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ABSTRACT

Machine learning algorithms have opened up countless doors for scientists tackling

problems that had previously been inaccessible, and the applications of these algo-

rithms are far from exhausted. However, as the complexity of the learning problem

grows, so does the computational and memory cost of the appropriate learning algo-

rithm. As a result, the training process for computationally heavy algorithms can take

weeks or even months to reach a good result, which can be prohibitively expensive.

The general inefficiencies of machine learning algorithms is a significant bottleneck

slowing the progress in application sciences. This thesis introduces three new meth-

ods of improving the efficiency of machine learning algorithms focusing on expensive

algorithms such as neural networks and recommender systems. The first method dis-

cussed makes structured reductions of fully connected layers in neural networks, which

causes speedup during training and decreases the amount of storage required. The

second method presented is an accelerated gradient descent method called Predictor-

Corrector Gradient Descent (PCGD) that combines predictor-corrector techniques

with stochastic gradient descent. The final technique introduced generates Artificial

Core Users (ACUs) from the Core Users of a recommendation dataset. Core Users

condense the number of users in a recommendation dataset without significant loss

of information; Artificial Core Users improve the recommendation accuracy of Core

Users yet still mimic real user data.
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CHAPTER I

Introduction

1.1 Background

To say that Machine Learning (ML) is a ‘powerful tool’ would be a gross over-

simplification of this area’s true potential. In this century we’ve seen problems many

considered insurmountable gracefully divined by ML algorithms. The game of Go is

considered one of the most complex board games; events in one part of the board can

be influenced by seemingly unrelated conditions in a distant part of the board, and

decisions made early in the game can determine the environment a hundred moves

later. Prior to 2008, computer Go players were unable to defeat professional human

players given the largest handicap possible (AGA News: Kim Prevails Again In Man

Vs Machine Rematch Retrieved 2009-08-08; Supercomputer with innovative software

beats Go Professional Retrieved 2008-12-19). When Google’s DeepMind developed

AlphaGo using deep learning and instructing AlphaGo to learn from playing itself for

hundreds of millions of games, suddenly computer players were able to consistently

beat professional human Go players without any handicap at all (Silver et al. 2016).

In the 1980’s Ernst Dickmanns and his team at the Bundeswehr University Munich

used computer vision to develop the first self-driving car that didn’t need specialized

infrastructure (Delcker 2018). Since then, the reliability of autonomous cars has im-

proved to a level at which they share the road with human drivers across the United
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States encountering and reasoning through infinitely complex situations previously

only reasoned through by people. Deep learning can be trained on medical scans to

diagnose abnormalities ranging from cancers to eye diseases with as much accuracy

as health care professionals and in some cases outperforming them by a small margin

(Kononenko 2001; McDermott 2019). These examples only scratch the surface of

the range in successful applications of machine learning algorithms. The answer to

Alan Turing’s question, ‘Can machines think?’ from 1950 (Turing 1950), is no longer

a straightforward ‘no’, and it seems we are still far from reaching the application

potential of many ML algorithms.

We are still far from achieving the apparently endless ML capabilities largely be-

cause the process of training machine learning algorithms remains somewhat myste-

rious to us and cannot be completely methodical. We have an ever growing collection

of suggested techniques for varying circumstances, but generally training a machine

learning algorithm involves a great deal of guess and check. When training a com-

putationally heavy algorithm like a neural network, that can take days to run to

completion (Krizhevsky, Sutskever, and G. E. Hinton 2012), this can mean the learn-

ing feedback loop can take months to reach a good result. Such a slow feedback loop

makes these machine learning algorithms prohibitively expensive for most users.

Reducing the training time, and ultimately the time to complete the learning

feedback loop, can make the most powerful learning algorithms accessible for more

users across diverse applications. This dissertation presents three methods to improve

the efficiency of ML training focusing on some of the most costly ML algorithms

available: neural networks and recommender systems.

1.2 Overview

The second chapter of this dissertation will introduce a method to make struc-

tured reductions of neural network architecture while maintaining accuracy; reducing

2



the network architecture in a structured manner allows for training speedup unlike

traditional iterative pruning which requires additional formatting overhead to run

(Han, H. Mao, and Dally 2015). Specifically, I consider a modified version of the fully

connected layers I call a block diagonal inner product (BDIP) layer. These modified

layers have weight matrices that are block diagonal, turning a single fully connected

layer into a set of densely connected neuron groups. The blocks can be achieved

by either initializing a purely block diagonal weight matrix or by iteratively pruning

off-diagonal block entries. This idea is a natural extension of group, or depthwise

separable, convolutional layers. In this chapter I will also briefly discuss some inter-

esting trends I saw in the weight distributions when comparing the original network

to the resulting reduced network. I observe that, even after thousands of training it-

erations, inner product layers have singular value distributions that resemble that of

truly random matrices with iid entries, and that each block in a BDIP layer behaves

like a smaller copy. For network architectures differing only by the number of blocks

in one inner product layer, the ratio of the variance of the weights remains approxi-

mately constant for thousands of iterations. That is, the relationship in structure is

preserved in the parameter distribution.

The third chapter presents a general accelerated gradient descent method called

Predictor-Corrector Gradient Descent (PCGD) that combines predictor-corrector tech-

niques with stochastic gradient descent. PCGD can be used to train any learning

model in which gradient descent is appropriate. By using a sparse history of model

parameter values to make periodic predictions of future parameter values, PCGD

aims to skip unnecessary training iterations. PCGD circumvents the need to store all

historical parameter values relevant to a particular prediction by incrementally up-

dating the prediction function; for this reason, PCGD is suitable for training models

with many parameters such as neural networks. In my experiments using PCGD to

train neural networks, PCGD cut the number of training epochs needed for a network

3



to reach a particular testing accuracy by nearly one half when compared to stochastic

gradient descent (SGD). PCGD was also able to outperform, with some trade-offs,

Nesterov’s Accelerated Gradient (NAG).

Chapter IV moves to the world of recommender systems and data compression.

Recent work has shown that in a dataset of user ratings on items there exists a group

of Core Users who hold most of the information necessary for recommendation. This

set of Core Users can be as small as 20 percent of the users. Core Users can be used to

make predictions for out-of-sample users without much additional work. Since Core

Users substantially shrink a ratings dataset without much loss of information, they

can be used to improve recommendation efficiency. I propose a method, combining

latent factor models, ensemble boosting and K-means clustering, to generate a small

set of Artificial Core Users (ACUs) from real Core User data. My ACUs incur a

small amount of additional memory storage when compared to real Core Users, but

remain a reduction in memory storage compared to the original dataset. Artificial

Core Users improve the recommendation accuracy of real Core Users while remaining

good centroids for the complete recommendation dataset.

4



CHAPTER II

Neural Networks with Block Diagonal Inner

Product Layers

Most modern successful networks are made up of many convolutional layers fol-

lowed by one to a few dense, fully connected (FC) layers that learn non-linear

functions of high-level features (K. He et al. 2015; Huang et al. 2016; Krizhevsky,

Sutskever, and G. E. Hinton 2012; Simonyan and Zisserman 2014; Szegedy et al. 2015;

Xie et al. 2016; Zeiler and Fergus 2013). The final fully connected layers are impor-

tant to allow combinations and mixing of convolutional features, that had previously

only observed local relationships. While fully connected layers fill this important role,

they are generally relegated to the end of the network and used sparingly, because

they are comparatively costly to store and run. Fully connected layers do not share

any weights like their convolutional counterparts; for a fully connected layer with m

nodes and n inputs, O(mn) weights need storing and computing the layer output

takes O(mn) time. This expense has pushed using many fully connected layers out

of favor, especially in situations where space is limited, such as on mobile devices. If

the cost of fully connected layers could be improved, this could provide flexibility and

open up new possibilities in the deep learning.

Ideally, efforts to reduce the memory requirements of fully connected layers would

also lessen their computational demand, but often these competing interests force
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a trade-off. My work addresses both memory and computational efficiency without

compromise. Focusing my attention on the fully connected layers, I decrease their

memory footprint, improve their runtime and begin to uncover the mechanism of

inner product layers.

There are a variety of methods to condense large networks without much harm

to their accuracy. One such technique that has gained popularity is pruning (Han,

H. Mao, and Dally 2015; Han, Pool, et al. 2015; Reed 1993), but traditional pruning

has disadvantages related to network runtime. Most existing pruning processes slow

down network training, and the resulting condensed network is usually significantly

slower to execute (Han, H. Mao, and Dally 2015). Sparse format operations require

additional overhead that can greatly slow down performance unless one prunes nearly

all weight entries, which can damage network accuracy.

Localized memory access patterns can be computed faster than non-localized

lookups. By implementing block diagonal inner product (BDIP) layers in place of

fully connected layers, I condense these layers in a structured manner that speeds

up the final runtime and does little harm to the final accuracy. BDIP layers can be

implemented by either initializing a purely block diagonal weight matrix or by initial-

izing a fully connected layer and focusing pruning efforts off the diagonal blocks to

coax the dense weight matrix into structured sparsity. The first method reduces the

gradient computation time and hence the overall training time. The latter method

retains higher accuracy and supports the robustness of networks to shaping. That is,

pruning can be used as a mapping between architectures — in particular, a mapping

to more convenient architectures. Depending on how many iterations the pruning

process takes, this method may also speed up training.

I have converted a single fully connected layer into an ensemble of smaller inner

product learners whose combined efforts form a stronger learner, in essence boosting

the layer. These methods also bring artificial neural networks closer to the architec-

6



ture of biological mammalian brains, which have more local connectivity (Herculano-

Houzel 2012).

Another link with my work and the mammalian brain is the relationship to random

matrix theory. In neuroscience, synaptic connectivity is often represented by a matrix

with entries drawn randomly from an appropriate distribution (Rajan 2010; Rajan

and Abbott 2006). The distribution of the singular values of a large, random matrix

behaves predictably according to the Marchenko-Pastur Law (Marchenko and Pastur

1967). I will show that this distribution also represents artificial neural activity

matrices well after thousands of training iterations. This relationship allows us to

compare the behavior of inner product layers in networks that have related structure,

thereby uncovering a piece of the inner product layer “black box”. Specifically, I

observe that when varying the number of blocks in a layer, the initial ratio of the

variance of the weights is preserved to first order after thousands of training iterations.

2.1 Related Work

There is an assortment of criteria by which one may choose which weights to prune.

With any pruning method, the result is a sparse network that takes less storage space

than its fully connected counterpart. Han et al. iteratively prune a network using the

penalty method by adding a mask that disregards pruned parameters for each weight

tensor (Han, Pool, et al. 2015). This means that the number of required floating

point operations decreases, but the number performed stays the same. Furthermore,

masking out updates takes additional time. Han et al. report the average time

spent on a forward propagation after pruning is complete and the resulting sparse

layers have been converted to CSR format; for batch sizes larger than one, the sparse

computations are significantly slower than the dense calculations (Han, H. Mao, and

Dally 2015).

More recently, there has been momentum in the direction of structured reduction

7



of network architecture. Node pruning preserves some structure, but drastic node

pruning can harm the network accuracy and requires additional weight fine-tuning

(T. He et al. 2014; Srinivas and Babu 2015). Veit, Wilber, and Belongie 2016 showed

that in in networks trained with identity shortcut connections like ResNet (K. He

et al. 2015) and its variants, one can drop some of the full layers of a trained network

and still have comparable performance. However, this behavior does not transfer to

networks trained without identity shortcut connections. Other approaches include

storing a low rank approximation for a layer’s weight matrix (T. N. Sainath et al.

2013) and training smaller models on outputs of larger models (‘distillation”) (G.

Hinton, Vinyals, and Dean 2014). Group lasso expands the concept of node pruning

to convolutional filters (Lebedev and Lempitsky 2016; Wen et al. 2016; Yuan and Lin

2006). That is, group lasso applies L1-norm regularization to entire filters. Indeed

Group lasso is exactly analogous to node pruning when reconceiving a fully connected

layer as a convolutional layer, since convolutions have fully connected layers as a

special case.

It has been shown that reducing the network precision does minimal harm to

the network accuracy (Courbariaux, Yoshua Bengio, and David 2015; Gupta et al.

2015; Vanhoucke, Senior, and M. Z. Mao 2011), which improves both the memory

and computation efficiency of a network without disturbing the network structure.

Binarized networks on the other hand, which use binary values for activations and

weights are generally less accurate than their more precise counterparts (Simons and

Lee 2019). Altering the a network precision is orthogonal to most other structured

network reductions and can be used in conjunction, including block diagonal inner

product layers.

Structured efficient linear layers form linear layers as a composition of matrices

(Ailon and Chazelle 2009; Cheng et al. 2015; L2, Sarlo, and Smola 2013; Moczulski

et al. 2016; Sindhwani, T. Sainath, and Kumar 2015). Sidhawani et al. propose
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structured parameter matrices characterized by low displacement rank that yield

high compression rate as well as fast forward and gradient evaluation (Sindhwani,

T. Sainath, and Kumar 2015). Their work focuses on toeplitz-related transforms of

the FC layer weight matrix. However, speedup is generally only seen for compression

of large weight matrices. In (Moczulski et al. 2016), Moczulski et al. form efficient

linear layers, called ACDC layers, composed of diagonal matrices and the discrete

cosine transform matrix.

Group, or depthwise separable, convolutions have been used in recent CNN ar-

chitectures with great success (Chollet 2017; Ioannou et al. 2017; X. Zhang et al.

2017). In group convolutions, a particular filter does not see all of the channels of the

previous layer. BDIP layers apply this idea of separable neuron groups to the FC lay-

ers. This method transforms a fully connected layer into an ensemble of smaller fully

connected neuron groups that boost the layer. Again, it should be mentioned here

that fully connected layers can be represented as 1× 1 convolutions and so they can

be thought of as a special case of convolutions. However, it is worth studying block

diagonal inner product layers specifically because as a particularly costly special case

that can be implemented using a regular matrix product, there is a lot of room for

efficiency improvement both with regards to storage and computation. Additionally,

fully connected layers jumble up local information unlike more general convolutional

layers, and so it is important to understand the consequences of imposing additional

structure.

There is less work considering the distribution of weights in artificial neural net-

works. Initialization distributions to combat vanishing gradients are supported by

theoretical variances for back propagation gradients under the assumption that the

weights are independent, which is not valid beyond the first iteration (Glorot and Y.

Bengio 2010; K. H. X. Z. S. R. J. Sun 2015). Random weights have been looked at as

good predictors of successful network architecture (Saxe et al. 2011). More recently,
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N.Tishby discussed the trend of the distribution of weight updates as they relate to

the Mutual Information Plane (N.Tishby 2017). To the best of my knowledge, the

effects of architecture on the change in distribution of the weights through training

and the connection between trained inner product layer weights and iid random ma-

trices have not been explored. In theoretical neuroscience, random matrices are used

to model synaptic connections and to study brain plasticity (Rajan 2010; Rajan and

Abbott 2006; Sompolinsky, Crisanti, and Sommers 1988). Knowing that inner prod-

uct layers in artificial neural networks are well modeled by random matrices opens

the field to a new range of analytical tools that may support a specific network’s

robustness or plasticity.

2.2 Methodology

I consider two methods for implementing BDIP layers:

1. I initialize a layer with a purely block diagonal weight matrix and keep the

number of connections constant throughout training.

