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ABSTRACT

Our world is becoming increasingly connected through smart technologies. The same

trend is emerging in transportation systems, wherein connected vehicles (CVs) and trans-

portation infrastructure are being connected through advanced wireless communication

technologies. CVs have great potential to improve a variety of mobility applications, in-

cluding traffic signal control (TSC), a critical component in urban traffic operations. CV-

based TSC (CV-TSC) systems use trajectory data to make more informed control deci-

sions, therefore can accommodate real-time traffic fluctuations more efficiently. However,

vehicle-infrastructure connectivity opens new doors to potential cyber attacks. Malicious

attackers can potentially send falsified trajectory data to CV-TSC systems and influence

signal control decisions. The benefit of CV-TSC systems can be realized only if the sys-

tems are secure in cyberspace. Although many CV-TSC systems have been developed

within the past decade, few consider cyber security in their system design. It remains un-

clear exactly how vulnerable CV-TSC systems are, how cyber attacks may be perpetrated,

and how engineers can mitigate cyber attacks and protect CV-TSC systems. Therefore,

this dissertation aims to systematically understand the cyber security problems facing

CV-TSC systems under falsified data attacks and provide a countermeasure to safeguard

CV-TSC systems. These objectives are accomplished through four studies.

The first study evaluates the effects of falsified data attacks on TSC systems. Two

x



TSC systems are considered: a conventional actuated TSC system and an adaptive CV-

TSC system. Falsified data attacks are assumed to change the input data to these systems

and therefore influence control decisions. Numerical examples show that both systems

are vulnerable to falsified data attacks.

The second study investigates how falsified data attacks may be perpetrated in a re-

alistic setting. Different from prior research, this study considers a more realistic but

challenging black-box attack scenario, in which the signal control model is unavailable

to the attacker. Under this constraint, the attacker has to learn the signal control model

using a surrogate model. The surrogate model predicts signal timing plans based on crit-

ical traffic features extracted from CV data. The attacker can generate falsified CV data

(i.e., falsified vehicle trajectories) to alter the values of critical traffic features and thus

influence signal control decisions.

In the third study, a data-driven method is proposed to protect CV-TSC systems from

falsified data attacks. Falsified trajectories are behaviorally distinct from normal trajec-

tories because they must accomplish a certain attack goal; thus, the problem of identify-

ing falsified trajectories is considered an abnormal trajectory identification problem. A

trajectory-embedding model is developed to generate vector representations of trajectory

data. The similarity (distance) between each pair of trajectories can be computed based on

these vector representations. Hierarchical clustering is then applied to identify abnormal

(i.e., falsified) trajectories.

In the final study, a testing platform is built upon a virtual traffic simulator and real-

world transportation infrastructure in Mcity. The testing platform integrates the attack

study and defense study in a unified framework and is used to evaluate the real-world

impact of cyber attacks on CV-TSC systems and the effectiveness of defense strategies.
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CHAPTER 1

Introduction

1.1 Motivation

We are moving into the era of the Internet of Things, in which nearly all physical devices

will be connected and exchanging data. The same trend is emerging in transportation sys-

tems, wherein vehicles and infrastructure are being connected through advanced wireless

communication technologies, such as Dedicated Short-Range Communications (DSRC)

(Kenney, 2011) and cellular networks (Wang et al., 2017). These vehicles are called

connected vehicles (CVs), which are capable of communicating with other CVs and

transportation infrastructure via Vehicle-to-Vehicle (V2V) communication and Vehicle-

to-Infrastructure (V2I) communication. Research has shown that CVs have great potential

to improve traffic signal control (TSC). CV-based TSC (CV-TSC) systems are deployed

in transportation infrastructure and use CV data (i.e., vehicle trajectories) to make more

informed control decisions. Compared with conventional TSC systems that use data from

fixed-location sensors, CV-TSC systems accommodate real-time traffic fluctuations more
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efficiently. However, vehicle-infrastructure connectivity also opens new doors to potential

cyber attacks. Malicious attackers can potentially launch cyber attacks against CV-TSC

systems to jeopardize these systems’ operation. The benefits of CV-TSC systems can

be realized only if the systems are secure in cyberspace. Although many CV-TSC sys-

tems have been developed within the past decade, few consider cyber security in their

system design. It remains unclear exactly how vulnerable CV-TSC systems are, how cy-

ber attacks may be perpetrated, and how engineers can mitigate cyber attacks and protect

CV-TSC systems.

This dissertation aims to understand the cyber security problems facing TSC systems

with CVs. First, an empirical study is presented to evaluate the effects of potential cyber

attacks on different TSC systems. Based on the results from the empirical study, a formal

attack study is then conducted in a realistic setting. Next, the focus of this dissertation

shifts to exploring an effective defense strategy to safeguard CV-TSC systems. Finally, a

testing platform is built upon a virtual traffic simulator and real-world transportation in-

frastructure in Mcity. The testing platform integrates the attack study and defense study in

a unified framework and can be used to perform various attack and defense experiments.

More background information will be introduced in the next section, including an

introduction to CVs and TSC systems, cyber security issues associated with TSC sys-

tems, and the threat model. The dissertation framework is then proposed, followed by the

contributions of this dissertation. Finally, a summary of each chapter is provided.
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1.2 Background

1.2.1 Connected Vehicles and Traffic Signal Control

CV technologies enable vehicles and transportation infrastructure to communicate with

each other wirelessly. This communication mechanism ensures information exchange be-

tween CV users and therefore improves the safety and mobility of ground transportation.

Given these benefits, the CV industry has witnessed substantial progress in development

and deployment throughout the past decade. In 2011, the U.S. Department of Transporta-

tion (USDOT) initiated the Safety Pilot Model Deployment project to validate DSRC

technology for V2V and V2I safety applications (Bezzina and Sayer, 2014). USDOT

later launched three more CV pilot programs in New York City, Tampa, and Wyoming in

2016 as part of a national effort to test CV-based applications (USDOT, 2019a).

CVs have shown promise in enhancing various mobility applications, including TSC,

a critical component in urban traffic operations. A typical CV-TSC system is illustrated

in Figure 1.1. Each CV is equipped with an On-Board Unit (OBU), which broadcasts Ba-

sic Safety Messages (BSMs). A BSM records a CV’s information including its location,

speed, heading, and acceleration. Consecutive BSMs represent the vehicle trajectory. On

the infrastructure side, an intersection is equipped with a Roadside Unit (RSU), signal

controller, and traffic signals. The RSU uses received BSMs (i.e., trajectories) to opti-

mize signal timing plans. The signal controller executes optimal signal timing plans and

controls traffic signals to display corresponding colors. The signal controller is connected

3



to a transportation management center, which can send commands remotely to the sig-

nal controller (e.g., time-of-day signal timing plans). Meanwhile, the RSU continuously

broadcasts Signal Phase and Timing (SPaT) messages, which record current signal status

(i.e., green/yellow/red) and remaining time. Based on continuously received BSMs, the

CV-TSC system generates optimal signal timing plans and responds to real-time traffic

demands.

SPaT

DSRC	or	C-V2X

BSM
CV1

Roadside
Unit

Signal
Controller

Traffic
Signals

Transportation
Management	Center

BSM
BSM

SPaT

BSM

Wired	connection

CV2

Figure 1.1: Illustration of a connected vehicle based traffic signal control system

Many studies have shown that CV-TSC systems often outperform conventional TSC

systems in terms of cost and performance. Conventional TSC systems mainly rely on

fixed-location sensors (e.g., loop detectors and cameras) for data collection and decision

making. It is costly to install and maintain these fixed-location sensors as one intersection

normally requires a suite of sensors. However, CV-TSC systems only need a single RSU

4



for each intersection. This arrangement greatly reduces the associated costs. In addition,

CV-TSC systems tend to perform better than conventional TSC systems because CV data

provide temporal and spatial measurements of traffic and thus have higher resolution and

quality than fixed-location sensors. Over the past decade, scholars have proposed nu-

merous CV-TSC control models that outperform conventional TSC systems (Priemer and

Friedrich, 2009; He et al., 2012; Goodall et al., 2013; Lee et al., 2013; Pandit et al., 2013;

He et al., 2014; Guler et al., 2014; Feng et al., 2015; Beak et al., 2017; Li and Ban, 2018;

Feng et al., 2018c; Zheng et al., 2018; Yu et al., 2018; Feng et al., 2018a; Yu et al., 2019;

Yang et al., 2019).

In light of these benefits, it is believed that CV-TSC systems will eventually re-

place conventional TSC systems and become the next-generation TSC system (USDOT,

2019b). However, the complete implementation of CV technologies in transportation

systems could take years or even decades. The transition from conventional TSC systems

to CV-TSC systems may be similarly gradual. During this transition period, CV-TSC

systems will operate under low CV market penetration. A recently developed represen-

tative CV-TSC system is the Multi-Modal Intelligent Traffic Signal System (MMITSS),

which is a part of the Cooperative Transportation Systems Pooled Fund Study that fo-

cuses on CV Dynamic Mobility Applications. The goal of this project is to develop and

field test CV-TSC systems that serve multimodal travelers including passenger vehicles,

transit vehicles, emergency vehicles, freight vehicles, and pedestrians. The project con-

sists of four main components: Intelligent Traffic Signal System (I-SIG), Signal Priority

5



(Transit-TSP, Freight-FSP, Emergency Vehicle-EVP), Mobile Accessible Pedestrian Sig-

nal System (PED-SIG) and a real-time performance observer (PERF-OBS). I-SIG pro-

vides real-time adaptive signal control services to general vehicles and is the CV-TSC

system being evaluated in this dissertation. For descriptions of the other components of

MMITSS, readers can refer to University of Arizona et al. (2016).

1.2.2 Cyber Security of Traffic Signal Control Systems

Growing cyber attacks have been reported against traffic control systems over the past

several years. For instance, an Argentinian security expert hacked into New York City’s

wireless vehicle detection system via a cheap wireless device (Prigg, 2014). The loophole

he discovered in the system enabled anyone to take complete control of vehicle detection

devices and send fake data to traffic control systems. Although traffic signals were not

controlled directly, fake vehicle data could lead to severe traffic congestion and higher

crash risks. Another example emerged in Austin, Texas, where a variable message sign

was altered to display “Zombies Ahead” rather than correct traffic information (Miller,

2009). This incident did not result in damage, but such mischief revealed potential secu-

rity issues in transportation systems.

As indicated, TSC systems are undoubtedly susceptible to potential cyber attacks. It

is important to understand the vulnerability of these systems by evaluating the impact of

cyber attacks (i.e., extra travel time or delay caused by cyber attacks). Research on TSC-

focused cyber attacks can be divided into two categories based on the attack mechanism.
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The first research line assumes that attackers can gain access to TSC systems, ei-

ther physically or remotely, to directly manipulate signal control decisions. For instance,

Laszka et al. (2016) studied the vulnerability of transportation networks with fixed signal

control. The author assumed that an attacker could compromise traffic signal controllers

and arbitrarily change signal timing plans. Ernst and Michaels (2017) performed simula-

tions to numerically evaluate the potential impact of an attack by assuming that an attacker

could alter the synchronization of traffic signals on a corridor. Perrine et al. (2019) treated

attacked traffic signals as stop signs and quantified the possible effects of cyber attacks.

Ganin et al. (2019) modeled cyber attacks as speed reduction for attacked links in the

traffic network. In addition to urban TSC systems, Reilly et al. (2016) focused on free-

way TSC systems and assumed an attacker could compromise ramp meters and therefore

control the on-ramp traffic flow to the freeway.

The second research stream posits that attackers cannot directly manipulate signal

control decisions, but can send falsified data to influence these decisions. Ghafouri et al.

(2016) assumed that sensor data could be used to generate fixed signal timing plans

and that an attacker could tamper with sensor data, resulting in inefficient traffic signal

scheduling. Chen et al. (2018) analyzed I-SIG and found that an attacker could generate

falsified CV data to fool I-SIG by manipulating either arrival time or queue length. Yen

et al. (2018) analyzed different backpressure-based scheduling algorithms and discovered

that falsified arrival data could influence the signal scheduling of a TSC system. In ad-

dition to influencing signal control decisions, Jeske (2013) and Sinai et al. (2014) found

7



that by creating ghost drivers and reporting fake GPS coordinates to social navigation

systems, attackers could generate virtual traffic jams to influence routing decisions in the

social navigation systems (e.g., Google Maps or Waze).

Despite their revelations, studies related to cyber security problems can suffer from

two major drawbacks. First, such work (Laszka et al., 2016; Reilly et al., 2016; Ernst

and Michaels, 2017; Chen et al., 2018; Yen et al., 2018; Ganin et al., 2019; Perrine et al.,

2019) typically adopts a white-box attack scenario, the assumption of which lacks feasi-

bility. This white-box attack scenario assumes that attackers have full access to the TSC

system and/or control model and can freely manipulate traffic signal phasing and timing.

For instance, in a study of a conventional TSC system, Perrine et al. (2019) presumed that

traffic signals could be selectively disabled to flashing-red status (equivalent to a four-

way stop-sign intersection). Yet the study did not provide justification for how this action

could be achieved. In a study on I-SIG, Chen et al. (2018) assumed that the signal con-

trol model’s source code would be known to an attacker, in which case a comprehensive

security analysis of I-SIG could be performed. However, in a real-world scenario, the

likelihood of an attacker gaining access to the source code is low. Although the white-

box approach can provide the upper bound of system impacts under cyber attacks, the

white-box assumption itself is strong and unrealistic. Second, most studies have merely

examined the impact of cyber attacks without delineating concrete defense strategies.

More work is therefore needed to investigate possible defense strategies to protect TSC

systems.
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Overall, although prior studies have provided valuable insights into the influences

of cyber attacks against CV-TSC systems, a realistic and systematic study of this topic

remains lacking.

1.2.3 Threat Model

Due to the unique features of CV-TSC systems (i.e., connectivity between CVs and trans-

portation infrastructure), these systems may be vulnerable to a range of cyber attacks.

Examples include sybil attacks (an attacker simultaneously forges multiple identities to

send CV data) (Alnasser et al., 2019), falsified data attacks (an attacker sends falsified CV

data to fool other CV users) (Chen et al., 2018), and denial-of-service attacks (an attacker

sends dummy messages to jam the communication channel so other CV users cannot

access communication services) (Zeadally et al., 2012). Among all attack types, falsi-

fied data attacks, are the focus of this dissertation. More specifically, the threat model

considered in this dissertation assumes that a hypothetical attacker can send falsified CV

data to influence signal control decisions, resulting in a downgraded system performance.

Falsified data attacks are chosen for the following three reasons.

First, these types of attacks are practically feasible. By exploiting software vulner-

abilities, an attacker could hypothetically hack into his/her own CV’s communication

device and broadcast falsified CV data. This method is similar to compromising other

Electronic Control Units as demonstrated in the literature (Koscher et al., 2010; Check-

oway et al., 2011). Alternatively, an attacker could hack into a vehicle’s internal network
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in many ways, such as via the infotainment system (Mazloom et al., 2016). Once the

attacker accesses the vehicle’s internal network, he/she can take control of numerous ve-

hicle functions (Koscher et al., 2010), including sending falsified CV data. Because the

attacker has arbitrary access to his/her own vehicle, falsified data attacks are achievable,

similar to spoofing location data on private phones when playing Pokémon Go (Zhao and

Chen, 2017).

Second, falsified data attacks are difficult to identify. To ensure trusted communica-

tion, the Security Credential Management System (SCMS) (Whyte et al., 2013; Brecht

et al., 2018) is being adopted by USDOT. This system requires that the sender signs each

CV message with a digital certificate, after which the receiver verifies the signature before

using information in the message. An attacker can use a legitimate communication device

to transmit falsified CV data with valid digital certificates. In this case, the attacker does

not spoof the sender’s identity but only modifies the contents of a message (e.g., speed

and location data). Falsified CV data can be signed properly to pass an SCMS identity

check once received by the RSU, after which these data can be used for signal timing

optimization. In other words, the SCMS cannot detect falsified data attacks.

Third, falsified data attacks carry little risk of discovery. An attacker aims to launch

effective attacks while seeking to minimize the possibility of being exposed. A falsified

data attack does not require the attacker to physically access transportation infrastructure

or to connect remotely to the agency’s internal network. The attacker only needs to com-

promise a CV to broadcast falsified messages. Moreover, the compromised CV does not
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need to stay on the road to launch attacks as long as it is within the RSU’s communication

range.

