
Biomarker-Based Characterization of Chemical Exposures and Physiological Responses 
 

by 
 

Vy Kim Nguyen 

A dissertation submitted in partial fulfillment 
 of the requirements for the degree of  

Doctor of Philosophy 
(Bioinformatics) 

in The University of Michigan 
2020 

Doctoral Committee: 

Assistant Professor Justin Colacino, Co-Chair  
Professor Olivier Jolliet, Co-Chair 
Professor Kayvan Najarian 
Associate Professor Laura Rozek 
Associate Professor Maureen Sartor 
Dr. John Wambaugh, U.S. Environmental Protection Agency 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Vy Kim Nguyen 

 

nguyenvy@umich.edu 

 

ORCID iD:  0000-0002-6128-0523 

 

 

 

© Vy Kim Nguyen 2020 

 

 



 

 ii 

DEDICATION 
 

I dedicate this work to my mom to honor her for shaping me into the person who I am 

today. She sacrificed her dream job as a chemical engineer in Vietnam, so that my sister and I can 

be educated in the United States. She tutored me in science and math, particularly in 2nd grade 

math because I was failing at the time, thus instilling within me a passion for science and math 

that has carried me through to this milestone. 

  



 

 iii 

 

 

ACKNOWLEDGEMENTS 

I would first like to acknowledge my thesis co-advisors, Olivier Jolliet and Justin Colacino. 

I am very grateful that Olivier responded to my email titled “Your research is awesome!”, because 

his response facilitated this amazing and rewarding journey of our collaboration. Olivier is a 

dynamic and entertaining orator, inspiring me to incorporate such attributes into my own 

presentations. Olivier also has a profound skill in data interpretation, and I am so grateful to have 

him to challenge me to make informative data visualization tools. I am very grateful that Justin 

agreed to co-mentor me since the beginning of my graduate studies. Justin offered structure and 

organization to complement Olivier’s big research ideas, which was integral in helping me 

navigate the non-linear workflow of research. Justin is also an amazing writer with his mentorship 

helping to substantially improve my own scientific writing. Since using the ARC-TS cluster 

involves being charged by the second, Justin said that he would prefer not to receive a bill charged 

with an amount equivalent to my stipend, therefore encouraging me to optimize my code and 

helping me to achieve a dream goal of learning how to parallelize. I learned not only how to be a 

good scientist from Olivier and Justin, but due to their compassion for my wellbeing, I have also 

learned how to live a balanced life.  

I would also like to acknowledge Chirag Patel’s mentorship. Chirag inspired me to conduct 

research in medicine, and due to his support, my research took an interesting turn into biomedical 

informatics. Chirag made me learn the R tidyverse package, and it would be an understatement to 

say that learning tidyverse has been life changing. I code faster and analyze data more efficiently 



 

 iv 

than ever before. I learned not only how to be a rigorous computational scientist from Chirag, but 

due to his superb etiquette, I have also learned how to be polite and constructive. 

I would also like to acknowledge the other members of my dissertation committee, 

Maureen Sartor, Kayvan Najarian, Laura Rozek, and John Wambaugh for their outstanding input 

and support throughout this process. I am grateful for Maureen’s and Kayvan’s inputs to ground 

my research in data science. I am grateful for Laura’s and John’s endless enthusiasm for my 

research projects and plots. I am honored to have been mentorship by such exceptional scientists.  

Within the Jolliet (iMod) lab, I would like to thank Lei Huang, Jacob Kvasnicka, Katerina 

Stylianou, Karin Veltman, Cedric Wannaz, and Xingyue Zhang. Their guidance, mentoring, 

support, and feedback have contributed to help me grow as a rigorous scientist. In addition, their 

friendship has made the past four years so enjoyable as characterized with laughter and jokes in 

the office, lab outings, culinary adventures, and travels in Europe. I would particularly like to thank 

Jacob for his assistance and patience in poring over my writing and providing thoughtful feedback. 

I would like to thank Katerina as she played an integral part in helping me reach candidacy as we 

spend hours discussing how to address edits for my preliminary exam. I would also like to thank 

Cedric for his eagerness to share his computational knowledge along with his free and very honest 

advice.  

Within the Colacino Lab, I would like to thank Anagha Tapaswi, Nick Cemalovic, Chanese 

Forte, Juliet Heidt, Evan Hill, Adam Kahana, Sarah Karram, Lauren Middleton, Rachel Morgan, 

Nick Polakowski, Katelyn Polemi, Tasha Thong, and Sabrina Rocco. Their support, exchange of 

idea, and friendship have made my graduate studies that much more enjoyable. I cherish our 

summer outings, party sessions, conference attendances in Baltimore and Andover, and culinary 

adventures. I particularly like to thank Lauren Middleton for her unwavering support in all that I 



 

 v 

do and for her insightful and nuanced advice. I particularly like to thank Lauren, Rachel, Katelyn, 

and Sabrina for their thoughtfulness in putting together a care package to encourage me to finish 

this degree.  

Within the Patel (Rag) group, I would like to thank Jake Chung, Kajal Claypool, Andrew 

Deonarine, Undina Gisladottir, Alan Le Goallec, Chirag Lakhani, Nicole Parker, Nam Pho, 

Danielle Rasooly, Sivateja Tangirala, Braden Tierney, Tom van der Meer, and Jiaqi Xie. Their 

hospitality, encouragement, feedback, and support make my externship at Harvard a pleasure and 

honor. My repertoire of computational skills substantially improved as they provide the support 

and advice to further ground my dissertation in data science. I particularly would like to thank 

Alan for sharing his coding knowledge, because without his him, the mortality project would have 

been substantial harder. I would like to thank Jake for always be game to exchange idea and discuss 

analysis. I always look forward to these meetings, and I walk away so inspired. I would also like 

to thank Nicole for handling all the logistics to help facilitate the collaboration with Michigan and 

Harvard.  

I would like to thank the Margit Burmeister, Julia Eussen, and Maureen Sartor of for being 

pillars of support for me in the Department of Computational Medicine and Bioinformatics. I 

would like to thank Margit for fighting for me to come to University of Michigan as I was on the 

waitlist. I particularly would like to thank Julia for her encouragement and compassion as she was 

willing to comfort me when I was struggling with a class. 

I would like to acknowledge my collaborators Jon Arnot, Kelly Bakulski, Li Li, Joe 

Okeme, Hyeong-Moo Shin, Ming Xu, and Bu Zhao. I thank them for working with my crazy ideas 

and providing me guidance to help me grow as a better scientist.  



 

 vi 

I would like to thank the executive committee members of Girls Who Code:  Brooke 

Wolford, Zena Lapp, Marlena Duda, Negar Farzaneh, Shweta Ramdas, Rucheng Diao, Verity 

Sturm, Stephanie Thiede, Saige Rutherford, Gabby Dotson, Kelly Sovacool, Ruma Deb, Hayley 

Falk, Morgan Oneka, Katie Furman, and Sarah Haynes. I’m grateful to this group of inspirational 

female scientists for creating a supportive environment to teach high school women not only how 

to code but also how to conduct research in data science. They have enabled me to meet and mentor 

Sarah, and seeing her present at an international conference as a high school student was one of 

the most rewarding experiences of my life. 

I would like to acknowledge the work of the Department of Environmental Health’s 

tremendous staff:  Sue Crawford, Charlotte Carlson, Kelsey Hargesheimer, Jennifer Lewis, and 

Carmen Rey, and Patrice Sommerville. I’m grateful of their work to handle the logistics tied to 

research, because I would have been lost without them.  

I would not have accomplished any of this work without the friendship of Ashton Baker, 

Catherine Barnier, Tricia Charles-Jones, Rucheng Diao, Negar Farzenah, Gayatri Iyer, Brandon 

Govindarajoo, and Hera Shi. I particularly like to thank Ashton, Tricia, Rucheng, and Negar for 

their support in our bioinformatics and math classes as well as in my personal life. The first few 

years of grad school was very challenging, and I would have dropped out if not for their 

encouragement and compassion. I would like to thank Gayatri for all her time spent studying and 

helping me in our introductory machine learning class. I would like to thank Catherine for sending 

me a slew of pictures of cute animals to encourage me to finish this degree. I would like to thank 

Brandon for helping me to achieve candidacy as we discussed for hours on how to ground my 

proposal in data science for my preliminary examination. I would like to thank Hera, because 



 

 vii 

without her, I would not have pass, my hardest course:  the machine learning course from the 

department of Electrical Engineering and Computer Science.  

Finally, I would like to thank my sister, Nita and my parents, Paul and Holly for their 

unconditional love and support over the years. My sister was the first to support my decision to 

change career from being a physician to a scientist. Though younger than me, my sister amazes 

me with her creativity, values, and humor. My parents sacrificed their stable life in Vietnam and 

immigrated to the United States to ensure that my sister and I would have a better life. I grew up 

seeing my parents work so hard to move us from a one-bedroom apartment in the city to a two-

story house in the suburbs. The manifestation of their hard work instilled a strong work ethic with 

in me that can help me achieve any goal. This degree is truly an attestment to them for achieving 

the American Dream and thus helping me to achieve mine. 

  



 

 viii 

 

 

 TABLE OF CONTENTS 

 

DEDICATION ii 
ACKNOWLEDGEMENTS iii 
LIST OF TABLES xii 
LIST OF FIGURES xiv 
LIST OF APPENDICES xxiv 
ABSTRACT xxv 
Chapter 1 Introduction 1 

1.1 Background and Motivation .................................................................................................. 1 
1.2 Need to Systematically Identify Highly Exposed Chemicals in Children ............................ 6 
1.3 Role of Environmental Insult on Breast Cancer Disparities ................................................. 8 
1.4 Susceptibility of Workers to Occupational Exposures and Related Effects ......................... 9 
1.5 Characterizing Associations Along the Spectrum of Chemical Exposures to Physiological 

Indicators to Adverse Health Outcomes .................................................................................... 10 
1.6 Objectives and Specific Aims ............................................................................................. 12 
1.7 Dissertation Outline ............................................................................................................. 13 
1.8 Figures ................................................................................................................................. 15 

Chapter 2 Characterization of Age-Based Trends of Chemical Biomarker Levels 16 
2.1 Abstract ............................................................................................................................... 16 
2.2 Introduction ......................................................................................................................... 17 
2.3 Material and Methods .......................................................................................................... 20 

2.3.1 Study Population .......................................................................................................... 20 
2.3.2 Chemical Biomarker Measurements ............................................................................ 20 
2.3.3 Half-Lives of Organic and Inorganic Substances in Humans ...................................... 22 
2.3.4 Restriction Dates .......................................................................................................... 23 
2.3.5 Statistical Analysis ....................................................................................................... 23 

2.4 Results ................................................................................................................................. 27 
2.4.1 Study population ........................................................................................................... 27 
2.4.2 Age-Based Trends, Half-Lives, and Restriction Dates ................................................ 28 



 

 ix 

2.4.3 Influence of Temporal Determinants on Linear Age-Based Trends ............................ 29 
2.4.4 Nonlinear Age-Based Pattern of Higher Levels in Children ........................................ 30 
2.4.5 Age-Based Trends by Chemical Class ......................................................................... 32 
2.4.6 Change in Age-Based Trends of PFASs over Time ..................................................... 34 

2.5 Discussions .......................................................................................................................... 36 
2.6 Conclusions ......................................................................................................................... 41 
2.7 Figures ................................................................................................................................. 43 
2.8 Tables .................................................................................................................................. 49 

Chapter 3 Racial Disparities in Chemical Biomarker Concentrations in United States Women 50 
3.1 Abstract ............................................................................................................................... 50 
3.2 Introduction ......................................................................................................................... 51 
3.3 Methods ............................................................................................................................... 53 

3.3.1 Study Population .......................................................................................................... 53 
3.3.2 Chemical Biomarker Measurements ............................................................................ 54 
3.3.3 Statistical Analysis ....................................................................................................... 55 

3.4 Results ................................................................................................................................. 62 
3.5 Discussion ........................................................................................................................... 67 
3.6 Conclusions ......................................................................................................................... 78 
3.7 Figures ................................................................................................................................. 79 
3.8 Tables .................................................................................................................................. 85 

Chapter 4 Biomarker-Based Occupational Exposome 86 
4.1 Abstract ............................................................................................................................... 86 
4.2 Introduction ......................................................................................................................... 87 
4.3 Methods ............................................................................................................................... 90 

4.3.1 Study Population .......................................................................................................... 90 
4.3.2 Chemical Biomarkers of Occupational Exposures ....................................................... 90 
4.3.3. Indicators of Physiological Response .......................................................................... 91 
4.3.4 Statistical Analysis ....................................................................................................... 92 

4.4 Results ................................................................................................................................. 95 
4.4.1 Study Population .......................................................................................................... 95 
4.4.2 Chemical Exposure Profiles ......................................................................................... 95 
4.4.3 Heavy Metals ................................................................................................................ 97 



 

 x 

4.4.4 Polyaromatic Hydrocarbons (PAHs) ............................................................................ 98 
4.4.5 Benzophenone-3 (BP-3) ............................................................................................... 98 
4.4.6 Per- and Polyfluoroalkyl Substances (PFASs) ............................................................. 99 
4.4.7 Phthalates ...................................................................................................................... 99 
4.4.8 Differences in Physiological Stress Response ............................................................ 100 
4.4.9 Alkaline phosphatase .................................................................................................. 101 
4.4.10 Indicators of Inflammatory Response ...................................................................... 102 
4.4.11 Indicators of Insulin Resistance ................................................................................ 102 
4.4.12 Glomerular Filtration Rate (GFR) ............................................................................ 103 
4.4.13 Indicators of Body Fat Deposition ........................................................................... 103 
4.4.14 Influence of Occupational Exposure on Physiological Function ............................. 104 

4.5 Discussions ........................................................................................................................ 105 
4.6 Conclusions ....................................................................................................................... 114 
4.7 Figures ............................................................................................................................... 116 
4.8 Tables ................................................................................................................................ 134 

Chapter 5 Characterization of Linear and Non-linear Associations between Physiological 

Indicators and All-Cause Mortality 135 
5.1 Abstract ............................................................................................................................. 135 
5.2 Introduction ....................................................................................................................... 136 
5.3 Methods ............................................................................................................................. 138 

5.3.1 Study Population ........................................................................................................ 138 
5.3.2 Measurements of Physiological Indicators ................................................................. 138 
5.3.3 Database of Clinical Thresholds ................................................................................. 139 
5.3.4 Statistical Analyses ..................................................................................................... 139 

5.3. Results .............................................................................................................................. 140 
5.4. Discussions ....................................................................................................................... 143 
5.5. Conclusions ...................................................................................................................... 148 
5.6 Figures ............................................................................................................................... 149 
5.7 Tables ................................................................................................................................ 151 

Chapter 6 Conclusion 156 
6.1 Characterization of Age-Based Trends of Chemical Biomarker Levels ........................... 156 
6.2 Racial Disparities in Chemical Biomarker Concentrations in United States Women ...... 158 
6.3 Biomarker-Based Occupational Exposome ...................................................................... 160 



 

 xi 

6.4 Characterization of Linear and Non-linear Associations between Physiological Indicators 

and All-Cause Mortality .......................................................................................................... 163 
6.5 Integrated Discussion ........................................................................................................ 164 
6.6 Closing Remarks ............................................................................................................... 167 

APPENDICES 169 
BIBLIOGRAPHY 310 



 

 xii 

LIST OF TABLES 
 

Table 2.1. Characteristics of the study population of 74,942 participants. ................................... 49 
Table 3.1. Demographic characteristics of the study population. ................................................. 85 
Table 4.1. Population statistics of 26,186 NHANES participants with occupational data. ........ 134 
Table 5.1. Characteristics of 45,032 participants and distributions of the 27 physiological 

indicators in the NHANES population. ...................................................................................... 151 
Table 5.2. Comparison of current clinical thresholds or reference ranges with association-based 

thresholds of the 27 physiological indicators. ............................................................................. 154 
Table A1.1. Indicator of excluded measurements by NHANES Cycles for chemical biomarkers.

..................................................................................................................................................... 170 
Table A1.2. Corresponding NHANES codename, CAS NO., and chemical classification for each 

chemical biomarker. .................................................................................................................... 172 
Table A1.3. Authorship for half-lives of PFASs with other estimation or extrapolation methods.

..................................................................................................................................................... 178 
Table A1.4. References for half-lives of inorganic substances for which the half-life could not be 

estimated by the QSAR models. Half-Lives (hours) were used in the analysis. ........................ 180 
Table A1.5. Maximum composite half-life in hours, log-transformed half-life, and types of 

methods on how the half-lives were determined for each chemical biomarker. ........................ 187 
Table A1.6. References on regulation, legislation, and restriction dates of substances. ............ 193 
Table A1.7. Latest restriction date, decade, and period by chemicals. ....................................... 197 
Table A1.8. !"#$, !"#$2, calculated '(ℎ*+,-$., and calculated fold difference when /(ℎ*+,-$. 
= 5 years and (X_age ) ̅  = 31.88 years for all chemical biomarkers, which are ranked by the fold 
difference of chemical biomarker levels between a child of 5 years and an adult of 31.88 years 

(10'(ℎ*+,-$.) in descending order. ........................................................................................... 202 
Table A2.1. Indicator (marked by an "X") of which chemical biomarker measurements for a given 

NHANES cycle was excluded from analysis. ............................................................................. 219 
Table A2.2. Included chemical biomarkers for analysis with corresponding CAS No. and chemical 

family classification. ................................................................................................................... 233 
Table A2.3. NHANES codenames for survey weights used for a given chemical biomarker and 

NHANES cycle. .......................................................................................................................... 238 
Table A2.4. NHANES codenames for survey weights used in children aged 3-11 years old for a 

given Per- and Polyfluoroalkyl Substance (PFAS) and NHANES cycle. .................................. 250 



 

 xiii 

Table A2.5. Number of participants by race and menopause/hysterectomy status .................... 251 
Table A2.6. Number of participants by race and number of pregnancies resulting in live births

..................................................................................................................................................... 252 
Table A2.7. Number of participants by breastfeeding status and race. ...................................... 253 
Table A2.8. Number of participants by race and iron deficiency status. .................................... 254 
Table A3.1. Job occupation description with corresponding collar category. ............................ 263 
Table A3.2. List of excluded tobacco and soy metabolites and their corresponding chemical class.
..................................................................................................................................................... 264 
Table A3.3. Sample size required to detect significant differences. x% power mean that a study 
has a x% chance of ending up with a p-value of less than 5% in a statistical test when the effect 
size (or regression coefficient) is a corresponding value if the sample size is a particular number. 
For example, a study has a 70% chance of detecting a significance difference with a regression 

coefficient of 0.37 when the sample size is 90 participants. ....................................................... 265 
Table A3.4. Table of description, clinical thresholds, and sample size of each physiological 
indicator. Lower bound of the threshold implies that values below the threshold are unfavorable 
or indicative of high risk. Upper bound of the threshold implies that values above the threshold are 

unfavorable or indicative of high risk. ........................................................................................ 267 
Table A3.5. Number of participants with a given number of measured chemicals. For example, 

297 participants have measurements available for 98 chemical biomarkers. ............................. 273 
Table A3.6. Description of each hierarchical clustering method. ............................................... 277 
Table A3.7. Cophenetic correlation coefficients by linkage methods for clustering of the sector-
collar combinations based on chemical exposure profiles. ......................................................... 278 
Table A3.8. Cophenetic correlation coefficients by linkage methods for clustering of the sector-
collar combinations based on physiological response profiles. .................................................. 279 
Table A4.1. Number of participants by mortality status, gender, and race for the entire NHANES 
population and subpopulations with data for each physiological indicator. ............................... 303 
Table A4.2. Percentiles of age (years) for the entire NHANES population and subpopulations with 
data for each physiological indicator. ......................................................................................... 305 
Table A4.3. Percentiles of time to death (month) for a NHANES subpopulation and the 
subpopulations with data for each physiological indicator. ........................................................ 307 
Table A4.4. Definition, interpretation, and justification of prediction measures. ...................... 309 

  



 

 xiv 

 
 
 
 

LIST OF FIGURES 
 

Figure 1.1. General structure of association studies along the spectrum of chemical biomarkers, 
physiological indicators, and health endpoints. BFRs, Brominated Flame Retardants; BMI, Body 
Mass Index; CRP, C-Reactive Proteins; GFR, Glomerular Filtration Rate; PAHs, Polycyclic 
Aromatic Hydrocarbons; PBDEs, Polybrominated Diphenyl Ethers; PBBs, Polybrominated 
Biphenyls; PCBs, Polychlorinated biphenyls; VOCs, Volatile Organic Compounds. ................. 15 
Figure 2.1. Schematic description of the process to curate chemical biomarker measurements and 
of the analytical methods used to identify temporal variations in biomarker levels. ................... 43 
Figure 2.2. Characteristics of the 141 NHANES chemical biomarkers for 16 classes, including (A) 
the number of chemical biomarkers for each colored-specific chemical class, (B) ranges of log-

transformed composite half-lives in hours, (C) ranges of linear age coefficients (!"#$+*.$"-′'), 
defined as the log change in chemical concentration due to a one-year increase in age, and (D) 
percentage of unrestricted or restricted chemicals per class. Colors of the restriction types only 
applied to (D) and are also used in Figure 2.3. BFRs, Brominated Flame Retardants; SRCs, 
Smoking Related Compounds; PAHs, Polycyclic Aromatic Hydrocarbons; PCCPCs, Personal 
Care and Consumer Product Compounds; VOCs, Volatile Organic Compounds; PFASs, Per- and 
Polyfluoroalkyl substances; PCBs, Polychlorinated Biphenyls. Models were adjusted for age 

centered at (/"#$), survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine 
concentrations, and urinary creatinine concentrations. ................................................................. 44 
Figure 2.3. Association between linear age coefficients (!"#$+*.$"-′') and chemical persistency 
in the human body for 141 substances with symbols indicating the different chemical classes. The 
colors indicate the time period during which the compound was restricted (same as Figure 2.2D). 

Models are adjusted for age centered at /"#$, survey cycle, sex, race/ethnicity, poverty income 
ratio, blood cotinine concentrations, and urinary creatinine concentrations. See Figure 2.2 for 
abbreviations. ................................................................................................................................ 45 
Figure 2.4. Association between !"#$2	and !"#$ for 141 substances with symbols indicating 
chemical classes and colors indicating categories of fold difference in biomarker levels between a 

child of 5 years and adult of 31.88 years. The boundary line !"#$2!"#$ > 126.9 differentiates 
chemicals of higher levels in children from those of higher levels in the older population. Models 

were adjusted for age centered at /"#$, age centered at /"#$ squared, survey cycle, sex, 
race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine 
concentrations. See Figure 2.2 for abbreviations. ......................................................................... 46 
Figure 2.5. Violin plots of chemical biomarker concentrations partitioned by age group to display 
the 5th, 25th, 50th, 75th, and 95th percentiles, indicated by the superimposed boxplot. The 
frequency of chemical biomarker levels are represented by the width of the violins for (A) PCB 
49, (B) PCB 194, (C) PFNA, (D) PFOS, (E) Tungsten, (F) Lead, (G) Mono-(3-carboxypropyl) 
phthalate, (H) Mono-benzyl phthalate, (I) Mono-ethyl phthalate, and (J) Methyl paraben. (●) 
geometric mean of measured data. (▲) geometric mean of predicted chemical biomarker levels. 



 

 xv 

Colors differentiate age groups. Models were adjusted for age centered at /"#$ , age centered at 
/"#$ squared, survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine 
concentrations, and urinary creatinine concentrations. ................................................................. 47 
Figure 2.6. Chemical biomarker concentrations across the life-stages stratified by NHANES cycles 
for (A) PFOS, (B) PFHxS, (C) PFOA, (D) PFDA, (E) PFNA, and (F) 2-(N-methyl-PFOSA) 
acetate. (G) 95% confidence intervals for the cycle-specific age coefficients for PFOS, PFHxS, 
PFOA, PFDA, PFNA, and 2-(N-methyl-PFOSA) acetate. The cycle-specific age coefficients 
(βage,k’s) with age shows the adjusted rate at which the chemical concentration is changing for a 
one-year increase in age for a particular cycle. Models were adjusted for age, sex, race/ethnicity, 

poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations. ..... 48 
Figure 3.1 Dataset compilation and cleaning workflow. .............................................................. 79 
Figure 3.2. Alphabet soup plot displaying the covariate adjusted fold differences in chemical 
biomarker concentration by race, ranked by the average difference with non-Hispanic White 
individuals. Colors represent the chemical families. Shapes represent the comparison between a 
given race and non-Hispanic White individuals. .......................................................................... 80 
Figure 3.3. Volcano plots representing the significance of the covariate-adjusted differences in 
chemical biomarker concentrations between non-Hispanic White women and (A) non-Hispanic 
Black women, (B) Mexican American women, (C) Other Hispanic women, and (D) Other 
race/multiracial women. Color and shapes represent the chemical families. ............................... 81 
Figure 3.4. Volcano plots representing the significance of the covariate-adjusted differences in 
chemical biomarker concentrations between non-Hispanic White women and (A) Asian women, 
and (B) Other Race /Multi-Racial women in NHANES 2011-2014. Colors and shapes represent 
the chemical families. ................................................................................................................... 82 
Figure 3.5. Heatmap displaying covariate adjusted fold differences in chemical biomarker 
concentrations by race, relative to non-Hispanic White women, stratified by age group and 
chemical family. Color reflects the log2 fold difference in chemical biomarker concentration. 
Biomarkers in grey color were not measured in that age group. .................................................. 83 
Figure 3.6. Heatmap displaying covariate adjusted fold differences in chemical biomarker 
concentrations by race, relative to non-Hispanic White women, stratified by study period and 
chemical family. Color reflects the log2 fold difference in chemical biomarker concentration. 
Biomarkers in grey color were not measured in that study period. .............................................. 84 
Figure 4.1. Schematic description on curation of chemical biomarker and physiological 
measurements and of the analytical methods used to characterize occupational variations in 
chemical exposures and physiological responses. Reference group for the analysis on the sector-
collar combinations is White Collars from Public Administration. ............................................ 116 
Figure 4.2. Heatmap of percent differences in chemical biomarker concentrations by sector-collar 
combinations, relative to Public Administration - White Collars. Chemical biomarkers in white 
color indicates that the concentrations are the same between the given sector-collar combination 
and the reference group. The color bar represents the collar categorization. Blue presents the blue-
collar workers, while gray represents the white-collar workers. Results are adjusted for age, sex, 
and race. ...................................................................................................................................... 117 



 

 xvi 

Figure 4.3. Box plot of distribution of blood cadmium. Far-left statistics are the mean chemical 
biomarker concentration. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for cadmium, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of blood cadmium for a given sector-collar combination. Results are adjusted for age, sex, and 

race. ............................................................................................................................................. 118 
Figure 4.4. Box plot of distribution of total mercury in blood. Far-left statistics are the mean 
chemical biomarker concentration. The middle-left statistics are the percent differences except for 
the “reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for cadmium, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of total mercury for a given sector-collar combination. Results are adjusted for age, sex, and race.
..................................................................................................................................................... 119 
Figure 4.5. Box plot of distribution of urinary 3-fluorene. Far-left statistics are the mean chemical 
biomarker concentration. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for cadmium, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of urinary 3-fluorene for a given sector-collar combination. Results are adjusted for age, sex, and 

race. ............................................................................................................................................. 120 
Figure 4.6. Box plot of distribution of urinary benzophenone-3 (BP-3), a biomarker of sunscreen 
use. Far-left statistics are the mean chemical biomarker concentration. The middle-left statistics 
are the percent differences except for the “reference” group of “Public Administration – White 
Collars” and the “NHANES population”. The NHANES population includes all participants with 
measurements for cadmium, including the sector-collar combinations. The middle-right statistics 
are the p-values corrected for multiple comparison with the Benjamini and Hochberg FDR 
procedure of 5%. Far-right statistics are the sample size of each sector-collar combinations. Purple 
triangle represents the mean concentration of urinary BP-3 for a given sector-collar combination. 
Results are adjusted for age, sex, and race. ................................................................................. 121 
Figure 4.7. Box plot of distribution of perfluorododecanoic acid (PFDA). Far-left statistics are the 
mean chemical biomarker concentration. The middle-left statistics are the percent differences 
except for the “reference” group of “Public Administration – White Collars” and the “NHANES 
population”. The NHANES population includes all participants with measurements for cadmium, 
including the sector-collar combinations. The middle-right statistics are the p-values corrected for 
multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics 
are the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of PFDA for a given sector-collar combination. Results are adjusted for age, sex, 

and race. ...................................................................................................................................... 122 



 

 xvii 

Figure 4.8. Box plot of distribution of urinary mono-(2-ethyl)-hexyl phthalate, a metabolite of the 
plasticizer Di-2-ethylhexyl phthalate, DEHP. Far-left statistics are the mean chemical biomarker 
concentration. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for cadmium, including the sector-collar 
combinations. The middle-right statistics are the p-values corrected for multiple comparison with 
the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the sample size of each 
sector-collar combinations. Purple triangle represents the mean concentration of urinary mono-(2-
ethyl)-hexyl phthalate for a given sector-collar combination. Results are adjusted for age, sex, and 
race. ............................................................................................................................................. 123 
Figure 4.9. Heatmap of percent differences in physiological indicator measurements by sector-
collar combinations, relative to Public Administration - White Collars. Physiological indicators in 
white color indicate that the measurements are the same between the given sector-collar 
combination and the reference group. Results are adjusted for age, sex, and race. .................... 124 
Figure 4.10. Box plot of distribution of alkaline phosphatase. Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for alkaline phosphatase, including the 
sector-collar combinations. The middle statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right statistics 
are the sample size of each sector-collar combinations. The far-right statistics are the percentage 
of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 
alkaline phosphatase for a given sector-collar combination. Results are adjusted for age, sex, and 

race. ............................................................................................................................................. 125 
Figure 4.11. Box plot of distribution of C-reactive proteins (CRP). Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for alkaline phosphatase, including the 
sector-collar combinations. The middle statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right statistics 
are the sample size of each sector-collar combinations. The far-right statistics are the percentage 
of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 

CRP for a given sector-collar combination. Results are adjusted for age, sex, and race. ........... 126 
Figure 4.12. Box plot of distribution of Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR). Far-left statistics are the mean concentrations. The middle-left statistics are the 
percent differences except for the “reference” group of “Public Administration – White Collars” 
and the “NHANES population”. The NHANES population includes all participants with 
measurements for alkaline phosphatase, including the sector-collar combinations. The middle 
statistics are the p-values corrected for multiple comparison with the Benjamini and Hochberg 
FDR procedure of 5%. The middle-right statistics are the sample size of each sector-collar 
combinations. The far-right statistics are the percentage of participants outside of the range of 
normality, i.e. percentage of participants whose measurements are beyond the pink boxes. Purple 



 

 xviii 

triangle represents the mean concentration of HOMA-IR for a given sector-collar combination. 
Results are adjusted for age, sex, and race. ................................................................................. 127 
Figure 4.13. Box plot of distribution of glomerular filtration rate (GFR). Far-left statistics are the 
mean concentrations. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for alkaline phosphatase, 
including the sector-collar combinations. The middle statistics are the p-values corrected for 
multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right 
statistics are the sample size of each sector-collar combinations. The far-right statistics are the 
percentage of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 
GFR for a given sector-collar combination. Results are adjusted for age, sex, and race. .......... 128 
Figure 4.14. Box plot of distribution of subscapular skinfold. Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for alkaline phosphatase, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. The far-right statistics are 
the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of subscapular skinfold for a given sector-collar combination. Results are adjusted 

for age, sex, and race. .................................................................................................................. 129 
Figure 4.15. Dendrogram of sector-collar combinations based on exposure profiles for 108 
chemical biomarkers. Pearson’s correlation-based distance is the dissimilarity metric. Average 
linkage method was used due to having the highest cophenetic correlation coefficient, i.e. using 
this linkage method generated the dendrogram that best preserves the dissimilarity between the 
sector-collar combinations. ......................................................................................................... 130 
Figure 4.16. Dendrogram of sector-collar combinations based on physiological response profiles 
for 27 physiological indicators. Pearson’s correlation-based distance is the dissimilarity metric. 
Average linkage method was used due to having the highest cophenetic coefficient, i.e. using this 
linkage method generated the dendrogram that best preserves the dissimilarity between the sector-

collar combinations. .................................................................................................................... 131 
Figure 4.17. Dendrogram of sector-collar combinations based on exposure profiles for 108 
chemical indicators. Red text represents the sample size of the sector-collar combination. Red 
boxes indicate the clustered occupational groups defined based on of sample size ≥ 400 or AU p-
value ≥ 0.8. Pearson’s correlation-based distance is the dissimilarity metric. Average linkage 
method was used due to having the highest cophenetic correlation coefficient, i.e. using this 
linkage method generated the dendrogram that best preserves the dissimilarity between the sector-
collar combinations. .................................................................................................................... 132 
Figure 4.18. Heatmap of percent differences in physiological indicator measurements by clustered 
groups, relative to White Collars from Manufacture: Durable Goods; Arts, Entertainment, 
Recreation; Information; Professional, Technical Services; Education Services; Finance, 
Insurance, Real Estate, Rental; Health Care, Social Assistance; and Public Administration. 
Physiological indicators in white color indicate that the measurements are the same between the 
given sector-collar combination and the reference group. The color bar represents the collar 



 

 xix 

gradient of the collar categorization. Dark blue indicates that the occupational cluster is comprised 
of all blue-collar workers. Lighter blue implies that the occupational cluster is comprised of a 
mixture of blue and white-collar workers. Gray implies that the occupational cluster includes only 
white-collar workers. Results are adjusted for age, sex, and race. ............................................. 133 
Figure 5.1. Alphabet soup plot displaying the AIC and Nagelkerke R2 for the associations with 
all-cause mortality for all physiological indicators, grouped by body system. The prediction 
performances are displayed for two populations: one with all participants and another with 
participants who have measurements within 1st and 99th percentiles for a given physiological 
indicator. Sample size for each physiological indicator is provided to indicate the number of 
participants who have data for mortality, age, sex, race, and the given indicator. Results were 

adjusted for age, sex, and race/ethnicity. .................................................................................... 149 
Figure 5.2. Stairway plots of hazard ratios relative to physiological indicators across all models to 
describe the relative mortality risk for A) Body Mass Index, B) Average Systolic Blood Pressure, 
C) Ratio of Total to HDL Cholesterol, D) C-Reactive Proteins, E) Homeostatic Model Assessment 
of Insulin Resistance, and F) Glomerular Filtration Rate. For visualization aid, participants with 
measurements between the 1st and 99th percentiles of a physiological indicator are included. 
Relative risks for mortality from the novemtiles model are represented by the boxes with the width 
representing the range of a novemtile and the height representing the 95% Confidence Interval of 
the hazard ratio. The mean hazard ratio for each novemtile is presented by a digit. The hazard 
compares participants in a novemtile to those in the reference group at the novemtile shown 
without a box. The purple dot represents the reference point and the measurement of a 
physiological indicator shown to have the lowest hazard ratio for the linear and spline models. The 
red and blue lines represent the relative mortality risk with respect to reference point for the linear 
and spline models, respectively. The black dot represents the median of a physiological indicator. 
The dashed navy line represents when the hazard ratio is 10% higher than the minimum hazard 
ratio, i.e. when the hazard ratio is 1.1. The navy diamonds indicate the concentration at which the 
hazard ratio shows a 10% increase from the minimum hazard ratio. The pink lines and rectangles 
represent the values of the clinical thresholds with the width of the rectangles representing the 
ranges of the threshold. The set of tick marks along the base of the plot represent the distribution 
of a physiological indicator with increased opacity implying increased number of participants. 

Results were adjusted for age, sex, and race/ethnicity. ............................................................... 150 
Figure A1.1. PCB 196 concentrations across the life-stages stratified by NHANEs cycles for Cycle 

2 and 3. ........................................................................................................................................ 206 
Figure A1.2. PCB 196 concentrations across the life-stages stratified for only Cycle 3. ........... 207 
Figure A1.3. Characteristics of the 141 NHANES chemical exposure biomarkers from 16 classes 
for ranges of cycle coefficients, defined as the percent change in chemical concentration due to a 
two-year (one NHANES cycle) increase in time. The classes are ranked by the means of class-
specific age percent differences (Figure 2C). Colors are used to differentiate the chemical classes. 
BFRs, Brominated Flame Retardants; SRCs, Smoking Related Compounds; PAHs, Polycyclic 
Aromatic Hydrocarbons; PCCPCs, Personal Care and Consumer Product Compounds; VOCs, 
Volatile Organic Compounds; PFCs, Perfluoroalkyl Chemicals; PCBs, Polychlorinated Biphenyls
..................................................................................................................................................... 209 
Figure A1.4. Association between linear age coefficients and chemical persistency in the human 
body for 144 substances with colors indicating the time trend trajectories and symbols indicating 



 

 xx 

the different chemical classes. The same abbreviations for the chemical classes are used as those 
in Figure S3. ................................................................................................................................ 210 
Figure A1.5. Violin plots of PFOA concentrations partitioned by age groups to display the 
distribution with the 5th, 25th, 50th, 75th, and 95th percentiles as indicated by the superimposed 
boxplot and show the frequency of the urinary cadmium biomarker levels represented by the width 
of the violins. .............................................................................................................................. 211 
Figure A1.6. Violin plots of urinary cadmium concentrations partitioned by age groups to display 
the distribution with the 5th, 25th, 50th, 75th, and 95th percentiles as indicated by the superimposed 
boxplot and show the frequency of the urinary cadmium biomarker levels represented by the width 
of the violins. .............................................................................................................................. 212 
Figure A2.1. Panel of correlation plots comparing fold differences for race that adjusted for 
poverty income ratio (PIR) with those that excluded PIR from the regression models. Colors and 
shapes represent the different chemical families. Chemicals were labeled if fold differences 
changed by greater than 25% when PIR was considered a covariate in the regression models. 213 
Figure A2.2. Panel of violin plots showing the distribution of chemical biomarker levels changes 
across categories of poverty income ratio (PIR) and stratified by race for A) an indicator of 
sunscreen use, benzophenone-3, B) a biomarker of smoking, cotinine, C) a chemical used in 
personal care products, ethyl paraben, and D) methyl mercury. Colors represent different 

categories of PIR. ........................................................................................................................ 214 
Figure A2.3. Panel of correlation plots comparing fold differences for race that adjusted for 
menopause/hysterectomy status with those that excluded this reproductive health variable from the 
regression models. Colors and shapes represent the different chemical families. Chemicals were 
labeled if fold differences changed by greater than 25% when reasons of having irregular periods 
was considered a covariate in the regression models. ................................................................. 215 
Figure A2.4. Panel of correlation plots comparing fold differences for race that adjusted for parity 
with those that excluded parity from the regression models. Colors and shapes represent the 
different chemical families. Chemicals were labeled if fold differences changed by greater than 
25% when parity was considered a covariate in the regression models. .................................... 216 
Figure A2.5. Panel of correlation plots comparing fold differences for race that adjusted for 
breastfeeding for at least a month with those that excluded this reproductive health variable from 
the regression models. Colors and shapes represent the different chemical families. Chemicals 
were labeled if fold differences changed by greater than 25% when breastfeeding was considered 

a covariate in the regression models. .......................................................................................... 217 
Figure A2.6. Panel of correlation plots comparing fold differences for race that adjusted for iron 
deficiency with those that excluded this nutritional factor from the regression models. Colors and 
shapes represent the different chemical families. Chemicals were labeled if fold differences 
changed by greater than 25% when breastfeeding was considered a covariate in the regression 
models. ........................................................................................................................................ 218 
Figure A3.1. Bar plot showing number of participants by included chemical. Participants have data 
available for age, sex, race, industrial sector, collar category, and given chemical. .................. 255 
Figure A3.2. Heatmap of dichotomized biomarker measurements by participants and included 
chemicals to show sparsity of the chemical biomarker dataset. NHANES participants have data 



 

 xxi 

available for age, sex, race, industrial sector, and occupational title. Chemical biomarkers are 
grouped by chemical class. Participants are order by number of measured chemicals, which ranges 
from 0 to 98 chemicals, e.g. participants to the far-right were measured for 98 chemical 
biomarkers. .................................................................................................................................. 256 
Figure A3.3. Bar plot showing the number of participants by each sector-collar combination. The 
sector-collar combinations are ordered from highest number of participants to lowest. ............ 257 
Figure A3.4. Bar plot showing the percentage of male versus female participants for each sector-
collar combination. The sector-collar combinations are ordered from highest percentage of males 

to lowest percentage. ................................................................................................................... 258 
Figure A3.5. Bar plot showing the percentage of Mexican American, Other Hispanic, Non-
Hispanic White, Non-Hispanic Black, and Other Race/Multi-Racial participants for each sector-
collar combination. The sector-collar combinations are ordered from highest percentage of Non-

Hispanic White participants to lowest. ....................................................................................... 259 
Figure A3.6. Bar plot showing the percentage of poverty income categories for each sector-collar 
combination. The sector-collar combinations are ordered from highest percentages of the lowest 
PIR category ([0,1] as shown in red) to the lowest percentages. ................................................ 260 
Figure A3.7. Box plot of distribution of lead in blood. Far-left statistics are the mean chemical 
biomarker concentration. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for lead, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of total lead for a given sector-collar combination. Results are adjusted for age, sex, and race. 261 
Figure A3.8. Box plot of distribution of total arsenic in urine. Far-left statistics are the mean 
chemical biomarker concentration. The middle-left statistics are the percent differences except for 
the “reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for total arsenic, including 
the sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of total arsenic for a given sector-collar combination. Results are adjusted for age, sex, and race.

..................................................................................................................................................... 262 
Figure A4.1. Schematic description of curation process and analytical methods. Schematic 
description of the process to curate the physiological measurements and of the analytical methods 
used to characterize associations between these measurements and mortality.Error! Bookmark 
not defined. 
Figure A4.2. Stairway plot of hazard ratios displaying the relative mortality risk for age and 
alphabet soup plot of prediction performance for linear and non-linear models. Results were 
adjusted for sex and race/ethnicity. ............................................................................................. 281 
Figure A4.3. Histogram of measurements for each physiological indicator in all participants. 
Labels for tick marks are provided for the 0th, 10th, 50th, 90th, and 100th percentiles. ........... 282 



 

 xxii 

Figure A4.4. Alphabet soup plot displaying the Concordance Index for the associations with all-
cause mortality for all physiological indicators across all studied models. Results are adjusted for 
age, sex, and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 
bootstrapping for 1000 replicates. ............................................................................................... 283 
Figure A4.5. Alphabet soup plot displaying the AIC for the associations with all-cause mortality 
for all physiological indicators across all studied models. Results are adjusted for age, sex, and 
race/ethnicity. Error bars represent the 95% Confidence Intervals defined through bootstrapping 
for 1000 replicates. ...................................................................................................................... 284 
Figure A4.6. Scatterplot of the sample size and prediction performance displayed for the A) AIC, 
B) Concordance Index, and C) Nagelkerke R2. Results are adjusted for age, sex, and race/ethnicity.

..................................................................................................................................................... 285 
Figure A4.7. Alphabet soup plot of Nagelkerke R2 on all participants (0) and participants within 
the 1st to 99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, sex, 
and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 

bootstrapping for 1000 replicates. ............................................................................................... 286 
Figure A4.8. Alphabet soup plot of the AIC on all participants (0) and participants within the 1st to 
99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, sex, and 
race/ethnicity. Error bars represent the 95% Confidence Intervals defined through bootstrapping 

for 1000 replicates. ...................................................................................................................... 287 
Figure A4.9. Alphabet soup plot of the Concordance Index on all participants (0) and participants 
within the 1st to 99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, 
sex, and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 

bootstrapping for 1000 replicates. ............................................................................................... 288 
Figure A4.10. Volcano Plots of Nagelkerke R2 and test statistics used to indicate statistical 
significance of the model compared to a null model. Results are adjusted for age, sex, and 
race/ethnicity. .............................................................................................................................. 289 
Figure A4.11. Stairway hazard ratios across all models to describe the relative mortality risk for 
A) Body Mass Index, B) Average Systolic Blood Pressure, C) Ratio of Total to HDL Cholesterol, 
D) C-Reactive Proteins, E) Homeostatic Model Assessment of Insulin Resistance, and F) 
Glomerular Filtration Rate when all participants are included. Relative risks for mortality from the 
novemtiles model are represented by the boxes with the width representing the range of a 
novemtile and the height representing the 95% Confidence Interval of the hazard ratio. The mean 
hazard ratio for each novemtile is presented by a digit. The hazard compares participants in a 
novemtile to those in the reference group at the 5th novemtile. The red and blue lines represent the 
relative mortality risk with respect to median of a physiological indicator for the linear and spline 
models, respectively. The dashed navy line represents when the hazard ratio is 10% higher than 
the minimum hazard ratio. The navy diamonds indicate the concentration at which the hazard ratio 
shows a 10% increase from the minimum hazard ratio. The purple dot represents the median for a 
physiological indicator. The pink lines and rectangles represent the values of the clinical thresholds 
with the width of the rectangles representing the ranges of the threshold. The set of tick marks 
along the base of the plot represent the distribution of a physiological indicator with increased 
opacity implying increased number of participants. Results were adjusted for age, sex, and 

race/ethnicity. .............................................................................................................................. 290 



 

 xxiii 

Figure A4.12. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for physiological indicators of body composition. .............................................................. 291 
Figure A4.13. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for physiological indicators of the cardiovascular system. .................................................. 292 
Figure A4.14. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for a biomarker of the immune system, White Blood Cell Counts. ..................................... 293 
Figure A4.15. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for biomarkers of the metabolic system. .............................................................................. 294 
Figure A4.16. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for biomarkers of nephrology. ............................................................................................. 295 
Figure A4.17. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator with available sex-specific clinical thresholds. The non-linear associations 
were determined using a cubic spline regression model adjusted for age and race/ethnicity. 
Participants with measurements between the 1st and 99th percentiles of a physiological indicator 
are included. The purple and orange lines represent the relative mortality risk with respect to 
median of a physiological indicator for males and females, respectively. The black dot represents 
the median for a physiological indicator. The dashed navy line represents when the hazard ratio is 
10% higher than the minimum hazard ratio. The navy diamonds indicate the concentration at which 
the hazard ratio shows a 10% increase from the minimum hazard ratio. The pink lines and 
rectangles represent the values of the clinical thresholds with the width of the rectangles 

representing the ranges of the threshold. .................................................................................... 296 
Figure A4.18. Sex-stratified non-linear associations between all-cause mortality and each 

physiological indicator of body composition, Body Mass Index. .............................................. 297 
Figure A4.19. Sex-stratified non-linear associations between all-cause mortality and each 

physiological indicator of the cardiovascular system. ................................................................ 298 
Figure A4.20. Sex-stratified non-linear associations between all-cause mortality and each 

physiological indicator of the immune system. .......................................................................... 299 
Figure A4.21. Sex-stratified non-linear associations between all-cause mortality and each 

physiological indicator of the metabolic system. ........................................................................ 300 
Figure A4.22. Sex-stratified non-linear associations between all-cause mortality and each 

physiological indicator of nephrology. ....................................................................................... 301 
Figure A4.23. Stairway plot of hazard ratios describing the associations between all-cause 
mortality and BMI with and without adjusting for smoking. Smoking was defined using log-
transformed blood cotinine levels. .............................................................................................. 302 

 

 



 

xxiv 
 

LIST OF APPENDICES 

Appendix 1. Characterization of Age-Based Trends of Chemical Biomarker Levels ................ 170 
Appendix 2. Racial Disparities in Chemical Biomarker Concentrations in United States Women

..................................................................................................................................................... 213 
Appendix 3. Biomarker-Based Occupational Exposome ........................................................... 255 
Appendix 4. Characterization of Linear and Non-linear Associations between Physiological 
Indicators and All-Cause Mortality ............................................................................................ 280 

 

 



 

xxv 
 

ABSTRACT 
 

The chemisome is the chemical components of the exposome, defined as the totality of all 

exposures and their impact on health. Most current approaches, however, are limited in addressing 

this “totality” by only studying one chemical or one chemical family at a time in one exposed 

population. In addition, studying the links between chemical exposures and health is challenging 

due to an incomplete understanding of how physiological responses are associated with adverse 

health outcomes. This challenge is further complicated due to how chemical exposures change 

with demographics such as age, sex, race, and occupation. Thus, this dissertation aims to address 

these challenges by applying an unbiased approach to datasets of chemical biomarker levels and 

physiological measurements to systematically identify susceptible populations using the National 

Health and Nutrition Examination Survey.  

 In the first project, I use quadratic regression models to characterize non-linear, age-based 

trends of chemical exposure in a sample comprised of 74,942 participants. I screen across 141 

chemicals to identify those of higher concentrations in children relative to the older population. 

Children exhibit higher exposures to chemicals in consumer products such as phthalates, 

brominated flame retardants, lead, and tungsten. In contrast, restricted and highly persistent 

chemicals such as polychlorinated biphenyls and dioxins are higher in the older population.  

 In the second project, I apply generalized linear models to evaluate exposure disparities 

by race/ethnicity for 143 chemicals in a representative sample of 38,080 US women. Compared to 

non-Hispanic White women, significant disparities are observed for non-Hispanic Black, Mexican 
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American, Other Hispanic, and Other Race/Multi-Racial women. These women have higher levels 

of pesticides, including 2,5-dichlorophenol and 2,4-dichlorophenol, compounds in personal care 

products, including parabens and mono-ethyl phthalate, and heavy metals, such as mercury and 

arsenic. These findings are being coupled with toxicological data to prioritize chemicals to 

evaluate their role in health disparities.  

In the third project, I develop a framework using hierarchical clustering to characterize 

occupational exposures and physiological responses among 26,186 blue- and white-collar workers 

across 20 employment sectors for 108 chemicals and 27 physiological indicators. Blue-collar 

workers have higher levels of toxicants such as lead, cadmium, volatile organic chemicals, and 

polycyclic aromatic hydrocarbons compared to white-collar workers. Moreover, blue-collar 

workers exhibit higher levels of alkaline phosphatase (indicative of liver disease) and C-reactive 

proteins (indicative of inflammation). Together, these results suggest that blue-collar workers are 

exposed to higher levels of toxicants, which may induce physiological dysfunction. 

 In the final project, I implement 10-fold cross-validated regression models to characterize 

the linear and non-linear associations between all-cause mortality and 27 physiological indicators 

to identify directionalities indicative of increased mortality risk in a sample of 45,032 participants. 

Twenty-four out of 27 indicators show non-linear associations, while height, triglycerides, and 60-

second pulse show linear associations. Cholesterol-related indicators and glomerular filtration rate 

unexpectedly show parabolic associations, implying that higher mortality risk is associated with 

measurements in either extreme of the distribution instead of in one extreme. These findings 

highlight a need to study associations between these indicators and other health endpoints to gain 

insights into the physiological profiles associated with adverse health outcomes. 
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Together, this thesis contributes to a better understanding of how chemical exposures can 

impact human health across multiple subpopulations. It also enables further exploration of how 

chemical exposures can perturb physiologic function conducive to increasing the risk for adverse 

health outcomes. 
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Chapter 1 Introduction 
 

1.1 Background and Motivation  

As early as the 1890s, factory workers were screened for lead in their blood and urine to 

prevent elevated levels from reaching the point of acute lead poisoning 1. Here is one of the earliest 

examples of tracking biomarker levels to characterize the impact of chemical exposures. While 

this example pertains to occupational exposures, we are exposed to thousands of environmental 

substances everyday based on where we live, where we work, what we drink, what we eat, what 

we use, etc. Some of these substances may be toxic, but it is challenging to know which ones and 

the levels at which an adverse effect would occur.  

In 2005, Christopher Wild termed the exposome as the totality of all exposures in an 

individual’s lifetime and its impact on human health 2. This totality of exposures can consist of, 

but is not limited to, ecosystem, lifestyle factors, social indicators, and physical-chemical factors. 

The concept of the exposome was developed as the complement to the genome, and that an 

integrated understanding of both the exposome and the genome would facilitate progress toward 

addressing chronic human health problems 3. Genetics account for only about 10%-40% of  the 

contribution to most diseases 4–6, suggesting that environmental exposures may play a greater role 

in understanding the etiology of disease compared to genetic factors alone.  

The chemisome is defined as the chemical components of the exposome and how it affects 

human health 7. Toxic chemicals can enter the body from exogenous sources such as air, water, 

and lifestyle behaviors such as dietary habits and medication use 8,9. Toxicants can also be 
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generated by endogenous processes such as inflammation, oxidative stress, diseases, and infection 

10,11. As environmental insult can perturb physiological functions conducive to disease 12, 

characterizing biologically active chemicals inside the human body will promote the discovery of 

exposures responsible for chronic disease 5,13. Thus, better understanding of how environmental 

pollutants relate to health problems requires human biomonitoring.   

Human biomonitoring is the measuring of chemicals or their metabolites in the human 

body to ascertain the extent of human exposure to environmental toxicants 14. A chemical 

biomarker is an indicator of environmental exposures quantified as the chemical, its metabolites, 

or the products of an interaction between the chemical and a biological target in an organism 15,16. 

The largest continuous source of data on chemical biomarkers in the United States (US) is the 

National Health and Nutrition Examination Survey (NHANES) 17. The Centers for Disease Control 

and Prevention (CDC) designed this survey to ascertain the nutritional and health status of children 

and adults in the US. NHANES deploys a complex, multistage, probability sampling design to 

ensure that the data is representative of the noninstitutionalized, civilian US population 18. Since 

1999, the CDC has conducted the continuous NHANES survey by inviting several thousands of 

volunteers every two years to participate in interviews, questionnaires, and examination. 

Biological samples are analyzed for indicators of disease, disorders, and chemical biomarkers. 

These data are publicly available online accompanied with data on demographics, questionnaire 

response, physiological measurements, and other laboratory tests 19.  

In our current, cleaned NHANES dataset, we have blood, serum, and urinary measurements 

available for 411 chemical biomarkers to analyze exposures and 60 physiological indicators to 

analyze the physiologic condition of a representative US sample of 82,091 participants. The 

diverse suite of chemical biomarkers are from 17 different chemical classes:  Acrylamide, 
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Brominated Flame Retardants (BFR), Phosphate Flame Retardants (PFR), Dioxins, Furans, 

Melamine, Metals, Other, Personal Care & Consumer Product Compounds, Pesticides, Phthalates 

& Plasticizers, Phytoestrogens, Polyaromatic Hydrocarbons (PAH), Polychlorinated Biphenyls 

(PCB), Per- and Polyfluoroalkyl Substances (PFAS), Smoking Related Compounds, and Volatile 

Organic Compounds (VOC). The physiological indicators comprise a wide range of human body 

systems including body composition, cardiovascular system, respiratory system, immune system, 

metabolic system, and nephrology. Such wealth of data is conducive to conducting exposome 

research to evaluate the impact of environmental insults on human physiology.  

While exposomic data such as NHANES provides hope to better understand the 

environmental contribution to disease and how to prevent such diseases, addressing this problem 

requires addressing the scale of exposomic data. Measuring techniques such as omics and sensor 

technologies will generate heterogenous, massive, and high-velocity data 20. Thus, there is a need 

to develop approaches to manage, analyze, and visualize these large-scale data to begin untangling 

the intertwining associations between genetics, exposures, and disease 3. Inspiration can be drawn 

by the approaches implemented in genome-wide association study (GWAS), which involves 

screening across millions of genetic markers to identify those that can be used to predict the onset 

of a particular disease 21. In fact, inspired by techniques used in GWAS, Patel et al. conducted an 

environment-wide association study (EWAS) on chemical, clinical, and questionnaire data from 

NHANES to evaluate the associations between 266 chemical biomarkers and type 2 diabetes 

mellitus and serum lipid levels, respectively 22. Patel et al. observed strong associations between 

the risk of type 2 diabetes and exposures to heptachlor epoxide, g-tocophperol, b-carotenes and 

polychlorinated biphenyls. Such results suggest the importance of implementing an unbiased 
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approach to gain insights on the role of the environment in disease onset and ultimately lead to the 

prevention of chronic disease 3. 

However, most current approaches tend to implement a one-chemical 23–27 or one-

chemical-family 28–34 when studying exposures, which is not only limited in addressing the totality 

of exposures but also limited in prioritizing chemicals for further study. Furthermore, addressing 

the totality of exposures is further complicated by the dynamic nature of an individual’s exposome 

3, since it changes with demographic factors such as age, sex, race, and occupation and other 

lifestyle factors such as dietary habits, physical activities, etc. However, this one-chemical or one-

chemical-family approach is commonly applied to one exposed subpopulation instead of multiple 

different subpopulations 35–38, thus hindering progress towards identifying populations vulnerable 

to chemical-mediated effects. While this approach is necessary for an in-depth, detailed analysis, 

this single-chemical or single-family approach can complement an unbiased approach that 

systematically identifies chemicals with high exposures in specific susceptible populations to 

provide wealth and depth in understanding the exposure profiles associated with vulnerable 

populations. Hence, I have organized sections 1.2, 1.3, and 1.4 to discuss limitations in current 

approaches for studying age-based trends, characterizing racial exposure disparities in women in 

the context of breast cancer, and evaluating the impact of occupational co-exposures on worker’s 

health, respectively. For section 1.3, I focused primarily on breast cancer disparities due to interest 

of the Colacino Lab to prioritize toxicants for further experimental work to understand their role 

in breast cancer disparities. 

There are also limitations in addressing how chemical exposures influence health. For ease 

of interpretation, most studies assume linearity when modelling the associations between chemical 

exposures and a given disease 22,39. Linear models cannot detect whether participants with either 
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higher or lower exposures are at increased risk, as these models are limited to only detecting one 

subpopulation at risk. For example, lower levels of vitamin A are associated with increased risk 

for blindness, infection, rashes, and higher levels are associated with bone pain, liver damage, and 

increase pressure on the brain 40. A linear model would suggest one of the following:  1) higher 

levels, 2) lower levels, or 3) no levels are associated with increased risk. This shows the limitations 

of the using a linear model to detect susceptible participants, especially in situations when 

participants with measurements in either extremes of exposures are at risk. Furthermore, while 

these studies provide evidence of environmental influence on human health 41–45, they do not 

provide insight on how exposure may perturb important physiological mechanisms conducive to 

increasing disease risk. Therefore, we first need to gain insights into understanding the 

physiological profiles associated with adverse outcomes 46–51. In addition, there is a need to 

develop a framework to study the linear and non-linear relationship between physiological 

indicators and adverse health outcomes. This framework will not only be useful in identifying 

directionalities associated with increased disease risk, but it will also enable further exploration on 

how chemical exposures perturb physiological profiles in a manner that increases risk for a given 

adverse outcome. In section 1.5, I further discuss the limitations of the current approaches to 

modeling the associations between physiological indicators and health outcomes.  

Figure 1.1 illustrates the contributions from studies published within the last two decades 

that characterized associations along the continuum of chemical indicators, physiological 

indicators, and health endpoints. These domains converge toward the high-throughput evaluation 

of chemical exposures to simultaneously prioritize chemicals and identify susceptible populations 

along with developing a framework to characterize linear and non-linear associations along this 

continuum.  
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1.2 Need to Systematically Identify Highly Exposed Chemicals in Children 

Children are especially susceptible to toxicant exposures due to an assortment of 

physiological traits and normal development behaviors. For instance, children tend to have higher 

metabolic rate 52,53, which facilitates the absorption of toxicants. Infants often have higher body 

burdens of chemicals, with estimated half-lives of several chemicals being 3-9 times longer than 

those found in adults 54. These higher half-lives may be due to childrens’ developing metabolism 

pathways. Due their small body sizes, children are more susceptible to adverse effects if exposed 

to the same doses as adults 55. Children are rapidly growing and developing, leading to changes in 

their organ system functioning, which may modify the effects from toxicant exposures 56. For 

example, developing organ systems, such as the central nervous system 57 and respiratory system 

58, are more susceptible to environmental insults in children than in adults. Furthermore, children 

are especially sensitive to adverse effect of toxic exposures as childhood development is a crucial 

window of susceptibility 56. Children may also be susceptible to higher exposures via routes of 

exposures associated with behaviors linked to normal development such as crawling 59, mouthing 

60,61, and playing 62. Therefore, approaches to identify chemicals of higher biomarker levels in 

children will help prioritize chemicals for further toxicologic and epidemiologic assessment and 

implement policy or regulations to prevent such exposures and subsequent adverse effects.  