2. I initialize a fully connected layer and iteratively prune entries off the diagonal

blocks to achieve a block substructure.

When a BDIP layer is implemented using the second method we’ll add the prefix ‘IP’,

written IP-BDIP, to indicate it is an iteratively pruned BDIP layer. Within a layer,

all blocks have the same size.1 IP-BDIP layers are accomplished in three phases: a

dense phase, an iterative pruning phase and a block diagonal phase. In the dense

phase a fully connected layer is initialized and trained in the standard way. During

the iterative pruning phase, focused pruning is applied to entries off the diagonal

blocks using the weight decay method with L1-norm. That is, if W is the weight

1In my work I chose to implement all blocks with the same size, but blocks do not need to have
the same size in general.
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matrix for a fully connected layer I wish to push toward block diagonal, I add

D = α
∑
i,j

|1i,jWi,j| (2.1)

to the loss function during the iterative pruning phase, where α is a tuning parameter,

Wi,j is an entry in the layer’s weight matrix and 1i,j is an indicator function such 1i,j =

0 when Wi,j is off the diagonal blocks and 1i,j = 1 when Wi,j is in a diagonal block.

When pruning is complete, to maximize speedup it is best to reformat the weight

matrix once such that the blocks are condensed and adjacent in memory.2 Batched

smaller dense calculations for the blocks use cuBLAS strided batched multiplication

(Nickolls et al. 1998). There is a lot of flexibility when using IP-BDIP layers that

can be tuned for specific user needs. More pruning iterations may increase the total

training time but can yield higher accuracy and reduce overfitting.

2.3 Experiments: Speedup and Accuracy

My goal is to reduce memory storage of the inner product layers while maintaining

or reducing the final execution time of the network with minimal loss in accuracy. We

will also see reduction of the total training time in some cases. All experiments are

run on the Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing

Center. All computations are done with float precision.

For speedup analysis I timed block diagonal multiplications using n× n matrices

with varying dimension sizes and varying numbers of blocks; I considered the forward

pass and gradient updates. I also calculate an upper bound on the ratio of the number

of pruning iterations to the number of pure block iterations that will yield speedup

when using IP-BDIP layers.

For accuracy results, I ran experiments on three standard image classification

2When using BDIP layers, one should alter the output format of the previous layer and the
expected input format of the following layer accordingly, in particular to row major ordering.
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datasets: MNIST (LeCun, Cortes, and Burges n.d.), SVHN (Netzer et al. 2011) and

CIFAR10 (Krizhevsky 2009). MNIST and SVHN are both digit classification datasets;

MNIST is handwritten in black and white, and SVHN contains colored pictures taken

from the street of house numbers. The CIFAR10 dataset contains low resolution,

colored images of objects in ten classes. I ran experiments on the MNIST dataset

using a LeNet-5 (LeCun, Bottou, et al. 1998) network, and the SVHN and CIFAR10

datasets using Krizhevsky’s Cuda-convnet (Krizhevsky 2012a). Cuda-convnet does

not produce state-of-art accuracies for SVHN or CIFAR10, but demonstrates the

performance differences between my methods and others. I also ran a few experiments

on smaller, purely inner product layer networks without convolutional or other types

of layers. With interest favoring deeper convolutional nets, I dedicate more space

in this paper to exploring BDIP layers in convolutional nets to demonstrate their

compatibility with modern networks. I implement my work in Caffe, which provides

these architectures; Caffe’s MNIST example uses LeNet-5 and Cuda-convnet can be

found in Caffe’s CIFAR10 “quick” example. A detailed architecture outline for the

LeNet-5 network can be found in Appendix A, and one for Krizhevsky’s Cuda-convnet

can be found in Appendix B.

For ease of transcription, let (b1, . . . , bn)-BDm denote a network architecture with

m layers, not including the input layer, in which the last n layers are BDIP layers,

where bi = j indicates that the ith BDIP layer has j blocks along the diagonal. If

bi = 1 then the ith inner product layer is fully connected. In all cases in this paper,

if m > n then the first m− n layers are convolutional.

2.3.1 Speedup

Figure 2.1 shows the speedup when performing matrix multiplication using an

n × n weight matrix and batch size 100 when the weight matrix is purely block

diagonal. In this section, speedup is always relative to the unaltered, fully connected
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Figure 2.1:
Speedup when performing matrix multiplication using an n × n weight
matrix and batch size 100. (Left) Speedup when performing only one for-
ward matrix product. (Right) Speedup when performing all three matrix
products involved in the forward and backward pass in gradient descent.
Both images in this figure share the same key.

calculation. The speedup when performing only the forward-pass matrix product is

shown in the left pane, and the speedup when performing all gradient descent products

is shown in the right pane. As the number of blocks increases, the overhead to perform

cuBLAS strided batched multiplication can become noticeable; this library is not yet

well optimized for performing many small matrix products (Masliah et al. 2016).

However, with specialized batched multiplications for many small matrices, Jhurani

et al. attain up to 6 fold speedup (Jhurani and Mullowney 2015). Using cuBLAS

strided batched multiplication, maximum speedup is achieved when the number of

blocks is 2−7 times the matrix dimension. When only timing the forward pass, the

speedup is always greater than 1 when the number of blocks is at most 2−5 times

the matrix dimension. When timing the forward and backward pass, the speedup is

always greater than 1 when the number of blocks is at most 2−6 times the matrix

dimension.

On the other hand, using toeplitz-related transforms, for displacement rank higher

than approximately 2−9.5 times the matrix dimension the forward pass is slowed down,

and backward pass is slowed down for displacement rank higher than approximately
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2−10.4 times the matrix dimension (Sindhwani, T. Sainath, and Kumar 2015). From

Figure 3 in (Sindhwani, T. Sainath, and Kumar 2015), speedup is generally only seen

for compression of large weight matrices. From Figure 2 in (Moczulski et al. 2016),

We can see that ACDC layers do consistently provide speedup for multiple calls when

compared to a dense linear layer. They achieve a maximum speedup of approximately

10 times for layers with dimension at most 8192, but in Figure 2.1, we can see that

BDIP layers exceed this maximum speedup by a small but clear margin for layers

with dimension at most 8192.

For a given inner product layer, using IP-BDIP layers we would see speedup in

that layer’s training time if

T (FC)− T (Block)

T (Prune)
>
y

x
(2.2)

where T (·) is the combined time to perform the forward and backward passes of an

inner product layer in the input state, x is the number of pure block iterations, and

y is the number of pruning iterations. T (Prune) is the time to regularize and apply

a mask to the off diagonal block layer weights, which happens once in a training

iteration. Figure 2.2 plots the upper bound in ratio 2.2 against the number of blocks

for a layer with an n× n weight matrix and batch size 100.

Figure 2.3 shows timing results for the inner product layers in LeNet-5 (Left) and

Cuda-convnet (Right), which both have two inner product layers. I plot the forward

runtime speedup per inner product layer when the layers are purely block diagonal,

the combined forward and backward runtime speedup to do the three matrix products

involved in gradient descent training when the layers are purely block diagonal, and

the runtime speedup of sparse matrix multiplication with random entries in CSR

format using cuSPARSE (Nickolls et al. 1998). The points at which the forward

sparse and forward block curves meet in each plot in Figure 2.3 indicate the FC
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Figure 2.2:
Using batch size 100, upper bound on the ratio of the number of pruning
iterations to the number of pure block iterations that will result in an
overall training speedup when using IP-BDIP layers.
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Figure 2.3:
For each inner product layer in Lenet-5 (Left) and Cuda-convnet (Right):
forward runtimes of block diagonal and CSR sparse formats, combined
forward and backward runtimes of block diagonal format. Lenet-5 uses
batch size 64, and Cuda-convnet uses batch size 100.
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dense forward runtime speedups for each layer; these are made clearer with dotted,

black, vertical lines. Note that the block forward and combined forward/backward

curves almost perfectly overlap in Figure 2.3 (Right).

In LeNet-5, the first inner product layer, ip1, has a 500× 800 weight matrix, and

the second inner product layer, ip2, has a 10× 500 weight matrix, so the (b1, b2)-BD4

LeNet-5 architecture has (800× 500)/b1 + (500× 10)/b2 nonzero weights across both

inner product layers. Figure 2.3 (Left) shows there is greater than 1.4 times speedup

for greater than or equal to 8000 nonzero entries in ip1, which happens for b1 ≤ 50,

when timing both forward and backward matrix products in (b1, b2)-BD4 LeNet-5,

and 1.6 times speedup when b1 = 100, or 4000 nonzero entries, when only timing the

forward matrix product in (b1, b2)-BD4 LeNet-5.

In Cuda-convnet, the first inner product layer, ip1, has a 64×1024 weight matrix,

and the second inner product layer, ip2, has a 10×64 weight matrix. The (b1, b2)-BD5

Cuda-convnet architecture has (1024 × 64)/b1 + (64 × 10)/b2 nonzero entries across

both inner product layers. Figure 2.3 (Right) shows there is greater than 1.26 times

speedup for greater than or equal to 2048 nonzero entries in ip1, which happens for

b1 ≤ 32, when timing both forward and backward matrix products in (b1, b2)-BD5

Cuda-convnet, and 1.65 times speedup for greater than or equal to 1024 nonzero

entries in ip1, which happens for b1 ≤ 64, when only timing the forward matrix

product in (b1, b2)-BD5 Cuda-convnet.

In both plots of Figure 2.3 we see sparse format performs poorly. Sparse format

can be more than 8 times slower than dense calculations.

2.3.2 Accuracy Results

All hyperparameters and initialization distributions provided by Caffe’s example

architectures are left unchanged (see Appendices A and B). Training is done with

batched gradient descent using the cross-entropy loss function on the softmax of
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the output layer. In my experiments I performed only manual tuning of the new

hyperparameter introduced by IP-BDIP layers (see equation 2.1).

In ShuffleNet, Zhang et al. note that when multiple group convolutions are stacked

together this can block information flow between channel groups and weaken represen-

tation (X. Zhang et al. 2017). To correct for this, they suggest dividing the channels

in each group into subgroups, and shuffling the outputs of the subgroups in this layer

before feeding them to the next layer. Applying this approach to block inner prod-

uct layers requires either moving entries in memory or doing more, smaller matrix

products. Both of these options would hurt efficiency.

Using IP-BDIP layers also addresses information flow. Pruning does add some

work to the training iterations, but, unlike the ShuffleNet method, does not add work

to the final execution of the trained network. After pruning is complete, the learned

weights are the result of a more complete picture; while the information flow has

been constrained, it is preserved as an artifact in the remaining weights. Another

alternative is to randomly shuffle whole blocks each pass like in the “random sparse

convolution” layer in the CNN library cuda-convnet (Krizhevsky 2012b), not to be

confused with the network architecture by the same name. I found that for the inner

product layers in LeNet-5 and Krizhevsky’s Cuda-convnet network, the ShuffleNet

method did not show as much improvement in accuracy as randomly shuffling the

whole blocks, so I do not include results using the ShuffleNet method.

Table 2.1 shows the accuracy results for BDIP layers, BDIP layers with random

block shuffling, IP-BDIP layers and layers with traditional iterative pruning using

the penalty method to prune weight entries not subject to any confinement or orga-

nization. The baseline accuracy without using any parameter-efficient layers can be

found in parenthesis next to the dataset name in Table 2.1.3 I show accuracy results

for the most condensed net with BDIP layers and the net with the fastest speedup in

3Here I denote the baseline architecture using the notation (1, . . . , 1)-BDm.
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the inner product layers.

2.3.2.1 MNIST

I experimented on the MNIST dataset with the LeNet-5 framework (LeCun, Bot-

tou, et al. 1998) using a training batch size of 64 for 10000 iterations. LeNet-5 has

two convolutional layers with pooling followed by two inner product layers with ReLU

activation (see Appendix A for an architecture outline and hyperparameter details).

LeNet-5 (1,1)-BD4 achieves a final accuracy of 99.11%. In all cases testing accuracy

remains within 1% of this (1,1)-BD4 accuracy.

When training BDIP layers using implementation method 2 (with pruning), I

perform 15 dense calculations with L1-regularization off the diagonal blocks using

regularization coefficient α = 0.005. After 15 dense iterations, this implementation

method then forces entries with modulus less than 0.05 to zero every fifth iteration

until at most 0.1% of the off-diagonal block entries survive, at which point no more

structured regularization is done. The inner product layers weights are initialized

using the Xavier weight filler Glorot and Y. Bengio 2010, which samples a uniform

distribution with variance 1/nin, where nin is the number of neurons feeding into a

node. Using implementation method 2 (with pruning), for (b1, b2)-BD4 with b1 ≤ 50,

the ip1 layer weights are initialized with variance b1/800; this initialization variance

mirrors the pure block diagonal initialization even though the matrix begins as fully

connected. Using implementation method 2 (with pruning), for (100, b2)-BD4 the

ip1 layer weights are initialized with variance 60/800 to prevent instability.For all

implementation methods, I initialized weights in ip2 with variance 1/500.

Using traditional iterative pruning with L2 regularization, as suggested in (Han,

Pool, et al. 2015), pruning every fifth iteration until 4000 and 500 nonzero entries

survived in ip1 and ip2 respectively gave an accuracy of 98.55%, but the resulting

forward multiplication runtime was more than 8 times slower than the dense FC case
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Table 2.1:
Accuracy results on MNIST dataset with the LeNet-5 network, and the
SVHN and CIFAR10 datasets with the Cuda-convnet network.

BDIP rand. shuff IP-BDIP trad. prune

MNIST (99.11% Accurate when using (1,1)-BD4)
(10,1)-BD4 98.83% 98.81% 99.02% 99.04%

(100,10)-BD4 98.39% 98.42% 98.65% 98.55%

SVHN (91.96% Accurate when using (1,1)-BD5)
(8,1)-BD5 91.39% 91.46% 91.88% 91.15%
(64,2)-BD5 89.21% 89.69% 90.02% 90.93%

CIFAR10 (76.29% Accurate when using (1,1)-BD5)
(8,1)-BD5 75.07% 75.09% 76.05% 75.64%
(64,2)-BD5 72.7% 73.45% 74.81% 75.18%

(See Figure 2.3 Left). On the other hand, implementing the LeNet-5 (100, 10)-BD4

architecture with IP-BDIP layers using 15 dense iterations and 350 pruning iterations

gave a final accuracy of 98.65%. In this case, the ratio of the number of pruning

iterations to the number of pure block iterations is ≈ 0.04. In this setting, using

neither random shuffling of whole blocks in ip1, nor fixed sub-block shuffling in the

manner of X. Zhang et al. 2017 delivered any noticeable improvement. (10,1)-BD4

yielded approximately 1.4 times speedup for all gradient descent matrix products in

both inner product layers after any pruning is complete, and (100,10)-BD4 condensed

the inner product layers in LeNet-5 approximately 81 fold.

In (Sindhwani, T. Sainath, and Kumar 2015), Toeplitz (3) has error rate 2.09%

using a single hidden layer net with 1000 hidden nodes on MNIST. This method

yields 63.32 fold compression over the FC setting. However from their Figure 3, this

slows down the forward pass by around 1.5 times and the backward pass by around

5.5 times. A (49, 1)-BD2 net with one hidden layer that has 980 hidden nodes has

29.43 fold compression and error rate 4.37% using IP-BDIP layers on MNIST. The

speedup with this net is 1.53 for forward only and 1.04 when combining the forward

and backward runtime. My net achieves less than a 5% error rate even though the
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blocks of neurons in the hidden layer can only see a portion of the test input images.4

A (4, 1)-BD2 net with one hidden layer that has 1000 hidden nodes has 3.84 fold

compression and error rate 2.12% using IP-BDIP layers on MNIST. What Toeplitz

(3) gains in compression and accuracy, it sacrifices in execution time.

