
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Figure 5.4: Makespan and flowtime statistics averaged over 1000 runs for the
warehouse environment under varying tmax values. DrPP based
method cannot be used in environments where the collection of paths
violate the conditions in Theorem 5.1. Out of 10 randomly gener-
ated instances, Naive and Rainbow Cycle DrPP based methods can
solve 2 and 5 instances, respectively.

orders are maintained in each of the algorithms. As the delay probabilities increase,

there is more uncertainty in the motion of robots. MCP keeps a fixed priority order

between robots, which might lead to robots waiting for each other unnecessarily. On

the other hand, Rainbow Cycle dynamically adjusts this order, which leads to more

concurrent behavior, hence the smaller flowtime values. The following illustrates this

phenomenon with a simple example.

Makespan versus Flowtime

As mentioned earlier, [58] assumes that delay probabilities are known a priori, and

computes paths to minimize the expected makespan. Once the paths are computed,

the priority order between robots is fixed to ensure MCP policies are collision and

115



1

2

3

Figure 5.5: A simple example to show effects of a slow moving robot on makespan
and flowtime. Robots R1, R2 and R3 are colored in red, blue and
green, respectively. Initial and final cells of the robots are marked
with solid and hollow circles of their unique color, respectively.

deadlock-free. We now provide a simple example to illustrate the effect of using

inaccurate delay probabilities in the path planning process. Imagine 3 robots are

sharing a 10 by 10 grid environment as shown in Figure 5.5. Assume that the delay

probabilites for robotsR1, R2 andR3 are known to be {0, 0.4, 0.8}, respectively. If we

compute paths to minimize the expected makespan, resulting paths are straight lines

for each robot. Paths π1 and π2 intersect at a single cell, for which R1 has a priority

over R2. Similarly π2 and π3 also intersect at a single cell, for which R2 has a priority

over R3. We run this example using inaccurate delay probabilities {0.8, 0.4, 0} to see

how the makespan and flowtime statistics are affected.

Over 1000 runs, makespan values are found to be 48.30 and 45.77 steps for MCP and

Rainbow Cycle implementations, respectively. The makespan values are close because

of the slow moving R1, which becomes the bottleneck of the system. Therefore, it is

not possible to improve the makespan statistics by employing different control policies.
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Figure 5.6: Illustration of a warehouse example. The workspace is gridded into
22 × 57 cells. Blocked cells are shown in black. Initial and final
cells are marked with a solid and a hollow circle of a unique color,
respectively.

However, the flowtime statistics are found as 128.78 and 77.78 steps for MCP and

Rainbow Cycle implementations, respectively. Significant difference is the result of

how a slow moving robot is treated by each policy. For the MCP implementation, R2

(resp. R3) needs to wait for R1 (resp. R2) unnecessarily, since the priority order is

fixed at the path planning phase. On the other hand, Rainbow Cycle implementation

allows robots to modify the priority order at run-time, resulting in improved flowtime

statistics.

Warehouse Example

We also compare the performance of the control policies in a more structured warehouse-

like environment. This warehouse example is taken from [58], and it has 35 robots as

shown in Figure 5.6. The makespan and flowtime statistics are reported in Figure 5.7,

which are averaged over 1000 runs for varying tmax values. Due to stronger assump-

tions on the collection of paths, the Naive DrPP based method is not able to handle
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Figure 5.7: Makespan and flowtime comparisons. Statistics are averaged over
1000 runs for the warehouse environment under varying tmax val-
ues. Dashed lines show the improvement obtained by modifying the
paths to decrease the number of rainbow cycles. Naive DrPP based
method cannot solve this instance as the collection of paths violate
the conditions in Theorem 5.1

this example. Similar to Section 5.4, we observe that makespan values are better

for MCP, but Rainbow Cycle method scales better with tmax for flowtime statistics.

Upon closer inspection, we see that robots moving in narrow corridors in opposite di-

rections lead to many rainbow cycles. By enforcing a one-way policy in each corridor,

similar to [19], many of these rainbow cycles can be eliminated and the performance

of our method can be improved. Indeed, Figure 5.7 reports the results when paths are

modified such that no horizontal corridor has robots moving in opposing directions.
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5.5. Summary

In this chapter, we presented a method to solve the MRPE problem. Our method is

based on a reformulation of the MRPE problem as an instance of DrPP. We showed

that the existing solutions to the DrPP can be used to solve instances of MRPE

problems if drinking sessions are constructed carefully. However, such an approach

leads to conservative control policies. To improve the system performance, we pro-

vided a less conservative approach where we modified an existing DrPP solution. We

provided conditions under which our control policies are shown to be collision and

deadlock-free. We further demonstrated the efficacy of this method by comparing it

with existing work. We observed that our method provides similar makespan perfor-

mance to [58] while outperforming it in flowtime statistics, especially as uncertainty in

robots’ motion increase. This improvement can be explained mainly by our method’s

ability to change the priority order between robots during run-time, as opposed to

keeping a fixed order.
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Chapter 6.

