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ABSTRACT

In the big data era, regression models with a large number of covariates have

emerged as a common tool to tackle problems arising from business, engineering,

genomics, neuroimaging, and epidemiological studies. Drawing statistical inference

for these models has sparked much interest over the past few years. Albeit successful

for high dimensional linear models, high dimensional inference approaches beyond

linear regression are limited and present unsatisfactory performance, theoretically or

numerically. In this dissertation, we focus on de-biased lasso, which has been one of

the most popular methods for high dimensional inferences. We propose procedures

that provide better bias correction and confidence interval coverage, and draw reliable

inference for regression parameters in the “large n, diverging p” scenario. In general,

we caution against applying de-biased lasso and its variants to models beyond linear

regression when parameters outnumber the sample size.

Following an overview outlined in Chapter I, we focus on the generalized linear

models (GLMs) in Chapter II. Extensive numerical simulations indicate that de-biased

lasso may not adequately remove biases for high dimensional GLMs, and thus yield

unreliable confidence intervals. We have further found that several key assumptions,

especially the sparsity condition on the inverse Hessian matrix, may not hold for

GLMs. In a “large n, diverging p” scenario, we consider an alternative de-biased lasso

approach that inverts the Hessian matrix of the concerned model without requiring

matrix sparsity, and establish the asymptotic distributions of linear combinations of

the estimates. Simulations evidence that our proposed de-biased estimator performs

xi



better in bias correction and confidence interval coverage for a wide range of p/n

ratios. We apply our method to the Boston Lung Cancer Study, an epidemiology

study on the mechanisms underlying lung cancer, and investigate the joint effects of

genetic variants on overall lung cancer risks.

In Chapter III, we draw inference based on the Cox proportional hazards model

with a diverging number of covariates. As the existing methods assume sparsity on

the inverse of the Fisher information matrix, which may not hold for Cox models,

they typically generate biased estimates and under-covered confidence intervals. We

modify de-biased lasso by using quadratic programming to approximate the inverse

of the information matrix, without posing matrix sparsity assumptions. We establish

the asymptotic theory for the estimated regression coefficients when the covariate

dimension diverges with the sample size. With extensive simulations, our proposed

method provides consistent estimates and confidence intervals with improved coverage

probabilities. We apply the proposed method to assess the effects of genetic markers

on overall survival of non-small cell lung cancer patients in the aforementioned Boston

Lung Cancer Study.

Stratified Cox proportional hazards model, with extensive applications in large

scale cohort studies, are useful when some covariates violate the proportional hazards

assumption or data are stratified based on factors, such as transplant centers. In

Chapter IV, we extend the de-biased lasso approach proposed in Chapter III to draw

inference for the stratified Cox model with potentially many covariates. We provide

asymptotic results useful for inference on linear combinations of the regression pa-

rameters, and demonstrate its utility via simulation studies. We apply the method to

analyze the national kidney transplantation data stratified by transplant center, and

assess the effects of many factors on graft survival.

xii



CHAPTER I

Introduction

With the advent of big data era, it becomes increasingly common that a large

number of covariates are collected to study important and complex scientific problems

arising from areas such as engineering, genomics, neuroimaging, and other biomedical

studies. For example, in genome-wide association studies, the traditional method is

typically to screen marginal associations between single nucleotide polymorphisms

(SNPs) and complex traits. However, the marginal approach does not take into

account the complicated structural relationships among SNPs. Jointly modeling the

effects of SNPs within target genes can pinpoint functionally impactful loci in the cod-

ing regions (Taylor et al., 2001; Repapi et al., 2010), better understand the molecular

mechanisms underlying complex diseases (Guan and Stephens , 2011), reduce false

positives around true causal SNPs and improve prediction accuracy (He and Lin,

2010). In the Boston Lung Cancer Study (BLCS), which is a large cancer epidemiol-

ogy cohort investigating molecular mechanisms underlying lung cancer, an analytical

goal is to study the joint effects of genetic variants residing in multiple disease related

pathway genes on lung cancer risk and patient survival. The results can potentially

aid personalized medicine as individualized therapeutic interventions are only possi-

ble with proper characterization of relevant SNPs in pharmacogenomics (Evans and

Relling , 2004).
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Statistical methods that can tackle the challenging high-dimensionality of covari-

ates have been increasingly popular in methodological research and real world ap-

plications over the past two decades. Variable selection is one of the most popular

topics, which usually assumes that there is only a small number of important variables

and concerns selecting the most relevant subset of variables to facilitate interpretation

and prediction. Some well acknowledged regularization methods for variable selection

include the lasso (Tibshirani , 1996, 1997), the elastic net (Zou and Hastie, 2005), the

adaptive lasso (Zou, 2006; Zhang and Lu, 2007), the Dantzig selector (Candes and

Tao, 2007; Li et al., 2014) and SCAD (Fan and Li , 2001, 2002), among many others.

However, scientific discoveries demand solid statistical evidence based on infer-

ence, e.g. confidence interval estimation, hypothesis testing and p-values. In the

presence of high-dimensional covariates, conventional methods, such as ordinary least

squares, maximum likelihood estimation and maximum partial likelihood estimation,

will generate biased parameter estimates and confidence intervals with poor coverage,

or even no longer be feasible. Inferential methods suitable for drawing inference on

high-dimensional regression models are needed.

Some recent efforts in this direction have received much attention. One stream

is conditional inference based on the selected models (Lee et al., 2016), which often

neglects the uncertainty in model selection. Inference for the selected variables based

on the asymptotic results in Fan and Li (2001), Zou (2006) and Zhang and Lu (2007)

shares a similar flavor, and thus is super-efficient. Another main stream concerns de-

biasing the lasso estimator, providing inference for every model parameter. Most

existing literature on de-biasing the lasso has been developed under linear regression

models (van de Geer et al., 2014; Zhang and Zhang , 2014; Javanmard and Montanari ,

2014), as well as some extensions, for example, to simultaneous inference (Zhang and

Cheng , 2017; Dezeure et al., 2017). Regression models for other types of outcomes,

such as binary, count, ordinal and time-to-event data, are very commonly used in

2



real data analysis. Among the limited literature beyond linear regression (see, for

example, van de Geer et al. 2014; Ning and Liu 2017; Kong et al. 2018; Yu et al.

2018; Fang et al. 2017), we have found that there is severe insufficient bias correction

from the lasso estimator, especially for large signals, and the corresponding confidence

intervals have poor coverage probabilities. Moreover, the theoretical developments for

the “large p, small n” case, where the number of covariates exceeds the sample size,

are heavily dependent on assumptions related to the sparsity of the inverse Fisher

information matrix, which lack practical interpretation and can hardly hold in general

settings beyond linear regression.

In this dissertation, we focus on the challenging high-dimensional models beyond

linear regression. We scrutinize the empirical and theoretical limitations of the exist-

ing inferential methods beyond linear regression with high-dimensionality, and present

methodologies, theories and real data applications based on the idea of de-biasing the

lasso with an emphasis on sufficient bias correction and reliable and honest confidence

regions in the “large n, diverging p” scenario, where the sample size is still larger than

the number of covariates, while the latter is allowed to increase with the sample size.

In particular, we consider in Chapter II the generalized linear models (GLMs) that

are commonly used to model binary, count and ordinal outcomes, and the Cox pro-

portional hazards model for right censored time-to-event outcomes in Chapter III.

In the analysis of large survival studies, stratification also occurs often due, for ex-

ample, to violation of proportional hazard assumption, stratum effects not being of

interest or computational burden. In Chapter IV, we propose an inferential method

for stratified Cox proportional hazards model.

3



CHAPTER II

A Revisit to De-biased Lasso for Generalized

Linear Models

2.1 Introduction

It is of great interest, though with enormous challenges, to draw inference when

the number of covariates grows with the sample size. When the number of covari-

ates exceeds the sample size, the well known “large p, small n” scenario, maximum

likelihood estimation (MLE) is no longer feasible and regularized variable selection

methods have been developed over the decades. These include the lasso method

(Tibshirani , 1996), the elastic net method (Zou and Hastie, 2005), and the Dantzig

selector (Candes and Tao, 2007), among many others. However, these regularized

methods yield biased estimates, and thus cannot be directly used for drawing statisti-

cal inference, in particular, constructing confidence intervals with a nominal coverage.

Even when the number of covariates is smaller than the sample size but can increase

with n, conventional methods may still not be trustworthy. Sur and Candès (2019)

showed that MLE for high-dimensional logistic regression models can overestimate

the magnitudes of non-zero effects while underestimating the variances of the esti-

mates when the number of covariates is smaller than, but of the same order as, the

sample size. We encountered the same difficulty when applying MLE to the analysis

4



of the Boston Lung Cancer Study (BLCS) data.

Advances to address these challenges have been made recently. One stream of

methods is post-selection inference conditional on selected models (Lee et al., 2016),

which ignores the uncertainty associated with model selection. Other super-efficient

procedures, such as SCAD (Fan and Li , 2001) and adaptive lasso (Zou, 2006), share

the flavor of post-selection inference. Another school of methods is to draw infer-

ence by de-biasing the lasso estimator, termed de-biased lasso or de-sparsified lasso,

which relieves the restrictions of post-selection inference and has been shown to pos-

sess nice theoretical and numerical properties in linear regression models (van de

Geer et al. 2014; Zhang and Zhang 2014; Javanmard and Montanari 2014). When

coefficients have group structures, various extensions of de-biased lasso have been

proposed (Zhang and Cheng , 2017; Dezeure et al., 2017; Mitra and Zhang , 2016; Cai

et al., 2019).

De-biased lasso has seen applications beyond linear models. For example, van de

Geer et al. (2014) considered the de-biased lasso approach in generalized linear mod-

els (GLMs) and developed the asymptotic normality theory for each component of

the coefficient estimates; Zhang and Cheng (2017) proposed a multiplier bootstrap

procedure to draw inference on a group of coefficients in GLMs, yet without sufficient

numerical evidence for the performance; Eftekhari et al. (2019) considered a de-biased

lasso estimator for a low-dimensional component in a generalized single-index model

with an unknown link function and restricted to an elliptically symmetric design.

However, in the GLM setting, our extensive simulations reveal that biases cannot

be adequately removed by the existing de-biased lasso methods. Even after de-biasing,

the biases are still too large relative to the model based standard errors, and the

resulting confidence intervals have much lower coverage probabilities than the nominal

level. Scrutiny of the existing theories points to a key assumption: the inverse of the

Fisher information matrix is sparse (see van de Geer et al. 2014). For linear regression,
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this assumption amounts to that the precision matrix for the covariates is sparse. It,

however, is unlikely to hold in GLM settings, even when the precision matrix for the

covariates is indeed sparse.

This begs a critical question: when can we obtain reliable inference results using

de-biased lasso? Deviated from the aforementioned works which mainly focused on

hypothesis testing, we are concerned with making reliable inference, such as elimi-

nating estimation bias and obtaining good confidence interval coverage. We consider

two scenarios: the “large p, small n” case where p > n, and the “large n, diverging

p” case where p increases to infinity with n but p/n → 0. In the first scenario, we

discuss a key sparsity assumption in GLMs, which is likely to fail and compromise the

validity of de-biased lasso. In the second scenario, we consider a natural alternative

for further bias correction, by directly inverting the Hessian matrix. We study its the-

oretical properties and use simulations to demonstrate its advantageous performance

to the competitors.

The remainder of the paper is organized as follows. Section 2.2 briefly reviews

de-biased lasso in GLMs. In Section 2.3, we exemplify the performance of the original

de-biased lasso estimator using simulated examples and elaborate on the theoretical

limitations. In Section 2.4, under the “large n, diverging p” regime, we introduce a

refined de-biased approach as an alternative to the node-wise lasso estimator for the

inverse of the information matrix (van de Geer et al., 2014), and establish asymptotic

distributions for any linear combinations of the refined de-biased estimates. We pro-

vide simulation results and analyze the Boston Lung Cancer Study that investigates

the joint associations of SNPs in nine candidate genes with lung cancer. We conclude

with the summarized findings in Section 2.5. Detailed technical proofs are presented

in Section 2.6
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2.2 Background

2.2.1 Notation

We define commonly used notation. Denote by λmax and λmin the largest and

the smallest eigenvalue of a symmetric matrix. For a real matrix A = (Aij), let

‖A‖ = [λmax(ATA)]1/2 be the spectral norm. The induced matrix `1 norm is ‖A‖1 =

maxj
∑

i |Aij|, and when A is symmetric, ‖A‖1 = maxi
∑

j |Aij|. The entrywise `∞

norm is ‖A‖∞ = maxi,j |Aij|. For a vector a, ‖a‖q denotes the `q norm, q ≥ 1. We

write xn � yn if xn = O(yn) and yn = O(xn).

2.2.2 Generalized linear models

Denote by yi the response variable and xi = (1, x̃Ti )T ∈ Rp+1 for i = 1, · · · , n,

where the first element in xi corresponds to the intercept, and the rest elements x̃i

represent p covariates. Let X be an n × (p + 1) covariate matrix with xTi being the

ith row. We assume that {(yi,xi)}ni=1 are independently and identically distributed

(i.i.d.) copies of (y,x). Define the negative log-likelihood function (up to a constant

irrelevant to the unknown parameters) when the conditional density of y given x

belongs to the linear exponential family:

ρξ(y,x) ≡ ρ(y,xTξ) = −yxTξ + b(xTξ) (2.1)

where b(·) is a known twice continuously differentiable function, ξ = (β0,β
T )T ∈ Rp+1

denotes the vector of regression coefficients and β0 ∈ R is the intercept parameter.

The unknown true coefficient vector is ξ0 = (β0
0 ,β

0T )T .

2.2.3 De-biased lasso

Consider the loss function ρξ(y,x) ≡ ρ(y,xTξ) given in (2.1). Denote its first and

second order derivatives with respect to ξ by ρ̇ξ and ρ̈ξ, respectively. For any function
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g(y,x), let Png =
1

n

n∑
i=1

g(yi,xi). Then for any ξ ∈ Rp+1, we denote the empirical loss

function based on the random sample {(yi,xi)}ni=1 by Pnρξ ≡
1

n

n∑
i=1

ρξ(yi,xi), and its

first and second order derivatives with respect to ξ by Pnρ̇ξ =
1

n

n∑
i=1

∂ρξ(yi,xi)

∂ξ
and

Σ̂ξ ≡ Pnρ̈ξ =
1

n

n∑
i=1

∂2ρξ(yi,xi)

∂ξ∂ξT
. Two important population-level matrices are the

expectation of the Hessian matrix, Σξ ≡ EΣ̂ξ = E(Pnρ̈ξ), and its inverse Θξ ≡ Σ−1
ξ .

With λ > 0, the lasso estimator for ξ0 is defined as

ξ̂ = arg min
ξ=(β0,βT )T∈Rp+1

{Pnρξ + λ‖β‖1} . (2.2)

To avoid ambiguity, we do not penalize the intercept β0 in (2.2). The theoretical

results such as prediction and `1 error bounds, however, are the same as those in van de

Geer (2008) and van de Geer et al. (2014) where all the coefficients are penalized

(Bühlmann and van de Geer , 2011). van de Geer et al. (2014) applied the node-

wise lasso method to obtain an estimator Θ̂ for Θξ0 , and proposed a de-biased lasso

estimator for ξ0
j with:

b̂j ≡ ξ̂j − Θ̂jPnρ̇ξ̂,

where σ̂j ≡
√

Θ̂jΣ̂ξ̂Θ̂
T
j /n is the model based standard error for b̂j. Here, Θ̂j is the

jth row of Θ̂.

2.3 The “large p, small n” scenario

Even though the asymptotic theory has been developed for the “large p, small

n” scenario (van de Geer et al., 2014), we examine why de-biased lasso performs

unsatisfactorily in GLMs.
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2.3.1 A simulation study

We present a simulation study that features a logistic regression model with n =

300 observations and p = 500 covariates. For simplicity, covariates are simulated

from Np(0,Σx), where Σx,ij = 0.7|i−j|, and truncated at ±6. In the true coefficient

vector β0, the intercept β0
0 = 0 and β0

1 varies from 0 to 1.5 with 40 equally spaced

increments. To examine the impacts of different true model sizes, we arbitrarily choose

2, 4 or 10 additional coefficients from the rest in β0, and fix them at 1 throughout

the simulation. At each value of β0
1 , a total of 500 simulated datasets are generated.

We focus on the de-biased estimates and inference for β0
1 .

Figure 2.1, with the true model size increasing from the top to the bottom, shows

that the de-biased lasso estimate for β0
1 has a bias almost linearly increasing with the

true size of β0
1 . This undermines the credibility of the consequent confidence intervals.

Meanwhile, the model-based variance does not approximate the true variance well,

overestimating the variance for smaller signals and underestimating for larger ones in

the two smaller models, as shown by the top two rows in Figure 2.1. This partially

explains the over- and under-coverage for smaller and larger signals, respectively.

Due to penalized estimation in Θ̂, the variance of the de-biased lasso estimator is

even smaller than the “Oracle” maximum likelihood estimator obtained as if the true

model were known; see the bottom two rows in Figure 2.1. The empirical coverage

probability decreases to about 50% as the signal β0
1 goes to 1.5, and when the true

model size reaches 5; see the middle row in Figure 2.1. The bias correction is sen-

sitive to the true model size, which becomes worse for larger true models. We have

also conducted simulations by changing the covariance structure of covariates to be

independent or compound symmetry with correlation coefficient 0.7 and variance 1,

and have obtained similar results.
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Figure 2.1: Simulation results of logistic regression with sample size n = 300 and p =
500 covariates. Covariates are first generated from multivariate Gaussian distribution
with mean zero, AR(1) covariance structure and correlation 0.7, and truncated at ±6.
Each row presents estimation bias, empirical coverage probability and standard error
(both model-based and empirical) of the estimated β0

1 , with 2, 4 and 10 additional
signals fixed at 1 from the top to the bottom, respectively. “ORIG-DS” and “Oracle”
stand for the original de-biased lasso estimator and the oracle estimator as if the true
model were known, respectively.

2.3.2 Reflections on the validity of theoretical assumptions

van de Geer et al. (2014) established the asymptotic properties of the de-biased

lasso estimator in GLMs under certain regularity conditions (see Section 3 of van de

Geer et al. 2014), which are imposed to regularize the behavior of the lasso estimator

ξ̂ and the estimated matrix Θ̂. van de Geer et al. (2014) employed the node-wise

lasso estimator for Θξ0 , which was originally proposed by Meinshausen and Bühlmann

(2006) for covariance selection in high-dimensional graphs.

We now revisit the de-biased lasso estimator and its decomposition. The first
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order Taylor expansion of Pnρ̇ξ0 at ξ̂ gives

Pnρ̇ξ0 = Pnρ̇ξ̂ + Pnρ̈ξ̂(ξ
0 − ξ̂) + ∆, (2.3)

where ∆ is a (p+ 1)-dimensional vector of remainder terms with its jth element

∆j =
1

n

n∑
i=1

(
ρ̈(yi, a

∗
j)− ρ̈(yi,x

T
i ξ̂)

)
xijx

T
i (ξ0 − ξ̂), (2.4)

in which ρ̈(y, a) ≡ ∂2ρ(y, a)

∂a2
, and a∗j lies between xTi ξ̂ and xTi ξ

0. It follows that ∆ = 0

in linear regression models, but generally non-zero in GLMs. Multiplying both sides

of (2.3) by Θ̂j and re-organizing the terms, we obtain the following equality for the

jth component

 ξ̂j +

Ij︷ ︸︸ ︷(
−Θ̂jPnρ̇ξ̂

)
+

IIj︷ ︸︸ ︷(
−Θ̂j∆

)
+

IIIj︷ ︸︸ ︷(
Θ̂jPnρ̈ξ̂ − e

T
j

)(
ξ̂ − ξ0

) − ξ0
j = −Θ̂jPnρ̇ξ0 ,

(2.5)

where ej is a (p+1)-dimensional vector with the jth element being 1 and 0 elsewhere.

We define three terms

Ij = −Θ̂jPnρ̇ξ̂, IIj = −Θ̂j∆, and IIIj =
(
Θ̂jPnρ̈ξ̂ − e

T
j

)(
ξ̂ − ξ0

)
.

They are crucial in studying the bias behavior of the de-biased lasso estimator that

can be alternatively expressed as b̂j = ξ̂j + Ij. According to (2.5), as long as

√
n IIj/σ̂j = oP (1),

√
n IIIj/σ̂j = oP (1), and

√
n Θ̂jPnρ̇ξ0/σ̂j is asymptotically

normal, the asymptotic normality of
√
n
(
b̂j − ξ0

j

)
/σ̂j follows directly.

The de-biased lasso approach requires an appropriate inverse matrix estimator

withO(p2) unknown parameters. In the “large p, small n” scenario, where the number

of covariates can be as large as o(exp(na)) for some a > 0, the (p+1)× (p+1) inverse
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information matrix is not estimable without further assumptions on the structure of

Θξ0 . This inevitably needs regularization, and `1-type regularization is often adopted

due to its theoretical readiness. An important assumption on Θξ0 in van de Geer et al.

(2014) is the `0 sparsity, i.e. the number of non-zero elements of each row in Θξ0 is

small. This assumption is vital for the consistency of Θ̂j to Θξ0,j and consequently

the model-based variance, and impacts the negligibility of term IIIj in (2.5). In

particular, the third bias term in (2.5) IIIj is non-negligible if the convergence rate

of Θ̂j to Θξ0,j, which depends on the `0 sparsity of the row vector Θξ0,j using the

node-wise lasso estimation, is not fast enough.

