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Abstract

The increasing penetration of renewables has driven power systems to operate closer to their

stability boundaries and makes maintaining power quality more difficult. The goals of this

dissertation are to develop methods to control distributed energy resources to improve power

system stability and voltage unbalance. Specifically, demand response (DR) is used to realize

the former goal, and solar photovoltaic (PV) systems are used to achieve the latter.

We present a new DR strategy to change the consumption of flexible loads while keep-

ing the total load constant, improving voltage or small-signal stability without affecting

frequency stability. The new loading pattern is only maintained temporarily until the gen-

erators can be re-dispatched. Additionally, an energy payback period maintains the total

energy consumption of each load at its nominal value. Multiple optimization problems are

proposed for determining the optimal loading pattern to improve different voltage or small-

signal stability margins. The impact of different system models on the optimal solution is

also investigated.

To quantify voltage stability, we choose the smallest singular value (SSV) of the power flow

Jacobian matrix and the distance to the closest saddle-node bifurcation (SNB) of the power

flow as the stability margins. We develop an iterative linear programming (ILP) algorithm

using singular value sensitivities to obtain the loading pattern with the maximum SSV. We

also compare our algorithm’s performance to that of an iterative nonlinear programming

algorithm from the literature. Results show that our ILP algorithm is more computationally

scalable. We formulate another problem to maximize the distance to the closest SNB, derive

the Karush–Kuhn–Tucker conditions, and solve them using the Newton-Raphson method.

We also explore the possibility of using DR to improve small-signal stability. The results

indicate that DR actions can improve small-signal characteristics and sometimes achieve

better performance than generation actions.

Renewables can also cause power quality problems in distribution systems. To address

this issue, we develop a reactive power compensation strategy that uses distributed PV sys-

tems to mitigate voltage unbalance. The proposed strategy takes advantage of Steinmetz

xv



design and is implemented via both decentralized and distributed control. We demonstrate

the performance of the controllers on the IEEE 13-node feeder and a much larger feeder,

considering different connections of loads and PV systems. Simulation results demonstrate

the trade-offs between the controllers. It is observed that the distributed controller achieves

greater voltage unbalance reduction than the decentralized controller, but requires communi-

cation infrastructure. Furthermore, we extend our distributed controller to handle inverter

reactive power limits, noisy/erroneous measurements, and delayed inputs. We find that

the Steinmetz controller can sometimes have adverse impacts on feeder voltages and unbal-

ance at noncritical nodes. A centralized controller from the literature can explicitly account

for these factors, but requires significantly more information from the system and longer

computational times. We compare the performance of the Steinmetz controller to that of

the centralized controller and propose a new controller that integrates centralized controller

results into the Steinmetz controller. Results show that the integrated controller achieves

better unbalance improvement compared with that of the centralized controller running in-

frequently.

In summary, this dissertation presents two demand-side strategies to deal with the issues

caused by the renewables and contributes to the growing body of literature that shows that

distributed energy resources have the potential to play a key role in improving the operation

of the future power system.
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Chapter 1

Introduction

A power grid is a network of equipment that produces, transfers, and uses electricity. In other

words, a power system can be divided into the following sub-systems: generation, transmis-

sion, and distribution system. In the 20th century, the goal of an electric power system was

to provide adequate power flows from the power plant to the end user; however, increasing

penetrations of distributed energy resources (DERs) now allow end users to transfer power

back to the grid, bringing both benefits and challenges to power systems. Common examples

of DERs include distributed generation (rooftop photovoltaic (PV) panels, wind turbines),

electric vehicles (EV), energy storage, and demand response (DR) applications. Although

DERs can mitigate the environmental impacts of power systems and bring economic ben-

efits [4, 14, 109], they also cause some problems. For example, fluctuating renewable en-

ergy sources will negatively impact power system stability [41, 131] in transmission systems.

Specifically, power-electronics-connected fluctuating renewable generation from wind and so-

lar introduces more variability in operating points, reduces system inertia, and decreases the

controllability of active power injections. In addition, these fluctuations in the PV and wind

power production have direct consequences to the power quality in distribution systems [43,

78, 127], i.e., voltage fluctuation, voltage unbalance, and harmonic distortion. Despite these

challenges, proper DER strategies could also help to overcome these difficulties and improve

the stability and reliability of the electric power system.

We consider two kinds of DER in this work: demand response and solar PV systems.

The goals of this work are: 1) to develop methods to coordinate flexible loads to improve

electric power transmission system stability margins; 2) to develop decentralized strategies to

control the reactive power of solar PV systems to mitigate voltage unbalance in distribution

systems. The results of this work suggest that demand-side resources can play an active role
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in improving several characteristics of the power system.

In the following sections, we present a brief background on power system stability and

voltage unbalance. Detailed literature reviews on past efforts using conventional methods

or DERs to improve stability and unbalance are also provided. After that, we present the

motivations of the research and the main research questions in this dissertation. Finally, we

describe the organization and contributions of the rest of the dissertation.

1.1 Power System Stability

In this section, we first provide the definitions of system stability, and then introduce the

background on demand response by summarizing the services that DR has already provided

in the power system, and by developing the motivation for the first part of the research in

this dissertation.

1.1.1 Definition and Literature Review

Electric power system stability refers to the ability to operate normally after a disturbance

and is commonly divided into three categories: frequency stability, voltage stability, and

rotor angle stability [71].

Frequency stability refers to the ability of a power system to maintain steady frequency

(60 Hz in the United States/Canada/Japan, 50 Hz in China/Australia/Europe) after a signif-

icant imbalance between generation and load [71]. Common reasons that lead to frequency

instability include lack of power generation, cascading outages of transmission lines, and

communication malfunction [2]. Previous works [34, 69, 87] have shown the great potential

of battery energy storage systems for frequency regulation.

Voltage stability refers to the ability of a power system to maintain acceptable voltages

at all buses after disturbances [71]. Maintaining voltage stability is critical because an

increasingly stressed power system with fluctuating renewable generation now operates closer

to the system’s stability limits, to the extent that a small disturbance may lead to voltage

collapse. Power flow analysis is necessary for the steady-state voltage stability analysis to

obtain the voltage information at all buses. In conventional power flow analysis, we generally

assume that the transmission system is balanced so that the network can be represented in the

single-phase (positive sequence) form. The power flow problem is a set of nonlinear algebraic

equations F (x, λ) = 0, where x represents system states including voltage magnitudes and
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Figure 1.1: A conceptual illustration of the loading margin (dLM) and the distance to
the closest SNB (d) in the power flow feasibility region.

angles and λ represents power injections. Numerical techniques, i.e., the Newton-Raphson

method [124], are required to solve this set of nonlinear equations.

In order to quantify the voltage stability level of a system, voltage stability margins have

been introduced. The steady-state voltage stability margin is used to estimate the distance

between the current power system operating point and the unstable operating point. Com-

mon stability margins include loading margin, the smallest singular value (SSV) of the power

flow Jacobian matrix, and the distance to the closest Saddle-Node-Bifurcation (SNB). Fig-

ure 1.1 shows a conceptual illustration of the power flow feasibility region; the point inside

the shaded region represents a power flow solution corresponding to a specific power injection

pattern λ. The definitions of each margin are:

• Loading margin is the distance between the current operating point and the boundary

of the feasibility region, assuming that load and generation are increased uniformly (in

a multiplicative sense) throughout the system [49], denoted as dLM in Fig. 1.1. The

loading margin is commonly calculated using a Continuation Power Flow to compute

the distance to instability [3].

• Smallest singular value is computed through Singular Value Decomposition (SVD)

of the power flow Jacobian matrix J =
∂F

∂x
. If the SSV equals zero, the operating

point is located on the boundary of the power flow feasibility region. Therefore, the

magnitude of the SSV gives us a measure of how close the Jacobian is to being singular,
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i.e., power flow infeasibility. Feasibility and stability are closely linked [52].

• Distance to the closest SNB is the shortest distance between the current operating

point and the boundary of the feasibility region [39], denoted as d in Fig. 1.1.

A variety of methods have been proposed to improve these voltage stability margins,

including generation dispatch [38, 49, 140], locating/sizing distributed generation [5, 7, 80],

and use of advanced power electronic devices [90, 91, 113].

Small-signal stability (one type of rotor angle stability) is the ability of the system

to maintain synchronism when subjected to small disturbances. Small-signal and transient

characteristics of the transmission network are also strongly influenced by the high penetra-

tion of intermittent renewables [112]. The small-signal characteristics of the power system

are based on the swing dynamics of the network. In particular, power-system transients are

analyzed via the nonlinear swing equations, with small-signal characteristics being extracted

from their linearizations around the operating point. The electromechanical modes of the

generators are the eigenvalues of the linearized system matrix. The damping of the network

is one measure of small-signal stability. Two types of damping are commonly considered:

the smallest damping ratio and the damping ratios of the critical inter-area modes (elec-

tromechnical oscillations in the range of less than 1 Hz [70]). In [31], Kundur and co-authors

have addressed a generator re-scheduling problem to increase power transfer while continu-

ing to adhere to a small-signal stability constraint that requires the smallest damping ratio

to be larger than a critical value; the problem is solved using a sensitivity-based approach.

Several studies have sought to improve the damping ratios of the critical inter-area modes

via re-dispatch, whether based on a formal analysis/optimization [31, 85, 86] or from data

obtained from wide-area measurement systems [145]. Load reduction in addition to gener-

ator re-dispatch to reduce flows on tie-lines has also been considered in [57], with the aim

of improving the damping of the critical inter-area mode. The small-signal stability can

also be measured by the distance to the closest Hopf bifurcation, which is known as

the oscillatory stability margin [48, 81]. In [89], the distance is improved by designing the

placement of Power System Stabilizers (PSS) and static Var compensators. The largest

real part of the eigenvalues can alternatively be used to approximate the distance to the

small signal stability boundary. Reference [82] includes the largest real part as a stability

security constraint in an optimization problem.
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1.1.2 Background on Demand Response and Motivation

As defined in [129], Demand Response is “a tariff or program established to motivate changes

in electric use by end-use customers in response to changes in the price of electricity over

time, or to give incentive payments designed to induce lower electricity use at times of

high market prices or when grid reliability is jeopardized”. A typical example of Demand

Response is when customers temporarily change the temperature set points of their heaters

or air conditioners to increase/decrease the power demand of the system. Another example is

when customers shift everyday activities (i.e., using dishwashers, washing machines, dryers,

etc.) to the off-peak period because the electricity prices are lower. DR participation is

growing in wholesale and retail markets [46]. In the United States, about 10.7 GW DR was

dispatched in 2017 (58.4% of the enrolled DR capacity) [30]; the number further increased

to 12.3 GW in 2018 (59.2% of the enrolled DR capacity) [122]. As predicted in [51], the

estimated global market for DR capacity could grow to 200 GW by 2023.

Demand response can bring benefits to the electricity market [6, 19, 20, 129], which can

help reduce system costs and improve reliability. DR can also be used to improve power

system stability: for example, [23, 116, 147] propose methods to coordinate loads to help

balance supply and demand, improving frequency stability. Use of DR may be more cost-

effective and environmentally-friendly than alternative approaches to maintain power system

stability in the presence of high penetrations of renewables. As we increase the controllability

of distributed electric loads to enable their participation in a variety of DR programs and

electricity markets [24], we also unleash their potential to provide a variety of stability-

related services not typically rewarded in existing programs or markets. We assume that

demand response actions are contractual; consumers sign a contract with an aggregator,

who will dispatch loads within the limits of the contract. Flexible loads respond to the

requested energy change as contracted; otherwise, consumers will pay a penalty. A key

research question is whether loads are effective at improving stability margins other than

those related to frequency stability, for example, voltage or small-signal stability margins.

However, harnessing loads for these purposes requires the development of new algorithms,

the design of which influences their effectiveness.

In the past DR program, the flexible load was shifted in time or shed, resulting in decreases

and increases in system-wide load. This action involves a temporary loss of comfort and

requires decreases/increases in system-wide generation in order to maintain system frequency.

In contrast to that, we propose a new DR strategy to shift load consumption in space,

specifically, reallocating load to different buses while keeping the total loading constant, so
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as not to impact system frequency when improving voltage or rotor angle stability. Although

in practice primary frequency control will manage small load deviations, we choose to require

the total load to remain constant to isolate the impact of load pattern changes from changes

in the total loading. We propose to use this strategy if the system is operating close to

its feasibility limits (but not so close that emergency actions are immediately necessary)

and generators are unable to respond sufficiently-quickly to correct the problem. Fast-acting

demand responsive loads coordinated via low-latency communication systems would respond

initially until the generators can take over. We will “pay back” the changes to each load in a

future period so the total energy consumption of each load is unchanged. We refer to these

stability improvement problems as “spatio-temporal DR problems”. In this dissertation,

we incorporate different stability metrics into the formulation and determine how different

metrics impact the control of resources. We also compare the cost and performance of

spatio-temporal load shifting to that of generator actions and load shedding. Moreover, we

investigate the impact of different system models on the optimal solutions.

1.2 Voltage Unbalance

In this section, we switch our focus to the power quality of distribution systems. We first

introduce the definition of voltage unbalance and its influence on the system. Next, a review

of the literature on unbalance mitigation is presented. Finally, the motivation for using

Steinmetz circuit design is given.

1.2.1 Definitions and Literature Review

In contrast to balanced transmission systems, distribution systems are unbalanced by nature

because of the asymmetry of loading across phases and line configurations. Therefore, distri-

bution systems cannot be represented in the single-phase equivalent form; zero and negative

sequence components cannot be neglected.

Many distribution networks are experiencing rapid growth in single-phase DERs, such as

solar PV generation, and in large single-phase loads, particularly plug-in EVs. Consequently,

voltage unbalance is becoming more severe because of fluctuating solar PV generation and

irregular electric vehicle charging [13, 108]. Unbalanced voltages can cause overheating, vi-

bration, and reduction in efficiency of three-phase motors and transformers [65, 75, 137].

Using an induction motor as an example, based on [96], a 2.5% voltage unbalance for a 100
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hp motor at full-load can have a current unbalance of 27.7%. Current unbalance will increase

the motor temperature; for every 10◦C increase in winding temperature, insulation life is ap-

proximately cut in half, which results in significant repair and replacement costs [130]. For

U.S. industries, the cost of unbalanced voltage is up to $28 billion a year [130]. In a four-wire

(A,B,C,N) system, voltage unbalance can induce neutral current which not only increases

power losses but also impacts protection devices [77]. Power loss is one of the major concerns

of the utilities.

Three definitions of voltage unbalance (from IEC, NEMA, and IEEE) [105] are commonly

used in existing literature: voltage unbalance factor (VUF), line voltage unbalance rate

(LVUR), and phase voltage unbalance rate (PVUR):

• VUF =
negative sequence voltage magnitude

positive sequence voltage magnitude
× 100

• LVUR =
max voltage deviation from average line-to-line voltage

average line-to-line voltage
× 100

• LVUR =
max voltage deviation from average line-to-neutral voltage

average line-to-neutral voltage
× 100

In the IEC and ANSI standards [32, 42, 59], these unbalance rates should not exceed 2% or

3%.

There are a variety of strategies to mitigate voltage unbalance. Reconfiguration algo-

rithms can be used to equalize load consumption among phases [21, 115]. Alternatively,

voltage balancing can be achieved using power electronic-based static synchronous compen-

sators, passive power filters, or static VAR compensators [29, 77, 101]. However, the former

may not be practical because distribution networks often lack automated/remote switching

equipment. The latter add additional plant and maintenance costs. Distributed energy re-

sources can also be used to mitigate voltage unbalance. Reference [35] solves an optimization

problem to minimize power losses via the control of PEV charging; minimizing losses also

improves balance. Reference [45] controls the reactive power injections of PEVs to compen-

sate for negative sequence current. Reference [121] proposes both centralized and distributed

real-time strategies that use energy storage to mitigate phase unbalance considering uncer-

tainties.

Control of solar PV systems has also been proposed to help mitigate unbalance. A switch-

ing strategy is proposed in [63] to modify the phase assignment of single-phase PV systems in

real time to equitably distribute active power injections amongst the three phases to reduce
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C

Figure 1.2: Steinmetz compensation circuit for a single-phase load ZAB connected be-
tween phase A and phase B.

unbalance. The approach is demonstrated on a small network; however, it may not scale

to systems with large numbers of distributed PV systems. Moreover, in real systems, all

three phases may not be available at the point of PV connection and additional equipment

would need to be installed to enable phase reassignment. Inverter-based control strategies

for eliminating unbalanced currents are developed in [33, 55]. These strategies control both

active and reactive power injections from the PV systems. However, controlling (i.e., reduc-

ing) active power injections would be unacceptable to most PV system owners. Rather, they

would like to maximize their active power production so as to minimize their electricity cost

and/or maximize their profits from feed-in tariffs.

Most of the strategies proposed for using PV inverters to improve phase unbalance rely on

centralized control. For example, [95, 120, 141] solve optimization problems to control active

and/or reactive power injections from PV systems to improve unbalance. Centralized control

generally requires more information (models, parameters) and communications (time-varying

states and inputs) than distributed or decentralized approaches.

1.2.2 Background on Steinmetz Circuit Design and Motivation

Steinmetz proposed a circuit design method to achieve voltage balance by controlling the

reactances of three-phase delta-connected constant-impedance loads, as described in [9, 62,

94]. Fig. 1.2 shows a Steinmetz compensation circuit for a single-phase load. Assume that

the load, connected between phases A and B, is modeled as a constant impedance load

ZAB = RAB + jXAB (its admittance is YAB = GAB − jBAB). Steinmetz circuit design

8



computes the reactances we should connect to phases BC and CA to make the single-

phase load appear as a balanced three-phase load. In [9, 62, 94], analytic expressions of

compensated reactances are provided. Steinmetz design has been used to control three-

phase delta-connected static VAR compensators to balance traction system loads [128], but

its use to control the reactive power injections of single-phase DERs, such as PV systems, is

new.

The approach is simple and does not require solving any system-wide optimization prob-

lem, and thus is inexpensive to implement compared to centralized control/optimization

strategies that require communication and detailed system models. We propose to control

the reactive power of distributed solar PV systems without curtailment of real power pro-

duction to mitigate voltage unbalance based on the idea of Steinmetz circuit design. The

capabilities and limitations of Steinmetz circuit design are studied. A key research question

is whether Steinmetz circuit design can be applied in a decentralized way. If so, would it

be possible to achieve a better unbalance improvement if communication is available. The

critical distinguishing challenge that differs from past efforts is that we need to control a

large number of distributed single-phase solar PV inverters rather than a single large power

electronics device. When we apply the Steinmetz controller to real systems in the presence of

time-varying load and PV generation, we will need to overcome a number of practical chal-

lenges, namely, inverter reactive power limits, noisy/erroneous measurements, and delayed

inputs. In this dissertation, we will consider cases with different load and PV system con-

nection arrangements and control objectives. We will test the performance of the Steinmetz

controller on large feeders using real PV data together with realistic load data. Furthermore,

we will benchmark the performance of the Steinmetz controller against those of controllers

from the literature.

1.3 Contributions and Structure of the Dissertation

The main contributions of this dissertation fall into two categories: the development of

computationally tractable solution approaches to the spatio-temporal DR problems with

different stability margins and the development of controllers based on Steinmetz design to

mitigate voltage unbalance using distributed solar PV systems. The main content of each

chapter is described below.

Chapter 2 proposes an optimization problem to maximize the smallest singular value of

the power flow Jacobian matrix using DR and solves it via iterative linear programming with
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singular value sensitivity. In addition, we compare the performance of demand response to

those of generator actions and load shedding. The computation time of the iterative linear

programming algorithm is benchmarked against that of an iterative nonlinear programming

algorithm from [10].

Chapter 3 considers different types of load models and explores the impact of load models

on the optimal solutions.

Chapter 4 presents the formulation of the full “spatio-temporal DR problem”. In addition

to SSV improvement, the energy payback period is considered. Again, the iterative linear

programming algorithm is used to solve the multi-period problem. We conduct case studies

using the IEEE 9- and 118-bus systems to determine optimal loading patterns and assess

algorithmic performance. Furthermore, we compare the generation cost of spatio-temporal

load shifting to that of generator actions.

Chapter 5 chooses the distance to the closest SNB as the measure of voltage stability. A

nonlinear nonconvex optimization problem is formulated and then solved through deriving

the KKT conditions and solving a set of nonlinear equations using the Newton-Raphson

method. We compare the optimal solution to those obtained using other voltage stability

metrics including the smallest singular value of the power flow Jacobian and the loading

margin, finding that all approaches produce different solutions.

Chapter 6 formulates the optimization problem to improve small-signal characteristics

of power system using DR. The problem is solved using iterative linear programming with

generalized eigenvalue sensitivity. Different system models are considered in this chapter to

investigate the impact on the optimal loading pattern.

Chapter 7 develops a reactive power compensation strategy that uses distributed solar

PV inverters to mitigate such voltage unbalance. The proposed strategy takes advantage of

Steinmetz design and is implemented via both decentralized and distributed control. The

latter coordinates PV inverters through a communication network. We demonstrate the

performance of the controllers on the IEEE 13-node feeder and a much larger taxonomy

feeder (617 nodes and 1196 triplex nodes) assuming constant load and PV, and consider

different connections of loads and PV systems.

Chapter 8 proposes approaches to enhance the Steinmetz controller to cope with a num-

ber of practical considerations, namely, inverter reactive power limits, measurement noise

and error, and communication delays. Case studies are conducted on the IEEE 13-node

feeder with time-varying load and PV generation.

Chapter 9 summarizes the pros and cons of our distributed controller through the compar-
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ison with a centralized controller from [47]. In addition, we propose an integrated controller

that modifies the design of the distributed controller using the centralized controller results

to overcome limitations of the distributed controller. We demonstrate the performance of

the integrated controller on the IEEE 13-node feeder and the taxonomy R1 feeder with

time-varying load and PV generation.

Chapter 10 concludes the dissertation and discusses a number of future avenues of re-

search.

Note that each chapter is self-contained; mathematical notation is defined in each chapter

unless an equation from a different chapter is explicitly referenced.

The following is a list of publications that have resulted from the work described in this

dissertation to date.

• M. Yao, J.L. Mathieu, and D.K. Molzahn. “Using demand response to improve power

system voltage stability margins”. In: IEEE PowerTech. 2017.

• M. Yao, D.K. Molzahn, and J.L. Mathieu. “The impact of load models in an algorithm

for improving voltage stability via demand response”. In: the Allerton Conference on

Communication, Control, and Computing. 2017 (Invited).

• K. Koorehdavoudi, M. Yao, J.L. Mathieu, and S. Roy. “Using demand response to

shape the fast dynamics of the bulk power network”. In: IREP Symposium on Bulk

Power System Dynamics and Control. 2017.

• M. Yao, I.A. Hiskens, and J.L. Mathieu. “Improving power system voltage stability

by using demand response to maximize the distance to the closest saddle-node bifur-

cation”. In: IEEE Conference on Decision and Control. 2018.

• M. Yao, D.K. Molzahn, and J.L. Mathieu. “An optimal power flow approach to improve

power system voltage stability using demand response”. In: IEEE Trans Control of

Network Systems, 6.3 (2019): 1015-1025.

• M. Yao, I.A. Hiskens, and J.L. Mathieu. “Applying Steinmetz circuit design to mitigate

voltage unbalance using distributed solar PV”. In: IEEE PowerTech. 2019.

• M. Yao and J.L. Mathieu. “Overcoming the practical challenges of applying Steinmetz

circuit design to mitigate voltage unbalance using distributed solar PV”. In: Power

Systems Computation Conference. 2020.
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Chapter 2

Using DR to Improve the Smallest

Singular Value

This chapter presents a method for determining the optimal loading pattern that maximize

the smallest singular value (SSV). Additionally, we compare the performance of demand

response to that of generator actions and load shedding. This chapter is largely based on

the following papers.

• M. Yao, J.L. Mathieu, and D.K. Molzahn. “Using demand response to improve power

system voltage stability margins”. In: IEEE PowerTech. 2017.

• M. Yao, D.K. Molzahn, and J.L. Mathieu. “An optimal power flow approach to improve

power system voltage stability using demand response”. In: IEEE Trans Control of

Network Systems, 6.3 (2019): 1015-1025.

2.1 Notation

Functions

FP
n (·) Real power injection at bus n

FQ
n (·) Reactive power injection at bus n

Hnm(·) Line flow for line (n,m)

fP
n (·) Linearization of FP

n

fQ
n (·) Linearization of FQ

n

hnm(·) Linearization of Hnm

12



Sets

N Set of all buses

SPV Set of all PV buses

SPQ Set of all PQ buses

SG Set of buses with generators

SDR Set of buses with responsive loads

Variables & Parameters

J Jacobian matrix

l Left eigenvector

n Size of N
npv Size of SPV

npq Size of SPQ

ndr Size of SDR

Pd,n Real power demand at bus n

Pg,n Real power generation at bus n

Ploss Total power loss in the system

Qd,n Reactive power demand at bus n

Qg,n Reactive power generation at bus n

r Right eigenvector

u Left singular vector

Vn Voltage magnitude at bus n

w Right singular vector

ε Loss management strategy parameter

θn Voltage angle at bus n

λ Eigenvalue of a matrix

λ0 Smallest eigenvalue of a matrix

σ Singular value of a matrix

σ0 Smallest singular value of a matrix

Σ, U,W Singular Value Decomposition (SVD) matrices

χ Operating point

Bold symbols denote vectors including all variables of a type. Overlines and underlines

represent the upper and lower limits for variables. Numbers in the parentheses (·) refer to

the period number. Subscript ‘ref’ denotes the slack bus. Superscript ‘*’ denotes the current

13



value of a variable and superscript ‘T ’ denotes the transpose of a matrix. The notation

X � 0 means that X is a positive semidefinite matrix. For notational simplicity, we assume

that each bus has at most one generator and at most one load. The word ‘PV’ in Chapter 2-

6 denotes as one of the types of power system buses, the real power and voltage magnitude

of which are specified.

2.2 Chapter Introduction

In this chapter, we propose an optimal power flow (OPF) approach that uses DR to improve

smallest singular value, which serves as a measure of steady-state voltage stability [15, 16,

17, 79, 82, 123, 125, 126]. In contrast to past work that developed load shedding approaches

to improve voltage stability [15, 44, 146], we decrease and increase loads while keeping the

total loading constant to avoid fluctuation of the system frequency, and we “pay back” the

changes to each load so its total energy consumption is unchanged. We envision that such an

approach would be used only occasionally, when voltage stability margins are below those

desired, but not so small that emergency actions are immediately necessary. DR actions

could be executed quickly while ramp-rate-limited generators begin to respond, eventually

relieving the loads. Beyond developing the problem formulation and solution algorithm,

our objective is to compare the stability margin improvement of load actions to those of

generator actions in order to understand both the advantages and disadvantages of the

approach. Additionally, we compute the amount of load shedding that would be necessary

to achieve the same stability margin improvements as load shifting.

The SSV gives us a measure of how close the Jacobian is to being singular, i.e., power flow

infeasibility. Feasibility and stability are closely linked [52]. The advantages of using the

SSV as a voltage stability margin are that 1) it captures any direction of changes in power

injections and 2) there exist approximate mathematical formulations suitable for inclusion in

optimization problems, e.g., [10, 15, 26]. The disadvantages of using the SSV are that 1) it

only provides implicit information on the distance to the solvability boundary, 2) it does not

capture the impact of all engineering constraints (e.g., reactive power limits could be reached

prior to power flow singularity [111]), and 3) it may not be well-behaved, specifically, [72]

found that the SSV at voltage collapse varies significantly as function of the loading direction

(see Fig. 3 of [72]). Additionally, 4) its numerical value is system-dependent [79] and so the

threshold value for a particular system would need to be determined from operator expe-

rience. Moreover, 5) the nonlinear programming (NLP) algorithm for solving approximate
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mathematical formulation [10] does not scale to realistically-sized system. Despite these

issues, we base our approach on the SSV in order to exploit the approximate mathematical

formulation [10, 26] and we develop an improved solution algorithm that scales significantly

better.

The loading margin is another common voltage stability margin, which is the distance

between the current operating point and the maximum loading point [49]. The loading

margin is calculated using continuation power flow methods, where the load and generation

are usually increased uniformly (in a multiplicative sense) throughout the system [11, 61]. A

drawback of this method is that it assumes a single direction of changes in power injections.

In this chapter, we will also use DR to maximize the loading margin and compare the results

to those with maximum SSV.

The technical contributions of this chapter are as follows:

• We develop an iterative linear programming (LP) solution algorithm using singular

value sensitivities [15, 132, 146] to maximize SSV;

• we compare the solutions given by the iterative LP with those of three benchmark

approaches - one using a brute force search and two that maximize the loading margin;

• we benchmark the computation time of iterative LP solution algorithm against that of

the NLP algorithm in [10];

• and we compare the voltage stability margin improvement of load shifting to that of

generator actions and load shedding.

2.3 Problem Description

A conceptual illustration of the problem is shown in Fig. 2.1. The blue shaded region is

the feasible/stability region of the power system. The system is initially operating with

an adequate stability margin at an operating point (star) determined via unit commitment

and economic dispatch. A disturbance happens (e.g., a line goes out of service) causing

the operating point to move towards the feasibility/stability boundary (i.e., to Operating

Point 0), the system is prone to instability because slight variations in power injections

might cause the operating point to leave the stable operating region. The system operator

dispatches quick-acting resources including DR to maximize the stability margin (Operating

Point 1). After a short period of time, the generators are re-dispatched so that the flexible
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Figure 2.1: Conceptual illustration of the problem.

loads can return to consuming their nominal demands plus/minus some power to “pay back”

the energy consumed/not consumed while at Operating Point 1, the operating point then

changes (Operating Point 2). Finally, the system returns to its initial operating point, or

another point with an adequate stability margin. In this chapter, we develop a method to

achieve Operating Point 1 (Period 1), which shown as the orange line in Fig. 2.1, and we

will include the payback period in Chapter 4.

During the stability improvement period, we require the total loading to remain un-

changed, so as not to affect the system frequency. We assume that the load at certain buses

can be decreased or increased within known limits for a short period of time. For example,

the responsive loads could be aggregations of heating and cooling loads, such as commercial

building heating, ventilation, and air conditioning (HVAC) systems and residential thermo-

statically controlled loads (TCLs), e.g., air conditioners and refrigerators that cycle on/off

within a temperature dead-band. Increases and decreases in load can be achieved through

temperature set point adjustments and/or commands to switch TCLs on/off [24]. These

types of loads are flexible in their instantaneous power consumption, but energy constrained

(i.e., they must consume a certain amount of energy over time), like energy storage units.

In our base case, we use loads alone to improve the stability margin in Period 1. Generator

real power injections are held constant with the exception of that associated with the slack

bus, which compensates for the small change in system losses resulting from the change in

loading pattern (note we could have also assumed a distributed slack). Generator reactive

power injections adjust to maintain voltage magnitudes at the PV buses. We model all loads

as constant real power loads with constant power factor in this chapter. We will explore the
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impact of load models on the results in Chapter 3.

Beyond our base case, we also investigate cases in which we allow (ramp-rate-limited)

generator real power injections and voltage magnitudes at PV buses to change in Period 1.

We also explore an alternative loss management strategy in which we require the total

loading plus system losses to remain unchanged so that no generator (including the slack

bus) is required to respond in Period 1.

Since we focus on static voltage stability, we ignore power system dynamics. Investigating

the dynamic stability implications of changes in operating points is a subject for future

research.

2.4 Optimization Model

Let N be the set of all buses, SPV be the set of all PV buses, and SPQ be the set of all

PQ buses. Additionally, let SG be the set of all buses with generators, i.e., all PV buses in

addition to the slack bus, and let SDR be the set of buses with responsive loads; the buses

comprising SDR may be PV or PQ buses. In our case studies, we assume that a portion of

the existing loads in the network are responsive.

The goal of the optimization problem is to find the Operating Point 1 that maximizes the

SSV of power flow Jacobian matrix J(θ(1),V (1)). The general formulation is as follows.

min
Pg(1),Qg(1),
Pd(1),Qd(1),
V (1),θ(1),σ0(1)

−σ0(1) subject to (2.1a)

σ0(1) = σmin{J(θ(1),V (1))} (2.1b)

FP
n (θ(1),V (1)) = Pg,n(1)− Pd,n(1) ∀n ∈ N (2.1c)

FQ
n (θ(1),V (1)) = Qg,n(1)−Qd,n(1) ∀n ∈ N (2.1d)∑

n∈SDR

Pd,n(1) =
∑
n∈SDR

Pd,n(0) + ε (Ploss(0)− Ploss(1)) (2.1e)

Pd,n(1) · µn = Qd,n(1) ∀n ∈ N (2.1f)

Pd,n(1) = Pd,n(0) ∀n ∈ N \ SDR (2.1g)

θref(1) = 0 (2.1h)

Hnm(θ(1),V (1)) ≤ Hnm (2.1i)

Hmn(θ(1),V (1)) ≤ Hmn (2.1j)

17



P g,n(1) ≤ Pg,n(1) ≤ P g,n(1) ∀n ∈ SG (2.1k)

Q
g,n

(1) ≤ Qg,n(1) ≤ Qg,n(1) ∀n ∈ SG (2.1l)

P d,n(1) ≤ Pd,n(1) ≤ P d,n(1) ∀n ∈ SDR (2.1m)

V n(1) ≤ Vn(1) ≤ V n(1) ∀n ∈ N (2.1n)

Constraint (2.1b) defines the SSV of J(θ,V ) where σmin is a function that takes the SSV

of a matrix. Constraints (2.1c) and (2.1d) are the nonlinear AC power flow equations [142].

Constraint (2.1e) sets the total system load in Period 1 to be equal its nominal value plus a

portion of the change in system losses, where the real power loss is Ploss(t) =
∑

n∈N (Pg,n(t)−
Pd,n(t)) and ε is a parameter that defines the loss management strategy (i.e., 0 ≤ ε ≤ 1,

where ε = 1 allocates loss management exclusively to the loads, while ε = 0 allocates loss

management exclusively to the slack bus). Constraint (2.1f) fixes the power factor of each

load, where µn is the ratio between the reactive and real demand at bus n. Constraint

(2.1g) fixes the non-responsive demand to its nominal value. Constraint (2.1h) sets the

slack bus voltage angle. Constraints (2.1i)–(2.1n) limit the line flows, real and reactive

power generation at generator buses, real power demand at buses with responsive loads, and

voltage magnitudes at all buses. The real power generation limits
(
P g,n(1), P g,n(1)

)
depend

on whether or not the generator is modeled as responsive in Period 1, its minimum/maximum

output, its ramp limits, and, for the slack bus, the loss management strategy (i.e., when ε = 0

the slack bus real power generation will be allowed to vary, but when ε = 1 it will be fixed).

The real power demand limits
(
P d,n(1), P d,n(1)

)
depend on the flexibility of the responsive

loads. The voltage limits
(
V n(1), V n(1)

)
depend on whether or not the generator voltages

are allowed to adjust in Period 1.

In our base case, the slack bus manages the change in losses, (i.e., ε = 0) but the real power

generation of all other generators is fixed in Period 1. Additionally, voltage magnitudes at

all generator buses are fixed in Period 1. Specifically,

Pg,n(1) = Pg,n(0) ∀n ∈ SPV

P g,ref(1) ≤ Pg,ref(1) ≤ P g,ref(1)

Vn(1) = Vn(0) ∀n ∈ SG

V n(1) ≤ Vn(1) ≤ V n(1) ∀n ∈ SPQ

We investigate seven additional cases in which we vary the decision variables that are al-
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lowed to change in Period 1 (specifically, Pg,ref, Pg,n ∀n ∈ SPV, Vn ∀n ∈ SG, and Pd,n, Qd,n ∀n ∈
SDR), the loss management strategy, and, for cases in which generator real power generation

is allowed to change in Period 1, whether or not we impose a ramp rate. The cases and

associated results, which will be discussed later, are summarized in Table 2.5.

The difficulty in solving (2.1) stems from the existence of the implicit constraint (2.1b).

Because the singular values of a matrix A are the square roots of the eigenvalues of ATA,

we can replace (2.1b) with

J(1)TJ(1)− λ0(1)I � 0 (2.2)

σ0(1) =
√
λ0(1) (2.3)

where the semidefinite constraint (2.2) forces λ0 to be the smallest eigenvalue of J(1)TJ(1),

I is an identity matrix of appropriate size, and we have simplified the expression for the

power flow Jacobian matrix for clarity. The SSV of J is the square root of λ0, as shown

in (2.3).

2.5 Solution Algorithm

2.5.1 Existing Approaches for VSCOPF

A variety of methods have been used to solve problems (i.e., voltage stability constrained

optimal power flow (VSCOPF) problems) similar to (2.1). For example, [67] computes the

Hessian of (2.1b) and then applies an Interior Point Method to solve the nonlinear optimiza-

tion problem. However, computation of the second derivatives of singular values is com-

putationally difficult. Specifically, in [67], they are obtained through numerical analysis by

applying small perturbations to the operating point. Alternatively, since (2.2) is a semidef-

inite constraint, we could use semidefinite programming (SDP) by applying a semidefinite

relaxation of the AC power flow equations [73, 93]. However, if the relaxation is not tight at

the optimal solution, the solution will not be the optimal solution of (2.1) and, moreover, it

will not be feasible.

In this section, we develop a new solution approach that overcomes the drawbacks of the

aforementioned approaches. Specifically, our approach uses the first derivatives of singular

values obtained using singular value sensitivities, reducing the necessary computation as

compared to the second-order method in [67]. We also include the full nonlinear AC power
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flow equations and solve the resulting optimization problem via an iterative LP algorithm in

which 1) the objective function and constraints are linearized such that we can compute a

step in the optimal direction using LP, 2) the AC power flow equations are solved for the new

operating point (i.e., the original operating point plus the optimal step), and 3) the process

is repeated until convergence. The idea of iterative programming has been used to solve

many kinds of optimization problems for the power system, for example, it is used to solve

the basic AC-OPF problem [142, p. 371] and an iterative quadratic programming approach

is proposed to solve a multi-period AC-OPF problem including renewable generators and

energy storage [84].