Children are exposed to a wide ensemble of chemicals 63. Commonly used as plasticizers, 

especially in toys, phthalates are found at higher concentrations in children with links to 

developmental and reproductive toxicity in animals 64. Brominated flame retardants such as 

Polybrominated Diphenyl Ethers (PBDEs) are also found at higher levels in children 65 and have 

been shown to affect the developing brain and thyroid homeostasis 66, thus affecting the regulation 
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of many body functions due to irregular release of thyroid hormones in the bloodstream. Blood 

lead concentrations are declining 67 but are still found at levels associated with neurotoxicity and 

intellectual impairment, as no safe level of lead has been identified 68,69. From a literature review, 

children tend to have higher biomarker levels of bisphenol A (BPA), phytoestrogens, perchlorate, 

and metabolites of PAHs and benzene 70. From a range of many different chemicals, which of 

these chemicals should be prioritized for further risk assessment and consideration for 

implementing legislation to prevent such exposures and related adverse outcomes? While these 

studies are informative for detailed analysis, studying one chemical or one chemical family at a 

time is limited in addressing the totality of chemical exposures in children. Hence, there needs to 

be an untargeted approach to prioritize chemicals by exposures and severity of health problems in 

children.  

Studying age-based trends is salient to applying an untargeted approach to identify a set of 

chemicals found at higher concentrations in children than in adults. Studying such trends are also 

informative into gaining insights on the history of exposures as age can be used as a surrogate for 

time. In addition, studying age-based trends enables us to observe the efficacy of legislation and 

policy on chemical productions and its subsequent effects 71,72. Furthermore, identifying the drivers 

of age-based trends of chemical exposures will help prioritize susceptible populations and guide 

intervention strategies to prevent chemical-mediated adverse health outcomes. Several 

mechanistic models have been developed to study the relationship between chemical exposures 

and age for PCBs 73,74, dioxins 75, and selected PFASs such as PFOS and PFOA 76,77. While these 

models have enabled the identification of biological half-lives, restriction dates, and change of 

intake as important drivers of age-based trends, these models have been limited to persistent and 

legacy chemicals such as PCBs and Dioxins and required a substantial amount of data to 
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parameterize. These stipulations create challenges in applying an unbiased approach to 

characterize drivers of age-based trends and identify high risk populations across a broad set of 

chemicals. Thus, using human biomonitoring data containing measurements for hundreds of 

chemicals will enable the characterization of age-based trends and their determinants to help 

prioritize chemicals in children. 

1.3 Role of Environmental Insult on Breast Cancer Disparities 

There are stark racial disparities in breast cancer among women in the US. For example, 

non-Hispanic Black women are 40% more likely to die from breast cancer compared to women of 

any other race 78. Furthermore, the incidence of non-Hispanic Black developing triple negative 

breast cancer, the most aggressive subtype of breast cancer, is three times higher compared to that 

of non-Hispanic White women 79,80. Therefore, understanding the etiology of these disparities is 

integral to design targeted interventions to ensure health equity.  

While the mechanisms driving these breast cancer disparities are likely due to complex 

interactions between genetic and environmental factors, the contribution of genetic variations 

appears minor in explaining cancer disparities 81–83. For instance, a meta-analysis found that 

genetic risk factors explain less than 5% of the variation in cancer disparities 84. Furthermore, high 

penetrance inherited genes contribute to only 5-10% of breast cancer 85, leaving a substantial 

proportion to be possibly explained by the environment and hence preventable with targeted 

intervention 86,87.  

Differences in chemical exposures have been hypothesized to be pertinent drivers in racial 

disparities of disease 78–83. The role of chemical exposures in breast cancer disparities is not well 

studied nor understood. Thus, understanding the etiology of environmental insults on breast cancer 

disparities require comprehensive characterization of differences in chemical exposures. 
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Furthermore, systematic characterization of exposure differences across a diverse set of chemical 

indicators will enable the identification of toxicants showing the highest disparities and hence the 

prioritization of these toxicants for further experimental work to better understand the role of 

environmental insult in increasing the risk of breast cancer.  

1.4 Susceptibility of Workers to Occupational Exposures and Related Effects  

Workers are vulnerable to chemical-mediated effects as occupational exposures have been 

identified as causal factors in a wide variety of disorders and diseases. Prolonged exposures to 

hazardous chemicals even at lower doses have been identified as a causal factor in cancer 88,89. 

According to the National Institute for Occupational Safety and Health (NIOSH), 13 million 

workers in the US are exposed to chemicals via dermal absorption, which can result in occupational 

skin diseases and systemic toxicity 90. According to the United Nations, a worker dies from toxic 

occupational exposure every 30 seconds 91.  

These statistics lend urgency to characterize the totality of exposures across different 

industries and occupations to identify workers most susceptible to chemical-mediated health 

effects. Despite these alarming statistics, most studies tend to characterize occupational exposures 

by implementing a one-chemical or one-chemical family approach in a selected group of workers 

30,35,37. Such approaches are limited in prioritizing chemicals for further analysis. They are also not 

representative of the totality of chemical exposures as individuals are exposed to multiple 

chemicals in an occupational setting. In addition, characterizing co-exposures is important in 

understanding the synergistic effect of chemical exposures on disease. For example, workers, who 

were exposed to asbestos but do not smoke, have a 70% higher risk of lung cancer compared to 

the reference group of non-smoking workers who were not exposed to asbestos. While an increased 

risk of 70% is substantial, this risk is minimal when compared to the case of workers, who are 
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exposed to asbestos and smoke, as the likelihood of having lung cancer for this group is 9 times 

higher compared to the reference group 92. Despite these findings, studying co-exposures have 

been limited to one chemical family 93–95, but populations are not only exposed to one chemical 

class. Thus, there is a need to develop a framework to characterize co-exposures across multiple 

chemical classes. This is essential to identify workers, whose exposure profiles are characterized 

by elevated biomarker concentrations of the most toxic substances as they would benefit from 

targeted intervention. 

Understanding how chemical exposures may elicit or diminish important physiological 

responses will be integral to better understand the role of occupational exposures in causing 

diseases. Physiological responses can be characterized by measurements of various biomarkers 

known as physiological indicators that characterizes the normal functioning or dysfunction of the 

different systems in the human body. While some have studied the associations between a chemical 

or chemical family and a physiological indicator 30,35,96, this is not representative of the totality of 

exposure on human health. Few have evaluated the impact of multiple chemical on physiological 

response, but this was limited to one physiological indicator 97. Physiological function is not solely 

characterized by only one physiological indicator. Thus, evaluating the impact of chemical co-

exposures on a diverse suite of physiological indicators is fundamental to better understand the 

influence of environmental insults on human health, especially in an occupational setting. 

1.5 Characterizing Associations Along the Spectrum of Chemical Exposures to Physiological 

Indicators to Adverse Health Outcomes 

While several studies have provided evidence of the influence of chemical exposures on 

disease onset 22,39,98, there are several limitations in these approaches. First, the sample size for 

some studies are low 99–102, leading to decreased statistical power in detecting significant 



 

11 
 

differences. In addition, these studies do not adjust for multiple comparisons, which may 

potentially lead to spurious findings 103. Second, most studies assume a linear association when 

modeling the relationship between chemical exposures and disease risk 22,39,98. Others do evaluate 

non-linear effects 104,105, but very few studies compare the prediction performance between linear 

and non-linear models to determine which type of association best describe the dose-response 

relationship 96,106. Finally, while these studies provide evidence of environmental influence on 

human health, they do not provide insight on how exposure may perturb important physiological 

mechanisms conducive to increasing risk for the disease. Furthermore, we need to first evaluate 

the physiological profiles associated with adverse outcomes, so that we can have the foundation to 

understand how chemical exposures can modulate the associations between physiological function 

and adverse outcomes.  

Understanding whether associations between physiological indicators and health outcomes 

are linear or non-linear will enable identification of populations prone to increase risk for adverse 

outcomes. Most association studies assume linearity 107–110 or non-linearity 111–115 separately. 

Furthermore, these studies do not quantitatively evaluate whether linearity or non-linearity better 

describes the associations between a given physiological indicator and a health outcome. While 

there are many studies that do compare the prediction performance of various models such as 

linear, quadratic, cubic, and logarithmic 116,117, these results are not validated on new data. Without 

any validation, the more flexible model, usually the non-linear model, is deemed better at 

characterizing the associations, which may reflect the actual relationship or show an overfitted 

model 118. Thus, these limitations emphasize the need for a statistical framework to establish the 

appropriate model to best characterize the association between a physiological indicator and a 

health outcome while also evaluating for overfitting by using cross-validation and metrics such as 
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the AIC or Bayesian Information Criterion to penalize for added complexity in the non-linear 

models. This framework will enable identification of directionalities of the physiological indicator 

associated with increased disease risk. In addition, it will be applicable to characterize the 

associations between chemical exposures and physiological indicators and health outcome, 

respectively. Such applications will lead to the identification of the chemical doses conducive to 

elicit a negative physiological response leading to an adverse outcome.  

1.6 Objectives and Specific Aims 

The main objective of this thesis is to better characterize the totality of chemical exposures 

and to gain insights into understanding how chemicals exposures perturb physiological function 

in a manner that increase onset risks for adverse health outcomes. More specifically, to address 

the aforementioned limitations and challenges, I define the following four specific aims.  

Specific Aim 1 (Chapter 2): Identify toxicants of higher biomarker levels in children by 

characterizing age-based trends in a representative sample of the US population. More specifically, 

this aim entails:  1) understanding the influence of temporal drivers, in particular time trends, 

biological half-lives, and restriction dates on age-based trends, 2) systematically defining an age-

based pattern to identify chemicals with ongoing and high exposure in children, and 3) 

characterizing how age-based trends for six PFASs are changing over time to evaluate the criteria 

indicative of legacy exposures. 

Specific Aim 2 (Chapter 3): Conduct a comprehensive analysis of racial disparities in 

chemical biomarker concentrations among US women to identify chemicals of higher exposures 

in Non-Hispanic Black women. More specifically, this aim involves: 1) evaluating chemical 

exposures disparities by race, 2) evaluating how these exposure disparities varies across the life 

stage, and 3) characterizing how these exposure disparities change over time.  
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Specific Aim 3 (Chapter 4): Characterize occupational exposures and physiologic 

dysfunction in a working US population comprised of NHANES participants from a broad range 

of industrial sectors and occupations. More specifically, this aim involves:  1) characterizing 

differences in chemical exposure and physiological response profiles across combinations of 

sectors and occupations, 2) identifying groups of workers with similar chemical exposure and 

physiological response profiles, and 3) characterizing the physiological dysfunction of workers 

who have similar chemical exposure profiles.  

Specific Aim 4 (Chapter 5): Characterize the relationships between all-cause mortality 

and 27 physiological indicators in the US population. All-cause mortality was selected as it is the 

ultimate health endpoint. More specifically, this aim includes:  1) comparing the prediction 

performance of linear and different nonlinear models by applying a machine learning approach, 2) 

assessing the robustness of the models by observing changes in prediction performance when 

extreme measurements are excluded, 3) describing the associations between the physiological 

indicator and mortality as characterized by the most appropriate model(s), and 4) determining the 

relevance of the current clinical thresholds by evaluating whether these values are indicative of 

increased mortality risk. 

1.7 Dissertation Outline  

This dissertation is organized based on the aforementioned specific aims with Chapter 2-5 

used to address each of the four specific aims. Chapters 2-5 are formatted as journal articles 

accompanied by supplemental information available in Appendices 1-4. Chapter 2 119 and 3 120 

were published in Environment International. Finally, Chapter 6 concludes the dissertation by 

providing an overall discussion of the dissertation results and potential future directions of these 

results.  
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1.8 Figures 

 
Figure 1.1. General structure of association studies along the spectrum of chemical biomarkers, physiological indicators, and health 
endpoints. BFRs, Brominated Flame Retardants; BMI, Body Mass Index; CRP, C-Reactive Proteins; GFR, Glomerular Filtration Rate; 
PAHs, Polycyclic Aromatic Hydrocarbons; PBDEs, Polybrominated Diphenyl Ethers; PBBs, Polybrominated Biphenyls; PCBs, 
Polychlorinated biphenyls; VOCs, Volatile Organic Compounds.  
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Chapter 2 Characterization of Age-Based Trends of Chemical Biomarker Levels 
 

2.1 Abstract  

Background: Chemical biomarker concentrations are driven by complex interactions 

between chemical use patterns, exposure pathways, and toxicokinetic parameters such as 

biological half-lives. Criteria to differentiate legacy from current exposures are helpful for 

interpreting variation in age-based and time trends of chemical exposure and identifying chemicals 

to which children are highly exposed. A systematic approach is needed to study temporal trends 

for a wide range of chemicals in the US population. 

Objectives: Using NHANES data on measured biomarker concentrations for 141 

chemicals from 1999-2014, we aim to 1) understand the influence of temporal determinants, in 

particular time trends, biological half-lives, and restriction dates on age-based trends, 2) 

systematically define an age-based pattern to identify chemicals with ongoing and high exposure 

in children, and 3) characterize how age-based trends for six Per- and Polyfluoroalkyl Substances 

(PFASs) are changing over time.  

Methods: We performed an integrated analysis of biological half-lives and restriction 

dates, compared distributions of chemical biomarker concentrations by age group, and then applied 

a series of regression models to evaluate the linear (!!"#) and nonlinear (!!"#!) relationships 

between age and chemical biomarker levels.  

Results: For restricted chemicals, a minimum persistence of 1 year in the human body is 

needed to observe substantial differences between less exposed young population and historically 
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exposed adults. We define a metric (!!"#! !!"#⁄ > $
%&.() that identifies several phthalates, 

brominated flame retardants, pesticides, and metals such as lead and tungsten to reflect elevated 

and ongoing exposures in children. While a substantial reduction in children’s exposures was 

reflected in PFOS and PFOA, levels of PFNA and PFHxS in children were higher in 2013-2014 

compared to those in 1999-2000.  

Conclusions: Integrating a series of regression models with systemized stratified analyses 

by age group enabled us to define an age-based pattern to identify chemicals that are of higher 

level in children.  

2.2 Introduction 

Characterizing an individual’s exposome requires understanding their lifelong chemical 

exposures, including how chemical exposures change over time and by age. Studies using 

population-level chemical biomonitoring data have observed a variety of chemical-specific time 

and age trends. Persistent chemicals such as polychlorinated biphenyls (PCBs) tend to show a 

strong decline over time and differentiated exposure patterns across life stages, which are linked 

to chemical persistency and changes in legislation 73,121. Relative to PCB exposures which derive 

mainly from the diet, characterizing exposures to chemicals in consumer products, such as 

phthalates, are more complex, since these chemicals are used in a range of products with varying 

usage patterns. As a result, very different age-based and temporal patterns can be observed even 

within the same chemical family. For instance, urinary concentrations of mono-ethyl phthalate, 

mono-n-butyl phthalate, mono-benzyl phthalate, and metabolites of di(2-ethylhexyl) phthalate 

showed a decline, whereas mono-isobutyl phthalate, mono(3-carboxypropyl) phthalate, mono-

carboxyoctyl phthalate, and mono-carboxynonyl phthalate increased from 2001 to 2010, implying 

that the latter phthalates may be substitutes for the former 28. Similar trends can be observed in 
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biomonitoring data for per- and polyfluoroalkyl substances (PFASs), such as perfluorooctane 

sulfonate (PFOS) and perfluorooctanoate (PFOA), where differences in population concentrations 

manifested following restrictions in 2000-2002 122,123. The exposure patterns of other PFASs from 

treated consumer products 124, water 125,126, and food contamination 127 are not as well understood 

and evoke the need to study how age-based trends for these substances are changing over time 76. 

While many studies have used biomonitoring data to identify a variety of chemical-specific time 

and age trends, expanding these analyses to a broader set of chemicals and chemical classes will 

enable us to understand the drivers behind these age-based trends.  

To better understand the relationship between chemical biomarker levels and age, several 

mechanistic models have been developed to investigate the potential determinants. These models 

have studied age relationships for specific chemical classes such as PCBs Ritter et al. 2011), 

dioxins 75, and selected PFASs 76,77, with most considering dietary exposure pathways. These 

models have enabled the identification of key potential determinants such as biological half-lives, 

restriction dates, and change of intake with age as important factors in understanding age-based 

trends. However, such models have mostly been applied to dietary exposures for persistent 

chemicals and require substantial amount of data on age-based exposure patterns, chemical 

properties, and chemical usage. Such stipulations make a systematic application across a broad set 

of chemical classes and exposure pathways complex and challenging. Thus, an overarching 

statistical approach anchored in biomonitoring data would complement mechanistic approaches 

by allowing us to screen age-based trends and main determinants across a larger number of 

chemicals, chemical classes and (even unknown) product usage, to identify subpopulations at risk 

of high exposure. 
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Compared to adults, children are particularly susceptible to toxicant exposures due to 

factors such as higher metabolic rate 52,53, rapid growth, development of organs and tissues 56, and 

behaviors associated with normal development such as crawling 59, mouthing 60,61, and playing 62.. 

For example, higher concentrations of polybrominated diphenyl ethers (PBDEs) in younger 

individuals were attributed to lifestyle and activity  differences 65. Due to their increased 

susceptibility, it is imperative to identify chemicals to which children are highly exposed. 

Comparing geometric means of chemical levels across age groups enables the identification of 

chemicals that are higher in children. Such approaches do not account for confounders, however, 

nor do they inform the influence of potential determinants on age-based trends 128–130. There is a 

need integrate data on biological half-lives and restriction dates with cross-sectional biomonitoring 

data to understand age patterns and systematically identify ongoing exposures in children.  

While progress has been made to characterize temporal trends for a few chemical classes, 

an overarching screening approach has yet to be developed to systematically study age-based and 

temporal trends of biomarker data in context with temporal determinants such as half-lives and 

restriction dates for a wide range of chemicals in the US population. In this study, we therefore 

applied a systematic approach through a series of regression models to characterize chemical 

specific age-based patterns and identify highly exposed subpopulations for a broad set of 141 

chemical biomarkers from a 1999-2014 sample of the US population. More specifically, our 

objectives were to 1) understand the influence of temporal determinants on age-based trends, in 

particular time trends, biological half-lives, and restriction dates, 2) systematically define an age-

based pattern of concern to identify chemicals of ongoing and high exposures in the younger 

population, and 3) conduct a targeted analysis of six PFASs to characterize how age-based trends 

of these substances are changing over time.   
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2.3 Material and Methods 

The approach integrates four types of data: a large dataset of biomarker concentrations for 

multiple chemicals in a large sample of the US population, the corresponding demographic factors 

for the studied population, a dataset of human biological half-lives for the observed chemicals, and 

a dataset describing the year and type of restrictions imposed on the production, emission, sale or 

use of products containing these substances, if applicable. 

2.3.1 Study Population  

Since 1999, the Centers for Disease Control (CDC) has conducted the continuous National 

Health and Nutrition Examination Survey (NHANES) to collect cross-sectional data on 

demographic, socioeconomic, dietary, and health-related characteristics in the US population. For 

this analysis, we combined data from the chemical biomarker and demographic datasets between 

years 1999-2014 for an initial number of 82,091 participants. We then excluded participants for 

which corresponding data on chemical biomarkers do not exist (n = 7,149), resulting in a sample 

size of 74,942 study participants. On a chemical specific basis, we also excluded participants with 

missing information on any of the following covariates: age, NHANES cycles, sex, race/ethnicity, 

poverty income ratio, cotinine levels, and urinary creatinine. These exclusion and inclusion criteria 

are detailed in Figure 2.1.  

2.3.2 Chemical Biomarker Measurements 

We define chemical biomarker as an indicator of environmental exposure that can be 

measured in blood, serum, or urine. We replaced all measurements below the limit of detection 

(LOD) with the LOD divided by the square root of 2  131, as recommended by the CDC to produce 

reasonably unbiased means and standard deviations 132. At times, NHANES identified a problem 

of interference from molybdenum oxide that resulted in corrected concentration of urinary 
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cadmium recorded as 0 ng/mL (NCHS, 2005a, NCHS, 2005b). Log-transforming such data would 

be undefined, therefore such measurements were replaced with the LOD divided by the square 

root of 2 if the participant’s urinary cadmium level was under the LOD or otherwise excluded. We 

calculated detection frequencies for each chemical biomarker and excluded biomarkers with 

detection frequencies of 50% or less (n = 173). Across the NHANES cycles, improvements in 

laboratory technology can change the LOD and thus influence changes in detection frequencies by 

NHANES cycle. To prevent such influence, we calculated detection frequencies by NHANES 

cycle for each chemical biomarker and excluded measurements that showed drastic changes in the 

LOD and detection frequencies over time. For instance, percentages of participants with PCB 196 

measurements above LODs for Cycle 2 and Cycle 3 are 37.8% and 86.7%, respectively, and the 

LOD for Cycle 2 and Cycle 3 were 10.50 ng/g and 0.40 ng/g, respectively. As such, measurements 

from Cycle 2 for PCB 196 were excluded (Figures A1.1 and A1.2). Measurements from given 

cycles for all PCBs, Dioxins, and Furans along with 2-(N-methyl-PFOSA) acetate, 2,4-D, 

Paranitrophenol, and 1-pyrene (n = 134,453) were therefore also excluded based on these criteria 

(Table A1.1). We also excluded biomarkers that are not indicative of exposure (n = 30). We 

preferred lipid adjusted measurements for biomarkers indicated by 7- or 8-letter NHANES 

codename ending in “L” or “LA,” respectively, for which NHANES provided both lipid-adjusted 

and non-lipid adjusted measurements, and excluded non-lipid adjusted chemical biomarkers (n = 

79). Finally, transition from the early to recent NHANES cycles resulted in differences in 

NHANES chemical codenames, which we corrected to reflect a unique codename for each 

biomarker (n = 22). The final dataset for analysis consisted of 141 chemical biomarkers from 16 

different classes.  
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2.3.3 Half-Lives of Organic and Inorganic Substances in Humans 

The biological half-life of a chemical is an important factor to explain differences in 

chemical biomarker levels across the life-stages 73. To determine a set of relevant half-lives, we 

first developed a table of NHANES codenames and corresponding CAS No. for each chemical 

biomarker (Table A1.2). We then matched metabolite biomarkers to their corresponding parent 

compounds. For biomarkers that are metabolites of several parent compounds, we developed the 

composite half-life by summing the half-life of the metabolite with the maximum half-life of the 

corresponding parent substances. This assumes the parent substance or compartment with the 

highest persistence drives the persistency of the metabolic biomarker. We searched a database of 

empirically-based whole body elimination half-lives and identified 39 chemicals on the list 133. For 

an NHANES chemical biomarker that is a mixture of two substances, i.e. m-/p-Xylene, we applied 

the average of the substance’s half-life. Thirty nine of the 118 organic chemicals in this study have 

empirically-based whole body elimination half-lives available in the OECD QSAR ToolBox 

(https://www.qsartoolbox.org/). Since estimated persistency of PFASs showed high variability 

with estimates up to 220 years, empirically based half-lives were selected from literature for this 

chemical class (Text A1.1 and Table A1.3). For organic chemicals that are not in the empirical 

database, the total elimination (intrinsic) half-life was predicted using a screening-level 

Quantitative Structure-Activity Relationship (QSAR) 133. The model is a fragment-based QSAR 

that was developed and validated following OECD QSAR guidance 134,135. Since these QSARs are 

only applicable to organic substances, we identified the half-lives of inorganic substances in 

humans through a review (Table A1.4). In selecting literature half-lives, we preferred 1) human 

half-lives over those from animals, 2) half-lives from animal species that are anatomically similar 

to humans if human data were not available, and 3) slower elimination kinetics over rapid kinetics. 
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We selected the maximum half-life for 1) inorganic chemicals that have multiple half-lives for a 

given biological compartment, and for 2) chemicals with half-lives available for multiple 

biological compartments, e.g. body, bones, blood, or lungs. Table A1.5 tabulates the methods used 

to find or estimate half-life for each chemical biomarker.  

2.3.4 Restriction Dates  

It has been suggested that the time-lapse between a chemical’s restriction date and sample 

collection date is an important contributor to biomarker concentration time trends and age-based 

differentiations 73. To investigate this, we developed a database of restriction dates (years) in US 

commerce through an extensive review (Table A1.6 and A1.7). Some chemicals have several 

reported restriction dates, in particular those that were restricted from different products in 

different years, such as lead. Note that some chemicals were restricted in certain applications but 

not in others. For instance, the use of lead was banned in paint 136 and gasoline 137, but it is still 

used in cosmetic products 138 and plumbing 139,140. Also, some chemicals have been gradually 

phased out over several years, such as PFASs. For chemicals with dates recorded as a range, and 

for which we were unable to determine the relative importance of a given year, we applied the 

mean year. When there are several dates associated with a chemical biomarker, we applied the 

latest date to represent the most recent period that the substance was banned or phased out.  

2.3.5 Statistical Analysis  

We performed all analyses using R version 3.5.1. We first defined 11 different age groups 

to compare chemical biomarker differences by age and then partitioned the distribution of each 

chemical biomarker by age group and NHANES cycle. To aid data visualization, such as in Figure 

2.5, we adjusted concentrations of urinary chemical biomarkers by urinary creatinine levels 141. 
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For a given biomarker, we used ANOVA to test for differences among geometric means of 

chemical concentration across age groups. 

In NHANES, deliberate oversampling was commonly employed to detect susceptible 

subpopulations at risk for exposures and/or disease 142. As such, generalizing the results to the US 

population requires the application of survey weights to account for the sampling design, but this 

decreases statistical power in identifying associations within the susceptible and oversampled 

subpopulations 143. We applied the survey weights in our statistical models for a few chemical 

biomarkers and identified minor differences between the weighted and unweighted regression 

coefficients for age. Due to this minimal influence, survey weights were not included in our 

statistical analyses.  

We used multivariate regression models to evaluate the influence of age and time on the 

chemical biomarker concentrations in blood and urine after log-transformation of these data. We 

included log-transformed levels of cotinine as a covariate to represent smoking (Benowitz, 1999), 

and creatinine levels to adjust for urine dilution and flow differences (Barr et al., 2005). We 

modeled poverty income ratio (PIR), i.e., the ratio of household income and poverty threshold 

adjusted for family size and inflation, as a surrogate variable for socioeconomic status. First, we 

examined the influence of age and time on chemical biomarker concentrations by performing a 

series of chemical-specific regression models with the main predictors of age centered at $!"#%%%%%% 

(continuous), survey cycle (continuous), sex (categorical), race/ethnicity (categorical), PIR 

(continuous), and cotinine (continuous) as described in Equation 1 without the term for age 

squared:  

&'(10($)*#+,-!.	)01-#123!2,014) = 	!!"#($!"# − $!"#%%%%%%) + 

																																																																					!!"#!($!"# − $!"#%%%%%%)% + 

																																																			!-5-.#$-5-.# + 
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																																													!4#6$4#6 + 

																																																																																	!3!-#/#2*1,-,25$3!-#/#2*1,-,25 + 

																																													!89:$89: + 

																																																												!-02,1,1#$-02,1,1# + 

																																																																				!-3#!2,1,1#$-3#!2,1,1# + 

										1,																																																																			[1]  

where XChemical Concentrations is the log-transformed, unadjusted chemical biomarker 

concentration for all participants, Xi, where i ϵ {age, age2, cycle, sex, race/ethnicity, PIR, cotinine, 

creatinine}, is the i covariate for all participants, βi  is the linear regression coefficient for the i 

covariate, and α is the intercept. For urinary chemical biomarkers, we further corrected the 

regression models by adjusting for urinary creatinine levels (continuous). For cotinine, the 

regression models were not corrected for cotinine. Age coefficient (!!"#.,1#!3) and cycle coefficient 

(βcycle) are interpreted as the change in log-transformed chemical biomarker concentration due to 

a one-year increase in age or a one-survey-cycle increase in time, respectively. To account for 

multiple comparisons, we used a False Detection Rate (FDR) method on the p-values of the linear 

regression age-coefficients 103.  

To evaluate nonlinear relationships between chemical biomarker levels and age, and 

systematically identify chemicals that are of higher concentrations in children, we included age 

centered at $!"#%%%%%% squared as another main predictor as shown in Equation 1. Age was centered at 

$!"#%%%%%%  to reduce the collinearity between the linear and quadratic age predictors to assess the 

separate contribution of these terms. We denote the age coefficient of the nonlinear regression 

models as !!"# 	to differentiate it from that of the linear models, !!"#.,1#!3. It is interpreted as the 

change in log-transformed chemical biomarker concentration due to a one-year increase in 

age.	!!"#! is interpreted as the change in the slope relationship between chemical concentrations 
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and age for a one-year increase in age. We assumed a quadratic association between chemical 

biomarker levels and age to capture how biomarker levels may change non-monotonically across 

the life stage and for ease of interpretation.  

Using !!"# and 	!!"#!, we defined a metric (5-*,.;3#1) to rank the chemicals from most 

concerning to least concerning for children as described in Equation 2: 

5-*,.;3#1 = !!"#($!"# − $!"#%%%%%%) + 	!!"#!($!"# − $!"#%%%%%%)%																																											[2] 

where $!"# is designated to 5 years old for this analysis (Table A1.8). A more positive 5-*,.;3#1 

is indicative of higher chemical biomarker levels in children followed by a downward, convex 

trend across the older age groups. 104"#$%&'() is interpreted as the fold difference in chemical 

biomarker levels between a child of 5 years and adult of 31.88 years. To define a boundary line to 

differentiate the chemicals of higher exposures in children compared to those in adults, we solved 

for !!"#! !!"#⁄  when 5-*,.;3#1 = 0 from Equation 2 and calculated the slope of the boundary line 

to be $
<*+(=======><*+(

= $
%&.(. Any chemical with 5-*,.;3#1 = 0 implies that biomarker levels are the same 

between a child of 5 years and adult of 31.88 years. Using the regression coefficients, we predicted 

the log-transformed chemical biomarker levels for all participants with complete data on age, 

cycle, sex, race/ethnicity, PIR, and cotinine. Predictions are not available for children between one 

to two years of age, since measurements for blood cotinine in this age group were missing. 

To understand how differences in chemical biomarker concentrations between young and 

older individuals change over time, i.e., how age-based trends are changing over time, we 

conducted stratified analyses by NHANES cycle. We first partitioned life-stage changes in 

chemical biomarker concentrations by NHANES cycles and fitted these cycle-specific 

concentrations with smooth curves through LOESS (locally weighted scatterplot smoothing) 144. 

Then for each cycle with measurements, we performed a chemical-specific linear regression with 
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age (continuous) as the main predictor while adjusting for sex (categorical), race/ethnicity 

(categorical), PIR (continuous), and smoking (continuous) described in Equation 3:  

						&'(10($)*#+,-!.	)01-#123!2,014[678&9 = :]) = 	!!"#,@$!"#[678&9 = :] + 

																																																										!4#6,@$4#6[678&9 = :] + 

																																																																																														!3!-#/#2*1,-,25,@$3!-#/#2*1,-,25[678&9 = :] + 

																																																										!89:,@$89:[678&9 = :] + 

																																																																									!-02,1,1#,@$-02,1,1#[678&9 = :] + 

																																																																																!-3#!2,1,1#,@$-3#!2,1,1#[678&9 = :] + 

																										1@ ,																																																																							 [3] 

where k is the available cycle number that can range from 1 to 8, XChemical Concentrations[Cycle 

= k] is the log-transformed, unadjusted chemical biomarker concentrations of participants in the 

kth cycle, Xm[Cycle = k], where m ϵ {age, sex, race/ethnicity, PIR, cotinine, creatinine} is the m 

covariate for all participants in the kth cycle, βm,k is the linear regression coefficient for the m 

covariate in the kth cycle, and αk is the intercept for the kth cycle. The linear regression age 

coefficient (βage,k) is interpreted as the change in log-transformed chemical biomarker 

concentration due to a one-year increase in age for a given kth cycle.  

2.4 Results 

2.4.1 Study population 

Table 2.1 presents population characteristics for the 74,942 NHANES participants from 

1999-2014. The mean age ($!"#%%%%%%) is 31.88 (SD 24.28) with approximately 42.1% of the population 

being 18 years old or younger. This indicates children are oversampled, since according to the US 

Census, 26% of the US civilian noninstitutionalized population are below 19 years of age. The 

number of participants across the cycles does not vary drastically. The population is evenly 

distributed by sex with approximately 51% of the population being female. All race/ethnicity were 

oversampled, except for Non-Hispanic Whites, since according to the US Census, the proportions 



 

28 
 

of Hispanics, Non-Hispanic Blacks, and Other Race are 17.8%, 13.3%, and 9.8%, respectively 145. 

The mean of PIR is 2.301 (SD 1.59). The means of cotinine and creatinine levels were 38.39 (SD 

103.80) ng/mL and 130.3 (SD 81.98) mg/dL, respectively.  

2.4.2 Age-Based Trends, Half-Lives, and Restriction Dates 

Figure 2.2A shows the number of biomarkers for each chemical class, and Figure 2.2B 

shows the range of log-transformed half-lives for each chemical class with a dashed line 

representing one year (Table A1.5). Chemical classes with half-lives in the range of 1 to 100 hours 

include Phthalates, Acrylamide, Other, Smoking Related Compounds (SRCs), Phytoestrogens, 

Polycyclic Aromatic Hydrocarbons (PAHs), Personal Care and Consumer Product Compounds 

(PCCPCs), Volatile Organic Compounds (VOCs), and Melamine, while classes with more 

persistent chemicals include Brominated Flame Retardants (BFRs), PFASs, PCBs, Dioxins, and 

Furans. Chemicals from the Metals and Pesticides classes demonstrate a wide range of persistency 

in the human body.  

Figure 2.2C shows ranges of !!"#.,1#!3′5 for each chemical class. These values are 

interpreted as the log change in chemical concentration for a one-year increase in age. The majority 

of chemicals from PCBs, Furans, Dioxins, Melamine, Metals, and Pesticides along with a single 

BFR (2,2',4,4',5,5'-hexabromobiphenyl) have high positive ranges of !!"#.,1#!3′5, indicating higher 

concentrations in the older population. In contrast, most of the phthalates, SRCs, and BFRs along 

with a few VOCs, PCCPCs, PAHs, and phytoestrogens have negative !!"#.,1#!3′5, reflecting higher 

concentrations in younger individuals. The majority of chemical biomarkers have !!"#.,1#!3′5 

between -0.01 and 0.01, suggesting small or no differences in chemical biomarker levels across 

the life-stages.  



 

29 
 

Figure 2.2D shows the proportions of unrestricted or restricted chemicals for each class, 

and Table A1.7 tabulates the restriction dates. Since the latest data were from 2013-2014, 

chemicals with restriction dates after 2014 are categorized as having no restriction. Chemical 

classes with higher proportions of unrestricted chemicals include Acrylamide, Other, SRCs, 

VOCs, and Melamine, and these have limited !!"#.,1#!3′5. In contrast, PCBs, Dioxins, and Furans 

show higher proportions of historically restricted chemicals and have the highest !!"#.,1#!3′5 and 

high half-lives. The majority of BFRs, PCCPCs, and PFASs have been restricted more recently 

and have limited !!"#.,1#!3′5 despite PFASs having high half-lives. The Metal and Pesticides classes 

demonstrate a wide variety of restriction types, with most of the persistent chemicals in these 

classes having been restricted before the turn of the century.  

Figure A1.3 and Text A1.2 further analyze changes in biomarker levels over the NHANES 

cycles, demonstrating a decrease in chemical biomarker levels over time for the majority of 

pesticides and PFASs show, while a few pesticides, phthalates, and PAHs have increasing time 

trends.  

2.4.3 Influence of Temporal Determinants on Linear Age-Based Trends 

To understand the influence of chemical persistence in the body, time trends, and restriction 

dates on differences in chemical biomarker concentrations across the life-stages, we examined the 

association between the !!"#.,1#!3′5 and human whole body elimination half-lives for all chemical 

biomarkers, color-coded by 1) restriction dates (Figure 2.3) and by 2) time trend trajectories 

(Figure A1.4). Chemical biomarkers with half-lives less than one year have !!"#.,1#!3′5 ranging from 

-0.01 to 0.01, indicating limited variation across life-stages. For these chemicals, cross-sectional 

biomonitoring data is primarily reflective of present exposures in different age groups or 

populations  73. In contrast, chemical biomarkers with half-lives greater than one year demonstrate 
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more variation across life-stages and show a positive association between the !!"#.,1#!3′5 and half-

lives. The majority of these persistent chemicals were banned or phased out between the 1970s 

and 1999 (blue markers in Figure 2.3). This implies exposures of the younger population have 

been strongly reduced, and that higher concentrations observed in the older population are likely 

due to historical exposures and long biological half-lives. Despite the long half-lives of BFRs and 

PFASs, !!"#.,1#!3′5 of these chemical classes are substantially lower than those of other persistent 

substances with similar half-lives. The lower 	!!"#.,1#!3′5 with age may be explained by the fact that 

these chemicals have been recently restricted or are still in use (red and yellow markers in Figure 

2.3) and that current exposures remain higher than exposures to legacy pollutants that were banned 

earlier. Of special concern are chemicals with negative	!!"#.,1#!3′5, since these chemicals are of 

higher levels in the younger population compared to the aged population. Most of these chemicals 

are unrestricted (red markers in Figure 2.3) and demonstrate an increasing or stable time trend 

(red and orange markers in Figure A1.4). 

2.4.4 Nonlinear Age-Based Pattern of Higher Levels in Children 

Since a linear relationship between age and log-transformed biomarker levels may not be 

representative for chemicals that display a nonlinear relationship with age, we refined the 

chemical-specific regression models to have age squared centered at $!"# as another main 

predictor to better characterize this relationship. Figure 2.4 summarizes the results for age from 

the quadratic regression model by presenting the association between !!"#! 	and !!"# for all 

chemical biomarkers. The chemical classes are indicated by difference shapes, while the colors 

show the different categories of fold difference in chemical biomarker levels between a child of 5 

years and adult of 31.88 years. For instance, mono-benzyl phthalate levels in 5-years-old children 

are on average 2.598 times higher compared to those for 31.88-years-old adults. A positive !!"#! 
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indicates a convex (or u-shaped) relationship between log-transformed chemical biomarker levels 

and age, while a negative !!"#! indicates a concave or (n-shaped) relationship.  

Chemicals in the upper left quadrant are of interest, since these are higher in 5-years-old 

children compared to 31.88-years-old adults by more than a factor of 2. Most of these chemicals 

are metals, pesticides, and phthalates used in building materials and articles. Based on Equation 2, 

the boundary line corresponds to equal biomarker levels for a child of 5 years and an adult of 31.88 

years. Chemicals above and to the left of the boundary line (!!"#! !!"#⁄ > $
<*+(=======><*+(

= $
%&.() have 

a downward and convex trend across age groups, implying the highest biomarker levels for the 

youngest participants. The highest levels in children compared to adults of average age are 

observed for mono-benzyl phthalate, O-Desmethylangolensin (O-DMA), mono-(3-

carboxypropyl) phthalate, 2-amnothiazolne-4-carbxylic acid and tungsten. Table A1.8 provides a 

detailed list of chemicals ranked from highest to lowest relative value between children and adults 

of average age. 

To further compare chemical biomarker distributions across the different life-stages and 

identify linear and nonlinear age-based trends, we stratified these distributions into 11 age groups 

(Figure 2.5) and selected example chemicals to represent the specific age-group trends within a 

chemical class. The geometric mean of the measured chemical biomarker levels for each age group 

is represented by a gray circle, while the geometric mean of the predicted chemical biomarker 

levels is indicated by a brown triangle. Outliers are represented by dash marks outside of the 

distributions of chemical biomarker concentration. A residual standard error (RSE) of 0 implies 

the model perfectly predicts the log-transformed biomarker levels. Geometric mean of predicted 

chemical biomarker levels for the 1-2 age group is unavailable, since cotinine was not measured 

in these participants. 
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Overall, the nonlinear regression models predicted the measured geometric means fairly 

well, particularly for children, middle-aged adults, and the elderly. The models, however, 

overestimated biomarker levels for tungsten, phthalates, and parabens in the adolescent age group, 

and underestimated lead in the toddler age group, indicating the need for a higher order polynomial 

model rather than a parabolic regression model for these specific cases. 

The following section analyzes in further detail these age trends by chemical class and type 

of usage. 

2.4.5 Age-Based Trends by Chemical Class 

2.4.5.1 PCBs, Dioxins, and Furans 

For PCBs, there are three main age patterns: a slight downward and convex trend, a steep 

upward and concave trend, and no trend across the life stage (Figure 2.4). The PCBs with half-

lives less than one year (Figure 2.3) showed little or no variation in chemical biomarker 

concentrations by age. PCB 49 (Figure 2.5A) and PCB 44 are the only two PCBs for which the 

youngest participants have the highest biomarker levels, with their negative !!"# and positive 

!!"#! characterizing a slight downward and convex trend across the age groups. This might 

indicate children are exposed through a pathway specific to these two congeners. In contrast, the 

more persistent PCBs, dioxins and furans have higher concentrations in the older population, 

except for 1,2,3,4,6,7,8-Heptachlorodibenzofuran (half-life of 3.58 years), which has a βage of -

0.0021. This may indicate ongoing exposure despite this chemical having been banned much 

earlier. With the highest !!"# of 0.037 and a !!"#! of -0.00033, PCB 194 illustrated well (Figure 

2.5B) a steep upward and concave trend across the age groups with the oldest participants having 

at most a 100-fold difference in biomarker levels compared to the youngest age group. This 

tendency is confirmed in the pooled serum concentrations observed for four age groups (12-19, 
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20-39, 40-59, 60+) in 2005-2008 by different race-sex combinations (details in Text S3, Section 

4). Age is a good predictor of biomarker levels for the more persistent PCBs, with an adjusted 

correlation coefficient (R2) ranging between 0.37 and 0.72 for most PCBs, with the exception of 

PCB 28 (R2 = 0.035), PCB 44 (R2 = 0.036), and PCB 49 (R2 = 0.041). 

2.4.5.2 PFASs 

PFASs are also highly persistent, but their !!"#′5 do not vary as substantially as those of 

PCBs. Most of the PFASs have !!"#′5 close to 0, indicating there is little to no difference by age 

and implying ongoing exposures. PFNA shows little to no variation across age groups (Figure 

2.5C). On the other hand, PFOA and PFOS show a slight upward and convex trend across the age 

groups (Figure A1.5 and 2.5D). This is confirmed by a !!"# of 0.0029 and a !!"#! of 3.27E-05 

for PFOS, and by a !!"# of -5.80E-05 and a !!"#! of 2.97E-05 for PFOA. Since PFOS and PFOA 

were phased out in 2002 146–148, differences across the age groups are substantially smaller than 

those observed in PCB 194, which was banned in 1979. Such differences across the life-course, 

however, are expected to increase in the future as articles and materials containing PFASs will 

reach the end of their usable life. A specific trend analysis is presented in the next section for these 

PFASs to illustrate how the age-based trends vary across the different cycles. 

2.4.5.3 Metals  

Another class of highly persistent chemicals is the Metals. Although many of the metals 

demonstrate a stable trajectory over time (yellow markers in Figure A1.4), there are high 

variations in chemical biomarker levels across the life-stages, with three different types of age 

group patterns evident (Figure 2.3 and 2.4). Cadmium demonstrates higher urinary concentrations 

in the older population with a !!"# of 0.014 and a !!"#! of -9.22E-05, denoting a slight upward 

and concave trend across the age groups (Figure A1.6). Lead is one of the few chemicals with 
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measurements in children 1 to 4 years old. Although the βage of lead (0.0039) is not as high as that 

of cadmium, the convex trend of lead (!!"#! = 8.72E-05) across the age groups indicates the 

youngest and oldest age groups have the highest biomarker concentrations compared to the other 

age groups (Figure 2.5F). Although tungsten has similar persistency to cadmium and lead, it has 

a !!"# of -0.0069 and a !!"#! of 0.00015, indicating a downward, convex trend across the age 

groups (Figure 2.5E). This is also indicative of high and ongoing exposures in the younger 

population. 

2.4.5.4 Phthalate and Parabens 

Most phthalates are used as plasticizers. These phthalates show a similar age group pattern 

to that of mono-(3-carboxypropyl) phthalate - a metabolite of mono-n-butyl phthalate, di-n-butyl 

phthalate, mono-n-octyl phthalate, and di-n-octyl phthalate (Figure 2.5G), and mono-benzyl 

phthalate (Figure 2.5H), with the highest concentration apparent in the youngest age group, a 

decrease during adolescence and young adulthood, and then stabilization for older age groups. In 

contrast, mono-ethyl phthalate is mostly used in cosmetics and demonstrates a very different age 

group pattern from those in its chemical family (Figure 2.5I). It has a similar age group pattern to 

chemicals used in cosmetics such as methyl paraben (Figure 2.5J). Methyl paraben has a slight 

upward and concave trend across the 5-12, to 13-18, and 19-28 years-old participants. Its levels 

peak for the mature adults and show a slight decrease in older age groups.  

2.4.6 Change in Age-Based Trends of PFASs over Time 

To determine how the age-based trends are changing over time, we fitted smooth curves to 

the life-stage changes in chemical biomarker concentration for each available NHANES cycles 

and conducted a series of linear regression models stratified by cycle to extract the βage,k’s. The 

βage,k’s shows the overall difference in chemical biomarker concentration between the young and 
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aged populations for a given NHANES kth cycle. Understanding how these βage,k’s change over 

time provides insight on how the difference between the youth and elderly changes across the 

cycles. In addition, these βage,k’s will help determine how long a time lapse must occur between 

the restriction date and sample collection date in order to observe these life-stage differences.  

PFASs were further analyzed, since some have been recently phased out and have 

measurements spanning over six or more cycles. PFOS, Perfluorohexane sulfonic acid (PFHxS), 

PFOA, Perfluorodecanoic acid (PFDA), PFNA, and 2-(N-methyl-PFOSA) acetate were selected 

due to their high detection frequencies for each available cycle. Figure 2.6 presents how the age-

based trends are changing over time. Each curve represents the variation in chemical biomarker 

concentration by age for a given NHANES cycle. A vertical shift in an ith cycle curve indicates 

how the chemical biomarker concentrations have increased or decreased compared to those in the 

(i-1)th cycle. The steepness of the curve shows the rate at which the log-transformed chemical 

concentration is changing with each one-year increase in age for a given cycle, providing insight 

on how the differences in chemical biomarker levels between the youth and elderly are changing 

over time. An increase in the βage,k’s indicates the difference between the young and aged 

populations are expanding over time. 

Between 1999-2000, the βage,1 for PFOS is 6.51E-4 (p-value = 0.025). If we assume 

chemical biomarker concentrations change linearly with age, then this value implies a 1.13-fold 

difference (1080×6.51E-4 = 1.13) in chemical concentration between an 80-year old participant and a 

newborn (aged 0). Between 2013-2014, the βage,8 is 6.49E-3 (p-value = 2.63E-59) with a 3.3-fold 

difference. This suggests that a decade after the phase-out of PFOS, the aged population has 

approximately a 3-fold difference in PFOS levels compared to the youth (Figure 2.6A and 2.6G). 

As the biomarker levels of PFOS and 2-(N-methyl-PFOSA) acetate decrease across the cycles, 
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illustrated by the downward shifts in the concentration-age curves, the difference between the 

youth and elderly increases. This is evidenced by the increasing steepness of these curves (Figure 

2.6A and 2.6F) and the upward trend in βage,k’s (Figure 2.6G). These patterns imply the use of 

PFOSA stopped around the time of the restrictions on PFOS and PFOA in 2002. A similar pattern 

can be observed with PFHxS and PFOA concentrations, but the differences between the young 

and aged populations for these chemicals do not change as drastically they do for PFOS and 

PFOSA (Figure 2.6B, 2.6C, and 2.6G). These patterns suggest that as the time increases between 

the restriction and sample collection dates, the differences by age will become more prominent. 

On the other hand, PFHxS, PFDA, and PFNA display different trends over time. For 

instance, biomarker levels for PFHxS initially decrease during 1999-2006, increase in 2007-2008, 

and then decrease again for the more recent NHANES cycles. For PFDA, biomarker levels increase 

from 1999 to 2006 and then decrease afterward. Biomarker levels of PFNA increase during the 

early NHANES cycles and then decrease after 2009-2010, but the PFNA levels for 2013-2014 are 

on average higher than those between 1999-2000 especially for children. The cycle-specific age 

coefficients for PFNA fluctuate during the early NHANES cycles but then show a strictly 

increasing trend after 2007-2008 (Figure 2.6E and 2.6G). These fluctuations in biomarker levels 

suggest PFHxS, PFDA, and PFNA may have been used as substitutes for PFOS and PFOA and 

reflect ongoing exposure throughout the population.  

2.5 Discussions 

In this article, we present a comprehensive analysis of age-based and time trends in 

chemical biomarker concentrations in the US population. We have accounted for biological half-

lives of chemicals, type of usage, and historical events, i.e., dates of chemical bans and phase-outs, 

which are expected to influence population-level exposures. These results provide insight on 



 

37 
 

population exposure trajectories. They are also informative for differentiating legacy exposures 

from current exposures and for identifying chemicals of higher levels in the younger population.  

For restricted chemicals, our data confirm that a minimum persistence of 1 year in the 

human body is necessary to observe substantial differences between the young population and 

historically exposed adults. Biological half-life is not the only determinant of high chemical 

biomarker levels in the aged population, however. Studies on age-based and time trends of 

biomonitoring data have suggested the potential influences of bans, phase-outs, bioaccumulation, 

metabolic rates, and consumer product usage on such trends 28,65,121–123, with the most influential 

determinant for simulated longitudinal data being the time lapse between the peak of emission and 

the sample collection 73. Thus, elevated concentrations in the elderly population are primarily due 

to a combination of past exposure and slow elimination. Using measured biomonitoring data for a 

wide range of chemicals, we confirm that chemicals with high age coefficients primarily have a 

biological half-life longer than 1 year and have been banned or phased out for longer than the 

chemical’s half-life. This evidences the efficacy of public health interventions, such as the 

International Stockholm Convention on Persistent Organic Pollutant, to reduce or prevent high 

exposures and associated health outcomes for the younger population effects 71,72.  

PFASs are also persistent, with half-lives ranging from 1.6 years to 7.3 years, yet show 

minimal differences in biomarker concentrations across the life-stages. These substances 

demonstrate contrasting age-based patterns even within the same family. For instance, we 

observed a substantial reduction in PFOA and PFOS levels in children, but levels of PFNA and 

PFHxS in children during 2013-2014 are still higher or equal than those in the earlier NHANES 

cycles. This indicates ongoing and higher exposures for the younger population. Such exposures 

to PFASs may occur through breastfeeding 149–151 or drinking contaminated water 125,126. In 
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addition, this pattern could be due to the fact that some of these chemicals were recently phased-

out, or due to the short time lapse between the emission peak and the sample collection. The time 

lapse of a decade for PFASs is shorter than the time lapse of almost 30 years for PCBs. Thus, it 

can be inferred that as this time lapse increases, especially if it exceeds the half-life of the 

substance, the difference in PFASs concentrations by age will continue to increase (Quinn and 

Wania 2012, Gomis et al. 2017).  

While cadmium levels are lower in the younger population, this is not the case for lead and 

especially tungsten for which the younger population has surprisingly higher biomarker levels. 

Higher lead levels have been attributed to consumer products usage, such as toys and children 

jewelry 62,152, exposures to dust and soil 153,154, and exposures via maternal transfer in utero or 

during breastfeeding 155,156. For the older participants, high lead levels may be due to leaded 

gasoline combustion before tetraethyl lead in gasoline was banned 137. High tungsten levels in 

children may be due to exposures to contaminated soil, articles from parents’ workspace, and 

electrical devices 157,158 (ATSDR 2005; Kampmann et al. 2002). The overall trend of higher levels 

in the 5-12 years old followed by a downward, convex trend across the older age groups suggests 

exposures in children may be driven by factors specific to this susceptible population. Hence, 

further research is necessary to elucidate potential reasons for higher exposures in children. 

For several less-persistent chemicals, such as phthalates that are widely used in consumer 

products, younger individuals seem to have been highly exposed, in addition to some persistent 

chemicals such as the BFRs, PFASs and lead. Our results suggest age-based trends in biomarker 

levels reflect product usage trends. Most phthalates show a plasticizer age pattern with higher 

concentrations in the 5-12 years old age group followed by a downward, convex trend across older 

age groups, which is quantified by a positive !!"#! and negative	!!"#. Children may be highly 
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exposed to these chemicals through frequent contact with flooring materials 59,61,159 and toys 160, 

which are products that typically have high levels of plasticizers. Also, children may more readily 

absorb these compounds 161. Metabolic rate is known to vary across age with a peak occurring 

during childhood and then stabilizing or decreasing during the senior years 52,53. In contrast, mono-

ethyl phthalate is used in personal care products 162 and shows a different concave pattern similar 

to other personal care products such as parabens and triclosan. The increase in exposure from 

children to teenagers may be explained by a greater use of cosmetic and/or skin care products 

during the teenage years 163–165. Comparing chemical levels by age group and quantifying trends 

across the age groups with !!"#! 	and !!"# enables us to identify two interesting clusters:  1) a 

cluster of phthalates used as plasticizers and 2) a cluster of chemicals used in personal care 

products. Mono-ethyl phthalate was shown to cluster with PCCPCs instead of with those in its 

chemical family. These age-based clusters of chemicals with similar product usage suggest a 

possibility to develop product-specific archetypes of intake pattern with e.g. a concave age curve 

for personal care products versus a convex age curve for plasticizers in articles and building 

materials. These archetypes could then be used to help extend mechanistic modelling approaches 

to predict direct exposures to chemicals used in consumer products. 

The present study has a number of limitations. By comparing chemical biomarker levels 

by age group, we have identified several chemicals, such as lead, tungsten, and phthalates, to be 

of higher concentrations in the younger population than in the older population. Although we have 

identified a number of potential reasons for higher exposures in children, we have not accounted 

for differences in metabolic rate within our models. Future extensions could determine surrogate 

variables to develop a scoring system to quantitatively represent metabolic rate and understand 

how it could confound age and chemical biomarker concentrations. As another limitation, we 
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assumed a quadratic relationship between age and chemical biomarker levels, but we did not test 

for other higher order polynomials that may better describe the changes in chemical biomarker 

levels across the life stage. Thus, future studies can compare the cross-validated prediction 

performance between a quadratic and cubic polynomial and/or even other higher order 

polynomials to determine whether a higher order polynomial would substantially improve the fit 

of the model to the data. Finally, while we demonstrated an overarching, statistical approach to 

identify chemicals that are of higher concentrations in children, there is a need to understand 

toxicological effects of these chemicals along with identifying sources and pathways of exposures 

to prevent elevated chemical levels and the onset of adverse health effects 71,72,166. 

Though we defined an age pattern of concern for children, quantifying exposure for young 

children, especially those below the age of 4, was limited to a few chemical biomarkers such as 

lead, manganese, cadmium, methyl mercury, cotinine, acrylamide, and glycideamide. Due to the 

ban of legacy chemicals such as PCBs, Furans, and Dioxins, fewer measurements are available in 

children, and children have substantially lower levels of these persistent substances. This creates 

challenges in understanding sources of exposures for these legacy chemicals in children. Thus, 

future studies can use the 2001-2016 biomarker data of PCBs for pooled samples to characterize 

differences by age group to gain more insights on sources of exposures in children. However, a 

challenge of using pooled data is that demographic and questionnaire data are limited. As shown 

with lead, predictions were unavailable for children below the age of 2, since cotinine was not 

measured for these participants. Thus, when more measurements for children become available, 

future extensions could incorporate such data to better quantify and predict exposure for this 

susceptible population as well as understand sources of such exposures.  



 

41 
 

Geographical location has been identified as a confounder of chemical exposure disparities, 

particularly for heavy metals, but we did not consider this as a covariate in this study. Future 

studies could consider geospatial variations in chemical biomarker concentrations to 

systematically address geographical location as a confounder.  

For lipophilic chemicals, we preferred the lipid-adjusted measurements, since these 

measurements were normalized to the blood lipid content of the participants. In addition, adipose 

content tends to increase as a person age, which can potentially lead to higher concentrations of 

more lipophilic compounds in the aged population. Even though BMI could modulate the 

concentration-age associations, we did not consider it as a covariate, since we wanted to study the 

BMI mediated effect of age on chemical biomarker levels. Future extensions could further explore 

the confounding nature of BMI on age-based and time trends of chemical biomarker levels.   

2.6 Conclusions 

This study presents a framework for systematically analyzing and interpreting 

biomonitoring data, to better understand chemical biomarker differences across the life-stages. We 

suggest different criteria for determining which chemicals are reflective of legacy exposures vs. 

current exposures and identify an age pattern of concern when longitudinal data are unavailable or 

incomplete. We confirm the criteria indicative of legacy exposure as follows: 1) biological half-

life of at least one year, 2) decreasing average biomarker concentration over time due to the 

chemical being banned or phased out, and 3) the time lapse between emission peak and the sample 

collection exceeding the human elimination half-life. For chemicals below the one-year half-life 

mark, cross-sectional biomonitoring data mostly reflect recent intake rates. In addition to 

confirming the criteria for legacy versus relevant exposures, the complementary analysis 

combining a series of regression models with systemized stratified analyses by age group helped 
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us define an age-based pattern for identifying chemicals of higher and ongoing exposures in 

children. This is especially evident when a chemical biomarker has an increasing or stable time 

trajectory, demonstrates a convex relationship with age, and is of higher concentration in the 

younger population. The presented framework can be used to help facilitate risk stratification and 

guide targeted interventions.
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2.7 Figures 

 
Figure 2.1. Schematic description of the process to curate chemical biomarker measurements and 
of the analytical methods used to identify temporal variations in biomarker levels.
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Figure 2.2. Characteristics of the 141 NHANES chemical biomarkers for 16 classes, including (A) 
the number of chemical biomarkers for each colored-specific chemical class, (B) ranges of log-
transformed composite half-lives in hours, (C) ranges of linear age coefficients (!!"#.,1#!3′5), 
defined as the log change in chemical concentration due to a one-year increase in age, and (D) 
percentage of unrestricted or restricted chemicals per class. Colors of the restriction types only 
applied to (D) and are also used in Figure 2.3. BFRs, Brominated Flame Retardants; SRCs, 
Smoking Related Compounds; PAHs, Polycyclic Aromatic Hydrocarbons; PCCPCs, Personal 
Care and Consumer Product Compounds; VOCs, Volatile Organic Compounds; PFASs, Per- and 
Polyfluoroalkyl substances; PCBs, Polychlorinated Biphenyls. Models were adjusted for age 
centered at ($!"#%%%%%%), survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine 
concentrations, and urinary creatinine concentrations.
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Figure 2.3. Association between linear age coefficients (!!"#.,1#!3′5) and chemical persistency in the 
human body for 141 substances with symbols indicating the different chemical classes. The colors 
indicate the time period during which the compound was restricted (same as Figure 2.2D). Models 
are adjusted for age centered at $!"#%%%%%%, survey cycle, sex, race/ethnicity, poverty income ratio, blood 
cotinine concentrations, and urinary creatinine concentrations. See Figure 2.2 for abbreviations. 
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Figure 2.4. Association between !!"#! 	and !!"# for 141 substances with symbols indicating 
chemical classes and colors indicating categories of fold difference in biomarker levels between a 
child of 5 years and adult of 31.88 years. The boundary line !!"#! !!"#⁄ > 1 26.9⁄  differentiates 
chemicals of higher levels in children from those of higher levels in the older population. Models 
were adjusted for age centered at $!"#%%%%%%, age centered at $!"#%%%%%% squared, survey cycle, sex, 
race/ethnicity, poverty income ratio, blood cotinine concentrations, and urinary creatinine 
concentrations. See Figure 2.2 for abbreviations. 
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Figure 2.5. Violin plots of chemical biomarker concentrations partitioned by age group to display 
the 5th, 25th, 50th, 75th, and 95th percentiles, indicated by the superimposed boxplot. The 
frequency of chemical biomarker levels are represented by the width of the violins for (A) PCB 
49, (B) PCB 194, (C) PFNA, (D) PFOS, (E) Tungsten, (F) Lead, (G) Mono-(3-carboxypropyl) 
phthalate, (H) Mono-benzyl phthalate, (I) Mono-ethyl phthalate, and (J) Methyl paraben. (●) 
geometric mean of measured data. (▲) geometric mean of predicted chemical biomarker levels. 
Colors differentiate age groups. Models were adjusted for age centered at $!"#%%%%%% , age centered at 
$!"#%%%%%% squared, survey cycle, sex, race/ethnicity, poverty income ratio, blood cotinine 
concentrations, and urinary creatinine concentrations. 
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Figure 2.6. Chemical biomarker concentrations across the life-stages stratified by NHANES cycles 
for (A) PFOS, (B) PFHxS, (C) PFOA, (D) PFDA, (E) PFNA, and (F) 2-(N-methyl-PFOSA) 
acetate. (G) 95% confidence intervals for the cycle-specific age coefficients for PFOS, PFHxS, 
PFOA, PFDA, PFNA, and 2-(N-methyl-PFOSA) acetate. The cycle-specific age coefficients 
(βage,k’s) with age shows the adjusted rate at which the chemical concentration is changing for a 
one-year increase in age for a particular cycle. Models were adjusted for age, sex, race/ethnicity, 
poverty income ratio, blood cotinine concentrations, and urinary creatinine concentrations. 
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2.8 Tables 

Table 2.1. Characteristics of the study population of 74,942 participants. 