2.3.2.2 SVHN

I experimented on the SVHN dataset with Krizhevsky’s Cuda-convnet (Krizhevsky

2012a) using batch size 100 for 9000 iterations. Krizhevsky’s Cuda-convnet has three

convolutional layers with ReLu activation and pooling, followed by two FC layers

with no activation (see Appendix B for an architecture outline and hyperparameter

details). Cuda-convnet (8,1)-BD5 yielded approximately 1.5 times speedup for all

gradient descent matrix products in both inner product layers when purely block

diagonal, and Cuda-convnet (64,2)-BD5 condensed the inner product layers in Cuda-

convnet approximately 47 fold.

Using Cuda-convnet (1,1)-BD5 I obtained a final accuracy of 91.96%. Table 2.1

shows all methods stayed under a 2.5% drop in accuracy. Using traditional iterative

pruning with L2 regularization pruning every fifth iteration until 1024 and 320 nonzero

entries survived in the final two inner product layers respectively gave an accuracy of

90.93%, but the forward multiplication was more than 8 times slower than the dense

FC computation. On the other hand, implementing Cuda-convnet (64, 2)-BD5 with

IP-BDIP layers, which has corresponding numbers of nonzero entries, with 500 dense

iterations and less than 1000 pruning iterations gave a final accuracy of 90.02%. This

is approximately 47 fold compression of the inner product layer parameters with only

a 2% drop in accuracy when compared to (1,1)-BD5.

4With more complex datasets, BDIP layers, especially without any pruning or block shuffling to
assist information flow, are more appropriate in deeper layers.
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2.3.2.3 CIFAR10

I experimented on the CIFAR10 dataset with Krizhevsky’s Cuda-convnet

(Krizhevsky 2012a) using batch size 100 for 9000 iterations. Krizhevsky’s Cuda-

convnet has three convolutional layers with ReLu activation and pooling, followed

by two FC layers with no activation (see Appendix B for an architecture outline and

hyperparameter details). I perform 15 dense calculations with L1-regularization off

the diagonal blocks using regularization coefficient α = 0.0075. Let ni be the number

of off-diagonal block entries at initialization in inner product layer i. This method

forces entries in inner product layer i with modulus less than 0.075 to zero every fifth

iteration until at most min{(ni/2000)2, 1000} of the off-diagonal block entries survive,

allowing more entries to survive as ni grows. For example, for b1 = 64, n1 = 64, 512

and after training the number of entries off the diagonal blocks is reduced by 98%.

In all methods the inner product layer weights are initialized using a Gaussian filler

with standard deviation 0.1, as suggested by Caffe. Using Cuda-convnet (1,1)-BD5

I obtained a final accuracy of 76.29% after 9000 training iterations, which aligns

with Caffe’s reported accuracy using fully connected inner product layers. Table 2.1

shows all methods stayed within a 4% drop in accuracy. Using traditional iterative

pruning with L2 regularization pruning every fifth iteration until 1024 and 320 nonzero

entries survived in the final two inner product layers gave an accuracy of 75.18%, but

again the forward multiplication was more than 8 times slower than the dense FC

computation. On the other hand, implementing Cuda-convnet (64, 2)-BD5 with IP-

BDIP layers, which has corresponding numbers of nonzero entries, with 500 dense

iterations and less than 1000 pruning iterations gave a final accuracy of 74.81%. This

is approximately 47 fold compression of the inner product layer parameters with only

a 1.5% drop in accuracy. The total forward runtime of ip1 and ip2 in Cuda-convnet

(64, 2)-BD5 is 1.6 times faster than in (1,1)-BD5. To achieve comparable speed with

sparse format I used traditional iterative pruning to leave 37 and 40 nonzero entries
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in the final inner product layers giving an accuracy of 73.01%. Thus implementing

BDIP layers with pruning yields comparable accuracy and memory condensation to

traditional iterative pruning with faster final execution time.

Whole node pruning decreases the accuracy more than corresponding reductions

in the block diagonal setting. Node pruning until ip1 had only 2 outputs, i.e. a

1024×2 weight matrix, and ip2 had a 2×10 weight matrix for a total of 2068 weights

between the two layers gave a final accuracy of 59.67%. On the other hand, using

IP-BDIP layers, Cuda-convnet (64,2)-BD5 has a total of 1344 weights between the

two inner product layers and had a final accuracy 74.81%.

The final accuracy on an independent test set was 76.29% on CIFAR10 using the

Cuda-convnet (1,1)-BD5 net while the final accuracy on the training set itself was

83.32%. Using the Cuda-convnet (64,2)-BD5 net without pruning, the accuracy on

an independent test set was 72.49%, but on the training set was 75.63%. Figure 2.4

graphs the difference between the accuracy on the training set and the accuracy on an

independent test set when training Krizhevsky’s Cuda-convnet (Krizhevsky 2012a)

on the CIFAR10 dataset using BDIP layers; I plot (b1, 1)-BD5 for various values of

b1. Figure 2.4 plots the ratio of the accuracy over the curves in Figure 2.4; we can see

that more blocks yield a higher accuracy to overfit ratio. With IP-BDIP layers, the

accuracy of (64,2)-BD5 on an independent test set was 74.81%, but on the training set

was 76.85%. Both block diagonal methods decrease overfitting, but IP-BDIP layers

decreases overfitting slightly more.

2.4 Random matrix theory observations

The Marchenko-Pastur distribution describes the asymptotic behavior of the sin-

gular values of large random matrices with iid entries (Marchenko and Pastur 1967).

Let X be an m×n matrix with iid entries xij such that E[xij] = 0 and Var[xij] = σ2.

The Marchenko-Pastur theorem states that as n,m → ∞ such that m/n → y > 0,
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Figure 2.4:
(Left) The difference between the accuracy on the training set and the
accuracy on an independent test set when training Krizhevsky’s Cuda-
convnet (Krizhevsky 2012a) on the CIFAR10 dataset. (Right) Accuracy
over the difference between the accuracy on the training set and the accu-
racy on an independent test set when training Krizhevsky’s Cuda-convnet
(Krizhevsky 2012a) on the CIFAR10 dataset.

with probability 1 the empirical spectral distribution of 1
n
XX> converges in distri-

bution to the density

µy(x) =


1

2πσ2yx

√
(b− x)(x− a) if a ≤ x ≤ b

0 otherwise

(2.3)

with point mass 1−1/y at the origin if y > 1 where a = σ2(1−y2) and b = σ2(1+y2).

Network weights do not remain independent through training. Without momen-

tum, weight parameter W receives the update W ← W− λ
b

∑b
i=1

∂L(xi)
∂W

in an iteration,

where λ is the learning rate, b is the batch size, L is the loss function and xi is sampled

from the data distribution. One can easily verify,

∆Var(W ) =λ2Var

(
1

b

b∑
i=1

∂L(xi)

∂W

)

− 2λCov

(
W,

1

b

b∑
i=1

∂L(xi)

∂W

) (2.4)
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using estimators for the right side of the equation. In my experience, the covariance

quickly became the dominating term. However, for a large enough weight matrix,

the singular values of an inner product layer weight matrix behave according to the

Marchenko-Pastur distribution even after thousands of training iterations. That is,

after thousands of correlated updates, the weight matrix behaves like a matrix with

random iid entries. The assumption of independence fails at the micro level when

calculating the change in variance of the weights, but is accurate at the macro level

when considering the behavior of the weight matrix as an operator.

In this section I discuss only the first method for implementing BDIP layers with-

out pruning. Networks that differ only by the number of blocks in one layer are

referred to as sister networks. While a relationship between FC layer weights and

the corresponding BDIP layer weights in trained sister networks is not evident from

equation (2.4), indeed a relationship can be seen in the singular values of the weight

matrices, and, in particular, in the change in the variance of the weight matrix en-

tries throughout training. The initialization ratio of variances in corresponding layer

weight matrices of sister networks persists through thousands of training iterations.

This finding may provide a good mechanism for examining related network architec-

tures and may support claims about a network’s malleability or fitness.

2.4.1 MNIST

In my experiments on the MNIST dataset with the LeNet-5 framework (LeCun,

Bottou, et al. 1998), the inner product layer weights are initialized using the Xavier

algorithm (Glorot and Y. Bengio 2010). Thus the initialization variance of the weights

in ip1 is b1/800 if ip1 is a BDIP layer, where b1 is the number of blocks, and the ratio

of the ip1 initialization variance in (b1, 1)-BD4 LeNet-5 over the ip1 initialization vari-

ance (1, 1)-BD4 LeNet-5 is just b1. Figure 2.5 (Left) shows that this ratio is a good first

order estimate for the final ip1 variance ratio after 10000 iterations in sister (b1, 1)-
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BD4 LeNet-5 networks. I have written (b1, 1)-BD4/(1, 1)-BD4 in the figure legend, but

by this I mean the ratio of the ip1 weight matrix variance in (b1, 1)-BD4 LeNet-5 over

that of (1, 1)-BD4 LeNet-5. The final ip1 variance ratios are 5.03, 9.97, 19.96, 49.32

and 96.99 for b1 = 5, 10, 20, 50, and 100 respectively. We can see that the relation-

ship deteriorates as the number of blocks increases. This phenomenon persists when

the sigmoid activation function is used for layer ip1, keeping the activation function

consistent across sister networks. When using the sigmoid activation function, the

ratio seemed to deteriorate less quickly; e.g. the final ip1 variance ratio was 101.00

for b1 = 100.

Figure 2.5 (Right) compares the singular values of the ip1 layer weight matrix in

sister (b1, 1)-BD4 networks after 10000 training iterations to the singular values of a

truly random 800×500 matrix who’s entries were initialized with variance 6.6×10−4,

the final variance of the (1, 1)-BD4 LeNet-5 ip1 layer weights. I denote the random

matrix R. To make this comparison, I aggregate the singular values of each block

along the diagonal in ip1 of (b1, 1)-BD4 LeNet-5 and sort them, but I note that the

individual block spectral distributions appear identical to each other. For an array of

singular values arranged by order, division is done entry-wise. I have written (b1, 1)-

BD4/R in the figure legend, but by this I mean entry-wise division of the ordered

singular values of the ip1 weight matrix in (b1, 1)-BD4 LeNet-5 over the ordered

singular values of R. By convention, the lowest order singular values are the largest.

The individual curves in Figure 2.5 (Right) are difficult to distinguish. In fact, for

each curve in Figure 2.5 (Right) the average distance from one, when averaging over

order, is bounded above by 4× 10−2 (see Figure 2.6). This behavior aligns with what

the Marchenko-Pastur theorem dictates would happen to the ratio of the spectral

distributions if the ip1 layer weight matrix had random iid entries, but in fact the

ip1 layer weight matrices hold knowledge and are the product of 10000 correlated

updates. By the Marchenko-Pastur theorem, increasing the variance of the entries in
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Figure 2.5:
10000 training iterations using LeNet-5 net on MNIST. (Left) The ratio
of the ip1 weight matrix variance in (b1, 1)-BD4 over the ip1 weight ma-
trix variance in (1, 1)-BD4. (Right) Ratio of trained ip1 weight matrix
singular values over singular values of a truly random matrix with the
same dimensions.

a random matrix and simultaneously decreasing the matrix dimension by the same

factor will not affect the singular value distribution; the decrease in matrix size would

cancel with the increase in variance by the same factor (see equation (2.3)). Figure

2.5 (Left) shows that the ratio of the ip1 initialization variance in (b1, 1)-BD4 LeNet-5

over the ip1 initialization variance (1, 1)-BD4 LeNet-5 is still b1 after 10000 training

iterations, and for b1 blocks the ip1 layer weight matrix decreases in dimension by a

factor of b1. Figure 2.5 (Right) shows that these factors canceled for the trained ip1

matrices like they would for random matrices since the ratio of the singular values is

just one. That is, the learned ip1 layer weight matrices behave like random operators.

The singular values of the trained ip1 layer weight matrices from (b1, 1)-BD4

LeNet-5 follow the curve that the singular values of the truly random matrix cre-

ate with some error in the largest and smallest singular values. The disparity in the

extreme singular values will be the focus of future work; it may be the first place

where network learning become evident, or it may be the result of overfitting. Using

(1, 1)-BD4 LeNet-5, the accuracy reaches 98.28% by iteration 1000. After 1000 itera-

tions, the ratio of the largest singular value of the trained weight matrix in layer ip1
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over the largest singular value of a truly random matrix with the same dimensions

and variance is 1.16. Figure 2.5 (Right) shows that this ratio is 1.44 after the full

10000 iterations. Figure 2.6 shows the expected value, taken over singular value or-

der, of the distance between 1 and the ratio of sorted, aggregated singular values of

ip1 weight matrices for sister (b1, 1)-BD4 LeNet-5 networks and the singular values of

R, a random matrix with iid entries of equal dimension; this is plotted over training

iterations for varying values of b1. In Figure 2.6, we can see that at iteration zero

smaller b1 values correspond to expected ratios closer to one, which can be explained

by the necessity of the limit in the Marchenko-Pastur theorem. On the other hand,

after 10000 training iterations, smaller b1 values correspond to expected ratios farther

away from one indicating that larger values of b1 maintain a final distribution that

is more similar to that of a random matrix. In Figure 2.4 and 2.4, we learned that

larger values of b1 also correspond to reduced overfit.

The ratios in Figure 2.5 best highlight the relationship to random matrix theory

and the relationship between ip1 layer weight matrix distributions in sister (b1, 1)-

BD4 networks, but I also include the ip1 layer weight matrix variances and their

singular values without taking a ratio in Figure 2.7. Figure 2.7 (Left) shows that

the variances did change through training and so the fact that they maintained their

original variance ratios is nontrivial. The curves in Figure 2.7 (Right) are again

difficult to distinguish, but one can more clearly see the classic Marchenko-Pastur

distribution.

Figure 2.8 (Left) compares the probability density function of the singular values

of R, a truly random matrix with independent entries, to the measured distribution

of the ip1 layer weight matrix singular values for the (1, 1)-BD4 LeNet-5 architecture

after 10000 training iterations. For a matrix M , λM is the PDF of the eigenvalues of

M . I use W1 to denote the ip1 layer weight matrix in (1, 1)-BD4 after 10000 training

iterations, and again R to denote a 800 × 500 random matrix with iid entries that
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10000 training iterations using LeNet-5 net on MNIST. Expected value
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gated singular values of ip1 weight matrices for sister (b1, 1)-BD4 networks
and the singular values of R, a random matrix with iid entries of equal
dimension.
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Figure 2.7:
10000 training iterations using LeNet-5 net on MNIST. (Left) Variance of
weight matrix entries in layer ip1 in both the fully connected and block
diagonal setting. (Right) Singular values of ip1 weight matricies for sister
(b1, 1)-BD4 networks and of R, a random matrix with iid entries of equal
dimension.
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have the same variance as the entries in W1. λ(1/500)W1W>1
and λ(1/500)RR> align as I

would expect from Figure 2.5 (Right).