Summary and Future Work

In this chapter we summarize the results of the previous chapters and discusses di-

rections for future research.

6.1. Summary

In this thesis, we provided a framework for multirobot coordination to achieve complex

tasks autonomously. This framework consists of (i) a formalism to specify multirobot

tasks, (ii) algorithms to synthesize paths that collectively satisfy these tasks, and (iii)

methods to deal with synchronization errors.

As the first step, we introduced counting logic cLTL+ in Chapter 2, which allows

one to specify multirobot tasks concisely. We then introduced a notion of robust

satisfaction for counting constraints. This notion allows us to analyze the effects of

synchronization errors on particular solutions. We further introduced a fragment of

cLTL+, namely cLTL, which results in permutation invariant tasks. We provided
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complexity analysis for this fragment and showed that it is PSPACE-complete.

In Chapter 3, we assumed that robots move synchronously and provided optimization-

based methods to generate paths that collectively satisfy the specifications given in

cLTL+. We showed that our method is sound and complete. We also provided an

alternative method for the particular case where specifications are given in cLTL, and

robots have identical dynamics. For this alternative method, solution times do not

depend on the number of robots. Thus, hundreds of robots could be coordinated, as

shown in Section 3.7.

In Chapter 4, we relaxed the synchrony assumption and discussed how to generate

multirobot paths that are robust to synchronization errors. In particular, we showed

that the generated paths could be asynchronously executed while preserving the sat-

isfaction of the cLTL+ specification, if the asynchrony between robots is bounded.

We further characterized the conditions under which this approach is complete.

In Chapter 5, we studied the multi-robot path execution problem where a group

of robots move on predefined paths from their initial to target positions while avoid-

ing collisions and deadlocks in the face of asynchrony. We first reformulated this

problem as a well-known conflict resolution problem, namely Drinking Philosophers

Problem (DrPP). We showed that by careful construction of the drinking sessions,

any existing solutions to DrPP could be used to design distributed control policies

that are collectively collision and deadlock-free. We then proposed modifications to

an existing DrPP algorithm to allow more concurrent behavior and characterized the

conditions under which our method is deadlock-free. We demonstrated the efficacy

of our method on simulation examples by comparing it against the state-of-the-art.

121



6.2. Future Work

6.2.1. Decentralized and Reactive Controller Synthesis

In this thesis we provided centralized methods to generate paths that collectively

satisfy the specifications given in cLTL+. As the number of robots, the complexity

of the tasks and the size of the environment increase, such centralized methods could

easily get intractable. We tried to address this issue by a hierarchical approach in

Chapter 4. One interesting research direction is to develop decentralized algorithms

to address the same issue.

The methods proposed in this thesis also require the environment to be static and

known. Typically multirobot teams are expected to work in dynamic environments

and interact with other vehicles, objects, or humans. It might not be possible to

have a priori knowledge of the environment, such as the case of emergency response.

There are also other uncertainties, such as modelling errors, which might limit the

applicability of multirobot systems in practice. A potential research direction is

to develop reactive controllers to handle such uncertainties. However, the reactive

synthesis problem is known to be hard even for single-robot systems under LTL

constraints. GR(1) fragment of LTL is shown to have an efficient polynomial-time

synthesis algorithm [78]. Whether such fragments exists for cLTL+ is left for future

work.
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6.2.2. Robustness Against Non-deterministic Transitions

In Chapter 4 and Chapter 5, we studied robustness against a certain type of uncer-

tainty, namely synchronization errors. We assumed that the robots can follow their

nominal paths without tracking errors. We use a discrete representation, namely

transition systems, to model the dynamics of robots which operate in the continu-

ous domain. If the robot dynamics satisfy certain properties and a large enough

discretization step is used, robots can indeed follow their discrete paths perfectly by

using local feedback controllers. However, this assumption may not always be true.

Non-deterministic transition systems could be used to capture such uncertainties.