Note that this dissertation focuses on evaluating the effects of falsified data attacks on

mobility-related issues in CV-TSC systems. Falsified data attacks may only influence the

timing (e.g., green time and/or sequence) of traffic signals, whereas phase configurations

are not influenced by such attacks. For example, an attacker cannot alter the minimum

and maximum green time of each phase, switch the traffic lights into flashing-red status,

or cause conflicting phases to be green at the same time. This is because phase configu-

rations are protected by the Malfunction Monitoring Unit (National Electrical Manufac-

turers Association, 2003) and Cabinet Monitor Unit (AASHTO et al., 2006) in the signal

control cabinet.

1.3 Dissertation Framework

Based on the above discussion, this dissertation investigates cyber security problems in

CV-TSC systems relative to falsified data attacks. The following three research questions

are considered.

(1) How vulnerable are CV-TSC systems to falsified data attacks?

(2) How falsified data attacks may be perpetrated and how such attacks may influence

signal control decisions?

(3) Most importantly, how can engineers mitigate cyber attacks and protect CV-TSC
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systems?

By answering these questions, this dissertation attempts to provide a holistic under-

standing of CV-TSC systems’ cyber security problems based on domain knowledge from

transportation engineering. As depicted in Figure 1.2, this dissertation consists of the

following four studies.

Chapter 3: Cyber Attack
(Black-Box Scenario)

Chapter 5: Testing Platform
(Attack and Defense Experiments)

Chapter 4: Defense Strategy
(Abnormal Traj. Identification)

Chapter 2: Empirical Study
(Attack Impact)

Figure 1.2: Cyber security framework of CV-TSC systems
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Study 1: Empirical Study (Chapter 2)

The objective of this empirical study is to determine whether cyber security concerns

in CV-TSC systems are worth investigation. The study assesses the impacts of falsified

data attacks on different TSC systems. The classic Cell Transmission Model (Daganzo,

1994, 1995) is applied to model traffic. Two TSC systems are considered, a conventional

actuated TSC system and a CV-TSC system. For the former, falsified data attacks are

assumed to alter detector actuation; for the latter, falsified data attacks are assumed to

change the number of CVs on the road.

Study 2: Cyber Attack (Chapter 3)

The empirical study confirms the vulnerability of CV-TSC systems under falsified

data attacks. The second study further investigates how falsified data attacks may be per-

petrated. By understanding the attack mechanism, an effective defense strategy can then

be developed in the third study. The second study considers a more realistic but challeng-

ing black-box attack scenario, which assumes that the control model is unavailable to the

attacker. Under this constraint, the attacker has to learn the control model using a surro-

gate model. With the trained surrogate model, the attacker can then predict signal timing

plans based on critical traffic features that are measured from CV data. The attacker can

generate falsified CV data (i.e., falsified vehicle trajectories) to alter the values of critical

traffic features and thus influence signal control decisions.

Study 3: Defense Strategy (Chapter 4)

Given a thorough understanding of the black-box attack scenario, the third study pro-
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poses a defense strategy intended to protect CV-TSC systems by identifying and filtering

out falsified vehicle trajectories. The second study reveals that falsified trajectories are

generated with a certain attack goal (i.e., altering the values of critical traffic features).

These falsified trajectories are behaviorally distinct from normal trajectories. The prob-

lem of identifying falsified trajectories is considered an abnormal trajectory identification

problem. Inspired by a word embedding method drawn from the Natural Language Pro-

cessing community, a trajectory embedding model is developed to generate vector repre-

sentations of trajectory data. The similarity (distance) between each pair of trajectories

can be computed based on these vector representations. Hierarchical clustering is applied

to identify abnormal (i.e., falsified) trajectories.

Study 4: Testing Platform (Chapter 5)

The fourth study presents a testing platform to evaluate the real-world impact of cy-

ber attacks on CV-TSC systems and the effectiveness of defense strategies. This testing

platform is built upon a virtual traffic simulator called VISSIM and real-world transporta-

tion infrastructure in Mcity. Attack and defense experiments can be conducted with this

testing platform.

1.4 Dissertation Contributions

Collectively, this dissertation contributes to a systematic understanding of cyber security

problems facing CV-TSC systems. The empirical study (Chapter 2) evaluates the im-
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pacts of falsified data attacks on a conventional TSC system and a CV-TSC system. The

cyber attack study (Chapter 3) considers a realistic black-box attack scenario, in which

the control model is assumed to be unknown to the attacker. This assumption differen-

tiates this study from the existing literature using a white-box attack scenario. To learn

the unknown control model, this dissertation proposes using decision tree models. At-

tacks can be launched by formulating a simple problem based on learned decision tree

models. Moreover, this study formulates a mathematical problem to generate falsified

vehicle trajectories. The study of defense strategy (Chapter 4) provides a countermeasure

to safeguard CV-TSC systems. This study proposes a data-driven method to identify fal-

sified trajectories. This method only requires trajectory data and does not need external

data sources. A trajectory embedding model is developed innovatively to generate vector

representations of trajectory data. The proposed method uses vector representations to

compute the similarity between trajectories and a hierarchical clustering method to find

the abnormal (i.e., falsified) trajectories.

Besides its theoretical contributions, this dissertation also makes practical contribu-

tions. This dissertation develops a testing platform (Chapter 5) to perform real-world

attack and defense experiments. This testing platform can be used to evaluate the vul-

nerability of new CV-TSC systems and the effectiveness of new defense strategies before

they are deployed in the real world. Moreover, the proposed defense strategy (i.e., ab-

normal trajectory identification) can be implemented on the infrastructure side as well as

on the vehicle side. In general, the defense strategy can be leveraged as a misbehavior
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detection method for the SCMS and help manage the Certificate Revocation List in the

SCMS 1.

To the best of the author’s knowledge, this is the first study that comprehensively

investigates cyber security problems in TSC systems within a CV environment and holis-

tically integrates attack and defense studies into real-world transportation infrastructure

and communication networks.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2 presents an empirical study to measure the consequences of cyber attacks on

a conventional actuated TSC system and a CV-TSC system. After a scenario description,

the traffic model and attack model are introduced. Numerical examples of cyber attacks

on the two TSC systems are then presented.

Chapter 3 investigates how an intelligent attacker can launch falsified data attacks

without knowing the control model. The process for learning the control model is intro-

duced, followed by the attack model and the falsified trajectory generation method. A

case study is presented that takes I-SIG as the targeted CV-TSC system.

To protect CV-TSC systems, Chapter 4 presents a data-driven method to identify fal-

sified trajectories. The problem formulation is presented. Then the methodology is ex-
1The SCMS has the capability of certificate revocation. The SCMS periodically updates and distributes

a Certificate Revocation List (CRL). If a legitimate device is identified to be misbehaving or malfunctioning,
it would be added to the CRL. Messages sent from a device that is in the CRL would be rejected by other
end users.
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plained in detail, including the trajectory embedding model, the computation of trajectory

similarity and the clustering method. Numerical examples are presented considering dif-

ferent attack goals.

Chapter 5 presents the development of the testing platform. The architecture of the

testing platform is described. Attack and defense experiments are then designed and

performed based on different attack goals and CV penetration rates.

Finally, Chapter 6 concludes this dissertation with an overview of the work presented

along with directions for future research.
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CHAPTER 2

Empirical Study: Impact Evaluation of Falsified

Data Attacks

2.1 Introduction

As a critical part of transportation infrastructure, existing TSC systems have profound

effects on the mobility of urban traffic flow but are highly vulnerable to cyber attacks due

to a “systematic lack of security consciousness” (Ghena et al., 2014). As discussed in

Chapter 1, for the purpose of this dissertation, a falsified data attack is deemed realistic

for three reasons: (1) it is practically feasible; (2) it is difficult to perceive; and (3) it

minimizes the chance of attacker identification. Therefore, it is highly plausible that

an attacker will launch falsified data attacks against TSC systems. However, it remains

unclear whether such attacks can create critical failures in TSC systems.

To address this gap, this chapter presents an empirical study evaluating the adverse

effects of falsified data attacks on a conventional TSC system and on a CV-TSC system
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by measuring the additional travel delay caused by these attacks. The conventional TSC

system uses vehicle detector data to perform actuation logic, whereas the CV-TSC system

uses a control model adapted from (Sen and Head, 1997; Feng et al., 2015). Falsified data

attacks on these two TSC systems are illustrated in Figure 2.1. For the conventional TSC

system, this study assumes that an attacker can spoof wireless vehicle detectors and either

generate fake vehicle calls or cancel real vehicle calls. For the CV-TSC system, this study

assumes that an attacker can add fake or block real communication messages such as

BSMs. The number of CVs on the road can thus be manipulated. A traffic flow model is

needed to model the transportation network and quantify the effects of cyber attacks. This

study uses the Cell Transmission Model (CTM) (Daganzo, 1994, 1995) for two reasons:

(1) CTM is a macroscopic traffic model that can be used to efficiently simulate network

traffic with thousands of vehicles and attack cases; and (2) compared with other link-

based flow and density models, CTM divides the roadway into homogeneous segments

so attacks can be launched in different locations (i.e., cells).

The rest of this chapter is organized as follows. Section 2.2 presents the CTM and

explains how the two chosen TSC systems are modeled using this traffic model. Sec-

tion 2.3 explains the attack model, i.e., how falsified data attacks are modeled for these

two TSC systems. Section 2.4 presents numerical examples to evaluate the effectiveness

of different attack strategies at a hypothetical intersection. Section 2.5 summarizes this

chapter.
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SPaT

DSRC	or	C-V2X

BSM
CV1

Roadside
Unit

Signal
Controller

Traffic
Signals

Transportation
Management	Center

BSM
BSM

SPaT

BSM

Wired	connection

CV2

(a)	Attack	a	conventional	TSC	system	by
spoofing	wireless	detectors	and	sending	fake
vehicle	calls	or	canceling	real	vehicle	calls

(b)	Attack	a	CV-TSC	system	by
adding	fake	or	blocking	real
communication	messages

Figure 2.1: Illustration of falsified data attacks on TSC systems: (a) attack on a conven-
tional TSC system; and (b) attack on a CV-TSC system

2.2 Traffic Model

2.2.1 Cell Transmission Model

CTM is a first-order approximation to Lighthill-Whitham-Richards (LWR) partial differ-

ential equation (Lighthill and Whitham, 1955; Richards, 1956). The model assumes a

triangular fundamental diagram and discretizes space into homogeneous cells and time

into intervals. The cell length is equal to one-time interval multiplied by free-flow speed

defined in the fundamental diagram. CTM was originally developed to model highway

traffic with a single entrance and exit (Daganzo, 1994). Later the model was extended
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to represent network traffic (Daganzo, 1995). This allows it to model traffic flows at

signalized intersections. A typical intersection in CTM is shown in Figure 2.2.
4 Transportation Research Record 2672(1)

k
j
 is 133.33 vpkm. Time step is set to 2 s, which is similar to 

the unit extension time in actuated control. As a result, the 
cell length is 30 m.

Model Actuated Signal Control with CTM. To model actuated 
signal control with CTM, it is assumed that stop-bar detec-
tors are installed in intersection cells. The density ratio of 
cell i at time t can be calculated as d(i,t) = n(i,t)/N(i), where, 
n(i,t) is the number of vehicles in cell i at time t, and N(i) is 
the maximum number of vehicles in cell i. A critical density 
ratio d

c
 is defined for each intersection cell. The actuation 

logic is modeled based on d
c
. If the density ratio of intersec-

tion cell i at time t is less than the critical density ratio, then 
the current phase is terminated. Otherwise, extend green to 
the next time step.

To determine the best d
c
, a series of simulations with dif-

ferent values of d
c
 were run. Vehicle delay in cell i at time t is 

defined as the difference between n i t,( )  and the number of 
vehicles that can be discharged from the cell y i t( , ), because 
in CTM vehicles are either in free-flow speed (discharged to the 
following cell) or in queuing state (remained in current cell):
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Results show that both lower and higher critical density 
ratios generate higher vehicle delay. Lower critical density 
ratios correspond to longer unit extension times whereas 
higher critical density ratios correspond to shorter unit exten-
sion times. The lowest delay occurs when d

c
 = 0.25, which is 

the critical density ratio (k
m
/k

j
 = 0.25) that separates free-

flow and congestion regime. For a vehicle actuation logic, it 
is appropriate to terminate green when the traffic state 
changes from congested to free flow. Therefore, d

c
 = 0.25 is 

used in numerical experiments.

Model Adaptive Signal Control with CTM. The adaptive control 
algorithm is adapted from Sen and Head (14) and Feng et al. 
(15). Signal optimization is formulated as a dynamic pro-
gramming (DP) problem, in which each phase is considered 
as one stage in DP. A forward recursion is used to calculate 
performance measures and record optimal value function. 

Figure 2. Intersection representation of CTM with attack spaces.Figure 2.2: Intersection representation of CTM with attack spaces

There are six types of cells: ordinary cell, merging cell, diverging cell, intersection

cell, source cell, and sink cell. An ordinary cell has one preceding cell and one following

cell and has limited jam density and capacity. A diverging cell has one preceding cell

and multiple following cells while a merging cell has multiple preceding cells and one

following cell. An intersection cell is similar to an ordinary cell except that the flow is

21



controlled by signal timing. Source cells and sink cells are responsible for generating and

exiting vehicles. For the detailed formulation of CTM, refer to Daganzo (1994, 1995).

The parameters of the CTM model in this paper is configured as follows. Free-flow

speed v is set to 54 km/h (15 m/s). Backward shockwave speedw is set to 18 km/h (5m/s).

The maximum flow rate Qm is set to 1800 veh/h. The corresponding critical density km is

33.33 veh/km. The jam density kj is 133.33 veh/km. Time step is set to 2 seconds, which

is the same to the unit extension time in the conventional TSC system. As a result, the

cell length is 30m.

2.2.2 Model the Conventional TSC System with CTM

The conventional TSC system relies on infrastructure-based sensors for vehicle detection.

Vehicle detectors are common sensors that are used to detect vehicles and generate service

calls to traffic signals. As shown in Figure 2.1, the traffic signal utilizes vehicle detector

data to perform actuation logic. To model the conventional TSC system with CTM, this

study assumes that stop-bar detectors are installed in intersection cells. The density ratio

of cell i at time t can be calculated as d(i, t) = n(i, t)/N(i). Where, n(i, t) is the number

vehicles in cell i at time t, andN(i) is the maximum number of vehicles in cell i. A critical

density ratio dc is defined for each intersection cell. The actuation logic is modeled based

on dc. If the density ratio of intersection cell i at time t is less than the critical density

ratio, then the current phase is terminated. Otherwise, extend green to next time step.

To determine the best dc, a series of simulations with different values of dc were run.

22



Vehicle delay in cell i at time t is defined as the difference between n(i, t) and the number

of vehicles that can be discharged from the cell y(i, t), as show in Equation 2.2.1. This is

because in CTM vehicles are either in free-flow speed (discharged to the following cell)

or in queuing state (remain in the current cell).

D =
∑
t∈T

∑
i∈I

[n(i, t)− y(i, t)] (2.2.1)

Both lower and higher critical density ratios result in higher vehicle delay. Lower

critical density ratios correspond to longer unit extension times while higher critical den-

sity ratios correspond to shorter unit extension times. The lowest delay occurs when

dc = 0.25, which is the critical density ratio (km/kj = 0.25) that separates free-flow and

congestion regime. For vehicle actuation logic, it is appropriate to terminate green when

the traffic state changes from congested to free-flow. Therefore, dc = 0.25 is used in case

studies.

2.2.3 Model the CV-TSC System with CTM

The control model of the CV-TSC system in this study is adapted from Sen and Head

(1997) and Feng et al. (2015). Signal optimization is formulated as a dynamic program-

ming (DP) problem, in which each phase is considered as one stage in DP. A forward

recursion is used to calculate performance measures and record the optimal value func-

tion. The objective of the forward recursion is to choose an optimal signal timing plan
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with minimal total vehicle delay. A backward recursion is used to retrieve the optimal

solution.

The major difference of the algorithm applied in this study from the original algorithm

is the performance function calculation. In previous DP formulations, the performance

measures were calculated from an arrival table, which included the estimated time of

arrival and requested phase of each vehicle. However, CTM is a macroscopic model in

which individual vehicle information is not available. To accurately calculate vehicle

delay, a snapshot of the current network condition is taken at the beginning of each signal

optimization. A parallel CTM simulation is executed based on the snapshot as the initial

network condition to generate vehicle delays in each DP iteration.

The signal optimization algorithm plans as many stages (phases) as necessary until all

vehicles in the snapshot pass the intersection cells. A rolling horizon scheme is adopted

in which the optimization is performed at the beginning of each phase to include recent

vehicle arrivals.

