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ABSTRACT

A Langmuir probe (LP) is a versatile and effective in-situ space plasma instrument

for measuring ion and electron densities, and electron temperatures. However, utilizing

LPs on very small spacecraft presents challenges that are not experienced on larger, more

traditional spacecraft. In particular, a key issue for LP operation on these very small

satellites is the negative spacecraft potential induced during LP sweeps due to the limited

ion current collection to the spacecraft relative to the electron current collected by the LP.

This induced spacecraft charging reduces the accuracy of measurements made by the LP.

To mitigate these charging effects, laboratory plasma experiments and computer modeling

confirmed that the spacecraft potential can be tracked during LP sweeps using a second,

identical probe configured for high impedance potential measurements. By correcting for

changes to the spacecraft potential, the LP sweeps can be reconstructed as if they were

referenced against a stable potential, providing more accurate measurements of the ambient

plasma’s properties. This dual probe measurement is referred to here as the twin-probe

method (TPM).

This dissertation focuses on the efficacy of the twin-probe method and identifies

barriers that must be addressed to maximize its impact. Particle-in-cell simulations

were performed using the NASA/Air Force Spacecraft Charging Analyzer Program

(NASCAP-2K) to understand which physical processes and system parameters are most

critical when analyzing spacecraft charging behavior. A separate MATLAB program

called the Plasma-Spacecraft Interaction Codes for Low Earth Orbit (PSIC-LEO) was

developed using analytic equations to model spacecraft charging effects on LP current

xxii



voltage (I-V) curves. Finally, an experiment campaign, performed at NASA Marshall

Space Flight Center (MSFC), studied the TPM in a laboratory plasma that approximates a

high-density, low-Earth orbit environment.

Through these investigations, it was determined that induced spacecraft charging

effects result in LP I-V characteristics which overestimate electron temperature and

underestimate electron density. Furthermore, regions of the I-V curves have additional

non-linear characteristics due to the spacecraft’s induced potential, making traditional

Langmuir probe theory more difficult to apply. The TPM is shown to correct I-V curves

to provide more accurate estimates of plasma properties. The magnitude of the TPM

correction is dependent on the area ratio, defined as the conductive spacecraft surface area

divided by the probe surface area. Greater spacecraft charging and, consequently, larger

I-V curve corrections when using the TPM, are observed as the area ratio decreases. The

method’s largest impact occurs for area ratios below 300. While the TPM is effective

for area ratios greater than 300, overlap between measurement uncertainty and the

magnitude of correction prevents definitive claims of a maximum area ratio for which

twin-probe implementation is necessary. Moreover, since the TPM mitigates the effects

of spacecraft charging, but does not mitigate the charging itself, a minimum area ratio of

50 is recommended for this method. Below this area ratio, the TPM can be used, but the

spacecraft may charge too negatively to allow the Langmuir probe to reach the plasma

potential, reducing the number of useful plasma properties obtained from the incomplete

I-V curve. Finally, novel capabilities brought about using a combination of Langmuir

probes and other satellite instruments are identified. These capabilities include expanding

the measurable range of plasma ion distributions using charged particle energy analyzers

and calibrating for environmental effects (like photoelectron current).
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CHAPTER 1

Introduction

Scientific probing of space plasmas has a long history with many applications and
surprising discoveries. Over time, our analysis techniques became more sophisticated,
our questions more specific, and our technologies more advanced. One of our more
versatile tools for probing such plasmas is the science and engineering workbench
known as the satellite. Satellites allow us to carry multiple instruments within or near
space plasmas to understand internal interactions, composition, and coupling to external
sources. As electrical components miniaturized and manufacturing techniques improved,
satellites were built more compactly and at an increasingly cost-effective price. However,
miniaturization brought forth new challenges for maintaining accuracy and precision
when utilizing well-known instruments. In this chapter, the need for small satellites and
their wide-ranging impact on space science will be highlighted in order to motivate the
development of science-enabling technology found at the heart of this dissertation.

1.1 Research Motivation

The first time a Langmuir probe (LP) was used to study the Earth’s ionosphere was on a
V-2 rocket in 1947 [1]. A little over a decade later, after many sounding rocket missions,
Sputnik 3 was launched with a Langmuir probe, marking one of the first instances of
LP implementation on a satellite [2]. Since these early years, the LP instrument has
proven to be a versatile plasma diagnostic tool used to determine many plasma properties,
including, but not limited to, the electron and ion density, electron temperature, and
spacecraft floating potential [3]. Its versatility allowed scientists to probe the ambient
plasma environment while supporting additional instruments, such as ion energy analyzers.
Traditionally, satellite missions had to carry multiple experiments to justify their costs.
For instance, the Pioneer Venus Orbiter (PVO) carried 17 separate experiments for a
mission that lasted over a decade [4]. The total cost of building the PVO and operating it
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for the first 10 years (the spacecraft orbited Venus from 1980 to 1992) was roughly $125
million [5]. Adjusted for inflation, from 1992 to today, this is equivalent to just over $225
million. For comparison, as recently as 2018, the average cost of a small explorer (SMEX)
mission—spacecraft that are typically 200 kg to 300 kg—is roughly $200 million [6, 7].
While traditional spacecraft missions have greatly advanced space science and technology,
their large costs are prohibitively expensive for most countries. Even for countries that can
fund these projects, the number of missions that can be funded are understandably limited.

With the miniaturization of electrical components and improved manufacturing
techniques, very small spacecraft have gained popularity as a science platform. A subset
of small satellites is the CubeSat. CubeSats are a standard for satellites denoted by size
and mass. The base unit of measurement is a 1U CubeSat, corresponding to a 10 cm

cube that weighs up to 1.33 kg [8]. Due to their modular nature, a 1U CubeSat could be
an individual spacecraft or part of a larger spacecraft. Common sizes for CubeSats are
the 1U, 2U, 3U, 6U, 12U, and 27U CubeSat [9]. Part of the attraction of CubeSats are
their low cost and rapid development time. CubeSats are often built with commercial,
off-the-shelf electronics, and the cost of building a CubeSat averages at around $250,000,
with some reaching a few million dollars when special made components or instruments
are used [10]. While launching a single satellite is expensive, typically costing $20 million
for a launch to low Earth orbit (LEO), an increase in ride shares has significantly dropped
the barrier for putting a small satellite on a launch vehicle [11]. For instance, Nanoracks
charges $85,000 for the deployment of a 1U CubeSat [12] and Spaceflight prices a 3U
CubeSat deployment to LEO at $295,000 [13]. These comparatively lower costs combined
with design-to-completion timescales that are typically on the order of 18 to 24 months
[8], make CubeSats a viable option for countries trying to break into the space science
industry, universities running student-led space missions, and industries interested in rapid
prototyping and development. Multiple summaries on the benefits and recent trends related
to CubeSats have already been published, including the increase of CubeSat launches and
countries funding CubeSat missions [11]; the multi-CubeSat deployment system, P-POD
[14]; how CubeSats lower the barrier of entry into space for developing nations [15]; and
the feasibility of CubeSats as a science platform [9].

Of interest to this dissertation are the benefits that small spacecraft provide for
proof-of concept missions and the development of science-enabling technologies. For
instance, efforts into developing formation flying between multiple small and very small
spacecraft have been underway [16, 17]. Formation flights would allow for long-term,
multi-point measurements and high-resolution mappings of the ionosphere that are only
available when multiple probes are in the same localized region of the plasma [18].
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Furthermore, LP development has also improved by taking advantage of the CubeSat
platform. The multi-Needle Langmuir probe (m-NLP) has been developed to make
high-frequency measurements of the plasma’s electron density [19]. Additionally, the
“Instrument Sonde de Langmuir (ISL),” composed of a guarded cylindrical probe and a
new, guarded, segmented spherical probe, has been developed and tested on a CubeSat
platform [20]. However, the small CubeSat frame introduces interesting engineering and
science challenges when implementing Langmuir probes. There is a distinct complication
with current balance between a Langmuir probe and small spacecraft; specifically,
Langmuir probe operation induces a negative charge on the spacecraft chassis. This
variable spacecraft potential impacts instrument measurements, such as overestimating
electron temperature and underestimating electron density. This dissertation focuses on
the effects of spacecraft charging on LP current-voltage (I-V) characteristics, and studies
a method of correcting impacted curves using the tracked spacecraft potential from an
additional high-impedance probe..

1.2 Basic Properties of a Plasma

A plasma, in steady state, is a quasi-neutral, gaseous fluid composed of charged and neutral
particles that exhibits collective behavior [21]. While accurately predicting their dynamics
is an involved task requiring both fluid and electrodynamic physics; due to their nature, all
plasmas share many of the same basic physical properties. To begin, the quasi-neutrality of
plasmas implies that an imbalance of positively and negatively charged particles can exist
locally, but globally, the density of positively charged ions must equal the sum of electron
density and negatively charged ion density, such that

N∑
i

M+
i =

N∑
i

M−
i + e−i (1.1)

whereM+ is the density of positively charged ions,M− is the density of negatively charged
ions, and e− is the density of free electrons. Here, it is implicitly assumed that all ions are
singly charged.

When an external point charge perturbs the plasma, free electrons respond to the
external field by creating an ion- or electron-rich boundary around the charge, shielding
the bulk of the plasma from the resultant external fields. The natural radial length scale that
describes the distance over which external fields are screened is called the Debye length,
and it is described by eq. 1.2. The plasma’s effectiveness in screening external fields is

3



proportional to its electron temperature and inversely proportional to the electron density.
The region between any external charge and the boundary of the shielded plasma is called
the sheath. This region is typically a few Debye lengths, λD, wide and does not adhere to
the principles of quasi-neutrality [22].

λD =

√
ε0
q2

√
kBTe
Ne

(1.2)

Additionally, the plasma’s response time to the perturbations is not infinitely small.
Since electrons are the more mobile charge carriers in a plasma, they are displaced due to
an external charge’s perturbations. Coulombic interactions between the displaced electrons
and positively charged ions act as a restorative force, counteracting the perturbation and
returning the plasma to a charge-neutral state. The characteristic time scale of the plasma is
the time it takes for charge neutrality to be restored, and, in a cold, non-magnetized plasma,
it is mainly governed by the electrons. This characteristic time scale for a collisionless
plasma is called the electron plasma frequency, ωpe (described by eq. 1.3 in units of
rad s−1). While the Debye length restricts the distances over which time-independent
electric fields mostly affect the plasma, the electron plasma frequency is the period of
oscillation over which time-dependent electric fields perturb the plasma [22].

ωpe =

√
q2Ne

ε0me

(1.3)

Therefore, for an ionized gas to be considered a plasma, it must generally adhere to the
following criteria [23]:

1. L >> λD: The size of the plasma must be much greater than its Debye length so
Debye shielding can take place, allowing for collective behavior.

2. Neλ
3
D >> 1: The average distance between free electrons must be smaller than the

Debye length.

3. νpe >> νen: The electron plasma frequency must be greater than the electron-neutral
collision frequency, ensuring the electrons do not achieve equilibrium with neutrals
(νpe = ωpe/2π).

There are many examples of plasmas found in nature. For instance, our sun, like most
stars, is a plasma, and even the solar wind emitted from the sun is a plasma. As solar wind
jets across the solar system, it interacts with astronomical bodies such as planets, moons,
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and comets, and their surrounding environments. In some cases, like on Earth, a strong
magnetic field shields the planet’s atmosphere from the high-energy particles in the solar
wind, which instead couple with the magnetosphere and ionosphere. In the absence of
an intrinsic magnetic field, like on Venus and Mars, the ionosphere can be stripped away,
have holes, and, in severe cases, the atmosphere itself can be directly affected. These
interactions and a general discussion on the properties of ionospheres are discussed in
section 2.1. Regardless of the form of the plasma, studying it helps scientists model the
coupling between the different regions surrounding astronomical bodies, create effective
plans for interplanetary travel, study the composition and life of stars, and much more.

1.3 Langmuir Probe as a Plasma Diagnostic Tool in Space

To understand plasmas, whether in nature or in vacuum chambers, it is necessary to
somehow probe the plasma for its properties, such as ion and electron density, charged
particle distributions, flow velocity, etc. One such plasma instrument is called the
Langmuir probe, which is, at its core, a conductor of known geometry that collects current
from the plasma. Examples of different LP geometries are shown in fig. 1.1. The planar
LP (fig. 1.1a) was used to study ion current emission from an ion plume (the work is
detailed by Miars [24]). The cylindrical LP (fig. 1.1b) was one of many used in an
experiment campaign to study the twin-probe method at NASA Marshall Space Flight
Center (NASA MSFC) (see chapter 5 for experiment details). The spherical LP (fig. 1.1c)
was used as part of preliminary plasma laboratory studies at NASA MSFC to prepare for
the twin-probe method experiment campaign.

(a) Planar LP. (b) Cylindrical LP. (c) Spherical LP.

Figure 1.1: Examples of different common Langmuir probe geometries.

From the relationship between a probe’s collected current and its potential relative to
the ambient plasma, many properties can be derived. The most common application is
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determining ion and electron densities, Ni and Ne respectively, and electron temperature,
Te [25, 26]. In this section, a general overview of I-V characteristics is explained; a
more in-depth study on the current collection of planar and cylindrical surfaces is given
in sections 2.2 and 2.3; and a detailed description of cylindrical LP analysis can be found
in appendix C.

As with any conductor in a plasma, Langmuir probes collect current from various
environmental sources. The plasma itself provides ion and electron current, Ii & Ie

respectively; photoelectron emission, Ipe, can be a non-negligible source of current when
the conductor is illuminated by a photon source (like the sun) [27]; and secondary electron
emission, Isee, is another available source of current [28]. As a result, for a given potential
relative to the ambient plasma environment, φ, the net current, Inet, to a conductor is

Inet (φ) = Ie (φ)− Ii (φ)− Ipe (φ)− Isee (φ) + Imisc (φ) (1.4)

where Imisc is any other current source not previously mentioned. Without an external
bias, a conductor will naturally arrive at a potential where the net current is 0, known as the
floating potential, VF . In the absence of additional current sources, such as photoelectrons
or secondary electron emission, this potential will typically be a few electron temperatures
negative of the plasma potential, due to the higher mobility of the electrons [22].

When operating a Langmuir probe, it is impossible to reference the plasma directly, and
so it is instead referenced against a reference electrode, such as a spacecraft chassis, when in
space, or Earth ground, for ground-based experiments. In this discussion it is assumed that
the reference electrode is a spacecraft and the Langmuir probe has a cylindrical geometry
(the shape of the probe affects the I-V curves). The applied voltage between the LP and the
spacecraft, VA, is equivalent to the difference between the potential of the LP with respect
to the ambient plasma, φLP , and the potential of the spacecraft with respect to the ambient
plasma, φSC (see eq. 1.5).

VA = φLP − φSC (1.5)

In section 1.3.2, the case of a finite spacecraft-to-probe area ratio (from here on referred
to as area ratio) is discussed. With this finite area ratio, it is recognized that a LP in space
in reality has two probe surfaces that must be considered, which is called a double probe.
However, in this initial discussion, the spacecraft is assumed to be infinitely larger than
the Langmuir probe. As the LP is swept from negative to positive bias with respect
to spacecraft electrical common, the net LP current governed by eq. 1.4 is measured,
producing I-V curves. To understand which plasma properties can be obtained from the I-V
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curves, each section of the curve will now be briefly discussed. Figure 1.2 is an example
I-V curve for a probe biased relative to the spacecraft and can be used to follow along for
the remaining discussion in this subsection.

Figure 1.2: Example of a Langmuir probe current voltage relationship. For a probe
referenced against the satellite, its I-V curve is divided into three bias regions: 1) an ion
saturation region well below the floating potential, 2) an electron retardation region below
the plasma potential, and 3) an electron saturation region above the plasma potential.

To begin, the I-V curves are framed by two distinct potentials: the Langmuir probe
floating potential, VF , and the plasma potential, VP . As previously mentioned, the floating
potential is the potential at which all currents collected by the conductor are balanced (sum
of the currents is 0). The plasma potential is the potential at which the LP is equipotential
with the ambient plasma, and is denoted by a change in concavity in the I-V characteristics.
Referring to eq. 1.5, when the LP is at the plasma potential, φLP = 0, and so VA = −φSC .
Therefore, when operating in space, the measured plasma potential is an estimate of the
spacecraft’s potential relative to the plasma. As a result, both the Langmuir probe and
spacecraft have their own floating potentials, which do not have to be the same. Thus,
the LP I-V curve will very rarely pass through the origin of the coordinates. In fact, due
to the different equilibrium potentials of the probe and spacecraft, the floating potential
of the probe will more likely be found when the LP is biased positive with respect to the
spacecraft [29]. This behavior was also noted by L. G. Smith for bipolar Langmuir probes,
also referred to as double Langmuir probes, on sounding rockets [30]. Then, when VA is
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0, the LP is at the spacecraft’s floating potential. Since the spacecraft’s floating potential is
more negative than the LP’s floating potential, a net negative current will be measured from
the LP. This difference in spacecraft and LP floating potentials is graphically presented in
fig. 1.6 and discussed in its accompanying text.