When it is not possible to track a nominal path perfectly, one would still like to

ensure the satisfaction of the specifications if possible, or the system performance to

degrade gracefully. In [60], authors provide a notion of robustness for reachability

properties such that the error from the target set can be bounded for bounded dis-

turbances. However, it is also important to bound the errors from the nominal path

along the way. In continuous domain, ideas such as LQR trees [104], funnel libraries

[59], control contraction metrics [61], or Hamilton Jacobi reachability based methods

[35] are used to find a region of attraction around a nominal trajectory in which the

system is guaranteed to stay. An interesting research direction is to find discrete

analogues of these concepts in the discrete domain.
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6.2.3. Realistic Communication Constraints

We investigated the multirobot path execution problem in Chapter 5 and presented an

algorithm to prevent collisions and deadlocks. The resulting control policies generated

by this algorithm could be implemented by the robots in a distributed manner. To

be able to do so, we require the communication graph to be identical to the resource

dependency graph. That is, if two robots have a potential conflict, communication

channel between them must be available at any given time. This connectivity re-

quirement might restrict the mobility of robots to maintain proximity. Moreover, we

assumed that the communication channel is lossless. An interesting future research

direction is to relax these assumptions and study the case where the communication

range is limited and channel is lossy.
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Appendix A.

Supplements to Chapter 4

A.1. Proof of Theorem 4.1

First of all, note that rφn(t) = 1 if and only if zφn(t + k) = 1 for all k ∈ [0, τ ] due to

(4.2). That is, rφn(t) = 1 implies that robot Rn satisfies the inner formula φ for τ + 1

consecutive steps, starting from time t. By the restriction of formulas to PNF, it is

enough to prove the soundness for the operators in (4.1) and we do so recursively,

starting with temporal counting propositions.

tcp: Let µ = [φ,m] ∈ Φ × N and a collection Π = {π1, . . . , πN} of trajectories

be given. We first show that yµ(t) = 1 implies that Π τ -robustly satisfies µ at

anchor time t. Assume m > 1 and yµ(t) = 1. Then
∑N

n=1 r
φ
n(t) ≥ m due to (4.3).

Without loss of generality, assume that robots are enumerated such that the first

m robots robustly satisfy φ at time step t, i.e., rφn(t) = 1 for all n ∈ [m]. Then

zφn(t + k) = 1 for all n ∈ [m] and for all k ∈ [0, τ ] due to equation (4.2). Now let
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K ∈ KN(τ) be an arbitrary τ -bounded execution and T be an arbitrary time step

with anchor time t, i.e., bK(T ) = t. By definition of τ -bounded executions, local times

are restricted to t ≤ kn(T ) ≤ t + τ . Then,
∑N

n=1 z
φ
n(kn(T )) ≥

∑m
n=1 z

φ
n(kn(T )) = m.

Hence, (Π, K), T |=τ µ. Note that this is true for all for all K ∈ KN(τ) and for all

T ∈ b−1
K (t). Thus, Π, t |=τ µ by definition of robust satisfaction.

Now assume m = 1 and yµ(t) = 1. Due to (4.4), either
∑N

n=1 r
φ
n(t) ≥ 1 or∑N

n=1 z
φ
n(t) = N . If the former is true, earlier arguments apply. Then, assume the

latter is true, that is, zφn(t) = 1 for all n. Let K = [k1 . . . kN ]T ∈ KN(τ) be arbitrary.

At anchor time t, there exists at least one robot such that kn(T ) = t. Without loss

of generality assume k1(T ) = t. Then
∑N

n=1 z
φ
n(kn(T )) ≥ zφn(k1(T )) = zφn(t) = 1,

hence Π, t |=τ µ. These arguments hold for any t, including t = 0, hence the modified

encodings in (4.3)-(4.4) are sound for temporal counting propositions.

conjunction: Showing soundness for conjunction is straightforward. Assume µ =∧
µi and for a collection Π = {π1, . . . , πN}, yµ(t) = 1 for some t. Then yµi(t) = 1

for all i, implying that Π, t |=τ µi. In other words, for all K ∈ KN(τ) and for all

T ∈ b−1
K (t); (Π, K), T |= µi for all i. Hence Π, t |=τ µ.

disjunction: Let µ =
∨
i µi and yµ(t) = 1 for some t and some collection Π =

{π1, . . . , πN}. Since disjunction is associative and commutative, we can rewrite µ =

µtcp ∨ µo where µtcp =
∨
i[φi,mi] is conjunction of tcp and µo is the disjunction of

the rest of the clauses that are not tcp. We first show that encoding of disjunction

of temporal counting propositions is sound. If yµ(t) = 1, then either yµi(t) = 1 for

some i, or
∑N

n=1 r
(
∨

i φi)
n (t) >

∑
i(mi − 1). If it is the former, yµi(t) = 1 for some

µi = [φi,mi], then it follows from the soundness of tcp encodings that Π, t |=τ µi.
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Thus Π, t |=τ µ. Now assume yµi(t) = 0 for all i and
∑N

n=1 r
(
∨

i φi)
n (t) >

∑
i(mi − 1).