 

 

CATEGORICAL 
Age Groups N (%) Cycle N (%) Sex N (%) 

      1-2 4714 (6.29)       1999-2000 (Cycle 1) 8832 (11.79)       Male 36941 
(49.29) 

      3-4 3307 (4.41)       2001-2002 (Cycle 2) 9929 (13.25)       Female 38001 
(50.71) 

      5-12 12741 (17.01)       2003-2004 (Cycle 3) 9179 (12.25) Race/Ethnicity  

      13-18 10793 (14.40)       2005-2006 (Cycle 4) 9440 (12.60)       Mexican Americans 17199 
(23.95) 

      19-28 8391 (11.20)       2007-2008 (Cycle 5) 9307 (12.42)       Other Hispanics 5580 (7.45) 

      29-38 7129 (9.51)       2009-2010 (Cycle 6) 9835 (13.12)       Non-Hispanic 
Whites 

28555 
(38.10) 

      39-48 7168 (9.56)       2011-2012 (Cycle 7) 8956 (11.95)       Non-Hispanic 
Blacks 

18055 
(24.09) 

      49-58 6209 (8.29)       2013-2014 (Cycle 8) 9464 (12.62)       Other Races  5553 (7.41) 
      58-68 6528 (8.71)     
      69-78 4676 (6.24)     
      79-85 3286 (4.38)     
CONTINUOUS 
 N (%)                 5th Median Mean (SD) 95th 
Age (years)                  2 25 31.88 (24.28) 77 
PIR (-) 68192 (90.99)                 0.30 1.82 2.301 (1.59) 5.00 
Cotinine 
(ng/mL) 54513 (72.74)                 0.011 0.066 38.39 (103.80) 282.00 

Creatinine 
(mg/dL) 63457 (84.67)                 26 116 130.3 (81.98) 284 
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Chapter 3 Racial Disparities in Chemical Biomarker Concentrations in United States 
Women 

 
3.1 Abstract  

Background: Stark racial disparities in disease incidence among American women remain 

a persistent public health challenge. These disparities likely result from complex interactions 

between genetic, social, lifestyle, and environmental risk factors. The influence of environmental 

risk factors, such as chemical exposure, however, may be substantial and is poorly understood. 

Objectives: We quantitatively evaluated chemical-exposure disparities by race/ethnicity, 

life stage, and time in United States (US) women (n=38,080) by using biomarker data for 143 

chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999-2014.  

Methods: We applied a series of survey-weighted, generalized linear models using data 

from the entire NHANES women population along with cycle and age-group stratified 

subpopulations. The outcome was chemical biomarker concentration, and the main predictor was 

race/ethnicity with adjustment for age, socioeconomic status, smoking habits, and NHANES cycle.  

Results: The highest disparities across non-Hispanic Black, Mexican American, Other 

Hispanic, and Other Race/Multi-Racial women were observed for pesticides and their metabolites, 

including 2,5-dichlorophenol, o,p’-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, 

along with personal care and consumer product compounds, including parabens and mono-ethyl 

phthalate, as well as several metals, such as mercury and arsenic. Moreover, for Mexican 

American, Other Hispanic, and non-Hispanic black women, there were several exposure 

disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol 
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concentrations. Exposure differences for methyl and propyl parabens, however, were the starkest 

between non-Hispanic black and non-Hispanic white children with average differences exceeding 

4-fold. Exposure disparities for methyl and propyl parabens are increasing over time in Other 

Race/Multi-Racial women while fluctuating for non-Hispanic Black, Mexican American, and 

Other Hispanic. Differences in cotinine levels are among the highest in Non-Hispanic White 

women compared to Mexican American and Other Hispanic women with disparities plateauing 

and increasing, respectively.  

Discussion: We systematically evaluated differences in chemical exposures across women 

of various race/ethnic groups and across age groups and time. Our findings could help inform 

chemical prioritization in designing epidemiological and toxicological studies. In addition, they 

could help guide public health interventions to reduce environmental and health disparities across 

populations. 

3.2 Introduction 

The stark racial disparities in disease incidence and health outcomes among American 

women remain a persistent public health challenge. For example, preterm birth incidence is 

approximately 60% higher in non-Hispanic Black women relative to non-Hispanic White women 

167. Non-Hispanic Black and Hispanic women are at increased risk of being diagnosed with 

developing dysglycemia 168 and diabetes 169, relative to non-Hispanic White women. Non-Hispanic 

Black women are also 2-3 times more likely to develop the most aggressive subtype of breast 

cancer, triple negative, compared to non-Hispanic White women 79,80. Furthermore, relative to non-

Hispanic White women, non-Hispanic Black women are also 2.4 times more likely to die of breast 

cancer after being diagnosed with the pre-invasive lesion, ductal carcinoma in situ 170. Recent 

statistics from the American Cancer Society also show variation in trends in breast cancer 
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incidence rates by race/ethnicity in US women from 2005-2014. Specifically, breast cancer 

incidence rates are increasing in Asian (1.7% per year), non-Hispanic Black (0.4% per year), and 

Hispanic (0.3% per year) women, while rates remain stable in non-Hispanic White and American 

Indian/Alaska Native women 171. Dementia rates also vary by race/ethnicity, with rates highest in 

non-Hispanic black women, followed by American Indian/Alaskan native, Latina, Pacific Islander, 

non-Hispanic White, and lowest in Asian American women 172. These rates vary 60% between 

African American and Asian American women. Reproductive outcomes are also significantly 

different by race/ethnicity, with studies reporting increased incidence of gestational diabetes in 

South and Central Asian American women 173 and Black and Hispanic women 174. Collectively, 

these findings suggest profound racial disparities in disease outcomes that manifest throughout the 

life course. Understanding the etiological factors driving these health disparities is essential for 

informing public health interventions seeking to promote health equity. 

While health disparities are likely due to complex interactions between genetic, social, and 

lifestyle factors, the impact of genetic variation on disease disparities appears to be minor 81–83. 

For example, a meta-analysis of genetic factors underlying racial disparities in cardiovascular 

disease failed to identify heterogeneity of genetic risk factors by race/ethnicity 175. These findings 

of a modest genetic impact on differential cardiovascular disease risk by race/ethnicity are 

consistent with genome-wide association studies. A study found that variants with the strongest 

association with blood pressure explain, in aggregate, less than 5% of the phenotypic variance 176. 

Moreover, a meta-analysis of genetic risk factors and cancer disparities reported similar findings, 

with almost no heterogeneity in cancer risk alleles by race/ethnicity 84.  

The limited impact of genetic risk factors in explaining health disparities points towards 

environmental risk factors as major determinants. Indeed, estimates of environmental factors on 
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chronic disease suggest than 70-90% of risk is due to environmental exposures 12,177. A mechanistic 

understanding of racial disparities in disease therefore requires a characterization of differences in 

environmental risk factors. In particular, differences in chemical exposures have been 

hypothesized to be important etiologic factors in racial disparities in disease rates 178–182. 

To investigate the influence of environmental risk factors on health disparities, the goal of 

this study was to conduct a comprehensive analysis of racial disparities in chemical biomarker 

concentrations among US women. To accomplish this, we leveraged data from the National Health 

and Nutrition Examination Survey (NHANES), an ongoing population-based health study 

conducted by the US Centers for Disease Control and Prevention (CDC). Additionally, we 

developed visuals to highlight differences in biomarker concentrations across races, age groups, 

and time, by defining the relative magnitude of exposure disparities for individual chemicals and 

chemical families.  

3.3 Methods 

3.3.1 Study Population 

NHANES is a cross-sectional study designed for collecting data on demographic, 

socioeconomic, dietary, and health-related characteristics in the non-institutionalized, civilian US 

population. For this analysis, we used the continuous NHANES data on chemical biomarkers and 

demographics, which were collected from 1999-2014 with 82,091 participants initially. We 

excluded participants for not having any data on chemical biomarkers (N = 7,001), resulting in a 

sample size of 75,090 study participants. Since this analysis is focused on measuring chemical 

disparities in US women, we excluded male participants (N = 37,010), leading to a final sample 

size of 38,080 female participants. For a given chemical, we also excluded participants with 

missing data on any of the following covariates:  race/ethnicity, age, NHANES cycles, poverty 
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income ratio, cotinine levels, and urinary creatinine. These exclusion and inclusion criteria are 

delineated in Figure 3.1. 

3.3.2 Chemical Biomarker Measurements 

This section along with Figure 3.1 delineates the curation process for selecting chemical 

biomarkers to include for analysis. First, we excluded biomarkers that are not indicative of 

chemical exposures (n = 99). Next, we corrected for differences in chemical codenames by using 

a unique codename for each biomarker (n = 36). We gave preference to lipid-adjusted data and 

therefore excluded non-lipid adjusted chemical biomarkers (n = 79) when both types of data were 

provided for a given chemical. We replaced all measurements below the limit of detection (LOD) 

with @AB/√2 as recommended by the CDC 131. This approximates a lognormal distribution, so 

that reasonably unbiased means and standard deviations are produced 132. There were also 

instances in which urinary cadmium concentrations were recorded as 0 ng/mL due to interference 

with molybdenum oxide (NCHS, 2005a, NCHS, 2005b). We replaced such values with @AB/√2 

if the participant's urinary cadmium level was under the LOD or otherwise excluded. We calculated 

detection frequencies for each chemical biomarker and excluded biomarkers with detection 

frequencies of 50% or less (n = 182) across all study participants. As we have reported previously, 

across the NHANES cycles, improvements in laboratory technology can change the LOD and thus 

lead to differences in detection frequencies by NHANES cycle (Nguyen et al. 2019). To limit bias 

from these changing LODs over time, we calculated detection frequencies by NHANES cycle for 

each chemical biomarker and excluded measurements where the LOD changed by over an order 

of magnitude and detection frequencies over time (Nguyen et al. 2019). For instance, percentages 

of participants with PCB 199 measurements above LODs for Cycle 2 and Cycle 3 are 36.2% and 

84.9%, respectively, and the LOD for Cycle 2 and Cycle 3 were 10.50 ng/g and 0.40 ng/g, 
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respectively. As such, measurements from Cycle 2 for PCB 199 were excluded. Measurements 

from given cycles for several PCBs, Dioxins, Furans, Phytoestrogens, and VOCs along with 

Paranitrophenol, 2-napthol, 1-pyrene and 9-pyrene (m = 449,396 total data points) were therefore 

also excluded based on these criteria (Table A2.1). The final dataset for analysis consisted of 143 

chemical biomarkers from 16 different chemical classes (Table A2.2). These chemical classes 

were: Acrylamide, Brominated Flame Retardants (BFR), Phosphate Flame Retardants (PFR), 

Dioxins, Furans, Metals, Other, Personal Care & Consumer Product Compounds, Pesticides, 

Phthalates & Plasticizers, Phytoestrogens, Polyaromatic Hydrocarbons (PAH), Polychlorinated 

Biphenyls (PCB), Per- and Polyfluoroalkyl Substances (PFAS), Smoking Related Compounds, 

and Volatile Organic Compounds (VOC). 

3.3.3 Statistical Analysis 

We performed all analyses using R version 3.6.0. Given the NHANES complex sampling 

design, we applied appropriate survey weights in our statistical models to produce estimates 

representative of the non-institutionalized, civilian US population. Applying the appropriate 

survey weights involved selecting the weights of the smallest analysis subpopulation 183. For 

example, there are two types of survey weights that can be used for a conducting an analysis with 

total arsenic:  WTSA2YR or WTMEC2YR. WTMEC2YR is the NHANES codename for survey 

weights for all participants whose measurements were taken in a Mobile Exam Center (MEC). 

WTSA2YR is similar to WTMEC2YR with the exception that the survey weights are only for 

participants who belong to subsample A, which is a smaller subpopulation with measurements for 

total arsenic. Since WTSA2YR pertains to the smaller analysis subpopulation, WTSA2YR is the 

appropriate survey weight to apply for an analysis on total arsenic. The appropriate survey weights 

are listed in the original NHANES files containing the measurements for the chemical biomarker. 
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If the survey weights are not listed for a given chemical, then we use WTMEC2YR as the default. 

Conducting an analysis across several NHANES cycles may require the use of different survey 

weights 183. For instance, a statistical model for total arsenic requires using only one type of survey 

weights (WTSA2YR). But a statistical model for triclosan requires three different types of survey 

weights (WTSA2YR, WTSB2YR, WTSC2YR), since in each NHANES cycle, a different 

subpopulation of NHANES is measured for triclosan. To account for NHANES sampling design 

and use the appropriate survey weights, we developed two databases. The first was a database of 

codenames indicating the appropriate survey weights for each chemical biomarker and NHANES 

cycle (Table A2.3). For several of the Per- and Polyfluoroalkyl Substance (PFAS), there were two 

different type of survey weights available within the same cycle (one for children aged 3-11 and 

the other for participants aged 12 and older). Therefore, we developed another database of 

codenames indicating which additional survey weights to use when generalizing these results for 

PFASs (Table A2.4).   

Using multivariate regression models, we evaluated differences in biomarker 

concentrations in blood and urine by race after log-transforming the data. We included log-

transformed levels of cotinine as a covariate to represent smoking (Benowitz, 1999), and creatinine 

levels to adjust for urine dilution and flow differences (Barr et al., 2005). We modeled poverty 

income ratio (PIR) as a surrogate variable for socioeconomic status. PIR is the ratio of household 

income and poverty threshold adjusted for family size and inflation. First, we examined the racial 

differences in chemical biomarker levels by performing a series of chemical-specific regression 

models with the main predictor being race/ethnicity (categorical), adjusting for age (continuous), 

NHANES cycle (continuous), PIR (continuous), and cotinine (continuous) as described in Eq. (1): 

@'(10($)*#+,-!.	)01-#123!2,01) = !3!-#/#2*1,-,25,AE$3!-#/#2*1,-,25,AF +  
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!!"#E$!"#F + 

!-5-.#E$-5-.#F + 

!89:($89:) + 

!-02,1,1#($-02,1,1#) + 

!-3#!2,1,1#($-3#!2,1,1#) + 

1 

 

 

 

 

 

[1] 

Here, $)*#+,-!.	)01-#123!2,01 is the log-transformed, unadjusted chemical biomarker concentration 

for all participants, $,, where G ∈ 	 {JK89/9LℎNG8GL7, O, K(9, 59P, 878&9, QRS, 8'LGNGN9,

8J9KLGNGN9}, is the G covariate for all participants, !, is the linear regression coefficient for the G 

covariate, and 1 is the intercept. $3!-#/#2*1,-,25,A, where O	U{V9PG8KN	WX9JG8KN5,

ALℎ9J	YG5ZKNG85, ['N-YG5ZKNG8	\&K8:, ALℎ9J	SK89/V]&LGJK8GK&} for 1999-2014, is the race 

covariate for comparing the OLℎ race to the reference group of Non-Hispanic Whites. For chemical 

biomarkers which were measured in urine, we further corrected the regression models by adjusting 

for urinary creatinine levels (continuous). For the analyses where cotinine concentration was the 

outcome, the regression models were not further corrected for smoking. Prior to 2011, Asian 

Americans were categorized in Other Race/Multi-Racial category. Accordingly, to evaluate 

chemical exposure disparities in Asian American women, we also applied Eq. 1 to the 2011-2014 

data. Then to determine whether racial disparities are driven by differences in socioeconomic 

status, we conducted a sensitivity analysis to observe how the race coefficients change with and 

without adjustment for PIR in the regression models. The coefficient for OLℎ race represents the 

difference in log-transformed chemical biomarker concentration between the OLℎ race and the 

reference group of Non-Hispanic Whites. As we are making multiple comparisons across chemical 

biomarkers and races, we have an increased probability of detecting false positives, i.e. a high false 
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positive rate. To identify significant comparisons while maintaining a lower false positive rate, we 

used the False Detection Rate (FDR) method on the p-values of the linear regression race-

coefficients 103. 

We are interested in understanding how the racial disparities are influenced by reproductive 

and nutritional factors such as parity, breastfeeding, menopause/hysterectomy status, and iron 

deficiency, which may impact toxicant absorption and excretion. We used the reproductive health 

questionnaire on reasons for having period irregularities and another questionnaire on having 

regular periods in past 12 months to classify participants as having menopause/hysterectomy, 

otherwise with irregular periods, or otherwise with regular periods (reference). Parity (continuous) 

is defined from the questionnaire on the number of pregnancies resulting in live births. We used 

parity and a questionnaire asking whether the mother breastfed her children for at least a month to 

categorize participants into three categories: breastfed, did not breastfeed her children, and did not 

breastfeed as she does not have children (reference). We used sex-specific thresholds for 

hemoglobin levels (hemoglobin <13.5 g/dL for men and <12 g/dL for women) 184 to classify 

participants as iron deficient or not (reference).  To determine whether the frequency distribution 

of these variables differ by race, we conducted a Chi-Square test on the categorical variables and 

a one-way ANOVA test on parity. To characterize how the estimates of racial disparities change 

when a given reproductive or nutritional factor is included in the regression model, we conducted 

a series of regression models with the outcome variable as chemical concentrations and the main 

predictor as race/ethnicity (categorical) while adjusting for age (continuous), NHANES cycle 

(continuous), PIR (continuous), cotinine (continuous), creatinine (continuous), and an ^Lℎ 

reproductive or nutritional factor from the set of 
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{parity	(continuous), breastfeeding	(categorical),menopause/hysterectomy		(categorical),

iron	deficiency	(categorical)} as described in Eq. (2).  

@'(10($)*#+,-!.	)01-#123!2,01) = !3!-#/#2*1,-,25,AE$3!-#/#2*1,-,25,AF + 

!!"#E$!"#F + 

!-5-.#E$-5-.#F + 

!89:($89:) + 

!-02,1,1#($-02,1,1#) + 

!-3#!2,1,1#($-3#!2,1,1#) + 

!B!-203,BE$B!-203,BF + 

1 

 

 

 

 

 

 

 

[

2] 

For example, if ^ = ZKJGL7, the $B!-203,B refers the number of pregnancies resulting in live birth 

for all participants. !B!-203,BCD!3,25	is interpreted as the change in log-transformed chemical 

biomarker concentration for every successful pregnancy. Now, if ^ = GJ'N	r9^G8G9N87, then 

$B!-203,B indicates whether a participant is iron deficient or not for all participants. 

!B!-203,BC,301	;#B,-,#1-5 is interpreted as the difference in log-transformed chemical biomarker 

concentration between iron deficient participants and the reference group of participants who are 

not. The interpretations for menopause/hysterectomy status and breastfeeding status are similar to 

that of iron deficiency.  

To evaluate how these racial differences in chemical exposures differ by age group, we 

conducted stratified analyses by age groups in the 1999-2014 data. We defined 4 age groups:  0-

11, 12-19, 20-50, and 51-85. For each age group with chemical biomarker measurements, we 

performed a chemical specific linear regression with the main predictor as race/ethnicity 



 

60 
 

(categorical) and adjusted for age (continuous), NHANES cycle (continuous), PIR (continuous), 

cotinine (continuous), and creatinine (continuous), stratified by age group described in Eq. (3). 

@'(10($)*#+,-!.	)01-#123!2,01[K(9	(J']Z = :]) = !3!-#/#2*1,-,25,A,@E$3!-#/#2*1,-,25,A[K(9	(J']Z = :]F + 

!!"#,@E$!"#[K(9	(J']Z = :]F + 

!-5-.#,@E$-5-.#[K(9	(J']Z = :]F + 

!89:,@($89:[K(9	(J']Z = :]) + 

!-02,1,1#,@($-02,1,1#[K(9	(J']Z = :]) + 

!-3#!2,1,1#,@($-3#!2,1,1#[K(9	(J']Z = :]) + 

1 

Here, : is an available age group from the set of {0-11, 12-19, 20-50, 51-85}, 

$)*#+,-!.	)01-#123!2,01[K(9	(J']Z = :] is the log-transformed, unadjusted chemical biomarker 

concentration for all participants with ages in the :Lℎ age groups, $,,@[K(9	(J']Z = :], where 

G ∈ 	 {JK89/9LℎNG8GL7, O, K(9, 59P, 878&9, QRS, 8'LGNGN9, 8J9KLGNGN9}, is the G covariate for 

all participants with ages with the :Lℎ age group, !,,@ is the linear regression coefficient for the G 

covariate and :Lℎ age group, and 1 is the intercept. $3!-#/#2*1,-,25,A,@, where 

O	U{V9PG8KN	WX9JG8KN5, ALℎ9J	YG5ZKNG85, ['N-YG5ZKNG8	\&K8:, ALℎ9J	SK89/

V]&LGJK8GK&}, is the race covariate for comparing the OLℎ race to the reference group of Non-

Hispanic Whites in the :Lℎ age group. To account for multiple comparisons, we used an FDR 

method on the p-values of the linear regression race-coefficients across all age groups (Benjamini 

and Hochberg, 1995). 

To evaluate how racial disparities in chemical exposures changes over time, we conducted 

stratified analyses by NHANES cycles. We denote a 8Lℎ cycle as from a study period from the set 
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of 

{1	(1999-2000), 2 (2001-2002), 3 (2003-2004), 4 (2005-2006), 5 (2007-2008), 6 (2009-2010), 7  

(2011-2012), 8 (2013-2014)}. We excluded measurements from Cycle 2 for Blood 

Bromodichloromethane, Cycle 2 for Blood Chloroform, and Cycle 6 for Blood Toluene due to 

having an error in the statistical program R when accounting for the sampling design. We excluded 

measurements from Cycle 2 for 3-fluoranthene as there is only one person with measurements for 

this chemical in Cycle 2. For each NHANES cycle with chemical biomarker measurements, we 

performed a chemical specific linear regression with the main predictor as race/ethnicity 

(categorical) and adjusted for age (continuous), PIR (continuous), cotinine (continuous), and 

creatinine (continuous) as described in Eq. (4). [878&9 = 8] denotes the inclusion of participants 

who have chemical biomarker measurements in the cth cycle. We used an FDR method on the p-

values of the coefficients to account for multiple comparisons across all races and NHANES 

cycles.  

@'(10($)*#+,-!.	)01-#123!2,01[878&9 = 8]) = !3!-#/#2*1,-,25,A,-E$3!-#/#2*1,-,25,A[878&9 = 8]F + 

!!"#,-E$!"#[878&9 = 8]F + 

!89:,-($89:[878&9 = 8]) + 

!-02,1,1#,-($-02,1,1#[878&9 = 8]) + 

!-3#!2,1,1#,-($-3#!2,1,1#[878&9 = 8]) + 

1 

 

 

 

 

 

 

[
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3.4 Results 

Table 3.1 displays demographic characteristics of the study population. The study 

population includes 38,080 female study participants of ages 1-85 years, with a median age of 26. 

Using a series of covariate adjusted regression models, we first calculated the fold-difference in 

chemical biomarker concentrations by race across the entire study population. These regression 

results are presented in graphical format in Figure 3.2, where the letters in the plot reflect the fold-

difference in chemical biomarkers for each race/ethnicity, relative to non-Hispanic White women, 

who made up the largest portion of the study population. Pesticides and pesticide metabolites, 

including 2,5-dichlorophenol, o,p’-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol 

had amongst the highest average fold difference across non-Hispanic Black, Mexican American, 

Other Hispanic, and other race/multiracial women. On average, large differences by race are also 

apparent for personal care and consumer product compounds including methyl paraben, propyl 

paraben, monoethyl phthalate and metals, such as mercury and arsenic. Conversely, cotinine, 

PBDE-153, PBB-153, Equol, DEET, and bisphenol F were among the chemicals of which non-

Hispanic White women had the highest levels. 

In order to more clearly visualize the differences in chemical biomarkers by race/ethnicity, 

we generated volcano plots, which are displayed in Figure 3.3. The x-axis of these plots depicts 

the fold difference in average chemical biomarker concentration between each race/ethnicity and 

non-Hispanic White women. The y-axis depicts statistical significance, as reflected in the negative 

log10 transformation of the FDR-adjusted p-value from the regression analysis for that chemical 

biomarker, where chemicals with larger values on the y-axis are more statistically significant. As 

shown in Figure 3.3A, non-Hispanic black women have biomarker concentrations that are more 

than twice those of non-Hispanic White women for multiple chemicals, including 2,5-
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dichlorophenol, 1,4-dichlorobenzene, methyl paraben, monoethyl phthalate, 2,4-dichlorophenol, 

and propyl paraben. The heavy metals, mercury and lead, are also significantly higher in non-

Hispanic Black women. Conversely, levels of benzophenone-3, a UV blocker used in sunscreen, 

are significantly higher in non-Hispanic White women. In general, concentrations of PCBs tend to 

be modestly elevated in non-Hispanic Black women, while volatile organic compounds (VOCs) 

and phytoestrogen concentrations are higher in non-Hispanic White women. Figure 3.3B shows 

relative differences in chemical biomarker concentrations between Mexican American and non-

Hispanic White women. Pesticides, including 2,5-dichlorophenol, beta-hexachlorocyclohexane, 

and 2,4-dichlorophenol, along with the polycyclic aromatic hydrocarbon 2-napthol were on 

average higher in Mexican American women. Conversely, the smoking biomarker, cotinine is 

significantly lower in Mexican American women. Exposure patterns comparing Other Hispanic 

and non-Hispanic White women, displayed in Figure 3.3C, showed some similarities, with 

pesticides 2,5-dichlorophenol and p,p’-DDE elevated in Other Hispanic women. Multiple PFASs, 

including PFOS, PFHxS, and 2-(N-methyl-PFOSA) acetate, as well as cotinine, are significantly 

lower in Other Hispanic women. Figure 3.3D shows a distinct exposure pattern in women of other 

race/ethnicity or multiracial women. Here, levels of heavy metals, including cadmium, mercury, 

and multiple arsenic biomarkers, are significantly elevated relative to non-Hispanic White women. 

Conversely, the smoking biomarkers, NNAL and cotinine, are significantly lower.  

To understand whether socioeconomic status is a driver of racial disparities in chemical 

exposures, we generated a series of correlation plots, comparing how the differences in chemical 

biomarker concentrations by race/ethnicity change with the inclusion and exclusion of PIR in the 

regression models (Figure A2.1). For many of the chemicals, the fold differences for comparing 

chemical biomarker levels by race did not change drastically when including PIR as a covariate in 
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the regression models, implying that socioeconomic status is not the primary driver in explaining 

differences in chemical exposures. However, for cotinine, PCB 194, and several chemicals used 

in personal care products, the relative differences changed by greater than 25% when PIR was 

included as a covariate in the regression models. This suggests that either exposure differences 

between races for these chemicals are mediated by PIR, and/or exposure differences are explained 

by interactions between race and socioeconomic status. To visualize differences in chemical 

biomarker concentrations by race across a gradient of income for a few selected biomarkers, we 

generated violin plots of the chemical biomarker distribution stratified by categories of PIR for 

each race/ethnicity (Figure A2.2). For benzophenone-3 and cotinine (Figure A2.2A and A2.2B), 

the trends of biomarker concentrations across the PIR categories and the average concentrations 

within the same PIR categories differ by race. This is similar for ethyl paraben (Figure A2.2C), 

but differences are not as drastic. On the other hand, mercury (Figure A2.2D) along with other 

remaining chemicals demonstrated a very different pattern from those of the previously mentioned 

substances. Across all races, the trends across PIR categories are similar for mercury, but within 

the same PIR category, there are differences in biomarker concentrations by race, suggesting that 

many chemical exposures disparities by race are independent of PIR. 

We also characterized how reproductive and nutritional factors such as parity, 

breastfeeding, menopause/hysterectomy status, and iron deficiency may influence racial 

disparities in chemical exposures, as well as to account for racial variations in these factors in our 

models (Aliyu et al. 2005; Henderson et al. 2008; Zakai et al. 2008). There are significant 

differences by race in all studied reproductive and nutritional factors with the p-values listed as 

the following:  parity (p-value = 6.59e-95), breastfeeding (p-value = 4.71e-121), 

menopause/hysterectomy status (p-value = 6.14e-148), and iron deficiency (p-value = 9.24e-322). 
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Contingency tables are provided to show the frequency distribution of these variables by race in 

Tables A2.5-A2.8. In addition, we compared how differences in chemical biomarker 

concentrations by race/ethnicity change with and without accounting for these factors by 

generating a series of correlation plots comparing regression coefficients from models that include 

or exclude these factors (Figure A2.3-A2.6). Adjusting for either iron deficiency or 

menopause/hysterectomy status resulted in four chemicals that have the relative differences 

changed by greater than 25%, implying that neither iron deficiency nor menopause are primary 

driver in explaining racial differences in exposure. On the other hand, adjusting for breastfeeding 

and parity showed 25 and 16 chemicals, respectively, with changes greater than 25%, which 

implies that racial disparities in chemical exposure are better explained by these factors. For 

cotinine, the changes in relative differences by race was among the highest at approximately two-

fold different when either menopause or breastfeeding was considered in the regression models. 

Starting in 2011, more detailed information on NHANES study participant race/ethnicity 

were collected, including specifically identifying individuals who report Asian ethnicity. To 

understand whether the results presented in Figure 3.3D predominantly reflect results in Asian 

women, who prior to 2011 were categorized in other race/multi-racial category, we assessed 

exposure disparities specifically in the Asian population. These results, presented in Figure 3.4A, 

show that, on average, multiple heavy metal biomarkers are more than 2-fold higher relative to 

non-Hispanic White women, including cadmium, mercury, lead, and arsenics. Additionally, the 

PFAS compound PFDA is significantly higher in Asian women, while cotinine and biomarkers of 

phosphate flame retardants (Bis(1,3-dichloro-2-propyl) phosphate, Dibutyl phosphate, Diphenyl 

phosphate) are significantly lower. We also calculated whether there were significant disparities 

in chemical biomarker concentrations in women of other or multi-race after excluding Asian 
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women. Figure 3.4B suggests relatively few differences in this regard, confirming that the other 

race effect in Figure 3.3D is indeed associated with Asian women.  

We have previously shown dramatic differences in the chemical “exposome” by age in 

NHANES study participants, not stratified by gender or race 185. Here, we tested for differences in 

chemical biomarkers by race, after stratifying by age group. Figure 3.5 displays these results 

across the entire study population from 1999-2014. Blue colors reflect chemicals where levels are 

higher in non-Hispanic White women, while red colors reflect chemicals that are of higher 

concentration in women of the labeled race/ethnicity. Here, there appear to be exposure disparity 

patterns that persist across age groups – such as higher 2,4- and 2,5-dichlorophenol concentrations 

in Mexican American, Other Hispanic, and non-Hispanic black women. Differences in 1,4-

dichlorobenzene concentrations are consistent across age groups, although this biomarker was not 

measured in the youngest individuals. Heavy metal concentrations are elevated in women of other 

race across age groups. Some exposure patterns differ by age, however. For example, differences 

in methyl and propyl paraben are most apparent between young non-Hispanic black and non-

Hispanic White women less than 12 years old. Increased levels of phosphate flame retardants and 

the insect repellent DEET in non-Hispanic White women are the most evident in women less than 

12 years of age. Reduced levels of brominated flame retardants (PBDE's) in levels in non-Hispanic 

White women are emphasized for adolescents, age 12-19 (all other races are higher, in red). 

Similarly, higher relative concentrations of benzophenone-3, bisphenol A, and bisphenol F occur 

in non-Hispanic White women less than 12. Elevated PCB levels in non-Hispanic black women 

shown in Figure 3.3A are most evident in women greater than 51 years of age. Overall, these 

results highlight racial exposure disparities that are either stable or that vary across age groups. 
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To characterize how racial disparities in chemical exposures changes over time, we 

conducted analyses stratified by NHANES cycles (Figure 3.6). There are exposure disparities 

patterns that persist across time for arsenics and its metabolites, chemicals used in personal care 

products, cotinine, 2,5−dichlorophenol, 2,4−dichlorophenol, and 1,4−dichlorobenzene. 

Differences in 2,5−dichlorophenol concentrations are consistent higher in Non-Hispanic Black 

women over time, while differences peaked at the turn of the century and towards the end of 2000s, 

respectively, for Mexican American and Other Hispanic women. Arsenic and its metabolite 

arsenobetaine show the highest disparities in Other Race/Multi-Racial women with the disparities 

peaking in 2007-2010. Disparities patterns for methyl and propyl parabens fluctuate over time in 

Mexican American, Other Hispanic, and Non-Hispanic Black women, while differences for these 

substances are slightly increasing in Other Race/Multi-Racial women. For mono-ethyl phthalate, 

a metabolite of DEP used in personal care products, differences over time are consistent in 

Mexican Americans, fluctuating in Other Hispanics, and increasing in non-Hispanic Black women. 

Differences in cotinine levels are among the highest in Non-Hispanic White women compared to 

Mexican American and Other Hispanic women with disparities plateauing and increasing, 

respectively 

3.5 Discussion 

Based on population based chemical biomonitoring generated as part of the 1999-2014 

NHANES, we performed a comprehensive analysis of racial disparities in biomarker 

concentrations of 143 chemicals in 38,080 participants. Specifically, we quantified the relative 

magnitude of racial disparities for individual chemicals and chemical families while utilizing 

appropriate regression weightings. This helped ensure that the results were as generalizable to the 

entire US population. These results highlighted striking differences in chemical biomarker 
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exposure patterns by race/ethnicity, independent of other demographic factors such as 

socioeconomic status and independent factors such as menopause/hysterectomy status, parity, 

breastfeeding, and iron deficiency. In particular, exposure patterns of pesticides, heavy metals, 

tobacco smoke associated compounds, and chemicals found in personal care products are found to 

be most disparate across race/ethnic groups. Stratified analyses revealed exposure patterns that 

persisted across age groups. For example, this was apparent in heavy metals exposure for women 

who identify as other race or multiracial, as well as in age-specific exposure patterns, such as 

elevated PCB, dioxin, and dibenzofuran exposure in older non-Hispanic black women. In some 

cases, average differences in chemical biomarker concentrations between race/ethnic groups 

exceeded 400%, such as for urinary propyl or methylparaben concentrations between the youngest 

non-Hispanic Black and non-Hispanic White women. Racial disparities were attenuated or 

emphasized after adjusting for reproductive and nutritional factors. For example, when adjusting 

for breastfeeding, the average differences in cotinine biomarker levels were attenuated two-fold 

between Hispanic and non-Hispanic White women, whereas accounting for variation in iron 

deficiency resulted in average differences in cotinine levels increasing by two-fold when 

comparing between non-Hispanic Whites and non-Hispanic Black women. Since parity, 

breastfeeding, menopause, and iron deficiency may influence the absorption or elimination of 

chemicals, and the rates of these potential confounders differ by race, these factors may lead to 

further attenuation or amplification of racial disparities in chemical biomarker concentrations. 

These findings contextualize racial disparities in chemical exposures across US women and 

highlight the vast differences in chemical exposomes between demographic groups with well 

characterized disparities in health outcomes. 
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Environmental injustice is the disproportionate exposure of individuals of color, lower 

socioeconomic status, or other politically disadvantaged groups to toxic chemicals in food, air, 

consumer products, at the workplace, or in their communities 186. Disproportionate chemical 

exposures have been hypothesized to be important drivers of health disparities, including obesity 

and neurodevelopmental outcomes 187. While the primary goal of this study was to quantify and 

compare chemical exposure disparities across racial/ethnic groups, independent of income, others 

have evaluated combined income and race related disparities in exposure. For instance, one 

analysis compared geometric mean concentrations of 228 chemical biomarkers between six groups 

stratified by income and race in NHANES and identified 37 chemicals as likely contributing to 

environmental justice 188. Some of these chemicals, including cotinine, lead, 2,4- and 2,5-

dichlorophenol, methyl paraben, and propyl paraben, were associated with the highest disparities 

across race/ethnic group in the present study. We also compared chemical exposures disparities 

across racial/ethnic groups with and without adjustment for income and found that cotinine, PCB 

194, methyl mercury, and chemicals used in personal care products such as benzophenone-3, the 

parabens, and triclosan show disparities across both race and socioeconomic status. However, for 

most of the studied chemicals, differences in chemical exposures were not driven by 

socioeconomic status but were instead primarily associated with race/ethnicity.  Furthermore, a 

study of racial and social disparities in exposure to BPA and PFAS examined differences in 

biomarker concentrations in NHANES study participants 189. The concentrations of the four PFAS 

chemicals examined, PFOA, PFOS, PFNA, and PFHxS, were inversely associated with household 

income, while BPA concentrations were higher in individuals who reported low food security 189. 

Here, we identified that, independent of socioeconomic status, as assessed by poverty-income 

ratio, non-Hispanic White women had the highest concentrations of PFOA, while non-Hispanic 
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Black and other race/multiracial women had the highest concentrations of PFDA. Major routes of 

exposure to PFAS compounds include contaminated drinking water 190, diet 127, and occupational 

routes 191. BPA concentrations were not strikingly different by race in our study, but non-Hispanic 

Black women had, on average, 93% higher BPS concentrations than non-Hispanic White women. 

Common routes of exposure to BPA and other bisphenol analogues are diet, thermal paper, and 

personal care products 192. Further research is necessary to identify the major routes of exposure 

which are driving racial disparities in PFAS and bisphenol chemicals biomarker concentrations. 

The findings of highly elevated monoethyl phthalate and methyl and propyl paraben 

concentrations in the non-Hispanic Black women are consistent with a personal care product route 

of exposure. A study assessing the chemical composition of hair products used by Black women 

consistently identified high levels of cyclosiloxanes, parabens, and the fragrance carrier diethyl 

phthalate 193. In our study, the concentrations of the diethyl phthalate metabolite monoethyl 

phthalate were approximately 78% higher on average in non-Hispanic black women of all ages 

relative to non-Hispanic White women, and 122% higher in non-Hispanic black women less than 

12 years of age. This is concerning, since urinary concentrations of monoethyl phthalate have been 

positively associated with odds of developing breast cancer in a case-control study of women from 

Northern Mexico 194. Differences in concentrations of methyl and propyl paraben biomarkers were 

among the highest observed in this study, particularly for the youngest non-Hispanic Black 

women. These differences were observed to remain consistently higher across the NHANES cycles 

in Mexican Americans, Other Hispanics, and non-Hispanic Blacks. These chemicals have been 

used as preservatives in personal care products, pharmaceuticals, and food additives, and have 

been found to promote cell growth through multiple mechanisms, including estrogenicity 195–197 

and epidermal growth factor receptor signaling 198. Particularly relevant to our findings of the 
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greatest methyl and ethyl paraben disparities in the youngest non-Hispanic Black women was the 

finding that early life paraben exposures can alter developing mammary gland morphology and 

induce gene expression that resembles an early cancer-like state 199. Use of hair products has been 

identified as a potential risk factor for breast cancer in non-Hispanic Black women 200. When we 

adjusted for breastfeeding in the regression models, parabens levels are higher in Non-Hispanic 

White women compared to Mexican American, Other Hispanics, and Other Race/Multi-Racial 

women. This implies that women of other races are breastfeeding more often 201, and/or they are 

eliminating parabens from their body but exposing their infants via breast milk 202.  Further 

research is needed to determine whether early-life exposure to potentially estrogenic compounds, 

like parabens, can induce biological alterations that increase risk of estrogen receptor negative 

breast cancers.  

One of the most apparent disparities in chemical biomarker concentrations by race was 

with the compounds 2,4-dichlorophenol, 2,5-dichlorophenol, and 1,4-dichlorobenzene. 1,4-

dichlorobenzene is used as a disinfectant, pesticide, and deodorant. 2,5-dichlorophenol is a 

metabolite of 1,4-dichlorobenzene, while 2,4-dichlorophenol is a metabolite of the antimicrobial 

triclosan or other pesticides. Elevated concentrations of these chemicals in non-Hispanic Black 

individuals has been noted previously 188,203  The concentrations of these three chemicals were up 

to 350% higher on average in non-Hispanic Black women, relative to non-Hispanic White women, 

and also elevated in Mexican American and Other Hispanic women. Importantly, these exposure 

disparities were consistent across all age groups. While 2,4-dicholorophenol concentrations were 

significantly elevated in non-Hispanic Black and Hispanic women, urinary triclosan levels were 

not significantly different by race/ethnicity. This suggests that either triclosan is not the main 

chemical exposure that explains the differences in concentrations of 2,4-dichlorophenol or that 
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there are differences in metabolism and excretion rates by race, which is less likely. 2,5-

dichlorophenol is of particular interest, since after adjusting for breastfeeding, the exposure 

disparity between Mexican American and non-Hispanic White women was further emphasized. In 

a study measuring environmental phenols in milk of lactating North Carolina women, 2,5-

dichlorophenol was undetectable in all milk samples 202. This suggests that either 2,5-

dichlorophenol is not absorbed into breast milk or it is hindering lactation, and therefore excretion 

through this pathway. 1,4-dichlorobenzene exposure has been associated with altered thyroid 

biomarkers in NHANES 204, altered immunologic and liver function parameters in occupationally 

exposed workers 205, and altered sperm production and increased prostate weight in exposed rats 

206. Understanding and mitigating exposure to these chemicals is therefore of importance to reduce 

disparate risk of these health outcomes. 

Heavy metals were among the chemicals most consistently different across racial/ethnic 

groups. In particular, women who identified as other race or multiracial had the highest 

concentrations of multiple metals, including cadmium, mercury, arsenics, lead, and manganese. 

Focusing on data from NHANES 2011-14, we identified that these elevated metals concentrations 

were restricted to women who identified as Asian. This is consistent with a previous finding of 

increased concentrations of a subset of these metals in Asian NHANES participants 36. 

Furthermore, elevated levels of mercury, lead, and arsenics were also identified in non-Hispanic 

Black women, relative to non-Hispanic White women. Mexican American women had elevated 

levels of uranium, lead, mercury, arsenics, and cadmium, while Other Hispanic women had higher 

concentrations of mercury, arsenics, and cadmium than non-Hispanic White women. Non-

Hispanic White women, however, had higher concentrations of urinary barium. In our temporal 

analysis, differences in biomarker levels between Other Race/Multi-Racial and Non-Hispanic 
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White women are increasing for cadmium, mercury, and dimethylarsonic acid. While studies have 

identified the interaction between iron deficiency and biomarker levels of heavy metals 207,208, we 

observed in our study that accounting for iron deficiency in the regression models did not influence 

the racial disparities for heavy metals. Previous research has linked diet, occupation, education 

level, and smoking status to elevated metals exposure 36, in addition to housing 209, air pollution 

210, and contaminated water 211. The well characterized toxicity of heavy metals exposure, even at 

low doses, makes identifying and ameliorating heavy metal exposures a top priority for addressing 

environmental health disparities. 

The oldest non-Hispanic Black women in our study had consistently higher concentrations 

of persistent organic pollutants, including dioxins, dibenzofurans, PCBs, and DDT metabolites. In 

addition, these stark disparities for the persistent organic pollutants were plateauing or increasing 

over time in non-Hispanic Black women when these chemicals were last measured in NHANES. 

This is consistent with a previous report of non-Hispanic Black individuals having an increased 

risk of having multiple persistent organic pollutants detectable their blood  212 or higher average 

levels of PCBs 121. In our study, biomarker levels of most PCBs were higher in women who were 

iron deficient. The less persistent PCBs were also of lower concentrations in women who breastfed 

or have higher parity, suggesting that the depuration of PCBs occurs through these excretion 

mechanisms 213. However, biomarker levels were shown to be higher for the more persistent PCBs. 

Biomarkers of persistent organic pollutants were quantified on an individual (non-pooled) basis in 

the 1999-2004 NHANES cycles. Elevated concentrations of these pollutants, such as the DDT 

metabolite, DDE, have been associated with an increased risk of breast cancer 214. Interestingly, 

racial differences in DDE further increased when either parity or breastfeeding was accounted in 

the regression models, suggesting that environmental insult from this substance may perturb 
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pathways associated with the reproductive system. A lack of disparities, and decreasing 

concentrations of these chemicals in younger individuals over time, generally reflect a public 

health success in decreasing population exposures to these toxic compounds 185. The long half-life 

of these chemicals suggests that the detected biomarkers predominantly reflect historical 

exposures. This could, however, be of substantial importance for children of non-Hispanic Black 

women, who could have been exposed to disproportionately high levels of these chemicals in the 

womb or early in childhood. For example, in utero exposure to the pesticide, DDT, has been 

associated with an increased risk of breast cancer in adulthood. Specifically, women in the highest 

quartile of in utero DDT exposure were found to have a 3.7-fold increased risk of developing 

breast cancer relative to women in the lowest quartile of exposure 215. Prenatal exposure to 

organochlorine compounds has also been associated with decreased lung function later in life 216, 

risk of infection in childhood 217, attention deficit hyperactivity disorder 218, and obesity 219. If 

these effects of elevated early life persistent organic pollutant exposure last throughout the life 

course, there could be continued adverse health consequences that manifest in those exposed for 

the foreseeable future.     

While differences in chemical exposures likely explain most of the variations observed in 

the human body, these variations in biomarker levels may also be a result of differences in 

physiological processing. Specifically, genetic factors may control the metabolism of these 

chemicals. For example, the enzyme, cytochrome P450 2A6 (CYP2A6) controls the metabolism 

of nicotine into cotinine and subsequently into 3-hydroxycotinine. In a diverse cohort of current 

smokers, CYP2A6 activity was  found to be the highest in Latinos, followed by White Americans, 

African Americans, Native Hawaiians, and Japanese Americans with relevant alleles varying 

significantly by race 220. Furthermore, lower CYP2A6 activity was associated with lower 
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concentrations of nicotine metabolites and subsequentially lower risk of lung cancer, which may 

explain the relatively lower risk of lung cancer found in Japanese smokers 220. As another example, 

single nucleotide polymorphisms (SNPs) in the arsenic (III) methyltransferase gene AS3MT have 

been shown to influence the metabolism of inorganic arsenic into monomethylarsonate and 

dimethylarsinate 221,222. A SNP in AS3MT was found to be associated with a decrease in inorganic 

arsenic in Non-Hispanic Whites but an increase in African Americans, Hispanics, and Chinese 

American. However, these associations were not significant 223, which is likely due to low sample 

size by race/ethnicity 223. These findings emphasize the need to conduct a GWAS on a larger 

multiethnic cohort to better understand how genetic variants mediate racial differences in 

metabolic activity. These examples elucidate a limitation of using NHANES, since data on 

chemical exposures are not available. Having both exposure and biomarker measurements for the 

same chemicals would enable the comparison of metabolic activity by race to understand whether 

chemical biomarker levels are better explained by the environment or by genetics. In addition, 

these findings also showcase the need for joint studies that incorporate both genetics and the 

environment to comprehensively characterize the genetic and environmental contribution to 

disease.  

While there are substantial health disparities between races, there may be variations within 

the same race. For example, the frequency of triple negative breast cancer (TNBC) was highest in 

West African/Ghanaian and African American women and lowest in Ethiopian and White 

American women 224. In addition, highest prevalence of ER-negative disease were found among 

African Americans and patients born in West Africa, while the lowest were seen among White 

Americans and patients born in East Africa 225. In another study, the highest prevalence of triple-

negative tumors was found in West African/Ghanaian, followed by African Americans, and then 
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White Americans 226. Furthermore, women with TNBC tend to be of West African ancestry 

compared to women who do not have TNBC 226. These results may highlight a gradient of risk for 

TNBC due to increased proportion of ancestry attributed to West Africa. Moreover, the 

DARC/ACR1 allele (commonly known as the “Duffy-null” variant) was associated with western 

sub-Saharan African ancestry and independently associated with likelihood of TNBC 226. This 

variant was selected due to its role in resisting malaria, and thus this mutation was largely fixed in 

regions of African affected by malaria 227. However, this variant has been identified as the 

genotype responsible for lower average white blood cell counts observed in patients with African 

ancestry and thus potentially also responsible for disparities in transplant rejection and other health 

conditions 228,229. This genetic predisposition combined with environmental insults, whether due 

to chemical exposures and/or social factors such as long-term stress, health access, etc., may 

exacerbate the risk for having TNBC, thus showing the consequences of forced migration on 

descendent of West Africans even after several generations have passed. Hence, these examples 

highlight the needs to conduct studies that integrate genetic and environmental data to identify 

population, who have a genetic and environmental predisposition to disease. Such results also 

highlight a limitation of using NHANES as there is no greater resolution on the race/ethnicity 

variable to study susceptibility due to differing degree of ancestry. Hence, future studies can 

incorporate the restricted genetic data from NHANES as well as use other datasets such as the UK 

Biobank to better understand the genetic and environmental contribution to disease that are 

attentive to race. 

Our study has important limitations. First, the cross-sectional nature of NHANES only 

allows biomarker measurement at one time point per individual. In addition, there are no available 

data on season, but should such data become available, then it would be interesting to study 
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chemical exposure trends across the seasons. Moreover, since the half-lives of the biomarkers 

assessed in this study are highly variable 185, the precision of estimates of long-term exposure 

largely varies across chemical family. Additionally, this study was not able to assess geographic 

variation in exposure. Others have identified that persistent organic pollutant exposures in the 

NHANES cohort varies geographically, with higher DDT metabolite concentrations in individuals 

residing in the West, and  elevated PCB concentrations in individuals residing in the Northeast 230. 

Future work is needed to precisely characterize exposure “hot spots,” in order to design 

intervention studies to reduce exposure disparities. Our study also focused on identifying average 

differences in biomarker concentrations. By ignoring the extremes of these distributions, we have 

likely not considered individuals at greatest risk of developing adverse health outcomes. Similarly, 

our analyses were limited by low detection rates, with 182 chemicals not meeting our inclusion 

threshold of at least 50% detection in the study population. A more in-depth analysis of differences 

in detection frequency by race/ethnicity could identify additional chemicals with significant racial 

disparities. For chemical biomarkers measured in urine, variations in the concentration of urinary 

creatinine, used as a correction factor for urine dilution, potentially confounds our comparison of 

exposures between individuals of different races. This is because increased average concentrations 

of urinary creatinine have been identified for non-Hispanic Black individuals, relative to Mexican 

American and non-Hispanic White individuals 231. While we adjusted for urinary creatinine as a 

covariate in our regression models, the still may be residual confounding. The large number of 

chemicals assessed also precluded an in-depth characterization of the various routes of exposure 

of individual chemicals – this is undoubtedly an essential future direction of research to develop 

strategies to eliminate exposure disparities. Finally, while we performed analyzed all chemical 

biomarkers available from NHANES 1999-2014, these chemicals only represent a small 
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proportion of the over 80,000 chemicals estimated to be used in commerce in the United States. 

Future studies could benefit from an unbiased metabolomics approach to identity disparities in 

chemical exposures which are not captured in NHANES.   

3.6 Conclusions 

The persistent health disparities between women of different races/ethnicities make 

understanding the etiological drivers of these disparities a pressing public health issue. A recent 

commentary highlighted a lack of knowledge regarding the molecular underpinnings of health 

disparities. It described how the vast majority of genome sequencing data had been generated in 

populations of European ancestry 232. Environmental exposures, however, are hypothesized to be 

the major driving risk factors for a vast suite of complex diseases 12. Even when genetic data has 

been generated in an equitable fashion, understanding gene-environment interactions and complex 

disease phenotypes will still require in-depth quantification of environmental exposures. In this 

study, we have comprehensively identified differences in biomarker of chemical exposure across 

women of various race/ethnic groups and across age groups. These findings can guide future 

efforts to understand chemical impacts on health disparities by helping to prioritize chemicals for 

assessment in epidemiological studies. Additionally, chemicals as identified as highly disparate 

here can be further prioritized for toxicological assessment relevant to disease outcomes of interest. 

Finally, these findings can inform public health interventions designed to reduce chemical 

disparities and promote health equity across the population.
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3.7 Figures 

 

 
Figure 3.1 Dataset compilation and cleaning workflow. 
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Figure 3.2. Alphabet soup plot displaying the covariate adjusted fold differences in chemical 
biomarker concentration by race, ranked by the average difference with non-Hispanic White 
individuals. Colors represent the chemical families. Shapes represent the comparison between a 
given race and non-Hispanic White individuals.  
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Figure 3.3. Volcano plots representing the significance of the covariate-adjusted differences in 
chemical biomarker concentrations between non-Hispanic White women and (A) non-Hispanic 
Black women, (B) Mexican American women, (C) Other Hispanic women, and (D) Other 
race/multiracial women. Color and shapes represent the chemical families. 
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Figure 3.4. Volcano plots representing the significance of the covariate-adjusted differences in 
chemical biomarker concentrations between non-Hispanic White women and (A) Asian women, 
and (B) Other Race /Multi-Racial women in NHANES 2011-2014. Colors and shapes represent 
the chemical families. 
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Figure 3.5. Heatmap displaying covariate adjusted fold differences in chemical biomarker 
concentrations by race, relative to non-Hispanic White women, stratified by age group and 
chemical family. Color reflects the log2 fold difference in chemical biomarker concentration. 
Biomarkers in grey color were not measured in that age group. 
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Figure 3.6. Heatmap displaying covariate adjusted fold differences in chemical biomarker 
concentrations by race, relative to non-Hispanic White women, stratified by study period and 
chemical family. Color reflects the log2 fold difference in chemical biomarker concentration. 
Biomarkers in grey color were not measured in that study period. 
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3.8 Tables  

Table 3.1. Demographic characteristics of the study population. 

 

 

CATEGORICAL 
Age N (%) Cycle N (%) Race/Ethnicity (%) N (%) 
      0-11 9392 (24.66)       1999-2000 (Cycle 1) 4535 (11.91)       Mexican American  8760 (23.00) 
      12-25 9555 (25.09)       2001-2002 (Cycle 2) 5127 (13.46)       Other Hispanic 2949 (7.74) 
      26-50 9330 (24.50)       2003-2004 (Cycle 3) 4732 (12.43)       Non-Hispanic White 14384 (37.77) 
      51-85 9803 (25.74)       2005-2006 (Cycle 4) 4834 (12.69)       Non-Hispanic Black 9116 (23.94) 
        2007-2008 (Cycle 5) 4628 (12.15)       Other Race  2871 (7.54) 
        2009-2010 (Cycle 6) 4946 (12.99)   
        2011-2012 (Cycle 7) 4493 (11.80)   
        2013-2014 (Cycle 8) 4785 (12.57)   
CONTINUOUS 

 N measured (% 
of population)  5th %tile Median Mean (SD) 95th%tile 

Age (years) 38080 (100) 2 26 32.1 (24.2) 77 
PIR (-) 34968 (91.83) 0.29 1.73 2.2 (1.6) 5.00 
Cotinine (ng/mL) 31699 (83.24) 0.011 0.045 29.9 (91.4) 245.00 
Creatinine (mg/dL) 32314 (84.86) 22.00 102.00 115.9 (76.6) 263.00 
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Chapter 4 Biomarker-Based Occupational Exposome 
 

4.1 Abstract 

Background: According to the World Health Organization, occupational exposures to 

hazardous chemicals may be responsible for over 370,00 premature annual deaths. Hence, this 

lends urgency to characterize the totality of exposures across different industries and occupations 

to identify workers most susceptible to chemical-mediated health effects.  

Objectives: We 1) characterized differences in chemical exposures across 108 toxicants 

and physiological responses for 27 physiological indicators in a US sample of 26,361 blue- and 

white collar workers across 20 industrial sectors, 2) identified groups of workers with similar 

chemical exposure and physiological response profiles, and 3) evaluated differences in 

physiological measurements among the groups with similar chemical exposure profiles. 

Methods: We applied a series of generalized linear models with the outcome as chemical 

biomarker concentrations or physiological measurements and the main predictor as sector-collar 

combinations with adjustment for age, sex, and race to characterize differences in chemical 

exposures and physiological responses. We applied hierarchical clustering with Pearson’s 

correlation-based distance on the normalized regression coefficients to identify groups of sector-

collar combinations with similar chemical exposures and physiological response profiles.  

Results: White-collar workers had higher exposures to heavy metals such as mercury, 

arsenic, and their metabolites, along with a biomarker of sunscreen use, Benzophenone-3. Most 

blue-collar workers, especially those working in professional services, technical services, and 
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retail trade, have higher biomarker levels of heavy metals such as lead and cadmium, PAHs, 

PFASs, and VOCs such as toluene and benzene compared to their white-collar counterparts. 

Moreover, in blue-collar workers from the previously mentioned sectors along with agriculture, 

forestry, fishing and education services, alkaline phosphatase (biomarker of liver disease or bone 

disorder), white blood cell count (biomarker of inflammation), and glomerular filtration rate 

(biomarker of kidney function) showed higher values compared to white-collar workers. These 

results suggest that certain occupational exposures can diminish important physiological functions 

in blue-collar workers. 

Discussion: We systematically characterized similarity in chemical exposures and 

physiological response profiles in a population of blue- and white-collar workers from a wide 

range of industrial sectors. Our findings could guide efforts to design targeted interventions to 

reduce health disparities in susceptible occupations. 

4.2 Introduction 

The exposome is the totality of all exposures in a lifetime and its impact on human health 

2. While environmental exposures have been heavily studied to characterize an individual’s 

exposome, there needs to be more studies conducted on occupational exposures to help provide a 

more holistic characterization of an individual’s exposome. Data from the World Health 

Organization suggest that exposures to hazardous chemicals in an occupational setting are 

responsible for over 370,000 premature annual deaths 177,233. Despite this alarming statistic, a 

limited number of studies have characterized occupational exposures within the manufacturing 

sectors 30,35,37,234. Many of these studies have applied a one-chemical or one-chemical-family 

approach to evaluate occupational exposures 30,35,37. Few studies, however, aimed to analyze 

exposure to multiple chemicals across different industries and job titles, but they are based on 
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estimates of exposures 30 or air measurements at the workplace 234,235. These studies are limited in 

addressing the extent of exposures within the human body. Thus, there is a need for a 

comprehensive, untargeted approach to study occupational exposures for a wide range of 

chemicals across a variety of occupations. 

Since populations are not exposed to one chemical at a time but are exposed to several 

toxicants, there is a need to evaluate co-exposures of multiple chemicals. The biomarker dataset 

from the National Health and Nutrition Examination Survey (NHANES) has a wealth of blood, 

serum, and urine measurements on chemical contaminants, as well as data on occupation, but its 

sampling procedure creates challenges in quantifying co-exposures. Not all chemical biomarkers 

are measured in all study participants, rather different chemical biomarkers are quantified in 

different population subsamples 141. For instance, in 2003-2004, participants in subsample A were 

measured for heavy metals and Per- and Polyfluoroalkyl Substances (PFAS) but were not 

measured for chemicals from other classes 236,237. This means that analyses to quantify co-exposure 

in subsample A will be limited to only these two chemical classes. Furthermore, analyses will be 

limited to participants with measurements for all toxicants within in these two chemical classes. 

Due to this sampling procedure, NHANES is non-randomly sparse. This makes it especially 

challenging to use machine learning techniques to identify co-exposures as no participants have 

measurements for all chemicals. Imputation techniques are not applicable as these techniques work 

on the assumption that the dataset is randomly sparse 238. Hence, studying co-exposures have been 

limited to one chemical family 93–95, but populations are not only exposed to one chemical class. 

Some studies even selected a candidate set of chemicals without assessing if this combination of 

chemicals is relevant in a susceptible population 239,240. Very few studies, however, have managed 

to characterize co-exposure across different chemical classes 241,242. Thus, characterizing co-



 

89 
 

exposures across a wide range of toxicants is essential to better understand the chemical exposure 

profiles associated with vulnerable populations. 

To begin understanding how occupational exposures may lead to premature death 177, we 

first need to understand the associations between chemical exposures and physiological responses. 

Physiological responses can be characterized by measurements of various biomarkers known as 

physiological indicators that reflect function of the different human body systems. Several studies 

have evaluated differences in a physiological response between worker populations 243–247, but they 

do not link such a response to chemical exposures. Some have studied the associations between a 

chemical or chemical family and a physiological indicator 30,35,96, but this is limited in addressing 

the “totality” of exposure on human health. Others have studied the impact of co-exposures on 

physiological response, but such approaches have been limited to only one physiological indicator 

97. Human health is not well-described by a single physiological indicator, rather it should be 

described by many different indicators to provide a holistic view of physiological function. Thus, 

evaluating the influence of chemical co-exposures on several physiological indicators is integral 

to gain insights on the influence of exposure on human health, especially in an occupational setting. 