If I make ip2 a BDIP layer as well in the LeNet-5 framework, the change in

variance in ip1 sees minimal effect. For b1 = 1, 2, 5, 10, 50, 100 and b2 = 1, 2, 5, 10, the

final variance in the ip1 layer weights using (b1, b2)-BD4 over the final variance in the

ip1 layer weights using (b1, 1)-BD4 is approximately 1 with error ≤ 0.05. 5

In my experiments, the relationship between inner product layers in sister networks

is independent of network architecture. I ran experiments on purely inner product

layer networks without convolutional or other types of layers with the same results,

and I will discuss a small purely inner product layer network briefly here. In a 3 layer

network in which both hidden layers have 500 nodes and ReLu activation, I compare

(1,1,1)-BD3 to (1,100,1)-BD3 on MNIST where in both cases ip2 is initialized with

Xavier variance (Glorot and Y. Bengio 2010). After 10000 iterations, the ratio of

the variance of the weight matrix entries in layer ip2 in block diagonal setting over

the variance of the weight matrix entries in layer ip2 in the fully connected setting is

106.42.

Let σWb2
be the singular values of the ip2 layer weight matrix in the (1,b2,1)-BD3

architecture with only 3 inner product layers after 10000 iterations. The final variance

of the ip2 layer weights in (1,1,1)-BD3 is 0.0012. If R is a 500 × 500 truly random

matrix with independent entries that have variance 0.0012, then E[|1 − σW1/σR|] =

0.1162. The final variance of the ip2 layer weights in (1,100,1)-BD3 is 0.12. If R is

a 500 × 500 truly random matrix with independent entries that have variance 0.12,

then E[|1− σW100/σR|] = 0.0896.

5The ip2 layer weights also appear to have the same behavior, but the matrix size is much smaller
so the estimate of the variance is lower order and the asymptotic assumptions of Marchenko-Pastur
are far from met.

29



0 1 2 3 4 5 6

Eigenvalue

0

0.02

0.04

0.06

0.08

0.1

0.12

 P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n
ct

io
n
 V

al
u
e λ

(1/500)W
1
W

1

T

λ
(1/500)RR

T

Figure 2.8:
λ 1

500
Wb1

W>b1
is the measured empirical spectral distribution of 1

500
Wb1W

>
b1

where Wb1 is the ip1 layer weight matrix in the (b1, 1)-BD architecture
after 10000 training iterations on MNIST using LeNet-5. Bar graph of
λ 1

500
W1W>1

with plot of λ 1
500

RR> for a random matrix R with the same
variance.

2.4.2 CIFAR10

In my experiments on CIFAR10 with Krizhevsky’s Cuda-convnet (Krizhevsky

2012a), the first inner product layer weights are initialized using a Gaussian filler

with standard deviation 0.1. Thus the ratio of variance of the weights in ip1 in the

block diagonal case over that of the fully connected case at initialization is 1. Figure

2.9 (Left) indicates that this ratio is a good first order estimate for the final ratio

in sister (b1, 1)-BD5 Cuda-convnet networks after 9000 iterations at which time the

ratios are 1.02, 1.02, 1.01, 1.11, 1.21 and 1.5 for b1 = 2, 4, 8, 16, 32, and 64 respectively.

Like with my experiments on MNIST, the relationship deteriorates as the number of

blocks grows.

I compared the singular values of the weight matrix in layer ip1 for sister (b1, 1)-

BD5 Cuda-convnet networks after 9000 training iterations to the singular values of a

truly random 1024×64 matrix initialized with variance 7×10−3, the final variance of

the fully connected ip1 layer weights after training. I denote the random matrix R.

As in the MNIST experiments, I aggregate the singular values of each block in the
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Figure 2.9:
9000 training iterations using Cuda-convnet on CIFAR10. (Left) Ratio of
variance of ip1 weight matrix entries in block diagonal setting over vari-
ance of ip1 weight matrix entries in the fully connected setting. (Right)
Ratio of trained ip1 weight matrix singular values over singular values of
a truly random matrix with the same dimensions.

block diagonal method and sort them, and for an array of singular values arranged by

order, division is done entry-wise. In Figure 2.9 (Right) I have written (b1, 1)-BD5/R

in the figure legend, but by this I mean entry-wise division of the ordered singular

values of the ip1 weight matrix in (b1, 1)-BD5 Cuda-convnet over the ordered singular

values of R. By convention, the lowest order singular values are the largest.

By the Marchenko-Pastur theorem, maintaining the variance of the entries in a

random matrix while decreasing the matrix dimension by the some factor b1 will al-

ter the singular value distribution by a factor of 1/
√
b1; see equation (2.3). Figure

2.9 (Left) shows that the ratio of the ip1 initialization variance in (b1, 1)-BD5 Cuda-

convnet over the ip1 initialization variance (1, 1)-BD4 Cuda-convnet remains rela-

tively constant after 9000 training iterations, and for b1 blocks the ip1 layer weight

matrix decreases in dimension by a factor of b1. Figure 2.9 (Right) shows that the

ratio of the singular values of the trained layer ip1 weight matrix in (b1, 1)-BD5 Cuda-

convnet networks over the singular values of R is approximately 1/
√
b1 suggesting that
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the trained layer ip1 weight matrix in (b1, 1)-BD5 Cuda-convnet networks behaves like

a random matrix with deterioration as b1 grows.

Again, the ratio of the variance and singular values of the ip1 layer weight matrix

in block diagonal setting over that of the ip1 layer weight matrix in the fully connected

setting after 9000 training iterations on CIFAR10 using Cuda-convnet best highlight

the relationship to random matrix theory, but I also include the variance and the

singular values without taking a ratio in Figure 2.10. The singular values of the fully

connected ip1 layer weight matrix follow the curve that the singular values of the

truly random matrix R create.

Figure 2.11 compares the probability density function of the singular values of a

truly random matrix with independent entries to the measured distribution of the

ip1 layer weight matrix singular values using the (1,1)-BD5 architecture after 9000

training iterations. I use W1 to denote the ip1 layer weight matrix, and R to denote

a 1024 × 64 random matrix with iid entries that have the same variance the entries

in W1.

If in addition I make the ip2 a BDIP layer, again, the change in variance in ip1

sees minimal effect. For b1 = 1, 2, 4, 8, 16, 32, 64, the final variance in the ip1 layer

weights using the (b1, 2)-BD5 Cuda-convnet method over the final variance in the ip1

layer weights using the (b1, 1)-BD5 Cuda-convnet method is approximately 1 with

error ≤ 0.03.

2.5 Discussion

I have shown that BDIP layers can reduce inner product layer size, training time

and final execution time without significant harm to the network performance. I have

also shown that random matrix theory gives informative results about relationships

in network structure that are preserved through thousands of training iterations.

While traditional iterative pruning can reduce storage, the scattered surviving
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9000 training iterations using Cuda-convnet on CIFAR10. (Left) Vari-
ance of weight matrix entries in layer ip1 in both the fully connected and
block diagonal setting. (Right) Singular values of ip1 weight matricies
for sister (b1, 1)-BD5 networks and of a random matrix with iid entries
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where Wb1 is the ip1 layer weight matrix in the (b1, 1)-BD5 architec-
ture after 9000 training iterations on the CIFAR10 dataset using Cuda-
convnet framework. Bar graph of λ 1
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W1W>1

with plot of λ 1
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RR> for a

random matrix R with the same variance.
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weights make sparse computation inefficient, slowing down both training and final

execution time. My block diagonal methods address this inefficiency by confining

dense regions to blocks along the diagonal. Without pruning, block diagonal method

1 allows for faster training time. IP-BDIP layers preserve the learning with focused,

structured pruning that reduces computation for speedup during execution. In my

experiments, IP-BDIP layers saw higher accuracy than the purely block diagonal

method. The success of IP-BDIP layers supports the use of pruning as a mapping

from large dense architectures to more efficient, smaller, dense architectures. Both

methods make larger network architectures more feasible to train and use since they

convert a fully connected layer into a collection of smaller inner product learners

working jointly to form a stronger learner. In particular, GPU memory constraints

become less constricting.

There is a lot of room for additional speedup with BDIP layers. Dependency

between layers poses a noteworthy bottleneck in network parallelization. With struc-

tured sparsity like ours, one no longer needs a full barrier between layers. Additional

speedup would be seen in software optimized to support weight matrices with orga-

nized sparse form, such as blocks, rather than being optimized for dense matrices. For

example, for many small blocks, one can reach up to 6 fold speedup with specialized

batched matrix multiplication (Jhurani and Mullowney 2015). Hardware has been de-

veloping to better support sparse operations. Block format may be especially suitable

for training on evolving architectures such as neuromorphic systems. These systems,

which are far more efficient than GPUs at simulating mammalian brains, have a pro-

nounced 2-D structure and are ill-suited to large dense matrix calculations (Boahen

2014; Merolla et al. 2014).

I have established a connection between random matricies with independent en-

tries and trained inner product layers; the group behavior resembles that of a random

matrix with independent entries, but the individual weight updates have complex
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dependencies. Similar random activity occurs in the mammalian brain and suggests

looking at random matrix theory to support a network’s plasticity or robustness. This

connection could help evaluate network fitness. I have also shown that the relation-

ship in structure between sister networks is perpetuated in the ratio of the change in

variance after thousands of training iterations. I emphasize that this is a nontrivial

relationship surviving various datasets, network architectures, and activation func-

tions. Random matrix theory has been indispensable to the advancement of nuclear

physics, quantum physics, neuroscience, and ecology, and has the potential to elevate

artificial neural network analysis in the same manner.
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CHAPTER III

Predictor-Corrector Gradient Descent

In this chapter, I propose a new training technique called Predictor-Corrector

Gradient Descent (PCGD) that reduces the number of gradient descent iterations

required to optimize any objective function that can be optimized using standard

gradient descent. In PCGD I monitor the trends of the model parameters as the

chosen model learns with gradient descent, and periodically adjust each parameter

by inferring future values from the trend. A number of standard gradient descent

iterations between predictions act to refine the predicted approximations. This al-

ternating process works in much the same way that predictor-corrector methods for

solving ordinary differential equations work.

While PCGD is a general adaptation to gradient descent, the benefits of using

PCGD in place of traditional gradient descent are most prominent when learning a

computationally costly model like a neural network. I will show that incorporating

prediction into the training process of networks makes learning significantly more

efficient. The human brain already utilizes predictions. Predictions are crucial to

survival because they allow us to respond more appropriately to our surroundings

and they improve reaction time. Perception is also impacted by brain predictions:

our perceptions are a combination of expectations and sensory information (Heeger

2016; Luca and Rhodes 2016). Thus, if we wish to improve artificial neural network
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efficiency, integrating prediction into training is a natural modification.1

3.1 Related Work

There is a plethora of work that supplements standard gradient descent in hopes of

improving iterative training. Gradient noise and stale gradients have been successful

adaptations to gradient descent (Ho et al. 2013; Neelakantan et al. 2015). Adapative

Gradient techniques give frequently occurring features low learning rates and infre-

quent features high learning rates; these methods use the information theoretic idea

that infrequent features carry more information about the data distribution (Dozat

2016; Duchi, Hazan, and Singer 2011; Kingma and Ba 2015; Tieleman and G. Hinton

2012; Zeiler 2012). Momentum and Nesterov’s Accelerated Gradient (NAG) accu-

mulate a descent direction across iterations to alleviate zig-zagging and accelerate

convergence (Nesterov 1983; Polyak 1964) . There are also meta-learning methods

that allow models to be trained jointly with their learning algorithm. Meta-methods

may intelligently adjust hyperparameters like the learning rate, or learn the entire up-

date term perhaps as a function of the batched gradient (Andrychowicz et al. 2016;

Daniel, Taylor, and Nowozin 2016). Each of these techniques complement gradient

descent to improve model learning and can be used in conjunction with my methods.

Prediction-correction methods are traditionally used in numerical analysis to in-

tegrate ordinary differential equations (Süli and Mayers 2003). Since their inception,

predictor-corrector methods have been used in a variety of fields that require optimiza-

tion like theoretical study of chemical reactions and time-varying convex optimization

(Hratchian, Frisch, and Schlegel 2010; Simonetto et al. 2015). Prediction-correction

has been incorporated into neural network training in the past by coevolving a pair of

neural networks, a prediction network and a correction network (Y. Zhang, Chuang-

1One caution ought to be mentioned here: brain predictions also enable prejudices, so one must
be careful how much trust is placed in predictions.
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suwanich, et al. 2015; Y. Zhang, Yu, et al. 2015).

Scieur et al. propose a related learning algorithm to the one presented in this paper

called Regularized Nonlinear Acceleration (RNA) (Scieur, d’Aspremont, and Bach

2016). RNA computes estimates of the optimum from a nonlinear average of a history

of iterations produced by an optimization method like gradient descent. Like in RNA,

the prediction step in PCGD is based on a history of parameter values obtained with

gradient descent. However, my predictions use parameter specific linear regression

rather than a nonlinear average of complete historical iterations. Making parameter

specific predictions with linear regression allows my method to update predictions

incrementally, which removes the need to keep all historical iterations relevant to

a particular prediction. RNA must store the entire iteration history relevant to a

particular prediction, which makes this method unfeasible for training large neural

networks.

3.2 Methodology

PCGD uses best fit predictions and stochastic gradient descent in tandem. When

estimating the trend in the model parameters through training, I will use fit func-

tions for which the least squares problem has a closed form solution using the normal

equations. One could use more complex fit functions, but I want to avoid needing

an extra iterative process. Using only least squares problems with closed form solu-

tions to make parameter predictions also saves memory because they can be solved

incrementally, avoiding the need to store a long history of model snapshots; this is

particularly useful when learning a training a parameter-heavy model like a deep

neural network.

I will define the algorithm around the gradient descent iterations. I will make

parameter predictions every p gradient descent iterations and collect snapshots of the

model parameters every sth gradient descent iteration where p > s and s|p. Parameter
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predictions only consider the previous p/s model snapshots. Since p > s, only a sparse

history of snapshots are considered. We’ll call p the prediction increment and s the

snapshot increment. For the remainder of this paper, the variables p and s will retain

this definition.

Suppose our model has n parameters. Let f(a, x) : Rc×R→ R be our chosen fit

function class for parameter prediction. For each model parameter, θ, I aim to solve

for a, such that f(a, x) estimates a future value of θ for a chosen prediction length

x. f(a, x) has c unknowns where c ≤ p/s. Define F (A, x) : Rc×n × R → Rn such

that the ith entry of F (A, x) is f(ai, x) where ai is the ith column of A. When using

PCGD, model parameter vector θ ∈ Rn receives the update,

vt =− ε∇L(θt)

θt+1 =


F (At+1, lt+1) if t+ 1 ≡ 0 mod p

θt + vt otherwise

(3.1)

where L is the desired loss function, ε is some learning rate, lt+1 ≥ p/s is an increas-

ing prediction length and At+1 ∈ Rc×n, minimizes the L2-norms of the columns of

JAt+1 − Θt+1. Here, J ∈ R(p/s)×c has entries Ji,j = ∂f(a, i)
/
∂aj, and the ith row of

Θt+1 is the vector θ>t+1−p+is for i < p/s and θ>t + v>t for i = p/s.2 Note that the

columns of At+1 each solve independent least squares problems for particular model

parameters; the systems are overdetermined if c < p/s. I use one fit function class,

f , but calculate model-parameter specific fit function variables. One could easily add

regularizers or momentum to the velocity term, vt. lt+1 is an increasing prediction

length dependent on the gradient descent iteration, but one could also consider an

adaptive, or parameter specific prediction length. Iterations, t, in which t ≡ 0 mod p

constitute the ‘predictive’ step in PCGD, and all other gradient descent iterations

2Note that the jacobian, J , is not specific to the column of At+1 .
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comprise the ‘corrective’ step.