2.3 Attack Model

It is assumed that the attacker has limited resources. For the conventional TSC system,

there is a limited number of vehicle detectors that can be spoofed. For the CV-TSC

system, there is a limited number of CVs can be manipulated. As a result, the attacker

needs to choose a subset of attack space to maximize the utility, which in this study is the
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total travel delay. Formally, an attack A is defined as:

A = (S, {n′(i, t) | ∀i ∈ S}) (2.3.1)

Where S is the set of cells can potentially be under attack and n′(i, t) is the number of

vehicles in the cell under attack. Attacks are conducted through increasing or decreasing

the number of vehicles in a cell to mimic the change of stop-bar detector data and CV

distribution.

The attack model can be expressed as:

max
A

D(A)

s.t. |S| ≤ B

n′(i, t) ≤ min(n(i, t) + ε,N(i))

n′(i, t) ≥ max(n(i, t)− ε, 0)

(2.3.2)

The objective function means that the attacker intends to maximize total vehicle delay.

The first constraint indicates that the attacker is limited by a budget B. The next two

constraints represent the cautiousness of the attacker. The number of vehicles can be

changed is limited by a threshold ε and road physical limits. If the data deviation exceeds

the normal range, the attacker can be detected by defense models easily.
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2.4 Numerical Examples

In this section, numerical results based on a hypothetical intersection and insights on

the effectiveness of falsified data attacks on the two TSC systems are presented. Both

examples are coded in Matlab (MATLAB, 2018).

2.4.1 A Hypothetical Intersection

The layout of a hypothetical intersection is shown in Figure 2.2. It is a typical four-leg

intersection with all vehicle movements. There are four signal phases: eastbound and

westbound left-turn (phase 1), eastbound and westbound through (phase 2), northbound

and southbound left-turn (phase 3), and northbound and southbound through (phase 4).

Right-turn vehicles are not restricted by traffic signals. The minimum green time is set

to 5 time steps (10 seconds) and the maximum green time is set to 20 steps (40 seconds)

for each phase. The length of each approach is 10 cells (including the intersection cells),

which is similar to the DSRC communication range. Traffic demand is set to 1000 veh/h

eastbound/westbound and 800 veh/h northbound/southbound. Vehicle arrivals follow a

Poisson distribution. Turning ratios of each approach are the same and set to 0.2/0.7/0.1

for left-turn, through, and right-turn respectively. Simulation runs for 1000 time steps

with 100 steps as a warm-up period.

Figure 2.3 shows the total delay and congestion pattern of the eastbound approach

for the conventional TSC system and CV-TSC system without attacks. This serves as the

baseline for the comparison. Different colors represent different congestion levels, with
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green to be no congestion and red to be the severest congestion.
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Figure 2.3: Comparison of traffic density without falsified data attacks: (a) the conven-
tional TSC system; and (b) the CV-TSC system

2.4.2 Attack the Conventional TSC System

For the conventional TSC system, it is assumed that stop-bar detector data can be manip-

ulated by the attacker so that the number of vehicles at intersection cells can be added

(generate fake vehicle calls) or subtracted (cancel real vehicle calls). This results in two

attack modes M = 2. To cause maximum damage, the attacker changes the detector

data as much as possible, but within the threshold ε = 0.5. Then n′(i, t) is equal to ei-

ther min(n(i, t) + ε,N(i)) or max(n(i, t) − ε, 0). The budget B is set to 4 so that all

phases can be attacked. To thoroughly analyze the effectiveness of all attack cases, all the

possibilities are enumerated. This results in a total number of 80 different cases:
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∑
p=1,2,3,4

Cp
P ×M

p = 80 (2.4.1)

Where p is the signal phase index, and P is the total number of phases.

Figure 2.4 shows the total vehicle delay and average total delay by the number of

attacking phases. It can be seen from Figure 2.4(a) that the effectiveness of different

attacks varies. Figure 2.4(b) shows the trend that attacks cause more vehicle delay when

the number of attacking phases increases.
Feng et al 7

movement, and signal timing of each intersection were 
extracted from the video and used as input to the CTM 
model.

The corridor contains two T-shape intersections and four 
standard intersections. The standard intersections have four 
phases as defined in the previous section, whereas the T

Figure 4. Vehicle delay by attack scenarios and number of attacking phases (actuated control): (a) vehicle delay under all attack 
scenarios (top) and (b) average total vehicle delay by number of attacking phases (bottom).

Figure 5. Comparison between the most effective attack and the least effective attack: (a) most effective attack (left) and (b) least 
effective attack (right).

(a) 

(b)

Number of Attacking Phases

Case ID

Figure 2.4: Total vehicle delay for the conventional TSC system: (a) by attack cases; and
(b) by the number of attacking phases (averaged)

Figure 2.5 shows the comparison between the most effective and least effective attacks
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at the eastbound approach. The most effective attack occurs when phases 2, 3 and 4 are

under attack with subtracting vehicles at intersection cells corresponding to phase 2 and

adding vehicles at intersection cells corresponding to phases 3 and 4. The most effective

attack results in a six-fold increase of the total delay, compared with the baseline case.

The least effective attack occurs when attacking intersection cells related to phases 1 and

3, with subtracting vehicles on both phases. It is interesting to see that the resultant total

delay (36441s) is even smaller than the baseline case (38396s). This indicates that the

attack improves the system performance. The reason is that actuation control logic is not

the optimal control strategy. In certain cases when a phase is green with lower demand

while other phases are red with higher demand, it is more efficient to terminate the lower

demand phase earlier to serve other phases. In this case, phases 1 and 3 are left-turn

phases with lower demand. Subtracting vehicles shortens both phases, therefore more

green time is given to higher demand phases 2 and 4.

2.4.3 Attack the CV-TSC System

For the CV-TSC system, the control algorithm utilizes CV data to generate optimal signal

timing plans. Every cell within the communication range can be potential targets. It is

assumed that the attacker is only interested in manipulating the number of vehicles in

ingress cells because vehicles in egress cells do not affect the signal optimization. The

attacker can add or subtract vehicles at different number of approaches with the maximum

number of attacking approaches B = 4. If the attacker decides to attack one approach,
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Figure 2.5: Comparison of traffic density with falsified data attacks (conventional TSC
system): (a) the most effective attack (Case 60); and (b) the least effective attack (Case
25)

then all ingress cells on that approach are affected. Because of limited resources, it is

assumed that the attacker can only add fake or block real communication messages, but

cannot do both at the same time. As a result, totally 30 attack cases are generated. The

threshold ε is also set to 0.5.

Figure 2.6 shows the total vehicle delay of all attack cases and average total delay

by the number of attacking approaches. Figure 2.6(a) compares total delay of adding

vehicles or subtracting vehicles when attacking the same approach(s). In general, adding

falsified vehicles is more effective than removing real vehicles. Because adding vehicles

would increase delay for all other phases, while subtracting vehicles only increase delay

for the current phase. Figure 2.6(b) shows a similar pattern that the average total delay

increases with the number of attacking approaches.

Another finding is that attacking the CV-TSC system is far less effective than at-
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intersections have only two phases. Therefore, there are 20 
signal phases along the corridor. Each is identified as a 
potential attack location. The minimum and maximum green 
time for the through movement along Plymouth Road is set 
to 10 and 30 time steps, whereas the rest of the phases have 
5 and 15 time steps for minimum and maximum green time 
respectively. Each attack scenario lasts 2,100 time steps, 
which contains 300 time steps of warm-up (no attack) period 
and 1,800 time steps for performance evaluation (under 
attack). It is assumed that the attacker has a budget limit so 
that a maximum of four phases can be attacked. This results 
in a total number of 87,440 attack scenarios. Due to this large 
number, the attack scenarios are carried out by Flux, a Linux-
based high-performance computing cluster at the University 
of Michigan. A total of 20 central processing units cores are 
used to run the attack scenarios in parallel, and the total com-
putation time is about 14 h.

When only one phase is under attack, Scenario 7, which 
attacks Phase 2 (the through phase on the main arterial) at 
Intersection 2 by subtracting vehicles, has the highest delay. A 
snapshot of the corridor at the final simulation time step is 
shown in Figure 7. The intersection on the left is numbered as
1, and the intersection on the right is numbered as 6. When
under attack, the signal controller always terminates Phase 2 
on the minimum green time, which causes oversaturation for 
westbound through traffic and the vehicle queue starts to 

accumulate. The queue eventually propagates to Intersection 
3 and causes spillover. The spillover prevents westbound 
through traffic at Intersection 3 from entering the down-
stream link during green. The through traffic constantly calls 
for green extensions, which generates more delay for the 
cross-street traffic because of the long waiting time. The 
same situation happens when the queue propagates to 
Intersections 4 and 5. Notice that there is a long queue in the 
northbound approach of Intersection 5 because this approach 
has heavy left-turn traffic. The spillover on the main arterial 
prevents vehicles turning left from the cross street. The result 
indicates that Phase 2 at Intersection 2 is the critical phase 
along the corridor.

Figure 8 shows vehicle delay under all attack scenarios 
with a different number of attacking phases. The average 
total vehicle delay increases with the number of attacking 
phases, which is consistent with previous results. If all four 
phases are under attack, the most effective way is to subtract 
vehicles from Phase 2 (through movement on Plymouth 
Road) at Intersection 2, and Phase 3 (left-turn phase on cross 
street) at Intersection 6, at the same time adding vehicles to 
Phase 3 at Intersection 2, and Phase 2 at Intersection 6.

Although trying all attack scenarios guarantees the optimal
solution, it is unrealistic for an attacker to enumerate all the 
possibilities and find the best strategy in real time. Thus, a
simple greedy attack policy is implemented to find an 

Figure 6. Vehicle delay by attack scenarios and number of attacking approaches (adaptive control): (a) vehicle delay under all attack 
scenarios (top) and (b) average total vehicle delay by number of attacking approaches (bottom).

(a)

(b)

Case ID

Number of Attacking Appraoches

Figure 2.6: Total vehicle delay for the CV-TSC system: (a) by attack cases; and (b) by
the number of attacking approaches (averaged)

tacking the conventional TSC system with the same attack intensity ε. For the CV-TSC

system, the most effective attack causes 41199s vehicle delay, which is 33.66% more than

the baseline case. For the conventional TSC system, however, the most effective attack

increases the total delay by a factor of six. For the CV-TSC system, all ingress cells

(including intersection cells) are affected. While for the conventional TSC system, only

intersection cells are affected. However, results suggest that the CV-TSC system is more

robust than the conventional TSC system. The CV-TSC system tries to minimize total

delay under the impact of attacks based on the inputs from all ingress cells, while the

conventional TSC system only accommodates instantaneous arriving flow at intersection
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cells, but does not have an overall picture of current traffic conditions.

2.5 Chapter Summary

This chapter presents an empirical study investigating the effects of falsified data attacks

on two TSC systems. The CTM was used to model traffic. For a conventional TSC

system with actuated control logic, falsified data attacks were assumed to either generate

fake vehicle calls or cancel real vehicle calls. For a CV-TSC system, falsified data attacks

were assumed to change the number of CVs on the road. The attacker’s primary objective

was to maximize system delay under constraints related to budget and attack intensity.

The most effective attack on a conventional TSC system was found to increase the total

delay by a factor of six, while the most effective attack on a CV-TSC system led to a

33.66% greater delay over baseline.

This empirical study confirms that CV-TSC systems are vulnerable to falsified data

attacks. However, the attack model presented in this chapter is fairly naı̈ve; the attacker

can enumerate all possible attack cases to identify an optimal attack strategy. From an

attacker’s point of view, attack execution takes a long time and is highly inefficient. This

attack model is thus ill-suited to real-time attacks. A more sophisticated and realistic

attack model will be introduced in the next chapter.
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CHAPTER 3

Cyber Attack: A Black-Box Attack Scenario

3.1 Introduction

In the previous chapter, a falsified data attack was designed to manipulate the input data

(i.e., BSMs) of a CV-TSC system. Results indicated that this CV-TSC system was vul-

nerable to such attacks. However, the attack model proposed in Chapter 2 is inefficient

and cannot be used to launch real-time attacks because the optimal attack strategy is iden-

tified by enumerating all possible attack cases. Further, most other work concerning the

cyber security problem has considered a “white-box” attack scenario (Laszka et al., 2016;

Reilly et al., 2016; Ernst and Michaels, 2017; Chen et al., 2018; Yen et al., 2018; Ganin

et al., 2019; Perrine et al., 2019), in which the attacker is assumed to have full access to

the TSC system and/or the control model. For instance, Chen et al. (2018) also focused

on I-SIG attacks. In their study, the attacker had access to the source code of I-SIG and

could identify flaws in the control logic. This is a special case because the I-SIG code

is open-source. However, for most commercial TSC systems deployed in the real world,
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source codes are unavailable to attackers. The attack model presented in Chapter 2 also

involved a white-box attack scenario, as running the CTM simulation requires knowing

the control model. The major drawback of this white-box attack scenario is that it cannot

realistically evaluate the effects of cyber attacks. An attacker having full knowledge of

the control model (i.e., the source code) is a strong and unrealistic assumption, hence the

need to investigate cyber threats in real-world scenarios where the control hardware and

control model are inaccessible.

This chapter explores a more realistic but challenging black-box attack scenario and

investigates how falsified data attacks may be executed in real time. The term “black-

box” means that the attacker neither knows the details of the TSC system nor has physical

access to the system. This “black-box” attack includes two steps. The first step is an

offline learning process, in which the attacker identifies critical traffic features and learns

the signal control model using a surrogate model. Critical traffic features are selected

from a list of traffic features, such as queue length, number of approaching vehicles,

and travel time, which are measured using trajectory data. In TSC systems, these data

function as input for signal optimization. The surrogate model predicts the signal timing

plan based on critical traffic features. In a CV environment, all vehicles and infrastructure

broadcast communication messages. The attacker can receive the same messages as all

other vehicles and infrastructure receive; therefore, the surrogate model can be trained

using observed trajectory data (i.e., BSMs) and resultant signal timing plans (i.e., SPaT).

In the second step, the attacker launches real-time falsified data attacks based on the
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critical traffic features and surrogate model obtained in the first step. It is assumed that

the attacker launches the attack in the vicinity of an intersection to be able to receive all

trajectories from nearby CVs in real time. With the received trajectories, the attacker

can predict the signal timing plan of the CV-TSC system via the surrogate model. The

predicted signal timing plan is called “pseudo-optimal” because it is not the exact original

timing plan generated by the CV-TSC system. The attacker’s objective is to increase the

system delay. To do so, the attacker inserts falsified trajectories to modify the values of

critical traffic features. For example, the attacker can insert a falsified stopped vehicle

trajectory and increase the queue length. The attacker also formulates a mathematical

problem (i.e., attack model) with the objective to distort the pseudo-optimal timing plan

to the greatest extent. The optimal solution to this problem returns the altered values of

critical traffic features (i.e., the attack goal). Finally, the attack goal is embedded into

another mathematical problem to generate falsified trajectories, in the form of BSMs, and

is then broadcast through the OBU. The overall process is illustrated in Figure 3.1 (in this

case, the attacker is assumed to have compromised CV2).

The rest of this chapter is organized as follows. Section 3.2 introduces the off-line

learning process. Section 3.3 explains the attack model, and Section 3.4 describes how the

attacker formulates a mathematical problem to generate falsified CV trajectories. Section

3.5 presents a comprehensive case study evaluating the effects of black-box attacks on

I-SIG. Section 3.6 summarizes this chapter.
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Figure 3.1: Illustration of the black-box attack

3.2 Learning Control Model

In a real-world implementation, the CV-TSC system utilizes vehicle trajectories (obtained

from BSMs) as the input and generates optimal signal control decisions. Because all the

communications in the vehicular network are in broadcast mode, both vehicle trajectories

and signal control decisions are observable to the attacker in the forms of BSMs and

SPaT messages respectively. The actual signal control model, however, is unknown to

the attacker. The attacker can adopt a surrogate model to learn the signal control model.
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The surrogate model takes the same trajectories as the input and outputs predicted signal

timing plan. Historical BSM and SPaT data can be used to train the surrogate model.

The attacker uses the surrogate model as the replacement of the real control model when

launching attacks. The whole learning process is illustrated in Figure 3.2.