Our approach is an extension of the iterative NLP approach proposed in [10], which we

will now describe. It takes advantage of the Singular Value Decomposition (SVD) of the

Jacobian, i.e.,

J = UΣW T , (2.4)

where Σ is a diagonal matrix, U and W are orthogonal singular vector matrices (i.e., UUT =

I,WW T = I). Around a given operating point, the approximate SSV of J is [10]

σ̃0 = uT0 Jw0, (2.5)

where u0, w0 are the corresponding left and right singular vectors.

Our implicit constraint (2.1b) can be approximated by (2.5) and so we can write our

problem as a nonlinear optimization problem

min
Pg(1),Qg(1),
Pd(1),Qd(1),
V (1),θ(1),σ̃0(1)

−σ̃0(1) (2.6a)

s.t constraints (2.1c)− (2.1n), (2.5) (2.6b)

To obtain the solution to our original problem (2.1), we solve (2.6), recompute u0 and

w0 at the new operating point, and repeat the process until convergence. However, the

symbolic matrix multiplication in (2.5) is complex for large systems. Moreover, each iteration

requires solving a nonlinear optimization problem. Therefore, the approach does not scale

to realistically-sized power systems, as we will show in our case study.
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2.5.2 Iterative Linear Programming using Singular Value

Sensitivities

Our new solution approach uses iterative linear programming (ILP) where the power flow

equations are iteratively linearized around new operating points as in [142, p. 371] and the

SSV constraint (2.5) is linearized using singular value sensitivities.

The singular value sensitivity is derived using the perturbation theory. The process works

as follows [126]. The first -order Taylor series of the Jacobian matrix:

J |χ∗+∆χ = J |χ∗ +
∑
k

∂J

∂χk

∣∣∣
χ∗

∆χ, (2.7)

where k indexes χ and χ∗ is the current operating point. The left side of (2.7) can also be

presented using the small perturbation matrices ∆U , ∆Σ and ∆W :

J |χ∗+∆χ = (U + ∆U) (Σ + ∆Σ) (W + ∆W )T , (2.8)

where (U + ∆U) (U + ∆U)T = I, (W + ∆W ) (W + ∆W )T = I and ∆Σ is a diagonal matrix.

Substituting (2.4) and (2.7) into (2.8) (neglect the higher orders):

UΣ∆W T + U∆ΣW T + ∆UΣW T =
∑
k

∂J

∂χk

∣∣∣
χ∗

∆χ. (2.9)

Using the fact that (U + ∆U) (U + ∆U)T = I and also disregrading the higher order, we

have U∆UT = −(U∆UT )T . Similarly, W∆W T = −(W∆W T )T . Therefore, we know that

the diagonal entries of matrices U∆UT and W∆W T are zeros. Pre-multiplying (2.9) by UT

and post-multiplying by W , it becomes:

Σ∆W TW + ∆Σ + UT∆UΣ =
∑
k

(
UT ∂J

∂χk

∣∣∣
χ∗
W T

)
∆χ. (2.10)

Because Σ is a diagonal matrix, the diagonal entries of Σ∆W TW +UT∆UΣ are zeros. As a

result, the change in the ith singular value of Jacobian matrix J due to a small perturbation

in the operating point χ is

∆σi ≈
∑
k

uTi
∂J

∂χk

∣∣∣∣∣
χ∗

wi∆χk, (2.11)

where ui and wi are the left and right singular vectors corresponding to σi. Therefore, the
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sensitivity of the SSV of J is

∆σ0 ≈
∑

n∈{SPV,SPQ}

[
uT0

∂J

∂θn
w0

]
∆θn +

∑
n∈SPQ

[
uT0

∂J

∂Vn
w0

]
∆Vn, (2.12)

The resulting linear program solved in each iteration of the ILP algorithm is as follows.

min
∆Pg(1),∆Qg(1),
∆Pd(1),∆Qd(1),

∆V (1),∆θ(1),∆σ0(1)

−∆σ0(1) subject to (2.13a)

∆σ0(1) =
∑

n∈{SPV,SPQ}

[
u0(1)T

∂J(θ(1),V (1))

∂θn
w0(1)

]
∆θn(1)

+
∑
n∈SPQ

[
u0(1)T

∂J(θ(1),V (1))

∂Vn
w0(1)

]
∆Vn(1) (2.13b)

fP
n (∆θ(1),∆V (1)) = ∆Pg,n(1)−∆Pd,n(1) ∀n ∈ N (2.13c)

fQ
n (∆θ(1),∆V (1)) = ∆Qg,n(1)−∆Qd,n(1) ∀n ∈ N (2.13d)∑
n∈SDR

∆Pd,n(1) = −ε∆Ploss(1) (2.13e)

∆Pd,n(1) · µn = ∆Qd,n(1) ∀n ∈ N (2.13f)

∆Pd,n(1) = 0 ∀n ∈ N \ SDR (2.13g)

∆θref(1) = 0 (2.13h)

hnm(∆θ(1),∆V (1)) ≤ hnm (2.13i)

hmn(∆θ(1),∆V (1)) ≤ hmn (2.13j)

P g,n(1) ≤ P ∗g,n(1) + ∆Pg,n(1) ≤ P g,n(1) ∀n ∈ SG (2.13k)

Q
g,n

(1) ≤ Q∗g,n(1) + ∆Qg,n(1) ≤ Qg,n(1) ∀n ∈ SG (2.13l)

P d,n(1) ≤ P ∗d,n(1) + ∆Pd,n(1) ≤ P d,n(1) ∀n ∈ SDR (2.13m)

V n(1) ≤ V ∗n (1) + ∆Vn(1) ≤ V n(1) ∀n ∈ N (2.13n)

∆σ0(1) ≤ ∆σ0, (2.13o)

where (2.13b) is the linearized SSV constraint and (2.13c)–(2.13n) correspond to (2.1c)–

(2.1n), where ∆Ploss(1) =
∑

n∈N (∆Pg,n(1)−∆Pd,n(1)) and superscript ‘*’ denotes the current

value of a variable. Constraint (2.13o) limits the change in ∆σ0(t) since the linearizations

are only valid near the current operating point.

22



The solution algorithm is given in Algorithm 1. We initialize the operating points of

Period 1, χ∗(1), at the operating point of Period 0, χ(0). Then, we compute the constraints

of (2.13) at the current values of the operating point and solve (2.13) to obtain the optimal

change in operating point ∆χopt(1). We use those changes to compute updated operating

point estimates χ′(1). However, in general, χ′(1) will not be feasible in the AC power flow

equations. Therefore, we re-solve the AC power flow equations using components of χ′(1),

specifically, Pg,Pd,Qd, and Vn ∀n ∈ SG, to obtain the new values of the operating points,

χ∗(1). We use these values to compute the new value of the SSV in Period 1, σ∗0(1). We

repeat the process until the absolute value of the change of SSV is less than a threshold

(here, 10−5), and the outputs are the final operating point and the SSV.

Algorithm 1 Iterative Linear Programming with Singular Value Sensitivities

Input: The operating point of Period 0, χ(0)
1: χ∗(1) = χ∗(0)
2: repeat
3: Compute (2.13b)–(2.13n) at χ∗(1)
4: Solve (2.13) at χ∗(1) to obtain to obtain ∆χopt(1)
5: χ′(1) = χ∗(1) + ∆χopt(1)
6: Use χ′(1) to solve AC power flows to obtain a new χ∗(1).
7: Use χ∗(1) to calculate σ∗0(1) and the objective function in (2.13a).
8: until |∆σ0(1)| < 10−5

Output: χ∗(1), σ∗0(1)

2.5.3 Iterative Linear Programming using Eigenvalue Sensitivities

As shown in (2.2) and (2.3), the smallest singular value of J is the square root of the smallest

eigenvalues of JTJ , therefore, the original problem can also be solved by iterative linear pro-

gramming using eigenvalue sensitivities. In case study, we will also compare the performance

of ILP with singular value sensitivities with that of ILP with eigenvalue sensitivities.

Let λ, r and l be the eigenvalues, right eigenvectors, and left eigenvectors of a matrix A:

Ari = λiri (2.14)

AT li = λili (2.15)
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Differentiating (2.14) with respect to a system state χk yields

∂A

∂χk
ri + A

∂ri
∂χk

=
∂λi
∂χk

ri + λi
∂ri
∂χk

(2.16)

Pre-multiplying (2.16) by lTi , applying (2.15), and using the fact that li and ri are orthogonal

(lTi ri = 1), the eigenvalue sensitivity is [117]:

∂λi
∂χk

= lTi
∂A

∂χk
ri, (2.17)

so we can approximate the change in λ0 as

∆λ0 ≈
∑

n∈{SPV,SPQ}

[
lT0
∂(JTJ)

∂θn
r0

]
∆θn +

∑
n∈SPQ

[
lT0
∂(JTJ)

∂Vn
r0

]
∆Vn (2.18)

where r0 and l0 are the right and left eigenvectors corresponding to λ0.

An equivalent problem to (2.13) is

min
∆Pg(1),∆Qg(1),
∆Pd(1),∆Qd(1),

∆V (1),∆θ(1),∆σ0(1)

−∆σ0(1) s.t. (2.19a)

∆λ0(1) =
∑

n∈{SPV,SPQ}

[
l0(1)T

∂
(
J(1)TJ(1)

)
∂θn

r0(1)

]
∆θn(1)

+
∑
n∈SPQ

[
l0(1)T

∂
(
J(1)TJ(1)

)
∂Vn

r0(1)

]
∆Vn(1) (2.19b)

∆λ0(1) = 2σ∗0(1)∆σ0(1) (2.19c)

constraints (2.13c)− (2.13o) (2.19d)

2.5.4 Benchmarks

We will benchmark the solution determined by the iterative linear programming against

those of three other approaches.

• Brute force SSV approach

We compute the smallest singular value of the Jacobian for all possible loading patterns

within a discrete mesh where total load is constant (i.e., using brute force search) and
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determine the maximum.

• Brute force loading margin approach

We use Matpower’s [149] continuation power flow runcpf to compute the loading

margin for all possible loading patterns within a discrete mesh where total load is

constant and determine the maximum. This function does not enforce engineering

constraints.

• Optimal loading margin approach

For all possible loading patterns where total load is constant, we use an Optimal-Power-

Flow-based Direct Method [11] to maximize the loading factor k subject to both the

power flow equations and engineering constraints. Specifically, we solve the following

problem, which increases the generation and loading uniformly subject to the power

flow equations and engineering constraints:

max
Pg,Qg,Pd,Qd,V,θ,
Pg(1),Pd(1),Qd(1),k

k subject to (2.20a)

Pg,n = (1 + k)Pg,n(1) ∀n ∈ SPV (2.20b)

Pd,n = (1 + k)Pd,n(1) ∀n ∈ SPQ (2.20c)

FP
n (θ,V ) = Pg,n − Pd,n ∀n ∈ N (2.20d)

FQ
n (θ,V ) = Qg,n −Qd,n ∀n ∈ N (2.20e)∑
n∈SDR

Pd,n(1) =
∑

n∈SDR
Pd,n(0) (2.20f)

Pd,n · µn = Qd,n ∀n ∈ N (2.20g)

Pd,n(1) · µn = Qd,n(1) ∀n ∈ N (2.20h)

Pd,n(1) = Pd,n(0) ∀n ∈ N \ SDR (2.20i)

Pg,n(1) = Pg,n(0) ∀n ∈ SPV (2.20j)

Vn = Vn(0) ∀n ∈ SPV (2.20k)

θref = 0, Vref = Vref(0) (2.20l)

Hnm(θ,V ) ≤ Hnm (2.20m)

Hmn(θ,V ) ≤ Hmn (2.20n)

P g,n ≤ Pg,n ≤ P g,n ∀n ∈ SG (2.20o)

Q
g,n
≤ Qg,n ≤ Qg,n ∀n ∈ SG (2.20p)

V n ≤ Vn ≤ V n ∀n ∈ SPQ (2.20q)
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Table 2.1: Comparison Between Operating Point 0 and Solution to (2.13) for the 9-bus
System

Bus Original Generation New Generation

# Pg (MW) Qg (MVar) Pg (MW) Qg (MVar)

1 71.95 24.07 70.18 3.05

2 163 14.46 163 19.5

3 85 -3.65 85 3.13

Bus Original Load/Voltage New Load/Voltage

# Pd (MW) V (p.u.) Pd (MW) V (p.u.)

5 90 0.975 74.8 0.989

7 100 0.986 166.68 0.966

9 125 0.958 73.52 0.985

2.6 Results & Discussion

2.6.1 SSV vs Loading Margin

We first demonstrate the performance of the iterative linear programming with SSV sensi-

tivity algorithm on the IEEE 9- and 30-bus systems. We use these small-scale systems to

enable visualization of the results. The system data is from Matpower [149] and we set

∆σ0 = 0.01, ε = 0.

9-bus system

We assume the loads at buses 5, 7 and 9 are flexible (total loading = flexible loading =

315 MW). A comparison between the operating point in Period 0 and the solution to (2.13)

is given in Table 2.1. As specified by the constraints, the real power generation at buses

2 and 3 does not change, while the load pattern Pd and the slack bus generation changes

to maximize the smallest singular value of the power flow Jacobian, which increases from

0.8942 to 0.8995.

To verify the results, we compare the solution of ILP approach to that of the brute force

SSV approach. Figure 2.2 shows the SSV as a function of Pd,5 and Pd,7 (based on (2.1e),
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Figure 2.2: Smallest singular value of the power flow Jacobian for the 9-bus system as
a function of Pd,5 and Pd,7.

Pd,9 = 315 − Pd,5 − Pd,7 MW), using a mesh size of 1 MW. The solution of the iterative

sensitivity SSV approach is very near to that of the brute force SSV approach, which has

a maximum value that is only 0.00001% larger than that of the iterative sensitivity SSV

approach.

Figure 2.3 shows the loading margin as a function of Pd,5 and Pd,7. The solutions of the

brute force and optimal loading margin approaches are shown. Both approaches produce

similar loading patterns (the black dashed line projects the loading pattern corresponding

to the optimal loading margin approach to the surface), but different loading margins since

the optimal approach includes engineering constraints that reduce the margin from 566 to

257 MW.

Table 2.2 summarizes the results by listing the loading patterns, smallest singular values

(SSV), and loading margins (LM) produced by each approach. Note that the loading mar-

gins reported for the first two approaches are computed without engineering constraints and

so should be compared to the loading margin associated with the brute force loading margin

approach. As shown, the loading patterns produced by the loading margin approaches are

different than those produced by the SSV approaches. This is unsurprising since the mar-

gins are defined differently, the loading margin describes the distance to voltage instability

for power injection changes that are restricted to a single profile (i.e., uniform changes at

constant power factor), whereas the smallest singular value does not require specification of

a power injection profile, but it points to the issue that improving one margin may come at
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Figure 2.3: Loading margin for the 9-bus system as a function of Pd,5 and Pd,7.

Table 2.2: Optimal Loading Patterns for the 9-bus System

Approach Pd,5 Pd,7 Pd,9 SSV LM

Iterative Linear Programming 75 167 73 0.8995 516
Brute Force SSV 76 167 72 0.8995 516
Brute Force Loading Margin 97 135 83 0.8984 566
Optimal Loading Margin 95 135 85 0.8984 257

the cost of reducing another.

30-bus system

We assume the loads at buses 7, 8 and 30 are flexible (63.4 MW out of 189.2 MW total).

A comparison between the original optimal power flow solution and the solution to (2.13)

is given in Table 2.3. Figure 2.4 shows the SSVs (again, using a mesh size of 1 MW) and

solutions of two SSV approaches, and Fig. 2.5 shows the loading margins and the solutions

of two loading margin approaches. In both cases, the results are plotted as a function of

Pd,7 and Pd,8, and so, based on (2.1e), Pd,30 = 63.4− Pd,7 − Pd,8. Table 2.4 summarizes the

results.

As shown in Fig. 2.4 and Table 2.4, the result from the iterative sensitivity SSV approach

is near the actual maximum. Along the line Pd,7 + Pd,8 = 63, the smallest singular value

slightly increases (from 0.2171 to 0.2187) as the load at bus 7 increases. As shown in Fig. 2.5

and Table 2.4, the loading margin associated with the solution of the optimal loading margin
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Table 2.3: Comparison Between Operating Point 0 and Solution to (2.13) for the 30-
bus System

Bus Original Generation New Generation

# Pg (MW) Qg (MVar) Pg (MW) Qg (MVar)

1 25.82 -2.46 26.40 -2.87

2 60.97 25.75 60.97 32.27

13 37 10.62 37.00 10.92

22 21.59 37.56 21.59 38.69

23 19.2 7.59 19.20 7.70

27 26.91 8.29 26.91 4.62

Bus Original Load/Voltage New Load/Voltage

# Pd (MW) V (p.u.) Pd (MW) V (p.u.)

7 22.8 0.971 57.52 0.951

8 30 0.970 5.88 0.978

30 10.6 0.971 0 0.996

Table 2.4: Optimal Loading Patterns for the 30-bus System

Approach Pd,7 Pd,8 Pd,30 SSV LM

Iterative Linear Programming 58 6 0 0.2187 209
Brute Force SSV 63 0 0 0.2187 194
Brute Force Loading Margin 24 28 11 0.2173 323
Optimal Loading Margin 25 25 13 0.2172 15

approach is much smaller than that associated with the brute force loading margin approach,

again due to the engineering constraints; however, the loading pattern is similar. Also,

again, the SSV approaches produce very different loading patterns than the loading margin

approaches.

2.6.2 Comparison of Cases

We compare seven cases with different decision variables and/or parameters to the base case

in Table 2.5, which defines each case and shows its optimal SSV, percent improvement, and

generation cost. For this comparison, we use the IEEE 9-bus system. We assume the system

is initially operating at the optimal power flow solution at $5297/hour (the star in Fig 2.1).
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Figure 2.4: Smallest singular value of the power flow Jacobian for the 30-bus system
as a function of Pd,7 and Pd,7.

A disturbance takes line 4-9 out of service and the SSV drops to 0.4445. Note that the

operating point 0 now is different from the point list in Table 2.1.

Case 1 corresponds to our base case. Case 2 uses the loads rather than the slack bus to

compensate for the change in system losses. The total loading increases from 315 MW to 319

MW, reducing the optimal SSV slightly. In Cases 3–6, we investigate the achievable change

in SSV using generator actions alone (in these cases, ε is irrelevant because there is no DR).

The improvement possible through changes to generator real power generation (Case 3) is

slightly greater than that of the base case (6.5% vs. 6.1%), but at a significantly higher

generation cost. In Case 4, Generators 2 and 3 are modeled as steam turbine plants with 3

MW/minute (1% of capacity [136]) ramp rates, which reduces their ability to respond and

the achievable SSV. Case 5 allows real power generation and voltage magnitudes to change.

Voltage regulation alone (Case 6) does not improve the SSV very much. The greatest SSV

improvement is achieved when we change load, generation, and voltage magnitudes together

(Case 7); however, in practice, generators are ramp limited and so we would expect a realistic

achievable improvement between that obtained in Case 7 and Case 8, where we have applied

the conservative ramp rate used in Case 4.

We also formulated and solved an optimization problem to determine the minimum load

shedding needed to achieve the same SSV improvement as obtained in Case 1 (without
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Figure 2.5: Loading margin for the 30-bus system as a function of Pd,7 and Pd,8.

system-wide load shedding). The formulation is as follows.

min
∑
i∈SDR

Pd,i(0)−
∑
i∈SDR

Pd,i(1) (2.21a)

σ0(1) = σmin{J(θ(1),V (1))} (2.21b)

FPn (θ(1),V (1)) = Pg,n(1)− Pd,n(1) ∀n ∈ N (2.21c)

FQn (θ(1),V (1)) = Qg,n(1)−Qd,n(1) ∀n ∈ N (2.21d)

Pg,n(1) = Pg,n(0) ∀n ∈ SPV (2.21e)

σ0(1) ≥ 0.4715 (2.21f)

P g,ref(1) ≤ Pg,ref(1) ≤ P g,ref(1) (2.21g)

Q
g,n

(1) ≤ Qg,n(1) ≤ Qg,n(1) ∀n ∈ SG (2.21h)

V n(1) ≤ Vn(1) ≤ V n(1) ∀n ∈ SDR (2.21i)

To solve this problem, we again use iterative linear programming with singular value

sensitivities. In [15], the authors formulate a similar problem and also use singular value

sensitivities to formulate a linear program. However, they only solve the linear program once

and so the solution they obtain does not necessarily satisfy the original problem’s constraints.

By solving (2.21), we found that the system load would need to drop by at least 17% to
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Table 2.5: Decision variables, parameters, optimal SSV, percent improvement, and
generation cost for each case

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n∀n ∈ SPV X X X X X
Vn∀n ∈ SG X X X X
Pd,n, Qd,n∀n ∈ SDR X X X X

1% Ramp Rate X X
ε 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

achieve the same stability margin improvement as achieved by spatial load shifting. Load

shedding has significant financial and comfort impacts for consumers.

2.6.3 Comparison of Algorithms

In this subsection, we compare the performance of the ILP and INLP algorithms from [10].

Each iteration of the nonlinear optimization problem (2.6) is solved with fmincon in MAT-

LAB. Table 2.6 shows the optimal loading pattern and SSV computed using each algorithm

for the IEEE 9-bus system with disturbance (line 4-9 is disconnected). The solutions/SSVs

produced by the algorithms are close.

Figure 2.6 shows the convergence of SSV of each approach. ILP-E is the iterative lin-

ear programming with eigenvalue sensitivity; ILP is the iterative linear programming with

singular value sensitivity. The ILP algorithm converges more quickly than the INLP al-

gorithm. The eigenvalue sensitivity in (2.18) requires computing the derivatives of matrix

JTJ , which is less scalable than computing derivatives of the matrix J in (2.12), therefore,

iterative linear programming with singular value sensitivity costs less time than iterative

linear programming with eigenvalue sensitivity.

In addition to 9-bus system, we also apply these three algorithms on IEEE 118-bus sys-

tem. Table 2.7 summarizes the computation times for each algorithm. As shown, the ILP

algorithm requires significantly less time than the INLP algorithm,and roughly half as much

time as ILP-E. The INLP algorithm does not scale to the 118-bus system.
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Table 2.6: Loading Pattern & SSV computed with ILP and INLP for the IEEE 9-bus
system with disturbance

Nominal Optimal
Algorithm ILP INLP

Pd,5 (MW) 90 147.93 149.58
Pd,7 (MW) 100 137.23 135.57
Pd,9 (MW) 125 29.84 29.85

SSV 0.4445 0.4715 0.4716
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Figure 2.6: Convergence of each approach.

2.7 Chapter Conclusion

We have posed an optimization problem to use DR to improve static voltage stability as

measured by the smallest singular value of the power flow Jacobian matrix. In addition to

formulating the problem, which increases/decreases loads while holding total load constant

in a first period and paying back energy to each load in a second period, we have developed an

iterative linear programming algorithm using singular value sensitivities. We demonstrated

the performance of the approach on the IEEE 9-, 30-, and 118-bus systems, compared the

effectiveness of DR actions to generation actions, and benchmarked our algorithm against

an iterative nonlinear programming algorithm from the literature.

The test case results show that demand response actions which shift load between buses,
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Table 2.7: Computation Times (s)

ILP ILP-E INLP

IEEE 9-bus system 0.4 1.0 2.5
IEEE 118-bus system 6.5 15.0 -

while keeping the total load constant, can improve voltage stability margins. We also found

that our computationally tractable iterative linear programming method produced loading

patterns close to the optimum (as determined by a brute force approach). The results

further show that we may obtain significantly different loading patterns when maximizing

the smallest singular value of the Jacobian versus maximizing the loading margin. This is not

surprising since the different margins capture different notions of “distance to instability.”

However, it means that improving one margin may worsen another, and so the system

operator should consider the trade-off between different margins. Moreover, demand response

actions can achieve same amount of improvement as generation actions, however, in reality,

generators are ramp-limited, therefore, it may still be desirable to deploy DR actions.
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Chapter 3

The Impact of Load Models on the

Optimal SSV and the Optimal

Loading Pattern

In this chapter, we study the impact of load models on a previously proposed iterative lin-

earization algorithm to determine loading patterns that maximize a voltage stability margin,

namely, the SSV of the power flow Jacobian matrix. Specifically, we extend the algorithm

to enable inclusion of composite load models consisting of both “ZIP” components and a

steady-state squirrel-cage induction machine (IM) model. We then investigate the impact of

different load models on both the stability margin and the loading pattern. This chapter is

largely based on the following paper.

• M. Yao, D.K. Molzahn, and J.L. Mathieu. “The impact of load models in an algorithm

for improving voltage stability via demand response”. In: the Allerton Conference on

Communication, Control, and Computing. 2017 (Invited).

3.1 Notation

Sets

N Set of all buses

SPV Set of all PV buses

SPQ Set of all PQ buses

SDR Set of buses with demand-responsive loads
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Functions

FP
n (·) Real power injection at bus n

FQ
n (·) Reactive power injection at bus n

FZPn (·) Real power demand of ZIP load at bus n

FZQn (·) Reactive power demand of ZIP load at bus n

F IPn (·) Real power demand of IM at bus n

F IQn (·) Reactive power demand of IM at bus n

Hnm(·) Line flow for line (n,m)

Variables & Parameters

a1, a2, a3 ZIP load model real power coefficients

b1, b2, b3 ZIP load model reactive power coefficients

Rs,n IM stator’s resistance at bus n

Rr,n IM rotor’s resistance at bus n

Sd,n Total complex power demand at bus n

SZIP,n Complex power demand of ZIP load at bus n

SIM,n Complex power demand of IM at bus n

sn Slip of IM at bus n

u Left singular vector

Vn Voltage magnitude at bus n

Vµ,n Stator voltage magnitude of IM at bus n

Vρ,n Rotor voltage magnitude of IM at bus n

w Right singular vector

Xls,n IM stator’s leakage reactance at bus n

Xlr,n IM rotor’s leakage reactance at bus n

Xm,n IM mutual reactance at bus n

θn Voltage angle at bus n

θµ,n Stator voltage angle of IM at bus n

θρ,n Rotor voltage angle of IM at bus n

χ System parameters

κ Ratio used for the ZIP model
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3.2 Chapter Introduction

Proper load models are particularly important in stability studies [53, 64, 102, 110]. This

chapter extends the Algorithm 1 to enable inclusion of voltage-dependent load models, specif-

ically ZIP models (i.e., real and reactive demand models with constant impedance, constant

current, and constant power components) and steady-state squirrel-cage IM models. In-

clusion of these models changes the power flow Jacobian, altering the nominal SSV. We

investigate the impact of these models on the optimal SSV and optimal loading pattern. Of

course, in practice, we do not choose the load model, but rather identify it using system

data, e.g., from Phasor Measurement Units [18, 50, 135]. Given this, our results are useful

for two reasons: 1) they help us understand which types of systems (as defined by the load

mix) might benefit more or less from using demand response to improve the SSV, and 2)

they help us determine the difference in loading pattern and optimality loss we would obtain

if we were to use simple load models (e.g., constant power load models) instead of detailed

load models within our algorithm.

The technical contributions of this chapter are as follows:

• We extend the SSV maximization problem to include voltage-dependent load models;

• we extend the iterative linear programming approach used in Chapter 2 to solve this

problem;

• we compare the solutions and optimal SSVs associated with different types of load

models;

• and we discuss difficulties in interpreting the stability margin when the system under-

goes structural changes resulting from the use of different load models.

3.3 Load Models

In this section, we describe the voltage-dependent load models - ZIP and induction machine

- considered in this chapter. Since we focus on the static voltage stability analysis, we do

not consider dynamic load models.
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Figure 3.1: Steady-state equivalent circuit of a squirrel-cage induction machine at
bus n [92].

3.3.1 Controllable ZIP Model

Typical static loads are represented using a “ZIP” model which has constant impedance

(“Z”), constant current (“I”), and constant power (“P”) components. To incorporate demand

response capabilities into the typical ZIP model, we introduce a scalar variable κn that

represents the ratio (at a given voltage magnitude) between the controlled and nominal

power demands:

FZPn (Vn, κn) = κnP
0
d,n

[
a1,n

(
Vn
V 0
n

)2

+ a2,n

(
Vn
V 0
n

)
+ a3,n

]
, (3.1a)

FZQn (Vn, κn) = κnQ
0
d,n

[
b1,n

(
Vn
V 0
n

)2

+ b2,n

(
Vn
V 0
n

)
+ b3,n

]
, (3.1b)

where FZPn and FZQn are the functions representing the real and reactive power consumption

of the controllable ZIP model, P 0
d,n and Q0

d,n are the nominal real and reactive demands,

and V 0
n is the nominal voltage magnitude at load bus n. The coefficients a1,n, a2,n, and a3,n

represent constant impedance, constant current, and constant power fractions for real power.

Corresponding reactive power coefficients are denoted b1,n, b2,n, and b3,n. These coefficients

sum to one, i.e.,
∑3

i=1 ai,n = 1 and
∑3

i=1 bi,n = 1 for all n.

3.3.2 Induction Machine Model

Fig. 3.1 shows the equivalent circuit of a squirrel-cage induction machine [70]. An induction

machine at bus n is modeled using two additional internal buses denoted µn and ρn along

with a “slip” variable sn indicating the normalized difference between the electrical frequency

and the induction machine’s mechanical speed. A slip equal to 1 indicates zero mechanical

speed, while a slip equal to 0 indicates that the machine operates at synchronous speed.
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Figure 3.2: The electrical power consumption of an induction machine as a function
of the slip.

For both sn = 0 and sn = 1, the induction machine delivers zero mechanical power but

may consume electrical power due to losses. Fig. 3.2 shows an induction machine’s power

consumption as a function of sn.

Based on the circuit in Fig. 3.1, the real and reactive demands at bus k become functions

of the voltage phasors at buses k, µn and ρn as well as the machine’s slip:

Pd,n + jQd,n = Vne
jθn

(
Vµ,ne

jθµ,n

jXm,n

+
Vρ,ne

jθρ,nsn
Rr,n

)∗
, (3.2)

where j =
√
−1. Splitting (3.2) into real and imaginary components yields

F IPn (θn, Vn, θµ,n, Vµ,n, θρ,n, Vρ,n, sn) =
VnVµ,n
Xm,n

sin(θµ,n − θn) +
VnVρ,nsn
Rr,n

cos(θρ,n − θn), (3.3a)

F IQn (θn, Vn, θµ,n, Vµ,n, θρ,n, Vρ,n, sn) =
VnVµ,n
Xm,n

cos(θµ,n − θn)− VnVρ,nsn
Rr,n

sin(θρ,n − θn). (3.3b)

The voltage magnitudes are related by Ohm’s law:

Vne
jθn − Vµ,nejθµ,n = (Rs,n + jXls,n)

(
Vµ,ne

jθµ,n

jXm,n

+
Vρ,ne

jθρ,nsn
Rr,n

)
, (3.4a)

Vµ,ne
jθµ,n = Vρ,ne

jθρ,n

(
1 + jXlr,n

sn
Rr,n

)
. (3.4b)
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As shown in Fig. 3.2, for a specific value of real power demand Pd,k and terminal voltage

magnitude Vn (the horizontal dashed line), there can exist multiple possible values for the

slip sn. We choose the smallest slip, which corresponds to stable operation (the star), by

imposing the limits sn ≤ sn ≤ sn. Since the induction machine represents a load, the slip

should be greater than zero; therefore, we impose a small nonzero value as the lower limit sn.

The value of the upper limit sn, which must be small enough to preclude unstable solutions,

depends on the machine parameters.

We consider a composite load model, which allows for the combination of both ZIP loads

and induction machine loads:

Sd,n = (1− α)SZIP,n + αSIM,n (3.5)

where SZIP and SIM represent the complex power demands of the ZIP load and the induction

machine, respectively, and α is the percentage of induction machine load (0 ≤ α ≤ 1).

3.4 Optimization Model

In Section 2.4, we propose a non-convex optimization formulation for determining loading

patterns that improve voltage stability as measured by the SSV of the power flow Jaco-

bian matrix when load is modeled as constant power with fixed power factor. This section

introduces ZIP and induction machine models into this formulation.

3.4.1 Jacobian Matrix

The standard AC power flow equations [142] are used to compute the conventional power

flow Jacobian matrix:

FPi (θ,V ) = Vi
∑
j∈N

Vj(Gij cos θij +Bij sin θij), (3.6a)

FQi (θ,V ) = Vi
∑
j∈N

Vj(Gij sin θij −Bij cos θij), (3.6b)
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where θij = θi − θj, Gij = Re(Yij), and Bij = Im(Yij). The conventional Jacobian matrix is

an m×m matrix, where m = npv + 2npq:

Jcnv =

∂FPi∂θi ∂FPi
∂Vj

∂FQj
∂θi

∂FQj
∂Vj

 , (3.7)

where each term represents a submatrix of partial derivatives over the indices i ∈ {SPV,SPQ}
and j ∈ SPQ.

Models of voltage-dependent loads result in modifications to the conventional power flow

Jacobian. For a system with ZIP load models, the m×m Jacobian matrix is

JZIP = Jcnv +

0n−1×n−1
∂FZPi
∂Vj

0npq×n−1
∂FZQj
∂Vj

 , (3.8)

where the new terms are submatrices over the indices i ∈ {SPV,SPQ} and j ∈ SPQ.

The real and reactive power demands of the induction machine model are functions of the

variables θk, Vk, θµ,k, Vµ,k, θρ,k, Vρ,k, sk, ∀k ∈ SDR. The modified m × m + 5ndr Jacobian

matrix is

JIM =
[
Jcnv 0m×5ndr

]
+

∂FIPi∂θi ∂FIPi
∂Vj

∂FIPi
∂θµ,k

∂FIPi
∂Vµ,k

∂FIPi
∂θρ,k

∂FIPi
∂Vρ,k

∂FIPi
∂sk

∂FIQj
∂θi

∂FIQj
∂Vj

∂FIQj
∂θµ,k

∂FIQj
∂Vµ,k

∂FIQj
∂θρ,k

∂FIQj
∂Vρ,k

∂FIQj
∂sk

 , (3.9)

where the new terms are submatrices over the indices i ∈ {SPV,SPQ}, j ∈ SPQ, and k ∈
SDR. For example, the partial derivatives ∂F IPi /∂θµ,k, ∂F IPi /∂θρ,k, ∂F IPi /∂Vµ,k, ∂F IPi /∂Vρ,k,

∂F IPi /∂sk are each of size (n− 1)× ndr.

The Jacobian matrix for the composite load model is formed by the weighted sum of JZIP

and JIM:

Jcom = (1− α)
[
JZIP 0m×5ndr

]
+ αJIM. (3.10)

The SSV of a matrix is closely related to the matrix’s dimension. The SSV of the sum of

two matrices, as in (3.8), obeys the following inequality [56]:

σmin(A+B) ≥ σmin(A)− σmax(B) (3.11)

where σmin ( · ) denotes the SSV and σmax ( · ) the largest singular value of the corresponding
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matrix. Therefore, we can not say much about the relative size of the SSV of Jcnv versus

JZIP. In contrast, appending columns to a matrix, as in (3.9), increases its SSV.

Theorem 3.1. Let A ∈ Rm×n, z ∈ Rm×1, where m ≤ n. Then σmin(
[
A z

]
) ≥ σmin(A).

Proof. Let B =
[
A z

]
. Then, BBT =

[
A z

] [
A z

]T
= AAT + zzT . Let vn be the

normalized right eigenvector (‖vn‖2 = 1) corresponding to the smallest eigenvalue λmin of

BBT , which is equal to the square of the SSV of the matrix B, i.e., (σmin(B))2. Then,

(AAT + zzT )vn = (σmin(B))2vn,

vTn (AAT + zzT )vn = (σmin(B))2.

Since zzT is a positive semidefinite matrix, i.e., vTn zz
Tvn ≥ 0, then

(σmin(B))2 ≥ vTnAA
Tvn ≥ ‖vTnAATvn‖2 = ‖ATvn‖2

2

≥ (σmin(AT ))2‖vn‖2
2 = (σmin(A))2,

and therefore σmin

([
A z

])
≥ σmin(A).

Therefore, the SSV of JIM is larger than that of Jcnv at the same operating point. We

discuss the implication of this result in Section 3.5.2.

3.4.2 Problem Formulation

The objective is to find the loading pattern Pd(1) that maximizes the SSV of the modified

power flow Jacobian matrix Jcom given in (3.10). Here is the mathematical formulation of

the optimization problem:

max
Pg(1),Qg(1),Pd(1),Qd(1),
V (1),θ(1),Vµ(1),θµ(1),
Vρ(1),θρ(1),s,κ,σ0(1)

σ0(1) subject to (3.12a)

σ0(1) = σmin{Jcom(θ(1),V (1))} (3.12b)

FP
n (θ(1),V (1)) = Pg,n(1)− Pd,n(1) ∀n ∈ N (3.12c)

FQ
n (θ(1),V (1)) = Qg,n(1)−Qd,n(1) ∀n ∈ N (3.12d)

(1− α)FZPn (·) + αF IPn (·) = Pd,n(1) ∀n ∈ SDR (3.12e)

(1− α)FZQn (·) + αF IQn (·) = Qd,n(1) ∀n ∈ SDR (3.12f)
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Vn(1)∠θn(1)− Vµ,n(1)∠θµ,n(1) = (Rs,n + jXls,n) Is,n ∀n ∈ SDR (3.12g)

Is,n =
Vµ,n(1)∠θµ,n(1)

jXm,n

+
Vρ,n(1)∠θρ,n(1)sn

Rr,n

∀n ∈ SDR (3.12h)

Vµ,n(1)∠θµ,n(1) = Vρ,n(1)∠θρ,n(1)

(
1 + j

Xlr,nsn
Rr,n

)
∀n ∈ SDR (3.12i)∑

n∈SDR

Pd,n(1) =
∑
n∈SDR

Pd,n(0) (3.12j)

Pd,n(1) = Pd,n(0) ∀n ∈ SPQ \ SDR (3.12k)

Pg,n(1) = Pg,n(0) ∀n ∈ SPV (3.12l)

Vn(1) = Vn(0) ∀n ∈ SPV (3.12m)

Vref(1) = Vref(0), θref(1) = 0 (3.12n)

Hnm(θ(1),V (1)) ≤ Hnm (3.12o)

Hmn(θ(1),V (1)) ≤ Hmn (3.12p)

P g,ref ≤ Pg,ref(1) ≤ P g,ref (3.12q)

Q
g,n
≤ Qg,n(1) ≤ Qg,n ∀n ∈ SG (3.12r)

P d,n ≤ Pd,n(1) ≤ P d,n ∀n ∈ SDR (3.12s)

sn ≤ si ≤ sn ∀n ∈ SDR (3.12t)

V n ≤ Vn(1) ≤ V n ∀n ∈ SPQ (3.12u)

Constraints (3.12c) and (3.12d) are the standard nonlinear AC power flow equations.

