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Abstract 
 

Radiation therapy (radiotherapy) together with surgery, chemotherapy and immunotherapy are 

common modalities in the cancer treatment. In radiotherapy, patients are given high doses of 

ionizing radiation which is aimed at killing cancer cells and shrinking tumor. Conventional 

radiotherapy usually gives a standard prescription to all the patients, however, as patients are 

likely to have heterogeneous responses to the treatment due to multiple prognostic factors, 

personalization of radiotherapy treatment is desirable. Outcome models can serve as clinical 

decision-making support tools in the personalized treatment, helping evaluate patients’ treatment 

options before the treatment or during fractionated treatment. It can further provide insights into 

designing of new clinical protocols. In the outcome modeling, two indices including tumor 

control probability (TCP) and normal tissue complication probability (NTCP) are usually 

investigated.  

Current outcome models, e.g., analytical models and data-driven models, either fail to 

take into account complex interactions between physical and biological variables or require 

complicated feature selection procedures. Therefore, in our studies, deep learning (DL) 

techniques are incorporated into outcome modeling for prediction of local control (LC), which is 

TCP in our case, and radiation pneumonitis (RP), which is NTCP in our case, in non-small-cell 

lung cancer (NSCLC) patients after radiotherapy. These techniques can improve the prediction 

performance of outcomes and simplify model development procedures. Additionally, 
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longitudinal data association, actuarial prediction and multi-endpoints prediction are considered 

in our models. These were carried out in 3 consecutive studies.  

In the first study, a composite architecture consisting of variational auto-encoder (VAE) 

and multi-layer perceptron (MLP) was investigated and applied to RP prediction. The 

architecture enabled the simultaneous dimensionality reduction and prediction. The novel VAE-

MLP joint architecture with area under receiver operative characteristics (ROC) curve (AUC) 

[95% CIs] 0.781 [0.737-0.808] outperformed a strategy which involves separate VAEs and 

classifiers (AUC 0.624 [ 0.577-0.658]).  

In the second study, composite architectures consisted of 1D convolutional layer/ locally-

connected layer and MLP that took into account longitudinal associations were applied to predict 

LC. Composite architectures convolutional neural network (CNN)-MLP that can model both 

longitudinal and non-longitudinal data yielded an AUC 0.832 [ 0.807-0.841]. While plain MLP 

only yielded an AUC 0.785 [CI: 0.752-0.792] in LC control prediction.  

In the third study, rather than binary classification, time-to-event information was also 

incorporated for actuarial prediction. DL architectures ADNN-DVH which consider dosimetric 

information, ADNN-com which further combined biological and imaging data, and ADNN-com-

joint which realized multi-endpoints prediction were investigated. Analytical models were also 

conducted for comparison purpose. Among all the models, ADNN-com-joint performed the best, 

yielding c-indexes of 0.705 [0.676-0.734] for RP2, 0.740 [0.714-0.765] for LC and an AU-

FROC 0.720 [0.671-0.801] for joint prediction. Performance of proposed models was also tested 

on a cohort of newly-treated patients and multi-institutional RTOG0617 datasets. 

These studies taken together indicate that DL techniques can be utilized to improve the 

performance of outcome models and potentially provide guidance to physicians during decision 
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making. Specifically, a VAE-MLP joint architectures can realize simultaneous dimensionality 

reduction and prediction, boosting the performance of conventional outcome models. A 1D 

CNN-MLP joint architecture can utilize temporal-associated variables generated during the span 

of radiotherapy. A DL model ADNN-com-joint can realize multi-endpoint prediction, which 

allows considering competing risk factors. All of those contribute to a step toward enabling 

outcome models as real clinical decision support tools. 
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Chapter 1 Introduction  

Personalization of Radiotherapy 

 
Currently, most radiotherapy treatments are designed to be population-based, giving similar 

prescription to all the patients. However, it is well known that patients are very likely to have 

heterogeneous responses due to multiple clinical, physical and biological prognostic factors such 

as histology, stage, volume and tumor hypoxia,  [1-3]. Hence, individualization and adaptation of 

radiotherapy (i.e., physicians may prescribe a more or less intense regimen for an individual pre-

treatment or during the fractionated course of treatment of radiotherapy) are desirable and a key 

to optimize radiotherapy responses. This concept is illustrated in Figure 1-1. 

 

Figure 1-1. NSCLC patients of different subtypes may respond to the same radiotherapy differently. LC: local control, RP2: 
radiation pneumonitis grade greater or equal to 2. 

Recent clinical trials focusing on treatment intensification in patients with locally 

advanced cancer have shown incremental improvements in local control (LC) and overall 

survival [4] [5]. Higher prescription doses may lead to poorer overall survival, as radiation-
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induced toxicities remain major dose-limiting factors and likely culprit in treatment failure [6-8]. 

Therefore, there is a need for studies directed toward predicting treatment benefits versus the risk 

of failure. An individualized treatment would aim toward an optimized cancer treatment 

response while keeping in mind that a more aggressive treatment with a promised improved 

tumor control will not translate into improved survival unless severe toxicities are accounted for 

and limited during treatment planning. Therefore, improved models for predicting both LC and 

side effects should be considered in optimal treatment management design process.  

Lung cancer, which is the most common cancer in the world, is a leading cause of cancer 

death in both men and women in the US. Specifically, non-small-cell lung cancer (NSCLC) 

accounts for 85% of lung cancer cases. In our study, locally advanced (stage III) NSCLC was 

considered since patients in this group will be more likely to benefit from personalized treatment 

compared to other NSCLC patients. Our study is aimed at realizing the potential trade-off of LC 

normal tissue toxicity for future personalized treatment.  

Outcome modeling 

One of the key components of personalization of treatment is to predict treatment 

outcomes during treatment planning or during a fractionated course of therapy to optimize 

response. Outcome models can also inform clinicians when weighing different treatment options 

with their patients or guiding/adapting radiotherapy fractionation subject to patient-specific 

variables. In the past decades, it has since tremendously evolved from simple hand calculations 

of dosage based on experiences and simplified understanding of cancer behavior into more 

advanced computer simulation models, driven by exponential growth in patient-specific data and 

an acute desire to have more accurate predictions of response [9]. 
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Data resources in outcome modeling 

Traditional outcome models usually only consider dosimetric information. This type of 

data is related to the treatment planning process which will be discussed on page 13 and includes 

dose-volume metrics derived from dose volume histogram (DVH) graphs [10-13].  

With recent advances in quantitative multimodality imaging [14] and high throughput 

biotechnology (genomics [15], proteomics, transcriptomics [16], metabolomics, etc.), more 

patient specific information becomes available. An emerging field referred as ‘radiomics’ [14, 

17] studies quantitative information from hybrid-imaging modalities and associate it with 

biological and clinical endpoints. For instance, PET/CT (positron emission 

tomography/computed tomography) has been utilized for staging, planning, and assessment of 

response to chemoradiation therapy [18, 19]. Biomarkers related to DNA damage detection and 

repair, oncogene, tumor suppressor, and signal transduction pathway, e.g., single-nucleotide 

polymorphisms (SNPs), copy number variations (CNVs)), inflammatory cytokines, anti-oxidant 

enzymes can also contribute to responses of treatment. Efforts of aggregating large-scale 

biomarkers, such as The Cancer Genome Atlas (TCGA) Data Portal have been made to collect 

clinical and biological information in different cancer types [20-23].   
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Figure 1-2. Patient specific information from all sources that could contribute to outcome modeling. Adapted from 
“Radiogenomics and radiotherapy response modeling” [15], by Issam El Naqa, and et al.,2017, Physics in Medicine and Biology 
62 (16), p. R179-R206. Reprinted with permission.  

 

Motivation of our study 

As mentioned earlier, traditional outcome models are usually based on simple 

understanding of radiobiological effects. Recently, driven by advancement of quantitative multi-

modality imaging and high throughput biotechnology, outcome models have been evolved into 

machine learning models which can provide more accurate prediction by taking into account 

more patient specific information. However, machine learning models usually require feature-

engineering procedures which are time-consuming and may introduce selection bias, hence deep 

learning (DL) techniques which are known to have ability of learning complex representation 

from raw data are incorporated into outcome modeling to tackle this issue.  
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Deep learning in medicine  

 

Figure 1-3.  AI related publications in radiology and radiation oncology. Adapted from “Artificial intelligence: reshaping the 
practice of radiological sciences in 21 Century” [24], by El Naqa and et al, 2020, The British Journal of Radiology, 93 (1106), p. 

20190855, Reprinted with permission.  

Recent years have witnessed a great growth in AI related research in the field of 

radiology and radiation oncology as presented in Figure 1-3. Especially, DL which recently 

demonstrated tremendous success in image recognition problems [25] and natural language 

processing [26], have also been of interest in the medical field. DL is generally based on neural 

network (NN) architectures, using multiple layers to gradually extract higher-level features from 

the raw inputs; eliminating the necessary and typically problematic feature engineering process 

in classical machine learning, and hence showing superior performances. This is a key 

advancement in multivariable and statistical prediction modeling, where data representation and 

task learning can be effectively achieved in the same framework. 

Motivation of applying deep learning techniques in outcome prediction  

Compared to a one hidden layer multi-layer perceptron (MLP) as will be mentioned on 

page 18, a deeper NN may have better performance. Although, the Universal Approximation 

Theorem (UAT) developed by Hornik [27] states that mathematically a NN with one hidden 
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layer of sufficient nodes can approximate any measurable (and hence continuous) function on 

compact sets under certain mild conditions. Based on this, it seems that shallow (one hidden 

layer) MLPs will be good enough for any prediction task.  However, the UAT theorem has 

several constraints. First, we need to have a sufficient (can be infinite) number of nodes. 

Secondly, it does not guarantee the theoretical performance can be achieved through 

optimization in practice due to local minima and convergence issues. Thus, it still depends on 

designing the right architecture (e.g.., activation function, regularization, number and size of 

layers, etc.) and adopting an appropriate training process (e.g., optimization method) in order to 

possibly achieve the theoretical performance estimates [28]. 

Adding more layers to a NN has been practically shown to provide a good architecture 

design versus increasing the number of nodes as suggested by UAT. An NN with more layers 

will show better performance than a single layer NN that has the same number of parameters. 

Intuitively, this is possible because each layer will transform its input, creating a new 

representation of the data. The multi-level abstraction that is being learned through multiple 

layers can be hardly coded into a single layer with the same number of nodes. Or formally 

speaking, the multi-layer structures enable NNs to recognize the entangled manifolds of the data 

more easily, so as to solve the designated task [29]. 

Contribution of our study 

Despite the progression of machine learning applications in the outcome modeling in 

radiotherapy. Current models still have several limitations, to name a few: (1) they have limited 

predictive power for clinical implementation; (2) they have poor performance on data of limited 

sample size; (3) they involve tedious feature-engineering procedures; (4) they are not able to 
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directly utilize associations among heterogeneous data elements; (5) they overlook time-to-event 

information; and (6) they lack for multi-endpoint prediction mechanisms.  

Hence, DL techniques are incorporated into outcome modeling in our studies to tackle all 

these six issues as briefly summarized below and detailed in this thesis.  

In the current domain of outcome modeling, hundreds of variables are available to be 

explored, but with a limited sample size, which can impose a big challenge (i.e., under-power 

analysis) for predictive modelling. Under these circumstances, feature selection [30] [31], which 

constructs and selects subsets of features, is an indispensable step to build predictive models. 

However, the process of feature-engineering may involve lots of time and effort, and even 

introduce bias when model development procedures are not appropriately conducted. Hence, 

variational auto-encoder (VAE)-MLP joint architectures [32] were proposed in our study to realize 

simultaneously dimensionality reduction and prediction, which eliminated the necessity of (6) 

tedious feature selection in outcome modeling.  

To address the issue of (2) limited sample size, it is beneficial to take into account the (4) 

associations among these patient specific variables. Conventional machine learning models e.g., 

support vector machine (SVM), random forest (RF) and MLP usually lack the inherent mechanism 

of modeling those associations. “Partially-connected” architectures such as CNNs [33], which are 

carefully designed to incorporate spatial associations, outperform an MLP that ignores such 

association in the prediction. In our study, a similar idea of adopting “partially-connected 

architecture” to model temporal data associations generated during the span of radiotherapy 

treatment was proposed. The composite architecture of 1D CNNs and MLPs [34] with fewer 

degrees of freedom compared to plain MLP can model both longitudinal and non-longitudinal 

data. 
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Conventional analytical models, e.g., Lyman models, RF, SVM and NN are usually 

designed for binary/multi-class classifications. However, compared to a binary endpoint which is 

attached to a specific follow-up time, time-to-toxicity/progression would leverage additional 

temporal information into outcome models and help provide better time-dependent decision 

support. Moreover, incorporation of time-to-censor information will also help utilize the censored 

information, which would be discarded otherwise. In the prediction of radiotherapy response, 

censored data are very common as follow-ups may be missed or patients die before the event 

occurs. As a result, models were proposed to (5) predict discrete-time endpoints in our study.  