When the probe is at the plasma potential, it neither attracts nor repels any charged
particle. As the probe is biased above the plasma potential, ions are repelled and electrons
are attracted. Since this region is nearly completely dominated by electron current, Ie,
it is called the electron saturation regime, and the characteristics of this regime are used
to estimate the plasma’s electron density. For potentials more negative than the plasma
potential, ions are accelerated and electrons are repelled, in a region called the electron
retardation regime. However, in the bias region between the floating potential and plasma
potential, the electron current is still greater than the ion current due to the increased
mobility of the electrons. With careful manipulation of the curve, the electron temperature
can be extracted from this bias region. Finally, at potentials seven to ten electron
temperatures more negative than the floating potential (as determined by fig. C.4b), the
electron current is fully extinguished by the retarding potential, and only the accelerated
ion current remains, in a region referred to as the ion saturation regime. Using known
properties of the plasma and spacecraft, such as the plasma’s ion distribution and the
satellite’s orbital velocity, the ion density can be obtained in this bias region.

To summarize, analyzing the LP’s I-V characteristics can provide the plasma ion
density, Ni; the LP floating potential, VF ; the plasma electron temperature, Te; the plasma
potential, VP , or, equivalently, the spacecraft floating potential, φF ; and the plasma electron
density, Ne. Furthermore, depending on the situation there are two possible electrical
references that are discussed in this dissertation. When the LP is referenced against the
spacecraft common or chamber wall, the bias of the LP is referred to as VA. This notation
is primarily used for physical measurements. When the LP, or any conductor, is referenced
against the plasma, the bias of the conductor is referred to as φ (or φx, where x is LP
(Langmuir probe), SC (spacecraft), or HI (high-impedance probe) when appropriate). This
notation is used in the context of numerical simulations where it is more convenient to
discuss current collection behavior as a function of probe potential relative to the plasma.

1.3.1 Langmuir Probes in Space: A Brief Overview

Langmuir probe implementation has seen great successes in many regions of the solar
system. The very first use of a Langmuir probe in space was in 1947 aboard a V-2 rocket to
study the E-region of Earth’s ionosphere [1]. Since then, rocket-borne missions have been
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used to study the lower ionosphere and test developing plasma instrument technologies
[31]. For instance, measurements of the electron energy distribution function (EEDF) in
the solar quiet focus of the E-region revealed the existence of a high energy tail in the
electron distribution, which helped explain anomalous regions of relatively high Te that
had not been understood at the time [32].

To study the high altitude regions of the ionosphere and beyond, satellites of many
sizes and levels of sophistication are used. Two important missions in this regime
are the Atmospheric Explorer (AE) mission that studied the physical processes that
dominate the ionosphere [33], and the Dynamics Explorer (DE) mission, which focused
on interactions between the Earth’s atmosphere, ionosphere, and magnetosphere [34]. The
Langmuir probes on the AE satellites provided electron temperature and plasma density
measurements, while supporting more specialized instruments. Some important results
from the AE mission were providing high-resolution measurements of photoelectron flux
in the thermosphere [35], demonstrating the existence of plasma shear and rotational
convection reversals on closed field lines [36], and characterizing electron acceleration
in the aurora [37]. Meanwhile, the DE missions demonstrated strong coupling between
the magnetosphere and thermospheric dynamics, and provided data to develop fully
coupled ionosphere-thermosphere models [38]; identified a variety of ion outflows, such
as polar wind [39]; and studied the heating of electrons that can produce suprathermal
electron bursts [40]. Smaller, more specialized, spacecraft also play an important role in
the ionosphere. For instance, the DEMETER micro-satellite mission employs Langmuir
probes to help analyze anomalous variations in the ionosphere related to seismic activity
on Earth [41].

Further still, satellites sent to other astronomical bodies used Langmuir probes to study
their plasma environments. The PVO was an extensive 12-year study of Venus’s ionosphere
[42]. Beyond supporting other instruments, the Langmuir probes were used to identify
local ionospheric depletion regions (known as ”ionospheric holes”) in the night side of
Venusian ionosphere [43, 44], observe the location of the ionopause [45], and monitor
solar irradiance [46]. The last two missions to discuss are for satellite operations around
non-planetary bodies. The Rosetta spacecraft studied the plasma environment around the
Wirtanen comet for nearly two years [47]. Measurements have so far determined that the
cometary plasma has a strong correlation with solar illumination and neutral density [48].
Finally, the Parker Solar Probe, previously known as Solar Probe Plus, is the first spacecraft
to fly into the low solar corona, and seeks to understand the solar corona’s structure and
dynamics [49]. Initial findings from the Parker Solar Probe allowed for estimates on the
amount of dust ejected from the solar system [50], and revealed more detailed dynamics on
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the electron population within newly formed solar wind [51].

1.3.2 The Spacecraft to Probe Conductive Surface Area Ratio
Problem

When the basics of Langmuir probes were discussed in section 1.3, it was briefly mentioned
that the spacecraft was assumed to be infinitely larger than the LP. In reality, the spacecraft
conductive surface area to LP conductive surface area (from here on simply called “area
ratio”) is finite, and the magnitude of the area ratio is a useful metric for predicting how
spacecraft size may affect the I-V characteristics of a LP. Indeed, when a LP is referenced
against a spacecraft, it is being operated as an asymmetric double probe [52]. In a double
probe system, a bias between two electrodes is applied and the current between them is
measured. The system electrically floats, so there is no net current between it and the
ambient plasma environment, regardless of the potential between the electrodes [53].

Ambient Plasma

Langmuir Probe 2

Sheath

Langmuir Probe 1

Sheath

A ILP

VA

ILP1 ILP2 = −ILP1

Figure 1.3: Symmetric double probe circuit comprised of identical, cylindrical Langmuir
probes.

Before discussing the asymmetric double probe case that describes the LP/spacecraft
system, consider the simpler symmetric double probe scenario for two cylindrical
Langmuir probes. A simple circuit of a symmetric double probe is shown in fig. 1.3
and is used as a reference. In this idealized example, the two probes are identical and
sufficiently separated to be outside of each other’s sheaths while sampling the same plasma
environment. Thus, there are no issues due to differences in work functions, and the same
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current equations (detailed in section 2.3) can be used to describe the net current to both
probes.

The applied potential between the two probes is

VA = φLP1 − φLP2 (1.6)

where φLP1 is the potential of Langmuir probe 1 (LP1) relative to the ambient plasma and
φLP2 is the potential of Langmuir probe 2 (LP2) relative to the ambient plasma. Since
the net current between a double probe system and the ambient plasma must be 0, and
unaffected by the applied bias, the total current of the system is

ILP = IeLP1 − IiLP1 = IiLP2 − IeLP2 (1.7)

where IeLP1 and IeLP2 is the electron current to Langmuir probe 1 and 2, respectively;IiLP1
and IiLP2 is the ion current to Langmuir probe 1 and 2, respectively; and ILP is the current
between the probes. As a point of clarification, the net current to LP1 is equal but of
opposite sign to the net current collected by LP2.

To understand how this current balance requirement affects the current collections of
each probe, refer to the modeled potential curves of each probe shown in fig. 1.4. First,
as a sanity check, when the applied potential between the probes is 0, the two probes are
at the same potential relative to the plasma because they are identical probes in the same
plasma. As the applied potential becomes increasingly positive, LP1 is biased positive
relative to LP2, and LP1 collects increasingly more electron current. For the same density
and temperature, the thermal electron flux is roughly 170 times greater than the thermal flux
of atomic oxygen ions (O+), the dominant ion species in the LEO ionospheric environment.
This is equivalent to the square root of the ratio of the atomic oxygen mass to the electron
mass. Additionally, it is assumed that the only currents collected by the LP or spacecraft
are charged particles sourced from the plasma. Consequently, to balance the increased
electron current to LP1, LP2 will charge negatively to repel electrons and attract more
ions to its surface. LP2’s induced negative potential then limits the potential of LP1 with
respect to the plasma, φLP1 . Equivalently, when VA becomes increasingly negative, LP2 is
biased positive relative to LP1, and φLP1 becomes increasingly negative. φLP1’s induced
negative charging will, in turn, limit φLP2 . Regardless of the applied potential, neither
probe reaches the plasma potential (denoted on the y-axis of fig. 1.4 as 0 V). As a result,
only ion density and electron temperature estimates can be obtained from symmetric double
probe operation. A full description of double probe analysis and the underlying physics is
described by Johnson et. al. and L. Schott [54, 55].
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Figure 1.4: Modeled potentials of each probe in a symmetric double probe as a function of
the applied bias between the two probes.

The same treatment as the symmetric double probe can be used to understand the
asymmetric double probe configuration that describes the Langmuir probe/spacecraft
system. The pictorial representation in fig. 1.5 provides a basic circuit diagram. Again,
since the currents to the LP and spacecraft must sum to zero,

ILP (φLP )− ISC (φSC) = 0

=⇒ IeLP (φLP )− IiLP (φLP )− (IeSC (φSC)− IiSC (φSC)) = 0

=⇒ ALP (jeLP (φLP )− jiLP (φLP )) = ASC (jeSC (φSC)− jiSC (φSC))

∴ jeLP (φLP )− jiLP (φLP ) =
ASC
ALP

(jeSC (φSC)− jiSC (φSC)) (1.8)

where j is the current density; the subscripts i and e represent the ions or electrons,
respectively; and the subscripts LP and SC represent the Langmuir probe or spacecraft,
respectively. Exact analytic expressions for the current collection of a general cuboid do
not exist, but simplifying assumptions can be made to understand how the area ratio affects
the LP’s I-V characteristics.
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Figure 1.5: Asymmetric double probe configuration comprised of a Langmuir probe and
spacecraft.

Equation 1.8 is written in terms of the spacecraft and LP potentials relative to the
plasma, which are potentials that are not directly controlled. However, these potentials
are related by the applied voltage, which is directly controlled, as shown in eq. 1.5. When
the applied bias to the probe is negative, φLP is also negative, and the Langmuir probe
collects net ion current. In this regime, eq. 1.8 simplifies to

−jiLP (φLP ) =
ASC
ALP

jeSC (φSC) .

Since the electron current density is greater than the ion current density, the spacecraft can
balance the ion current to the probe by collecting electron current to its chassis with no
noticeable change to φSC .

As the applied bias is increased, the electron current to the LP also increases.
Eventually, the applied bias is sufficiently positive such that the LP collects only electrons.
In this regime, eq. 1.8 simplifies to

jeLP (φLP ) = −ASC
ALP

jiSC (φSC) .

Where before, the larger electron current density aided in current balance, now the
spacecraft must compensate for the smaller ion current density with its size. On very
large spacecraft, this current requirement does not pose any problems, since the spacecraft
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current collection area is much larger than the probe, and currents can be balanced by
very small changes to the spacecraft potential. Indeed, Szuszczewicz found that an area
ratio of 1× 104 guarantees a fixed spacecraft potential, but an area ratio of at least
1× 103 is typically sufficient and in agreement with Smith and Bettinger [56, 30, 52].
An extreme example of a large spacecraft and probe combination is the International
Space Station (ISS) and its Wide-Sweep Langmuir Probe (WLP). The WLP is a spherical
Langmuir probe of surface area 0.032 m2 [57] and the total surface area of the ISS is
at least 378 m2 [58]; resulting in an area ratio of approximately 1.2× 104, which grew
as more sections and solar panels were added to the ISS. As an additional example, the
Cassini spacecraft carried a guarded spherical Langmuir probe with a total conductive
surface area of 8.9× 10−3 m2 [59]. When approximating the spacecraft as a cylinder with
a length of 6.8 m and diameter of 4 m [60], the area ratio between Cassini and its Langmuir
probe was 1.24× 104.

On small spacecraft, whose area ratio is less than 1000, the current collection area
ratio isn’t sufficiently large enough to balance the currents. As a result, the CubeSat will
negatively charge to collect enough ion current to balance the electron current collected by
the LP [3, 61]. This negative charging directly affects and limits the LP potential relative
to the plasma. An example of a small spacecraft that detected this spacecraft charging
behavior is the DEMETER satellite. Its maximum possible conductive surface area is
0.3 m2 and it carried a guarded LP with total area 7.07× 10−4 m2 [62, 20], resulting in
a maximum area ratio of approximately 433.

To understand how the unstable spacecraft potential affects LP I-V curves, consider
the measured spacecraft potential example shown in fig. 1.6 and the I-V curve example
shown in fig. 1.7. Starting with fig. 1.6, the measured spacecraft potential and Langmuir
probe potential are with respect to a high-impedance probe floating potential. This method
is discussed in section 3.1 with experiment details provided in section 5.1. Comparisons
between fig. 1.6 and fig. 1.4 highlight the effects of referencing the LP against an electrode
larger than itself. In this case, φSC is analogous to φLP2 and φLP is analogous to φLP1 .
When the LP is biased negative relative to the spacecraft, the two plots are identical because
the reference electrode (φSC and φLP2 , respectively) are balancing ion current to the LP with
electron current to their surfaces. When the applied bias is 0, φSC and φLP are no longer at
the same floating potential due to their size difference, shape difference, and difference in
materials. As is seen in fig. 1.7 and noted in section 1.3, this floating potentials difference is
directly responsible for a non-zero measured current collection when the applied bias is 0 V.
When the LP is biased positive relative to the spacecraft, the spacecraft will increasingly
charge negative to balance electron current to the LP with ion current to its own surface.
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Just like in the symmetric case (fig. 1.4), the spacecraft’s induced negative potential limits
φLP . However, φLP is not so limited by φSC that it will not reach and surpass the plasma
potential for the example area ratio. As will be discussed in section 4.3, there exists a
minimum area ratio for which φLP will reach the plasma potential.

Figure 1.6: Experimentally measured potentials of the spacecraft and Langmuir probe in
an asymmetric double probe configuration as a function of the applied bias between the
two probes.

The variable potential of the spacecraft directly impacts the measured I-V
characteristics of the swept LP. In fig. 1.7, experiment data of two Langmuir probe
curves in the same plasma environment, but different area ratios, is shown. A description
of the experiment is provided in chapter 5. The curve for an area ratio of 1.4× 104

corresponds to a Langmuir probe referenced against a vacuum chamber, and is analogous
to a Langmuir probe referenced against very large spacecraft. The curve for an area ratio
of 158 corresponds to a Langmuir probe referenced against a 3U CubeSat, where the
probe-satellite system is electrically isolated from the chamber, mimicking a satellite in
space. For ease of comparison, the curves have each been adjusted by their respective
measured plasma potentials; in this case, 0 V corresponds to the probe being equipotential
with the plasma. As expected, for sufficiently negative applied biases, there is little
difference in the I-V characteristics because the spacecraft potential is not significantly
impacted by ion current collection to the LP. As the applied bias increases, the increased
electron current to the probe induces a negative potential on the spacecraft, and in turn,
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produces I-V characteristics that are shallower when compared to I-V curves obtained
from stable electrical references. Without a method of correcting the data for induced
spacecraft charging or actively controlling the spacecraft potential, the I-V curves of
Langmuir probes operating from small satellites consistently overestimate the electron
temperature, underestimate the electron density, and provide a spacecraft potential that is
somewhere between its natural floating potential and its maximal charged state.

Figure 1.7: Comparison of charging effects on I-V characteristics for small and large area
ratios.

1.3.3 Attempts at Resolving the Issue

The problem of spacecraft charging during LP operations is a well-known phenomenon
that has affected rocket-borne missions and satellites alike [3]. The first time a Langmuir
probe was utilized on a satellite (the third Sputnik mission), measurement inaccuracies
due to spacecraft charging were experienced, resulting in hotter electron temperature
estimates [2]. By the 1960s, the impact on LP measurements due to spacecraft charging
was sufficiently known, such that that the design of the Ariel I satellite included several
measures to improve spacecraft conductivity and the area ratio. These measures included
building the satellite out of a high work function metal, coating the majority of the surface
with evaporated gold to improve surface conductivity, and ensuring the probe area was
very small compared to the satellite area (0.13 %) [63]. Additionally, to understand why
Langmuir probe-borne electron temperature estimates from the second Atmospheric
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Explorer mission, Explorer 32, deviated strongly with accompanying radar-derived
temperature estimates, the impact of spacecraft charging due to probe operation was
carefully studied. While only two-thirds of the spacecraft surface was conductive, the
resultant spacecraft-to-probe area ratio was sufficiently large to only introduce a 5 %

error for probe-derived electron temperature measurements [64]. Thus, area ratio was not
viewed a significant contributor to the Explorer 32 temperature estimate discrepancy.

Similarly, the very first instance of Langmuir probe implementation on a rocket had
issues of area ratio impacting the LP I-V curve [1, 65]. Interestingly, for a period of
time, symmetric double Langmuir probes were ejected from rockets to study the Earth’s
ionosphere without worrying about issues of payload charging. An example of such probes
is the dumbell electrostatic probe developed at the University of Michigan, which consisted
of at least two guarded hemispherical Langmuir probes, a DC power supply, and a radio
transmitter [66]. Since these probes were symmetric double probes, only ion density and
electron temperature measurements could be obtained for various low altitude ionospheric
conditions [67]. In a case where the LP system was not ejected from the rocket body, when
testing an instrument suite designed to probe the Earth’s ionosphere, Bettinger determined
that the DC Langmuir probes’ potential relative to the plasma environment was severely
limited by an induced negative charge on the payload body, due to an area ratio of 20,
rendering swept LP measurements unusable [29]. More recently, Barjatya et. al. noted
that LP operation on the NASA Sudden Atom Layer sounding rocket’s payload induced
negative charging on the payload’s surface as well [68]. Moreover, Bekkeng et. al. noted
that payload charging on the rocket missions ECOMA 7, 8, and 9 impacted electron density
estimates on fixed bias Langmuir probe measurements [69]. Finally, several CubeSats have
encountered satellite charging as a result of LP operation, including DEMETER, CubeStar,
and NorSat-1 [20, 70, 19].