Constraints (3.12e) and (3.12f) are the real and reactive power demands of the demand-

responsive loads. Constraints (3.12g)–(3.12i) are the electrical equations for the steady-state

induction machine model. While demands at the load buses without demand-responsive

loads can be treated using any appropriate load model, our numerical results assume a

constant power load model for simplicity. Constraint (3.12j) ensures that the total demand-

responsive load is constant, (3.12k)–(3.12n) fix the non-responsive loads’ real power demands,

the generators’ real power production at PV buses, voltage magnitudes at all generator buses,

and the voltage angle at the reference bus. Constraints (3.12o)–(3.12u) enforce the upper

limits of power flows on the branches (in terms of apparent power) as well as upper and

lower limits on real power and reactive power production at all generator buses, real power

demands of demand-responsive loads (which is a function of demand flexibility in both the

current time period and the payback period), slips of the induction machines, and voltage

magnitudes at PQ buses.
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We adapt the iterative linear programming algorithm presented in Algorithm 1 to solve (3.12).

This algorithm relies on linearizations of the objective function and constraints in (3.12). To

get rid of the implict constraint (3.12b), the linear sensitivity of the smallest singular value

is derived using singular value sensitivity as shown in Eq. (2.11):

∆σi ≈
∑
k

uTi
∂J

∂χk

∣∣∣∣∣
χ∗

wi∆χk

The relevant system states for the ZIP model are

χZIP = [θi, Vj, εk ]T (3.13)

and for the IM model are

χIM = [θi, Vj, θµ,k, Vµ,k, θρ,k, Vρ,k, sk]
T , (3.14)

where i ∈ {SPV,SPQ}, j ∈ SPQ, and k ∈ SDR.

In addition to (3.12b), the iterative linear programming algorithm requires linearization

of the AC power flow and load model equations, which is accomplished via first-order Taylor

expansion.

After evaluating these linearizations at the approximate solution from the previous it-

eration, each iteration of the algorithm solves the following linear optimization problem:

max
∆Pg,∆Qg,
∆Pd,∆Qd,
∆V ,∆θ,

∆Vµ,∆θµ,Vρ,
∆θρ,∆s,∆κ,∆σ0

∆σ0 subject to (3.15a)

∆σ0 =
∑

i

[
uT0
∂Jcom

∂θi
w0

]
∆θi +

∑
j

[
uT0
∂Jcom

∂Vj
w0

]
∆Vj

+
∑

k

[
uT0
∂Jcom

∂θµ,k
w0

]
∆θµ,k +

∑
k

[
uT0
∂Jcom

∂θρ,k
w0

]
∆θρ,k

+
∑

k

[
uT0
∂Jcom

∂Vµ,k
w0

]
∆Vµ,k +

∑
k

[
uT0
∂Jcom

∂Vρ,k
w0

]
∆Vρ,k

+
∑

k

[
uT0
∂Jcom

∂κk
w0

]
∆κk +

∑
k

[
uT0
∂Jcom

∂sk
w0

]
∆sk

i ∈ {SPV,SPQ} , ∀j ∈ SPQ,∀k ∈ SDR (3.15b)
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Table 3.1: Induction machine parameters (p.u.) [92]

Bus # Rs Xls Rr Xlr Xm s

4 0.012 0.07 0.01 0.17 3.5 0.04
9 0.001 0.23 0.015 0.23 5.8 0.03
14 0.001 0.23 0.015 0.23 5.8 0.03

Linearizations of (3.12c)–(3.12u) (3.15c)

∆σ0 ≤ ∆σ0 (3.15d)

where (3.15b) is the linear eigenvalue sensitivity constraint corresponding to the composite

load model. Constraint (3.15d) limits the step size of ∆λ0 to ensure the accuracy of the

linearization.

The solution to (3.15) provides an approximation of the change in decision variables that

leads to the maximum increase in σ0, within the region near the linearization point. Each

iteration of the algorithm refines an approximate solution to (3.12) by linearizing around

the previous operating point, solving (3.15), adding the changes provided by that solution

of (3.15) to the previous operating point, and solving the AC power flow equations (3.6) to

obtain a new operating point. The algorithm terminates when ∆σ0 is less than a specified

threshold (here, 10−5).

3.5 Results & Discussion

This section describes the results of case studies conducted on the IEEE 14-bus system

available in Matpower [149]. We assume the loads at buses 4, 9, and 14 are demand-

responsive resulting in 92.2 MW of responsive demand out of 259 MW of total demand.

We set ∆σ0 = 0.01 and list the parameters of the induction machine models in Table 3.1.

The upper bounds of the slips are determined based on the induction machine parameters.

For example, the relationship between the power consumption and slip of the machine at

bus 4 is shown in Fig. 3.2. Since the peak real power consumption occurs when the slip

equals 0.04 we set s4 = 0.04 to ensure the algorithm finds the stable operating point. We set

sk = 0.0001, ∀k ∈ SDR. The ZIP coefficients for a variety of loads typically used for demand

response are given in Table 3.2.

The nominal consumption of the loads at buses 4, 9, and 14 along with the SSV of Jcnv
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Table 3.2: ZIP Load Models Coefficients [18, 50]

Types a1 a2 a3 b1 b2 b3

Air conditioner 1.17 -1.83 1.66 15.68 -27.15 12.47
Battery charger 3.51 -3.94 1.43 5.80 -7.26 2.46
Baseboard heater 1.00 0.00 0.00 0.00 0.00 0.00
Dryer 1.91 -2.24 1.33 2.51 -2.34 0.83
Refrigerator/freezer 1.19 -0.26 0.07 0.59 0.65 -0.24
Heat pump 0.84 -1.40 1.56 22.92 -40.39 18.47
Washing machine 0.05 0.32 0.63 -0.56 2.20 -0.64

is given in Table 3.4 (see Nominal, Constant Power, Jcnv). Modeling the loads as constant

power loads with fixed power factors (as in Chapter 2) and applying the ILP algorithm,

we obtain the optimal loading pattern shown in Table 3.4 (see Optimal for 3 DR buses,

Constant Power, Jcnv). All of demand-responsive load is shifted to bus 4, improving the SSV

by 0.97%. The remaining values in Table 3.4 will be discussed later.

3.5.1 Controllable ZIP Model

We first consider cases where all demand-responsive loads are modeled as having only one

ZIP component. Fig. 3.3 illustrates the results obtained by applying the iterative sensitivity

SSV algorithm to each case, where the matrix in the figure defines the cases (e.g., ZIP

case #9 corresponds to a constant real/reactive power load model). The nominal SSVs are

different since JZIP is different in each case. The optimal real power loading pattern is the

same in all cases: [Pd,4 Pd,9 Pd,14] = [92.2 0 0] MW. However, the reactive power demand

at bus 4 is different in each case since the load’s power factor is a function of the voltage

magnitude in ZIP cases #1-8. Table 3.4 shows the results for case #3 (see Optimal for 3

DR buses, ZIP, JZIP), which produces the largest SSV. However, ZIP case #9 produces the

largest percent improvement: 0.974%.

We next model the demand-responsive loads using the ZIP coefficients in Table 3.2. In

each case, we model all demand-responsive load as a single type of load (i.e., using one set

of ZIP coefficients). Results are shown in Fig. 3.4. The baseboard heater model produces

the largest SSV but the smallest percentage improvement. Again, the constant power load

model (corresponding to ZIP case #9) produces the largest percent improvement.
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Figure 3.3: The nominal and optimal SSV for different ZIP cases, as shown in the
matrix. The values below the blue circles are the percent improvements.

3.5.2 Induction Machine Model

We now model each load as an induction machine (representing the aggregation of a large

number of smaller machines) using the parameters given in Table 3.1. The SSV increases

from 2.3360 to 2.4533 (5% improvement). The nominal SSV is larger than the nominal SSVs

associated with the ZIP loads as expected from Theorem 3.1.

The optimal loading pattern is shown in Table 3.4 (see Optimal for 3 DR buses, IM, JIM).

The limits on the induction machines’ slips prevent the real power demand at buses 9 and

14 from going to zero, but the optimal loading pattern is similar to the cases with ZIP loads:

almost all of the demand-responsive load is shifted to bus 4. However, unlike in the ZIP

model cases, the reactive demands at buses 9 and 14 are much greater than zero when the

real power demand is close to zero, which is an inherent characteristic of typical induction

machines, as shown in Fig. 3.2.

To consider the possibility of disconnecting the induction machines at low consumption

levels, we modify the algorithm with the following logical condition: if an induction machine’s

real power demand at any iteration is less than 0.01 p.u., we disconnect the induction ma-

chine by setting its real and reactive power demand to zero prior to continuing the algorithm.

Fig. 3.5 illustrates the impacts of this modification. At approximately 50 iterations, Pd at

bus 14 is less than 0.01 p.u. (as shown by the vertical dashed lines), so the algorithm discon-

nects the induction machine at bus 14. After another 15 iterations, the algorithm reaches
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the optimum; however, the optimum is not what we would expect given the convergence

trajectory before the machine was disconnected. Instead of shifting all load to bus 4, the

optimal loading pattern keeps some load at bus 9, as shown in Fig. 3.5 and Table 3.4 (see

Optimal for 2 DR buses, IM, JIM), which is different than results obtained using ZIP models

within a system with no load at bus 14 and demand-responsive loads at buses 4 and 9 (see

Optimal for 2 DR buses, ZIP, JZIP). Disconnecting the induction machine at bus 14 reduces

the number of columns of JIM. According to Theorem 3.1, this leads to a decrease in the

the SSV, in this case, from 2.447 to 2.181 prior to converging to a new optimum 2.184, as

shown in Fig. 3.5.

3.5.3 Composite Load Model

Table 3.3 summarizes the nominal and optimal SSV results for several ZIP models (including

ZIP case #3, which has the largest optimal SSV), the induction machine model, and two

composite load models. In addition to the SSVs, we report the absolute improvement (∆)

and percent improvement (%). The case using induction machine models alone has the

largest absolute and percent improvement.
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3.5.4 Difficulties in Interpreting the SSV

It is difficult, if not impossible, to compare the SSVs associated with systems that use

different load models. For example, when the SSV drops in Fig. 3.5, it does not necessarily

mean that the system is operating closer to instability. The drop is due to structural changes

in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is structurally different for each load model,

we explore the idea of maximizing the SSV of Jcnv, while still using Jcom to compute the

power flow. The benefit of this approach is that the nominal SSVs are identical and the

optimal SSVs are comparable. The drawback is that the SSV of Jcnv does not reflect the

physical system (unless all loads are constant power loads, in which case Jcom = Jcnv).

Fig. 3.6 shows the results of maximizing Jcnv for ZIP cases #1-9, the induction machine

model, and a composite load model. The optimal loading patterns corresponding to ZIP

case #3 and the induction machine model are shown in Table 3.4 (see Optimal for 3 DR

buses, ZIP #3, Jcnv and Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the same

optimal loading patterns regardless of the choice of Jacobian matrix (Jcnv or JZIP) used for
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Table 3.3: SSV Comparison

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37
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Figure 3.6: The nominal and optimal SSV of the conventional Jacobian matrix. The
values below the blue circles are the percent improvement.

the SSV calculation; however, the choice of Jacobian matrix (Jcnv or JIM) does affect the

optimal loading pattern obtained when using the induction machine model. Interestingly,

the SSV percent improvement when maximizing the SSV of Jcnv is worst with the induction

machine model whereas it was the best when maximizing the SSV of Jcom (which equals JIM

for the induction machine model).

3.5.5 Computation Time

All computations were implemented in MATLAB on a computer with an Intel(R) i5-6600K

CPU and 8 GB of RAM. Using the ZIP model, the total time required by the ILP algorithm

is less than two seconds for each test case. Using the IM model, the algorithm requires more

time (approximately 20 seconds) because 1) the Jacobian matrix is larger requiring more

time to compute the singular value sensitivities, and 2) the AC power flow equations are
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more complex.

3.6 Chapter Conclusion

This chapter incorporated two voltage-dependent load models into an algorithm for improv-

ing a static voltage stability margin based on the SSV of the power flow Jacobian matrix.

An iterative linear programming technique was used to determine the optimal loading pat-

tern that maximizes the SSV. Using the IEEE 14-bus system, we studied the impact of the

load models on the optimal SSV of the full power flow Jacobian matrix (including terms

corresponding to the voltage-dependent load models) and the corresponding optimal loading

patterns. We found that use of different ZIP models resulted in the same optimal loading

patterns, but use of induction machine models changed the optimal loading pattern, point-

ing to the importance of properly modeling loads when implementing such an algorithm.

Comparing SSVs across systems with different load models proved difficult since structural

changes in the power flow Jacobian matrix affect the magnitude of the SSV. Therefore, we

also explored the impact of maximizing the SSV of the conventional Jacobian matrix, which

is the same for each load model but does not reflect the physical system. This work raises the

question of how to compare static voltage stability margins across systems with structural

differences.
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Chapter 4

A Multiperiod OPF to Improve the

SSV Using DR

In this chapter, we will take into consideration the energy payback period. The energy

payback period maintains the total energy consumption of each load at its nominal value.

Now the objective function will balance SSV improvements against generation costs in the

energy payback period. This chapter is largely based on the published work:

• M. Yao, D.K. Molzahn, and J.L. Mathieu. “An optimal power flow approach to improve

power system voltage stability using demand response”. In: IEEE Trans Control of

Network Systems, 6.3 (2019): 1015-1025.

4.1 Notation

Functions

C(·) Total generation cost

FP
n (·) Real power injection at bus n

FQ
n (·) Reactive power injection at bus n

Hnm(·) Line flow for line (n,m)

fP
n (·) Linearization of FP

n

fQ
n (·) Linearization of FQ

n

hnm(·) Linearization of Hnm
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Sets

N Set of all buses

SPV Set of all PV buses

SPQ Set of all PQ buses

SG Set of buses with generators

SDR Set of buses with responsive loads

T Set of time periods within optimization problem

Variables & Parameters

J Jacobian matrix

n Size of N
npv Size of SPV

npq Size of SPQ

ndr Size of SDR

Pd,n Real power demand at bus n

Pg,n Real power generation at bus n

Ploss Total power loss in the system

Qd,n Reactive power demand at bus n

Qg,n Reactive power generation at bus n

Tt Length of time period t

u Left singular vector

Vn Voltage magnitude at bus n

w Right singular vector

α Weighting factor

ε Loss management strategy parameter

θn Voltage angle at bus n

σ Singular value of a matrix

σ0 Smallest singular value of a matrix

Σ, U,W Singular Value Decomposition (SVD) matrices

χ Operating point

4.2 Chapter Introduction

We formulate a multiperiod optimal power flow problem that uses spatio-temporal load

shifting to improve voltage stability in this chapter. In the first period, we maximize the
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Figure 4.1: Conceptual illustration of the spatio-temporal load shifting problem.

SSV of the power flow Jacobian by changing the loading pattern subject to the AC power flow

equations, engineering limits, and a constraint that forces the total loading to be constant.

The second period minimizes the generation cost while paying back energy to each load and

maintaining the SSV. We again use the iterative LP solution algorithm using singular value

sensitivities to solve the problem and benchmark it against the NLP algorithm in [10]. We

conduct case studies using the IEEE 9- and 118-bus systems to determine optimal loading

patterns and assess algorithmic performance.

A conceptual illustration of the problem is shown in Fig. 5.1. The initial operating point

is denoted as a star that determined via unit commitment and economic dispatch. A dis-

turbance happens resulting in the operating point near the feasibility/stability boundary

(i.e., to Operating Point 0) and the stability margin to drop to a point below the stability

threshold corresponding to the current system topology (i.e., “threshold for system with ac-

tive disturbance” shown in the figure). Note that SSVs computed for systems with different

topologies are incomparable since the Jacobian changes. This means we cannot compare the

SSVs denoted with black circles to those denoted with white circles. Additionally, the system

operator would need to determine a stability threshold for each post-disturbance topology.

When the SSV is below its stability threshold, the system is prone to instability. Our

algorithm computes a change to the locational distribution of the demand-responsive load.

Specifically, we increase some loads and decrease others while ensuring that the total real

power consumption of the loads and real power production of each generator (with the

exception of the slack bus, which compensates for the change in system losses) is constant

so as not to affect the system’s frequency stability (Operating Point 1). The reactive power

55



consumption of the demand-responsive loads changes based on the load model. The reactive

power production of the generators adjusts to the new loading pattern in order to keep

the voltage magnitudes at generator buses constant. After a short period of time, the

system operator determines the minimum cost dispatch of slower-acting generators that

relieves the loads, pays back the changes made to each load at Operating Point 1, and

maintains/improves the stability margin (Operating Point 2). The payback sets the energy

consumed by each load while at Operating Point 2 to its nominal (i.e., baseline) consumption

plus/minus the energy not consumed/consumed while at Operating Point 1. As shown in

Fig. 4.1(b), at Operating Point 2, the achievable stability margin and associated stability

threshold is a function of whether or not the disturbance is still active. When it is no longer

active and the energy is paid back, the system returns to its initial operating point, or

another point with an adequate stability margin.

Our goal is to determine the optimal dispatches corresponding to Operating Points 1 and

2. Note that we neglect the transition; the path the system takes depends upon how the DR

actions are implemented. We pose the problem as a multiperiod optimal power flow problem

in which the objective is to minimize a weighted combination of the negative of the stability

margin in Period 1 (corresponding to Operating Point 1) and the generation cost in Period

2 (corresponding to Operating Point 2). In each time period, we require the total loading

to remain unchanged, so as not to affect the system frequency. For notational simplicity, we

assume that each bus has at most one generator and at most one load. We model all loads

as constant real power loads with constant power factor.

The technical contributions of this chapter are as follows:

• We formulate a multiperiod optimal power flow problem that uses spatio-temporal

load shifting to improve voltage stability. In the first period, we maximize the SSV

of the power flow Jacobian by changing the loading pattern subject to the AC power

flow equations, engineering limits, and a constraint that forces the total loading to be

constant. The second period minimizes the generation cost while paying back energy

to each load and maintaining the SSV;

• we conduct case studies using the IEEE 9- and 118-bus systems to determine optimal

loading patterns and assess algorithmic performance;

• and we compare the cost and performance of spatio-temporal load shifting to that of

generator actions.
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Time

Pd,n(0)
T1 T2

P d
,n

Figure 4.2: Example dispatched demand Pd,n at bus n in Periods 1 and 2, where Pd,n(0)
is its nominal demand. The total energy consumed over both periods is
equal to its nominal consumption.

4.3 Multiperiod Optimal Power Flow Problem

Let T = {1, 2} be the set of time periods within the optimization problem, T1 be the length

of Period 1, and T2 be the length of Period 2. Lengths T1 and T2 are not necessarily equal,

as shown in Fig. 4.2. For notational simplicity, we assume the real power demand at bus n,

Pd,n(t), is constant within a time period and the nominal real power demand in all periods

is equal to Pd,n(0); however, the formulation could be easily extended to incorporate time-

varying demands.

Let N be the set of all buses, SPV be the set of all PV buses, and SPQ be the set of all

PQ buses. Additionally, let SG be the set of all buses with generators, i.e., all PV buses in

addition to the slack bus, and let SDR be the set of buses with responsive loads; the buses

comprising SDR may be PV or PQ buses. In our case studies, we assume that a portion of

the existing loads in the network are responsive.

The multiperiod optimal power flow problem determines the operating points in each time

period that balance the two objectives: maximizing the SSV of the power flow Jacobian

matrix in Period 1 and minimizing the generation cost in Period 2. The general formulation

is as follows.

min
Pg(t),Qg(t),
Pd(t),Qd(t),
V (t),θ(t),σ0(t)

−ασ0(1) + C(Pg(2)) (4.1a)

s.t. (∀t ∈ T )
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σ0(t) = σmin{J(θ(t),V (t))} (4.1b)

FP
n (θ(t),V (t)) = Pg,n(t)− Pd,n(t) ∀n ∈ N (4.1c)

FQ
n (θ(t),V (t)) = Qg,n(t)−Qd,n(t) ∀n ∈ N (4.1d)∑

n∈SDR

Pd,n(1) =
∑
n∈SDR

Pd,n(0) + ε (Ploss(0)− Ploss(1)) (4.1e)

T1Pd,n(1) + T2Pd,n(2) = (T1 + T2)Pd,n(0) ∀n ∈ SDR (4.1f)

Pd,n(t) · µn = Qd,n(t) ∀n ∈ N (4.1g)

Pd,n(t) = Pd,n(0) ∀n ∈ N \ SDR (4.1h)

θref(t) = 0 (4.1i)

σ0(2) ≥ σ0(1) (4.1j)

Hnm(θ(t),V (t)) ≤ Hnm (4.1k)

Hmn(θ(t),V (t)) ≤ Hmn (4.1l)

P g,n(t) ≤ Pg,n(t) ≤ P g,n(t) ∀n ∈ SG (4.1m)

Q
g,n

(t) ≤ Qg,n(t) ≤ Qg,n(t) ∀n ∈ SG (4.1n)

P d,n(t) ≤ Pd,n(t) ≤ P d,n(t) ∀n ∈ SDR (4.1o)

V n(t) ≤ Vn(t) ≤ V n(t) ∀n ∈ N (4.1p)

The cost function is a linear combination of the SSV σ0 of the power flow Jacobian matrix

J(θ,V ) in Period 1 and the generation cost C(·) in Period 2, where α ≥ 0 is a weighting

factor. Most of constraints are the same as those in 2.1. Constraint (4.1f) enforces energy

payback, specifically, that the energy consumed over both periods by each load is equal to

its nominal consumption. Constraint (4.1j) ensures that the SSV in Period 2 is greater than

or equal to that in Period 1.

Again we use the iterative linear programming to solve 4.1. The resulting linear program

solved in each iteration of the iterative LP algorithm is as follows.

min
∆Pg(t),∆Qg(t),
∆Pd(t),∆Qd(t),

∆V (t),∆θ(t),∆σ0(t)

−α∆σ0(1) +
∑
n∈SG

∂C(Pg(2))

∂Pg,n(2)

∣∣∣∣∣
P ∗

g (2)

∆Pg,n(2) (4.2a)

s.t. (∀t ∈ T )

∆σ0(t) =
∑

n∈{SPV,SPQ}

[
u0(t)T

∂J(t)

∂θn
w0(t)

]
∆θn(t)
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+
∑
n∈SPQ

[
u0(t)T

∂J(t)

∂Vn
w0(t)

]
∆Vn(t) (4.2b)

Linearizations of (4.1b)− (4.1p) (4.2c)

∆σ0(t) ≤ ∆σ0, (4.2d)

where (4.2b) is the linear smallest singular value sensitivity constraint and (4.2d) limits the

maximum change in ∆σ(t) since the linearizations are only valid near the previous operating

point.

The solution algorithm is similar to Algorithm 1. We initialize the operating points of

Periods 1 and 2, χ∗(1), χ∗(2), at the operating point of Period 0, χ(0). After obtaining a

solution to (4.2) and before the next iteration, χ′(t)∀t ∈ T are updated by adding the optimal

change in operating point ∆χopt(t)∀t ∈ T ; the AC power flow is re-solved in each period;

and we compute the new values of the SSVs, σ∗0(t)∀t ∈ T , and the value of the objective

function in (4.2a). Iterations are terminated when the absolute value of the objective function

in (4.2a) is less than a threshold (here, 10−5), and the outputs are the final operating points

and SSVs.

4.4 Case Studies

In this section, we conduct a number of case studies using the IEEE 9- and 118-bus systems.

We compare the performance of our iterative LP (ILP) algorithm against the iterative NLP

(INLP) algorithm from [10]. Each iteration of the nonlinear optimization problem (2.6) is

solved with fmincon in MATLAB. All computations are implemented in MATLAB on an

Intel(R) i5-6600K CPU with 8 GB of RAM.

For all case studies, we use the system data from Matpower [149] and set ∆σ0 = 0.01.

We model the entire load at a bus with responsive demand as flexible, i.e., 0 ≤ Pd,n ≤
2Pd,n(0)∀n ∈ SDR in order to get a sense for the maximum achievable change in SSV due

to DR. In practice, only a fraction of the load at a particular bus will be responsive. We set

T1 = 5 min and choose T2 as the minimum multiple of 5 min that achieves a feasible solution,

though in practice T1 and T2 would be a function of the response time of the generators and

the flexibility of the loads.

For the IEEE 9-bus system, we assume the system is initially operating at the optimal

power flow solution at $5297/hour. A disturbance takes line 4-9 out of service and the SSV

drops to 0.4445, which we assume is below the stability margin threshold. We assume all load
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Figure 4.3: Loading pattern and SSV in each period for the IEEE 9-bus system.

is responsive and set α = 10000 to prioritize SSV improvement. The effect of the choice of α

will be described in the next subsection. If the disturbance is active, we set T2 = 8T1 = 40

min, while if the disturbance is inactive, we set T2 = T1 = 5 min.

For the IEEE 118-bus system, we assume the system is initially operating at the optimal

power flow solution at $129627/hour. A disturbance takes line 23-24 out of service and the

SSV drops to 0.1534, which we assume is below the stability margin threshold. We assume all

load at PQ buses is responsive (1197 MW out a total of 4242 MW of system-wide demand)

and set α = 10000. Whether or not the disturbance is active, T2 = T1 = 5 min.

4.4.1 IEEE 9-bus System Results

Figures 4.3 and 4.4 show the loading pattern, SSV, generation dispatch, and generation cost

per hour in each period. In Fig. 4.3, we distinguish between SSVs when the disturbance is

active and inactive – SSVs denoted with white circles (active) are comparable, SSVs denoted

with black circles (inactive) are comparable, but SSVs denoted with white circles are not

comparable to those denoted with black circles. In Period 1 the SSV increases by 6.1% due

to the DR actions. Note that generation, with the exception of the slack bus, is constant in

Periods 0 and 1. Next, we pay back the energy in Period 2. If the disturbance is still active,

we maintain the SSV and the generation cost per hour is relatively large, whereas if the

disturbance is inactive, the SSV increases due to the change in system topology. The cost

per hour is comparable to that in the other periods. The actual generation cost of Period

2 is the cost per hour multiplied by the length of the period, and since T2 with an active
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Figure 4.4: Generation dispatch and generation cost per hour in each period for the
IEEE 9-bus system.
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Figure 4.5: Optimal SSV in Period 1 and generation cost in Period 2 as a function of
the weighting factor α.

disturbance is much larger than T2 without, the actual cost difference between the two cases

is more extreme than it appears in the figure.

Figure 4.5 shows the SSV in Period 1 and the generation cost in Period 2 as α varies in

the case with an active disturbance in Period 2. The weighting factor trades the stability

margin improvement for generation cost reduction, and the best choice of α for a particular

system is based on operator priorities. For this system, the SSV in Period 1 is maximized

when α ≥ 10000. However, this threshold is system-dependent.
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4.4.2 IEEE 118-bus System Results

Figure 4.6 shows the SSV and generation cost per hour in each period. The SSV increases

by 7.3% due to the DR actions in Period 1. Again, we show two cases in Period 2 and, again,

the SSV is higher (due to the change in system topology) and the generation cost is lower if

the disturbance is inactive.

Figure 4.7 visualizes the DR actions in Period 1. Red shading in the upper semicircle

corresponding to a bus denotes an increase in load, while blue shading in the lower semicircle

denotes a decrease in load. The lightning symbol indicates the line removed from service by

the disturbance. In this case, the SSV is improved by decreasing the loading in Area 1 and

increasing the loading in Area 2.
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Table 4.1: Cost over one hour ($) of the multiperiod DR strategy versus generation
redispatch to achieve the same SSVs

Trestored Resource 9-bus 118-bus

5 min
DR 5303 129545

Generation 5360 129905

1 hour
DR 6441 132777

Generation 6043 132961

4.4.3 Comparison of Costs

Table 4.1 summarizes the cost over one hour of the multiperiod DR strategy (with Period

1 decision variables corresponding to Case 1) for different disturbance restoration times

Trestored. It also compares the results to the minimum-cost redispatch of generation alone

(corresponding to the decision variables in Case 5, i.e., the generators are not limited by ramp

rates) to achieve the SSV obtained using DR alone. The cost of each period is computed as

the cost per hour times the length of the period, where all periods are 5 min except for the

9-bus system’s Period 2 when the disturbance is active, which is 40 min (as a reminder, this

was chosen because it is the shortest multiple of 5 min for which we can obtain a feasible

solution). When Trestored = 5 min, the cost per hour of operating the system beyond Periods

1 and 2 but within the hour is equal to the cost per hour of Period 0. However, when

Trestored = 1 hr, this cost is equal to the cost of using the generators to maintain the SSV

achieved in Periods 1 and 2.

As shown in the table, as Trestored increases, the cost of the strategy increases. Comparing

the cost of using DR versus generation, we see that the cheaper option is case dependent.

In three out of the four cases, DR is cheaper; however, when Trestored = 1 hour, generation

actions are cheaper than DR actions for the 9-bus system. As described in the previous

subsection, DR is always cheaper in Period 1. However, energy payback in Period 2 can be

expensive, which is true for the 9-bus system when the disturbance is active, as shown in

Fig. 4.4. Moreover, in this case, Period 2 lasts for 40 min.

Note that the generation costs reported in the table may not be realizable in practice

because real generators are ramp-limited. Therefore, in cases in which DR is more expensive

than generation, it may still be desirable to deploy DR since generation may not respond in

time.
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Figure 4.8: Convergence of the SSV in Period 1 and the generation cost in Period 2
using the ILP and INLP algorithms for the IEEE 9-bus system.

4.4.4 Comparison of Algorithms

In this subsection, we compare the performance of the ILP and INLP algorithms. Figure 4.8

shows the convergence of each algorithm on the 9-bus system considering the full multiperiod

problem (disturbance active in Period 2). The solid lines are the results of the ILP algorithm

and the dashed lines are the results of the INLP algorithm. The ILP algorithm converges

more quickly than the INLP algorithm. Similarly, Fig. 4.9 shows the convergence of the

ILP algorithm on the 118-bus system considering the full multiperiod problem (disturbance

active in Period 2). The INLP algorithm does not scale to the 118-bus system.

The computation times are summarized in Table 4.2. Note that ILP-E refers tp the ILP

with eigenvalue sensitivity approach as mentioned in Chapter 2. The overall computation

time is a function of the number of iterations needed and the time required for each iteration,

where the former depends on the initial operating point and the maximum step size ∆σ0

and the latter depends on the size of Jacobian matrix. The time could be reduced through

1) parallel computing of the SSV sensitivities, 2) approximating the SSV sensitivity (4.2b)

to only include the system states that most affect the SSV, and/or 3) applying an adaptive

maximum step size.

4.5 Chapter Conclusion

This chapter builds on the preliminary work shown in Chapter 2, which developed a single-

period formulation that uses DR to maximize the SSV, but does not consider energy payback.
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using the ILP algorithm for the IEEE 118-bus systems.

Table 4.2: Computation Times (s)

ILP ILP-E INLP

IEEE 9-bus system, Period 1 only 0.4 1.0 2.5
IEEE 9-bus system, Full problem 1.0 2.8 6.0
IEEE 118-bus system, Period 1 only 6.5 15 -
IEEE 118-bus system, Full problem 35 60 -

In this chapter, we have developed a multiperiod optimal power flow approach to use DR to

improve static voltage stability while minimizing the generation cost in the energy payback

period. The results show that demand response actions can improve static voltage stability, in

some cases more cost-effectively than generation actions. We also compared our algorithm’s

performance to that of an iterative nonlinear programming algorithm from the literature.

We find that our approach is approximately 6 times faster when applied to the IEEE 9-bus

system, and it is able to be used on the IEEE 118-bus system while the INLP fails to generate

results.
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Chapter 5

Using DR to Improve the Distance to

the Closest SNB

In this chapter, we propose a method to improve power system static voltage stability by

maximizing the distance to the closest saddle-node bifurcation of the power flow. Specifi-

cally, we formulate a nonlinear nonconvex optimization problem in which we choose loading

patterns that maximize this distance while also constraining the total system loading to

remain constant (the same as in Chapter 2). This chapter is largely based on the published

work:

• M. Yao, I.A. Hiskens, and J.L. Mathieu. “Improving power system voltage stability

by using demand response to maximize the distance to the closest saddle-node bifur-

cation”. In: IEEE Conference on Decision and Control. 2018.

5.1 Notation

Functions

F(·): Rm × Rm → Rm Standard power flow

g1(·): Rndr → R2ndr Demand response limits

g2(·): Rm → Rne Engineering limits

h(·): R2ndr → Rndr+1 Demand response assumptions
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Sets

SPV Set of all PV buses

SPQ Set of all PQ buses

SDR Set of buses with demand responsive loads

Variables & Parameters

θi Voltage angle at bus i

Vi Voltage magnitude at bus i

Pi Real power injection at bus i

Qi Reactive power injection at bus i

d Distance to the closest Saddle-Node Bifurcation

x System state vector

λ System parameter vector (power injections)

Λ Feasible set of λ

ndr Number of buses with demand responsive loads

ne Number of engineering limits

m Length of system state and parameter vectors

w Left eigenvector corresponding to zero eigenvalue

αi Ratio between real and reactive demand at bus i

β Weighting matrix

µ, γ Lagrange multipliers

ζ Constant

5.2 Chapter Introduction

The best static voltage stability metric is an open question. Our previous chapters inves-

tigated use of the loading margin [49] and the smallest singular value (SSV) of the power

flow Jacobian [126] within the spatio-temporal load shifting problem. However, the loading

margin specifies the direction of the changes to power injections precipitating an instability

and the SSV gives only indirect information about the distance to instability [72].

In this chapter, we explore the use of the distance to the closest saddle-node bifurcation

of the power flow as the stability metric we would like to maximize by spatially shifting load

across a network within a single time step (we leave the full spatio-temporal problem to

future). The distance to the closest saddle-node bifurcation (SNB) is a well-known stability

metric [39]. Past work [38] showed that the optimal control direction to move the system
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away from instability is antiparallel to the normal vector at the closest SNB. The idea

is generalized in [25] for computing the optimal design of system parameters (i.e., shunt

and series compensation) to improve this distance. The benefit of this approach is that

the resulting optimization problem can be solved by formulating the Karush-Kuhn-Tucker

(KKT) conditions, solving the nonlinear system of equations using the Newton-Raphson

method, and checking if the solution is a local minimum by using the iterative method

proposed in [36]. By reinitializing the nonlinear system solver and repeating this process

many times we may find the global minimum, though we have no guarantee. We note that,

in practice, limit-induced bifurcations (LIB) may occur before SNBs. We do not consider

LIBs here; in future work we will explore algorithmic approaches to maximize the distance

to the closest SNB or LIB.

The main contributions of this chapter are as follows.

• We formulate the optimization problem and derive its KKT conditions.

• We conduct case studies using a 4-bus system and the IEEE 9-bus system and explore

the performance of the algorithm and the accuracy of the solution. In particular, we

find that our algorithm is able to maximize the distance to the globally closest SNB

for the 4-bus system but does not find the globally closest SNB for the 9-bus system,

instead maximizing the distance to a locally closest SNB. However, the globally closest

SNB of the 9-bus system is unrealistic.

• We compare our solution to those obtained by formulations that use other stability

metrics. We find that all approaches produce different results and we discuss the

implications of this finding.

• Using Kundur’s two area system, we explore algorithm convergence issues.

A conceptual illustration of the problem is shown in Fig. 5.1a. The power flow solvability

boundary (black curve) is defined by a set of SNBs, where λ denotes power injections.

Suppose the initial operating point with injections equal to λ0 is not sufficiently far from its

closest SNB. The system operator would like to increase this distance, which is a measure of

static voltage stability. It could do so through generator redisptach, load shedding, and/or

spatial load shifting. Here, we only investigate the impact of spatial load shifting.

As we mentioned before, while generators take time to respond to dispatch commands,

demand responsive loads can respond quickly if coordinated via low-latency communications
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Figure 5.1: Illustration of the problem. (a) Conceptual illustration. (b) 4-bus system
example.

systems. Load shedding reduces quality of service to consumers and requires an equiva-

lent decrease in generation to maintain system frequency. In contrast, spatial load shifting

decreases and increases loads at various points in the network while maintaining the total

loading so as not to affect system frequency. Aggregations of loads such as residential and

commercial air conditioning systems can both decrease and increase their power consumption

for short periods of time. So long as the energy is “paid back” within a short period of time,

quality of service can be maintained. While it would likely be uneconomical to purpose-

build demand response capability for this application, it could be one of many services that

demand responsive loads could provide in future power networks.

In Fig. 5.1a, the blue dashed line is the feasible range of the injections, including the

requirement that the total loading is constant. Our goal is to determine injections λ? cor-

responding to the optimal operating point along the blue dashed line that maximize the

distance d? to the closest SNB λc. Figure 5.1b shows an example using a simple four bus

system that will be discussed in detail in Section 5.5.1. The optimization problem is:

max
λ?⊂Λ?