Vehicle
trajectories

Signal	control
decisions

Observable Observable

Control	model

Unknown

Surrogate
model

Input Output

Mimic

Figure 3.2: The process of learning control model

3.2.1 Traffic Signal Setting

This study assumes that the CV-TSC system uses a ring-barrier phasing. The ring-barrier

structure (Koonce and Rodegerdts, 2008) illustrated in Figure 3.3 is the standard traffic

signal setting in North America. Starting from the major street and moving clockwise,

the through phases are labeled as phases 2, 4, 6, and 8. Starting from the left-turn phase

that is next to phase 6 and moving clockwise, the left-turn phases are labeled as phases

1, 3, 5, and 7. Ring 1 includes phases 1 to 4 and ring 2 includes phases 5 to 8. A barrier

separates major street phases (phases 1, 2, 5, and 6) from minor street phases (phases 3, 4,

7, and 8). A barrier may also refer to the four phases of the major street or the four phases

of the minor street. The phase that operates first within a barrier is called lead phase and

the other one is called lag phase, therefore a barrier includes two lead phases and two lag
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phases. Usually the signal optimization algorithms change phase sequence and allocate

green time of each phase to minimize/maximize predefined performance indexes.

Figure 3.3: Illustration of the ring-barrier structure

3.2.2 Surrogate Model

A signal timing plan includes two parts, green time of each phase and phase sequence.

The prediction of green time can be considered as a regression problem because green

time is continuous. In contrast, the prediction of phase sequence is a classification prob-

lem since there is a finite number of possibilities for phase sequences. In this study, de-

cision tree regression/classification (Breiman, 2017) is adopted to be the surrogate model

that could potentially be leveraged by the attacker. Decision tree models are chosen be-

cause they are easy to implement and their output always falls within the feasible ranges,

i.e., minimum and maximum green time. Most importantly, decision tree models possess

inherent “if-then-else” structures and can effectively map nonlinear relationships, making

signal control algorithms particularly easy to fit into programmatic structures.
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Figure 3.4: Illustration of the decision tree model

The decision tree model is briefly introduced. The goal of a decision tree regression

model is to predict y, the green time of a phase or the length of a barrier, based on a

d-dimensional feature vector X = [x1, x2, ..., xd]T, which are extracted from trajectories

(see Section 3.2.3 for more details on features). The training data consists of n obser-

vations with their corresponding labels {y1, y2, ..., yn} and features {X1,X2, ...,Xn}.

During the learning process, the decision tree algorithm partitions the entire feature space

into different sub-regions based on the training dataset. Figure 3.4 shows a simple exam-

ple of a trained decision tree with two features. In this example, the first step is to divide

the entire space into two sub-regions according to whether queue length is greater than

9. Similarly, in the second step, the left region is further divided into two sub-regions

according to whether vehicle delay is greater than 12. Every step is called branching. For

each sub-region, mean squared error (MSE), presented in Equation 3.2.1, is calculated

to evaluate the prediction performance of that branched sub-region based on the training
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data:

eD =
∑
j∈D

1

|D|
(yj − yD)2 (3.2.1)

where D is the set of all observations in this sub-region; eD is the MSE of set D; |D| is

the cardinality of set D; and yD is the mean value of the labels in set D.

Each time one performs branching, a node is split into two nodes. Each node repre-

sents a sub-region that contains data satisfying associated conditions. For each branching,

the parent node is denoted as Dp and the two child nodes are DC1 and DC2. Then the re-

duction in MSE due to a branching from a parent node into two child nodes, ∆I , is defined

as follows in Equation 3.2.2:

∆I = eDp − eDC1
− eDC2

(3.2.2)

All the observations in the parent data set are used as splitting candidates for the next

level of branching. One can enumerate all the possible features and possible splits and

calculate the corresponding ∆I . The feature and the split with the maximum ∆I are

chosen to branch the parent node. The branching process is repeated until the maximum

number of iteration is reached.

For predictions of green time, one can start from the top of the tree, which is the root

node, and find the path down to the final node, called the leaf node, based on the criteria

of each node. The mean value of the labels in the final data set is the predicted green time.

The process for the prediction of phase sequence is similar to that of green time.
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Because it is a classification problem, the majority vote of the labels is taken as the pre-

diction.

3.2.3 Critical Traffic Features

Different CV-TSC systems use different objectives and performance indexes to optimize

the signal timing plan. Since the objectives are typically functions of one or more traffic

features, the signal timing plan should be closely related to these associated traffic fea-

tures, e.g., queue length (a signal controller allocates green time based on the queue length

of each phase) and headway (a signal controller terminates a green phase when there is

a large headway). A list of common traffic features applied in existing studies include

queue length (QL) (Priemer and Friedrich, 2009), number of approaching vehicles (NAV)

(Goodall et al., 2013), headway (HW) (Koonce and Rodegerdts, 2008), estimated time of

arrival (ETA) (He et al., 2012, 2014), vehicle delay (VD) (Wu et al., 2017), and flow rate

(FR) (Zheng et al., 2018).

For a particular CV-TSC system, not all traffic features are utilized to optimize the

signal timing. The traffic features that determine the signal timing plan are defined as

critical features. When falsified data alter the values of these critical features, signal

control decisions are changed accordingly. As a result, the attacker needs to identify the

critical features that have a significant impact on the signal timing plan before launching

attacks. Identifying critical features from the list of features is a feature selection problem.

In this study, a sequential forward selection algorithm (SFS) is applied (Bow, 2002).
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Starting from an empty feature set, SFS greedily searches for the best features that can

improve the prediction performance. John et al. (1994)’s study suggests using SFS for

identifying useful features and shows that SFS can improve the performance of decision

tree models. The pseudo code of SFS is illustrated in Algorithm 1. The output of SFS is

a set that contains all the critical features. Note that in Section 3.2.2, only critical features

are used as the input features of the decision tree models.

Algorithm 1: Sequential forward selection algorithm
Initialize two sets, S and R. S contains a complete list of features and R is empty.
Denote e(Q) as the error when using feature subset Q. Initialize e(R) to be a
large number;

while S is not empty do
find s∗ = mins∈S e(s ∪R);
if e(s∗ ∪R) < e(R) then

Remove s∗ from S;
Add s∗ to R;

else
break while;

end
end
Result: Set R contains all the critical features

3.3 Attack Model

In the previous section, the attacker has obtained the surrogate model f(·). Now the

attacker can launch cyber attacks by broadcasting falsified trajectories using the compro-

mised communication device (i.e., OBU). Based on the received trajectories, the attacker

can evaluate the observed critical traffic features Xo (e.g., queue length) and use the sur-
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rogate model to predict the signal timing plan, i.e., f(Xo). f(Xo) is referred to as the

pseudo-optimal timing plan because it is not the exact timing plan generated from the

actual control model, but a plan predicted by the trained surrogate model. By injecting

falsified trajectories, the attacker tries to alter the values of the critical features from Xo

to Xa. Similarly, the attacker can predict the signal timing plan with the altered critical

feature, i.e., f(Xa). The dissimilarity between the pseudo-optimal timing plan and the

timing plan under attack can be computed using the L2 norm. The attacker’s objective is

to maximize the dissimilarity by generating falsified trajectories that can alter the values

of the critical features, as shown in the following problem (P1):

P1:

max
Xa

‖f(Xo)− f(Xa)‖2 (3.3.1)

s.t. Xa ∈ ΩXa|Xo (3.3.2)

In P1, the feasible region ΩXa|Xo is dependent on Xo. For example, after injecting a

falsified stopped vehicle (a falsified vehicle has a legitimate trajectory in the form of

BSMs but is not physically on road), the new queue length cannot be smaller than the

originally observed queue length.

The falsified trajectories are mixed with the regular trajectories. The RSU collects

all the trajectories and uses them as input data for real-time traffic signal optimization.

The generated signal timing plans are influenced by the falsified trajectories, and thus are
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no longer optimal. Vehicles spend extra time passing the intersection and hence the total

travel time is increased.

This attack model aligns with a recent study on black-box attacks against unknown

machine learning models (Papernot et al., 2017). By using a surrogate model, the attacker

in that study crafts adversarial images to fool a target model so that the target model would

output erroneous predictions.

3.4 Falsified Trajectory Generation

In order to launch a falsified data attack, the attacker has to generate a valid trajectory

(i.e., continuously broadcast BSMs). The location, speed, and acceleration rate in the

falsified trajectory should be consistent and satisfy kinematic constraints (Wong et al.,

2019). Otherwise, a defender can easily identify the falsified trajectory by checking the

consistency between location, speed, and acceleration rate. Also, the falsified trajectory

should avoid conflicting with other trajectories (i.e., the falsified vehicle should not be

too near to a real CV). Otherwise the falsified trajectory would be easily identified by the

misbehavior detection in the SCMS (Crash Avoidance Metrics Partners (CAMP) LLC).

What’s more, the falsified trajectory should achieve a certain attack goal. For example,

the attacker in Chen et al. (2018) launches falsified data attacks on I-SIG by changing the

speed and location data in the trajectory and therefore manipulating arrival time or queue

length. The attack goal comes from the optimal solution to P1 (i.e., to alter the the values
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of the critical features). Considering all these, this dissertation envisions that the attacker

can solve the following problem (P2) to generate a falsified trajectory. The notations are

summarized in Table 3.1.

P2:

min
d(t),v(t),a(t)

te∑
t=ts

(dl(t− τw)− dw − d(t))2 (3.4.1)

s.t. v(t)×∆t = d(t)− d(t−∆t) ∀t (3.4.2)

a(t)×∆t = v(t)− v(t−∆t) ∀t (3.4.3)

df(t) + do ≤ d(t) ≤ dl(t)− do ∀t (3.4.4)

0 ≤ v(t) ≤ vf ∀t (3.4.5)

amin ≤ a(t) ≤ amax ∀t (3.4.6)

v(ts) = vs (3.4.7)

d(ts) = ds (3.4.8)

g(d(t), v(t), a(t)) = X∗ (3.4.9)
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Table 3.1: Notations for generating falsified trajectories

d(t) Location of the falsified vehicle at time t

v(t) Speed of the falsified vehicle at time t

a(t) Acceleration rate of the falsified vehicle at time t

ts Start time of the falsified trajectory

te End time of the falsified trajectory

τw Time displacement in Newell’s car following model

dw Space displacement in Newell’s car following model

∆t Time interval

dl(t)
Location of the leading vehicle (the vehicle in front of the falsified
vehicle) at time t

df(t)
Location of the following vehicle (the vehicle behind the falsified
vehicle) at time t

do Safety distance

vf Free-flow travel speed

amin Minimum acceleration rate of the falsified trajectory

amax Maximum acceleration rate of the falsified trajectory

vs Initial speed of the falsified trajectory

ds Initial position of the falsified trajectory

g(·) Mathematical representation of the attack goal

X∗ The optimal solution to P1

Decision variables d(t), v(t), a(t) represent the location, speed, and acceleration rate
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of the falsified vehicle at time t. The objective function 3.4.1 is based on Newell’s car

following model (Newell, 2002). dl(t) denotes the location of the leading vehicle at time

t. dl(t− τw)−dw denotes the location of the leading vehicle with a time displacement τw

and a space displacement dw. The objective function essentially means that the falsified

vehicle chases the leading vehicle based on Newell’s car following model. This objective

function ensures the falsified trajectory to be like a real trajectory. Constraint 3.4.2 and

3.4.3 describe vehicle dynamics, where ∆t is the time interval. Constraint 3.4.4, 3.4.5

and 3.4.6 are the bounds for vehicle location, speed, and acceleration rate. In particular,

constraint 3.4.4 guarantees that the falsified trajectory d(t) keeps a safety distance do

from leading trajectory df(t) and following trajectory dl(t) at any time t. This constraint

prevents the falsified trajectory from conflicting with other trajectories. As mentioned in

Chapter 1, the SCMS monitors the behavior of each end user. If conflicting trajectories

are detected, the SCMS would revoke the certificate of the device. Therefore conflicting

trajectories would be automatically considered as invalid trajectories. Constraint 3.4.7 and

3.4.8 set the initial values for the falsified trajectory. The falsified vehicle should enter the

intersection area from a certain distance (e.g., communication range) with a certain speed

(e.g., free-flow speed). Constraint 3.4.2 to 3.4.8 ensures that the falsified trajectory is a

valid trajectory. Finally, constraint 3.4.9 represents the general form of the attack goal.

If there is no attack goal, the attacker simply replays the trajectory of the leading vehicle

with a time delay.
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3.5 Case Study

The section presents a case study in simulation. This case study considers the black-box

attack scenario and launches falsified data attacks on a CV-TSC system. I-SIG system

from the MMITSS project is selected as the targeted CV-TSCS system (USDOT, 2019b).

Both simulation and field experiments have demonstrated the effectiveness of I-SIG in

terms of delay reduction and mobility improvement (Feng et al., 2015). Note that this

case study only evaluates the attack model (i.e., the case study assumes that the attacker is

able to change the values of the critical traffic features). The falsified trajectory generation

method will be evaluated in Chapter 5.

3.5.1 Control Model of I-SIG

The control model of I-SIG system is briefly introduced in this subsection. At the begin-

ning of each barrier, I-SIG takes a snapshot of the trajectories received from all the CVs

within the RSU’s communication range. Each trajectory is converted to ETA, which is

calculated as the CV’s distance to stop bar divided by its speed. Based on the ETAs, I-

SIG solves a two-level optimization problem to find the optimal signal timing plan. At the

lower level, I-SIG solves a utility minimization problem given the barrier length. The out-

puts of the lower level are the optimal green time and phase sequence. At the upper level,

a dynamic programming (DP) problem is formulated with the objective to minimize total

vehicle delay or total queue length. The decision variable at the upper level is the barrier

length, which is considered as a stage in the DP formulation. Ideally, I-SIG should plan
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as many stages as needed so that all the vehicles can be properly served. For real-world

implementations, however, I-SIG plans only two stages (i.e., one signal cycle) because of

computational limitations in the RSU and real-time performance requirement. I-SIG then

executes the timing plan of the first stage (the four phases in the current barrier) and ar-

ranges the phase sequence of the second stage (the four phases in the next barrier). When

a new barrier starts, I-SIG repeats this optimization process. For more details about the

control model, please refer to Feng et al. (2015) and Sen and Head (1997).

3.5.2 Simulation Setup

A simulation environment is built using Matlab (MATLAB, 2018). A typical 4-leg in-

tersection with eight phases is modeled. Each approach has one left-turn lane and one

through lane. For simplicity, right-turn lanes are not explicitly modeled. A snapshot of

the simulation environment is displayed in Figure 3.5. The crosses represent left-turn ve-

hicles and circles represent straight-through vehicles. Vehicles are generated at the edges

of the figure and move towards the center (i.e., the intersection). The CV penetration rate

is 100%. The car-following model from the NGSIM project is used to model vehicle mo-

tions (Yeo et al., 2008). The minimum green time and the maximum green time are set

to be 5 seconds and 30 seconds for each phase, respectively. The transition time between

phases (i.e., the yellow and red clearance time) is 4 seconds. The traffic demand for each

movement is 400 vehicles per hour. The communication range is set to be 300 meters.

The free-flow speed is 15.64 meters per second (i.e., equivalent to 35 miles per hour).
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The resolution of the simulation is 10 Hz, which is consistent with the frequency of CV

communication (SAE International, 2016). Falsified data attacks are launched every time

I-SIG optimizes the signal timing plan.
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Figure 3.5: A snapshot of the simulation environment

3.5.3 Learning Control Model

Because I-SIG only executes the optimized signal timing for one barrier each time, the

surrogate model only needs to predict the green time of the four phases in the current

barrier. Phase sequence can be obtained directly from SPaT messages.

The surrogate model consists of two decision tree regression models. The output of

the first decision tree model (labeled as Tree 1) is the barrier length (i.e., lead phase plus
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lag phase). The second decision tree model (labeled as Tree 2) outputs the green time

of a lead phase. The green time of a lag phase is calculated by subtracting that of the

corresponding lead phase from the barrier. The detailed definitions of the potential traffic

features for the two decision tree models are shown in Table 3.2.

Table 3.2: Definitions of the traffic features associated with trees 1 and tree 2
Traffic Feature Tree 1 (Barrier) Tree 2 (Lead Phase)

Queue length (QL)
The maximum QL of Ring 1 and Ring 2 (lead phase 

plus lag phase, the same thereafter)
QL of the lead phase

Number of approaching 

vehicles (NAV)
The maximum NAV of Ring 1 and Ring 2 NAV of the lead phase

Headway (HW)
Time of arrival of the first large HW (2 seconds) of 

the two lag phases

Time of arrival of the first large HW (2 

seconds) of the lead phase

Estimated time of arrival 

(ETA)
ETA of the last vehicle of the two lag phases ETA of the last vehicle of the lead phase

Vehicle delay (VD) Average VD of the two lag phases Average VD of the lead phase

Flow rate (FR) The maximum FR of Ring 1 and Ring 2 FR of the lead phase

A 30-hour simulation is run to generate a data set needed for both training and val-

idation. Totally, 2206 optimizations are conducted. Mean absolute error (MAE), mean

absolute percentage error (MAPE) and root mean square error (RMSE) are utilized to

quantify errors for a given set of traffic features. Monte Carlo cross validation (Xu and

Liang, 2001) is applied. 80% of the data are randomly chosen for training, while the

remaining 20% are used for validation. The 80-20 process is repeated 10 times and the

mean errors are recorded. The SFS is applied and the results are shown in Table 3.3. In

the first round, only one feature is used for fitting the decision tree models. The model

with NAV has the least error for both trees. Therefore, NAV is added to the critical feature
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set. In the second round, two features are used for fitting the decision tree models, with

one feature fixed to be NAV. The model with NAV and ETA has the least error. Thus,

ETA is chosen as the second feature and added to the critical feature set. This process is

repeated to find the third feature. However, the models with three features are all worse

than the best model in the second round. Thus, SFS stops searching. NAV and ETA are

identified as critical features.