Over time, many additional techniques to mediate these spacecraft charging issues
have been developed for very small satellites. For instance, on the Dynamic Ionosphere
CubeSat Experiment (DICE), LP sweeps are often restricted to potentials near or below the
floating potential to ensure a minimally affected spacecraft potential, while guaranteeing
the ion density can be estimated from LP sweeps [71]. Chamber experiments have shown
that increasing the frequency of LP sweeps by up to 3 kHz diminishes distortions on the
LP I-V curve due to the frequency response of the reference electrode’s (i.e. a spacecraft’s
or rocket’s) sheath impedance; thus, negating the effects of spacecraft charging on electron
temperature measurements [72]. The Ex-Alta 1 and Hoopoe satellites used a 4 LP
configuration, called the m-NLP system, in conjunction with a thermionic emitter to make
rapid measurements of electron density without knowledge of electron temperature or
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spacecraft potential [73]. The thermionic emitter is used to balance the electron current to
the probes as part of an active spacecraft charge control scheme.

So far, the discussed methods have either focused on a specific region of the LP I-V
curve, introduced RF circuitry to circumvent the issues attributed to small area ratios, or
utilize active beam emission. While these systems can be used as a traditional DC Langmuir
probe, doing so would result in an I-V curve that is affected by the unstable spacecraft
potential. In order to maintain the full operation capability of the DC Langmuir probe
while operating on small spacecraft, the satellite potential must be tracked during probe
operation. Such a system could conceivably consist of two LPs where one probe is operated
as a traditional LP and the other tracks the spacecraft potential. Some small spacecraft have
discussed using this method to mitigate the effects of spacecraft charging, but other factors
have limited the impact of the technique. For instance, the DEMETER mission carried the
ISL where the cylindrical probe could be swept relative to the spacecraft, while the guard
of the spherical probe tracked the change in spacecraft potential. Initial tests demonstrated
that sweeping the cylindrical probe by its full bias range did disturb the spacecraft potential,
but the sweep range was reduced to minimize interference [20]. The Mars Atmosphere and
Volatile Evolution (MAVEN) mission also carried two LPs to track the spacecraft potential
during LP sweeps [74]. However, due to the sparse Martian ionosphere and significant
photoelectron current, it was determined that the spacecraft potential variation is negligible
during probe operation [75]. Finally, the PicoSatellite for Atmospheric and Space Science
Observations (PICASSO) CubeSat carries the sweeping Langmuir probe (SLP) instrument.
This instrument consists of four individual LPs, each having the capability to measure the
spacecraft floating potential, or be operated in a swept mode [76]. This mission is slated
for launch in 2020 [77].

1.3.4 Problem Statement

There is clear interest and motivation for mitigating the effects of satellite charging when
Langmuir probes are operated on small spacecraft. A promising method for dealing with
the effects of an unstable satellite electrical reference is to track the spacecraft potential
during Langmuir probe sweeps. While satellites and rockets have flown iterations of this
method, and several theoretical studies have been made on spacecraft charging during
probe operation, little published material exists discussing experimental investigations on
the efficacy of this technique. Therefore, this work seeks to study how much affected
Langmuir probe I-V curves can be corrected using the tracked spacecraft potential.
Specifically, an instrument package consisting of two identical cylindrical probes, each
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with a high-impedance and sweep mode, is used to experimentally study spacecraft
charging and its impact of I-V curves. This Langmuir probe technique, referred to here
as the twin-probe method, is detailed in chapter 3. To understand the affordances and
constraints of the twin-probe method, this work seeks to answer the following questions:

1. Can the spacecraft potential be tracked accurately enough during Langmuir probe
operation to properly correct I-V curves?

(a) What system level design choices limit the effectiveness of the twin-probe
method?

(b) Does probe orientation, size, or shape affect the efficacy of the twin-probe
method?

(c) What environmental effects limit accuracy?

2. Can spacecraft charging behavior during Langmuir probe operation be predicted by
analytic expressions?

(a) How does spacecraft charging affect the Langmuir probe’s I-V characteristics
in ways that cannot be resolved using the twin-probe method?

(b) What is the impact of individual spacecraft conductive surface areas on
spacecraft charging?

3. How can the twin-probe method be used synergistically with other space plasma
instruments?

1.4 Dissertation Overview

The seven chapters and four appendices of the dissertation are organized as follows:

• Chapter 1 introduces the small satellite as a science platform and motivates the
research presented in this dissertation.

• Chapter 2 demonstrates the fundamentals of Langmuir probe current collection and
discusses the general structure of the ionosphere.

• Chapter 3 details the twin-probe technique and its uncertainties.

• Chapter 4 discusses the Plasma Spacecraft Interaction Codes for Low Earth Orbit
(PSIC-LEO) simulations used to understand the interactions between the Langmuir
probes, small spacecraft, and ambient plasma environment.
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• Chapter 5 describes experiments performed at NASA MSFC where the feasibility of
the twin-probe method was studied. The results of the experiments are analyzed to
understand when the method is the most effective.

• Chapter 6 describes the scope of the results and applications for future space
missions.

• Chapter 7 concludes the dissertation and discusses future work.

• Appendix 1 provides an overview of the NASA/AIR Force Spacecraft Charging

Analyzer Program (Nascap-2K) and highlights many top level physical phenomena
that informs assumptions for the PSIC-LEO simulations and interpretation of results
in the experiments.

• Appendix 2 contains the PSIC-LEO source code.

• Appendix 3 provides a complete description of the cylindrical LP data analysis used
throughout the dissertation.

• Appendix 4 provides details the retarding potential analyzer (RPA) data analysis used
for the experiment.
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CHAPTER 2

Ionospheric Plasmas and Langmuir Probe
Theory

A Langmuir probe is a conducting structure biased relative to an electrical reference (e.g.
a grounded vacuum chamber, a satellite in space, etc.) to make in situ measurements of its
plasma environment. In this dissertation, the primary focus will be on plasmas in space or
simulate/scaled space plasmas in vacuum chambers. In this chapter, the fundamentals of
steady state plasma current collection by a planar surface and cylindrical Langmuir probe
used in this dissertation are described, as well as the basic composition of the planetary
ionospheres where these instruments are utilized.

2.1 Representative Structure of Planetary Ionospheres

An example of a plasma that exists around all astronomical bodies with an atmosphere
in our solar system is their respective ionospheres [78]. An ionosphere acts as a buffer
between its atmosphere and the rest of space. An in-depth study of the commonalities of
the ionospheres in our solar system can be found in Nagy et. al. [79], but a short description
of these commonalities are detailed below.

The atmosphere surrounding these bodies is ionized by either interactions with solar
photons or highly energetic particles of cosmic and solar origins [80]. The ionospheric
plasma is typically balanced by two opposing processes: 1) ionization produces the
plasma; and 2) recombination removes ions and free electrons. An in-depth study of
the ionization, recombination, and other energy loss processes (see fig. 2.1) involving
ionospheric electrons can be found in Takayanagi et. al. [81]; however, a summary
of the processes is as follows. Ionization primarily occurs through photo-ionization
from solar X-rays or UV radiation and, to a lesser extent, secondary ionization from
high energy particle collisions. Since ionization is dominated by photo-ionization, the
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ionosphere’s structure exhibits diurnal behavior and is heavily influenced by sun spot
activity [82, 83, 84]. Charged particle cooling occurs through collisions that result in
excitation or scattering; and with sufficient cooling, electrons will recombine with positive
ions neutralizing the ionization.

Figure 2.1: Energy exchanges between neutral and charged particles in an ionosphere.
Figure extracted from Witasse et. al. [80, p. 239].

The various effects of ionization, energy transfer, and recombination lead to a largely
vertical stratification where an ionosphere can be divided into regions based on general
characteristics such as temperature and composition [85]. The thermal profiles of an
ionosphere can be divided into three regions. At lower levels, neutrals, ions, and electrons
are in thermal equilibrium due to inelastic collisions. Above this, electrons are hotter than
neutrals due to a suprathermal population, while ions and neutrals continue to maintain
thermal equilibrium. Finally, at the highest altitudes, ions are no longer thermalized
with neutrals due to an increase in electron-ion collisions. The exact altitudes of these
regions vary between astronomical bodies due to the complex nature of ionospheres and
atmospheres [80].

Examples of planetary ionospheres are quickly described in sections 2.1.1 to 2.1.3,
but this thesis focuses primarily on operations in the Earth’s ionosphere. However, the
twin-probe method is applicable in any situation where the spacecraft cannot balance the
current to a Langmuir probe without significantly charging.
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2.1.1 Earth’s Ionosphere

The Earth’s ionosphere extends from about 90 km to 2000 km above the Earth’s surface
and is protected from external energetic particles, such as solar wind, by the Earth’s
intrinsic magnetic field [86]. It is composed of multiple atoms and molecules such as
helium, oxygen, and nitrogen, and their corresponding ions, as well as electrons (see
fig. 2.2). Furthermore, it is divided into layers (D,E, F, and topside) based on several
factors including but not limited to composition, ionization rates, and density [87, 88]. The
F region has the largest plasma densities, ranging from 1010 to nearly 1013 m−3, and exists
from 150 km to 600 km above the Earth [89, 90]. Finally, fig. 2.3 shows the temperatures
for ions, electrons, and neutral particles in the F-region.

Figure 2.2: Ion, electron, and neutral particle densities in the ionosphere as a function of
altitude. Figure from The Earth’s Ionosphere [91, p. 6].

To properly model and predict the current collection of a conductor in the ionosphere, it
is necessary to understand the ion and electron velocity distribution functions. The electron
distribution function is divided into two regions: a low energy thermal region and a high
energy suprathermal region [92, 93]. The low energy thermal region has been modeled,
and experimentally confirmed, as Maxwellian [63, 94, 92, 95]. In this thesis, only the
thermal electron population is considered. The high energy tail of the electron distribution,
while significant for many processes, only accounts for roughly 1% of the total electron
population [63].

For the ion population, singly ionized atomic oxygen is assumed to be the only ion
species collected, as it is the dominant ion species in LEO, which is any orbit below
2000 km [96] (see fig. 2.2). In quiet, steady state conditions the ion distribution function
is also assumed to be Maxwellian [97]. While this general assumption holds for these
studies, in regions of the ionosphere where electric fields are large or where ion drifts differ
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sufficiently from neutral thermal speeds, the ion distribution function deviates strongly
from a Maxwellian distribution [98, 99, 100, 101, 102].

Figure 2.3: Ion, electron, and neutral particle temperatures in the ionosphere as a
function of altitude. The solid lines correspond to measurements during solar minimum
and the dashed lines correspond to measurements during solar maximum. Figure from
Fundamentals of Spacecraft Charging [89, p. xvii].

For in-situ measurements made in the ionosphere, the ionospheric plasma is said to
be mesothermal with respect to the orbital velocity of the spacecraft. That is, the orbital
velocity is greater than the ion thermal speed but less than the electron thermal speed. As
a result, the distribution function for ions collected by an Earth-orbiting body is treated as
a drifting Maxwellian population where the drift term is the spacecraft’s velocity [103].
Additionally, the mesothermal nature of the ionosphere produces ram and wake structures
around the spacecraft. On the ram side of the spacecraft, slower moving ions are
compressed against the spacecraft body leading to current collection enhancement in this
region. In the wake of the spacecraft (opposite of the ram side), particles can only get
behind the spacecraft through random thermal motion. Thus, the wake of the spacecraft
is largely devoid of ions when compared to the ambient plasma environment, and a
significant drop in current collection is observed in the wake region [104, 105]. Pictorial
representations on ram/wake effects on the potential structure around the spacecraft are
shown in figs. A.11a and A.11b and comparisons between ram and wake current collection
are given in table A.1.

The presence of the Earth’s magnetic field complicates current collection theory
because charged particles will gyrate along magnetic filed lines, introducing anisotropies
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in the charged particle velocity distribution function [26]. While many theories for
Langmuir probe current collection in a magnetized plasma exist, there is no complete,
analytical treatment for LP current collection in a mesothermal magnetized plasma [106].
Furthermore, the physical gyroradii of the ions and electrons can be considered against
their length scales. Using the typical F region parameters quoted by Huba [107], the
electron gyroradius is 2.5× 10−2 m, the ion gyroradius is 4.3 m, and the ion cyclotron
frequency is 1.8× 102 rad s−1. First, the mesothermal nature of the spacecraft velocity
implies that the ions will appear to have a preferential drift from the spacecraft’s reference
frame; thus, in the period of the ion cyclotron motion (0.035 s) the spacecraft will travel
about 280 m. Since the distance the spacecraft travels is much greater than the ion
gyroradius, the ion motion will appear to have negligible effects due to the ambient
magnetic field from the frame of reference of the spacecraft/LP system.

Regarding the magnetic field’s effects on electron current, two cases must be
considered: 1) the case where the LP is biased positive with respect to the spacecraft and
the LP collects net electron current, and 2) the case where the LP is biased negative and
the spacecraft can collect electrons. In the first case, magnetic fields only impact electron
current collection when the collector radius is larger than the electron gyroradius [108].
As is discussed in section 6.2, probe radii are ideally a fraction of a centimeter, such that
they are smaller than, or at worst equal to, the plasma’s Debye length. As a result, the
probe collector radius is smaller than the electron gyroradius in the Earth’s magnetic field
in LEO, so the impact on LP current collection due to the ambient magnetic field will be
minimal for steady state conditions. In the second case, the spacecraft is larger than the
electron gyroradius, and the ambient magnetic field will likely impact electron current
collection to the spacecraft [109]. However, in this scenario, the spacecraft is very close to
its floating potential because its potential is minimally shifted when the LP collects net ion
current (see section 1.3.2). Therefore, the electron current that reaches the spacecraft body
is typically one to two orders of magnitude smaller than the electron thermal current, and
the change in electron current collection due to the magnetic field is small. As a result, the
first case is of greater interest in this dissertation, as it is the balance between ion current
to the spacecraft and electron current to the LP that dictates the magnitude of the induced
negative spacecraft potential (see section 1.3.2). Thus, to maintain the simplicity of current
collection models and focus solely on the relationship between area ratio and spacecraft
charging, the effects of the Earth’s magnetic field are not considered when modeling
current collection to conductive surfaces.
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2.1.2 Venus’ Ionosphere

Unlike Earth, Venus has no strong, intrinsic magnetic field. Therefore, Venus’ ionosphere
and atmosphere directly interact with the Sun’s solar wind. This creates interesting
dynamics that are very different from what is observed in the Earth’s ionosphere. One
of these differences is a distinct tangential discontinuity at the Venusian ionosphere’s
edge called the ionopause. In this pause, the kinetic pressure from the ionosphere’s
plasma is equal to the solar wind pressure [78]. Some key phenomena that are observed
at the ionopause include: a sharp drop off in plasma density across the ionopause, the
altitude of the ionopause being directly related to solar activity, and fluctuations in plasma
density on the night side ionosphere lending to the idea of the existence of holes in the
ionosphere [85, 78, 80]. A diagram of Venus’ ionosphere can be found in Schunk et. al.

[78, p. 33]).

Figure 2.4: Daytime ion densities at Venus. Figure from Schunk et. al. [78, p. 484].

Venus’ ionosphere has been heavily studied through the 12 year PVO satellite mission.
Its ionosphere extends from about 120 km to 600 km above the surface. At roughly 135 km
to 140 km, the electron density peaks at 5× 1011 m−3. In this peak region the dominant
neutral species is CO2. Photoionization produces CO+

2 that reacts with O to produce the
dominant ion in the region O+

2 [85]. Above the lower region of the ionosphere, O+ is the
dominant ion species while O and CO become the main neutral species. At the highest
level of the ionosphere, H and He become the main constituents of the neutral population.
The charged particle density and electron temperature as a function of altitude is shown in
figs. 2.4 and 2.5, respectively.
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Figure 2.5: Electron temperature measurements of Venus at solar cycle maximum electron
temperatures as a function of zenith angle and altitude. Figure from Schunk et. al. [78,
p. 490].

2.1.3 Mars’ Ionosphere

The Martian ionosphere is thought to be very similar to that of Venus in terms of
composition, intrinsic magnetic fields, and densities [85]. For instance, fig. 2.6 diagrams
the interactions and chemical reactions that are applicable to both Venus’ and Mars’
ionospheres. Due to limited observations relative to those performed at Venus, not as
much is definitively known about Mars’ ionosphere. Its ionosphere extends from roughly
100 km to 500 km with a density peak of 1× 1011 m−3 occurring between 120 km and
140 km [80]. This density peak corresponds with the main ionization layer where the
driving ionizing reaction is due to ultraviolet solar photons [85]. The lower ionosphere is
dominated by neutral CO2, but CO and O will dominate at higher latitudes. While not
the main neutral constituent, the dominating ion species is O+

2 with the exception in the
upper ionosphere where O+

2 and O+ appear in equal numbers (see fig. 2.7)[78]. Finally,
like Venus, the Martian ionosphere does stop at the ionopause where plasma densities drop
significantly. However, the exact behavior and altitude of the drop is still being studied
with measurements indicating that it exists at an altitude between 300 km and 500 km [78].
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Figure 2.6: Chemistry of ions in both the Venusian and Martian ionospheres Venusian
ionosphere. Figure from Schunk et. al. [78, p. 483].