(
min
λc⊂Λc

||λc − λ?||2
)
, (5.1)

where Λ defines the feasible set of λ.

In our formulation, same as the base case in Chapter 2, we assume that the generator real

power outputs do not change with the exception of that of the slack bus, which changes its
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output to compensate for the change in system losses that occurs when the load is spatially

shifted. Additionally, we assume that PV bus voltages are fixed. Therefore, we choose only

the real and reactive power consumption of each demand responsive load, which is modeled

as constant power with constant power factor (we do not consider voltage dependent load

models as described in Chapter 3 here). In practice, the system operator could simultane-

ously redispatch generators and demand responsive loads to improve the stability margin,

though the generators may be ramp limited. However, here we focus on characterizing the

response of demand responsive loads alone.

5.3 Closest Saddle-Node Bifurcation

We first review the approach for computing the closest SNB to a given operating point. The

standard power flow equations [142] can be expressed as:

F(x, λ) = f(x)− λ = 0, (5.2)

where x ∈ Rm is the system state vector, λ ∈ Rm is the system parameter vector and

F : Rm × Rm → Rm. In this chapter, we assume x = [θi∈SPV
; θi∈SPQ

; Vi∈SPQ
] and λ =

[Pi∈SPV
; Pi∈SPQ

; Qi∈SPQ
] (unless otherwise stated). The SNB is reached when the power flow

Jacobian becomes singular:
∂fT

∂x
w = 0, (5.3)

where w ∈ Rm is a left eigenvector corresponding to the zero eigenvalue of the power flow

Jacobian matrix. To obtain a unique solution of w, we normalized the left eigenvector such

that wTw − 1 = 0.

As discussed in [39], for a given operating point (x0, λ0), if the distance to bifurcation is

defined as Euclidean distance d = ||λc− λ0||2, then the closest SNB can be found by solving

the following optimization problem:

min
xc,λc,w

1

2
||λc − λ0||22 (5.4a)

subject to F(xc, λc) = 0 (5.4b)

∂fT

∂x

∣∣∣
(x=xc)

w = 0 (5.4c)

wTw − 1 = 0. (5.4d)
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To solve (5.4), we derive the KKT conditions. The Lagrange function is:

L =
1

2
||λc − λ0||22 + µT1F(xc, λc) + µT2

∂fT

∂x

∣∣∣
(x=xc)

w + µ3(wTw − 1), (5.5)

where µ1 ∈ Rm, µ2 ∈ Rm, µ3 ∈ R are Lagrange multipliers. Therefore, the KKT conditions

are:

∂L
∂xc

= µT1
∂f

∂x

∣∣∣
(x=xc)

+ µT2
∂

∂x

(
∂fT

∂x
w

) ∣∣∣
(x=xc)

= 0 (5.6a)

∂L
∂λc

= (λc − λ0)T + µT1
∂F
∂λ

= 0 (5.6b)

∂L
∂w

= µT2
∂fT

∂x

∣∣∣
(x=xc)

+ 2µ3w
T = 0 (5.6c)

(5.4b)− (5.4d) (5.6d)

From (5.6b) we know that µT1 ∂F/∂λ 6= 0. Also, ∂F/∂λ = −I. Therefore, the Lagrange

multiplier µ1 must be nonzero. If we post-multiply (5.6c) by w, the first term becomes zero

and since w is not zero, µ3 must be zero. Then µ2 is either zero or a right eigenvector

corresponding to the zero eigenvalue of the power flow Jacobian (making the first term of

(5.6c) zero). Assume µ2 is a right eigenvector. Post-multiplying (5.6a) by µ2 results in the

first term becoming zero, and therefore the second term, which has quadratic form, must

also equal zero. This is only possible if µ2 lies in the null space of the (symmetric) matrix

of that second term. Accordingly, the second term of (5.6a) must equal zero. Alternatively,

if µ2 = 0 then that second term in (5.6a) is zero. In either case, the first term of (5.6a)

must equal zero, so µ1 must be a left eigenvector corresponding to the zero eigenvalue of the

power flow Jacobian. Since both µ1 and w are left eigenvectors corresponding to the zero

eigenvalue of the power flow Jacobian, we can set µ1 = ζ1w, where ζ1 6= 0 is a scalar.

Hence, a locally closest SNB must satisfy the following equations:

F(xc, λc) = 0 (5.7a)

∂fT

∂x

∣∣∣
(x=xc)

w = 0 (5.7b)

wTw − 1 = 0 (5.7c)

(λc − λ0)− ζ1w = 0. (5.7d)

Reference [39] proposed a similar set of equations, the only difference being that instead of
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(5.7d) they use the more general equation (λc − λ0) − (∂FT/∂λ)w = 0 since they allow λ

to be any system parameter whereas we define λ as power injections. Equation (5.7) is a

set of 3m + 1 nonlinear equations with 3m + 1 unknowns. Direct methods, for instance,

the Newton-Raphson method, or iterative methods such as the one given in [37] can be

used to compute the numerical solutions to (5.7). Note that the KKT conditions are just

necessary conditions giving us minima, maxima, and saddle points. Solutions obtained with

Newton-Raphson need to be checked to ensure they are minima. In contrast, the iterative

method in [37] guarantees that the solution is a local minimum, i.e., a locally closest SNB.

The distance to the locally closest SNB is d = ||λc − λ0||2 = ||ζ1w||2 = |ζ1|. We can attempt

to find the globally closest SNB by computing all of the locally closest SNBs using different

initializations and determining the minimum d. This may be computationally intractable

for large systems and we have no guarantee that we will obtain the globally closest SNB.

5.4 Optimization Formulation

In our problem, we need to determine both the parameters λ? corresponding to the optimal

operating point and the parameters λc corresponding to the closest SNB. Since the real

power injections at PV buses and the real and reactive power injections at PQ buses without

demand responsive loads are unchanged, we divide λ? into two parts. The controlled power

injections λ?1 = [Pi∈SDR
; Qi∈SDR

] are limited by the flexibility of the demand responsive loads:

g1(λ?1) =

[
Pi − P i, ∀ i ∈ SDR

−Pi + P i, ∀ i ∈ SDR

]
≤ 0, (5.8)

where g1 : R2ndr → R2ndr and P i, P i are the lower and upper limits of the range of allowed

changes to the real power consumption of the demand responsive loads. The uncontrolled

power injections are λ?2 = [Pi∈SPV
; Pi∈SPQ\SDR

; Qi∈SPQ\SDR
] = λ0

2.

Our goal is to determine λ?1 that maximizes the distance to its closest SNB. Therefore, the

decision variables of the optimization problem are the system state vectors xc, x?, system

parameter vectors λc, λ?1 and the left eigenvector w. The optimization problem is:

min
xc,λc,x?,λ?1,w

− 1

2
(λc − λ?)Tβ(λc − λ?) (5.9a)

subject to F(xc, λc) = 0 (5.9b)

F(x?, λ?) = 0 (5.9c)
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∂fT

∂x

∣∣∣
(x=xc)

w = 0 (5.9d)

wTw − 1 = 0 (5.9e)

h(λ?1) = 0 (5.9f)

g1(λ?1) ≤ 0 (5.9g)

g2(x?) ≤ 0. (5.9h)

The objective (5.9a) maximizes a weighted distance instead of the Euclidean distance (β �
0). Constraints (5.9b) and (5.9c) are the standard power flow equations for the SNB and

the optimal operating point, respectively. Constraint (5.9d) implies that (xc, λc) is an SNB.

The left eigenvector w is normalized in (5.9e). Equation (5.9f) ensures our demand response

assumptions are enforced at λ?1, specifically, 1) the total loading is constant and 2) the load

is modeled as constant power with constant power factor:

h(λ?1) =

[∑
P ?
i∈SDR

−
∑
P 0
i∈SDR

αiP
?
i −Q?

i , ∀ i ∈ SDR

]
= 0, (5.10)

where h : R2ndr → Rndr+1. The inequality constraint (5.9g) is defined in (5.8). The inequality

constraint (5.9h) specifies the engineering limits at (x?, λ?). They include limits on the

voltage magnitudes at PQ buses, the reactive power injections at PV buses and the slack

bus, and the line flows (g2 : Rm → Rne). The Lagrange function of (5.9) is:

L =− 1

2
(λc − λ?)Tβ(λc − λ?) + µT1F(xc, λc)

+ µT4F(x?, λ?) + µT2
∂fT

∂x

∣∣∣
(x=xc)

w + µ3(wTw − 1)

+ µT5 h(λ?1) + γT1 g1(λ?1) + γT2 g2(x?), (5.11)

where µ1, µ2, µ4 ∈ Rm, µ3 ∈ R, µ5 ∈ Rndr+1, γ1 ∈ R2ndr and γ2 ∈ Rne are Lagrange

multipliers. The KKT conditions are:

∂L
∂xc

= µT1
∂f

∂x

∣∣∣
(x=xc)

+ µT2
∂

∂x

(
∂fT

∂x
w

) ∣∣∣
(x=xc)

= 0 (5.12a)

∂L
∂λc

= −(λc − λ?)TβT + µT1
∂F
∂λ

= 0 (5.12b)

∂L
∂x?

= µT4
∂f

∂x

∣∣∣
(x=x?)

+ γT2
∂g2

∂x

∣∣∣
(x=x?)

= 0 (5.12c)
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∂L
∂λ?1

= (λc1 − λ?1)TβT1 + µT4
∂F
∂λ1

+ µT5
∂h

∂λ?1
+ γT1

∂g1

∂λ?1
= 0 (5.12d)

∂L
∂w

= µT2
∂fT

∂x1

∣∣∣
(x=xc)

+ 2µ3w
T = 0 (5.12e)

equality constraints (5.9b)− (5.9f) (5.12f)

γ1,jg1,j(λ
?
1) = 0,∀j = 1, ..., 2ndr (5.12g)

γ2,kg2,k(x
?) = 0,∀k = 1, ..., ne (5.12h)

γ1 ≥ 0, γ2 ≥ 0 (5.12i)

inequality constraints (5.9g)− (5.9h) (5.12j)

As before, µ1 equals a constant times w, i.e., µ1 = ζ2w, the second term of (5.12a) is equal

to zero, and µ3 = 0. Therefore, an optimal solution should satisfy the following equations:

µT4
∂f

∂x

∣∣∣
(x=x?)

+ γT2
∂g2

∂x

∣∣∣
(x=x?)

= 0 (5.13a)

− β(λc − λ?)− ζ2w = 0 (5.13b)

β1(λc1 − λ?1) +
∂FT

∂λ1

µ4 +
∂hT

∂λ?1
µ5 +

∂gT1
∂λ?1

γ1 = 0 (5.13c)

equality constraints (5.12f)− (5.12h) (5.13d)

inequality constraints (5.12i)− (5.12j), (5.13e)

where β1 is the partition of β corresponding to λ1. There are 5m+ 5ndr + ne + 2 equations

and unknowns in (5.13a)-(5.13d). The solution algorithm is as follows. First, we initialize

the Newton-Raphson solver to find the solution to (5.13a)-(5.13d). We check to see if the

solution also satisfies (5.13e). If so, we check whether λc is a locally closest SNB to λ? by

using the iterative method of [37]. If so, then we check whether λc is a globally closest SNB

to λ? by testing different initializations within the iterative method to determine if there is

a closer SNB to λ? than λc. If we find that λc is the globally closest SNB then λ? is the

desired solution. Otherwise, we reinitialize the Newton-Raphson solver in the direction of

the globally closest SNB to find a new λ? and repeat the process.

In our cases studies, we compare the performance of our method to that of a brute force

method. Specifically, for all possible loading patterns within a discrete mesh in which the

total loading is constant, we compute the distance to the closest SNB via the method of [37].

The optimal loading pattern is the pattern associated with the maximum distance.
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5.5 Case Studies

All computation is done in MATLAB and with the help of M atpower [149] on an Intel(R)

i7-4720HQ CPU with 16 GB of RAM. The base MVA for all cases is 100 MVA and we set

β = I. The number of the inequality constraints greatly influences the computation time

of our method, therefore, we neglect (5.9h) in our case studies. In each case, our initial

operating points satisfy (5.9h) and we also find that the optimal solutions we obtain also

satisfy (5.9h).

5.5.1 Simple 4-bus System Results

We first apply our method to the simple 4-bus system as shown in Fig. 5.2a. Bus 1 is the

slack bus at a voltage of 1 pu, bus 2 is a PV bus outputting 10 MW at a voltage of 1 pu,

and buses 3 and 4 are PQ buses with demand responsive loads of 30 MW and 70 MW,

respectively. The reactance of the lines are x13 = j0.5, x23 = x34 = j0.25 p.u.

When λ only includes the real power injections at the PQ buses (i.e., λ = [P3; P4]), the

solution is as shown in Fig. 5.1b. Specifically, the black curve is the power flow solvability

boundary; the dashed blue line represents the total loading constraint, i.e., P3 + P4 = −100

MW; and the optimal loading pattern is λ? = [−100, 0] MW, which maximizes the shortest

distance to the boundary.

If we instead define λ = [P2−4; Q3−4], the initial distance to the closest SNB is d = 0.0879.

The optimal solution determined by our method is P ?
3 = −63.74 MW and P ?

4 = −36.26

MW, and d? = 0.1264, which is consistent with the optimal loading pattern obtained via the

brute force method, as shown in Fig. 5.2b.

5.5.2 IEEE 9-bus System Results

We next evaluate our method using the IEEE 9-bus system using the data available in

Matpower [149]. The system has 1 slack bus (bus 1), 2 PV buses (buses 2 and 3), and 6

PQ buses (buses 4-9). We model the entire load at buses 5, 7 and 9 (315 MW) as demand

responsive. Hence, the system parameter vector is λ = [P2−9;Q4−9] and the controlled power

injections are λ?1 = [P ?
5 ;P ?

7 ;P ?
9 ;Q?

5;Q?
7;Q?

9]. We assume the system is initially operating at

the operating point given within Matpower (see Table 5.3, λ0).

The optimal solution obtained by our method is given in Table 5.3. The corresponding

maximum distance is d?β = 1.6263, the optimal loading pattern is P5 = −108.42 MW, P7 =
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Figure 5.2: (a) Single line diagram for the 4-bus system. (b) The distance to the
closest SNB as a function of P3.

−73.86 MW, and P9 = −132.72 MW. To verify the results, we compare the solution of our

method to that of the brute force method. We use 5000 different directions as initializations

of the iterative method of [37] to find locally closest SNB to λ? and then determine the

globally closest SNB. Figure 5.3 shows the distance to the closest SNB as a function of P5

and P7 (where P9 = −315−P5−P7 since the total loading must be constant). The triangle

represents the maximum distance obtained by the brute force method: P5 = −108 MW,

P7 = −74 MW, P9 = −133 MW and d = 1.6263, which is consistent with the solution of

our method. There exist discontinuities on the surface in Fig. 5.3 because the feasibility

boundary is very likely a folded hypersurface, so the distance is not continuous.

We have verified that λc is a locally closest SNB to λ? but we cannot guarantee that this

SNB is the globally closest SNB since the brute force method only explores 5000 random

directions. Recently, [143] proposed a new enumeration search strategy to identify multiple

local minima to a related optimization problem. Applying this strategy to (5.4), we obtain

a closer λc to our λ? with a distance d = 0.1718. This solution satisfies the KKT conditions

(5.7) and may be the globally closest SNB to λ?. The voltage magnitudes at the PQ buses

and the reactive power injections at the buses with generators corresponding to this SNB

(SNB 1) and the SNB that our method finds (SNB 2) are given in Table 5.1. For both, the

voltage magnitudes are low and the generator reactive power injections are high; however,

SNB 1 is particularly unrealistic. Our method moves the system away from the relatively

realistic locally closest SNB (SNB 2) but unfortunately there is a closer SNB (SNB 1), which

it does not find. This example points to one of the drawbacks of our approach: we cannot
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Table 5.1: Voltage and reactive power (p.u.) at the SNBs

V4 V5 V6 V7 V8 V9 Q1 Q2 Q3

SNB 1 0.5618 0.1593 0.5812 0.0795 0.4969 0.3571 7.8432 8.2343 7.1842
SNB 2 0.7780 0.6907 0.9071 0.8841 0.9009 0.6946 4.9147 1.6245 1.5874

Figure 5.3: The distance to the closest SNB as a function of P5 and P7.

guarantee that we will find the globally closest SNB so we might push the system away from

a locally closest SNB and end up closer to the globally closest SNB.

We also compared this optimal solution to those obtained using other voltage stability

metrics including the smallest singular value (SSV) of the power flow Jacobian and the

loading margin (LM). Table 5.2 summarizes the results. The maximum SSV and LM cases

are obtained from Table 2.2. The results show that we obtain different loading patterns when

maximizing different stability metrics, which is not surprising since the different margins

capture different kinds of “distance to instability.” The loading margin describes the distance

to voltage instability for power injection changes in a single direction, while the SSV and

the distance to the closest SNB do not specify the direction. The SSV of the power flow

Jacobian describes the distance to the singularity of power flow Jacobian matrix, which is

an indirect measure of distance. In contrast, the distance to the closest SNB is a measure of

distance in the parameter (power injection) space.
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Table 5.2: Optimal loading patterns for different stability metrics

−P5 −P7 −P9 SSV LM d
(MW) (MW) (MW) – (MW) (p.u.)

max SSV 75 167 73 0.8995 516 1.5819
max LM 97 135 83 0.8984 566 1.6033
max d 108 74 133 0.8898 408 1.6263

A disadvantage of using our method is that it relies on good initializations, whereas the

iterative linear programming method used to maximize the SSV of the power flow Jacobian

does not have this issue. The computation time for the 9-bus system is comparable for both

approaches; however, it is not yet clear how the computational time/requirements compare

for realistically-sized systems. Another disadvantage of our method is that we have no

convergence guarantee, as we will show next.
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Figure 5.4: Kundur’s two area 11-bus test system [70].

5.5.3 Convergence issues: Kundur’s Two Area System Results

Kundur’s two area system [70] has 4 generators and 2 loads, as shown in Fig. 5.4. We model

the entire load at buses 7 and 9 (2134 MW) as demand responsive and set λ = [P7;P9]. The

power flow solvability boundary is show in Fig. 5.5. The black dot is the initial operating

point λ0 = [P7;P9] = [−967;−1767] MW. The shortest distance between the black dot and

the boundary (i.e., the distance from the black dot to the black triangle) is d0 = 0.5831. Our

method first finds the solution: λ?,1 (red dot), λc,1 (red upper triangle) with d?,1 = 5.615;

however, the globally closest SNB to λ?,1 is not λc,1 but instead the SNB denoted with the

red lower triangle with d = 1.472. Initializing the Newton-Raphson solver in the direction of

the globally closest SNB to λ?,1, we find another solution λ?,2 (green dot), λc,2 (green upper

triangle) with d?,2 = 10.06. However, λ?,2 is on the solvability boundary and so we know that

it is not the desired solution. In fact, neither solution is the desired solution. The desired

solution is λ?,opt (pink dot), which has the maximum shortest distance to the boundary; it

can not be obtained with our method. Further research is needed to develop approaches to

cope with this problem.
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Figure 5.5: The power flow solvability boundary of the Kundur system. The blue
dashed line represents the total load constant constraint.

5.6 Chapter Conclusion

In this chapter, we formulated a problem to spatially shift demand responsive load to improve

static voltage stability. Specifically, we wish to increase the distance between the operating

point and the point corresponding to the closest saddle-node bifurcation, which is a measure

of static voltage stability. The problem was posed as a noncovex nonlinear optimization

problem and solved by formulating the KKT conditions, applying the Newton-Raphson

method to solve them, and checking that the solution is a local minimum. Case study

results using a simple 4-bus system and the IEEE 9-bus system showed that the distance

to the closest SNB is improved by demand response actions, which increase and decrease

individual loads while ensuring the total load is constant. We also noted several issues with

our method, specifically, we cannot guarantee that we find the globally closest SNB and, for

some systems, we observe convergence issues.

In the future, we would like to develop an improved algorithm that addresses these is-

sues, test our method on larger systems, and compare the magnitude of stability margin

improvement achievable with demand response to that achievable with generator redispatch.
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Chapter 6

Using DR to Shape the Fast

Dynamics of the Power Network

In this chapter, demand-side strategies for shaping the fast dynamics of the bulk power

transmission network are explored. The aim is to modulate the network’s operating point

via demand response so as to achieve desirable small-signal characteristics. The design

problem is posed as an optimization problem wherein the total demand responsive load is

held constant but shifted between different buses, to improve the small-signal stability. This

chapter extends our preliminary work:

• K. Koorehdavoudi, M. Yao, J.L. Mathieu, and S. Roy. “Using demand response to

shape the fast dynamics of the bulk power network”. In: IREP Symposium on Bulk

Power System Dynamics and Control. 2017.

6.1 Notation

Functions

Hij(·) Line flow for line (i, j)

Se(·) Ceiling function

f(·) System dynamic equations

g(·) System algebraic equations

hij(·) Linearization of Hij
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Variables & Parameters

Ae, Be Coefficients of ceiling function

Bij Susceptance of line ij

Di Damping of generator i

Gij Conductance of line ij

Hi Inertia of generator i

Ka, Ke, Kf Parameters of AVR

Kw Gain of PSS

id,i, iq,i d− and q-axis currents of generator i

l Left eigenvalue

pd,i Real power demand at bus i

pg,i Real power generation at bus i

qd,i Reactive power demand at bus i

qg,i Reactive power generation at bus i

r Right eigenvalue

ra,i Armature resistance of generator i

Tr, Ta, Te, Tf Time constants of AVR

Tw, T1, T2, T3, T4 Time constants of PSS

Vi Voltage magnitude at bus i

Vd,i, Vq,i d− and q-axis voltages of generator i

Vf,i Field voltages of generator i

Ṽf Output signal of AVR

Vm Voltage measured by AVR

Vr1, Vr2 Internal signals of AVR

Vsi, Vso Input and output signals of PSS

Vw;Vp Internal signals of PSS

V ref Reference terminal voltage of AVR

x′d,i, x
′
q,i d− and q-axis transient reactances of generator i

x Dynamic state

y Algebraic state
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Variables & Parameters (continued)

α, β Real and imaginary parts of an eigenvalue

γ Weighting factor

δi Electrical angle of generator i

η Damping ratio of an eigenvalue

θi Voltage angle at bus i

λ Eigenvalue of a matrix

ψd,i, ψq,i d− and q−axis magnetic fluxes of generator i

µ Ratio between real and reactive power demand

ωi Frequency of generator i

Sets

N Set of all buses

SPV Set of all PV buses

SPQ Set of all PQ buses

SG Set of buses with generators

SDR Set of buses with responsive loads

SPSS Set of generators with the PSS

6.2 Chapter Introduction

The operating point of the power network can be shaped to ensure that the network’s small-

signal and transient responses are desirable [138, 139]. Indeed, today’s economic dispatch

procedures implicitly account for transient and small-signal characteristics, by imposing a

stability constraint or margin on the optimal power flow solution. These designs guarantee

stability under nominal conditions as well as when any single-component fails, provided that

the models for fast dynamics are accurate. However, the constraint-based solutions may

not be appealing if variability in renewable generation persistently requires alteration of

dispatch to maintain stability, given the possible high economic costs of modifying dispatch.

Also, stability-constrained economic dispatch does not consider refined shaping of the fast

dynamics (e.g., design of damping or disturbance-response properties), nor account for the

dynamics of existing fast controls in the network. As shown in recent work [112], in some

cases, OPF can result in operating points that may be poorly damped or even small-signal

unstable.

Demand response and other load controls are becoming increasingly practical [24], provid-
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ing further degrees of flexibility than generator re-dispatch. Additionally, loads may be able

to respond faster and/or more cost-effectively than generators. Thus, demand-side solutions

may prove useful to improve transient and small-signal characteristics at both the time of

unit commitment and economic dispatch, and at shorter time horizons (e.g. 5-10 minutes)

when small-signal or transient stability concerns are detected. Load reduction to reduce

flows on tie-lines has been considered in [57], with the aim of improving inter-area mode

damping. However, load shedding strategies will have corresponding financial and comfort

impacts on consumers. To avoid this, the focus of this chapter is on load dispatch at shorter

time horizons using spatial load shifting that keeps total load constant so as not to affect the

system frequency. Since the total demand responsive load is constrained to be constant, the

generator outputs are fixed at the results determined previously via the unit commitment

and economic dispatch algorithms over the time frame of interest, with the exception of the

reference generator, which compensates for the change in system losses resulting from the

change in load pattern.

The process of determining the optimal dispatch of demand responsive loads is described

briefly here. First, we build the mathematical models of the power system and derive the

linear state-space model to assess the small-signal characteristics of the system, detailed

in Section 6.3. In Section 6.4, three common stability metrics are introduced. Then, we

formulate a nonlinear optimization problem with the objective to maximize a performance

metric, detailed in Section 6.5. Next, we propose the solution algorithm in Section 6.6,

specifically, we approximate the change of stability metrics using generalized eigenvalue

sensitivities and linearize other nonlinear constraints so that we can apply iterative linear

programming to obtain the optimal loading pattern that improves small-signal stability.

Our previous work [68] showed that the small-signal and transient characteristics of Kun-

dur’s two-area system are improved by shifting load from area 2 to area 1 while the total

load is constant. However, we modeled the load as constant impedance in [68], resulting

in the damping ratio being improved by both the change of load impedance and the load

shifting instead of the load shifting only. To focus on the investigation of the effectiveness

of spatial load shifting, we model the load as constant power in this chapter. In addition, in

[68], we solved the optimization problem by applying iterative linear programming with the

eigenvalue sensitivity of the reduced system matrix. Special numerical analysis is needed to

compute the eigenvalue sensitivities, therefore, we instead use generalized eigenvalue sensi-

tivity within the iterative linear programming in this chapter to overcome the computation

complexity of eigenvalue sensitivity. Automatic voltage regulators (AVRs) and power system
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stabilizers (PSSs) are also not considered in [68], but they are commonly used to enhance

power system stability and damping of oscillations [27, 40] in practice, thus we also explore

the possibility of using demand-side strategies when the system has AVRs and PSSs.

The main contributions of this chapter are as follows.

• We develop an iterative linear programming solution algorithm using generalized eigen-

value sensitivities to maximize a performance metric to improve the small-signal sta-

bility;

• we consider different small-signal characteristics and conduct case studies on different

systems with and without AVR and PSS;

• we compare the performance of spatio-temporal load shifting to those of generation

actions and load shedding; and

• we investigate the impact on voltage stability when improving the small-signal stability.

6.3 System Model

To analyze the system small-signal or transient behavior, we need dynamic models of all

components of a power system. In this section, the models of transmission network, load,

and generator and its excitation system are first introduced. Next, we present the linear

state-space model that used to determine the eigenvalues of the system.

We consider a bulk power transmission system with n buses, labeled 1, . . . , n, belonging

to set N . A subset of the buses, labeled 1, . . . ,m, belonging to set SG, have synchronous

machines associated with them. One is modeled as a slack bus while the others are modeled

as PV buses belonging to set SPV. A second subset is load-only and is modeled as PQ

buses belonging to set SPQ. Of all buses N , a portion contains demand responsive loads and

belongs to set SDR.

6.3.1 Network and Load Model

The AC power flow equations [142] are used as the algebraic equations of the network. For

i ∈ N , we define the algebraic state associated with power balance as ypf,i = [Vi; θi], which
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are the voltage magnitude and angle of bus i. The power flow balance equations are:

0 = Vi
∑
j∈N

Vj(Gij cos(θi − θj) +Bij sin(θi − θj))− pg,i + pd,i (6.1a)

0 = Vi
∑
j∈N

Vj(Gij sin(θi − θj)−Bij cos(θi − θj))− qg,i + qd,i (6.1b)

where Gij, Bij are the conductance and susceptance of line ij. The subscript g represents

the generation and d represents the demand. For PQ buses, we have pg = qg = 0. We neglect

the dynamics and voltage dependence etc. of loads in this chapter, but these can be easily

included in the future. All loads are modeled as constant power load with real and reactive

power demand as pd and qd.

6.3.2 Synchronous Machine Model

The classical model [88] of synchronous machine is used. For k ∈ SG, we define the dynamic

state vector as xG,k = [δk; ωk], and algebraic state vector as yG,k = [id,k; iq,k; Vd,k; Vq,k; pg,k;

qg,k; ψd,k; ψq,k; Vf,k], where δk is the rotor angle; ωk is the rotor frequency; id,k, iq,k are the

d− and q−axis currents; Vd,k, Vq,k are the d− and q−axis voltages; pg,k, qg,k are the real

and reactive power generation; ψd,k, ψq,k are the d− and q−axis magnetic fluxes; and Vf,k is

the field voltage.

Mechanical differential equations are:

δ̇k = ωk (6.2a)

ω̇k =
1

2Hk

(Pm,k − (ψd,kiq,k − ψq,kid,k)−Dkωk) (6.2b)

Algebraic equations are:

0 = Vk sin(δk − θk)− Vd,k (6.3a)

0 = Vk cos(δk − θk)− Vq,k (6.3b)

0 = Vd,kid,k + Vq,kiq,k − pg,k (6.3c)

0 = Vq,kid,k − Vd,kiq,k − qg,k (6.3d)

0 = ψd,k + raiq,k + x′d,kid,k − Vf,k (6.3e)

0 = ψq,k + x′q,kiq,k (6.3f)
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Figure 6.1: Automatic voltage regulator control diagram [88].

0 = −ψd,k + Vq,k + ra,kiq,k (6.3g)

0 = ψq,k + Vd,k + ra,kid,k (6.3h)

0 = Vf,k − V 0
f,k (6.3i)

where Hk, Dk, ra,k, x
′
d,k, and x′q,k are the inertia constant, damping coefficient, armature

resistance, d-axis transient reactance, and q-axis transient reactance of the k-th generator.

The quantity Pm,k is the mechanical power input and V 0
f,k is the setpoint of the field voltage.

Park’s transformation converts the original three-phase frames of reference into a dq frame

in which the new variables for voltages, currents, and fluxes can be viewed as space vectors.

The link between the terminal voltage phasor V ∠θ and machine voltages Vd, Vq is shown

in (6.3a) and (6.3b). The real and reactive power injections are functions of currents and

voltages in the dq frame as shown in (6.3c) and (6.3d). The rest show the relationships

between fluxes and voltages and currents.

6.3.3 Automatic Voltage Regulator Model

An Automatic Voltage Regulator (AVR) is used to realize primary voltage control. The

control diagram of an AVR is shown in Fig. 6.1. We assume each synchronous machine

has one AVR connected. For k ∈ SG, we define the dynamic state vector of the AVR as

xR,k = [Vm,k; Vr1,k;Vr2,k; Ṽf,k; ], where Vm,k is the measured voltage, Vr1,k and Vr2,k are the

internal signals, and Ṽf,k is the AVR output signal to the machine; the algebraic state only

includes yR,k = [V ref
k ], where V ref

k is the reference terminal voltage. Based on the control
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Figure 6.2: Power system stabilizer control diagram [70].

diagram, we can write the differential equations as follows:

V̇m,k =
1

Tr,k
(Vk − Vm,k) (6.4a)

V̇r1,k =
1

Ta,k
(Ka,k(V

ref
k − Vm,k − Vr2,k)− Vr1,k) (6.4b)

˙̃Vf,k =
1

Te,k
(Vr1,k −Ke,kṼf,k − Se(Ṽf,k)) (6.4c)

V̇r2,k =
1

Tf,k
(Kf,k

˙̃Vf,k − Vr2,k) =
1

Tf,k

(
Kf,k

Te,k
(Vr1,k −Ke,kṼf,k − Se(Ṽf,k))− Vr2,k

)
(6.4d)

where Tr,k, Ta,k, Te,k, Tf,k are time constants and Ka,k, Ke,k, Kf,k are AVR parameters. The

ceiling function Se is defined as Se(Ṽf,k)) = Ae,ke
Be,k|Ṽf,k|, where Ae and Be are the ceiling

coefficients.

When a machine has an AVR, Vf,k in (6.3i) is set to be equal to the output of the AVR;

therefore, (6.3i) is modified to be

0 = Ṽf,k − Vf,k; (6.5)

we have another algebraic equation:

0 = V ref
k − V ref0

k (6.6)

where V ref0
k is the setpoint value of the regulated generator voltage magnitude.

6.3.4 Power System Stabilizer Model

A Power System Stabilizer (PSS) is used to add damping to the generator rotor oscillations.

The first block serves as a high-pass filter and the following two blocks are phase compen-

sators. Figure 6.2 shows a typical control diagram of a PSS. For machine k that has the PSS

(k ∈ SPSS), we define its dynamic state as xS,k = [xw,k; xp,k; xq,k], which are the internal
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states for each block; the algebraic state is defined as yS,k = [Vsi,k; Vso,k; Vw; Vp,k], where

Vsi,k, Vso,k are the input and output signals of the PSS, and Vw, Vp,k are internal signals.

The differential equations are:

ẋw,k =
1

Tw,k
Vw,k (6.7a)

ẋp,k = Vw,k − Vp,k (6.7b)

ẋq,k = Vp,k − Vso,k (6.7c)

The algebraic equations are:

0 = Vsi,k −Kw,kω (6.8a)

0 = Vsi,k − Vw,k − xw,k (6.8b)

0 = Vp,kT2,k − Vw,kT1,k − xp,k (6.8c)

0 = Vso,kT4,k − Vp,kT3,k − xq,k (6.8d)

where Tw,k, T1,k, T2,k, T3,k, and T4,k are time constants and Kw,k is the gain of the stabilizer.

The output signal Vso,k of the PSS is a signal that modifies the reference voltage V ref of

the AVR, and as a result, (6.6) becomes

0 = V ref0
k − V ref

k + Vso,k (6.9)

6.3.5 Linear State-space Model

A power system can be described as a set of non-linear differential algebraic equations:ẋ = f(x,y)

0 = g(x,y)
(6.10)

When system models are different, the states and equations of (6.10) will be different.

Table 6.1 summarizes the states and equations for the systems with and without AVRs

and PSSs. When the system has no AVR and PSS, the state vector x = [xG,k∈SG ], the

algebraic vector y = [ypf,i∈N ; yG,k∈SG ]. Function f only includes the mechanical differential

equations of the machines (6.2) and function g includes (6.1), and (6.3). When the system has

AVRs and PSSs, the state vector x = [xG,k∈SG ; xR,k∈SG ; xS,l∈SPSS
], the algebraic vector
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Table 6.1: Summary of the state-space model without and with AVR and PSS

without with

f (6.2) (6.2), (6.4), (6.7)
g (6.1), (6.3) (6.1), (6.3a)-(6.3h), (6.5), (6.6), (6.8), (6.9)
x xG,k∈SG xG,k∈SG , xR,k∈SG , xS,l∈SPSS

y ypf,i∈N , yG,k∈SG ypf,i∈N , yG,k∈SG , yR,k∈SG , yS,l∈SPSS

y = [ypf,i∈N ; yG,k∈SG ; yR,k∈SG ; yS,l∈SPSS
]. Function f combines the differential equations

(6.2), (6.4), and (6.7); function g combines the algebraic equations (6.1), (6.3a)-(6.3h), (6.5),

(6.6), (6.8) and (6.9).

Linearizing the nonlinear equations around an operating point yields the following model:[
∆̇x

0

]
=

[
fx fy

gx gy

]
︸ ︷︷ ︸

A

[
∆x

∆y

]
(6.11)

where fx, fy, gx, and gy are the partial derivatives
∂f

∂x
,
∂f

∂y
,
∂g

∂x
, and

∂g

∂y
respectively. Define

B =

[
I 0

0 0

]
, (6.11) can be rewritten as

B

[
∆̇x

∆̇y

]
= A

[
∆x

∆y

]
(6.12)

We are interested in designing the small-signal characteristics of the power system, which

are based on the finite eigenvalues of the general eigenvalue problem (A,B).

6.4 Stability Metrics

The attenuation of small disturbances, whether impulsive or persistent, is one natural metric

for the network’s dynamic performance. The damping of the network is one measure of

disturbance attenuation and considered in this chapter. The smallest damping ratio (SDR)

is one of the common indices used in literature, ηS = min
(
−α/

√
α2 + β2

)
, where α and β

are the real part and imaginary part of λ, which are the finite eigenvalues of the generalized

eigenvalue problem (A,B). Another common index is the damping of the critical inter-area
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mode, ηI = −αI/
√
α2
I + β2

I , where αI and βI are the real part and imaginary part of the

eigenvalue of the critical inter-area mode (electromechnical oscillations in the range of less

than 1 Hz). It is worth noting that congestion or stress in the power network sometimes

promotes low-frequency wide-area responses (i.e., the network becomes more “springy”),

which may not always be directly related to the damping ratio.

Similar to the distance to the closest SNB, the distance to the Hopf bifurcation could

also be used to measure the small-signal stability, which is known as the oscillatory stability

margin [48, 81]. Alternatively, we could use the largest of the real parts of the eigenvalues

(α1 = max(α)) [82] to approximate the distance to the small-signal stability boundary.

The transient stability margin of the system is another natural performance measure for

the fast dynamics of the power network. Several specific definitions have been proposed

for the transient stability margin, including the distance from the operating point to the

boundary of the region of attraction [133], the power-transfer limit, and the critical fault

clearing time for a specified set of contingencies [148]. However, each of these metrics is

rather difficult to compute, which makes the optimization of a transient stability metric

challenging. For this reason, the transient stability margin is not considered further in this

work.