Note that r(
∨

i φi)
n (t) = 1 implies that for each k ∈ [0, τ ], there exists at least one φi

such that πn, t + k |= φi. Now for arbitrary set of local indices {kn(T )} such that

t ≤ kn(T ) ≤ t + τ , let m̃i be the number of robots who satisfy φi, i.e., m̃i
.
= |{n |

zφin (kn(T )) = 1}|. Then
∑

i m̃i ≥
∑N

n=1 r
(
∨

i φi)
n (t) >

∑
i(mi−1). Note that if m̃i < mi

for all i, the last inequality cannot be true. Hence, there exists at least one m̃i ≥ mi.

As a result, Π, t |= µi for at least one µi and Π, t |= µ.

Showing soundness of (4.5) is straightforward and omitted here. All of these com-

bined together proves the correctness of (4.6) and (4.5).

until: Until encodings are quite close to standard encodings but the modification is

needed due to change in disjunction encodings. Let η = µ1 U µ2 and Π = {π1, . . . , πN}

be a collection. If yµ2(t) = 1 for Π and some t, then Π, t |= µ2 and Π, t |= η.

Now assume yµ2(t) 6= 1. The first line in equation (4.7) requires yµ1∨µ2(t) = 1 and

yη(t + 1) = 1, for yη(t) = 1 to hold. Then Π, t |=τ µ1 ∨ µ2 and Π, t + 1 |=τ µ1 U µ2.

This implies that Π, t |=τ µ1 U µ2. Similar to standard encodings, auxiliary variables

are used to avoid trivial satisfaction and make sure µ2 is satisfied at some point.

Proving that the “release” operator encodings are also sound is similar to “until” case

and omitted here. We showed that outer logic encodings are sound. The soundness

of the whole encoding procedure follows as before from soundness of ILP encodings

of LTL, which is used for inner logic formulas.
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A.2. Proof of Theorem 4.2

We first give an outline of the proof and then provide details. The proof starts

by showing that the modified encodings are complete for the simplest specification,

µ = [φ,m]. We then show that conjunction and next operators preserve completeness.

Next, we show that disjunction and until operators are complete for mutually exclusive

atomic propositions. That is enough to prove Theorem 4.2 due to the special form

of specifications and the second assumption that atomic propositions are mutually

exclusive. We now give details of these steps.

tcp: Let µ = [φ,m] be a temporal counting proposition and Π = {π1, . . . , πN} be

a collection such that Π, t |=τ µ for some t. We are going to show that if (4.3) (or

(4.4) for m = 1) does not hold for some t, then Π, t 6|=τ µ. First assume m > 1 and∑N
n=1 r

φ
n(t) < m. Assume without loss of generality that robots are enumerated such

that rφn(t) = 0 at least for the firstN−m+1 robots. Then, for all n ∈ [N−m+1], there

exist at least one zφn(t + k) = 0 for some k ∈ {0, 1, . . . , τ}. Assume each t̂n denotes

the first instance where zφn(t̂n) = 0 for t̂n ∈ [t, t+τ ] and for all n ∈ [N−m+1]. Then,

there exists a τ -bounded execution K = [k1 . . . kN ]T ∈ KN(τ) such that kn(T ) = t̂n

for all n ∈ [N −m+ 1] and kN(T ) = t for some T . Note that such a Π violates (2.5)

and creates a contradiction. Thus
∑N

n=1 r
φ
n(t) ≥ m must hold.

In the special case when m = 1, further assume that
∑N

n=1 z
φ
n(t) < N . This implies

that, for each n ∈ [N ], zφn(kn(T )) = 0 for some T where t ≤ kn(T ) ≤ t+ τ and there

exists at least one robot ñ such that zφñ(t) = 0. Then choose kñ(T ) = t and for all

other robots choose kn(T ) such that zφn(kn(T )) = 0. These set of indices have the
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anchor time t and satisfy the τ -boundedness criteria. Hence, there exists a τ -bounded

asynchronous execution such that µ is not satisfied. But this is a contradiction. Thus

either
∑N

n=1 r
φ
n(t) ≥ 1 or

∑N
n=1 z

φ
n(t) = N must hold.

disjunction: For the sake of ease, we show that (4.6) is complete for disjunction of

two temporal counting propositions. Let µi = [φi,mi] for i = 1, 2 and µ = µ1 ∨ µ2.