I solve for prediction fit function variables At+1 incrementally so as to minimize

the extra storage required to perform PCGD. Fit function variables are updated at

snapshot intervals. Let Θ
(i)
t+1 denote the shorter matrix containing only the first i

rows of Θt+1. Similarly, J (i) is the shorter matrix containing only the first i rows of

J . When c snapshots have been recorded, I solve J (c)At+1 = Θ
(c)
t+1 for the fit function

variable matrix At+1; with c snapshots J (c)At+1 = Θ
(c)
t+1 is a determined system.

After this initial solve, only At+1 must still be stored, Θ
(c)
t+1 is no longer needed. At

snapshot intervals c + 1 through p/s I update the fit function variable matrix using

the incremental least squares algorithm found in (Cassioli et al. 2013). That is, for

i ∈ [c+ 1, p/s], I update,

At+1 ← At+1 + yi

((
θ
(i)
t+1

)>
− j>i At+1

)
(3.2)

where
(
θ
(i)
t+1

)>
is the ith row in Θt+1, j

>
i is the ith row of J , and yi is the solution to(

J (i)
)>
J (i)yi = ji.

This process then repeats writing over old fit function variables and parameter

history in memory. Since fit functions variables are parameter specific, they can be

updated layer-wise. If a model has n total parameters, PCGD requires storing at

most an additional O(cn) values in memory at any one time during training when

using a fit function with c unknowns. The size of the extra storage is c times the size

of layers not being currently being updated plus at most 2c times the size of the layer

currently being updated.

By using an incremental least squares approach and solving for parameter spe-

cific best fit functions, I am able to conserve memory during training; without this

approach one would need to store np/s parameter history values. This makes PCGD

a feasible technique for training large neural networks provided c is small. Given the
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same history, RNA would solve for p/s coefficients for p/s entire network snapshots

to obtain a nonlinear average of the whole snapshots (Scieur, d’Aspremont, and Bach

2016). Hence, RNA would require storing all np/s parameter history values. How-

ever, for the memory conservation afforded by incrementally updating fix functions,

one pays a little extra work. Rather than solving for At+1 directly, one must perform

p/s− c+ 1 incremental updates to At+1.

3.3 Relationship to Nesterov’s Accelerated Gradient

One could make predictions every iteration, which would bring my method closer

to some existing accelerated gradient schemes. If one made predictions every iteration

using a linear fit function my algorithm could be written,

zt =


θt if t < p

A>t

[
1 lt

]>
otherwise

θt+1 =zt − ε∇L(zt)

where At minimizes the L2-norms of the columns of JAt−Θt. Here, J ∈ R(p/s)×2 has[
1i−1 2i−1 · · · (p/s)i−1

]>
for its ith column vector, and Θt ∈ R(p/s)×n has θ>t−p+is

for its ith row vector. With p = 2 and s = 1, this begins to look quite a bit like NAG

algorithm which makes the update,
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zt =(1− γt−1)θt + γt−1θt−1 with z0 = θ0

θt+1 =zt − ε∇L(zt)

for specifically chosen series {γt}∞t=0. With lt = 2− γt−1 these methods are identical.

For continuously differentiable, smooth, convex loss functions NAG can achieve a

global convergence rate of O(1/t2) (Beck and Teboulle 2009; Nesterov 1983). A

natural extension of NAG incorporates a history of three points such that the update

is

λt =

(
1 +

√
1 + 4λ2t−r

)/
2

zt =


λt−1

λt
θt + (λt−1)

λt
θt−r+1 − (λt−1−1)

λt
θt−r if t > r

θt otherwise

θt+1 =zt − ε∇L(zt)

(3.3)

where λ0, · · · , λr−1 = 0 and r ∈ Z>0.

Theorem 3.3.1. Let L be a convex, continuously differentiable and β-smooth function

that admits a minimizer θ∗ ∈ Rn. Given an arbitrary initialization θ0 ∈ Rn, for T > r

and ε = 1/β, update scheme (3.3) satisfies,

T∑
t=T−r

b(t+ 1)/rc2 (L(θt+1)− L(θ∗)) ≤ 2β‖zr − θ∗‖22 .

When r = 1 this reduces to NAG. If in addition we assume strong convexity of

our objective function L the convergence rate becomes clearer.

42



Corollary 3.3.1.1. Let L be strongly convex with parameter m > 0, continuously

differentiable and β-smooth function that admits a minimizer θ∗ ∈ Rn. Given an

arbitrary initialization θ0 ∈ Rn, for T > r and ε = 1/β, update scheme (3.3) satisfies,

T∑
t=T−r

b(t+ 1)/rc2 (L(θt+1)− L(θ∗)) ≤β
2‖θ0 − θ∗‖22

mr
.

The order of r in the denominator on each side of the above inequality is the

same. Hence, for m = β, mint∈{T−r,··· ,T}{L(θt+1)−L(θ∗)} converges at the same rate

as NAG. The proof of Theorem 3.3.1 and Corollary 3.3.1.1 can be found in Appendix

C.

In this well-behaved, theoretical environment, updating based on a linear com-

bination of older values maintains the convergence rate of NAG. However, update

method (3.3) is not practical for deep learning because it requires r× the memory

to save a history of network parameter values. Instead, making parameter predic-

tions every pth iteration, as in update method (3.1), makes the additional memory

requirement significantly more practical. In the setting of neural network parameters,

update method (3.1) has the capacity to outperform NAG. Considering an evenly dis-

tributed history of values extending further in the past allows one to de-noise trends.

By incorporating a longer history, method (3.1) can afford to make predictions further

into the future while minimizing additional memory requirements.

In comparison to NAG, employing update scheme (3.1) requires more memory

for the fit function variables At, but performs less work as snapshot increment s and

prediction increment p increase since fit function updates and parameter predictions

happen less often. One must strike a balance though: for large p and large p/s one

should be able to predict model parameters with more confidence provided the chosen
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fit function is well suited for the trend, but large p will exhibit delayed performance.

Method (3.1) introduces a number of new hyperparameters that can be tuned for a

particular task.

3.4 Experimental Results

The goal of my approach is to decrease the number of training epochs needed for

a neural network to reach a particular testing accuracy. To test this, I ran experi-

ments on the SVHN (Netzer et al. 2011), and CIFAR10 (Krizhevsky 2009) datasets

using Krizhevsky’s cuda-convnet with 4 hidden layers (Krizhevsky 2012a). This net

does not produce state-of-art accuracies for these datasets, but rather highlights the

improvement seen by PCGD when compared to SGD. I implement my work in Caffe,

which provides this architecture in their CIFAR10 “quick” example. I trained using

batch size 100. Unless otherwise specified, hyperparameters and initialization distri-

butions provided by Caffe’s “quick” architecture are left unchanged (see Appendix B

for an architecture outline and hyperparameter details). All experiments are run on

the Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing Center.

Training is done with batched gradient descent using the cross-entropy loss function

on the softmax of the output layer.

In this paper I will only use linear fit functions to make parameter predictions.

That is, the fit function class is f(a, x) = a1 + a2x and the number of fit function

variables to solve for for each network parameter is c = 2. In this case, a network with

n parameters requires storing an additional 2n values. If m is the maximum number

of iterations I will train, p is the prediction increment and s is the snapshot increment,

define g(d,u)(b, t) = b1+b2 (t/p)d where and b is chosen such that g(d,u)(b, 0) = p/s+u1

and g(d,u)(b,m) = p/s+u2 for some u1, u2 ∈ [0, 2p/s], u1 < u2. I chose my prediction

length such that lt = g(d,u)(b, t). This means that at iteration p, PCGD tries to

predict what the network weights will be at iteration p+ su1 and sets the weights to

44



those predicted values. Similarly, at iteration m, PCGD would try to predict what

the network weights would be at iteration m + su2, but I do not make the last, or

last few, predictions because immediately after predicting there is often a slight drop

in accuracy that needs to be corrected by some gradient descent steps. This slight

drop after predicting could be minimized by less aggressive predictions or better fit

function choices, but I chose to simply leave out the last few predictions. It is a good

idea to have u1 small because parameter trends can alter and we do not want to be

over-influenced by start-up trends.1

I will compare PCGD with NAG and SGD. I also consider a hybrid method com-

bining NAG and PCGD, abbreviated as NAG-PCGD. To combine the two methods

I nest NAG updates inside PCGD updates; the update scheme for NAG-PCGD is

written out explicitly in Appendix D. When training with PCGD and NAG-PCGD,

I use prediction increment p = 150, snapshot increment s = 15 for all of my exper-

iments. When plotting accuracy results, I will plot the maximum testing accuracy

seen so far by that training iteration against iterations. While training, testing accu-

racy is usually noisy, which can obscure differences in performance when comparing

different methods. Plotting the maximum testing accuracy seen so far displays these

differences more clearly. There was no noticeable difference in the amount of noise

seen in the testing accuracy for the various methods in my experiments.

3.4.1 SVHN

I experimented on the SVHN dataset with Krizhevsky’s cuda-convnet (Krizhevsky

2012a). The base learning rate was 0.001 and dropped by a factor of 10 after 4,000

iterations (see Appendix B for an architecture outline and hyperparameter details).

Testing took place every 50 training iterations. When training with PCGD and NAG-

PCGD, I use prediction length lt = g(6,[5,10])(b, t).

Figure 3.1 (Left) plots the maximum accuracy seen so far against iterations using
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standard SGD, NAG, PCGD and NAG-PCGD. Figure 3.1 (Right) plots the slopes

of the curves in Figure 3.1 (Left) versus iteration. I show the iterations of steepest

accuracy increase to highlight the difference in convergence rates of the various meth-

ods. NAG and NAG-PCGD initially increase at nearly the same rate which is ≈ 4×

faster than PCGD and SGD. Around iteration 450 PCGD leaves behind SGD, begins

to catch up to NAG and eventually supersedes it. NAG-PCGD tends to hug the top

of all the other curves exhibiting the benefits of both sub-methods. Confined to 2000

iterations, NAG-PCGD gives the best results. At iterations 4000 when the learning

rate decreases by a factor of 10, there is another jump in accuracy where we can see

the difference in convergence rates again on a smaller scale.

After 9000 iterations, the network trained using traditional SGD achieves a final

accuracy of 91.96%, NAG has a final accuracy of 92.38%, PCGD has a final accuracy of

92.42%, and NAG-PCGD has a final accuracy of 92.34%. SGD hit a maximum testing

accuracy of 92.06% at iteration 8600, NAG took 4700 iterations to reach this accuracy

level, PCGD also took 4700 iterations and NAG-PCGD took 5100 iterations. That

is, PCGD reached SGD’s testing maximum in just over half the number of training

iterations that SGD took.

3.4.2 CIFAR10

I also trained Krizhevsky’s cuda-convnet on the CIFAR10 for 195,000 iterations

(see Appendix B for an architecture outline and hyperparameter values for hyper-

parameters not overwritten here). The base learning rate was 0.001. I dropped the

learning rate by a factor of 10 after 60,000 iterations and again after 125,000 itera-

tions. Testing took place every 250 training iterations. I used lt = g(4,[5,10])(b, t) for

my prediction length at prediction intervals.

Figure 3.2 (Left) shows maximum accuracy results through training using SGD,

ADAM, NAG, PCGD and NAG-PCGD. Again, I show only the iterations of steepest
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Figure 3.1:
(Left) Maximum accuracy results on the SVHN data set. Testing takes
place every 50 training iterations (Right) Slope of Left Figure versus it-
erations.
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Figure 3.2:
Results on the CIFAR10 data set. (Left) Maximum Accuracy versus iter-
ations. Testing takes place every 250 training iterations. (Right) Percent
of SGD iterations each method took to reach a particular accuracy.
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Table 3.1:
Results on the CIFAR10 data set. Percent of SGD iterations each method
took to reach a particular accuracy.

Accuracy SGD NAG PCGD NAG-PCGD
65% 100% 92.86% 78.57% 64.29%
70% 100% 92.31% 73.07% 65.38%
75% 100% 96.42% 71.42% 71.42%

81.7% 100% 73% 56% 50%

accuracy increase. I only ran ADAM for 60000 iterations as it was not performing

well compared to other methods. I used α = 0.001, β1 = 0.9, β2 = 0.999 and

ε = 10−/8 when running ADAM as suggested in (Kingma and Ba 2015). Here, the

testing increment is larger than my prediction increment which may hide any initial

convergence advantage of NAG over PCGD. Given more time to excel, PCGD shows

performance advantages over NAG; NAG does not even consistently outperform SGD

per iteration. At any one time, NAG is at most 3.18% more accurate than SGD,

PCGD is at most 3.91% more accurate than SGD, and NAG-PCGD is at most 6.49%

more accurate than SGD.

Figure 3.2 (Right) shows, for a given accuracy, the percent of SGD iterations

each method took to reach that accuracy. Table 3.1 highlights some values from

Figure 3.2 (Right). That is, if it took SGD x iterations to reach a particular accuracy

for the first time, and PCGD took y iterations to reach that accuracy for the first

time, then the value plotted for PCGD at that accuracy is 100 × y/x. This figure

shows PCGD generally reaching particular accuracies before SGD and NAG-PCGD

generally reaching accuracies before PCGD. SGD took 114,000 iterations to become

81.7% accurate. Training with NAG yielded 81.7% accuracy in 73% of the iterations

required by SGD to reach this accuracy, training with PCGD yielded 81.7% accuracy

in 56% of the iterations required by SGD and training with NAG-PCGD yielded

81.7% accuracy in 50% of the iterations required by SGD. That is, PCGD took only

77% of the iterations required by NAG to reach 81.7% accuracy.
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For these values of s and p, using PCGD does not noticeably increase the average

iteration runtime when compared with SGD. For both methods, the average forward-

backward pass took ≈ 46ms when using batch size 100 on Bridges’ NVIDIA P100

GPU; time was measured using caffe time benchmarks.

3.5 Discussion

I have developed a general adaptation to gradient descent and considered the

impact in the case of training neural networks. Predictor-Corrector Gradient De-

scent reduces the number of iterations required to learn by incorporating traditional

predictor-corrector inspired ideas into classic gradient descent.

I have shown that PCGD can significantly decreases the number of training epochs

needed for a network to reach a particular testing accuracy when compared to stochas-

tic gradient descent. On both datasets considered, PCGD reduced the number of

required iterations to reach SGD maximum accuracy by nearly one half. When two

identical networks are allowed to train for the same number of iterations, the net-

works trained using PCGD regularly outperforms the network trained using SGD.

I have also shown that PCGD can outperform Nesterov’s Accelerated Gradient for

more complex learning problems requiring more training. By substantially reducing

the number of iterations required to reach a particular accuracy, PCGD can make

training large networks more feasible in cases where one can afford to increase the

training storage by a small constant multiple.

I have also considered the theoretical case of a strongly convex, continuously

differentiable and smooth objective function and showed that updating parameters

as a linear combination of historical values preserves the convergence rate of NAG.