6.5 Optimization Formulation

In this section, we present the formulation of load dispatch optimization problem to maximize

the stability metric. Although the loading pattern pd does not appear explicitly in the

system matrix A, any re-dispatch of pd will change the operating point at which the system is

evaluated and thus affect the system matrix A as well as its eigenvalues. The full optimization

problem is:

max γ1ηS + γ2ηI − γ3α1 subject to (6.13a)

ηS = min

(
−α√
α2 + β2

)
(6.13b)

ηI =
−αI√
α2
I + β2

I

(6.13c)

α1 = max(α) (6.13d)

αI = Re{λI} (6.13e)
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βI = Im{λI} (6.13f)

α = Re{λ} (6.13g)

β = Im{λ} (6.13h)

λ = eig(A,B) (6.13i)

A =

[
fx fy

gx gy

]
, B =

[
I 0

0 0

]
(6.13j)

g(x,y) = 0 (6.13k)∑
i∈SDR

pd,i =
∑
i∈SDR

p0
d,i (6.13l)

µipd,i = qd,i ∀i ∈ N (6.13m)

pd,i = p0
d,i ∀i ∈ N \ SDR (6.13n)

pg,i = p0
g,i ∀i ∈ SPV (6.13o)

Vi = V 0
i ∀i ∈ SG (6.13p)

θslack = 0 (6.13q)

Hij(θ,V ) ≤ Hij (6.13r)

Hji(θ,V ) ≤ Hji (6.13s)

p
g,slack

≤ pg,slack ≤ pg,slack (6.13t)

q
g,i
≤ qg,i ≤ qg,i ∀i ∈ SG (6.13u)

p
d,i
≤ pd,i ≤ pd,i ∀i ∈ SDR (6.13v)

q
d,i
≤ qd,i ≤ qd,i ∀i ∈ SDR (6.13w)

V i ≤ Vi ≤ V i ∀i ∈ N (6.13x)

The objective is to maximize a performance metric, which is a linear combination of the

smallest damping ratio, the damping of critical inter-area mode, and the maximum real part

of all eigenvalues; and γ1, γ2, and γ3 are the weighting factors. Constraints (6.13b)-(6.13j)

define ηS as the smallest damping ratio of the generator modes, ηI as the damping of critical

inter-area mode (λI), and α1 as the maximum real part. Constraint (6.13k) includes all

algebraic equations. Note that (6.13j) and (6.13k) will be different for the systems with or

without AVRs and PSSs, details can be found in Table 6.1. The assumption of the total

loading remaining constant is given in (6.13l). Superscript ‘0’ denotes the nominal value.

Constraint (6.13m) models loads as constant power factor loads and (6.13n)-(6.13q) fix the
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real power demand of inflexible loads, the real power generation of all PV buses , the voltage

magnitudes of buses with generators, and the voltage angle of the slack bus to their nominal

values. The remaining constraints are engineering concerns, including the line flow, real and

reactive generation, demand responsive load flexibility, and voltage magnitude limits.

6.6 Solution Algorithm

The optimization problem (6.13) is challenging due to the non-linear, non-convex constraints.

To solve this problem, we again take advantage of using iterative linear programming. The

process works as follows. At each iteration, we first linearize the cost and each of the

nonlinear constraints at the current operating point. We harness the generalized eigen-

value sensitivity to approximate ∆ηS, ∆ηI , and ∆α1. Then we solve the resulting linear

program (6.17), where the new decision variables are the changes in the original decision

variables (∆pg,∆qg,∆pd,∆qd). We bound the changes because the linearization is only

valid in a small region around the original operating point. This yields an estimate of the

solution for the original nonlinear program. For this solution estimate, the new operating

point is computed by solving the AC power flow equations. The process is then iterated:

i.e., the nonlinear program is re-linearized around the new operating point to obtain a linear

program, and this linear program is solved to get another estimate of the solution. The algo-

rithm is continued until the solution estimate converges, either to the global optimal solution

of the nonlinear problem or at least a local maxima. In this section, we first introduce the

generalized eigenvalue sensitivity and then present the formulation of the linear optimization

problem that we solved at each iteration.

6.6.1 Generalized Eigenvalue Sensitivity

For any system state χ that matrices A and B depend on, the derivative of λ with respect

to χ can be found as:

∂λ

∂χ
=
lT (∂A

∂χ
− λ∂B

∂χ
)r

lTBr
(6.14)

where r and l are the corresponding right and left eigenvectors. This formula is utilized to

deign the HVDC damping controllers in [117], and FACTS devices in [60]. Here,
∂B

∂χ
= 0,
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the generalized eigenvalue sensitivity formulation is presented as:

∂λ

∂χ
=
lT ∂A

∂χ
r

lTBr
(6.15)

and so we can approximate the change in λ around current steady-state values (x∗, y∗) as:

∆λ =
∑
i

lT ∂A
∂xi
r

lTBr

∣∣∣∣∣
(x∗,y∗)

∆xi +
∑
j

lT ∂A
∂yj
r

lTBr

∣∣∣∣∣
(x∗,y∗)

∆yj (6.16)

Note that x, y will be different for different system models, see Table 6.1 for the details.

Because there exist infinite eigenvalues when solving the general eigenvalue problem (A,B),

the modes of the generators are generally obtained via eliminating ∆y and computing the

eigenvalue of a reduced linear matrix A?, where A? = fx − fy(gy)−1gx. The eigenvalue sen-

sitivity of matrix A? is widely used for power system small-signal stability analysis [31, 57],

which we also used in [68]. But special numerical procedures are need to be implemented

to obtain
∂A?

∂χ
and to compute the eigenvalue sensitivity, resulting in a significant increase

in computations for large systems. In contrast, the generalized eigenvalue sensitivity can

be obtained through analytic analysis. In [83, 85, 86], the electromechanical modes without

AVR and PSS are obtained through solving a quadratic eigenvalue problem. The eigenvalue

sensitivity formulation is different than the generalized eigenvalue sensitivity, but the com-

putation complexity is the same. Moreover, the method used in [83, 85, 86] requires the

system to be lossless and only allows the reactive power of load modelling to be voltage

magnitude depended; however, the generalized eigenvalue sensitivity method has no limit on

the system models.

6.6.2 Linear Program Solved at Each Iteration

The linear program to be solved during each step of the iterative linear programming algo-

rithm is as follows:

max γ1∆ηS + γ2∆ηI − γ3∆α1 subject to (6.17a)

∆ηS =
(−β2

S∆αS + αSβS∆βS)

(α2
S + β2

S)
3
2

(6.17b)

∆ηI =
(−β2

I∆αI + αIβI∆βI)

(α2
I + β2

I )
3
2

(6.17c)
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∆λS =
∑
i

lTS
∂A
∂xi
rS

lTSBrS
∆xi +

∑
j

lTS
∂A
∂yj
rS

lTSBrS
∆yj (6.17d)

∆λI =
∑
i

lTI
∂A
∂xi
rI

lTI BrI
∆xi +

∑
j

lTI
∂A
∂yj
rI

lTI BrI
∆yj (6.17e)

∆λ1 =
∑
i

lT1
∂A
∂xi
r1

lT1 Br1

∆xi +
∑
j

lT1
∂A
∂yj
r1

lT1 Br1

∆yj (6.17f)

∆αS = Re{∆λS} (6.17g)

∆βS = Im{∆λS} (6.17h)

∆αI = Re{∆λI} (6.17i)

∆βI = Im{∆λI} (6.17j)

∆α1 = Re{∆λ1} (6.17k)∑
i

∂g

∂xi
∆xi +

∑
j

∂g

∂yi
∆yj = 0 (6.17l)∑

i∈SDR

∆pd,i = 0 (6.17m)

µi∆pd,i = ∆qd,i ∀i ∈ N (6.17n)

∆pd,i = 0 ∀i ∈ N \ SDR (6.17o)

∆pg,i = 0 ∀i ∈ SPV (6.17p)

∆Vi = 0 ∀i ∈ SG (6.17q)

∆θslack = 0 (6.17r)

hij(∆θ,∆V ) ≤ hij (6.17s)

hji(∆θ,∆V ) ≤ hji (6.17t)

p
g,slack

≤ p∗g,slack + ∆pg,slack ≤ pg,slack (6.17u)

q
g,i
≤ q∗g,i + ∆qg,i ≤ qg,i ∀i ∈ SG (6.17v)

p
d,i
≤ p∗d,i + ∆pd,i ≤ pd,i ∀i ∈ SDR (6.17w)

q
d,i
≤ q∗d,i + ∆qd,i ≤ qd,i ∀i ∈ SDR (6.17x)

V i ≤ V ∗i + ∆Vi ≤ V i ∀i ∈ N (6.17y)

∆ ≤ ∆αS,∆βS,∆αI ,∆βI ,∆α1 ≤ ∆ (6.17z)
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where λS is the generator mode with the smallest damping ratio, λI is the critical inter-area

mode, and λ1 is the generator mode with the largest real part; rs, ls are the right and left

eigenvectors corresponding to λS; rI , lI are the right and left eigenvectors corresponding

to λI ; r1, l1 are the right and left eigenvectors corresponding to λ1. Constraints (6.17b) -

(6.17k) represent the sensitivities of these stability metrics. Constraints (6.17l) - (6.17y) are

the linearization of (6.13k) - (6.13x); superscript ‘*’ denotes the current operating point. To

ensure the accuracy of the linearization, (6.17z) is added to limit the step size of the change

of the stability metrics, where ∆ and ∆ are user-chosen parameters.

After solving the linear problem, we will update (p∗g, q
∗
g, p
∗
d, q
∗
d) with the optimal change

(∆p∗g,∆q
∗
g,∆p

∗
d,∆q

∗
d). It is possible that when we change the loading pattern to improve

the damping of the most critical mode, it has negative effect on the damping of another

mode, to the extent that the latter becomes the most critical. Therefore, the new stability

metrics (ηS, ηI , α1) and eigenvalues (λS, λI , λ1) are re-computed at the new operating point.

The algorithm is terminated when the absolute value of the objective function in (6.17a)

goes below a small threshold (here, we use 10−4).

6.7 Case Studies

In this section, we apply the iterative algorithm to Kundur’s two area system, the 39-bus New

England system, and the 14-bus system. Table 6.2 shows the models and stability metrics

we consider in each system. AVRs and PSSs are not included in the first two systems; in

the 14-bus system, we will consider two cases: with and without AVRs and PSSs. The

main purposes of testing on each system are also summarized in the table. The purposes

of the case studies conducted on Kundur’s system are: 1) to correct the results in [68] with

constant power load model and investigate the performance of spatial load shifting; 2) to

compare the optimal loading patterns with different stability metrics. Since Kundur’s system

is small and only has two load buses, a larger system, the 39-bus system, is then used to

test the scalability of our iterative algorithm. Using the 14-bus system, we compare the

optimal loading patterns with and without AVR and PSS. For all three systems, we compare

the improvement of the SDR achieved by DR actions with that achieved by generation

actions. For the 14-bus system, we also compare the performance of cases with the real

power demand of flexible loads controlled, the reactive power demand controlled, and both

controlled. Moreover, we investigate the minimum load shedding needed to achieve the same

SDR improvement as obtained by spatial load shifting. Finally, the impact on the voltage
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Table 6.2: System model, stability metric, and main purpose of each case study

System AVR/PSS Stability Metric Main Purpose

Kundur without ηS, ηI , α1
Correction of the results in [68]
Comparison of different metrics

39-bus without ηS Scalability
14-bus without and with ηS Comparison of different models

Table 6.3: Power flow solution of the nominal Kundur’s two area system

Bus P (MW) Q (MVar) V (p.u.)

1 709 132 1.030
2 700 102 1.010
3 719 63 1.030
4 700 -69 1.010
7 -967 -100 1.000
9 -1767 -100 1.051

stability when we improve the small-signal stability is explored.

6.7.1 Kundur’s Two-Area System Results

We first apply the iterative algorithm to Kundur’s two-area 11-bus test system shown in

Fig. 5.4. The power flow solution for the nominal system is shown in Table 6.3. We

choose generator 1 as the reference generator. The inertias, dampings, amateur resis-

tance and transient reactances of the remaining generators are H2−4 = [58.5 55.6 55.6]

p.u., D2−4 = [200 100 200] p.u., and ra = 0, x′d = x′q = 0.0472 p.u. The three electrome-

chanical eigenvalues, damping ratios, and swing profiles are shown in Table 6.4. The swing

profile indicates which two generators are involved in the intermachine mode corresponding

to the eigenvalue as determined by the participation factors [114, p. 229]. The first pair

of the eigenvalues is the mode with the smallest damping ratio and maximum real part

(λS = λ1 = −0.6517± 6.3161j). We assume the second pair of the eigenvalues is the critical

inter-area mode (λI = −0.8536± 5.4333j).

Table 6.5 summarizes the optimal loading pattern, SDR, damping of the critical inter-area

mode, and maximum real part of eigenvalues when we maximize each stability metric at a

time. We first investigate the influence of demand response on the SDR of the generator

modes. We set γ1 = 1, γ2 = γ3 = 0. The solution to (6.13) is pd,7 = 1455 MW, pd,9 = 1279
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Table 6.4: Eigenvalues of the nominal Kundur’s system

Eigenvalues (rad/s) Frequency(Hz) Damping (%) Swing Profile

−0.6517± 6.3161j 1.01 10.26 G2↔ G3, G4
−0.8536± 5.4333j 0.86 15.52 G2↔ G3, G4
−0.6989± 1.1743j 0.19 51.14 G3↔ G4

Table 6.5: Results of different stability metrics when D2−4 = [200 100 200]

pd,7 pd,9 ηS ηI α1

max ηS 1456 1278 10.77 15.01 -0.6668
max ηI 947 1787 10.19 15.59 -0.0716
max −α1 1092 1642 10.56 15.20 -0.6761

MW. By increasing the power consumption at bus 7 and decreasing that at bus 9, the SDR of

the generator modes increases from 10.26% to 10.77%. The convergence of the algorithm is

shown in Fig. 6.3. To verify the results, we compare the solution of the iterative approach to

that of a brute force approach. We compute the SDR of the generator modes for all possible

loading patterns with a 1 MW mesh size. Figure 6.4 shows the SDR as a function of the

real power demand at bus 7 pd,7 (based on (6.13l), pd,9 = 2734 − pd,7 MW). The maximum

SDR (star) is 10.77% when pd,7 = 1456 MW, pd,9 = 1278 MW. The solution of the iterative

approach is very near to the optimum determined by the brute force method. We then

investigate the performance of the generation action. The optimal SDR through changes to

generator real power generation is 12.33%. For this small system, demand response does not

significantly improve the SDR as compared to generation re-dispatch.

Next, we maximize the damping of the critical inter-area mode (γ2 = 1, γ1 = γ3 = 0).

The optimal loading patter is pd,7 = 947 MW, pd,9 = 1787 MW. We also notice that the

maximum real part of the eigenvalues reduces significantly when we improve ηI . Finally, we

choose the maximum real part of eigenvalues as the stability margin (γ3 = 1, γ1 = γ2 = 0),

and we obtain another different optimal loading pattern pd,7 = 1092 MW, pd,9 = 1642 MW

with the maximum real part of the eigenvalues as -0.6761.

We then change the damping of the generators to D2−4 = [200 100 70]. Figure 6.5 shows

the trajectories of the eigenvalues when we decrease the loading at bus 7 and increase the

loading at bus 9. The eigenvalues in blue are the critical eigenvalues with the SDR. As we

can see, the SDR keeps increasing when the load at bus 7 decreases. However, one of the real
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Figure 6.3: The convergence of the smallest damping ratio of the generator modes for
the Kundur system.
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Figure 6.4: Smallest damping ratio of the generator modes as a function of the loading
at bus 7 when D2−4 = [200 100 200].

part of the eigenvalues in red becomes positive when pd,7 is smaller than 947 MW. Although

the SDR of the system is improved, the system is prone to instability.
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Table 6.6: Eigenvalues of the nominal 39-bus system

Eigenvalues (rad/s) Damping(%) Swing Profile

−0.0512± 4.2360j 1.2094 G10
−0.0514± 9.6176j 0.5343 G1,G4,G8
−0.0596± 9.7159j 0.6137 G4,G6,G7
−0.0725± 9.2591j 0.7829 G4,G5
−0.0074± 6.1395j �0.1211 G5 G10
−0.0325± 6.5629j 0.4951 G2,G3,G5,G9
−0.0513± 7.2053j 0.7123 G6,G7
−0.0517± 8.0477j 0.6429 G1,G8
−0.0525± 7.9760j 0.6584 G2,G3

5 15 2010
Number of iterations
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Figure 6.6: The convergence of the smallest damping ratio of the generator modes for
the 39-bus system.

6.7.2 New England 39-bus System Results

We next apply the iterative algorithm to the New England 39-bus system. Again, AVR

and PSS are not considered in this system. The generator parameters can be found in [86]

and the rest of the data is provided in [103]. The swing profiles of the nominal system are

given in Table 6.6. We only use the SDR as the stability metric. The critical eigenvalue is

λS = −0.0074± 6.1395j and the nominal SDR is 0.12%.

We assume 5771.8 MW of total 6097.1 MW total load is demand responsive and the

change range of these load as 0 ≤ pd ≤ 2pd(0). The convergence of the algorithm is shown

in Fig. 6.6. The SDR increases from 0.12% to 0.29%. The algorithm converges in less than 3

seconds. Most of the load is shifted to bus 39 to improve the damping ratio. Alternatively,
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Table 6.7: Nominal and optimal loading patterns for cases with and without AVRs
and a PSS

Bus # 2 3 5 6 9 10 11 12 13 14

Nominal 21.70 94.20 7.60 11.20 29.50 9.00 3.50 6.10 13.50 14.90
without AVR/PSS 0.00 124.29 35.90 8.13 0.00 0.00 0.00 36.75 3.43 2.69
with AVR/PSS 25.36 60.60 69.61 32.98 9.74 9.96 1.69 0.00 0.00 1.26

if we redispatch the generation, the maximum SDR is 0.27% and this is achieved when we

decrease the generation of G10 at bus 39. One possible explanation is that the critical mode

is sensitive to G5 (at bus 34) and G10 (at bus 39), so increasing the load at bus 39 or

decreasing the generation at bus 39 will improve the SDR.

6.7.3 IEEE 14-bus System Results

In this system, we consider two cases: 1) there is no AVR or PSS connected to the syn-

chronous machines; 2) the system includes AVRs for each synchronous machine and a PSS is

connected to the synchronous machine at bus 1. The system data and generator parameters

can be found in [88]. The parameters of the PSS are set as follows: Kw = 1, T1 = T3 = 0.28,

T2 = T4 = 0.02. Again, we assume 211.2 MW of total 259 MW total load (81.5%) is demand

responsive and the change range of these load as 0 ≤ pd ≤ 2pd(0). The DR buses and the

nominal loading pattern are given in Table 6.7.

We apply the iterative algorithm to both cases and choose the SDR as the stability metric.

The nominal SDR without AVR is 0.66% and the optimal SDR we obtain is 0.69%. The

nominal SDR with AVR is 0.51% and the optimal SDR is 0.70%. The optimal loading

patterns for each case are shown in Table 6.7. We notice that both the nominal SDR and

the optimal loading pattern are different when we have different system models. Compared

with the case without AVR, the size of matrix A of the case with AVRs and a PSS increases,

but the ILP algorithm can converge within few iterations (10 seconds), as shown in Fig. 6.7.

Next, we compare six cases with different decision variables and/or constraints to the base

case (6.13) in Table 6.8, which defines each case and shows its optimal SDR, and percent

improvement. Note that all following cases include the AVRs and a PSS in the system. Case 1

corresponds to our base case, where the total demand responsive load remains constant and

the load is modeled as constant power factor load. Case 2 only spatially shifts the real

power of demand responsive loads, and we achieve a slightly better optimal ηS. In Case 3,
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Figure 6.7: The convergence of the smallest damping ratio of the generator modes for

the 14-bus system with AVRs and a PSS.

Table 6.8: Decision variables, parameters, optimal smallest damping ratio ηS, and per-
cent improvement for each case

Case 1 2 3 4 5 6 7

pg X X
pd X X X X X
qd X X X X X

Constraint (6.13m) X
|∆qd| ≤ 100MVar X X
|∆qd| ≤ 20MVar X X

Optimal ηS 0.6989 0.7018 0.6380 0.7203 0.7036 0.7258 0.7683
Percent improvement 36.0 36.5 24.1 40.1 36.9 41.2 49.5

we investigate the achievable change in ηS by controlling the reactive power of demand

responsive loads and we assume that the reactive power of each demand responsive load

can increase/decrease by 100 MVar. As shown, optimizing the reactive power demand does

not improve ηS as much as optimizing the real power demand. Next, we consider changing

both the real and reactive power demand independently in Case 4 and the SDR is greatly

improved. In Cases 3 and 4, allowable change in the reactive power demand has a large

range. In practice, the flexibility of reactive power demand might be constrained. Therefore,

in Case 5, we constrain that the change in reactive power demand to ± 20, resulting in a

slightly lower maximum SDR than that of Case 4. Compared with Case 1, which assumed

constant power factor loads (i.e., the real and reactive power demand cannot be changed

independently), Case 5 offers more flexibility of reactive power demand and thus achieves a

higher optimal ηS. In Case 6, we explore the performance of generation actions alone and find

105



that they have a slightly better performance than the demand actions have. The greatest

SDR improvement is achieved when we change load and generation together (Case 7). In

this case, the SDR is improved by around 50%.

We also formulate and solve an optimization problem to determine the minimum load

shedding needed to achieve the same SDR improvement as obtained in Case 1 (without

system-wide load shedding). The formulation is as follows.

min
∑
i∈SDR

(p0
d,i − pd,i) subject to (6.18a)

ηS ≥ 0.6989 (6.18b)

Constraints (6.13b), (6.13h)− (6.13k) (6.18c)

Constraints (6.13m)− (6.13x) (6.18d)

To solve this problem, we again use iterative linear programming with generalized eigenvalue

sensitivities. We found that the system load would need to drop by at least 13% to achieve

the same SDR improvement as achieved by spatial load shifting.

6.7.4 Impact on Voltage Stability

Here, we investigate the impact of improving small signal stability on voltage stability using

Kundur’s system and the 14-bus system. The SSV of the power flow is used as measure of

voltage stability.

Figure 6.8 depicts the SDR and the SSV as a function of the loading at bus 7 when

D2−4 = [200 100 70] for Kundur’s system. As we can see, the maximum SDR and the

maximum SSV points are totally different. When we improve the voltage stability, we will

adversely impact the small-signal stability.

We then compare the optimal solution of (6.13) with that of (2.1) for the 14-bus system.

We first assume the loads of bus 4, 9, and 14 are demand responsive and find that the optimal

solutions of both problems are identical. Both the SDR and the SSV are maximized when

we shift all demand to bus 4. Next, we assume all PQ buses belong to SDR. The maximum

SSV is 0.56 and it is achieved by shifting all demand to bus 4; the SDR of the maximum SSV

point is 0.58%. Meanwhile, the maximum ηS is achieved when we shift all demand except

the load at bus 4 to bus 5. The maximum ηS is 0.64% and the SSV of this point is 0.56. For

the 14-bus system, we observe that the voltage stability is not influenced when we improve

the small-signal stability.
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Figure 6.8: SDR (left) and SSV (right) as a function of the loading at bus 7 when
D2−4 = [200 100 70]. Red triangle represents the initial pd,7; yellow triangle
represents pd,7 with the maximum SDR point; purple triangle represents
pd,7 with the maximum SSV point.

6.8 Chapter Conclusion

This chapter has presented a method to improve power system small-signal performance

using demand response. We formulated an optimization model and solved it with iterative

linear programming using generalized eigenvalue sensitivities.

The test case results show that demand response actions can improve small-signal stability

performance. However, it may happen that when we improve the smallest damping ratio,

it will have adverse impact on other stability metrics, for example, the maximum real part

of eigenvalues, to the extent that one of the eigenvalues moves across the imaginary axis

and thus making the system unstable. Similarly, we notice that the voltage stability margin

is reduced when we improve power system small-signal performance in Kundur’s system,

although case-dependent, this suggests that the choice of stability metric is critical and will

greatly influence the optimal loading pattern.

In Kundur’s system, our demand response action does not achieve the same improvement

as the generation action. However, there are more generator buses than demand buses in

this example, which is atypical. In both the 14-bus and the 39-bus systems, the demand

response actions have similar or even better performance than the generation actions have.

Moreover, in practice, ramp limits would prevent the generators from responding fast, which

makes the demand response strategy more effective.

Future work will involve incorporate tuning of the stabilizers together with the demand

responsive loads to further improve the small-signal stability.
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Chapter 7

Mitigating Voltage Unbalance using

Distributed Solar PV

In this chapter, we shift our focus from transmission system stability analysis to power quality

in distribution systems. Specifically, we investigate methods to improve voltage unbalance

via controlling the reactive power of distributed solar PV systems. We focus on developing

controllers based on Steinmetz design. This chapter is largely based on a manuscript that

has been submitted to a journal:

• M. Yao, I.A. Hiskens, and J.L. Mathieu. “Mitigating voltage unbalance using dis-

tributed solar photovoltaic inverters”. (submitted to IEEE Transactions on Power

Systems)

The preliminary work is published in:

• M. Yao, I.A. Hiskens, and J.L. Mathieu. “Applying Steinmetz circuit design to mitigate

voltage unbalance using distributed solar PV”. In: IEEE PowerTech. 2019.

7.1 Chapter Introduction

This chapter develops a simple-to-implement strategy to control PV inverter reactive power

injections to improve voltage balance in distribution networks. While voltage unbalance can

be improved through control of real and reactive power injections, we only consider reactive

power control since we assume the owners of the PV systems would like to maximize the real

power output of their devices. The strategy is based on Steinmetz design [62, 94]. We first

explore the capabilities and limitations of Steinmetz circuit design applied to distributed PV
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systems. After that, we develop two control schemes, one that is completely decentralized

and the other a distributed controller that coordinates PV inverters through a communica-

tion network. We demonstrate the performance of both controllers through case studies. In

contrast to centralized optimization-based formulations, our approach does not require de-

tailed information about the feeder nor significant computational resources. It relies only on

local measurements and simple calculations (though the distributed controller requires a sim-

ple communication network to broadcast commands to distributed PV systems). Therefore,

our approach is scalable to large feeders and inexpensive to implement, though suboptimal

relative to centralized optimization-based approaches with perfect information.

The main contributions of this chapter are as follows.

• We extend the use of Steinmetz circuit design to distributed solar PV systems to

achieve voltage balance. Past work has also commonly used Steinmetz circuit design

to balance the voltage at the bus that the controllable device is connected to. Here,

we also explore the ability of PV systems to balance upstream buses.

• We propose the reactive power strategies considering cases with different load and

PV system connection arrangements, and show that the controller is able to reduce

multiple forms of unbalance, depending upon the PV system connections and the

control objective.

• We first test the controllers on a toy system to investigate whether the Steinmetz

method can be applied in a completely decentralized way, or if coordination between

systems is necessary. We then evaluate the performance of the controllers on large

feeders with high penetration of distributed PV systems. We choose the IEEE 13-node

feeder and the GridLAB-D taxonomy feeder R1-12.47-1 (617 nodes and 1196 triplex

nodes), which is based on a real distribution feeder in the U.S. [28, 106], as our test

feeders.

• We compare the performance of our proposed controller to that of a model-free con-

troller [12] and discuss the trade-offs associated with different unbalance improvement

objectives.

109



7.2 Problem Description and Controller Overview

Recall that positive-sequence voltage V1, negative-sequence voltage V2, and zero-sequence

voltage V0 can be computed using the Fortescue transformation,

V0

V1

V2

 =

1 1 1

1 a2 a

1 a a2


−1 VAVB

VC

 , (7.1)

where a = ej2π/3 = 1∠120o, and VA, VB, VC are phase-to-neutral voltages. Voltage unbal-

ance factors are used to quantify voltage unbalance. The negative-sequence voltage unbal-

ance factor is defined as VUF2 (%) = 100|V2|/|V1| and the zero-sequence voltage unbalance

factor is defined as VUF0 (%) = 100|V0|/|V1|. We consider two different unbalance improve-

ment objectives, reducing the negative-sequence unbalance and reducing the zero-sequence

unbalance.

Distribution networks are experiencing a steady increase in the number of single-phase

PV systems distributed along feeders, as illustrated in Fig. 7.1. Voltage unbalance occurs

due to unbalanced components (e.g., unbalanced lines, loads, and/or distributed generation,

unequal regulator taps) connected to the feeder, leading to three-phase voltages with unequal

magnitudes and/or angle differences. For large three-phase transformers and induction mo-

tors, voltage unbalance causes high temperatures, lower efficiencies, and shortened lifespans.

To protect these devices from damage, our goal is to balance the three-phase voltages at

the nodes where they are connected, referred to as critical nodes. This goal is achieved by

controlling the reactive power injections of PV systems without altering their active power

injections. We make the realistic assumption that PV systems are often operating below

their rating, enabling them to provide reactive power to a limit determined by their appar-

ent power rating Srate and the active power they are providing P . For PV system i, reactive

power at time t must satisfy the limit,

Qlim
i,t = ±

√
(Srate

i )2 − (Pi,t)2. (7.2)

Steinmetz design has been used to control three-phase delta-connected static VAR com-

pensators to balance traction system loads [128], but its use to control the reactive power

injections of single-phase DERs, such as PV systems, is new. The method computes the

three-phase line-to-line capacitance required at a critical node to make the load at that node
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together with the total load further out on the distribution feeder (including network losses),

collectively referred to as the downstream load, appear balanced. However, voltage unbalance

at a critical node is also a function of unbalance upstream of that node. If the upstream

unbalance is significant, balancing the downstream load will not be sufficient to balance the

voltage at that node and, in some cases, could increase the unbalance. Thus, it is important

for network operators to determine which portions of the network contribute most to unbal-

ance and apply the method only to critical nodes where the unbalance is primarily due to

the downstream load, such as nodes relatively close to substations.

Steinmetz design cannot be applied directly to control PV systems because, 1) they are

typically single-phase devices that may be connected line-to-neutral or line-to-line, 2) they

are not all connected to the critical node but are distributed along the feeder, 3) they do

not control capacitance but rather reactive power injection, and 4) their reactive power

injection capacity is limited and time varying. To address these challenges, Steinmetz design

is extended in Section 7.4 to enable computation of reactive power injections for networks

with delta- and/or wye-connected PV systems. In Section 7.5, we propose two different

controllers that address the distributed nature of PV systems.

A conceptual illustration of the decentralized controller is provided in Fig. 7.1a. PV

systems at different nodes are controlled separately with no coordination between them1.

Consider the PV system connected to node X as an example. The controller at node X

receives a measurement of the three-phase complex voltage V m at node X and the three-

phase complex power Sm = Pm + jQm flowing into that node (composed of the load at

node X together with the total load further out on the feeder). It uses Steinmetz design to

compute the three-phase reactive power injection that would balance that total load. The

computed reactive power could be either the total amount or the change of reactive power

that PV systems should provide, detailed in Section 7.5. Distribution-level PV systems are

typically not three-phase, nor do they have unlimited reactive power capability. Therefore

the controller commands the PV system to change its reactive power by an amount that is

as close as physically possible to Qc, as dictated by its connection arrangement and reactive

power limits. Hence, if a single-phase PV system is connected to node X, it will inject only

into the phase to which it is connected. Controllers at other nodes perform their equivalent

actions, and in so doing achieve an overall balancing effect. In this paper, we assume all

controllers act simultaneously.

1Where multiple PV systems are connected to the same node, they are jointly regulated by a common
controller.
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~

Substation
M

Steinmetz
Design 

Output: 
Q c

Control block for a single node 

Sm ,Vm

Node X

(a) Decentralized Controller

~

Substation
M

Steinmetz
Design 

Output: 
Q c

Sm ,Vm

(b) Distributed Controller

Figure 7.1: Conceptual illustrations of the proposed controllers. Single-phase PV sys-
tems are distributed along a radial feeder. We wish to balance a critical
node, in this case the one with a three-phase motor (M). (a) Decentralized
controller: each node uses the same control scheme as shown in the block
around node X. (b) Distributed controller: measurements are taken at the
critical node and commands are broadcast to downstream PV systems.
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Fig. 7.1b shows a conceptual illustration of the distributed controller. The controller

receives a measurement of the three-phase complex voltage V m at the critical node and

the three-phase complex power Sm = Pm + jQm flowing into the critical node. It uses

Steinmetz design to compute the change Qc in three-phase reactive power injection that

would balance the node. It then commands downstream PV systems to adjust their reactive

power injections by broadcasting commands through a communication network. In this

paper, we assume communication is one-way, from the controller to the PV systems, and all

PV systems receive the commands without delay. We further assume the controller knows

each downstream PV system’s phase connection and rating Srate, and sends commands to

each PV system.

The feeder’s voltage profile and power losses change after distributed PV systems inject

reactive power. Load and PV generation are also continually changing. Therefore, the

process repeats periodically, acquiring measurements, computing the latest injections, and

implementing those commands.

7.3 Conventional Steinmetz Design

In this section, we first review the process of conventional Steinmetz design to derive the

compensating reactances to balance a single-phase constant impedance load and then derive

the compensating reactive power injections to balance a single-phase constant power load.

Figure 7.2 shows a Steinmetz compensation circuit for a single-phase load. Assume that

the load, connected between phases A and B, is modeled as a constant impedance load

ZAB = RAB + jXAB (the admittance is YAB = GAB − jBAB). Steinmetz circuit design

computes the reactances we should connect to phases BC and CA to make the single-phase

load appear as a balanced three-phase load. The circuit is balanced when the negative

sequence components are eliminated. The reactances that should be connected (Xc
BC , X

c
CA)

are computed as follows [62].

According to Kirchoff’s current law:IAIB
IC

 =

 1 0 −1

−1 1 0

0 −1 1


IABIBC

ICA

 . (7.3)

The symmetrical components of the line currents are obtained with the Fortescue trans-
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A

B

C

Figure 7.2: Steinmetz compensation circuit for a single-phase load ZAB connected be-
tween phase A and phase B.

formation: I0

I1

I2

 =

1 1 1

1 a2 a

1 a a2


−1 IAIB

IC

 (7.4)

where a = ej2π/3 and I0, I1, I2 are the zero sequence, positive sequence, and negative sequence

current, respectively. When the circuit is balanced, the negative sequence current is zero:

3I2 = (1− a2)IAB + (a2 − a)IBC + (a− 1)ICA = 0 (7.5)

Since I = V Y , we can replace IAB, IBC , ICA with their corresponding voltage and admittance:

(1− a2)VABYAB + (a2 − a)VBC(−jBc
BC) + (a− 1)VCA(−jBc

CA) = 0. (7.6)

When the circuit is balanced,

VBC = a2VAB, VCA = aVAB. (7.7)

Multiply (7.6) with VAB and split it into its real and imaginary parts:

−3

2
BAB +

√
3

2
GAB +

3

2
Bc
BC = 0 (7.8a)

√
3

2
BAB +

3

2
GAB +

√
3

2
Bc
BC −

√
3Bc

CA = 0 (7.8b)
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Table 7.1: Susceptance compensation for single-phase constant impedance load

Location Bc
AB Bc

BC Bc
CA

Phase AB 0 −GAB/
√

3 +BAB GAB/
√

3 +BAB

Phase BC GBC/
√

3 +BBC 0 −GBC/
√

3 +BBC

Phase CA −GCA/
√

3 +BCA GCA/
√

3 +BCA 0

Table 7.2: Reactive power compensation for single-phase constant power load

Location Qc
AB Qc

BC Qc
CA

Phase AB 0 −PAB/
√

3 +QAB PAB/
√

3 +QAB

Phase BC PBC/
√

3 +QBC 0 −PBC/
√

3 +QBC

Phase CA −PCA/
√

3 +QCA PCA/
√

3 +QCA 0

Therefore, the susceptances (reactances) are:

1

Xc
BC

= Bc
BC = −GAB√

3
+BAB,

1

Xc
CA

= Bc
CA =

GAB√
3

+BAB. (7.9)

If the load is in another phase, the process to determine the reactances is the same. The

equations are summarized in Table 7.1.

When the load is modeled as constant power SAB = PAB +jQAB, we replace IAB, IBC , ICA

in (7.5) with their corresponding power and voltage and derive the compensating reactive

power injections using the same process. The equations are summarized in Table 7.2.

When the load is three-phase, we can divide the three-phase load into three single-phase

loads. For each single-phase load, computed reactive power reactances/injections on the

other two phases based on Table 7.1 or 7.2. Finally, we sum the reactances/injections to

determine the three-phase compensation strategy for the original three-phase load. Complete

compensation of an unbalanced three-phase constant impedance load can be obtained as

follows:

Bc
AB =

GBC√
3

+BBC −
GCA√

3
+BCA,

Bc
BC =

GCA√
3

+BCA −
GAB√

3
+BAB,

Bc
CA =

GAB√
3

+BAB −
GBC√

3
+BBC ,

(7.10)
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and for an unbalanced three-phase constant power load:

Qc
AB =

PBC√
3

+QBC −
PCA√

3
+QCA,

Qc
BC =

PCA√
3

+QCA −
PAB√

3
+QAB,

Qc
CA =

PAB√
3

+QAB −
PBC√

3
+QBC .

(7.11)

While (7.11) produces unique solutions and balances the voltage, the resulting injections may

impact the system power factor and voltage profile. Moreover, (7.11) can only be applied to

delta-connected systems, which are relatively uncommon in the U.S. In the following section,

we propose a better reactive power strategy and consider different load and PV connection

configurations.

7.4 Computing Reactive Power Injections Using

Steinmetz Design

In this section, we derive the three-phase reactive power injections required to improve

voltage unbalance for various connections of three-phase loads and PV systems.

Table 7.3 summarizes the specific cases we explore. The first two rows list the types of

load and PV system connections and the third row lists the unbalance improvement objec-

tive. Steinmetz design has usually been applied to three-wire systems with delta-connected

loads [128]. Therefore, Case 1 assumes delta-connected loads and PV systems, and seeks to

reduce negative-sequence voltage unbalance. (Recall that there is no zero-sequence unbal-

ance in a three-wire system.) Cases 2–5 assume four-wire systems with a mixture of delta-

and wye-connected loads. When the PV systems are delta-connected, only negative-sequence

voltage unbalance can be reduced (Case 2). When the PV systems are wye-connected, ei-

ther negative- or zero-sequence voltage unbalance can be reduced (Cases 3 and 4). When

both delta- and wye-connected PV systems are on the same network, negative- and/or zero-

sequence voltage unbalance can be reduced. Case 5 seeks to reduce both simultaneously.