Assume that (4.6) fails to hold for some t, but that there exists a collection Π =

{π1, . . . , πN} such that Π, t |=τ µ. This implies that, for all local time permutations

with anchor time t, i.e., kn(T ) ∈ [t, t+τ ] and min kn(T ) = t, we have
∑

n z
φi
n (kn(T )) ≥

mi for either i = 1 or i = 2. Since (4.6) fails to hold, we have
∑N

n=1 r
(φ1∨φ2)
n (t) <

m1 + m2 − 1 which implies that
∑N

n=1 r
φi
n (t) < mi for i = 1, 2. Now without loss of

generality, enumerate robots such that r(φ1∨φ2)
n (t) = 1 only for the first n12 robots.

This implies that, for the rest of the robots, one can choose a local time where both

φ1 and φ2 fails to hold. Furthermore, assume that rφ1n (t) holds for the first n1 robots

and that rφ2n (t) holds for the following n2 robots. Since AP are mutually exclusive, no

robot can satisfy φ1 and φ2 at the same time. Then, starting from the (n1 +n2 + 1)th

robot, choose as local times the first m1 − n1 − 1 such that zφ1n (kn(T )) = 1. For the

rest of the robots, until nth12, choose local times such that zφ2n (kn(T )) = 1. Note that

such selection always exists. Then
∑

n z
φ1
n (kn(T )) = m1 − 1, and

∑
n z

φ2
n (kn(T )) =

r12 −
∑

n z
φ1
n (kn(T )) = r12 − (m1 − 1) < m1 +m2 − 1− (m1 − 1) < m2.

Note that we can always choose k1(T ) = t. This is contradictory to the assumption

that µ is τ -robustly satisfied. Thus, we conclude that (4.6) is necessary for µ to be

satisfied.
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A.3. Proof of Theorem 4.3

First part of the proof is straightforward. Assume an arbitrary T -path π is given. To

obtain πabs, assign πabs(t) = R(πn(t)). Note that πabs is a valid T abs path since each

(πabs(t), πabs(t+ 1)) ∈ Eabs due to (4.13). Furthermore Labs(πabs(t)) = L(π(t)). Thus,

π and πabs have the same trace and are stutter trace equivalent.

Conversely, let πabs be an arbitrary T abs-path. Starting from t = 0, choose arbitrary

u, v ∈ V such that u ∈ R−1(πabs(t)) and v ∈ R−1(πabs(t+1)). Since (vabsi , vabsj ) ∈ Eabs,

there exists (u′, v′) ∈ E such that u′ ∈ R−1(πabs(t)) and v′ ∈ R−1(πabs(t + 1)) due

to (4.13). Since both u, u′ ∈ (πabs(t)), there exist a T -path πuu′ from u to u′ due to

(4.11). Similarly, there exist another T -path πv′v from v′ to v. The concatenation

πuu′πv′v of these two paths is a valid T -path from u to v since (u′, v′) ∈ E . Note that

we can compute such a T -path for each t and obtain π by concatenating them.

By construction of the abstraction L(u) = L(u′) for all u, u′ ∈ (πabs(t)) and

L(πabs(t)) = L(u). Then σ(πuu′πv′v) = (L(vabsi ) . . . L(vabsi ))(L(vabsj ) . . . L(vabsj )). This

implies that πuu′πv′v is trace equivalent to path segment πabs(t)πabs(t+1). Since trace

equivalence holds for all t, π is stutter trace equivalent to πabs.

A.4. Proof of Theorem 4.4

Showing {π1, ..., πN} are collision-free is straight-forward. Each GMRPP instance

generates collision-free T -paths. Concatenation of them would also be collision-free.

Furthermore, πn(0) = S0(Rn) for all Rn ∈ A due to (4.15).

Next we show {π1, ..., πN} |=0 µ. Let Σ = {σπ1 , . . . , σπN} and Σabs = {σπabs
1
, . . . , σπabs

N
}.
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Define synchronous execution K = {k1, . . . , kN} such that kn(t) = t for all t ≥ 0 and

for all n ∈ [N ]. We first show that there exists a 1-bounded asynchronous execution

Kabs = {kabs1 , ..., kabsN } such that collective traces (Σ, K) and (Σabs, Kabs) are identical.