However, these sparsity assumptions have not been clarified in the existing litera-

ture, except for linear regression models. In a linear regression model, Θξ0 is the preci-

sion matrix for covariates which is free of ξ0, and for multivariate Gaussian covariates,

a zero element of Θξ0 implies conditional independence between corresponding covari-

ates. In contrast, the row sparsity assumption on Θξ0 does not have a clear interpreta-

tion in GLMs, and may not be valid as it depends on the unknown ξ0. In the informa-

tion matrix Σξ0 , its (j, k)-th element is E
[
xijxikρ̈(yi,x

T
i ξ

0)
]

= E
[
xijxikb̈(x

T
i ξ

0)
]
. In

the most extreme case where all covariates are independent with mean zero, Σξ0,jk = 0

for j 6= k, j = 2, · · · , p + 1, k ∈ {k : 2 ≤ k ≤ p + 1, ξ0
k = 0}, and then Θξ0 is sparse

if the true model {j : 1 ≤ j ≤ p, β0
j 6= 0} is small. With covariates generally cor-

related, it is unconceivable that most off-diagonal elements in Θξ0 are zero, because

b̈(xTi ξ
0) = b̈(β0

0 + x̃Ti β
0) also depends on the covariates x̃i in a GLM, even when

the precision matrix for x̃i is sparse per se. This makes the sparsity assumption

for Θξ0 obscure in GLMs. To see this, consider the Poisson regression, which has a

closed-form expression for Θξ0 . Assume the covariates x̃i ∼ Np(0,Σx) and the mean

response conditional on x̃i is µi = exp{β0
0 + x̃Ti β

0} under the canonical link. Then,
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we have

Σξ0 = exp

{
β0

0 +
1

2
β0TΣxβ

0

} 1 β0TΣx

Σxβ
0 Σx + Σxβ

0β0TΣx


and

Θξ0 = exp

{
−β0

0 −
1

2
β0TΣxβ

0

} 1

c
−1

c
aTA−1

−1

c
A−1a A−1 +

1

c
A−1aaTA−1

 ,

where A = Σx + Σxβ
0β0TΣx, a = Σxβ

0 and c = 1 − β0T (Σ−1
x + β0β0T )−1β0.

In an over-simplified case where covariates are independent (Σx = Ip) and β0 is

sparse, A−1+
1

c
A−1aaTA−1 can be a sparse matrix. However, with often complicated

correlation structures between covariates, signal positions and strengths in β0, it is

difficult to guarantee that A−1 +
1

c
A−1aaTA−1 is sparse.

To summarize, we believe that the sparsity assumption imposed on Θξ0 plays

an extremely important role in obtaining the desirable asymptotic properties and

finite sample performance of de-biased lasso in GLMs. However, such an assumption

is hardly justifiable in a GLM setting. As evidenced by our simulations, the gap

between theory and practice likely explains the problematic performance of de-biased

lasso in the “large p, small n” scenario. Also note that both bias terms IIj and IIIj

are not even computable and cannot be recovered, because they involve the unknown

ξ0. All point to that de-biased lasso generally does not work well in GLMs in the

“large p, small n” scenario.

2.4 The “large n, diverging p” scenario

We next study de-biased lasso in GLMs when p < n but p diverges to infinity with

n by eliminating more biases, where, under certain conditions, the Hessian matrix is
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invertible with probability going to one. Therefore, directly inverting the Hessian

matrix serves as a natural alternative to the node-wise lasso for Θ̂. In the following,

we study the properties of this alternative estimator. Denote Θ̃ = Σ̂−1

ξ̂
to distinguish

it from the node-wise lasso estimator Θ̂. Similarly, Θ̃j represents the jth row of Θ̃.

Similar to (2.5), we have the following equality using Θ̃:

[
ξ̂ +

(
−Θ̃Pnρ̇ξ̂

)
+
(
−Θ̃∆

)
+
(
Θ̃Pnρ̈ξ̂ − I

)(
ξ̂ − ξ0

)]
− ξ0 = −Θ̃Pnρ̇ξ0 . (2.6)

With Θ̃ = Σ̂−1

ξ̂
, the new term IIIj in (2.6) equals 0 for all j, which is no longer a

source of bias compared to the original de-biased lasso. Then (2.6) becomes

[
ξ̂ +

(
−Θ̃Pnρ̇ξ̂

)
+
(
−Θ̃∆

)]
− ξ0 = −Θ̃Pnρ̇ξ0 . (2.7)

The new de-biased lasso estimator based on Θ̃ is

b̃ ≡ ξ̂ − Θ̃Pnρ̇ξ̂,

which is designed to further correct biases compared to the original de-biased esti-

mator. We will show that any linear combinations of b̃, including each coefficient

estimate as a special case, are asymptotically normally distributed.

2.4.1 Theoretical results

Without loss of generality, we assume that each covariate has been standardized

to have mean zero and variance 1. Let s0 denote the number of non-zero elements in

ξ0. Let Xξ = WξX be the weighted design matrix, where Wξ is a diagonal matrix

with elements ωi(ξ) =
√
ρ̈(yi, xTi ξ), i = 1, · · · , n. Recall that for any ξ ∈ Rp+1,

Σ̂ξ = XT
ξXξ/n and Σξ = E(Σ̂ξ). The ψ2-norms (see Vershynin 2010) introduced

below are useful for characterizing the convergence rate of Σ̂−1

ξ̂
. For a random variable
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Z, its ψ2-norm is defined as

‖Z‖ψ2 = sup
r≥1

r−1/2(E|Z|r)1/r.

We call Z a sub-Gaussian random variable if ‖Z‖ψ2 ≤M <∞ for a constant M > 0.

For a random vector Z, its ψ2-norm is defined as

‖Z‖ψ2 = sup
‖a‖2=1

‖〈Z,a〉‖ψ2 .

A random vector Z ∈ Rp+1 is called sub-Gaussian if the inner product 〈Z,a〉 is

sub-Gaussian for all a ∈ Rp+1. Let Lp = ||Σ−
1
2

ξ0 x1ω1(ξ0)||ψ2 , which characterizes

the probabilistic tail behavior of the weighted covariates. We make the following

assumptions.

(C1) The elements in X are bounded, i.e. there exists a constant K > 0 such that

‖X‖∞ ≤ K.

(C2) Σξ0 is positive definite and its eigenvalues are bounded and bounded away

from 0, i.e. there exist two absolute constants cmin and cmax such that 0 <

cmin ≤ λmin(Σξ0) ≤ λmax(Σξ0) ≤ cmax <∞.

(C3) The derivatives ρ̇(y, a) ≡ ∂

∂a
ρ(y, a) and ρ̈(y, a) =

∂2

∂a2
ρ(y, a) exist for all

(y, a). For some δ-neighborhood (δ > 0), ρ̈(y, a) is Lipschitz such that for some

absolute constant cLip > 0,

max
a0∈{xT

i ξ
0}

sup
|a−a0|∨|â−a0|≤δ

sup
y∈Y

|ρ̈(y, a)− ρ̈(y, â)|
|a− â|

≤ cLip.

The derivatives are bounded in the sense that there exist two constantsK1, K2 >
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0 such that

max
a0∈{xT

i ξ
0}

sup
y∈Y
|ρ̇(y, a0)| ≤ K1,

max
a0∈{xT

i ξ
0}

sup
|a−a0|≤δ

sup
y∈Y
|ρ̈(y, a)| ≤ K2.

(C4) ‖Xξ0‖∞ is bounded.

(C5) The matrix E(XTX/n) is positive definite and its eigenvalues are bounded

and bounded away from 0.

It is common to assume bounded covariates as in (C1) and bounded eigenvalues

of the information matrix as in (C2) in high-dimensional inference literature (van de

Geer et al., 2014; Ning and Liu, 2017). x1, · · · ,xn are sub-Gaussian random vectors

under (C1), but we do not impose a boundedness assumption on their ψ2-norm,

which may depend on p (Vershynin, 2010, 2012). (C2) refers to a compatibility

condition that is sufficient to derive the rate of convergence for ξ̂. (C3) assumes local

properties of the derivatives of the general loss ρ(y,xT ξ) (van de Geer et al., 2014).

(C4) is commonly assumed (van de Geer et al., 2014; Ning and Liu, 2017) and ensures

the quadratic margin behavior of the excess risk and is useful to obtain the rate for

‖X(ξ̂ − ξ0)‖2
2/n (Bühlmann and van de Geer , 2011). (C5) is a mild requirement in

high-dimensional regression analysis with random designs. A similar condition can

be found in Wang (2011).

Theorem II.1 establishes the asymptotic normality result for any linear combina-

tions of b̃, based on which inference can be drawn. The proof is given in Section 2.6,

as well as useful lemmas.

Theorem II.1. Assume that L4
p

p2 log p

n
→ 0,

√
p log(p)s0λ → 0, and

√
nps0λ

2 → 0

as n→∞. Let b̃ = ξ̂ − Θ̃Pnρ̇ξ̂ and αn ∈ Rp+1 with ||αn||2 = 1. Under (C1) - (C5),

we have √
nαTn (b̃− ξ0)√
αTnΘ̃αn

d→ N(0, 1).
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From Theorem II.1, one can construct 100 × (1 − r)th confidence intervals for

αTnξ
0 as [

αTnξ
0 − zr/2

√
αTnΘ̃αn/n,α

T
nξ

0 + zr/2

√
αTnΘ̃αn/n

]
,

where zr/2 is the upper (r/2)th quantile of the standard normal distribution.

Remark II.2. For the lasso approach, λ �
√

log(p)/n, we then only need L2
p

√
p2 log p

n
→

0 and
√
nps0λ

2 → 0 as n → ∞, because
√
p log(p)s0λ → 0 and

√
nps0λ

2 → 0 are

equivalent.

Remark II.3. Theorem II.1 reveals that the required rate for p relative to n depends

on the factor Lp and can be further simplified. The dependence on Lp results from

that the convergence rate of Θ̃ is related to Lp = ‖Σ−
1
2

ξ0 x1ω1(ξ0)‖ψ2 . In Javanmard

and Montanari (2014) for linear models and Ning and Liu (2017) for GLMs, Lp is

assumed to be a constant irrelevant to p. When covariates follow a multivariate

Gaussian distribution in a linear model, Lp = O(1) holds, then it only requires that

p2 log p

n
→ 0. However, in general, Lp may grow with p, and it can be shown that

the utmost bound Lp = O(
√
p). Specifically, by definition, Lp = ‖Σ−

1
2

ξ0 x1ω1(ξ0)‖ψ2 =

supz∈Bp+1 ‖〈Σ−
1
2

ξ0 x1w1(ξ0), z〉‖ψ2 , where Bp+1 is the unit ball in Rp+1. Then we have

|〈Σ−
1
2

ξ0 x1w1(ξ0), z〉| ≤ ‖z‖2 · ‖Σ
− 1

2

ξ0 x1w1(ξ0)‖2

≤ ‖Σ−
1
2

ξ0 ‖ · ‖x1w1(ξ0)‖2

≤ c
− 1

2
min

√
K2(p+ 1)K.

Therefore, Lp ≤ c
− 1

2
min

√
K2(p+ 1)K. This results in the most stringent rate require-

ment
p4 log p

n
→ 0, implying

√
nps0λ

2 = o(1) when λ �
√

log(p)/n.

Remark II.4. In Theorem II.1, p is assumed to grow slowly with n so that p � n.

This assumption is not uncommon in the literature. Fan and Peng (2004) assumed

p5/n→ 0 for a non-concave penalized maximum likelihood estimator to establish the
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oracle property and the asymptotic normality for selected variables. Yet the estimates

in Fan and Peng (2004) are super-efficient, which is not our focus. Without parameter

regularization, Wang (2011) assumed p3/n → 0 to derive asymptotic normality for

the solutions to generalized estimating equations with binary outcomes and clustered

data, which reduces to the usual logistic regression when simplified to a singleton in

each cluster. Wang (2011) studied a fixed design case, and proved the asymptotic

normality for a different quantity αTnMn(βn0)−1/2Hn(βn0)(β̂n−βn0); see Theorem 3.8

in Wang (2011). When p/n is not negligible (e.g. > 0.1), simulations show that MLE

yields biased and highly variable estimates, and is outperformed by our proposed b̃.

2.4.2 Simulation results

We investigate the performance of our alternative de-biased estimator b̃ in the

“large n, diverging p” scenario, and focus on biases in estimates and coverage proba-

bilities of confidence intervals. The estimators in comparison are

(i) the original de-biased lasso estimator b̂j obtained by using the node-wise lasso

estimator Θ̂ in van de Geer et al. (2014) (ORIG-DS );

(ii) the refined de-biased lasso approach based on the inverse matrix estimation

Θ̃ = Σ̂−1

ξ̂
, b̃j, as described in this section (REF-DS );

(iii) the conventional MLE (MLE ).

As simulations using logistic and Poisson regression models yield similar results,

we only report those from logistic regression. A total of n = 1, 000 observations and

p = 40, 100, 300, 400 covariates are simulated. We assume that in xi = (1, x̃Ti )T ,

x̃i are independently generated from Np(0p,Σx) then truncated at ±6, and yi|xi ∼

Bernoulli(µi), where µi ≡ exp(xTi ξ
0)/{1 + exp(xTi ξ

0)}. The intercept β0
0 = 0, and

β0
1 varies from 0 to 1.5 with 40 equally spaced increments. Four additional arbitrarily

chosen elements of β0 take non-zero values, two at 0.5 and the other two at 1, and
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then are fixed throughout the simulation. In some settings, MLE estimates do not

exist due to divergence and thus are not shown. The covariance matrix Σx for x̃i takes

one of the following three forms: identity matrix, AR(1) with correlation ρ = 0.7,

and compound symmetry with correlation ρ = 0.7. The tuning parameter in the

`1-norm penalized regression is selected by 10-fold cross-validation, and the tuning

parameter for the node-wise lasso estimator Θ̂ is selected using 5-fold cross-validation.

Both tuning parameter selection procedures are implemented using glmnet (Friedman

et al., 2010). For every β0
1 value, we summarize the average bias, empirical coverage

probability, empirical standard error and model-based estimated standard error over

200 replications.

Figure 2.2 presents the simulation results for estimating β0
1 under the AR(1) co-

variance structure. The three methods in comparison behave similarly when only

40 covariates are present, with MLE showing slightly larger biases for larger signals.

MLE displays much more biases than the other two methods when 100 covariates

are present, and does not always exist in some settings as the number of covariates

increases. When MLE does exist, it shows more variability than ORIG-DS and REF-

DS, and lower coverage probabilities. There is a systematic bias in ORIG-DS, which

increases with the signal strength of β0
1 . For large signals, the model-based stan-

dard error of ORIG-DS slightly underestimates the true variability. These factors

contribute to the poor coverage probabilities of ORIG-DS when signal size is not

too close to zero. Among all the competing methods, REF-DS presents the smallest

biases and has an empirical coverage probability closest to the nominal level across

different settings, though REF-DS exhibits slightly higher variability than ORIG-DS.

This is possibly because REF-DS does not utilize penalization when inverting the ma-

trix. Under the null β0
1 = 0, both ORIG-DS and REF-DS have coverage probabilities

close to 95% and preserve the type 1 error.

Figure 2.3, in the independent covariate case, shows similar patterns to the case
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when Σx is AR(1) with variance 1 and correlation ρ = 0.7. The model-based standard

errors estimated by ORIG-DS for large signal values are, in most cases, even smaller

than those by Oracle when p = 300 and 400, since Θ̂ is estimated using penalized

regression and the resulting variance estimates tend to be biased downward. When

each pair of covariates has the same correlation ρ = 0.7 in the compound symme-

try case, estimation biases from ORIG-DS persist in Figure 2.4, and the seemingly

improved coverage probabilities, especially for ORIG-DS, are due in part to higher

variability.
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Additional simulation results are provided under the same simulation setups to

those with n = 1, 000, except with a smaller sample size of n = 500 and p =

20, 100, 200, 300 covariates in the logistic regression model. Figures 2.5 - 2.7 display

the results from three types of covariance structures. Figure 2.7 shows that when

n = 500, p = 300, neither de-biased lasso methods can work well in this difficult

setup, which is not surprising given the relatively large p/n ratio and high correla-

tion between each pair of the covariates (ρ = 0.7). We also varied the correlation

to ρ = 0.2 in the covariance matrix Σx for AR(1) and compound symmetry struc-

tures to reflect the smaller correlation among covariates; see Figure 2.8 and Figure

2.9, respectively. These results are similar to the independent covariate case, despite

that each covariate is correlated with some or all other covariates to a non-negligible

extent. To summarize, REF-DS, in most cases, can provide the best bias correction

and honest confidence intervals.
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2.4.3 Application to the Boston Lung Cancer Study

Lung cancer is the leading cause of cancer death in the United States. Boston Lung

Cancer Study (BLCS) is a large epidemiology cohort for investigating the molecular

cause of lung cancer, including lung cancer cases enrolled at Massachusetts General

Hospital and the Dana-Farber Cancer Institute from 1992 to present1. We applied

REF-DS, together with ORIG-DS and MLE, to a subset of the BLCS data and

simultaneously examined the joint effects of SNPs in nine target genes on the overall

risk of lung cancer.

Genotypes from Axiom array and clinical information were originally collected on

1,459 individuals. Table 2.1 summarizes the demographic information of the study

population of 1,374 individuals, and by smoking status as well. Out of the 1,459

individuals, 14 (0.96%) had missing smoking status, 8 (0.55%) had missing race in-

formation, and 1,386 (95%) were Caucasian. We included a final number of n = 1, 374

Caucasians, where n0 = 723 were controls and n1 = 651 were cases, with known lung

cancer status (“1” for cases and “0” for controls) and smoking status (“1” for ever

smoker and “0” for never). Among the 1,077 smokers, 595 had lung cancer, and the

number of cases was 56 out of the 297 non-smokers. Other demographic character-

istics of the study population, including education level (no high school, high school

graduate, or at least 1-2 years of college), gender and age, are summarized in Table

2.1. Using the target gene approach, we focused on the following genes: AK5 on

region 1p31.1, RNASET2 on region 6q27, CHRNA2 and EPHX2 on region 8p21.2,

BRCA2 on region 13q13.1, SEMA6D and SECISBP2L on region 15q21.1, CHRNA5

on region 15q25.1, and CYP2A6 on region 19q13.2. These genes have been reported

in McKay et al. (2017) to harbor SNPs associated with the overall lung cancer risks.

In our dataset, each SNP was coded as 0,1,2, reflecting the number of copies of the

1See the webpage https://maps.cancer.gov/overview/DCCPSGrants/abstract.jsp?applId=

9320074&term=CA209414
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minor allele, and was assumed to have “additive effects”. After applying filters on the

minor allele frequency, genotype call rate (percentage of missingness), and excluding

SNPs that were highly correlated, 103 SNPs remained in the model.

Table 2.1: Demographic characteristics of the population under study in the Boston
Lung Cancer Study

Information
Overall Among smokers Among non-smokers

Count (%) / Mean (SD) Count (%) / Mean (SD) Count (%) / Mean (SD)
Total 1374 (100%) 1077 (100%) 297 (100%)
Lung cancer

Yes 651 (47.4%) 595 (55.2%) 56 (18.9%)
No 723 (52.6%) 482 (44.8%) 241 (81.1%)

Education
No high school 153 (11.1%) 139 (12.9%) 14 (4.7%)
High school graduate 374 (27.2%) 309 (28.7%) 65 (21.9%)
At least 1-2 years of college 847 (61.7%) 629 (58.4%) 218 (73.4%)

Gender
Female 845 (61.5%) 644 (59.8%) 201 (67.7%)
Male 529 (38.5%) 433 (40.2%) 96 (32.3%)

Age 60.0 (10.6) 60.7 (10.2) 57.7 (11.7)

The final analyzable dataset consisted of 1,374 individuals, 103 SNPs, and de-

mographic information including education history, age and gender. Since existing

studies suggest smoking can modify associations between lung cancer risks and SNPs,

for example, those residing in region 15q25.1 (Gabrielsen et al., 2013; Amos et al.,

2008), we conducted analysis stratified by smoking status. Within the smoker and

non-smoker groups, we fitted separate logistic regression models, adjusting for edu-

cational history, gender and age (centered at the mean). In total, there were 107

variables for stratified analysis among 1,077 smokers and 297 non-smokers. As a ref-

erence, we conducted marginal analysis, which examined one SNP at a time while

adjusting for demographic information. Marginal and joint analyses have distinct

interpretations and can generate different estimates.

We applied these methods to draw inference on all of the 107 predictors, and

comparisons of the results of the BLCS data analysis may shed light on the molec-

ular mechanism underlying lung cancer. For ease of presentation, Table 2.2 lists

the regression coefficient estimates, model-based estimated standard errors and 95%

confidence intervals (CIs) for demographic variables and 11 SNPs in the stratified
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analysis for an illustration. Some of these SNPs had at least one 95% CI (calculated

by the three methods) that excluded 0 among either the smokers or the non-smokers;

others showed differences among the estimating methods. Details of the remaining

SNPs were omitted due to the space limitation. Since the number of the non-smokers

was only about one third of the smokers, the MLE estimates had the largest stan-

dard errors and tended to break down among the non-smokers (see, for example,

AX-62479186 in Table 2.2(b)), whereas the two de-biased lasso methods gave more

reasonable estimates. The estimates by REF-DS and ORIG-DS shared more simi-

larity in the smokers (Table 2.2(a)) than in the non-smokers (Table 2.2(b)). Overall,

ORIG-DS had slightly narrower confidence intervals than REF-DS, probably due

to penalized estimation for Θ̂. These results generally agreed with our simulation

results.

Additional differences between ORIG-DS and REF-DS lied in opposite directions

obtained for the estimated effects of some SNPs, such as AX-38419741 and AX-

15934253 in Table 2.2(a), and AX-42391645 in Table 2.2(b). Among the non-smokers,

the 95% CI for AX-31620127 in SEMA6D by REF-DS was all positive and excluded

0, while the CI by ORIG-DS included 0; the story for AX-88907114 in CYP2A6 was

just opposite (Table 2.2(b)).