Unlike traditional analytical models which usually focus on predicting a single outcome, 

(6) multi-endpoint predictions [35] are considered in our proposed architectures, i.e., prediction of 

tumor control probability (TCP) and normal tissue complication probability (NTCP) can be 

simultaneously generated from a single architecture from a heterogeneous dataset containing 

multiple dosimetric, imaging and biological variables. Hence, trade-offs between competing 

outcomes can be possibly handled in our models, which is an important step towards establishing 

outcome models as easy-to-use decision-support tools.  

Accomplishments 

I have been awarded several fellowships and academic awards from the Rackham 

Graduate School and professional associations e.g., ASTRO (American Society for Radiation 
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in this thesis study. Pertained peer-viewed publications and book chapters were also listed.   
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Chapter 2 Background  

Radiation therapy  

Radiation therapy (radiotherapy), which uses high doses of ionizing radiation to eradicate 

tumor cells [40] is among the common cancer treatment modalities, e.g., surgery, chemotherapy, 

radiation therapy, immunotherapy. At high doses, radiation can kill cancer cells by damaging 

their DNA and hence help cure cancer. Radiation therapy is usually applied to tumors that are 

localized to one area of the body. It can also be combined with other treatment modalities, being 

used before, during or after surgery (as adjuvant therapy) or chemotherapy. The amount of 

radiation, i.e., dose in radiotherapy is usually measured in Gray (Gy), which is defined as the 

absorption of one joule of radiation energy per kilogram of matter. The goal of radiation therapy 

is to deliver high doses of ionizing radiation to eradicate tumor cells [2], while at the same time 

minimizing the risks of damaging surrounding normal tissue [3]. 

Types of radiotherapy  

Depending on where the radiation is from, i.e., external beam or internal radionuclide, 

radiotherapy can be classified into two classes, external beam radiation therapy (EBRT) and 

brachytherapy.  

Our study is focused on outcome modeling for EBRT, which is a far more prevalent case 

than brachytherapy. Radiation in EBRT comes from machines e.g., medical linear accelerator 

(LINAC) (shown in Figure 2-1), Gamma knife, Cyberknife, cyclotrons, these machines can 

accelerate and deliver photons, electrons or protons to patients. These particles would finally 

release their energy to the tumors and kill them. To allow normal cells which are generally more 
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efficient than tumor cells in repairing DNA to recover [41], the total dose (usually 40-80 Gy) is 

fractionated (spread out over time) into around 20-30 fractions and would be delivered in 4-7 

weeks.  

 

Figure 2-1. Varian Truebeam Linac. Adapted from Varian official website, 
https://www.varian.com/products/radiotherapy/treatment-delivery/truebeam  

In brachytherapy, a radiation source is placed into the human body, in or near the tumor. 

It can be used in a limited number of cancer types, e.g., breast, cervix, prostate and eye. 

Side effects 

During radiotherapy, radiation can be unavoidably delivered to normal tissue, leading to 

side effects. Radiation-induced toxicity can be categorized according to its onset time into early 

and late effects. Early effects can occur during or a few days to weeks after irradiations, typically 

in the rapidly proliferating tissues. These effects include skin erythema, mucositis, esophagitis, 

diarrhea and immunosuppression. Late effects typically occur months to years after treatment, 

https://www.varian.com/products/radiotherapy/treatment-delivery/truebeam
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usually in slowly or non-proliferating tissues. Common late effects are lung fibrosis, kidney 

damage, heart disease, liver disease, spinal cord injury and proctitis.[42] 

Radiation-induced toxicities are usually categorized using clinical standards such as 

RTOG (the Radiation Therapy Oncology Group), LENT-SOMA (late effects of normal tissue-

subjective, objective, management, analytic scales), or the National Cancer Institute CTCAE 

(common terminology criteria for adverse events).[43] Some common side effects metrics like 

patient symptoms (e.g., shortness of breath), formal clinical/functional assessments (e.g., quality 

of life tools) and laboratory tests (e.g., pulmonary function tests (PFTs)) are usually considered 

in these standards for evaluating toxicities. In our study, radiation pneumonitis was graded based 

on CTCAE criterion by radiation oncologists.  

Treatment planning 

In modern radiotherapy, treatment planning is carefully conducted to deliver uniform 

dose to the tumor while minimizing side effects on normal tissue. 

Treatment planning process usually starts with simulation and image segmentation. 

During simulation, anatomic images of high quality e.g., computed tomography (CT) and 

magnetic resonance imaging (MRI) are obtained. In image segmentation, anatomic regions of 

interests e.g., tumor, critical normal structures, anatomic landmarks are delineated slice-by-slice 

on the obtained anatomic images. Specifically, several treatment volumes e.g., gross tumor 

volume (GTV), (i.e., visible tumor volumes) clinical target volume (CTV), (i.e., GTV+ 

subclinical/invisible invasion), internal target volume (ITV), (i.e., CTV+ internal margin for 

organ motion) and planning target volume (PTV) (i.e., ITV + set up margin and error) are 

defined. After contouring is done, one would find out how to design fields and arrange beams. 

Specifically, appropriate field apertures, beam direction, number of fields, beam weights and 
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intensity modifiers (e.g., wedges, compensators, dynamic multileaf collimator) needs to be 

determined to ensure that dose will be delivered to the entire tumor and all the normal tissues are 

spared, which is a step so-called plan optimization. Some common treatment techniques include 

three-dimensional conformal radiation therapy (3-D CRT), intensity-modulated radiation therapy 

(IMRT) and volumetric-modulated arc therapy (VMRT), where different groups of parameters 

e.g., beam directions, beam weights and intensity modifiers are to be determined. In a forward-

planning system, these parameters are selected iteratively based on a trial-and-error process. In a 

more advanced inverse-planning system, these parameters can be optimized through minimizing 

the difference between actual and ideal dose distribution or achieving some clinical objectives 

i.e., physical endpoints and biologic endpoints. Physical endpoints are associated with optimal 

dose distribution within specified target volume and dose to critical organs. Biologic endpoints 

can be in indices e.g., TCP and NTCP generated by outcome models.  

 

Figure 2-2. The diagram of target volumes GTV, CTV, ITV and PTV. Adapted from Hidetaka Arimura and et al. in “Computer-
assisted target volume determination” [44] in Hidetaka Arimura (eds) “Image-based computer-assisted radiation therapy”, 

Springer Singapore. Reprinted with permission  

DVH is usually used when evaluating the treatment plan and predicting treatment 

responses. Information extracted from DVH and DVH itself is included in our study for the 

prediction of RP2 and LC. DVH can be represented in two forms: the cumulative integral DVH 

(Figure 2-3 down) which is a plot the volume of a given structure receiving a certain dose or 



 15 

higher as a function of dose, and the differential DVH which is a plot of volume receiving a dose 

within a specific dose bin as a function of dose. DVH summarizes the entire dose distribution of 

a structure of interest into a single curve.  

 

 

Figure 2-3. Illustration of delineation of the target volume (PTV) and lung on CT images (up). The cumulative DVH of the target 
volume (PTV) and critical organs (heart, liver and lung) (down). 

Tumor control probability and normal tissue complication probability modeling 

Radiotherapy outcomes are usually characterized by two indices: tumor control 

probability (TCP) [45], which is the probability of the extinction of clonogenic tumor cells after 

radiotherapy, and normal tissue complication probability (NTCP), which is the probability of 

healthy normal tissue injury [46]. The trade-off between the two indices should be carefully 
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examined in the personalization of treatment, as a more aggressive treatment may improve tumor 

control, but will not translate into improved survival due to possible severe toxicities [6-8]. 

Outcome modeling plays an important role in treatment personalization and adaption [47] in 

radiation oncology. Prevalent models include analytical models and machine learning models.  

Analytical models  

 Traditional analytical models are categorized as mechanistic models and 

phenomenological models. The former approach mathematically formulates toxicity based on a 

simplified biophysical understanding of radiation effects on cells primarily from in vitro cell 

culture experiments. The latter attempts to fit the available dosimetric data to an empirical and 

parametric model.  

 

 

Figure 2-4. Logarithm of survival fraction in LQ models. Adapted from “Building a predictive model of toxicity: methods” [39] 
by Sunan Cui and et al.  in Tiziana Rancati and Claudio Fiorino (eds) in “ Modelling radiotherapy side effects: practical 

applications for planning optimization”, 2019, CRC Press and Taylor&Francis Group 

Mechanistic models e.g., linear quadratic (LQ) model attributes cell killing to DNA 

damage in the nucleus. Parameters α and β are related to radiosensitivity and their values can 

emphasize the difference between different responding tissues (e.g., lung tumor: 𝛼𝛼
𝛽𝛽

= 10, lung 
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tissue 𝛼𝛼
𝛽𝛽

= 4). Moreover, the model can be practicably extended to applications in fractionated 

radiotherapy [48]. A quantity called the biologically effective dose (BED) is defined for a very 

large number of fractions with very small doses and is used to simplify the conversion between 

different radiation fractionation regimens: 

 𝐵𝐵𝐵𝐵𝐵𝐵 =
𝐸𝐸
𝛼𝛼 = 𝑛𝑛𝑛𝑛 × (1 +

𝑑𝑑
𝛼𝛼/𝛽𝛽) Eq. 1 

To convert BED back to a physical quantity, an equivalent dose at some standard fractionation is 

used (e.g., EQD2 for 2 Gy fraction): 

 𝐸𝐸𝐸𝐸𝐸𝐸2 = 𝐵𝐵𝐵𝐵𝐵𝐵/[1 + 2/(𝛼𝛼/𝛽𝛽)] Eq. 2 

In our study, to account for the effects of different fractionated dose (range: 2Gy-3Gy), the dose 

received by patients was all converted into EQD2.  

In phenomenological models, TCP and NTCP can be modeled by a sigmoid-shaped 

function [49]. In a log-logistic model, TCP is expressed as [50] 

                        𝑇𝑇𝑇𝑇𝑇𝑇(𝐷𝐷,𝐷𝐷50, 𝑘𝑘) = 1

1+�𝐷𝐷50𝐷𝐷 �
𝑘𝑘   Eq. 3 

where D is the uniform dose irradiated to the tumor, 𝑘𝑘 describes the slope of the curve and 𝐷𝐷50 is 

the uniform tumor dose-related to 50% probability of tumor control. In a Lyman model [51], 

NTCP is expressed as a cumulative distribution function of a Gaussian distribution (a Probit 

function),  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐷𝐷,𝐷𝐷50,𝑚𝑚) =
1

√2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑢𝑢2

2 �𝑑𝑑𝑑𝑑 
𝑡𝑡

−∞
 

𝑡𝑡 =
𝐷𝐷 − 𝐷𝐷50
𝑚𝑚 𝐷𝐷50

 

Eq. 4 

, where D is the uniform dose irradiated to the organ of interest, D50 is the dose-related to 50% 

toxicity probability and m is a parameter to control the slope of a curve. The above expressions 

are in the condition of uniform irradiation, when the organ is irradiated with inhomogeneous 
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dose distribution described by a dose-volume histogram (DVH), 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 can be defined and 

replaces D.  

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = (�𝑣𝑣𝑖𝑖
𝑖𝑖

𝐷𝐷𝑖𝑖
1
𝑛𝑛)𝑛𝑛 Eq. 5 

 

Machine learning models 

Recent years have witnessed the emergence of machine learning models utilizing 

informatics techniques, in which dose-volume metrics are combined with other patient- or 

disease-based prognostic factors [10-13, 52-54]. Some common machine learning models that 

have been applied to model TCP or NTCP include support vector machine (SVM), random 

forests (RF) and neural networks (NN).  

An SVM [55] is a classifier formally defined by a separating hyperplane, which can 

categorize labeled data. In practice, as it is usually not feasible to completely separate samples 

from different classes, some tolerance errors 𝜉𝜉 are allowed. In an SVM, NTCP or TCP can be 

modeled as, 

 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥) + 𝑏𝑏, Eq. 6 

, where 𝑥𝑥 (𝑥𝑥 ∈  ℝ𝑑𝑑) represents patient specific information, (𝑤𝑤, 𝑏𝑏) represent model parameters.  

𝜙𝜙(∙) is a non-linear mapping function, which maps variables from an original space to a higher 

dimension space for a better separation. A so-called kernel function K is defined as an inner 

product in a feature (Hilbert) space based on 𝜙𝜙(∙). Some common kernel function K include 

polynomial kernel, radial basis function kernel. The optimal parameters of SVM are determined 

by optimization of a hinge loss function,  
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 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤 ∈ ℝ𝑑𝑑 ∥ 𝑤𝑤 ∥2+ 𝐶𝐶�max (0,1 − 𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖))

𝑁𝑁

𝑖𝑖

 
Eq. 7 

, where the first term is correlated with the size of margins between two classes, the second term 

is an error-tolerance term. Parameter C is for regularization and is responsible for trade-offs 

between these two terms. 