Note that βtn(h) ∈ R−1(πabsn (t+1))) due to (4.15). Furthermore, πn(0) = S0(Rn) ∈

R−1(πabsn (0)). This implies L(βtn(h)) = L(πn(ht)) = L(πabsn (t)) for all t ≥ 0 due to

(4.13). Also note that, for all n ∈ [N ], there exists a non-negative integer ltn ≤ h

such that L(βtn(t)) = L(βtn(0)) for all t ≤ ltn and L(βtn(t)) = L(βtn(h)) for all ltn <

t ≤ h due to definition of Problem 1, and equations (4.13) and (4.15). Therefore

L(πn(th+ α)) = L(βtn(α)) = L(πabsn (t)).

Now initialize kabsn (0)
.
= 0 for all n ∈ [N ]. Then iteratively define local times for all

integers 0 < α ≤ h and t ≥ 0 as

kabsn (th+ α)
.
=


kabsn (th+ α− 1) if α ≤ ltn

kabsn (th+ α− 1) + 1 if α > ltn

(A.1)

Note that kabsn (t) is well-defined for all t ≥ 0 and L(πn(t)) = L(πabsn (kabsn (t))) for all t.

This implies that (Σ, K) and (Σabs, Kabs) are identical collective traces.

Moreover it is guaranteed that kabsn (t + h) = kabsn (t) + 1 and kabsn (th) = kabsm (th)

for all pairs of n,m ∈ [N ] and for all t ≥ 0. This implies that, the collection

Kabs = {kabs1 , . . . , kabsN } is a 1-bounded asynchronous execution. Since Σabs |=1 µ,

we have Σabs, Kabs |= µ. Thus, Σ |=0 µ.
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A.5. Proof of Theorem 4.5

We first show that collisions would be avoided for any 1-bounded asynchronous ex-

ecution K = {k1, . . . , kN}. Note that |kn(t) − km(t)| ≤ 1. Assume kn(t) = km(t),

then πn(kn(t)) 6= πm(km(t)) since generated paths satisfy πn(t) 6= πm(t). Similarly

assume kn(t) = km(t) + 1, then πn(kn(t)) 6= πm(km(t)) since generated paths sat-

isfy πn(t + 1) 6= πm(t). Since selection of n,m was arbitrary, all collisions would be

avoided. Furthermore, πn(0) = S0(Rn) for all Rn ∈ A due to (4.15), as before.

Now we show that {π1, . . . , πN} |=1 µ. Let 1-bounded asynchronous execution K =

[k1, . . . , kN ] be arbitrary and Σ = {σ(π1), . . . , σ(πN)} and Σabs = {σ(πabs1 ), . . . , σ(πabsN )}.

We first show that there exists a 1-bounded asynchronous executionKabs = {kabs1 , ..., kabsN }

such that (Σ, K) and (Σabs, Kabs) are identical collective traces.

Intuitively, we define the abstract local times such that kabsn (t) denotes the abstract

state of robot Rn is at time t, i.e., πn(kn(t)) ∈ R−1(πabsn (kabsn (t))). Since each βtn is

of length h, α ≤ kabsn (t) ≤ α + 1 should be satisfied for all n ∈ [N ] and for all t such

that αh ≤ kn(t) ≤ (α + 1)h. To do so, initialize kabsn (0)
.
= 0 for all n ∈ [N ]. Then,

iteratively define local times for all n ∈ [N ] as follows:

kabsn (t)
.
=



kabsn (t− 1) + 1 if L(πn(kn(t))) 6= L(πn(kn(t− 1))) or

L(πn(kn(t))) = L(πn(kn(t)− α)) for all α ∈ [h]

kabsn (t− 1) otherwise

(A.2)
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Note that if L(πabsn (α)) 6= L(πabsn (α − 1)), there exist a time step t such that

αh ≤ kn(t) ≤ (α + 1)h and Rn leaves the set of states R−1(πabsn (α − 1)) and enters

R−1(πabsn (α)). At that time, L(πn(kn(t))) 6= L(πn(kn(t − 1))). As stated in (A.2),

abstract local time is increased by 1 at this time and πn(kn(t)) ∈ R−1(πabsn (kabsn (t))).