Overall, our goal is to characterize the chemical exposure and physiologic dysfunction in 

a working population comprised of NHANES participants from a wide range of industrial sectors 

and occupations. More specifically, our objectives are to 1) define differences in chemical 

exposure profiles based on sector-collar combinations, 2) group occupations based on their 

similarities in chemical exposure profiles, and 3) evaluate differences in physiological 

measurements among the clustered groups to identify workers at risk of physiologic dysfunction. 
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4.3 Methods 

4.3.1 Study Population  

Since 1999, the Centers for Disease Control (CDC) has conducted NHANES to collect 

cross-sectional data on demographic, socioeconomic, dietary, and health-related information in the 

US population. For this analysis, we combined data from the chemical biomarker, demographic, 

and occupational datasets between years 1999-2014 for an initial sample of 82,091 participants 

with 411 chemical biomarkers and 60 physiological indicators measured. We categorized 

participants as white- or blue-collar workers in their corresponding industrial sector by using the 

publicly available industrial and occupational codes and the US Department of Labor definition of 

blue-collar 248. Blue-collar workers are defined as workers who perform repetitive tasks with their 

hands, physical skill, and energy. We tabulate the job occupation description and the collar 

category in Table A3.1. We then excluded participants for which corresponding data on chemical 

indicators (N = 7,001) and occupational descriptions (N = 48,729) were not available. We also 

excluded participants (N = 175) from the following sector-collar combinations as the median 

sample size across the included chemicals is less than 10 participants:  blue- and white-collar 

workers from armed forces and white-collar workers from private household, mining, and utilities. 

Thus, the sample size of our studied population is 26,186 participants. These exclusion and 

inclusion criteria are further detailed in Figure 4.1.  

4.3.2 Chemical Biomarkers of Occupational Exposures  

We defined chemical biomarker as an indicator of environmental exposure that can be 

measured in blood, serum, or urine. We replaced all measurements below the limit of detection 

(LOD) with the LOD divided by the square root of 2, as recommended by the CDC 14 to produce 

reasonably unbiased means and standard deviations 132. At times, NHANES identified a problem 
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of interference from molybdenum oxide that resulted in corrected concentration of urinary 

cadmium recorded as 0 ng/mL 249,250. Log-transforming such data would be undefined, therefore 

such measurements were replaced with the LOD divided by the square root of 2 if the participant’s 

urinary cadmium level was under the LOD or otherwise excluded. We excluded smoking and soy 

metabolites (Table A3.2) as biomarker levels of these substances are driven primarily by smoking 

or dietary behaviors instead of from occupational exposures (c = 8). We preferred lipid adjusted 

measurements for biomarkers indicated by 7- or 8-letter NHANES codename ending in “L” or 

“LA,” respectively, for which NHANES provided both lipid-adjusted and non-lipid adjusted 

measurements. Therefore, we excluded non-lipid adjusted chemical biomarkers (c = 79). We 

calculated detection frequencies for each combination of chemical biomarkers and sector-collars. 

Using these detection frequencies, we also calculated the fraction of sector-collars with detection 

frequency above 50% for each chemical and excluded chemical biomarkers where this fraction 

was less than 0.5 (c = 142). Then, we calculated the sample size for each combination of chemical 

and sector-collar, determine the median sample size across all sector-collars, and excluded 

chemical biomarkers with a median sample size of less than 90 participants (c = 174). We chose 

90 participants as the cut-off based on a power calculation to have a 70% chance of detecting a 

significance difference with a p-value of less than 5% and with a regression coefficient of 0.37 

(Table A3.3). The final dataset for analysis consisted of 108 chemical biomarkers from 11 classes 

(Figure A3.1). 

4.3.3. Indicators of Physiological Response  

We identified 60 biomarkers and anthropomorphic measures that characterize 

physiological response. We excluded those with measurements in fewer than six NHANES cycles 

(p = 10) and with a sample size of less than 9,000 participants (p = 21). We also excluded 
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physiological indicators that are categorical (p = 2). We calculated the mean measurement for 

participants with two or more measurements for systolic and diastolic blood pressure. The final 

dataset for analysis consisted of 27 physiological indicators. Descriptions, clinical thresholds, and 

sample size of each physiological indicator are provided in Table A3.4.  

4.3.4 Statistical Analysis 

The non-random sparsity of the chemical biomarker dataset in the worker population 

creates challenges in applying machine learning techniques, such as hierarchical clustering to 

group individual workers together based on similarity in chemical exposure profiles. Applying 

machine learning techniques requires a complete dataset 238. However, as no worker has data 

available for all studied toxicants (Figure A3.2), we cannot characterize the chemical profile for 

each individual worker. Instead, we addressed this sparsity issue by characterizing the profiles for 

each sector-collar combination to identify clusters of the sector-collar combinations with similar 

chemical exposure profiles. To further highlight the sparsity of the NHANES chemical biomarker 

dataset, we tabulated that number participants with a given number of measured chemical 

biomarkers in Table A3.5.  

We performed all analyses using R version 3.6.0. We used multivariate regression models 

to evaluate differences in the chemical biomarker levels and physiological indicators across the 

sector-collar combinations. We conducted a series of generalized linear regression models with 

the log10 transformed chemical measurements or physiological measurements as the outcome 

variable and the main predictor as the sector-collar combination with the reference group as white 

collars from public administration. The selection of the reference group was based on a priori 

assumption that white collars from public administration would be exposed to toxicants at low 

doses. We adjusted for age (continuous), sex (categorical), and race (categorical). We assume age 
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to have a linear association with a given chemical biomarker levels due to ease of interpretation. 

For ease of interpretation, the regression coefficients for the sector-collar combinations were 

converted to percent differences [10coefficient - 1] × 100%. To show exposures and response 

differences across the sector-collar combinations, we visualized the results of the regression 

models with two heatmaps of percent differences for all 108 chemicals and all 27 physiological 

indicators. To identify significant comparisons while maintaining a lower false positive rate, we 

used the False Detection Rate (FDR) method on the p-values of the regression coefficients 

pertaining to the sector-collar combinations (Benjamini and Hochberg, 1995). 

We performed two series of hierarchical agglomerative clustering analyses to identify 

groups of sector-collar combinations with similar chemical exposures and physiological response 

profiles. First, we normalized the regression coefficients across a given chemical biomarker or 

physiological indicator with the mean equal to 0 and the standard deviation equal to 1. Normalizing 

will make the chemicals or physiological indicators comparable to each other. Normalizing also 

prevent features, e.g. chemical biomarker or physiological indicator, with the highest variation 

from driving the clustering 251. Second, we used Pearson’s correlation-based distance as our 

distance measure 252,253. This distance measure calculates the similarity between the chemicals or 

physiological indicators of every pair of sector-collar combinations by using Pearson’s correlation. 

We preferred Pearson’s correlation-based distance to Euclidean distance as we are interested in 

identifying cluster of sector-collars with similar overall profiles 251 in chemical exposures or 

physiological response. Using Euclidean distance would cluster the sector-collar combinations 

based on magnitude of the regression coefficients, e.g. sector-collars with the highest chemical 

biomarker levels would cluster together. Third, we needed to decide which linkage method to use 

in order to best determine how the sector-collars combinations should cluster together based on 
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similarity in chemical exposures or physiological responses 251. Hence, we tested four difference 

linkage functions: single, complete, average, and McQuitty’s linkage method. We provided 

description of each linkage method in Table A3.6. Fourth, we selected the linkage method that 

generated the dendrogram that best preserves the dissimilarity between the sector-collar 

combinations. We evaluated this performance with the cophenetic correlation coefficient (Table 

A3.7-A3.8), which is a correlation coefficient between the original distance matrix and the distance 

matrix generated by the clustering configuration 254. A cophenetic correlation coefficient equal to 

1 implies that the clustering configuration perfectly preserves the dissimilarity between the objects, 

e.g. sector-collar combinations. Finally, we conducted hierarchical agglomerative clustering with 

1500 multiscale bootstrap replicates to calculate the approximately unbiased (AU) p-values 255. An 

AU p-value of 100 implies that all bootstrap replicates support the cluster, implying that the cluster 

is strongly supported by the data 255. We visualized the clusters of sector-collar combinations with 

dendrograms. For ease of interpretation, we used Euclidean distance to cluster the chemical 

indicators based having similar profiles on occupational groups. 

We performed two types of analysis to understand the impact of occupational chemical 

exposures on physiological function in the workers population. In the first method, we compare 

the chemical exposures profiles with the physiological response within the same sector-collar 

combination or clustered group. If the same sector-collar combinations clustered together due to 

having similar profiles in both chemical exposures and physiological responses, then this may 

indicate that occupational chemical exposures are drivers leading to physiological dysfunction. In 

the second method, we defined clustered occupational groupings based on similarity in chemical 

exposure profiles. We defined a clustered group based on the sample size ≥ 400 or AU p-value ≥ 

80. To link occupational co-exposures to physiological responses, we used these chemical 
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exposure-based clustered groups as the main predictor in a series of generalized linear regressions 

with the outcome variable as a given physiological indicator and the covariates as age (continuous), 

sex (categorical), and race (categorical). We defined the reference group to include the white 

collars from public administration and other sector-collar combinations who have a similar 

chemical exposures profile. Hence, the reference group is comprised of white collars from the 

following sector-collar combinations:  Manufacture: Durable Goods; Arts, Entertainment, 

Recreation; Information; Professional, Technical Services; Education Services; Finance, 

Insurance, Real Estate, Rental; Health Care, Social Assistance; and Public Administration. 

4.4 Results 

4.4.1 Study Population  

Table 1 presents population characteristics for the 26,186 NHANES participants from 

1999-2014. Figure A3.3 presents the sample size for each sector-collar combination. Figure A3.4, 

A3.5, and A3.6 show the percentage of categories for sex, race, and poverty income ratio, 

respectively, for each sector-collar combination. Figure A3.4 shows that blue-collar jobs are 

primarily occupied by males, while females tend to work in private household, health care, and 

education. Figure A3.5 shows that white-collar occupations are predominantly comprised of Non-

Hispanic White participants, while blue-collar occupations in agriculture, fishing, forestry, 

construction, and mining blue collars are mostly comprised of Mexican Americans. Figure A3.6 

shows a socioeconomic gradient with white-collar workers having higher poverty income ratio 

compared to blue-collar workers 

4.4.2 Chemical Exposure Profiles 

Figure 4.2 displays a heatmap of the percent differences of chemical biomarker levels 

relative to white collars from public administration to show differences in chemical biomarker 
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profiles across the sector-collar combinations. The dendrogram of the sector-collars is defined 

based on using the average linkage function with Pearson’s correlation-based distance. The white 

blocks indicate that chemical biomarker levels are the same between a given sector-collar 

combination and the reference group of white collars working in public administration. Red blocks 

represent higher positive percent differences to indicate higher biomarker levels in a given sector-

collar combination compared to the reference group, while blue blocks represent higher negative 

percent differences to indicate lower biomarker levels in a given sector-collar combination or 

higher biomarker levels in the reference group. For instance, the percent difference of 3-fluorene 

between blue-collar workers in mining and the reference group is 213%, which implies that on 

average, biomarker levels of 3-fluorene in blue-collar workers in mining are more than three times 

higher compared to those of white-collar workers in public administration.  

This heatmap also shows co-exposure patterns by sector-collar combination. For example, 

compared to white-collar workers in public administration, blue-collar workers in professional or 

technical services tend to have higher levels of some of the most toxic chemicals such as cadmium, 

lead, several polyaromatic hydrocarbons (PAHs), several phthalates such as metabolites of Di-2-

ethylhexyl phthalate (DEHP), and volatile organic chemicals (VOCs), including toluene, benzene, 

and 2,5-dimethylfuran. On the other hand, this occupational group, on average, have lower levels 

of arsenic and mercury metabolites and benzophenone-3 (BP-3), a UV blocker used in sunscreen. 

This heatmap also enables the comparison of chemical exposure profiles across the 

different sector-collar combinations. The chemical exposure profiles of blue-collar workers are 

similar to the profiles of other blue-collar workers than to their white-collar counterparts. Blue-

collar workers from professional services, technical services, and retail trade have some of the 

highest biomarker levels of heavy metals, such as cadmium and lead, phthalates, PFASs, PAHS, 
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and VOCs, including xylene, ethylbenzene, toluene, benzene, and 2,5-dimethylfuran, but have 

lower levels of arsenic and mercury metabolites. Within the “Food Services” cluster, which 

includes blue collars from transportation, warehousing, other services, accommodation, and food 

services along with white collars from agriculture, forestry, fishing, accommodation, and food 

services, the phthalates signal is stronger in the workers from transportation, warehousing, 

accommodation, and food services, suggesting that these workers are relatively more exposed to 

phthalates. White-collar workers from health care and social assistance have the most similar 

chemical exposure profiles to that of white-collar workers from public administration as the 

percent differences across all studied chemicals are near 0, i.e. the blue and red boxes are faded.  

4.4.3 Heavy Metals 

Within the same family, the heavy metals display different exposure patterns. Lead and 

cadmium, on average, are higher in most blue-collar workers compare to the other white-collar 

workers, i.e. the red blocks are darker for right half of the heatmap compared to the left half. When 

we compared the distribution of blood cadmium concentrations across the sector-collar 

combinations and the NHANES population (Figure 4.3), we also confirmed that cadmium levels 

are predominately and significantly higher in most blue-collar workers. In contrast, several white-

collar workers have lower cadmium levels that are even below the average cadmium levels in the 

NHANES population, which is labeled with a yellow boxplot. We observed a similar pattern in 

blood lead (Figure A3.7). 

In contrast, metabolites of mercury and arsenic display the opposite exposure patterns to 

those of lead and cadmium. White-collar workers tend to have higher biomarker levels of mercury 

and arsenic metabolites, whereas blue-collar workers have lower levels of these metabolites. 

Figure 4.4 shows that the total blood mercury levels of most blue-collar are substantially and 
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significantly lower compared to those of white-collar workers. Blue-collar workers from mining 

have the lowest levels of total mercury with their average being slightly lower than the average of 

the NHANES population. In Figure A3.8, total urinary arsenic levels are also substantially lower 

for blue-collar workers from utilities, mining, information, and public administration compared to 

white-collar workers but not significant.  

4.4.4 Polyaromatic Hydrocarbons (PAHs) 

The chemical class of PAHs show very similar exposure patterns to each other and with 

lead and cadmium. Blue-collar workers, on average, have significantly higher levels of PAHs as 

show with percent differences ranging from 0 to 213.1% (Figure 4.2 and 4.5). Blue-collar workers 

from mining show that highest difference of 1-napthol and 3-fluorene at 213.1%, suggesting that 

levels of 3-fluorene are over three times as high as biomarker levels found in white-collars working 

in public administration. Average 3-fluorene levels are highest in blue-collar workers, who levels 

are higher compared to average biomarker levels in the NHANES population (Figure 4.5). In 

contrast, most white-collar workers, on average, have some of the lowest biomarker levels of 3-

fluorene with their levels being under the average of the NHANES population. 

4.4.5 Benzophenone-3 (BP-3) 

Based on the linear regression results, biomarker levels for BP-3, a biomarker of sunscreen  

and cosmetic use, are among the three highest in the reference group of white-collar workers from 

public administration compared to all other sector-collar combinations. But upon examining the 

distributions of BP-3 (Figure 4.6), we observed that the mean measurements of white-collar 

workers from public administration are lower compared to nine other sector-collar combinations. 

Biomarker levels of BP-3 for these sector-collar combinations are also higher compared to the 

average for the NHANES population. On the other hand, blue-collar workers, especially those in 
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mining, manufacture of durable goods, professional, and technical services, have some of the 

lowest mean and median concentration of BP-3, well below the average of the NHANES 

population. 

4.4.6 Per- and Polyfluoroalkyl Substances (PFASs) 

Like the heavy metals, there are different exposures patterns within the chemical class of 

PFASs. Within blue-collar workers in professional services, technical services, and retail trade, 

the highest percentage differences are found in perfluorobutane sulfonic acid (PFBS) and 

perfluorododecanoic acid (PFDA), while slightly higher differences are found in 

perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS), and perfluorooctane 

sulfonamide (PFOSA). These chemicals are clustered in the center of Figure 4.2. Blue collars 

from utilities, agriculture, forestry, and fishing have a similar exposure profile to the previously 

mentioned blue-collar workers but at lower magnitudes. Differences between the previously 

mentioned sector-collar combinations and white-collar workers from public administration are 

minimal for perfluoroundecanoic acid (PFUnA), perfluorodecanoic acid (PFDA), perfluorohexane 

sulfonic acid (PFHxS), and perfluorooctanoic acid (PFOA), which are clustered at the bottom of 

Figure 4.2. Interestingly, biomarker levels of perfluorononanoic acid (PFNA) are higher in the 

reference group. In Figure 4.7, blue collar workers in professional services, technical services, 

retail trade, agriculture, forestry, and fishing, on average, have substantially and significantly 

higher average biomarker levels of PFDA compared to the reference group and the NHANES 

population. 

4.4.7 Phthalates  

Even within the same chemical family, individual phthalates metabolites show very 

different exposure patterns. Metabolites of DEHP are higher in blue collars working in 
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professional services, technical services, and retail trade, who show the highest positive percent 

differences. On the contrary, other phthalates are lower in the same occupational groups with 

mono-isononyl and mono-isobutyl phthalates having negative percent differences (Figure 4.2). 

This suggests that biomarker levels of mono-isononyl and mono-isobutyl phthalates for these 

occupational groups are lower than those found in the reference group. All phthalate metabolites 

are generally higher in blue- and white-collar workers from accommodation and food services 

compared to the reference group. The exposure difference for mono-(2-ethyl)-hexyl phthalate 

(MEHP) is substantial and only significant for blue-collar workers in professional, technical 

services at 61% (p-value = 3.8e-02) and retail trade at 38.2% (p-value = 3.3e-02). In Figure 4.8, 

average MEHP levels were the highest for blue-collar workers in private household, professional 

and technical services, and utilities along with white-collar workers in arts, entertainment, and 

recreation.  

4.4.8 Differences in Physiological Stress Response   

Figure 4.9 displays the percent differences of physiological indicators to show differences 

in physiological response profiles across the sector-collar combinations. The interpretation is 

similar to that for Figure 4.2. 

This heatmap enables the comparison of physiological response profiles among the sector-

collar combinations. Like the chemical exposure profiles, hierarchical clustering nearly split the 

sector-collar combinations into two large groups: one comprised mostly of blue-collar workers on 

the right of Figure 4.9 and the other of most white-collar workers on the left. This implies that 

workers within the same collar class have similar physiological profiles. The profiles of the blue-

collar workers are predominantly characterized by lower C-reactive protein levels, which is 

indicative of decreased inflammation. The exception is found in blue collars working in mining, 
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transportation, and warehousing as the percent difference in C-reactive proteins levels are +57% 

and +6.3%, respectively, relative to the reference group of white collars from public 

administration. Compared to the reference group, most blue-collar workers have lower values in 

glucose control indicators such as Homeostatic Model Assessment of Insulin Resistance (HOMA-

IR) and the ratio of insulin to glucose, higher measurements of alkaline phosphatase (a biomarker 

of liver disease or bone disorder), and higher measurements of glomerular filtration rate, which is 

indicative of increased kidney filtration function. In addition, most blue-collar workers have lower 

values of markers describing body fat deposition including subscapular skinfold, triceps skinfold, 

relative fat mass index, waist circumference, body mass index (BMI), and weight, which may be 

indicative of their physical fitness or the physical demand of their jobs.  

The physiological profiles of the white-collar workers differ even within the same collar 

class. Values of HOMA-IR and ratio of insulin to glucose are lower or on par with those found in 

white collars from public administration. This contrast with white-collar workers from agriculture, 

forestry, fishing, and construction, who have higher values. Measurements of body fat deposition, 

alkaline phosphatase, GFR, and white blood cell count are very similar for most white-collar 

workers. 

4.4.9 Alkaline phosphatase 

Alkaline phosphatase is an enzyme found in blood that help break down proteins with 

important role in liver function and bone development 256. Biomarker levels below 20-44 U/L may 

indicate hypophosphatasia, a rare genetic disease that affects bones and teeth, while levels above 

116-147 U/L may indicate liver damage. Biomarker levels of alkaline phosphatase are significantly 

higher in several blue collars compared to the reference group and the NHANES population 

(Figure 4.10). Most of the workers in each sector-collar combination are within the normal range. 
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However, there is a high percentage of workers with biomarker levels outside the normal range for 

the blue collars, especially those working in agriculture, forestry, and fishing. On the other hand, 

the lowest average concentrations of alkaline phosphatase are found predominantly in white-collar 

workers, who averages are 3-7 U/L lower than that of the NHANES population.  

4.4.10 Indicators of Inflammatory Response 

White blood cells are cells of the immune system responsible for protecting the body 

against infectious disease and foreign invaders 257. C-reactive protein (CRP) is a protein made by 

the liver where increased levels are indicative of a condition causing inflammation in the body 258. 

After correcting for multiple comparisons, no results were significant for white blood cell count. 

CRP levels are significantly lower in white-collar workers from education services, professional, 

technical services, and arts, entertainment, recreation and in most blue collars as shown with 

negative percent differences. This is not the case for blue collars working in mining, however, who 

have the highest difference observed at 57.1% compared to the reference group of white collars 

from public administration. In Figure 4.11, while the unadjusted average mean concentration of 

CRP is not the highest for blue-collar workers from mining, 60.3% of these workers have CRP 

levels higher than the clinical threshold established at 0.1 mg/dL.  

4.4.11 Indicators of Insulin Resistance 

Insulin resistance occurs when the body’s cells do not respond normally to insulin to 

control blood glucose levels 259. On average, higher values of HOMA-IR are found in white collars 

from agriculture, forestry, fishing, and construction along with blue collars from information and 

private household, which is indicative of higher to insulin resistance. However, these results are 

not significant after adjusting for multiple comparisons. The only significant result was for blue 

collars working in construction, whose values of HOMA-IR are 18.8% lower compared to those 
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for white-collars from public administration. Interestingly, in Figure 4.12, 51% and 43.4% of the 

white collars from agriculture, forestry, fishing, and construction, respectively, along with 41.9% 

and 46.2% blue collars from information and private household, respectively, are above the clinical 

threshold for HOMA-IR. This suggests that approximately more than 40% of the workers in these 

occupational groupings are susceptible to insulin resistance.  

4.4.12 Glomerular Filtration Rate (GFR) 

GFR is a measure of kidney function with values below 90 mL/min/1.73 m2 indicative of 

kidney damage and higher values indictive of hyperfiltration 260. The effect sizes for several blue 

collars and only one white-collar group from transportation and warehousing remain significant 

after correcting for multiple comparisons. Interesting all these effect sizes are positive, indicating 

that average adjusted GFRs for these occupational groups are higher compared to the reference 

group. Moreover, less than 25% of the workers for these groups have GFRs indicative of kidney 

disease (Figure 4.13). The most susceptible occupational groups are the white collars from 

professional and technical services, agriculture, forestry, fishing, and construction, with at least 

2.9% of the population with GFR below 60 mL/min/1.73 m2.  

4.4.13 Indicators of Body Fat Deposition 

Indicators of body fat deposition include BMI, relative fat mass index, waist circumference, 

weight, subscapular skinfold, and triceps skinfold. Triceps skinfold is the thickness measured at 

the back side in the middle of the upper arm 261, while subscapular skinfold is measured under the 

lowest point of the shoulder blade 262. The thickness of the skinfold is a measure for subcutaneous 

fat. Several blue-collar workers, on average, have lower measurements of subscapular and triceps 

skinfold compared to the reference group, whereas most white collars show similar profiles with 

the reference group except for those working in agriculture, forestry, fishing, and manufacture of 
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non-durable goods. Almost all sector-collar combinations, on average, have lower measurements 

of subscapular skinfold compared the reference group of white collars from public administration. 

Several of these differences are significant within the blue-collar class. The effect sizes are 

concurrent with the unadjusted mean measurements for subscapular skinfold as the average 

measurement for the reference group was the highest (Figure 4.14). Blue collars working in 

construction have the lowest average measurements of subscapular skinfold.  

4.4.14 Influence of Occupational Exposure on Physiological Function 

Comparing the chemical exposure profiles (Figure 4.15) with the physiological response 

profiles (Figure 4.16) within the same sector-collar combination or clustered group may provide 

insights into the influence of occupational exposures on eliciting a physiological response. 

Interestingly, both clustering procedures first split the sector-collar combinations by collar class, 

implying that chemical exposures profiles and the physiological response profiles are similar for 

workers within the same collar class. More specifically, some of the sector-collar combinations 

that show the highest averages of alkaline phosphatase levels are blue-collars from agriculture, 

forestry, fishing, retail trade, education services, and professional, technical services. These same 

sector-collar combinations are in the same cluster for having similar chemical exposure profiles, 

which is characterized by higher biomarker levels of PFASs, heavy metals, VOCs, PAHs, and 

phthalates. As another example, blue-collar in mining have higher biomarker levels of some of the 

most toxic chemicals such as heavy metals including cadmium and lead, PAHs, and VOCs 

including benzene and toluene. They also have the highest levels of CRP, which may suggest that 

such occupational exposures may elicit an inflammatory response.  

As another method to understand the influence of chemical exposures on physiological 

function, we defined clustered occupational groupings based on similar chemical exposures 
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profiles (Figure 4.17) and compared the physiological response across these chemical exposure-

based clustered groups while adjusting for age, sex, and race (Figure 4.18). Like the results from 

comparing the clustered groups between the chemical exposures and physiological response 

profiles, blue-collar workers have similar chemical exposure profiles as well as physiological 

response profiles. In addition, the physiological responses profiles for the clustered occupational 

groups also suggest that blue collar workers, compared to the reference group of white collars, 

have higher levels of alkaline phosphatase, white blood cell count, and GFR while lower 

measurements of triceps and subscapular skinfold, weight, creatinine levels, and indicators of 

glucose control such as HOMA-IR and ratio of insulin to glucose. On the other hand, indicators of 

body fat deposition such as BMI, waist circumference, weight, subscapular skinfold, and triceps 

skinfold are comparable between the reference group of white collars and two clustered groups: 1) 

an occupational group comprised of white collars from construction, management, administration, 

waste services, transportation, and warehousing along with blue collars from private household 

and 2) blue collars from public administration and white collars from wholesale trade. In contrast, 

HOMA-IR, the ratio of insulin to glucose, and cardiovascular indicators such as the ratio of total 

to HDL cholesterol, ratio of LDL to HDL cholesterol, triglycerides, and LDL cholesterols are 

higher in the previous clustered groups compared to the reference group. 

4.5 Discussions 

In this study, we present an unbiased approach to characterize difference in chemical 

biomarker levels and physiological measurements across a diverse suite of chemical contaminants 

and physiological indicators. To our knowledge, this is the first application of hierarchical 

clustering on differences by chemical exposures to identify groups of workers with similar 

chemical exposure profiles. We applied the same procedure with the physiological responses. We 
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compared the chemical exposure profiles with the physiological response profiles within the same 

sector-collar combination or clustered group to gain insights into the influence of occupational 

exposures on eliciting a physiological response. These results provide insight on differences of 

occupational exposures and responses across a wide set of industrial sectors. They are also 

informative for identifying which workers are susceptible to higher occupational exposures and 

potential adverse health outcomes. 

We identified substantial differences in chemical biomarker levels across the different 

occupational groups. Blue-collar workers show higher biomarker levels of heavy metals such as 

lead and cadmium, PAHs, PFASs, and VOCs such as toluene and benzene compared to their white-

collar counterparts. Higher lead levels found in blue collars from construction, manufacture, 

wholesale trade, retail trade, professional, and technical services may be due to how lead can be 

found in old and commercial paint, car parts, batteries, glass, and consumer products made of 

plastics 263. In addition, this same group of workers may be exposed to cadmium via industrial uses 

of cadmium in making batteries, plating, pigments, and plastics 264. Sources of occupational PAH 

exposures to this group may be due to engaging in tasks that involved combustion emission, such 

as welding, firefight, metal refining, vehicle repairs, etc. 265–267. Higher biomarker levels of PFASs 

may be due to contact with products containing PFASs, which include food packaging, stain-

resistant furniture, non-sick cookware, water repellant clothing, and medical and automotive 

application 268. Similarly, higher VOCs levels may also be due to working with product containing 

VOCs such as building material, person care products, air fresheners, cleaning productions, fuel 

oil, and gasoline 269. Higher VOCs 270,271 and PAHs 272 levels may also be due to smoking habits. 

Overall, higher biomarker levels of heavy metals, PAHs, PFASs, and VOCs in predominantly 
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blue-collar workers may be due to contact with products containing these chemicals and/or higher 

smoking prevalence. 

On the other hand, most white-collar workers have higher levels of metabolites of arsenic 

and mercury along with a biomarker of sunscreen use, BP-3. While arsenic is used in many 

industries in the manufacture of paints, wood preservatives, agriculture chemicals, and in glass 273, 

it is less likely that higher biomarker levels of arsenic metabolites in white collars are due to 

occupational exposures. A similar argument can be made for mercury as industrial uses of mercury 

involve producing thermometers, barometers, batteries, and electrical switches 274, though health 

care workers may be exposed to mercury via medical or dental equipment 275. Higher mercury and 

arsenic biomarker levels among these white-collar workers may indicate higher fish consumption 

276. This could therefore be a surrogate for behaviors associated with higher socioeconomic status 

277 instead of an indicator of occupational exposures, since fish is expensive and is more accessible 

to those with higher socioeconomic status. It is also doubtful that white-collars are exposed to BP-

3 due to their occupation as this chemical is used to manufacture agricultural chemicals, 

pharmaceuticals, plastic packaging, and household cleaning products 278,279. Instead, as BP3 is used 

to prevent UV light from damaging scents and colors in personal care products 280, it more likely 

that higher levels of this chemical may suggest that cosmetics usage has a major role in strategic 

self-presentation, which may be integral in succeeding at the jobs of white-collar workers. 

Interestingly, unlike how the chemical biomarker levels of blue collars may be due to occupational 

exposures, the chemical exposure profiles of white collars may be indicative of behaviors or habits 

associated with their occupation and socioeconomic status. 

The physiological response profiles also differ between white- and blue-collar workers. 

We observed that alkaline phosphatase was significantly higher in blue-collar workers compared 
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to their white-collar counterparts in a representative US population. These findings are supported 

by a study characterizing alkaline phosphatase levels in a representative Korean population where 

most blue-collar workers have serum alkaline phosphatase levels greater than or equal to 264 U/L 

for men and 252 U/L for women compared to unemployed and white-collar workers 281. We 

observed an inflammatory response in blue collars via higher levels of white blood cell counts, 

and the signal was the strongest in mining blue-collars via CRP. This finding could be associated 

with occupational chemical exposures or with stress, as increased psychosocial job stress is 

associated with increased inflammatory markers 282,283. The physiological response profiles of 

blue-collar workers are also characterized by elevated GFR, indicative of hyperfiltration or 

improved kidney function. This contrasts with other studies that finding the lower GFR is 

associated with blue-collar jobs 284,285. Across markers of body fat deposition, these measurements 

were on average, significantly lower in blue collars from accommodation, food services, arts, 

entertainment, recreation, retail trade, construction, agriculture, forestry, fishing, and professional 

and technical services. Obesity prevalence has also been found to be lower in these occupational 

groups 286. These findings suggest that markers of body fat deposition may serve as surrogates of 

physical activity 287,288. We observed that the ratio of insulin to glucose was significantly lower in 

blue collars working in accommodation, food services, arts, entertainment, recreation, and 

construction compared to the reference group of white collars from public administration. While 

the higher ratios indicate insulin resistance in white collars from agriculture, forestry, fishing, and 

construction, the result was not significant. Interestingly, we observed that the workers with 

significantly lower ratio of insulin to glucose also have lower measurements on marker of fat 

deposition. This may suggests that insulin resistance is prevented by the physical activity required 

by the job for these blue-collar works 289. We observed a healthy worker effect in the blue-collar 



 

109 
 

workers for indicators of body fat deposition and kidney function but not for alkaline phosphatase. 

These results emphasize that using a broad set of physiological enable a more holistic 

characterization of human health.  

While we did not directly assess the impact of multiple chemical exposures on 

physiological response, we noticed potential links between the chemical exposures and 

physiological response profiles within the same occupational group. In our study, blue-collar 

workers in mining are exposed to some well characterized highly toxic chemicals including heavy 

metals such as cadmium and lead, the PAHs, and VOCs such as benzene and toluene. Furthermore, 

these workers also have a strong inflammatory response. Even after adjusting for age, sex, and 

race and correcting for multiple comparison, biomarker levels of C-Reactive Protein are 57.1% 

higher and significant compared to reference group of white collars from public administration. In 

fact, several studies have observed that cadmium exposures induce inflammation in mouse 290–293 

even at non-toxic levels 294. Similarly, lead exposures are also associated with inflammation 295–

297. One study assessed the association between CRP and blood lead levels in NHANES and found 

men are at increased risk of lead-induced inflammation than women 298. Interestingly, majority of 

mining blue collars in NHANES are men, thus occupational exposure to heavy metals like lead 

may elicit an inflammatory response in mining blue collars. In addition, PAHs 299–302 and VOCs 

such as toluene 303,304 and benzene 305,306 are also known to elicit an inflammatory response 

individually and in combination 97. Overall, our findings provide additional evidence to suggest 

that occupational co-exposures to lead and cadmium, PAHs, and VOCs may induce an 

inflammatory response in blue collar workers in the mining sector.  

As another example to link chemical exposures to physiological response, blue collars from 

agriculture, forestry, fishing, retail trade, education services, and professional, technical services 
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have the highest levels of alkaline phosphatase and have a chemical exposure profile characterized 

by higher levels of heavy metals such as lead and cadmium, PFASs, VOCs, PAHs, and phthalates. 

Numerous studies show that heavy metals do induce liver damage 307,308, which results in higher 

levels of alkaline phosphatase. PFASs have also been associated with altered liver function 309 and 

liver damage and cancer 310. Several studies have discovered significant associations between 

exhaled VOCs and liver disease 311,312, and thus exhaled VOCs can be used as diagnostic indicators 

of liver disease 313–315 Exposures to PAHs induce precancerous liver lesions and cancer in mice 316 

and chronic exposure to PAHs has been associated with liver damage in humans 317. Phthalates 

also modulate liver function 318,319. These findings emphasize that co-exposures of heavy metals, 

PFASs, VOCs, PAHs, and phthalates may induce liver damage and may explain the elevated levels 

of alkaline phosphatase observed in blue collars working in agriculture, forestry, fishing, retail 

trade, education services, professional services, and technical services. Since excess alcohol 

consumption can causes liver damage, the higher levels of alkaline phosphatase found in blue 

collars may be a signal for alcohol intake. Thus, future studies can adjust for alcohol consumption 

to help disentangle the association between occupational exposures and liver disease.  

The physiological profiles of these workers are also characterized by elevated GFR, 

indicative of hyperfiltration. Hyperfiltration has been linked to high exposures to cadmium 320 and 

lead 321,322. Moreover, exposures to lead or cadmium have been associated with an initial increase 

in GFR and then a decline 320,321,323. This suggests a physiological response to eliminate the 

toxicants and then the subsequent loss of kidney function. Reduced 324 and increased GFRs have 

also been associated with PFASs 325,326. While reduced GFR is concerning as it indicates kidney 

damage, increased GFRs have also been associated with higher risk of cardiovascular morbidity 

and mortality 327,328. Exposures to VOCs have also been associated with kidney dysfunction 329 
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with higher exhaled levels of VOCs observed in critically ill patients with acute kidney injury 

compared to their counterparts with normal renal function 330. But VOCs exposures have not been 

linked to hyperfiltration. PAHs may contribute to kidney dysfunction 331 by disrupting the balance 

between production of harmful free radicals and the ability of the body to counteract their harmful 

effects with antioxidants 332, leading to oxidative stress 333. Cigarette smoking is associated with 

elevated GFRs 334, and as PAHs are present in tobacco products 272, exposures to this chemical 

class may also be linked to hyperfiltration. Increase in phthalates, particularly DEHP metabolites, 

was associated with kidney disease 335. On the other hand, these phthalates are associated with 

elevated GFRs 336. Overall, evidence suggests that exposures to heavy metals, PFASs, VOCs, 

PAHs, and phthalates are associated with both reduced and elevated GFRs and may vary based on 

the dose and duration of exposure. But it is unclear whether chemical-mediated hyperfiltration is 

a precursor of hypofiltration and subsequently a primary factor in kidney dysfunction. Thus, future 

studies can observe how chemical exposures influence the temporal trends of GFR. 

Many studies using NHANES have been limited to studying co-exposures and its impact 

on human health in one chemical family 93–95. Our framework enabled the identification of co-

exposure across a wide range of chemicals not only limited to one chemical family. The primary 

limitation of this study is the non-random sparsity of the chemical biomarker data in the worker 

population. This sparsity prevented the application of hierarchical clustering on individual workers 

as we could not build a complete dataset with participants, who have measurements for all studied 

chemicals. While there are no participants with measurements for all 108 studied chemical 

indicators, there are participants with measurements for a subset of these substances as shown in 

Table 2. For example, there are 811 participants with occupational data and measurements 

available in at least 90 chemicals. Thus, future studies can determine the set of overlapping 
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chemicals among these participants and conduct clustering analysis on the raw chemical biomarker 

dataset. By observing the similarity of the clustering configurations between using the regression 

statistics versus using the raw data, these future analyses will help substantiate the findings of this 

paper. As another way to address this sparsity challenge, we conducted clustering analysis on 

exposure differences among the different sector-collar combinations, i.e. we applied clustering 

analysis on statistics of the biomarker data instead of on the raw data. A dataset of statistics derived 

from the biomarker data is usually complete. By applying hierarchical clustering on a dataset of 

statistics that represents exposure or physiological differences, we identified group of workers with 

similar exposure or physiological response profiles. This framework can be applied in other 

settings to help cluster observations based on similar profiles especially in a non-randomly sparse 

dataset. This can be done without having to form a complete dataset of impute the missing values. 

However, our framework does have disadvantages. First, there is a substantial reduction in 

sample size, which will affect statistical power to detect significant differences. Second, there is a 

high chance that the dataset of statistics is singular, which makes applying machine learning 

techniques almost impossible. Our dataset of percent differences on chemical exposures was 

singular, due to biomarker levels of several VOCs being the same across all sector-collar 

combinations. A solution to this problem of having a singular matrix would involve removing 

these chemicals from the analysis. Finally, the main disadvantage of our framework is that we did 

not model the impact of co-exposures on physiological response. Thus, future studies can use 

statistics of a given physiological indicator as the outcome variable in a regression model with 

statistics of the chemical indicators as the main predictors to identify the most important set of 

chemicals responsible for explaining the variation of the physiological indicator. 
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The present study has several other limitations. First, the sample size for participants with 

occupational data is only 25% of that of the NHANES population. This 75% reduction in sample 

size is due to 50% of the participants agreeing to provide information on their occupation and then 

50% of those participants responding that they are not working at a job or business. The analysis 

was limited by the small sample size, which prevented us from establishing a direct link between 

multiple chemical exposures and physiologic dysfunction. As NHANES includes more 

occupational data with each study year, future analysis will have increased statistical power to 

model the associations between chemical exposures and associated effects across different 

occupational groups. Second, we assume a linear association between age and chemical biomarker 

levels, which may not reflect how the chemical biomarker levels changes across the life-stage. 

Hence, future studies can determine which higher order polynomial would best describe the 

association between age and chemical biomarker levels to best account for the confounding effect 

of age on chemical biomarker levels. Future work can also use Gaussian kernel regressions to 

model the non-linear associations of chemical biomarker levels for age or other continuous 

variable and chemical biomarker levels. A Gaussian kernel regression model involves taking a 

weighted average of the surrounding data points to predict a given data point 337 Third, we did not 

correct for physical activity, which may explain why measurements of body fat deposition in lower 

in blue collar workers compared to their white-collar counterparts. Thus, further studies can 

account for physical activity in their models by using metabolic equivalents. Fourth, the strong 

signal of VOCs and PAHs observed in blue-collar workers may be due to smoking habits, which 

we did not adjusting for smoking in our models. Future analysis can conduct a sensitivity analysis 

to observe how the results changes when smoking is accounted. Fifth, a limitation of using 

chemical biomarker data is that a delay between the time of exposure and time of data collection 
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may prevent the detection of higher occupational exposures. This limitation is especially salient 

for VOCs, which have short half-life ranging from 2 to 128 hours 134,135. Thus, differences observed 

between the occupational groups could be substantially higher if data collection occurred at the 

time of exposure, e.g. at the workplace. Hence, future directions can involve comparing biomarker 

levels of chemicals between workers who had their measurements taken on a workday versus those 

who were measured on an off day. Sixth, long-term stress and social factors such as social 

economic status, education, and health access may impact health as much or more than 

environmental exposures. In addition, these factors can modulate the effects of environmental 

exposures 338. Thus, future work can involve accounting for these confounders as well as studying 

the interaction effects to better understand the contribution of chemical exposures to adverse health 

outcomes. In addition, to identify which environmental factors are most important in explaining a 

health endpoint, future directions can incorporate feature selection techniques such as LASSO 

(least absolute shrinkage and selection operator), adaptive elastic net, random forest and feature 

extraction techniques such as partial least squares and principal component regression. Finally, we 

assessed physiological response by using individual physiological indicators instead of pooling 

them together to better evaluate overall physiological dysfunction. Therefore, future studies can 

use the studied physiological indicators to define an allostatic load score to characterize the overall 

physiologic dysfunction 339–341 associated with multiple chemical exposures across the 

occupational groups. 

4.6 Conclusions 

Evaluating the influence of multiple occupational exposures on the physiological 

functioning is essential to begin understanding how chemical exposures elicit physiological 

response associated with adverse health outcomes. We applied an unbiased approach to screen 
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across 108 chemical indicators and 27 physiological indicators to characterize the chemical 

exposure and physiological response profiles across white- and blue-collars from 20 different 

industrial sectors. We developed a framework using hierarchical clustering on differences of 

chemical biomarker levels and physiological measurements to identify clusters of workers with 

similar chemical exposure and physiological response profiles. This framework enabled us to 

identify similar clustering between chemical exposure and physiological response profiles to 

characterize the indirect impact of multiple chemical exposures on physiological response in the 

workers population. Our framework enabled 1) comprehensive characterization of chemical 

exposures and physiological responses across a wide variety of occupations, 2) evaluation of 

occupational co-exposures patterns, and 3) identification of occupations susceptible to high 

exposure and physiological dysfunction. These findings can also guide efforts to design targeted 

interventions to reduce health disparities in susceptible occupations.  
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4.7 Figures  

 
Figure 4.1. Schematic description on curation of chemical biomarker and physiological 
measurements and of the analytical methods used to characterize occupational variations in 
chemical exposures and physiological responses. Reference group for the analysis on the sector-
collar combinations is White Collars from Public Administration.  
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Figure 4.2. Heatmap of percent differences in chemical biomarker concentrations by sector-
collar combinations, relative to Public Administration - White Collars. Chemical biomarkers in 
white color indicates that the concentrations are the same between the given sector-collar 
combination and the reference group. The color bar represents the collar categorization. Blue 
presents the blue-collar workers, while gray represents the white-collar workers. Results are 
adjusted for age, sex, and race. 
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Figure 4.3. Box plot of distribution of blood cadmium. Far-left statistics are the mean chemical 
biomarker concentration. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for cadmium, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of blood cadmium for a given sector-collar combination. Results are adjusted for age, sex, and 
race.  
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Figure 4.4. Box plot of distribution of total mercury in blood. Far-left statistics are the mean 
chemical biomarker concentration. The middle-left statistics are the percent differences except 
for the “reference” group of “Public Administration – White Collars” and the “NHANES 
population”. The NHANES population includes all participants with measurements for cadmium, 
including the sector-collar combinations. The middle-right statistics are the p-values corrected 
for multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right 
statistics are the sample size of each sector-collar combinations. Purple triangle represents the 
mean concentration of total mercury for a given sector-collar combination. Results are adjusted 
for age, sex, and race. 
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Figure 4.5. Box plot of distribution of urinary 3-fluorene. Far-left statistics are the mean chemical 
biomarker concentration. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for cadmium, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the 
sample size of each sector-collar combinations. Purple triangle represents the mean concentration 
of urinary 3-fluorene for a given sector-collar combination. Results are adjusted for age, sex, and 
race. 
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Figure 4.6. Box plot of distribution of urinary benzophenone-3 (BP-3), a biomarker of sunscreen 
use. Far-left statistics are the mean chemical biomarker concentration. The middle-left statistics 
are the percent differences except for the “reference” group of “Public Administration – White 
Collars” and the “NHANES population”. The NHANES population includes all participants with 
measurements for cadmium, including the sector-collar combinations. The middle-right statistics 
are the p-values corrected for multiple comparison with the Benjamini and Hochberg FDR 
procedure of 5%. Far-right statistics are the sample size of each sector-collar combinations. Purple 
triangle represents the mean concentration of urinary BP-3 for a given sector-collar combination. 
Results are adjusted for age, sex, and race. 
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Figure 4.7. Box plot of distribution of perfluorododecanoic acid (PFDA). Far-left statistics are the 
mean chemical biomarker concentration. The middle-left statistics are the percent differences 
except for the “reference” group of “Public Administration – White Collars” and the “NHANES 
population”. The NHANES population includes all participants with measurements for cadmium, 
including the sector-collar combinations. The middle-right statistics are the p-values corrected for 
multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics 
are the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of PFDA for a given sector-collar combination. Results are adjusted for age, sex, 
and race. 
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Figure 4.8. Box plot of distribution of urinary mono-(2-ethyl)-hexyl phthalate, a metabolite of the 
plasticizer Di-2-ethylhexyl phthalate, DEHP. Far-left statistics are the mean chemical biomarker 
concentration. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for cadmium, including the sector-collar 
combinations. The middle-right statistics are the p-values corrected for multiple comparison with 
the Benjamini and Hochberg FDR procedure of 5%. Far-right statistics are the sample size of each 
sector-collar combinations. Purple triangle represents the mean concentration of urinary mono-(2-
ethyl)-hexyl phthalate for a given sector-collar combination. Results are adjusted for age, sex, and 
race. 
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Figure 4.9. Heatmap of percent differences in physiological indicator measurements by sector-
collar combinations, relative to Public Administration - White Collars. Physiological indicators in 
white color indicate that the measurements are the same between the given sector-collar 
combination and the reference group. Results are adjusted for age, sex, and race. 

 

  



 

125 
 

 
Figure 4.10. Box plot of distribution of alkaline phosphatase. Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The 
NHANES population includes all participants with measurements for alkaline phosphatase, 
including the sector-collar combinations. The middle statistics are the p-values corrected for 
multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right 
statistics are the sample size of each sector-collar combinations. The far-right statistics are the 
percentage of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 
alkaline phosphatase for a given sector-collar combination. Results are adjusted for age, sex, and 
race. 
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Figure 4.11. Box plot of distribution of C-reactive proteins (CRP). Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for alkaline phosphatase, including the 
sector-collar combinations. The middle statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right statistics 
are the sample size of each sector-collar combinations. The far-right statistics are the percentage 
of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 
CRP for a given sector-collar combination. Results are adjusted for age, sex, and race. 
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Figure 4.12. Box plot of distribution of Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR). Far-left statistics are the mean concentrations. The middle-left statistics are the 
percent differences except for the “reference” group of “Public Administration – White Collars” 
and the “NHANES population”. The NHANES population includes all participants with 
measurements for alkaline phosphatase, including the sector-collar combinations. The middle 
statistics are the p-values corrected for multiple comparison with the Benjamini and Hochberg 
FDR procedure of 5%. The middle-right statistics are the sample size of each sector-collar 
combinations. The far-right statistics are the percentage of participants outside of the range of 
normality, i.e. percentage of participants whose measurements are beyond the pink boxes. Purple 
triangle represents the mean concentration of HOMA-IR for a given sector-collar combination. 
Results are adjusted for age, sex, and race. 

  



 

128 
 

 
Figure 4.13. Box plot of distribution of glomerular filtration rate (GFR). Far-left statistics are the 
mean concentrations. The middle-left statistics are the percent differences except for the 
“reference” group of “Public Administration – White Collars” and the “NHANES population”. 
The NHANES population includes all participants with measurements for alkaline phosphatase, 
including the sector-collar combinations. The middle statistics are the p-values corrected for 
multiple comparison with the Benjamini and Hochberg FDR procedure of 5%. The middle-right 
statistics are the sample size of each sector-collar combinations. The far-right statistics are the 
percentage of participants outside of the range of normality, i.e. percentage of participants whose 
measurements are beyond the pink boxes. Purple triangle represents the mean concentration of 
GFR for a given sector-collar combination. Results are adjusted for age, sex, and race. 
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Figure 4.14. Box plot of distribution of subscapular skinfold. Far-left statistics are the mean 
concentrations. The middle-left statistics are the percent differences except for the “reference” 
group of “Public Administration – White Collars” and the “NHANES population”. The NHANES 
population includes all participants with measurements for alkaline phosphatase, including the 
sector-collar combinations. The middle-right statistics are the p-values corrected for multiple 
comparison with the Benjamini and Hochberg FDR procedure of 5%. The far-right statistics are 
the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of subscapular skinfold for a given sector-collar combination. Results are adjusted 
for age, sex, and race. 

  



 

130 
 

 
Figure 4.15. Dendrogram of sector-collar combinations based on exposure profiles for 108 
chemical biomarkers. Pearson’s correlation-based distance is the dissimilarity metric. Average 
linkage method was used due to having the highest cophenetic correlation coefficient, i.e. using 
this linkage method generated the dendrogram that best preserves the dissimilarity between the 
sector-collar combinations.  
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Figure 4.16. Dendrogram of sector-collar combinations based on physiological response profiles 
for 27 physiological indicators. Pearson’s correlation-based distance is the dissimilarity metric. 
Average linkage method was used due to having the highest cophenetic coefficient, i.e. using this 
linkage method generated the dendrogram that best preserves the dissimilarity between the sector-
collar combinations.  
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Figure 4.17. Dendrogram of sector-collar combinations based on exposure profiles for 108 
chemical indicators. Red text represents the sample size of the sector-collar combination. Red 
boxes indicate the clustered occupational groups defined based on of sample size ≥ 400 or AU p-
value ≥ 0.8. Pearson’s correlation-based distance is the dissimilarity metric. Average linkage 
method was used due to having the highest cophenetic correlation coefficient, i.e. using this 
linkage method generated the dendrogram that best preserves the dissimilarity between the sector-
collar combinations.  
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Figure 4.18. Heatmap of percent differences in physiological indicator measurements by clustered 
groups, relative to White Collars from Manufacture: Durable Goods; Arts, Entertainment, 
Recreation; Information; Professional, Technical Services; Education Services; Finance, 
Insurance, Real Estate, Rental; Health Care, Social Assistance; and Public Administration. 
Physiological indicators in white color indicate that the measurements are the same between the 
given sector-collar combination and the reference group. The color bar represents the collar 
gradient of the collar categorization. Dark blue indicates that the occupational cluster is comprised 
of all blue-collar workers. Lighter blue implies that the occupational cluster is comprised of a 
mixture of blue and white-collar workers. Gray implies that the occupational cluster includes only 
white-collar workers. Results are adjusted for age, sex, and race. 
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4.8 Tables  

 

Table 4.1. Population statistics of 26,186 NHANES participants with occupational data. 

 

  

CATEGORICAL 
Cycle                 N (%) Sex                 N (%) 
      1999-2000 
(Cycle 1)                 3020 (11.5)       Male                 14030 (53.6) 

      2001-2002 
(Cycle 2)                 3469 (13.2)       Female                 12156 (46.4) 

      2003-2004 
(Cycle 3)                 3036 (11.6) Race/Ethnicity  

      2005-2006 
(Cycle 4)                 3340 (12.8)       Mexican Americans                 5347 (20.4) 

      2007-2008 
(Cycle 5)                 3435 (13.1)       Other Hispanics                 2001 (7.6) 

      2009-2010 
(Cycle 6)                 3472 (13.3)       Non-Hispanic Whites                 11370 (43.4) 

      2011-2012 
(Cycle 7)                 3024 (11.5)       Non-Hispanic Blacks                 5437 (20.8) 

      2013-2014 
(Cycle 8)                 3390 (12.9)       Other Races                  2031 (7.8) 

      
CONTINUOUS 

 N (%) Minimum 5th 10th Median Mean 
(SD) 90th 99th Maximum 

Age (years) 26186 
(100) 16 18 19 39 39.6 

(15.3) 61 75 85 
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Chapter 5 Characterization of Linear and Non-linear Associations between Physiological 
Indicators and All-Cause Mortality 

 

5.1 Abstract 

Importance: Clinicians have used thresholds to prioritize high-risk patients usually 

without considering the linear or non-linear associations between a physiological indicator and a 

health endpoint. 

Objective: To determine whether the clinical thresholds align with values indicative of 

increased mortality risk by characterizing the linear and non-linear relationships with all-cause 

mortality for 27 physiological indicators. 

Design: We used the cross-sectional, biomarker data from the 1999-2014 National Health 

and Nutrition Examination Survey linked with National Death Index mortality data collected 

through December 31, 2015. 

Setting: Data were analyzed from January 2019 to April 2020. 

Participants: A nationally representative sample of 45,032 adults aged 18 years and older.  

Exposures: 9 cardiovascular, 7 body composition, 5 metabolic, 4 nephrological, and 2 

immune biomarkers  

Main Outcomes and Measures: All-cause mortality. We used Cox proportional hazards 

regression models adjusted for age, sex, and race to associate physiological indicators with all-

cause mortality. We used 10-fold cross validation to help select the most appropriate model using 

the Concordance Index, Nagelkerke R2, and Akaike Information Criterion. We compare the 
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clinical thresholds to association-based thresholds, defined as values where the hazard ratio is 10% 

higher than the minimum hazard ratio.  

Results: 24 out of 27 (88.9%) indicators show non-linear associations, while height, 

triglycerides, and 60-second pulse show linear associations. 13 out of 23 indicators (57%) showed 

some agreement between the association-based and clinical thresholds. Creatinine shows 

concordance for both bounds of the male thresholds. 12 indicators were concordant for one 

threshold with confirmation of the threshold for C-Reactive Protein (CRP). 14 indicators show no 

concordance. For 10 indicators which includes the cholesterol-related indicators, glucose control 

indicators, markers of body fat deposition, and Glomerular Filtration Rate, the parabolic 

associations suggest the need for two thresholds.  

Conclusions and Relevance: The systematic characterization of the relationships with all-

mortality confirmed that most of the studied physiological indicators show non-linear associations. 

It also confirms the relevance of the clinical threshold for half of the studied indicators; however, 

there is a need to reconsider the thresholds for indicators that show parabolic associations but only 

have one bound.  

5.2 Introduction 

Clinicians commonly use reference ranges342–344 or clinical thresholds to determine 

whether a patient’s test results are normal. A reference range is defined as a set of values between 

the 2.5th and 97.5th percentiles for a physiological indicator in a healthy population345, which is the 

case for albumin, blood urea nitrogen (BUN), creatinine, alkaline phosphatase, and C-reactive 

proteins (CRP). Using percentiles without consideration of a health outcome can be presumptuous 

about disease pathophysiology346,347. Some clinical thresholds, however, were established via 

association with an outcome348–350. For example, the classification of body mass index (BMI) was 
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calibrated to all-cause mortality in 1995348. While the associations between BMI and mortality has 

changed, the classifications still remained unchanged. For an indicator of kidney function, the 

lower threshold for Glomerular Filtration Rate (GFR) was established based on associations with 

all-cause mortality and cardiovascular disease350. But the restricted distribution of GFR in the 

studied population prevented an upper bound from being defined. Thus, there is a need to evaluate 

whether the current reference ranges and clinical thresholds are relevant in distinguishing high-

risk from low-risk patients.  

Improved risk stratification requires understanding whether associations between 

physiological indicators and health outcomes are described by linearity or non-linearity351–353. 

Most association studies consider linearity107–109 or non-linearity111,112 separately without 

quantitatively assessing which of the models better describes the relationship between a given 

physiological indicator and a health outcome. Many studies do compare the prediction 

performance of various models such as linear, quadratic, cubic, and logarithmic116,117 but have not 

validated the results on new data. This led to finding that the more flexible model is deemed better 

at characterizing the associations, which may reflect the actual relationship or show an overfitted 

model118. Since these gaps may lead to significant limitations in risk surveillance and management, 

there is a need to develop a statistical framework to compare models and identify the most 

appropriate linear or non-linear model while evaluating for overfitting.  

To address these limitations, the goal of this study is to characterize the relationships 

between all-cause mortality and 27 physiological indicators in the US population. We focus on all-

cause mortality as it is the ultimate health outcome. For each physiological indicator, we 

specifically 1) compare the prediction performance of linear and different nonlinear models by 

applying a machine learning approach, 2) assess the robustness of the models by observing changes 



 

138 
 

in prediction performance when extreme measurements are excluded, 3) describe the associations 

between the physiological indicator and mortality as characterized by the most appropriate 

model(s), and 4) determine the relevance of the current clinical thresholds by evaluating whether 

these values are indicative of increased mortality risk. 

5.3 Methods 

5.3.1 Study Population  

The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional 

study conducted by the Centers for Disease Control and Prevention (CDC) to characterize the 

health of a non-institutionalized, civilian US population19. For this analysis, we used the 

continuous 1999-2014 NHANES data and started with sample of 82,091 participants. We also 

used data linked with the National Death Index to ascertain mortality information collected through 

December 31, 2015354. We excluded participants for not having data on mortality status (N = 

37,046) and those who were not followed up (N = 13), leading to a sample of 45,032 participants. 

Figure A4.1 describes these exclusion criteria. 

5.3.2 Measurements of Physiological Indicators 

Figure A4.1 also describes the curation process on which physiological indicators to 

include in our analysis. We identified 60 biomarkers and anthropomorphic measures that 

characterize physiologic function. To exclude physiological indicators with low overlap with the 

mortality data, we excluded those with measurements in fewer than six NHANES cycles (n = 10) 

and with a sample size of less than 10,000 participants (n = 21). As we preferred continuous 

variables for studying linear and non-linear associations, we also excluded physiological indicators 

that are categorical (n = 2). The final dataset for analysis consisted of 27 physiological indicators. 
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Tables A4.1-A4.3 compare the observed characteristics between participants with complete and 

incomplete data.  

5.3.3 Database of Clinical Thresholds 

To characterize the relevance of the current clinical thresholds, we compiled a database of 

thresholds for 23 physiological indicators from literature. Thresholds were not available for height, 

subscapular skinfold, triceps skinfold, and weight. Since the same indicator may have several 

thresholds, we used the range of the thresholds. We used sex-specific thresholds when available.  

5.3.4 Statistical Analyses 

We performed all analyses using R version 3.6.0. To produce estimates that are 

representative of the non-institutionalized, civilian US population, we accounted for NHANES 

sampling designs by applying the survey weights to our statistical models18.  

We used Cox proportional-hazards regression models to characterize the associations 

between all-cause mortality and each physiological indicator355. For each physiological indicator, 

we assessed linear associations with all-cause mortality and tested two non-linear associations by 

discretizing each indicator into 9 quantiles (“novemtiles”) and by using a weighted sum of cubic 

polynomials (“spline”)284,356 with the latter considered the more flexible, non-linear model. The 

reference group for the novemtiles models is the novemtile with the minimum mean hazard ratio. 

We conducted 10-fold cross validation357 while adjusting for linear age (continuous), sex 

(categorical), and race/ethnicity (categorical) to compare the predictive capability of the linear 

versus non-linear models. We adjusted for linear age as it showed better prediction performances 

compared to non-linear age (Figure A4.2). We observed whether the association between 

mortality and BMI remains robust after adjusting for smoking with blood cotinine. We selected 

the model that best describes the association between mortality and each physiological indicator 
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by using the Akaike Information Criterion (AIC)358, Concordance Index359, and Nagelkerke R2360. 

We provide our justification for using these fits measures in Table A4.4. We defined confidence 

intervals around each measure by bootstrapping for 1000 replicates361. To account for multiple 

comparisons across the models, we used a False Detection Rate (FDR) method of 5% on the p-

values of the regression coefficients pertaining to the physiological indicators103.  

To assess the influence of extreme measurements on the prediction performance, we 

conducted sensitivity analyses on the distributions of each physiological indicator. We applied a 

series of Cox Proportional Hazard models on sample subsets restricted to the study participants in 

the 1st to 99th, 5th to 95th, and 10th to 90th percentiles of each indicator. 