Figure 2.7: Calculated and measured day side ion density profiles at Mars. Figure from
Schunk et. al. [78, p. 36].

2.2 Plasma Current Collection to a Planar Surface

Before developing the equations for a cylindrical LP (see section 2.3), the simpler case
of current collection by a planar surface is first discussed. These models are useful in
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predicting the currents collected by a planar satellite face and are at best conservative
estimates. The effect of an accelerating bias will not be considered for these derivations.
Furthermore, it is assumed that the surface is sufficiently large to ignore edge effects; that
is, the surface’s length is much larger than the plasma Debye length.

Using fig. 2.8 as a pictorial reference, let v and w be particle velocities parallel to
the planar surface, u the particle velocity perpendicular to the surface, and vi is the ion
drift velocity perpendicular to the planar surface. Following the work presented by Hoegy

et. al. [110], the currents to a planar probe are calculated by integrating the distribution
function over all velocities parallel to the plane and over velocities perpendicular to the
plane such that

I = qApns

∫ ∞
0,
√
− 2qφ
ms

∫ ∞
∞

∫ ∞
∞

uf(u, v, w)dwdvdu (2.1)

where the lower limit of u is 0 for accelerating potentials and
√
−2qφ/ms for retarding

potentials, ns corresponds to the density of the charged particle species (either electrons or
ions), ms corresponds to the charge particle mass, and Ap is the probe area.

y

x

z

Planar Surface

v w

u

Particle Velocity Ion Drift Velocity

vi

Figure 2.8: Components of particle velocity relative to planar surface.

Following the assumptions in section 2.1.1, the electron population is described by the
following three dimensional Maxwellian distribution:

f(u, v, w) =

(
me

2πkBTe

) 3
2

exp

(
− me

2kBTe

[
u2 + v2 + w2

])
.
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Integrating the Maxwellian over any accelerating potential using eq. 2.1 gives

Ie (φ > 0) = qApNe

(
me

2πkBTe

) 3
2
∫ ∞
0

∫ ∞
∞

∫ ∞
∞

u exp

(
− me

2kBTe

[
u2 + v2 + w2

])
dwdvdu

= qApNe

√
kBTe
2πme

. (2.2)

Equation 2.2 provides a useful normalization constant for the electron current, the electron
thermal current. When the accelerated electron current is normalized by the thermal
current, it becomes unity. Additionally, the retarding current is

Ie (φ ≤ 0) = qApNe

(
me

2πkBTe

) 3
2
∫ ∞√
− 2qφ
me

∫ ∞
∞

∫ ∞
∞

u exp

(
− me

2kBTe

[
u2 + v2 + w2

])
dwdvdu

= qApNe

√
kBTe
2πme

exp

(
qφ

kBTe

)
. (2.3)

Without considering the effects of an accelerating potential or the size of the sheath, the
current collection to a planar probe is simply exponential decaying for all retarding biases
and the thermal current for any attractive potentials (see fig. 2.9).

Figure 2.9: Normalized electron currents collected by a planar surface as a function of
potential relative to the ambient plasma.
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The ions can be treated identically using a drifting Maxwellian distribution

f(u, v, w) =

(
mi

2πkBTi

) 3
2

exp

(
− mi

2kBTi

[
(u− vi)2 + v2 + w2

])
.

To simplify the calculations, normalize the bias and velocities using the ion temperature
such that

η =
qφ

kBTi
un = u

√
mi

2kBTi
vn = v

√
mi

2kBTi
wn = w

√
mi

2kBTi
s = vi

√
mi

2kBTi

and the ion current is normalized using the ion thermal current,

Iitherm = qApNi

√
kBTi
2πmi

.

Now, assuming the probe is oriented perpendicular to the drift velocity, the normalized
accelerated ion current is

I in (−φ > 0) =
2

π

∫ ∞
0

∫ ∞
∞

∫ ∞
∞

un exp
(
−
[
(un − s)2 + v2n + w2

n

])
dundvndwn

= exp
(
−s2

)
+
√
πs erfc (−s) , (2.4)

and the full current expression is

Ii (−φ > 0) = qApNi

√
kBTi
2πmi

[
exp

(
−s2

)
+
√
πs erfc (−s)

]
(2.5)

Similarly, the normalized retarding ion current is

I in (−φ ≤ 0) =
2

π

∫ ∞
√
−η

∫ ∞
∞

∫ ∞
∞

un exp
(
−
[
(un − s)2 + v2n + w2

n

])
dundvndwn

= exp
[
−
(√
−η − s

)2]
+
√
πs erfc

(√
−η − s

)
, (2.6)

and the full current expression is

Ii (−φ ≤ 0) = qApNi

√
kBTi
2πmi

[
exp

[
−
(√
−η − s

)2]
+
√
πs erfc

(√
−η − s

)]
(2.7)

Figure 2.10 provides an example of the I-V curved produced by eqs. 2.4 and 2.6. Should
the planar probe be oriented parallel to the ion drift velocity, the collected ion currents
would be identical to the thermal current collection behavior that describes electron current
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collection.

Figure 2.10: Normalized ion currents collected by a planar probe as a function of potential
relative to the ambient plasma.

2.3 Cylindrical Probe Current Collection

For the case of a cylindrical Langmuir probe, the following assumptions are made to
simplify the calculations. The probe’s length, l, is assumed to be much longer than its
radius, rp, or the probe is assumed to be guarded, such that probe end effects can be ignored.
A guarded Langmuir probe has a cylindrical conductor on one, or both, ends that is biased
at the same potential as the LP to extend uniformity of the electric field surrounding the
probe. Furthermore, the shape of the probe’s sheath is assumed to be unchanged by high
drift velocity of the spacecraft. The combination of these assumptions idealizes the sheath
surrounding the probe such that it is perfectly cylindrical and coaxial with the probe and
end effects can be ignored. Accounting for the errors associated with these assumptions
are detailed in section 2.4.
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Figure 2.11: Approximate charged particle trajectories for: (a) thin sheath collection and
(b) thick sheath collection.
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Figure 2.12: Varying coaxial sheaths sizes surrounding a cylindrical Langmuir probe of
constant size. There are 3 sheath categories (denoted by dotted lines) considered based
on the ratio of sheath radius to probe radius: thin sheath, transitional sheath, thick sheath.
Relative sheath sizes are not to scale.

While the sheath is unaffected by orbital velocities, its size is dependent on electron
density and temperature. For ionospheric conditions in the F-region, typical Debye lengths
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range from a fraction of a centimeter to a few centimeters [103]. The size of the sheath
relative to the probe radius also dictates the current collection behavior of the probe.
For thin sheath current collection, the ratio of the sheath radius to probe radius, rs/rp,
is approximately one (rs/rp ≈ 1), and all particles that cross the sheath boundary are
collected at the probe surface [111] (see left-most diagram of fig. 2.11 for approximate
particle trajectories). For thick sheath current collection, the sheath radius-to-probe radius
ratio is much greater than 1 (rs/rp >> 1), and most of the particles that enter the sheath
boundary are not collected by the probe [55] (see right-most diagram of fig. 2.11 for
approximate particle trajectories). A transition sheath thickness that exists between what
is considered thick or thin sheath does exist and has been summarized by Lobbia et.

al. [112], but will not be considered in this discussion. Refer to fig. 2.12 for a visual
representation of various sheath to probe thickness ratios.

For sections 2.3.1 and 2.3.2, fig. 2.13 can be used as a reference to understand the
polar coordinates of the charge particle’s velocity. u is the velocity component radial to
the sheath edge, v is the velocity component tangential to the sheath edge, and vi is the
velocity component of the ion drift velocity (antiparallel to the spacecraft orbital velocity).
u is positive when directed towards the origin.

Langmuir
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Sheath
Charged
Particle

u

v

vi

x

y

Figure 2.13: Components of particle velocity in cylindrical coordinates.
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2.3.1 Electron Current Collection

Using the assumptions described in section 2.1.1, the Maxwellian distribution function for
electrons, f (u, v), can be written as [113]

f (u, v) =
me

2πkBTe
exp

[
− me

2kBT

(
u2 + v2

)]
. (2.8)

The current density through the sheath can then be expressed as

j = Nq

∫ ∞
0,u1

∫ v2

v1

uf (u, v) dvdu (2.9)

where the lower limit of u is 0 for accelerating potentials and u1 for retarding potentials.
Substituting the Maxwellan distribution into eq. 2.9 and integrating over all tangential
velocities and all velocities towards the probe provides the thermal electron current density

jetherm = qNe

√
kBTe
2πme

. (2.10)

To model the current collection due to a biased probe using eq. 2.9, first normalize the
probe bias by the electron temperature

η =
qφ

kBTe

and the electron velocities by the most probable speed as follows

un = u

√
me

2kBTe
vn = v

√
me

2kBTe
.

Then the total accelerating current will be

Ie (φ > 0) = 8
√
πrsljetherm

∫ ∞
0

∫ rp
√
u2n+η/

√
r2s−r2p

0

une
−(u2n+v2n)dvndun

= 2πrpljetherm

(
rs
rp

erfc

√
r2pη

r2s − r2p
+ erf

√
r2sη

r2s − r2p

)
(2.11)

In the thin sheath limit where rs ≈ rp, eq. 2.11 is rewritten as

Iethinsheath = rpljetherm .

The thin sheath limit is effectively equivalent to the electron thermal current collected by
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the LP. In the thick sheath limit where rs/rp →∞,

Iethicksheath = rpljetherm

(
2√
π

√
η + eη erf

√
η

)
which can be further simplified for values of η greater than 2 to be

Iethicksheath = rpljetherm
2√
π

√
1 + η. (2.12)

This final, simplified form of the thick sheath electron current is the orbit motion limited
electron current for cylindrical probes [3]. The retardation current is calculated using
eq. 2.9 such that

Ie (φ ≤ 0) = 8
√
πrsljetherm

∫ ∞
√
−η

∫ rp
√
x2+η/

√
r2s−r2p

0

xe−(x2+y2)dydx

= 2πrpljetherme
η. (2.13)

As shown in fig. 2.14, the electron retardation current is independent of sheath radius,
unlike the accelerated current.

Figure 2.14: Normalize electron current collected by a cylindrical probe as a function of
potential relative to the ambient plasma.
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2.3.2 Ion Current Collection

Due to the orbital velocity of the spacecraft, the ion population is described by a drifting
Maxwellian distribution function, f (u, v), which can be written as [113].

f (u, v) =
mi

2πkBTi
exp

[
− me

2kBT

(
(u− vi)2 + v2

)]
(2.14)

where vi is the ion drift speed and is equivalent to the orbital speed of the spacecraft. To
obtain the ion currents, the normalization is as follows: the probe potential is normalized
by the ion temperature,

η =
qφ

kBTi
,

and the radial, tangential, and ion drift speeds are normalized by the most probable ion
thermal speeds

un = u

√
mi

2kBTi
vn = v

√
mi

2kBTi
s = vi

√
mi

2kBTi
.

However, as demonstrated by Langmuir et. al. [113] and later in greater detail by Hoegy

et. al. [114], the introduction of a drift term greatly complicates the calculations, and
so the results from Hoegy et. al. will be presented without derivation. The general
calculations will be done in their normalized form for simplicity but the final results will
not be normalized. The normalized ion retardation current is estimated using

I in (−φ ≤ 0) =
4√
π

∫ ∞
√
−η

√
u2n − η exp

[
−
(
u2n + s2

)]
I0 (2sun)undun (2.15)

where I0 (2sun) is a modified Bessel function of the first kind. An important distinction
in the retardation current is the relationship between probe bias and ion drift speed. When
the drift energy is smaller than the probe bias, the retarding current decreases exponentially
with bias. However, the current’s exponential behavior is overshadowed by the drift energy,
approximating the form Ii ∝

√
s2 − η for large drift energies greater than the retarding

bias [114].
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For accelerating currents, the full normalized expression is

I in (−φ > 0) =
4√
π

∫ ∞√
η

(
r2s
r2p
−1
)−1

√
u2n + η exp

[
−
(
u2n + s2

)]
I0 (2sun)undun+

4√
π

rs
rp

∫ √
η

(
r2s
r2p
−1
)−1

0

exp
[
−
(
u2n + s2

)]
I0 (2sun)u2ndun (2.16)

Again, two approximations can be made: 1) the thin sheath approximation and 2) the thick
sheath approximation. For the thin sheath approximation, the ion current simplifies to

Iithinsheath = qApNi

√
kBTi
2πmi

rs
rp
e−

1
2
s2
[(

1 + s2
)
I0

(
1

2
s2
)

+ s2I1

(
1

2
s2
)]

where I1 (s2/2) is a modified Bessel function of the first kind.
For thick sheath conditions, there are various approximations based on the magnitude

of the ion drift speed and accelerating potential, as well as their ratio relative to each other.
The full expression is given as

Iithicksheath = qApNi

√
kBTi
2πmi

∞∑
n=0

∞∑
m=0

(−s2)n ηm

n!m!

(
Γ
(
n+m− 1

2

)
Γ
(
m− 1

2

)
Γ (n+ 1)

−

V
3
2 Γ (n+m+ 1)

Γ
(
m+ 5

2

)
Γ (n+ 1)

)
, (2.17)

where Γ() are gamma functions. From eq. 2.17, multiple approximations arise depending
on the operating region. As s → 0, the normalized ion current collection approaches the
classical orbit motion limited formula to zeroth order

Iithicksheath ≈ qApNi

√
kBTi
2πmi

[
2√
π

√
η + eηerf

√
η

]
which, for large values of η, further simplifies to

Iithicksheath ≈ qApNi

√
kBTi
2πmi

2√
π

√
1 + η. (2.18)

For small attractive potentials but very large drift speeds, the accelerated current is nearly
identical to the retarding current such that

Iithicksheath ≈ Iret (−η) .
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Finally, the approximation that is most applicable to the plasmas considered in this work
occurs for the case where η + s2 > 1. Under these conditions,

Iithicksheath ≈ qApNi

√
kBTi
2πmi

2√
π

(
η + s2 +

1
2
s2 + η

s2 + η

) 1
2

. (2.19)

eq. 2.19 simplifies again to the classical OML expression for s → 0 and for s2 > φ, it
becomes the generalized Mott-Smith and Langmuir equation for high drift velocity [113,
114],

Iithicksheath ≈ qApNi

√
kBTi
2πmi

2√
π

(
η + s2 +

1

2

) 1
2

(2.20)

≈ qApNiviπ
−1
(

1 +
kBTi
miv2i

+
2qφ

miv2i

) 1
2

. (2.21)

Figure 2.15 shows the differences in normalized ion current collection for drifting and
non-drifting ions in both the thin sheath and thick sheath limits. Most notably, the current
immediately decays exponentially when the probe bias repels ions in the non-drifting
scenario, while the drifting case has non-negligible current collection up until the repelling
bias approaches the ion drift energy. Understandably, the thick sheath conditions collect
more current than their thin sheath counterparts due to the differences in sheath sizes.
Additionally, the drifting scenario collects more current than the non-drifting case due to
the additional flux of the drifting component.

(a) Collected currents for an oxygen ion species
drifting at 5 eV.

(b) Collected currents for an oxygen ion species
with no drift.

Figure 2.15: Normalized ion current collected by a cylindrical probe as a function of
potential relative to the ambient plasma.
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2.4 Sources of Error

Up until now, all currents to a probe are due to either ions or electrons sourced by the
plasma. Factors that alter this current collection behavior are treated as sources of error.
There are two sources of error that are considered: 1) additional sources of current and
2) physical characteristics that affect the probe’s current collecting surface. These sources
of error must be accounted for in order to fully understand the uncertainties in individual
probe operation. These external current sources can also change the probe and spacecraft
potentials relative to the plasma and each other. Here we will briefly detail the error terms
that spacecraft in orbit may encounter. Calibration methods for many of these uncertainties
are possible when carrying multiple probes and are detailed in section 3.3. For a more in
depth look at these various charging effects, refer to Hank Garrett’s review or Shu T. Lai’s
book on the subject [115, 89].

2.4.1 Photoelectrons

Photoelectron current is the electron current due to the photoelectric effect caused by
solar photons interacting with a conducting surface. For probe biases more negative
than the plasma potential, all photoelectron current leaves the surface. However, when
the probe is biased above the plasma potential, photoelectrons emitted with energies
less than the attractive potential return to the probe’s surface. When the probe is biased
sufficiently positive relative to the plasma, all photoelectron current returns to the probe. If
photoelectron current is substantial, but not accounted for during analysis, the most likely
effect is an overestimation of the ion density [116].