Although my experimental environment is far from this hypothetical one, this theory

holds true when using PCGD to train neural networks. After an initial delay, I found

PCGD can outperform NAG.
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In this work, I only used linear fit functions and a single prediction length for

every network parameter. These choices worked well, but there is room for additional

exploration. One may see further improvement by using a dynamic value for the

prediction interval p.
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CHAPTER IV

Generating Artificial Core Users for Interpretable

Condensed Data

Recommendations Systems improve the user experience by providing personalized,

curated recommendations in a large and complex information space. Collaborative

Filtering methods exploit community data to uncover correlations between users and

items that can be used to make recommendations. Within collaborative filtering,

latent factor models are considered state-of-the-art; these models approximate highly

redundant data with low rank matrix decompositions (Aggarwal 2016; Hu, Koren,

and Volinsky 2008; Koren 2008; Koren, Bell, and Volinsky 2009; Shi, Larson, and

Hanjalic 2014).

Unfortunately, many matrix factorizations methods are transductive and cannot

be leveraged to make predictions for users outside of the original training set (Aggar-

wal 2016). Orthonormal matrix factors can be used more easily to make out-of-sample

predictions because the matrix factors capture geometric traits of the item and user

spaces. However, achieving orthonormality of the matrix factors can be expensive for

large datasets.

The majority of research in recommender systems focuses on developing new col-

laborative filtering and hybrid methods, which are often highly optimized for a specific

application. There is a smaller body of research looking at identifying the most useful

51



users who carry most of the relevant information, and separating out those users as

Core Users for making recommendations. With a smaller core set of users, making

out-of-sample predictions becomes a reasonable task. Reducing a dataset size without

much loss of information improves recommendation efficiency as well as storage costs;

numerous fields outside of recommender systems would benefit from this ability.

However, available Core User methods have limited representation ability, in that

they are selected from existing user data. In other words, the recommendation success

of Core Users is bounded by quality of user data available. Improving the recommen-

dation accuracy of Core Users makes data abstraction more effective for applications

in data augmentation, bots mimicking population behavior, data mining, privacy,

statistics and many more. In this chapter, I develop a method of generating Artificial

Core Users (ACUs) that improves the recommendation accuracy of real Core Users. I

combine latent factor models, ensemble boosting and K-means clustering, to generate

a small set of Artificial Core Users (ACUs) from real Core User data. My ACUs incur

a small amount of additional memory storage when compared to real Core Users, but

remain a reduction in memory storage compared to the original dataset. Artificial

Core Users improve the recommendation accuracy of real Core Users while remaining

good centroids for the complete recommendation dataset. Since ACUs act as good

centroids for the complete dataset, ACUs blend in well with the real dataset even

though they are generated artificially. But unlike real Core Users, ACUs have com-

plete ratings on all items, providing more immediately interpretable information to

scientists.

4.1 Related Work

The inductive matrix completion problem assumes that a ratings matrix is gener-

ated by applying feature vectors to a known low-rank matrix (Jain and Dhillon 2013;

Xiao Zhang, Du, and Gu 2018). This is relevant for making out-of-sample recom-
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mendations if we assume that the latent factors contain some ground truth about

the dataset that applies to out-of-sample users. As mentioned above, latent factors

produced by most methods are sadly transductive (Aggarwal 2016). To combat this,

some have worked on improving the efficiency of using a singular value decomposition

in recommender systems (Sarwar† et al. 2002).

Using clustering is one of the earliest attempts to decrease the number of users

you need to work with in order to make recommendations (Aggarwal 2016); rating

predictions can be made using only information from the relevant cluster. Alterna-

tively, Zeng et al. 2014 study the relevance of different users and find that there exists

an “information core” made up of some key users. They found that the number of the

Core Users is around 20 percent of the entire dataset, and that the recommendation

accuracy produced by only relying on the Core Users can reach 90 percent of that

produced using every user in the dataset. Zeng et al. 2014 use a generalized K-nearest

Neighbor algorithm using various relevancy metrics to measure ‘nearness’. They ran

experiments using degree-based, resource-based and similarity-based measures, to se-

lect their Core Users; all of these measures are graphical in nature. Since this work a

few other methods for selecting Core Users have emerged. Z. Li, Lei, and Shuyan 2016

use a long-tail-distribution-based measure to select their core uses. Cao and Kuang

2016 introduced a new measure to identify Core Users based on trust relationships

and interest similarity; this work extends beyond graphical knowledge to include the

semantic meaning of items. Kuang, Cao, and Chen 2017 use a combination of the

measures proposed in (Cao and Kuang 2016) and (Z. Li, Lei, and Shuyan 2016).

Recently, deep learning has made an appearance in recommender systems either

in the form of integration models or neural network models (S. Zhang, Yao, and A.

Sun 2017). Integration models use neural networks to uncover disguised features in

auxiliary information, like item descriptions (H. Wang, N. Wang, and Yeung 2015;

H. Wang, Xingjian, and Yeung 2016), user profiles (S. Li, Kawale, and Fu 2015) and
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knowledge bases (F. Zhang et al. 2016). The uncovered features are then incorporated

into a collaborative filtering framework to produce hybrid recommendations. Neural

network models on the other hand perform collaborative filtering directly via modeling

the interaction function between users and items (X. He et al. 2017; Q. Li, Zheng,

and X. Wu 2018; Sedhain et al. 2015; Strub, Mary, and Gaudel 2016; Y. Wu et al.

2016). Using deep learning to make recommendations means the models are better

equipped to recognize nonlinear relationships in the data, but it also means that the

models inherit all the training difficulties neural networks face compounded by the

difficulties of working with sparse data.

There is a small body of work that injects fake users into a recommendation sys-

tem either for adversarial goals (Christakopoulou and Banerjee 2018; Lam and Riedl

2004; OMahony, Hurley, and Silvestre 2002) or utilitarian data augmentation goals

(Sarwar et al. 1998). Typically, the fake users are hand-coded, but Christakopoulou

and Banerjee 2018) create adversarial fake user profiles for a recommendation sys-

tem using generative adversarial nets. Sarwar et al. 1998 on the other hand used

simple content filtering bots to generate a few users with dense ratings to improve

the recommendations. Tackling the new user, or cold start, problem is an issue in

recommender systems that has brought about some interesting work on determining

which item preferences and item features are most informative (Rashid, Albert, et al.

2002; Rashid, Karypis, and Riedl 2008; Seroussi, Bohnert, and Zukerman 2011).

4.2 Methodology

I propose an offline technique to generate a small set of Artificial Core Users

(ACUs) who’s dense ratings matrix can be stored in condensed, low order form and

used to make recommendations for out-of-sample users without much additional work.

This method uses latent factor models, ensemble boosting and K-means clustering

to learn a small group of artificial users who’s feature vectors capture correlations in
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the full dataset. This is a collaborative filtering method that uses an existing sparse

ratings matrix for a set of users and items.

The algorithm requires a set of training users represented by their ratings on a

given set of items, which will be used to update ACU ratings during learning. To

measure the abstraction of the ACUs, I also have a set of testing users that does

not overlap with the training user set from the same dataset. Let R be an m × n

sparse ratings matrix for m training users and n items.1 The ACU set size will be

small relative to the size of the dataset; if s is the number of ACUs, I pick s such

that s � m. Let RACU denote the s × n ratings matrix for my ACUs. There are a

number of ways one could initialize the ACU ratings; in my work, ACU ratings will

be initialized from Core User ratings. 2

The training algorithm is given in Algorithm 1. I trained row blocks of RACU

together using batches of training users. By learning ACUs in blocks, I incorporate

boosting results and reduce our workload (Breiman 1998; Schapire 1990). Algorithm

1 learns orthonormal decompositions for each block, leveraging the relevance of or-

thonormal decompositions to out-of-sample relationships.3 Let R
(b)
ACU denote the bth

row block in RACU , and Ri denote the sparse ratings matrix of the ith batch of training

users. For simplicity, I assume that each block of RACU has the same number of rows

and similarly each training batch has the same number of users. I divide RACU into ζ

equal sized row blocks such that for b ∈ {0, . . . , ζ} R(b)
ACU is a

(
s
ζ
× n

)
matrix. Let I

denote the training batch index set such that for i ∈ I, Ri is a
(
m
|I| × n

)
matrix. The

variables α and β are learning rates, while the variables λ and γ are regularization co-

efficients. Lines 15 and 20 in Algorithm 1 are derived from stochastic gradient descent

algorithms. Line 18 updates the rows of UACU as the s
ζ
-means of m

|I| row vectors in Ui,

1I did choose to normalize the variance and mean center the rows of R before proceeding; any
adjustments made here can be accounted for at recommendation time.

2As with any learning process, one can see a lot of improvement by selecting the right initializa-
tion. There is room to try supplementing Core User ratings to improve the initialization of RACU .

3Computing the singular value decomposition of a large matrix is known to be time consuming,
so learning in blocks saves quite a bit of time.
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which is described in detail in Algorithm 3. Embedding Algorithm 3 inside Algorithm

1 effectively trains the Artificial Core User user-space matrix, UACU , with Mini-Batch

K-means (Sculley 2010). By incorporating Algorithm 3 into the learning process we

expect to keep the resulting Artificial Core User ratings matrix interpretable. That

is, we expect the resulting Artificial Core User ratings to resemble that of real users,

but provide complete rating information in place of sparse data. As with any learning

method, the amount of regularization will be problem dependent; one may find that

they can get away with λ, γ = 0 because lines 16 and 23-24 in Algorithm 1 have a

regularizing effect. Lines 23-24 ensure that we don’t stray to far from an orthonormal

decomposition during learning. The while loop on line 10 takes a simplistic approach

to the inductive matrix completion problem given a set of features; this subprocess

could likely be improved by existing work (Jain and Dhillon 2013; Xiao Zhang, Du,

and Gu 2018).

Algorithm 1 should be run offline to produce a set of Artificial Core Users. After

which, one can use VACUSACU to make faster recommendations for out-of-sample

users. One may also be interested in using RACU as a condensed version of their

dataset.

This process resembles the way one would train a neural network and shares sim-

ilarities with neural network models (X. He et al. 2017; Q. Li, Zheng, and X. Wu

2018; Sedhain et al. 2015; Strub, Mary, and Gaudel 2016; Y. Wu et al. 2016). Neural

network models generally use autoencoders. One layer Neural Collaborative Autoen-

coders with no output activation can be reformulated to parallel matrix factorization

(Q. Li, Zheng, and X. Wu 2018). Unlike Algorithm 1, existing neural network models

are not concerned with interpretability.

I evaluate my work using two metrics: item vectors testing error and sparse K-

means error. To measure the item vectors testing error, I use Algorithm 2 on an

independent set of testing users. Algorithm 2 is a simplistic recommender model
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that tries to predict missing user ratings. It decomposes the row blocks of RACU

into orthogonal components using a singular value decomposition. Then, for a set of

real testing users, Algorithm 2 optimizes a set of unit vectors to accompany the item

vectors extracted from the decomposition of RACU - there is no new learning done in

the item vectors. In this way, Algorithm 2 evaluates the generality of the item vectors

extracted from RACU and the potential for high quality recommendations using a

more elaborate learning model. It should be noted that, as a simplistic recommender

model, Algorithm 2 produces far from state-of-the-art recommendation results, but

is useful for our purposes of evaluating whether Artificial Core Users better capture

the information in a recommendation dataset than real Core Users do. To compute

the sparse K-means error of RACU I make a few modifications to Algorithm 3 using

a sparse first input matrix; this results in Algorithm 4. Algorithm 4 estimates how

well the Artificial Core Users represent an average collection of real users, RACU , by

measuring how well the ACUs serve as centroids for our real testing users.
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Algorithm 1 Generate ACUs(R)

1: Let m be the number of users (row dimension of R) and n be the items (column
dimension of R).

2: Initialize constants α, λ, β, γ. Initialize matrix RACU with dimensions s× n.
3: while not done do
4: for b = 0 to ζ do

5: Find orthonomal
(
s
ζ
× k
)

matrix U
(b)
ACU , orthonomal (n× k) matrix V

(b)
ACU

and diagonal (k × k) matrix S
(b)
ACU such that U

(b)
ACUS

(b)
ACU

(
V

(b)
ACU

)>
≈ R

(b)
ACU and

k ≤ min
(
s
ζ
, n
)

.

6: Set V
(b)
ACU = V

(b)
ACUS

(b)
ACU .

7: Select i randomly from training user batch index set I.
8: Initialize Ui.
9: j = 0.

10: while not done do

11: Compute sparse E = Ri − Ui
(
V

(b)
ACU

)>
for the specified entries of Ri.

Other entries of E remain zero.
12: if not done then
13: if j mod 2 = 0 then
14: Ui ← (1− βγ)Ui + βEV

(b)
ACU .

15: Normalize the columns of Ui.
16: else
17: if j mod 4 = 1 then

18: Means Update
(
Ui, U

(b)
ACU

)
.

19: else
20: V

(b)
ACU ← (1− αλ)V

(b)
ACU + αE>Ui.

21: end if
22: end if

23: R
(b)
ACU = U

(b)
ACU

(
V

(b)
ACU

)>
.

24: Find orthonomal matricies U
(b)
ACU , V

(b)
ACU and diagonal matrix S

(b)
ACU

such that U
(b)
ACUS

(b)
ACU

(
V

(b)
ACU

)>
≈ R

(b)
ACU .

25: Set V
(b)
ACU = V

(b)
ACUS

(b)
ACU .

26: j = j + 1.
27: end if
28: end while
29: end for
30: end while
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Algorithm 2 Item Vectors Testing Error(R,RACU , ζ)

1: Let m be the number of users (row dimension of R), n be the items (column
dimension of R and RACU) and s be the number of ACUs (row dimension of
RACU).

2: Initialize constants β, γ.
3: for b = 0 to ζ do

4: Find orthonomal
(
s
ζ
× k
)

matrix U
(b)
ACU , orthonomal (n× k) matrix V

(b)
ACU and

diagonal (k × k) matrix S
(b)
ACU such that U

(b)
ACUS

(b)
ACU

(
V

(b)
ACU

)>
≈ R

(b)
ACU and k ≤

min
(
s
ζ
, n
)

.

5: end for
6: Let VACU =

[
V

(0)
ACU · · ·V

(ζ)
ACU

]
.

7: Aggregate S
(b)
ACU for b = 0 to ζ along diagonal blocks to form the diagonal matrix

SACU .
8: Set V

(b)
ACU = V

(b)
ACUS

(b)
ACU .

9: Randomly select 80% of the nonzero entries in R as training entries and let the
other 20% be the probe entries.

10: Define R(T ) as the sparse matrix made up of the training entries of R, and define
R(P ) as the sparse matrix made up of the probe entries of R such that R =
R(T ) +R(P ).