To define clinical thresholds based on the associations with mortality, we used the spline 

model to identify values of the physiological indicator that show an increased mortality risk of 

10% from the minimum risk. To define sex-specific clinical thresholds, we applied the same 

procedure to each sex.  

5.3. Results 

Table 5.1 presents population characteristics for the 45,032 participants. Figure A4.3 

displays the distributions of each physiological indicator.  

Figure 5.1 displays the Concordance Index and Nagelkerke R2s across all the models and 

physiological indicators for two populations:  one with all participants and another with 

participants who have measurements within the 1st and 99th percentiles. Figure A4.4-A4.5 display 

the AICs and Concordance Index for the same populations, respectively. Across the fit measures, 

the non-linear models show better prediction performances compared to the linear models. The 

prediction performance of the novemtiles models were consistently high across all physiological 

indicators regardless of the extent of measurements exclusion and were also stable as reflected by 
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the narrower confidence intervals. In contrast, linearity shows low R2s for inflammatory (CRP, 

alkaline phosphatase, white blood cell counts), metabolic (HOMA-IR), and nephrological (BUN, 

Creatinine) biomarkers when all participants were included. The spline model R2s are also low for 

alkaline phosphatase and cardiovascular biomarkers involving LDL cholesterol. For these 

physiological indicators, exclusion of measurements outside the 1st and 99th percentiles resulted 

in improved prediction performance, particularly for the linear and spline models. The overfitting 

is due to the linear and spline models attempting to fit to the outliers. Figure A4.6 shows the 

correlations between decreased sample size and improved prediction performance. 

Figure A4.7-A4.9 compare the prediction performance on including all participants with 

those from the sensitivity analysis on restricting the distribution of the physiological indicators to 

the 5th to 95th and the 10th to 90th percentiles. Figure A4.10 displays the statistical significance of 

all models with respect to the prediction performances. While prediction performance and 

statistical significance improved when the distribution was restricted to the 1st and 99th percentiles, 

further exclusion did not lead to further improvement for the linear nor spline models. In contrast, 

the novemtiles models show consistent prediction performance and significance regardless of the 

restrictions. This implies that studying non-linearity with quantile-based models will result in 

stable predictions, as outliers do not heavily influence these models given enough participants in 

each quantile. In our case, we ensured at least 1100 participants in each novemtile.  

Figure 5.2 displays the relative risk for death through the hazard ratios across the 

distribution of BMI, Systolic Average Blood Pressure (SBP), Ratio of Total to HDL Cholesterol, 

CRP, HOMA-IR, and GFR for the different models. We select these examples to highlight 

expected and unexpected findings, challenges in model interpretation, and relevance of the clinical 

thresholds. To aid visualization, we show the associations when measurements outside the 1st and 
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99th percentiles were excluded. Figure A4.11 displays the associations for these physiological 

indicators in the entire population, while Figure A4.12-A4.16 show the relative mortality risk for 

the remaining physiological indicators. Figure A4.17-A4.22 present the sex-specific associations. 

These figures are available online [name of shiny app]. For BMI, while the non-linear models 

show a parabolic association with death in Figure 5.2A, the linear model suggests that mortality 

risk is the same across the entire distribution. The association-based thresholds for BMI are shifted 

higher compared to the current clinical thresholds. These findings were robust even after adjusting 

for smoking (Figure A4.23). Low and high BMI were strongly associated with all-cause mortality 

in males (Figure A4.18A) than in females (Figure A4.18B). For average SBP, the linear model 

identified increased risk with elevated blood pressure (Figure 5.2B). However, the non-linear 

models suggest a parabolic association between mortality and SBP. In Figure 5.2C, the non-linear 

models imply that lower and higher ratios of Total to HDL Cholesterol are associated with higher 

mortality risk. In contrast, the linear model shows a positive association between the ratios and 

mortality. Increased mortality risk aligns with the threshold for males (Figure A4.17I) but is 

higher than the threshold for females (Figure A4.17J). In Figure 5.2D, discretization of CRP 

levels into novemtiles shows that a sigmoidal function best characterizes this association compared 

to the linear model. Mortality risk becomes apparent for CRP at the current clinical threshold of 

0.1 mg/dL. In Figure 5.2E, all models agree that elevated HOMA-IR is associated with increased 

mortality risk but disagree with the interpretation of the mortality risks at lower HOMA-IR with 

the spline, novemtiles, and linear models suggesting increased risk, no effect, and lower risk, 

respectively. In Figure 5.2F for GFR, the linear model suggests that participants below the clinical 

threshold of 90 mL/min/1.73m2 362,363 are at higher risk to death. But the non-linear models suggest 

that participants with GFR below 65 or above 90 mL/min/1.73m2 are at risk.  
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Table 5.2 compares the current clinical thresholds with the association-based thresholds. 

Creatinine shows concordance for both bounds of the male thresholds. Twelve indicators were 

concordant for one threshold with Relative Fat Mass Index, Creatinine, HDL-Cholesterol, and 

Ratio of Total to HDL Cholesterol agreeing with one of the sex-specific thresholds. Fourteen 

indicators show no concordance. 

5.4. Discussions 

We present a data-driven approach to identify the models that most appropriately describe 

the association between physiological indicators and all-cause mortality in the US population. We 

applied a machine-learning based approach to test the prediction capability and robustness of linear 

and non-linear models while penalizing models that are more prone to overfitting. We observed 

that with exception of height, triglycerides, and 60-second pulse, the associations between the 

other indicators and mortality are non-linear. We used the “winning” model(s) to determine 

expected and unexpected directions associated with higher mortality risk for each physiological 

indicator. Results from the spline models can also be informative of whether the current clinical 

thresholds align with values identified at which mortality risk increases over baseline mortality 

risk.  

There are advantages and disadvantages of using the spline models as an alternative 

approach to model the non-linear association with the novemtiles model. The spline models 

provide relative mortality risk for each measurement along the distribution of a given physiological 

indicator, while the novemtiles models provide an average risk for measurements within the same 

novemtile. Thus, using the spline model enable us to observe a gradient of mortality risk that is 

not possible in the novemtiles models. Due this attribute, spline models have been commonly used 

to define the clinical thresholds for physiological indicators such as GFR350 and BMI348. A 
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disadvantage of the spline model was the overfitting to outliers, which resulted in lower and 

unstable prediction performance. The interpretations were also unstable as the confidence intervals 

for mortality risk was wide for participants with extreme measurements. However, an unexpected 

advantage of the spline model overfitting is the ability to find individuals with extraordinary risk 

at the tails of a biomarker distribution. This highlights the need for focused study of individuals 

with these extreme biomarker levels to build better predictive models. As another disadvantage, 

when all measurements were included, fitting a spline model created difficulties in interpretation. 

The relative risks for some extreme measurements were substantially higher, therefore making the 

relative risks associated with other measurements appear negligible. However, when 

measurements outside the 1st and 99th percentiles of a given physiological indicator were excluded, 

fitting a spline model on measurements improved the interpretation along with the prediction 

performance and its stability, making it at times on par with that of the novemtiles models. But 

excluding participants, especially those with extreme measurements, is not conducive to helping 

those who would be at most need for targeted interventions. Overall, while the spline models were 

prone to overfitting due to outliers, these models provide insights on the gradient of the mortality 

risk as well as showcase the need to sample for participants with extreme measurements in order 

to enhance risk stratification.  

We found non-linear associations for cholesterol-related biomarkers. The non-linear 

models support the growing literature on the associations between higher HDL levels and 

increased mortality risk364,365, possibly contradicting the impression of being the “good” 

cholesterol. The current notion of LDL being the “bad” cholesterol implies that higher LDL levels 

are associated with increased risk366. Hence, guidelines on cholesterol management recommend 

lipid-lowering therapy for patients who show high cardiovascular risk and have LDL levels of 70 



 

145 
 

mg/dL or higher367. Following the guidelines might lead to more patients being treated to 

abnormally low levels of LDL. Our non-linear results show a stronger association between 

mortality and lower LDL levels compared to higher levels, which are consistent with other 

studies368–372. It is unclear whether these associations are due to preexisting disease leading to low 

cholesterol levels370,372, adverse side effects from lipid-lowering medications369,371, or low LDL 

levels being a causal factor of mortality370,373. Thus, we advocate using longitudinal data to 

understand the risk associated with changing versus stable cholesterol levels to gain insights on 

the effects at low cholesterol levels. 

Obesity in the US is a major health problem as 71% of Americans are overweight or 

obese374. Eating disorders and being underweight are also important health problems, since 10-

15% of Americans are affected375,376. Participants with lower BMI are associated with an increased 

mortality risk compared to those with higher BMI, which may be attributed to efficacy of public 

health interventions or improvements in healthcare for obesity-related conditions377. In addition, 

the associations with mortality have shifted with the minimum risk found within 24-30 kg/m2 

instead of at 24 kg/m2 348. Our results are consistent with other studies378–380, suggesting additional 

investigation on other drivers leading to decreased risk associated with higher BMI. The 

associations with all-cause mortality in lower and higher BMI were attenuated in women than in 

men381, which may suggest residual confounding due to sex differences382 and/or the survival 

advantage of adipose distribution in females383. These findings emphasize the importance to 

understand the influence of caloric intake and adipose tissue mass on mortality risk. 

Our results support low GFR (hypofiltration384) and surprisingly elevated GFR 

(hyperfiltration385) as potentially reflecting renal injury. Interestingly, mortality risk for 

participants with hyperfiltration is twice as high as those with hypofiltration in the novemtiles 
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model. This result is especially pertinent to Native Americans386 and Non-Hispanic Black 

Americans387, who on average have elevated GFR, prompting the need to establish an upper 

threshold for GFR. Overall, these findings prompt the need to also study the associations of these 

biomarkers with other health endpoints to help reevaluate these pathophysiological mechanisms 

for better informed medical decision making.  

Precision prevention and precision medicine involve leveraging biologic, demographic, 

and epidemiologic data to develop personalized risk prediction models388,389. These models can be 

used to define a risk score to quantify a patient’s likelihood to a disease event. Some clinical risk 

scores are based on assuming a linear relationship between a given biomarker and a health 

outcome390–392. We observed, however, that when including all participants, linearity has the worst 

prediction performance when describing the associations between inflammatory, metabolic, and 

nephrological biomarkers and all-cause mortality. Other risk scores dichotomized the 

physiological indicators based on a cutoff393–396, such as a clinical threshold or a percentile. For 

physiological indicators that have parabolic associations with risk, using only one threshold to 

dichotomize the indicator will result in misclassifying the patients. This scoring methodology also 

assumes that risk is the same regardless of any deviation from the cutoff. However, our findings 

prompt the need to reexamine this assumption and suggest that estimating risk in this manner does 

not adequately represents patient’s risk, especially when the measurements are extreme. 

While some risk scores account for non-linear associations, some only penalize if 

measurements are in one unfavorable direction instead of in either direction397–399, which is 

particularly problematic for indicators showing a parabolic association with an outcome. For 

example, a score estimating cardiovascular risk penalizes for high Total Cholesterol and high 

SBP397 but not for low SBP. This suggests the need to better incorporate the non-linear associations 
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in the penalization. Our results may not be generalizable to the hospitalized population. Thus, 

future studies can use our framework to incorporate these associations in defining a more 

representative risk score to help clinicians provide tailored lifestyle and medical recommendations 

to high-risk patients.  

This study has several limitations. First, the cross-sectional nature of NHANES does not 

consider changes in physiological measurements over the follow-up period. Thus, more temporal 

measurements may better dissect the unexpected associations with mortality. Second, we did not 

evaluate how other demographic or lifestyle factors may influence the relationship between a 

physiological indicator and mortality. Future analyses can build upon our baseline model to 

quantify the type of influence e.g. mediating, moderating, or confounding that such factors have 

on these associations, but the effect of bias becomes increasing difficult to untangle with more 

complex models. Third, we observed that physiological indicators with smaller sample size 

showed better prediction performance, which was especially true for the AIC as it showed a strong 

positive correlation with sample size. Thus, we caution against using our results to infer the relative 

importance of the indicators on mortality. Hence, future studies can apply feature selection 

techniques on a complete dataset comprised of participants with measurements available for all 27 

physiological indicators to infer relative importance. Fourth, the spline model may not be the most 

optimized model, since we manually defined the interior knots to be at the 25th, 50th, and 75th 

percentile of the distribution of a given physiological indicator. Hence, future studies can compare 

the cross-validated prediction performance of spline models defined with different number and 

locations of interior knots to identify the optimum spline model. In addition, future work can use 

Gaussian kernel regression models, which involves taking a weighted average of the surrounding 

data points to predict a given data point 337. Such models may be a more automated alternative to 
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the spline models as the Gaussian kernel regression models do not require knots to be defined. 

Fifth, the discretization for the novemtiles model may not have led to the optimized quantile model, 

thus future directions can involve identifying the optimal number of discretization. Finally, we 

may not confidently characterize the morality risk for participants with extreme values due to lower 

sample size. Thus, there is a need to sample more participants with extreme measurements.  

5.5. Conclusions 

Accurate identification of high-risk patients requires systematic methodologies to 

characterize the linear and non-linear associations between a physiological indicator and any 

health outcome. In this study, we developed a machine-learning based framework to establish the 

appropriate model to best characterize the relationship with all-cause mortality for a wide variety 

of physiological indicators. Our framework led to 1) determining that non-linearity is better at 

charactering the relationships with death for most of the studied indicators, 2) identifying 

unexpected directionality in the relationships between GFR and cholesterol-related biomarkers and 

increased risk of death, and 3) observing the validity of the clinical thresholds for a few biomarkers 

and also the need for reevaluation for others. Our findings can guide future efforts in risk 

prioritization, so that preventative strategies can be personalized to promote better informed 

decision making to reduce the incidence of any disease event.   
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5.6 Figures 

 
Figure 5.1. Alphabet soup plot displaying the AIC and Nagelkerke R2 for the associations with 
all-cause mortality for all physiological indicators, grouped by body system. The prediction 
performances are displayed for two populations: one with all participants and another with 
participants who have measurements within 1st and 99th percentiles for a given physiological 
indicator. Sample size for each physiological indicator is provided to indicate the number of 
participants who have data for mortality, age, sex, race, and the given indicator. Results were 
adjusted for age, sex, and race/ethnicity. 
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Figure 5.2. Stairway plots of hazard ratios relative to physiological indicators across all models to 
describe the relative mortality risk for A) Body Mass Index, B) Average Systolic Blood Pressure, 
C) Ratio of Total to HDL Cholesterol, D) C-Reactive Proteins, E) Homeostatic Model Assessment 
of Insulin Resistance, and F) Glomerular Filtration Rate. For visualization aid, participants with 
measurements between the 1st and 99th percentiles of a physiological indicator are included. 
Relative risks for mortality from the novemtiles model are represented by the boxes with the width 
representing the range of a novemtile and the height representing the 95% Confidence Interval of 
the hazard ratio. The mean hazard ratio for each novemtile is presented by a digit. The hazard 
compares participants in a novemtile to those in the reference group at the novemtile shown 
without a box. The purple dot represents the reference point and the measurement of a 
physiological indicator shown to have the lowest hazard ratio for the linear and spline models. The 
red and blue lines represent the relative mortality risk with respect to reference point for the linear 
and spline models, respectively. The black dot represents the median of a physiological indicator. 
The dashed navy line represents when the hazard ratio is 10% higher than the minimum hazard 
ratio, i.e. when the hazard ratio is 1.1. The navy diamonds indicate the concentration at which the 
hazard ratio shows a 10% increase from the minimum hazard ratio. The pink lines and rectangles 
represent the values of the clinical thresholds with the width of the rectangles representing the 
ranges of the threshold. The set of tick marks along the base of the plot represent the distribution 
of a physiological indicator with increased opacity implying increased number of participants. 
Results were adjusted for age, sex, and race/ethnicity. 
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5.7 Tables 

Table 5.1. Characteristics of 45,032 participants and distributions of the 27 physiological indicators in the NHANES population. 

 

Categorical Variables 

Mortality Status  N (%) Sex N (%) Race N (%) 

Deceased  5588 (12.4) Males 21737 (48.3) Mexican 8562 (19.0) 

Alive  39444 (87.6) Females 23295 (51.7) Other Hispanics 3286 (7.3) 

     Non-Hispanic Whites 20312 (45.1) 

     Non-Hispanic Blacks 9665 (21.5) 

     Other Race/Multi-Racial 3207 (7.2) 
Continuous Variables 

 
N Min 1

st
 5

th
 10

th
 Median Mean 90

th
 95

th
 99

th
 Max 

Time of follow up (months) 45032 1 12 19 27 92 97.30 177 189 199 201 

Age (years) 45032 18 18 19 21 46 47.09 75 80 85 85 

Body Composition            

Body Mass Index (kg/m**2)  44047 12.04 17.72 19.81 21.2 27.43 28.52 37.1 40.937 49.92 130.21 

Standing Height (cm)  44288 123.3 145.7 151.3 154.3 166.9 167.32 180.8 184.4 190.3 204.5 

Subscapular Skinfold (mm)  26374 2.4 6.5 8.4 9.9 19.4 20.08 31.3 34.5 38.5 44 

Triceps Skinfold (mm)  29824 2.4 4.9 7 8.5 17.8 18.92 31.2 34.2 38.4 45 

Waist Circumference (cm)  42558 55.5 67.5 73.4 77.4 96.2 97.34 118.2 126 142.2 179 

Weight (kg) 44233 25.6 45.1 52.2 56.7 77.1 80.04 106.8 118 145.4 371 

Relative Fat Mass Index (-)  42425 2.82 15.26 20.17 23.49 34.40 34.91 46.63 48.67 51.89 58.41 

Cardiovascular System            

60 sec. pulse (30 sec. pulse * 2):  43147 32 48 54 58 72 72.84 90 96 106 224 
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Diastolic: Average blood 

pressure (mm Hg)  
42647 3.33 39.33 50 54.67 70 69.88 84.67 89.33 100 132 

Systolic: Average blood 

pressure (mm Hg)  
42881 64.67 91.33 98.67 102.67 120 123.74 149.33 161.33 186 270 

Direct HDL-Cholesterol 

(mg/dL)  
42145 7 26 32 35 50 52.77 74 82 101 188 

LDL-cholesterol (mg/dL)  19696 9 45 62 72 112 114.81 161 177 213 629 

Ratio of LDL to HDL 

Cholesterol (-)  
19696 0.15 0.70 1.01 1.21 2.15 2.31 3.6 4.08 5.15 33.11 

Ratio of Total to HDL 

Cholesterol (-)  
42144 1.31 1.89 2.26 2.49 3.72 3.99 5.82 6.60 8.40 37.05 

Total cholesterol (mg/dL)  42147 59 112 133 144 192 195.39 250 270 313 813 

Triglycerides (mg/dL)  42018 9 34 46 56 116 148.28 269 347 589 6057 

Immune System            

C-reactive protein (mg/dL)  31478 0.01 0.01 0.02 0.04 0.21 0.45 1.06 1.63 3.77 29.6 

White blood cell count (1000 

cells/uL) 
42703 1.5 3.5 4.31 4.8 6.9 7.27 10 11.2 13.798 99.99 

Metabolic System            

Alkaline phosphatase (U/L)  36827 7 32 41 46 68 71.86 101 115 153 1378 

Glucose, plasma (mg/dL)  20757 36 72.556 81 84.7 98 105.92 128 159 281 686.2 

Glycohemoglobin:(%)  42657 2 4.5 4.8 4.9 5.4 5.64 6.4 7.4 10.7 18.8 

Homeostatic Model Assessment 

of Insulin Resistance (-)  
17659 0.05 0.40 0.74 0.98 2.43 3.81 7.24 10.31 24.72 204.47 

Ratio of Insulin to Glucose  17659 0.00 0.02 0.03 0.04 0.10 0.13 0.24 0.31 0.56 5.06 

Nephrology             

Albumin (g/dL)  42041 1.2 3.1 3.6 3.8 4.3 4.25 4.7 4.8 5 5.7 

Blood urea nitrogen (mg/dL)  42038 1 4 6 7 12 13.19 20 23 35 122 
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Creatinine (mg/dL)  36831 0.16 0.4 0.5 0.6 0.82 0.89 1.17 1.3 1.957 17.8 

Estimated Glomerular Filtration 

Rate (mL/min/1.73 m
2
)  

36831 1.85 30.46 51.91 62.70 98.55 97.17 128.48 136.81 151.50 207.58 
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Table 5.2. Comparison of current clinical thresholds or reference ranges with association-based thresholds of the 27 physiological 
indicators. 

 

  Clinical Association-based
a
 Concordance

b
 

Physiological Indicators population
c
 

lower 

threshold 

upper 

threshold 

lower 

threshold 

upper 

threshold 

lower 

threshold 

upper 

threshold 

Body Composition        

Body Mass Index (kg/m**2) all 18.5-19 24.9-25 23.48 32.97 No No 

Standing Height (cm) all 
  

168.6 
 

  

Subscapular Skinfold (mm) all 
  

29.9 37.1   

Triceps Skinfold (mm) all 
  

22.6 
 

  

Waist Circumference (cm) females 
 

80-88 73.6-86.8 105 No No 

Waist Circumference (cm) males 
 

90-102 87.6 115.5 No No 

Waist Circumference (cm) all 
  

86.6 113.3   

Weight (kg) all 
  

78.6 104.8   

Relative Fat Mass Index (-) females 21-24 33-36 27.01 34.01-39.53 No Yes 

Relative Fat Mass Index (-) males 8-13 19-25 25.14 31.36 No No 

Relative Fat Mass Index (-) all 
  

25.57 30.67   

Cardiovascular System        

60 sec. pulse (30 sec. pulse * 2) all 50-60 80-100 
 

65 No No 

Direct HDL-Cholesterol (mg/dL) females 50 
 

57 91 No No 

Direct HDL-Cholesterol (mg/dL) males 40 
 

42 68 Yes No 

Direct HDL-Cholesterol (mg/dL) all 
  

49 83   

LDL-cholesterol (mg/dL) all 
 

100-130 107 168 No No 

Triglycerides (mg/dL) all 
 

150 43 207 No No 

Total cholesterol (mg/dL) all 
 

200 186 284 No No 

Diastolic: Average blood pressure (mm Hg) all 60 80-90 69.33 89.33 No Yes 

Systolic: Average blood pressure (mm Hg) all 90 130-140 107 129.33 No Yes 



 

155 
 

Ratio of LDL to HDL Cholesterol (-) all 
 

1.4 1.51 3.62-5.15 No No 

Ratio of Total to HDL Cholesterol (-) females 
 

4.4 2.42 5.02-8.38 No No 

Ratio of Total to HDL Cholesterol (-) males 
 

5 3.07 5.74 No No 

Ratio of Total to HDL Cholesterol (-) all 
  

2.77 5.36   

Immune System        

C-reactive protein (mg/dL) all 
 

0.1-0.2 0.02 0.1 No Yes 

White blood cell count (1000 cells/uL) all 4-15 10-11 4.2 5.9 Yes No 

Metabolic System        

Glycohemoglobin (%) all 
 

5.7-7 4.9 5.9 No Yes 

Glucose, plasma (mg/dL) all 60-70 99-126 95.4 107.9 No Yes 

Alkaline phosphatase (U/L) all 20-44 116-147 
 

64 No No 

Homeostatic Model Assessment of Insulin 

Resistance (-) 
all 

 
1.4-2.9 0.77 5.23 No No 

Ratio of Insulin to Glucose (uU*dL)/(mg*mL) all 
 

0.2-0.3 0.07 0.15 No No 

Nephrology        

Albumin (g/dL) all 3.4-3.5 5.4-5.5 4.65 4.95 No Yes 

Blood urea nitrogen (mg/dL) all 6-10 20-21 12 19 No Yes 

Creatinine (mg/dL) females 0.5-0.6 1-1.1 0.6 0.81 Yes No 

Creatinine (mg/dL) males 0.6-0.9 1.2-1.3 0.92 1.12 Yes Yes 

Creatinine (mg/dL) all 
  

0.63 0.93-1.15   

Estimated Glomerular Filtration Rate 

(mL/min/1.73 m2) 
all 60-90 

 
64.61 89.89 No No 

a
 The association-based thresholds are values of the physiological indicator that that show an increased mortality risk of 10% from the minimum risk of the spline 

model. All models are adjusted for age, sex, and race, while the sex-specific models are adjusted for age and race. Participants with measurements between the 1
st
 

and 99
th

 percentiles of the physiological indicator were used.  
b
 Concordance is achieved when the association-based threshold is within 10% of the clinical threshold. When there is a range for the clinical threshold, 

concordance is achieved when the association-based threshold is within the range or within 10% of the maximum clinical threshold. 
c
 The thresholds are applicable to the entire US population ("all”) or sex-specific ("females” or “males”). 
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Chapter 6 Conclusion 
 

My dissertation research interfaces data science, epidemiology, and environmental health 

as I applied computational approaches to understand how the environment can influence human 

health. This research required addressing two challenges:  1) characterizing chemical exposure ad 

disparities for a wide range of chemicals to identify populations that are at risk for high chemical 

exposures and 2) characterizing associations along the spectrum of chemical exposures to 

physiological indicators to adverse health outcomes. Addressing these challenges is necessary for 

understanding how certain chemical exposures perturb physiologic function and thereby result in 

increased risk of adverse health effects. Motivated by this goal, I developed and applied unbiased 

approaches to systematically screen for chemical exposure disparities by age, sex, race, and 

occupation for a wide range of toxicants (Chapter 2-4), and characterize the types of associations 

between all-cause mortality for 27 indicators used to describe physiologic function (Chapter 5). 

Sections 6.1 to 6.4 present the key achievements, limitations, future directions, and 

contribution of the frameworks developed in the four studies (Chapter 2-5). Section 6.5 is an 

integrated discussion of the four studies. Finally, Section 6.6 presents my closing remarks about 

integrating these frameworks to ground exposome research in data science.  

6.1 Characterization of Age-Based Trends of Chemical Biomarker Levels 

This study focused on evaluating age-based exposure trends by applying a screening 

approach to a diverse suite of 141 chemical biomarkers in a representative sample of 74,942 

participants in the US. Specifically, I defined characteristics to distinguish chemicals indicative of 
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legacy exposures from those reflecting current, ongoing exposures. I conducted a targeted analysis 

of PFASs to further substantiate the criteria for legacy exposures. In addition, I developed a 

framework using a series of quadratic regression models to explore non-linear age-based trends in 

identifying chemicals of higher concentrations in children versus those in the older population.  

Summary and Insights: Childhood development is a crucial window of susceptibility for 

the effects of toxic exposures, so prioritizing chemicals that are more common in children can 

drive future work on studying the effects of these exposures. It can also lead to developing 

interventions to reduce exposures and prevent subsequent adverse outcomes. To systematically 

characterize age-based trends of chemical biomarkers, I defined a metric to rank chemical 

indicators from most to least concerning for children by using the first derivative and second 

derivative of the chemical biomarker levels with respect to age. The first derivative represents the 

association between age and the chemical biomarker levels, while the second derivative describes 

the curvature of the association. Using this metric, I identified several chemical contaminants of 

elevated and ongoing exposures in children: phthalates, brominated flame retardants, pesticides, 

and metals, such as lead and tungsten. On the other hand, there were several legacy chemicals such 

as PCBs and Dioxins of higher concentrations in adults. These legacy chemicals were 

characterized by having a minimum half-life of one year in the human body and being restricted 

in North American commerce due to legislation or a voluntary commercial phaseout. Moreover, a 

targeted analysis of highly persistent PFASs such as PFOS and PFOA with known phaseout dates 

further confirmed these characteristics of legacy chemicals, since the differences in their biomarker 

levels between the young and older populations continued to increase since the phaseout period. 

This implies that persistent chemicals, that have been banned or phased out for longer than their 

half-lives, have the potential to be legacy chemicals as time passes. This pattern was not observed 
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for all PFASs, especially those still in use, so we will still be exposed to particular PFASs such as 

PFNA and PFDA, which will require continued biomonitoring. 

Limitations and Future Directions: While I characterized the influence of several 

important factors in explaining age-based trends in chemical exposures, I did not study which 

factors among half-lives, time-trends, legislation, and consumer product usages, are most 

important in explaining these age-based trends. Thus, future work could use machine learning 

techniques such as feature selection to help identify the most important factors in explaining age-

based trends for legacy versus emerging chemicals. The second limitation is that I excluded 182 

chemicals that did not satisfy the inclusion threshold of at least 50% detection in the study 

population. As such, I may have excluded chemicals that exhibit low dose effects or that have 

exposures only in population subsets. The final limitation is that I did not incorporate toxicological 

data to prioritize chemicals based on both exposure and toxicity. Now, with the US Environmental 

Protection Agency Toxicity Forecaster (ToxCast) data on in vitro toxicity for thousands of 

chemicals 400, future work can integrate both biomonitoring and bioactivity data to prioritize 

chemicals that elicit low-dose and/or high-dose effects. 

Contributions: Applying an unbiased, screening approach to biomonitoring data enabled 

a characterization of age-based trends for a diverse suite of toxicants spanning 16 chemical classes. 

It also facilitated the ease of identifying chemicals of higher exposure in children versus the older 

population. My current framework can be coupled with toxicity data to help facilitate chemical 

prioritization and risk stratification. 

6.2 Racial Disparities in Chemical Biomarker Concentrations in United States Women 

This study was motivated by a need to understand whether environmental exposures can 

help explain why the incidence of triple negative breast cancer (TNBC) is approximately three 
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times higher in Non-Hispanic Black women than in Non-Hispanic White women 79,80. While the 

mechanisms driving this difference likely involve interactions between genetic and environmental 

factors, the influence of environmental risk factors such as chemical exposures may be substantial 

albeit poorly understood. Thus, I evaluated chemical exposure disparities by race in 38,030 female 

participants for 143 chemical contaminants using a series of generalized linear models to prioritize 

chemicals for further experimental work.  

Summary and Insights: Non-Hispanic Black women had significantly higher 

concentrations of many chemicals in their bodies relative to non-Hispanic White women. This 

included chemicals used in cosmetics such as methyl paraben (2.39-fold), propyl paraben (2.09-

fold), and mono-ethyl phthalate (1.74-fold). It also includes 1,4-Dichlorobenzene (3.26-fold), 

which is used as a disinfectant, pesticide, and deodorant in mothballs, and its metabolite 2,5-

dichlorophenol (4.56-fold). Overall, the results showed substantial differences in chemical body 

burden by race in a representative sample of US women. 

Limitations and Future Directions: A major limitation is that we excluded chemicals 

with detection frequencies below 50%, thereby potentially excluding chemicals that exhibit low 

dose effects that should have been prioritized. Future studies could therefore benefit from 

evaluating differences in detection frequency by race to identify additional chemicals that show 

substantial racial disparities. A second limitation is that this study did not link exposure disparities 

with toxicological data specifically to breast cancer. However, two ongoing studies are integrating 

these exposure disparities with ToxCast database on chemical bioactivity 400 and with the 

Comparative Toxicogenomics Database on chemical-gene interactions 401 to understand why 

TNBC 79,80 and preterm birth 402,403, respectively, occurs disproportionally in non-Hispanic Black 

women compared to Non-Hispanic White women. 
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Contributions: My framework is currently being integrated with ToxCast bioactivity data 

to enable prioritization of three chemicals, thiram, propyl paraben, and p,p’-DDE, to understand 

how chemical exposure at environmentally relevant doses in humans can change cell morphology 

in ways that can progress toward breast cancer in the wet lab. While my framework is being used 

in the context of breast cancer disparities, it can be coupled with other data characterizing any 

health effect. Thus, this coupling can help prioritize chemicals to facilitate data-driven 

experimental work to better understand how the environment drives health disparities. 

6.3 Biomarker-Based Occupational Exposome 

The main objective of this study was to understand the distribution of occupational 

exposures to 108 chemicals in a US sample of 26,361 workers across 20 industrial sectors and 19 

occupational job titles and the resultant impact on physiological function. I used these job titles to 

classify participants as blue- or white-collar workers. I then performed clustering analysis on the 

sector-collar combinations to define occupational groups with similar chemical exposure profiles. 

I used these exposure-based groups to characterize differences in 27 physiological indicators to 

identify which occupational groups are most susceptible to chemical-mediated effects on 

physiological function.  

Summary and Insights: I identified higher levels of heavy metals, VOCs, and PAHs in 

most blue-collar workers across the different sectors compared their white-collar counterparts. In 

contrast, the white-collar workers had higher exposures to certain heavy metals such as mercury, 

arsenic, and their metabolites, along with a biomarker of sunscreen use, benzophenone-3. Higher 

mercury and arsenic biomarker levels among these white-collar workers may indicate higher fish 

consumption 276. This could therefore be a surrogate for behaviors associated with higher 

socioeconomic status 277 instead of an indicator of occupational exposures, since fish is expensive 
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and is more accessible to those with higher socioeconomic status. Based on these differences in 

chemical exposures between white- and blue-collar workers, the defined clustered groups were 

almost mutually exclusive with few clusters including both blue- and white-collar workers. 

Interestingly, in the clustered groups of blue-collar workers, alkaline phosphatase (biomarker of 

liver disease or bone disorder), white blood cell count (biomarker of inflammation), and 

glomerular filtration rate (biomarker of kidney function) showed higher values compared to the 

reference group of white-collar workers. These results suggest that certain occupational exposures 

can diminish important physiological functions in blue-collar workers. 

Limitations and Future Directions: A primary limitation is the non-random sparsity of 

the chemical biomarker data in the worker population. As no participant has data available for all 

studied toxicants, I could not conduct unsupervised clustering of individual workers. Instead, I had 

to work with groups of workers via the sector-collar combinations. This challenge resulted in 

conducting clustering analysis on exposure differences among the different sector-collar 

combinations. These differences then were quantified with the regression coefficients to compare 

differences in chemical biomarker levels between a given sector-collar combination and the 

reference group of white-collar workers in public administration. Ideally, if the chemical 

biomonitoring data were not sparse, then I could compare the clustering method conducted on the 

regression statistics versus that performed on the raw data to help substantiate the results. Second, 

due to the sparsity of the occupational data, the analysis was limited by the small sample size, since 

a quarter of NHANES participants have data on industrial sectors and occupational titles. This 

prevented me from establishing a direct link between multiple chemical exposures and physiologic 

dysfunction. As NHANES includes more occupational data with each study year, future analysis 

could have increased statistical power to model the associations between chemical exposures and 
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associated effects across different occupational groups. Third, I could not directly compare the 

chemical biomarker levels to the permissible exposures limits (PELs) defined by the Occupational 

Safety and Health Administration (OSHA). This prevented me from calculating the percentage of 

workers above acceptable or safe exposure levels. Thus, future studies can incorporate exposure 

modeling to predict exposures levels from biomarker levels to enable the comparison to PELs to 

help identify workers susceptible to high exposures. Fourth, I did not account for confounders such 

as socioeconomic indicators, alcohol consumption, dietary habits, and smoking habits that may 

explain differences in occupational exposures across the sector-collars. Hence, future directions 

can include quantifying differences in these factors by occupation and then account for such 

differences by including these variables as covariates in the regression models or by conducting 

stratified analysis in order to better understand if health disparities are due to differences in 

occupational exposures. Finally, another limitation involved using individual physiological 

indicators instead of pooling them together to better evaluate overall physiologic dysfunction. 

Therefore, future studies can define an allostatic load score 339,340 to characterize the overall 

physiologic dysfunction associated with multiple chemical exposures across the occupational 

groups.  

Contributions: I developed a framework using clustering analysis to characterize the 

indirect impact of multiple chemical exposures on physiological indicators in the workers 

population. This method enables me to apply unsupervised learning techniques to non-randomly 

sparse data without having to define a complete dataset nor impute.  
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6.4 Characterization of Linear and Non-linear Associations between Physiological Indicators 

and All-Cause Mortality 

This study focused on characterizing linear and non-linear associations between all-cause 

mortality and each of the 27 physiological indicators, to identify locations in the distribution 

associated with increased mortality risk. This study is foundational to better understanding the 

influence of environmental exposures on physiological functions that can impact mortality risk. 

Summary and Insights: I observed that 24 out of 27 (88.9%) indicators show non-linear 

associations with all-cause mortality, while height, triglycerides, and 60-second pulse show linear 

associations. Unexpectedly, I observed parabolic associations between cholesterol levels and all-

cause mortality. Also, unexpectedly, the results showed a parabolic association between 

glomerular filtration rate (GFR) and mortality where participants with higher GFR had a higher 

mortality risk compared to those with lower GFR. The current clinical threshold for GFR, however, 

only suggests that a value less than 90 mL/min/1.73m2 implies kidney damage 362,363. As another 

unexpected finding, mortality risk for obese participants was lower compared to that for 

underweight participants.  

Limitations and Future Directions: The unexpected lower mortality risk observed in 

obese patients may indicate the efficacy of public health interventions or improvements in 

healthcare for obesity-related conditions 377, which was not accounted in our models. Thus, future 

analysis can study trends of medical and public health interventions for obesity to account for 

residual confounding, in order to better understand why mortality risk is lower for obese or 

overweight participants compared to underweight participants. Moreover, the higher mortality risk 

observed in participants with lower LDL cholesterol may be overestimated due to the inclusion of 

participants on lipid-lower medications 370,372. However, it is not well understood whether 
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mortality risk is higher in participants on lipid-lower medication versus those who are not, even 

though their LDL cholesterol levels are the same. Thus, future studies could conduct a sensitivity 

analysis to study whether the associations would change if participants on lipid-lower medications 

were excluded. Finally, some of the associations may be overestimated due to inclusion of 

unhealthy participants, who tend to have higher mortality risk. Therefore, future work can include 

a sensitivity analysis to observe whether these associations would change if unhealthy participants 

were removed. 

Contributions: I developed a machine-learning framework to establish the best model to 

characterize the relationship with all-cause mortality for a wide variety of physiological indicators. 

This framework enabled identifying both expected and unexpected directionalities in associations 

for all-cause mortality. Thus, the framework could be applied to study the associations of any 

physiological indicators and health endpoints for more accurate risk identification. Furthermore, 

this framework could be applied to study any associations along the continuum of chemicals 

indicators to physiological indicators to any health endpoints. 

6.5 Integrated Discussion 

Drawing inspirations from GWAS for screening across millions of genetic factors to 

identify those significantly associated with a particular disease, I screened across a wide range of 

chemicals to characterize biomarker levels across the life stage, race/ethnicity, sex, and occupation 

in order to identify population susceptible to high exposures, and I screened across a broad suite 

of physiological indicators to identify populations vulnerable to physiological dysfunction along 

with directionalities associated with increased mortality risk. I applied a range statistical 

techniques such as generalized linear regression models, splines models, quantiles model, 

hierarchical clustering, bootstrapping, and cross validation. Using these techniques, I confirmed 
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expected findings and identified unexpected findings that would not have been detected if I did 

not apply these techniques coupled with an untargeted approach. 

The chemicals that showed the highest disparities were those that are found in consumer 

products. In children, several phthalates, brominated flame retardants, pesticides, and metals such 

as lead and tungsten are found at higher biomarker levels 185. Phthalates are used as plasticizers to 

make vinyl flexible and pliant 404. Due to flexibility of this chemical family, phthalates are detected 

in flooring, walls, ceiling, food containers, and children’s toys 405. Brominated flame retardants 

reduce the flammability of product containing them, which includes but not limited to furniture, 

carpets, pillows, paints, upholstery, and kitchen applicants 406,407. Lead can be found in household 

dust, toy jewelry, old toys, plastic toys, cosmetics, and paints 62,408,409. Pesticides can be found in 

food, insect repellents, rodent control product, garden care products, and pet products 410,411. 

Tungsten is found in jewelry rings and in light bulb filaments 412,413. Children may be in contact 

with such products and thus exposed to these chemicals due to normal development behaviors such 

as crawling 59, mouthing 60,61, and playing 62. 

Studying racial disparities in women reiterates the theme of observing higher biomarker 

levels from chemicals used in consumer products. In non-Hispanic Black, Mexican American, 

Other Hispanic, and Other Race/Multi-Racial women, pesticides and their metabolites, including 

2,5-dichlorophenol, o,p’-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol and personal 

care and consumer product compounds, including parabens and mono-ethyl phthalate 120. 2,4-

dichlorophenol is a photo-degradation product of triclosan, which is a common antibacterial and 

antifungal agent used in soap and hand sanitizer 414,415. 2,5-dichlorophenol is a metabolite of 1,4-

dichlorobenzene, which has been used in moth balls, room and toilet deodorizers, and as an 

insecticidal fumigant 416,417. o,p’-DDE is a metabolite of DDT, which was developed as an 
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insecticide but has been banned in 1972 418,419. Beta-hexachlorocyclohexane is a byproduct of the 

production of the insecticide lindane and was deemed as a Persistent Organic Pollutant by the 

Stockholm Convention 420,421. Parabens are used as preservatives in personal care products 422,423. 

Mono-ethyl phthalate is a metabolite of diethyl phthalate, which is a plasticizer used in plastic 

packaging, toiletries, fragrance, and cosmetics. Diethyl phthalate is used to extend the aromatic 

strength of the fragrance, prevent brittleness in nail polishes, and enable hairspray to form a 

flexible film on the hair 162,424. Cotinine levels, which is a metabolite of nicotine 425, is the highest 

in non-Hispanic White women. Interestingly, similar to the findings in children, chemicals 

showing the highest biomarker levels are also the ones being used in common consumer products, 

highlighting how the products that we use on a daily basis drives an individual’s “chemosome”.  

Then, this theme is further emphasized when I studied the occupational exposome. Blue-

collar workers from retail trade, professional, and technical services show some of the highest 

biomarker levels of heavy metals such as lead and cadmium, PAHs, phthalates, PFASs, and VOCs 

such as toluene and benzene compared to any of the other occupations. Furthermore, these 

chemicals are some of the most toxic substances measured in NHANES. In addition, these blue-

collar workers from retail trade, professional, and technical services have a physiological profile 

characterized by liver damage and elevated kidney filtration, which are both indicative of increased 

risk for death. If these chemical biomarkers are indicative of occupational exposures and 

responsible for eliciting these physiological responses, then these findings would imply that 

handling or producing the consumer products are linked to elevated toxicant levels and 

subsequently physiological dysfunction conducive to increased risk of mortality.  

Every day, we come into contact with many out of the 80,000 chemicals on the market, but 

only about 1% of them have been evaluated for safety 426. Though these statistics are daunting, we 
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do not necessarily need to measure biomarker concentrations for all 80,000 toxicants. The findings 

in this dissertation suggest that the chemicals found at the highest biomarker levels are those that 

are used in consumer and personal care products. Thus, biomonitoring studies can measure for 

toxicants that are commonly used in consumer and personal care products to better prioritize which 

chemicals to use for further toxicological evaluation.  

While I did a comprehensive analysis of characterizing chemical exposure disparities 

across the life-stage, sex, race/ethnicity, and occupation, I did not ascertain the contribution of 

chemical exposures to adverse health outcomes nor did I compare these contributions to the 

contributions of other factors such as genetics, long-term stress, socioeconomic status, education, 

and health access. These factors are known to impact health outcomes and could even predispose 

individuals to adverse responses to environmental chemical exposures. This illustrates the need to 

measure genetic as well as a broad set of environmental factors in as many people as possible. 

Furthermore, how these genetic and environmental risk factors relate to health is further 

complicated by the intertwining associations among the risk factors. Thus, untangling this 

intertwining web will enable the identification of pertinent drivers of health disparities. This 

insight will be essential in identifying susceptible population and designing targeted intervention 

to mediate and prevent disease. 

6.6 Closing Remarks 

Throughout these studies, a quote from Dr. Eberhard Voit resonated with me: “Data 

generated from the exposome defy human intuition” 427. This quote was confirmed by the 

unexpected patterns I observed from applying unbiased approaches to large-scale biomonitoring 

data in the context of exposome research in data science. This systematic, screening approach is 

particularly salient to exposome research, as there are more than 80,000 chemicals estimated to be 
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used in commerce in the US 426. In addition, there continues to be an increasing availability of 

multiple layers of data on exposure, toxicity, and human health. Thus, integrating omics techniques 

with such data will be integral to deriving insights essential for more informed decision-making 

and prioritization with the goal of protecting human health. 
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Appendix 1. Characterization of Age-Based Trends of Chemical Biomarker Levels 

Table A1.1.Indicator of excluded measurements by NHANES Cycles for chemical biomarkers. 

  Percentage of Participants below LOD by NHANES cycles 
Codename  Comment Name Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 
LBXD03    1,2,3,6,7,8-hxcdd 

(fg/g) 
X        

LBXD03LA 1,2,3,6,7,8-hxcdd 
Lipid Adj (pg/g) 

X        

LBXD05    1,2,3,4,6,7,8-hpcdd 
(fg/g) 

X        

LBXD05LA 1,2,3,4,6,7,8-hpcdd 
Lipid Adj (pg/g) 

X        

LBXD07    1,2,3,4,6,7,8,9-ocdd 
(fg/g) 

X        

LBXD07LA 1,2,3,4,6,7,8,9-ocdd 
Lipid Adj (pg/g) 

X        

LBXF03    2,3,4,7,8-pncdf 
(fg/g) 

X        

LBXF03LA 2,3,4,7,8-pncdf 
Lipid Adj (pg/g) 

X        

LBXF04    1,2,3,4,7,8-hxcdf 
(fg/g) 

X        

LBXF04LA 1,2,3,4,7,8-hxcdf 
Lipid Adj (pg/g) 

X        

LBXF08    1,2,3,4,6,7,8-hpcdf 
(fg/g) 

X        

LBXF08LA 1,2,3,4,6,7,8-hpcdf 
Lipid Adj (pg/g) 

X        

URXPAR    Paranitrophenol 
(ug/L) 

X        

LBXHXC   3,3',4,4',5,5'-hxcb 
(fg/g) 

X        

LBXHXCLA  3,3',4,4',5,5'-hxcb 
Lipid Adj (pg/g) 

X        

LBXPCB   3,3',4,4',5-pcnb 
(pg/g) 

X        

LBXPCBLA  3,3',4,4',5-pcnb 
Lipid Adj (pg/g) 

X        

LBX028   PCB28 (ng/g) X        
LBX028LA  PCB28 Lipid Adj 

(ng/g) 
X        

LBD199   PCB199 (ng/g) X X       
LBD199LA  PCB199 Lipid Adj 

(ng/g) 
X X       

LBX180   PCB180 (ng/g) X X       
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LBX180LA  PCB180 Lipid Adj 
(ng/g) 

X X       

LBX146   PCB146 (ng/g) X X       
LBX146LA  PCB146 Lipid Adj 

(ng/g) 
X X       

LBX170   PCB170 (ng/g) X X       
LBX170LA  PCB170 Lipid Adj 

(ng/g) 
X X       

LBX194   PCB194 (ng/g) X X       
LBX194LA  PCB194 Lipid Adj 

(ng/g) 
X X       

LBX187   PCB187 (ng/g) X X       
LBX187LA  PCB187 Lipid Adj 

(ng/g) 
X X       

LBX153   PCB153 (ng/g) X X       
LBX153LA  PCB153 Lipid Adj 

(ng/g) 
X X       

LBX196   PCB196 (ng/g) X X       
LBX196LA  PCB196 Lipid Adj 

(ng/g) 
X X       

LBX138   PCB138 (ng/g) X X       
LBX138LA  PCB138 Lipid Adj 

(ng/g) 
X X       

LBX118   PCB118 (ng/g) X X       
LBX118LA  PCB118 Lipid Adj 

(ng/g) 
X X       

LBX099   PCB99 (ng/g) X X       
LBX099LA  PCB99 Lipid Adj 

(ng/g) 
X X       

LBX074   PCB74 (ng/g) X X       
LBX074LA  PCB74 Lipid Adj 

(ng/g) 
X X       

LBXMPAH 2-(N-methyl-
PFOSA) acetate 
(ng/mL) 

  X      

URX24D   2,4-D (ug/L) X    X    
URXP10    1-pyrene (ng/L)        X 
URXPAR Paranitrophenol 

(ug/L) 
X        
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Table A1.2. Corresponding NHANES codename, CAS NO., and chemical classification for each 
chemical biomarker. 

Codename Chemical Name CAS NO. Chemical Class Chemical 
Class 
Shortened 

LBXGLY Glycideamide (pmoL/G Hb) 5694-00-8 Acrylamide Acrylamide 
LBXACR Acrylamide (pmoL/G Hb) 79-06-1 Acrylamide Acrylamide 
LBXBB1LA 2,2',4,4',5,5'-hexabromobiphenyl 

lipid adj (ng/g) 
59080-40-
9 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR2LA 2,4,4'-tribromodiphenyl ether 
lipid adj (ng/g) 

41318-75-
6 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR8LA 2,2',4,4',5,6'-hexabromodiphenyl 
ether lipid adj (ng/g) 

207122-
15-4 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR6LA 2,2',4,4',6-pentabromodiphenyl 
lipid adj (ng/g) 

189084-
64-8 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR3LA 2,2',4,4'-tetrabromodiphenyl ether 
lipid ad (ng/g) 

5436-43-1 Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR5LA 2,2',4,4',5-pentabromodiphenyl 
lipid adj (ng/g) 

60348-60-
9 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXBR7LA 2,2',4,4',5,5'-hexabromodiphenyl 
lipid adj (ng/g) 

68631-49-
2 

Brominated Flame 
Retardants (BFR) 

BFRs 

LBXD03LA 1,2,3,6,7,8-hxcdd Lipid Adj 
(pg/g) 

57653-85-
7 

Dioxins Dioxins 

LBXD07LA 1,2,3,4,6,7,8,9-ocdd Lipid Adj 
(pg/g) 

3268-87-9 Dioxins Dioxins 

LBXD05LA 1,2,3,4,6,7,8-hpcdd Lipid Adj 
(pg/g) 

35822-46-
9 

Dioxins Dioxins 

LBXF04LA 1,2,3,4,7,8-hxcdf Lipid Adj 
(pg/g) 

70648-26-
9 

Furans Furans 

LBXF03LA 2,3,4,7,8-pncdf Lipid Adj (pg/g) 57117-31-
4 

Furans Furans 

LBXF08LA 1,2,3,4,6,7,8-hpcdf Lipid Adj 
(pg/g) 

67562-39-
4 

Furans Furans 

SSMEL Melamine (ng/mL) 108-78-1 Melamine Melamine 
SSCYA Cyanuric acid (ng/mL) 108-80-5 Melamine Melamine 
LBXBPB Lead (ug/dL) 7439-92-1 Metals Metals 
LBXBCD Cadmium (ug/L) 7440-43-9 Metals Metals 
LBXTHG Mercury, total (ug/L) 7439-97-6 Metals Metals 
URXUHG Mercury, urine (ng/mL) 7439-97-6 Metals Metals 
URXUBA Barium, urine (ng/mL) 7440-39-3 Metals Metals 
URXUCO Cobalt, urine (ng/mL) 7440-48-4 Metals Metals 
URXUCS Cesium, urine (ng/mL) 7440-46-2 Metals Metals 
URXUMO Molybdenum, urine (ng/mL) 7439-98-7 Metals Metals 
URXUPB Lead, urine (ng/mL) 7439-92-1 Metals Metals 
URXUSB Antimony, urine (ng/mL) 7440-36-0 Metals Metals 
URXUTL Thallium, urine (ng/mL) 7440-28-0 Metals Metals 
URXUTU Tungsten, urine (ng/mL) 7440-33-7 Metals Metals 
URXUUR Uranium, urine (ng/mL) 7440-61-1 Metals Metals 
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URXUAS Urinary total Arsenic (µg/L) 7440-38-2 Metals Metals 
URXUAB Urinary Arsenobetaine (µg/L) 64436-13-

1 
Metals Metals 

URXUDMA Urinary Dimethylarsonic acid 
(µg/L) 

75-60-5 Metals Metals 

URXUCD Cadmium, urine (ng/mL) 7440-43-9 Metals Metals 
LBXBMN Blood manganese (ug/L) 7439-96-5 Metals Metals 
LBXSCU Serum Copper (ug/dL) 7440-50-8 Metals Metals 
LBXSZN Serum Zinc (ug/dL) 7440-66-6 Metals Metals 
LBXBGM Mercury, methyl (ug/L) 22967-92-

6 
Metals Metals 

URXSCN Urinary thiocyanate (ng/mL) 302-04-5 Other Other 
URXUIO Iodine, urine (ng/mL) 7553-56-2 Other Other 
URXNO3 Urinary nitrate (ng/mL) 14797-55-

8 
Other Other 

URXUP8 Perchlorate, urine (ng/mL) 14797-73-
0 

Other Other 

URXTRS Urinary Triclosan (ng/mL) 3380-34-5 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXBPS Urinary Bisphenol S (ug/L) 80-09-1 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXMPB Methyl paraben (ng/ml) 99-76-3 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXPPB Propyl paraben (ng/ml) 94-13-3 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXBPH Urinary Bisphenol A (ng/mL) 80-05-7 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXBPF Urinary Bisphenol F (ug/L) 620-92-8 Personal Care & Consumer 
Product Compounds 

PCCPCs 

URXBP3 Urinary Benzophenone-3 
(ng/mL) 

131-57-7 Personal Care & Consumer 
Product Compounds 

PCCPCs 

LBXTNALA Trans-nonachlor Lipid Adj (ng/g) 39765-80-
5 

Pesticides Pesticides 

LBXOXYL
A 

Oxychlordane Lipid Adj (ng/g) 27304-13-
8 

Pesticides Pesticides 

LBXPDELA p,p'-DDE Lipid Adj (ng/g) 72-55-9 Pesticides Pesticides 
LBXDIELA Dieldrin Lipid Adj (ng/g) 60-57-1 Pesticides Pesticides 
LBXBHCLA Beta-hexachlorocyclohexane 

Lipid Adj (ng/g) 
319-85-7 Pesticides Pesticides 

URXCPM 3,5,6-trichloropyridinol (ug/L) 6515-38-4 Pesticides Pesticides 
URXOP3 Dimethylthiophosphate (ug/L) 1112-38-5 Pesticides Pesticides 
URXOPM 3-phenoxybenzoic acid (ug/L) 3739-38-6 Pesticides Pesticides 
URX14D 2,5-dichlorophenol (ug/L) 583-78-8 Pesticides Pesticides 
URXDCB 2,4-dichlorophenol (ug/L) 120-83-2 Pesticides Pesticides 
URXPAR Paranitrophenol (ug/L) 100-02-7 Pesticides Pesticides 
URX24D 2,4-D (ug/L) 94-75-7 Pesticides Pesticides 
URXDEA DEET acid (ug/L) 72236-23-

8 
Pesticides Pesticides 

URXCNP Mono(carboxynonyl) phthalate 
(ng/mL) 

26761-40-
0 

Phthalates Phthalates 
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SSURHIBP Mono-2-hydroxy-iso-butyl 
phthlte (ng/mL) 

64339-39-
5 

Phthalates Phthalates 

URXCOP Mono(carboxyoctyl) phthalate 
(ng/mL) 

898544-
09-7 

Phthalates Phthalates 

URXMIB Mono-isobutyl pthalate (ng/mL) 30833-53-
5 

Phthalates Phthalates 

URXMHP Mono-(2-ethyl)-hexyl phthalate 
(ng/mL) 

4376-20-9 Phthalates Phthalates 

URXMOH Mono-(2-ethyl-5-oxohexyl) 
phthalate (ng/mL) 

40321-98-
0 

Phthalates Phthalates 

URXMZP Mono-benzyl phthalate (ng/mL) 2528-16-7 Phthalates Phthalates 
URXMHH Mono-(2-ethyl-5-hydroxyhexyl) 

phthalate (ng/mL) 
40321-99-
1 

Phthalates Phthalates 

URXECP Mono-2-ethyl-5-carboxypentyl 
phthalate (ng/mL) 

40809-41-
4 

Phthalates Phthalates 

URXMBP Mono-n-butyl phthalate (ng/mL) 131-70-4 Phthalates Phthalates 
URXMEP Mono-ethyl phthalate (ng/mL) 2306-33-4 Phthalates Phthalates 
URXMNM Mono-n-methyl phthalate 

(ng/mL) 
4376-18-5 Phthalates Phthalates 

SSURMHBP Mono-3-hydroxy-n-butyl 
phthalate (ng/mL) 

57074-43-
8 

Phthalates Phthalates 

URXMC1 Mono-(3-carboxypropyl) 
phthalate (ng/mL) 

66851-46-
5 

Phthalates Phthalates 

URXDMA o-Desmethylangolensin (O-
DMA) (ng/mL) 

21255-69-
6 

Phytoestrogens Phytoestrogen
s 

URXETL Enterolactone (ng/mL) 78473-71-
9 

Phytoestrogens Phytoestrogen
s 

URXETD Enterodiol (ng/mL) 80226-00-
2 

Phytoestrogens Phytoestrogen
s 

URXP05 3-phenanthrene (ng/L) 605-87-8 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP06 1-phenanthrene (ng/L) 2433-56-9 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP07 2-phenanthrene (ng/L) 605-55-0 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP19 4-phenanthrene (ng/L) 7651-86-7 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP25 2 & 3-Hydroxyphenanthrene 
(ng/L) 

605-55-0 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP10 1-pyrene (ng/L) 129-00-0 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP01 1-napthol (ng/L) 90-15-3 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP02 2-napthol (ng/L) 135-19-3 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP17 9-fluorene (ng/L) 484-17-3 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP03 3-fluorene (ng/L) 6344-67-8 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

URXP04 2-fluorene (ng/L) 2443-58-5 Polyaromatic Hydrocarbons 
(PAH) 

PAHs 

LBD199LA PCB199 Lipid Adj (ng/g) 52663-75-
9 

Polychlorinated Biphenyls 
(PCB) 

PCBs 
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LBX180LA PCB180 Lipid Adj (ng/g) 35065-29-
3 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX209LA PCB209 Lipid Adj (ng/g) 2051-24-3 Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX146LA PCB146 Lipid Adj (ng/g) 51908-16-
8 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX170LA PCB170 Lipid Adj (ng/g) 35065-30-
6 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX194LA PCB194 Lipid Adj (ng/g) 35694-08-
7 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX187LA PCB187 Lipid Adj (ng/g) 52663-68-
0 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX153LA PCB153 Lipid Adj (ng/g) 35065-27-
1 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX196LA PCB196 Lipid Adj (ng/g) 42740-50-
1 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX138LA PCB138 Lipid Adj (ng/g) 35065-28-
2 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBXHXCLA 3,3',4,4',5,5'-hxcb Lipid Adj 
(pg/g) 

32774-16-
6 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX118LA PCB118 Lipid Adj (ng/g) 31508-00-
6 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX099LA PCB99 Lipid Adj (ng/g) 38380-01-
7 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBXPCBLA 3,3',4,4',5-pcnb Lipid Adj (pg/g) 57465-28-
8 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX074LA PCB74 Lipid Adj (ng/g) 32690-93-
0 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX028LA PCB28 Lipid Adj (ng/g) 7012-37-5 Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX049LA PCB49 Lipid Adj (ng/g) 41464-40-
8 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBX044LA PCB44 Lipid Adj (ng/g) 41464-39-
5 

Polychlorinated Biphenyls 
(PCB) 

PCBs 

LBXPFDE Perfluorodecanoic acid (ng/mL) 335-76-2 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXMPAH 2-(N-methyl-PFOSA) acetate 
(ng/mL) 

2355-31-9 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXPFNA Perfluorononanoic acid (ng/mL) 375-95-1 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXPFHS Perfluorohexane sulfonic acid 
(ng/mL) 

355-46-4 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXPFOA Perfluorooctanoic acid (ng/mL) 335-67-1 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXPFOS Perfluorooctane sulfonic acid 
(ng/mL) 

1763-23-1 Per- and Polyfluoroalkyl 
Substances (PFAS) 

PFASs 

LBXCOT Cotinine (ng/mL) 486-56-6 Smoking Related 
Compounds 

SRCs 

URXNAL NNAL , urine (ng/mL) 76014-81-
8 

Smoking Related 
Compounds 

SRCs 

LBXVXY Blood m-/p-Xylene (ng/ml) 108-38-
3/106-42-
3 

Volatile Organic Compounds 
(VOC) 

VOCs 

LBXVDB Blood 1,4-Dichlorobenzene 
(ng/ml) 

106-46-7 Volatile Organic Compounds 
(VOC) 

VOCs 
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LBXVBM Blood Bromodichloromethane 
(pg/ml) 

75-27-4 Volatile Organic Compounds 
(VOC) 

VOCs 

URXHEM N-Ace-S-(2-Hydroxyethyl)-L-cys 
(ng/mL) 

15060-26-
1 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXPHG Phenylglyoxylic acid (ng/mL) 611-73-4 Volatile Organic Compounds 
(VOC) 

VOCs 

URXHP2 N-Ace-S-(2-hydroxypropyl)-L-
cys (ng/mL) 

75-56-9 Volatile Organic Compounds 
(VOC) 

VOCs 

URXMB3 N-A-S-(4-hydrxy-2butn-l-yl)-L-
cys (ng/mL) 

106-99-0 Volatile Organic Compounds 
(VOC) 

VOCs 

URX34M 3-methipurc acd & 4-methipurc 
acd (ng/mL) 

27115-49-
7 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXBMA N-Acetyl-S-(benzyl)-L-cysteine 
(ng/mL) 

19542-77-
9 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXBPM N-Acetyl-S-(n-propyl)-L-cysteine 
(ng/mL) 

106-94-5 Volatile Organic Compounds 
(VOC) 

VOCs 

URXGAM N-ac-S-(2-carbmo-2-hydxel)-L-
cys (ng/mL) 

79-06-1 Volatile Organic Compounds 
(VOC) 

VOCs 

URXMAD Mandelic acid (ng/mL) 90-64-2 Volatile Organic Compounds 
(VOC) 

VOCs 

URXAAM N-Ace-S-(2-carbamoylethyl)-L-
cys (ng/mL) 

81690-92-
8 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXAMC N-Ace-S-(N-methlcarbamoyl)-L-
cys (ng/mL) 

103974-
29-4 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXATC 2-amnothiazolne-4-carbxylic acid 
(ng/mL) 

16899-18-
6 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXCYM N-acetyl-S-(2-cyanoethyl)-L-cys 
(ng/mL) 

74514-75-
3 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXTTC 2-thoxothazlidne-4-carbxylic acid 
(ng/mL) 

20933-67-
9 

Volatile Organic Compounds 
(VOC) 

VOCs 

URX2MH 2-Methylhippuric acid (ng/mL) 42013-20-
7 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXPMM N-A-S-(3-hydrxprpl-1-metl)-L-
cys (ng/mL) 

33164-70-
4 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXCEM N-Acetyl-S-(2-Carbxyethyl)-L-
Cys (ng/mL) 

51868-61-
2 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXHPM N-Ace-S-(3-Hydroxypropyl)-L-
Cys (ng/mL) 

23127-40-
4 

Volatile Organic Compounds 
(VOC) 

VOCs 

URXDHB N-Ace-S-(3,4-Dihidxybutl)-L-
Cys (ng/mL) 

144889-
50-9 

Volatile Organic Compounds 
(VOC) 

VOCs 

LBXVTO Blood Toluene (ng/ml) 108-88-3 Volatile Organic Compounds 
(VOC) 

VOCs 

LBXNM Blood Nitromethane (pg/mL) 75-52-5 Volatile Organic Compounds 
(VOC) 

VOCs 

LBXVCF Blood Chloroform (pg/ml) 67-66-3 Volatile Organic Compounds 
(VOC) 

VOCs 
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Text A1.1. Overestimation of QSARs half-lives for PFASs and Other Estimation Methods 

The estimated persistency of QSAR PFASs varies drastically from 3.5 years to 220 years. 