CHRNA5 is a gene known for predisposition to nicotine dependence (Halldén

et al., 2016; Hung et al., 2008; Amos et al., 2008; Thorgeirsson et al., 2008; Gabrielsen

et al., 2013). Though AX-39952685 and AX-88891100 in CHRNA5 were not signif-

icant at level 0.05 in marginal analysis among the smokers, their 95% CIs in Table

2.2(a) excluded 0 by all of the three methods. Indeed AX-88891100, or rs503464

mapped to the same physical location in dbSNP2, was found to “decrease CHRNA5

promoter-derived luciferase activity” (Doyle et al., 2011). The same SNP was also

reported to be significantly associated with nicotine dependence at baseline, as well

2See the webpage https://www.ncbi.nlm.nih.gov/snp
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as response to varenicline, bupropion, nicotine replacement therapy for smoking ces-

sation (Pintarelli et al., 2017). AX-39952685 was found to be strongly correlated with

SNP AX-39952697 in CHRNA5, which was mapped to the same physical location as

rs11633585 in dbSNP. All of these markers were found to be significantly associated

with nicotine dependence (Stevens et al., 2008). The stratified analysis also suggested

molecular mechanisms of lung cancer differ between smokers and non-smokers, but

affirmative conclusions need additional confirmatory studies. In summary, jointly

modeling the genetic effects on lung cancer risks can help understand underlying

mechanisms and personalized therapies, which necessitates the use of reliable infer-

ence tools.
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2.5 Discussion

Our work has produced several intriguing results that can be impactful in both

theory and practical implementation. From extensive simulations we have discovered

the unsatisfactory performance of de-biased lasso in drawing inference with high-

dimensional GLMs. We have further pinpointed an essential assumption that hardly

holds for GLMs in general, i.e. the sparsity of the high-dimensional inverse infor-

mation matrix Θξ0 (van de Geer et al., 2014), making de-biased lasso fail to deliver

reliable inference in practice. This type of `0 sparsity conditions on matrices is not

uncommon in the literature of high-dimensional inference. A related `0 sparsity con-

dition on w∗ = I∗−1
γγI
∗
γθ can be found in Ning and Liu (2017), where I∗ is the

information matrix under the truth, but is not well justified in a general GLM set-

ting. When testing a global null hypothesis (β0 = 0), however, the sparsity of Θξ0

reduces to the sparsity of the covariate precision matrix, which becomes less of an

issue (see Cai et al. 2019).

Our detailed work leads to practical guidelines as to how to use de-biased lasso

for proper statistical inference with high-dimensional GLMs. Our work summarily

suggests that, when p > n, de-biased lasso may not be applicable in general; when

p < n with diverging p, it is preferred to use the refined de-biased lasso, which

directly inverts the Hessian matrix and provides improved confidence interval coverage

probabilities for a wide range of p; when p is rather small relative to n (often viewed

as a fixed p problem), the refined de-biased lasso yields results nearly identical to

MLE and the original de-biased lasso.

2.6 Technical proofs

We provide three lemmas that are useful for proving Theorem II.1. And the proof

for Theorem II.1 is provided at the end of this section. Without loss of generality,
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we denote the dimension of the parameter ξ by p instead of (p + 1) to simplify the

notation in the proofs. Consequently, the matrices such as Σξ and Θξ are considered

as p× p matrices. The simplification of notation does not affect derivations.

Lemma II.5. Under (C1) - (C4) in Section 2.4.1, we have ‖ξ̂−ξ0‖1 = OP (s0λ) and

‖X(ξ̂ − ξ0)‖2
2/n = OP (s0λ

2).

Proof. Because λmin(Σξ0) > 0 in (C2), the compatibility condition holds for all

index sets S ⊂ {1, · · · , p} by Lemma 6.23 of Bühlmann and van de Geer (2011) and

the fact that the adaptive restricted eigenvalue condition implies the compatibility

condition. Exploiting Hoeffding’s concentration inequality, we have ‖Σ̂ξ0 −Σξ0‖∞ =

OP (
√
log(p)/n). Then by Lemma 6.17 of Bühlmann and van de Geer (2011), we

have the Σ̂ξ0-compatibility condition. Finally, the first part of Lemma II.5 follows

from Theorem 6.4 in Bühlmann and van de Geer (2011).

For the second claim, Ning and Liu (2017) showed that (ξ̂ − ξ0)T Σ̂ξ0(ξ̂ − ξ0)T =

OP (s0λ
2), then under (C4), we obtain the desired result. �

Lemma II.6. Under (C1) - (C5) in Section 2.4.1, if we further assume that s0λ→ 0

and L2
p

√
p

n
→ 0, then Θ̃ converges with the following rate

||Θ̃−Θξ0|| = OP
(
L2
p

√
p

n
+ s0λ

)
.

Proof. Since Σ̂−1

ξ̂
−Σ−1

ξ0 = Σ̂−1

ξ̂

(
Σξ0 − Σ̂ξ̂

)
Σ−1
ξ0 , we have

‖Σ̂−1

ξ̂
−Σ−1

ξ0 ‖ ≤ ‖Σ̂
−1

ξ̂
‖ · ‖Σ̂ξ̂ −Σξ0‖ · ‖Σ−1

ξ0 ‖. (2.8)

By (C2), ‖Σ−1
ξ0 ‖ is bounded. We obtain the convergence rate of ‖Σ̂−1

ξ̂
− Σ−1

ξ0 ‖ by

calculating the rate of ‖Σ̂ξ̂−Σξ0‖ and showing that ‖Σ̂−1

ξ̂
‖ is bounded with probability

going to 1.

36



Note that ‖Σ̂ξ̂ − Σξ0‖ ≤ ‖Σ̂ξ̂ − Σ̂ξ0‖ + ‖Σ̂ξ0 − Σξ0‖. When the rows of X are

sub-Gaussian, so are the rows of Xξ0 due to the boundedness of the weights wi in

(C3). First, for ‖Σ̂ξ0 −Σξ0‖, Vershynin (2010) shows that for every t > 0, it holds

with probability at least 1− 2 exp(−c′Lt2) that

‖Σ̂ξ0 −Σξ0‖ ≤ ‖Σξ0‖max(δ, δ2) ≤ cmax max(δ, δ2), (2.9)

where δ = CL

√
p

n
+

t√
n

. Here CL, c′L > 0 depend only on Lp = ‖Σ−
1
2

ξ0 x1ω1(ξ0)‖ψ2 .

In fact c′L = c1/L
4
p and CL = L2

p

√
log 9/c1, where c1 is an absolute constant. For

s > 0 and t = sCL
√
p, the probability becomes 1− 2 exp(−c2s

2p), c2 > 0 being some

absolute constant, and δ = (s+ 1)CL

√
p

n
. Thus ‖Σ̂ξ0 −Σξ0‖ = Op

(
L2
p

√
p

n

)
.

Note that

‖Σ̂ξ̂ − Σ̂ξ0‖ = ‖XT (W 2
ξ̂
−W 2

ξ0)X/n‖

≤ ‖XT‖ · ‖X‖/n · ‖W 2
ξ̂
−W 2

ξ0‖

= λmax(XTX/n) · ‖W 2
ξ̂
−W 2

ξ0‖.

By (C1) and (C3),

‖W 2
ξ̂
−W 2

ξ0‖ = maxi |ρ̈(yi,x
T
i ξ̂)− ρ̈(yi,x

T
i ξ

0)|

≤ cLip ·maxi |xTi (ξ̂ − ξ0)|

≤ cLipK · ‖ξ̂ − ξ0‖1.

(2.10)

By Lemma II.5, we have ‖ξ̂−ξ0‖1 = OP (s0λ). In this case, ‖W 2
ξ̂
−W 2

ξ0‖ = OP (s0λ).

By (C5) and Vershynin (2010), λmax(XTX/n) = OP (1). Thus ‖Σ̂ξ̂−Σ̂ξ0‖ = OP (s0λ).

Therefore, after combining the two parts, we have ‖Σ̂ξ̂−Σξ0‖ = OP
(
L2
p

√
p

n
+ s0λ

)
.

Under L2
p

√
p

n
= o(1) and s0λ = o(1), we have ‖Σ̂ξ̂ −Σξ0‖ = oP (1).
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Now for any vector x with ‖x‖2 = 1, we have

inf
‖y‖2=1

‖Σ̂ξ̂y‖2 ≤ ‖Σ̂ξ̂x‖2 ≤ ‖Σξ0x‖2+‖(Σ̂ξ̂−Σξ0)x‖2 ≤ ‖Σξ0x‖2+ sup
‖z‖2=1

‖(Σ̂ξ̂−Σξ0)z‖2,

which indicates that λmin(Σ̂ξ̂) ≤ λmin(Σξ0)+‖Σ̂ξ̂−Σξ0‖. Similarly, we have λmin(Σξ0) ≤

λmin(Σ̂ξ̂) + ‖Σ̂ξ̂ −Σξ0‖. So |λmin(Σξ0) − λmin(Σ̂ξ̂)| ≤ ‖Σ̂ξ̂ −Σξ0‖. For any 0 < ε <

min{‖Σξ0‖, λmin(Σξ0)/2}, we have that

P

(
‖Σ̂−1

ξ̂
‖ ≥ 1

λmin(Σξ0)− ε

)
= P (λmin(Σ̂ξ̂) ≤ λmin(Σξ0)− ε)

≤ P (|λmin(Σ̂ξ̂)− λmin(Σξ0)| ≥ ε)

≤ P (‖Σ̂ξ̂ −Σξ0‖ ≥ ε).

Since ‖Σ̂ξ̂−Σξ0‖ = oP (1), we have ‖Σ̂−1

ξ̂
‖ = OP (1). Finally, by (2.8), ‖Σ̂−1

ξ̂
−Σ−1

ξ0 ‖ =

OP (‖Σ̂ξ̂ −Σξ0‖) = OP
(
L2
p

√
p

n
+ s0λ

)
. �

Lemma II.7. Under (C1)-(C3) in Section 2.4.1, when
p

n
→ 0, it holds that for any

vector αn ∈ Rp with ‖αn‖2 = 1,

√
nαTnΘξ0Pnρ̇ξ0√
αTnΘξ0αn

d→ N(0, 1).

Proof. We invoke the Lindeberg-Feller Central Limit Theorem. For i = 1, · · · , n, let

Zni =
1√
n
αTnΘξ0ρ̇ξ0(yi,xi) =

1√
n
αTnΘξ0xiρ̇(yi,x

T
i ξ

0),

and s2
n = V ar (

∑n
i=1 Zni). Note that E[ρ̇(yi,x

T
i ξ

0)|xi] = 0 and consequently E(Zni) =

0. Because {(yi, x̃i)}ni=1 are i.i.d., we can show that s2
n = αTnΘξ0αn. To show∑n

i=1 Zni
sn

d→ N(0, 1), we first check the Lindeberg condition and then the conclu-

sion shall follow by the Lindeberg-Feller Central Limit Theorem. Specifically, for any
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ε > 0, we show that as n→∞,

1

s2
n

n∑
i=1

E
{
Z2
ni · 1(|Zni|>εsn)

}
→ 0.

Due to the boundedness of the eigenvalues of Σξ0 , α
T
nΘξ0αn ≥ λmin(Θξ0) = 1/λmax(Σξ0) ≥

c−1
max. On the other hand, by the Cauchy-Schwarz inequality, it holds almost surely

that

(
αTnΘξ0xi

)2 ≤ ‖αn‖2
2 · ‖Θξ0xi‖2

2 ≤ [‖Θξ0‖ · ‖xi‖2]2 ≤ c−2
min · O(pK2).

Inside the indicator, it holds almost surely that

Z2
ni

s2
n

=
[ρ̇(yi,x

T
i ξ0)]2

(
αTnΘξ0xi

)2

nαTnΘξ0αn

≤ [ρ̇(yi,x
T
i ξ0)]2 · c−2

mincmax · O(K2 p

n
)

≤ K2
1c
−2
mincmax · O(K2 p

n
),

where the last inequality follows from the boundedness of ρ̇(yi,x
T
i ξ0) in condition

(C3). Hence, we have Z2
ni/s

2
n → 0 almost surely as p/n → 0. When n is large

enough, Z2
ni/s

2
n < ε2 and all the indicators become 0. Therefore, by the Dominated

Convergence Theorem, the Lindeberg condition holds and the Lindeber-Feller Central

Limit Theorem guarantees the asymptotic normality. �

Finally, we provide the theoretical proof for the main result in Section 2.4.1,

Theorem II.1.

Proof of Theorem II.1. Recall that from (2.7),

√
nαTn (b̃− ξ0)−

√
nαTnΘ̃∆ = −

√
nαTnΘ̃Pnρ̇ξ0 .
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First, we show thatαTnΘ̃αn−αTnΘξ0αn = oP(1) and that

√
nαTnΘ̃Pnρ̇ξ0√
αTnΘ̃αn

=

√
nαTnΘξ0Pnρ̇ξ0√
αTnΘξ0αn

+

oP(1). Then by Slutsky’s Theorem, the asymptotic distribution of the target

√
nαTnΘ̃Pnρ̇ξ0√
αTnΘ̃αn

can be derived by using the asymptotic distribution of

√
nαTnΘξ0Pnρ̇ξ0√
αTnΘξ0αn

, which has

been proved in Lemma II.7. In the final step, as long as
√
nαTnΘ̃∆ = oP (1), the

asymptotic distribution of

√
nαTn (b̃− ξ0)√
αTnΘ̃αn

follows immediately.

According to Lemma II.6, it follows that

|αTnΘ̃αn −αTnΘξ0αn| = |αTn (Θ̃−Θξ0)αn| ≤ ‖Θ̃−Θξ0‖ · ‖αn‖2
2 = oP (1).

By the Cauchy-Schwartz inequality,

√
n|αTnΘ̃Pnρ̇ξ0 −αTnΘξ0Pnρ̇ξ0| ≤

√
n‖αn‖2 · ‖(Θ̃−Θξ0)Pnρ̇ξ0‖2.

Since

‖(Θ̃−Θξ0)Pnρ̇ξ0‖2 ≤ ‖Θ̃−Θξ0‖ · ‖Pnρ̇ξ0‖2

≤ ‖Θ̃−Θξ0‖ ·
√
p‖Pnρ̇ξ0‖∞,

we have

√
n
∣∣∣αTnΘ̃Pnρ̇ξ0 −αTnΘξ0Pnρ̇ξ0

∣∣∣ ≤ √
np · ‖Pnρ̇ξ0‖∞ · OP

(
L2
p

√
p

n
+ s0λ

)
= ‖Pnρ̇ξ0‖∞ · OP

(
L2
pp+

√
nps0λ

)
.

By definition,

‖Pnρ̇ξ0‖∞ = max
j

∣∣∣∣∣ 1n
n∑
i=1

ρ̇ξ0(yi,xi)

∣∣∣∣∣ = max
j

∣∣∣∣∣ 1n
n∑
i=1

xij ρ̇(yi,x
T
i ξ

0)

∣∣∣∣∣ .
Assume |ρ̇(yi,x

T
i ξ

0)| ≤ K1 for all i and the constant K1 > 0 in condition (C3). As

|xij ρ̇(yi,x
T
i ξ

0)| ≤ KK1 almost surely holds for all i and j, we apply Lemma 14.15 in
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Bühlmann and van de Geer (2011), for all t > 0,

P

(
max
j

∣∣∣∣∣ 1n
n∑
i=1

xij ρ̇(yi,x
T
i ξ

0)

∣∣∣∣∣ ≥ KK1

√
2

(
t2 +

log(2p)

n

))
≤ exp[−nt2].

For t2 =
log(2p)

n
, we know that ‖Pnρ̇ξ0‖∞ = OP

(√
log(p)

n

)
. Then we have

√
n
∣∣∣αTnΘ̃Pnρ̇ξ0 −αTnΘξ0Pnρ̇ξ0

∣∣∣ ≤ OP (L2
pp

√
log(p)

n
+ s0λ

√
p log(p)

)
,

which is oP (1) by our assumption.

Finally, we prove |
√
nαTnΘ̃∆| = oP (1). By the Cauchy-Schwartz inequality,

|
√
nαTnΘ̃∆| ≤

√
n‖Θ̃∆‖2, we only need that

√
n‖Θ̃∆‖2 = oP (1). In equation (2.3),

∆j =
1

n

n∑
i=1

(
ρ̈(yi, a

∗
i )− ρ̈(yi,x

T
i ξ̂)
)
xijx

T
i (ξ0 − ξ̂),

where a∗i lies between xTi ξ̂ and xTi ξ
0, i.e. |a∗i −xTi ξ̂| ≤ |xTi (ξ̂− ξ0)|. Then uniformly

for all j,

|∆j| ≤
1

n

n∑
i=1

|ρ̈(yi, a
∗
i )− ρ̈(yi,x

T
i ξ̂)| · |xij| · |xTi (ξ0 − ξ̂)|

≤ 1

n

n∑
i=1

cLip|a∗i − xTi ξ̂| ·K · |xTi (ξ0 − ξ̂)|

≤ cLipK ·
1

n

n∑
i=1

|xTi (ξ0 − ξ̂)|2

= cLipK · OP (s0λ
2)

= OP (s0λ
2),

where the last equality holds by Lemma II.5. Since ‖Θξ0‖ = O(1) and ‖Θ̃−Θξ0‖ =
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oP (1), then ‖Θ̃‖ = OP (1), and we have

√
n‖Θ̃∆‖2 ≤

√
n‖Θ̃‖ · ‖∆‖2

≤
√
nOP (1) · √p‖∆‖∞

≤ OP (
√
nps0λ

2).

By the assumption of
√
nps0λ

2 = o(1),
√
n‖Θ̃∆‖2 = oP (1). Applying Slutsky’s

Theorem and Lemma II.7 gives the results. �
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CHAPTER III

Statistical Inference for Cox Proportional Hazards

Model with A Diverging Number of Covariates

3.1 Introduction

The Cox proportional hazards model (Cox , 1972) has been widely used for analy-

sis of censored time-to-event data. This model is semi-parametric without specifying

the baseline hazard function, and Cox (1972) proposed the maximum partial like-

lihood estimator to infer the unknown finite-dimensional parameter in the posited

hazard function. Andersen and Gill (1982) proved the asymptotic distribution for

the maximum partial likelihood estimator using martingale theory under the fixed

dimension setting.

In the big data era, it is now possible to collect a large amount of information in

biomedical studies such as genomics and imaging studies. For example, the Boston

Lung Cancer Study provides rich resources of clinical, gene expression, methylation

and genomics data, which enables innovative investigations into the molecular mech-

anisms underlying lung cancer patient survival and promotes precision medicine for

lung cancer patients (McKay et al., 2017). High-dimensionality of the covariates col-

lected has brought new challenges to parameter estimation and uncertainty quantifi-

cation in the Cox model. In high-dimensional settings, where the number of covariates
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p increases with the sample size n or even greater than n, the conventional maximum

partial likelihood estimation is usually ill-conditioned. Penalized estimators have

emerged as a useful tool for simultaneous variable selection and estimation (Tibshi-

rani , 1997; Fan and Li , 2002; Gui and Li , 2005; Antoniadis et al., 2010). Huang

et al. (2013) and Kong and Nan (2014) have studied the non-asymptotic oracle in-

equalities of the lasso estimator in the Cox model, which entail additional difficulties

since the negative log partial likelihood loss function is not a sum of independent and

identically distributed terms nor Lipschitz.

Existing literature on inference for high-dimensional models mainly concerns linear

regression. Zhang and Zhang (2014), van de Geer et al. (2014) and Javanmard and

Montanari (2014) developed inference procedures for linear models, based on de-

biasing the lasso estimator via low-dimensional projection or inverting the Karush–

Kuhn–Tucker condition. In the same paper, van de Geer et al. (2014) extended the

de-biasing lasso idea to generalized linear models, using the nodewise lasso regression

to approximate the large inverse information matrix. Ning and Liu (2017) focused

on hypothesis testing and devised decorrelated score, Wald and likelihood ratio tests

for inference on a low-dimensional parameter in generalized linear models based on

projection theory.

Literature in high-dimensional Cox model inference is limited and unsatisfac-

tory. Fang et al. (2017) developed decorrelated tests for hypothesis testing of low-

dimensional components, similar to Ning and Liu (2017) but in the high-dimensional

Cox model. Kong et al. (2018) extended the de-biased lasso approach in van de Geer

et al. (2014) to potentially misspecified Cox model, using the nodewise lasso regres-

sion to estimate the inverse information matrix. Yu et al. (2018) proposed a de-biased

lasso approach by estimating the inverse information matrix with CLIME, adapted

from Cai et al. (2011) that was originally designed for precision matrix estimation.

However, these existing methods for statistical inference in the high-dimensional Cox
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model have certain limitations. Due to the properties of the nodewise lasso regression

and CLIME, both Kong et al. (2018) and Yu et al. (2018) restricted the number of

non-zero elements of each row in the inverse Fisher information matrix to be small,

i.e. `0 sparsity. In Chapter II, it has been argued that such a sparsity assumption on

the high-dimensional inverse information matrix does not hold in general settings of

generalized linear models. This is because, in generalized linear models, the informa-

tion matrix takes the form of E[XTWβ0X/n], where Wβ0 is a diagonal matrix with

the response variances on the diagonal, distorting the interpretability and the valid-

ity of sparsity on its inverse matrix in general settings. The same argument is also

applicable in the Cox model. Fang et al. (2017) imposed an `0 sparsity assumption on

w∗ = H∗−1
θθ H∗θα, where, in their notation, H∗ is the Fisher information matrix, α is the

low-dimensional component of interest, θ is the high-dimensional nuisance parameter,

and w∗ is approximated using the Dantzig selector. To summarize, imposing these

sparsity conditions plays an important role in the development of the theoretical prop-

erties of the aforementioned estimators under the “large p, small n” scenario, yet has

no practical interpretation and does not usually hold in the Cox model. Our extensive

simulations also show that these methods perform unsatisfactorily in correcting the

biases from penalized estimators and delivering honest confidence intervals.

Without imposing structural assumptions on the inverse information matrix, such

as the aforementioned `0 sparsity, it is hard to estimate such a high-dimensional ma-

trix with guaranteed precision when the number of covariates p exceeds the sample

size n. In this paper, we consider the problem of drawing inference for regression

coefficients in the Cox model without sparse estimation for the inverse information

matrix, under a promising “large n, diverging p” scenario where p < n but p is allowed

to increase with n to infinity. Our primary focus is on improving the bias correction

and delivering more reliable confidence intervals and inference results. Chapter II

also suggested directly inverting the information matrix after variable selection in
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generalized linear models, when the covariate dimension p grows with the sample

size n satisfying p2 log(p)/n → 0 as n → 0 under certain conditions. Our numerical

exploration indicates that directly applying this approach in the Cox model is prob-

lematic in bias correction and that more careful tuning of the parameters in matrix

estimation procedures is warranted.