Electrons leaving the spacecraft or probes are regarded as negative current to the
spacecraft system and will therefore drive the spacecraft potential and probe potentials
positive relative to the ambient plasma [118] (see fig. 2.16 for a pictorial representation).
For instance, Brace et. al. noted that LP measurements of the probes photoelectron
emission may have sometimes been impacted due to positive spacecraft potentials [116].
Additionally, if a large enough potential difference exists between the probes and
spacecraft (or their sheaths overlap), it is possible for the probes and spacecraft to
exchange photoelectrons, further complicating current estimates and data analysis. The
full photoelectron current can be estimated using the solar intensity, solar spectrum in the
region, the angle between the probe or spacecraft and the sun, and the material emitting
photoelectrons [115, 119, 120].
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Figure 2.16: Illustration of charge effects due to photoelectrons. Side (a) presents a
negatively charged conductor without the presence of solar photons. Side (b) presents a
positively charged conductor due to solar radiation. Figure adapted from Grard et. al.
[117, p. 292]

2.4.2 Secondary Electrons

Secondary electron emission has the same effect as photoelectron emission through a
different mechanism. Secondary electron emissions occur when an energetic particle,
either an ion or an electron, strikes the surface of a solid with enough energy to eject
secondary electrons [121, 122]. Typically, secondary electrons are considered low energy
(<50 eV) [123]. Secondary electron emission is dependent on the energy of the charged
particle striking the conductor, referred to as the primary particle, and the solid’s stopping
power [123, 124]. Figure 2.17 provides an example of the secondary electron yield (SEY)
as a function of primary particle energy. SEY (on the y-axis) is expressed as a number
representing the ratio between the number of secondary electrons, and the number of
incident electrons. SEY curves have a single peak and decay as the primary particle
energy increases. Therefore, secondary electron emission occurs within a band of energies,
typically between a few eV and up to 50 keV [125, 126]. If the primary particle energy
is too low, not enough energy is deposited to eject an electron from the solid. For very
large primary particle energies, the primary particle penetrates the material too deeply
for secondary electron emission to occur. When secondary electron emission does occur,
the ejected electron will be accelerated away from the surface if the probe or spacecraft
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is negative relative to the plasma, or be recollected if the probe/spacecraft is positive of
the plasma and the electron does not have the energy required to overcome the potential
barrier [115, 127].

Figure 2.17: SEY curves from electron impact. Image from Whipple [128].

While secondary electron emission will raise the potential of the probe or spacecraft,
it will typically be much smaller than photoelectron current [120]. Therefore, in
regions where secondary electrons emission occurs, it can play a dominant role when
photoelectrons are negligible, such as when the spacecraft is shadowed. Moreover, in
situations where a significant population of highly energetic charged particles exists, such
as the plasma surrounding Saturn, secondary electron emission can produce multiple
floating potential biases, affect the slope of the ion saturation regime, and provide insight
as to whether the probe is enveloped in its spacecraft’s sheath [129, 130, 131].

2.4.3 Auroral Precipitation

For spacecraft stationed in polar orbits, auroral precipitation must be considered as an
additional current term when the spacecraft passes through the auroral region (see fig. 2.18).
In this region, electrons with energies greater than a kilo-electron volt (sometimes orders
of magnitude greater) can be injected into the region due to either a reconnection of the
magnetic fields lines in the Earth’s magneto-tail or wave-particle interactions [89, 133].
When these energetic electrons interact with a passing spacecraft, the spacecraft potential
can experience severe negative charging, disrupting spacecraft functions, and an increase in
secondary electron emission current. Defense Meteorological Satellite Program (DMSP)
satellites have shown charging levels that exceed -100V, and the DMSP F13 spacecraft
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Figure 2.18: Particle precipitation from the Earth’s magnetosphere. Auroral precipitation
originates from magnetic reconnection. Figure from Tyssøy [132, p. 13].

experienced a lockup of its microprocessor unit as an indirect result of a precipitation event
[134, 135, 136]. When passing through auroral precipitation, spacecraft charge mitigation
is accomplished with a combination of two processes: ensure the charge can move as
freely as possible along the spacecraft surface and dissipate the charge from the spacecraft
body. When the surface area of the satellite is composed of as many conductive surfaces
as possible, charge can equally balance itself along the surface, thus avoid differential
charging. To dissipate charge from the spacecraft, a hollow cathode plasma contactor can
be used to emit electrons from the spacecraft and collect ions to the more negative sections
of the spacecraft [137]. As an example, the ISS uses a plasma contactor to discharge excess
electrons, which is engaged when interacting with auroral precipitation [138].

2.4.4 Electromotive Force

Due to the Earth’s magnetic field, an electromotive force (emf) is generated between the
probe tips and spacecraft as they orbit the Earth. This electromotive force is given as

VEMF = −
∫ l

0

(
~v(l)× ~B(l)

)
· d~l (2.22)
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where VEMF is the induced voltage, ~v is the spacecraft velocity, and ~B is the magnetic field
along the line probe mast [139]. While this effect is non-negligible for booms and tethers
that are longer than a meter or in very strong magnetic fields, it should be considered
when designing probes and masts for low density measurements. The simplest way to
mitigate the induced emf is to design the booms to be as short as possible or to orient the
booms along the ambient magnetic field. However, even with these mitigation techniques,
the satellite position along its orbit, its attitude, and the boom orientation should be
tracked during instrument operation. Induced emf plays can affect high-impedance
probe measurements as was seen on the ISS as more solar arrays and segments were
added [140]. Furthermore, variations in the induced voltage can be on the order of the
ambient plasma’s electron temperature, introducing large errors into electron temperature
measurements. For instance, the Freja Cold Plasma Analyzer measured induced emf
variations of ±0.5 V, which modulated the collected current of a fixed potential probe with
a sinusoidal waveform whose amplitude was roughly 1 µA[141]. Using the spacecraft and
probe attitudes, in conjunction with either direct measurements of the local magnetic field
or models of the magnetic field, such as the International Geomagnetic Reference Field
(IGRF) model [142], the induced emf can be calculated and used to adjust the measured
high-impedance measurements and the applied potentials of a swept Langmuir probe
[141, 143].

2.4.5 Work Function

The work function of a material (measured in eV) is the energy required to remove an
electron from the Fermi level of a material to the external vacuum level. This energy
difference is highly governed by both bulk and surface conditions [144]. Variability in
the work function is due to either contamination of the probe or inhomogeneity of the
crystalline structure of the probe’s surface [145]. Work function variation inevitably
leads to altered I-V characteristics resulting in hotter measured electron temperatures
and increased uncertainties for plasma potential measurements (see fig. 2.19) [145, 146].
While there may be variations of the work function along different atomic planes within
a single material, as well as anisotropy of its crystal structure, the use of a material with
a homogeneous surface work function (variations are small in comparison to the lowest
expected electron temperature) is necessary to ensure reliable measurements [147]. To
deal with contaminants, periodic cleaning by either ion bombardment or electron heating
can be performed [148, 149].
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Figure 2.19: a) Effective circuit for work function variation due to surface contaminants.
b) Hysteresis effects on I-V curve due to contaminants. Figure from Szuszczewicz et. al.
[148, p. 5134].

2.4.6 Transient Effects

Transient effects that affect I-V characteristics are numerous and complex. As described
by Lobbia et. al. [150] and Schott [55], the plasma’s response to changing probe potentials
are limited by : 1) sheath transit time, 2) sheath formation time, 3) plasma resonance, 4)
polarization drift, 5) sheath capacitance, 6) stray capacitance. Using the equations provided
in Lobbia et. al., some of the minimum elapsed times necessary to avoid transient effects
are highlighted in tables 2.1 to 2.3.

The simplest way to overcome the distortions introduced by the first 4 transient effects
is to slow the slew rate of the LP sweep to dwell on each voltage step at least three times
longer than the various response times that are all governed by the ion plasma period (the
inverse of ion plasma frequency). Resolving issues with sheath and stray capacitances
requires a combination of managing slew rate, voltage step size, and physical hardware
design. Larger voltage step sizes increase the RC time constant of capacitive effects,
slowing the slew rate, and so a balance between voltage step size and bias sweep slew rate
is required to minimize these effects. Additionally, stray capacitances can be minimized
by employing Langmuir probes affixed to triaxial booms, allowing the central conductor
and inner shield to be held at the same potential, nearly eliminating stray capacitances
[150, 151].
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Density (m−3) Sheath Transit (ms) Sheath Formation (ms) Resonance (ms)
4.1× 109 3.1× 10−2 3.1× 10−2 1.1× 10−4

1× 1010 2.0× 10−2 2.0× 10−2 7.2× 10−5

1× 1011 6.3× 10−3 7.6× 10−3 2.5× 10−5

7× 1011 2.4× 10−3 4.0× 10−3 1.1× 10−5

Table 2.1: Temporal limits of LP slew rates based on ion sheath transit, ion sheath formation
in a flowing plasma, and the resonance between probe potential and plasma oscillations for
a range of possible densities found in the Earth’s ionosphere.

Settle Time (ms)
Density (m−3) ∆VA1 =0.001 V ∆VA2 =10 V ∆VA3 =20 V

4.1× 109 7.1× 10−4 0.73 1.5
1× 1010 4.6× 10−4 0.47 0.93
1× 1011 1.4× 10−4 0.15 0.30
7× 1011 5.4× 10−5 0.06 0.11

Table 2.2: Temporal limits of LP slew rates, in milliseconds, based on sheath capacitance
for 3 voltage step sizes and a range of possible densities found in the Earth’s ionosphere.

Settle Time (ms)
Density (m−3) ∆VA1 =0.001 V ∆VA2 =10 V ∆VA3 =20 V

4.1× 109 8.2× 10−3 8.4 16.8
1× 1010 3.4× 10−3 3.45 6.9
1× 1011 3.4× 10−4 0.35 0.69
7× 1011 4.8× 10−5 0.05 0.10

Table 2.3: Temporal limits of LP slew rates, in milliseconds, based on stray capacitance for
3 voltage step sizes, and a range of possible densities found in the Earth’s ionosphere, and
a stray capacitance of 1 pF.

2.4.7 Probe End Effects

While cylindrical LP theory assumes infinitely long probes to ignore end effects, spacecraft
missions and additional development of theory has demonstrated that end effects can
enhance ion current collection when the probe is aligned, or nearly aligned, with the ion
flow direction, depending on drift velocity, ion-ion collisions, and Debye length to probe
radius ratio [152, 153, 154]. Ignoring these end effects greatly impacts the accuracy of
ion density measurements, which are typically considered more accurate than electron
density measurements [3, 153]. Maintaining probe lengths that are much greater than their
diameter and guarding one end of the probe helps minimize these effects, but will not
make them vanish. However, probes oriented transverse to the ion flow are unaffected by
end effect issues [155, 156, 3].
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CHAPTER 3

The Twin-Probe Method

The twin-probe method is a multi-purpose Langmuir probe instrument technique that
improves the accuracy of LP measurements under restrictive probe-to-spacecraft surface
area ratio conditions. The chief application is to correct the effects of induced spacecraft
charging by tracking the spacecraft potential while an LP is being swept across various
biases relative to the spacecraft. A secondary benefit is the calibration capabilities due to
the virtue of having two physically identical probes aboard the spacecraft.

3.1 Formulation of the Twin-Probe Method

As a short summary of the discussion in chapter 1, during Langmuir probe operation, as
the LP collects ion or electron current under different bias conditions, the electric potential
reference of the probe must collect an equal but opposite current to achieve net-zero current
collection in the probe-spacecraft system. It is thus essential to think of the LP on a
spacecraft as half of a double probe configuration. On very large spacecraft, this current
balance requirement is non-restrictive, as the spacecraft’s conductive surface area can be
made much larger than the probe’s surface area, and currents can be balanced by very small
changes to the spacecraft potential [56]. However, on small satellites, the current collection
area ratio is not sufficiently large, and the I-V curve is impacted by the spacecraft’s charging
behavior as the probe is swept. This is primarily an issue when the LP is biased positive
relative to spacecraft electrical common and collects net electron current. In this situation,
the satellite must collect equal current from the ambient ion population whose thermal flux
is a factor of 100 less than the electron thermal flux for the same density and temperature.
As a result, the spacecraft charges negatively to collect enough ion current to balance the
electron current collected by the LP [3, 61]. By adjusting the Langmuir probe sweeps using
a tracked spacecraft potential, corrected I-V curves are produced imitating LP sweeps from
a stable reference, thus improving in-situ measurements. The twin-probe method is an
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effective technique to use the spacecraft potential to correct the I-V curves.
The twin-probe method requires a Langmuir probe and an instrument capable of

tracking the spacecraft potential relative to the ambient plasma during LP operation. As
discussed in section 1.3, the applied voltage between the LP and spacecraft is given by

VA = φLP − φSC

By measuring φSC , φLP can be calculated by adding φSC to the known applied voltage.
Since φLP is unaffected by the spacecraft potential, it is possible to plot the collected current
as a function of φLP and produce a current-voltage graph devoid of spacecraft charging
effects. The corrected I-V curve can then be used to obtain more accurate electron density
and temperature measurements.

Figure 3.1 provides an example of multiple LP sweeps referenced against a CubeSat
and their twin-probe corrected I-V curves for the same plasma conditions (experiment
conditions can be found in section 5.1). Interestingly, while the uncorrected sweeps
have a wide spread, after twin-probe corrections the resultant I-V characteristics have a
considerably smaller spread and are nearly aligned with a control sweep referenced against
the vacuum chamber.

Figure 3.1: Example of measured I-V curve correction using the twin-probe method. The
red bundle of solid dots corresponds to sweeps referenced against the spacecraft. The blue
bundle of solid lines are sweeps corrected using the twin-probe method, and the single
black line of circles is a control sweep referenced against the chamber.
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One way to track the spacecraft potential is to use a high-impedance probe, an
instrument which consists of an LP kept electrically isolated from spacecraft common
using a sufficiently large resistance (discussed in section 4.4.4 and shown in fig. 4.19)
that is placed well outside of a disturbance sheath around the charged spacecraft. The
high-impedance probe will be close to its natural floating potential, while the spacecraft
will either be at its floating potential or in a charged state. As shown in fig. 3.2, the input
impedance, Rin, electrically isolates the high-impedance probe from the spacecraft and
allows for accurate measurements to changes in the spacecraft potential. Rin must be large
enough such that ILP >> IHI to ensure the current to the high-impedance probe does
not affect the spacecraft potential. However, Rin has an upper bound based on the current
sense circuitry because IHI must be above the noise floor of the circuitry.

Ambient
Plasma

CubeSat

Langmuir
Probe

VA

ILP

High-Impedance
Probe

Rin

IHIILP IHI

ISC − |ILP − IHI |

Figure 3.2: General schematic of depicting current flow between the LP, spacecraft,
high-impedance probe, and the ambient plasma.

As noted by Mozer [157], the potential difference between the probe and spacecraft is
given by

∆V = IHIRin =
φHI − φSC + ~ET · ~dHI +WFHI −WFSC

γ
(3.1)
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where γ is

γ = 1 +
RHI

Rin

+
RSC

Rin

, (3.2)

and ~ET is

~ET = ~E + ~v × ~B; (3.3)

φHI is the high-impedance probe’s potential relative to the ambient plasma; WFHI −
WFSC is the difference in work functions of the high-impedance probe and spacecraft,
or their contact potential difference (in units of V); Rin is the input impedance between
the spacecraft and probe; RHI and RSC are the sheath resistance of the high-impedance
probe and spacecraft; ~ET is the total electric field given by the ambient electric field, ~E,
the magnetic field, ~B, and the probe’s orbital velocity, ~v; and ~dHI is the vector separation
between the high-impedance probe and spacecraft.

The contact potential difference and the potential difference induced by the ambient
electric and magnetic fields are sources of error for high-impedance instrument
measurements. A discussion of the sources of error for the twin-probe method and
ways to calibrate for them is found in section 3.3. Additionally, the measured potential
difference is attenuated by γ, which is a natural resistance divider composed of the
high-impedance probe’s input resistance and sheath resistances. The effect of the
magnitude of the input resistance, and by extension γ, is shown in fig. 4.19 and discussed
in its accompanying text. To mitigate this attenuation, the probe input resistance must be
sufficiently larger than either sheath resistance terms (demonstrated in fig. 4.19). However,
as will be discussed in section 3.2.2, the settle time of the measurement will increase with
decreasing plasma density even when using a sufficiently large input impedance.

Using the diagrams in fig. 3.3, the potential terms can be summed to give

VA = φLP − φSC + ~ET · ~dLP +WFLP −WFSC (3.4)

where WFLP −WFSC is the difference in work functions of the LP probe and spacecraft,
and ~dLP is the vector separation between the Langmuir probe and spacecraft. Similarly
to eq. 3.1, two error terms have appeared when operating only the swept LP: 1) the
induced potential difference from the total ambient electric field and 2) the difference in
work function between LP and SC.
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(a) Potential diagram of the LP, high-impedance probe, and S/C relative to the ambient plasma for
a negative applied bias to the LP.
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(b) Potential diagram of the LP (φLP ), high-impedance probe (φHI ), and spacecraft relative (φHI )
to the ambient plasma for a positive applied bias to the LP, such that its in the electron saturation
region.

Figure 3.3: Diagrams of spacecraft’s charging response to positive and negative applied
biases to an LP.

When operated independently, the high-impedance probe and swept LP will have
uncertainties associated with differing work functions relative to the spacecraft and
ambient electric fields as previously stated. However, the uncertainties due to differing
work functions can be mitigated by using two physically identical probes. The work
functions of the two such probes can be assumed to be roughly the same by ensuring
surface probe cleanliness and equivalent manufacturing. By combining eqs. 3.1 and 3.4,
we obtain

φLP = VA + (φHI − γ∆V ) + ~ET ·
(
~dHI − ~dLP

)
+WFHI −WFLP (3.5)
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Equation 3.5 gives a more complete correction for the changing spacecraft potential
than eq. 1.5 or eq. 3.4 in terms of measurable parameters. The change in potential due to
the ambient electric field can be managed using a two-pronged method by: 1) measuring
and/or modeling the ambient electric and magnetic fields, and 2) tracking the attitude of
spacecraft and probes with respect to the ambient environment (e.g. plasma, magnetic
field, electric field). Finally, φHI cannot be directly measured but can be approximated as
outlined in section 3.3.2.