The half-lives of PFOS (4.80 years) and PFOA (5.42 years) from Arnot et al, 2014 Training 

Dataset are comparable with other estimated half-lives such as 5 years for PFOS  and 2.3  to 4 

years  for PFOA. In addition, the QSAR-estimated half-life of PFHxS (7.29 years) is comparable 

to 8.5 years. A one-compartment model was used to estimate the half-lives for PFASs in a sample 

of Chinese volunteers in Shijiazhuang and Handan and estimated to be 0.38 to 20 years for the 

half-life of PFNA  and 1.2 to 60 years for PFDA, which are very different from the QSAR-

estimated half-lives of PFNA (45.03 years) and PFDA (205.82 years). There are no measured or 

estimated half-lives for 2-(N-methyl-PFOSA) acetate in human.  

This model is a screening-level, fragment-based QSAR that for instance, focuses on 

“fragments” of the compound i.e. F-C bond. Since PFNA have several of these bonds and such 

bonds are associated with high persistency, the QSAR predicted a higher persistency for these 

cases. In addition, half-life of PFOS, PFOA, and PFHxS were the only ones used in the training 

set to train the QSAR model to predict half-lives for PFASs. So all of these stipulations can lead 

to overestimations on some of the predictions.  

Thus, to address these overestimations, we looked at different literature sources for the 

half-lives and defined a hierarchy to determine more reasonable half-lives for these substances. 

When multiple human biomonitoring-based half-lives are available for a given chemical, the 

median of all available half-lives is used, or else we perform an extrapolation from animal data 

using the ratio of the half-life of PFOSA to the half-life of PFOS from rat (10.6 and 30 days, 

respectively) and rainbow trout (6 and 16.9 days, respectively). So, the extrapolation factors were 

0.355 for rainbow trout and 0.353 for rats. 
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Table A1.3. Authorship for half-lives of PFASs with other estimation or extrapolation methods. 

Studies Type of 
HL 

Types LBXPFD
E 

LBXMPA
H 

LBXPFN
A 

LBXPFH
S 

LBXPFO
A 

LBXPFO
S 

Arnot et 
al., 2014 

intrinsic Training 
Dataset 

   
7.3 5.4 4.8 

QSAR 205.8 45 45 2.2 9.9 45 
Olsen et 
al., 2017 

apparent 
    

7.3 3.5 4.8 

Bartell et 
al., 2010 

intrinsic 
     

2.3 
 

Zhang et 
al.,  2013 

renal and 
menstrual 
clearance 

Young 
Females 

4.2 
 

1.5 2.3 1.8 6 

renal 
clearance 

All Males and 
Older 
Females 

9.2 
 

3.5 29 1.7 18 

Gomis et 
al., 2017 

intrinsic Female 
Australian 

  
   

1.8 5 

Male 
Australian 

  
   

2 4.9 

Female US 
    

2.1 3.3 
Male US 

    
2.4 3.8 

Wong et 
al., 2018 

intrinsic Male 
     

4.7 
Female 
(exclude loss 
from 
menstruation) 

  
    

3.7 

Female 
(include loss 
from 
menstruation) 

  
    

4 

Russell 
et al., 
2015 

intrinsic 
     

2.4 
 

Gomis et 
al., 2016 

intrinsic 
     

2.4 
 

Brede et 
al., 2010 

intrinsic 
     

3.26 
 

Spliethof
f et al., 
2008 

apparent 
      

4.4 

D’Eon 
and 
Mabury, 
2011 

apparent 
      

5.4 

Olsen et 
al., 2012 

apparent 
      

4.3 

Glynn et 
al., 2012 

apparent 
      

8.2 

Yeung et 
al., 2013 

apparent 
      

4.55 
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Worley 
et al., 
2017 

intrinsic 
    

15.5 3.9 3.3 

Conglom
erated 
Estimatio
n or 
Animal-
Human 
Extrapol
ation 

years 
 

6.7 1.664653 2.5 7.3 2.35 4.7 
hours 

 
58692 14582.36 21900 63948 20586 41172 

log10 
hours 

 
4.768579 4.163828 4.340444 4.805827 4.313572 4.614602 
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Table A1.4. References for half-lives of inorganic substances for which the half-life could not be 
estimated by the QSAR models. Half-Lives (hours) were used in the analysis. 

 

Chemical References for Half-Lives Half-Lives 
(units) 

Half-
Lives 
(hours) 

Biological 
Compartments 

Propineb Watson M. IPCS INCHEM - PROPINEB. 
Available: 
http://www.inchem.org/documents/jmpr/j
mpmono/v93pr16.htm. 

20 days 480  Body 

Arsenic  Bradberry SM, Harrison WN, Beer ST, 
Vale JA. 1997. IPCS INCHEM - arsenic 
acid. Available: 
http://www.inchem.org/documents/ukpids/
ukpids/ukpid41.htm.  

60 hours 60 
 

Blood, Serum, 
Plasma 
 

ATSDR. 2007. Toxicological profile for 
arsenic. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp2.
pdf. 

4 hours 
3 hours 
60 hours 
40 hours 

4 
3 
60 
40 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Body 
Body 

Arsenic Acid National Center for Biotechnology 
Information. Pubchem compound database 
cid=234: Arsenic acid. Available: 
https://pubchem.ncbi.nlm.nih.gov/compou
nd/234. 

35 hours 
2.40 days 

35 
57.6 

Blood, Serum, 
Plasma 
Body 
 

Arsenobetaine Lehmann B, Ebeling E, Alsen-Hinrichs C. 
2001. Kinetics of arsenic in human blood 
after a fish meal. Gesundheitswesen 
(Bundesverband der Arzte des 
Offentlichen Gesundheitsdienstes 
(Germany)) 63:42-48. 

63 hours 63 Blood, Serum, 
Plasma 
 

Methanearsonic 
acid 

ATSDR. 2007. Toxicological profile for 
arsenic. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp2.
pdf. 

4.90 hours 
4.20 hours 

4.9 
4.2 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
 

Trimethylarsine 
Oxide 

CDC. 2009. Fourth national report on 
human exposure to environmental 
chemicals. Available: 
https://www.cdc.gov/exposurereport/pdf/fo
urthreport.pdf. 

4 days 
2 days 

96 
48 

Body 
Body 

Antimony ATSDR. 2017. Toxicological profile for 
antimony and compounds. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp2
3.pdf. 

62 days 
47 days 
1.99 hours 

1488 
1128 
1.99 

Lung 
Lung 
Blood, Serum, 
Plasma 

Gerhardsson L, Brune D, Nordberg GF, 
Wester PO. 1982. Antimony in lung, liver 
and kidney tissue from deceased smelter 
workers. Scandinavian journal of work, 
environment & health 8:201-208. 

100 days 
36 days 
 

2400 
864 

Body 
Body 
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Barium Bastarache E. Barium and compounds / 
toxicology. Available: 
https://digitalfire.com/4sight/hazards/cera
mic_hazard_barium_and_compounds__tox
icology_321.html. 

20 hours 
2 hours 

20 
2 

Body 
Body 

Ayres DC, Hellier DG. 1997. Dictionary of 
environmentally important chemicals. 
Available: 
https://books.google.com/books?id=UTK
WehimCkEC&pg=PA44&lpg=PA44&dq=
barium+half+life+blood&source=bl&ots=r
-
sg5_z8vf&sig=3cyavKJmEbMfXCQV_he
AGywb6Bw&hl=en&sa=X&ved=0ahUKE
wjwp5PA59nVAhUB2mMKHaWzBiMQ6
AEITjAI#v=onepage&q=barium half life 
blood&f=false. 

50 days 1200 Bones 

Beryllium ATSDR. 2002. Toxicological profile for 
beryllium. Available: 
https://www.atsdr.cdc.gov/toxprofiles/tp4.
pdf.. 

400 days 
300 days 
833 days 
8 weeks 
2 weeks 

9600 
7200 
19992 
1344 
336 

Body 
Body 
Lung 
Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

CDC. 2009. Fourth national report on 
human exposure to environmental 
chemicals. Available: 
https://www.cdc.gov/exposurereport/pdf/fo
urthreport.pdf. 

450 days 10800 Bones 

Cacodylic Acid National Center for Biotechnology I. 
Pubchem compound database cid=2513: 
Cacodylic acid. Available: 
https://pubchem.ncbi.nlm.nih.gov/compou
nd/2513. 

92 days 
90 days 
76 days 

2208 
2160 
1824 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

Cadmium Scoullos M, Vonkeman GH, Thornton I, 
Makuch Z. 2001. Mercury — cadmium — 
lead handbook for sustainable heavy 
metals policy and regulation. 1st 
ed:Springer Netherlands.  

30 years 262800 Body 

Bernhoft RA. 2013. Cadmium toxicity and 
treatment. The Scientific World Journal 
2013. 

128 days 
75 days 
25 years 

3072 
1800 
219000 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Body 

Cesium ATSDR. 2004. Toxicological profile for 
cesium. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp1
57.pdf.  

150 days 
135 days 
110 days 
110 days 
93 days 
90 days 
84 days 
83 days 
73 days 
72 days 

3600 
3240 
2640 
2640 
2232 
2160 
2016 
1992 
1752 
1728 

Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 
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70 days 
67 days 
66 days 
58 days 
50 days 
47 days 
46 days 

1680 
1608 
1584 
1392 
1200 
1128 
1104 

Body 
Body 
Body 
Body 
Body 
Body 
Body 

CDC. 2009. Fourth national report on 
human exposure to environmental 
chemicals. Available: 
https://www.cdc.gov/exposurereport/pdf/fo
urthreport.pdf. 

70 days 
109 days 

1680 
2616 
 

Body 
Body 
 

Cobalt Tvermoes BE, Unice KM, Paustenbach 
DJ, Finley BL, Otani JM, Galbraith DA. 
2014. Effects and blood concentrations of 
cobalt after ingestion of 1 mg/d by human 
volunteers for 90 d. The American journal 
of clinical nutrition 99:632-646. 

36 days 
22 days 

864 
528 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
 

ATSDR. 2004. Toxicological profile for 
cobalt. Available: 
https://www.atsdr.cdc.gov/toxprofiles/tp33
.pdf.  

99.50 days 2388 Body 

CDC. 2009. Fourth national report on 
human exposure to environmental 
chemicals. Available: 
https://www.cdc.gov/exposurereport/pdf/fo
urthreport.pdf. 

2 years 
1 year 

17520 
8760 

Lung 
Lung 

Copper Johnson PE, Milne DB, Lykken GI. 1992. 
Effects of age and sex on copper 
absorption, biological half-life, and status 
in humans. The American journal of 
clinical nutrition 56:917-925.  

33 days 
13 days 

792 
312 

Body 
Body 

Lyon TDB, Fell GS, Gaffney D, McGaw 
BA, Russell RI, Park RHR, et al. 1995. 
Use of a stable copper isotope in the 
differential diagnosis of wilson's disease. 
Clinical Science 88:727 LP-732.  

14 days 
26 days 

336 
624 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
 

Lead ATSDR. 2007. Toxicological profile for 
lead. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp1
3.pdf.  

27 years 236520 Bones 

ATSDR. Toxguide for lead. Available: 
https://www.atsdr.cdc.gov/toxguides/toxgu
ide-13.pdf. 

30 days 720 Blood, Serum, 
Plasma 

National Research Council Committee on 
Measuring Lead in Critical P. 1993. 4, 
biologic markers of lead toxicity. 
Available: 
https://www.ncbi.nlm.nih.gov/books/NBK
236462/.  

25 days 600 Blood, Serum, 
Plasma 

Barbosa F, Tanus-Santos JE, Gerlach RF, 
Parsons PJ. 2005. A critical review of 
biomarkers used for monitoring human 
exposure to lead: Advantages, limitations, 

30 years 
10 years 

262800 
87600 

Bones 
Bones 
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and future needs. Environmental Health 
Perspectives 113:1669-1674.  
Rahde AF. 1994. Ipcs inchem - lead, 
inorganic. Available: 
http://www.inchem.org/documents/pims/c
hemical/inorglea.htm#SectionTitle:6.3 
Biological half-life by route of exposure. 

30 days 
20 days 
30 years 
20 years 

720 
480 
262800 
175200 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Bones 
Bones 

Oregon Department of Human Services. 
Health effects of lead exposure. Available: 
http://www.oregon.gov/oha/PH/HEALTH
YENVIRONMENTS/HEALTHYNEIGH
BORHOODS/LEADPOISONING/MEDIC
ALPROVIDERSLABORATORIES/Docu
ments/introhealtheffectsmedicalprovider.p
df.  

30 years 
25 years 

262800 
219000 
 

Bones 
Bones 

CDC. 2016. Biomonitoring summary: 
Lead. Available: 
https://www.cdc.gov/biomonitoring/Lead_
BiomonitoringSummary.html.  

2 months 
1 month 

1440 
720 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

NCHS. 2012. Laboratory procedure 
manual: Cadmium, Lead, Manganese, 
Mercury, and Selenium. Available:  
https://www.cdc.gov/nchs/data/nhanes/nha
nes_11_12/PbCd_G_met_blood%20metals
.pdf. 

30 days 720 Blood, Serum, 
Plasma 

Swedish Chemicals Agency. 2012. 
Proposal for harmonised classification and 
labelling: Lead. Available: 
https://echa.europa.eu/documents/10162/1
3626/lead_clh_proposal_en.pdf. 

40 days 960 Blood, Serum, 
Plasma 

Dobbs MR. 2009. Clinical 
neurotoxicology: Syndromes, substances, 
environments. Available: 
https://books.google.com/books/about/Clin
ical_Neurotoxicology.html?id=Pmcy24y2
HyMC. 

36 days 864 Blood, Serum, 
Plasma 

Manganese O’Neal SL, Zheng W. 2015. Manganese 
toxicity upon overexposure: A decade in 
review. Current environmental health 
reports 2:315-328.  

8 years 
9 years 

70080 
78840 

Bones 
Bones 

Santamaria AB. 2008. Manganese 
exposure, essentiality & toxicity. The 
Indian journal of medical research 
128:484-500.  

42 days 
10 days 

1008.00 
240.00 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

Mayo Foundation for Medical E, Research. 
Test ID: MNB - manganese, blood. 
Available: 
https://www.mayomedicallaboratories.com
/test-
catalog/Clinical+and+Interpretive/89120. 

40 days 960 Body 

O’Neal SL, Hong L, Fu S, Jiang W, Jones 
A, Nie LH, et al. 2014. Manganese 
accumulation in bone following chronic 
exposure in rats: Steady-state 

8.50 years 74460 Bones 
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concentration and half-life in bone. 
Toxicology Letters 229:93-100. 

Mercury ATSDR. 2000. Managing hazardous 
material incidents: Mercury (hg). 
Available: 
https://www.atsdr.cdc.gov/mhmi/mmg46.p
df.  

90 days 
60 days 

2160 
1440 
 

Body 
Body 

US EPA. 1984. Mercury health effects 
update. Available: 
https://pubchem.ncbi.nlm.nih.gov/compou
nd/mercury#section=Biological-Half-Life. 

30 days 
70 days 
50 days 

720 
1680 
1200 

Blood, Serum, 
Plasma 
Body 
Body 

Hyman MH. 2004. The impact of mercury 
on human health and the environment.  
10:70-75.  

18 years 
1 year 

157680 
8760 

Bones 
Bones 

ATSDR. 1999. Toxicological profile for 
mercury. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp4
6.pdf.  

45 days 
40.50 days 
36 days 
 

1080 
972 
864 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Body 
 

Ethyl Mercury WHO. 2006. Statement on thiomersal. 
Available: 
http://www.who.int/vaccine_safety/commi
ttee/topics/thiomersal/statement_jul2006/e
n/. 

1 week 168 Blood, Serum, 
Plasma 

University of Minnesota E, Occupational 
H. Mercury: Dose, absorption, distribution, 
biotransformation, and excretion of 
mercury. Available: 
http://enhs.umn.edu/current/5103_spring20
03/mercury/mercdose.html. 

50 days 1200 Body 

Methyl 
Mercury 

Jo S, Woo HD, Kwon H-J, Oh S-Y, Park J-
D, Hong Y-S, et al. 2015. Estimation of 
the biological half-life of methylmercury 
using a population toxicokinetic model. 
International Journal of Environmental 
Research and Public Health 12:9054-9067.  

88.8 days 
71.6 days 
35.1 days 
52.8 days 

2131.20 
1718.40 
842.40 
1267.20 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

WHO. 2006. Statement on thiomersal. 
Available: 
http://www.who.int/vaccine_safety/commi
ttee/topics/thiomersal/statement_jul2006/e
n/. 

1.5 months 1080 Blood, Serum, 
Plasma 

ATSDR. 1999. Toxicological profile for 
mercury. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp4
6.pdf. 

65 days 
48 days 

1560 
1152 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

CDC. 2009. Fourth national report on 
human exposure to environmental 
chemicals. Available: 
https://www.cdc.gov/exposurereport/pdf/fo
urthreport.pdf. 

50 days 1200 Body 

Inorganic 
Mercury 

CDC. 2016. Biomonitoring summary: 
Mercury. Available: 

3 weeks 
1 week 

504 
168 

Blood, Serum, 
Plasma 
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https://www.cdc.gov/biomonitoring/Mercu
ry_BiomonitoringSummary.html. 

Blood, Serum, 
Plasma 

ATSDR. 2000. Managing hazardous 
material incidents: Mercury (hg). 
Available: 
https://www.atsdr.cdc.gov/mhmi/mmg46.p
df. 

15 days 
28 days 
60 days 
60 days 

360 
672 
1440 
1440 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
Body 
Body 

Molybdenum ATSDR. 2017. Toxicological profile for 
molybdenum. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp2
12.pdf. 

6.60 hours 6.60 Blood, Serum, 
Plasma 
 

Vyskočil, Adolf, and Claude Viau. 
"Assessment of molybdenum toxicity in 
humans." Journal of Applied Toxicology 
19.3 (1999): 185-192. 

19 hours 19 Body 

Perchlorate Srinivasan A, Viraraghavan T. 2009. 
Perchlorate: Health effects and 
technologies for its removal from water 
resources. International Journal of 
Environmental Research and Public Health 
6:1418-1442.  

8 hours 
6 hours 

8 
6 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
 

Crump KS, Gibbs JP. 2005. Benchmark 
calculations for perchlorate from three 
human cohorts. Environmental Health 
Perspectives 113:1001-1008.  

7.50 hours 7.50 Blood, Serum, 
Plasma 
 

ATSDR. 2008. Toxicological profile for 
perchlorates. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp1
62.pdf. 

8 hours 8 Blood, Serum, 
Plasma 
 

WHO. 2004. Perchlorate in Drinking-
water Background document for 
development of WHO Guidelines for 
Drinking-water Quality. Available: 
http://www.who.int/water_sanitation_healt
h/water-
quality/guidelines/chemicals/perchlorate-
background-jan17.pdf 

6 hours 
9.30 hours 

6 
9.30 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 
 

Platinum Herr CEW, Jankofsky M, Angerer J, 
Kuster W, Stilianakis NI, Gieler U, et al. 
2003. Influences on human internal 
exposure to environmental platinum. 
Journal of exposure analysis and 
environmental epidemiology 13:24-30. 

720 days 17280 Body 

Thallium  AcuteTox. Thallium sulfate. Available: 
http://www.acutetox.eu/pdf_human_short/
66-Thallium sulphate revised.pdf.  

8 days 192 Blood, Serum, 
Plasma 
 

Quest Diagnostics. Thallium, blood. 
Available: 
http://www.questdiagnostics.com/testcente
r/testguide.action%3Fdc%3DTH_Thallium
. 

4 days 
2 days 

96 
48 

Blood, Serum, 
Plasma 
Blood, Serum, 
Plasma 

Thiomersal Burbacher, Thomas M. et al. “Comparison 
of Blood and Brain Mercury Levels in 
Infant Monkeys Exposed to 

8.60 days 206.40 Blood, Serum, 
Plasma 
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Methylmercury or Vaccines Containing 
Thimerosal.” Environmental Health 
Perspectives 113.8 (2005): 1015–1021. 
PMC. Web. 6 Sept. 2018.  

Tungsten Lemus R, Venezia CF. 2015. An update to 
the toxicological profile for water-soluble 
and sparingly soluble tungsten substances. 
Critical reviews in toxicology 45:388-411.  

67 days 
6 days 

1608 
144 

Body 
Body 

ATSDR. 2005. Toxicological profile for 
tungsten. Available: 
https://www.atsdr.cdc.gov/toxprofiles/tp18
6.pdf. 

23 years 
4 years 
100 days 

201480 
35040 
2400 

Bones 
Bones 
Bones 

Uranium ATSDR. 2013. Toxicological profile for 
uranium. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp1
50.pdf.  

200 days 
70 days 
240 days 
110 days 
2 weeks 
1 week 

4800 
1680 
5760 
2640 
336 
168 

Bones 
Bones 
Lungs 
Lungs 
Body 
Body 

Zinc INCHEM I. IPCS INCHEM - ZINC. 
Available: 
http://www.inchem.org/documents/jecfa/je
cmono/v17je33.htm. 

500 days 
300 days 

12000 
7200 

Body 
Body 
 

Nriagu J. 2007. Zinc deficiency in human 
health. School of Public Health. 

280 days 6720 Body 
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Table A1.5. Maximum composite half-life in hours, log-transformed half-life, and types of 
methods on how the half-lives were determined for each chemical biomarker. 

 

NHANES 
Codename 

Chemical Name (units) Maximum 
Composite 
Half-Lives 
(hours) 

Log 
10(Maximum 
Composite 
Half-Lives) 

Method Types 
to Find or 
Estimate Half-
Lives 

LBXGLY Glycideamide (pmoL/G Hb) 4.716143 0.673587 Estimated by 
QSARs 

LBXACR Acrylamide (pmoL/G Hb) 2.238721 0.35 Estimated by 
QSARs 

LBXBB1LA 2,2',4,4',5,5'-hexabromobiphenyl lipid adj 
(ng/g) 

56940 4.755417 Arnot et al., 
2014 Training 
Set 

LBXBR2LA 2,4,4'-tribromodiphenyl ether lipid adj 
(ng/g) 

26400 4.421604 Arnot et al., 
2014 Training 
Set 

LBXBR8LA 2,2',4,4',5,6'-hexabromodiphenyl ether lipid 
adj (ng/g) 

18214.72 4.260422 Arnot et al., 
2014 Training 
Set 

LBXBR6LA 2,2',4,4',6-pentabromodiphenyl lipid adj 
(ng/g) 

14831.67 4.17119 Arnot et al., 
2014 Training 
Set 

LBXBR3LA 2,2',4,4'-tetrabromodiphenyl ether lipid ad 
(ng/g) 

13818.15 4.14045 Arnot et al., 
2014 Training 
Set 

LBXBR5LA 2,2',4,4',5-pentabromodiphenyl lipid adj 
(ng/g) 

12699.6 4.10379 Arnot et al., 
2014 Training 
Set 

LBXBR7LA 2,2',4,4',5,5'-hexabromodiphenyl lipid adj 
(ng/g) 

6194.411 3.792 Estimated by 
QSARs 

LBXD03LA 1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) 244555 5.388377 Arnot et al., 
2014 Training 
Set 

LBXD07LA 1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) 66104.34 4.82023 Arnot et al., 
2014 Training 
Set 

LBXD05LA 1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) 39400.41 4.595501 Arnot et al., 
2014 Training 
Set 

LBXF04LA 1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) 60954.86 4.785008 Arnot et al., 
2014 Training 
Set 

LBXF03LA 2,3,4,7,8-pncdf Lipid Adj (pg/g) 51002.33 4.70759 Arnot et al., 
2014 Training 
Set 

LBXF08LA 1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) 22792.4 4.35779 Arnot et al., 
2014 Training 
Set 

SSMEL Melamine (ng/mL) 3.404082 0.532 Estimated by 
QSARs 

SSCYA Cyanuric acid (ng/mL) 2.238721 0.35 Estimated by 
QSARs 
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LBXBPB Lead (ug/dL) 262800 5.419625 Literature 
LBXBCD Cadmium (ug/L) 262800 5.419625 Literature 
LBXTHG Mercury, total (ug/L) 157680 5.197777 Literature 
URXUHG Mercury, urine (ng/mL) 157680 5.197777 Literature 
URXUBA Barium, urine (ng/mL) 1200 3.079181 Literature 
URXUCO Cobalt, urine (ng/mL) 17520 4.243534 Literature 
URXUCS Cesium, urine (ng/mL) 3600 3.556303 Literature 
URXUMO Molybdenum, urine (ng/mL) 19 1.278754 Literature 
URXUPB Lead, urine (ng/mL) 262800 5.419625 Literature 
URXUSB Antimony, urine (ng/mL) 2400 3.380211 Literature 
URXUTL Thallium, urine (ng/mL) 192 2.283301 Literature 
URXUTU Tungsten, urine (ng/mL) 201480 5.304232 Literature 
URXUUR Uranium, urine (ng/mL) 5760 3.760422 Literature 
URXUAS Urinary total Arsenic (µg/L) 60 1.778151 Literature 
URXUAB Urinary Arsenobetaine (µg/L) 98 1.991226 Literature 
URXUDMA Urinary Dimethylarsonic acid (µg/L) 2243 3.350829 Literature 
URXUCD Cadmium, urine (ng/mL) 262800 5.419625 Literature 
LBXBMN Blood manganese (ug/L) 78840 4.896747 Literature 
LBXSCU Serum Copper (ug/dL) 792 2.898725 Literature 
LBXSZN Serum Zinc (ug/dL) 12000 4.079181 Literature 
LBXBGM Mercury, methyl (ug/L) 3360 3.526339 Literature 
URXSCN Urinary thiocyanate (ng/mL) 4.477442 0.65103 Estimated by 

QSARs 
URXUIO Iodine, urine (ng/mL) 744 2.871573 Literature 
URXNO3 Urinary nitrate (ng/mL) 1.588547 0.201 Estimated by 

QSARs 
URXUP8 Perchlorate, urine (ng/mL) 9.3 0.968483 Literature 
URXTRS Urinary Triclosan (ng/mL) 254.0973 2.405 Estimated by 

QSARs 
URXBPS Urinary Bisphenol S (ug/L) 7.144963 0.854 Estimated by 

QSARs 
URXMPB Methyl paraben (ng/ml) 2.09894 0.322 Estimated by 

QSARs 
URXPPB Propyl paraben (ng/ml) 2.09894 0.322 Estimated by 

QSARs 
URXBPH Urinary Bisphenol A (ng/mL) 2 0.30103 Arnot et al., 

2014 Training 
Set 

URXBPF Urinary Bisphenol F (ug/L) 1.96336 0.293 Estimated by 
QSARs 

URXBP3 Urinary Benzophenone-3 (ng/mL) 1.202264 0.08 Estimated by 
QSARs 

LBXTNALA Trans-nonachlor Lipid Adj (ng/g) 685510.4 5.836014 Estimated by 
QSARs 

LBXOXYLA Oxychlordane Lipid Adj (ng/g) 624539.5 5.79556 Estimated by 
QSARs 



 

189 
 

LBXPDELA p,p'-DDE Lipid Adj (ng/g) 77236.13 4.887821 Arnot et al., 
2014 Training 
Set 

LBXDIELA Dieldrin Lipid Adj (ng/g) 36525.47 4.562596 Arnot et al., 
2014 Training 
Set 

LBXBHCLA Beta-hexachlorocyclohexane Lipid Adj 
(ng/g) 

3365.348 3.52703 Estimated by 
QSARs 

URXCPM 3,5,6-trichloropyridinol (ug/L) 197.6464 2.295889 Estimated by 
QSARs 

URXOP3 Dimethylthiophosphate (ug/L) 117.1998 2.068927 Estimated by 
QSARs 

URXOPM 3-phenoxybenzoic acid (ug/L) 67.02382 1.826229 Estimated by 
QSARs 

URX14D 2,5-dichlorophenol (ug/L) 39.88466 1.600806 Estimated by 
QSARs 

URXDCB 2,4-dichlorophenol (ug/L) 35.81212 1.55403 Estimated by 
QSARs 

URXPAR Paranitrophenol (ug/L) 13.95087 1.144601 Estimated by 
QSARs 

URX24D 2,4-D (ug/L) 32.9997 1.51851 Arnot et al., 
2014 Training 
Set 

URXDEA DEET acid (ug/L) 9.29979 0.968473 Estimated by 
QSARs 

URXCNP Mono(carboxynonyl) phthalate (ng/mL) 10.35214 1.01503 Estimated by 
QSARs 

SSURHIBP Mono-2-hydroxy-iso-butyl phthlte (ng/mL) 5.936395 0.773523 Estimated by 
QSARs 

URXCOP Mono(carboxyoctyl) phthalate (ng/mL) 5.176068 0.714 Estimated by 
QSARs 

URXMIB Mono-isobutyl pthalate (ng/mL) 1.75945 0.245377 Estimated by 
QSARs 

URXMHP Mono-(2-ethyl)-hexyl phthalate (ng/mL) 1.117285 0.048164 Estimated by 
QSARs 

URXMOH Mono-(2-ethyl-5-oxohexyl) phthalate 
(ng/mL) 

1.117285 0.048164 Estimated by 
QSARs 

URXMZP Mono-benzyl phthalate (ng/mL) 1.093676 0.038889 Estimated by 
QSARs 

URXMHH Mono-(2-ethyl-5-hydroxyhexyl) phthalate 
(ng/mL) 

1.022749 0.009769 Estimated by 
QSARs 

URXECP Mono-2-ethyl-5-carboxypentyl phthalate 
(ng/mL) 

0.990511 -0.00414 Estimated by 
QSARs 

URXMBP Mono-n-butyl phthalate (ng/mL) 0.951643 -0.02153 Estimated by 
QSARs 

URXMEP Mono-ethyl phthalate (ng/mL) 0.951643 -0.02153 Estimated by 
QSARs 

URXMNM Mono-n-methyl phthalate (ng/mL) 0.951643 -0.02153 Estimated by 
QSARs 

SSURMHBP Mono-3-hydroxy-n-butyl phthalate (ng/mL) 0.866928 -0.06202 Estimated by 
QSARs 

URXMC1 Mono-(3-carboxypropyl) phthalate (ng/mL) 0.837084 -0.07723 Estimated by 
QSARs 

URXDMA o-Desmethylangolensin (O-DMA) (ng/mL) 3.116994 0.493736 Estimated by 
QSARs 
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URXETL Enterolactone (ng/mL) 0.820352 -0.086 Estimated by 
QSARs 

URXETD Enterodiol (ng/mL) 0.412098 -0.385 Estimated by 
QSARs 

URXP05 3-phenanthrene (ng/L) 10.13458 1.005806 Estimated by 
QSARs 

URXP06 1-phenanthrene (ng/L) 10.13458 1.005806 Estimated by 
QSARs 

URXP07 2-phenanthrene (ng/L) 10.13458 1.005806 Estimated by 
QSARs 

URXP19 4-phenanthrene (ng/L) 10.13458 1.005806 Estimated by 
QSARs 

URXP25 2 & 3-Hydroxyphenanthrene (ng/L) 10.13458 1.005806 Estimated by 
QSARs 

URXP10 1-pyrene (ng/L) 8.830799 0.946 Estimated by 
QSARs 

URXP01 1-napthol (ng/L) 6.424005 0.807806 Estimated by 
QSARs 

URXP02 2-napthol (ng/L) 6.424005 0.807806 Estimated by 
QSARs 

URXP17 9-fluorene (ng/L) 5.480988 0.738859 Estimated by 
QSARs 

URXP03 3-fluorene (ng/L) 1.689685 0.227806 Estimated by 
QSARs 

URXP04 2-fluorene (ng/L) 1.689685 0.227806 Estimated by 
QSARs 

LBD199LA PCB199 Lipid Adj (ng/g) 2023998 6.30621 Arnot et al., 
2014 Training 
Set 

LBX180LA PCB180 Lipid Adj (ng/g) 451554.3 5.65471 Arnot et al., 
2014 Training 
Set 

LBX209LA PCB209 Lipid Adj (ng/g) 303598.5 5.4823 Arnot et al., 
2014 Training 
Set 

LBX146LA PCB146 Lipid Adj (ng/g) 233539.3 5.36836 Arnot et al., 
2014 Training 
Set 

LBX170LA PCB170 Lipid Adj (ng/g) 226996.9 5.35602 Arnot et al., 
2014 Training 
Set 

LBX194LA PCB194 Lipid Adj (ng/g) 170215.9 5.231 Estimated by 
QSARs 

LBX187LA PCB187 Lipid Adj (ng/g) 136442.9 5.134951 Arnot et al., 
2014 Training 
Set 

LBX153LA PCB153 Lipid Adj (ng/g) 129038.7 5.11072 Arnot et al., 
2014 Training 
Set 

LBX196LA PCB196 Lipid Adj (ng/g) 101199.9 5.00518 Arnot et al., 
2014 Training 
Set 

LBX138LA PCB138 Lipid Adj (ng/g) 84739.08 4.928084 Arnot et al., 
2014 Training 
Set 
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LBXHXCLA 3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) 73872.02 4.86848 Arnot et al., 
2014 Training 
Set 

LBX118LA PCB118 Lipid Adj (ng/g) 45459.01 4.65762 Arnot et al., 
2014 Training 
Set 

LBX099LA PCB99 Lipid Adj (ng/g) 30359.85 4.4823 Arnot et al., 
2014 Training 
Set 

LBXPCBLA 3,3',4,4',5-pcnb Lipid Adj (pg/g) 14646.56 4.165736 Arnot et al., 
2014 Training 
Set 

LBX074LA PCB74 Lipid Adj (ng/g) 8552.045 3.93207 Arnot et al., 
2014 Training 
Set 

LBX028LA PCB28 Lipid Adj (ng/g) 5284.107 3.722972 Arnot et al., 
2014 Training 
Set 

LBX049LA PCB49 Lipid Adj (ng/g) 1046.887 3.0199 Arnot et al., 
2014 Training 
Set 

LBX044LA PCB44 Lipid Adj (ng/g) 948.7452 2.97715 Arnot et al., 
2014 Training 
Set 

LBXPFDE Perfluorodecanoic acid (ng/mL) 58692 4.768578909 Conglomerated 
Estimation 

LBXMPAH 2-(N-methyl-PFOSA) acetate (ng/mL) 14582.35905 4.163827787 Animal-
Human 
Extrapolation 

LBXPFNA Perfluorononanoic acid (ng/mL) 21900 4.340444115 Conglomerated 
Estimation 

LBXPFHS Perfluorohexane sulfonic acid (ng/mL) 63948 4.805826966 Conglomerated 
Estimation 

LBXPFOA Perfluorooctanoic acid (ng/mL) 20586 4.313571968 Conglomerated 
Estimation 

LBXPFOS Perfluorooctane sulfonic acid (ng/mL) 41172 4.614601964 Conglomerated 
Estimation 

LBXCOT Cotinine (ng/mL) 17.30103 1.238072 Arnot et al., 
2014 Training 
Set 

URXNAL NNAL , urine (ng/mL) 2.203265 0.343067 Estimated by 
QSARs 

LBXVXY Blood m-/p-Xylene (ng/ml) 31.62105 1.499976 Arnot et al., 
2014 Training 
Set 

LBXVDB Blood 1,4-Dichlorobenzene (ng/ml) 21.9786 1.342 Estimated by 
QSARs 

LBXVBM Blood Bromodichloromethane (pg/ml) 18.40772 1.265 Estimated by 
QSARs 

URXHEM N-Ace-S-(2-Hydroxyethyl)-L-cys (ng/mL) 7.353935 0.86652 Estimated by 
QSARs 

URXPHG Phenylglyoxylic acid (ng/mL) 4.400217 0.643474 Estimated by 
QSARs 

URXHP2 N-Ace-S-(2-hydroxypropyl)-L-cys (ng/mL) 4.954844 0.69503 Estimated by 
QSARs 
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URXMB3 N-A-S-(4-hydrxy-2butn-l-yl)-L-cys 
(ng/mL) 

4.477442 0.65103 Estimated by 
QSARs 

URX34M 3-methipurc acd & 4-methipurc acd 
(ng/mL) 

4.824392 0.683443 Estimated by 
QSARs 

URXBMA N-Acetyl-S-(benzyl)-L-cysteine (ng/mL) 4.594688 0.662256 Estimated by 
QSARs 

URXBPM N-Acetyl-S-(n-propyl)-L-cysteine (ng/mL) 4.477442 0.65103 Estimated by 
QSARs 

URXGAM N-ac-S-(2-carbmo-2-hydxel)-L-cys 
(ng/mL) 

4.477442 0.65103 Estimated by 
QSARs 

URXMAD Mandelic acid (ng/mL) 4.005215 0.602626 Estimated by 
QSARs 

URXAAM N-Ace-S-(2-carbamoylethyl)-L-cys 
(ng/mL) 

3.992602 0.601256 Estimated by 
QSARs 

URXAMC N-Ace-S-(N-methlcarbamoyl)-L-cys 
(ng/mL) 

3.992602 0.601256 Estimated by 
QSARs 

URXATC 2-amnothiazolne-4-carbxylic acid (ng/mL) 3.992602 0.601256 Estimated by 
QSARs 

URXCYM N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL) 3.992602 0.601256 Estimated by 
QSARs 

URXTTC 2-thoxothazlidne-4-carbxylic acid (ng/mL) 3.992602 0.601256 Estimated by 
QSARs 

URX2MH 2-Methylhippuric acid (ng/mL) 3.867926 0.587478 Estimated by 
QSARs 

URXPMM N-A-S-(3-hydrxprpl-1-metl)-L-cys (ng/mL) 3.615931 0.55822 Estimated by 
QSARs 

URXCEM N-Acetyl-S-(2-Carbxyethyl)-L-Cys 
(ng/mL) 

3.483236 0.541983 Estimated by 
QSARs 

URXHPM N-Ace-S-(3-Hydroxypropyl)-L-Cys 
(ng/mL) 

3.483236 0.541983 Estimated by 
QSARs 

URXDHB N-Ace-S-(3,4-Dihidxybutl)-L-Cys (ng/mL) 3.213711 0.507007 Estimated by 
QSARs 

LBXVTO Blood Toluene (ng/ml) 2.576321 0.411 Estimated by 
QSARs 

LBXNM Blood Nitromethane (pg/mL) 2.238721 0.35 Estimated by 
QSARs 

LBXVCF Blood Chloroform (pg/ml) 1.5 0.176091 Arnot et al., 
2014 Training 
Set 
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Table A1.6. References on regulation, legislation, and restriction dates of substances. 

 

Chemical References for Ban/Phase-out Dates 
Acephate US EPA. 2017. Food and pesticides. Available: 

https://www.epa.gov/safepestcontrol/food-and-pesticides. 
Aldrin/Endrin ATSDR. 2011. Toxic substances portal - aldrin/dieldrin. Available: 

https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=56.  
US EPA. 2006. Procedures for the derivation of equilibrium partitioning sediment 
benchmarks (esbs) for the protection of benthic organisms: Endrin. Available: 
https://nepis.epa.gov/Exe/ZyNET.exe/P100G7G6.TXT?ZyActionD=ZyDocument&C
lient=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&Search
Method=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMon
th=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=. 

Azinphos-Methyl Gilbert S. 2014. Azinphos-methyl. Available: 
http://www.toxipedia.org/display/toxipedia/Azinphos-Methyl. 

Bisphenol A (BPA) Houlihan J, Lunder S, Jacob A. 2008. Timeline: Bpa from invention to phase-out. 
Available: https://www.ewg.org/research/timeline-bpa-invention-phase-
out#.WjsfefmnEdU. 

Cadmium Spencer J. 2008. Toys 'R' us, mattel phase out cadmium batteries. The Wall Street 
Journal. 

Carbofuran Foley S. 2009. Carbofuran. Available: 
http://www.toxipedia.org/display/toxipedia/Carbofuran.  
US EPA. 2011. Carbofuran cancellation process. Available: 
https://archive.epa.gov/pesticides/reregistration/web/html/carbofuran_noic.html#revo
cation. 

Carbon Tetrachloride ATSDR. 2015. Toxic substances portal - carbon tetrachloride. Available: 
https://www.atsdr.cdc.gov/phs/phs.asp?id=194&tid=35. 

Chlorobenzene ATSDR. 2011. Toxic substances portal - chlorobenzene. Available: 
https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=87. 

Chlordane ATSDR. 2015. Toxic substances portal - chlordane. Available: 
https://www.atsdr.cdc.gov/phs/phs.asp?id=353&tid=62. 

Chlorpyrifos US EPA. 2017. Ingredients used in pesticide products: Chlorpyrifos. Available: 
https://www.epa.gov/ingredients-used-pesticide-products/chlorpyrifos. 

Chlorpyrifos-Methyl US EPA. 2000. Chlorpyrifos-methyl facts. Available: 
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-
059102_1-Oct-00.pdf. 

Cyanide Jensen J. Ban on cyanide mining in montana with initiative 137. Available: 
http://meic.org/issues/mining-in-montana/hardrock-and-cyanide-mining-in-
montana/ban-on-cyanide-mining-in-montana-with-initiative-137/.  
Representatives of Wisconsin. 2001. 2001 Assembly Bill 95. Available: 
http://docs.legis.wisconsin.gov/2001/related/proposals/ab95. 

Diazinon Gilbert S. 2014. Diazinon. Available: 
http://www.toxipedia.org/display/toxipedia/Diazinon. 

Disulfoton and 
Methamidophos 

US EPA. 2009. Disulfoton and methamidophos; product cancellation order. 
Available: 
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/frn_UG-
2_23-Sep-2009.pdf. 

DDT (dichloro-diphenyl-
trichloroethane) 

US EPA. 1975. DDT regulatory history: A brief survey (to 1975). Available: 
https://archive.epa.gov/epa/aboutepa/ddt-regulatory-history-brief-survey-1975.html.  

Dioxins and dioxin-like 
compounds 

US EPA. 1995. Municipal waste combustors. 
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1,2-Dibromo-3-
Chloropropane 

US EPA. 2000. 1,2-dibromo-3-chloropropane (DBCP). Available: 
https://www.epa.gov/sites/production/files/2016-09/documents/1-2-dibromo-3-
chloropropane.pdf.  

1,2-Dibromoethane ATSDR. 2011. Toxic substances portal - 1,2-dibromoethane. Available: 
https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=131. 

Dichlorvos (DDVP) US EPA. 1995. Dichlorvos (ddvp); deletion of certain uses and directions. Available: 
https://www.federalregister.gov/documents/1995/04/19/95-9166/dichlorvos-ddvp-
deletion-of-certain-uses-and-directions. 

Ethyl Chloride US EPA. Ethyl chloride (chloroethane). Available: 
https://www.epa.gov/sites/production/files/2016-09/documents/ethyl-chloride.pdf. 

Ethylene Oxide Gilbert S. 2009. Ethylene oxide (eto). Available: 
http://www.toxipedia.org/pages/viewpage.action?pageId=2822700. 

Formaldehyde Thomas K. 2014. The ‘no more tears’ shampoo, now with no formaldehyde. New 
York Times.  

Heptachlor ATSDR. 2015. Toxic substances portal - heptachlor/heptachlor epoxide. Available: 
https://www.atsdr.cdc.gov/phs/phs.asp?id=743&tid=135.  
Extension Toxicology Network. 1996. Pesticide information profile - heptachlor. 
Available: http://extoxnet.orst.edu/pips/heptachl.htm.  
Gilbert S. 2014. Heptachlor. Available: 
http://www.toxipedia.org/display/toxipedia/Heptachlor#Heptachlor-
ATSDRPublicHealthStatement. 

Hexachlorobenzene ATSDR. 2015. Toxicological profile for hexachlorobenzene. Available: 
https://www.atsdr.cdc.gov/ToxProfiles/tp90.pdf. 

Hexachlorocyclohexanes ASTDR. 2005. Toxicological profile for alpha-, beta-, gamma-, and delta-
hexachlorocyclohexane. Available: https://www.atsdr.cdc.gov/toxprofiles/tp43.pdf.  
ATSDR. 2005. 5. Production, import/export, use, and disposal: 
Hexachlorocyclohexane. Available: https://www.atsdr.cdc.gov/ToxProfiles/tp43-
c5.pdf. 

Hexachloroethane National Toxicology Program. 1994. Seventh annual report on carcinogens: 
Hexachloroethane. Available: 
https://ntp.niehs.nih.gov/ntp/roc/content/profiles/hexachloroethane.pdf. 
ATSDR. 2015. Toxic substances portal - hexachloroethane. Available: 
https://www.atsdr.cdc.gov/phs/phs.asp?id=868&tid=169. 

Lead National Center for Environmental Health Division of Emergency and Environmental 
Health Services. 2014. Lead: Prevention tips. Available: 
https://www.cdc.gov/nceh/lead/tips.htm.  
Newell R, Rogers K. 2003. The u.S. Experience with the phasedown of lead in 
gasoline.Resources for the Future.  
Fowler T. 2008. A brief history of lead regulation. Science Progress where science, 
technology, and policy meet.  
US EPA. 2017. Drinking water contaminants – standards and regulations. Available: 
https://www.epa.gov/dwstandardsregulations/use-lead-free-pipes-fittings-fixtures-
solder-and-flux-drinking-water.  
US EPA. 2011. Basic questions and answers for the drinking water strategy 
contaminant groups effort. Available: https://www.epa.gov/dwstandardsregulations. 

Mercury US EPA. 1996. Mercury-containing and rechargeable battery management act of 
1996. Available: https://www.congress.gov/104/plaws/publ142/PLAW-
104publ142.pdf.  
Mohapatra SP, Nikolova I, Mitchell A. 2007. Managing mercury in the great lakes: 
An analytical review of abatement policies. Journal of environmental management 
83:80-92. 

Methyl parathion Jaga K, Dharmani C. 2006. Methyl parathion: An organophosphate insecticide not 
quite forgotten. Reviews on environmental health 21:57-67. 

Metiram Schneider K. 1992. E.P.A., in a reversal, lifts a ban on farm chemicals. New York 
Times. 
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Mirex OEHHA. 2016. Mirex. Available: https://oehha.ca.gov/chemicals/mirex. 
Methyl Tertiary Butyl 
Ether (MTBE) 

American Cancer Society. 2014. MTBE and cancer risk. Available: 
https://www.cancer.org/cancer/cancer-causes/mtbe.html. 

Parabens Franklin K. 2016. Johnson & Johnson meets ingredient commitments. Chemical 
Watch: Global Risk & Regulation News. 

Polybrominated 
Biphenyls (PBBs) 

ATSDR. 2015. Toxic substances portal - polybrominated biphenyls (PBBs). 
Available: https://www.atsdr.cdc.gov/PHS/PHS.asp?id=527&tid=94. 

Polybrominated diphenyl 
ether (PBDE) 

Guardia MJL, Hale RC, Harvey E. 2006. Detailed polybrominated diphenyl ether 
(pbde) congener composition of the widely used penta-, octa-, and deca-pbde 
technical flame-retardant mixtures. Environmental science & technology 40:6247-
6254.  
US EPA. 2010. An exposure assessment of polybrominated diphenyl ethers (pbde) 
(final). Available: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=210404. 

Polychlorinated 
biphenyls (PCBs) 

US EPA. 1979. EPA bans PCB manufacture; phases out uses. Available: 
https://archive.epa.gov/epa/aboutepa/epa-bans-pcb-manufacture-phases-out-
uses.html. 

Perfluorinated 
compounds, including 
Perfluoroalkyl and 
Polyfluoroalkyl 
Substances (PFASs) 

US EPA. 2016. Risk management for per- and polyfluoroalkyl substances (PFASs) 
under tsca. Available: https://www.epa.gov/assessing-and-managing-chemicals-
under-tsca/risk-management-and-polyfluoroalkyl-substances-pfass.  
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. 2011. 
Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, 
classification, and origins. Integrated environmental assessment and management 
7:513-541.  
Fromme H, Becher G, Hilger B, Völkel W. 2016. Brominated flame retardants – 
exposure and risk assessment for the general population. International Journal of 
Hygiene and Environmental Health 219:1-23.  
Butenhoff JL, Olsen GW, Pfahles-Hutchens A. 2006. The applicability of 
biomonitoring data for perfluorooctanesulfonate to the environmental public health 
continuum. Environmental Health Perspectives 114:1776-1782.  
US EPA. 2003. Perfluoroalkyl sulfonates; significant new use rule.  
US EPA. 2002. Perfluoroalkyl sulfonates; significant new use rule; final rule and 
supplemental proposed rule. Available: 
https://www.federalregister.gov/documents/2002/12/09/02-31011/perfluoroalkyl-
sulfonates-significant-new-use-rule. 

Phthalates US Consumer Product Safety Commission. 2015. Phthalates. Available: 
https://www.cpsc.gov/Business--Manufacturing/Business-Education/Business-
Guidance/Phthalates-Information.  
Hileman B. 2007. California bans phthalates in toys for children. Chemical & 
Engineering News 85:12. 
Szabo L. 2007. Hospitals move to phase out chemical. ABC News. 

2,4,5-T Institute of Medicine Committee to Review the Health Effects in Vietnam Veterans 
of Exposure to H. 1994. 2, history of the controversy over the use of herbicides. 
Available: https://www.ncbi.nlm.nih.gov/books/NBK236351/. 

2,3,7,8-
Tetrachlorodibenzo-p-
Dioxin (2,3,7,8,-TCDD) 

US EPA. 2000. 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8,-tcdd). Available: 
https://www.epa.gov/sites/production/files/2016-09/documents/2-3-7-8-
tetrachlorodibenzo-p-dioxin.pdf. 

Tetrachlorvinphos US EPA. 2017. Tetrachlorvinphos (tcvp). Available: 
https://www.epa.gov/ingredients-used-pesticide-products/tetrachlorvinphos-tcvp. 

Thallium Staff of the Nonferrous Metals Division. 1972. Thallium. Available: 
http://digicoll.library.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-
idx?type=goto&id=EcoNatRes.MinYB1972v1&page=1358&isize=XL. 

Thimerosal CDC. 2015. Thimerosal in vaccines. Available: 
https://www.cdc.gov/vaccinesafety/concerns/thimerosal/index.html. 
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Triclosan and 
triclocarbon 

FDA. 2016. FDA issues final rule on safety and effectiveness of antibacterial soaps. 
Available: 
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm517478.htm. 

Trichloroethylene Gilbert S. 2014. Trichloroethylene. Available: 
http://www.toxipedia.org/display/toxipedia/Trichloroethylene. 

Tungsten Kiger PJ. 2013. U.S. Phase-out of incandescent light bulbs continues in 2014 with 
40-, 60-watt varieties. National Geographic. 

Styrene United Press International. 1988. Berkeley widens ban on foam food containers. Los 
Angeles Times. 
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Table A1.7. Latest restriction date, decade, and period by chemicals. 

 

NHANES 
Codename 

Chemical Name (units) Latest 
Restriction 
Date 

Latest 
Restriction 
Decade 

Latest 
Restriction 
Period 

LBXGLY Glycideamide (pmoL/G Hb) #N/A No 
Restrictions 

No Restrictions 

LBXACR Acrylamide (pmoL/G Hb) #N/A No 
Restrictions 

No Restrictions 

LBXBB1LA 2,2',4,4',5,5'-hexabromobiphenyl lipid adj 
(ng/g) 

1979 1970s 1970-1984 

LBXBR2LA 2,4,4'-tribromodiphenyl ether lipid adj 
(ng/g) 

2004 2000s 2000-2014 

LBXBR8LA 2,2',4,4',5,6'-hexabromodiphenyl ether 
lipid adj (ng/g) 

2004 2000s 2000-2014 

LBXBR6LA 2,2',4,4',6-pentabromodiphenyl lipid adj 
(ng/g) 

2004 2000s 2000-2014 

LBXBR3LA 2,2',4,4'-tetrabromodiphenyl ether lipid ad 
(ng/g) 

2004 2000s 2000-2014 

LBXBR5LA 2,2',4,4',5-pentabromodiphenyl lipid adj 
(ng/g) 

2004 2000s 2000-2014 

LBXBR7LA 2,2',4,4',5,5'-hexabromodiphenyl lipid adj 
(ng/g) 

2004 2000s 2000-2014 

LBXD03LA 1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) 1995 1990s 1985-1999 
LBXD07LA 1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) 1995 1990s 1985-1999 
LBXD05LA 1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) 1995 1990s 1985-1999 
LBXF04LA 1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) 1995 1990s 1985-1999 
LBXF03LA 2,3,4,7,8-pncdf Lipid Adj (pg/g) 1995 1990s 1985-1999 
LBXF08LA 1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) 1995 1990s 1985-1999 
SSMEL Melamine (ng/mL) #N/A No 

Restrictions 
No Restrictions 

SSCYA Cyanuric acid (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXBPB Lead (ug/dL) 1995 1990s 1985-1999 
LBXBCD Cadmium (ug/L) 2008 2000s 2000-2014 
LBXTHG Mercury, total (ug/L) 1996 1990s 1985-1999 
URXUHG Mercury, urine (ng/mL) 1996 1990s 1985-1999 
URXUBA Barium, urine (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXUCO Cobalt, urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXUCS Cesium, urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXUMO Molybdenum, urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXUPB Lead, urine (ng/mL) 1995 1990s 1985-1999 
URXUSB Antimony, urine (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXUTL Thallium, urine (ng/mL) 1972 1970s 1970-1984 
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URXUTU Tungsten, urine (ng/mL) 2012 2010s 2000-2014 
URXUUR Uranium, urine (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXUAS Urinary total Arsenic (µg/L) #N/A No 
Restrictions 

No Restrictions 

URXUAB Urinary Arsenobetaine (µg/L) #N/A No 
Restrictions 

No Restrictions 

URXUDMA Urinary Dimethylarsonic acid (µg/L) #N/A No 
Restrictions 

No Restrictions 

URXUCD Cadmium, urine (ng/mL) 2008 2000s 2000-2014 
LBXBMN Blood manganese (ug/L) #N/A No 

Restrictions 
No Restrictions 

LBXSCU Serum Copper (ug/dL) #N/A No 
Restrictions 

No Restrictions 

LBXSZN Serum Zinc (ug/dL) #N/A No 
Restrictions 

No Restrictions 

LBXBGM Mercury, methyl (ug/L) 1996 1990s 1985-1999 
URXSCN Urinary thiocyanate (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXUIO Iodine, urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXNO3 Urinary nitrate (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXUP8 Perchlorate, urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXTRS Urinary Triclosan (ng/mL) 2016 No 
Restrictions 

No Restrictions 

URXBPS Urinary Bisphenol S (ug/L) #N/A No 
Restrictions 

No Restrictions 

URXMPB Methyl paraben (ng/ml) 2015 No 
Restrictions 

No Restrictions 

URXPPB Propyl paraben (ng/ml) 2015 No 
Restrictions 

No Restrictions 

URXBPH Urinary Bisphenol A (ng/mL) 2008 2000s 2000-2014 
URXBPF Urinary Bisphenol F (ug/L) #N/A No 

Restrictions 
No Restrictions 

URXBP3 Urinary Benzophenone-3 (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXTNAL
A 

Trans-nonachlor Lipid Adj (ng/g) 1983 1980s 1970-1984 

LBXOXYL
A 

Oxychlordane Lipid Adj (ng/g) 1983 1980s 1970-1984 

LBXPDEL
A 

p,p'-DDE Lipid Adj (ng/g) 1959 1950s Before 1970s 

LBXDIELA Dieldrin Lipid Adj (ng/g) 1974 1970s 1970-1984 
LBXBHCL
A 

Beta-hexachlorocyclohexane Lipid Adj 
(ng/g) 

1976 1970s 1970-1984 

URXCPM 3,5,6-trichloropyridinol (ug/L) 2000 2000s 2000-2014 
URXOP3 Dimethylthiophosphate (ug/L) 2000 2000s 2000-2014 
URXOPM 3-phenoxybenzoic acid (ug/L) #N/A No 

Restrictions 
No Restrictions 

URX14D 2,5-dichlorophenol (ug/L) #N/A No 
Restrictions 

No Restrictions 
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URXDCB 2,4-dichlorophenol (ug/L) #N/A No 
Restrictions 

No Restrictions 

URXPAR Paranitrophenol (ug/L) 1998 1990s 1985-1999 
URX24D 2,4-D (ug/L) #N/A No 

Restrictions 
No Restrictions 

URXDEA DEET acid (ug/L) #N/A No 
Restrictions 

No Restrictions 

URXCNP Mono(carboxynonyl) phthalate (ng/mL) 2008 2000s 2000-2014 
SSURHIBP Mono-2-hydroxy-iso-butyl phthlte 

(ng/mL) 
#N/A No 

Restrictions 
No Restrictions 

URXCOP Mono(carboxyoctyl) phthalate (ng/mL) 2008 2000s 2000-2014 
URXMIB Mono-isobutyl pthalate (ng/mL) 2009 2000s 2000-2014 
URXMHP Mono-(2-ethyl)-hexyl phthalate (ng/mL) 2007 2000s 2000-2014 
URXMOH Mono-(2-ethyl-5-oxohexyl) phthalate 

(ng/mL) 
2007 2000s 2000-2014 

URXMZP Mono-benzyl phthalate (ng/mL) 2009 2000s 2000-2014 
URXMHH Mono-(2-ethyl-5-hydroxyhexyl) phthalate 

(ng/mL) 
2007 2000s 2000-2014 

URXECP Mono-2-ethyl-5-carboxypentyl phthalate 
(ng/mL) 

2007 2000s 2000-2014 

URXMBP Mono-n-butyl phthalate (ng/mL) 2009 2000s 2000-2014 
URXMEP Mono-ethyl phthalate (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXMNM Mono-n-methyl phthalate (ng/mL) #N/A No 
Restrictions 

No Restrictions 

SSURMHB
P 

Mono-3-hydroxy-n-butyl phthalate 
(ng/mL) 

2009 2000s 2000-2014 

URXMC1 Mono-(3-carboxypropyl) phthalate 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXDMA o-Desmethylangolensin (O-DMA) 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXETL Enterolactone (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXETD Enterodiol (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXP05 3-phenanthrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP06 1-phenanthrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP07 2-phenanthrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP19 4-phenanthrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP25 2 & 3-Hydroxyphenanthrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP10 1-pyrene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP01 1-napthol (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP02 2-napthol (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP17 9-fluorene (ng/L) #N/A No 
Restrictions 

No Restrictions 
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URXP03 3-fluorene (ng/L) #N/A No 
Restrictions 

No Restrictions 

URXP04 2-fluorene (ng/L) #N/A No 
Restrictions 

No Restrictions 

LBD199LA PCB199 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX180LA PCB180 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX209LA PCB209 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX146LA PCB146 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX170LA PCB170 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX194LA PCB194 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX187LA PCB187 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX153LA PCB153 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX196LA PCB196 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX138LA PCB138 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBXHXCL
A 

3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) 1979 1970s 1970-1984 

LBX118LA PCB118 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX099LA PCB99 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBXPCBL
A 

3,3',4,4',5-pcnb Lipid Adj (pg/g) 1979 1970s 1970-1984 

LBX074LA PCB74 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX028LA PCB28 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX049LA PCB49 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBX044LA PCB44 Lipid Adj (ng/g) 1979 1970s 1970-1984 
LBXPFDE Perfluorodecanoic acid (ng/mL) #N/A No 

Restrictions 
No Restrictions 

LBXMPAH 2-(N-methyl-PFOSA) acetate (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXPFNA Perfluorononanoic acid (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXPFHS Perfluorohexane sulfonic acid (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXPFOA Perfluorooctanoic acid (ng/mL) 2002 2000s 2000-2014 
LBXPFOS Perfluorooctane sulfonic acid (ng/mL) 2002 2000s 2000-2014 
LBXCOT Cotinine (ng/mL) #N/A No 

Restrictions 
No Restrictions 

URXNAL NNAL , urine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

LBXVXY Blood m-/p-Xylene (ng/ml) #N/A No 
Restrictions 

No Restrictions 

LBXVDB Blood 1,4-Dichlorobenzene (ng/ml) 1987 1980s 1985-1999 
LBXVBM Blood Bromodichloromethane (pg/ml) #N/A No 

Restrictions 
No Restrictions 

URXHEM N-Ace-S-(2-Hydroxyethyl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXPHG Phenylglyoxylic acid (ng/mL) 2016 No 
Restrictions 

No Restrictions 

URXHP2 N-Ace-S-(2-hydroxypropyl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 



 

201 
 

URXMB3 N-A-S-(4-hydrxy-2butn-l-yl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URX34M 3-methipurc acd & 4-methipurc acd 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXBMA N-Acetyl-S-(benzyl)-L-cysteine (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXBPM N-Acetyl-S-(n-propyl)-L-cysteine 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXGAM N-ac-S-(2-carbmo-2-hydxel)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXMAD Mandelic acid (ng/mL) 2016 No 
Restrictions 

No Restrictions 

URXAAM N-Ace-S-(2-carbamoylethyl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXAMC N-Ace-S-(N-methlcarbamoyl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXATC 2-amnothiazolne-4-carbxylic acid 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXCYM N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXTTC 2-thoxothazlidne-4-carbxylic acid 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URX2MH 2-Methylhippuric acid (ng/mL) #N/A No 
Restrictions 

No Restrictions 

URXPMM N-A-S-(3-hydrxprpl-1-metl)-L-cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXCEM N-Acetyl-S-(2-Carbxyethyl)-L-Cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXHPM N-Ace-S-(3-Hydroxypropyl)-L-Cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

URXDHB N-Ace-S-(3,4-Dihidxybutl)-L-Cys 
(ng/mL) 

#N/A No 
Restrictions 

No Restrictions 

LBXVTO Blood Toluene (ng/ml) #N/A No 
Restrictions 

No Restrictions 

LBXNM Blood Nitromethane (pg/mL) #N/A No 
Restrictions 

No Restrictions 

LBXVCF Blood Chloroform (pg/ml) #N/A No 
Restrictions 

No Restrictions 
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Table A1.8. !!"# , !!"#!, calculated #$%&'()#*, and calculated fold difference when $$%&'()#* = 5 
years and (X_age ) ̅  = 31.88 years for all chemical biomarkers, which are ranked by the fold 
difference of chemical biomarker levels between a child of 5 years and an adult of 31.88 years 
(10+"#$%&'()) in descending order. 