Table 3.3: Applying SFS for identifying critical traffic features

Feature set MAE[s] MAPE RMSE[s] Feature set MAE[s] MAPE RMSE[s]

QL 3.6771 9.32% 4.6842  QL 2.6690 14.34% 3.6185

NAV 1.3967 3.46% 2.3786   NAV 1.1888 6.82% 2.2235

HW 6.0618 15.53% 7.5209  HW 3.3484 17.76% 4.4968

ETA 5.4608 14.04% 6.7911  ETA 3.8290 19.84% 4.6471

VD 6.4353 16.45% 8.0939  VD 4.8858 25.85% 6.0647

FR 4.6341 11.76% 5.7694  FR 3.4285 17.85% 4.2815

NAV+QL 1.6386 4.06% 3.0106  NAV+QL 1.2375 7.01% 2.6973

NAV+HW 1.5842 3.89% 2.8640  NAV+HW 1.1151 6.29% 2.3574

NAV+ETA 1.3287 3.26% 2.3469  NAV+ETA 0.5205 2.95% 1.5097

NAV+VD 1.6177 3.97% 2.9335  NAV+VD 1.3257 7.64% 2.8670

NAV+FR 1.5162 3.74% 2.5721  NAV+FR 1.1948 6.86% 2.2860

NAV+ETA+QL 1.3959 3.46% 2.5778  NAV+ETA+QL 0.5513 3.10% 1.7964

NAV+ETA+HW 1.4065 3.48% 2.5982  NAV+ETA+HW 0.5398 3.07% 1.7040

NAV+ETA+VD 1.3977 3.44% 2.5750  NAV+ETA+VD 0.5404 3.02% 1.7978

NAV+ETA+FR 1.4059 3.49% 2.4968  NAV+ETA+FR 0.5398 3.04% 1.6367

Tree 1 (Barrier) Tree 2 (Lead Phase)

Round 1

Round 2

Round 3

Figure 3.6 shows the effectiveness of the trained surrogate model. The prediction by
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the trained surrogate model and the ground truth generated by I-SIG are compared in

the figure. The color depth represents the density of the data. The majority of the data

lie on or near the 45-degree line, indicating that the surrogate model provides a good

prediction accuracy. The prediction of the lag phase has a relatively greater error because

it is estimated indirectly from the barrier and the lead phase.
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Figure 3.6: Comparison between I-SIG and the trained surrogate model

3.5.4 Evaluating the Impact of Falsified Data Attacks

To evaluate the impact of cyber attacks, attacks are launched based on the assumed attack

model. In Section 3.5.3, two critical features have been identified. Therefore, two attack

cases are considered, with either ETA or NAV being the targeted critical feature. The
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prediction by the surrogate model (i.e., the predicted signal timing plan) includes the

green time of the two lead phases and two lag phases in the current barrier, and is denoted

as f(X) = [gd1, gd2, gg1, gg2]
T.

In the first case, the attacker is assumed to alter ETA by manipulating the location and

speed data in the falsified trajectory. The attacker solves the following problem (P3) to

maximize the dissimilarity between the pseudo-optimal timing plan and the timing plan

under attack.

P3:

max ‖f(Xo)− f(Xa)‖2 (3.5.1)

s.t. Xo = [td1, td2, tg1, tg2, nd1, nd2, ng1, ng2]
T (3.5.2)

Xa = [td1 + τd1δd1, td2 + τd2δd2, tg1 + τg1δg1, tg2 + τg2δg2,

nd1 + δd1, nd2 + δd2, ng1 + δg1, ng2 + δg2]
T (3.5.3)

td1 + τd1δd1, td2 + τd2δd2 ∈ Tlead (3.5.4)

tg1 + τg1δg1, tg2 + τg2δg2 ∈ Tlag (3.5.5)

δd1 + δd2 + δg1 + δg2 = 1 (3.5.6)

τd1, τd2, τg1, τg2 ≥ 0 (3.5.7)

δd1, δd2, δg1, δg2 ∈ {0, 1} (3.5.8)

Decision variables τd1, τd2, τg1, τg2, δd1, δd2, δg1, δg2 (3.5.9)
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The observed critical features Xo include the ETAs of the two lead phases (td1, td2)

and two lags phases (tg1, tg2) as well as the NAVs of the two lead phases (nd1, nd2)

and two lag phases (ng1, ng2) (Equation 3.5.2). Similarly, the altered critical features

Xa also include corresponding ETAs and NAVs (Equation 3.5.3). The binary variables

δd1, δd2, δg1, δg2 indicate the phase to which the falsified trajectory is injected (Equation

3.5.8). It is assumed that the attacker can only inject one falsified trajectory per attack

(Equation 3.5.6). Tlead and Tlag are the sets of candidate ETAs for the lead phase and

lag phase (Equation 3.5.4 and 3.5.5). Tlead and Tlag can be obtained from historical data.

Equation 3.5.7 indicates that the attacker intends to launch attacks by increasing the ETA.

In the second case, the attacker is assumed to alter NAV by injecting falsified trajec-

tories to different phases. Denote δd1, δd2, δg1, δg2 to be the number of falsified trajectories

injected to each phase. The attacker is assumed to have a budget limit B = 10 (Equation

3.5.13), i.e., the maximum number of falsified trajectories. Similar to the previous case,

the attacker solves the following problem (P4) to maximizes the dissimilarity.
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P4:

max ‖f(Xo)− f(Xa)‖2 (3.5.10)

s.t. Xo = [td1, td2, tg1, tg2, nd1, nd2, ng1, ng2]
T (3.5.11)

Xa = [td1, td2, tg1, tg2,

nd1 + δd1, nd2 + δd2, ng1 + δg1, ng2 + δg2]
T (3.5.12)

δd1 + δd2 + δg1 + δg2 ≤ B (3.5.13)

δd1, δd2, δg1, δg2 ∈ Z+ (3.5.14)

Decision variables δd1, δd2, δg1, δg2 (3.5.15)

Four simulation experiments are conducted to assess the impact of cyber attacks. Each

experiment lasts for 5 hours, with the exact same traffic demand and vehicle arrival pat-

terns. The total delay for each experiment is shown in Figure 3.7.

In Experiment I, the original I-SIG system operates normally without being attacked.

This scenario serves as the benchmark for all the other scenarios because it has the lowest

total delay.

In Experiment II, the trained surrogate model is used to generate signal timing plans

and control the traffic signal. However, no falsified CV data are injected into the system.

As evidenced by a small increase of 1.5%, the total delay is very close to the benchmark.

This indicates that the trained surrogate model could effectively mimic the actual signal
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Figure 3.7: Total delay for each experiment

control model.

In Experiment III, the attacker attacks I-SIG based on the feature ETA. It is worth

noting that only one falsified CV is inserted into the system per attack and the attacker is

constrained by limited information (unknown control model). The total delay increases by

19%. This implies that the attacker can cause significant damage to the CV-TSC system

even though the exact control model is unknown.

In Experiment IV, the attacker attacks I-SIG based on the feature NAV. Multiple falsi-

fied CVs are inserted into the system per attack. The total delay increases by 23%. When

sufficient resources are given, the attacker can cause even more damage to the system.

These experiment results show that the attacker can learn the signal control model

with a surrogate model. The attack model is simple yet effective. It is possible to attack a

CV-TSC system without knowing the exact control model. The falsified data attacks can

result in severe consequences with a limited budget.

57



3.6 Chapter Summary

This chapter investigated how an attacker can launch real-time falsified data attacks in

a realistic setting. Compared to prior research, this study considered a “black-box” at-

tack scenario in which the control model of the CV-TSC system was unavailable to the

attacker. It was assumed that the attacker could learn the signal control model using a

surrogate model and then identify critical traffic features. Using the learned model, the

attacker could predict the signal timing plan based on identified critical traffic features.

The attacker then formulated a mathematical problem to generate falsified trajectories,

with the aim of altering the values of critical traffic features. Signal control decisions

were affected as a result. The attacker was assumed to identify the “optimal” values of

critical features by maximizing dissimilarity between the pseudo-optimal timing plan and

the resultant signal timing plan under attack.

A comprehensive case study was performed with I-SIG as the selected CV-TSC sys-

tem. Results showed that the surrogate model could effectively mimic the actual I-SIG

control model, which was sensitive to two critical traffic features: the estimated time of

arrival (ETA) and number of approaching vehicles (NAV). Therefore, two types of attacks

could be launched based on these features. Simulation experiments revealed that the to-

tal delay increased by 19% and 23%, respectively. This indicated that even though the

control model was unknown, an attacker could still severely damage the CV-TSC system.

Note that it is possible that the attacker may not be able to identify critical traffic

features or the surrogate model may not work well. In this case, the attacker will not be
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able to launch effective black-box attacks. Moreover, in this study, P1 and P2 are solved

separately when launching online attacks. P1 and P2 can potentially be combined into

one model.

The study in this chapter further confirms the impacts of cyber attacks on the CV-TSC

system. Even in a restricted setting (i.e., black box), an attacker can create excessive

delay and hinder system performance significantly. A defense solution that can be used to

detect such attacks and protect the system is vital. The defense part of the cyber security

problem is explored in the next chapter.

59



CHAPTER 4

Defense Strategy: A Data-Driven Method to

Identify Falsified Trajectories

4.1 Introduction

The previous two chapters provided evidence that falsified trajectories can significantly

damage CV-TSC systems. Besides traffic signal operation, falsified trajectories may harm

other trajectory-based applications as well, such as traffic state estimation. Input vehicle

trajectories must be authentic to secure the benefits of trajectory-based applications. It is

therefore imperative to protect the system by identifying and filtering out falsified vehicle

trajectories, hence the focus of this chapter.

One straightforward approach to identifying falsified trajectories involves using in-

frastructure-based sensors (e.g., loop detectors) to validate unknown trajectories. For

instance, Canepa and Claudel (2013a,b) formulated a mixed-integer linear feasibility

problem to detect falsified trajectories. Traffic states were modeled using the Lighthill-
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Whitham-Richards model (Lighthill and Whitham, 1955; Richards, 1956). Detector data

provided initial and boundary conditions for this model. The information (e.g., average

speed) obtained from falsified trajectories could influence traffic state estimation, rend-

ing the original mixed-integer linear problem infeasible. Shoukry et al. (2018) also used

legacy loop detectors to estimate macroscopic traffic states. A set of honest vehicles were

then identified, whose velocity values were consistent with macroscopic traffic states.

However, the applicability of these methods is limited by the need to acquire data from

infrastructure-based sensors.

Another approach to identifying falsified trajectories is to model the problem as an

abnormal (outlier) trajectory identification problem. An abnormal trajectory is distinct

from other trajectories in terms of a distance metric (Zheng, 2015). Research identifying

abnormal trajectories has most often focused on the network-level behavior, namely route

choice (Zhang et al., 2011; Chen et al., 2013; Zhu et al., 2015, 2017). Such studies

normally design a routing-related score to identify abnormal trajectories. Yet one major

drawback of these methods is that they cannot be directly applied at the intersection level,

which is the context of this dissertation.

To address the research gaps identified in prior literature, this chapter proposes a data-

driven method for identifying falsified trajectories. A trajectory embedding model is de-

veloped that generates vector representations of driving behaviors. Using these vectors,

the proposed method computes the similarity between trajectories and therefore identifies

abnormal (falsified) ones. This method can be applied at the intersection level and does
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not require data from infrastructure-based sensors. Therefore, the method can be used to

protect CV-TSC systems from falsified data attacks.

The rest of this chapter is organized as follows. Section 4.2 describes the falsified tra-

jectory identification problem and provides an overview of the proposed method. Section

4.3 details the trajectory embedding model to generate vector representations. Section

4.4 explains how to identify falsified trajectories using the vector representations, includ-

ing computing the similarity between trajectories and a hierarchical clustering algorithm

to identify abnormal (falsified) trajectories. Numerical examples are presented in Sec-

tion 4.5 to demonstrate the effectiveness of the proposed method. Finally, Section 4.6

summarizes this chapter.

4.2 Problem Description and Methodology Overview

A time-space diagram at a signalized intersection is shown in Figure 4.1. The blue

solid curves represent trajectories of CVs (i.e., observable by infrastructure) and the blue

dashed curves represent trajectories of non-CVs (i.e., not observable by infrastructure).

The red curve represents a falsified trajectory. The resolution of the trajectories is 10

Hz (i.e., one trajectory data point for every 0.1 second). In this example, the falsified

trajectory behaves differently from the normal ones because it intentionally slows down

although the front vehicle is still far away. It is assumed that at the time of interest (TOI),

a CV-TSC system utilizes received trajectories (the blue solid trajectory and the red tra-
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jectory) as input data for traffic signal optimization. The goal of the defense strategy is to

identify the falsified trajectory for each signal phase before TOI.

TOI

Figure 4.1: Illustration of the problem of identifying the falsified trajectory

The falsified trajectory identification method proposed in this chapter is an extension

of the trajectory-based hierarchical defense (TBHD) framework (Wong et al., 2019). The

TBHD framework aims at detecting falsified trajectory data (i.e., BSMs) from compro-

mised CVs. The TBHD framework consists of three levels of defenses. Level 1 defense

is a pointwise checking that checks if each element in received BSMs fall within its fea-

sible range. It checks the location, speed, acceleration, and heading of each trajectory

data point and makes sure that these elements make physical sense. Level 2 defense is

a multiple-point checking that checks if consecutive BSMs of one CV obey the laws of
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physics. It checks the location, speed, and acceleration of each trajectory data point based

on equations of motion and the definitional equations of speed and acceleration. Level

3 is a multiple-trajectory checking that checks if two CV trajectories conflict with each

other. The core idea is that if a trajectory conflicts with multiple trajectories, then it is

considered falsified. The three levels of defenses in the TBHD are fairly simple. An

attacker can easily defeat these defenses. For example, the falsified trajectory in Figure

4.1, is generated by solving P2 in Section 3.4. The three levels of defenses are treated as

constraints in P2. As a result, the falsified trajectory can successfully pass the three levels

of defenses.

The proposed method provides another level of defense by checking the behavior of

trajectories. The overview of this method is shown in Figure 4.2. This method includes

two key parts: trajectory embedding and abnormal trajectory identification. A trajectory

is composed of multiple trajectory data points. Each trajectory data point reveals driving

behavior (i.e., the choice of range, range rate, and speed). Inspired by a word embedding

model from the Natural Language Processing (NLP) community, a trajectory embedding

model is developed. Each trajectory data point is converted into a word via trajectory

pre-processing. The trajectory embedding model then encodes the word into a vector.

The trajectory embedding model is a simple neural network with a single hidden layer.

It is trained on positive samples (correct context-target word pairs) and negative samples

(incorrect context-target word pairs). Each context word is represented as a distinct in-

put to the neural network. The output is the probability of a target word (for example,

64



Detroit-Michigan as the context-target word pair). The training of the neural network is

essentially to estimate the co-occurring probability of any pair of words. The weights of

the hidden layer are the vector representation of a word. After training, the vector repre-

sentations of similar words will end up near in the vector space, i.e., the neural network

model implies that words that occur in similar contexts would have similar vector rep-

resentations (similar hidden layers). In trajectory embedding, trajectory data points with

similar driving behavior have similar vector representations. The vector representations

enable the computation of trajectory similarity. A falsified trajectory is identified based

on its similarity (distance) to other trajectories. The distance between two trajectory data

points can be calculated using the Euclidean distance between the two vectors. The sim-

ilarity between the two trajectories is then calculated as the average distance over a time

window. A similarity matrix is then obtained by computing the similarity between all

pairs of trajectories. Next, a hierarchical clustering algorithm is adopted to merge similar

trajectories into clusters. A predefined threshold is used to terminate the merging process.