 

Figure 2-5. A hyperplane separates different classes (circles and squares) in SVM, and a tolerance error defined by a maximum 
margin is allowed 

 A RF [56] is another classical machine learning method. It is an ensemble learning 

method based on decision trees. A decision tree [57] is a flowchart-like structure where each 

node represents a “test" on an attribute (feature) splitting samples into different branches, nodes 

can be then repeatedly applied to test attributes of different branches until a decision regarding 

classification is done by the leaf nodes. During this process, the Gini coefficient [58] is a 

common measure used to decide a split (i.e., the feature applied, threshold). RF randomly selects 

observations and features to build several decision trees and averages the results to reduce the 

variance.  
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Multi-layer neural networks or multi-layer perceptrons (MLPs) [59] are a types of artificial 

neural networks that are feed-forward and fully-connected. These methods have witnessed revived 

interest in recent years with the advent of DL methods and their popularity particularly in computer 

vision applications. An MLP consists of several layers and neurons, where every neuron in the 

following layer is connected to all the neurons in its former layer. The connection is unidirectional 

and no circles exist in the network architecture.  

 

 

Figure 2-6. A diagram of an MLP with two hidden layers 

The value of a neuron in the hidden layer and output layer is calculated by taking a weighted sum 

of all the neurons in its former layer followed by a non-linear activation function as shown in 

Figure 2-7. Some examples of activation functions [60] are, sigmoid 𝑔𝑔(𝑡𝑡) = 1
1+𝑒𝑒−𝑡𝑡

, ReLU [61] 

𝑔𝑔(𝑡𝑡) = max (0, 𝑡𝑡) and softmax 𝑔𝑔𝑖𝑖(𝑡𝑡) = 𝑒𝑒𝑡𝑡𝑖𝑖

∑ 𝑒𝑒𝑡𝑡𝑗𝑗𝑗𝑗
. 

 

Figure 2-7. Activation function and calculation of values of nodes in NN 
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Figure 2-8. Examples of activation function 

Deep learning  

It has been mentioned on page 4 that adding more layers to a NN which increases levels 

of abstract will usually improve the performance of NN versus an increasing number of nodes in 

a single layer. A NN is in general referred to as a DNN if 𝐿𝐿 >  4 (i.e., more than two hidden 

layers), which is the fundamental building block for DL. 

Some of the most common architectures of DL include convolutional neural networks 

(CNNs) [62], recurrent neural networks (RNNs) [63], variational autoencoders (VAEs) [64] and 

generative adversarial neural networks (GANs) [65]. CNNs are typically designed for image 

recognition and computer vision applications. They largely reduce the number of free parameters 

compared to standard fully-connected NNs. They have shown competitive results in medical 

imaging analysis, including cancer cell classification, lesion detection [66] organ segmentation 

[67] and image enhancement. RNNs are usually applied for natural language processing (NLP) 

and audio recognition problems, as they can exhibit temporal dynamic behavior that can be 

exploited for sequential data analysis [68]. This property also makes RNNs valuable for aiding 

fractionated radiotherapy, effectively taking advantage of a variety of previously unused 

temporal information generated during the treatment course. A VAE is an unsupervised learning 
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algorithm that is able to learn the distribution of compressed data representations from a high-

dimension dataset. In other words, it is the equivalent of principal component analysis (PCA) but 

for DL applications. It can be widely applied in radiation oncology considering the prevalence of 

high-dimension data due to the limitation of patient sample sizes. Similar to a VAE, a GAN is 

also a generative model that can learn the multivariate distribution and describe how the data are 

generated. GANs learn the distribution by an adversarial competition between its generator and 

its discriminator. They have been successfully applied in some medical imaging tasks, mapping 

MRI into CT images (synthetic CT) or in adaptive radiotherapy [69] for generating synthetic data 

and enriching the sample. 

Model evaluations 

 To make the model evaluation meaningful to application in practice, one shouldn’t 

evaluate the model on the dataset on which the model was trained. A complex model may 

describe data on which it is trained perfectly, but may not perform well on the independent 

(unforeseen dataset). Alternatively, resampling or cross-validation (CV) is done to evaluate the 

expected performance of a classifier in unseen datasets. Unless the dataset is large, one can hold 

out a representative portion of data reserved for testing by randomly sampling or by other criteria 

that are not susceptible to selection bias.   

Bias variance and model complexity 

Prediction error is composed of intrinsic noise, variance and bias. Assume one has a 

response variable 𝑌𝑌, and a vector of features 𝑋𝑋, such that 𝑌𝑌 = 𝑓𝑓(𝑥𝑥) + 𝜖𝜖, where we have introduced 

noise 𝜀𝜀 satisfying Ε(𝜖𝜖) = 0. One could decompose the expected prediction error of a regression 

fit 𝑓𝑓(𝑥𝑥) at an input point 𝑋𝑋 = 𝑥𝑥0 into three terms [70]. 



 23 

  𝑬𝑬𝑬𝑬𝑬𝑬(𝒙𝒙𝟎𝟎) = 𝑬𝑬 ��𝒀𝒀 − 𝒇𝒇�(𝒙𝒙𝟎𝟎)�
𝟐𝟐
�𝑿𝑿 = 𝒙𝒙𝟎𝟎� = 𝝈𝝈𝝐𝝐𝟐𝟐 + 𝒗𝒗𝒗𝒗𝒗𝒗�𝒇𝒇�(𝒙𝒙𝟎𝟎)� + 𝑩𝑩𝑩𝑩𝑩𝑩𝒔𝒔𝟐𝟐�𝒇𝒇�(𝒙𝒙𝟎𝟎)� Eq. 8 

The first term is the variance of intrinsic noise, which is not avoidable in practice. The second term 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑓𝑓(𝑥𝑥0)� = 𝐸𝐸�𝑓𝑓(𝑥𝑥0) − 𝐸𝐸𝑓𝑓(𝑥𝑥0)�
2
 is called variance, which is the expected squared deviation of 

the learned model to its mean. The third term 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠2�𝑓𝑓(𝑥𝑥0)� = �𝐸𝐸𝑓𝑓(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0)�
2
 is the squared 

bias describing how much the expectation of the learned model differs from the ground truth. 

Typically as model 𝑓𝑓 become more complex, bias will be lower but variance will be higher. 

 

Figure 2-9. The trade-off between bias and variance, adapted from “Building a predictive model of toxicity: methods” [39] by 
Sunan Cui and et al.  in Tiziana Rancati and Claudio Fiorino (eds) in “ Modelling radiotherapy side effects: practical applications 

for planning optimization”, 2019, CRC Press and Taylor &Francis Group 

Too complex of a model is expected to overfit the data. On the contrary, too simple of a model 

usually under-fits the data. Generally speaking, one needs to consider the trade-off between 

variance and bias to choose the ‘right’ model.  

Cross-validation 

Cross-validation (CV) is the most widely used method for estimating prediction error. In 

K-fold cross-validation, one splits the data into 𝐾𝐾 roughly equal-sized parts, then for each 𝑘𝑘𝑡𝑡ℎ part, 
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one first fits the model with the rest, 𝐾𝐾 − 1 of the parts, and then evaluates the model on the 𝑘𝑘𝑡𝑡ℎ 

part. Thus, the model is trained and tested for K times and the average error is calculated as: 

 
𝑪𝑪𝑪𝑪�𝒇𝒇�� =

𝟏𝟏
𝑵𝑵�𝑳𝑳(𝒚𝒚𝒊𝒊,𝒇𝒇�−𝒌𝒌(𝒊𝒊)

𝑵𝑵

𝒊𝒊=𝟏𝟏

(𝒙𝒙𝒊𝒊)) 
Eq. 9 

where 𝑓𝑓−𝑘𝑘(𝑖𝑖) is the learned classifier without the 𝑘𝑘𝑡𝑡ℎ part of the data and 𝐿𝐿 is the designated loss 

function. 

 

Typically, 𝐾𝐾 is set to be 5 or 10; in the case of 𝐾𝐾 = 𝑁𝑁, the method is known as leave-one-out 

cross-validation (LOOCV) or Jackknife.  

 

Figure 2-10. K-fold cross-validation adapted from “Building a predictive model of toxicity: methods” [39] by Sunan Cui and et 
al.  in Tiziana Rancati and Claudio Fiorino (eds) in “ Modelling radiotherapy side effects: practical applications for planning 

optimization”, 2019, CRC press and Taylor &Francis Group 

There is a variant of K-fold cross-validation called stratified (or partitioned) K-fold cross-

validation, which takes into account situations of an imbalanced dataset. In the plain K-fold cross-

validation, the random division of the data may yield almost no minority data in one subset; and, 

the performance of the classifier on this subset can be misleading. In stratified K-fold CV, the 

distribution of classes in each subset is fixed to be the same as that in the whole dataset, which can 

guarantee a reasonable estimation of error.  
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Our lung cancer dataset  

Lung cancer [71] is the leading cause of cancer deaths in the United States among both 

men and women. It begins in the lung and can spread beyond the lung in the process of 

metastasis. Lung cancer is classified into small cell lung cancer (SCLC) and NSCLC for 

therapeutic purpose. NSCLC which is the focus of our study, accounts for nearly 85% of lung 

cancer. The three main subtypes of NSCLC are adenocarcinoma, squamous-cell carcinoma, and 

large-cell carcinoma. Rare subtypes include pulmonary enteric adenocarcinoma. The survival 

rates for NSCLC decrease significantly due to the advancement of the disease. For stage I, the 

five-year survival rate is 47%, stage II is 30%, stage III is 10%, and stage IV is 1%. Our study 

focus on late-stage, stage III NSCLC patients, who would be more likely to have great benefit 

from personalized treatment. 

Our study includes patients were treated with 4 different treatment protocols, in which the 

two protocols were dose escalation studies that had the total dose increased up to 86 Gy in 30 

fractions, the other two protocols were with standard-dose fractionations, had dose up to 74 Gy, 

2 Gy per fraction. The decisions regarding dose adaption in the escalating dose protocol was 

based on PET-CT information during radiation therapy.  

Patient specific information 

Multiple categories of patient specific information as listed in Table 2-1 were used in the 

prediction of LC/RP2 in NSCLC patients.  

Radiomics features include global features and texture features. Global features are 

computed from histograms counting the number of gray-levels in 3D space from positron 

emission tomography (PET) images. Texture features are computed from the gray-level co-

occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix 
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(GLSZM) and neighborhood gray-tone difference matrix (NGTDM). Compared to global 

features, these texture features can further integrate intensity and spatial information, accounting 

for local intensity spatial distribution.  

A SNP [72] is a substitution of a single nucleotide that occurs at a specific position in the 

genome, where each base pair variation is present at a level of more than 1% in the population. 

SNPs can directly affect protein expression when falling in protein-coding regions, and affect 

gene splicing, transcription factor and messenger RNA degradation when falling in non-protein-

coding region of genes or intergenic regions. SNPs in the human genome have been widely 

studied to correlate with disease, i.e., toxicity and overall survival in cancer [73] and drug 

response. In our study, SNPs located on several DNA repair, tumor suppressor, inflammation 

and transcription factor related genes are considered.  

Micro RNAs (miRNA) [74] are small non-coding RNA molecules (consisting of around 

22 nucleotides) that functions in RNA silencing and post-transcriptional regulation of gene 

expression. MiRNAs may function as oncogenes or tumor suppressors, potentially serving as 

biomarkers in human cancer diagnosis, prognosis and therapeutic targets [75].  

Cytokines [76] are a family of signaling polypeptides that are secreted by immune cells 

that mediate inflammatory and immune reactions. In our studies, cytokines are considered [77] in 

the prediction of RP which is primarily inflammation of the lung caused by radiation therapy to 

the chest.  