Inspired by Javanmard and Montanari (2014), we propose a de-biased lasso ap-

proach via solving quadratic programming problems to estimate the inverse informa-

tion matrix, which can be viewed as a trade-off between estimation bias and variance

and does not rely on unrealistic `0 sparsity assumptions on the large inverse infor-

mation matrix. The contribution of this chapter is in both theoretical and practical

aspects. First, unlike Javanmard and Montanari (2014) focusing on linear regression,

this work entails careful treatment of the sum of non independently nor identically

distributed terms in the loss function. We consider random rather than determin-

istic designs. Second, we have found that tuning parameter selection is crucial for

the inverse information matrix estimation and consequently sufficient bias correction.

A carefully designed adaptive procedure is proposed to select the important tuning

parameter in the quadratic programming problems and is shown with satisfactory nu-

merical performance. From the practical side, this also distinguishes our work from

Yu et al. (2018).

The rest of this chapter is organized as follows. Section 3.2 introduces the proposed

de-biasing approach approach via quadratic programming for matrix estimation, with

a novel procedure for selection of the tuning parameter. Section 3.3 provides the

theoretical justification that lays the foundation for reliable inference on linear com-

binations of the resulting de-biased lasso estimator. We demonstrate the superior

performance of our proposed method via simulation studies in Section 3.4, and an

application to the Boston Lung Cancer Study is shown in Section 3.5. Following the

conclusing remarks in Section 3.6, technical proofs are presented in Section 3.7.
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3.2 Method

3.2.1 Background and set-up

We first introduce some notation that will be used throughout this chapter. For

a vector x = (x1, . . . , xr)
T ∈ Rr, x⊗0 = 1, x⊗1 = x and x⊗2 = xxT . The `q-norm for x

is ‖x‖q = (
∑r

j=1 |xj|q)1/q, q ≥ 1. For a matrix A = (aij) ∈ Rm×r, the induced matrix

norm is defined as ‖A‖q1,q2 = supx∈Rr,x 6=0 ‖Ax‖q2/‖x‖q1 , q1, q2 ≥ 1. In particular,

‖A‖1,1 = max1≤j≤r
∑m

i=1 |aij|; ‖A‖2,2 = σmax(A), the largest singular value of A; and

‖A‖∞,∞ = max1≤i≤m
∑r

j=1 |aij|. The element-wise max norm is ‖A‖∞ = maxi,j |aij|.

The Cox model assumes that the true hazard function for the underlying failure

time T , conditional on a p-dimensional vector of covariates X ∈ Rp, is λ(t|X) =

λ0(t) exp{XTβ0}, where λ0(t) is an unknown baseline hazard function and β0 =

(β0
1 , . . . , β

0
p)
T ∈ Rp is an unknown vector of true regression coefficients. The observed

survival time is denoted as Y = min(T,C), where the censoring time C is independent

of T given the covariates X. Let δ = 1(T ≤ C) denote the event indicator. We have

n independent and identically distributed observations {Yi, δi, Xi}ni=1. The primary

goal is to simultaneously estimate and draw inference on the regression coefficients

β0.

3.2.2 Quadratic programming for matrix estimation in the de-biased lasso

We write the negative log partial likelihood function based on the Cox model as

`n(β) = − 1

n

n∑
i=1

[
XT
i β − log

{
1

n

n∑
j=1

1(Yj ≥ Yi) exp(XT
j β)

}]
δi. (3.1)

The first and second order derivatives of (3.1) with respect to β are denoted as

˙̀
n(β) = − 1

n

n∑
i=1

{
Xi −

µ̂1(Yi; β)

µ̂0(Yi; β)

}
δi, ῭

n(β) =
1

n

n∑
i=1

{
µ̂2(Yi; β)

µ̂0(Yi; β)
−
[
µ̂1(Yi; β)

µ̂0(Yi; β)

]⊗2
}
δi,
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where µ̂r(t; β) = n−1
∑n

j=1 1(Yj ≥ t)X⊗rj exp{XT
j β}, r = 0, 1, 2. We also define the

weighted average covariate vector

η̂n(t; β) =
µ̂1(t; β)

µ̂0(t; β)
=

∑n
j=1 1(Yj ≥ t) exp{XT

j β}Xj∑n
j=1 1(Yj ≥ t) exp{XT

j β}
.

The lasso estimator β̂ minimizes the penalized negative log partial likelihood, i.e.

β̂ ∈ argminβ∈Rp {`n(β) + λ||β||1} , (3.2)

for some tuning parameter λ > 0.

Motivated by Javanmard and Montanari (2014), we consider the one-step estima-

tor updated from β̂ by first solving the following quadratic programming problem for

each j = 1, . . . , p,

min{mT Σ̂m : m ∈ Rp, ‖Σ̂m− ej‖∞ ≤ γn}, (3.3)

where γn ≥ 0 is a tuning parameter, ej is the vector with one at the jth element and

zero elsewhere, and the p× p matrix

Σ̂ = n−1

n∑
i=1

δi{Xi − η̂n(Yi; β̂)}⊗2. (3.4)

Σ̂ in (3.3) is an alternative for the Hessian matrix and can be replaced by the second

order derivative ῭
n(β̂). Choosing Σ̂ over ῭

n(β̂) in (3.3) is due to theoretical con-

venience, and the numerical difference in the resulting de-biased lasso estimators is

negligible. Let the column vector m(j) ∈ Rp be a solution to (3.3), and define the

p× p matrix Θ̂ = (m(1), . . . ,m(p))T . Then the de-biased lasso estimator for β0 is

b̂ = (̂b1, . . . , b̂p)
T = β̂ − Θ̂ ˙̀

n(β̂), (3.5)
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that is, b̂j = β̂j −m(j)T ˙̀
n(β̂). In Section 3.3, we will provide the asymptotic theory

for b̂ under commonly used regularity conditions.

The quadratic programming problem (3.3) is the same as in Javanmard and Mon-

tanari (2014) per se, except that the latter has a different definition
∑n

i=1XiX
T
i /n

for the matrix Σ̂ in linear models. Since η̂n(Yi; β̂) involves data from all subjects,

Σ̂ as shown in (3.4) is no longer a sum of independently and identically distributed

terms, which poses additional theoretical difficulties. This de-biasing lasso procedure

through solving (3.3) is also related to Yu et al. (2018). As mentioned in the introduc-

tion, Yu et al. (2018) employed CLIME for the inverse information matrix estimation,

which can be obtained in a column-wise fashion by solving linear programming prob-

lems

min{‖m‖1 : m ∈ Rp, ‖Σ̂m− ej‖∞ ≤ γn}, j = 1, . . . , p.

Unlike Yu et al. (2018), our proposed method shares the property with Javanmard

and Montanari (2014) that the resulting Θ̂ is not a sparse matrix due to the quadratic

loss. Computationally, (3.3) can be easily implemented using existing softwares such

as the R function solve.QP, which is usually fast and can be programmed in parallel

for a very large dimension.

3.2.3 Selection of the tuning parameter

We have found that selecting a proper tuning parameter γn is very crucial for

sufficient bias correction in b̂, which is demonstrated with a simple example. We

simulate n = 500 subjects and p = 100 covariates independently from N(0, 1), and

only two coefficients of β0 in the Cox model are non-zero, taking values of 1 and

0.3. The underlying survival time Y follows an exponential distribution with rate

exp (XTβ0), and the censoring time is simulated from exponential distribution with

rate 0.2 exp (XTβ0), which results in 15% - 20% censoring. Figure 3.1 illustrates how

the estimation bias and the empirical coverage probability from the de-biased lasso
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Figure 3.1: Estimation bias and 95% confidence interval coverage probability for
β0

1 = 1 with the tuning parameter γn ∈ [0, 1] in a simulated example with n = 500
observations and p = 100 independent covariates. The methods in comparison include
the proposed de-biased lasso with quadratic programming (qp), the maximum partial
likelihood estimation (mple) and the oracle estimator (oracle).

approach change as γn ranges from 0 to 1. Intuitively, one should select γn within

the shaded range to achieve desirable inference results.

The cross-validation criterion in Cai et al. (2011) for estimating the sparse inverse

covariance matrix is inappropriate for our purpose, since it originates from the idea

of maximizing the log likelihood for independent and identically distributed Gaus-

sian random vectors. Yu et al. (2018) used 10-fold cross-validation to choose the

γn that minimizes the criterion tr(diag(Σ̂Θ̂ − Ip)
2), which is an alternative option

given in the R package clime but still leaves large biases in the true signals in their

simulation studies. van Houwelingen et al. (2006) proposed a cross-validated partial

log-likelihood criterion base on leave-one-out estimates, which has been modified for

K-fold cross-validation and implemented in the R package glmnet for Cox model.

However, our simulation shows that using this criterion for de-biased lasso tends to

select the largest possible γn and makes no bias correction, which is intuitive since

the same criterion is adopted by glmnet to obtain the lasso estimator and facilitates

relatively stable prediction rather than bias correction and inference.

To achieve sufficient bias correction and reliable inference, a desirable tuning pa-
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rameter γn should be close to 0 and results in a de-biased estimator fitting the data

well. Evaluation of a cross-validation criterion value by directly plugging in the de-

biased estimator is highly discouraged, as estimation error from every component

of the de-biased estimator can accumulate and mounts to severe inaccuracy issues.

Thus, we propose to select γn following Algorithm 3.1, based on an idea of “active

de-biased lasso estimator”. Step 2.2 represents a de-noising step for the plug-in es-

timator, which is effective in practice. One may also repeat the cross-validation for

multiple times and minimize over the average cvg in Step 3, to reduce instability due

to random data splitting.

Algorithm 3.1 Selection of the tuning parameter γn using cross-validation

Step 1 Pre-determine a grid of points for γn in [0,1], denoted as γ
(g)
n , g = 1, · · · , G,

and set each cvg = 0.
Step 2 Randomly split the dataset into K folds of the same size, and at each time

leave one part for testing and the others for training. For k = 1, · · · , K:
Step 2.1 Use the kth training data to compute the de-biased lasso estimator with
γ

(g)
n , g = 1, · · · , G, denoted as b̂(gk).

Step 2.2 Define the active de-biased lasso estimator b̂
(gk)
active = b̂(gk) · 1(j ∈ Â), i.e.

setting components of b̂(gk) that are not in the set Â to 0. The active set Â can be
obtained by retaining the variables that pass the multiple testing (e.g. Bonferroni
correction) thresholds based on Theorem III.1.
Step 2.3 Compute the negative log-likelihood on the kth testing dataset with
b̂

(gk)
active, `

(k)(̂b
(gk)
active).

Step 2.4 Set cvg ← cvg + `(k)(̂b
(gk)
active), for g = 1, · · · , G.

Step 3 Let ĝ = arg ming cvg. The final output tuning parameter value is γ
(ĝ)
n .

3.3 Theoretical results

In this section we study the asymptotic properties of the de-biased estimator b̂. Let

µr(t; β) = E[1(Y ≥ t)X⊗r exp{XTβ}] be the expectation of µ̂r(t; β). For theoretical

purpose, we define population-level counterparts for the weighted average covariates

as

η0(t; β) =
µ1(t; β)

µ0(t; β)
=
E[1(Y ≥ t) exp{XTβ}X]

E[1(Y ≥ t) exp{XTβ}]
,
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and for the random matrix Σ̂ as

Σβ0 = E
[
{X − η0(Y ; β0)}⊗2δ

]
.

Take the inverse matrix Θβ0 = Σ−1
β0 . The first order Taylor expansion of ˙̀

nj(β̂), the

jth component in ˙̀
n(β̂), at β0, is

˙̀
nj(β̂) = ˙̀

nj(β
0) + [῭nj(β̃

(j))]T (β̂ − β0), (3.6)

where β̃(j) lies between β̂ and β0, and ῭
nj(β) denotes the jth column in the Hessian

matrix ῭
n(β). Let the p × p matrix Bn = (῭

n1(β̃(1)), . . . , ῭
np(β̃

(p)))T . Suppose c ∈ Rp

is a p-dimensional vector, and the parameter of interest is cTβ0. Plugging (3.6) in

(3.5), we have

cT (̂b− β0) = −cTΘβ0 ˙̀
n(β0)− cT (Θ̂−Θβ0) ˙̀

n(β0)

− cT (Θ̂Σ̂− Ip)(β̂ − β0) + cT Θ̂(Σ̂−Bn)(β̂ − β0). (3.7)

The first term in (3.7) is the leading part, and the others will be proved to be asymp-

totically negligible.

We make several assumptions to establish the theoretical properties of the de-

biased lasso estimator.

(A1) Covariates are almost surely uniformly bounded, i.e. ‖Xi‖∞ ≤ K for some

constant K > 0 for i = 1, 2, . . . , n.

(A2) |XT
i β

0| ≤ K1 uniformly for all i = 1, · · · , n with some constant K1 > 0,

almost surely.

(A3) The follow-up time stops at a finite time point τ > 0, with probability

π0 = P(Y ≥ τ) > 0.
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(A4) Let

Σ̃β0(t) =

t∫
0

{
µ2(u; β0)− µ1(u; β0)µT1 (u; β0)

µ0(u; β0)

}
dΛ0(u).

For any t ∈ [0, τ ],

cTΘβ0Σ̃β0(t)Θβ0c

cTΘβ0c
→ v(t), as n→∞

for some fixed function v(·) > 0.

(A5) The eigenvalues of Σβ0 are bounded, i.e. there exist two constants λmin

and λmax such that 0 < λmin ≤ λmin(Σβ0) ≤ λmax(Σβ0) ≤ λmax < ∞, where

λmin(Σβ0) and λmax(Σβ0) are the smallest and the largest eigenvalues of Σβ0 .

It is common in the literature of high-dimensional inference to assume bounded

covariates as in (A1). Fang et al. (2017) and Kong et al. (2018) also posed (A2)

for the Cox model, i.e. uniform boundedness on the multiplicative hazard. Under

(A1), (A2) can be implied by bounded overall signal ‖β0‖1. (A3) is usually used

for survival models with censored data (Andersen and Gill , 1982). (A4) ensures the

covergence of a predictable variation process in the martingale central limit theorem

and thus the asymptotic normality of the de-biased lasso estimator. Σ̃β0(t) can be

viewed as the information matrix up to time t. It is easy to see that Σ̃β0(τ) = Σβ0 and

v(τ) = 1. The limiting function v(t) also depends on c ∈ Rp, the linear combination

vector of interest. (A4) is an alternative assumption to the stringent boundedness

condition on ‖Θβ0Xi‖∞, which was essential in van de Geer et al. (2014) for statistical

inference in high-dimensional generalized linear models and in Fang et al. (2017) for

Cox model. The bounded eigenvalue condition on Σβ0 , (A5), is standard in inference

for high-dimensional models. Since we focus on random designs, unlike Huang et al.

(2013) and Yu et al. (2018), we do not directly assume the compatability condition

on ῭
n(β0).
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The following theorem establishes the asymptotic distribution for linear combina-

tions of the resulting de-biased lasso estimator b̂.

Theorem III.1. Assume that λ �
√

log(p)/n and ‖Θβ0‖2
1,1ps0 log(p)/

√
n → 0 as

n → ∞. Under assumptions (A1) – (A5), for any c ∈ Rp such that ‖c‖2 = 1 and

‖c‖1 ≤ a∗ with some absolute constant a∗ > 0, we have

√
ncT (̂b− β0)/(cT Θ̂c)1/2 D→ N (0, 1).

Theorem III.1 provides the foundation for drawing inference on the regression

parameters. Suppose one is interested in testing H0 : cTβ0 = a0 versus the alternative

H1 : cTβ0 6= a0 for some known c ∈ Rp and constant a0. Based on the test statistic

T =
√
n(cT b̂− a0)/(cT Θ̂c)1/2, we construct a test function

φ(T ) =

 1 if |T | > zα/2

0 if |T | ≤ zα/2

,

where zα/2 is the upper (α/2)th quantile of the standard normal distribution. Corol-

lary III.2 discusses the type I error and the power of the test φ(T ), and Corollary III.3

ensures that the confidence interval constructed based on Theorem III.1 achieves the

nominal coverage probability asymptotically.

Corollary III.2. Suppose that the conditions in Theorem III.1 hold. Then, for the

test φ(T ), the type I error rate pr(φ(T ) = 1|H0) → α as n → ∞, and, under the

truth β0, the power function pr(φ(T ) = 1)→ 1−Φ(zα/2 + (a0− cTβ0)/(cTΘβ0c)1/2) +

Φ(−zα/2 +(a0− cTβ0)/(cTΘβ0c)1/2), where Φ(·) is the cumulative density function for

standard normal distribution.

Corollary III.3. Suppose that the conditions in Theorem III.1 hold. The level α

confidence interval for cTβ0 is constructed as J(α) = [cT b̂ − zα/2(cT Θ̂c/n)1/2, cT b̂ +

zα/2(cT Θ̂c/n)1/2]. Then pr(cTβ0 ∈ J(α))→ 1− α, as n→∞.
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Theorem III.1 lays the foundation for inference on a single linear combination,

cTβ0. In fact, based on the results in Theorem III.1 and the Cramér-Wold device, we

can also justify simultaneous inference on multiple linear combinations, that is Aβ0 for

some l×p matrix A, as summarized in Theorem III.4. Parallel to the corollaries above,

Corollary III.5 provides the theoretical results for hypothesis testing and confidence

region in this setting. Since the assumption (A4) is dependent on the combination

vector c ∈ Rp, we need a variation of (A4) for Theorem III.4 to hold.

(A4)′ Σ̃β0(t) is the same as defined in (A4). For the combination matrix of interest

A ∈ Rl×p and any vector ω ∈ Rl, it holds that

ωTAΘβ0Σ̃β0(t)Θβ0ATω

ωTAΘβ0ATω
→ v′(t), as n→∞

for any t ∈ [0, τ ] and some fixed function v′(·) > 0.

Note that in the above alternative assumption (A4)′, v′(·) is specific to A and ω.

Theorem III.4. Suppose that the l × p matrix A has full row rank, the number of

rows l is fixed, ‖A‖∞,∞ = O(1) and AΘβ0AT → F for some fixed l × l matrix F .

Also, assume the conditions in Theorem III.1 hold with (A4) replaced by (A4)′. Take

λ �
√

log(p)/n for the lasso estimator. Then we have

√
nA(̂b− β0)

D→ N (0, F ).

Corollary III.5. Suppose the conditions in Theorem III.4 hold. For the l× p matrix

A in Theorem III.4, under the null hypothesis H0 : Aβ0 = a0 (a0 ∈ Rl), the statistic

T ′ = n(Ab̂ − a0)T F̂−1(Ab̂ − a0)
D→ χ2

l , where F̂ = AΘ̂AT . For α ∈ (0, 1), let the

confidence region for Aβ0 be J ′(α) = {a ∈ Rl : n(Ab̂−a)T F̂−1(Ab̂−a) ≤ χ2
l,α}, where

χ2
l,α is the upper α-th quantile from χ2

l . Then pr(Aβ0 ∈ J ′(α))→ 1− α, as n→∞.
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3.4 Numerical experiments

We simulate n = 500 observations with p = 20, 100, 200 covariates. The covariates

X are first simulated from two settings, N(0, Ip) and AR(1) with correlation 0.5, and

then truncated at |X(j)| ≤ 2.5, j = 1, . . . , p. In the true regression coefficients β0, the

first element β0
1 varies from 0 to 2 by increment 0.2, four of the rest are arbitrarily

chosen to take values of 1, 1, 0.5 and 0.5, and all others are zero. The underlying

survival time T follows an exponential distribution with hazard λ(t|X) = exp{XTβ0},

and the censoring time C, independent of T , follows Uniform(1, 20). We monitor

the estimation bias for β0
1 , its model-based standard error, coverage probability at

significance level α = 0.05 and mean squared error. The methods in comparison

include: (1) our proposed de-biased lasso with quadratic programming for matrix Θ̂

(qp), (2) the de-biased lasso with node-wise lasso for matrix Θ̂ (nw) in Kong et al.

(2018), (3) the de-biased lasso with CLIME for matrix Θ̂ (clime) in Yu et al. (2018),

(4) the decorrelated Wald test (decor) in Fang et al. (2017) and (5) the oracle

estimator as if the true model were known (oracle). Note that we use the tuning

parameter selection procedure described in Algorithm 3.1 of Section 3.2.3 for qp.

For the lasso estimator, we use 10-fold cross-validation to select the tuning pa-

rameter λ. 5-fold cross-validation is used for tuning parameter selection in clime,

qp and nw. For the active set in Step 2.2 of Algorithm 3.1, we adopt the Bonfer-

roni correction with the adjusted p-value threshold 0.1/p, where p is the number of

covariates.

Figures 3.2 and 3.3 show the simulation results for the independent and the AR(1)

covariance structures, respectively. When the dimension p = 20, our proposed method

qp and the decorrelated Wald test decor have almost identical performance to the

oracle estimator oracle. When the dimension is relatively large compared to the

sample size, i.e. p = 100, 200, the proposed estimator qp displays the smallest estima-

tion biases and the confidence interval coverage probabilities closest to the nominal
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level 95% in both cases. clime and nw both suffer from insufficient bias correction

due to penalized estimation for the matrix Θβ0 , and thus have severe under-coverage

problems with the confidence intervals. Compared to the independent covariance case,

the proposed method qp performs worse in the AR(1) covariance case on bias correc-

tion and confidence interval coverage, but is still the best in all methods considered,

especially when p is large.

We also recorded the average computational time spent on computing Θ̂ only

(Table 3.1), comparing the R functions solve.QP in the package quadprog for the

proposed quadratic programing procedure, clime in the package clime and sugm

in the package flare for clime. All data were included without cross-validation,

and three candidate values of γn, which were 0.3, 1 and 2 times of
√

log(p)/n, were

used for demonstration. We fixed β0
1 = 1 and simulated n = 500 observations. The

covariates had AR(1) covariance structure. The other settings were the same as those

introduced above. The time columns in Table 3.1 were generated on a MacBook with

2.7GHz Intel Core i5 processor and 8GB memory, and averaged over 10 replications.