Trajectories in the largest cluster are marked as normal, whereas other trajectories are

considered abnormal (i.e., falsified).
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Figure 4.2: Overview of the falsified trajectory identification method

The proposed method is grounded on two basic assumptions: (1) falsified trajectories

only account for a small proportion of the vehicle population. This means that the at-

tacker has limited resources and most trajectories are normal; and (2) falsified trajectories

behave differently from normal trajectories. As discussed in Chapter 3, falsified trajec-

tories are generated with a certain attack goal (e.g., to alter the values of critical traffic

features). Therefore, falsified trajectories may demonstrate driving behavior unique from

normal trajectories. This behavioral difference is also supported by Chen et al. (2018),

whose study showed that an attacker can attack I-SIG by changing speed and location

data elements in the trajectory and thus manipulating arrival time or queue length.

The logic of the proposed method is explained below. Normal trajectories share simi-

lar vector representations because of similar driving behavior. Falsified trajectories, how-
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ever, have dissimilar vector representations due to the behavioral difference. The vector

representations are used to compute the similarity between trajectories. As a result, fal-

sified trajectories are dissimilar to normal trajectories. Based on the similarity, the hier-

archical clustering algorithm will merge normal trajectories into one single cluster. The

falsified trajectories are then identified.

4.3 Trajectory Embedding

The trajectory embedding model is inspired by a word embedding model called word2vec

(Mikolov et al., 2013a,b,c), a popular tool primarily used in the NLP community. Word2vec

uses real-valued vectors to represent words. Each word is mapped into a low dimensional

vector (by “low” the dimension of the vector is compared to the size of the vocabulary

of words). Words with similar meanings end up with similar vector representations. The

vector representation carries semantic information and can be used for various down-

stream NLP applications. Just like a sentence is composed of multiple words, a trajectory

is composed of multiple trajectory data points. Each trajectory data point can be con-

sidered an analogue to a word in a sentence. The trajectory embedding model generates

vector representations of trajectory data points. Similarly, it is expected that trajectory

data points with similar driving behavior have similar vector representations. The vector

representations make it possible to to compute the similarity between trajectories. This

section includes two parts: trajectory pre-processing and embedding model building. The
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first part describes how to convert a trajectory data point into a word. The second part ex-

plains how to train the model and generate vector representations of words (i.e., trajectory

data points).

4.3.1 Trajectory Pre-Processing

A trajectory is composed of a series of trajectory data points. Each trajectory data point

contains the location, speed of the vehicle with a timestamp. For each trajectory data

point, car-following information such as range (the space gap between the host CV and its

leading CV) and range rate (the speed difference between the host CV and its leading CV)

can be derived directly based on the trajectories of the host CV and its leading CV. Note

that when the CV market penetration rate is not 100%, the leading CV is not necessarily

the immediate leading vehicle, as shown in Figure 4.1. In other words, there may be

non-CVs in between the CVs.

Range, range rate, and speed are considered as driving behavior in this study. The driv-

ing behavior is then mapped into a three-letter word using a mapping function g(r, rr, v).

The three letters correspond to the values of range r, range rate rr, and speed v, re-

spectively. The mapping function g(r, rr, v) discretizes the parameter space. In this

study, range r has 26 possible intervals with 2 meters per interval: [0, 2m), [2m, 4m),

..., [48m, 50m),[50m,∞). Range rate rr has 13 possible intervals with 2 m/s per interval:

(−∞,−18m/s), [−18m/s,−16m/s),...,[2m/s, 4m/s), [4m/s,∞). Speed v has 11 possible

intervals with 2 m/s per interval: [0, 2m/s), [2m/s, 4m/s),...,[18m/s, 20m/s), [20m/s,∞).
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The upper and lower boundaries of each parameter are obtained from simulation data.

Each interval corresponds to a letter alphabetically. For example, driving behavior (r =

1m/s, rr = −17m/s, v = 5m/s) corresponds to the word “abc”. With this mapping func-

tion g(r, rr, s), any trajectory data point can be mapped into a word.

4.3.2 Embedding Model Building

The embedding model is adapted from the simplest version of the word2vec model (one

input word and one output word) with negative sampling approach. For a detailed ex-

planation of the word2vec model, please refer to Goldberg and Levy (2014) and Rong

(2014). The embedding model generates vector representations of words based on the

distribution of word co-occurrences in a training dataset. As shown in Figure 4.3, the

embedding model is a neural network with three layers: an input layer, an output layer,

and a hidden layer. The model has an internal prediction task: predicting a target word

given a context word. The model parameters are updated through training. However, the

prediction task itself is not the goal of this model. The goal is to learn the weights of the

hidden layer. Eventually, each word will have its unique weights of the hidden layer and

these weights are the vector representation of the word. The vector representation can be

considered as features that describe this word.
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Figure 4.3: Illustration of the embedding model

4.3.2.1 Model Description

Denote V as the vocabulary (i.e., unique words) and M as the number of unique words

(i.e., the size of the vocabulary). The input layer is a one-hot encoded vector with dimen-

sion M . Given a context word wi ∈ V (here i indicates its location in the vocabulary), the

input to the embedding model is Xwi
= [0, 0, ...0, 1, 0., , , .0]T, where only i-th element is

1 and all other elements are 0. The weight between the input layer and the hidden layer

is a M ×N matrix denoted as W . Row i of W is denoted as vTwi
with dimension N . The

dimension of the hidden layer isN , which is a predefined value (N is significantly smaller

than M ). In this study, N = 20. Given a word wi ∈ V , the hidden layer can be computed

asH = WTXwi
= vwi

. The weight between the hidden layer and output layer is aN×M

matrix denoted as W ′ (W ′ is different from W ). Column i of W ′ is denoted as v′wi
with

dimension N . The dimension of the output layer is M . For each output word wj in the

vocabulary, the score πj is computed as πj = v′wj

TH = v′wj

Tvwi
. vwi

is called the input
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vector of the word wi and v′wj
the output vector of the word wj . The probability of pre-

dicting word wj is given by a logistic function σ(πj) = σ(v′wj

Tvwi
) = 1

1+exp(−v′wj
Tvwi)

.

Denote wi∗ as the target word of wi, i.e., the positive sample. Denote D(wi) as the set

of negative samples. D(wi) contains k “wrong” words (i.e., any word other than the target

word) that are randomly drawn from the vocabulary V (thus the name negative sampling).

In this study, k is set to 5, the recommended value for a small training dataset (Mikolov

et al., 2013b). The loss function is defined in Equation 4.3.1.

E = − log σ(v′wi∗
T
vwi

)−
∑

wj∈D(wi)

log σ(−v′wj

T
vwi

) (4.3.1)

Take derivative of E with respect to v′wj
:

∂E

∂v′wj

=
∂E

∂(v′wj

Tvwi
)

∂(v′wj

Tvwi
)

v′wj

= [σ(v′wj

T
vwi

)− t(wj)]
∂(v′wj

Tvwi
)

v′wj

= [σ(v′wj

T
vwi

)− t(wj)]vwi

(4.3.2)

where

t(wj))


1, wj = wi∗

0, wj ∈ D(wi)

(4.3.3)

Therefore, using stochastic gradient descent, the update rule for the weight v′wj
in
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matrix W ′ is:

v′wj

(new)
= v′wj

(old) − η ∂E

∂v′wj

(4.3.4)

where η > 0 is the learning rate.

Take derivative of E with respect to vwi
:

∂E

∂vwi

=
∑

wj∈{wi∗}∪D(wi)

∂E

∂(v′wj

Tvwi
)

∂(v′wj

Tvwi
)

vwi

=
∑

wj∈{wi∗}∪D(wi)

[σ(v′wj

T
vwi

)− t(wj)]
∂(v′wj

Tvwi
)

vwi

=
∑

wj∈{wi∗}∪D(wi)

[σ(v′wj

T
vwi

)− t(wj)]v
′
wj

(4.3.5)

The corresponding update rule for the weight vwi
in matrix W is

vwi

(new) = vwi

(old) − η ∂E
∂vwi

(4.3.6)

For each input word wi, Equation 4.3.4 is applied to wj ∈ {wi∗} ∪D(wi) and update

the corresponding v′wj
in matrix W ′ and Equation 4.3.6 is applied to update vwi

in matrix

W .

For each iteration, one goes through all the positive and negative samples from a

training dataset and updates the weight matrix W and W ′ based on Equation 4.3.4 and

4.3.6.

Given an arbitrary word wi ∈ V , its vector representation is the vector of its hidden

layer H . That is to say, the vector representation of word wi is H = vwi
.
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Following Rong (2014), the logic behind the embedding model is explained below.

σ(v′wj

Tvwi
) is the probability of the correct prediction (takes value between 0 and 1).

t(wj) is the expected output (takes value of either 0 or 1). If σ(v′wj

Tvwi
) > t(wj), the

word wj is not the correct target word of wi. Equation 4.3.4 subtracts a proportion of vwi

from v′wj
, and moves v′wj

farther away from vwi
. The step size of the movement is deter-

mined by the prediction error σ(v′wj

Tvwi
) − t(wj). Similarly, Equation 4.3.6 subtracts a

proportion of v′wj
from vwi

, making vwi
farther away from v′wj

. If σ(v′wj

Tvwi
) < t(wj),

the word wj is the correct target word of wi. Equation 4.3.4 adds a proportion of vwi
to

v′wj
, and moves v′wj

closer to vwi
. Similarly, Equation 4.3.6 adds a proportion of v′wj

to vwi
, making vwi

closer to v′wj
. If σ(v′wj

Tvwi
) is very close to t(wj), little change will

be made to v′wj
in Equation 4.3.4 and vwi

in Equation 4.3.6. After many iterations, the

weight matrix W and W ′ will stabilize eventually.

4.3.2.2 Model Training

The trajectory embedding model is trained on positive and negative samples. As discussed

in Section 4.3.2.1, for each positive sample, k negative samples are randomly chosen

from the vocabulary. This section introduces how to construct positive samples for the

trajectory embedding model. In this study, there are three types of positive samples.

• Single-trajectory (temporal dimension)

As illustrated in Figure 4.4(a), a complete trajectory i is recorded. Each trajectory

data point is converted into a word and is denoted as wi
t, where t is the timestamp.
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Figure 4.4: Illustration of constructing positive samples: (a) single-trajectory (temporal
dimension); and (b) between-trajectory (spatial dimension)

Given a word wi
t, its immediate next word wi

t+1 (i.e., next timestamp) is its positive

sample. This type of positive samples ensures that adjacent trajectory data points

in the temporal dimension have similar vector representations.

• Between-trajectory (spatial dimension)

As illustrated in Figure 4.4(b), at time t, a snapshot is taken. The trajectory data

points of all CVs are converted into words. Given a word wi
t, its front word wi−1

t

(i.e., leading CV) and back word wi+1
t (i.e., following CV) are its positive samples.

This type of positive samples ensures that adjacent trajectory data points in the

spatial dimension have similar vector representations.

• Related words

Related words are defined as the words that only differ by one letter and are next

to each other in the mapping function. For example, “aaa” and “aab” are related

words. “aab” is the positive sample of “aaa” and “aaa” is the positive sample of
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“aab”. This type of positive samples ensures that similar driving behavior have sim-

ilar vector representations. Moreover, this type of positive samples would enumer-

ate all possible words in the vocabulary and therefore can prevent out-of-vocabulary

words (i.e., driving behavior that does not appear in a training data set but appears

in a testing data set).

4.4 Abnormal Trajectory Identification

The trained trajectory embedding model provides vector representations of trajectory

data. Therefore, the similarity (distance) between any pair of trajectories can be com-

puted using the vector representations. Then a clustering algorithm is applied to group

similar trajectories and identify abnormal ones.

4.4.1 Trajectory Similarity Calculation

Figure 4.5 shows two trajectories in a time-space diagram. Each trajectory is composed

of multiple trajectory data points. ts and te define the time window that both trajectories

are received by a CV-TSC system. At any time t within this time window, the distance

between two trajectory points can be calculated using the Euclidean distance of the two

vector representations (i.e., ‖H i
t−H

j
t ‖2). Then, the similarity between the two trajectories

is defined as the average distance over the time window, as shown in Equation 4.4.1.
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d(i, j) =
1

10(te − ts) + 1

te∑
t=ts

‖H i
t −H

j
t ‖2 (4.4.1)

whereH i
t andHj

t are the vector representations for trajectory i and j at time t; 10(te−

ts) + 1 denotes the number of data points in the time window.

Time

Space

Trajectory	i

Trajectory	j

Trajectory
data	point

Figure 4.5: Illustration of computing the similarity between two trajectories

4.4.2 Classification Using Hierarchical Clustering

Hierarchical clustering is an unsupervised learning method in machine learning. It groups

similar objects to clusters such that objects in the cluster are similar to each other than the

objects in other clusters. Hierarchical clustering is a popular method for clustering DNA

sequences.

In this study, hierarchical clustering is adopted to identify abnormal trajectories. The

pseudo code is shown in Algorithm 2. This study uses a bottom-up approach. Each

trajectory is treated as one cluster in the beginning. The similarity between clusters cp and

cq is calculated as the average distance between all pairs of trajectories in the two clusters,
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i.e., D(cp, cq) = 1
|cp||cq |

∑
i∈cp,j∈cq

d(i, j). For each iteration, the most similar clusters are

merged together to form one single cluster. The merging stops when the clusters are not

close to each other (i.e., the similarity exceeds a predefined threshold ε) or all trajectories

have been merged into the same cluster. Finally, the trajectories in the largest cluster are

marked as normal; otherwise abnormal.

Algorithm 2: Hierarchical clustering
Consider each trajectory as one cluster;
Compute the minimum distance between any pair of clusters
Dmin = min

cp,cq∈C
D(cp, cq), where C is the set of clusters ;

while Dmin ≤ ε & |C| > 1 do
Merge cluster c∗p and c∗q into one cluster, where D(c∗p, c

∗
q) = Dmin ;

if |C| > 1 then
Compute Dmin = min

cp,cq∈C
D(cp, cq);

else
break while;

end
end
Result: The trajectories in the largest cluster are marked as normal; otherwise

abnormal

Figure 4.6 is a dendrogram that shows how hierarchical clustering is performed from

the bottom (every trajectory is one cluster) to the top (all trajectories merge into one

cluster). The threshold in hierarchical clustering is set to 6. Trajectories 2 to 10 eventually

merge and form one cluster, while trajectory 1 forms the second cluster. In this example,

trajectory 1 is marked as abnormal (i.e., falsified).
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Figure 4.6: A dendrogram that shows the hierarchical clustering results

4.5 Numerical Examples

4.5.1 Experiment Setup

Experiments are conducted to demonstrate the effectiveness of the proposed method.

VISSIM (Fellendorf and Vortisch, 2010), a commercial microscopic traffic simulator, is

utilized as the simulation environment. In order to ensure heterogeneity in driving be-

havior, the simulation uses stochastic values for safety distance, desired acceleration, and

desired deceleration. The free-flow speed follows a uniform distribution, with a lower

bound of 50 km/h (13.89 m/s) and an upper bound of 70 km/h (19.44 m/s). A simple

one-lane road with a traffic light at the end of the road is modeled in the simulation. The

traffic signal implements a fixed-time signal timing plan, with 60 seconds of green time

and 60 seconds of red time for every cycle. TOI is defined as the time that the traffic

signal switches from red to green. The traffic volume is set to 400 vehicles per hour. The
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simulation lasts for 10 hours. 300 signal cycles of vehicle trajectory data are recorded.

The simulation resolution is 10 Hz, where the trajectory data is recorded every 0.1 sec-

ond. These 10 hours of data are used as the corpus for training the trajectory embedding

model. In the same way, another 10 hours of data are generated. For each cycle, one

falsified trajectory is inserted between free-flow traffic and queueing traffic (generated 2

seconds after the generation of the last CV in the queueing traffic) because the falsified

trajectory is normally not in free-flow state or queueing state. The falsified trajectory is

generated offline (given the full trajectory of the leading and the following vehicle) by

solving P2 in Section 3.4. The time displacement and space displacement in P2 are set

1.5 seconds and 6.2 meters. The safety distance is 6.2 meters. The free-flow speed is

16.67 m/s (60 km/h). The minimum and maximum acceleration rate are -2 m/s2 and 2

m/s2. The initial speed of the falsified trajectory is the same as the free-flow speed and the

initial position is at the boundary of the approach. Recall that one constraint in P2 is the

attack goal. A total of 6 cases are considered with three attack goals (ETA attack, phantom

queue attack, and without a goal) and two CV penetration rates (100% and 50%). Each

case includes 300 signal cycles. The ETA attack and phantom queue attack correspond to

the findings in Chen et al. (2018), which finds that an attacker can generate falsified CV

data to fool the signal control system by either manipulating arrival time or queue length

(note that phantom queue attack is effective only when the penetration rate is less than

100%).