Table 2-1. Patients’ information that was applied in outcome prediction in NSCLC patients 

Categories  Patient specific information for LC/RP2 prediction  
PET Tumor 
radiomics (43×
2): 
Global: 4 × 2 
GLCM:  8 × 2 
NGTDM: 5 × 2 

MTV, global.variance, global. Skewness, global.kurtosis,  
GLCM.energy, GLCM.contrast, GLCM.entropy, GLCM.homogeneity, 
GLCM.IDM, GLCM. correlation, GLCM.SumMean, GLCM.variance,  
NGTDM.coarseness, NGTDM.contrast, NGTDM.busyness, 
NGTDM.complexity, NGTDM.strength, 

https://en.wikipedia.org/wiki/Genome
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GLRLM: 13× 2 
GLSZM: 13× 2 

GLRLM.SRE, GLRLM.LRE, GLRLM.GLN, GLRLM.RLN, 
GLRLM.RP, GLRLM.LGRE, GLRLM.HGRE, GLRLM.SRLGE, 
GLRLM.SRHGE, GLRLM.LRLGE, GLRLM.LRHGE, GLRLM.GLV, 
GLRLM.RLV, 
GLSZM.SZE, GLSZM.LZE, GLSZM.GLN, GLSZM.ZSN, GLSZM.ZP, 
GLSZM.LGZE, GLSZM.HGZE, GLSZM.SZLGE, GLSZM.SZHGE, 
GLSZM.LZLGE, GLSZM.LZHGE, GLSZM.GLV, GLSZM.ZSV 

cytokines (30) EGF, Eotaxin, Fractalkine, GCSF, GM-CSF, IFN-𝛾𝛾, IL10, IL12p40, 
IL12p70, IL13, IL15, IL17, IL1A, IL1B, IL1Ra, IL2, IL4, IL5, IL6, Il7, 
IL8, IP10, MCP1, MIP1A, MIP1B, sCD40l, TGF-𝛼𝛼, TNF𝛼𝛼, VEGF, TGF-
𝛽𝛽 

miRNA (60) let-7a, miR-100, miR-106b, miR-10b, miR-122, miR-124, miR-125b, 
miR-126, miR-134, miR-143, miR-146a, miR-150, miR-155, miR-17, 
miR-18a-5p, miR-192, miR-195, miR-19a, miR-19b, miR-200b, miR-
200c, miR-205, miR-20a, miR-21, miR-210, miR-221, miR-222, miR-
223, miR-224, miR-23a, miR-25, miR-27a, miR-296, miR-29a, miR-30d, 
miR-34a, miR-375, miR-423, miR-574, miR-885, miR-92a, miR-93, let-
7c, miR-10a, miR-128, miR-130b, miR-145, miR-148a, miR-15a, miR-
193a,  
miR-26b, miR-30e, miR-374a, miR-7, miR-103a, miR-15b, miR-191, 
miR-22, miR-24, miR-26a 

SNPs (55) 
with its location 
(Gene) 

Rs3857979(BMP1), Rs4988044 (ATM), Rs1800587(IL1A), 
Rs17561(IL1A), Rs2070874(IL4), Rs1801275(IL4R), Rs4073(CXCL8), 
Rs2234671(CXCR1), Rs1800896(IL10), Rs3135932(IL10RA), 
Rs1800872(IL10), Rs11556218(IL16), Rs4760259(GLI1), 
Rs1799983(NOS3), Rs689470(PTGS2), Rs12102171(SMAD3), 
Rs6494633(SMAD3), Rs4776342(SMAD3),Rs11615(ERCC1), 
Rs609261(ATM), Rs12906898(SMAD6), Rs7227023(SMAD7), 
Rs7333607(SMAD9), Rs664143(ATM), Rs4803455(TGFB1), 
Rs1061622(TNFRSF1B), Rs664677(ATM), Rs20417(PTGS2), 
Rs373759(ATM), Rs189037(ATM), Rs12456284(SMAD4), 
Rs1800057(ATM), Rs3212961(ERCC1), Rs3212948(ERCC1), 
Rs238406(ERCC2), Rs12917(MGMT), Rs17655(ERCC5), 
Rs1047768(ERCC5), Rs12913975(SMAD6), Rs1805794(NBN), 
Rs1625895(TP53), Rs1042522(TP53), Rs25489(XRCC1), 
Rs9293329(XRCC4), Rs1800469(B9D2&TGFB1), 
Rs2075685(TMEM167A&XRCC4), Rs25487(XRCC1), Rs1800795(IL6), 
Rs1799796(XRCC3), Rs1800468(B9D2&TGFB1), Rs1478486(XRCC4), 
Rs2228000(XPC), Rs2228001(XRC), Rs3218384(XRCC2), 
Rs1799793(ERCC2), Rs1803965(MGMT), Rs2279744(MDM2), 
Rs2308321(MGMT), Rs3218536(XRCC2), Rs2834167(IL10RB), 
Rs3212986(ERCC1) 

dosimetric  Information from dose distribution of GTV and lung-GTV structures  
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Chapter 3 Combining handcrafted features with latent variables 

Summary 

In this study [32], a novel VAE-MLP joint architecture with multi-omics information as 

inputs was proposed to conduct dimensionality reduction and prediction in a single step, which 

potentially eliminates the necessity of feature selection in conventional machine learning. A 

conventional way of using a separate VAE and classifier was also applied for comparison 

purposes. Furthermore, the latent variables learned by VAE-MLP were used to compensate 

traditional feature selection methods in the prediction of RP2.  

Introduction 

In this study, a combination of handcrafted features and DL latent variables were 

investigated for the prediction of RP2 in NSCLC patients. Specifically, several MLP-based 

feature selection methods were investigated together with SVM- and RF-based feature selection 

methods. Additionally, a novel VAE-MLP joint architectures was proposed to extract latent 

representation of multi-omics information. Overall, four different strategies as presented in were 

investigated and compared in the prediction of RP2.  
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Figure 3-1. Building multivariable predictive models through standard machine learning and DL architectures 

Methodology 

Three MLP-based features selection methods including weight pruning (WP) [78], 

feature quality index (FQI) [79] and feature-based sensitivity of posterior probability (FSPP) [80] 

were investigated in our study.  

Weight Pruning (WP) 

WP exploits both the weight value and the network structure of an MLP as in Figure 2-6. 

The score of ith features, i = 1, …, m, is calculated by summing up the products of weights over 

all the paths from feature i to outputs. Specifically, in the single-hidden-layer MLP, the 

importance is written as 

 𝑆𝑆𝑖𝑖 = � (
|𝑤𝑤𝑗𝑗𝑗𝑗1|

∑ |𝑤𝑤𝑗𝑗𝑗𝑗1|𝑖𝑖′∈ℓ𝑗𝑗 ∈ℋ

�
|𝑤𝑤𝑘𝑘𝑘𝑘2 |

∑ |𝑤𝑤𝑘𝑘𝑗𝑗′
2 |𝑗𝑗′∈Ο𝑘𝑘∈Ο

) Eq. 10 

where ℓ,ℋ,Ο  denote nodes in the input, hidden and the output layer respectively. And the 

superscript of weight w denotes layer number. Eq. 10 suggests the weights to be normalized by 

the sum of weights that are connected to the same input for comparison reason. WP is based on 

the intuition that important features should result in weights of relatively large magnitude. 
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Feature Quality Index (FQI) 

FQI considers the increase of training mean-squared error (MSE) when a feature is 

replaced by mean (0 if features are centered). It fixes the trained NN architecture, and 

replaces the value of a feature by 0, then, calculates MSE based on the output of a new feature 

matrix. 

 
𝑆𝑆𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐼𝐼𝑖𝑖) −𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼𝑜𝑜),𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼) =

1
𝑁𝑁�� ∥ 𝑜𝑜𝑗𝑗;𝐼𝐼

𝛼𝛼 − 𝑦𝑦𝑗𝑗𝛼𝛼 ∥2
𝑗𝑗∈𝑂𝑂

𝑁𝑁

𝛼𝛼=1

 
Eq. 11 

where 𝐼𝐼𝑜𝑜 are the original features, 𝐼𝐼𝑖𝑖  is 𝐼𝐼𝑜𝑜 with 𝑖𝑖𝑡𝑡ℎ feature set to be zero and 𝑜𝑜𝑗𝑗;𝐼𝐼
𝛼𝛼  is the 𝑗𝑗𝑡𝑡ℎ output 

of input matrix of sample 𝛼𝛼, 𝐼𝐼𝛼𝛼. 

Feature- based Sensitivity of Posterior Probability (FSPP) 

FSPP considers the variation of outputs when a feature is randomly permuted among 

samples. One randomly permutes the 𝑖𝑖𝑡𝑡ℎ  feature among N samples and feeds modified features to 

the MLP, then calculates the sum of pairwise differences between the new outputs and the 

original ones. It is based on the belief that “turning off” more important features will influence 

outputs more. 

 
𝑆𝑆𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐼𝐼𝑖𝑖) −𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼𝑜𝑜),𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼) =

1
𝑁𝑁���𝑜𝑜𝑗𝑗 

𝛼𝛼 −   𝑜𝑜𝑗𝑗;𝐼𝐼𝑖𝑖
𝛼𝛼 �2

𝑗𝑗∈𝑂𝑂

𝑁𝑁

𝛼𝛼=1

 
Eq. 12 

where 𝑜𝑜𝑗𝑗𝛼𝛼  is the 𝑗𝑗𝑡𝑡ℎ output of sample 𝛼𝛼 and 𝑂𝑂𝑗𝑗;𝐼𝐼𝑖𝑖
𝛼𝛼 is the 𝑗𝑗𝑡𝑡ℎ output of after 𝐼𝐼𝑖𝑖 is randomly permuted 

among N samples.  

Random forest (RF)-based feature selections 

Random forest which is mentioned Error! Bookmark not defined. is an ensemble 

learning method based on decision trees. In a decision tree, features applied at the upper split 
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influencing more input samples should be deemed important. As a result, one can estimate the 

importance of a feature by the fraction of samples the feature contributes to [81].  

Support-vector machine (SVM)-based feature selections 

SVM which is covered Error! Bookmark not defined. can be also used for feature 

selection. In the case of linear kernels, parameter w in the original optimization problem Eq. 6 

can be easily recovered after solving the dual optimization problem and used as an estimator of 

feature importance. 

Variational auto-encoder – multilayer perceptron (VAE-MLP) joint architectures 

An auto-encoder (AE) is an artificial neural network designed for unsupervised learning. 

AE consists of two parts: an encoder (𝜙𝜙), which compresses an input (from 𝜒𝜒) into a lower 

dimensional space (Ζ), and decoder (𝜑𝜑) aiming to reconstruct the input out of latent space 

representation. One notable variant of AE is called a VAE [64] as presented in Figure 3-2, which 

inherits the AE architecture but incorporates uncertainties through a stochastic variational 

approach into the deterministic AE. In this setting, the encoder first produces two vectors 𝜇𝜇 and 

𝜎𝜎 describing the mean and the variance of the latent state distribution and then generates a latent 

vector by sampling from this distribution. Subsequently, the decoder receives the latent vector to 

reconstruct the original input. The total loss of a VAE Eq. 13 is composed of two terms, the first 

term stands for reconstruction error and the second term is Kullback-Leibler (KL) [82] 

divergence metric, which acts like penalty term. VAE can be applied to extract features that were 

used in subsequent classification problems.  

 
𝐿𝐿( 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑) =∥ 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑 ∥2+

1
2�[1 + log�𝜎𝜎𝑗𝑗2� − 𝜎𝜎𝑗𝑗2 − 𝜇𝜇𝑗𝑗2]

𝐽𝐽

𝑗𝑗=1

 
Eq. 13 
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Figure 3-2. Diagram of a VAE with number of nodes (*) in the implemented architecture are denoted 

A novel joint architecture of VAE and MLP as shown in Figure 3-3 was proposed to 

conduct dimensionality reduction and prediction tasks simultaneously, realizing efficient 

representation learning aided by the classification task. The total loss function of the architecture 

is composed of VAE loss and prediction loss (binary cross-entropy). An extra coefficient 𝜆𝜆 was 

used to magnify prediction loss for the trade-off between VAE loss and prediction loss.   
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Figure 3-3. Diagram of a VAE-MLP joint architecture: 𝜇𝜇 is used as input of MLP classifier, the number of nodes in each layer is 
given.  

Feature ranking aggregation 

Due to the noisy nature of our dataset, the rankings were very sensitive to which portion 

of the data generated the ranking. As a result, multiple rankings (e.g., 100) based on different 

subsets of the data were generated and aggregated to yield a single ranking. Finally, several top 

features were fed into the designated classifier for evaluation of performance. Kemeny 

aggregation was applied in this process to summarize feature ranking. Kemeny aggregation gets 

an optimal ranking by minimizing a sum of Kendall 𝜏𝜏 distances 𝐾𝐾(𝜏𝜏1 , 𝜏𝜏2), which is defined by 

the number of pairwise disagreements between any two ranking lists, 

 min
𝜋𝜋 �𝐾𝐾(𝜋𝜋, 𝜏𝜏𝑖𝑖)

𝐵𝐵

𝑖𝑖=1

 
Eq. 14 

   

𝐾𝐾(𝜏𝜏1, 𝜏𝜏2) = |{(𝑖𝑖, 𝑗𝑗)|∀ 𝑖𝑖 < 𝑗𝑗, [(𝜏𝜏1 (𝑖𝑖) < 𝜏𝜏1 (𝑗𝑗))⋀(𝜏𝜏2 (𝑖𝑖) > 𝜏𝜏2 (𝑗𝑗))] ∨ [(𝜏𝜏1 (𝑖𝑖) > 𝜏𝜏2 (𝑗𝑗))⋀(𝜏𝜏2 (𝑖𝑖) < 𝜏𝜏2 (𝑗𝑗))]}| Eq. 15 
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As one may see, the direct computation of Kemeny aggregation using Eq. 14 and Eq. 15 can be 

burdensome when the lists are long. In fact, it is proven to be an NP-hard problem (at least as 

hard as nondeterministic-polynomial-time problem). Fortunately, it can be converted into an 

equivalent graph problem for computational convenience [83]. 