Time ratio of each implementation compared to solve.QP was also reported in each

setup. Our proposed implementation with solve.QP is the most computationally

efficient among the three. For a large dimension, clime took the longest time in

general.
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Figure 3.2: Estimation bias, coverage probability, model-based standard error and
mean squared error for the five estimators under comparison, qp, nw, clime, decor
and oracle, in the simulation with n = 500 observations and independent covariance
structure for covariates.
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Figure 3.3: Estimation bias, coverage probability, model-based standard error and
mean squared error for the five estimators under comparison, qp, nw, clime, decor
and oracle, in the simulation with n = 500 observations and AR(1) covariance
structure for covariates (ρ = 0.5).
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Table 3.1: Comparison of the computational time spent on computing Θ̂. Time (in
seconds) is averaged over 10 replications under each setting. Time ratio is with respect
to the proposed method implemented using solve.QP.

p = 20
solve.QP clime flare

Time Ratio Time Ratio Time Ratio

γn = 0.3
√

log(p)/n 0.0016 1.0 0.0392 24.5 0.1898 118.6

γn =
√

log(p)/n 0.0015 1.0 0.0373 24.9 0.1597 106.5

γn = 2
√

log(p)/n 0.0012 1.0 0.0338 28.2 0.1522 126.8

p = 100
solve.QP clime flare

Time Ratio Time Ratio Time Ratio

γn = 0.3
√

log(p)/n 0.3159 1.0 4.3452 13.8 5.8860 18.6

γn = 1
√

log(p)/n 0.0922 1.0 3.4164 37.1 2.0754 22.5

γn = 2
√

log(p)/n 0.0665 1.0 2.6281 39.5 0.3663 5.5

p = 200
solve.QP clime flare

Time Ratio Time Ratio Time Ratio

γn = 0.3
√

log(p)/n 4.3886 1.0 64.7047 14.7 52.2224 11.9

γn = 1
√

log(p)/n 0.9039 1.0 47.0320 52.0 21.7229 24.0

γn = 2
√

log(p)/n 0.6196 1.0 33.0308 53.3 2.5536 4.1

3.5 Application to the Boston Lung Cancer Study

Lung cancer is the leading cause of cancer deaths in the United States, for both

men and women. Non-small cell lung cancer (NSCLC) accounts for approximately

80% to 85% among all the lung cancer cases and is the most common histological

type of lung cancer (Houston et al., 2018). Identification of genetic variants asso-

ciated with lung cancer patient survival is of great interest in modern translational

cancer research, which has the potential to refine prognosis and promote individu-

alized decision making on treatment and clinical care. Despite a large number of

studies investigating potential predisposing genes to lung cancer risks, studies on

patient survival usually have small sample sizes and the reported genetic markers

associated with lung cancer survival have been poorly replicated (Bossé and Amos ,

2018). The Boston Lung Cancer Study (BLCS) is a large epidemiology cohort for

investigating the molecular cause underlying lung cancer, where lung cancer cases
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have been enrolled at Massachusetts General Hospital and the Dana-Farber Cancer

Institute from 1992 to present. We applied the proposed de-biased lasso method to a

subset of the BLCS data and simultaneously investigated the joint effects of certain

genotyped SNPs on NSCLC patient overall survival.

The subset of data in this analysis consisted of n = 561 NSCLC patients with their

diagnosis dates, follow-up times were available and genotypes on Axiom array avail-

able. Among all these patients, 437 (77.9%) were observed deaths and 124 (22.1%)

were censored. The longest observed survival time was 8584 days and the shortest

was 6 days. The restricted mean survival and censoring times at τ = 8584 days were

2124 (SE: 105) and 4397 (SE: 187) days, respectively. Patient characteristics adjusted

in the Cox proportional hazards model, including age at diagnosis, race, education

level, gender, smoking status, histological type, cancer stage, treatment indicators

and an indicator for missing treatment information, are summarized in Table 3.2.

With the conventional marginal association analysis, Tang et al. (2020) found two

potentially functional SNPs in the genes HDAC2 and PPARGC1A that were signifi-

cantly associated with NSCLC overall survival. Using the target gene approach, we

focused on 32 genes in the CARM ER pathway, which was the largest pathway Tang

et al. (2020) considered and described in their supplementary document and con-

tained the two reported genes HDAC2 and PPARGC1A. It was also of great interest

to investigate whether the susceptibility loci studied in Chapter II were associated

with patient survival. We extracted 312 genotyped SNPs from the 32 genes in the

CARM ER pathway and the nine target genes in Section 2.4.3 in the BLCS data

(minor allele frequency > 0.01, genotype call rate > 95%). After we implemented

a pruning step to avoid including many SNPs in high linkage disequilibrium using

PLINK (Purcell et al., 2007) (window size 50, step size 5, and r2 > 0.7), the number

of SNPs was reduced to 217. SNPs were coded by the number of copies of the minor

allele, i.e. 0, 1 or 2, and were assumed to have additive effects on the log hazard
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Table 3.2: Characteristics of n = 561 patients in the Boston Lung Cancer Study for
survival analysis

Variable Category / Unit Count (%) / Mean (SD)

Age Years old 60.0 (10.9)
Race Caucasian 528 (94.1%)

Others 33 (5.9%)
Education No high school 79 (14.1%)

High school 141 (25.1%)
At least 1-2 years of college 341 (60.8%)

Gender Male 215 (38.3%)
Female 346 (61.7%)

Smoker Current or recently quit 508 (90.6%)
Never 53 (9.4%)

Histology Adenocarcinoma 360 (64.2%)
Squamous cell carcinoma 115 (20.5%)
Large cell carcinoma 45 (8.0%)
Unspecified 41 (7.3%)

Stagea Early 243 (43.3%)
Late 318 (56.7%)

Surgery No 177 (31.6%)
Yes 361 (64.3%)

Chemotherapy No 300 (53.5%)
Yes 238 (42.4%)

Radiation No 332 (59.2%)
Yes 206 (36.7%)

Treatment record Missingb 23 (4.1%)
a Stages I and II classified as early stage, and stages III and IV as late stage.
b No treatment information on surgery, chemotherapy or radiation available for these
patients.

ratio. Therefore, the subset of the BLCS data we analyzed included n = 561 NSCLC

patients and p = 231 covariates.

Table 3.3 summarizes the coefficient estimates in the Cox proportional hazards

model, for all patient characteristics and the top ten SNPs ranked by qp p-values. In

general, qp results in points estimates of smaller magnitudes and smaller standard

errors compared to mple, which is consistent with our observation in the simulated

example. mple is numerically very unstable when the dimension p is large com-

pared to the sample size n. The numerical instability arises primarily from inverting

the Hessian matrix, which may be closer to being singular. On the contrary, Lasso
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provides a more stabilized initial estimator than mple. As a result, the de-biased

lasso estimator is also numerically more stable, and has narrower confidence intervals

since the standard errors are not estimated using the inverted Hessian matrix. In

fact, van de Geer et al. (2014) proved in that the de-biased lasso in linear regression

is semi-parametrically efficient. When the dimension p is very small, the difference

between the two methods would be negligible.

Among patient characteristics, qp found that the adenocarcinoma subtype is as-

sociated with better patient survival compared to large cell carcinoma, consistent

with previous findings (Janssen-Heijnen and Coebergh, 2001), and mple has failed to

identify such an association. AX-11672686 in CHRNA2, AX-11673610 in GRIP2 and

AX-11264571 in BRCA2 are the three most significant SNPs associated with NSCLC

patient survival identified by qp. Interestingly, significant associations were found

between AX-11672686 and nicotine dependence (Wang et al., 2014). GRIP1 has not

been reported in the literature review (Bossé and Amos , 2018). Hershberger et al.

(2005) showed that “NSCLC cells express proteins necessary to generate a transcrip-

tional response to estrogen and suggest that ERβ and GRIP1 are likely mediators

of this response”. While AX-11264571 has been found to be associated with breast

cancer (Qiu et al., 2010), it may also be associated with lung cancer susceptibility

although not achieving genome-wide significance in Yu et al. (2011). Our proposed

method qp also identified four other SNPs with non-adjusted 95% CIs excluding zero,

two of which mple did not identify. Two SNPs signaled by qp at level 0.05 are lo-

cated in CREBBP, which is one of the most frequently mutated genes in small cell

lung cancer (Jia et al., 2018).

We also tested for the association between education and patient survival. Let

A2×p = (e2, e3)T indicate the two parameters of interest, corresponding to the effects

of high school graduate and at least 1–2 years of college compared to the reference

level of no high school. Then, the test statistic for a hypothesis of no education effect
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is 0.259. The resulting p-value is P(χ2
2 > 0.259) = 0.879. Thus, based on the data,

we did not have significant evidence to claim the association between education and

NSCLC patient survival after adjusting all other existing characteristics and SNPs.

These results show that our method can be useful in providing reliable inference for

scientific discovery, validation and interpretation, even though the actual functions of

genetic variants would need further biological investigations.
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3.6 Concluding remarks

Motivated by the work of Javanmard and Montanari (2014), we have proposed

a de-biased lasso approach for reliable estimation and inference in Cox proportional

hazards model when the number of covariates p is allowed to diverge with the sam-

ple size n. The proposed de-biased lasso estimator has been proven asymptotically

unbiased and normally distributed under certain mild regularity conditions. Unlike

existing methods in Fang et al. (2017); Yu et al. (2018); Kong et al. (2018), we do not

require a sparse estimation for the inverse information matrix Θβ0 under unrealistic

sparsity assumption about Θβ0 , by exploiting the quadratic programming procedure.

We have shown that the proposed de-biased lasso estimator performs better than its

competitors in terms of bias correction and reliable confidence interval coverage.

Although we have only considered the “large n, diverging p” scenario where p < n

in this chapter, the same approach can be used for reliable inference in the more

challenging “large p, small n” scenario where p can be much larger than n. With a

slight variation in the implementation, one may replace Σ̂ with Σ̂ +H for some diag-

onal matrix H = diag(h1, · · · , hp), hj > 0, in the quadratic programming problems

to stablize the estimates. It would make an interesting future direction to prove the

theoretical validity in this challenging scenario. From the simulation, we see that the

proposed method requires careful treatment of the tuning parameter selection. Even

though it outperforms all competitors in the simulation, other procedures for select-

ing a proper tuning parameter γn may be investigated in order to further improve its

performance.

Sometimes, it may be of interest not to penalize and select certain regression pa-

rameters, e.g. for treatment or exposure effects. Lasso, whether putting penalties

on these variables or not, can be viewed as a useful tool to provide a more stable

initial estimator than the maximum (partial) likelihood estimation. From the theo-

retical perspective, there will be no difference in the convergence rates of the lasso
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Table 3.4: Comparison between penalizing and not penalizing β1, for estimating
β0

1 = 0.5

n = 250 n = 500 n = 1000
β1 Penalized Yes No Yes No Yes No

Lasso 0.378 0.524 0.409 0.507 0.440 0.509
QP Est 0.468 0.516 0.477 0.499 0.492 0.503
QP SE 0.071 0.071 0.052 0.053 0.038 0.038

QP Cov 0.805 0.870 0.875 0.915 0.885 0.910
QP EmpSE 0.094 0.093 0.059 0.059 0.044 0.044

QP MSE 0.010 0.009 0.004 0.003 0.002 0.002

estimator itself and the excess loss, if we do not penalize a fixed number of coefficients

(Bühlmann and van de Geer , 2011). The de-biased lasso provides inference for all

regression parameters, and no parameters are estimated exactly at zero. The theoret-

ical results for the de-biased lasso will remain the same even when these variables are

left in the model unpenalized. Computationally, having some coefficients unpenalized

in the lasso can be easily implemented as a special case of the weighted lasso, where

the weights for the corresponding coefficients are specified as zero. Not penalizing a

subset of coefficients will result in numerical differences in the estimates. We herein

provide a simulated example in the Cox model, with 200 replications. The sample

size n varies between 250 and 1000, and the dimension p = 100. The covariate vector

X is simulated from a multivariate normal distribution with mean zero and AR(1)

covariance (ρ = 0.5). Suppose we are interested in studying the difference when the

first covariate X1 is forced into the model without penalization. β0
1 = β0

2 = 0.5, and

two other coefficients are fixed at 0.5 and 1, respectively. Other settings remain the

same as introduced in Section 3.4. Table 3.4 and Table 3.5 summarize the results

for estimating β0
1 and β0

2 respectively. As the sample size increases, the difference

between penalizing and not penalizing β1 diminishes. If we do not penalize β1, the

de-biased lasso estimate for β0
1 is very close to the lasso estimator (Table 3.4). Due

to the correlation between X1 and X2, not penalizing β1 results in slightly more bias

for estimating β0
2 (Table 3.5).
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Table 3.5: Comparison between penalizing and not penalizing β1, for estimating
β0

2 = 0.5

n = 250 n = 500 n = 1000
β1 Penalized Yes No Yes No Yes No

Lasso 0.392 0.325 0.421 0.378 0.434 0.404
QP Est 0.489 0.448 0.493 0.475 0.488 0.478
QP SE 0.077 0.076 0.057 0.057 0.041 0.041

QP Cov 0.885 0.785 0.910 0.885 0.910 0.870
QP EmpSE 0.092 0.103 0.063 0.064 0.043 0.044

QP MSE 0.009 0.013 0.004 0.005 0.002 0.002

3.7 Technical proofs

We first present the lemmas below, along with their proofs, that will be used to

prove Theorem III.1 and Theorem III.4. Some of these lemmas are interesting results

by themselves. Additional notation from counting processes and martingale theory is

defined here for the proofs. Under the Cox model, define the counting process Ni(t) =

1(Yi ≤ t, δi = 1) and the intensity process Ai(t; β) =
∫ t

0
1(Yi ≥ s) exp(XT

i β)dΛ0(s),

where Λ0(t) =
∫ t

0
λ0(s)ds is the baseline cumulative hazard function, i = 1, · · · , n.

Let Mi(t; β) = Ni(t) − Ai(t; β), and Mi(t; β
0) is a martingale with respect to the

filtration Fi(t) = σ{Ni(s), 1(Yi ≥ s), Xi : s ∈ (0, t]}. {Xi − η̂n(t; β0)} is predictable

with respect to the filtration F(t) = σ{Ni(s), 1(Yi ≥ s), Xi : s ∈ (0, t], i = 1, · · · , n}.

Notationally, we will not distinguish between the usual expectation and the outer

expectation, and all conclusions still hold regardless of measurability.

Lemma III.6 below characterizes the difference between η̂n(t; β0) and η0(t; β0),

which is useful to prove the asymptotic distribution for the leading term
√
ncTΘβ0 ˙̀

n(β0)

as well as to establish the convergence rate for Σ̂− Σβ0 .
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Lemma III.6. Under assumptions (A1) – (A3), we have

sup
t∈[0,τ ]

|µ̂0(t; β0)− µ0(t; β0)| = OP (
√

log(p)/n),

sup
t∈[0,τ ]

‖µ̂1(t; β0)− µ1(t; β0)‖∞ = OP (
√

log(p)/n),

sup
t∈[0,τ ]

‖η̂n(t; β0)− η0(t; β0)‖∞ = OP (
√

log(p)/n).

Proof of Lemma III.6. The first two statements in the conclusion are similar to

those in Kong and Nan (2014), where the setups are different. Consider a class of

functions of y ≥ 0 and x ∈ Rp indexed by t, F0 = {1(y ≥ t) exp(xTβ0) : t ∈ [0, τ ]}.

For any 0 < ε < 1, consider the cumulative distribution function for Y and take an

positive integer m < 2/ε and a sequence of points 0 = t0 < t1 < · · · < tm−1 < tm =∞

such that P(ti < Y ≤ ti+1) < ε, i = 0, 1, . . . ,m − 1. For each i = 1, · · · ,m, define

the bracket [Li, Ui], where Li(x, y) = 1(y ≥ ti) exp(xTβ0) and Ui(x, y) = 1(y >

ti−1) exp(xTβ0). We have Li(x, y) ≤ 1(y ≥ t) exp(xTβ0) ≤ Ui(x, y) for ti−1 < t ≤ ti,

and

[E{Ui(X, Y )− Li(X, Y )}2]1/2 = [E{1(ti−1 < Y < ti) exp(2XTβ0)}]1/2 ≤ eK1
√
ε,

E|Ui(X, Y )− Li(X, Y )| = E{1(ti−1 < Y < ti) exp(XTβ0)} ≤ eK1ε.

So the bracketing numbers, the definition of which can be found in van der Vaart

(1998), satisfy

N[](e
K1
√
ε,F0, L2(P)) ≤ 2

ε
, N[](e

K1ε,F0, L1(P)) ≤ 2

ε
,

or equivalently,

N[](ε,F0, L2(P)) ≤ 2e2K1

ε2
, N[](ε,F0, L1(P)) ≤ 2eK1

ε
<∞.
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By Glivenko-Cantelli Theorem and Donsker Theorem (van der Vaart , 1998), the class

F0 is P-Glivenko-Cantelli and P-Donsker. So supt∈[0,τ ] |µ̂0(t; β0)−µ0(t; β0)| a.s.→ 0, and

moreover, by Theorem 2.14.9 of van der Vaart and Wellner (1996) with V = 2,

P

(
√
n sup
t∈[0,τ ]

|µ̂0(t; β0)− µ0(t; β0)| > s

)
≤ De−s

2

,

for every s > 0 and some constant D > 0 only depending on K1. Setting s =√
2 log(p) implies that

sup
t∈[0,τ ]

|µ̂0(t; β0)− µ0(t; β0)| = OP (
√

log(p)/n).

For the second statement, we consider classes of functions of (x, y) = (x1, · · · , xp, y)

indexed by t,

Fk1 = {1(y ≥ t)ex
T β0

xk : t ∈ [0, τ ]}, k = 1, · · · , p.

Since |exT β0
xk| ≤ KeK1 , similar to the argument above, we have

N[](ε,Fk1 , L2(P)) ≤

(√
2eK1K

ε

)2

.

By Theorem 2.14.9 of van der Vaart and Wellner (1996) with V = 2, we have

P

(
√
n sup
t∈[0,τ ]

|µ̂1k(t; β
0)− µ1k(t; β

0)| > s

)
≤ D′s2e−2s2 ≤ D′e−1e−s

2

for every s > 0, where D′ is a constant that only depends on K and K1, and µ̂1k and
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µ1k are the kth components of µ̂1 and µ1, respectively. Thus,

P

(
√
n sup
t∈[0,τ ]

‖µ̂1(t; β0)− µ1(t; β0)‖∞ > s

)

≤ P

(
p⋃

k=1

{
√
n sup
t∈[0,τ ]

|µ̂1k(t; β
0)− µ1k(t; β

0)| > s

})

≤ pD′e−s
2

.

For example, taking s =
√

2 log(p) would complete the proof for supt∈[0,τ ] ‖µ̂1(t; β0)−

µ1(t; β0)‖∞ = OP (
√

log(p)/n).

Finally, we rewrite

η̂n(t; β0)− η0(t; β0) =
µ̂1(t; β0)

µ̂0(t; β0)
− µ1(t; β0)

µ0(t; β0)

=
µ̂1(t; β0)

µ0(t; β0)
− µ1(t; β0)

µ0(t; β0)
+
µ̂1(t; β0)

µ0(t; β0)

(
µ0(t; β0)

µ̂0(t; β0)
− 1

)
.

By assumptions (A1) – (A3), µ0(t; β0) ≥ e−K1π0 > 0 and supt∈[0,τ ] ‖µ̂1(t; β0)‖∞ =

OP (1). Also, since

inf
t∈[0,τ ]

µ̂0(t; β0) ≥ µ0(t; β0)−|µ̂0(t; β0)−µ0(t; β0)| ≥ e−K1π0− sup
t∈[0,τ ]

|µ̂0(t; β0)−µ0(t; β0)| > e−K1
π0

2

eventually almost surely, then

sup
t∈[0,τ ]

∥∥∥∥ µ̂1(t; β0)

µ0(t; β0)

(
µ0(t; β0)

µ̂0(t; β0)
− 1

)∥∥∥∥
∞

≤ sup
t∈[0,τ ]

∥∥∥∥ µ̂1(t; β0)

µ0(t; β0)

∥∥∥∥
∞
· sup
t∈[0,τ ]

∣∣∣∣µ0(t; β0)

µ̂0(t; β0)
− 1

∣∣∣∣
≤ OP (1) sup

t∈[0,τ ]

∣∣µ0(t; β0)− µ̂0(t; β0)
∣∣ = OP (

√
log(p)/n).
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By the arguments above,

sup
t∈[0,τ ]

‖η̂n(t; β0)− η0(t; β0)‖∞ ≤ sup
t∈[0,τ ]

∥∥∥∥ 1

µ0(t; β0)

(
µ̂1(t; β0)− µ1(t; β0)

)∥∥∥∥
∞

+ sup
t∈[0,τ ]

∥∥∥∥ µ̂1(t; β0)

µ0(t; β0)

(
µ0(t; β0)

µ̂0(t; β0)
− 1

)∥∥∥∥
∞

= OP (
√

log(p)/n).

�

Lemma III.7 establishes the asymptotic distribution for the leading term−cTΘβ0 ˙̀
n(β0)

in the decomposition of cT (̂b− β0), up to rescaling with the standard deviation.

Lemma III.7. Assume p2 log(p)/n → 0. Under assumptions (A1) – (A5), for any

c ∈ Rp such that ‖c‖2 = 1 and ‖c‖1 ≤ a∗ with some absolute constant a∗ > 0,

√
ncTΘβ0 ˙̀

n(β0)√
cTΘβ0c

D→ N(0, 1).