On the other hand, if L(πabsn (t)) = L(πabsn (t−1)), abstract local time kabsn increased by

1 after local time kn is increased h times. As a result, α ≤ kabsn (t) ≤ α+ 1 is satisfied

for all n ∈ [N ] and for all t such that αh ≤ kn(t) ≤ (α + 1)h. This implies that

Kabs = {kabs1 , . . . , kabsN } is a 1-bounded asynchronous execution. Moreover, πn(kn(t)) ∈

R−1(πabsn (kabsn (t))) for all t. Then (Σ, K) and (Σabs, Kabs) are identical collective

traces. This implies that Σ |=1 µ since K was arbitrary and Σabs |=1 µ.
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Appendix B.

Supplements to Chapter 5

B.1. Proof of Theorem 5.1

We first start by showing that the Algorithm 5.3 is collision-free. Assume that Rn

is currently occupying the shared cell πtn. Note that, when a robot is about to move

to a shared cell, GO action is issued only when Rn is drinking (lines 3 and 19− 22).

Therefore, before reaching πtn, Rn was in drinking state, and thus, was holding all the

bottles in S̃n(t). If πt+1
n is a free cell, Rn would stay in drinking state until reaching

πt+1
n (lines 23 − 29). Otherwise, it would get insatiable with S̃n(t) ∪ S̃n(t + 1). In

neither of these scenarios, Rn releases any bottles before reaching to πt+1
n . Note also

that, by construction of drinking sessions, πtn ⊆ Sn(t). Since bottles are mutually

exclusive, none of the other robots could acquire the bottles in Bn(πtn) while Rn is in

πtn. This implies that collisions are avoided, as no other robot is allowed to occupy

πtn before Rn leaves.

134



We now show that Algorithm 5.3 is deadlock free. As defined in Definition 5.1

deadlock is any configuration where a subset of robots, which have not reached their

final cell, choose STOP action indefinitely. As it can be seen from Algorithm 5.3,

there are only three cases where a robot chooses the STOP action: (i) when the

robot is already in the final cell (line 2), (ii) when there are no free cells from the

next cell up to and including the final cell, and the final cell is not yet cleared by all

other robots (line 13), (iii) when the robot is in thirsty or insatiable state (line 18).

In the following, we show that none of these cases can cause a deadlock.

We start by showing that neither (i) nor (ii) could cause a deadlock. To do so,

assume Rn has reached its final cell and is causing a deadlock by blocking others

from progressing. By (3) of Theorem 5.1, we know that there exist at least one free

cell in each path. Since we assumed that Rn is blocking others by waiting in its final

cell, πendn must be a shared cell. Then, there must be at least one free cell before

πendn . Let πtn denote the last free cell on πn. A robot reaching a free cell gets into

tranquil state, if its not already in tranquil state, due to line 31 of Algorithm 5.3.

Otherwise, if πtn is the first cell of πn, Rn would be in tranquil state before trying to

move forward, since all robots are initialized in tranquil state. According to lines 12

and 13 of Algorithm 5.3, Rn would wait in πtn in tranquil state, until its final cell is

cleared by all other robots. Since a tranquil robot does not need any bottles, no other

robot could be waiting for Rn. However, this is a contradiction, and it is not possible

for a robot to reach its final cell and block others from progressing. Therefore, (i)

cannot be a reason for a deadlock. Furthermore, we showed that a robot waiting due

to (ii) would stay in tranquil state until all others clear its final cell. As stated, a
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tranquil robot does not need any bottles, and thus, no other robot could be waiting

for Rn. Thus, (ii) cannot cause deadlocks, either.

We now show that (iii) cannot cause deadlocks. To do so, assume that a subset of

robots are stuck due to (iii), i.e., they are all in thirsty or insatiable state, and they

need additional bottle(s) to move. If there was a robot who does not wait for any

other robot, it would start drinking and moving. Therefore, some non-empty subset

of these robots must be waiting circularly for each other. Without loss of generality,

let Rn be waiting for Rn+1 for n ∈ {1, . . . , K} where RK+1 = R1. That is, Rn has

some subset of bottles Rn−1 needs, and would not release them without acquiring

some subset of bottles from Rn+1. Note that, there might be other robots choosing

the STOP action indefinitely as well, however, the main reason for the deadlock is

this circular wait. Once the circular waiting ends, all robots would start moving

according to their priority ordering.