Performance evaluation and TRIPOD level 2 Nested Cross-Validation (CV) 

Performance evaluation 

A receiver operating characteristic curve (ROC) [84] was utilized for evaluating the 

performance of our predictive models at various classification thresholds. The abscissa of the 

ROC curve is false positive rate (FPR) and the ordinate of the ROC curve is true positive rate 

(TPR).  

 𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 Eq. 16 

 𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 Eq. 17 

, where TP refers to the patients with events and were classified as positive, FN refers to the 

patients with events but were classified as negative, FP refers to the patients without events but 

were classified as positive, and TN refers to the patients without events and were classified as 

negative. Each point in the ROC curve stands for a pair of TPR and FPR given a designated 

threshold (S). If the prediction of a patient 𝑃𝑃 > 𝑆𝑆, the patient was classified as positive, 

otherwise, the patient was classified as negative. The area under the ROC (AUC) curve is an 

overall evaluation of classification performance at various thresholds. It has a range of 0.5-1. 

AUC of 0.5 means a random classification while AUC of 1 means a perfect classifier.  
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Validation  

In this study, four different cases as presented in Figure 3-1 were investigated for 

prediction of RP2. Case A is based on traditional feature selection methods e.g., MLP-based, 

SVM-based and RF based-methods and subsequent classification. Case B is based on traditional 

features extraction methods VAE and subsequent classification problems. Case C is based on the 

novel VAE-MLP joint architecture which combined dimensionality reduction and prediction into 

a single step. Case D is based on the combination of handcrafted features and latent variables 

from VAE-MLP joint architectures.  

 

Figure 3-4.  Nested CV in the validation process for evaluating for cases A, B, C and D 

For comparison purposes and mitigating statistical bias, we implemented all four 

methodologies (A, B, C, D) in the same validation pipeline Figure 3-4. This is referred to as a 

type 2b analysis in the transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) statement [85]. Specifically, nested CVs were performed, 

where the feature and parameter selection were tuned in inner-loop CVs, and the model with 



 36 

optimal parameters was then identified from outer-loop training sets and evaluated on the outer-

loop test sets. Multiple times of CV were performed to consolidate the results.  

Results 

ROC curves were obtained based on predictions by different methods. AUCs with 95% 

CI were then calculated and presented in Table 3-1. 

Table 3-1 Summary of performance results in the four strategies 

Methods  AUC  Delong test 
Case B (VAE+MLP) 0.624 (95%CI: 0.577-0.658) p-value: 1.33 ×

10−7 Case C (VAE-MLP) 0.781 (95%CI: 0.737-0.808) 

Case A (WP+MLP) 0.804 (95% CI: 0.761-0.823) p-value: 6.42 ×
10−4 Case D ((latent Z+WP)+MLP) 0.831 (95% CI: 0.805-0.863) 

 

Case A. Conventional machine learning feature selection and prediction 

5 different feature selection methods including WP, FQI, FSPP, RF, SVM were applied 

to select top features, and then 3 different classifiers MLP, RF and SVM were applied to build 

predictive models with results shown in Figure 3-5. Generally, cross-validated AUCs will first 

increase with an increasing number of features and then decrease. Particularly, WP+MLP 

outperformed the rest of the combinations for feature selection and prediction in the range from 

23 to 36 features. With the top 29 features, WP+MLP was shown to reach the highest AUC of 

0.804 (95% CI: 0.761-0.823).  



 37 

 

Figure 3-5. AUC trend with an increasing number of features 

To analyze feature importance in this study, we considered the final ranking lists in the 

collection of all (50; 10 times outer-loop CV) iteration. Particularly, the frequency of a feature 

was included in the final set was obtained and served as an indicator of relative importance. 

Table 3-2 shows the summary of important features that were selected more than half of the 

times.  

Table 3-2 Features being selected more than half of the times (the bold ones were selected every time) 

Categories  Names 

Dosimetric information 
(1) 

Mean Lung Dose  

Cytokines (10) 2w_eotaxin, 4w_eotaxin, pre_TNF-𝛼𝛼, 2w_TNF-𝛼𝛼, 4w_TNF-
𝛼𝛼, 2w_IL-8, 4w_IL-8, 2w_ MCP-1, 2w_fractalkine, pre_IFN-
𝛾𝛾, 

miRNA (8) hsa-miR-192-5p, hsa-miR-22-3p, hsa-miR-128, hsa-miR-15a-
5p, hsa-miR-223-3p, hsa-miR-23a-3p, hsa-miR-210, hsa-miR-
100-5p 

SNPs (9) Rs3857979(BMP1), Rs238406(ERCC2), 
Rs12456284(SMAD4), Rs1625895(TP53), 
Rs1799983(NOS3), Rs4803455(TGFB1), Rs25487(XRCC1), 
Rs1800468(TGFB1), Rs2075685(XRCC4) 
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Case B and Case C: the comparison of separate VAE and classifiers versus VAE-MLP joint 

architectures.  

A comparison of prediction results from case B of separate VAE and classifiers (MLP, 

SVM, RF) and case C of a VAE-MLP joint architecture is shown in Figure 3-6. 

 

Figure 3-6. The comparison of performance by separate VAE and classifiers and VAE-MLP joint architectures 

, where the dimension of the latent space varies from 1 to 8. It shows our proposed joint 

architectures yield better performance than conventional methods of separate VAE and 

classifiers with various numbers of latent space. In the joint architecture, two dimensions were 

sufficient to encode the original inputs for this classification problem, reaching an average AUC 

of 0.781 (95% CI:0.737-0.808). Patients were represented on the 2-D latent space (𝑍𝑍) as points. 

Examples from some randomly selected outer-loop CVs are shown in Figure 3-7. Two classes 

RP=0 and RP=1 are clearly separable in training data (red dots versus blue dots) and are partially 

differentiated in the test data (yellow dots versus green dots) in Figure 3-7.  
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Figure 3-7. Visualization of latent variable Z of patient 

Case D: Combination of features selected by WP and latent variables from VAE-MLP joint 

architectures  

Here, the selected features by WP (case A) and the latent representation from VAE-MLP 

joint architecture (latent size=2) (case C) were combined and used as inputs in MLP, SVM and 

RF classifiers for RP2 prediction. The resulting AUCs were shown in Figure 3-8, together with 

AUCs of case A in for comparison purposes. Better predictive performance was achieved by 

combining the selected handcrafted features and the latent representation by VAEs, which is 

especially in the case of a small number of samples. The improvement may be because that the 

latent representation which takes all features into account, can compensate for the incomplete 

discrete representation by the handcrafted feature selection algorithms. When only a small 

portion of features are available for the predictive model, the complementary information was 

distinctively useful for such a heterogeneous data modeling problem. However, it is our 

conjecture that with more data samples become available, case C may supersede handcrafted 

features to eliminate the necessity of such a combination. 

Conclusion 

This work demonstrates the potential for a combination of traditional machine learning 

methods and DL VAE techniques in dealing with limited datasets for modeling radiotherapy 

toxicities. Specifically, the combination of selected features from MLP-based method WP and 
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latent variables from VAE-MLP joint architecture (case D) yielded the highest AUC compared 

to the AUCs by either handcrafted features (case A) or latent variables (cases B, C) individually. 

 

Figure 3-8. AUCs by combining WP features with latent Z in SVM (A) RF (B), MLP (C) classifiers 
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Chapter 4 Considering temporal associations among variables 

Summary 

In this study [34], temporal associations among biological and imaging information were 

modeled in specific neural network layers, i.e., 1D convolutional layer and 1D locally-connected 

layers. Compared to a fully-connected layer, these layers which fit the nature of longitudinal data 

can reduce the degree of freedom in the NNs and hence mitigate overfitting and improve 

generalization to unforeseen dataset. In order to model both longitudinal data and non-

longitudinal data, a composite architecture was proposed.   

Introduction 

 
The application of artificial neural networks (ANNs) with composite architectures into 

the prediction of local control (LC) of lung cancer patients after radiotherapy was investigated. 

The motivation of this study was to take advantage of the temporal associations among 

longitudinal (sequential) data to improve the predictive performance of outcome models under 

the circumstance of limited sample sizes. Two composite architectures: (1) a one dimension (1D) 

convolutional + fully connected and (2) a locally-connected+ fully connected architectures were 

implemented for this purpose. 
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Methodology 

Convolutional layer and locally-connected layer  

Unlike fully-connected layers in MLP, where all the nodes in adjacent layers are 

connected, there is another class of NN where nodes are “partially-connected”, e.g., locally-

connected layer and convolutional layer as presented in Figure 4-1 and Figure 4-2. In a locally-

connected layer, when calculating the value of a node, only the value of adjacent nodes in the 

previous layer will be summed up. In a convolutional layer [33], a weight sharing scheme will be 

further applied to make it shift-invariance.  

One can understand that using kernels in NNs as being equivalent to template matching 

or seeing" local information of a neighborhood while blocking information from far apart or less 

related regions, as depicted in Figure 4-2 (left) This can be also visualized by vectorizing the 

input and the output as in Figure 4-2 (right) from which one can realize locally-connected layer 

only connect to certain nodes within a layer when compared to a fully-connected neural network. 

Overall, a locally connected neural network only considers local relations (receptive field) while 

it decouples information far away in space and/or time allowing for efficient data representation 

and improved task learning. Such “partially-connected” properties will help consider 

associations among biological, imaging dosimetric and physical data, reducing free parameters in 

the architectures. Specifically, in our study, these partially-connected architectures were applied 

to account for longitudinal associations.  
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Figure 4-1 Diagram of connection in fully-connected, 1D locally-connected and 1D convolutional layers 

 

 

Figure 4-2. The diagram of connection in a 2D locally-connected architectures 

In a 1D locally-connected layer Figure 4-3, a, b, c denotes three different variables, and 

each was measured for three times during the span of the treatment. In this layer, only the inputs 
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that are corresponding to measurement of the same variable will be connected to the same 

output. In this case, the kernel size is 3 × 1 and stride size is 3 which the number of variables. 

One can also add more number of channels to increase the versatility of the locally-connected 

layers.  

  

 

 

Figure 4-3 An illustration of a locally-connected layers with stride=3 for a 1D input 

 

Figure 4-4 illustrates an example of applying a 1D convolutional layer to a 2D fictitious 

input whose size is 11 × 5, where 11 and 5 are lengths in temporal (vertical) and non-temporal 

axis (horizontal) respectively. It is worth noting that “1D” means a convolution kernel is 

convolved with the input over 1D to produce outputs, it does not put any constraint to the input 

size dimension. For a 2D input, a 2D convolutional layer is automatically reduced to 1D 

convolution when the width of a kernel equals to the width of inputs. Consequently, the width of 

a filter should be fixed to 5 in order to perform 1D convolution, while the length of a filter (say 

3) can be arbitrarily assigned. This layer has a filter of size 3 × 5 sliding along the time-axis by 1 

pixel (stride) at a time. In each position, an element-wise multiplication of the input patch and 

the filter is carried out. The corresponding results would then be one of the output neurons. 
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Figure 4-4. An illustration of a 1D convolutional layer for a 2D input, to which kernels of size 3x5 were applied where T 
represents the number of time points and f denotes the number of variables 

Dropout  

As the sample size is limited, overfitting can be a main concern. Intuitively, 

regularization techniques can resolve this issue by suppressing the noise in the training data. As a 

result, dropout, a neuroscience-inspired trick [86] was applied in our study. During the training, 

dropout will randomly select some portion (dropout rate, e.g., 20-50%) of nodes being ignored. 

They will not affect updated weights, as their contribution to the activation of downstream 

neurons is temporally removed. Indeed, dropout is currently a very effective ensemble method, 

performing averaging with NNs while mitigating the risk of memorizing the data. Hence, the 

resulting NN is capable of better generalization to unseen data and is less likely to over-fit 

(memorize) the training data. 
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Figure 4-5 The diagram of dropout technique applied in a fully-connected layer 

Composite architectures A, B designed for modeling both longitudinal and non-longitudinal data 

In our study, 18 features as in Table 4-1 are considered in predictive models including 

cytokines, SNPs, miRNA, dosimetric data and PET radiomics. Level of cytokines were measured 

pre-treatment, 2-week and 4-week during the treatment. PET radiomics were collected pre-

treatment and mid-treatment. Mean doses before and after the adaptation were both recorded.  

Composite architecture of 1D locally-connected layer/ 1D convolutional layers and MLP was 

proposed to take account of both longitudinal and non-longitudinal data.  

In the architecture A Figure 4-6, which is composed of convolutional layers and MLPs, 

the longitudinal data were first fed into 1D locally-connected layer, and then the reduced 

representation was concatenated with the rest of non-longitudinal data into a single vector which 

was subsequently fed into 2 fully-connected layer for the prediction of LC. A similar architecture 

B that composed of 1D locally-connected layer and MLP was also applied for the LC prediction.  
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Note that separate convolutional layers were considered for cytokine and other data 

because their time steps were not consistent. However, this separation did make sense, since 

variables of the same categories were usually more correlated with each other than variables of 

different categories. To better visualize this, a heat map of the correlation matrix of longitudinal 

data is shown in Figure 4-7. From the heat map, one can easily find distinguishable groups that 

would rationalize the separation assumption applied here. 