Proof of Lemma III.7. Switching notation to martingales, we rewrite

−
√
ncTΘβ0 ˙̀

n(β0)√
cTΘβ0c

=
1√
n

n∑
i=1

cTΘβ0√
cTΘβ0c

{
Xi −

µ̂1(Yi; β
0)

µ̂0(Yi; β0)

}
δi

=
1√
n

n∑
i=1

τ∫
0

cTΘβ0√
cTΘβ0c

{
Xi −

µ̂1(t; β0)

µ̂0(t; β0)

}
dNi(t)

=
1√
n

n∑
i=1

τ∫
0

cTΘβ0√
cTΘβ0c

{
Xi −

µ̂1(t; β0)

µ̂0(t; β0)

}
dMi(t).

Let Qi(t) =
1√
n

cTΘβ0√
cTΘβ0c

{
Xi −

µ̂1(t; β0)

µ̂0(t; β0)

}
, i = 1, . . . , n, which are predictable with

respect to the filtration F . Then

−
√
ncTΘβ0 ˙̀

n(β0)√
cTΘβ0c

=
n∑
i=1

τ∫
0

Qi(t)dMi(t). (3.8)
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For any t ∈ [0, τ ], let U(t) =
∑n

i=1

∫ t
0
Qi(u)dMi(u), whose predictable variation pro-

cess is

〈U〉(t) =
n∑
i=1

t∫
0

Qi(u)21(Yi ≥ u)eX
T
i β

0

dΛ0(u)

=
n∑
i=1

t∫
0

cTΘβ0

cTΘβ0c

{
Xi −

µ̂1(t; β0)

µ̂0(t; β0)

}⊗2

Θβ0c1(Yi ≥ u)eX
T
i β

0

dΛ0(u)

=
cTΘβ0

cTΘβ0c

 t∫
0

{
µ̂2(u; β0)− µ̂1(u; β0)µ̂1(u; β0)T

µ̂0(u; β0)

}
dΛ0(u)

Θβ0c

Similar to the proof in Lemma III.6, we can show that supt∈[0,τ ] ‖µ̂2(t; β0)−µ2(t; β0)‖∞ =

OP (
√

log(p)/n), and thus

∥∥∥∥∥∥
t∫

0

{µ2(u; β0)− µ̂2(u; β0)}λ0(u)du

∥∥∥∥∥∥
∞

≤ sup
u∈[0,τ ]

‖µ̂2(u; β0)− µ2(u; β0)‖∞

τ∫
0

λ0(u)du

= OP (
√

log(p)/n). (3.9)

Since

µ̂1µ̂
T
1

µ̂0

− µ1µ
T
1

µ0

=
µ̂1µ̂

T
1

µ̂0µ0

(µ0 − µ̂0) +
1

µ0

[(µ̂1 − µ1)µ̂T1 + µ1(µ̂1 − µ1)T ],

by (A1) and Lemma III.6,

∥∥∥∥∥∥
t∫

0

{
µ̂1(u; β0)µ̂T1 (u; β0)

µ̂0(u; β0)
− µ1(u; β0)µT1 (u; β0)

µ0(u; β0)

}
λ0(u)du

∥∥∥∥∥∥
∞

= OP (
√

log(p)/n).

(3.10)
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Combining (3.9) and (3.10), we see that uniformly for all t ∈ [0, τ ],

∥∥∥∥∥∥
t∫

0

{
µ̂2(u; β0)− µ̂1(u; β0)µ̂1(u; β0)T

µ̂0(u; β0)

}
dΛ0(u)−

t∫
0

{
µ2(u; β0)− µ1(u; β0)µ1(u; β0)T

µ0(u; β0)

}
dΛ0(u)

∥∥∥∥∥∥
∞

= OP (
√

log(p)/n).

Then ∣∣∣∣∣∣〈U〉(t)− cTΘβ0

cTΘβ0c

 t∫
0

{
µ2(u; β0)− µ1(u; β0)µ1(u; β0)T

µ0(u; β0)

}
dΛ0(u)

Θβ0c

∣∣∣∣∣∣
≤λ−1

min(‖c‖1‖Θβ0‖1,1)2OP (
√

log(p)/n)

≤λ−1
mina

2
∗pλ

2
maxOP (

√
log(p)/n)→P 0

as long as p2 log(p)/n→ 0. By (A4), 〈U(t)〉 →P v(t).

Now we check the Lindeberg condition. For any ε > 0, define the truncated

process

Uε(t) =
n∑
i=1

t∫
0

Qi(u)1{|Qi(u)| > ε}dMi(u),

whose predictable variation process is

〈Uε〉(t) =
n∑
i=1

t∫
0

Q2
i (u)1{|Qi(u)| > ε}1(Yi ≥ u)eX

T
i β

0

λ0(u)du

=
n∑
i=1

t∫
0

Q2
i (u)1{|

√
nQi(u)| >

√
nε}1(Yi ≥ u)eX

T
i β

0

λ0(u)du.

Let Qmax = supt∈[0,τ ] max1≤i≤n |
√
nQi(t)|, then 1{|

√
nQi(u)| >

√
nε} ≤ 1{Qmax >
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√
nε}. By (A1),

sup
t∈[0,τ ]

max
1≤i≤n

∣∣∣∣∣ cTΘβ0√
cTΘβ0c

{
Xi −

µ̂1(t; β0)

µ̂0(t; β0)

}∣∣∣∣∣ ≤ λ
−1/2
min ‖c‖1‖Θβ0‖1,12K = O(

√
p),

and Qmax = O(
√
p). When p/n → 0, 1{Qmax >

√
nε} = 0 eventually. Thus

〈Uε〉(t) →P 0. Finally, by the martingale central limit theorem, the asymptotic

normality is concluded. �

Lemma III.8. Under assumptions (A1) – (A5), for the lasso estimator β̂, we have

‖β̂ − β0‖1 = OP (s0λ),
1

n

n∑
i=1

|XT
i (β̂ − β0)|2 = OP (s0λ

2),

where s0 = #{j : β0
j 6= 0, j = 1, · · · , p} is the true model size.

Lemma III.8 provides theoretical properties of the lasso estimator in the Cox

model, the proof of which is omitted. This is a direct result from Theorem 1 in Kong

and Nan (2014).

Lemma III.9. Under assumptions (A1) – (A5), with probability going to 1, Θβ0 is

a feasible solution to the constraint in the quadratic programming problem, ‖Θβ0Σ̂−

Ip‖∞ ≤ γn, for γn � ‖Θβ0‖1,1s0λ+ ‖Θβ0‖1,1

√
log(p)/n. If λ �

√
log(p)/n, it suffices

to take γn � ‖Θβ0‖1,1s0λ.

Lemma III.9 shows that, unlike in a linear regression model where the tuning

parameter in the constraint takes the order of
√

log(p)/n, the Cox model requires a

potentially larger γn for the feasibility of Θβ0 depending on Θβ0 , because the infor-

mation matrix involves the coefficient estimates.
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Proof of Lemma III.9. Write An =
1

n

n∑
i=1

τ∫
0

{
Xi − η0(t; β0)

}⊗2
dNi(t)− Σβ0 .

‖Σ̂− Σβ0‖∞ ≤

∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

[{
Xi − η̂n(t; β̂)

}⊗2

−
{
Xi − η0(t; β0)

}⊗2
]
dNi(t)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
Xi − η0(t; β0)

}⊗2
dNi(t)− Σβ0

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
Xi − η̂n(t; β̂)

}{
η̂n(t; β̂)− η0(t; β0)

}T
dNi(t)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
η̂n(t; β̂)− η0(t; β0)

}{
Xi − η0(t; β0)

}T
dNi(t)

∥∥∥∥∥∥
∞

+ ‖An‖∞ .

Note that for all t ∈ [0, τ ], ‖Xi− η̂n(t; β̂)‖∞ ≤ 2K and ‖Xi−η0(t; β0)‖∞ ≤ 2K. Then

‖Σ̂− Σβ0‖∞ ≤
4K

n

n∑
i=1

τ∫
0

‖η̂n(t; β̂)− η0(t; β0)‖∞dNi(t) + ‖An‖∞

≤ 4K

n

n∑
i=1

τ∫
0

‖η̂n(t; β̂)− η̂n(t; β0)‖∞dNi(t)

+
4K

n

n∑
i=1

τ∫
0

‖η̂n(t; β0)− η0(t; β0)‖∞dNi(t) + ‖An‖∞. (3.11)

By the mean value theorem, for the jth component in η̂n (denoted by η̂nj), there

exists some β̄(j) lying between β̂ and β0 such that

η̂nj(t; β̂) = η̂nj(t; β
0) +

[
∂η̂nj(t; β)

∂β

∣∣∣∣
β=β̄(j)

]T
(β̂ − β0).

Consider β in a neighborhood of β0, i.e. when ‖β − β0‖1 ≤ δ′ for some δ′ > 0,

eX
T
i β ≤ e|X

T
i β| ≤ e|X

T
i β

0|+Kδ′ ≤ eK1+Kδ′ , and eX
T
i β ≥ e−|X

T
i β| ≥ e−K1−Kδ′ . Since

{1(Y ≥ t) : t ∈ [0, τ ]} is P-Glivenko-Cantelli, supt∈[0,τ ] | 1n
∑n

i=1 1(Y ≥ t) − P(Y ≥
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t)| a.s.→ 0, and then uniformly for t ∈ [0, τ ] and β ∈ {β : ‖β − β0‖1 ≤ δ′},

µ̂0(t; β) ≥ 1

n

n∑
i=1

1(Yi ≥ t)e−K1−Kδ′ a.s.→ P(Y ≥ t)e−K1−Kδ′ ≥ π0

2
e−K1−Kδ′ .

In this case, uniformly for t ∈ [0, τ ] and β ∈ {β : ‖β − β0‖1 ≤ δ′},

∥∥∥∥∂η̂n(t; β)

∂βT

∥∥∥∥
∞

=

∥∥∥∥ µ̂2(t; β)µ̂0(t; β)− µ̂1(t; β)µ̂1(t; β)T

µ̂2
0(t; β)

∥∥∥∥
∞

≤a.s.
(π0

2
e−K1−Kδ′

)−2 {
eK1+Kδ′K2 · eK1+Kδ′ + e2(K1+Kδ′)K2

}
=

8

π2
0

e4(K1+Kδ′)K2 <∞,

i.e.

∥∥∥∥∂η̂n(t; β)

∂βT

∥∥∥∥
∞

is uniformly bounded almost surely. When s0λ → 0, we have

‖η̂n(t; β̂) − η̂n(t; β0)‖∞ ≤ OP (‖β̂ − β0‖1) = OP (s0λ) and the first term in (3.11) is

4K
n

∑n
i=1

∫ τ
0
‖η̂n(t; β̂)− η̂n(t; β0)‖∞dNi(t) = OP (s0λ).

For the second term in (3.11), we use an argument from Lemma III.6 that supt∈[0,τ ] ‖η̂n(t; β0)−

η0(t; β0)‖∞ = OP (
√

log(p)/n) and then have

4K

n

n∑
i=1

τ∫
0

‖η̂n(t; β0)− η0(t; β0)‖∞dNi(t)

≤4K

n

n∑
i=1

τ∫
0

sup
t∈[0,τ ]

‖η̂n(t; β0)− η0(t; β0)‖∞dNi(t)

=OP (
√

log(p)/n).

For the last term An, by Hoeffding’s concentration inequality, we have for every t > 0

and j, k = 1, · · · , p,

P (|An(j, k)| ≥ t) ≤ 2 exp{−nt2/C ′},

77



where C ′ is a constant only depending on K4. Since An is a symmetric matrix,

P (‖An‖∞ ≥ t) = P

( ⋃
1≤j≤p,j≤k≤p

|An(j, k)| ≥ t

)

≤
p∑
j=1

p∑
k=j

P (|An(j, k)| ≥ t)

≤ p(p+ 1) exp{−nt2/C ′}.

So ‖An‖∞ = OP
(√

log(p)/n
)

. Combining the three terms in (3.11), we have ‖Σ̂ −

Σβ0‖∞ ≤ OP (s0λ+
√

log(p)/n). Finally, we conclude that

‖Θβ0Σ̂− Ip‖∞ ≤ ‖Θβ0‖1,1‖Σ̂− Σβ0‖∞

= OP
(
‖Θβ0‖1,1s0λ+ ‖Θβ0‖1,1

√
log(p)/n

)
.

�

Lemma III.10. Assume lim supn→∞ pγn ≤ 1 − ε′ for some ε′ ∈ (0, 1). Then, under

assumptions (A1) – (A5), ‖Θ̂−Θβ0‖∞ = OP (γn‖Θβ0‖1,1).

Proof of Lemma III.10. Note that Θ̂−Θβ0 = Θ̂(Ip− Σ̂Θβ0)+(Θ̂Σ̂−Ip)Θβ0 , then

on the event {‖Σ̂Θβ0 − Ip‖∞ ≤ γn}, we have

‖Θ̂−Θβ0‖∞ ≤ ‖Θ̂‖∞,∞‖Ip − Σ̂Θβ0‖∞ + ‖Θ̂Σ̂− Ip‖∞‖Θβ0‖1,1

≤ γn‖Θ̂‖∞,∞ + γn‖Θβ0‖1,1.

Since ‖Θ̂‖∞,∞ ≤ ‖Θ̂−Θβ0‖∞,∞+‖Θβ0‖∞,∞ ≤ p‖Θ̂−Θβ0‖∞+‖Θβ0‖1,1, we can obtain

‖Θ̂−Θβ0‖∞ ≤ γn

(
p‖Θ̂−Θβ0‖∞ + ‖Θβ0‖1,1

)
+ γn‖Θβ0‖1,1.
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When lim supn→∞ γnp ≤ 1− ε′ < 1, then for n large enough,

‖Θ̂−Θβ0‖∞ ≤ 2γn‖Θβ0‖1,1/(1− γnp) � γn‖Θβ0‖1,1.

Therefore, by Lemma III.9, ‖Θ̂−Θβ0‖∞ = OP (γn‖Θβ0‖1,1). �

Lemma III.11. By assumption (A1), for each t > 0,

P
(
‖ ˙̀
n(β0)‖∞ > t

)
≤ 2pe−nt

2/(8K2).

Proof of Lemma III.11. Noting that ‖Xi− η̂n(t; β0)‖∞ ≤ 2K uniformly for all i,

Lemma III.11 is a direct result of Lemma 3.3(ii) in Huang et al. (2013). �

With Lemmas III.6, we complete the proof of Theorem III.1.

Proof of Theorem III.1. Recall that

cT (̂b− β0) = −cTΘβ0 ˙̀
n(β0)− cT (Θ̂−Θβ0) ˙̀

n(β0)

− cT (Θ̂Σ̂− Ip)(β̂ − β0) + cT Θ̂(Σ̂−Bn)(β̂ − β0),

where Bn =
(

῭
n1(β̃(1))T , · · · , ῭

np(β̃
(p))T

)T
.

First, we show that
√
ncT (Θ̂−Θβ0) ˙̀

n(β0) = oP (1). By Lemma III.10 and Lemma

III.11,

√
ncT (Θ̂−Θβ0) ˙̀

n(β0) ≤
√
n‖c‖1 · ‖Θ̂−Θβ0‖∞,∞ · ‖ ˙̀

n(β0)‖∞

≤
√
nc∗OP (pγn‖Θβ0‖1,1)OP (

√
log(p)/n)

= OP (‖Θβ0‖1,1pγn
√

log(p))

= oP (1).
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Second, we show that
√
ncT (Θ̂Σ̂− Ip)(β̂ − β0) = oP (1). By Lemma III.8,

√
ncT (Θ̂Σ̂− Ip)(β̂ − β0) ≤

√
n‖c‖1‖(Θ̂Σ̂− Ip)(β̂ − β0)‖∞

≤
√
na∗‖Θ̂Σ̂− Ip‖∞‖β̂ − β0‖1

≤
√
na∗γn‖β̂ − β0‖1

= OP (
√
nγns0λ)

= oP (1).

Next, we show that
√
ncT Θ̂(Σ̂−Bn)(β̂ − β0) = oP (1). Note that

Σ̂−Bn = (Σ̂− Σβ0) + (Σβ0 − ῭
n(β0)) + (῭

n(β0)−Bn). (3.12)

By the proof of Lemma III.9, we see that with λ �
√

log(p)/n, ‖Σ̂−Σβ0‖∞ = OP (s0λ).

We rewrite

Σβ0 − ῭
n(β0) = E

τ∫
0

{Xi − η0(t; β0)}⊗2eX
T
i β

0

1(Yi ≥ t)λ0(t)dt

−
τ∫

0

{
µ̂2(t; β0)− µ̂1(t; β0)µ̂T1 (t; β0)

µ̂0(t; β0)

}
λ0(t)dt

− 1

n

n∑
i=1

τ∫
0

{
µ̂2(t; β0)

µ̂0(t; β0)
−
[
µ̂1(t; β0)

µ̂0(t; β0)

]⊗2
}
dMi(t)

=

τ∫
0

{µ2(t; β0)− µ̂2(t; β0)}λ0(t)dt

+

τ∫
0

{
µ̂1(t; β0)µ̂T1 (t; β0)

µ̂0(t; β0)
− µ1(t; β0)µT1 (t; β0)

µ0(t; β0)

}
λ0(t)dt

− 1

n

n∑
i=1

τ∫
0

{
µ̂2(t; β0)

µ̂0(t; β0)
−
[
µ̂1(t; β0)

µ̂0(t; β0)

]⊗2
}
dMi(t). (3.13)

Similar to the proof in Lemma III.6, we can show that supt∈[0,τ ] ‖µ̂2(t; β0)−µ2(t; β0)‖∞ =
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OP (
√

log(p)/n), and thus ‖
∫ τ

0
{µ2(t; β0)−µ̂2(t; β0)}λ0(t)dt‖∞ ≤ supt∈[0,τ ] ‖µ̂2(t; β0)−

µ2(t; β0)‖∞
∫ τ

0
λ0(t)dt = OP (

√
log(p)/n). Since

µ̂1µ̂
T
1

µ̂0

− µ1µ
T
1

µ0

=
µ̂1µ̂

T
1

µ̂0µ0

(µ0 − µ̂0) +
1

µ0

[(µ̂1 − µ1)µ̂T1 + µ1(µ̂1 − µ1)T ]

in the second term of (3.13), by (A1) and Lemma III.6,

∥∥∥∥∥∥
τ∫

0

{
µ̂1(t; β0)µ̂T1 (t; β0)

µ̂0(t; β0)
− µ1(t; β0)µT1 (t; β0)

µ0(t; β0)

}
λ0(t)dt

∥∥∥∥∥∥
∞

= OP (
√

log(p)/n).

1

n

n∑
i=1

τ∫
0

{
µ2(t; β0)

µ0(t; β0)
−
[
µ1(t; β0)

µ0(t; β0)

]⊗2
}
dMi(t) is a sum of n independent and identi-

cally distributed mean zero terms, and each term

∥∥∥∥∥∥
τ∫

0

{
µ2(t; β0)

µ0(t; β0)
−
[
µ1(t; β0)

µ0(t; β0)

]⊗2
}
dMi(t)

∥∥∥∥∥∥
∞

is bounded by 2K2(1+eK1Λ0(τ)) uniformly for all i and t ∈ [0, τ ]. Similar to the proof

of ‖An‖∞ = OP (
√

log(p)/n) in Lemma III.9, by Hoeffding’s concentration inequality,∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
µ2(t; β0)

µ0(t; β0)
−
[
µ1(t; β0)

µ0(t; β0)

]⊗2
}
dMi(t)

∥∥∥∥∥∥
∞

= OP (
√

log(p)/n). It is easy to see

that

sup
t∈[0,τ ]

∥∥∥∥∥
{
µ̂2(t; β0)

µ̂0(t; β0)
−
[
µ̂1(t; β0)

µ̂0(t; β0)

]⊗2
}
−

{
µ2(t; β0)

µ0(t; β0)
−
[
µ1(t; β0)

µ0(t; β0)

]⊗2
}∥∥∥∥∥
∞

= OP

(√
log(p)

n

)
.

Then ∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
µ̂2(t; β0)

µ̂0(t; β0)
−
[
µ̂1(t; β0)

µ̂0(t; β0)

]⊗2
}
dMi(t)

− 1

n

n∑
i=1

τ∫
0

{
µ2(t; β0)

µ0(t; β0)
−
[
µ1(t; β0)

µ0(t; β0)

]⊗2
}
dMi(t)

∥∥∥∥∥∥
∞

= OP

(√
log(p)

n

)
,

and thus for the third term in (3.13),

∥∥∥∥∥∥ 1

n

n∑
i=1

τ∫
0

{
µ̂2(t; β0)

µ̂0(t; β0)
−
[
µ̂1(t; β0)

µ̂0(t; β0)

]⊗2
}
dMi(t)

∥∥∥∥∥∥
∞

=
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OP (
√

log(p)/n). Therefore, by (3.13), ‖Σβ0 − ῭
n(β0)‖∞ = OP (

√
log(p)/n).

For the (j, k)th element in ῭
n(β), denoted as ῭

njk(β), by the mean value theorem,

we have

῭
njk(β̃

(j))− ῭
njk(β

0) = (β̃(j) − β0)T
∂ ῭

njk(β)

∂β

∣∣∣∣∣
β=β

(jk)

,

where β
(jk)

lies in the segment between β̃(j) and β0. Under assumptions (A1) – (A3),

when ‖β − β0‖1 ≤ δ′ for δ′ > 0 small enough,

∥∥∥∥∥∂ ῭
njk(β)

∂β

∥∥∥∥∥
∞

is bounded by some

constant related to δ′ uniformly for all (j, k). Since s0λ = o(1), we have ‖Bn −

῭
n(β0)‖∞ ≤ OP (‖β̂ − β0‖1) = OP (s0λ).

Combining the three parts in (3.12), we have that for λ �
√

log(p)/n, ‖Σ̂−Bn‖∞ =

OP (s0λ). Then

|
√
ncT Θ̂(Σ̂−Bn)(β̂ − β0)| ≤

√
n‖c‖1‖Θ̂‖∞,∞‖Σ̂−Bn‖∞‖β̂ − β0‖1

≤ OP (
√
n‖Θβ0‖1,1(s0λ)2).