11: Initialize U .
12: while not done do
13: Compute sparse E = R(T ) − UV >ACU for the specified entries of R(T ). Other

entries of E remain zero.
14: if not done then
15: U ← (1− βγ)U + βEVACU .
16: Normalize the columns of U .
17: end if
18: end while
19: Compute sparse E = R(P ) − UV >ACU for the specified entries of R(P ).
20: Return the average absolute value of an entry in the E for the specified entries of

R(P ).
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Algorithm 3 Means Update(A,B)

1: Initialize lists Li for i = 0 to the row dimension of B.
2: for r = 0 to the row dimension of A do
3: min val =∞, min index = 0.
4: for l = 0 to the row dimension of B do
5: if The distance between the rth row of A and the lth row of B is less than

min val then
6: min val = this distance.
7: min index = l.
8: end if
9: end for

10: Lmin index.push(r).
11: end for
12: for l = 0 to the row dimension of B do
13: if list Ll is non-empty then
14: Set the lth row of B to the weighted average of the rows of A with indices

stored in list Ll.
15: end if
16: end for

Algorithm 4 Sparse Means Error(R,RACU)

1: avg error = 0.
2: entry count = 0.
3: for r = 0 to the row dimension of R do
4: min val =∞, min index = 0.
5: for l = 0 to the row dimension of RACU do
6: if The sparse distance between the rth row of R and the lth row of RACU

is less than min val for specified entries of R then
7: min val = this distance.
8: min index = l.
9: end if

10: end for
11: for sparse entries in the rth row of R do
12: entry count += 1.
13: temp err = absolute difference between entry of the rth row of R and the

corresponding entry in the min index row of RACU .
14: avg error += (temp err - avg error) / entry count.
15: end for
16: end for
17: Return avg error.
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4.3 Experimental Results

My main objective in my experiments is comparability across methods rather than

state-of-the-art performance. To make the error on the probe entry sets comparable

when testing with Algorithm 2, I aimed for similar errors on the training set; to

accomplish this goal I did stop running the algorithm early when necessary.

All experiments are run on the Bridges’ NVIDIA P100 GPUs through the Pitts-

burgh Supercomputing Center. I ran experiments using the MovieLens ml-20m

dataset (Harper and Konstan 2015). I normalized the variance and mean centered

the rows of the dataset ratings matrix before proceeding.4

I will compare my work for generating ACUs to existing methods for selecting

Core Users from (Cao and Kuang 2016; Kuang, Cao, and Chen 2017; Z. Li, Lei, and

Shuyan 2016; Zeng et al. 2014). All of the methods for finding Core Users tested here

are derived from the K-nearest neighbor algorithm. These methods use some metric

to determine the pair-wise similarity between all existing users. Then, for each user,

a list of the top-K most similar users is generated; from these combined lists the Core

Users are selected. In my Core User experiments, I collect the top-50 most similar

users for each user. Existing methods differ in their pair-wise similarity metric for

users, and in their selection method within the compiled top-K most similar user lists.

Recall that the cosine similarity of two vectors A and B is (A · B)/(||A|| · ||B||).

In all of my Core User experiments, the pair-wise similarity between all existing users

will be calculated in one of two ways: it will either be the cosine similarity of the

users’ ratings vectors, or it will be the cosine similarity of their boolean vectors where

their boolean vectors indicate only whether or not an item has been rated - not how

well the user liked it.

Once the lists of the top-K most similar users to each user have been generated,

one can either count the frequency of a given user’s appearance in the top-K lists and

4Any adjustments made here can be accounted for at recommendation time.
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take the most frequent users as the Core Users, or one can weight a user’s appearance

in a list by the inverse of the rank within the list that user appeared; the first way I

will refer to as frequency-based and the second way I will refer to as rank-based.

The final variant is whether or not to consider ‘hidden’ ratings in the cosine

similarity of users. Without considering hidden ratings, two users with no overlapping

rated items would have zero similarity, but if the users have rated items that are

similar to one another this metric seems insufficient. Cao and Kuang 2016; Kuang,

Cao, and Chen 2017 consider semantic relationships between items to determine item

similarity, here I will use the cosine similarity of the item vectors where the item

vectors are the rating data from all of the users for the given item.5 After computing

the item similarity, a missing rating may be substituted for with a weighted average

of similar rated items, where the item similarity can be used as the weight.

4.3.1 MovieLens

The MovieLens ml-20m contains ratings for 138493 users on a set of 27278 movies

(Harper and Konstan 2015). This section will discuss the performance of ACUs

compared to existing Core User methods using the MovieLens ml-20m dataset.

Table 4.1 shows the performance of the various previously existing Core User

selection methods when tested using the item vectors testing error; each method was

used to collect 13000 Core Users or a little under 10% of the original MovieLens

ml-20m dataset size. This is half the number of Core Users necessary to maintain

recommendation accuracy as claimed in (Zeng et al. 2014), but my aim is comparing

the viability of these methods. To test each method I used 13 row blocks, or 1000

users per block. I found that the performance is sensitive to the number of item

vectors retained as latent factors in the line 4 of Algorithm 2; we’ll discuss reasons

for this after a bit further down. I chose to use 20% of the singular values, for a total

5For each item, a list of the top-K most similar items is generated.
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Table 4.1:
Item Vectors Testing Error of 13000 Core Users collected with previously
existing methods using the ml-20m dataset (Harper and Konstan 2015). I
averaged the results of Algorithm 2 over 75 runs where each run was given
200 independent testing users and 2600 of the Core User Item Vectors, or
≈ 50% of the singular value mass. In each run, I stopped Algorithm 2
when I reached a training error of 0.2.

Item Similarity Used Ratings Used Frequency-Based Probe Entry Set Error

yes yes yes 1.41
yes yes no 1.38
yes no yes 1.71
yes no no 1.67
no yes yes 1.45
no yes no 1.39
no no yes 1.73
no no no 1.70

10
-2

10
-1

10
0

10
1

10
2

Order Percent

0

20

40

60

80

100

120

S
in

g
u
la

r 
V

al
u
e

Singular Values of Core User Ratings Mtx and 

Singular Values of Mtx with Random Ratings

Core Users

random

10
-2

10
-1

10
0

10
1

10
2

Order Percent

0

10

20

30

40

50

60

70

D
if

fe
re

n
c
e

Absolute Value of Difference

Between Core User Singular Values

and Random Singular Values

Figure 4.1:
(Left) Singular Values of 13000 Core User Ratings Matrix where Core
Users are selected from the ml-20m dataset (Harper and Konstan 2015)
using the most competitive selection method: the method used in the
second row of Table 4.1. Singular Values of an equally sparse matrix with
random ratings as the non-zero values. There are 13000 singular values,
where by convention lower order singular values have larger value. The
x-axis is labeled as the order percent, so the ith singular value would have
x-tick value i/130. (Right) Absolute Value of the difference between the
curves in the Left Figure.
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of 2600 latent factors across all the blocks. To make the error on the probe entry sets

comparable across methods, I stopped running Algorithm 2 when the error on the

training set had reached 0.2. The average absolute value of an entry in the ratings

matrix, after centering, is ≈ 0.8; in other words, the error when always predicting

that a missing rating will be the mean, zero, is ≈ 0.8. Therefore, I ran Algorithm 2 for

various Core User methods until the error on the training set was ≈ 75% better than

simply always guessing the mean. The first column in Table 4.1 indicates whether

or not hidden ratings taken from the item similarities were incorporated into the

calculation of the user similarities. The second column indicates whether the cosine

similarity of the user vectors is taken using the actual item ratings or just the item

booleans. The third column indicates whether I used a frequency-based or a rank-

based approach to select the Core Users from the aggregated lists of the top-50 most

similar users to each other user. These results support previous literature suggesting

that the best method for selecting Core Users considers item similarity, compares

ratings rather than booleans, and uses a rank-based selection approach.

For all methods used in Table 4.1, Algorithm 4 returns an error of ≈ 0.715; this

error is 12% better than the error when using only one centroid with the mean at the

origin.

Figures 4.2 help to explain why the performance of Algorithm 2 is sensitive to

the number of item vectors retained as latent factors in the line 4. They compare

the singular values of the 13000 Core User ratings matrix where the Core Users

are selected using the most competitive selection method: the method used in the

second row of Table 4.1 to the singular values of an equivalently sparse matrix with

random ratings as the non-zero values. In Section 2.4, I discussed the significance of

singular values and how they help to explain the behavior of a matrix as a mapping

between spaces. I referenced the Marchenko-Pastur theorem (Marchenko and Pastur

1967), which describes the asymptotic behavior of the singular values of large random
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Figure 4.2:
Item Vectors Testing Error of 13000 ACUs over iterations using the ml-
20m dataset (Harper and Konstan 2015). For each test, I averaged the
results of Algorithm 2 over 20 runs where each run was given 200 inde-
pendent testing users and (Left) 2600/(Right) 650 ACU item vectors. In
each run, I stopped Algorithm 2 when I reached a training error of 0.2.

matrices. Figures 4.2 show that the singular values of the Core User ratings matrix

only significantly differ from those of a random matrix in the lowest order singular

values, which are, by convention, the largest singular values. In fact, beyond the

first 1% of singular values, the singular values of the Core User ratings matrix differ

by at most 3.6 from those of a random matrix, with larger order singular values

contributing less influence over the behavior of the matrix. So, while the larger order

singular values of the Core User ratings matrix are non-zero, which is generally how

we measure relevance, this relationship suggests that the larger order singular vectors

may not be informative and may actually make learning more difficult by adding

noise.

I now move to discussing the results of learning ACUs using Algorithm 1. I

initialized my ACUs are as Core Users selected with the most competitive selection

method: the method used in the second row of Table 4.1.

Figures 4.2 shows the item vectors testing error of 13000 ACUs over iterations,

where an by an iteration of Algorithm 1 I am referring to one loop beginning on line

3. For each test, I averaged the results of Algorithm 2 over 20 runs where each run
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was given 200 independent testing users and either 2600 or 650 ACU item vectors.

As in my Core User tests, in each run I stopped Algorithm 2 when I reached a

training error of 0.2. In both testing and training I used 13 row blocks, or 1000

ACUs per block. Whether we use 2600 or 650 ACU item vectors we can see clear

improvement compared to the real Core User item vectors testing error, which is

simply the y−intercept of these graphs. The best item vectors testing error using

650, or 5% of the 13000 ACU item vectors is better than the item vectors testing

error of 27000 Core Users (20% of the users in the complete dataset) when using

using 650 Core User item vectors. The best item vectors testing error using 650 of

the 13000 ACU item vectors is 0.987, while the item vectors testing error of 27000

Core Users when using using 650 Core User item vectors is 1.03.

Since the Core Users are stored in the same memory format as the original com-

plete dataset, retaining only 20% of the users as Core Users results in approximately

a 80% memory reduction. The memory reduction of the Artificial Core Users depends

on the number of latent factors one decides to store. If one chooses to store only 5%

of the resulting latent factors, both user and item vectors, then this results in a 36%

reduction in memory compared to the original data set. If one chooses to store only

5% of the the item vectors then this results in a 57% reduction in memory compared

to the original data set. Additionally, the improvement in the item vectors testing

error when using only 5% of the the item vectors in Algorithm 2 compared to using

20% of the the item vectors as shown in Figures 4.2 suggests that these extra vector

may be more noisy than informative.

Admittedly, Algorithm 1 learns relatively slowly. One loop beginning on line 3

can take up to 4 minutes to complete. I stopped running Algorithm 1 after 180

iterations at which point I reached an item vectors testing error of 1.36 with 2600

ACU item vectors and 0.99 with 650 ACU item vectors, which outperforms the most

competitive real Core User methods. I also improved the sparse mean error slightly,
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Figure 4.3:
Sparse Mean Error of 13000
ACUs using the ml-20m
dataset (Harper and Kon-
stan 2015).

Figure 4.4:
650 largest singular values
of 13000 trained ACU rat-
ings matrix using the ml-20m
dataset (Harper and Kon-
stan 2015), compared to the
largest singular values of the
ratings matrix of 27000 Core
Users (20% of the users in the
complete dataset) and the
largest singular values of the
ratings matrix of 13000 Core
Users (10% of the users in the
complete dataset).

so my ACUs are a bit better centroids for the testing users than 13000 real Core Users

are. Figure 4.3 shows the sparse mean error of my ACUs over iterations calculated

with Algorithm 4. The second improvement is marginal, but demonstrates that my

ACUs are still resemble an average group real users.

I was able to condense the information of 27000 sparse Core Users into 13000 ACUs

or approximately half the number of users. Since ACUs carry dense information,

storing 5% of the 13000 ACUs latent factors takes up about three times as much

memory as 27000 sparse Core Users do, but 5% of the 13000 ACUs latent factors

achieves a smaller item vectors testing error than the same number of Core User

latent vectors when using 27000 sparse Core Users. We can see from Figure 4.4 that
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the largest singular values of the ACU ratings matrix, that had matched the largest

singular values of the ratings matrix with 13000 Core Users at initialization, has

shifted toward the the largest singular values of the ratings matrix with 27000 Core

Users after 180 training iterations.

4.4 Discussion

I have shown that my Artificial Core Users improve the recommendation accuracy

of real Core Users while mimicking real user data. Because they act as good centroids

for the complete dataset, they can be considered good representatives for real user

clusters. They can be stored efficiently, yet they have dense ratings information which

is more immediately interpretable than sparse data. I have removed the representation

limits of Core Users and shown that an iterative training process can improve the

recommendation accuracy of Core Users producing data that continues to resemble

that of real users, conserve memory and improve recommendation efficiency.
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CHAPTER V

Conclusion

The immense expressional power of machine learning and has advanced data sci-

ences a great deal. Large networks can achieve unprecedented accuracy in intricate

learning problems, yet their size consumes significant computational resources and,

consequently, time (Krizhevsky, Sutskever, and G. E. Hinton 2012). Advances in

compute power allow neural networks with millions of parameters to be trained on

enormous, complex data sets, and the use of GPUs has decreased training time dras-

tically, but new techniques for reducing network training time must arise for deep

learning to progress. Ensemble recommender systems can make sense of human pref-

erences for datasets with millions of users and items (The Netflix Prize Retrieved

2009-9-24), but the vast majority of this work is non-transferable, which is a signifi-

cant obstruction.

In this thesis, I have introduced three methods to improve the efficiency of ma-

chine learning methods with special focus given to computationally heavy algorithms

such as deep learning and recommender systems. I have shown that Block Diago-

nal Inner Product layers can reduce network size, training time and final execution

time without significant harm to the network performance. I have developed a gen-

eral adaptation to gradient descent that reduces the number of iterations required

to learn by incorporating traditional predictor-corrector inspired ideas into classic
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gradient descent. And I have shown that Artificial Core Users improve the recom-

mendation performance of real Core Users while remaining good representation of an

average collection of real users. Together, these works contribute to a growing need

to make behemoth learning models more efficient to train, store and execute.
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APPENDIX A

Lenet-5

Below you’ll find the Lenet-5 (LeCun, Bottou, et al. 1998) network architecture

written explicitly with all activation functions and initialization distributions speci-

fied. Caffe (Jia et al. 2014) reads Google Protobuf (Language Guide Retrieved 2020-

07-31) format files, so below I have written the Lenet-5 network architecture in this

format. The Lenet-5 network has 5 layers by conventional standards including the

input layer, however Caffe reads in pooling and activation functions as separate layers

so I adhere to Caffe’s format below. Additionally, the input and output layers have

two separate protobufs, one for training and one for testing, that specify different

actions for each phase, like batch sizes for example.