Codename Chemical Name !*+, !*+,! schildren 
Fold 
Difference 
("#-"#$%&'()) 

URXMZP Mono-benzyl phthalate (ng/mL) -9.67E-03 2.14E-04 0.415 2.598 
URXDMA o-Desmethylangolensin (O-DMA) (ng/mL) -7.51E-03 1.88E-04 0.338 2.176 
URXMC1 Mono-(3-carboxypropyl) phthalate (ng/mL) -7.14E-03 2.01E-04 0.337 2.173 
URXATC 2-amnothiazolne-4-carbxylic acid (ng/mL) -6.48E-03 1.90E-04 0.312 2.049 
URXUTU Tungsten, urine (ng/mL) -6.89E-03 1.48E-04 0.292 1.960 
URXCPM 3,5,6-trichloropyridinol (ug/L) -4.71E-03 2.24E-04 0.288 1.942 
SSURHIBP Mono-2-hydroxy-iso-butyl phthlte (ng/mL) -6.28E-03 1.61E-04 0.285 1.927 
URXMBP Mono-n-butyl phthalate (ng/mL) -5.43E-03 1.79E-04 0.275 1.884 
LBXBR7LA 2,2',4,4',5,5'-hexabromodiphenyl ether lipid adj 

(ng/g) 
-6.59E-03 1.21E-04 0.264 1.839 

URXDEA DEET acid (ug/L) -6.42E-03 1.20E-04 0.260 1.818 
URXMOH Mono-(2-ethyl-5-oxohexyl) phthalate (ng/mL) -5.64E-03 1.44E-04 0.256 1.803 
URXECP Mono-2-ethyl-5-carboxypentyl phthalate 

(ng/mL) 
-5.21E-03 1.46E-04 0.245 1.760 

SSURMHBP Mono-3-hydroxy-n-butyl phthalate (ng/mL) -4.18E-03 1.71E-04 0.236 1.721 
URXUMO Molybdenum, urine (ng/mL) -4.68E-03 1.41E-04 0.228 1.689 
URXMHH Mono-(2-ethyl-5-hydroxyhexyl) phthalate 

(ng/mL) 
-4.89E-03 1.19E-04 0.217 1.650 

URXPAR Paranitrophenol (ug/L) -3.35E-03 1.70E-04 0.213 1.632 
LBXBR5LA 2,2',4,4',5-pentabromodiphenyl lipid adj (ng/g) -4.92E-03 1.05E-04 0.208 1.614 
URXUIO Iodine, urine (ng/mL) -2.79E-03 1.76E-04 0.202 1.594 
URXOP3 Dimethylthiophosphate (ug/L) -2.70E-03 1.76E-04 0.200 1.584 
LBXBR3LA 2,2',4,4'-tetrabromodiphenyl ether lipid ad 

(ng/g) 
-4.67E-03 9.96E-05 0.197 1.576 

URXCOP Mono(carboxyoctyl) phthalate (ng/mL) -5.01E-03 8.47E-05 0.196 1.570 
URXMNM Mono-n-methyl phthalate (ng/mL) -3.65E-03 1.32E-04 0.194 1.562 
URXMIB Mono-isobutyl pthalate (ng/mL) -4.58E-03 9.55E-05 0.192 1.556 
LBXPFHS Perfluorohexane sulfonic acid (ng/mL) -3.01E-03 1.40E-04 0.182 1.520 
LBXMPAH 2-(N-methyl-PFOSA) acetate (ng/mL) -2.65E-03 1.49E-04 0.179 1.510 
URXCNP Mono(carboxynonyl) phthalate (ng/mL) -3.93E-03 9.99E-05 0.178 1.506 
URXUCO Cobalt, urine (ng/mL) -3.64E-03 1.02E-04 0.172 1.485 
LBXBR6LA 2,2',4,4',6-pentabromodiphenyl lipid adj (ng/g) -4.17E-03 7.85E-05 0.169 1.475 
URXHEM N-Ace-S-(2-Hydroxyethyl)-L-cys (ng/mL) -4.59E-03 5.97E-05 0.166 1.467 
URXUP8 Perchlorate, urine (ng/mL) -2.74E-03 1.09E-04 0.153 1.421 
URXETL Enterolactone (ng/mL) -1.80E-03 1.39E-04 0.149 1.409 
URXP10 1-pyrene (ng/L) -4.12E-03 2.88E-05 0.131 1.354 
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LBXBR8LA 2,2',4,4',5,6'-hexabromodiphenyl ether lipid adj 
(ng/g) 

-2.94E-03 7.24E-05 0.131 1.353 

LBX049LA PCB49 Lipid Adj (ng/g) -3.12E-03 6.07E-05 0.128 1.342 
URXBPH Urinary Bisphenol A (ng/mL) -2.88E-03 6.60E-05 0.125 1.334 
URXTTC 2-thoxothazlidne-4-carbxylic acid (ng/mL) -2.31E-03 8.27E-05 0.122 1.324 
LBX044LA PCB44 Lipid Adj (ng/g) -2.84E-03 5.97E-05 0.119 1.317 
URXUBA Barium, urine (ng/mL) -3.42E-03 3.60E-05 0.118 1.312 
URXUSB Antimony, urine (ng/mL) -2.67E-03 6.28E-05 0.117 1.310 
URXDHB N-Ace-S-(3,4-Dihidxybutl)-L-Cys (ng/mL) -1.27E-03 1.12E-04 0.115 1.304 
URXNAL NNAL , urine (ng/mL) -2.24E-03 7.03E-05 0.111 1.291 
LBXF08LA 1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) -2.15E-03 7.07E-05 0.109 1.284 
URX14D 2,5-dichlorophenol (ug/L) -4.78E-04 1.31E-04 0.107 1.281 
URXOPM 3-phenoxybenzoic acid (ug/L) -1.74E-03 6.93E-05 0.097 1.250 
URXDCB 2,4-dichlorophenol (ug/L) -7.03E-04 1.04E-04 0.094 1.242 
URXNO3 Urinary nitrate (ng/mL) -2.66E-03 2.96E-05 0.093 1.238 
URX24D 2,4-D (ug/L) -1.22E-03 7.55E-05 0.087 1.222 
LBX028LA PCB28 Lipid Adj (ng/g) -1.10E-03 7.63E-05 0.085 1.215 
LBXGLY Glycideamide (pmoL/G Hb) -2.61E-03 1.53E-05 0.081 1.206 
URXUUR Uranium, urine (ng/mL) -9.01E-04 7.21E-05 0.076 1.192 
URXUTL Thallium, urine (ng/mL) -1.83E-03 2.40E-05 0.067 1.166 
URXBMA N-Acetyl-S-(benzyl)-L-cysteine (ng/mL) -3.74E-04 7.75E-05 0.066 1.164 
URXP05 3-phenanthrene (ng/L) -9.75E-04 5.23E-05 0.064 1.159 
LBXVDB Blood 1,4-Dichlorobenzene (ng/ml) -3.98E-04 4.82E-05 0.046 1.111 
LBXBR2LA 2,4,4'-tribromodiphenyl ether lipid adj (ng/g) -4.72E-04 4.37E-05 0.044 1.107 
URXUCS Cesium, urine (ng/mL) -3.65E-04 4.58E-05 0.043 1.104 
URXAAM N-Ace-S-(2-carbamoylethyl)-L-cys (ng/mL) -1.08E-03 1.74E-05 0.042 1.100 
URXMHP Mono-(2-ethyl)-hexyl phthalate (ng/mL) -2.18E-03 -2.45E-05 0.041 1.099 
URXETD Enterodiol (ng/mL) -3.72E-04 4.14E-05 0.040 1.096 
URXUPB Lead, urine (ng/mL) 1.51E-03 1.10E-04 0.039 1.095 
LBXPFOA Perfluorooctanoic acid (ng/mL) -5.80E-05 2.97E-05 0.023 1.054 
URX34M 3-methipurc acd & 4-methipurc acd (ng/mL) 7.96E-04 5.81E-05 0.021 1.049 
URXBPF Urinary Bisphenol F (ug/L) -1.08E-04 2.16E-05 0.019 1.044 
SSCYA Cyanuric acid (ng/mL) 8.50E-04 5.46E-05 0.017 1.039 
LBXBMN Blood manganese (ug/L) -8.32E-04 -9.03E-06 0.016 1.037 
LBXVCF Blood Chloroform (pg/ml) -3.96E-04 5.94E-06 0.015 1.035 
URXPHG Phenylglyoxylic acid (ng/mL) 5.81E-04 4.01E-05 0.013 1.031 
LBXACR Acrylamide (pmoL/G Hb) -7.18E-04 -1.19E-05 0.011 1.025 
LBXSCU Serum Copper (ug/dL) 1.19E-04 7.37E-06 0.002 1.005 
LBXSZN Serum Zinc (ug/dL) -7.65E-05 -1.16E-06 0.001 1.003 
URXP03 3-fluorene (ng/L) -1.19E-04 -1.11E-05 -0.005 0.989 
URXSCN Urinary thiocyanate (ng/mL) -1.09E-03 -6.86E-05 -0.020 0.955 
URXP19 4-phenanthrene (ng/L) 5.15E-04 -1.63E-05 -0.026 0.943 
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URXUDMA Urinary Dimethylarsonic acid (µg/L) 1.26E-03 8.43E-06 -0.028 0.938 
URXP06 1-phenanthrene (ng/L) 1.11E-03 -7.23E-06 -0.035 0.922 
LBXBPB Lead (ug/dL) 3.89E-03 8.72E-05 -0.042 0.909 
URXCEM N-Acetyl-S-(2-Carbxyethyl)-L-Cys (ng/mL) 3.01E-03 5.26E-05 -0.043 0.906 
SSMEL Melamine (ng/mL) 3.01E-03 3.89E-05 -0.053 0.886 
LBXNM Blood Nitromethane (pg/mL) 1.93E-03 -2.03E-06 -0.053 0.885 
LBXPFOS Perfluorooctane sulfonic acid (ng/mL) 2.89E-03 3.27E-05 -0.054 0.883 
URXP04 2-fluorene (ng/L) 1.40E-03 -2.36E-05 -0.055 0.882 
URXBPS Urinary Bisphenol S (ug/L) 2.08E-03 -2.58E-06 -0.058 0.875 
URXPMM N-A-S-(3-hydrxprpl-1-metl)-L-cys (ng/mL) 2.85E-03 2.23E-05 -0.060 0.870 
URX2MH 2-Methylhippuric acid (ng/mL) 1.60E-03 -2.60E-05 -0.062 0.867 
LBXVXY Blood m-/p-Xylene (ng/ml) 1.52E-03 -3.36E-05 -0.065 0.861 
LBXVBM Blood Bromodichloromethane (pg/ml) 1.23E-03 -4.78E-05 -0.068 0.856 
URXP02 2-napthol (ng/L) 1.54E-03 -4.08E-05 -0.071 0.849 
LBXPFNA Perfluorononanoic acid (ng/mL) 2.27E-03 -2.83E-05 -0.081 0.829 
URXP01 1-napthol (ng/L) 4.09E-03 3.82E-05 -0.082 0.827 
URXP25 2 & 3-Hydroxyphenanthrene (ng/L) 1.53E-03 -5.82E-05 -0.083 0.826 
URXBP3 Urinary Benzophenone-3 (ng/mL) -6.64E-04 -1.50E-04 -0.091 0.811 
LBXVTO Blood Toluene (ng/ml) 2.57E-03 -3.24E-05 -0.092 0.808 
URXP17 9-fluorene (ng/L) 2.86E-03 -2.95E-05 -0.098 0.797 
URXUAS Urinary total Arsenic (µg/L) 3.37E-03 -1.06E-05 -0.098 0.797 
URXP07 2-phenanthrene (ng/L) 2.59E-03 -5.18E-05 -0.107 0.782 
LBXPFDE Perfluorodecanoic acid (ng/mL) 3.45E-03 -5.77E-05 -0.135 0.734 
LBXF04LA 1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) 5.84E-03 2.91E-05 -0.136 0.731 
URXGAM N-ac-S-(2-carbmo-2-hydxel)-L-cys (ng/mL) 3.27E-03 -7.50E-05 -0.142 0.721 
URXCYM N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL) 3.68E-03 -7.80E-05 -0.155 0.700 
URXTRS Urinary Triclosan (ng/mL) 2.96E-03 -1.16E-04 -0.163 0.686 
URXMAD Mandelic acid (ng/mL) 4.00E-03 -8.60E-05 -0.170 0.676 
URXMPB Methyl paraben (ng/ml) 4.50E-03 -7.57E-05 -0.176 0.667 
URXHPM N-Ace-S-(3-Hydroxypropyl)-L-Cys (ng/mL) 4.78E-03 -7.39E-05 -0.182 0.658 
LBXDIELA Dieldrin Lipid Adj (ng/g) 6.70E-03 -1.99E-05 -0.195 0.639 
URXMEP Mono-ethyl phthalate (ng/mL) 4.95E-03 -8.60E-05 -0.195 0.638 
LBXF03LA 2,3,4,7,8-pncdf Lipid Adj (pg/g) 8.48E-03 4.00E-05 -0.199 0.632 
URXUHG Mercury, urine (ng/mL) 4.61E-03 -1.09E-04 -0.202 0.627 
URXAMC N-Ace-S-(N-methlcarbamoyl)-L-cys (ng/mL) 6.61E-03 -6.21E-05 -0.222 0.599 
LBXBCD Cadmium (ug/L) 7.31E-03 -4.97E-05 -0.232 0.586 
URXPPB Propyl paraben (ng/ml) 4.92E-03 -1.41E-04 -0.234 0.584 
URXBPM N-Acetyl-S-(n-propyl)-L-cysteine (ng/mL) 5.23E-03 -1.63E-04 -0.259 0.551 
LBX099LA PCB99 Lipid Adj (ng/g) 1.00E-02 1.22E-05 -0.260 0.550 
URXMB3 N-A-S-(4-hydrxy-2butn-l-yl)-L-cys (ng/mL) 7.49E-03 -8.33E-05 -0.262 0.548 
LBXPCBLA 3,3',4,4',5-pcnb Lipid Adj (pg/g) 1.01E-02 -4.80E-06 -0.276 0.530 
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URXUAB Urinary Arsenobetaine (µg/L) 7.96E-03 -9.59E-05 -0.283 0.521 
LBX118LA PCB118 Lipid Adj (ng/g) 1.19E-02 4.10E-05 -0.290 0.513 
LBXD05LA 1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) 9.44E-03 -5.05E-05 -0.290 0.513 
LBX074LA PCB74 Lipid Adj (ng/g) 1.25E-02 6.26E-05 -0.290 0.512 
URXHP2 N-Ace-S-(2-hydroxypropyl)-L-cys (ng/mL) 7.77E-03 -1.52E-04 -0.318 0.480 
LBXTHG Mercury, total (ug/L) 8.76E-03 -1.83E-04 -0.368 0.429 
LBXD07LA 1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) 1.19E-02 -6.70E-05 -0.369 0.428 
LBXOXYLA Oxychlordane Lipid Adj (ng/g) 1.41E-02 1.02E-05 -0.370 0.426 
LBXHXCLA 3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) 1.40E-02 3.19E-06 -0.373 0.423 
LBX209LA PCB209 Lipid Adj (ng/g) 1.80E-02 1.16E-04 -0.400 0.398 
LBXBHCLA Beta-hexachlorocyclohexane Lipid Adj (ng/g) 1.53E-02 8.75E-06 -0.405 0.394 
URXUCD Cadmium, urine (ng/mL) 1.44E-02 -9.23E-05 -0.452 0.353 
LBXBGM Mercury, methyl (ug/L) 1.10E-02 -2.23E-04 -0.457 0.349 
LBXD03LA 1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) 1.62E-02 -5.10E-05 -0.471 0.338 
LBXTNALA Trans-nonachlor Lipid Adj (ng/g) 1.75E-02 -5.37E-05 -0.508 0.310 
LBXPDELA p,p'-DDE Lipid Adj (ng/g) 1.84E-02 -1.19E-04 -0.580 0.263 
LBX138LA PCB138 Lipid Adj (ng/g) 1.98E-02 -1.11E-04 -0.613 0.244 
LBX153LA PCB153 Lipid Adj (ng/g) 2.15E-02 -1.28E-04 -0.670 0.214 
LBX146LA PCB146 Lipid Adj (ng/g) 2.26E-02 -1.31E-04 -0.703 0.198 
LBXBB1LA 2,2',4,4',5,5'-hexabromobiphenyl lipid adj (ng/g) 2.10E-02 -2.71E-04 -0.761 0.174 
LBX187LA PCB187 Lipid Adj (ng/g) 2.60E-02 -1.88E-04 -0.836 0.146 
LBX180LA PCB180 Lipid Adj (ng/g) 2.79E-02 -2.21E-04 -0.908 0.124 
LBX170LA PCB170 Lipid Adj (ng/g) 2.84E-02 -2.52E-04 -0.946 0.113 
LBX196LA PCB196 Lipid Adj (ng/g) 3.07E-02 -2.68E-04 -1.020 0.096 
LBXCOT Cotinine (ng/mL) 1.61E-02 -8.17E-04 -1.024 0.095 
LBD199LA PCB199 Lipid Adj (ng/g) 3.34E-02 -2.61E-04 -1.086 0.082 
LBX194LA PCB194 Lipid Adj (ng/g) 3.67E-02 -3.34E-04 -1.228 0.059 
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Figure A1.1. PCB 196 concentrations across the life-stages stratified by NHANEs cycles for 
Cycle 2 and 3. 
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Figure A1.2. PCB 196 concentrations across the life-stages stratified for only Cycle 3. 
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Text A1.2. Discussion of regression coefficients for NHANES cycles.  

Figure A1.3 summarize the ranges of average log change in chemical biomarker levels 

over the NHANES cycles, termed βcycle throughout the analysis and discussion. These values are 

interpreted as the log change in chemical biomarker concentration for a 2-year cycle increase and 

represent an overall trajectory across the eight NHANES cycles. The distributions of βcycle’s are 

discretized into 5 trend trajectories: highly decreasing (≤ -0.30), moderately decreasing (> -0.30 

and ≤ -0.125), slightly decreasing (> -0.125 and ≤ -0.045), stable (> -0.045 and ≤ 0.041), and 

increasing (> 0.041). The majority of chemical biomarkers have βcycle’s between -0.045 and 0.041, 

implying little or no variation over time. The majority of pesticides and PFASs have negative 

βcycle’s, demonstrating a decrease in chemical biomarker levels over time, while a few pesticides, 

phthalates, and PAHs have high positive βcycle’s, reflecting increasing time trends.  
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Figure A1.3. Characteristics of the 141 NHANES chemical exposure biomarkers from 16 classes 
for ranges of cycle coefficients, defined as the percent change in chemical concentration due to a 
two-year (one NHANES cycle) increase in time. The classes are ranked by the means of class-
specific age percent differences (Figure 2C). Colors are used to differentiate the chemical classes. 
BFRs, Brominated Flame Retardants; SRCs, Smoking Related Compounds; PAHs, Polycyclic 
Aromatic Hydrocarbons; PCCPCs, Personal Care and Consumer Product Compounds; VOCs, 
Volatile Organic Compounds; PFCs, Perfluoroalkyl Chemicals; PCBs, Polychlorinated Biphenyls 
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Figure A1.4. Association between linear age coefficients and chemical persistency in the human 
body for 144 substances with colors indicating the time trend trajectories and symbols indicating 
the different chemical classes. The same abbreviations for the chemical classes are used as those 
in Figure S3. 
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Figure A1.5. Violin plots of PFOA concentrations partitioned by age groups to display the 
distribution with the 5th, 25th, 50th, 75th, and 95th percentiles as indicated by the superimposed 
boxplot and show the frequency of the urinary cadmium biomarker levels represented by the 
width of the violins. 
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Figure A1.6. Violin plots of urinary cadmium concentrations partitioned by age groups to display 
the distribution with the 5th, 25th, 50th, 75th, and 95th percentiles as indicated by the superimposed 
boxplot and show the frequency of the urinary cadmium biomarker levels represented by the 
width of the violins. 
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Appendix 2. Racial Disparities in Chemical Biomarker Concentrations in United States Women 

 

 
Figure A2.1. Panel of correlation plots comparing fold differences for race that adjusted for 
poverty income ratio (PIR) with those that excluded PIR from the regression models. Colors and 
shapes represent the different chemical families. Chemicals were labeled if fold differences 
changed by greater than 25% when PIR was considered a covariate in the regression models. 

  



 

214 
 

 
Figure A2.2. Panel of violin plots showing the distribution of chemical biomarker levels changes 
across categories of poverty income ratio (PIR) and stratified by race for A) an indicator of 
sunscreen use, benzophenone-3, B) a biomarker of smoking, cotinine, C) a chemical used in 
personal care products, ethyl paraben, and D) methyl mercury. Colors represent different 
categories of PIR. 
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Figure A2.3. Panel of correlation plots comparing fold differences for race that adjusted for 
menopause/hysterectomy status with those that excluded this reproductive health variable from 
the regression models. Colors and shapes represent the different chemical families. Chemicals 
were labeled if fold differences changed by greater than 25% when reasons of having irregular 
periods was considered a covariate in the regression models. 
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Figure A2.4. Panel of correlation plots comparing fold differences for race that adjusted for 
parity with those that excluded parity from the regression models. Colors and shapes represent 
the different chemical families. Chemicals were labeled if fold differences changed by greater 
than 25% when parity was considered a covariate in the regression models. 
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Figure A2.5. Panel of correlation plots comparing fold differences for race that adjusted for 
breastfeeding for at least a month with those that excluded this reproductive health variable from 
the regression models. Colors and shapes represent the different chemical families. Chemicals 
were labeled if fold differences changed by greater than 25% when breastfeeding was considered 
a covariate in the regression models. 
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Figure A2.6. Panel of correlation plots comparing fold differences for race that adjusted for iron 
deficiency with those that excluded this nutritional factor from the regression models. Colors and 
shapes represent the different chemical families. Chemicals were labeled if fold differences 
changed by greater than 25% when breastfeeding was considered a covariate in the regression 
models.  
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Table A2.1. Indicator (marked by an "X") of which chemical biomarker measurements for a given NHANES cycle was excluded from 
analysis. 

Chemical name Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 
Acrylamide (pmoL/G Hb)         

Glycideamide (pmoL/G Hb)         

2,2',4,4',5,5'-hexabromobiphenyl lipid adj (ng/g)         

2,2',4-tribromodiphenyl ether lipid adj (ng/g)         

2,4,4'-tribromodiphenyl ether lipid adj (ng/g)         

2,2',4,4'-tetrabromodiphenyl ether lipid ad (ng/g)         

2,2',3,4,4'-pentabromodiphenyl ether lipid adj (ng/g)         

2,2',4,4',5-pentabromodiphenyl lipid adj (ng/g)         

2,3',4,4'-tetrabromodiphenyl lipid adj (ng/g)         

2,2',4,4',6-pentabromodiphenyl lipid adj (ng/g)         

2,2',4,4',5,5'-hexabromodiphenyl lipid adj (ng/g)         

2,2',4,4',5,6'-hexabromodiphenyl ether lipid adj (ng/g)         

2,2',3,4,4',5',6-heptabromodiphenyl ether lipid adj (ng/g)         

1,2,3,7,8-pncdd Lipid Adj (pg/g)         

1,2,3,4,7,8-hxcdd Lipid Adj (pg/g)         

1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) X        

1,2,3,7,8,9-hxcdd Lipid Adj (pg/g)         

1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) X        

1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) X        

2,3,7,8-tcdd Lipid Adj (pg/g)         

2,3,7,8-tcdf Lipid Adj (pg/g)         

1,2,3,7,8-pncdf Lipid Adj (pg/g)         

2,3,4,7,8-pncdf Lipid Adj (pg/g) X        

1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) X        

1,2,3,6,7,8-hxcdf Lipid Adj (pg/g)         

1,2,3,7,8,9-hxcdf Lipid Adj (pg/g)         
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2,3,4,6,7,8-hxcdf Lipid Adj (pg/g)         

1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) X        

1,2,3,4,7,8,9-hpcdf Lipid Adj (pg/g)         

1,2,3,4,6,7,8,9-ocdf Lipid Adj (pg/g)         

Cyanuric acid (ng/mL)         

Melamine (ng/mL)         

Cadmium (ug/L)         

Mercury, ethyl (ug/L)         

Mercury, methyl (ug/L)         

Blood manganese (ug/L)         

Lead (ug/dL)         

Mercury, Inorganic (ug/L)         

Serum Copper (ug/dL)         

Serum Zinc (ug/dL)         

Mercury, total (ug/L)         

Urinary Arsenobetaine (µg/L)         

Urinary Arsenocholine (µg/L)         

Urinary total Arsenic (µg/L)         

Urinary Arsenous acid (µg/L)         

Urinary Arsenic acid (µg/L)         

Barium, urine (ng/mL)         

Beryllium, urine (ng/mL)         

Cadmium, urine (ng/mL)         

Cobalt, urine (ng/mL)         

Cesium, urine (ng/mL)         

Urinary Dimethylarsonic acid (µg/L)         

Mercury, urine (ng/mL)         

Urinary Monomethylacrsonic acid (µg/L)         

Molybdenum, urine (ng/mL)         

Lead, urine (ng/mL)         
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Platinum, urine (ng/mL)         

Antimony, urine (ng/mL)         

Thallium, urine (ng/mL)         

Urinary Trimethylarsine Oxide (µg/L)         

Tungsten, urine (ng/mL)         

Uranium, urine (ng/mL)         

Urinary nitrate (ng/mL)         

Urinary thiocyanate (ng/mL)         

Iodine, urine (ng/mL)         

Perchlorate, urine (ng/mL)         

Mono-2-hydroxy-iso-butyl phthlte (ng/mL)         

Mono-3-hydroxy-n-butyl phthalate (ng/mL)         

Mono(carboxynonyl) phthalate (ng/mL)         

Mono(carboxyoctyl) phthalate (ng/mL)         

Mono-2-ethyl-5-carboxypentyl phthalate (ng/mL)         

Mono-n-butyl phthalate (ng/mL)         

Mono-(3-carboxypropyl) phthalate (ng/mL)         

Mono-cyclohexyl phthalate (ng/mL)         

Mono-ethyl phthalate (ng/mL)         

Mono-(2-ethyl-5-hydroxyhexyl) phthalate (ng/mL)         

MHNCH (ng/mL)         

Mono-(2-ethyl)-hexyl phthalate (ng/mL)         

Mono-isobutyl pthalate (ng/mL)         

Mono-n-methyl phthalate (ng/mL)         

Mono-isononyl phthalate (ng/mL)         

Mono-(2-ethyl-5-oxohexyl) phthalate (ng/mL)         

Mono-n-octyl phthalate (ng/mL)         

Mono-benzyl phthalate (ng/mL)         

1-napthol (ng/L)         

2-napthol (ng/L)  X       
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3-fluorene (ng/L)         

2-fluorene (ng/L)         

3-phenanthrene (ng/L)         

1-phenanthrene (ng/L)         

2-phenanthrene (ng/L)         

3-fluoranthene (ng/L)         

1-pyrene (ng/L)        X 
9-fluorene (ng/L)      X X  

4-phenanthrene (ng/L)         

2 & 3-Hydroxyphenanthrene (ng/L)         

PCB199 Lipid Adj (ng/g)  X       

PCB28 Lipid Adj (ng/g)         

PCB44 Lipid Adj (ng/g)         

PCB49 Lipid Adj (ng/g)         

PCB52 Lipid Adj (ng/g)         

PCB66 Lipid Adj (ng/g)         

PCB74 Lipid Adj (ng/g) X X       

PCB87 Lipid Adj (ng/g)         

PCB99 Lipid Adj (ng/g) X X       

PCB101 Lipid Adj (ng/g)         

PCB105 Lipid Adj (ng/g)         

PCB110 Lipid Adj (ng/g)         

PCB118 Lipid Adj (ng/g) X X       

PCB128 Lipid Adj (ng/g)         

PCB138 Lipid Adj (ng/g) X X       

PCB146 Lipid Adj (ng/g)         

PCB149 Lipid Adj (ng/g)         

PCB151 Lipid Adj (ng/g)         

PCB153 Lipid Adj (ng/g) X X       

PCB156 Lipid Adj (ng/g)         
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PCB157 Lipid Adj (ng/g)         

PCB167 Lipid Adj (ng/g)         

PCB170 Lipid Adj (ng/g) X X       

PCB172 Lipid Adj (ng/g)         

PCB177 Lipid Adj (ng/g)         

PCB178 Lipid Adj (ng/g)         

PCB180 Lipid Adj (ng/g) X X       

PCB183 Lipid Adj (ng/g)         

PCB187 Lipid Adj (ng/g) X X       

PCB189 Lipid Adj (ng/g)         

PCB194 Lipid Adj (ng/g)  X       

PCB195 Lipid Adj (ng/g)         

PCB196 Lipid Adj (ng/g)  X       

PCB206 Lipid Adj (ng/g)         

PCB209 Lipid Adj (ng/g)         

3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) X        

3,3',4,4',5-pcnb Lipid Adj (pg/g) X        

3,4,4',5-tcb Lipid Adj (pg/g)         

Urinary 4-tert-octylphenol (ng/mL)         

Urinary Benzophenone-3 (ng/mL)         

Urinary Bisphenol F (ug/L)         

Urinary Bisphenol A (ng/mL)         

Urinary Bisphenol S (ug/L)         

Butyl paraben (ng/ml)         

Ethyl paraben  (ng/ml)         

Methyl paraben (ng/ml)         

Propyl paraben (ng/ml)         

Urinary Triclocarban (ng/mL)         

Urinary Triclosan (ng/mL)         

Aldrin Lipid Adj (ng/g)         
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Beta-hexachlorocyclohexane Lipid Adj (ng/g)         

Dieldrin Lipid Adj (ng/g)         

Endrin Lipid Adj (ng/g)         

G-hexachlorocyclohexane Lipid Adj (ng/g)         

Hexachlorobenzene Lipid Adj (ng/g)         

Heptachlor Epoxide Lipid Adj (ng/g)         

Mirex Lipid Adj (ng/g)         

o,p'-DDT Lipid Adj (ng/g)         

Oxychlordane Lipid Adj (ng/g)         

p,p'-DDE Lipid Adj (ng/g)         

p,p'-DDT Lipid Adj (ng/g)         

Trans-nonachlor Lipid Adj (ng/g)         

2,5-dichlorophenol (ug/L)         

2,4,5-trichlorophenol (ug/L)         

2,4-D (ug/L)         

2,4,5-T (ug/L)         

2,4,6-trichlorophenol (ug/L)         

4-fluoro-3-phenoxybenzoic acid (ug/L)         

Atrazine (ug/L)         

Acetochlor mercapturate (ug/L)         

Alachor mercapturate (ug/L)         

Acephate (ug/L)         

Atrazine mercapturate (ug/L)         

Bensulfuron methyl (ug/L)         

dibromovinyl-dimeth prop carboacid (ug/L)         

Carbofuranphenol (ug/L)         

cis dichlorovnl-dimeth carboacid (ug/L)         

Chlorsulfuron (ug/L)         

chloro-hydro-meth-chromen-one/ol (ug/L)         

3,5,6-trichloropyridinol (ug/L)         
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2,4-dichlorophenol (ug/L)         

Diaminochloroatrazine (ug/L)         

DEET acid (ug/L)         

DEET (ug/L)         

Desethyl hydroxy DEET (ug/L)         

diethylaminomethylpyrimidinol/one (ug/L)         

Desethyl atrazine (ug/L)         

Ethametsulfuron methyl (ug/L)         

Ethylenethio urea (ug/L)         

Foramsulfuron (ug/L)         

Halosulfuron (ug/L)         

Malathion diacid (ug/L)         

Metolachlor mercapturate (ug/L)         

Methamidaphos (ug/L)         

Mesosulfuron methyl (ug/L)         

Metsulfuron methyl (ug/L)         

Dimethoate (ug/L)         

Nicosulfuron (ug/L)         

O-methoate (ug/L)         

Dimethylphosphate (ug/L)         

Diethylphosphate (ug/L)         

Dimethylthiophosphate (ug/L)         

Diethylthiophosphate (ug/L)         

Dimethyldithiophosphate (ug/L)         

Diethyldithiophosphate (ug/L)         

3-phenoxybenzoic acid (ug/L)         

O-Phenyl phenol (ug/L)         

Oxasulfuron (ug/L)         

Oxypyrimidine (ug/L)         

Paranitrophenol (ug/L) X        



 

226 
 

Pentachlorophenol (ug/L)         

Primisulfuron methyl (ug/L)         

2-isopropoxyphenol (ug/L)         

Prosulfuron (ug/L)         

Propylenethio urea (ug/L)         

Rimsulfuron (ug/L)         

Desisopropyl atrazine (ug/L)         

Desisopropyl atrazine mercapturate (ug/L)         

Sulfometuron methyl (ug/L)         

Sulfosulfuron (ug/L)         

trans dichlorovnl-dimeth carboacid (ug/L)         

Thifensulfuron methyl (ug/L)         

Triasulfuron (ug/L)         

Triflusulfuron methyl (ug/L)         

2-(N-ethyl-PFOSA) acetate (ng/mL)         

Perfluorobutane sulfonic acid (ng/mL)         

2-(N-methyl-PFOSA) acetate (ng/mL)         

Perfluorodecanoic acid (ng/mL)         

Perfluorododecanoic acid (ng/mL)         

Perfluoroheptanoic acid (ng/mL)         

Perfluorohexane sulfonic acid (ng/mL)         

Perfluorononanoic acid (ng/mL)         

Perfluorooctanoic acid (ng/mL)         

Perfluorooctane sulfonic acid (ng/mL)         

Perfluorooctane sulfonamide (ng/mL)         

Perfluoroundecanoic acid (ng/mL)         

Br. iso of perfluorooctanoate (ug/L)         

Monomethyl branched iso of PFOS (ug/L)         

Linear perfluorooctanoate (ug/L)         

Linear perfluorooctane sulfonate (ug/L)         
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Bis(2-chloroethyl) phosphate (ug/L)         

Bis(1-chloro-2-propyl) phosphate (ug/L)         

Bis(1,3-dichloro-2-propyl) phosphate (ug/L)         

Dibutyl phosphate (ug/L)         

Dibenzyl phosphate (ug/L)         

Di-o-cresyl phosphate (ug/L)         

Di-p-cresyl phosphate (ug/L)         

Diphenyl phosphate (ug/L)         

2,3,4,5-tetrabromobenzoic acid (ug/L)         

Daidzein (ng/mL)  X       

o-Desmethylangolensin (O-DMA) (ng/mL)         

Equol (ng/mL) X X       

Enterodiol (ng/mL) X X X      

Enterolactone (ng/mL) X X       

Genistein (ng/mL)    X     

Cotinine (ng/mL)         

Hydroxycotinine, Serum (ng/mL)         

NNAL , urine (ng/mL)         

Blood 2,5-Dimethylfuran (ng/mL)         

Blood 1,1,1,2-tetrachloroethane (ng/mL)         

Blood Nitromethane (pg/mL)         

Blood Hexane (ng/mL)         

Blood Heptane (ng/mL)         

Blood Octane (ng/mL)         

Blood 1,1-Dichloroethane (ng/mL)         

Blood 1,2-Dichlorobenzene (ng/mL)         

Blood 1,1-Dichloroethene (ng/mL)         

Blood 1,2-Dichloroethane (ng/mL)         

Blood cis-1,2-Dichloroethene (ng/mL)         

Blood 1,1,2-Trichloroethane (ng/mL)         
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Blood 1,2-Dibromo-3-chloropropane (ng/mL)         

Blood trans-1,2-Dichloroethene (ng/mL)         

Blood 1,3-Dichlorobenzene (ng/mL)         

Blood Tetrachloroethene (ng/ml)         

Blood 1,1,2,2-Tetrachloroethane (ng/mL)         

Blood Bromoform (pg/ml)         

Blood Bromodichloromethane (pg/ml) X       X 
Blood Benzene (ng/ml)         

Blood Cyclohexane (ng/mL)         

Blood Chlorobenzene (ng/mL)         

Blood Chloroform (pg/ml) X       X 
Blood Dibromochloromethane (pg/ml)         

Blood Carbon Tetrachloride (ng/ml)         

Blood 1,4-Dichlorobenzene (ng/ml) X X X      

Blood 1,2-dibromoethane (ng/ml)         

Blood Diethyl Ether (ng/mL)         

Blood Dibromomethane (ng/mL)         

Blood 1,2-Dichloropropane (ng/mL)         

Blood 1,4-Dioxane (ng/mL)         

Blood Ethyl Acetate (ng/mL)         

Blood Ethylbenzene (ng/ml)         

Blood Chloroethane (ng/mL)         

Blood furan (ng/ml)         

Blood Hexachloroethane (ng/mL)         

Blood isopropylbenzene (ng/ml)         

Blood Methylene Chloride (ng/mL)         

Blood Methylcyclopentane (ng/mL)         

Blood MTBE (pg/ml)         

Blood Nitrobenzene (ng/mL)         

Blood o-Xylene (ng/ml)         
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Blood Styrene (ng/ml)         

Blood Trichloroethene (ng/ml)         

Blood 1,1,1-Trichloroethane (ng/mL)         

Blood aaa-Trifluorotoluene (ng/mL)         

Blood Tetrahydrofuran (ng/mL)         

Blood Toluene (ng/ml)         

Blood 1,2,3-trichloropropane (ng/ml)         

Blood Vinyl Bromide (ng/mL)         

Blood m-/p-Xylene (ng/ml)         

N-acel-S-(1,2-dichlorovinl)-L-cys (ng/mL)         

N-Acel-S-(2,2-Dichlorvinyl)-L-cys (ng/mL)         

2-Methylhippuric acid (ng/mL)         

3-methipurc acd & 4-methipurc acd (ng/mL)         

N-Ace-S-(2-carbamoylethyl)-L-cys (ng/mL)         

N-Ace-S-(N-methlcarbamoyl)-L-cys (ng/mL)         

2-amnothiazolne-4-carbxylic acid (ng/mL)         

N-Acetyl-S-(benzyl)-L-cysteine (ng/mL)         

N-Acetyl-S-(n-propyl)-L-cysteine (ng/mL)         

N-Acetyl-S-(2-Carbxyethyl)-L-Cys (ng/mL)         

N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL)         

N-Ace-S-(3,4-Dihidxybutl)-L-Cys (ng/mL)         

N-Ace-S-(dimethylphenyl)-L-Cys (ng/mL)         

N-ac-S-(2-carbmo-2-hydxel)-L-cys (ng/mL)         

N-Ace-S-(2-Hydroxyethyl)-L-cys (ng/mL)         

N-Ace-S-(2-hydroxypropyl)-L-cys (ng/mL)         

N-Ace-S-(3-Hydroxypropyl)-L-Cys (ng/mL)         

Mandelic acid (ng/mL)         

N-A-S-(1-HydrxMet)-2-Prpn)-L-Cys (ng/mL)         

N-Ac-S-(2-Hydrxy-3-butnyl)-L-Cys (ng/mL)         

N-A-S-(4-hydrxy-2butn-l-yl)-L-cys (ng/mL)         
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N-ace-S-(phenl-2-hydxyetl)-L-cys (ng/mL)         

Phenylglyoxylic acid (ng/mL)         

N-Acetyl-S-(phenyl)-L-cysteine (ng/mL)         

N-A-S-(3-hydrxprpl-1-metl)-L-cys (ng/mL)         

N-Acetyl-S-(trichlorovinyl)-L-cys (ng/mL)         

2-thoxothazlidne-4-carbxylic acid (ng/mL)         

PCB199 (ng/g)         

PCB28 (ng/g)         

PCB44 (ng/g)         

PCB49 (ng/g)         

PCB52 (ng/g)         

PCB66 (ng/g)         

PCB74 (ng/g)         

PCB87 (ng/g)         

PCB99 (ng/g)         

PCB101 (ng/g)         

PCB105 (ng/g)         

PCB110 (ng/g)         

PCB118 (ng/g)         

PCB128 (ng/g)         

PCB138 (ng/g)         

PCB146 (ng/g)         

PCB149 (ng/g)         

PCB151 (ng/g)         

PCB153 (ng/g)         

PCB156 (ng/g)         

PCB157 (ng/g)         

PCB167 (ng/g)         

PCB170 (ng/g)         

PCB172 (ng/g)         
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PCB177 (ng/g)         

PCB178 (ng/g)         

PCB180 (ng/g)         

PCB183 (ng/g)         

PCB187 (ng/g)         

PCB189 (ng/g)         

PCB194 (ng/g)         

PCB195 (ng/g)         

PCB196 (ng/g)         

PCB206 (ng/g)         

PCB209 (ng/g)         

Aldrin (ng/g)         

2,2',4,4',5,5'-hexabromobiphenyl (pg/g)         

Beta-hexachlorocyclohexane (ng/g)         

2,2',4-tribromodiphenyl ether (pg/g)         

2,4,4'-tribromodiphenyl ether (pg/g)         

2,2',4,4'-tetrabromodiphenyl ether (pg/g)         

2,2',3,4,4'-pentabromodiphenyl ether (pg/g)         

2,2',4,4',5-pentabromodiphenyl ether (pg/g)         

2,2',4,4',6-pentabromodiphenyl ether (pg/g)         

2,3',4,4'-tetrabromodiphenyl ether (pg/g)         

2,2',4,4',5,5'-hexabromodiphenyl ether (pg/g)         

2,2',4,4',5,6'-hexabromodiphenyl ether (pg/g)         

2,2',3,4,4',5',6-heptabromodiphenyl ether (pg/g)         

1,2,3,7,8-pncdd (fg/g)         

1,2,3,4,7,8-hxcdd (fg/g)         

1,2,3,6,7,8-hxcdd (fg/g)         

1,2,3,7,8,9-hxcdd (fg/g)         

1,2,3,4,6,7,8-hpcdd (fg/g)         

1,2,3,4,6,7,8,9-ocdd (fg/g)         
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Dieldrin (ng/g)         

Endrin (ng/g)         

2,3,7,8-tcdf (fg/g)         

1,2,3,7,8-pncdf (fg/g)         

2,3,4,7,8-pncdf (fg/g)         

1,2,3,4,7,8-hxcdf (fg/g)         

1,2,3,6,7,8-hxcdf (fg/g)         

1,2,3,7,8,9-hxcdf (fg/g)         

2,3,4,6,7,8-hxcdf (fg/g)         

1,2,3,4,6,7,8-hpcdf (fg/g)         

1,2,3,4,7,8,9-hpcdf (fg/g)         

1,2,3,4,6,7,8,9-ocdf (fg/g)         

Gamma-hexachlorocyclohexane (ng/g)         

Hexachlorobenzene (ng/g)         

Heptachlor Epoxide (ng/g)         

3,3',4,4',5,5'-hxcb (fg/g)         

Mirex (ng/g)         

o,p'-DDT (ng/g)         

Oxychlordane (ng/g)         

3,3',4,4',5-pcnb (pg/g)         

p,p'-DDE (ng/g)         

p,p'-DDT (ng/g)         

3,4,4',5-tcb (fg/g)         

2,3,7,8-tcdd (fg/g)         

Trans-nonachlor (ng/g)         
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Table A2.2. Included chemical biomarkers for analysis with corresponding CAS No. and chemical family classification. 

Chemical Name CAS NO. Chemical Family 
Glycideamide (pmoL/G Hb) 5694-00-8 Acrylamide 
Acrylamide (pmoL/G Hb) 79-06-1 Acrylamide 
2,2',4,4',5,5'-hexabromobiphenyl lipid adj (ng/g) 59080-40-9 Brominated Flame Retardants (BFR) 
2,4,4'-tribromodiphenyl ether lipid adj (ng/g) 41318-75-6 Brominated Flame Retardants (BFR) 
2,2',4,4',5,6'-hexabromodiphenyl ether lipid adj (ng/g) 207122-15-4 Brominated Flame Retardants (BFR) 
2,2',4,4',6-pentabromodiphenyl lipid adj (ng/g) 189084-64-8 Brominated Flame Retardants (BFR) 
2,2',4,4'-tetrabromodiphenyl ether lipid ad (ng/g) 5436-43-1 Brominated Flame Retardants (BFR) 
2,2',4,4',5-pentabromodiphenyl lipid adj (ng/g) 60348-60-9 Brominated Flame Retardants (BFR) 
2,2',4,4',5,5'-hexabromodiphenyl lipid adj (ng/g) 68631-49-2 Brominated Flame Retardants (BFR) 
Bis(2-chloroethyl) phosphate (ug/L) 3040-56-0 Phosphate Flame Retardants (PFR) 
Bis(1-chloro-2-propyl) phosphate (ug/L) 789440-10-4 Phosphate Flame Retardants (PFR) 
Bis(1,3-dichloro-2-propyl) phosphate (ug/L) 72236-72-7 Phosphate Flame Retardants (PFR) 
Dibutyl phosphate (ug/L) 107-66-4 Phosphate Flame Retardants (PFR) 
Diphenyl phosphate (ug/L) 838-85-7 Phosphate Flame Retardants (PFR) 
1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) 57653-85-7 Dioxins 
1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) 3268-87-9 Dioxins 
1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) 35822-46-9 Dioxins 
1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) 70648-26-9 Furans 
2,3,4,7,8-pncdf Lipid Adj (pg/g) 57117-31-4 Furans 
1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) 67562-39-4 Furans 
Lead (ug/dL) 7439-92-1 Metals 
Cadmium (ug/L) 7440-43-9 Metals 
Mercury, total (ug/L) 7439-97-6 Metals 
Mercury, urine (ng/mL) 7439-97-6 Metals 
Barium, urine (ng/mL) 7440-39-3 Metals 
Cobalt, urine (ng/mL) 7440-48-4 Metals 
Cesium, urine (ng/mL) 7440-46-2 Metals 
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Molybdenum, urine (ng/mL) 7439-98-7 Metals 
Lead, urine (ng/mL) 7439-92-1 Metals 
Antimony, urine (ng/mL) 7440-36-0 Metals 
Thallium, urine (ng/mL) 7440-28-0 Metals 
Tungsten, urine (ng/mL) 7440-33-7 Metals 
Uranium, urine (ng/mL) 7440-61-1 Metals 
Urinary total Arsenic (µg/L) 7440-38-2 Metals 
Urinary Arsenobetaine (µg/L) 64436-13-1 Metals 
Urinary Dimethylarsonic acid (µg/L) 75-60-5 Metals 
Cadmium, urine (ng/mL) 7440-43-9 Metals 
Blood manganese (ug/L) 7439-96-5 Metals 
Serum Copper (ug/dL) 7440-50-8 Metals 
Serum Zinc (ug/dL) 7440-66-6 Metals 
Mercury, methyl (ug/L) 22967-92-6 Metals 
Urinary thiocyanate (ng/mL) 302-04-5 Other 
Iodine, urine (ng/mL) 7553-56-2 Other 
Urinary nitrate (ng/mL) 14797-55-8 Other 
Perchlorate, urine (ng/mL) 14797-73-0 Other 
Urinary Triclosan (ng/mL) 3380-34-5 Personal Care & Consumer Product Compounds 
Urinary Bisphenol S (ug/L) 80-09-1 Personal Care & Consumer Product Compounds 
Butyl paraben (ng/ml) 94-26-8 Personal Care & Consumer Product Compounds 
Ethyl paraben  (ng/ml) 120-47-8 Personal Care & Consumer Product Compounds 
Methyl paraben (ng/ml) 99-76-3 Personal Care & Consumer Product Compounds 
Propyl paraben (ng/ml) 94-13-3 Personal Care & Consumer Product Compounds 
Urinary Bisphenol A (ng/mL) 80-05-7 Personal Care & Consumer Product Compounds 
Urinary Bisphenol F (ug/L) 620-92-8 Personal Care & Consumer Product Compounds 
Urinary Benzophenone-3 (ng/mL) 131-57-7 Personal Care & Consumer Product Compounds 
Trans-nonachlor Lipid Adj (ng/g) 39765-80-5 Pesticides 
Oxychlordane Lipid Adj (ng/g) 27304-13-8 Pesticides 
p,p'-DDE Lipid Adj (ng/g) 72-55-9 Pesticides 
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Dieldrin Lipid Adj (ng/g) 60-57-1 Pesticides 
Beta-hexachlorocyclohexane Lipid Adj (ng/g) 319-85-7 Pesticides 
3,5,6-trichloropyridinol (ug/L) 6515-38-4 Pesticides 
Dimethylthiophosphate (ug/L) 1112-38-5 Pesticides 
3-phenoxybenzoic acid (ug/L) 3739-38-6 Pesticides 
2,5-dichlorophenol (ug/L) 583-78-8 Pesticides 
2,4-dichlorophenol (ug/L) 120-83-2 Pesticides 
Paranitrophenol (ug/L) 100-02-7 Pesticides 
DEET acid (ug/L) 72236-23-8 Pesticides 
Mono(carboxynonyl) phthalate (ng/mL) 26761-40-0 Phthalates & Plasticizers 
Mono(carboxyoctyl) phthalate (ng/mL) 898544-09-7 Phthalates & Plasticizers 
Mono-isobutyl pthalate (ng/mL) 30833-53-5 Phthalates & Plasticizers 
Mono-(2-ethyl)-hexyl phthalate (ng/mL) 4376-20-9 Phthalates & Plasticizers 
Mono-(2-ethyl-5-oxohexyl) phthalate (ng/mL) 40321-98-0 Phthalates & Plasticizers 
Mono-benzyl phthalate (ng/mL) 2528-16-7 Phthalates & Plasticizers 
Mono-(2-ethyl-5-hydroxyhexyl) phthalate (ng/mL) 40321-99-1 Phthalates & Plasticizers 
Mono-2-ethyl-5-carboxypentyl phthalate (ng/mL) 40809-41-4 Phthalates & Plasticizers 
Mono-n-butyl phthalate (ng/mL) 131-70-4 Phthalates & Plasticizers 
Mono-ethyl phthalate (ng/mL) 2306-33-4 Phthalates & Plasticizers 
Mono-n-methyl phthalate (ng/mL) 4376-18-5 Phthalates & Plasticizers 
Mono-(3-carboxypropyl) phthalate (ng/mL) 66851-46-5 Phthalates & Plasticizers 
o-Desmethylangolensin (O-DMA) (ng/mL) 21255-69-6 Phytoestrogens 
Enterolactone (ng/mL) 78473-71-9 Phytoestrogens 
Enterodiol (ng/mL) 80226-00-2 Phytoestrogens 
Daidzein (ng/mL) 486-66-8 Phytoestrogens 
Equol (ng/mL) 531-95-3 Phytoestrogens 
Genistein (ng/mL) 446-72-0 Phytoestrogens 
3-phenanthrene (ng/L) 605-87-8 Polyaromatic Hydrocarbons (PAH) 
1-phenanthrene (ng/L) 2433-56-9 Polyaromatic Hydrocarbons (PAH) 
2-phenanthrene (ng/L) 605-55-0 Polyaromatic Hydrocarbons (PAH) 
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4-phenanthrene (ng/L) 7651-86-7 Polyaromatic Hydrocarbons (PAH) 
2 & 3-Hydroxyphenanthrene (ng/L) 605-55-0 Polyaromatic Hydrocarbons (PAH) 
1-pyrene (ng/L) 129-00-0 Polyaromatic Hydrocarbons (PAH) 
1-napthol (ng/L) 90-15-3 Polyaromatic Hydrocarbons (PAH) 
2-napthol (ng/L) 135-19-3 Polyaromatic Hydrocarbons (PAH) 
9-fluorene (ng/L) 484-17-3 Polyaromatic Hydrocarbons (PAH) 
3-fluorene (ng/L) 6344-67-8 Polyaromatic Hydrocarbons (PAH) 
2-fluorene (ng/L) 2443-58-5 Polyaromatic Hydrocarbons (PAH) 
3-fluoranthene (ng/L) 205-82-3 Polyaromatic Hydrocarbons (PAH) 
PCB199 Lipid Adj (ng/g) 52663-75-9 Polychlorinated Biphenyls (PCB) 
PCB180 Lipid Adj (ng/g) 35065-29-3 Polychlorinated Biphenyls (PCB) 
PCB209 Lipid Adj (ng/g) 2051-24-3 Polychlorinated Biphenyls (PCB) 
PCB170 Lipid Adj (ng/g) 35065-30-6 Polychlorinated Biphenyls (PCB) 
PCB194 Lipid Adj (ng/g) 35694-08-7 Polychlorinated Biphenyls (PCB) 
PCB187 Lipid Adj (ng/g) 52663-68-0 Polychlorinated Biphenyls (PCB) 
PCB153 Lipid Adj (ng/g) 35065-27-1 Polychlorinated Biphenyls (PCB) 
PCB196 Lipid Adj (ng/g) 42740-50-1 Polychlorinated Biphenyls (PCB) 
PCB138 Lipid Adj (ng/g) 35065-28-2 Polychlorinated Biphenyls (PCB) 
3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) 32774-16-6 Polychlorinated Biphenyls (PCB) 
PCB118 Lipid Adj (ng/g) 31508-00-6 Polychlorinated Biphenyls (PCB) 
PCB99 Lipid Adj (ng/g) 38380-01-7 Polychlorinated Biphenyls (PCB) 
3,3',4,4',5-pcnb Lipid Adj (pg/g) 57465-28-8 Polychlorinated Biphenyls (PCB) 
PCB74 Lipid Adj (ng/g) 32690-93-0 Polychlorinated Biphenyls (PCB) 
PCB49 Lipid Adj (ng/g) 41464-40-8 Polychlorinated Biphenyls (PCB) 
PCB44 Lipid Adj (ng/g) 41464-39-5 Polychlorinated Biphenyls (PCB) 
Perfluorodecanoic acid (ng/mL) 335-76-2 Per- and Polyfluoroalkyl Substances (PFAS) 
2-(N-methyl-PFOSA) acetate (ng/mL) 2355-31-9 Per- and Polyfluoroalkyl Substances (PFAS) 
Perfluorononanoic acid (ng/mL) 375-95-1 Per- and Polyfluoroalkyl Substances (PFAS) 
Perfluorohexane sulfonic acid (ng/mL) 355-46-4 Per- and Polyfluoroalkyl Substances (PFAS) 
Perfluorooctanoic acid (ng/mL) 335-67-1 Per- and Polyfluoroalkyl Substances (PFAS) 
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Perfluorooctane sulfonic acid (ng/mL) 1763-23-1 Per- and Polyfluoroalkyl Substances (PFAS) 
Cotinine (ng/mL) 486-56-6 Smoking Related Compounds 
NNAL , urine (ng/mL) 76014-81-8 Smoking Related Compounds 

Blood m-/p-Xylene (ng/ml) 108-38-3/106-42-
3 Volatile Organic Compounds (VOC) 

Blood 1,4-Dichlorobenzene (ng/ml) 106-46-7 Volatile Organic Compounds (VOC) 
Blood Bromodichloromethane (pg/ml) 75-27-4 Volatile Organic Compounds (VOC) 
Phenylglyoxylic acid (ng/mL) 611-73-4 Volatile Organic Compounds (VOC) 
N-Ace-S-(2-hydroxypropyl)-L-cys (ng/mL) 75-56-9 Volatile Organic Compounds (VOC) 
N-A-S-(4-hydrxy-2butn-l-yl)-L-cys (ng/mL) 106-99-0 Volatile Organic Compounds (VOC) 
3-methipurc acd & 4-methipurc acd (ng/mL) 27115-49-7 Volatile Organic Compounds (VOC) 
N-Acetyl-S-(benzyl)-L-cysteine (ng/mL) 19542-77-9 Volatile Organic Compounds (VOC) 
N-Acetyl-S-(n-propyl)-L-cysteine (ng/mL) 106-94-5 Volatile Organic Compounds (VOC) 
Mandelic acid (ng/mL) 90-64-2 Volatile Organic Compounds (VOC) 
N-Ace-S-(2-carbamoylethyl)-L-cys (ng/mL) 81690-92-8 Volatile Organic Compounds (VOC) 
N-Ace-S-(N-methlcarbamoyl)-L-cys (ng/mL) 103974-29-4 Volatile Organic Compounds (VOC) 
2-amnothiazolne-4-carbxylic acid (ng/mL) 16899-18-6 Volatile Organic Compounds (VOC) 
N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL) 74514-75-3 Volatile Organic Compounds (VOC) 
2-thoxothazlidne-4-carbxylic acid (ng/mL) 20933-67-9 Volatile Organic Compounds (VOC) 
2-Methylhippuric acid (ng/mL) 42013-20-7 Volatile Organic Compounds (VOC) 
N-A-S-(3-hydrxprpl-1-metl)-L-cys (ng/mL) 33164-70-4 Volatile Organic Compounds (VOC) 
N-Acetyl-S-(2-Carbxyethyl)-L-Cys (ng/mL) 51868-61-2 Volatile Organic Compounds (VOC) 
N-Ace-S-(3-Hydroxypropyl)-L-Cys (ng/mL) 23127-40-4 Volatile Organic Compounds (VOC) 
N-Ace-S-(3,4-Dihidxybutl)-L-Cys (ng/mL) 144889-50-9 Volatile Organic Compounds (VOC) 
Blood Toluene (ng/ml) 108-88-3 Volatile Organic Compounds (VOC) 
Blood Nitromethane (pg/mL) 75-52-5 Volatile Organic Compounds (VOC) 
Blood Chloroform (pg/ml) 67-66-3 Volatile Organic Compounds (VOC) 
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Table A2.3. NHANES codenames for survey weights used for a given chemical biomarker and NHANES cycle. 