Then, we show that the variance estimator is consistent, i.e. cT (Θ̂−Θβ0)c→P 0

as n→∞.

cT (Θ̂−Θβ0)c ≤ ‖c‖2
1‖Θ̂−Θβ0‖∞

≤ a2
∗OP (γn‖Θβ0‖1,1) = oP (1).

Finally, by the arguments above and Slutsky’s theorem, it holds that
√
ncT (̂b −

β0)/(cT Θ̂c)1/2 D→ N(0, 1). �
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CHAPTER IV

Confidence Intervals for Stratified Cox Model with

Many Covariates: With Applications to Kidney

Transplant Data

4.1 Introduction

In 2016, nearly 125,000 people in the United States started treatment for end stage

renal disease (ESRD), and more than 726,000 were on dialysis or were living with a

kidney transplant, according to a 2019 Centers for Disease Control and Prevention

report1. Successful renal transplantation improves the quality of life and increases

survival for patients with ESRD, as compared with long-term dialysis (Wolfe et al.,

1999). There are still ongoing challenges to optimize access to kidney transplant

and graft survival. It is thus crucial to study the potential risk factors of renal

transplant failure to provide evidence-based explanations and improve prediction and

prognosis. Recipient’s and donor’s age affect graft survival, although donor’s age may

have much stronger effects than those of recipient’s age (Kasiske and Snyder , 2002).

Other important factors may include, but limited to, immunosuppressive therapy,

cardiac or respiratory disease, obesity, chronic infection such as HIV or hepatitis and

1See the web content https://www.cdc.gov/kidneydisease/pdf/2019_

National-Chronic-Kidney-Disease-Fact-Sheet.pdf
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diabetes (Rodger , 2012; Legendre et al., 2014).

United Network for Organ Sharing (UNOS) is the non-profit organization that

manages the organ transplant system under contract with the federal government in

the United States (https://unos.org/). The Scientific Registry of Transplant Re-

cipients (SRTR) system has been keeping records of kidney transplant information

from waitlisted candidates, recipients and donors in the United States, submitted by

members of the Organ Procurement and Transplantation Network (OPTN). Post-

transplant outcomes such as graft survival and patient survival are closely monitored

at UNOS. Therefore, the SRTR database is a rich resource for studying kidney trans-

plantation. While the SRTR website2 has only reported the regression coefficients in

a Cox proportional hazards model for a selective subset of factors that are considered

predictive of the post-transplant outcomes, our primary goal is to study the joint as-

sociations of as many potential risk factors as possible on patient graft survival after

kidney transplantation.

Many of these risks factors are very complex and the number of covariates can

easily increase beyond the level where the conventional survival models can provide

reliable statistical inference on their associations. In addition, the kidney transplant

center where a transplant occurs also plays an important role, for example, through

the quality of care delivered to patients. Although there are statistical methods

developed to incorporate the center effects, e.g. He et al. (2019) with a lognormal

frailty, they would usually bring additional computational complexity and are not our

main focus.

We consider the stratified Cox proportional hazards model (Kalbfleisch and Pren-

tice, 2002) in this chapter with potentially a diverging number of covariates, to which

we extend the inferential method of de-biasing lasso proposed in Chapter III. The

stratified Cox model has many applications in biomedical studies and allows for dif-

2https://www.srtr.org/reports-tools/posttransplant-outcomes/
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ferent baseline hazards in different strata, which is particularly useful when some

covariate effects do not satisfy the proportional hazards assumption or data are strat-

ified based on some factors not of primary interest. A stratification factor can be

gender, age groups or geographic areas, and in the example of kidney transplants,

stratification can be naturally based on transplant centers. When the number of

covariates is large compared to, though not necessarily larger than, the sample size,

the conventional methods, e.g. the maximum partial likelihood estimation, may give

rise to very biased estimates and unreliable inference results. Morris et al. (2018)

implemented the gradient boosting algorithm for variable selection in the stratified

Cox model with high-dimensional covariates. However, to the best of our knowledge,

there lacks work on the empirical and theoretical studies of statistical inference in the

stratified Cox model with a diverging number of covariates.

The rest of this chapter is organized as follows. Section 4.2 introduces the setup of

the stratified Cox proportional hazards model and the de-biasing lasso approach for

inference on the regression parameters. Section 4.3 provides the theoretical results for

the de-biased lasso estimator under certain regularity conditions. Simulation studies

and an application to the national kidney transplant data are presented in Section

4.4 and Section 4.5, respectively. Finally, technical proofs of the main theorem and

useful lemmas are provided in Section 4.6.

4.2 Method

4.2.1 Stratified Cox proportional hazards model

We first introduce some notation. Let T denote the underlying failure time, and

C the censoring time, which is assumed independent of T given the p-dimensional

covariates of interest, X ∈ Rp. δ = 1(T ≤ C) is the event indicator and Y =

min(T,C) denotes the observed survival time. Suppose that in the kth stratum,
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we have nk observations, k = 1, · · · , K, and N =
∑K

k=1 nk is the total number of

observations in the data. Observations within the kth stratum are indexed by i,

i = 1, · · · , nk.

The stratified Cox model assumes that the true hazard function for the underlying

failure time Tki, conditional on Xki, is

λki(t|Xki) = λ0k(t) exp{XT
kiβ

0},

where β0 = (β0
1 , . . . , β

0
p)
T ∈ Rp is an unknown vector of common regression coeffi-

cients across strata, and λ0k(t) is the unknown baseline hazard function in stratum

k. The problem of interest is the estimation and reliable inference on the regression

coefficients β0.

We assume independence between strata and among observations in each stratum.

The negative log partial likelihood is written as

`(β) = − 1

N

K∑
k=1

nk∑
i=1

[
βTXki − log

{
1

nk

nk∑
j=1

1(Ykj ≥ Yki) exp(βTXkj)

}]
δki. (4.1)

The negative log partial likelihood (4.1) can be rewritten as

`(β) = −
K∑
k=1

nk
N

1

nk

nk∑
i=1

[
βTXki − log

{
1

nk

nk∑
j=1

1(Ykj ≥ Yki) exp(βTXkj)

}]
δki

=
K∑
k=1

nk
N
`k(β),

where `k(β) denotes the usual negative log likelihood for the kth stratum. Let ˙̀(β)
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and ῭(β) be the first and the second order derivatives with respect to β. Here,

˙̀(β) = − 1

N

K∑
k=1

nk∑
i=1

{
Xki −

µ̂1k(Yki; β)

µ̂0k(Yki; β)

}
δki,

῭(β) =
1

N

K∑
k=1

nk∑
i=1

{
µ̂2k(Yki; β)

µ̂0k(Yki; β)
−
[
µ̂1k(Yki; β)

µ̂0k(Yki; β)

]⊗2
}
δki,

where µ̂rk(t; β) = nk
−1
∑nk

j=1 1(Ykj ≥ t)X⊗rkj exp{XT
kjβ}, r = 0, 1, 2.

4.2.2 De-biasing the lasso estimator

Similar to the Cox model, the lasso estimator in the stratified Cox model minimizes

the penalized negative log partial likelihood, i.e.

β̂ = arg minβ∈Rp{`(β) + λ‖β‖1} (4.2)

for some tuning parameter λ > 0.

The de-biased lasso estimator is defined as

b̂ = β̂ − Θ̂ ˙̀(β̂), (4.3)

where −Θ̂ ˙̀(β̂) acts as a bias correction term from β̂. In (4.3), Θ̂ is obtained by

solving quadratic programming problems, which is parallel to the single stratum case

in Chapter III. Let

Σ̂ =
1

N

K∑
k=1

nk∑
i=1

δki

[
Xki − η̂k(Yki; β̂)

]⊗2

,

where η̂k(t; β) = µ̂1k(t; β)/µ̂0k(t; β) is the vector of weighted average covariates. For

each j = 1, · · · , p, let m(j) be the solution to the following quadratic programming
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problem

min
β∈Rp

{
mT Σ̂m : ‖Σ̂m− ej‖∞ ≤ γ

}
, (4.4)

where γ > 0 is a tuning parameter that controls the bias correction. Then we define

the p× p matrix Θ̂ = (m(1), · · · ,m(p))T , i.e. with m(j)T as the jth row.

As has been shown in Chapter III, it is very important to select a proper tuning

parameter γ in (4.4) to achieve the desirable amount of bias correction and gener-

ate honest confidence intervals. Through extensive simulations, we have found that

Algorithm 3.1 in Chapter III is still feasible for selecting the tuning parameter γ in

the case of stratification, except that we need to modify the random data splitting

in the cross-validation. Instead of randomly splitting the whole dataset into multiple

equally sized folds, one should split the data within each stratum into different folds

simultaneously as before, so that each of the final cross-validation folds has data ag-

gregated from all the strata. We will omit the outline of detailed algorithm due to

overwhelming overlaps with Algorithm 3.1 in Chapter III.

4.3 Theoretical results

We provide theoretical justification for the proposed de-biased lasso estimator and

the corresponding inference procedure in Section 4.2. Throughout this section, the

number of strata K is considered fixed and we proceed by allowing the minimum

number of observations nmin = min1≤k≤K nk to increase. In addition, it is assumed

that the proportion of observations in each stratum
nk
N
→ rk as nmin →∞, for some

rk ∈ (0, 1), k = 1, · · · , K.

For convenience, we define µhk(t; β) = E[µ̂hk(t; β)], the expectation of µ̂hk(t; β)

in Section 4.2.1, h = 0, 1, 2, k = 1, · · · , K. The population-level weighted covariate
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process for η̂k(t; β) = µ̂1k(t; β)/µ̂0k(t; β) is ηk0(t; β) = µ1k(t; β)/µ0k(t; β). Let

Σβ0,k = E[{Xki − ηk0(t; β0)}⊗2δki]

be the population-level information matrix for the kth stratum, k = 1, · · · , K. The

total information matrix is then defined as a weighted average of the stratum-specific

information matrices,

Σβ0 =
K∑
k=1

rkΣβ0,k.

The inverse information matrix is Θβ0 = Σ−1
β0 , which the matrix Θ̂ obtained from

solving (4.4) can be viewed as an approximation for.

To prove the main theoretical result of this chapter, we assume the following

regularity conditions similar to those in Chapter III.

(A1) Covariates are almost surely uniformly bounded, i.e. ‖Xki‖∞ ≤ M for some

constant M > 0.

(A2) |XT
kiβ

0| ≤ M1 uniformly for all k and i with some constant M1 > 0, almost

surely.

(A3) The follow-up time stops at a finite time point τ > 0, with probability π0 =

mink,i P (Yki ≥ τ) > 0.

(A4) For any t ∈ [0, τ ],

cTΘβ0

cTΘβ0c

 t∫
0

{
µ2k(u; β0)− µ1k(u; β0)µ1k(u; β0)T

µ0k(u; β0)

}
dΛ0k(u)

Θβ0c→ vk(t)

as n→∞, for some function vk(·) > 0, k = 1, · · · , K.

(A5) 0 < ε0 ≤ mink λmin(Σβ0,k) ≤ maxk λmax(Σβ0,k) ≤ 1/ε0 < ∞, where λmin and

λmax are the smallest and the largest eigenvalues of a matrix, respectively.
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Similar to Theorem III.4, if we are interested in the inference on Jβ0 for some

J ∈ Rm×p, the following assumption (A4)′ in required in replacement of (A4).

(A4)′ For any ω ∈ Rm,

ωTJΘβ0

ωTJΘβ0JTω

 t∫
0

{
µ2k(u; β0)− µ1k(u; β0)µ1k(u; β0)T

µ0k(u; β0)

}
dΛ0k(u)

Θβ0JTω → v′k(t)

as n→∞, for any t ∈ [0, τ ] and some function v′k(·) > 0, k = 1, · · · , K.

Theorem IV.1. Assume that ‖Θβ0‖2
1,1{maxk |nk/N − rk| + s0λ}p

√
log(p) → 0 as

nmin → ∞, with the tuning parameter λ �
√

log(p)/nmin for β̂ in (4.2). Under

assumptions (A1) – (A5), for any c ∈ Rp such that ‖c‖2 = 1 and ‖c‖1 ≤ a∗, where

a∗ > 0 is some absolute constant, we have

√
NcT (̂b− β0)

(cT Θ̂c)1/2

D→ N (0, 1).

Furthermore, suppose that the m × p matrix J has a fixed number of rows m and

full row rank, ‖J‖∞,∞ = O(1) and JΘβ0JT → F for some constant m ×m positive

definite matrix F . Then, with the additional assumption (A4)′,

√
NJ (̂b− β0)

D→ N (0, F ).

Theorem IV.1 shows the asymptotic normality for linear combinations of the de-

biased lasso estimator (4.3). Based on Theorem IV.1, one may construct the asymp-

totic level α confidence interval for cTβ0 as

[
cT b̂− zα/2(cT Θ̂c/N)1/2, cT b̂+ zα/2(cT Θ̂c/N)1/2

]
.

The proof of Theorem IV.1, almost parallel to that of Theorem III.1 and Theorem

III.4, is provided in Section 4.6 along with some useful lemmas.
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4.4 Simulation studies

We simulate K = 10 strata and, for simplicity, an equal number of subjects

nk ≡ n = 60 per stratum, with p = 100 covariates. The covariates X are first

simulated independently from multivariate Gaussian distribution, with mean zero and

two covariance structures, independence and AR(1) with correlation ρ = 0.5, in two

different settings. The simulated covariates are then truncated at ±2.5 if they exceed

the bound. The first element β0
1 in the true regression coefficient vector β0 varies from

0 to 2 by increment 0.2, four of the rest coefficients are arbitrarily chosen to take values

of 1, 1, 0.5 and 0.5, and all others are zero. Constant baseline hazards for different

strata are simulated as λ0k(t) = λ0k ∼ Uniform(0.1, 0.5). The underlying survival

time T in the kth stratum, given covariates X, follows an exponential distribution

with constant hazard λ0k exp{XTβ0}. The censoring time C, independent of T , is

simulated from Uniform(1, 30) and truncated at the maximum observation time τ =

20. And the observed survival time Y = min(T,C). We monitor the estimation

bias for β0
1 over a range of [0, 2], as well as its model-based standard error, coverage

probability of 95% confidence interval and empirical standard error. Besides the

proposed method (qp), we also include the oracle estimator as if the true model were

known (oracle) and the usual maximum partial likelihood estimator (mple). We

use 5-fold cross-validation to select tuning parameters, both for the lasso estimator

in cv.glmnet() and for γ in qp. For each value of β0
1 , the simulation is repeated 200

times.

Figure 4.1 and Figure 4.2 show the simulation results under the independence and

the AR(1) covariance structures for the covariates. The conventional mple yields

estimates for β0
1 with the largest biases and variation. When β0

1 = 0, the coverage

probability of the 95% confidence interval from mple is only 91% in Figure 4.2, and

the corresponding type 1 error of 9% is beyond the target level of 5%. The coverage

probability from mple continues to drop as β0
1 increases, to 28% when β0

1 = 2 in
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Figure 4.1: Simulation results when K = 10, n = 60, p = 100 and covariates follow
N(0, Ip). (a) Estimation bias for β0

1 , (b) Empirical coverage probability of 95% con-
fidence interval for β0

1 , (c) Model-based standard error and (d) Empirical standard
error. The x-axis represents the true value of the first regression coefficient β0

1 .
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Figure 4.2: Simulation results when K = 10, n = 60, p = 100 and covariates have
AR(1) covariance structure (ρ = 0.5). (a) Estimation bias for β0

1 , (b) Empirical
coverage probability of 95% confidence interval for β0

1 , (c) Model-based standard
error and (d) Empirical standard error. The x-axis represents the true value of the
first regression coefficient β0

1 .
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Figure 4.2. On the contrary, our proposed method qp preserves the type 1 error rates

in both cases and the biases are very close to those from the oracle estimator. Its 95%

confidence interval coverage probability lingers beyond the 85% level for most of the

signal values. Comparing the standard errors, we find that the model-based equation

has underestimated the true variability of the proposed de-biased lasso estimator for

larger signals, which has an adverse effect on the coverage probability.

4.5 Application to the national kidney transplant data

In this section, we apply the proposed de-biasing lasso approach to the U.S. kidney

transplant data, collected from the SRTR system on all donors, waitlisted candidates

and transplant recipients in the United States.3 In this analysis, we have included

the patients who were greater than 25 years old at the time of receiving transplant

from cadaveric donors during the year of 2000 to 2001. Donor age is a very important

factor for kidney graft survival, whose effects are usually stronger than recipient age,

and there has been many discussions over the matching between recipient and donor

age (Kasiske and Snyder , 2002; Veroux et al., 2012). We first separated the data into

three groups for further analysis, based on whether recipient age is in the range of

[25, 45], (45, 60] or greater than 60 years old. Within each group, transplant centers

with less than 20 transplants are excluded. The final total sample size is 4432, 5564

and 1643, in these age groups respectively. Table 4.1 summarizes the sample size

information, age and gender characteristics in the study population by recipient age

group. The 45-60 and > 60 years old groups have the largest and the smallest sample

size, respectively. The number of patients within each center varies significantly, and

the distribution is very skewed with mostly small centers in all three groups (Figure

4.3).

3The interpretation of the presented results does not reflect those of the SRTR or the U.S.
government.
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Table 4.1: Study population characteristics by recipient age group

Recipient age group [25, 45] (45, 60] > 60
Variable Mean (SD) / Count (%)
# Centers 106 (–) 126 (–) 47 (–)
# Patients 4432 (100%) 5564 (100%) 1643 (100%)
# Events 2101 (47.4%) 3043 (54.7%) 1156 (70.4%)
Recipient age 36.9 (5.8) 52.9 (4.2) 66.4 (4.3)
Donor age (years)

≤ 10 301 (6.8%) 263 (4.7%) 67 (4.1%)
(10, 20] 749 (16.9%) 818 (14.7%) 166 (10.1%)
(20, 30] 813 (18.3%) 906 (16.3%) 207 (12.6%)
(30, 40] 673 (15.2%) 784 (14.1%) 201 (12.2%)
(40, 50] 1003 (22.6%) 1204 (21.6%) 298 (18.1%)
(50, 60] 697 (15.7%) 1096 (19.7%) 366 (22.3%)
> 60 196 (4.4%) 493 (8.9%) 338 (20.1%)

Recipient gender
Male 2609 (58.9%) 3420 (61.5%) 1056 (64.3%)
Female 1823 (41.1%) 2144 (38.5%) 587 (35.7%)

Donor gender
Male 2679 (60.4%) 3262 (58.6%) 926 (56.4%)
Female 1753 (39.6%) 2302 (41.4%) 717 (43.6%)

The failure time of interest is defined as the time from a patient’s receiving kidney

transplantation to graft failure, which is when a transplanted kidney ceases to func-

tion properly, or death, whichever occurred first. Figure 4.4 plots the group-specific

Kaplan-Meier curves and the complementary log-log curves for overall survival prob-

abilities. Pooling all data without considering center effects, the test statistic for pro-

portional hazards assumption (Grambsch and Therneau, 1994) is χ2 = 22.86 (df=2,

p-value=1.09× 10−5). Thus, to proceed, we fit a separate model to each of the three

recipient age groups. One of our analytic goals is to estimate the effects of donor age

(categorized by an increment of 10 years), as well as recipient and donor gender, in

each recipient age group and observe if there is any difference across recipient groups.

The other primary goal is to compare the major significant factors and their effects

across recipient groups. A total number of 132 variables are involved in the analysis,

including but limited to recipient age (linear), indicators for donor age, candidate
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Figure 4.3: Histograms of transplant center size in the three recipient age groups

Figure 4.4: Kaplan-Meier curves (left) and complementary log-log (right) of the sur-
vival probabilities in the three recipient age groups

and donor’s gender, race, history of diabetes and hypertension, blood type and HLA

matching, recipient’s primary kidney diagnosis. Since the transplant center effects

are not of primary interest yet may affect graft survival through, e.g. quality of pa-

tient care, each group-specific Cox model is stratified by recipient transplant center.

For the de-biasing lasso approach via quadratic programming (QP), we still use the

5-fold cross-validation for selecting tuning parameters for both λ and γ, as in Section

4.4. For comparison, we also include the results from the maximum partial likelihood

estimation (MPLE).

Figure 4.5 shows that the point estimates from the de-biased lasso estimator are

generally smaller in magnitudes compared to MPLE in the older than 60 age group,

which has only 1643 patients, while are close to those from the MPLE for the vast
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majority of variables in the largest (45, 60] age group. This indicates that the num-

ber of variables is relatively large compared to the sample size in the older than 60

age group. The model-based standard error estimates from de-biasing the lasso are

consistently smaller than those of the MPLE, leading to narrower confidence intervals.

Due to the space limit, for each recipient age group, we report the 95% confidence

intervals for regression coefficients of a subset of variables whose p-values from de-

biasing the lasso are less than 0.05, that is, the corresponding confidence intervals

for log hazard ratio exclude zero; see Figure 4.6 for the (25, 45] age group, Figure

4.7 for the (45, 60] age group and Figure 4.8 for the older than 60 age group. In all

three age groups, whether any medications have been given to recipients for main-

tenance or anti-rejection (“1: REC IMMUNO MAINT MEDS Y”, Yes versus No)

has the largest effects. It is consistent with long-standing studies on the need of im-

munosuppression for prevention of graft rejection (Opelz , 1994). But the de-biased

lasso estimates are more consistent across groups, while the MPLE is prone to in-

flated estimates with smaller sample sizes. The de-biased lasso is more powerful to

detect the significant associations that the MPLE does not, such as candidate being

Hispanic (“19: CAN Hisp” in Figure 4.6) and recipient having primary diagnosis of

type 1 diabetes with insulin dependency and juvenile onset (“21: REC DGN 3011”

in Figure 4.6) in the (25, 45] age group, recipient having primary diagnosis of hyper-

tensive nephrosclerosis compared to others (“20: REC DGN 3040” in Figure 4.7), of

type 1 diabetes with insulin dependency and juvenile onset compared to others (“26:

REC DGN 3011” in Figure 4.6) in the (45, 60] age group, and donor being white com-

pared to black (“13: DON RACE SRTR white” in Figure 4.8) and candidate having

symptomatic peripheral vascular disease (“14: CAN PERIPH VASC Y” in Figure

4.8) in the older than 60 age group.