For each case, we derive the reactive power injections assuming, i) the upstream network is

balanced, ii) the downstream load, including actual load, line losses, and distributed gener-

ation, can be approximated as constant power (i.e. independent of voltage), and iii) reactive

power compensation is provided by a three-phase PV system at the critical node, or a col-

116



Table 7.3: Case Summary

Case 1 2 3 4 5

Load ∆ ∆ & Y ∆ & Y ∆ & Y ∆ & Y
PV ∆ ∆ Y Y ∆ & Y
Objective VUF2 VUF2 VUF2 VUF0 VUF2 & VUF0

lection of single-phase PV systems distributed across all three phases at the critical node.

Because Steinmetz design balances the downstream load, if the upstream network is not

balanced, the approach will not exactly balance the voltage at the critical node. (We show

in Section 7.6, though, that it can still significantly improve unbalance.) If the downstream

load is not constant power and/or the PV systems are distributed across the network, a single

application of Steinmetz design will not exactly balance the critical-node voltage. However,

the proposed feedback process described in Section 7.5 will do so.

Case 1: Delta Load and Delta PV, Eliminate V2

We first consider the case in which the load and PV system are both delta connected, as

shown in Fig. 7.3a. Suppose the measured line-to-neutral voltages at the critical node are

V m
A , V m

B , V m
C , and the complex power measured on each phase is SmA , SmB , SmC . Then, the line

currents are ImA = (SmA /V
m
A )∗, ImB = (SmB /V

m
B )∗, ImC = (SmC /V

m
C )∗. The delta-load currents

can be expressed to an arbitrary (unknowable) constant K as,I
tot
AB

I totBC
I totCA

=

I
eq
AB

IeqBC
IeqCA

+K

1

1

1

=
1

3

 1 −1 0

1 2 0

−2 −1 0


I

m
A

ImB
ImC

+K

1

1

1

 . (7.12)

The line-to-line voltages are V m
AB = V m

A − V m
B , V m

BC = V m
B − V m

C , V m
CA = V m

C − V m
A , so the

equivalent delta-load demand can be written,

StotAB = V m
AB(IeqAB +K)∗ = SeqAB + V m

ABK
∗,

StotBC = V m
BC(IeqBC +K)∗ = SeqBC + V m

BCK
∗,

StotCA = V m
CA(IeqCA +K)∗ = SeqCA + V m

CAK
∗.

Zero VUF2, or equivalently zero V2, can be achieved by driving the negative-sequence

current I2 to zero (assuming the upstream network is balanced). To do so, the reactive power

injections of delta-connected PV systems are changed by Qc,∆
AB, Qc,∆

BC , Qc,∆
CA. The resulting
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Figure 7.3: Reactive power compensation by three-phase PV systems. “Downstream
load” refers to the equivalent three-phase load at the critical node and
further out on the feeder, including the PV system active power injections
at the critical node. (a) Case 1: Delta-connected PV system used to
eliminate negative-sequence unbalance. (b) Case 2: Transformation from
a wye-connected load to equivalent wye- and delta-connected loads. (c)
Cases 3 and 4: Wye-connected PV system used to eliminate negative-
or zero-sequence unbalance. (d) Case 5: Delta- and wye-connected PV
systems used to eliminate negative- and zero-sequence unbalance.
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delta-load currents for the compensated system are given by,

Ic,totAB =
(SeqAB + V m

ABK
∗ + jQc,∆

AB

V c
AB

)∗
= IcAB +K

(V m
AB

V c
AB

)∗
, (7.13a)

Ic,totBC =
(SeqBC + V m

BCK
∗ + jQc,∆

BC

V c
BC

)∗
= IcBC +K

(V m
BC

V c
BC

)∗
, (7.13b)

Ic,totCA =
(SeqCA + V m

CAK
∗ + jQc,∆

CA

V c
CA

)∗
= IcCA +K

(V m
CA

V c
CA

)∗
, (7.13c)

where V c
AB, V

c
BC , V

c
CA are the line-to-line voltages of the compensated system. The corre-

sponding sequence currents Ic0, Ic1, Ic2 can be computed using the Fortescue transformation

and Kirchoff’s current law,

I
c
0

Ic1

Ic2

 =

1 1 1

1 a2 a

1 a a2


−1  1 0 −1

−1 1 0

0 −1 1


I

c,tot
AB

Ic,totBC

Ic,totCA

 . (7.14)

Solving for I2 in (7.14) and setting the result to zero yields,

3Ic2 = (1− a2)IcAB + (a2 − a)IcBC + (a− 1)IcCA

+K
[
(1−a2)

(V m
AB

V c
AB

)∗
+ (a2−a)

(V m
BC

V c
BC

)∗
+ (a−1)

(V m
CA

V c
CA

)∗]
= 0. (7.15)

Note though that because the controller is seeking to balance V m
AB, V m

BC , V m
CA, we have

VmAB
V cAB
≈ VmBC

V cBC
≈ VmCA

V cCA
, so the term multiplyingK is effectively zero. We shall use that observation

in subsequent analysis. Additionally, when the node is balanced, we have (7.7). Using (7.13)

and (7.7) to simplify (7.15) and then splitting into real and imaginary parts gives,

Qc,∆
AB +Qc,∆

BC − 2Qc,∆
CA = −

√
3(P eq

AB − P
eq
BC)− (Qeq

AB +Qeq
BC) + 2Qeq

CA, (7.16a)

Qc,∆
AB −Q

c,∆
BC =

1√
3

(P eq
AB + P eq

BC − 2P eq
CA)− (Qeq

AB −Q
eq
BC), (7.16b)

where P eq
φ + jQeq

φ = Seqφ (φ ∈ {AB,BC,CA}). These equations must be satisfied to bal-

ance the critical node. However, we have three unknowns, Qc,∆
AB, Qc,∆

BC , Qc,∆
CA, and only two

equations, so there are an infinite number of solutions. An additional constraint is required

to obtain a unique set of injections. Three choices are presented in [77], 1) enforce unity

power factor at the node, 2) minimize the quadratic sum of the changes in reactive power
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injections, or 3) set the sum of the changes in reactive power injections equal to zero. To

avoid altering the reactive power demand of the system and significantly changing its voltage

profile, the third option,

Qc,∆
AB +Qc,∆

BC +Qc,∆
CA = 0, (7.17)

is preferable. Combining (7.16) and (7.17) gives the final three-phase reactive power com-

pensation strategy,

Qc,∆
AB =1

3

(
Qeq
CA +Qeq

BC − 2Qeq
AB +

√
3(P eq

BC − P
eq
CA)
)
, (7.18a)

Qc,∆
BC =1

3

(
Qeq
AB +Qeq

CA − 2Qeq
BC +

√
3(P eq

CA − P
eq
AB)
)
, (7.18b)

Qc,∆
CA =1

3

(
Qeq
BC +Qeq

AB − 2Qeq
CA +

√
3(P eq

AB − P
eq
BC)
)
. (7.18c)

Case 2: Delta and Wye Load, Delta PV, Eliminate V2

When some or all loads are wye-connected, (7.18) can still be applied to eliminate V2. How-

ever, the wye-connected loads must first be transformed into equivalent delta-connected loads

with delta-load currents IeqAB, IeqBC , IeqCA together with wye-connected loads with zero-sequence

current Ieq0 = (ImA + ImB + ImC )/3 flowing in each phase, as shown in Fig. 7.3b. Then, V2 can

be eliminated by balancing the equivalent delta-connected load.

Case 3: Wye PV, Eliminate V2

We next consider the case in which PV systems are wye-connected, as shown in Fig. 7.3c,

and the goal is to eliminate negative-sequence voltage unbalance V2. Again, we need to drive

I2 to zero, but in this case we must compute the change in reactive power injections needed

from wye-connected PV systems, Qc,Y
A , Qc,Y

B , Qc,Y
C . Using the Fortescue transformation, we

derive an equation equivalent to (7.15) but in terms of the line currents for the compensated

system,

3Ic2 = IcA + a2IcB + aIcC = 0, (7.19)

where

IcA =
(SmA + jQc,Y

A

V c
A

)∗
, (7.20a)

IcB =
(SmB + jQc,Y

B

V c
B

)∗
, (7.20b)
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IcC =
(SmC + jQc,Y

C

V c
C

)∗
. (7.20c)

Eliminating V2 balances the line-to-line voltages but does not necessarily balance the line-

to-neutral voltages, as zero-sequence voltage V0 may be nonzero. Nevertheless, if we assume

line-to-neutral voltages are balanced,

V c
B = a2V c

A, V c
C = aV c

A. (7.21)

and set the sum of the changes in reactive power injections to zero, we derive the reactive

power compensation strategy,

Qc,Y
A =1

3

(
Qm
C +Qm

B − 2Qm
A +
√

3(Pm
B − Pm

C )
)
, (7.22a)

Qc,Y
B =1

3

(
Qm
A +Qm

C − 2Qm
B +
√

3(Pm
C − Pm

A )
)
, (7.22b)

Qc,Y
C =1

3

(
Qm
B +Qm

A − 2Qm
C +
√

3(Pm
A − Pm

B )
)
. (7.22c)

If the zero-sequence voltage V0 is non-negligible, (7.21) may not be a good approximation. In

such cases, it may be better to approximate the line-to-neutral voltages for the compensated

system with the measured voltages,

V c
A = V m

A , V c
B = V m

B , V c
C = V m

C . (7.23)

Then, the three-phase reactive power compensation strategy is given by the solution of,

Re{Ic2} = Im{Ic2} = 0, (7.24a)

Qc,Y
A +Qc,Y

B +Qc,Y
C = 0. (7.24b)

Because of the approximation (7.21) or (7.23), the change in reactive power injections will

not perfectly eliminate V2. However, V2 generally converges close to zero with feedback.

Case 4: Wye PV, Eliminate V0

Case 4 assumes the same connections as Case 3 (see Fig. 7.3c) but drives the zero-sequence

current to zero,

3Ic0 = IcA + IcB + IcC = 0. (7.25)
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If we assume the voltages are balanced (7.21), then the reactive power compensation strategy

is given by,

Qc,Y
A =1

3

(
Qm
C +Qm

B − 2Qm
A +
√

3(Pm
C − Pm

B )
)
, (7.26a)

Qc,Y
B =1

3

(
Qm
A +Qm

C − 2Qm
B +
√

3(Pm
A − Pm

C )
)
, (7.26b)

Qc,Y
C =1

3

(
Qm
B +Qm

A − 2Qm
C +
√

3(Pm
B − Pm

A )
)
. (7.26c)

However, eliminating V0 may increase V2, resulting in unbalanced line-to-line voltages and,

subsequently, unbalanced line-to-neutral voltages. Alternatively, we can set the voltages to

their measured values, as in (7.23). Then, the compensation strategy has the same form as

(7.24) but with (7.24a) replaced by,

Re{Ic0} = Im{Ic0} = 0. (7.27)

Because of the voltage approximation, feedback is again used to drive V0 close to zero.

Case 5: Delta and Wye PV, Eliminate V2 and V0

Finally, Case 5 uses delta- and wye-connected PV systems, as shown in Fig. 7.3d, to eliminate

both zero- and negative-sequence unbalance. In this case, both line-to-line and line-to-neutral

voltages are balanced, and so both (7.7) and (7.21) are satisfied. Setting the negative- and

zero-sequence currents equal to zero, applying (7.7) and (7.21), setting the sum of the reactive

power injections to zero, and solving the resulting system of equations, we obtain the reactive

power compensation strategy,

Qc,Y
A = 1

3

(
Qm
C +Qm

B − 2Qm
A +
√

3(Pm
C − Pm

B )
)
, (7.28a)

Qc,Y
B = 1

3

(
Qm
A +Qm

C − 2Qm
B +
√

3(Pm
A − Pm

C )
)
, (7.28b)

Qc,Y
C = 1

3

(
Qm
B +Qm

A − 2Qm
C +
√

3(Pm
B − Pm

A )
)
, (7.28c)

Qc,∆
AB = 2√

3

(
Pm
B − Pm

A

)
, (7.28d)

Qc,∆
BC = 2√

3

(
Pm
C − Pm

B

)
, (7.28e)

Qc,∆
CA = 2√

3

(
Pm
A − Pm

C

)
. (7.28f)
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7.5 Feedback Controllers for Distributed PV

In this section, we first introduce two command strategies; we then detail the design of

decentralized and distributed feedback controllers which implement the reactive power com-

pensation strategies of Section 7.4. Recall that the strategies were derived assuming that

reactive power compensation is provided by a three-phase PV systems at the critical node, or

an equivalent collection of single-phase PV systems. We heuristically apply these strategies

to control single-phase PV systems distributed across the network. Section 7.5.4 describes

the model-free controller from [12], which is used as a benchmark.

7.5.1 Command Strategy

In this work, we propose two different command strategies as follows.

• Direct command strategy: The command is the total amount of reactive power

that the PV system should provide. If the PV systems have already injected reactive

power in the previous time step, the measured power demand includes those injections,

thus, they should be excluded when we use the reactive power compensation strategies

of Section 7.4. The controller will exclude the previous command when we compute

the new command.

• Differential command strategy: The command is the change of reactive power that

the PV system should provide. Specifically, we do not subtract the previous command,

but instead determine the change in reactive power injections needed to balance the

bus.

The two command strategies are identical if we have (7.17) and ignore inverter reactive power

limits. The proof is provided in Section 8.2.2. When we consider the limits, the differential

command strategy works better. Again, an example will be shown in Section 8.4.2. Instead

of (7.17), we can set the total injected reactive power to any specific value. For example, the

total reactive power injection of (7.11) is not zero, in that case, the direct command strategy

should be used.

In this chapter, since the reactive power compensation strategies of Section 7.4 are derived

based on (7.17), we will use the the differential command strategy unless we explicitly state

that the direct command strategy is used. When we use the differential command strategy,
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the reactive power injections are sent to each PV system in proportion to its ratings, i.e.,

Qc
i = Qc

φ ×
Srate
i∑

j∈Ωφ
Srate
j

, (7.29)

where Qc
φ is the change in reactive power injection required from phase φ and Ωφ is the set

of downstream PV systems that are connected to phase φ.

7.5.2 Decentralized Controller

The decentralized controller attempts to balance all three-phase nodes simultaneously, thereby

balancing the critical node. Applying the compensation strategies from Section 7.4 will, in

general, not achieve perfect balance because, i) reactive power injections are limited by PV

phase connections and time-varying reactive power limits (7.2), and ii) Steinmetz design is

applied at multiple nodes simultaneously instead of just the critical node. Each three-phase

node with a participating PV system undertakes the same actions:

• Use local measurements Sm and V m to compute Qc corresponding to PV system phase

connections and balancing objective by applying the appropriate compensation strat-

egy from Section 7.4.

• Use local PV systems to change reactive power injections byQc or, if impossible because

of the PV system phase connections and/or reactive power limits, a quantity as close

as physically possible to Qc. In cases with multiple PV systems at a node, Qc can be

allocated to individual systems based on apparent power ratings as in (7.29) and/or

reactive power limits.

• Repeat this process periodically with the latest local measurements.

If the unbalance is large and each PV system’s reactive power injection capabilities are

small, this approach works well, as discussed in Section 7.6. However, it can also lead

to over-injection. For example, two nearby nodes will calculate similar Qc but only one

node’s injection needs to change by Qc to approximately balance both nodes. Responses

at both nodes may result in overcompensation of the VUF and lead to oscillations in the

feedback process. Heuristic methods to address this issue include decreasing the number of

participating PV systems and/or ensuring asynchronous adjustments across nodes.
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7.5.3 Distributed Controller

The distributed controller seeks to balance the critical node using PV systems downstream

of the critical node. This scheme is more consistent with the assumptions underpinning the

compensation strategies of Section 7.4 than is the decentralized controller. Perfect balancing

is still not possible, though, because the effective changes in reactive power injections seen at

the critical bus will not exactly match Qc due to reactive power losses on the lines between

the critical node and the downstream PV systems. Implementing the controller within a

feedback loop can, however, eliminate this issue. Specifically, the critical node completes the

following actions:

• Use measurements Sm and V m at the critical node to compute Qc corresponding to

PV system phase connections and balancing objective by applying the appropriate

compensation strategy from Section 7.4.

• Allocate Qc to each participating PV system using (7.29) and send commands via the

communication network. Each PV system implements its change in reactive power

injection Qc
i or, if impossible, sets its reactive power injection equal to its reactive

power limit Qmax
i,t .

• Repeat this process periodically with the latest measurements.

In general, the distributed controller performs better than the decentralized controller, as

shown in Section 7.6.

7.5.4 Benchmark: Model-free Controller

We compare the performance of our controllers with that of the model-free controller pro-

posed in [12]. The objective of the model-free controller is to equalize the line-to-line voltage

magnitudes or line-to-neutral voltage magnitudes by injecting (consuming) reactive power

into the phases with voltage magnitudes lower (higher) than the average. We assume condi-

tions consistent with those of the distributed controller, namely measurements are taken at

the critical node and then changes in reactive power injections are computed and allocated

to downstream PV systems using (7.29). This sequence is implemented as a feedback loop.

However, instead of using the compensation strategies derived in Section 7.4, the strategy

in this case is given by,

Qc
φ = k(|V m

φ | − V ), ∀φ, (7.30)
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Figure 7.4: One-line diagram of a 5-bus distribution system.

where φ ∈ {AB,BC,CA} and V = (|V m
AB|+ |V m

BC |+ |V m
CA|)/3 for line-to-line connected PV

systems, or φ ∈ {A,B,C} and V = (|V m
A |+ |V m

B |+ |V m
C |)/3 for line-to-neutral connected PV

systems, and k > 0 is a scalar gain.

7.6 Case Studies

In this section, we first test the performance of Steinmetz design on a small delta-connected

system (Case 1). Next, We conducted case studies using the IEEE 13-node feeder [58] and

the taxonomy feeder R1-12.47-1 [107]. Both feeders are four-wire systems with a mixture of

delta- and wye-connected loads, so we are able to explore Cases 2–5. We first provide feeder

details and then use the 13-node feeder to assess and compare the performance of controllers.

The controllers are then tested on the R1-12.47-1 feeder, and the impact on system losses is

assessed.

7.6.1 Toy System

We first conduct a number of studies on a simple five bus radial distribution system shown

in Fig. 7.4. We assume that the voltage source is balanced (12.47 kV line-to-line), a delta-

grounded wye transformer is connected between buses 2 and 3 (2000 kVA, 12.47 kV - 2.4

kV, Z = 1 + j6 pu), all line segments are balanced (Zl,1−2 = 0.0924 + j0.2128 Ω, Zl,3−4 =

Zl,4−5 = 0.3061 + j0.627 Ω), unbalanced three-phase delta-connected loads are connected

to buses 4 and 5 (modeled as either constant impedance or constant power loads), and

a three-phase compensator (three-phase controllable reactances or three-phase PV system

with controllable reactive power injections) is connected to bus 4 or 5. We wish to balance

bus 4 since we assume some equipment sensitive to voltage unbalance, such as a three-phase
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Figure 7.5: Three-phase system as seen from bus 4. (a) the base case. (b) balancing
equipment at bus 4. (c) balancing equipment at bus 5. (d) equivalent
circuit to (b) needed to compute Xc

5.

motor, is connected to this bus. We do not model voltage regulators. We also assume that

the compensator reactances or reactive power injections are unconstrained. We use (7.10) to

compute reactances and (7.11) to compute reactive power. The direct command strategy is

used for the feedback control. Note that in this example, V UF refers to negative sequence

voltage unbalance factor V UF2, the subscript represents the bus number.

Compensator with three-phase controllable reactances: constant impedance

load

We first show how to apply the Steinmetz circuit design to balance the voltage at bus 4

when we control the reactances (Xc). We assume that the loads are constant impedance
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loads with three-phase impedances2 Zll,4 = [300 + j150; 520 + j250; 200 + j760] Ω, Zll,5 =

[220 + j130; 320 + j180; 250 + j430] Ω. Without compensation, V UF4% = 0.262%. The

three-phase load connections and line are shown in Fig. 7.5a.

Scenario 1: Compensator at bus 4. When the controllable reactances are connected

to bus 4, as shown in Fig. 7.5b, the equivalent impedance of the downstream circuit Zeq can

be computed using the delta-wye transformation, and then the total unbalanced load at bus

4 can be obtained. The compensating reactances are:

Xc
4 = [j152.8; j278.95; j151.1] Ω,

which completely balances the voltage at bus 4.

Scenario 2: Compensator at bus 5. When the controllable reactances are connected

at bus 5, as shown in Fig. 7.5c, the computation of Xc
5 works as follows. From Scenario

1, we know the equivalent impedeance of the load in the red box in Fig. 7.5b. We can

use it to compute the impedance Zc
ll,5 shown in Fig. 7.5d. The difference between Zc

ll,5 and

Zll,5 is what should be compensated at bus 5 to balance the voltage at bus 4. However,

the difference may not be purely reactance so the voltage unbalance at bus 4 may not be

completely eliminated because the compensator is not able to provide resistance. Applying

this procedure, we obtain:

Zc
ll,5 = [38.8 + j99.78; 78.6 + j163.4; 13.4 + j116.1] Ω

1

Xc
5

= Im

{
1

Zc
ll,5

− 1

Zll,5

}
Xc

5 = [148.95; 275.04; 147.92] Ω

which results in V UF4% = 0.0041%.

Compensator with three-phase controllable reactive power: constant

impedance load

We next use a three-phase PV inverter to balance the voltage at bus 4 assuming constant

impedance loads. We first compute the compensating reactances and then use them together

2Impedances are given in the order AB, BC, CA.
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Figure 7.6: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive power
injections at bus 4 when load is modeled as constant impedance.

with measurements of the line to line voltages to obtain the reactive power injections:

Qc
AB,m =

|VAB,m|2

Xc
AB,m

Qc
BC,m =

|VBC.m|2

Xc
BC,m

Qc
CA,m =

|VCA,m|2

Xc
CA,m

(7.31)

where m refers to the bus where the PV system is connected.

Scenario 3: Compensator at bus 4. Using Xc
4 from Scenario 1 and the measured

voltages at bus 4, the compensating reactive power injections in kVAr are:

[Qc
AB,4; Qc

BC,4; Qc
CA,4] = [110.7424; 60.3547; 112.4241].

which results in V UF4% = 0.0104%.

Scenario 4: Compensator at bus 5. Using Xc
5 from Scenario 2 and measured voltages

at bus 5, the compensating reactive power injections in kVAr are:

[Qc
AB,5; Qc

BC,5; Qc
CA,5] = [112.4583; 60.4614; 113.8552].

which results in V UF4% = 0.0225%.

In both scenarios, Steinmetz circuit design fails to balance the voltage at bus 4. This

is because we use the measured voltage to compute the reactive power injections but the

voltage changes after we inject the reactive power.

Scenario 5: Compensator at bus 4, feedback control. Figure 7.6 shows the con-

vergence of VUF and reactive power injections if the PV system is located at bus 4. As we

can see, the voltage unbalance at bus 4 is completely eliminated using feedback control. The
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Figure 7.7: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive power
injections at bus 5 when load is modeled as constant impedance.

Table 7.4: Constant Power Loads at Buses 4 and 5

Bus 4 |S| Power factor Bus 5 |S| Power factor

SAB 40 kVA 0.95 lagging SAB 50 kVA 0.85 lagging
SBC 20 kVA 0.80 lagging SBC 30 kVA 0.90 lagging
SCA 70 kVA 0.85 lagging SCA 100 kVA 0.95 lagging

compensating reactive power injections in kVAr are:

[Qc
AB,4; Qc

BC,4; Qc
CA,4] = [107.7651; 59.0437; 108.9941].

Scenario 6: Compensator at bus 5, feedback control. Figure 7.7 shows the con-

vergence of VUF and reactive power injections if the PV system is located at bus 5. The

compensating reactive power injections in kVAr are:

[Qc
AB,5; Qc

BC,5; Qc
CA,5] = [107.1048; 58.1325; 107.6737],

However, like in Scenario 2, the PV inverters can not completely balance the voltage because

they only inject reactive, not real, power. As in Scenario 2, V UF4% = 0.0041%.

Compensator with three-phase controllable reactive power: constant power

load

Next, we use a three-phase PV inverter to balance the voltage at bus 4 assuming constant

power loads, given in Table 7.4. Without compensation, V UF4% = 0.5495%.

Scenario 7: Compensator at bus 4. The compensating reactive power injections in
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Figure 7.8: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive power
injections at bus 4 when load is modeled as constant power.
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Figure 7.9: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive power
injections at bus 5 when load is modeled as constant power.

kVAr are:

[Qc
AB,4; Qc

BC,4; Qc
CA,4] = [29.7865; 151.0846; 85.9497]

which results in V UF4% = 0.00016%. Steinmetz circuit design fails to balance the voltage

at bus 4 because network losses change after the reactive power is injected. In Scenario 9 we

show how feedback control can be used to eliminate the unbalance.

Scenario 8: Compensator at bus 5. When the loads are modeled as constant power

loads, the procedure we used in Scenario 2 to compute the equivalent impedance (which

was used in Scenarios 4 and 6 to determine the compensating reactive power injections) no

longer works. Therefore, here, we simply apply the compensating reactive power injections

we computed in Scenario 7 to bus 5 rather than bus 4, effectively neglecting the impact of

the line impedance. This results in V UF4% = 0.0084%.

131



Scenario 9: Compensator at bus 4, feedback control. Since Scenarios 7 and 8

show that Steinmetz circuit design fails to achieve balance for constant power loads, we

again use feedback control strategy. Figure 7.8 shows the convergence of VUF and reactive

power injections if the PV system is located at bus 4. As before, feedback control completely

eliminates unbalance at bus 4. The compensating reactive power injections in kVAr are:

[Qc
AB,4; Qc

BC,4; Qc
CA,4] = [29.6925; 151.0270; 86.1694].

Scenario 10: Compensator at bus 5, feedback control. Figure 7.9 shows the

convergence of VUF and reactive power injections if the PV system is located at bus 5. The

compensating reactive power injections in kVAr are:

[Qc
AB,5; Qc

BC,5; Qc
CA,5] = [32.9862; 153.0851; 89.6489]

which completely eliminates the unbalance at bus 4.

Scenario 6 (modified): Compensator at bus 5, feedback control. As shown

in Scenario 10, Steinmetz circuit design within a feedback control is able to balance an

upstream bus using the downstream PV system; therefore, it is possible that we can also

achieve perfect balance in Scenario 6. Unlike computing the compensating reactive power

based on the computed compensating reactances, we alternatively model loads as constant

power (even though they are constant impedance models) and measure the voltages and

currents to compute the overall unbalanced power demand at bus 4. The feedback is then

applied as in Scenario 10. Figure 7.10 shows the convergence of VUF, bus 4 now is balanced

compared to Fig. 7.7. The compensating reactive power injections in kVAr are:

[Qc
AB,5; Qc

BC,5; Qc
CA,5] = [109.5717; 61.5492; 110.6029].

Table 7.5 summarizes the scenario descriptions and results. As shown, Steinmetz circuit

design is only able to perfectly balance the voltage at the bus the compensator is connected to

and only if the loads are modeled as constant impedance loads. However, it can significantly

improve balance in all Scenarios. In contrast, use of Steinmetz circuit design within a

feedback controller can achieve perfect balance in all scenarios. As shown in the Figs. 7.6 -

7.10, the feedback controller quickly converges.
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Figure 7.10: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive
power injections at bus 5 when we model constant impedance load as
constant power.

Table 7.5: Summary of scenario descriptions and results

Scenario Load Compensator
Strategy

Initial Final

# model Type Bus V UF4% V UF4%

1

Z

Xc 4 Steinmetz

0.2798

0

2 Xc 5 Steinmetz 0.0043

3 Qc 4 Steinmetz 0.0085

4 Qc 5 Steinmetz 0.0221

5 Qc 4 feedback (Z) 0

6 Qc 5 feedback (Z) 0.0043

6* Qc 5 feedback (P ) 0

7

P

Qc 4 Steinmetz

0.5891

0.0018

8 Qc 5 Steinmetz 0.0091

9 Qc 4 feedback (P ) 0

10 Qc 5 feedback (P ) 0
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Figure 7.11: One-line diagram of a 7-bus distribution system.

Steinmetz Circuit Design Applied to Distributed Solar PV

Lastly, we explore the performance of Steinmetz circuit design on a network with distributed

single phase PV systems. Figure 7.11 shows the seven bus distribution system we use, with

single-phase PV systems connected to buses 4, 5, and 6. We assume that the voltage source

is balanced (12.47 kV line-to-line), a delta-grounded wye transformer is connected between

buses 2 and 3 (2000 kVA, 12.47 kV - 2.4 kV, Z = 1 + j6 pu), the impedance of all line

segments is 0.0924 + j0.2128 Ω, the PV system at bus 4 is connected AB and generating

50 kW, the PV system at bus 5 is connected BC and generating 80 kW, and the PV system

at bus 6 is connected CA and generating 100 kW. Bus 7 has an unbalanced three-phase

constant power load (|SAB,7| = 200 kVA at 0.8 lagging, |SBC,7| = 50 kVA at 0.9 lagging,

|SCA,7| = 300 kVA at 0.95 lagging) and, as before, we wish to balance bus 4. Initially,

V UF4% = 0.6455%.

With the decentralized controller, V UF% = 0.071%. The VUF at bus 4 is completely

eliminated using the distributed controller, as shown in Fig. 7.12. As seen from this example,

Steinmetz circuit design is able to significantly reduce voltage unbalance in a completely

decentralized manner, and we can further reduce the unbalance when communication is

available.

7.6.2 Feeder Description

Fig. 7.13 shows the one-line diagram of the IEEE 13-node feeder [58], with system data avail-

able in [66]. To accentuate unbalance, the loading at each node was increased by 10%. We

chose the critical node to be 632. Upstream unbalance was eliminated by setting the regula-

tor taps to be identical (to tap 11) in each phase and transposing line 630-632 (with self phase

impedance 0.2124+j0.6422 Ω/km and mutual phase impedance 0.0968+j0.2714 Ω/km). We
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Figure 7.12: Convergence of voltage unbalance factor (VUF) at bus 4 and reactive
power injection at each distributed PV.

Table 7.6: Single-phase PV systems added to 13-node feeder

# 1 2 3 4 5 6 7 8 9 10 11

Location 632 633 634 645 646 671 652 611 680 692 675
Phase 2 1 1 2 2 1 3 3 2 3 1
P (kW) 100 150 60 100 100 50 100 50 50 100 110

also changed lines 684-652 and 684-611 to three-phase lines to enable addition of line-to-line

connected PV systems at nodes 611 and 652. For those lines, we used the same configuration

and parameters as line 671-684.

Eleven single-phase PV systems were added as shown in Fig. 7.13. The location, phase,

and active power output of each PV system is listed in Table 7.6, where the phase identifiers

1, 2, 3 refer to AB,BC,CA, respectively, for PV systems connected line-to-line, or A,B,C,

respectively, for PV systems connected line-to-neutral. When exploring the different cases

summarized in Table 7.3, the PV connections were changed to match the case, i.e., for Cases 1

and 2 the single-phase PV systems were connected line-to-line, and for Cases 3 and 4, they

were connected line-to-neutral. For Case 5, PV systems 1 to 7 were connected line-to-line

and PV systems 8 to 11 were connected line-to-neutral. Nodes 645, 646, 652, and 611 are not

three-phase nodes and so PV systems at those nodes were not controlled by the decentralized

controller. All PV systems are rated at Srate = 300 kVA and operate at unity power factor

when uncontrolled. The total active power generation is 970 kW, which is around 25% of

the system load (3813 kW).

Fig. 7.14 shows the one-line diagram of the R1-12.47-1 feeder, which is representative of
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Figure 7.13: IEEE 13-node feeder[58] with single-phase PV system added.

a moderately populated suburban and rural area. System data can be found in [107]. The

critical node is 359. To increase unbalance, 961 kW of load representing seasonal agricultural

pumping was added to phase C. This increased the system load to 8237 kW. PV systems

were added to 598 single family residences, with 265, 150, and 183 of those systems connected

to phases AB,BC,CA for Case 2, or to phases A,B,C for Cases 3 and 4. For Case 5, all PV

systems downstream of node 216 were connected line-to-line and the rest line-to-neutral. All

PV systems were rated at Srate = 10 kVA. Their active power output was randomly selected

from the range 1 to 5 kW, and they operate at unity power factor when uncontrolled. The

total active power generation is 1773 kW, which is around 21.5% of the system load. Full

details of all the feeder modifications are available in the feeder file [144].

For all simulations, we assumed the net load at each node was constant. We ran the

controllers until the unbalance converged. This is reasonable since the controllers converge

quickly.

7.6.3 IEEE 13-node Feeder Results

We first use the distributed controller to compare the results of Cases 2 to 5. Table 7.7

summarizes the initial and final VUF2 and VUF0 at the critical node, and reports the total
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Figure 7.14: Taxonomy feeder R1-12.47-1 [107] visualized using [99].

reactive power injections for each case. The initial VUFs differ for different PV system

connections. Cases 2 and 3 only seek to eliminate negative-sequence unbalance but zero-

sequence unbalance remains unaddressed. The opposite is true for Case 4. Case 5 eliminates

both forms of unbalance. Despite the differences between the assumptions underlying the

compensation strategies and the actual controller implementation, the controllers are able to

exactly meet their unbalance objectives because of feedback. Note that the results for Cases

3 and 4 were generated using the measured voltages (7.23). Compensation strategies (7.22)

and (7.26) used within feedback loops significantly decrease the unbalance but do not drive

it exactly to zero.

We next compare the performance of the decentralized, distributed, and model-free con-

trollers for Case 2. Results for the other cases are similar. Fig. 7.15 shows the VUF2 of

all three-phase nodes initially and after applying the controllers. The initial VUF2 at the

critical node (node 632) is 0.79% and the line-to-line voltage magnitudes are 1.035, 1.042,

and 1.028 pu. The decentralized controller reduces the VUF2 at the critical node to 0.46%

and both the distributed and the model-free controllers (gain k = 5) reduce it to 0% with

line-to-line voltage magnitudes of 1.035 pu. While the decentralized controller is able to
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Table 7.7: Unbalance and Reactive Power Injections by Case

Case
VUF2 (%) VUF0 (%)

Qc (kVar)
Initial Final Initial Final

2 0.79 0.00 1.68 1.57 Qc,∆ = [-133.15 403.68 270.53]
3 0.77 0.00 3.93 3.24 Qc,Y = [-341.80 315.35 26.45]
4 0.77 1.03 3.93 0.00 Qc,Y = [161.581 66.21 -227.79]

5 0.70 0.00 1.46 0.00
Qc,∆ = [-365.05 402.75 -37.70]
Qc,Y = [61.23 145.76 -207.00]

632 633 680 675634 671 
Three-phase node
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Figure 7.15: VUF2 of all three-phase nodes in the 13-node feeder without control (ini-
tial) and after applying the controllers of Case 2.

significantly reduce voltage unbalance with only local measurements, the distributed and

model-free controllers are able to completely eliminate it, but both require a communication

network. In all cases, since the sum of the reactive power injections is zero, the voltage

profiles of the controlled systems are similar to that of the uncontrolled system, and the

regulator taps do not change.

Fig. 7.16 shows the convergence of VUF2 and three-phase reactive power injections for

each controller. The distributed and model-free controllers converge to the same reactive

power injections. The distributed controller converges faster but requires voltage phasor

measurements rather than just voltage magnitude measurements. The convergence of the

model-free controller is sensitive to the choice of k, though large k does not necessarily lead

to faster convergence. For k = 20, the controller requires more iterations to converge, with

the high gain inducing oscillations in the reactive power injections, as seen in Fig. 7.17.
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Figure 7.16: Convergence of VUF2 at the critical node (left) and the reactive power
injections (right) using different controllers.

7.6.4 Taxonomy R1-12.47-1 Feeder Results

Fig. 7.18 shows the VUF2 of all three-phase nodes initially and after applying the controllers

of Case 2. The initial VUF2 at the critical node is 3.19%. The distributed controller im-

plemented at the critical node reduced the VUF2 at that node to 2.54%. Since the node is

far from the substation, there are only 124 downstream PV systems and so there is insuffi-

cient reactive power capacity to balance the downstream load. Moreover, there is significant

upstream unbalance and so the critical node would remain unbalanced even if it were possi-

ble to completely balance the downstream load. Since balancing upstream nodes generally

improves downstream unbalance, as shown in Fig. 7.15, we implemented the distributed

controller at node 17 (shown in Fig. 7.14) and achieved a much better result. VUF2 at

node 17 decreased from 1.63% to 0.39%, and at the critical node to 1.02%. Convergence

was achieved in 3 iterations. Fig. 7.18 also shows the results of the decentralized controller,

which achieved VUF2 at the critical node of 1.57%.

7.6.5 Impact of Balancing on Losses

Table 7.8 summarizes the VUF2, zero-sequence current |I0| at the critical node (due to local

plus downstream current), and power losses before and after implementing the distributed

controller. For the R1-12.47-1 feeder, we use the controller implemented at node 17. Losses

decrease with a reduction in zero-sequence current or a reduction in VUF2; however, when
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Figure 7.17: Convergence of reactive power injections using the model-free controller
with k = 20.