Table 4-1 Features that were applied for LC prediction. 

Categories  Variables 

Biological data:  cytokines (3*) 

                            SNPs (1) 
                            MiRNA(1) 

Eotaxin, interlukin-1-α 

SMAD9 

145-5p, 574-5p, 122-5p 

Dosimetric data (2)  Mean tumor doses 

PET image data (2) GLSZM.ZP,GLSZM.LGZE, GLRLM.GLN 
* The number in the brackets following the categories of variables denotes how many times the same variable was measured over 
in the treatment. 3* denotes longitudinal data. 
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Figure 4-6. The diagram of architecture A built base on Keras (built-in functions applied: Input, Con1D, Flatten, Concatenate, 
Dense). In the input bock, T and f represent the number of time points and the number of variables at each time point 
respectively. 

 

Figure 4-7. Absolute value of Spearman correlation among predictive features 

Performance evaluation 

In this study, AUCs as mentioned on page 34 as a discrimination measurement and Brier 

scores which is a calibration criterion was used to evaluate the performance predictive models. 

The most common formulation of the Brier score is defined as  

 
𝐵𝐵𝐵𝐵 =

1
𝑁𝑁�

(𝑝𝑝𝑖𝑖 − 𝑜𝑜𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 
Eq. 18 

, where 𝑝𝑝𝑖𝑖 and 𝑜𝑜𝑖𝑖 are the predictive result and true label of patient i respectively.  

Results 

The proposed neural network architectures were implemented with the Python DL library 

Keras [87]. The RMSprop optimization [88] method was implemented for the estimation of the 

network weights. 20 times of five-fold CVs were performed to evaluate the predictive models’ 

performance and assess their generalizability. The oversampling technique synthetic minority 

over-sampling (SMOTE) [89] was applied to the training data to mitigate the class imbalance 

problem. Architecture C, an MLP were also evaluated for a comparison purpose.  
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Predictive performance  

Table 4-2 is a summary of predictive performances of the three architectures A, B and C 

with their corresponding number of parameters (n). A single AUC in this table is an average of 

test AUCs from 25 times of 5-fold cross-validation (the random seed for a partition of folds was 

changed each time). Brier scores (BS) [90], as a measure of the accuracy of prediction 

performance based on the test prediction and test labels in those cross-validations without 

SMOTE (for a fair comparison), were also evaluated. 

Table 4-2 Cross-validated AUC predictions of LC in architectures A, B and C. The activation applied for the convolutional layers 
in architecture A and the size of a kernel of the convolutional layer for cytokines were shown in the table. For reference, Brier 

score of null models where all the patients were given an LC probability as population LC rates is 0.209. 

Architecture Number of free parameters AUC with 95%CI Brier score 
A: 

“ReLU” 1 × 2 
54 0.785 (0.752-0.792) 0.189 

A: 
“ReLU” 2 × 2 

56 0.786 (0.757-0.796) 0.189 

A: 
“linear” 1 × 2 

54 0.814 (0.787-0.823) 0.182 

A: 
“linear” 2 × 2 

56 0.812 (0.779-0.820) 0.182 

A: 
“sigmoid” 1 × 2 

54 0.832 (0.807-0.841) 0.157 

A: 
“sigmoid” 2 × 2 

56 0.829 (0.804-0.838) 0.160 

B 60 0.802 (0.775-0.811) 0.161 
C 231 0.778 (0.751-0.790) 0.190 

*A lower Brier score indicate a better performance. 

In general, architecture A which applied a 1D convolutional layer for longitudinal data 

yielded the best performance. Among the three implemented activations, “sigmoid” activation 

showed the best AUC of 0.83, “linear” activation also achieved a decent AUC of 0.81. However, 

the “ReLU” activation did not work well in our case, achieving an AUC of only 0.79. The size of 

the kernel, specifically the length of the kernel which determined how many time steps would be 

considered in a single kernel almost did not affect the results. The AUCs under the two different 
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settings of the length of a kernel were roughly the same (e.g., DeLong test of architecture A with 

“sigmoid” activation showed a p-value 0.814). Architecture B, which applied locally-connected 

layers to the longitudinal data yielded an AUC of 0.80. This slightly outperformed the 

architecture C MLP in the prediction performance (AUC of 0.78).                               

 

Figure 4-8. Cross-validated AUC of architecture A, B and C 

Analysis of trained architecture 

Further analysis of weights gives one some insights about how the architecture extract 

information for prediction. The weights of locally-connected layers in architecture B for 

cytokines are shown in Table 4-3. as well as Spearman correlation coefficients between LC and 

those variables. Clearly, the effect of the locally-connected layer is to weigh the cytokines at 
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different time points, likely giving more weight to the more relevant (to LC) time point. The 

relative change of cytokines is not as considered as all the weights are with the same sign. This is 

consistent with the fact, the change of cytokines showed a weak correlation with LC, as in Table 

4-3. “Change_corr” row, where the correlation between LC and 2_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑝𝑝𝑝𝑝𝑝𝑝, 4_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −

2_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 cytokines are shown. Similarly, weights corresponding to image features and dose 

inputs were also shown in Table 4-3. For variables GLSZM.ZP and GLRLM.GLN, clearly, 

weights corresponding to pre-measurement are far larger than those of mid-measurement, which 

is consistent with results of Spearman correlation, where the mid-measurement of the two 

variables showed weaker correlation with LC (correlation coefficient -0.07 and 0.008, 

respectively.) For dose and GLSZM.ZP whose pre- and mid-measurement both yield relatively 

higher correlations, weights seem to be roughly equally given to the two time points. In general, 

locally-connected layers were able to extract important and relevant information from the inputs 

to eventually aid the prediction task, which are consistent with individual correlations in this 

data. 

Table 4-3. Weights corresponding to cytokines, dose and image features as well as Spearman rank correlation between raw 
values of cytokines (Corr); and the change of cytokines (Change_corr) 

 pre 2_week 4_week 
Eotaxin 

 
Weights -0.25 -0.05 -0.21 

Corr -0.176 -0.136 -0.175 
Change_corr -0.013         - 0.035 

Interlukin-1-α 
 

Weights -0.10 -0.07 -0.18 
Corr -0.210 -0.175 -0.216 

Change_corr 0.05          -0.076 
 pre mid 

Mean tumor 

doses 

Weights 0.28 0.22 
Corr 0.273 0.231 

Change_corr - 0.016 

GLSZM.ZP Weights 0.42 0.52 
Corr 0.148 0.123 

Change_corr -0.122 
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GLSZM.LGZE W -0.44 -0.01 
Corr -0.18 -0.07 

Change_corr -0.070 
GLRLM.GLN Weights 0.84 0.11 

Corr 0.10 0.008 
Change_corr 0.072 

Survival analysis of local control   

It is worth noting that although we regarded the outcome prediction task here of LC as a 

binary classification problem, our proposed method is still valuable for survival analysis, where 

time-to-event is considered. In the medical field, survival analysis is a desirable tool to estimate 

the time of death, relapse or development of an adverse reaction for a group of patients. In this 

study, we adopted Kaplan-Meier estimator using the R package prodlim [91] to estimate local 

progression (LP) free (e.g., LC=0) survival probability for patients in the cross-validated test sets 

as predicted by architecture A outputs. The threshold between the two groups was set such that 

the number of high-risk patients equals to patients with LP in the original dataset to mitigate data 

imbalance issues.  As shown in Figure 4-9, as expected, the patient group with the higher risks of 

LP has poorer performance over time. The difference between the two groups is distinguishable 

across all time points and was confirmed by log-rank test (p-value <0.0001).  

 

Figure 4-9. Survival curves with 95% CI for patient groups defined by 1DCNN-MLP outputs (threshold=0.397).  (Based on 
survival time, true labels and predictions by architecture C for test patients in the cross validation 
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Conclusion  

This work demonstrates the potential of 1D convolutional layers and 1D locally-

connected layer in modeling temporal associations. The proposed composite architectures 

managed to model both longitudinal data and non-longitudinal data with a reduced number of 

parameters. The proposed models yield better performance than plain MLPs which ignore such 

associations.  
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Chapter 5 Joint actuarial prediction 

Summary 

In this study, proposed architectures took into account complex interactions among 

biological, imaging and physical variables, conducting dimensionality reduction and prediction 

simultaneously. Moreover, time-to-event information is considered for actuarial prediction. 

Multi-endpoints prediction i.e., joint prediction of RP2 and LC was considered in a single 

architecture. 

Introduction 

In this study, (a) an actuarial DNN (ADNN) architecture based on dosimetric information 

ADNN-DVH was proposed to extract morphologic characteristics of DVH and predict LC and 

RP2. Compared with analytical Lyman models and log-logistic models, it further accounts for 

information other than “average” doses (gEUD) and can reveal non-linear associations between 

DVH and endpoints. (b) An ADNN architecture ADNN-com that integrates complex interactions 

among biological, imaging and dosimetric information was proposed to predict LC and RP2 

respectively. (c) An ADNN architecture ADNN-com-joint was proposed to integrate different 

categories of patient specific data as well as to do multi-endpoints prediction, i.e., prediction of 

LC and RP2 were generated simultaneously from a single architecture. Additionally, temporal 

information was considered in all of our proposed outcome models. This allows the prediction of 

time-to-event in addition to only classifying events, as commonly practiced in the outcome 

modeling literature. 
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Methodology 

Generalized Lyman and log-logistical models 

For comparison purposes, analytical Lyman and log-logistic models were also conducted 

to predict RP2 and LC. As described on page 16, in these models, simple functions e.g., CDF of a 

Gaussian distribution and a rational polynomial function are chosen to represent the dependence 

of NTCP and TCP on normal tissue dose and tumor dose. A generalized Lyman models [92] can 

further take into account time-to-event/censored time. The probability that a complication is 

observed during a given follow up time 𝜏𝜏 is calculated as a product of a patient’s NTCP (as in 

standard Lyman model Eq. 4) and the conditional probability that the patient experiences toxicity 

at time 𝜏𝜏 given that toxicity will eventually occur, as shown in Eq. 19. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐷𝐷,𝐷𝐷50,𝑚𝑚,𝑛𝑛)𝐹𝐹(𝜏𝜏) Eq. 19 

, where 𝐹𝐹(𝜏𝜏) is a CDF of a log-normal distribution 𝑓𝑓(𝜏𝜏). Similarly, a lognormal distribution can 

be also adopted to describe time to progression. The probability that a progression is observed 

can be calculated as a product of a patient’s TCP (as in log-logistic model Eq. 3) and the 

conditional probability that the patient experiences progression given the progression will 

eventually occur.  

Model ADNN-DVH 

In ADNN-DVH as shown in Figure 5-1A, 3 blocks of 1D convolutional layers and 

average pooling layers are applied to differential DVHs. Reduced representations of DVH are 

then concatenated with structure volume and mean dose, serving as inputs of two fully-connected 

layers. Outputs of ADNN-DVH are conditional event-free probabilities through different time 

intervals. Specifically, in a situation where 𝑇𝑇 = 3 and the output is denoted as (𝑃𝑃𝑇𝑇1 ,  𝑃𝑃𝑇𝑇2 ,  𝑃𝑃𝑇𝑇3) as 

shown in Figure 5-2, the probabilities that an event happens in time interval 𝑇𝑇1,𝑇𝑇2 and 𝑇𝑇3 are 
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1 − 𝑃𝑃𝑇𝑇1 ,𝑃𝑃𝑇𝑇1(1 −  𝑃𝑃𝑇𝑇2) and 𝑃𝑃𝑇𝑇1𝑃𝑃𝑇𝑇2(1− 𝑃𝑃𝑇𝑇3) , respectively.  Generally, in the situation of 𝑇𝑇 

intervals, log-likelihood function for an individual with failure in interval 𝑗𝑗 is defined in Eq. 20. 

     𝑙𝑙 = (1 − 𝑃𝑃𝑇𝑇𝑗𝑗)∏ 𝑃𝑃𝑇𝑇𝑖𝑖
𝑗𝑗−1
𝑖𝑖=1  Eq. 20 

The log-likelihood function for an individual without experiencing events through interval 

𝑗𝑗 (either censored or event-free during follow-up) is defined in  Eq. 21. 

      𝑙𝑙 = ∏ 𝑃𝑃𝑇𝑇𝑖𝑖
𝑗𝑗
𝑖𝑖=1      Eq. 21 

 

 

 

Figure 5-1. Architecture of model ADNN-DVH (A) and ADNN-com (B) 
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Total loss function is defined as a negative average of log-likelihood function over all the 

patients. Two N × T matrices 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Eq. 22 and Eq. 23 are defined for convenience of 

calculation, where N denotes the number of patients and 𝑇𝑇 denotes the number of time intervals. 