While recipient age has no significant effect on death censored graft survival in the

younger two groups, an older age is associated with increased hazard in the older than
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Figure 4.5: Comparison between the de-biased lasso estimator via quadratic pro-
gramming (y-axis) and the MPLE (x-axis) in their point estimates and model-based
standard error estimates. The red lines are the 45 degree lines.

60 years old group (for one year older, the de-biased lasso estimate of hazard ratio

= 1.03, 95% CI 1.01 - 1.04, p-value = 2.5 × 10−4). Figure 4.9 shows the estimated

hazard ratios of different donor age categories compared to the reference of donor

age between 20-30 years old. Again, with smaller sample sizes, the de-biased lasso

estimates are less inflated and more stable than the MPLE. Among recipients between

25 and 60 years old, we observe increased hazards of receiving kidneys from donors

aged 50-60 and over 60, while this effect starts to manifest earlier from donors aged

40-50 among recipients over 60 years old. For kidney transplantation, studies have

conferred conflicting results on donor and recipient age combinations (Dayoub et al.,

2018). Our results from this database can contribute more insights to the existing

literature. Table 4.2 reports the estimated effects of recipient and donor gender in

each recipient age group. Jointly testing whether the recipient and donor gender

have effects on graft survival does not show any significance, with test statistics 3.08

(p-value = 0.21), 3.06 (p-value = 0.22) and 0.39 (p-value = 0.82) in the three groups

respectively.
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Figure 4.6: Point estimates and 95% confidence intervals for the de-biased lasso esti-
mator via quadratic programming and the MPLE in the (25, 45] age group. Only the
variables whose p-values from the de-biasing lasso are less than 0.05 are reported, in
ascending order of their p-values.
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Figure 4.7: Point estimates and 95% confidence intervals for the de-biased lasso esti-
mator via quadratic programming and the MPLE in the (45, 60] age group. Only the
variables whose p-values from the de-biasing lasso are less than 0.05 are reported, in
ascending order of their p-values.
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Figure 4.8: Point estimates and 95% confidence intervals for the de-biased lasso es-
timator via quadratic programming and the MPLE in the older than 60 age group.
Only the variables whose p-values from the de-biasing lasso are less than 0.05 are
reported, in ascending order of their p-values.
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Figure 4.9: Estimated hazard ratios of donor age, compared to the reference donor age
(20, 30], across three recipient age groups. Color stars at the bottom indicate signifi-
cant difference from the reference donor age group at level 0.05 by their corresponding
methods.

Table 4.2: Estimated recipient and donor gender effects on graft survival across three
recipient age groups, comparing male to the reference level of female.

MPLE QP

Recipient age Gender effect Est SE P-value Est SE P-value

(25, 45]
Recipient 0.006 0.064 0.930 3× 10−4 0.051 0.996
Donor -0.025 0.057 0.660 -0.078 0.044 0.079

(45, 60]
Recipient 0.050 0.060 0.405 0.047 0.049 0.339
Donor -0.005 0.050 0.928 -0.055 0.037 0.143

> 60
Recipient -0.026 0.107 0.812 0.014 0.089 0.870
Donor 0.087 0.085 0.305 0.037 0.062 0.546

4.6 Technical proofs

The proofs presented in this section are similar to those for the unstratified Cox

proportional hazards model in Chapter III, but with the additional complexity of

stratification. For completeness of notation, we define the counting process Nki(t) =

1(Yki ≤ t, δki = 1) and the intensity processAki(t; β) =
∫ t

0
1(Yki ≥ s) exp(XT

kiβ)dΛ0k(s),

where Λ0k(t) =
∫ t

0
λ0k(s)ds is the baseline cumulative hazard function, k = 1, · · · , K, i =

1, · · · , nk. Let Mki(t; β) = Nki(t)− Aki(t; β). Mki(t; β
0) is a martingale with respect

to the filtration Fki(t) = σ{Nki(s), 1(Yki ≥ s), Xki : s ∈ (0, t]}. {Xki − η̂k(t; β
0)}

is predictable with respect to the filtration F(t) = σ{Nki(s), 1(Yki ≥ s), Xki : s ∈

(0, t], k = 1, · · · , K, i = 1, · · · , nk}.
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Lemma IV.2. Under Assumptions (A1) – (A3), for k = 1, · · · , K, we have

sup
t∈[0,τ ]

|µ̂0k(t; β
0)− µ0k(t; β

0)| = OP (
√

log(p)/n),

sup
t∈[0,τ ]

‖µ̂1k(t; β
0)− µ1k(t; β

0)‖∞ = OP (
√

log(p)/n),

sup
t∈[0,τ ]

‖η̂k(t; β0)− ηk0(t; β0)‖∞ = OP (
√

log(p)/n).

Lemma IV.2 is simply the result of Lemma III.6 applied to each of the K strata.

We omit its proof here.

Lemma IV.3. Assume p2 log(p)/nmin → 0. Under Assumptions (A1) – (A5), for

any c ∈ Rp such that ‖c‖2 = 1 and ‖c‖1 ≤ a∗ with some absolute constant a∗ > 0,

√
NcTΘβ0 ˙̀(β0)√

cTΘβ0c

D→ N(0, 1).

Proof of Lemma IV.3. This proof is similar to Lemma III.7, and thus we will

omit some details for simplicity. We rewrite

−
√
NcTΘβ0 ˙̀(β0)√
cTΘβ0c

=
1√
N

K∑
k=1

nk∑
i=1

cTΘβ0√
cTΘβ0c

{
Xki −

µ̂1k(Yki; β
0)

µ̂0k(Yki; β0)

}
δki

=
1√
N

K∑
k=1

nk∑
i=1

τ∫
0

cTΘβ0√
cTΘβ0c

{
Xki −

µ̂1k(t; β
0)

µ̂0k(t; β0)

}
dNki(t)

=
1√
N

K∑
k=1

nk∑
i=1

τ∫
0

cTΘβ0√
cTΘβ0c

{
Xki −

µ̂1k(t; β
0)

µ̂0k(t; β0)

}
dMki(t). (4.5)

Denote U(t) =
1√
N

K∑
k=1

nk∑
i=1

t∫
0

cTΘβ0√
cTΘβ0c

{
Xki −

µ̂1k(s; β
0)

µ̂0k(s; β0)

}
dMki(s). Then the vari-
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ation process for U(t) is

〈U〉(t) =
K∑
k=1

nk∑
i=1

1

N

t∫
0

cTΘβ0

cTΘβ0c

{
Xki − η̂k(u; β0)

}⊗2
1(Yki ≥ u)eX

T
kiβ

0

dΛ0k(u)Θβ0c

=
cTΘβ0

cTΘβ0c

 K∑
k=1

nk
N

t∫
0

{
µ̂2k(u; β0)− µ̂1k(u; β0)µ̂T1k(u; β0)

µ̂0k(u; β0)

}
dΛ0k(u)

Θβ0c.

(4.6)

By (A4), similar to the proof of Lemma III.7, we have

cTΘβ0

cTΘβ0c

 t∫
0

{
µ̂2k(u; β0)− µ̂1k(u; β0)µ̂T1k(u; β0)

µ̂0k(u; β0)

}
dΛ0k(u)

Θβ0c

=
cTΘβ0

cTΘβ0c

 t∫
0

{
µ2k(u; β0)− µ1k(u; β0)µT1k(u; β0)

µ0k(u; β0)

}
dΛ0k(u)

Θβ0c+ oP (1)

→vk(t).

Since nk/N → rk, then 〈U〉(t)→P

∑K
k=1 rkvk(t).

For any ε > 0, define Gki(u) =
1√
N

cTΘβ0√
cTΘβ0c

{
Xki −

µ̂1k(u; β0)

µ̂0k(u; β0)

}
and the trun-

cated process Uε(t) =
K∑
k=1

nk∑
i=1

t∫
0

Gki(u)1(|Gki(u)| > ε)dMki(u). The variation process

of Uε(t) is

〈Uε〉(t) =
K∑
k=1

nk∑
i=1

t∫
0

G2
ki(u)1(|Gki(u)| > ε)dAki(u),

where dAki(u) = 1(Yki ≥ u)eX
T
kiβ

0
dΛ0k(u). Since

|
√
NGki(u)| ≤ a∗‖Θβ0‖1,12Mλ

−1/2
min (Θβ0) = O(

√
p),

1(|Gki(u)| > ε) = 0 eventually as p/N → 0. So 〈Uε〉(t) →P 0. By the martingale

central limit theorem, the conclusion holds.
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�

Lemma IV.4. Under Assumptions (A1) – (A4), for λ �
√

log(p)/nmin, the lasso

estimator β̂ satisfies

‖β̂ − β0‖1 = OP (s0λ),
1

N

K∑
k=1

nk∑
i=1

|XT
ki(β̂ − β0)|2 = OP (s0λ

2).

Proof of Lemma IV.4. This results from the proof in Kong and Nan (2014), with

minor modifications. An intermediate replacement for `k(β) can be defined as

˜̀
k(β) = − 1

nk

nk∑
j=1

[
βTXkj − log µ0k(Ykj; β)

]
δki.

The target parameter is β̄ = arg minβ E

{
K∑
k=1

nk
N
˜̀
k(β)

}
. Then the excess risk for any

given β is

E(β) = E

{
K∑
k=1

nk
N
˜̀
k(β)

}
− E

{
K∑
k=1

nk
N
˜̀
k(β̄)

}
.

�

Lemma IV.5. Under Assumptions (A1) – (A4), it holds with probability going to 1

that ‖Θβ0Σ̂− Ip‖∞ ≤ γ, with γ � ‖Θβ0‖1,1{max1≤k≤K |nk/N − rk|+ s0λ}.

Proof of Lemma IV.5. We first derive the rate for ‖Σ̂− Σβ0‖∞. Note that

‖Σ̂− Σβ0‖∞

≤

∥∥∥∥∥∥ 1

N

K∑
k=1

nk∑
i=1

τ∫
0

[
{Xki − η̂k(t; β̂)}⊗2 − {Xki − ηk0(t; β0)}⊗2

]
dNki(t)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

N

K∑
k=1

nk∑
i=1

τ∫
0

{Xki − ηk0(t; β0)}⊗2dNki(t)− Σβ0

∥∥∥∥∥∥
∞

≡ aN1 + aN2.
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Due to the boundness condition (A1),

aN1 ≤

∥∥∥∥∥∥ 1

N

K∑
k=1

nk∑
i=1

τ∫
0

{Xki − η̂k(t; β̂)}{ηk0(t; β0)− η̂k(t; β̂)}TdNki(t)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

N

K∑
k=1

nk∑
i=1

τ∫
0

{ηk0(t; β0)− η̂k(t; β̂)}{Xki − ηk0(t; β0)}TdNki(t)

∥∥∥∥∥∥
∞

≤4M

N

K∑
k=1

nk∑
i=1

τ∫
0

‖ηk0(t; β0)− η̂k(t; β̂)‖∞dNki(t)

≤4M

N

K∑
k=1

nk∑
i=1

τ∫
0

‖ηk0(t; β0)− η̂k(t; β0)‖∞dNki(t)

+
4M

N

K∑
k=1

nk∑
i=1

τ∫
0

‖η̂k(t; β0)− η̂k(t; β̂)‖∞dNki(t)

≤4MOP (
√

log(p)/nmin) + 4MOP (s0λ) = OP (s0λ),

where the last inequality is a result of Lemma IV.2 and the fact that supt∈[0,τ ] ‖η̂k(t; β0)−

η̂k(t; β̂)‖∞ = OP (‖β̂ − β0‖1) = OP (s0λ) (see the proof of Lemma III.9 in Chapter

III). Since Σβ0 =
∑K

k=1 rkΣβ0,k,

aN2 ≤

∥∥∥∥∥∥
K∑
k=1

nk
N

 1

nk

nk∑
i=1

τ∫
0

{Xki − ηk0(t; β0)}⊗2dNki(t)− Σβ0,k

∥∥∥∥∥∥
∞

+

∥∥∥∥∥
K∑
k=1

(nk
N
− rk

)
Σβ0,k

∥∥∥∥∥
∞

≤
K∑
k=1

nk
N

∥∥∥∥∥∥ 1

nk

nk∑
i=1

τ∫
0

{Xki − ηk0(t; β0)}⊗2dNki(t)− Σβ0,k

∥∥∥∥∥∥
∞

+

∥∥∥∥∥
K∑
k=1

(nk
N
− rk

)
Σβ0,k

∥∥∥∥∥
∞

.

The proof of Lemma III.9 in Chapter III shows that, for k = 1, · · · , K,

∥∥∥∥∥∥ 1

nk

nk∑
i=1

τ∫
0

{Xki − ηk0(t; β0)}⊗2dNki(t)− Σβ0,k

∥∥∥∥∥∥
∞

= OP (
√

log(p)/nk).
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So aN2 = OP (
√

log(p)/nmin) + O(maxk |nk/N − rk|). Therefore, ‖Σ̂ − Σβ0‖∞ =

OP (s0λ+ maxk |nk/N − rk|).

Finally, it is easy to see that

‖Θβ0Σ̂− Ip‖∞ = ‖Θβ0(Σ̂− Σβ0)‖∞ ≤ ‖Θβ0‖1,1‖Σ̂− Σβ0‖∞,

and ‖Θβ0Σ̂− Ip‖∞ = OP (‖Θβ0‖1,1{s0λ+ maxk |nk/N − rk|}). �

Lemma IV.6. Assume lim supnmin→∞ pγ ≤ 1− ε′ for some ε′ ∈ (0, 1). Then, under

assumptions (A1) – (A5), ‖Θ̂−Θβ0‖∞ = OP (γ‖Θβ0‖1,1).

The proof of Lemma IV.6 is identical to that of Lemma III.10 in Chapter III, and

thus will be omitted.

Lemma IV.7. Under Assumptions (A1) – (A4), for each t > 0,

P (‖ ˙̀(β0)‖∞ > t) ≤ 2Kpe−nmint
2/(8M2).

Proof of Lemma IV.7. Since ˙̀(β0) =
∑K

k=1
nk

N
˙̀
k(β

0), we have

Pr
(
‖ ˙̀(β0)‖∞ > t

)
≤ Pr

(
K∑
k=1

nk
N
‖ ˙̀
k(β

0)‖∞ > t

)

≤
K∑
k=1

Pr
(
‖ ˙̀
k(β

0)‖∞ > t
)

≤
K∑
k=1

2pe−nkt
2/(8M2).

The last inequality holds when we apply Lemma III.11 in Chapter III for each k =

1, · · · , K. �

Proof of Theorem IV.1. Let ˙̀
j(β) be the jth element of the derivative ˙̀(β). By the

mean value theorem, there exists β̃(j) between β̂ and β0 such that ˙̀
j(β̂) − ˙̀

j(β
0) =
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∂ ˙̀
j(β)

∂βT

∣∣∣
β=β̃(j)

(β̂−β0). Denote the p×p matrix D =

(
∂ ˙̀

j(β)

∂β

∣∣∣
β=β̃(1)

, · · · , ∂
˙̀
j(β)

∂β

∣∣∣
β=β̃(p)

)T
.

By the definition of the de-biased estimator b̂, cT (̂b− β0) can be decomposed as

cT (̂b− β0) = −cTΘβ0 ˙̀(β0)− cT (Θ̂−Θβ0) ˙̀(β0)

− cT (Θ̂Σ̂− Ip)(β̂ − β0) + cT Θ̂(Σ̂−D)(β̂ − β0)

= −cTΘβ0 ˙̀(β0) + (i) + (ii) + (iii),

where (i) = −cT (Θ̂ − Θβ0) ˙̀(β0), (ii) = −cT (Θ̂Σ̂ − Ip)(β̂ − β0) and (iii) = cT Θ̂(Σ̂ −

D)(β̂ − β0).

We first show
√
N(i) = oP (1) and

√
N(ii) = oP (1). By Lemma IV.6 and Lemma

IV.7,

√
N(i) ≤

√
N‖c‖1 · ‖Θ̂−Θβ0‖∞,∞ · ‖ ˙̀(β0)‖∞

≤
√
Na∗OP (pγ‖Θβ0‖1,1)OP (

√
log(p)/nmin)

= OP (‖Θβ0‖1,1pγ
√

log(p))

= oP (1).

By Lemma IV.4,

√
N(ii) ≤

√
N‖c‖1‖(Θ̂Σ̂− Ip)(β̂ − β0)‖∞

≤
√
Na∗‖Θ̂Σ̂− Ip‖∞‖β̂ − β0‖1

≤
√
Na∗γ‖β̂ − β0‖1

= OP (
√
Nγs0λ)

= oP (1).

We then show that
√
N(iii) = oP (1). Note that Σ̂ − D = (Σ̂ − Σβ0) + (Σβ0 −

῭(β0))+(῭(β0)−D). By the proof of Lemma IV.5, we see that with λ �
√

log(p)/nmin,
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‖Σ̂− Σβ0‖∞ = OP (s0λ+ maxk |nk/N − rk|). Based on the proof of Theorem III.1 in

Chapter III, for each stratum, ‖῭(k)(β0)−D(k)‖∞ = OP (
√

log(p)/nk), where D(k) =(
∂ ˙̀(k)

j (β)

∂β

∣∣∣∣
β=β̃(1)

, · · · , ∂
˙̀(k)
j (β)

∂β

∣∣∣∣
β=β̃(p)

)T

. Since the overall negative log partial likelihood

`(β) =
K∑
k=1

nk
N
`(k)(β), ‖῭(β0)−D‖∞ = OP (

√
log(p)/nmin). Also, ‖Σβ0,k− ῭(k)(β0)‖∞ =

OP (
√

log(p)/nk). Then

‖Σβ0 − ῭(β0)‖∞ ≤

∥∥∥∥∥
K∑
k=1

rkΣβ0,k −
K∑
k=1

nk
N

Σβ0,k

∥∥∥∥∥
∞

+

∥∥∥∥∥
K∑
k=1

nk
N

Σβ0,k −
K∑
k=1

nk
N

῭(k)(β0)

∥∥∥∥∥
∞

≤ K max
k

(|nk/N − rk|‖Σβ0,k‖∞) +KOP (
√

log(p)/nmin)

= OP (max
k
|nk/N − rk|+

√
log(p)/nmin).

Therefore, for λ �
√

log(p)/nmin, ‖Θ̂−D‖∞ = OP (s0λ+ maxk |nk/N − rk|), and

|
√
N(iii)| ≤

√
N‖c‖1‖Θ̂‖∞,∞‖Σ̂−D‖∞‖β̂ − β0‖1

≤ OP (
√
N‖Θβ0‖1,1(s2

0λ
2 + s0λmax

k
|nk/N − rk|)) = oP (1).

Finally, for the variance,

|cT (Θ̂−Θβ0)c| ≤ ‖c‖2
1‖Θ̂−Θβ0‖∞

≤ a2
∗OP (γ‖Θβ0‖1,1) = oP (1).

By Slutsky’s theorem and Lemma IV.3,
√
ncT (̂b− β0)/(cT Θ̂c)1/2 D→ N(0, 1). �
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CHAPTER V

Summary and Future Work

This dissertation has focused on the development of practically useful and theoreti-

cally sound statistical methods, based on the idea of de-biasing the lasso estimator, for

drawing reliable inference on the challenging cases of regression models with diverging

numbers of covariates – the generalized linear models in Chapter II, the unstratified

and stratified Cox proportional hazards models in Chapter III and Chapter IV, re-

spectively. As we have pointed out, many existing methods that can handle the “large

p, small n” scenario require sparse matrix estimation in their implementations and

sparsity assumptions in the corresponding inverse information matrices in the theo-

retical developments, the latter of which lack practical interpretations and can hardly

hold in general settings. The resulting estimators often have large residual biases in

practice, leading to poor confidence interval coverage and hypothesis testing results.

Although the theories we developed for our proposed methods reside in the “large

n, diverging p” scenario, they do not require the unrealistic sparsity assumptions

on the inverse information matrices and are shown to outperform their competitors.

This dissertation would make a great addition to the literature of high-dimensional

inference and careful reflections on the trade-off between high-dimensionality and

practicality. It would also be worthwhile to pursue the completion of theories with

possible modifications to the proposed de-biasing lasso methods, under the “large p,

110



small n” scenario but without the matrix sparsity assumptions.

The methods developed in this dissertation are based on the assumption of correct

model specification, i.e. the relationship between outcomes of interest and covariates

is correctly specified. In fact, estimating equations provide a generalization to many

classical estimation methods in that correct specification is only needed for a few

moments instead of the entire distribution (Godambe, 1991). One promising future

direction is to extend the de-biasing lasso approach with quadratic programming

discussed in Chapters III and IV to high-dimensional inference for more general esti-

mating equations.

Often, intrinsic group structures are present among covariates of interest, for ex-

ample, within biological pathways or indicators of different levels of a categorical

variable. Even though our theories justify making inference on multiple linear com-

binations simultaneously, including a group of variables as a special case, the number

of linear combinations allowed is fixed. Group lasso (Yuan and Lin, 2006) and its

variations enable grouped variable selection in an “all-in-all-out” fashion. Mitra and

Zhang (2016) has discussed the benefit of utilizing group sparsity in group inference

via a scaled group lasso in linear regression. Another future direction is to incorporate

the prior knowledge of group structures in the covariates beyond linear regression, and

explore whether adding group penalties in the variable selection stage could improve

the reliability of inference results on potentially a larger group of variables.

Efficient computation is a key component in the era of big data. Even though we

have demonstrated that our proposed method using quadratic programming is more

computationally efficient than one closely related competitor, CLIME, fast compu-

tation still remains as a challenging problem in the scale of biobank or electronic

health records data, usually with up to a few hundred thousands of records and mil-

lions of biomarkers. Especially, survival models pose additional difficulties due to

the computation of at-risk sets. It would make a great contribution to the world of
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data applications to modify the proposed algorithms in this dissertation and develop

computationally efficient softwares that can deliver reliable inference in the analysis

of such large scale data.
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