Chemical name Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 

Glycideamide (pmoL/G Hb) NA NA WTMEC2YR WTMEC2YR NA NA NA NA 

Acrylamide (pmoL/G Hb) NA NA WTMEC2YR WTMEC2YR NA NA NA NA 

2,2',4,4',5,5'-hexabromobiphenyl lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,4,4'-tribromodiphenyl ether lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4,4',5,6'-hexabromodiphenyl ether lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4,4',6-pentabromodiphenyl lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4,4'-tetrabromodiphenyl ether lipid ad (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4,4',5-pentabromodiphenyl lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',3,4,4',5',6-heptabromodiphenyl ether lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4,4',5,5'-hexabromodiphenyl lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,3',4,4'-tetrabromodiphenyl lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',3,4,4'-pentabromodiphenyl ether lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

2,2',4-tribromodiphenyl ether lipid adj (ng/g) NA NA WTSB2YR NA NA NA NA NA 

1,2,3,6,7,8-hxcdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,7,8-hxcdd Lipid Adj (pg/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

1,2,3,7,8-pncdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

2,3,7,8-tcdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,6,7,8,9-ocdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,7,8,9-hxcdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,6,7,8-hpcdd Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,6,7,8-hxcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,7,8-hxcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

2,3,4,7,8-pncdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

2,3,4,6,7,8-hxcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,6,7,8-hpcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,6,7,8,9-ocdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

Melamine (ng/mL) NA NA WTSBMEL NA NA NA NA NA 
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Cyanuric acid (ng/mL) NA NA WTSBMEL NA NA NA NA NA 

Lead (ug/dL) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTSH2YR 

Cadmium (ug/L) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTSH2YR 

Mercury, total (ug/L) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTSH2YR 

Mercury, Inorganic (ug/L) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTSH2YR 

Mercury, urine (ng/mL) WTMEC4YR WTMEC4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Barium, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Cobalt, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Cesium, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Molybdenum, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Lead, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Platinum, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR NA NA 

Antimony, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Thallium, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Tungsten, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Uranium, urine (ng/mL) NA WTSHM2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary total Arsenic (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Arsenous acid (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Arsenobetaine (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Arsenocholine (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Dimethylarsonic acid (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Monomethylacrsonic acid (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Cadmium, urine (ng/mL) WTSHM4YR WTSHM4YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Blood manganese (ug/L) NA NA NA NA NA NA WTMEC2YR WTSH2YR 

Serum Copper (ug/dL) NA NA NA NA NA NA WTSA2YR WTSA2YR 

Serum Zinc (ug/dL) NA NA NA NA NA NA WTSA2YR WTSA2YR 

Mercury, methyl (ug/L) NA NA NA NA NA NA WTMEC2YR WTSH2YR 

Urinary Triclocarban (ng/mL) NA NA NA NA NA NA NA WTSB2YR 

Urinary Triclosan (ng/mL) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Urinary Bisphenol S (ug/L) NA NA NA NA NA NA NA WTSB2YR 
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Urinary 4-tert-octylphenol (ng/mL) NA NA NA WTSB2YR WTSB2YR WTSB2YR NA NA 

Butyl paraben (ng/ml) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Ethyl paraben  (ng/ml) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Methyl paraben (ng/ml) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Propyl paraben (ng/ml) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Urinary Bisphenol A (ng/mL) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Urinary Bisphenol F (ug/L) NA NA NA NA NA NA NA WTSB2YR 

Urinary Benzophenone-3 (ng/mL) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mirex Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Trans-nonachlor Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Oxychlordane Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Heptachlor Epoxide Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

p,p'-DDE Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Dieldrin Lipid Adj (ng/g) NA WTSPO2YR WTSB2YR NA NA NA NA NA 

Endrin Lipid Adj (ng/g) NA WTSPO2YR WTSB2YR NA NA NA NA NA 

Aldrin Lipid Adj (ng/g) NA WTSPO2YR WTSB2YR NA NA NA NA NA 

p,p'-DDT Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Hexachlorobenzene Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

2,4,5-trichlorophenol (ug/L) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR NA NA 

2,4,6-trichlorophenol (ug/L) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR NA NA 

Beta-hexachlorocyclohexane Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

Pentachlorophenol (ug/L) NA NA WTSC2YR NA NA NA NA NA 

Dimethylphosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Diethylthiophosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Diethylphosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

3,5,6-trichloropyridinol (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

Dimethylthiophosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

cis dichlorovnl-dimeth carboacid (ug/L) WTSPP4YR WTSPP4YR NA NA NA NA NA NA 

trans dichlorovnl-dimeth carboacid (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

3-phenoxybenzoic acid (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 
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2,5-dichlorophenol (ug/L) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

2,4-dichlorophenol (ug/L) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Paranitrophenol (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

2,4-D (ug/L) WTSPP4YR WTSPP4YR WTSC2YR NA WTSC2YR WTSC2YR NA NA 

diethylaminomethylpyrimidinol/one (ug/L) NA WTSPP2YR NA NA NA NA NA NA 

Oxypyrimidine (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

Dimethyldithiophosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

DEET acid (ug/L) NA NA NA NA WTSC2YR WTSC2YR WTSC2YR WTSC2YR 

Desethyl hydroxy DEET (ug/L) NA NA NA NA WTSC2YR WTSC2YR WTSC2YR WTSC2YR 

DEET (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR WTSC2YR WTSC2YR 

Alachor mercapturate (ug/L) WTSPP2YR NA NA NA NA NA NA NA 

Malathion diacid (ug/L) WTSPP2YR NA NA NA WTSC2YR WTSC2YR NA NA 

O-Phenyl phenol (ug/L) NA NA WTSC2YR WTSB2YR WTSB2YR WTSB2YR NA NA 

Ethylenethio urea (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

MHNCH (ng/mL) NA NA NA NA NA NA WTSA2YR WTSB2YR 

Mono-isononyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono(carboxynonyl) phthalate (ng/mL) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-2-hydroxy-iso-butyl phthlate (ng/mL) NA NA NA NA NA NA NA WTSB2YR 

Mono(carboxyoctyl) phthalate (ng/mL) NA NA NA WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-isobutyl phthalate (ng/mL) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-(2-ethyl)-hexyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-(2-ethyl-5-oxohexyl) phthalate (ng/mL) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-benzyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-(2-ethyl-5-hydroxyhexyl) phthalate (ng/mL) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-2-ethyl-5-carboxypentyl phthalate (ng/mL) NA NA WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-n-butyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-ethyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 

Mono-n-methyl phthalate (ng/mL) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA 

Mono-3-hydroxy-n-butyl phthalate (ng/mL) NA NA NA NA NA NA NA WTSB2YR 

Mono-(3-carboxypropyl) phthalate (ng/mL) NA WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSB2YR 
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Mono-cyclohexyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR NA NA 

o-Desmethylangolensin (O-DMA) (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

Enterolactone (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

Enterodiol (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

3-phenanthrene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA 

1-phenanthrene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

2-phenanthrene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA 

4-phenanthrene (ng/L) NA NA WTSB2YR WTSB2YR NA NA WTSA2YR NA 

2 & 3-Hydroxyphenanthrene (ng/L) NA NA NA NA NA NA NA WTSA2YR 

1-pyrene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

1-napthol (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

2-napthol (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

9-fluorene (ng/L) NA NA WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA 

3-fluorene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

2-fluorene (ng/L) NA WTSPH2YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR WTSA2YR 

3-fluoranthene (ng/L) WTSPH4YR WTSPH4YR NA NA NA NA NA NA 

PCB199 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB172 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB206 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB180 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB209 Lipid Adj (ng/g) NA NA WTSC2YR NA NA NA NA NA 

PCB189 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB146 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB156 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB170 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB194 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB157 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB195 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB187 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB153 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 
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PCB167 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB196 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB138 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB177 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

3,3',4,4',5,5'-hxcb Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB183 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB118 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB128 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB99 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB105 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB178 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

3,3',4,4',5-pcnb Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB74 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

3,4,4',5-tcb Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB28 Lipid Adj (ng/g) WTSPO2YR NA WTSC2YR NA NA NA NA NA 

PCB52 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB149 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB151 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB101 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB87 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB66 Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

PCB110 Lipid Adj (ng/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

PCB49 Lipid Adj (ng/g) NA NA WTSC2YR NA NA NA NA NA 

PCB44 Lipid Adj (ng/g) NA NA WTSC2YR NA NA NA NA NA 

Perfluoroundecanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorododecanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorodecanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorooctane sulfonamide (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR NA 

2-(N-methyl-PFOSA) acetate (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorononanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 
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Linear perfluorooctane sulfonate (ug/L) NA NA NA NA NA NA NA WTSB2YR 

Monomethyl branched iso of PFOS (ug/L) NA NA NA NA NA NA NA WTSB2YR 

Linear perfluorooctanoate (ug/L) NA NA NA NA NA NA NA WTSB2YR 

Br. iso of perfluorooctanoate (ug/L) NA NA NA NA NA NA NA WTSB2YR 

Perfluorohexane sulfonic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorooctanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluorooctane sulfonic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Perfluoroheptanoic acid (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Cotinine (ng/mL) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR 

NNAL , urine (ng/mL) NA NA NA NA WTMEC2YR WTMEC2YR WTMEC2YR NA 

Blood Tetrachloroethene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood o-Xylene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood m-/p-Xylene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Benzene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,4-Dichlorobenzene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Bromodichloromethane (pg/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-ace-S-(phenl-2-hydxyetl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Ace-S-(2-Hydroxyethyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Phenylglyoxylic acid (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood Dibromochloromethane (pg/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-Ace-S-(2-hydroxypropyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-A-S-(4-hydrxy-2butn-l-yl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSVOC2Y WTSA2YR 

Blood 2,5-Dimethylfuran (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

3-methipurc acd & 4-methipurc acd (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Acetyl-S-(benzyl)-L-cysteine (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Acetyl-S-(n-propyl)-L-cysteine (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-ac-S-(2-carbmo-2-hydxel)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Acetyl-S-(phenyl)-L-cysteine (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood MTBE (pg/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Mandelic acid (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 
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N-Ace-S-(2-carbamoylethyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Ace-S-(N-methlcarbamoyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

2-amnothiazolne-4-carbxylic acid (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-acetyl-S-(2-cyanoethyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

2-thoxothazlidne-4-carbxylic acid (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

2-Methylhippuric acid (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Ac-S-(2-Hydrxy-3-butnyl)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-A-S-(3-hydrxprpl-1-metl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Acetyl-S-(2-Carbxyethyl)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Ace-S-(3-Hydroxypropyl)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Ace-S-(3,4-Dihidxybutl)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood Ethylbenzene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Styrene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA NA 

Blood Toluene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA WTSVOC2Y 

Blood Bromoform (pg/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Nitromethane (pg/mL) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood furan (ng/ml) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Chloroform (pg/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Urinary thiocyanate (ng/mL) NA WTMEC2YR NA WTMEC2YR WTMEC2YR WTSA2YR WTSA2YR WTSA2YR 

Iodine, urine (ng/mL) NA WTUIO2YR WTSC2YR WTSC2YR WTMEC2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary nitrate (ng/mL) NA WTMEC2YR NA WTMEC2YR WTMEC2YR WTSA2YR WTSA2YR WTSA2YR 

Perchlorate, urine (ng/mL) NA WTMEC2YR WTSC2YR WTMEC2YR WTMEC2YR WTSA2YR WTSA2YR WTSA2YR 

1,2,3,7,8,9-hxcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

1,2,3,4,7,8,9-hpcdf Lipid Adj (pg/g) NA WTSPO2YR WTSC2YR NA NA NA NA NA 

1,2,3,7,8-pncdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

2,3,7,8-tcdf Lipid Adj (pg/g) WTSPO4YR WTSPO4YR WTSC2YR NA NA NA NA NA 

Beryllium, urine (ng/mL) WTSHM2YR WTSHM2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR NA NA 

Urinary Arsenic acid (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR 

Urinary Trimethylarsine Oxide (µg/L) NA NA WTSA2YR WTSA2YR WTSA2YR WTSA2YR WTSA2YR NA 

Mercury, ethyl (ug/L) NA NA NA NA NA NA WTMEC2YR WTSH2YR 
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o,p'-DDT Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

G-hexachlorocyclohexane Lipid Adj (ng/g) WTSPO4YR WTSPO4YR WTSB2YR NA NA NA NA NA 

4-fluoro-3-phenoxybenzoic acid (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

2,4,5-T (ug/L) WTSPP4YR WTSPP4YR WTSC2YR NA WTSC2YR WTSC2YR NA NA 

Prosulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Carbofuranphenol (ug/L) WTSPP4YR WTSPP4YR WTSC2YR NA NA NA NA NA 

chloro-hydro-meth-chromen-one/ol (ug/L) NA WTSPP2YR NA NA NA NA NA NA 

Oxasulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Desethyl atrazine (ug/L) NA NA NA NA WTSC2YR NA NA NA 

Desisopropyl atrazine mercapturate (ug/L) NA NA NA NA WTSC2YR NA NA NA 

Diaminochloroatrazine (ug/L) NA NA NA NA WTSC2YR NA NA NA 

Desisopropyl atrazine (ug/L) NA NA NA NA WTSC2YR NA NA NA 

Atrazine mercapturate (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR NA NA NA 

Diethyldithiophosphate (ug/L) WTSPP4YR WTSPP4YR WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Chlorsulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Sulfosulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

dibromovinyl-dimeth prop carboacid (ug/L) WTSPP4YR WTSPP4YR NA NA WTSC2YR WTSC2YR NA NA 

Metolachlor mercapturate (ug/L) NA WTSPP2YR NA NA NA NA NA NA 

Acetochlor mercapturate (ug/L) NA WTSPP2YR NA NA NA NA NA NA 

2-isopropoxyphenol (ug/L) WTSPP4YR WTSPP4YR WTSC2YR NA NA NA NA NA 

Methamidaphos (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

O-methoate (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Acephate (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Dimethoate (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Ethametsulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Metsulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Nicosulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Propylenethio urea (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Mono-n-octyl phthalate (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSB2YR NA NA 

2-(N-ethyl-PFOSA) acetate (ng/mL) WTMEC2YR NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR NA 
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Perfluorobutane sulfonic acid (ng/mL) NA NA WTSA2YR WTSA2YR WTSC2YR WTSC2YR WTSA2YR WTSB2YR 

Blood Hexachloroethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood Carbon Tetrachloride (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-Acetyl-S-(trichlorovinyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood 1,1,2,2-Tetrachloroethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood 1,1,1-Trichloroethane (ng/mL) WTSVOC4Y NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-Ace-S-(dimethylphenyl)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood Nitrobenzene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-acel-S-(1,2-dichlorovinl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

N-Acel-S-(2,2-Dichlorvinyl)-L-cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood 1,2,3-trichloropropane (ng/ml) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Trichloroethene (ng/ml) WTSVOC4Y WTSVOC4Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,2-Dichlorobenzene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,2-Dichloropropane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood 1,2-Dichloroethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Methylene Chloride (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,3-Dichlorobenzene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Chlorobenzene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

N-A-S-(1-HydrxMet)-2-Prpn)-L-Cys (ng/mL) NA NA NA WTSVOC2Y NA NA WTSA2YR WTSA2YR 

Blood isopropylbenzene (ng/ml) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood Dibromomethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood Hexane (ng/mL) NA NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood trans-1,2-Dichloroethene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood Heptane (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Octane (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Cyclohexane (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Diethyl Ether (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Ethyl Acetate (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Chloroethane (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Methylcyclopentane (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 
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Blood Tetrahydrofuran (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Sulfometuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Atrazine (ug/L) NA NA NA NA WTSC2YR NA NA NA 

Triasulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Halosulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Triflusulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Primisulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Rimsulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Thifensulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Bensulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Foramsulfuron (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Mesosulfuron methyl (ug/L) NA NA WTSC2YR WTSC2YR WTSC2YR NA NA NA 

Blood 1,1,1,2-tetrachloroethane (ng/mL) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,1,2-Trichloroethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood 1,1-Dichloroethane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood 1,1-Dichloroethene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood cis-1,2-Dichloroethene (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA 

Blood 1,2-Dibromo-3-chloropropane (ng/mL) NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y NA NA 

Blood 1,2-dibromoethane (ng/ml) NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood 1,4-Dioxane (ng/mL) NA NA NA NA NA WTSVOC2Y WTSVOC2Y WTSVOC2Y 

Blood aaa-Trifluorotoluene (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Blood Vinyl Bromide (ng/mL) NA NA NA NA NA NA NA WTSVOC2Y 

Albumin, urine (ug/mL) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR 

Albumin, urine (mg/L) NA NA NA WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR 

Creatinine, urine (mg/dL) WTMEC4YR WTMEC4YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR 

Creatinine, urine (umol/L) NA NA NA WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR WTMEC2YR 

Bis(2-chloroethyl) phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Bis(1-chloro-2-propyl) phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Bis(1,3-dichloro-2-propyl) phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Dibutyl phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 
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Dibenzyl phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Di-o-cresyl phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Di-p-cresyl phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Diphenyl phosphate (ug/L) NA NA NA NA NA NA NA WTSC2YR 

2,3,4,5-tetrabromobenzoic acid (ug/L) NA NA NA NA NA NA NA WTSC2YR 

Daidzein (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

Equol (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

Genistein (ng/mL) WTSPH4YR WTSPH4YR WTSB2YR WTSB2YR WTSB2YR WTSA2YR NA NA 

Hydroxycotinine, Serum (ng/mL) NA NA NA NA NA NA NA WTMEC2YR 



 

250 
 

Table A2.4. NHANES codenames for survey weights used in children aged 3-11 years old for a given Per- and Polyfluoroalkyl Substance 
(PFAS) and NHANES cycle. 

 

Chemical name Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 
Perfluoroundecanoic acid (ng/mL)        WTSS2YR 
Perfluorododecanoic acid (ng/mL)        WTSS2YR 
Perfluorodecanoic acid (ng/mL)        WTSS2YR 
Perfluorooctane sulfonamide (ng/mL)        WTSS2YR 
2-(N-methyl-PFOSA) acetate (ng/mL)        WTSS2YR 
Perfluorononanoic acid (ng/mL)        WTSS2YR 
Linear perfluorooctane sulfonate (ug/L)        WTSS2YR 
Monomethyl branched iso of PFOS (ug/L)        WTSS2YR 
Linear perfluorooctanoate (ug/L)        WTSS2YR 
Br. iso of perfluorooctanoate (ug/L)        WTSS2YR 
Perfluorohexane sulfonic acid (ng/mL)        WTSS2YR 
Perfluoroheptanoic acid (ng/mL)        WTSS2YR 
2-(N-ethyl-PFOSA) acetate (ng/mL)        WTSS2YR 
Perfluorobutane sulfonic acid (ng/mL)        WTSS2YR 
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Table A2.5. Number of participants by race and menopause/hysterectomy status 

 
 

Menopause – No 
Regular Periods 

Menopause – Yes Menopause – No 
Irregular Periods 

Mexican Americans 3338 1566 466 
Non-Hispanic Blacks 3338 2070 313 
Non-Hispanic Whites 4937 5122 611 
Other Hispanics 1098 741 99 
Other Race/Multi-Racial 1108 512 84 
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Table A2.6. Number of participants by race and number of pregnancies resulting in live births 

 

Number of 
live births 

Mexican 
Americans 

Non-
Hispanic 
Blacks 

Non-
Hispanic 
Whites 

Other 
Hispanics 

Other 
Race/Multi-
Racial 

0 81 164 199 31 22 
1 575 803 1507 258 240 
2 709 952 2510 384 317 
3 717 667 1742 284 176 
4 431 381 775 152 88 
5 238 197 330 92 34 
6 144 113 173 33 25 
7 101 82 69 10 10 
8 70 39 37 9 7 
9 38 17 24 7 7 
10 52 17 12 5 1 
11 44 16 9 5 3 
12 7 9 2 3 0 
13 4 0 0 3 0 
15 4 0 0 0 0 
17 0 1 0 0 0 
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Table A2.7. Number of participants by breastfeeding status and race. 

 
 

Breastfed – No 
Do not have children 

Breastfeed – Yes Breastfed – No 
Have children 

Mexican Americans 81 1925 821 
Non-Hispanic Blacks 164 1223 1640 
Non-Hispanic Whites 199 3516 2668 
Other Hispanics 31 728 311 
Other Race/Multi-Racial 22 454 187 
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Table A2.8. Number of participants by race and iron deficiency status. 

 
 

Iron deficient - No Iron deficient – Yes 
Mexican Americans 7100 812 
Non-Hispanic Blacks 5991 1989 
Non-Hispanic Whites 12187 911 
Other Hispanics 2289 358 
Other Race/Multi-Racial 2137 318 
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Appendix 3. Biomarker-Based Occupational Exposome 

 

Figure A3.1. Bar plot showing number of participants by included chemical. Participants have data available for age, sex, race, industrial 
sector, collar category, and given chemical. 
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Figure A3.2. Heatmap of dichotomized biomarker measurements by participants and included chemicals to show sparsity of the 
chemical biomarker dataset. NHANES participants have data available for age, sex, race, industrial sector, and occupational title. 
Chemical biomarkers are grouped by chemical class. Participants are order by number of measured chemicals, which ranges from 0 to 
98 chemicals, e.g. participants to the far-right were measured for 98 chemical biomarkers.  
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Figure A3.3. Bar plot showing the number of participants by each sector-collar combination. The sector-collar combinations are 
ordered from highest number of participants to lowest. 
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Figure A3.4. Bar plot showing the percentage of male versus female participants for each sector-collar combination. The sector-collar 
combinations are ordered from highest percentage of males to lowest percentage. 
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Figure A3.5. Bar plot showing the percentage of Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and 
Other Race/Multi-Racial participants for each sector-collar combination. The sector-collar combinations are ordered from highest 
percentage of Non-Hispanic White participants to lowest. 
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Figure A3.6. Bar plot showing the percentage of poverty income categories for each sector-collar combination. The sector-collar 
combinations are ordered from highest percentages of the lowest PIR category ([0,1] as shown in red) to the lowest percentages.
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Figure A3.7. Box plot of distribution of lead in blood. Far-left statistics are the mean chemical biomarker concentration. The middle-
left statistics are the percent differences except for the “reference” group of “Public Administration – White Collars” and the 
“NHANES population”. The NHANES population includes all participants with measurements for lead, including the sector-collar 
combinations. The middle-right statistics are the p-values corrected for multiple comparison with the Benjamini and Hochberg FDR 
procedure of 5%. Far-right statistics are the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of total lead for a given sector-collar combination. Results are adjusted for age, sex, and race. 
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Figure A3.8. Box plot of distribution of total arsenic in urine. Far-left statistics are the mean chemical biomarker concentration. The 
middle-left statistics are the percent differences except for the “reference” group of “Public Administration – White Collars” and the 
“NHANES population”. The NHANES population includes all participants with measurements for total arsenic, including the sector-
collar combinations. The middle-right statistics are the p-values corrected for multiple comparison with the Benjamini and Hochberg 
FDR procedure of 5%. Far-right statistics are the sample size of each sector-collar combinations. Purple triangle represents the mean 
concentration of total arsenic for a given sector-collar combination. Results are adjusted for age, sex, and race. 



 

263 
 

Table A3.1. Job occupation description with corresponding collar category. 

Job Occupation Description Collar Category 
Building & Grounds Cleaning, Maintenance Occupations Blue-collar 
Food Preparation, Serving Occupations Blue-collar 
Personal Care, Service Occupations Blue-collar 
Farming, Fishing, Forestry Occupations Blue-collar 
Installation, Maintenance, Repair Occupations Blue-collar 
Construction, Extraction Occupations Blue-collar 
Production Occupations Blue-collar 
Transportation, Material Moving Occupations Blue-collar 
Armed Forces Blue-collar 
Management Occupations White-collar 
STEM, Social, and Legal Services Occupations White-collar 
Healthcare Practitioner, Technical Occupations White-collar 
Education, Training, Library Occupations White-collar 
Arts, Design, Entertainment, Sports, Media Occupations White-collar 
Healthcare Support Occupations White-collar 
Sales & Related Occupations White-collar 
Office, Administrative Support Occupations White-collar 
Protective Service Occupations White-collar 
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Table A3.2. List of excluded tobacco and soy metabolites and their corresponding chemical class. 

Chemical Chemical Class 
Cotinine (ng/mL) Smoking Related Compounds 
NNAL , urine (ng/mL) Smoking Related Compounds 
o-Desmethylangolensin (O-DMA) (ng/mL) Soy Metabolites 
Enterolactone (ng/mL) Soy Metabolites 
Enterodiol (ng/mL) Soy Metabolites 
Daidzein (ng/mL) Soy Metabolites 
Equol (ng/mL) Soy Metabolites 
Genistein (ng/mL) Soy Metabolites 
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Table A3.3. Sample size required to detect significant differences. x% power mean that a study has a x% chance of ending up with a p-
value of less than 5% in a statistical test when the effect size (or regression coefficient) is a corresponding value if the sample size is a 
particular number. For example, a study has a 70% chance of detecting a significance difference with a regression coefficient of 0.37 
when the sample size is 90 participants. 

Effect Size (or Regression Coefficients) 90% Power 80% Power 70% Power 
0.01 209952 156800 123008 
0.02 52488 39200 30752 
0.03 23328 17422 13668 
0.04 13122 9800 7688 
0.05 8398 6272 4920 
0.06 5832 4356 3417 
0.07 4285 3200 2510 
0.08 3281 2450 1922 
0.09 2592 1936 1519 
0.1 2100 1568 1230 
0.11 1735 1296 1017 
0.2 525 392 308 
0.3 233 174 137 
0.31 218 163 128 
0.32 205 153 120 
0.33 193 144 113 
0.34 182 136 106 
0.35 171 128 100 
0.36 162 121 95 
0.37 153 115 90 
0.38 145 109 85 
0.39 138 103 81 
0.4 131 98 77 
0.5 84 63 49 
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0.6 58 44 34 
0.7 43 32 25 
0.8 33 25 19 
0.9 26 19 15 
1 21 16 12 
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Table A3.4. Table of description, clinical thresholds, and sample size of each physiological indicator. Lower bound of the threshold 
implies that values below the threshold are unfavorable or indicative of high risk. Upper bound of the threshold implies that values 
above the threshold are unfavorable or indicative of high risk. 

   Clinical Thresholds 

 Sample 
Size Description Lower - All Upper - All Lower - 

Males 
Upper - 
Males 

Lower - 
Females 

Upper - 
Females 

Body Composition         

Body Mass Index 
(kg/m**2)  23834 

Measure of body fat based on height and 
weight. This measure is used to screen for 
weight categories associated with health 
problems. Lower measurements indicate 
underweighted, whereas higher 
measurements indicate overweight or 
obesity. 

18.5-19 24.9-25     

Standing Height (cm)  23931 Distance between the lowest and 
highest points of a person standing upright.       

Subscapular Skinfold 
(mm)  14381 

Subscapular skinfold is skinfold thickness 
measured under the lowest point of the 
shoulder blade. It also serves as a measure 
for subcutaneous fat. 

      

Triceps Skinfold (mm)  16305 

Triceps skinfold is skinfold thickness 
measured back side middle upper arm. It 
also serves as a measure for subcutaneous 
fat. 

      

Waist Circumference 
(cm)  23255 

A measurement taken around the abdomen 
at the level of the umbilicus (belly button). 
This measure is used to screen for patients 
with weight-related health problems. 
Higher measurements may indicate higher 
risk for heart disease and type 2 diabetes. 

   90-102  80-88 

Weight (kg) 23858 Quantifier of heaviness. It serves as a 
nutrition screen tool and is valuable in       
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monitoring fluid balance and calculating 
medication doses.  

Relative Fat Mass Index 
(-)  23240 

The relative fat mass formula is a new 
index for measuring body fatness that can 
be easily accessible to health practitioners 
trying to treat overweight patients who 
often face serious health consequences like 
diabetes, high blood pressure and heart 
disease. Higher index indicates higher body 
fat, which is associated with increased risk 
of poor health and early mortality. 

  8-13 19-25 21-24 33-36 

Cardiovascular System         

60 sec. pulse (30 sec. 
pulse * 2):  23123 

Normal resting heart rate is the number of 
heart beats per minute. It is calculated by 
multiplying the number of beats in 30 
seconds by 2. Higher pulse may indicate 
lack of arterial blood flow or heart disease. 

50-60 80-100     

Diastolic: Average blood 
pressure (mm Hg)  22990 

A measure of the force exerted by blood 
against artery walls during contraction or 
beating of the heart. Higher measurements 
indicate hypertension, while lower 
measurements indicate hypotension. 

60 80-90     

Systolic: Average blood 
pressure (mm Hg)  23045 

A measure of the force exerted by blood 
when heart relaxes between beats. Higher 
measurements indicate hypertension, while 
lower measurements indicate hypotension. 

90 130-140     

Direct HDL-Cholesterol 
(mg/dL)  22772 

High-density lipoprotein (HDL) is often 
called “good” cholesterol. It removes 
cholesterol from the bloodstream. Higher 
levels of HDL are associated with lower 
risk of heart disease. 

  40  50  

LDL-cholesterol (mg/dL)  10696 
Low-density lipoprotein (LDL) is often 
called “bad” cholesterol. It delivers 
cholesterol to the body. Higher levels are 

 100-130     



 

269 
 

associated with increased risk in heart 
disease. 

Ratio of LDL to HDL 
Cholesterol (-)  10696 

This ratio is calculated by dividing the LDL 
cholesterol number by the HDL cholesterol 
number. Higher ratios are indicative of 
higher risk of heart disease. 

 1.4     

Ratio of Total to HDL 
Cholesterol (-)  22771 

This ratio is calculated by dividing the total 
cholesterol number by the HDL cholesterol 
number. Higher ratios are indicative of 
higher risk of heart disease. 

   5  4.4 

Total cholesterol (mg/dL)  22772 

A measure of the total amount of 
cholesterol in your blood. It includes both 
low-density lipoprotein (LDL) cholesterol 
and high-density lipoprotein (HDL) 
cholesterol. Higher measurements are 
associated with increased risk in heart 
diseases. 

 200     

Triglycerides (mg/dL)  22722 

Triglycerides are another type of fat in your 
blood. When you eat more calories than 
your body can use, it turns the extra calories 
into triglycerides. Higher measurements are 
associated with increased risk in heart 
diseases. 

 150     

Immune System         

C-reactive protein 
(mg/dL)  17059 

C-reactive protein (CRP) is a substance 
produced by the liver in response to 
inflammation. A high level of CRP in the 
blood is a marker of inflammation. It can be 
caused by a wide variety of conditions, 
from infection to cancer. Higher 
measurements are indicative of 
inflammation.  

 0.1-0.2     

White blood cell count 
(1000 cells/uL) 22977 

Cells of the immune system that are 
involved in protecting the body against 
infection and foreign invaders. The count is 

4-15 10-11     
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the number of white blood cells in a sample 
of blood to serve as a general evaluation of 
health. A higher count may indicate 
inflammation, an infection, or disease of 
bone marrow. 

Metabolic System         

Alkaline phosphatase 
(U/L)  19819 

Alkaline phosphatase (ALP) is an enzyme 
found in several tissues throughout the 
body. The highest concentrations of ALP 
are present in the cells that comprise bone 
and the liver. Elevated levels of ALP in the 
blood are most commonly caused by liver 
disease or bone disorders. 

20-44 116-147     

Glucose, plasma (mg/dL)  11202 

Fasting blood sugar provides vital clues 
about how the body is managing blood 
sugar levels. High levels of fasting blood 
sugar suggest that the body has been unable 
to lower the levels of sugar in the blood. 
This points to either insulin resistance or 
inadequate insulin production, and in some 
cases, both. 

60-70 99-126     

Glycohemoglobin:(%)  22957 

A glycohemoglobin test, or hemoglobin 
A1c, is a blood test that checks the amount 
of sugar (glucose) bound to 
the hemoglobin in the red blood cells. The 
level of glycohemoglobin is increased in the 
red blood cells of persons with poorly 
controlled diabetes mellitus. 

 5.7-7     

Homeostatic Model 
Assessment of Insulin 
Resistance (-)  

9579 

HOMA-IR stands for Homeostatic Model 
Assessment of Insulin Resistance. The 
meaningful part of the acronym is “insulin 
resistance”. It marks for both the presence 
and extent of any insulin resistance. It is a 
way to reveal the dynamic between baseline 
(fasting) blood sugar and the responsive 

 1.4-2.9     
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hormone insulin. Higher indices indicate 
increase resistance to insulin. 

Ratio of Insulin to 
Glucose  9579 

This measure is calculated by dividing the 
concentration of insulin in blood with the 
concentration of blood glucose. It serves as 
a measure of insulin resistance. Higher 
indices indicate increase resistance to 
insulin. 

 0.2-0.3     

Nephrology          

Albumin (g/dL)  22733 

A protein made in the liver that helps keep 
fluid in the bloodstream, so it doesn’t leak 
into other tissues. It also carries nutrients 
throughout the body. Low albumin levels 
can indicate liver or kidney damage, while 
higher measurements may indicate 
dehydration or diarrhea. 

3.4-3.5 5.4-5.5     

Blood urea nitrogen 
(mg/dL)  22732 

This test measures the amount of nitrogen 
in the patient’s blood that comes from the 
waste product urea. Urea is made when 
proteins break down in the body. Urea is 
made in the liver and eliminated in the 
urine. When kidneys are not healthy, they 
have trouble removing blood urea nitrogen, 
leading to elevated concentrations in the 
blood. Lower levels may indicate a diet low 
in proteins, malnutrition, or liver damage. 

6-10 20-21     

Creatinine (mg/dL)  19821 

Creatinine is a chemical waste product of 
creatine, an amino acid made by the liver 
and stored in the liver. Creatinine is the 
result of normal muscle metabolism. Low 
creatinine levels may indicate muscle 
disease, liver disease, or excessive water 
loss. Higher levels. May indicate kidney 
damage, kidney infection, reduced 
circulation to the kidneys, and dehydration. 

  0.6-0.9 1.2-1.3 0.5-0.6 1-1.1 



 

272 
 

Estimated Glomerular 
Filtration Rate 
(mL/min/1.73 m2)  

19821 

An estimated GFR (eGFR) calculated from 
serum creatinine using an isotope dilution 
mass spectrometry (IDMS) traceable 
equation is a simple and effective way to 
detect chronic kidney disease. Lower rates 
indicate kidney dysfunction.  

60-90      



 

273 
 

Table A3.5. Number of participants with a given number of measured chemicals. For example, 297 participants have measurements 
available for 98 chemical biomarkers. 

Number of measured chemicals Number of participants 
0 1332 
1 869 
2 227 
3 69 
4 1025 
5 788 
6 68 
7 538 
8 24 
9 242 
10 199 
11 78 
12 289 
13 684 
14 643 
15 133 
16 303 
17 374 
18 885 
19 81 
20 530 
21 967 
22 693 
23 296 
24 213 
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25 1100 
26 65 
27 248 
28 689 
29 23 
30 135 
31 939 
32 198 
33 89 
34 743 
35 95 
36 700 
37 152 
38 280 
39 934 
40 445 
41 523 
42 743 
43 74 
44 185 
45 259 
46 5 
47 40 
48 14 
49 31 
50 37 
51 77 
52 81 
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53 92 
54 126 
55 165 
56 327 
57 310 
58 817 
59 114 
60 136 
61 180 
62 226 
63 447 
64 540 
65 509 
66 100 
67 168 
68 184 
69 68 
70 70 
71 129 
72 27 
73 64 
74 113 
78 1 
85 1 
86 1 
88 3 
89 3 
90 4 
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91 18 
92 16 
93 15 
94 11 
95 47 
96 175 
97 228 
98 297 
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Table A3.6. Description of each hierarchical clustering method. 

Linkage Method Description 
Single (nearest neighbor) Distance between two clusters is determined by a pair 

of elements that are closest to each other. At each step, 
if a pair of elements, with the shortest distance, do not 
belong in the same cluster, then the two clusters will be 
combined. 

Complete (farthest neighbor) Distance between two clusters is determined by a pair 
of elements that are farthest from each other. At each 
step, if a pair of elements, with the shortest distance, do 
not belong in the same cluster, then the two clusters 
will be combined. 

Average (unweighted pair group method with 
arithmetic mean or UPGMA) 

Distance between two clusters is determined by the 
average of all distances between each pairs of distance 
in either clusters.  

McQuitty (Weighted Pair Group Method with 
Arithmetic Mean or WPGMA) 

Distance of two nearest clusters (i and j) to another 
cluster (k) is the arithmetic mean of average distances 
between elements of k and i along with k and j.  
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Table A3.7. Cophenetic correlation coefficients by linkage methods for clustering of the sector-collar combinations based on chemical 
exposure profiles. 

Linkage Method Cophenetic Correlation Coefficients 
Single (nearest neighbor) 0.2828052 
Complete (farthest neighbor) 0.5536748 
Average (unweighted pair group method with 
arithmetic mean or UPGMA) 0.5671026 

McQuitty (Weighted Pair Group Method with 
Arithmetic Mean or WPGMA) 0.5626430 
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Table A3.8. Cophenetic correlation coefficients by linkage methods for clustering of the sector-
collar combinations based on physiological response profiles. 

Linkage Method Cophenetic Correlation Coefficients 
Single (nearest neighbor) 0.1859953 
Complete (farthest neighbor) 0.644285 
Average (unweighted pair group method with 
arithmetic mean or UPGMA) 0.6781713 

McQuitty (Weighted Pair Group Method with 
Arithmetic Mean or WPGMA) 0.6678879 
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Appendix 4. Characterization of Linear and Non-linear Associations between Physiological 
Indicators and All-Cause Mortality 

 
Figure A4.1. Schematic description of curation process and analytical methods. Schematic 
description of the process to curate the physiological measurements and of the analytical methods 
used to characterize associations between these measurements and mortality. 
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Figure A4.2. Stairway plot of hazard ratios displaying the relative mortality risk for age and 
alphabet soup plot of prediction performance for linear and non-linear models. Results were 
adjusted for sex and race/ethnicity. 
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Figure A4.3. Histogram of measurements for each physiological indicator in all participants. 
Labels for tick marks are provided for the 0th, 10th, 50th, 90th, and 100th percentiles. 
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Figure A4.4. Alphabet soup plot displaying the Concordance Index for the associations with all-
cause mortality for all physiological indicators across all studied models. Results are adjusted for 
age, sex, and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 
bootstrapping for 1000 replicates. 
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Figure A4.5. Alphabet soup plot displaying the AIC for the associations with all-cause mortality 
for all physiological indicators across all studied models. Results are adjusted for age, sex, and 
race/ethnicity. Error bars represent the 95% Confidence Intervals defined through bootstrapping 
for 1000 replicates. 
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Figure A4.6. Scatterplot of the sample size and prediction performance displayed for the A) AIC, 
B) Concordance Index, and C) Nagelkerke R2. Results are adjusted for age, sex, and 
race/ethnicity. 
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Figure A4.7. Alphabet soup plot of Nagelkerke R2 on all participants (0) and participants within 
the 1st to 99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, sex, 
and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 
bootstrapping for 1000 replicates.  
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Figure A4.8. Alphabet soup plot of the AIC on all participants (0) and participants within the 1st to 
99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, sex, and 
race/ethnicity. Error bars represent the 95% Confidence Intervals defined through bootstrapping 
for 1000 replicates.  
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Figure A4.9. Alphabet soup plot of the Concordance Index on all participants (0) and participants 
within the 1st to 99th (1), 5th to 95th (2), and 10th to 90th percentiles (3). Results are adjusted for age, 
sex, and race/ethnicity. Error bars represent the 95% Confidence Intervals defined through 
bootstrapping for 1000 replicates.  
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Figure A4.10. Volcano Plots of Nagelkerke R2 and test statistics used to indicate statistical 
significance of the model compared to a null model. Results are adjusted for age, sex, and 
race/ethnicity. 
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Figure A4.11. Stairway hazard ratios across all models to describe the relative mortality risk for 
A) Body Mass Index, B) Average Systolic Blood Pressure, C) Ratio of Total to HDL Cholesterol, 
D) C-Reactive Proteins, E) Homeostatic Model Assessment of Insulin Resistance, and F) 
Glomerular Filtration Rate when all participants are included. Relative risks for mortality from the 
novemtiles model are represented by the boxes with the width representing the range of a 
novemtile and the height representing the 95% Confidence Interval of the hazard ratio. The mean 
hazard ratio for each novemtile is presented by a digit. The hazard compares participants in a 
novemtile to those in the reference group at the 5th novemtile. The red and blue lines represent the 
relative mortality risk with respect to median of a physiological indicator for the linear and spline 
models, respectively. The dashed navy line represents when the hazard ratio is 10% higher than 
the minimum hazard ratio. The navy diamonds indicate the concentration at which the hazard ratio 
shows a 10% increase from the minimum hazard ratio. The purple dot represents the median for a 
physiological indicator. The pink lines and rectangles represent the values of the clinical thresholds 
with the width of the rectangles representing the ranges of the threshold. The set of tick marks 
along the base of the plot represent the distribution of a physiological indicator with increased 
opacity implying increased number of participants. Results were adjusted for age, sex, and 
race/ethnicity. 
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Figure A4.7. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for physiological indicators of body composition. 
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Figure A4.8. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for physiological indicators of the cardiovascular system. 
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Figure A4.9. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for a biomarker of the immune system, White Blood Cell Counts. 
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Figure A4.10. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for biomarkers of the metabolic system. 
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Figure A4.11. Stairway plots of hazard ratios across all models to describe the relative mortality 
risk for biomarkers of nephrology. 
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Figure A4.12. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator with available sex-specific clinical thresholds. The non-linear 
associations were determined using a cubic spline regression model adjusted for age and 
race/ethnicity. Participants with measurements between the 1st and 99th percentiles of a 
physiological indicator are included. The purple and orange lines represent the relative mortality 
risk with respect to median of a physiological indicator for males and females, respectively. The 
black dot represents the median for a physiological indicator. The dashed navy line represents 
when the hazard ratio is 10% higher than the minimum hazard ratio. The navy diamonds indicate 
the concentration at which the hazard ratio shows a 10% increase from the minimum hazard 
ratio. The pink lines and rectangles represent the values of the clinical thresholds with the width 
of the rectangles representing the ranges of the threshold. 
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Figure A4.13. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator of body composition, Body Mass Index. 
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Figure A4.14. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator of the cardiovascular system. 
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Figure A4.15. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator of the immune system. 
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Figure A4.16. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator of the metabolic system. 
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Figure A4.17. Sex-stratified non-linear associations between all-cause mortality and each 
physiological indicator of nephrology. 
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Figure A4.18. Stairway plot of hazard ratios describing the associations between all-cause 
mortality and BMI with and without adjusting for smoking. Smoking was defined using log-
transformed blood cotinine levels. 
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Table A4.1. Number of participants by mortality status, gender, and race for the entire NHANES population and subpopulations with 
data for each physiological indicator. 

Name  Alive Deceased Female Male Mexican 
Americans 

Other 
Hispanics 

Non-
Hispanic 
White 
Americans 

Non-
Hispanic 
Black 
Americans 

Other 
Race/ 
Multi-
Racial 

NHANES Population a   41647 
(50.73) 

40444 
(49.27) 

19161 
(23.34) 6166 (7.51) 31216 

(38.03) 
19400 
(23.63) 

6148 
(7.49) 

NHANES Subpopulation b 39444 
(87.6) 5588 (12.4) 23295 

(51.7) 
21737 
(48.3) 8562 (19.0) 3286 (7.3) 20312 

(45.1) 9665 (21.5) 3207 (7.2) 

Body Mass Index (kg/m**2) c 38877 
(88.26) 

5170 
(11.74) 

22770 
(51.69) 

21277 
(48.31) 

8389 
(19.05) 3232 (7.34) 19837 

(45.04) 
9437 
(21.42) 

3152 
(7.16) 

Standing Height (cm) c 39043 
(88.16) 

5245 
(11.84) 

22892 
(51.69) 

21396 
(48.31) 

8434 
(19.04) 3247 (7.33) 19949 

(45.04) 
9495 
(21.44) 

3163 
(7.14) 

Subscapular Skinfold (mm) c 22422 
(85.02) 

3952 
(14.98) 

13305 
(50.45) 

13069 
(49.55) 

5681 
(21.54) 1756 (6.66) 12970 

(49.18) 
4850 
(18.39) 

1117 
(4.24) 

Triceps Skinfold (mm) c 25357 
(85.02) 

4467 
(14.98) 

14886 
(49.91) 

14938 
(50.09) 

6521 
(21.86) 1990 (6.67) 14255 

(47.8) 
5791 
(19.42) 

1267 
(4.25) 

Waist Circumference (cm) c 37695 
(88.57) 

4863 
(11.43) 

21914 
(51.49) 

20644 
(48.51) 

8182 
(19.23) 3137 (7.37) 19198 

(45.11) 
9017 
(21.19) 

3024 
(7.11) 

Weight (kg) c 38933 
(88.02) 

5300 
(11.98) 

22860 
(51.68) 

21373 
(48.32) 

8415 
(19.02) 3243 (7.33) 19954 

(45.11) 9466 (21.4) 3155 
(7.13) 

Relative Fat Mass Index (-) c   37661 
(88.77) 

4764 
(11.23) 

21858 
(51.52) 

20567 
(48.48) 

8165 
(19.25) 3128 (7.37) 19107 

(45.04) 
9004 
(21.22) 

3021 
(7.12) 

60 sec. pulse (30 sec. pulse * 2) 
c 

37652 
(87.67) 

5293 
(12.33) 

22101 
(51.46) 

20844 
(48.54) 

8163 
(19.01) 3114 (7.25) 19507 

(45.42) 
9152 
(21.31) 

3009 
(7.01) 

Direct HDL-Cholesterol 
(mg/dL) c 

36892 
(87.97) 

5043 
(12.03) 

21624 
(51.57) 

20311 
(48.43) 

8059 
(19.22) 3073 (7.33) 19205 

(45.8) 
8624 
(20.57) 

2974 
(7.09) 

LDL-cholesterol (mg/dL) c 37837 
(87.69) 

5310 
(12.31) 

22203 
(51.46) 

20944 
(48.54) 

8208 
(19.02) 3142 (7.28) 19605 

(45.44) 
9182 
(21.28) 

3010 
(6.98) 

Triglycerides (mg/dL) c 37085 
(87.99) 

5060 
(12.01) 

21729 
(51.56) 

20416 
(48.44) 

8103 
(19.23) 3103 (7.36) 19311 

(45.82) 
8653 
(20.53) 

2975 
(7.06) 

Total cholesterol (mg/dL) c 17411 
(88.4) 2285 (11.6) 10224 

(51.91) 
9472 
(48.09) 3762 (19.1) 1487 (7.55) 9048 

(45.94) 
3995 
(20.28) 

1404 
(7.13) 

Diastolic: Average blood 
pressure (mm Hg) c 

36963 
(87.97) 

5055 
(12.03) 

21651 
(51.53) 

20367 
(48.47) 

8089 
(19.25) 3092 (7.36) 19260 

(45.84) 8615 (20.5) 2962 
(7.05) 

Systolic: Average blood 
pressure (mm Hg) c 

37084 
(87.99) 

5063 
(12.01) 

21730 
(51.56) 

20417 
(48.44) 

8103 
(19.23) 3103 (7.36) 19313 

(45.82) 
8653 
(20.53) 

2975 
(7.06) 
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Ratio of LDL to HDL 
Cholesterol (-) c 

37529 
(88) 5118 (12) 21909 

(51.37) 
20738 
(48.63) 

8127 
(19.06) 3121 (7.32) 19367 

(45.41) 
9037 
(21.19) 

2995 
(7.02) 

Ratio of Total to HDL 
Cholesterol (-) c 

37660 
(87.82) 

5221 
(12.18) 

22037 
(51.39) 

20844 
(48.61) 

8170 
(19.05) 3133 (7.31) 19483 

(45.44) 9091 (21.2) 3004 
(7.01) 

C-reactive protein (mg/dL) c 26527 
(84.83) 

4742 
(15.17) 

16165 
(51.7) 

15104 
(48.3) 

6756 
(21.61) 2042 (6.53) 14945 

(47.79) 
6220 
(19.89) 

1306 
(4.18) 

White blood cell count (1000 
cells/uL) c 

37317 
(87.82) 

5176 
(12.18) 

21994 
(51.76) 

20499 
(48.24) 

8127 
(19.13) 3105 (7.31) 19418 

(45.7) 
8829 
(20.78) 

3014 
(7.09) 

Glycohemoglobin (%) c 37476 
(87.85) 

5181 
(12.15) 

22062 
(51.72) 

20595 
(48.28) 

8171 
(19.16) 3129 (7.34) 19512 

(45.74) 
8825 
(20.69) 

3020 
(7.08) 

Glucose, plasma (mg/dL) c 18222 
(87.79) 

2535 
(12.21) 

10711 
(51.6) 

10046 
(48.4) 

3987 
(19.21) 1562 (7.53) 9507 (45.8) 4241 

(20.43) 
1460 
(7.03) 

Alkaline phosphatase (U/L) c 32830 
(89.15) 

3997 
(10.85) 

18967 
(51.5) 

17860 
(48.5) 

6920 
(18.79) 2874 (7.8) 16625 

(45.14) 
7621 
(20.69) 

2787 
(7.57) 

Homeostatic Model Assessment 
of Insulin Resistance (-) c 

15241 
(86.31) 

2418 
(13.69) 

9073 
(51.38) 

8586 
(48.62) 

3574 
(20.24) 1294 (7.33) 8179 

(46.32) 
3582 
(20.28) 

1030 
(5.83) 

Ratio of Insulin to Glucose 
(uU*dL)/(mg*mL) c 

15241 
(86.31) 

2418 
(13.69) 

9073 
(51.38) 

8586 
(48.62) 

3574 
(20.24) 1294 (7.33) 8179 

(46.32) 
3582 
(20.28) 

1030 
(5.83) 

Albumin (g/dL) c 36983 
(87.97) 

5058 
(12.03) 

21664 
(51.53) 

20377 
(48.47) 

8088 
(19.24) 3095 (7.36) 19271 

(45.84) 
8623 
(20.51) 

2964 
(7.05) 

Blood urea nitrogen (mg/dL) c 36982 
(87.97) 

5056 
(12.03) 

21663 
(51.53) 

20375 
(48.47) 

8088 
(19.24) 3095 (7.36) 19269 

(45.84) 
8623 
(20.51) 

2963 
(7.05) 

Creatinine (mg/dL) c 32832 
(89.14) 

3999 
(10.86) 

18968 
(51.5) 

17863 
(48.5) 

6920 
(18.79) 2874 (7.8) 16626 

(45.14) 7623 (20.7) 2788 
(7.57) 

Estimated Glomerular Filtration 
Rate (mL/min/1.73 m2) c 

32832 
(89.14) 

3999 
(10.86) 

18968 
(51.5) 

17863 
(48.5) 

6920 
(18.79) 2874 (7.8) 16626 

(45.14) 7623 (20.7) 2788 
(7.57) 

a The NHANES population is defined as the sample with data available for age, gender, and race. Mortality data is available for participants who are 18 years or 
older.  
b The NHANES subpopulation is defined as the sample with data available for mortality, age, gender, and race. 
c Statistics for each physiological indicator is based on a subpopulation with data available for mortality status, age, gender, race/ethnicity, and the given 
indicator.  
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Table A4.2. Percentiles of age (years) for the entire NHANES population and subpopulations with data for each physiological indicator. 

Name Min 1st 5th 10th Median Mean 90th 95th 99th Max 
NHANES Population a 0 0 1 2 23 30.67 69 78 84 85 
NHANES Subpopulation b 18 18 19 21 46 47.09 75 80 85 85 

Body Mass Index (kg/m**2) c 18 18 19 21 46 46.88 75 80 85 85 
Standing Height (cm) c 18 18 19 21 46 46.89 75 80 85 85 
Subscapular Skinfold (mm) c 18 18 19 20 45 46.76 76 80 85 85 
Triceps Skinfold (mm) c 18 18 19 20 45 46.85 76 80 85 85 
Waist Circumference (cm) c 18 18 19 21 45 46.66 74 80 85 85 
Weight (kg) c 18 18 19 21 46 46.98 75 80 85 85 
Relative Fat Mass Index (-) c   18 18 19 21 45 46.57 74 80 85 85 
60 sec. pulse (30 sec. pulse * 2) c 18 18 19 21 46 47.14 75 80 85 85 
Direct HDL-Cholesterol (mg/dL) c 18 18 19 21 46 47.12 75 80 85 85 
LDL-cholesterol (mg/dL) c 18 18 19 21 46 47.23 75 80 85 85 
Triglycerides (mg/dL) c 18 18 19 21 46 47.11 75 80 85 85 
Total cholesterol (mg/dL) c 18 18 19 21 46 47.12 75 80 85 85 
Diastolic: Average blood pressure (mm 
Hg) c 18 18 19 21 46 47.00 75 80 85 85 

Systolic: Average blood pressure (mm 
Hg) c 18 18 19 21 46 47.10 75 80 85 85 

Ratio of LDL to HDL Cholesterol (-) c 18 18 19 21 46 47.23 75 80 85 85 
Ratio of Total to HDL Cholesterol (-) c 18 18 19 21 46 47.12 75 80 85 85 
C-reactive protein (mg/dL) c 18 18 19 21 46 47.09 76 80 85 85 
White blood cell count (1000 cells/uL) c 18 18 19 21 46 47.19 75 80 85 85 
Glycohemoglobin (%) c 18 18 19 21 46 47.19 75 80 85 85 
Glucose, plasma (mg/dL) c 18 18 19 21 46 47.32 75 80 85 85 
Alkaline phosphatase (U/L) c 18 18 19 21 46 47.27 75 80 85 85 
Homeostatic Model Assessment of Insulin 
Resistance (-) c 18 18 19 21 46 47.17 75 80 85 85 
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Ratio of Insulin to Glucose 
(uU*dL)/(mg*mL) c 18 18 19 21 46 47.17 75 80 85 85 

Albumin (g/dL) c 18 18 19 21 46 47.11 75 80 85 85 
Blood urea nitrogen (mg/dL) c 18 18 19 21 46 47.11 75 80 85 85 
Creatinine (mg/dL) c 18 18 19 21 46 47.27 75 80 85 85 
Estimated Glomerular Filtration Rate 
(mL/min/1.73 m2) c 18 18 19 21 46 47.27 75 80 85 85 

a The NHANES population is defined as the sample with data available for age, gender, and race. Mortality data is available for participants who are 18 years or 
older.  
b The NHANES subpopulation is defined as the sample with data available for mortality, age, gender, and race. 
c Statistics for each physiological indicator is based on a subpopulation with data available for mortality status, age, gender, race/ethnicity, and the given 
indicator.  

  



 

307 
 

Table A4.3. Percentiles of time to death (month) for a NHANES subpopulation and the subpopulations with data for each physiological 
indicator. 

Name Min 1st 5th 10th Median Mean 90th 95th 99th Max 
NHANES Subpopulation a 1 13 19 27 93 97.52 177 189 199 201 
Body Mass Index (kg/m**2) b 1 13 19 27 93 97.52 177 189 199 201 
Standing Height (cm) b 1 13 19 27 93 97.64 177 189 199 201 
Subscapular Skinfold (mm) b 1 13 50 65 116 118.63 183 192 199 201 
Triceps Skinfold (mm) b 1 13 49 65 116 118.86 183 192 199 201 
Waist Circumference (cm) b 1 13 20 27.7 94 98.40 177 189 199 201 
Weight (kg) b 1 13 19 27 92 97.41 177 189 199 201 
Relative Fat Mass Index (-) b 1 13 20 28 94 98.49 178 189 199 201 
60 sec. pulse (30 sec. pulse * 2) b 1 12 19 27 93 97.42 177 189 199 201 
Direct HDL-Cholesterol (mg/dL) b 1 13 19 27 93 97.52 177 189 199 201 
LDL-cholesterol (mg/dL) b 1 13 19 27 91 96.45 176 189 198 201 
Triglycerides (mg/dL) b 1 13 19 27 93 97.60 177 189 199 201 
Total cholesterol (mg/dL) b 1 13 19 27 93 97.52 177 189 199 201 
Diastolic: Average blood pressure (mm 
Hg) b 1 13 19 27 92 97.40 177 189 199 201 

Systolic: Average blood pressure (mm Hg) 
b 1 13 19 27 92 97.38 177 189 199 201 

Ratio of LDL to HDL Cholesterol (-) b 1 13 19 27 91 96.45 176 189 198 201 
Ratio of Total to HDL Cholesterol (-) b 1 13 19 27 93 97.52 177 189 199 201 
C-reactive protein (mg/dL) b 1 13 49 65 117 118.82 183 192 199 201 
White blood cell count (1000 cells/uL) b 1 13 19 27 93 97.45 177 189 199 201 
Glycohemoglobin (%) b 1 13 19 27 93 97.47 177 189 199 201 
Glucose, plasma (mg/dL) b 1 13 19 27 93 97.67 177 189 198 201 
Alkaline phosphotase (U/L) b 1 13 19 25 83 89.85 168 190 199 201 
Homeostatic Model Assessment of Insulin 
Resistance (-) b 1 13 39 46 104 109.08 181 191 199 201 
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Ratio of Insulin to Glucose 
(uU*dL)/(mg*mL) b 1 13 39 46 104 109.08 181 191 199 201 

Albumin (g/dL) b 1 13 19 27 93 97.58 177 189 199 201 
Blood urea nitrogen (mg/dL) b 1 13 19 27 93 97.58 177 189 199 201 
Creatinine (mg/dL) b 1 13 19 25 83 89.85 168 190 199 201 
Estimated Glomerular Filtration Rate 
(mL/min/1.73 m2) b 1 13 19 25 83 89.85 168 190 199 201 

a The NHANES subpopulation is defined as the sample with data available for mortality, age, gender, and race.  
b Statistics for each physiological indicator is based on a subpopulation with data available for mortality status, age, gender, race/ethnicity, and the given 
indicator.  
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Table A4.4. Definition, interpretation, and justification of prediction measures. 

 Definition Interpretation Justification 
Akaike Information 
Criterion (AIC) 

Estimator of the relative 
amount of information 
lost by a model 

A lower AIC implies 
higher quality of the 
model and minimum 
information lost. 

The AIC is useful for 
comparing models but is 
not informative when 
interpreting the goodness 
of fit of a single isolated 
model. 

Concordance Index Proportion of concordant 
pairs divided by the total 
number of all possible 
pairs.  

The Concordance Index 
represents the model 
ability to correctly rank 
the survival times based 
on the individual risk 
scores. A Concordance 
Index of 1 implies a 
perfect prediction, while 
0.5 implies random 
predictions.  

The Concordance Index is 
the standard measure for 
model assessment in 
survival analysis. 

Nagelkerke R2 Adjusted version of the 
Cox & Snell R2 that 
adjusted for the scale of 
the statistics to range 
from 0 to 1. The Cox & 
Snell R2 reflect the 
improvement of the given 
model over the intercept 
model. 

A Nagelkerke R2 of 1 
implies a perfect model.  

The Nagelkerke R2 better 
highlights the overfitting 
of the linear and spline 
models.  
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