For the ETA attack, the mathematical formulation of the attack goal (Equation 3.4.9
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in P2) is expressed in the following equations:

v(to) > vmin (4.5.1)

db − d(to)

v(to)
= ETA (4.5.2)

Equation 4.5.1 states that at TOI to, the speed of the falsified trajectory should be

greater than a minimum speed vmin (in this way the signal controller would think this

vehicle is still moving). Equation 4.5.2 states that ETA is defined as the distance to stop

bar db − d(to) divided by speed v(to). The ETA attack would trick the signal controller

into believing that there is a late arrival vehicle that needs to be served.

For the phantom queue attack, the mathematical formulation of the attack goal is

expressed in the following equations:

v(to) = 0 (4.5.3)

(db − d(to))× kj = QUEUE (4.5.4)

Equation 4.5.3 states that at TOI to, the speed of the falsified vehicle should be 0.

Equation 4.5.4 states that the number of queued vehicles QUEUE is equal to the product

of the distance to stop bar db − d(to) and the jam density kj (161 veh/km). The phantom

queue attack would trick the signal controller into believing that there is a long vehicle

queue (especially when the penetration rate is not 100% and a signal controller normally

uses the last stopped CV to estimate queue length).
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4.5.2 Trajectory Embedding Model Training

Gensim (Řehůřek and Sojka, 2010), a python package for word embedding, is used for

training the trajectory embedding model. Two trajectory embedding models are trained

based on different penetration rates (PR). The delta loss (the difference of loss between

two iterations) is shown in Figure 4.7. When the penetration rate is 100%, the training

converges near 1000 iterations. When the penetration rate is 50%, the training converges

near 2300 iterations. When the penetration rate is low, it takes longer time to converge.

This is because range and range rate are more diverse.
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Figure 4.7: Delta loss for each iteration

Table 4.1 shows a few examples of the trajectory embedding model (PR=100%). Eu-

clidean distance is used to identify similar words (i.e., ‖H(wi) − h(Hj)‖2, where h(Hi)

and h(Hj) are the vector representations of words wi and wj). A small Euclidean distance

indicates that the two words are similar. For example, the top 2 similar words to “aka” are
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“aja” and “bja”. All three words represent queueing traffic state. The top 2 similar words

to “zkh” are “ukh” and “zji”. Similarly, all three words represent free-flow traffic state.

Table 4.1: Similar words according to Euclidean distance

Group Euclidean Distance Range [m] Range rate [m/s] Speed [m/s] Word

- [0,2) [0,2) [0,2] aka

0.80 [0,2) [-2,0] [0,2] aja

2.01 [2,4) [-2,0] [0,2] bja

- [50,oo) [0,2) [14,16) zkh

1.06 [40,42) [0,2) [14,16) ukh

1.09 [50,oo) [-2,0] [16,18) zji

1

2

4.5.3 Identification Results

Examples of falsified trajectories and corresponding clustering results are shown in Figure

4.8 (CV penetration rate = 100%). In Figure 4.8(a), a falsified trajectory (marked in red)

is generated with the attack goal ETA = 60 s. The falsified vehicle follows the leading

vehicle based on Newell’s car-following model. At TOI it slows down to achieve the

attack goal. Figure 4.8(b) shows the clustering result. For clarity, the falsified vehicle

is always labeled as 1 in all cases. Other vehicles are labeled (starting from 2) based

on the time they enter the intersection area. The threshold in the clustering algorithm ε

is set 6, which is highlighted using a red dashed line. Figure 4.8(b) shows that normal

trajectories (trajectory 2 to 8) form one cluster, while the falsified trajectory forms the
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second cluster. Because of the unusual behavior (slowing down when the front vehicle is

still far), the distance between the falsified trajectory and other trajectories is significant.

Therefore, the clustering method is able to identify the falsified trajectory. Similarly,

in Figure 4.8(c), a falsified vehicle is generated with the attack goal QUEUE = 30 veh.

Again, the falsified vehicle follows the leading vehicle based on Newell’s car-following

model and stops far from the intersection at TOI. This unusual behavior is successfully

captured by the proposed method, as shown in Figure 4.8(d). In Figure 4.8(e), a falsified

trajectory is generated without an attack goal. The falsified vehicle simply travels at free-

flow speed, which appears to be normal. Therefore, based on the predefined threshold ε,

the falsified trajectory is considered normal. Since this vehicle does not change the values

of queue length or ETA, its impact to the CV-TSC system is also minimal.
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(a)

(c)

(e) (f)

(d)

(b)

Figure 4.8: Identification results (CV penetration rate = 100%): (a) example of a falsified

trajectory (ETA = 60 s); (b) example of hierarchical clustering (ETA = 60 s); (c) (QUEUE

= 30 veh); (d) example of hierarchical clustering (QUEUE = 30 veh); (e) example of a

falsified trajectory with (without an attack goal); and (f) example of hierarchical clustering

(without an attack goal)
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Another set of examples are shown in Figure 4.9, where the CV penetration rate is

changed to 50%. This means that there are fewer normal trajectories observed every

cycle. The proposed method can successfully identify the falsified trajectories even when

the penetration rate is low, as shown in Figure 4.9(b) and (d). An interesting finding

in Figure 4.9(f) is that even though there is no attack goal when generating the falsified

trajectory, the proposed method can still identify the falsified trajectory. This is because

the car-following model for generating the falsified trajectory (Newell’s car-following

model) is different from the car-following model in VISSIM (Wiedemann car-following

model). This difference is prominent when the falsified vehicle slows down.
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Figure 4.9: Identification results (CV penetration rate = 50%): (a) example of a falsified

trajectory (ETA = 60 s); (b) example of hierarchical clustering (ETA = 60 s); (c) (QUEUE

= 30 veh); (d) example of hierarchical clustering (QUEUE = 30 veh); (e) example of

a falsified trajectory (without an attack goal); and (f) example of hierarchical clustering

(without an attack goal)
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Table 4.2 shows a summary of the results for falsified trajectory identification. Each

case includes 300 signal cycles (i.e., 300 chances to generate falsified trajectories). One

falsified trajectory is generated by solving P2 per signal cycle. However, if there is no

feasible solution to P2, then no falsified trajectory is generated in this cycle. The attack

success rate is defined as the number of generated falsified trajectories divided by the

number of total cycles. When the penetration rate decreases from 100% to 50%, the

attack success rate increases. This is because less normal trajectories means that the

attacker has more space for generating falsified trajectories. When there is an attack goal,

generating a falsified trajectory is difficult. This is reflected by the low attack success rate.

A valid cycle means a signal cycle in which at least three trajectories (including falsified

trajectory) are observed. This is because the clustering algorithm is not meaningful if

there are not enough observations. The proposed method is only applied in valid cycles.

Detection rate is defined as the ratio of the number of identified falsified trajectories to

the total number of falsified trajectories in valid cycles. False alarm rate is defined as

the ratio of the number of false identified trajectories (i.e., normal trajectories but labeled

as falsified) to the total number of normal trajectories in valid cycles. When there is a

specific attack goal, the proposed method can identify most falsified trajectories with a

detection rate of at least 99%. However, when there is no attack goal, it becomes difficult

to distinguish falsified trajectories from normal trajectories. The attack goal is indeed the

reason why the falsified trajectories are abnormal. The proposed method is effective even

when the penetration rate is low. The false alarm rates are low for all the cases (less than
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7%).

Table 4.2: A summary of results for falsified trajectory identification

PR Attack goal
Attacks 

launched

Attack success 

rate
Valid cycles

% of valid 

cycles

Detection 

rate

False alarm 

rate

100% ETA = 60s 165 55.0% 300 100.0% 100.0% 2.0%

100% QUEUE = 30 veh 145 48.3% 300 100.0% 100.0% 1.6%

100% without a goal 269 89.7% 300 100.0% 14.1% 1.1%

50% ETA = 60s 214 71.3% 281 93.7% 99.0% 6.6%

50% QUEUE = 30 veh 200 66.7% 282 94.0% 99.0% 5.9%

50% without a goal 288 96.0% 288 96.0% 72.4% 6.6%

original

In the last case (50% PR without an attack goal) the detection rate is still relatively

high (72.4%). The major reason is related to the way that the falsified trajectories are

generated. In the 100% penetration rate case, the falsified trajectories are generated 2

seconds after the generation of the last CV in the queueing traffic (2 seconds correspond

to the saturation flow rate). 2 seconds are chosen because the falsified vehicle will not

be too close to its leading vehicle, and at the same time it minimizes the potential risk

of conflicting with a following vehicle. For 50% PR case, the same rule (2 seconds) is

followed. However, when the penetration rate is low, observing a CV closely following

another CV becomes a relatively rare event. That is the reason why it is considered

abnormal.
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4.5.4 Sensitivity Analysis

A sensitivity analysis is conducted to evaluate the impact of the threshold ε on the iden-

tification results. The results are shown in Figure 4.10. The first case is considered in

the sensitivity analysis (attack goal: ETA = 60 seconds; PR = 100%). A larger threshold

indicates more tolerance for abnormal behaviors. Therefore, the proposed method would

fail to identify falsified trajectories. When the threshold exceeds 10, the detection rate

drops to zero. The false alarm rate also drops to zero. A smaller threshold permits less

abnormal behaviors. When the threshold is 6, the detection rate is 100%. The false alarm

rate also increases to 2%. As expected, both detection rate and false alarm rate decrease

as the threshold increases. This means that there is a trade-off between detection rate and

false alarm rate.

(a) (b)

Figure 4.10: The impact of threshold on the results: (a) detection rate; and (b) false alarm
rate
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4.6 Chapter Summary

To protect CV-TSC systems from falsified data attacks, this chapter proposed a method

to identify falsified vehicle trajectories. It was assumed that falsified trajectories need to

achieve a certain attack goal. As a result, they were behaviorally distinct from normal

trajectories. The problem of identifying falsified trajectories was hence considered an ab-

normal trajectory identification problem. A trajectory embedding model was developed

to generate vector representations of trajectory data points. The similarity (distance) be-

tween trajectories was computed based on vector representations. Hierarchical clustering

was applied to identify abnormal (i.e., falsified) trajectories.

A series of experiments were then conducted to evaluate the effectiveness of the pro-

posed method. In experiments, falsified trajectories were generated every signal cycle un-

der different penetration rates (i.e., 100% and 50%) and with different attack goals (i.e.,

ETA attack and phantom queue attack). Findings indicated that the proposed method

could successfully identify the majority (over 99% in general) of falsified trajectories,

while maintaining a low false alarm rate (under 7% in general).

The proposed defense strategy provides one solution to protecting CV-TSC systems.

Other solutions exist as well. One possible solution is to design security-aware algorithms

for traffic signal control. For example, Yin (2008) and Zhang et al. (2010) designed robust

optimal signal timings that were less sensitive to traffic flow fluctuations. Similarly, engi-

neers and scholars could design robust signal control algorithms that are less vulnerable

to falsified data attacks. Another solution is to improve hardware security and prevent at-
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tackers from sending falsified CV data. For example, Hu et al. (2020) proposed a system

named CVShield, which relocated all related codes from the rich execution environment

into the trusted execution environment and ensured the integrity of CV data from reading

to transmission. Therefore, attackers could not easily launch falsified data attacks.

Thus far, this dissertation has investigated the cyber security problem from the at-

tacker’s perspective and defender’s perspective. Falsified trajectories presented in the

numerical examples are generated offline because they are only used to validate the pro-

posed defense solution. It is necessary to construct a testing platform that integrates the

cyber attack and cyber defense services with an operational CV-TSC system and to con-

duct attack and defense experiments in real time. These tasks will be explored in the next

chapter.
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CHAPTER 5

Testing Platform Development

5.1 Introduction

The previous chapters investigated the potential cyber attacks against CV-TSC systems

and proposed a defense strategy to protect these systems. Due to the complex nature of

real TSC systems and the sensitivity of cyber security research, it would be difficult and

unrealistic to implement the proposed attack and defense methods directly at real-world

intersections. The cyber security of CV-TSC systems represents a new problem, hence

the lack of available platforms (either real-world, simulation, or mixed). Therefore, a test-

ing platform is urgently needed to facilitate the evaluation of different attack and defense

models. This chapter leverages the transportation infrastructure in Mcity, University of

Michigan’s closed testing facility for connected and automated vehicles, to develop such

a testing platform. The design objective is to mimic the real traffic environment to the

greatest extent, while minimizing the resources required for testing. To achieve this goal,

DSRC communication devices in Mcity are utilized to transmit and receive real BSMs
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and SPaT messages. The traffic environment is modeled by a microscopic simulator VIS-

SIM, in which individual vehicle behaviors can be modeled in detail. The virtual traffic

environment and the DSRC communication devices are connected through an augmented

reality testing environment (Feng et al., 2018b). Experiments are conducted to com-

pare the system performance with and without attack and defense. I-SIG is the targeted

CV-TSC system for experiments. Based on the analysis in Chapter 3, falsified trajecto-

ries are generated to influence signal control decisions in attack experiments. In defense

experiments, the defense strategy proposed in Chapter 4 is adopted to identify falsified

trajectories and protect the CV-TSC system. Moreover, the testing platform is designed

generically so different attack, defense, and signal control models can be implemented

and evaluated.

The rest of this chapter is organized as follows. Section 5.2 introduces the architecture

of the testing platform. Section 5.3 details the experiment setup. Section 5.4 presents the

experiment results. Finally, Section 5.5 summarizes this chapter.

5.2 Architecture of the Testing Platform

The overall architecture of the cyber security testing platform is illustrated in Figure 5.1.

This testing platform is an extension of the augmented reality testing environment devel-

oped by Feng et al. (2018b). The testing platform consists of the following five parts:

Traffic Simulator, Mcity, Signal Control System, Attack Program, and Defense Program.
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Virtual traffic is generated in the Traffic Simulator. Correspondingly, BSMs and SPaT

messages are generated. These messages are forwarded to the infrastructure in Mcity and

broadcast by the infrastructure. All real CV communication takes place in Mcity using

DSRC technology. The Signal Control System uses received BSMs for traffic signal op-

timization and controls the traffic signal using NTCIP commands defined by the National

Transportation Communications for Intelligent Transportation Systems Protocol (NTCIP,

2020). The Attack Program generates falsified trajectories based on received BSMs and

SPaT messages. Falsified trajectories are broadcast in the form of BSMs. The Defense

Program is responsible for identifying falsified trajectories.
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Figure 5.1: Overall architecture of the testing platform

This testing platform uses standard DSRC technology for CV communication, thus

maximizing realisticity. Meanwhile, the Traffic Simulator greatly reduces the cost and

risk for conducting traffic experiments as there is no real vehicle involved in experiments.

The testing platform can be used to test different attack and defense methods, as well as

different signal control systems.
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5.2.1 Traffic Simulator

VISSIM (Fellendorf and Vortisch, 2010), a commercial software, is used for simulating

traffic. A typical 4-leg intersection is modeled (the high-speed intersection located at the

freeway segment in Mcity) in VISSIM, as shown in Figure 5.2. Each approach contains

one left-turn lane and one through lane. The right-turn movement is not modeled because

it is usually not assigned with a signal phase. Each lane is stretched to be 300 meters (the

communication range for DSRC). Virtual traffic is generated in this network. Vehicles

are generated at the boundary of each approach and move toward the intersection. During

the simulation, individual vehicle information such as location and speed is encoded into

BSMs every 0.1 second and sent out by DriverModel.DLL.

Figure 5.2: Illustration of the signalized intersection modeled in VISSIM
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5.2.2 Mcity

Mcity 1 is located on the University of Michigan North Campus in Ann Arbor, Michigan.

Mcity occupies 32 acres of land. It is a high-fidelity virtual city that is solely built for

testing connected and automated vehicles. It has eight signalized intersections, four of

which are equipped with Roadside Units (RSUs) in the downtown area. The RSUs are

CV communication devices on the infrastructure side. The communication range of the

RSUs covers the whole Mcity area.