For the time being, assume that each robot starts from a free inital cell and moves

towards a free cell through an arbitrary number of shared cells in between. We later

relax this assumption. Firstly, we know that none of the robots could be in tranquil

or drinking state, otherwise they would be moving until reaching the next cell as lines

5 − 7 and 26 − 29 of Algorithm 5.3. Secondly, we show that, not all robots can be

thirsty. Since a strict priority order is maintained between robots at all times, if all of

them were thirsty, the robot with the highest priority would acquire all the bottles it

needs according to R′5 and start drinking. A drinking robot starts moving, therefore

cannot be participating in a deadlock. Therefore, there must be at least one robot

that is in insatiable state. Thirdly, we show that if there is a deadlock, all robots
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participating in it must be in insatiable state. To show a contradiction, assume that

at least one of the robots participating in the deadlock is thirsty. According to R′5,

an insatiable robot always has a higher priority than a thirsty robot. Therefore, an

insatiable robot cannot be waiting for a thirsty robot. Thus, all robots in a deadlock

configuration must in insatiable state.

Let G̃Π be the graph returned by the Algorithm 5.2 for the input Path-Graph GΠ.

We showed that all robots are in insatiable state. Let πtnn denote the current cell

Rn is occupying, i.e., curr(Rn) = tn. Lines 24 − 25 of Algorithm 5.3 show that Rn

must be insatiable with Bn(S̃n(tn) ∪ S̃n(tn + 1)). That is, Rn needs all the bottles in

Bn(S̃n(tn) ∪ S̃n(tn + 1)) to start drinking. Since Rn currently occupies πtnn , it must

hold all the bottles in Bn(S̃n(tn)). Then, S̃n(tn) 6= S̃n(tn + 1), and Rn needs and does

not hold some of the bottles in Bn(S̃n(tn + 1)). Then, by construction of drinking

sessions, there must be two nodes in G̃Π, one corresponding to [S̃n(tn)] and another

corresponding to [S̃n(tn+1)], and a cn colored edge from [S̃1(t1)] to [S̃1(t1 +1)] in G̃Π.

Similarly, Rn+1 holds all the bottles in Bn+1(S̃n+1(tn+1)) and is missing some of the

bottles in Bn+1(S̃n+1(tn+1 + 1)). Since Rn is waiting for Rn+1, either [S̃n(tn + 1)] =

[S̃n+1(tn+1)] or [S̃n(tn+1)] = [S̃n+1(tn+1+1)] must hold. This implies that, there exists

a cn colored edge from [S̃n(tn)] to either [S̃n+1(tn+1)] or to [S̃n+1(tn+1+1)]. In a similar

manner, there exists a cn+1 colored edge from [S̃n+1(tn+1)] to either [S̃n+2(tn+2)] or to

[S̃n+2(tn+2 + 1)]. Repeating the same reasoning, we can find colored edges and show

that there exists a rainbow cycle {([v1], c1, [v2]), . . . , ([vK ], cK , [v1])} in G̃Π. However,

this is a contradiction as such a rainbow cycle would be found by the Algorithm 5.2,

and G̃Π would not be returned. Therefore, such a deadlock configuration cannot be
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reached and (iii) cannot be a reason for a deadlock.

We now relax the assumption that all robots are initialized at a free cell. To do

so, we “modify" all paths by appending virtual free cell at the beginning. That is, all

robots are initialized at a virtual free cell, which does not exist physically, and the

next cell in a robot’s path is its original initial cell. Theorem 5.1 assumes that initial

drinking sessions are disjoint for each robot, i.e., Sm(0)∩Sn(0) = ∅ for all m,n. Since

initial drinking sessions are disjoint, all robots whose initial cell is a shared cell can

immediately start drinking. As a result, all of those robots can immediately “virtually

move" into their original initial cell. All other robots with free initial cells can also

move to their original initial cells immediately. Therefore the assumption that all

robots are initialized at a free cell is not restricting.

Finally, we relax the assumption that each robot moves towards a free cell. The-

orem 5.1 requires each path to have at least one free cell. Then, up until reaching

the final free cell, moving towards a free cell assumption is not restrictive. We know

under this condition that deadlocks are prevented, therefore all robots are at least

guaranteed to reach to the final free cell in their path. Theorem 5.1 also requires that

the final drinking sessions are disjoint. Therefore, all robots would eventually be able

to start drinking and reach their final location.

Deadlocks occur when a subset of robots, which have not reached their final cell,

choose STOP action indefinitely. A robot chooses the STOP action only under three

conditions. We showed that none of these conditions can cause a deadlock. Thus,

Algorithm 5.3 is deadlock-free.
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