Equation 3.5 can be understood pictorially using fig. 3.3 and the discussion in
section 1.3.2. In the case when the Langmuir probe is biased negatively of the spacecraft,
as shown in fig. 3.3a, the spacecraft potential remains relatively steady. When the probe
is biased sufficiently positive of the spacecraft, as shown in fig. 3.3b, the spacecraft
charges negatively, limiting the probe potential relative to the plasma. However, while
the spacecraft potential varies between the two cases, the high-impedance probe’s floating
potential remains stable. Therefore, by tracking the changing potential difference between
the high-impedance probe and spacecraft, ∆V , the Langmuir probe’s reference can be
shifted from the spacecraft to the high-impedance probe. In order to achieve this, a
sufficiently large impedance is necessary to minimize IHI , such that it is much smaller
than ILP , ensuring a stable high-impedance probe potential (refer to fig. 3.2). Discussions
on the criteria of the minimum impedance are given in sections 3.2.2 and 4.4.4.

3.2 Implementation Considerations

To successfully implement the twin-probe method, two design parameters must be
considered: the position of both probes and the bias slew of the swept probe. Probe
position must be considered to ensure that the ambient, unperturbed plasma environment
is properly sampled and referenced. Considering the bias slew rate of the swept probe
ensures that the high-impedance probe has enough time to obtain accurate measurements
of the spacecraft potential.

3.2.1 Sheath Expansion

Both the high-impedance probe and LP must be adequately located outside the spacecraft
sheath to sample the unperturbed ambient plasma environment. The local electrostatic
potential grows exponentially when approaching the spacecraft body through its sheath.
Thus when the high-impedance probe is too close to the spacecraft (i.e. in the sheath),
this perturbed potential is measured in place of the ambient plasma potential, reducing the
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accuracy of the measured spacecraft potential. These local potential structures are further
complicated in the wake of the spacecraft, where the ion and electron depletion region
distorts both LP sweeps and spacecraft potential measurements [105, 158]. Therefore, it
is important to calculate the spacecraft sheath size when designing the probes’ deployable
boom structures. The booms are coated in an insulating material (e.g. Kapton) to collapse
the boom’s sheath and ensure the LP remains in the unperturbed plasma environment [159].
Sheath estimates for a range of negative spacecraft potentials are especially critical, since
Langmuir probe operation generally causes negative spacecraft charging and significant
sheath expansion. Typically, positive spacecraft potentials will produce a smaller sheath,
since the repelled ions are more massive, and sheath shape is dominated by phenomena like
ram/wake effects [160].

Figure 3.4: Sheath thickness as a function of negative spacecraft voltage and plasma
density. The sheath thickness becomes increasingly large with decreasing plasma density.

To estimate the sheath expansion, the collected ion current to a spacecraft surface can be
compared to the space-charge limited electron current collection [159]. These calculations
are a conservative estimates since the collected currents are affected by both spacecraft
geometry and the asymmetric, spacecraft potential dependent sheath [161, 162, 163, 164].
As an example, consider the sheath of the 0.1 m×0.3 m face of a 3U CubeSat in low-Earth
orbit. The current collected on the planar surface due to the drifting ions was shown to be
eq. 2.5 in section 2.2. From the Child-Langmuir Law [165], the maximum current between
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a sharp sheath edge and the surface of the planar probe is

Ii =
4Apε0

9

√
2q

me

φ
3
2

d2
(3.6)

where d is the sheath thickness. After equating eqs. 2.5 and 3.6, the sheath thickness
as a function of plasma density and negative spacecraft voltage can be estimated (see
fig. 3.4). Therefore, one can estimate that when operating in plasma densities of at least
1× 1010 m−3 of Earth’s ionosphere, for instance, a 0.3 m long boom will be sufficiently
long to keep the probes outside of the spacecraft sheath for applied probe biases up to
10 V.

3.2.2 RC Time Constant

Similar to the problem of sheath expansion, ensuring that the high-impedance probe can
settle before making a measurement is a high priority to guarantee accurate measurements.
As seen in fig. 3.5, the Langmuir probe in a representative high-impedance configuration
will form a low pass filter from the boom capacitance and the plasma resistance in parallel
with the input resistance of the high-impedance probe. Therefore, to calculate the RC time
constant, or settle time, of the high-impedance probe, two characteristics of the system
must be known: 1) the total resistance of the plasma and input resistances; and 2) the
boom capacitance. Examples of tabulated settle times and high-impedance measurement
accuracy may be found in table 3.1.

Vplasma

RP

Cmast

Spacecraft Common (Chassis)

Vprobe

100 MΩ

Rin

Electrometer Input

Virtual ground of op-amp
Input referenced to chassis

Figure 3.5: General circuit for a high-impedance probe; adapted from Gilchrist [159]. The
RC time constant ultimately determines the spacecraft potential measurement cadence.
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Calculating the total resistance of the system first requires a calculation of the plasma’s
resistance, RP . RP is obtained by linearizing the inverse of the net current to the LP
around the floating potential [157] (see eq. 3.7). Therefore, the ion and electron currents
must be known to determine both the floating potential and the net current’s dependence on
voltage. Since the velocity of spacecraft in LEO will be greater than the ion thermal speed,
the current collection to a cylindrical probe can be described using eqs. 2.13 and 2.21 for
any potential below the plasma potential [3].

RP =

(
dI

dV

)−1∣∣∣∣∣
V=VFloating

(3.7)

With a known plasma resistance, the probe’s settling time and accuracy can both be
estimated. From fig. 3.5, the input impedance, Rin, forms a voltage divider circuit with
the plasma resistance. Therefore, the error in potential measurements (in units of volts) is
related to the voltage divider circuit, and can be calculated using

σMeas = ∆V

[
1− Rin

RP +Rin

]
(3.8)

where the input impedance is 1 GΩ in table 3.1, and ∆V is the measured potential
difference between the high-impedance probe and spacecraft. There is an inverse
relationship between the plasma density and plasma resistance. As a result, the error in the
tracked spacecraft potential will be non-negligible for lower plasma densities, effectively
making the twin probe method more inaccurate and more difficult to properly implement.
Assuming all other sources of error are accounted for, when applying the twin-probe
correction, the uncertainty in the applied bias is given by

σV =
√
σ2
Vinst

+ (σmeas)
2 (3.9)

where σV is the uncertainty of corrected voltage, in units of volts, and σVinst is the
instrumental uncertainty of the applied bias between the LP and SC.

To calculate the settle times, the boom capacitance, CBoom, must also be known.
Assuming a guarded Langmuir probe is used with an external shield in a triaxial
configuration, a conservative estimate for the capacitance is 50 pF m−1. To determine the
length of cable and mast needed, further assume that 0.15 m of cable is needed within the
notional CubeSat, and the boom length is just long enough to remain out of the sheath,
using the estimates shown in fig. 3.4. With a calculated plasma resistance and capacitance,
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and known input resistance, the settle time of the high-impedance probe can be determined
using eq. 3.10 where the settling time is assumed to be three times larger than the RC-time
constant of the high-impedance probe. As shown in table 3.1, the plasma resistance will
dominate for sufficiently large plasma densities; however, at low densities, the plasma
resistance approaches the same order of magnitude as the input resistance, and so the
total resistance is split between the two impedances. When compared to the settling times
calculated in section 2.4.6, the limit of the impedance probe is comparable to, and in some
cases, are more restrictive than the limits imposed by sheath and stray capacitive effects.

τ = 3CBoom

(
1

Rin

+
1

RP

)−1
(3.10)

Ni (m
−3) Rp (Ω) RTotal (Ω) σMeas/∆V (%) CBoom (pF) τ (ms)

1× 109 3.49× 108 2.56× 108 26 30 29.4
1× 1010 3.49× 107 3.38× 107 3.4 20 2.08
1× 1011 3.49× 106 3.49× 106 0.35 15 0.16
1× 1012 3.49× 105 3.49× 105 0.03 10 0.01

Table 3.1: Impedance probe potential errors and settling time constants relative to plasma
density.

3.3 Calibrating for Additional Current Sources

As discussed in section 3.1, the twin-probe method is instrumental in correcting the I-V
curves of swept LPs affected by unstable spacecraft potentials. The additional benefits of
carrying two identical Langmuir probes cannot be understated. The currents collected by
each probe can be directly compared, when in similar plasma environments, to calibrate for
the additional sources of current described in section 2.4, and provide internal consistency
checks. In this section, the methods of calibrating for various sources of error are discussed.

3.3.1 Photoelectrons

As discussed in section 2.4.1, photoelectrons can raise the potentials of conductors relative
to the ambient plasma environment and produce currents in the ion saturation regime of
I-V curves that are larger than they would be in the absense of solar photons. Figure 3.6
provides a comparison between two I-V curves for plasma conditions found in Earth’s
ionosphere: one that includes photoelectron current (sunlit) and one that collects only
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plasma currents (shadowed). For this example, the LP is assumed to be rhenium coated and
orthogonal to the solar photons, such that the area of photoelectron emission is maximized.
The photoelectron emission flux, Γpe, was determined from the maximum photoelectron
current (11.7 nA) and emission area (2.14× 10−4 m2) quoted by Brace et. al. from solar
EUV measurements made at Venus by the PVO Langmuir probe [116]. Γpe is adjusted to
account for the decreased solar photon flux that reaches Earth. The photoelectron current
was estimated using the characterization determined by Pederson [166],

Ipe(φ > 0) = Ipe0

[
exp

(
−φ

2

)
+ 0.0375 exp

(
− φ

7.5

)]
Ipe(φ <= 0) = Ipe0 (3.11)

Figure 3.6: Comparing current collection difference between a sunlit and shadowed probe
in a low-density plasma.

Photoelectron current is a significant source of error for ion density estimates when the
plasma density is low (<1× 1010 m−3) [3]. To calibrate for photoelectrons in orbit, the
spacecraft must be oriented such that both Langmuir probes are oriented perpendicular to
the orbital velocity while one probe is in shadow. While in this orientation, both probes can
be set to a constant, negative bias with respect to the spacecraft so they collect exclusively
ion current. If the photoelectron current is significant, there will be a discrepancy between
the sunlit probe and the shadowed probe due to photoelectron emission (see fig. 3.6). This
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current can then be used during data analysis to adjust the I-V measurement of the swept
Langmuir probe.

3.3.2 High Impedance Probe Floating Potential

Ideally, it is assumed that the high-impedance probe is at the same potential as the ambient
plasma. However, the higher mobility of the electrons when compared to the ions will cause
the probe’s floating potential to be slightly negative of the plasma. The potential difference
between the ambient plasma and the floating potential is an offset in the tracked spacecraft
potential measurements that shifts with changes in the plasma environment. To correct
for the floating potential of the high-impedance probe, eq. 3.5 must be considered with a
few assumptions. First, let the input resistance be sufficiently high such that the voltage
division factor (eq. 3.2), γ, approaches unity. A discussion on the necessary minimum
impedance is given in section 4.4.4. Furthermore, assume that the ambient total electric
field is perfectly accounted and the work functions of the swept probe and high-impedance
probe are identical. Finally, assume the probe is in a quiescent plasma, and its orientation
relative to the flow does not change. Under these conditions, the high-impedance probe’s
floating potential can be estimated when the swept probe is at the plasma potential as shown
in eq. 3.12. Equation 3.12 can then be used to estimate the high-impedance probe potential
relative to the plasma using eq. 1.5, or, for higher accuracy estimates eq. 3.4,

φHI = (∆V − VA)|VA=VP (3.12)

where VP is the plasma potential.

3.3.3 High-Impedance Measured with Variable Angle of Attack

Should any of the above assumptions break down, the uncertainties of the measured
spacecraft potential and high-impedance probe floating potential increase. The most
difficult assumptions to maintain are the constant orientation relative to the plasma flow
and the condition of a quasi-steady plasma. By modeling the net current to a probe,
using eqs. 2.13 and 2.16, it is possible to estimate the variation in the high-impedance
probe’s floating potential as the probe’s orientation relative to the plasma flow changes.
Figure 3.7 shows that the floating potential is estimated to change by about 0.1 V as the
probe transitions from being parallel to being perpendicular to the plasma flow. If this
transition occurs during a Langmuir probe sweep, when the twin-probe technique is being
implemented, then the tracked spacecraft potential may be modulated by the rotation of the
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spacecraft. If the rotation rate is significant enough to modulate the measured spacecraft
potential, high-impedance measurements should be performed, without operating the
Langmuir probe, to calibrate tracked spacecraft potential measurements during Langmuir
probe operations. A general approach to this method is to first make successive
high-impedance measurements for at least one full rotation of the satellite, to serve as
calibration data. Then, before and after operating the Langmuir probe in conjunction with
the high-impedance probe, the attitude of the spacecraft is measured. Using knowledge of
the satellite attitude, its rotation rate, and calibrated data, each measurement of the tracked
spacecraft potential is adjusted to provide more accurate values.

Figure 3.7: Modeled floating potential of a cylindrical probe for various angles relative to
the plasma flow. 0° corresponds to a probe oriented parallel to the plasma flow and 90°
represents a probe oriented perpendicular to the plasma flow.

3.3.4 Work Function

As the work function can be highly variant, even within a single material, it could be
a significant source of error in high-impedance measurements. Since the collection of
electrons and ions have a dependency on the work function as a potential barrier [27],
any difference in work function between the probes will manifest as an error term in the
measurement [167, 168, 157]. To mitigate error in the measured spacecraft potential, both
probes’ work functions must be accounted for. The first step to reducing the uncertainty
due to the work function difference of the probes is to minimize the material differences
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between the two Langmuir probes and periodically clean the probes during flight. While
a portion of the spacecraft potential measurement’s error is due to the difference between
the high-impedance probe’s work function and the satellites’s work function, as shown in
eq. 3.5, operating identical probes eliminates the uncertainties due to this work function
difference. This is because the work function difference between a probe and its satellite
affects both the swept probe and the high-impedance probe. This difference cancels out
when both probes are used in tandem.
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CHAPTER 4

Plasma Spacecraft Interaction Codes for Low
Earth Orbit: Twin-Probe Method Modeling

using Analytic Methods

Understandably, performing in-chamber and in-orbit experiments for all possible
spacecraft and instrument configurations is infeasible and prohibitively expensive. To
predict the spacecraft’s charging behavior, NASA/Air Force Spacecraft Charging Analyzer

Program (Nascap-2K) models and MATLAB codes, called the Plasma Spacecraft
Interaction Codes for Low Earth Orbit (PSIC-LEO), were developed independently. The
Nascap-2K program allowed for various types of calculations (e.g particle-in-cell (PIC)
and analytic expressions) under different spacecraft orientations, orbital speeds, and
material components and is detailed in appendix A. This PSIC-LEO codes allow for faster
calculations, relative to Nascap-2K, and iterative spacecraft design modeling.

The PSIC-LEO program was created by Dr. Walter R. Hoegy and Omar Leon at
the University of Michigan. The PSIC-LEO codes perform ”back of the envelope”
calculations to estimate spacecraft charging behavior and understand how Langmuir probe
measurements are impacted by an unstable spacecraft platform. The discussion of the
PSIC-LEO program covers

• Spacecraft charging for different area ratios.

• The impact of spacecraft charging on uncorrected and corrected measurements of
electron temperature and density.

• Estimates on the smallest possible allowed area ratio between the swept Langmuir
probe and referenced satellite.

The PSIC-LEO codes calculate the spacecraft potential that balances the currents
between the spacecraft and a Langmuir probe for a given applied LP potential. In its
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current state, the PSIC-LEO models current collection to small, cuboid shaped spacecraft
that do not have large deployable surfaces (e.g. solar panels). For simplicity, this section
focuses on the CubeSat, a subset of these small cuboid spacecraft. To properly discuss the
results of the codes, this section will first cover its assumptions and the models used to
estimate current collection to a CubeSat and LP. Then, the results of the simulations are
discussed. The full code can be found in appendix B.

4.1 General Procedure and Assumptions

The specific current models used to determine the current balance are detailed in
section 4.2, but the codes estimate the spacecraft potential using the following procedure:

1. Simulation parameters are given to the codes. Examples of simulation parameters
are:

• Plasma properties such as density, ion drift speed, and electron temperature.

• CubeSat and cylindrical Langmuir probe dimensions.

• Start and stop applied potential values, and the number of voltage steps between
the start and stop potentials.

2. The LP area, the electron current collection area of the CubeSat, and the ion current
collection areas of each side of the CubeSat are calculated. The CubeSat’s electron
current collection area is the total area of the CubeSat. Its ion current collection
area is divided into three sections: a ram-facing area, a wake-facing area, and ”drift
parallel” faces.

3. Normalization constants such as ion and electron thermal speeds are calculated.

4. The thermal ion and electrons currents for the spacecraft and Langmuir probe are
calculated using their respective areas and simulation parameters.