This protobuf is identical to the one used in Training LeNet on MNIST with Caffe

Retrieved 2020-07-31, and a more detailed explanation can be found there. The in-

put layer pixels are scales so that they are in the range [0, 1). The ‘bottom’ field

specifies the name of the input for that layer, and the ‘top’ field gives a name to the

layer output. Of note are parameter values for the num output, filler, kernel size and

stride fields. The xavier filler algorithm automatically determines the scale of ini-

tialization based on the number of input and output neurons (Glorot and Y. Bengio

2010). When the filler is ‘constant’, the default value is 0. lr mults values adjustment

the learning rate for the layer’s learnable parameters. In a convolutional layer, the
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num output field indicated the number of output channels.

name: “LeNet”
layer {

name: “dataset name”
type: “Data”
top: “data”
top: “label”
include {phase: TRAIN}
# 0.00390625 = 1/256
transform param {scale: 0.00390625 }
data param {

source: “source path/training dataset lmdb”
batch size: 64
backend: LMDB

}
}
layer {

name: “dataset name”
type: “Data”
top: “data”
top: “label”
include {phase: TEST }
# 0.00390625 = 1/256
transform param {scale: 0.00390625}
data param {

source: “source path/testing dataset lmdb”
batch size: 100
backend: LMDB

}
}
layer {

name: “conv1”
type: “Convolution”
bottom: “data”
top: “conv1”
param {lr mult: 1 }
param {lr mult: 2 }
convolution param {

num output: 20
kernel size: 5
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stride: 1
weight filler { type: “xavier” }
bias filler { type: “constant” }

}
}
layer {

name: “pool1”
type: “Pooling”
bottom: “conv1”
top: “pool1”
pooling param {

pool: MAX
kernel size: 2
stride: 2

}
}
layer {

name: “conv2”
type: “Convolution”
bottom: “pool1”
top: “conv2”
param {lr mult: 1 }
param {lr mult: 2 }
convolution param {

num output: 50
kernel size: 5
stride: 1
weight filler { type: “xavier” }
bias filler { type: “constant”}

}
}
layer {

name: “pool2”
type: “Pooling”
bottom: “conv2”
top: “pool2”
pooling param {

pool: MAX
kernel size: 2
stride: 2

}
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}
layer {

name: “ip1”
type: “InnerProduct”
bottom: “pool2”
top: “ip1”
param {lr mult: 1 }
param {lr mult: 2}
inner product param {

num output: 500
weight filler { type: “xavier” }
bias filler { type: “constant”}

}
}
layer {

name: “relu1”
type: “ReLU”
bottom: “ip1”
top: “ip1”

}
layer {

name: “ip2”
type: “InnerProduct”
bottom: “ip1”
top: “ip2”
param {lr mult: 1 }
param {lr mult: 2}
inner product param {

num output: 10
weight filler { type: “xavier” }
bias filler { type: “constant”}

}
}
layer {

name: “accuracy”
type: “Accuracy”
bottom: “ip2”
bottom: “label”
top: “accuracy”
include {phase: TEST }

}
layer {
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name: “loss”
type: “SoftmaxWithLoss”
bottom: “ip2”
bottom: “label”
top: “loss”

}

Below you’ll find a copy of the corresponding ‘solver’ protobuf. By Caffe’s design

(Jia et al. 2014), the solver contains hyperparameter values like learning rate, testing

frequency, how often to save a network snapshot and learning policies like momentum

and weight decay.

# The train/test net protocol buffer definition
net: “source path/net protocol buffer.prototxt”
# test iter specifies how many forward passes the test should carry out.
test iter: 100
# Carry out testing every 500 training iterations.
test interval: 500
# The base learning rate, momentum and the weight decay of the network.
base lr: 0.01
# momentum is the weight of the previous update.
momentum: 0.9
# weight decay meta parameter governs the regularization term.
weight decay: 0.005
# The learning rate policy
# inv: return base lr * (1 + gamma * iter) ˆ(- power)
lr policy: “inv” gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations (at this learning rate)
# After which reduce the learning rate by a factor of 10
max iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot prefix: “save path/snapshot prefix”
# solver mode: CPU or GPU
solver mode: GPU
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APPENDIX B

Cuda-Convnet

Below you’ll find Krizhevsky’s Cuda-convnet (Krizhevsky 2012a) network archi-

tecture written explicitly with all activation functions and initialization distributions

specified. Caffe (Jia et al. 2014) reads Google Protobuf (Language Guide Retrieved

2020-07-31) format files, so below I have written Krizhevsky’s Cuda-convnet network

architecture in this format. Krizhevsky’s Cuda-convnet network has 6 layers by con-

ventional standards including the input layer, however Caffe reads in pooling and

activation functions as separate layers so I adhere to Caffe’s format below. Addi-

tionally, the input and output layers have two separate protobufs, one for training

and one for testing, that specify different actions for each phase, like batch sizes for

example.

This protobuf is identical to the one used in Alex’s CIFAR-10 tutorial, Caffe style

Retrieved 2020-07-31, and a more detailed explanation can be found there. The ‘bot-

tom’ field specifies the name of the input for that layer, and the ‘top’ field gives a

name to the layer output. Of note are parameter values for the num output, filler,

kernel size, pad and stride fields. When the filler is ‘constant’, the default value is 0.

lr mults values adjustment the learning rate for the layer’s learnable parameters. In

a convolutional layer, the num output field indicated the number of output channels.
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name: “Cuda-convnet”
layer {

name: “dataset name”
type: “Data”
top: “data”
top: “label”
include {phase: TRAIN}
transform param {mean file: “source path/mean.binaryproto” }
data param {

source: “source path/training dataset lmdb”
batch size: 100
backend: LMDB

}
}
layer {

name: “dataset name”
type: “Data”
top: “data”
top: “label”
include {phase: TEST }
transform param {mean file: “source path/mean.binaryproto” }
data param {

source: “source path/testing dataset lmdb”
batch size: 100
backend: LMDB

}
}
layer {

name: “conv1”
type: “Convolution”
bottom: “data”
top: “conv1”
param {lr mult: 1 }
param {lr mult: 2 }
convolution param {

num output: 32
pad: 2
kernel size: 5
stride: 1
weight filler {

type: “gaussian”
std: 0.0001
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}
bias filler { type: “constant” }

}
}
layer {

name: “pool1”
type: “Pooling”
bottom: “conv1”
top: “pool1”
pooling param {

pool: MAX
kernel size: 3
stride: 2

}
}
layer {

name: “relu1”
type: “ReLU”
bottom: “pool1”
top: “pool1”

}
layer {

name: “conv2”
type: “Convolution”
bottom: “pool1”
top: “conv2”
param {lr mult: 1 }
param {lr mult: 2 }
convolution param {

num output: 32
pad: 2
kernel size: 5
stride: 1
weight filler {

type: “gaussian”
std: 0.01

}
bias filler { type: “constant”}

}
}
layer {
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name: “relu2”
type: “ReLU”
bottom: “conv2”
top: “conv2”

}
layer {

name: “pool2”
type: “Pooling”
bottom: “conv2”
top: “pool2”
pooling param {

pool: AVE
kernel size: 3
stride: 2

}
}
layer {

name: “conv3”
type: “Convolution”
bottom: “pool1”
top: “conv3”
param {lr mult: 1 }
param {lr mult: 2 }
convolution param {

num output: 64
pad: 2
kernel size: 5
stride: 1
weight filler {

type: “gaussian”
std: 0.01

}
bias filler { type: “constant”}

}
}
layer {

name: “relu3”
type: “ReLU”
bottom: “conv3”
top: “conv3”

}
layer {
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name: “pool3”
type: “Pooling”
bottom: “conv3”
top: “pool3”
pooling param {

pool: AVE
kernel size: 3
stride: 2

}
}
layer {

name: “ip1”
type: “InnerProduct”
bottom: “pool3”
top: “ip1”
param {lr mult: 1 }
param {lr mult: 2}
inner product param {

num output: 64
weight filler {

type: “gaussian”
std: 0.1

}
bias filler { type: “constant”}

}
}
layer {

name: “ip2”
type: “InnerProduct”
bottom: “ip1”
top: “ip2”
param {lr mult: 1 }
param {lr mult: 2}
inner product param {

num output: 10
weight filler {

type: “gaussian”
std: 0.1

}
bias filler { type: “constant”}

}
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}
layer {

name: “accuracy”
type: “Accuracy”
bottom: “ip2”
bottom: “label”
top: “accuracy”
include {phase: TEST }

}
layer {

name: “loss”
type: “SoftmaxWithLoss”
bottom: “ip2”
bottom: “label”
top: “loss”

}

Below you’ll find a copy of the corresponding ‘solver’ protobuf. By Caffe’s design

(Jia et al. 2014), the solver contains hyperparameter values like learning rate, testing

frequency, how often to save a network snapshot and learning policies like momentum

and weight decay.

# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10

# The train/test net protocol buffer definition
net: “source path/net protocol buffer.prototxt”
# test iter specifies how many forward passes the test should carry out.
test iter: 100
# Carry out testing every 500 training iterations.
test interval: 500
# The base learning rate, momentum and the weight decay of the network.
base lr: 0.001
# momentum is the weight of the previous update.
momentum: 0.9
# weight decay meta parameter governs the regularization term.
weight decay: 0.004
# The learning rate policy
lr policy: “fixed”
# Display every 100 iterations
display: 100
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# The maximum number of iterations (at this learning rate)
# After which reduce the learning rate by a factor of 10
max iter: 4000
# snapshot intermediate results
snapshot: 4000
snapshot prefix: “save path/snapshot prefix”
# solver mode: CPU or GPU
solver mode: GPU
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APPENDIX C

Proof of Theorem 3.3.1 and Corollary 3.3.1.1

Recall, L is β-smooth if the gradient mapping ∇L is β-Lipschitz, i.e. for any

x,y ∈ Rn one has ‖∇L(x) − ∇L(y)‖ ≤ β‖x − y‖. Recall the follow two known

lemmas.

Lemma C.0.1. Let L be convex and β-smooth on Rn, then for any x,y ∈ Rn we

have |L(x)− L(y)−∇L(y)>(x− y)| ≤ β‖x− y‖22.

Proof. Using the convexity of L, the Cauchy-Schwarz inequality and the fact that L

is β-smooth we have,

0 ≤ L(x)− L(y)−∇L(y)>(x− y) ≤
(
∇L(x)> −∇L(y)>

)
(x− y) ≤ β‖x− y‖22 .

Lemma C.0.2. Let L be convex and β-smooth on Rn, then for any x,y ∈ Rn we

have L
(
x− 1

β
∇L(x)

)
− L(y) ≤ − 1

2β
‖∇L(x)‖22 +∇L(x)>(x− y).
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Proof. Using the convexity of L and Lemma C.0.1 we have,

L

(
x− 1

β
∇L(x)

)
− L(y) ≤L

(
x− 1

β
∇L(x)

)
− L(x) +∇L(x)>(x− y)

≤∇L(x)>
(
x− 1

β
∇L(x)− x

)
+
β

2

∥∥∥∥x− 1

β
∇L(x)− x

∥∥∥∥2
2

+∇L(x)>(x− y)

=− 1

2β
‖∇L(x)‖22 +∇L(x)>(x− y) .

I will now prove Theorem 3.3.1 and Corollary 3.3.1.1.

Proof of Theorem 3.3.1. From Lemma C.0.2 we have,

L (θt+1)− L(θt−r+1) =L

(
zt −

1

β
∇L(zt)

)
− L(θt−r+1)

≤− 1

2β
‖∇L(zt)‖22 +∇L(zt)

>(zt − θt−r+1)

=− β

2
‖θt+1 − zt‖22 − β(θt+1 − zt)>(zt − θt−r+1) .

(C.1)

Similarly,

L (θt+1)− L(θ∗) ≤ −β
2
‖θt+1 − zt‖22 − β(θt+1 − zt)>(zt − θ∗) . (C.2)

Multiplying (C.1) by (λt − 1) and adding that to (C.2) we get

λtδt+1 − (λt − 1)δt−r+1 ≤−
βλt
2
‖θt+1 − zt‖22

− β(θt+1 − zt)>(λtzt − (λt − 1)θt−r+1 − θ∗)

where δt = L(θt)−L(θ∗). Now I multiply both sides by λt and note that by definition
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λ2t − λt = λ2t−r. This gives,

λ2t δt+1 − λ2t−rδt−r+1 ≤−
β

2

(
‖λt(θt+1 − zt)‖22

+ 2λt(θt+1 − zt)>(λtzt − (λt − 1)θt−r+1 − θ∗)
)

=− β

2

(
‖λtθt+1 − (λt − 1)θt−r+1 − θ∗‖22

+ ‖λtzt − (λt − 1)θt−r+1 − θ∗‖22
)
.

(C.3)

Rearranging the update for the zt I note, λt+1zt+1 − (λt+1 − 1)θt−r+2 = λtθt+1 −

(λt − 1)θt−r+1. Substituting this into (C.3) yeilds,

λ2t δt+1 − λ2t−rδt−r+1 ≤−
β

2

(
‖λt+1zt+1 − (λt+1 − 1)θt−r+2 − θ∗‖22

+ ‖λtzt − (λt − 1)θt−r+1 − θ∗‖22
)
.

By summing both sides of the above inequality from t = r to T for some T > r

we have,

T∑
t=T−r

λ2t δt+1 ≤
β‖zr − θ∗‖22

2

where it is important to note that λt−1 ≥ bt/rc/2 by induction. Hence,

T∑
t=T−r

b(t+ 1)/rc2δt+1 ≤2β‖zr − θ∗‖22

which concludes the proof.
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Proof of Corollary 3.3.1.1. Recall L is strongly convex with parameter m > 0 if

∀x,y ∈ Rn we have m
2
‖x − y‖22 ≤ L(x) − L(y) − ∇L(y)>(x − y). With x = zr

and y = θ∗ this means,

‖zr − θ∗‖22 ≤
2(L(zr)− L(θ∗))

m
≤ β‖θ0 − θ∗‖22

mr

by convergence of gradient descent (Nocedal and Wright 2006) and since ∇L(θ∗) = 0.

Together with Theorem 3.3.1 this gives,

T∑
t=T−r

b(t+ 1)/rc2δt+1 ≤
β2‖θ0 − θ∗‖22

mr

as desired.
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APPENDIX D

NAG-PCGD

NAG-PCGD nests Nesterov’s Accelerated Gradient (NAG) updates inside Predictor-

Corrector Gradient Descent (PCGD) updates to achieve the benefits of both methods.

Let p be the prediction increment, s be the snapshot increment and let f(a, x) :

Rc × R → R be our chosen fit function class for parameter prediction. Recall,

F (A, x) : Rc×n × R → Rn is defined such that the ith entry of F (A, x) is f(ai, x)

where ai is the ith column of A. When using NAG-PCGD, network parameter vector

θ ∈ Rn receives the update

λt =

(
1 +

√
1 + 4λ2t−1

)/
2 with λ0 = 0

γt = (1− λt) /λt+1

zt =(1− γt−1)θt + γt−1θt−1 with z0 = θ0

θt+1 =


F (At+1, lt+1) if t+ 1 ≡ 0 mod p

zt − ε∇L(zt) otherwise

(D.1)

where L is the desired loss function, ε is some learning rate, lt+1 ≥ p/s is an increasing

prediction length and At+1 ∈ Rc×n, minimizes the L2-norms of the columns of JAt+1−

Θt+1. Here, Ji,j = ∂f(a, i)
/
∂aj, and the ith row of Θt+1 is the vector θ>t+1−p+is for
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i < p/s and (zt − ε∇L(zt))
> for i = p/s.
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