The testing platform utilizes Mcity’s infrastructure for modeling the DSRC commu-

nication network. In Figure 5.1, Roadside Processor1 receives the BSMs from the Traffic

Simulator and forwards them to RSU1 via Ethernet. RSU1 plays the role of regular CVs

and broadcasts these simulated BSMs via DSRC radio. Meantime, the traffic signal in

VISSIM sends SPaT messages to Roadside Processor2, which forwards the messages to

RSU2. RSU2 plays the role of transportation infrastructure that connects to the Traffic

Control System. It broadcasts SPaT messages via DSRC. The same as in the real-world,

CVs (RSU1) can receive SPaT messages from the infrastructure (RSU2) and the infras-

tructure (RSU2) can receive BSMs from CVs (RSU1). RSU2 sends received BSMs (i.e.,

vehicle trajectories) to Roadside Processor2, which forwards the messages to the Signal

Control System. RSU3 plays the role of an attacker, which receives the same BSMs and

SPaT messages that other CVs receive, and forward them to the Attack Program. After

the Attack Program generates falsified trajectories, RSU3 broadcasts these trajectories

1More information on Mcity can be found at https://mcity.umich.edu/
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in the form of BSMs. Note that RSUs are used to replace OBUs in the design. This

is because RSUs have the exact technical specifications as the OBUs regarding DSRC

communication. The replacement does not bring any impact on the experiment results.

5.2.3 Signal Control System

I-SIG from MMITSS (University of Arizona et al., 2016) is used as the signal control

system in the testing platform. I-SIG includes three components: Trajectory Awareness,

Signal Optimization, and Traffic Control Interface. The Trajectory Awareness component

decodes and temporarily stores the received BSMs (trajectories). Important information

such as the requested phase and estimated time of arrival of each vehicle can be extracted

from these BSMs. The Signal Optimization component requests trajectory data from the

Trajectory Awareness component, computes optimal signal timing plan, and sends it to the

Traffic Control Interface component. The Traffic Control Interface component executes

the optimal signal timing plan in VISSIM through NTCIP commands.

5.2.4 Attack Program

The Attack Program generates a falsified trajectory for every signal cycle. In Chapter

4, falsified trajectories are generated offline. Different from that, in the Attack Program,

real-time falsified trajectories are generated and real-time attacks are launched. To do

this, the Attack Program needs to solve the falsified trajectory generation problem in real

time based on received BSMs. It is assumed that, by analyzing historical SPaT data,
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the attacker knows the time that the signal optimization is executed (i.e., TOI to). The

flowchart of the attack process is illustrated in Figure 5.3. Like regular vehicles, the initial

location of the falsified vehicle is at the boundary of an approach and the initial speed is

free-flow speed. Starting ∆t seconds before to, the attacker attempts to solve the falsified

trajectory generation problem (i.e., P2 introduced in Chapter 3.4) every 1 second. The

attacker predicts the trajectories of the leading CV and following CV by assuming they

keep current speed. If a feasible solution can be found, the attacker initializes the falsified

trajectory and starts broadcasting the falsified trajectory in the form of BSMs every 0.1

second. The falsified trajectory is updated by solving P2 every 1 second. In this way,

more recent trajectories of the leading and following CV can be utilized in solving the

falsified trajectory generation problem. When solving P2 for updating, the initial speed

and location in P2 are set to the current speed and location of the falsified vehicle. This

ensures that the falsified trajectory is consistent. If no feasible solution can be found, the

attacker gives up attacking during this cycle. The attacker stops generating the falsified

trajectory after to.
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Figure 5.3: Flowchart of the attack process
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5.2.5 Defense Program

Before the raw trajectories are utilized by the Signal Optimization component, the Tra-

jectory Awareness component sends the raw trajectories to the Defense Program. After

analysis, the Defense Program sends back labeled trajectories to the Trajectory Awareness

component. Only the trajectories labeled real will be utilized by the Signal Optimization

component. The flowchart of the defense process is illustrated in Figure 5.4. For each

signal phase, the defense program collects trajectories from the Trajectory Awareness

component. If there are enough observations (at least 3 trajectories), the defense strategy

proposed in Chapter 4 is applied. To reduce the computational load, the defense program

computes the similarity between each pair of trajectories based on the last 30 trajectory

data points. If there are not enough observations (less than 3 trajectories), the proposed

defense strategy is not applied. In this case, penetration rate determines the label of the

raw trajectories. When the penetration rate is 100%, the collected trajectories will be

labeled falsified and not used for signal optimization. I-SIG will allocate the minimum

green time for this phase. Because the traffic demand is low (less than three vehicles)

and the allocated minimum green time is sufficient for serving the traffic. When the pen-

etration rate is not 100%, however, the observed trajectories will be labeled true and used

for signal optimization. This ensures that the Signal Control System would assign enough

green time to serve the traffic of this phase. The drawback is that it also allows the falsified

trajectory to extend the green time of this phase.
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5.3 Experiment Setup

In the Traffic Simulator, the traffic demand for each movement is 350 vehicles per hour.

The free-flow speed is 60 km/h. In the Signal Control System, the minimum green time

is 5 seconds and maximum green time is 30 seconds for each phase. The yellow time is 2

seconds and all red time is 2 seconds. Phase sequence is fixed (left-turn phases are always

executed first). In other words, I-SIG only optimizes phase duration. Each experiment

lasts for 1 hour with additional 5 minutes of warm-up time.
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Three scenarios are considered. In scenario 1, the CV market penetration rate is set to

100% and ETA attacks are launched. In scenario 2, the CV market penetration rate is set

to 50% and ETA attacks are launched. In scenario 3, the CV market penetration rate is set

to 50% and phantom queue attacks are launched. For each scenario, three experiments

are conducted: normal operation, operation with attack, and operation with attack and

defense. It is also assumed that the attacker has limited resources. Consequently, for each

signal cycle, one falsified trajectory is generated at Westbound through movement. The

parameters for generating falsified trajectories are the same as in Chapter 4. In scenario

1 and 2, the goal of the ETA attack is set to 64 seconds (30 seconds maximum green

time for lead phase + 4 seconds transition time + 30 seconds maximum green time for

lag phase). In scenario 3, the goal of the phantom queue attack goal is set to 15 vehicles

(15 veh × 2 second/veh saturation flow headway = 30 second maximum green time). In

scenario 1 and scenario 2, the parameter ∆t is set to 17.5 seconds. In scenario 3, ∆t is

set to 21.5 seconds. These values ensure that the attacker has enough time to generate

falsified trajectories. The threshold ε in the hierarchical clustering is set to 8.8.

5.4 Experiment Results

Average vehicle delay is used as the performance index to evaluate the effectiveness of the

Attack Program and Defense Program. The experiment results are summarized in Table

5.1. The ETA attack and phantom queue attack are both effective and can downgrade
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system performance by introducing more delay. The ETA attack is particularly effective,

causing 23.0% more delay in scenario 1 and 17.6% in scenario 2. The ETA attack extends

lead and lag phases to the maximum. The green time is unnecessarily long for these

phases. This causes more delay because all the vehicles in other phases have to wait to

be served. The phantom queue attack only extends the attacked phase to the maximum.

Therefore, the phantom queue attack is less severe (8.7% delay increase). Experiments 3,

6, and 9 show that the proposed defense strategy can successfully safeguard the system

and reduce delay caused by cyber attacks. The delay increase is reduced to 3.8%, 3.3%,

and 4.3% respectively.

Table 5.1: Average vehicle delay for each experiment

Scenario PR Attack goal Experiment Description
Average 

delay [s/veh]

Delay 

increase

1 Normal operation 39.50 -

2 Attack w/o defense 48.58 23.0%

3 Attack w/ defense 41.01 3.8%

4 Normal operation 43.38 -

5 Attack w/o defense 51.03 17.6%

6 Attack w/ defense 44.80 3.3%

7 Normal operation 43.38 -

8 Attack w/o defense 47.16 8.7%

9 Attack w/ defense 45.26 4.3%

ETA = 64 s

ETA = 64 s

Queue = 15 veh

1

2

3

100%

50%

50%

To have a better understanding of the performance of the Attack Program and Defense

Program, more detailed results for experiments 3, 6, and 9 are presented in Table 5.2. In
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experiment 3, a total of 42 cycles are recorded and 22 attacks are launched. The attack

success rate is 52.4%. 21 falsified trajectories go through the defense component and

all of them are successfully identified (1 falsified trajectory is not tested by the Defense

Program because less than three trajectories are observed in that phase). The false alarm

rate is as low as 1.1%. In experiment 6 and 9, 32 and 30 attacks are launched respectively.

The attack success rate increases to 76.2% and 73.2%. This matches expectations because

there is more space for generating falsified trajectories in the time-space diagram. 30 and

21 falsified trajectories are tested by the Defense Program. The detection rate is 100% for

experiment 6 and 95.2% for experiment 9. The false alarm rate is 4.9% for experiment 6

and 3.7% for experiment 9. When the penetration rate is low, the Defense Program can

still identify most falsified trajectories and keep false alarm rate at a low level. The false

alarm rate increases because less normal trajectories are observed every signal cycle. The

slight delay increase in experiment 3, 6, and 9 is due to two reasons. First, some real tra-

jectories are incorrectly marked falsified, therefore they are not properly served by I-SIG.

Second, falsified trajectories are not identified when there are not enough observations.

As a result, these falsified trajectories influence signal control decisions.

Another finding from these experiments is that CV market penetration rate is crit-

ical to CV-based applications. Generally speaking, CV-based applications work better

with a higher penetration rate. This is evidenced by the average delay in experiment 1

(PR=100%) and the average delay in experiment 4 and 7 (PR=50%). What’s more, at-

tack success rate is relatively low when the penetration rate is high. This is because the
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Table 5.2: Attack and defense results for each experiment

Experiment Cycles
Attacks 

launched

Attack 

success rate

Attack traj. 

tested by 

defense

Detection 

rate

Regular traj 

tested by 

defense

False alarm 

rate

3 42 22 52.4% 21 100.0% 2486 1.1%

6 42 32 76.2% 30 100.0% 1086 4.9%

9 41 30 73.2% 21 95.2% 1071 3.7%

space for generating falsified trajectories shrinks. Finally, with a higher penetration rate,

more CV trajectories can be observed every signal cycle. This ensures that the proposed

defense strategy can be implemented.

5.5 Chapter Summary

In this chapter, a cyber security testing platform was developed for CV-TSC systems by

leveraging the Mcity transportation infrastructure. This testing platform was then used

to conduct attack and defense experiments. Based on the analysis in Chapter 3, falsified

trajectories were generated in real time to attack I-SIG. The defense strategy proposed in

Chapter 4 was applied to filter out falsified trajectories and protect I-SIG. Three scenar-

ios were considered: an ETA attack under a 100% CV penetration rate, an ETA attack

under a 50% CV penetration rate, and a phantom queue attack under a 50% CV penetra-

tion rate. Findings from a series of experiments showed that cyber attacks against I-SIG

could increase average delay by 23.0%, 17.6%, and 8.7% under the three attack scenar-
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ios, respectively. The proposed defense strategy could successfully identify and filter out

most falsified trajectories. After applying the defense method, the delay increase was re-

duced to only 3.8%, 3.3%, and 4.3%, respectively. The high detection rate ensured that

the majority of the falsified trajectories were excluded from signal optimization. The low

false alarm rate was tolerable because it was equivalent to reducing the CV penetration

rate by a small percent. These results indicated that the proposed defense strategy could

effectively safeguard the CV-TSC system and mitigate potential adverse effects of cyber

attacks. The detection rate was high and false alarm rate was low
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CHAPTER 6

Conclusions and Future Research

6.1 Research Summary

With the surging development of CVs, vehicle trajectory data are becoming increasingly

available. These trajectory data can be used for traffic signal optimization by traffic signal

control systems, otherwise known as CV-TSC systems. However, most CV-TSC systems

are designed without considering cyber security issues. The connectivity between ve-

hicles and infrastructure (i.e., V2I communications) means that malicious attackers can

potentially send falsified data to CV-TSC systems and influence signal control decisions.

Such falsified data attacks can result in traffic congestion and have substantial negative

effects on intersection operations. This dissertation aimed to systematically understand

cyber security problems in CV-TSC systems under falsified data attacks and devise a

countermeasure to safeguard these systems. The objectives were accomplished through

four studies.

Empirical Study
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The empirical study provided insight into TSC system vulnerability and highlighted

the need for related cyber security research. Two TSC systems were considered in the

study: a conventional actuated TSC system and a CV-TSC system whose control logic

was adapted from I-SIG. For the former TSC system, it was assumed that the attacker

compromised wireless vehicle detectors to generate fake vehicle calls or cancel real ve-

hicle calls. For the latter TSC system, it was assumed that the attacker could change the

number of connected vehicle messages within the RSU’s communication range. The at-

tacker’s objective was to maximize total system delay under constraints related to budget

and attack intensity. To quantify the consequences of these attacks, the cell transmission

model was applied to model traffic flow. Numerical examples revealed that both TSC

systems were vulnerable to falsified data attacks.

Cyber Attack

The second study investigated how falsified data attacks may be perpetrated. Most

studies concerning cyber security problems have considered a white-box attack scenario,

in which the attacker is assumed to have full access to the TSC system and/or the con-

trol model (e.g., the empirical study in this dissertation). However, this is a strong and

unrealistic assumption. The second study in this dissertation therefore focused on a more

realistic but challenging black-box attack scenario, in which the control model was un-

known to the attacker. This black-box attack consisted of two steps. In the first step, the

attacker learned the signal control model using a surrogate model and identified critical

traffic features from a list of pre-selected features. The learned surrogate model was then
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used to predict signal timing plans based on observed real-time critical traffic features. In

the second step, the attacker generated falsified trajectories to alter the values of critical

traffic features, therefore influencing signal control decisions. The attacker’s objective in

this case was to maximize the difference between the predicted signal timing plan and the

signal timing plan influenced by falsified trajectories. It was assumed that the maximum-

difference plan would increase the system delay. The case study indicates that black-box

attacks could still bring significant damage to the targeted CV-TSC system even when the

control model was unknown to the attacker.

Defense Strategy

Defense is an important aspect of cyber security problems but has often been ignored

by the literature. To protect CV-TSC systems from falsified data attacks, the third study

proposed a data-driven method to identify falsified trajectories. Falsified trajectories are

behaviorally distinct from normal trajectories because they must accomplish a certain at-

tack goal. Thus, the problem of identifying falsified trajectories was considered an abnor-

mal trajectory identification problem in this study. Inspired by a word embedding model,

the study developed a trajectory embedding model that created vector representations of

trajectory data points. Vector representations enabled computation of the similarity be-

tween different trajectories at the intersection level (i.e., a trajectory trace that traveled

through an intersection). Hierarchical clustering was applied to identify abnormal tra-

jectories and then group similar trajectories. Abnormal trajectories could ultimately be

identified based on a predefined threshold. Numerical examples showed that the proposed
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method could successfully identify most falsified trajectories under different penetration

rates and with different attack goals while maintaining a reasonably low false alarm rate.

Testing Platform

In the final study, a cyber security testing platform for CV-TSC systems was de-

veloped. This testing platform was built upon a virtual traffic simulator (VISSIM) and

real-world transportation infrastructure in Mcity. The testing platform could be used to

evaluate the impact of cyber attacks and the effectiveness of defense strategies. I-SIG

was chosen as the targeted CV-TSC system for experiments. Falsified trajectories were

generated in real time to influence signal control decisions, and the proposed defense

strategy was applied each time I-SIG optimized signal timing plans. Several experiments

were performed under different CV penetration rates and different attack goals. Results

indicated that falsified data attacks could significantly increase average delay and that

the proposed defense strategy could successfully identify and filter out the majority of

falsified trajectories, thereby safeguarding the CV-TSC system.

6.2 Future Research

The revelations from this dissertation unveil several avenues for future research.

Real-World Implementation

Econolite has developed the hardware called Connected Vehicle CoProcessor (CVCP)

module. The CVCP module provides an interface between the signal controller and
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DSRC devices. It enables the implementation of third-party-developed CV applications.

The proposed defense strategy can be potentially deployed in the Econolite CVCP module

to identify falsified trajectories in real-time.

Attack Joint Control Systems

Recent studies (Yu et al., 2018; Feng et al., 2018a) proposed the joint optimization of

traffic signal operation and vehicle trajectory planning within a unified framework. This

unified framework extends traffic control from one dimension (either spatial or temporal)

to two dimensions (spatial and temporal) and achieves a better overall system perfor-

mance. This dissertation only focused on the temporal dimension of traffic control (i.e.,

traffic signals). It would be worthwhile to investigate whether falsified data attacks can

influence the behavior of connected and automated vehicles (i.e., the spatial dimension)

and whether falsified trajectories can influence the unified control system (i.e., the spatial

and temporal dimensions).

Safety

This dissertation mainly considered the mobility aspect of CV-TSC systems. Future

studies could investigate safety, another important factor in these systems. For example,

cyber attacks have been shown to bring great instability to Cooperative Adaptive Cruise

Control platooning (Amoozadeh et al., 2015; Wang et al., 2020) and may cause collisions.

Yet it is unclear whether falsified trajectories increase safety risks in CV-TSC systems.

This phenomenon warrants additional research.
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