5. For each applied bias, the fzero MATLAB function [169] numerically determines the
spacecraft potential such that

IeLP (VA + φSC)− IiLP (VA + φSC)− [IeSC (φSC)− IiSC (φSC)] = 0

where VA is the applied voltage, and φSC is the spacecraft potential relative to the
plasma. As shown in eq. 3.5, the LP potential, relative to the plasma, is the sum of
the applied voltage and the spacecraft potential.
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6. The spacecraft potential, applied voltage, probe potential, net LP current, net
spacecraft current, and area ratio between the spacecraft and probe are given as
outputs of the calculations for further analysis.

The outputs of the PSIC-LEO program are used to make conservative estimates of near
maximum spacecraft charging behavior, understand the effects of spacecraft charging on
the LP I-V curves, and develop new analysis techniques. The goal is to perform fast,
iterative changes to satellite and Langmuir probe sizes under various plasma properties to
determine which conditions should be tested using the Nascap-2K program. In its current
state, the PSIC-LEO codes best simulate the steady-state plasma conditions found in the
Earth’s ionosphere for spacecraft in LEO. To expedite the calculations performed by the
PSIC-LEO codes, the following assumptions on the nature of the ambient plasma and the
spacecraft/instrument system were made:

• The ion population is composed only of singly ionized atomic oxygen whose
distribution is described by a drifting Maxwellian distribution.

• The electron population is Maxwellian.

• The CubeSat surface area is entirely conductive.

• The CubeSat size is constant, but the probe dimensions can change to vary the area
ratio.

• The wake region of the satellite collects negligible ion current. Table A.1
demonstrates that ion current collection in the wake region is small enough to be
ignored when atomic oxygen is the only ion species. Furthermore, Bowen et. al.

noted the depletion of positive ions and significant decrease in ion current in the
wake of the Ariel I satellite [63].

• The satellite’s sheath is small relative to the satellite’s size, such that the currents
collected by the spacecraft are in the ”thin” sheath regime. The sheath size is shown
to change with potential and Debye length in appendices A.2.1 and A.2.2; thus, this
simplification will produce smaller ion currents than what would be seen in space.

• The ambient ion drift velocity does not change the sheath shape significantly.

• For any simulated density and temperature, the probe radius was set to assure that
ion and electron currents collected by the cylindrical Langmuir probe satisfy the
thick sheath criteria.
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• The plasma density is sufficiently large enough to dominate the effects of
photoelectron current and can be safely ignored. See discussion in section 3.3.1.

• The work functions of the two probes are identical and the probes are oriented
perpendicular to one another.

• The high-impedance probe orientation relative to the ion drift velocity is constant.

• The ambient plasma is assumed to be non-magnetic.

• Probe boom lengths are assumed to be short enough to ignore motional emf effects
but long enough to remain outside the spacecraft sheath.

• The high-impedance probe’s input resistance is infinitely large such that the voltage
divider between the input resistance and the sheaths surrounding the satellite and LP
described in eq. 3.2 approaches unity.

4.2 Object Current Collection

In this section, the currents collected by the Langmuir probe and CubeSat are detailed.
Each conducting object has a series of assumptions based on its geometry and size relative
to the ambient plasma’s Debye length.

4.2.1 Langmuir Probe Current Collection

The cylindrical Langmuir probe current collection, for ions and electrons, is calculated
using the equations detailed in sections 2.3.1 and 2.3.2. Specifically, the ion accelerating
current is described using

Ii (−φ > 0) = qApNi

√
kBTi
2πmi

4√
π

∫ ∞√
η

(
r2s
r2p
−1
)−1

√
x2 + η exp

[
−
(
x2 + s2

)]
I0 (2sx)xdx+
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and the ion retardation current is

Ii (−φ ≤ 0) = qApNi

√
kBTi
2πmi
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√
x2 − η exp
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−
(
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)]
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While not specifically studied in this thesis, the ion current is affected by probe’s
orientation relative to the ion drift velocity. For instance, when the probe is parallel to
the drift velocity (equivalent to s = 0), the collected ion current resembles thermal current
collection. The maximum ion current is collected when the LP is perpendicular to the ion
drift velocity, assuming end effects are negligible (discussed in section 2.4.7).

The electron currents are not dependent on the spacecraft’s orbital velocity due to the
mesothermal nature of the spacecraft’s orbital speed. Therefore, as long as the probe is
outside of the satellite’s sheath, the collected electron current is assumed to be independent
of the probe’s orientation. The accelerated electron current is given by

Ie (φ > 0) = 8
√
πrsljetherm

∫ ∞
0

∫ rp
√
x2+η/

√
r2s−r2p

0

xe−(x2+y2)dydx

while the retarded electron current is

Ie (φ ≤ 0) = 2πrpljetherme
η.

4.2.2 CubeSat Current Collection

The CubeSat currents are estimated assuming that the satellite is composed of 6 planar
conductors oriented perpendicular to each other. Therefore, one side will be ram-facing,
another is wake-facing, and the remainder are parallel to the ion drift velocity. However,
the CubeSat electron current and ion current have their own sets of assumptions.

For electron current collection, it is well understood that it is affected by ram/wake
effects, just like the drifting ions. Electron currents decrease in the wake region [170] and
increase in the ram region [105]. The electron’s sensibility to a satellite’s ram/wake effects
are closely tied to ion motion and is generally complicated by the existence of multiple
ion species at different energy levels. However, as a simplifying assumption, the collected
electron current is assumed to be independent of ram/wake effects, is collected equally on
all sides, and is estimated using

Ie (φ > 0) = qApNe

√
kBTe
2πme

Ie (φ ≤ 0) = qApNe

√
kBTe
2πme

exp

(
φ

Te

)
where Ap is the total area of the CubeSat.

The collected ion currents are dependent on the orientation of the side of the CubeSat.
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Unlike electron current collection, the ion current collection cannot be assumed to be
independent of ram/wake effects, because the satellite travels faster than the ion thermal
speed. Therefore, ion currents are greater in the ram region and are typically smaller by a
factor of ten in the wake region [164, 171]. The ion currents in the wake are assumed to
be negligible when compared to the remaining sides of the CubeSat, and so it is estimated
to be 0 regardless of the magnitude of the potential (following the numerical results in
appendix A.2.4). In contrast, the ram currents are estimated as

Ii (−φ > 0) = qApNi

√
kBTi
2πmi

(
exp
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−s2

)
+
√
πs erfc (−s)

)
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))
where s is the ion drift speed normalized by the most probable ion thermal speed, η is
the satellite potential normalized by the ion temperature, and AP is the ram-facing side’s
surface area. Finally, the ion current for the remaining sides, those parallel to the ion drift
speed, are

Ii (−φ > 0) = qApNi

√
kBTi
2πmi

Ii (−φ ≤ 0) = qApNi

√
kBTi
2πmi

exp
(
−η2

)
where AP is the total area of the satellite excluding the ram and wake sides. This model
for CubeSat current collection represents the minimum ion current collection possible by
a cuboid in a drifting plasma, since neither the effects of an attractive potential nor current
collection in the wake are considered.

4.3 Spacecraft Charging Behavior and its Effects on
Langmuir Probe I-V Curves

In this section and the next, the notional CubeSat is modeled as a 3U satellite with a total
collection area of 0.14 m2; the plasma parameters are: a plasma density of 1× 1011 m−3,
an electron temperature of 0.25 eV, and an ion drift speed of 7.8 km s−1; and the LP sweeps
ranged from an applied bias of −10 V to 10 V with a voltage step size of 2× 10−4 V. The
electron temperature was purposefully chosen near the upper limit of electron temperatures
observed in the ionosphere (see fig. 2.3) to have increased electron current to the LP and
study the more severe charging cases that may be observed.
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To begin, fig. 4.1 demonstrates the calculated spacecraft potential relative to the plasma,
φSC , as a function of applied bias between the LP and the CubeSat, VA. The LP potential
relative to the plasma, φLP , is calculated by adding the spacecraft potential to the applied
bias. As expected, the spacecraft potential is most negative for small area ratios, and the
effects of sweeping the LP decreases as the area ratio increases. At the smallest area ratios,
the negative spacecraft potential is large enough to bar the LP potential from reaching the
plasma potential.

Figure 4.1: Spacecraft potential (blue) and LP potential (red) with respect to the ambient
plasma. For small enough area ratios, the LP potential does not reach the plasma potential.

(a) The maximum Langmuir probe potential
with respect to the ambient plasma.

(b) The potential difference between the
spacecraft floating potential and its maximum
negative charge (applied bias to LP is 10V).

Figure 4.2: Calculated potentials with respect to the plasma.
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As shown in fig. 4.2a (see arrow), for any area ratio below 50, the Langmuir probe does
not reach the plasma potential. Furthermore, while the probe can reach the plasma potential
when the area ratio is 50, it does not sufficiently probe the potential region above the plasma
potential, the electron saturation region, prohibiting a proper analysis of the I-V curve to
estimate the electron density. For accurate electron density measurements, the ability to
sample the plasma at least 2 electron temperatures above the plasma potential is necessary
(see appendix C.6.2). A soft lower bound for the maximum LP potential should be about
2 V above the plasma potential; so to sufficiently probe the electron saturation regime, the
area ratio between the satellite and LP should be at least 150.

Figure 4.3: Example I-V curve and derivative for a Langmuir probe that does not reach the
plasma potential. The x-axis is the applied potential between the LP and spacecraft and so
the LP potential relative to the plasma is not shown (this is similar to LP operations without
a twin-probe system).

Interestingly, even when the LP does not reach the plasma potential, there is still a
distinct peak in the first derivative of the I-V curve. As an example, consider the I-V
curve and derivative shown in fig. 4.3. The peak in the first derivative is normally due
to the LP reaching the plasma potential (demarcated by a change in concavity of the I-V
curve). However, when the LP does not reach the plasma potential, the first derivative
peak is caused by the limiting ion current to the spacecraft chassis. Since the plasma
potential is determined using the peak of the I-V curve’s derivative, incorrect identification
of the plasma potential, in the form of false peaks, can be introduced when the area ratio is
small [56]. Indeed, fig. 4.4 shows that the plasma potential is incorrectly determined due
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to the spacecraft’s impact on the I-V curve for area ratios of 60 and below. As a reminder,
when the LP is at the plasma potential, the applied voltage is equal to the negative of
the spacecraft potential relative to the plasma. Thus, for area ratios of 70 and above, the
plasma potential measurement correctly estimates the spacecraft potential, even when the
spacecraft is in a charged state. Therefore, for this discussion, only area ratios greater
than or equal to 70 are discussed, as any measurements of temperature and density will
be impacted more by the improper identification of the plasma potential than spacecraft
charging.

Figure 4.4: Plasma potential percent error estimates of uncorrected I-V sweeps. For area
ratios of 60 and below, the spacecraft greatly impacts the I-V curve leading to incorrect
identification of the plasma potential.

Regardless of area ratio, when the applied voltage is negative, the spacecraft potential
is relatively constant. As shown in the bottom figure of fig. 4.5, when the applied bias,
VA, is −10 V the spacecraft is slightly (<2 %) more positive than its floating potential.
This is because the electron current to the spacecraft is much greater than the ion current
collected by the probe at the applied biases considered. As the electron current begins
to increase, the spacecraft potential charges slightly negatively. From the bottom figure
of fig. 4.5, when the applied bias is 0 V, the LP current collection is still dominated by
ion current collection and so the spacecraft is near its floating potential. When the LP
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is at its floating potential, VF , it collects a net 0 current and the spacecraft is at its own
floating potential, depicted by the LP VF case in the bottom figure of fig. 4.5. Above the
LP’s floating potential, electron current collection dominates and the induced spacecraft
potential increases, where eventually the charging is nearly linear. At the plasma potential
point, shown in the top figure of fig. 4.5 for the case LP VP , the spacecraft charges more
negatively at smaller area ratios. For the largest area ratios, the spacecraft potential barely
charges, even at the most positive applied biases considered (see fig. 4.2b), resulting
in nearly one-to-one correlations between φLP and the applied voltage. This behavior
agrees well with Nascap-2K simulations (see appendix A.2.5) and chamber measurements
(discussed in section 5.4).

Figure 4.5: Percent change between spacecraft potential relative to the plasma at different
applied biases to the LP and the spacecraft’s floating potential. LP VF corresponds to the
applied bias when the LP is at its floating potential, LP VP is the applied bias when the LP
is at the plasma potential, VA = 0V corresponds to an applied bias of 0 V, and VA = 10V
corresponds to an applied bias of 10 V. The top figure has all four biases and the bottom
figure considers all of the biases except LP VP .

Assuming a twin-probe correction scheme is not available to the spacecraft system, it
is to be expected that plasma property measurements, such as electron temperature and
electron density, are impacted. To begin, ion density and floating potential measurements
are minimally impacted. These plasma property measurements occur when electron
currents are negligible or equal to the ion current, and so the spacecraft potential is not
shifted significantly from its floating potential. The greatest impact would occur from
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overestimating the plasma potential due to a charged spacecraft; however, it will be shown
that the most severe spacecraft charging occurs when the probe applied voltage is pushed
into the electron saturation regime. To understand how these electron temperature and
density measurements were impacted, two electron temperature analysis techniques are
implemented:

• The integral method: electron temperature is estimated by integrating the electron
retardation current (described in appendix C.5.2).

• The log-linear method: electron temperature is estimated by the inverse slope of the
linearized electron retardation regime (described in appendix C.5.3).

and three electron density analysis techniques are used:

• Thermal current method: electron density is estimated using the electron current at
the plasma potential (see appendix C.6.1)

• Ideal OML Fit: electron density is estimated by fitting a power law function to
the electron saturation current assuming the current behaves like the ideal OML
theory shown in eq. 2.12 (see appendix C.6.2 with the assumption that γ = 0.5

and β = 2/
√
π)

• Single Point OML: electron density is estimated assuming the electron saturation
current behaves like ideal OML cylindrical probe theory and that the potential is
much greater than the electron temperature (refer to eq. C.41 in appendix C.6.2)

4.3.1 Spacecraft Charging Impact on Electron Temperature
Measurements

For electron temperature measurements, only area ratios where the LP could reach the
plasma potential are considered. Figures 4.6a and 4.6b present the percent errors of
the integral and log-linear methods respectively. The percent error in this case refers
to the deviation between the ”measured” electron temperature and the modeled electron
temperature. Regardless of the method used, uncorrected electron temperatures always

overestimated the actual electron temperature. The error in temperature measurements is
greatest at an area ratio around 70 with a percent error of 50 % for the integral method and
20 % for the log-linear method. As shown in fig. 4.4 and discussed in its accompanying
text, below an area ratio of 70, the plasma potential is incorrectly identified skewing the
predicted error. Since both of the methods used for obtaining electron temperature rely on
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the plasma potential, there is no way to untangling the effects of spacecraft charging and
the improperly identified plasma potential. As the area ratio approaches 1000, the percent
error in both methods approach approximately 1 %. This result is similar to the findings
presented by Szuszczewicz [56] who performed similar studies for a cylindrical Langmuir
probe referenced against both spherical and cylindrical conductors and found a deviation
of 2 % at an area ratio of 1× 104.

(a) Percent error of electron temperature
estimates using the integral method.

(b) Percent error of electron temperature
estimates using the log-linear method.

Figure 4.6: Deviation of uncorrected measurements from modeled electron temperature.

Figure 4.7: Semilog linearization of the electron current at different area ratios. The
electron currents were individually normalized by their respective minimum value and
the potentials of the uncorrected current were shifted to start at the same position as the
modeled current.
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Additionally, the log-linear method highlights how the spacecraft’s charging behavior
impacts the current’s exponentially decaying behavior in the electron retardation regime as
shown in fig. 4.7. For small area ratios, it is clear that the electron currents deviate strongly
from an exponential form, leading to the large percent errors shown in fig. 4.6b. Even at
an area ratio of 1000, there is a slight discrepancy between the uncorrected and modeled
current, even though the two currents are linear.

4.3.2 Spacecraft Charging Impact on Electron Density Measurements

Electron density measurements tell a similar story; however, instead of overestimating the
electron temperature, the electron density is consistently underestimated for uncorrected

measurements. The single measurement methods, the electron thermal current method and
the single point OML method, were applied for all area ratios. For area ratios above 70,
the OML fit method was also applied. Figures 4.8a and 4.8b demonstrates the percent
error of the thermal current method and single point OML method, respectively, due to
spacecraft charging effects. Unsurprisingly, the lowest area ratios displayed the largest
underestimations of electron density, with the smallest area ratios (area ratio less than 100)
estimating a density that was one to two orders of magnitude smaller than the true density.

(a) Percent error of electron density estimated
using electron thermal current.

(b) Percent error of electron density estimated
using the single point OML method.

Figure 4.8: Percent error of single point methods for estimating of the electron density. The
negative percent error indicates an underestimation.

Since the single point OML method estimates electron density using the current at
the greatest positive applied bias, it will consistently underestimate the electron density
until the asymptotic behavior of φLP is no longer present (see leftmost plot of fig. 4.1 for
examples of asymptotic behavior). Asymptotic behavior tends to no longer affect probe
potentials at around an area ratio of 290.
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Figure 4.9: Percent error of electron density calculated using the OML fit method.

Figure 4.10: Linearized electron saturation regime by squaring the currents. The electron
currents were individually normalized by their respective minimum value and the potentials
of the uncorrected current were shifted to start at the same position as the modeled current.