Hence, the loss function can be calculated by Eq. 24 and Eq. 25. 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖,𝑗𝑗 = {1 if an event occured in time interval 𝑗𝑗 for patient 𝑖𝑖  
0 otherwise

                                                          Eq. 22 

 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = {1 if an event have not occured up to time interval 𝑗𝑗 for patient 𝑖𝑖  
0 if an event occured in or before time interval 𝑗𝑗 for patient 𝑖𝑖  Eq. 23 

 

 𝐴𝐴 = log[1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⨀(1 − 𝑃𝑃)] + log[1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⊙ 𝑃𝑃], a 𝑁𝑁 × 𝑇𝑇 matrix  Eq. 24 

 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =

1
𝑁𝑁��𝐴𝐴𝑖𝑖,𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 
Eq. 25 

 

Figure 5-2. Calculating the probability that an event occurred in each time interval from output 

Model ADNN-com 

In ADNN-com, biological and imaging information is considered together with dosimetric 

information for the prediction of RP2 and LC. Three VAEs were applied to conduct 

dimensionality reduction for PET radiomics, cytokines and miRNA data, respectively. 

Specifically, a trained VAE in an architecture ADNN-miRNA in Figure 5-3 were used for miRNA 

data. 80 patients from TCGA-LUAD and TCGA-LUSC who had follow-up information (i.e., 
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overall survival and LC) and treated with adjuvant radiotherapy on primary tumor sites were 

included in source learning task in transfer learning [93], which allows more reliable and 

generalizable representation learning. The latent representations from these VAEs were then 

merged with structure volumes, mean doses and reduced representations of DVH from ADNN-

DVH into concatenated vectors, which were then fed into Surv-Net.  

For RP2 prediction, inputs of subsequent Surv-Net were composed of lung mean dose, 

lung volume, reduced representation of lung DVH, miRNA and cytokines. For LC prediction, 

inputs of Surv-Net are composed of tumor mean dose, tumor volume, reduced representation of 

tumor DVH, PET tumor radiomics, miRNA and cytokines. The total loss of architecture ADNN-

com is the sum of VAE losses and loss of Surv-Net. 

 

Figure 5-3. Architecture ADNN-miRNA which is applied on TCGA data that realize joint prediction of LC and overall survival 
(SV) 

Model ADNN-com-joint  

An ADNN-com-joint model as presented in Figure 5-2B realized joint prediction of RP2 

and LC. It can be regarded as a combination of architectures ADNN-com for RP2 and LC. 

However, the VAEs that are applied for dimensionality reduction of cytokines and miRNA are 
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shared between RP2 and LC. Additionally, Surv-Nets for prediction of RP2 and LC are trained 

simultaneously. 

Table 5-1. Details of optimal parameters in analytical models and parameters of ADNN architectures 

 𝐷𝐷50 Median (95% CI) m/k Median (95% CI) n Median 
(95% CI) 

Analytical  
Models  

Lyman 20.00 (11.90-47.24) 0.55 (0.26-0.890 2.51 (0.541- 
35.38) 

Log-
logistic  

51.79 (35.22-62.61) 3.21 (1.61-5.85) -12.41 (-
27.81- -
9.93) 

  1D-CNN: 
3 conv layers (kernel size, 
num of channels)  
3 pooling layers (kernel 
size) 

VAE:  
Num of nodes in  
(hidden layers, Latent 
variables) 

Survival net 
2 dense 
layers   
(num of 
nodes) 

ADNN-
DVH 

RP2 Conv (12, 2), (6, 4), (3, 1) 
Pooling 10, 9, 5 

N/A (5, 2) 

LC Conv (11, 2), (6,4), (3,1) 
Pooling 9, 9, 8  

N/A (5, 2) 

ADNN-
com  

RP2 Conv (12, 2), (6, 4), (3, 1) 
Pooling 10, 9, 5 

Cytokines (10, 2) (5, 2) 

LC Conv (11, 2), (6,4), (3,1) 
Pooling 9, 9, 8 

Cytokines (10, 1 ) (5, 2) 
PET (10, 2) 

ADNN-
com-joint 

RP2 Conv (12, 2), (6, 4), (3, 1) 
Pooling 10, 9, 5 

Cytokines 
 (10, 3=2[RP]+1[LP]) 

(5, 2), 

LC Conv (11, 2), (6,4), (3,1) 
Pooling 9, 9, 8 

PET (10, 2)  (5, 2) 

ADNN-
miRNA 

RP2 N/A miRNA (8, 4) (5, 2) 

Surv N/A (5, 2)  
 

Performance evaluation and validation  

Performance evaluation  

Harrell’s c-index (c-index) [94] can evaluate the goodness of fit for models that produce 

time-dependent risk scores. Supposing, a pair of patients (𝑖𝑖, 𝑗𝑗) have risk scores (𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗) and time-

to-event  (𝑇𝑇𝑖𝑖,𝑇𝑇𝑗𝑗), with 𝑆𝑆𝑖𝑖 > 𝑆𝑆𝑗𝑗. If 𝑇𝑇𝑖𝑖 < 𝑇𝑇𝑗𝑗, the pair is regarded as a concordant pair, and if 𝑇𝑇𝑖𝑖 > 𝑇𝑇𝑗𝑗, 
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it is a discordant pair. C-index is then defined as a ratio of concordant pairs to a sum of concordant 

pairs and discordant pairs. This concept can be easily adopted for Cox models, which produce a 

single risk score for each patient. However, as our models allow hazard probability’s dependence 

on input data to vary with time, there is no single score (different scores in different intervals) 

existing for an individual. Alternatively, c-index for binary data (Eq. 26), which is based on risk 

score 𝑆𝑆 and event 𝐿𝐿 attaching to certain follow-up time 𝜏𝜏 is adopted, and patients with censored 

time before 𝜏𝜏 (censored data: 𝑑𝑑(𝜏𝜏) = 0) were excluded from calculation. Specifically, c-index in 

Eq. 26 can be regarded as an AUC [95], except it additionally considers time-to-event and censored 

time. In our study, as events i.e., local progression and RP2 are relatively sparse, the performance 

was designated to be evaluated at 𝜏𝜏 =maximal event time in each dataset to cover all events, 

accordingly, any patient with follow-up less than 𝜏𝜏 (censored) are excluded from the calculation: 

𝑐𝑐 =
∑ 1�𝑆𝑆𝑖𝑖(𝜏𝜏) > 𝑆𝑆𝑗𝑗(𝜏𝜏)�𝑖𝑖≠𝑗𝑗 1�𝐿𝐿𝑖𝑖(𝜏𝜏) = 1,  𝐿𝐿𝑗𝑗 = 0�𝑑𝑑𝑗𝑗(𝜏𝜏)

∑ 1�𝐿𝐿𝑖𝑖(𝜏𝜏) = 1, 𝐿𝐿𝑗𝑗 = 0�𝑖𝑖≠𝑗𝑗 𝑑𝑑𝑗𝑗(𝜏𝜏)
 Eq. 26 

 

To further evaluate the performance of ADNN-com, the area under a free-response ROC 

(AU-FROC) curve [96], widely used in the diagnostic classification where cases might contain 

two or more task-related lesions, was adopted. Similar to ordinary ROC curves, the ordinate in a 

FROC plot is true positive rate (TPR), however, this TPR is defined over all endpoints. The 

abscissa of the FROC plot is the average (over all endpoints) false positive rate per case. AU-

FROC is able to summarize performance and gives an overall evaluation of both RP2 and LC 

prediction.  

Validation  

Stratified 5-fold CV was conducted on the 117 patients in accordance with TRIPOD level 

2 type a criterion [85], i.e., data were randomly split into two groups: one for model development, 
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the other for evaluation of performance. 100 different splits were conducted to consolidate the 

evaluation. 95% confidence intervals (CIs) were deduced with the quantile function of the norm 

distribution after the variance of c-index was calculated as defined by DeLong [97]. Additionally, 

a dataset containing 25 newly treated patients was used in the independent test following TRIPOP 

level 2 type b criterion, i.e., data were split based on time, which is thought as a stronger design 

compared to random splits. Moreover, 327 patients from RTOG0617 protocol were considered for 

external validation (TRIPOD level 3). 

 

Figure 5-4. Training, validation and test processes of proposed models and analytical models. 

Results 

Following TRIPOD criteria level 2 type a (random split), 20 times of stratified 5-fold 

cross-validation in UM 117 patient dataset were conducted. In each split, a range of time 

intervals was determined in a way to ensure there were the same number of events that happened 

in each interval in the training data. Lyman/log-logistic models were trained and tested in the 
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same way as proposed models for comparison purposes. Their optimal values of free parameters 

are presented in Table 5-1. Cross-validated c-indexes with 95% confidence intervals for both 

analytical and ADNN models were calculated and summarized in Table 5-2. The corresponding 

ROC curves of RP2 and LC prediction by the best models ADNN-com-joint are presented in 

Table 5-2.  

Cross-validated results and independent test results 

Our models were independently tested on an independent dataset of 25 prospectively 

treated patients at the University of Michigan following TRIPOD level 2b, and the corresponding 

results were shown in Table 2. For external validation (TRIPOD level 3), as RP2 was not 

available in the RTOG0617, RP3 prediction was tested instead of RP2, which provides higher 

sensitivity to toxicity. 327 patients were used to validate the proposed models with results shown 

in Table 5-2. 

Table 5-2. Cross-validated and independent testing C-index results 

Model evaluation on UM 117 patients 
C-index (95% CI) RP2 LC RP2&LC 
Lyman/log-logistic 0.613 (0.583-

0.643) 
0.569 (0.545-0.594) N/A 

ADNN-DVH 0.660 (0.630-
0.690) 

0.727 (0.700-0.753) N/A 

ADNN-com 0.691(0.661-
0.722) 

0.735(0.710-0.761) N/A 

ADNN-com-joint 0.705 (0.676-
0.734) 

0.740 (0.715 -
0.765) 

0.720 (0.671-0.801) 

Independent test on 25 newly-treated patients  
Lyman/log-logistic 0.588 0.573 N/A 

ADNN-DVH 0.667 0.706 N/A 
ADNN-com 0.683 0.713 N/A 

ADNN-com-joint 0.691 0.721 0.709 
RTOG 0617 

C-index RP3 LC N/A 
Lyman/log-logistic 0.736 0.554 N/A 

ADNN-DVH 0.762 0.618 N/A 
. 
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Performance of proposed models and analytical models 

Generally, ADNN-DVH models which were based solely on dosimetric information 

outperformed traditional Lyman/log-logistic models in RP2/LC prediction. Specifically, ADNN-

DVH models showed a cross-validated c-index of 0.660 (95% CI: 0.630~0.690) on RP2 prediction 

and 0.727 (95% CI: 0.700~0.753) on LC prediction. While Lyman model showed a cross-validated 

C-index 0.613 (95% CI: 0.583~0.643) on RP2 prediction and log-logistic model showed a cross-

validated C-index 0.569 (95% CI: 0.545~0.594) on LC prediction. In both independent and 

external tests, ADNN-DVH models yielded better performance than Lyman/log-logistic models. 

Specifically, ADNN-DVH yielded a C-index 0.736 (RP3) on RP prediction, and 0.618 on LC 

prediction on the external datasets. 

Architectures ADNN-com which incorporated image and biological information further 

improved the performance over ADNN-DVH. And architectures ADNN-com-joint which are based 

on ADNN-com and realized joint prediction showed the best performance, with a cross-validated 

C-index 0.705 (95% CI: 0.676~0.734) and test C-index 0.691 on RP2 prediction, and a cross-

validated C-index 0.740 (95% CI: 0.715 ~0.765) and test C-index 0.721 on LC prediction. It also 

yielded a cross-validated joint-prediction AU-FROC 0.720 (95% CI: 0.671 ~0.801) and test AU-

FROC 0.709. 

Visualization of convolutional layer by Grad-cam 

Gradient-weighted class activation mapping (Grad-CAM) [98], a class-discriminative 

localization technique was applied to generate visual explanation for convolutional layers in our 

model. Specifically, a Grad-CAM as defined in Eq. 27 was calculated for each convolutional 

layer to understand the importance of each neuron for a decision of interest. In Eq. 27, c denotes 

an arbitrary output; 𝐴𝐴𝑘𝑘 ∈ ℝ𝑢𝑢×𝑣𝑣 is the 𝑘𝑘𝑡𝑡ℎ feature map with height 𝑢𝑢 and width 𝑣𝑣; 𝛼𝛼𝑘𝑘𝑐𝑐  is the 
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weight of the 𝑘𝑘𝑡𝑡ℎ feature map in discriminating class c. The weight 𝛼𝛼 as shown in Eq. 28, is 

defined as gradients of score for class 𝑐𝑐, 𝑦𝑦𝑐𝑐 with respect to feature maps 𝐴𝐴𝑘𝑘 of a convolutional 

layer followed by a global average pooling. The weight 𝛼𝛼 captures the importance of feature map 

𝑘𝑘 for a target class 𝑐𝑐. 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(�𝛼𝛼𝑘𝑘𝑐𝑐𝐴𝐴𝑘𝑘)
𝑘𝑘

 Eq. 27 

𝛼𝛼𝑘𝑘𝑐𝑐 =
1
𝑍𝑍��

𝜕𝜕𝑦𝑦𝑐𝑐

𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗𝑖𝑖

 Eq. 28 

Grad-CAM can highlight (assign higher values to) regions in an activation map that are 

important for a decision of interest. By interpolation, one can re-size Grad-CAM to the size of 

original inputs. By comparing the interpolated Grad-CAM and original inputs, one would clearly 

know which regions of original input contribute most to a decision of interest.  