Table 7.8: Impact on Zero-Sequence Current and Losses

Feeder Case
VUF2 (%) |I0| (A) Losses (kW)

Initial Final Initial Final Initial Final

13-node
2 0.79 0.00 54.69 51.14 95.30 91.58
3 0.77 0.00 50.72 105.55 91.84 97.73
4 0.77 1.03 50.72 0.00 91.84 90.61
5 0.70 0.00 47.42 0.00 91.72 86.00

R1-12.47-1
2 3.19 1.02 30.25 27.96 401.08 382.60
3 3.06 1.24 29.28 52.60 352.42 432.25
4 3.06 4.45 29.28 4.34 352.42 408.01
5 3.12 1.93 35.10 24.4 377.65 368.53

one increases and one decreases, the effect is complicated. When the PV systems are delta-

connected (Case 2), the controller reduces the VUF2 and does not introduce additional

zero-sequence current and so losses decrease. When the PV systems are wye-connected and

the goal is to reduce the VUF2 (Case 3), the VUF2 decreases, but zero-sequence current

increases. For both feeders, losses increase. When the PV systems are wye-connected and

the goal is to reduce the VUF0 (Case 4), the VUF2 increases, but zero-sequence current

decreases significantly. The 13-node feeder experiences a small decrease in losses, but the

R1-12.47-1 feeder sees an increase. In Case 5, both VUF2 and zero-sequence current decrease

and so losses decrease.
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Figure 7.18: VUF2 at all three-phase nodes in the R1-12.47-1 feeder without control
(initial) and after applying the controllers of Case 2.

7.7 Chapter Conclusion

This chapter has proposed several controllers for mitigating voltage unbalance. They exploit

Steinmetz design to control the reactive power injections of distributed single-phase PV

systems. Performance has been demonstrated on small- and large-scale feeders. Feedback

control is required to achieve better unbalance improvement. In contrast to feedback con-

trol approaches that drive voltages to predefined setpoints, our feedback control approach

achieves voltage balance without the need for establishing voltage setpoints. The results

suggest that the approach can be applied in a completely decentralized manner. Distributed

control offers improved performance but requires communication infrastructure. Our case

study indicated that when the critical node is far from the substation, rather than imple-

menting the distributed controller at the critical node, better performance can be achieved by

implementing the controller at an upstream node. The case study also highlighted trade-offs

arising from different balancing objectives.
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Chapter 8

Overcoming the Practical Challenges

of Applying the Distributed

Controller

In Chapter 7, we have shown that the Steinmetz approach is linear and uses only local

measurements to compute the required compensating reactive power. The computation

time is short and, therefore, the controller responds quickly to changes in operating point.

The controller works well in ideal situations. In this chapter, we extend this controller

to cope with a number of practical considerations, namely, inverter reactive power limits,

noisy/erroneous measurements, and delayed inputs in the presence of time-varying load and

PV generation. This chapter is largely based on the following paper.

• M. Yao and J.L. Mathieu. “Overcoming the practical challenges of applying Steinmetz

circuit design to mitigate voltage unbalance using distributed solar PV”. In: Power

Systems Computation Conference. 2020.

8.1 Chapter Introduction

The goal of this chapter is to develop approaches that overcome the practical challenges

of applying the distributed controller to real systems. The first challenge is managing PV

inverter limitations, specifically, reactive power injection limits, which are a function of

real power injections. Here, we will show that neglecting them significantly impacts the

performance of the controller. The second challenge is managing measurement error/noise

and communication delays. The approach requires local measurements of voltage and current
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phasors; different measurement methods (e.g., distribution phasor measurement units (D-

PMUs) versus using measurements from traditional meters to measure magnitudes and then

compute phasors) lead to different measurement error/noise. We will show how measurement

error/noise impacts the results. Additionally, the approach requires communication networks

to send commands to downstream PV systems. In the previous chapter, we assume constant

load and PV generation. We will show that large delays can lead to instability when load

and PV generation are time-varying.

To address these practical challenges, we enhance the Steinmetz controller via improved

algorithms. The main contributions of this chapter are as follow.

• We develop an approach to cope with inverter reactive power limits and strategies

to cope with communication delays in the presence of time-varying load and PV real

power generation; and

• we demonstrate the issues that can arise and the performance of the enhanced con-

troller on a modified IEEE 13-node system, which has more severe unbalance than

the original system [66], using real PV data (specifically, two different solar irradiation

cases) together with realistic load data.

8.2 Controller Overview

In this chapter, Steinmetz controller refers to the distributed controller in Chapter 7. More-

over, PV systems are connected in delta configuration (Case 2 in Table 7.3), and thus, the

unbalance factor is given by:

V UF =
|VA + a2VB + aVC |
|VA + aVB + a2VC |

, (8.1)

where a = ej2π/3 and VA, VB, VC are the line-to-neutral voltage phasors.

8.2.1 Problem Description

A conceptual illustration of the problem is shown in Fig. 8.1. The goal of the Steinmetz

controller is to mitigate voltage unbalance at buses with three-phase motors (referred to as

critical buses) by controlling reactive power injections from distributed PV systems. We

assume that the unbalance upstream of a critical bus is not the main cause of unbalance
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Figure 8.1: A radial distribution feeder (left) with single-phase PV systems. The
phases to which PV systems are connected are labeled below each PV
system. The flowchart (right) shows the Steinmetz controller. The mea-
surements are taken at the critical bus, here, a bus with a 3-phase motor
(M). The control signals are sent to each PV system through a simple
communication system.

and, therefore, voltage unbalance at the critical bus will be reduced after applying Stein-

metz circuit design to eliminate downstream unbalance. One Steinmetz controller works to

mitigate unbalance at one specific critical bus; however, most buses in the network see a

reduction in unbalance after the control actions are applied. Multiple Steinmetz controllers

can operate on the same network, for example, mitigating unbalance at critical buses on

different laterals; however, in this chapter we will only explore cases with a single Steinmetz

controller per network.

The flowchart providing an overview of the steps taken by the Steinmetz controller is

shown on the right side of Fig. 8.1. First, three-phase voltage and line current phasors are

measured with D-PMUs or computed from traditional meter measurements at the critical

bus. The measurements are used to compute the downstream power demand. Then, using

Steinmetz circuit design, we can determine the reactive power injections required to balance

the critical bus voltage. We use either a direct or differential command strategy to request

reactive power injections from all downstream PV systems. Requests are sent through a

simple communication network. PV systems provide the requested reactive power, up to
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their capacity. We assume communication is one-way from the controller to distributed PV

systems and so PV systems cannot report their actual injections back to the controller. The

process is repeated until the voltage unbalance is within a tolerance.

This process can be regarded as system-wide feedback control. The feeder’s voltage profile

and power losses will change due to the reactive power injections and also due to time-varying

load consumption and PV real power generation. Therefore, the compensating reactive power

should be recomputed based on the latest measurements. If the measurements are accurate,

the communication system is perfect, the reactive power injections are unlimited, and the

load and PV real power generation are constant, we find that the controller converges quickly

and can achieve zero unbalance at the critical bus.

As derived in Section 7.4, the unique reactive power compensation solution (7.18) is:

Qc
AB =

1

3
(QBC +QCA − 2QAB +

√
3(PBC − PCA)),

Qc
BC =

1

3
(QAB +QCA − 2QBC +

√
3(PCA − PAB)),

Qc
CA =

1

3
(QAB +QBC − 2QCA +

√
3(PAB − PBC)).

Let p =
[
PAB PBC PCA

]T
, q =

[
QAB QBC QCA

]T
, and qc =

[
Qc
AB Qc

BC Qc
CA

]T
,

then (7.18) can be rewritten:

qc = f(p, q) = CPp+ CQq (8.2)

where CP=
√

3
3

 0 1 −1

−1 0 1

1 −1 0

 , CQ= 1
3

−2 1 1

1 −2 1

1 1 −2

 .
8.2.2 Note on Command Strategies

For simplicity assume PV systems that are not being controlled operate at unity power

factor, though our approach also works in the case of non-unity factors. Denote the set

of PV systems connected to each phase as NAB, NBC, and NCA. We use bold symbols

to denote vectors containing variables associated with different phases in the order AB,

BC, CA. Suppose the measured line-to-line voltages and the line currents at time step t

are V t
AB, V

t
BC , V

t
CA and I tA, I

t
B, I

t
C . We first convert the currents into equivalent delta-load
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currents using the following transformation:I
eq
AB

Ieq
BC

Ieq
CA

 =
1

3

 1 −1 0

1 2 0

−2 −1 0


I

t
A

I tB
I tC

 . (8.3)

Then, the measured delta-connected power demand of downstream of the critical bus is:

sm,t =
[
V t
AB(Ieq

AB)∗ V t
BC(Ieq

BC)∗ V t
CA(Ieq

CA)∗
]T
. (8.4)

Using sm,t as the load within (8.2) and a strategy to allocate the total injections to each

PV systems, we can compute the reactive power command for each PV system i and send

out the signal Qc,t
i . Then, each PV system injects QPV,t

i equal to Qc,t
i or its reactive power

limit ±Qmax,t
i . We consider two strategies to determine the command; the direct command

strategy and the differential command strategy that copes with inverter reactive power limits.

Direct command strategy

The command is the total amount of reactive power that the PV system should provide.

First, we define the vector of reactive power injections as

qPV,t =
[∑

i∈NAB
QPV,t
i

∑
i∈NBC

QPV,t
i

∑
i∈NCA

QPV,t
i

]T
.

If the PV systems have already injected reactive power in the previous time step, the mea-

sured power demand includes those injections, i.e., qPV,t−1. Thus, the computation of the

reactive power injections for the current time step t using (8.2) should exclude qPV,t−1.

However, the operator does not know the actual reactive power injections qPV,t−1, only its

commands qc,t−1 =
[∑

i∈NAB
Qc,t−1
i

∑
i∈NBC

Qc,t−1
i

∑
i∈NCA

Qc,t−1
i

]T
. and so it computes

the new command as follows:

qc,t = f(pm,t, qm,t − qc,t−1). (8.5)

We assume qc,t is allocated to each PV system in proportion to its rated apparent power

capacity SPV
i (see (7.29)). However, its reactive power capacity is time-varying and unknown

to the controller Qmax,t
i =

√
(SPV

i )2 − (PPV,t
i )2, where PPV,t

i is its real power generation.

146



Therefore, actual injection is:

QPV,t
i =


Qmax,t
i , if Qc,t

i > Qmax,t
i

−Qmax,t
i , if Qc,t

i < −Qmax,t
i

Qc,t
i , otherwise,

(8.6)

which could be significantly different than the command.

Differential command strategy

The command is the change of reactive power that the PV system should provide. Specifi-

cally, we do not subtract the previous command, but instead determine the change in reactive

power injections needed to balance the bus:

∆qc,t = f(pm,t, qm,t). (8.7)

We assume ∆qc,t is allocated to each PV system in proportion to its rated apparent power

(see (7.29)) and:

QPV,t
i =


Qmax,t
i , if QPV,t−1

i + ∆Qc,t
i > Qmax,t

i

−Qmax,t
i , if QPV,t−1

i + ∆Qc,t
i < −Qmax,t

i

QPV,t−1
i + ∆Qc,t

i , otherwise.

(8.8)

The two command strategies are identical if we ignore inverter reactive power limits. The

proof is as follows. Consider that PV inverters do not have reactive power limits, for the

direct command strategy, we will have: qPVD,t−1 = qc,t−1. Substituting this constraint into

(8.5), we get:

qc,t = f(pm,t, qm,t − qc,t−1) = f(pL,t, qm,t − qPVD,t−1) = f(pL,t, qL,t). (8.9)

For the differential command strategy, we have ∆qPV∆,t = ∆qc,t, and together with (8.7),

qPV∆,t can be presented as:

qPV∆,t = qPV∆,t−1 + f(pm,t, qm,t). (8.10)
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Since f is a linear function, the second part of (8.10) can be rewritten as:

f(pm,t, qm,t) = f(pL,t, qL,t + qPV∆,t−1) = f(pL,t, qL,t) + CQq
PV∆,t−1, (8.11)

From Qc
AB +Qc

BC +Qc
CA = 0, we can easily obtain

CQq
PV∆,t−1 = −qPV∆,t−1 (8.12)

Finally, by substituting (8.11) and (8.12) into (8.10), we obtain:

qPV∆,t = qPV∆,t−1 + f(pL,t, qL,t)− qPV∆,t−1 = f(pL,t, qL,t) = qPVD,t. (8.13)

The above equation proves that the reactive power provided using the two strategies are

identical. The identity is valid if and only if the reactive power saturation of PV systems is

neglected and the sum of total compensating reactive power is zero. In reality, the reactive

power capacity of PV systems could be very small at noon when the systems are generating

peak real power. When this happens, the inverters may not be able to follow reactive power

commands and the direct command strategy will lead to an accumulation error between past

commands and actual responses. This can lead to divergence of the controller. In contrast,

since the differential command strategy only uses measures from time step t, it works better

in this case. An example will be shown in Section 8.4.2.

8.3 Further Challenges

8.3.1 Measurement Error and Noise

Following the PMU measurement error model in [1] and PMU noise model in [22], the

measured voltage phasor with errors and noises can be written:

Ṽ = (1 + γ)|V |ej(δ+∆δ) + εV e
jφV (8.14)

where |V |, δ are the true magnitude and angle of the voltage phasor, error quantities γ and

∆δ are random variables following uniform distributions, and model noise quantities εV and

φV are random variables following zero-mean Gaussian distributions [22]. To quantify the

noise level of the signal, the signal-to-noise ratio (SNR) is used, and for a normalized signal

with unit energy, the SNR in dB is given by: SNRdB = 20 log( 1
σ
), where σ is the standard
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deviation of the random variable. The measured current phasor with errors and noises, Ĩ,

can be expressed similarly to (8.14).

Both the error and noise quantities in the voltage and current measurements will con-

tribute to the error in the estimate of downstream delta-connected power demand, and as

a result, we will obtain inaccurate reactive power injections, which may increase unbalance.

When we do not have a measurement of the phasors, e.g., from D-PMUs, but instead need to

estimate them from measurements taken from traditional meters, our estimate of the down-

stream delta-connected power demand will generally be less accurate. We can obtain such

an estimate by using measurements of the line-to-line and line-to-neutral voltage magnitudes

along with real and reactive power flows at the critical bus to compute the voltage phase

angles and line current phasors, from which we can compute sm,t. Moreover, traditional

meters generally have larger measurement errors and noises than D-PMUs. The impact of

measurement error/noise will be investigated in Section V.

8.3.2 Communication Delays

We assume that communication delays follow a Gamma distribution [118], specifically, that

the time delay for the command to PV i at time t is τ ti = Γ(α, β), where E[τ ] = α/β, V ar[τ ] =

α/β2. Because of the delays, the reactive power injections will not be as expected and the

controller will continue sending reactive power commands while the unbalance persists. This

could result in an over-response which could worsen the unbalance. One way to mitigate

this issue is to slow down the commands. Our first strategy, referred to as the conditional

triggered strategy, is to send a new input only when the change of VUF with respect to the

previous time step is larger than a threshold m:

|V UF t − V UF t−1|/V UF t−1 > m. (8.15)

One disadvantage of the strategy is that when the message is completely lost, the controller

will never be activated and the unbalance will not be mitigated.

Our second strategy to cope with delays is to add a proportional gain k = [0, 1] to the

controller, i.e., we down-scale the command in order to reduce the response. The gain can

either be constant or time-varying. When it is constant, we also assume it is identical for all

phases. Alternatively, it could be adaptive, e.g., the gain for phase AB could be computed
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as

ktAB =
|∆V t

AB −∆V t−1
AB |

∆V 0
AB

, (8.16)

where ∆V t
AB is the absolute value of the difference between the voltage magnitude in phase

AB and the average voltage magnitude across all phases and t = 0 corresponds to the time

step in which we begin to use Steinmetz controller. Assuming unbalance decreases while

we are using the Steinmetz controller, which is true when unbalance at the critical bus

is primarily due to downstream unbalance, normalizing by ∆V 0
AB ensures that the gain is

smaller than 1. The gain for the other phases could be can similarly. When PV systems fail

to respond adequately, the gain will be small and the next command will be small mitigating

the chance of requesting too much reactive power from the PV systems.

8.4 Case Studies

In this section, we conduct a number of case studies using the IEEE 13-node feeder modified

to include distributed PV systems, as shown in Fig. 7.13.

8.4.1 Setup

We use system data for the IEEE 13-node feeder from [66]. The load data is assumed to be

the base power consumption of each load. Bus 632 is assumed to be the critical bus with

a three-phase motor, and therefore the objective is to balance the voltage at Bus 632. We

make some modifications to the original feeder: 1. The taps of the regulator are set to be

identical in each phase; 2. line 630-632 is changed to be balanced (self phase impedance is

0.3418 + 1.0335j Ω/mile, mutual phase impedance is 0.1558 + 0.4367j Ω/mile); and 3. the

configurations of Line 684-632 and Line 684-611 are changed to be same as that of Line

671-684. The reason for the first two changes is that we want to exclude the impact of the

voltage source unbalance (the taps are unequal) and the upstream line unbalance (Line 630-

632 is not transposed) on the voltage unbalance of Bus 632. With these changes we are able

to achieve zero unbalance at Bus 632 when we balance the downstream loading via Steinmetz

circuit design. The last change is made because we want to add delta-connected PV systems

to Buses 611 and 632. Originally, Line 684-632 and Line 684-611 are single-phase.

We connect 11 single-phase delta-connected PV systems to different buses in the feeder,

the details of the location, the base PV real power generation PPV
base (kW ), and the apparent

power rating SPV (kV A) of each PV are provided in Table 8.1. The PV real power generation
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Table 8.1: Details of single-phase PV systems

Bus 632 633 634 645 646 671 652 611 680 692 675

Phase BC AB AB BC BC AB CA CA BC CA AB

PPV
base 200 80 80 200 200 50 100 60 50 100 200

SPV 340 135 135 340 340 90 170 110 90 170 340

Time
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Figure 8.2: Normalized real power generation of PV systems and real power consump-
tion of loads from sunrise to sunset.

is simulated based on irradiance data from the National Renewable Energy Laboratory’s

Measurement and Instrumentation Data Center [100]. We pick a clear day and a cloudy

day using data from Los Angeles, CA on April 4 and May 4, 2016, respectively. We linearly

interpolate the data from one-minute interval to two-second interval. The irradiance data is

normalized by the value at 12 PM on May 4 and shown in Fig. 8.2. We use a two-second

interval residential profile from [74] and normalized it by dividing by the value at 12 PM.

We assume all PV systems and loads follow the same trends. We set the real power output

of each PV system equal to its base real power generation multiplied by the normalized PV

data and the load equal to its base power consumption multiplied by the normalized load

data. Total base power consumption of load is 3466 kW and total base real power generation

of PV is 1320 kW . The total real power generation of PV systems does not exceed the power

demand of load at any time in this case.

Figure 8.3 shows the impact of deployment of single-phase PV systems in the feeder on
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Figure 8.3: The impact of distributed solar PV systems on the VUF at Bus 632.

the VUF at Bus 632. It is observed that VUF significantly increases at noon when we

have high PV generation. The VUF oscillates on cloudy days due to the intermittency of

PV generation. The largest VUFs occur during when the demand peaks; at that time PV

generation is small, which indicates that the reactive power capacity of PV systems is large.

Therefore, controlling the PV inverter reactive power injections is a compelling method to

mitigate voltage unbalance in the evening.

8.4.2 PV Inverter Reactive Power Limits

We first assume perfect measurements and delay-free communication networks so that we can

compare the direct and differential command strategies. The results are shown in Fig. 8.4a,

where the solid yellow line is the VUF without control, the red dashed line is the VUF using

the direct command strategy, and the green dotted line is the VUF using the differential

command strategy. All PV inverters reach their maximum reactive power limits between 9

AM and 2 PM. As we can see, both strategies are able to achieve zero unbalance before 9

AM and can reduce VUF from 9 AM to 2 PM identically as the PV inverters are generating

their maximum reactive power output. However, after 2 PM, the VUF resulting from the

direct command strategy increases, becoming even higher than that of the initial case. The

main reason can be seen from the reactive power output of the single-phase PV at bus

652, as shown in Fig. 8.4b. The command given by the direct command strategy contains

the accumulated error between the previous commands and responses. Thus, the command
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Figure 8.4: (a) The VUF and (b) the reactive power output of the PV system at Bus
652 using different command strategies on a clear day.
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Figure 8.5: Histograms of the final VUF for 10,000 samples only considering magnitude
error, angle error, or noise. The initial VUF = 0.7783%.
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Figure 8.6: Histograms of the final VUF (%) with 10000 samples when using PMUs
versus traditional meters. The initial VUF =0.7783%.

diverges significantly from the required reactive power injection and becomes much larger

than the reactive power limit. This results in PV inverters consistently producing maximum

reactive power, which eventually leads to an increase in the VUF. On the other hand, the

differential command strategy is able to compute the required reactive power injections

resulting in a VUF of zero after 2 PM. The remaining results use the differential command

strategy.

8.4.3 Measurement Error and Noise

Next, we assume perfect communication but inaccurate and noisy measurements. We only

test on t =12 PM of the cloudy day to explore the impact of measurement errors and noises on
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the final VUF after applying the Steinmetz controller. The initial VUF at 12 PM is 0.7783%.

For other time steps, the impact of measurement error and noise on the performance of the

Steinmetz controller is similar.

We first consider the case when D-PMUs are available. We assume inaccurate voltage and

current phasor measurements are used to estimate downstream power demand and so mea-

surement errors and noises are incorporated into the computation of Steinmetz compensating

reactive power, leading to the final VUF being greater than 0. The maximum amplitude

error is set to 2% and the maximum phase angle error is set to 5◦. According to [22], we

use SNR = 45 dB to simulate the noises in measurements. The base line-to-line voltage

magnitude 4160 V and the base apparent power 1 MVA are used to compute the variance of

the noises. Figure 8.5 shows the distribution of the final VUF over 10,000 samples when we

only consider magnitude error, angle error, or noise at one time. We find that the angle error

has the most impact on the final VUF. It can also be seen that we can considerably reduce

the unbalance when we have 2% magnitude error and 45 dB SNR (which are realistic).

Next, we assess the impact of errors and noise combined, and we also compare the results

of using D-PMU measurements versus traditional meter measurements. We assume that the

meters have 5% maximum magnitude errors and SNR = 35 dB, i.e., they are more inaccurate

and noisier than D-PMUs. The VUF distributions are shown in Fig. 8.6. The mean VUF

using D-PMUs is 0.1146% while the mean VUF using traditional meters is 0.2150%.

8.4.4 Communication Delays

Next, we consider the impact of communication delays. We assume the commands sent to

all PV systems (except the PV system at Bus 632, which is where the controller is located)

have a random delay following the Gamma distribution: Γ(α = 10, β = 5/6). We pick a

15-minute interval (T = 900s) on the cloudy day. The VUF without control and net feeder

demand are shown in Fig. 8.7. The average value of the VUF over this 15-minute interval is

0.8089%. Figure 8.8 shows an example of the VUF after applying the Steinmetz controller

over a communication network with delays (red line). Note the significant oscillations in the

VUF and how, at some points, the controller worsens the unbalance.

We tested each delay compensation strategy by conducting 100 simulations of this 15-

minute interval. For the conditional triggered strategy, the mean VUF for different threshold

values are 0.4004% (m = 0.1), 0.1963% (m = 0.2), and 0.1553% (m = 0.5). As m increases,

PV systems have more time to respond, which results in better unbalance improvement. For
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Figure 8.7: The VUF without control and net feeder demand (PL − PPV) from 11:20
AM to 11:35 AM on a cloudy day.

the proportional controller with the constant gain, the mean VUF for different gains are

0.0636% (k = 0.2), 0.1882% (k = 0.5), and 0.3487% (k = 0.8). Smaller gains results in lower

mean VUFs. For the proportional controller with the adaptive gain described in (8.16), the

mean is 0.1079%. Examples of the VUF with different delay compensation strategies are

shown in Fig. 8.8. All strategies are able to improve the Steinmetz controller and reduce the

unbalance during the interval. The spike near 11:25 AM is because the PV systems are at

their reactive power limit. If the delay distribution changes, e.g., β = 1/3, then k = 0.2 is

not enough to achieve same unbalance reduction as when β = 5/6. Specifically, the mean

VUF becomes 0.2036%. Using the proportional controller with the adaptive gain the mean

VUF becomes 0.1307% and using the conditional triggered strategy (m = 0.5) the mean

VUF becomes 0.1606%. Therefore, the conditional triggered strategy and the proportional

controller with the adaptive gain appear less sensitive to the distribution of the delay.

8.5 Chapter Conclusion

In this chapter, we investigated a number of practical issues that would complicate the

application of a Steinmetz circuit design-based feedback controller to mitigate voltage un-

balance in distribution networks using reactive power injections from distributed PV systems.

Specifically, we explored the impact of reactive power limits, measurement errors/noise, and

communication delays given time-varying load and PV generation. We find that using the

differential command strategy can significantly reduce voltage unbalance even when PV sys-
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Figure 8.8: The VUF with control from 11:20 AM to 11:35 AM on a cloudy day.

tems reach their reactive power limits. Additionally, our results show that measurement

error and noise do not have a large impact on the controller but communication delays may

worsen the unbalance. However, with our proposed strategies to cope with communication

delay, the Steinmetz controller is able to effectively mitigate voltage unbalance.

In future work, instead of communication delays, we will also consider missing/bad data.

We plan to develop a robust algorithm to deal with these communication issues.

157



Chapter 9

Centralized and Steinmetz

Controllers: Comparison and

Integration

9.1 Chapter Introduction

Previous literature has sought to achieve the best improvement to unbalance by solving

optimization problems to centrally control the real and/or reactive power of distributed PV

systems [8, 47, 95, 120, 141]. The computation of the optimal solution with respect to

a large unbalanced distributed system is generally complex. To overcome this issue, [121]

proposed a distributed algorithm to decompose the centralized three-phase optimization

problem into three single-phase subproblems. Although the distributed algorithm speeds up

the convergence of the centralized controller, it still requires solving optimization problems.

As an alternative, we developed a distributed controller based on Steinmetz circuit design

[62] in Chapter 7, which we refer to as a Steinmetz controller, to mitigate voltage unbalance

without solving an optimization problem. This approach uses only local measurements at

the node that is being balanced, which is referred to as the critical node, and then solves a set

of linear equations to compute the required compensating reactive power. The computation

time is short and, therefore, the controller responds quickly to changes in the operating point.

Reactive power requests are sent to distributed PV systems downstream of the critical node

through a communication network.

The major limitation of the Steinmetz controller is that it does not consider any engi-

neering limits. Therefore, in this chapter, we propose two types of strategies to reduce the
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possibility of violating engineering limits when using our Steinmetz controller: 1) a heuristic

decentralized approach; and 2) using the optimal solutions from the centralized controller.

An integrated controller is then developed based on the second type of strategy. The main

objective of this chapter is to explore proper ways to utilize the solutions of the central-

ized controller within the distributed controller and compare the performance in a variety of

scenarios.

In Chapter 7, we compared the performance of the Steinmetz controller with a model-free

controller. In Chapter 8, we showed that the Steinmetz controller can effectively mitigate

voltage unbalance on a small system with time-varying load and PV generation when the

critical node is close to the substation. However, we have not yet studied the performance

of the Steinmetz controller on a large feeder with time-varying load and PV generation,

nor have we compared the Steinmetz controller with a centralized controller. As such, in

this chapter, we evaluate and compare the performance of the centralized controller, the

Steinmetz controller, and the integrated controller, with the critical node being either close

to or far from the substation, through time-varying case studies on the 13-node feeder and the

GridLAB-D taxonomy feeder R1-12.47-1 with a high penetration of distributed PV systems.

The main contributions of this chapter are as follows:

• We test the Steinmetz controller on a large feeder with time-varying load and PV

generation, and demonstrate the limitations of the Steinmetz controller.

• We summarize the pros and cons of the distributed controller and the centralized

controller.

• We propose two heuristic strategies to improve the performance of the distributed

controller.

• We propose an integrated controller that modifies the design of the Steinmetz con-

troller to use centralized controller results and compare its performance with those of

a centralized controller and a distributed controller acting individually.

9.2 Controller Overview

In this section, we first describe the formulation of the centralized controller from [47].

Next, we review the design of the Steinmetz-based distributed controller and discuss the
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limitations of the distributed controller. We then propose two heuristic strategies to improve

the performance of the distributed controller. Finally, the integrated controller is introduced.

The objective is to improve the negative-sequence voltage unbalance; thus, the unbalanced

factor is defined as:

VUF(%) = 100× |V2|
|V1|

(9.1)

where V2 and V1 are the negative-sequence and positive-sequence voltages.

9.2.1 Centralized Controller

When the centralized controller is used to mitigate unbalance, the reactive power injections

of PV systems are determined by solving an optimization problem. The objective is to

minimize the unbalance factor VUF at the critical node n (n ∈ N3φ, where N3φ is the

set of the three-phase nodes in the feeder), subject to various engineering constraints in

three-phase, unbalanced distribution grids. The optimization problem is formulated as:

minimize VUFn

subject to AC power flow equations,

Voltage magnitude limits,

Inverter limits,

VUFfinal
k ≤ VUFinitial

k ,∀k ∈ N3φ.

(9.2)

The equality constraints of (9.2) are the three-phase AC power flow equations; modeling

of distribution lines, transformers, voltage regulators, and ZIP loads are introduced in detail

in [47]. The rest of the constraints are engineering limits. The inverter limits are the reactive

power capacity of each PV inverter, determined by its apparent power rating and the active

power generation it is providing. Suppose the power rating of the PV system i is Srated
i , and

the active power it generates at time t is Pi,t, the reactive power limit of the PV system i at

time t is:

Qlim
i,t = ±

√
(Srate

i )2 − (Pi,t)2 (9.3)

The final constraint is to ensure that we do not increase the unbalance at noncritical nodes

when improving the unbalance at the critical node.

The optimization problem (9.2) is a large-scale, non-convex, nonlinear problem, and thus

is solved using a nonlinear programming solver. We denote the optimal reactive power
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injections of PV systems determined by (9.2) asQPV, ctr = [QPV, ctr
i ,∀i ∈ ΩPV], where QPV, ctr

i

is the reactive power injection of the PV system i and ΩPV is the set of all PV systems.

9.2.2 Distributed Controller

The distributed controller uses local measurements to compute the required compensat-

ing reactive power based on Steinmetz design and then sends out the commands to each

downstream PV system through a communication network. Here, we briefly review how

the command values are determined, using wye-connected PV systems as an example. For

delta-connected PV systems, the procedure is similar.

When we apply Steinmetz design to compute the reactive power compensation, we assume

that the upstream network of the critical node is balanced; as a result, the negative-sequence

voltage is eliminated when we balance the load by reducing the negative-sequence current I2

to zero. Suppose that the measured three-phase voltages and power demand are V m
A , V

m
B , V

m
C

and SmA , S
m
B , S

m
C . Using the Fortescue transformation, the negative-sequence current is de-

rived as:

3Ic2 = IcA + a2IcB + aIcC = 0, (9.4)

where

IcA =
(SmA + jQc,Y

A

V c
A

)∗
, (9.5a)

IcB =
(SmB + jQc,Y

B

V c
B

)∗
, (9.5b)

IcC =
(SmC + jQc,Y

C

V c
C

)∗
, (9.5c)

where V c
A, V c

B, V c
C are the phase-to-neutral voltages when the negative-sequence voltage is

eliminated. As discussed in Section 7.4, it may not be good to assume that V c
A, V c

B, V c
C

are balanced when V2 is zero, so we again use the measured voltages to approximate the

line-to-neutral voltages in (9.5):

V c
A = V m

A , V c
B = V m

B , V c
C = V m

C . (9.6)

By splitting (9.4) into its real and imaginary parts, we obtain two equations, however

we have three unknowns; one more constraint is needed to reach a unique reactive power

compensation solution. Therefore, we add a constraint that requires the sum of the changes
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in reactive power injections to be a specific value Q̂:

Qc,Y
A +Qc,Y

B +Qc,Y
C = Q̂. (9.7)

Now, we solve the problem:

Re{Ic2} = 0 (9.8a)

Im{Ic2} = 0 (9.8b)

Qc,Y
A +Qc,Y

B +Qc,Y
C = Q̂ (9.8c)

Let S =
[
SmA SmB SmC

]T
, V =

[
V m
A V m

B V m
C

]T
, and Qc =

[
Qc,Y
A Qc,Y

B Qc,Y
C

]T
, then

the three-phase reactive power compensation strategy of the distributed controller Qc that

given by the solution of (9.8) can be presented as:

Qc = f(S,V , Q̂) (9.9)

Next, we assign Qc to each PV system:

QPV,c
i = γiQ

c,Y
φ , (9.10)

where φ ∈ {A,B,C} is the phase to which the PV system i is connected and γi is the

contribution ratio of this PV system. In addition, we have the following constraint:∑
i∈Ωφ

γi = 1, ∀φ ∈ {A,B,C} (9.11)

where Ωφ is the set of downstream PV systems that are connected to phase φ.

Because of the approximation (9.6) and varying load and PV generation, the distributed

controller is implemented periodically. The command value (9.10) will be re-computed based

on the updated measurements.

In Chapter 7, Q̂ was set to zero so that the total power demand in the system remained

constant and the voltage profile did not change significantly. In addition, we simply allocated

Qc in proportion to each PV system’s apparent power rating:

γi =
Srate
i∑

j∈Ωφ
Srate
j

(9.12)
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Chapters 7 and 8 showed that the above design significantly improved the unbalance at

critical nodes close to the substation. However, the design has two major limitations:

• The distributed controller does not work well when the critical node is far from the

substation. This is because the number of controllable downstream PV systems is

small, and upstream unbalance will still cause the voltage at the critical bus to be

unbalanced, even the downstream loading is able to be balanced.

• The distributed controller does not consider engineering limits. If the distributed

controller commands PV systems to inject reactive power, the voltage magnitudes at

nodes with PV systems will increase, and may exceed the upper limit when the initial

values are already close to the limit. In addition, the goal of the distributed controller

is to mitigate unbalance at one specific node; the controller does not account for the

unbalance of other nodes.

9.2.3 Heuristic Strategies to Improve the Distributed Controller

We propose two strategies to alleviate the adverse impacts caused by the distributed con-

troller. The first strategy uses a grouped controller to deal with the first limitation. The

term ‘grouped controller’ refers to multiple distributed controllers deployed in the following

way: the feeder is partitioned into several groups, and for each group, a distributed controller

is used to control the PV systems in this group. Local communication exists within groups,

but not between groups.

When the critical node is far from the substation, instead of having only one distributed

controller at the critical node, multiple distributed controllers are applied to upstream nodes

in order to improve the unbalance of the upstream network. An example of the grouped

controller is presented in Fig. 9.1. The objective is to mitigate voltage unbalance at Node Y.

All PV systems are divided into two groups: one includes all the downstream PV systems of

the critical node (Group Y), and the other includes the upstream PV systems (Group X).

The downstream PV systems form the downstream distributed controller, which is utilized

to balance the load downstream of the critical node; the upstream PV systems form the

upstream distributed controller, which aims to balance the load downstream of Node X in

order to reduce the unbalance at Node X. We expect the grouped controller to reduce un-

balance both upstream and downstream of the critical node, which will improve the voltage

unbalance at the critical node. Although in practice more than two groups can be used,

163



~

Substation

SX
m ,VX

m

Node X

SY
m ,VY

m

Node Y

Group YGroup X

Figure 9.1: A conceptual illustration of the grouped controller. The critical node is
Node Y and we divide all PV systems into two groups.

more groups would require extra measurements. Therefore, in this chapter we only con-

sider grouped controllers with two groups; in addition, we assume the two controllers act

simultaneously.

The second strategy, referred to as the local PV strategy, is proposed to reduce the viola-

tions of voltage magnitude limits. The fundamental idea behind this second strategy is that

if the voltage magnitude is larger than the upper limit (V ), PV systems should consume re-

active power; if the voltage magnitude is smaller than the lower limit (V ), PV systems should

inject reactive power. Consequently, the command value sent by the distributed controller

is modified to:

QPV,c
i =

−Q
PV,c
i , if (V m

i − V )QPV,c
i or (V m

i − V )QPV,c
i > 0

QPV,c
i , otherwise.

(9.13)

where V m
i is the voltage magnitude of the node to which the PV system i is connected. If

the voltage magnitude is greater than the upper limit and the command is to inject reactive

power (QPV,c
i > 0), in order to avoid increasing the voltage magnitude, the command will

change to request the PV system to consume reactive power. The amount of reactive power

consumption is arbitrary, and here we simply change the sign of the command. Similarly,

when the voltage magnitude is smaller than the lower limit and the command is to consume

reactive power (QPV,c
i < 0), the command will change to inject reactive power.

Due to the local PV strategy, the total injected reactive power in each phase of the

current time step does not equal its desired value. However, in the following time steps, the

distributed controller will command other PV systems to compensate for this difference: PV

systems change their injections to make the total injected reactive power as close as possible

to the desired value to improve the unbalance at the critical node.
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Note that both strategies are heuristic; the grouped controller can achieve better unbalance

reduction compared to the single distributed controller, but there is no guarantee that the

local PV strategy can eliminate the voltage violations. Moreover, neither strategy can be

used to reduce the unbalance at noncritical nodes like the centralized controller does with

the constraint VUFfinal ≤ VUFinitial.

9.2.4 Integrated Controller

The choice of Q̂ and γ in (9.9) and (9.10) will affect the voltage profile of the system after

compensating reactive power. Based on local measurements, Q̂ and γ cannot be determined

to avoid violations of the engineering limits; however, since the centralized controller knows

the system details, it can provide us Q̂ and γ respect the engineering limits. Therefore, we

propose to integrate the centralized controller results into the distributed controller in order

to mitigate voltage limit violations and increases in voltage unbalance at noncritical nodes.

The new controller is referred to as the integrated controller.