 

 

Figure 5-5. Summation of Grad-CAMs for patients in different toxicity groups in convolutional layer 1 (A), 2 (B) and 3 (C) 
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 Figure 5-5 shows the summation of Grad-CAMs for patients in RP2=0 and RP2=1 group 

in different convolutional layers. In the 1st layer, Grad-CAM assigned relatively higher values to 

the lower-dose region, which may relate to the distribution in the original inputs. In the 2ed layer, 

the highlighted region slightly shifts to the right. In the 3th convolutionally layer, Grad-CAM 

becomes more focused on dose higher than 20 Gy for the determination of toxicity. Specifically, 

compared to RP2=0 group, Grad-CAM for RP2=1 group has relatively higher values in the the 

higher dose region (dose>20Gy). In Figure 5-6, regions of differential DVHs that are 

correponding to highlighted parts (> 90% of maximal values) in Grad-CAMs in two toxicity 

groups are compared. It shows that the plot of RP2=1 group in the 3th convolutional layer are 

more intense in the higher dose region compared to that of RP2=0 group. Generally, the 

visualization by Grad-CAMs indicates CNN graduately become more focused on higher-dose 

regions for the determination of toxicity from lower-level to higher-level layers. 

 

Figure 5-6. Summation of Grad-CAM (high-intensity regions with 90% threshold)-weighted differential DVHs for patients in 
RP2=0 and RP2=1 groups in convolutional layer 1 (A), 2 (B) and 3 (C) 



 66 

Conclusion  

This study proposes several deep learning architectures that outperform analytical models 

in the actuarial prediction of LC and RP2. An ADNN-DVH further accounts for information 

other than the average dose (as in analytical models), i.e., morphological characteristics extracted 

from DVH in the prediction of LC and RP2. An ADNN-com further integrates complex 

interactions among biological, imaging and dosimetric information. An ADNN-com-joint 

realizes multi-endpoints prediction which make outcome models more realistic clinical decision 

support tools.  

.
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Chapter 6 Discussion and future perspectives   

Discussion 

In our study, DL techniques have been incorporated into outcome modeling for LC and 

RP2 prediction in NSCLC patients. Compared with analytical models and traditional machine 

learning models, our proposed outcome models, e.g., (1) VAE-MLP joint architectures can 

combine feature engineering and prediction into a single procedure, (2) VAE-MLP-joint and 

ADNN-com architectures consider complex radiotherapy interaction among physical, biological 

and imaging variables, (3) 1D CNN-MLP architectures model longitudinal associations among 

sequential measurements, (4) ADNN-DVH and ADNN-com architectures incorporate time-to-

event information for actuarial prediction, (5) Model ADNN-com-joint integrate multi-endpoints 

(joint) prediction. It has been shown that (1) latent variables from VAE-MLP were able to 

compensate traditional handcrafted features in RP2 prediction, (2) 1D CNN-MLP joint 

architectures outperformed plain MLPs that do not consider longitudinal association in LC 

prediction, and (3) ADNN architectures yielded better results in LC and RP2 prediction 

compared to classical Lyman and log-logistic models.  

Limitation of current work and future perspectives 

Other cancer sites and treatment modalities  

In our study, proposed methodologies are applied only on NSCLC patients as a proof of 

concept. However, as temporal and spatial heterogeneity [99] exists in tumor microenvironment 

universally, outcome modeling that can help personalized treatment and adaptive therapy is 

expected regardless of cancer sites and treatment modality for improvement of treatment 
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response. For instance, breast cancer is a common cancer type worldwide. As breast cancer 

survivors frequently experience a repertoire of symptoms that are detrimental to their quality of 

life. Outcome modeling may be a key to consider the trade-off between minimizing side effects 

and maximizing tumor eradication. Furthermore, currently, breast cancer patients are usually 

classified into different subtypes [100] according to their gene expression profiling, which 

provides useful information for the decision of treatment choice. This probably indicates 

outcome models that can account for biological information may contribute to new personalized 

treatments. In the case of head and neck cancer [101], large anatomic variations including 

bodyweight loss, tumor shrinkage and parotid gland displacement can be commonly observed 

during the course of radiotherapy. As a result, outcome modeling is a desirable tool for deciding 

whether to adapt treatment or guiding the selection of adapted treatment options. To extend our 

methodologies to other cancer sites, different sets of imaging, biological, dosimetric and clinical 

information may be considered. The choice of information would depend on the availability of 

information, clinical routines or any prior knowledge for a specific site of cancer.  

Also, radiation therapy is usually combined with other treatment modalities e.g., 

chemotherapy, surgery and most recently, immunotherapy. Outcome models that can incorporate 

treatment information of different modalities and study the interactions among radiation in 

radiotherapy, chemical agents in chemotherapy, and biological substances (e.g., immune 

checkpoint inhibitors, antibodies, treatment vaccine) in immunotherapy [102] can potentially 

provide guidance on how to combine different treatment modalities to achieve better treatment 

than using any one of them alone. 
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Methodology 

As mentioned, with the current advances of high throughput biotechnology, more patient 

specific information e.g., genomics, proteomics transcriptomics, metabolomics patient specific 

information becomes available. However, current outcome models are only able to learn 

interactions among those variables based on available datasets, but are not able to incorporate 

any prior domain knowledge e.g., metabolic, genetic and signal transduction pathways [103] into 

these models. It is found that many genetic and epigenetic alterations affecting cell proliferation, 

death and migration can map to signaling pathways [41]. Changes in the tumor 

microenvironment, angiogenesis and inflammation are also reflected in signaling networks. 

Graph neural networks (GNNs) [104] are DL methods in the non-Euclidean domain, which take 

data in the form of graphs as input. GNNs may be applied directly to networks of biological 

pathways to learn efficient representation from it and predict treatment response. GNNs may also 

help incorporate findings from bottom-up approaches [9] of outcome modeling, which utilize 

first basic principles of physics, chemistry and biology to model cellular damage temporally and 

spatially in response to treatment.  

Furthermore, current outcome models only produce a predictive result of treatment 

response. They can provide guidance but are not able to generate a recommendation for 

treatment options or prescriptions directly. Hence, a scheme, e.g., reinforcement learning (RL) 

[38] that can figure out optimal strategies will potentially offer direct aid to clinical decision 

making. RL can be applied to adaptive treatment planning, e.g., how to optimize prescriptions 

for patients by learning from during treatment information. It is designed to achieve a definite 

goal by optimizing a reward function. The learning process of an RL algorithm is through 

interaction with an environment so that the RL user (also called an agent) tries to earn the most 
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reward to obtain the designated goal. One of the obstacles of applying RL into radiotherapy 

treatment is no accurate reward function based on ground truth exists, however, outcome 

modeling that can generate robust prediction results of endpoints information as developed in 

this thesis can be incorporated into the RL framework to provide better guidance when searching 

for the optimal treatment strategy [38].  

Clinical application  

To make data-driven outcome models real clinical tools, efforts should be made to 

improve the interpretability of machine learning algorithms. Interpretability is particularly 

important as it can help act as a fail-safe against a scenario where algorithms may produce 

flawed results due to unforeseen bugs. Existing machine learning algorithms, specifically DL 

algorithms are known to suffer from a tradeoff between accuracy and interpretability [36].  

 

Figure 6-1.  The accuracy and interpretability of approaches in radiation outcomes prediction and the location of potential ideal 
approaches with more balanced accuracy and interpretability for the outcome modeling. Besides the notations introduced in the 
paper, the rest of abbreviations in the figure can be described as follows, “GAM”: generalized additive models; “HBN”: 
hierarchical Bayesian Network; “NBN”: naïve Bayesian network; “CART”: classification and regression trees; “EN”, elastic net; 
“LR”, logistic regression; “MB”, MediBoost; “RR”, ridge regression; “LSVM”, linear support vector machine; “DT”, decision 
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tree; “GBM”: gradient boosting machine. Adapted from “Balancing accuracy and interpretability of machine learning approaches 
for radiation treatment outcomes modeling” by Yi Luo and et al., 2019, BJR open 1(1), p.20190021. Reprinted with permission.  

 

More work regarding interpreting and explaining machine learning algorisms’ decisions 

[105] is expected. In our study mentioned in Chapter 3 above, MLP-based methods WP, FQI and 

FSPP were investigated to select important features, those methods can be also regarded as a 

means to interpret an MLP model. Other methods e.g., sensitivity analysis which is based on a 

local measure of variation such as local gradient, Taylor decomposition which decompose the 

learned function as a sum of relevance scores according to Taylor expansion, and relevance 

propagation which moves in the reverse direction of generating prediction progressively 

redistributing the prediction score until the input have been previously applied into fields such as 

ecological model, mutagenicity and imaging recognition [106]. These methods can potentially 

provide insights into the logic behind predictions made by outcome models by revealing 

important variables for clinical decision making. Alternatively, techniques that tackle this issue 

by building a prototype in the input domain, which is interpretable and representatives of learned 

concepts can be also considered. Activation maximization (AM) searches for an input pattern 

that produces maximum response in the outputs [107]. When applied to image recognition, those 

prototypes take the form of synthetic images that would be classified as one class with high 

probability. In our third study, Grad-CAM techniques have been applied for the visualization of 

CNN models. This technique can also provide insights into which regions of original input 

contribute most to a decision of interest. One can also enforce expert knowledge into AM to 

focus on more probable input space and generate a more realistic prototype. In the outcome 

models, AM can potentially help generate synthetic data of patients that are more or less likely to 

experience toxicity or progression.  
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Additionally, human-in-to-loop (HITL) [108] concepts, which can guide to optimize the 

entire learning process by introducing human-computer interaction into the system may be used 

in model development. Machines are recognized for their capabilities of learning from a vast 

dataset, while humans can make descent decisions even with scare information. Incorporating 

experts’ intelligence into AI systems may improve both accuracy and interpretability for 

practical decision making in the radiation oncology clinic. Moreover, it would increase 

physicians’ confidence in applying computational tools, hence, make outcome models a more 

viable clinical tool.  
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Appendices  

Abbreviations 

3D-CRT: three-dimensional conformal radiation therapy 

ADNN: Actuarial deep neural network 

ANN: artificial neural network 

AM: Activation maximization 

AUC: area under ROC curve 

BED: biological effective dose 

BS: Brier scores 

CI: confidence interval 

CNN: convolutional neural network 

CNV: copy number variations 

CT: computed tomography 

CTCAE: thee National Cancer Institute 

CTV: clinical tumor volume 

CV: Cross-validation 

DL: deep learning  

DVH: dose volume histogram 

EBRT: external beam radiation therapy 

FPR: false positive rate  

FQI: feature quality index 
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FSPP: feature-based sensitivity of posterior probability 

GLCM: gray level co-occurrence matrix 

GLRLM: gray level run length matrix 

GLSZM: gray level size zone matrix 

GNN: Graph neural networks 

GTV: gross tumor volume 

Gy: gray (dose unit) 

HITL: human-in-to-loop 

IMRT: intensity modulated radiation therapy 

ITV: internal target volume 

KL: Kullback–Leibler 

LC: local control 

LINAC: medical linear accelerator  

LOOCV: leave-one-out cross validation  

LQ: model: linear quadratic model 

MLP: multi-layer perceptron 

MRI: magnetic resonance imaging 

MSE: mean squared error 

NGTDM: neighborhood gray-tone difference matrix 

NN: neural networks 

NTCP: normal tissue complication probability 

PCA: principal component analysis  

PFTs: pulmonary function tests 
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PTV: planning target volume 

RF: random forest 

RL: reinforcement learning 

RNN: recurrent neural network 

ROC: receiver operative characteristic 

RP: radiation pneumonitis 

RTOG: Radiation Therapy Oncology Group 

SCLC: small cell lung cancer 

SMOTE: synthetic minority over-sampling techniques 

SNP: single-nucleotide polymorphism 

SVM: support vector machine 

TCGA: The Cancer Genome Atlas 

TCP: tumor control probability 

TPR: true positive rate 

TRIPOD: transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis 

UAT: Universal Approximation Theorem 

VAE: variational auto-encoder 

VMART: volumetric-modulated arc therapy 

WP: weight pruning 

miRNA: micro RNA 
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