Based on the centralized controller results at current time step t, assuming that PV systems

do not compensate any reactive power in the previous time step, the sum of the changes in

reactive power injections Q̂t is set as:

Q̂t =
∑
i∈ΩDis

QPV,ctr
i,t , (9.14)

where ΩDis is the set of PV systems controlled by the distributed controller and QPV,ctr
i,t is the

optimal reactive power injection of the PV system i determined by the centralized controller

at time step t. The contribution ratio of the PV system i at time t based on centralized

results is given by,

γctr
i,t =

QPV,ctr
i,t∑

j∈Ωφ
QPV,ctr
j,t

. (9.15)

One disadvantage of computing the ratio based on the centralized results is that the mag-

nitude of the ratio may become very large when the denominator of (9.15) is very small.

This could happen when some PV systems in one phase are consuming reactive power while

others are injecting reactive power. A large ratio means a large command value, which would

easily cause PV systems to operate at their maximum reactive power capacity. When a large

amount of PV systems reach their reactive power limits, they would not be able to provide

the desired reactive power to mitigate unbalance.
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Table 9.1: Integrated Controller Configurations

Controller # Strategy γ Local PV Strategy

1
Indirect

Centralized N
2 PV rating Y

3
Direct

Centralized N
4 PV rating Y

We will now introduce different configurations of the integrated controller. First, we

propose a strategy that indirectly uses the centralized results, referred to as the ‘Indirect

Strategy’. Two integrated controllers are designed under this strategy, as summarized in Ta-

ble 9.1 (see Strategy Indirect). The integrated controller #1 uses the centralized ratio (9.15)

to allocate the reactive power to each PV system while controller #2 uses the ratio based on

PV rating (9.12). In addition, controller #2 will use the local PV strategy. For both con-

trollers, in the time step t at which we receive the centralized controller results, we compute

the three-phase reactive power compensation Qc
t by plugging (9.14) into (9.9). For the rest

of time steps, we do not change the total injected reactive power. The requested sum of the

changes in reactive power injections is set to zero because we do not have centralized results

to know how to change the total injected reactive power. An approach to determine Q̂ based

on the forecasts of load and PV generation is needed when the centralized controller is not

available, which is a subject for future research.

Controller #1 is only suitable for cases where the critical node is close to the substation due

to the fact that its allocation of reactive power to each phase (Qc,Y
A , Qc,Y

B , Qc,Y
C ) is similar (but

not the same due to the approximation in (9.6)) to the allocation obtained by the centralized

controller. This is due to the fact that centralized control minimizes the VUF by balancing

the downstream load, which is also the goal of the distributed controller. Using the same

centralized ratio (9.15), the reactive power injections of controller #1 will be similar to those

of the centralized controller, and therefore it can satisfy the engineering limits. However,

when the critical node is far from the substation, minimizing the VUF is not equivalent to

balancing downstream load. This will result in a different allocation of reactive power to

each phase than what we get from the centralized controller. Thus, we cannot guarantee

that controller #1 can reduce the violations of the engineering limits. In this case, we should

use controller #2. An example will be shown in Section 9.3.4.

Next, we propose another strategy that directly utilizes the centralized controller results,
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referred to as the ‘Direct Strategy’. As shown in Table 9.1 (see Strategy Direct), two con-

trollers are designed: controller #3 uses the centralized ratio while controller # 4 uses the

ratio based on PV rating with the local PV strategy. Under this strategy, for the time step

t at which we receive the centralized controller results, we directly send out QPV,ctr
t from

the centralized controller to each PV system. At the same time, we record the power de-

mand at the measured node of the distributed controller Sctr. In the following time steps,

the objective of the integrated controller is to eliminate the change of the negative-sequence

voltage introduced by the change of load and PV generation. The three-phase reactive power

compensation is calculated as follows:

Qc
t = f(Smt − Sctr,V m

t , 0). (9.16)

Again, Q̂t = 0 because we have no information on how to change the total injected reactive

power. The term Smt −Sctr represents the change of net demand with respect to that at the

time when we directly apply the centralized controller results.

9.3 Case Studies

In this section, we present several case studies on the IEEE 13-node feeder [58] and the

taxonomy feeder R1-12.47-1 [107]. We first define the performance metrics for the controller

evaluation. We then provide the details of the feeders and the real-time simulations. The

centralized controller is implemented in Julia using JuMP and solved using a nonlinear

programming solver Ipopt, and the distributed controller and the integrated controller are

implemented in MATLAB. Next, we compare the performance of the centralized controller

and the distributed controller, considering both static and time-varying cases. The pros

and cons of each controller are then discussed. In addition, we test the performance of

the heuristic strategies introduced in Section 9.2.3. Lastly, we present the results of the

integrated controller.

Assume the number of the time steps is T and the number of the nodes is N . We set the

upper and lower limits of the voltage magnitude as V = 1.1, V = 0.9. The performance of

each controller is evaluated based on the following aspects:

• Unbalance improvement: for static cases, we will compare the final VUF at the critical

node n (VUFn) achieved by each controller; for time-varying cases, the mean VUF at

the critical node n over the day (VUFn =
∑

t VUFn,t/T ) is compared.
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• Violation of the voltage limits: The percent violation of the voltage limits (α) is defined

as

α = 100×
∑

t

∑
n an,t

NT
(9.17)

where an,t is a binary variable indicating the voltage limit violation at node n and time

step t:

an,t =

1, if V m
n > V or V m

n < V

0, otherwise
(9.18)

• Violation of the limit VUFfinal
n ≤ VUFinitial

n ,∀n ∈ N3φ: The percent violation of this

limit (β) is defined as

β = 100×
∑

t

∑
n bn,t

NT
(9.19)

where bn,t is a binary variable indicating whether the unbalance at a three-phase node

n and time step t becomes worse or not after implementing a controller:

bn,t =

1, if VUFfinal
n,t > VUFinitial

n,t

0, otherwise
(9.20)

9.3.1 Simulation Setup

We simulate the feeders using a 1-minute resolution load and PV data, and we assume that

load and PV generation remain constant for the duration of one minute. The PV real power

generation is simulated based on 1-minute irradiance data from the National Renewable

Energy Laboratory’s Measurement and Instrumentation Data Center [100]. We use the 1-

minute or 15-minute data from Pecan Street [119] to generate the load profiles. The 1-minute

and 15-minute data are collected at different locations and on different days. The details of

PV and load profiles for each feeder are discussed below.

Fig. 9.3 shows the one-line diagram of the IEEE 13-node feeder [58], with system data

available in [66]. Similar to what had been done in Chapters 7 and 8, we balance the upstream

network of 632, as discussed in Section 7.6.2. We connect 15 houses into the feeder: for each

house, we assume there are 5 residential loads and 5 PV inverters. Instead of using the

available 1-minute load data, we linearly interpolate the 15-minute load data to a 1-minute

interval. This is because we did not observe any violation of the engineering limits of the

distributed controller using the 1-minute data, however the interpolated 15-minute load data
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Figure 9.2: Normalized real power generation profiles of PV systems.
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Figure 9.3: IEEE 13-node feeder [58] with houses connected visualized using [134] .

did expose the disadvantages of the distributed controller. The feeder has 75 PV systems,

20, 25, and 30 of those systems connected to phases A,B,C, respectively. All PV systems

are rated at Srate = 35 kVA and their base real power generation are randomly generated

from the range of 15 to 20 kW. We pick the irradiance data collected on a cloudy day in

January 2020 in Las Vegas, NV and normalized the data by the irradiance value at 12 PM,

as shown in Fig. 9.2 (see PV profile #1). We assume all 75 PV systems follow the same

trend as PV profile #1. We set the real power output of each PV system to be equal to its

base real power generation multiplied by the normalized PV data, and set 632 and 671 as

the critical nodes.

Fig. 9.4 shows the one-line diagram of the R1-12.47-1 feeder. PV systems are added to

598 single family residences, with 265, 150, and 183 of those systems connected to phases

A,B,C, respectively. All PV systems are rated at Srate = 20 kVA and their base real power

generation are randomly selected from the range of 8 to 13 kW. We divide the feeder into six

different areas as shown in Fig. 9.4. PV systems in the same area have the same PV profile,

and each area has a different PV profile. To create the PV profiles of the entire feeder on

one day, six PV profiles are required; they are generated based on irradiance data collected

on six cloudy days from January to June 2020 (one day per month) in Las Vegas, NV. Each

set of data is normalized by its value at 12:00 PM, as shown in Fig. 9.2. Again, the real

power output of each PV system is set equal to its base real power generation multiplied by
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Figure 9.4: Taxonomy feeder R1-12.47-1 [107] visualized using [99].

the normalized PV data. We pick 598 1-minute resolution load profiles randomly out of 750

available ones from [119]. We choose two nodes, 17 and 359, as the critical nodes: 17 is close

to the substation and 359 is far from the substation.

9.3.2 Comparison between Centralized Controller and

Distributed Controller

We first consider the static cases where the load and PV generation remain constant dur-

ing the computation of the reactive power compensation. The centralized controller and the

distributed controller are evaluated using the load and PV generation at 12:00 PM, mainly

to compare the computation time of each controller. For the distributed controller, we keep

it running until a stable VUF is reached. The final VUF at the critical node, violation of en-

gineering limits, and computation time are summarized in Table 9.2. During the simulation,

we do not observe the increase of unbalance at any node, resulting β = 0; therefore, we only

show the percent violation of voltage limits (α) in the table. The abbreviations ‘Ctr.’ and
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Table 9.2: Comparison of the results: constant load and PV

Feeder
Case Critical VUF (%) α (%) Comp. time (s)

# Node Int. Ctr. Dis. Int. Ctr. Dis. Ctr. Dis.

13-node
I 632 0.5562 0.0000 0.0000 0.000 0.000 0.000

0.2 0.2
II 671 1.6713 0.0000 0.7674 0.000 0.000 0.000

R1
III 17 0.8629 0.1369 0.0125 0.408 0.000 24.183

1500.0 3.0
IV 359 1.7185 0.1713 0.8295 0.408 0.000 13.747

Table 9.3: Comparison of the results: time-varying load and PV

Feeder
Case Critical VUF (%) α (%) β (%)

# Node Int. Ctr. Dis. Int. Ctr. Dis. Ctr. Dis.

13-node
I 632 0.5394 0.0000 0.0000 0.422 0.000 0.446 0.000 1.668

II 671 1.7370 0.0000 0.9922 0.422 0.000 16.908 0.000 29.236

R1
III 17 0.8602 0.1256 0.0085 0.087 0.003 7.036 0.000 0.000

IV 359 1.7459 0.1764 0.8988 0.087 0.025 5.145 0.000 0.000
.

‘Dis.’ represent the centralized controller and the distributed controller, respectively. For

each feeder, we consider two cases with different critical nodes. In each case, the objective

is to minimize VUF at the critical node. The initial VUF at the critical nodes and percent

violation of voltage limits are also presented in Table 9.2 (see Int.).

As indicated in Table 9.2, both controllers can reduce the unbalance at the critical node.

The distributed controller is only able to perfectly eliminate the unbalance when network

upstream of the critical node is balanced. When the critical nodes are far from the substation

(see Critical Node 671, 359), the distributed controller cannot achieve the same unbalance

improvement as the centralized controller. When we reduce the unbalance at node 17 in

the R1-12.47-1 feeder, the final VUF by the distributed controller is lower than that by the

centralized controller; however, the distributed controller has significantly more voltage viola-

tions. In all cases, the centralized controller does not violate any limit while the distributed

controller sometimes results in very large percent violations. Regarding the computation

time, the distributed controller is fast (3 seconds), while the centralized controller needs 25

minutes to obtain the optimal solutions for the R1-12.47-1 feeder.

Next, we consider the time-varying cases where the load and PV generation are changing
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following the 24-hour profiles discussed in Section 9.3.1. We have four cases; the objective

of each case is to reduce the unbalance at the critical node. Since the computation time

of the distributed controller is short, we assume the distributed controller operates every

10 seconds. For the R1-12.47-1 feeder, the centralized controller takes approximately 16-

30 minutes to obtain a solution. Therefore, we assume for every 30-minute period, the

centralized controller takes measurements of load and PV generation at the beginning of

the period, and then uses the entire period to compute the reactive power injections of each

PV system. At the end of the period, PV systems will receive the results of the centralized

controller and inject reactive power as commanded.

Table 9.3 summarizes the mean VUF of the whole day (VUF) at the critical nodes, percent

voltage violation (α), and percent violation of the limit VUFfinal ≤ VUFinitial (β) for different

cases. Similar to the results of the static cases, both controllers reduce the mean VUF at

the critical nodes. In Case III, the distributed controller achieves lower mean VUF than the

centralized controller does, but the percent violation of the engineering limits is relatively

high. Another finding is that the centralized controller cannot satisfy the engineering limits

for the R1-12.47-1 feeder. This is because the reactive power injections generated by the

centralized controller are computed using outdated measurements. However much lower

α and β values are achieved using the centralized controller than using the distributed

controller. In addition, the centralized controller reduces the violation of the voltage limits

compared with that of the initial cases with uncontrolled PV systems (see α, Int. versus

Ctr.).

Fig. 9.5 shows the VUF at all three-phase nodes in the 13-node feeder when the objective

is to reduce the unbalance of 632 (Case I in Table 9.3), and Fig. 9.6 shows the voltage

magnitudes of all nodes in the 13-node feeder after applying the distributed controller. As

shown in Fig. 9.5, the distributed controller achieves perfect balance at the critical node, as

does the centralized controller throughout the entire day. However, unlike the centralized

controller, the unbalance at 634, 671, 692, and 675 become worse around 6 - 7 PM. Moreover,

we observe that the voltage magnitudes of some nodes around that period are also below 0.9

p.u., as shown in Fig. 9.6. In contrast to the distributed controller, the centralized controller

has zero values for both α and β. Similar results can be observed in Table 9.3 when the

critical node is 671.

Based on the comparisons of the results for both static and time-varying cases, we summa-

rize the pros and cons of the centralized controller and the distributed controller in Table 9.4.

In all cases, the centralized controller can significantly reduce the unbalance, and has low

173



 6:00AM  6:00PM 12:00AM12:00AM

1

2

V
U

F(
%

)

Node 632 (Critical)

 6:00AM  6:00PM 12:00AM

1

2

V
U

F(
%

)

Node 633

 6:00AM  6:00PM 12:00AM

1

2

V
U

F(
%

)

12:00PM 

Node 634

 6:00AM  6:00PM 12:00AM

1

2

V
U

F(
%

)

12:00PM 

Node 671

 6:00AM  6:00PM 12:00AM12:00PM 
Time

1

2

V
U

F(
%

)

12:00PM 

Node 692

 6:00AM 12:00PM  6:00PM 12:00AM
Time

1

2

V
U

F(
%

)

12:00PM 

Node 675

Initial
Distributed Controller 
Centralized Controller

0

12:00AM
0

12:00AM
0

12:00AM
0

12:00AM
0

12:00AM
0

Figure 9.5: VUF at the three-phase nodes in the 13-node feeder without control (ini-
tial) and after applying the controllers.

 6:00AM  6:00PM 12:00AM12:00PM 
Time

0.8 
12:00AM

0.85

0.9

0.95

1

1.05

1.1

V
m

 (
p.

u)

Phase A
Phase B
Phase 
Voltage limits

C

Figure 9.6: Voltage magnitudes of all nodes in the 13-node feeder after applying the
distributed controller.

174



Table 9.4: Comparison between centralized controller and distributed controller

Centralized Controller Distributed Controller

Pros Directly minimizes VUF;
Considers engineering limits

Does not require system model;
Requires few local measurements;
Requires simple broadcast communica-
tion system;
Computationally simple

Cons Requires detailed system model;
Requires load and PV measure-
ments at every node;
Requires two-way communication
system;
Computationally heavy

Reduces V2 to improve VUF via balanc-
ing the downstream load;
Does not consider engineering limits

or even zero percent violation of the engineering limits. However, the centralized controller

requires a detailed system model, accurate load and PV generation inputs, two-way com-

munication system, and is computationally heavy. The major advantages of the distributed

controller are that it is computationally simple, and does not require pervasive sensing and

communication networks. Since the distributed controller is designed based on Steinmetz

design, one drawback is that the goal of the distributed controller is to balance the down-

stream load. As we can see from the results of the cases where the critical nodes are far

from the substation, the distributed controller cannot significantly improve the unbalance,

implying that balancing downstream load is not always an effective approach to mitigate

unbalance.

9.3.3 Heuristic Strategy Results

Next, we test the performance of the grouped controller and the local PV strategy. We notice

that when the critical nodes are far from the substation, the distributed controller cannot

significantly improve the unbalance at the critical node. Therefore, we use the grouped

controller to reduce unbalance. When the critical node is 671 in the 13-node feeder, all

75 PV systems are divided into two groups; group 1 includes PV systems at houses 1-8 and

group 2 includes all the remaining PV systems. The grouped controller has two distributed

controllers, one at 632 and the other at 671. Similarly for 359 in the R1-12.47-1 feeder, the

grouped controller has two distributed controllers, one at 3 and the other at 359, so that all
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Table 9.5: Comparison between distributed controller and grouped controller

Feeder
Critical VUF (%) α (%) β (%)
Node Dis. Grp. Dis. Grp. Dis. Grp.

13-node 671 0.9992 0.4608 16.908 6.705 29.236 15.521

R1 359 0.8988 0.0428 5.145 17.321 0.000 0.000

Table 9.6: Mean VUF and percent violation of the voltage limits with and without the
local PV strategy

Feeder
Critical VUF (%) α (%)
Node Without With Without With

13-node
632 0.0000 0.0000 0.446 0.232

671 0.4608 0.4644 6.705 4.034

R1
17 0.0085 0.0085 7.036 0.302

359 0.0428 0.1653 17.321 3.702

PV systems are controlled by the grouped controller. The results of the distributed controller

and the grouped controller with time-varying load and PV are compared in Table 9.5. The

abbreviation ‘Grp.’ represents the grouped controller. In both feeders, the grouped controller

has a lower mean VUF. Although the grouped controller reduces the percent violation of the

engineering limits for the 13-node feeder, that is not the case for the R1-12.47-1 feeder.

Next, the performance of the local PV strategy is explored. Table 9.6 reports the mean

VUF and the percent violation of the voltage limits with time-varying load and PV before

and after applying the local PV strategy. The results of the cases where 671 and 359 are the

critical nodes are generated using the grouped controller. When the critical nodes are close

to the substation, the values of α are reduced and the mean VUFs are not influenced after

using the local PV strategy; however, when the critical nodes are far from the substation,

the mean VUF becomes larger than those without the local PV strategy. This is because

the unbalance of the critical nodes that are far from the substation is severe and a large

amount of reactive power is required to reduce the unbalance, causing many PV systems to

operate at their maximum reactive power capacity. When we continue to apply the local

PV strategy, the difference between the actual responses and the desired reactive power

compensation becomes larger. PV systems do not have enough reactive power capacity to

compensate the difference, and thus the mean VUF increases when the value of α decreases.
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Figure 9.7: VUF at 634 from 6:00 PM to 7:30 PM with different controllers when the

critical node is 632.

9.3.4 Integrated Controller Results

In this section, we test the performance of the integrated controllers with the different

configurations introduced in Section 9.2.4. First, we will show an example illustrating that

the integrated controller #1 is only suitable for the cases where the critical nodes are close

to the substation. We test the performance of the integrated controller #1 on the 13-node

feeder. We assume the centralized controller can provide its optimal results to the integrated

controller every 1 minute. Recall in Fig. 9.5 that the distributed controller will violate the

engineering limit VUFfinal ≤ VUFinitial at around 6 - 7 PM, and such violation is the most

serious at 634. In what follows, we will compare the VUF achieved using different controllers

at 634.

Fig. 9.7 shows the comparison among different controllers when the objective is to mitigate

the unbalance at the critical node 632. The blue solid line is the VUF without control

(VUFinitial), the red dashed line is the VUF using the distributed controller. We can easily

tell that, when the distributed controller is used, the corresponding VUF is larger than

VUFinitial in most of the time during this period. The yellow solid line is the VUF using the

centralized controller and the black dotted line is the VUF using the integrated controller #1.

The overlapping of these two lines shows that using both the total injected reactive power

and the contribution ratio from the centralized results, the integrated controller #1 achieves

the same performance as the centralized controller.

The VUF at 634 acquired using different controllers to reduce the unbalance at 671 is

illustrated in Fig. 9.8. The grouped controller (red dashed line) still increases the unbalance

at 634 when reducing the unbalance at 671, while the centralized controller does not (yellow
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Figure 9.8: VUF at 634 from 6:00 PM to 7:30 PM with different controllers when the
critical node is 671.

Table 9.7: Performance metrics for the centralized controller for the 13-node feeder
when implemented every 1 minute or 60 minutes

Critical 1 minute 60 minutes
Node VUF (%) α (%) β (%) VUF (%) α (%) β (%)

632 0.0000 0.00 0.00 0.1316 0.14 1.40
671 0.0000 0.00 0.00 0.2201 1.51 8.28

solid line). In this case, the integrated controller using the centralized controller results

(black dashed line) does not yield a better performance than that of the grouped controller.

Even though the integrated controller knows the total injected reactive power from the

centralized controller, it cannot obtain the same allocation of reactive power to each phase as

the centralized controller does, because the centralized controller does not minimize the VUF

at 671 by balancing the load downstream and upstream of 671. The reactive power injections

of the integrated controller are totally different from those of the centralized controller, so

the integrated controller still worsens the unbalance at 634.

Next, we consider a more realistic circumstance in which the centralized controller is acti-

vated every 60 minutes. Table 9.7 compares the performance of the centralized controller on

the 13-node feeder when the controller is implemented every 1 minute and every 60 minutes.

It is shown that all performance metrics become worse when the centralized controller runs

infrequently. For the R1-12.47-1 feeder, when the period of the centralized controller is 60

minutes, the mean VUF always increases. However, α decreases when the critical node is
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Table 9.8: Performance metrics for the centralized controller for the R1-12.47-1 feeder
when implemented every 30 minutes or 60 minutes

Critical 30 minutes 60 minutes
Node VUF (%) α (%) VUF (%) α (%)

17 0.1256 0.003 0.1503 0.004
359 0.1764 0.025 0.2315 0.019

Table 9.9: Comparison of controllers when the critical node is 671 of the 13-node feeder

Controller VUF (%) α (%) β (%)

Integrated

#1 0.5592 10.33 15.53
#2 0.4754 3.60 13.98
#3 0.0775 1.35 6.17
#4 0.0743 0.56 5.00

Centralized
(every 60 minutes)

0.2201 1.51 8.28

Grouped with local
PV strategy

0.4644 4.03 14.70

359, as shown in Table 9.8. For the large feeder, the solutions of the centralized controller are

always solved based on the outdated measurements despite the length of the implementation

period, so it is hard to tell whether the percent violation of the voltage limits will increase

or not.

The following studies focus on investigating whether the integrated controller can improve

the performance of the centralized controller. We compare the results of the integrated

controller with those of the centralized controller, as well as the grouped controller with the

local PV strategy when the critical nodes are far from the substation.

For the 13-node feeder, the objective of all controllers is to mitigate the unbalance at 671.

Table 9.9 summarizes the mean VUF and the percent violation of the engineering limits of

different controllers. As discussed above, the integrated controller #1 does not work well

when the critical node is far from the substation, even when the centralized controller runs

frequently, so it is not surprising that the integrated controller #1 has the worst performance.

The integrated controller #2 has lower values in all three aspects than the integrated con-

troller #1. Using the integrated controller #3 and #4, we can further reduce the mean VUF

and the values of α and β. In addition, the performance of the integrated controller #4 is
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Figure 9.9: VUF at node 671 with different controllers

better than that of the controller #3 in every aspect: this is because the centralized ratio

from the centralized controller using the measurements at one specific time may not be suit-

able for another time. Even though the centralized controller runs every 60 minutes, it still

has a better performance than the grouped controller. Among all controllers, the integrated

controller #4 has the best performance.

Our results show that the integrated controller with the Direct Strategy has better per-

formance than with the Indirect Strategy, so we focus on comparing the VUF achieved by

the centralized controller and the integrated controller with the Direct Strategy. Fig. 9.9

depicts the VUF at 671 before and after applying the centralized controller, the integrated

controller #3, and the integrated controller #4. The blue solid line is the initial VUF. The

red solid line is the results of using the centralized controller. The yellow and purple dot-

ted lines are the results of using the integrated controller #3 and #4, respectively. When

the measurements of the centralized controller are not updated every 1 minute, the VUF

will not remain zero when the load and PV generation are changing. On the other hand,

the integrated controller #3 and #4 can recognize such operating point changes based on

local measurements, and can effectively reduce the negative-sequence voltage caused by the

change in load and PV generation, thus improving the unbalance.

For the R1-12.47-1 feeder, the objective of all controllers is to mitigate the unbalance

at 359. Table 9.10 reports the resulting mean VUF and the percent violation of the voltage
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limits. Again, the integrated controller #1 does not have good performance compared with

all other controllers. Although the integrated controller #2 has the lowest mean VUF, it has

a larger α compared with the centralized controller. Similar to the results of the 13-node

feeder, the integrated controller #3 and #4 yield a lower mean VUF than the centralized

controller, and the integrated controller #4 is still better than controller #3.

The details of the VUF at the critical node after using the centralized controller, the in-

tegrated controller #3, and the integrated controller #4 are depicted in Fig. 9.10. Different

from the observation in Fig. 9.9, the results in Fig. 9.10 reveal that the integrated controller

with Direct Strategy cannot always reduce the VUF. For example, from 1:20 PM to 2:00

PM, we observe that the integrated controller produces a larger VUF than using centralized

controller alone at the critical node. The reason is that the integrated controller with Direct

Strategy is trying to maintain the negative-sequence voltage of the centralized controller, but

in this situation the negative-sequence voltage would naturally decrease with uncontrolled

PV systems; thus applying the integrated controller will result in an increase of the VUF.

We then propose a heuristic strategy in which the integrated controller will only send out

new commands when it detects an increase in the VUF with respect to the VUF of the cen-

tralized controller. The performance of the integrated controller with the heuristic strategy

is illustrated using the integrated controller #4, shown as the green dotted line in Fig. 9.10.

Using this strategy, we can ensure that the integrated controller does not negatively impact

the VUF achieved by the centralized controller. As shown in Table 9.10, the integrated

controller #4 with heuristic strategy has a lower mean VUF than those acquired without it.

However, the integrated controller cannot achieve a similar percent voltage violation level

to that obtained by the centralized controller acting alone. The violation of voltage limits

happens primarily during the first hour when we do not have any information from the cen-

tralized controller. If we only compute α for the remaining 23 hours, the percent violation

is only 0.08%.

Considering every performance metric, the integrated controller with the Direct Strategy

is better than that with the Indirect Strategy, because directly using the centralized con-

troller results ensures a good starting point with low unbalance and fewer violations of the

engineering limits for the integrated controller. Since the integrated controller can respond

quickly to the change of load and PV, the mean VUF of the integrated controller with

the Direct Strategy is always lower than that of the centralized controller. We have also

demonstrated the effect of integrating the centralized controller results into the Steinmetz

controller. Through the above comparison, we find that using the centralized ratio does
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Table 9.10: Comparison of controllers when the critical node is 359 of the R1-12.47-1
feeder

Controller VUF (%) α (%)

Integrated

#1 0.2711 11.58
#2 0.0936 1.65
#3 0.1459 0.59
#4 0.1394 0.33
#4 - Heuristic 0.1161 0.33

Centralized
(every 60 minutes)

0.2315 0.02

Grouped with local
PV strategy

0.1653 3.70

not perform better than using the ratio based on the PV rating if the centralized controller

cannot run frequently. The integrated controllers have a lower α than the grouped controller

under most conditions, suggesting that setting the total injected reactive power equal to that

computed by the centralized controller helps to reduce the violation of the voltage limits.
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9.4 Chapter Conclusion

In this chapter, we compared the performance of the distributed controller with that of the

centralized controller, and the pros and cons of each controller were discussed. The major

drawback of the distributed controller is that it may negatively impact on the voltage profile

and the unbalance on other nodes. In addition, balancing load is not an effective way to

mitigate the unbalance when the critical node is far from the substation,

We proposed a new controller that integrates the results from the centralized controller

into the Steinmetz controller, referred to as the integrated controller. The results show

that the voltage violation is reduced when the integrated controller has the total injected

reactive power from the centralized controller. No strategy has proven useful to reduce the

unbalance at noncritical nodes, which is a topic for future research. When the centralized

controller operates infrequently, the integrated controller can further mitigate the unbalance

but sometimes might slightly increase the violation of the voltage limits.
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Chapter 10

Conclusions and Future Work

This dissertation presented work on using demand response (DR) to improve power system

voltage and small-signal stability in transmission systems and controlling solar photovoltaic

(PV) systems to mitigate voltage unbalance in distribution systems. In this chapter, we

summarize our key findings on these two topics and list several future research topics.

10.1 Key Findings

The work in Chapters 2 - 6 revealed that loads are effective in improving stability margins

other than frequency stability. It was shown that DR actions wherein the total demand

responsive load is held constant but is shifted between different buses can improve voltage or

small-signal stability margins, and in some cases - more effectively than generation actions.

Chapter 2 showed that the smallest singular value (SSV) was improved using our DR

strategy. We benchmarked the proposed iterative linear programming with singular value

sensitivity against a brute force algorithm, an iterative linear programming with eigenvalue

sensitivity, and an iterative nonlinear programming algorithm. Results indicated that our

proposed algorithm is able to converge to the global or at least a local optimal solution and

is more computationally efficient than other algorithms.

Chapter 3 considered different load models within the SSV maximization problem. We

observed changes in the optimal loading patterns when using different load models, reveal-

ing the importance of properly modeled loads in the optimization problem. Furthermore, we

found it challenging to interpret the stability condition of the system with different struc-

tures using the SSV, since structural changes in the power flow Jacobian matrix affect the

magnitude of the SSV.

185



Chapter 4 considered a multiperiod optimization problem. In the first period, we maxi-

mized the SSV; in the second period, we minimized the generation cost and paid back energy

to each load while maintaining the SSV. We compared the generation cost of the multiperiod

DR strategy with that of generation redispatch. We found that the DR strategy led to a lower

generation cost in most cases. Even when DR is more expensive than generation redispatch,

it may still be desirable to deploy DR because generators may not respond in time.

Chapter 5 considered maximizing the distance to the closest Saddle-Node-Bifurcation

(SNB) to improve the voltage stability. We applied the Newton-Raphson method to solve the

Karush–Kuhn–Tucker conditions of a nonlinear nonconvex optimization problem in order to

obtain the optimal loading pattern. We found that we achieved significantly different loading

patterns when maximizing the SSV versus the distance to the closest SNB.

The results from Chapters 2 - 5 revealed the trade-offs between choosing either the SSV

or the distance to the closest SNB as the voltage stability margin. The distance to the

closest SNB presents the stability margin in the parameter space while SSV only provides

implicit information for the distance to instability. Another drawback of using the SSV as

the measure of voltage stability is that the value is system-dependent, and it is difficult

to compare the SSVs associated with systems that use different load models. On the other

hand, the algorithm we proposed for maximizing the distance to the closest SNB relies on

good initializations, whereas the iterative linear programming method used to maximize

the SSV of the power flow Jacobian matrix does not have this issue, and it scales better

to realistically-sized systems. Furthermore, SSV is more straightforward to work with than

the distance to the closest SNB because there is only one SSV, whereas there can be a large

number of locally closest SNBs. The globally closest SNB is difficult to find, and we observed

convergence issues with the algorithm used to maximize the distance to the closest SNB.

Chapter 6 focused on improving the small-signal stability of the system via DR action.

In a case study, we found that when we improved the smallest damping ratio, it had adverse

effects on the other small-signal stability metrics and voltage stability, indicating the impor-

tance of the choice of the stability metric. Case studies were also performed to compare the

improvements in the smallest damping ratio achieved by shifting the real power of demand

response, shifting the reactive power of demand response, and re-dispatching real power gen-

eration. Results showed that only spatially shifting the real power of demand response could

significantly increase the smallest damping ratio.

The second part of the dissertation dealt with the question of whether Steinmetz design

can be used to control the reactive power of distributed solar PV systems to mitigate volt-
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age unbalance. We found that a decentralized controller that applies Steinmetz design in a

completely decentralized way can indeed reduce the unbalance in the feeder. With a simple

communication network, a distributed controller can further reduce the unbalance.

Chapter 7 presented the reactive power compensation strategies with different load and

PV connections and different balancing objectives. Case studies verified the effectiveness of

both the decentralized controller and the distributed controller. We also found that the

controller did not work well when the critical node was far from the substation. Better

performance was achieved by implementing the controller at an upstream node.

Chapter 8 proposed different strategies to overcome the practical challenges in apply-

ing the distributed controller to real systems. Results showed that measurement error and

noise did not have a significant impact on the performance of the distributed controller,

but communication delays could worsen the unbalance. Case studies demonstrated that the

proposed compensation strategies effectively reduced the impact of communication delays

and improved the unbalance.

Chapter 9 compared the distributed controller with a centralized controller. The pros

and cons of each controller were summarized. One drawback of the distributed controller is

that it does not consider engineering limits. Results showed that while the distributed con-

troller greatly improved the unbalance at the critical nodes, it also had a negative impact on

the voltage profile and/or the unbalance at noncritical nodes. We proposed a new controller

that integrated the centralized controller results into the distributed controller. Case studies

demonstrated that the integrated controller could be used to further mitigate the unbal-

ance when the centralized controller operated infrequently. We noted the trade-offs between

unbalance improvement and violation of engineering limits when using different controllers.

10.2 Future Research Topics

This work has generated a number of potential avenues of future research. We have showed

that harnessing demand responsive loads can effectively improve stability margins, the first

direction of the future work is to come up with more computationally efficient algorithms to

determine the optimal loading pattern. Possible research topics are detailed below:

• Gaining a better understanding of why the loading patterns change in the way they do:

We would like to conduct an analytical analysis, e.g. sensitivity analysis, of the optimal

design to investigate whether a load should be increased or decreased toward achieving
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the optimum solution. We believe that the study may provide a starting point toward

simple tuning schemes for demand response actions.

• Considering N-1 security: We would like to incorporate N-1 security constraints in the

optimization formulations such that the optimal loading pattern can ensure adequate

stability margin under altered operating conditions.

• Developing an improved algorithm to maximize the distance to the closest SNB: The

proposed solution algorithm in Chapter 5 has convergence issues and does not scale to

realistically-sized system. An improved algorithm is needed to find the optimal loading

pattern that has the maximum distance to the globally closest SNB. We would like

to develop approaches to deal with the problem caused by the existence of multiple

locally closest SNBs.

• Developing a new voltage stability index: A possible idea is to find the central of the

convex restriction area [76] of the feasibility set. Instead of maximizing any stability

margin, we could push the operating point toward the central of an inner approximation

of the feasibility set to improve voltage stability.

• Developing approaches to ensure stability of the transition between different loading

patterns: The multiperiod optimization problem in Chapter 4 neglected the transition

between operating points. We would like to improve the solution algorithm to explicitly

consider the path between each operating point, ensuring an adequate voltage stability

margin along the path. For this, we could leverage ideas from [54, 97, 104].

• Considering multiple stability margins at the same time: We would like to combine

voltage and small-signal stability into the optimization problem to avoid the circum-

stance where improving one type of stability will negatively impact on the other. We

are also interested in whether we can improve the transient stability using this spatial

DR strategy.

The second direction of the future work is to further improve the performance of the Stein-

metz controller so that it can be better implemented to real systems to mitigate unbalance.

The tasks include:

• Investigating the proper conditions to implement the Steinmetz controller: We would

like to develop methods to evaluate the source of voltage unbalance. If we could identify
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whether the unbalance at a node comes from its upstream or downstream quantita-

tively, we could figure out the proper conditions to apply the Steinmetz controller.

Future work also includes the development of strategies to alleviate the negative im-

pacts on noncritical nodes introduced by the Steinmetz controller.

• Developing a robust control strategy to deal with communication delays: A preliminary

investigation of strategies for reducing the impact of delays is undertaken in Chap-

ter 8, but we cannot ensure that these strategies would be effective in general cases.

Future work will attempt to derive conditions for convergence/divergence of the en-

hanced Steinmetz controllers and develop a robust control strategy to guarantee the

convergence of the Steinmetz controller in the presence of communication delays and

missing data.
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rameters using PMU measurements”. In: IEEE Transactions on power systems 27.2
(2012), pp. 975–983.

[2] B. S. Abdulraheem and C. K. Gan. “Power system frequency stability and con-
trol: Survey”. In: International Journal of Applied Engineering Research 11.8 (2016),
pp. 5688–5695.

[3] V. Ajjarapu and C. Christy. “The continuation power flow: a tool for steady state volt-
age stability analysis”. In: IEEE transactions on Power Systems 7.1 (1992), pp. 416–
423.

[4] M. F. Akorede, H. Hizam, and E. Pouresmaeil. “Distributed energy resources and ben-
efits to the environment”. In: Renewable and sustainable energy reviews 14.2 (2010),
pp. 724–734.

[5] R. Al Abri, E. F. El-Saadany, and Y. M. Atwa. “Optimal placement and sizing method
to improve the voltage stability margin in a distribution system using distributed
generation”. In: IEEE Transactions on Power Systems 28.1 (2013), pp. 326–334.

[6] M. H. Albadi and E. F. El-Saadany. “A summary of demand response in electricity
markets”. In: Electric power systems research 78.11 (2008), pp. 1989–1996.

[7] M. Aman, G. Jasmon, A. Bakar, and H. Mokhlis. “A new approach for optimum DG
placement and sizing based on voltage stability maximization and minimization of
power losses”. In: Energy Conversion and Management 70 (2013), pp. 202–210.

[8] L. R. Araujo, D. Penido, S. Carneiro, and J. L. R. Pereira. “A three-phase opti-
mal power-flow algorithm to mitigate voltage unbalance”. In: IEEE Transactions on
Power Delivery 28.4 (2013), pp. 2394–2402.

[9] C. Arendse and G. Atkinson-Hope. “Design of a Steinmetz symmetrizer and applica-
tion in unbalanced network”. In: Universities Power Engineering Conference. 2010.
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