A similar result is seen in the OML fit method, even though the method was only applied
to area ratios that allowed the LP to reach at least one Te above the plasma potential (shown
in fig. 4.9). Figure 4.10 demonstrates the underlying cause of the underestimated electron
densities more clearly using an attempted normalization of the electron saturation current
for modeled and uncorrected currents. Since PSIC-LEO calculates OML current collection
to the LP, the square of the currents should be linear with potential. However, for the
area ratios of 100 and 200, the LP electron current reaches the SC ion current and the LP
current flat lines; in contrast, for area ratios larger than 290, the LP electron current never
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reaches the maximum ion current collected by the CubeSat and so this ”flat lining” never
occurs. The uncorrected line for an area ratio of 1000 and the modeled current align nearly
perfectly. As a result, electron density measurements from uncorrected modeled sweeps
provide limited insight into how drastic the underestimation of the electron density would
be for in-chamber or in-orbit measurements due to the strict upper bound on available ion
current.

For all cases, it is apparent that the induced spacecraft potential forces the electron
current to deviate from ideal OML theory (Ie ∝

√
φLP/Te + 1). Accelerated OML

electron currents, like the ones modeled in these examples, are proportional to the square
root of the attractive potential. Therefore, if the collected currents are squared (to linearize
the square root relationship), the resulting plot should be linear with applied voltage
(see fig. 4.10). However there is a noticeable deviation for a true linear relationship
in the uncorrected plots, even for the largest test area ratios, implying that both an

unstable reference and the ratio between the probe’s sheath radius and probe radius

affects LP I-V curve in the electron saturation regime. A discussion on the relationship
between the probe’s sheath radius and probe radius and classical OML theory is given in
appendix C.6.2.2.

4.4 Twin-Probe Correction Analysis

The key to the twin-probe correction is its ability to produce an I-V curve unperturbed by
variations in spacecraft potential. As is shown in fig. 4.11, for smaller area ratios (where
the LP potential doesn’t reach the plasma potential) the twin-probe corrected sweeps do
not sample the plasma above the plasma potential. Therefore, while the twin-probe method
can correct the I-V curves, if the uncorrected sweeps did not probe a particular region of

the I-V sweep, such as the electron saturation region, the twin-probe corrections will be

devoid of the same regions.
Taking this limitation into consideration, this section analyzes two characteristics of

the twin-probe method. First, the accuracy of the twin-probe method when determining
electron density, electron temperature, and plasma potential is detailed. It is important
to verify the effectiveness of correction LP sweeps using the twin-probe correction, and
to identify any limits in their application. Second, once the efficacy of the twin-probe
method is verified, the twin-probe corrected measurements are compared to uncorrected
measurements to understand the maximum possible level of correction attainable using the
twin-probe method.
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Figure 4.11: Modeled twin-probe corrected Langmuir probe sweeps.

4.4.1 Accuracy of Twin-Probe Correction for Electron Temperature
Measurements

Beginning with electron temperature estimates, the same two methods, the log-linear
and integral methods, are used to calculate electron temperature. Both estimates have
variations across all area ratios several orders of magnitude smaller than the measurement.
The percent error of the log-linear method has a standard deviation of 4.9× 10−13 with an
average of 8.4× 10−14 (see fig. 4.12b). This estimate is on the noise floor of numerical
computation, insinuating that there is no discernible difference between twin-probe
corrected electron retardation current and currents modeled from theory. Caution should
be taken here, as the analytic models do not mimic effects that introduce error into the
log-linear method, such as the log-linearized currents rounding at the plasma potential (see
appendix C.5.3.2). Similarly, the integral method is also at its noise floor. The percent error
of integral method has a standard deviation of 9.3× 10−4 with an average value of 3.3 %

(fig. 4.12a). The step size of 2× 10−4 V ensures that the method is at its noise floor (see
appendix C.5.2.2 for more details). Therefore, when calculating the electron temperature
with twin-probe corrected currents, the spacecraft charging effects are fully mitigated and
only numerical noise remains. The log-linear method should be used whenever possible as
it tends to be the more precise and less error-prone of the two methods.
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(a) Electron temperature percent error estimates
of twin-probe corrected I-V sweeps using the
integral method.

(b) Electron temperature percent error estimates
of twin-probe corrected I-V sweeps using the
log-linear method.

Figure 4.12: Electron temperature percent error estimates of twin-probe corrected sweeps.

4.4.2 Accuracy of Twin-Probe Correction for Electron Density
Measurements

The electron density estimates of corrected sweeps were also studied for the thermal current
method, the OML fit method, and the single point OML method. The thermal current
method will be the first studied method, with a more careful investigation of the OML
methods due to the asymptotic behavior of the electron saturation current for area ratios
smaller than 300. Beginning with the percent error of the thermal current method, its
standard deviation is 0.03 with an average of 1.79 % (see fig. 4.13). This method is useful
for fast estimates of the electron density, but more accurate methods for calculating electron
density or the ion density should ultimately be used due to the thermal method’s sensitivity
to other plasma properties.

Before discussing the efficacy of the OML methods for determining electron density, it
is first necessary to understand how much of the electron saturation regime is available for
analysis after implementing the twin-probe technique. Figure 4.14a displays the maximum
Langmuir probe potential relative to plasma normalized by the electron temperature.
The maximum LP potential governs how deep into the electron saturation regime the LP
can probe, affecting the OML single point and fit methods. Referencing fig. C.16b in
appendix C.6.2, the maximum LP potential must be greater than a few Te for acceptable
accuracies of the single point OML method. The maximum potential reaches a soft lower
boundary of 5Te at an area ratio of roughly 130, and the ideal maximum potential of 20Te

is reached at an area ratio between 230 and 240. Additionally, fig. 4.14b displays the range
of potentials that the LP probes in the electron saturation regime. The potential range is
calculated by taking the difference between the maximum LP potential and a potential
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Figure 4.13: Electron density percent error estimates of twin-probe corrected I-V sweeps
using the thermal current method.

(a) The maximum LP potential relative to the
plasma normalized by the electron temperature.

(b) The range of potentials in the electron
saturation region probed by the LP normalized
by the electron temperature.

Figure 4.14: Details on the electron saturation regime probed by corrected sweeps.

that is 2Te above the measurement’s plasma potential. This is the same range over which
the OML fit method is employed. The voltage ranges are similar to those seen for the
maximum potential, where the soft lower bound of a range of 5Te is reached at an area
ratio of between 140 and 150.
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(a) Percent error of twin-probe corrected
electron density measurements using the OML
single point method.

(b) Percent error of twin-probe corrected
electron density measurements using the OML
fit method.

Figure 4.15: Percent error of twin-probe corrected electron density measurements using
the OML methods.

Figure 4.15 highlights the percent error estimates of the electron density measurements
using the OML methods. As expected, the percent error for the single point OML method
is larger for smaller area ratios (see fig. 4.15a). However, these percent error estimates
agree with the minimum uncertainty of the method in appendix C.6.2, implying that the
twin-probe corrections successfully corrected the I-V curve, and the error is more closely
related to the limitation of the most positive potential of φLP . This once again highlights
that while the twin-probe method can correct for spacecraft charging, it can not extend the
range of the biases sampled by uncorrected sweeps. The percent errors of the OML fit
methods converge to roughly 0.1 % (shown in fig. 4.15b). Finally, for all area ratios greater
than or equal to 100, the number of measurements included in the fit ranged from 400 to
437, such that the regions within the fit were well sampled.

4.4.3 Magnitude of Twin-Probe Correction

The previous subsection showed that the twin-probe method is capable of correcting the I-V
curves such that the methods estimate the electron density and temperature near or at their
respective method’s minimum uncertainty. However, when studying plasma properties
in-orbit or in a vacuum chamber, the exact electron temperature and density are not known.
Therefore, it is important to understand the percent change between the uncorrected and
twin-probe corrected measurements; that is, the percentage of improvement the twin-probe
method provides without prior knowledge of the ”true” values of the plasma properties. All
percent change values are therefore given as
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Percent Change = 100
Fcorrected − Funcorrected

Funcorrected
(4.1)

where Fcorrected correspond to twin-probe corrected measurements and Funcorrected refers
to uncorrected measurements.

Starting again with electron temperature, fig. 4.16 demonstrates the percent change
between twin-probe corrected electron temperature measurements and uncorrected
measurements using the log-linear and integral methods. The maximum correction occurs
for the smallest area ratio considered (70) between 15 % to 30 %, and asymptotically
approaches 1 % for the log-linear method and 3 % for the integral method. As expected,
the amount of correction possible from the twin-probe method decreases with increasing

area ratio, since the effects of LP operation on the spacecraft potential diminishes as the

area ratio grows.

Figure 4.16: Magnitude of twin-probe correction of electron temperature when compared
to uncorrected measurements.

When comparing electron temperature measurements, greater care must be taken due
to the unphysical, asymptotic behavior of the electron saturation current collection due to
the limited CubeSat ion current correction. To ensure this asymptotic behavior is avoided,
the only method that is looked at is the electron thermal current method for area ratios
greater than or equal to 70. Similar to the electron temperature corrections, the magnitude
of twin-probe correction for electron density also decreases as the area ratio increases. At
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Figure 4.17: Magnitude of twin-probe correction of electron density measurements when
compared to uncorrected measurements.

the smallest considered area ratio, the percent change between the twin-probe corrected
and uncorrected electron density measurements are roughly 25 %, and reach 1 % when the
area ratio grows to 1000.

4.4.4 Importance of Proper Input Resistance for Accurate Tracking
of Spacecraft Potential

While the PSIC-LEO codes are capable of calculating the exact spacecraft potential, it is
also possible to estimate the spacecraft potential measured by a high-impedance probe
using eqs. 3.1 and 3.2. Since the twin-probe method shifts the reference potential of the LP
from the spacecraft to the electrically isolated high-impedance probe, the plasma potential
from twin-probe corrected sweeps is the negative of the high-impedance probe’s floating
potential. Indeed, for an infinitely large input resistance, the plasma potential of the
corrected I-V sweeps estimates the floating potential of the high-impedance measurements
to within 0.1 % for area ratios of 70 and greater (see fig. 4.18), supporting the discussion
in section 3.3.2. Therefore, as long as all additional error terms are accounted for,

the spacecraft potential can be estimated by calculating the floating potential of the

high-impedance probe and shifting the measured spacecraft potential by this floating

potential.
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Figure 4.18: Percent error estimates of twin-probe corrected I-V sweeps when the
correction is accomplished using the modeled ”measured” spacecraft potential instead of
the calculated spacecraft potential.

(a) Measured spacecraft potential using various
input resistances relative to the plasma sheath
resistance.

(b) Percent error of measured spacecraft
potential relative to ideal measurement at the
maximum and minimum applied voltages.

Figure 4.19: Effect of high-impedance input resistance on measured spacecraft potential.

An assumption in the section 3.3.2 discussion is that the input resistance used to track
the spacecraft potential is large enough to minimize the effects of the voltage divider caused
by the plasma sheath resistance and the input resistance. Indeed, fig. 4.19a demonstrates
the effects of the input impedance on the overall form of the measured spacecraft potential.
When the input resistance is on the order of or below the plasma’s sheath resistance, the
measured spacecraft potential is overestimated, skewing the overall spacecraft potential
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behavior. To ensure spacecraft potential measurements have a minimum uncertainty of
10 %, and properly spacecraft potential tracked, the input resistance for the high-impedance
probe must be at least a factor of 100 greater than the sheath resistance, as shown in
fig. 4.19b.
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CHAPTER 5

Experiments

Experiments performed at NASA MSFC were used to determine the feasibility and
effectiveness of the twin-probe method. The twin-probe method was employed to track
spacecraft potential, understand the magnitude of electron density and temperature
measurement corrections, and identify limitations. All of the experiments studying the
twin-probe technique were performed in the low Earth orbit simulation chamber at NASA
MSFC [172]. In this chapter, the instruments, chamber, and plasma source are detailed
before presenting the results of the experiment.

5.1 Experiment Description

The experiment’s setup is divided into 3 subsections: 1) the chamber and plasma source;
2) the notional CubeSat and instrumentation; and 3) the twin-probe method circuitry.

5.1.1 Chamber and Plasma Source

A cylindrical vacuum chamber approximately 2.4 m long and 1.2 m in diameter
was used during this experiment (diagram shown in fig. 5.1a). A base pressure of
6.5× 10−7 Torr was achieved when using three cryopumps and a turbomolecular pump,
and 7.7× 10−7 Torr was achieved when using only two cryopumps and a turbomolecular
pump. One cryopump malfunctioned during the final weeks of the campaign, necessitating
the switch from three to two pumps.

The plasma source uses a magnetic filter (shown in fig. 5.2a) to produce a
low-electron-temperature plasma with a streaming ion population. Briefly, gas is
flown through a heated tube, referred to as the cathode, and ionized using a DC electric
field in a region between the tube’s exit orifice and a flat, toroidal plate, called the keeper.
Once the plasma discharge is initiated, the plasma is accelerated towards the anode exit

84



(a) Diagram depicting a top view of the vacuum chamber. The CubeSat
is mounted on a rotation stage; this rotation stage and two LPs are all
attached to a platform mounted on two linear stages.

(b) Example of the argon plasma created
by the plasma source as viewed from the
chamber’s view port near the LPs and
CubeSat.

Figure 5.1: NASA MSFC chamber description.

orifice using a positive bias between the anode and cathode. An electrical schematic is
detailed in fig. 5.2b.

The plasma source was chosen for its ability to approximate the plasma environment
found in LEO. It is capable of producing densities in the range of 1.4× 1012 m−3 to
4.4× 1013 m−3; electron temperatures between 0.17 eV to 0.35 eV, and argon ion drift
energies between 2 eV to 5 eV. In comparison to the LEO environment, the lowest density
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(a) Schematic of plasma source used to
approximate LEO environment. Image
taken from Jesse et. al. [173].

(b) Electrical schematic of plasma source.
Image adapted from Rubin et. al [174].

Figure 5.2: NASA MSFC chamber plasma source mechanical drawings and electrical
schematic.

produced by the source is roughly a factor of 2 to 100 greater than the typical, quiescent
LEO density range; the lowest generated electron temperature is roughly a factor of 3

greater than the lowest observed LEO electron temperature, and the argon drift speed is
about 1.4 to 3.6 times slower than a spacecraft’s orbital velocity. A detailed study of the
plasma source used during these experiments is discussed by Rubin et. al [174] (shown
operating in fig. 5.1b). While the ideal operating conditions of the plasma source were not
always met, due to degradation and maintenance, the range of plasma properties measured
during the experiment are not very different from their ideal values (measured values shown
in table 5.1).

Argon was used for the ionized expellant gas, and was delivered through a Matheson
ultrahigh-purity regulator. The gas flow rate was controlled with a manual valve and
measured by a Hastings flowmeter. The flow rate was kept constant during each set
of measurements, but varied from 4.6 sccm to 13.2 sccm between sets, which yielded
operating pressures ranging from 5.3× 10−5 Torr to 1.3× 10−4 Torr over the total
set of experiments. The flow rate was changed between measurement sets to achieve
different ion temperatures and ion drift velocities as the flow rate proved to be inversely
proportional to both drift speed and ion temperature. For these experiments, the ion
population was composed of either a single drifting Maxwellian ion distribution, or a main
drifting Maxwellian ion population and a slower Maxwellian charge exchange population
(representative measurements are shown in section 5.3.2.1).
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Electron temperature 0.15 eV to 0.78 eV
Plasma density 1.8× 1012 m−3 to 2.8× 1013 m−3

Main ion drift velocity 2.4 km s−1 to 10.6 km s−1

Charge exchange ion drift velocity 0.5 km s−1 to 0.8 km s−1

Table 5.1: Range of plasma parameters measured during the experiment.

5.1.2 Notional CubeSat and Instrumentation

During the experiment campaign, a CubeSat was simulated using a 0.109 m×0.109 m

×0.311 m, 316-stainless-steel cuboid. The dimensions of the cuboid were specifically
chosen to represent a 3U CubeSat, where 1U is a 0.1 m×0.1 m×0.1 m structure. Stainless
steel was chosen as a conductive building material to reduce any potential experiment
error in the current collection due to oxidation on the surface over time. To isolate the
individual faces, the faces were joined at the corners using non-conducting Teflon cubes
and the inner faces were covered in 2 mil non-conducting Kapton. This led to an average
isolation of 10 GΩ between any pair of faces, limiting the leakage currents between isolated
conductors to tenths of a nanoamp. The CubeSat itself was mounted on a rotation stage to
rotate around either its Z-axis or Y-axis (perpendicular to both its Z-axis and the ion drift
velocity), depending on how the CubeSat was mounted (see different CubeSat mounting
schemes in fig. 5.4).

Figure 5.3: Internal structure of the CubeSat. The Teflon cubes in the corners and Kapton
layers isolate the individual faces from each other. The RPA is mounted in the center of the
CubeSat (top of the image).

To measure the ion energy distribution function, a retarding potential analyzer (RPA)
was mounted within the CubeSat (displayed in fig. 5.3). The RPA is described in detail by
McTernan et. al [173], but is summarized as follows. The RPA is a planar, circular-aperture
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sensor composed of four grids and a collector plate [175]. In order from closest to the
instrument opening, the grids are: ground, electron repelling, ion discriminator, and
secondary electron suppression. The grids are equally spaced with a 5.7× 10−3 m gap
and the diameter of the opening is 1.6× 10−2 m. Each grid is composed of a fine nickel
mesh with a combined transparency of 70 %. The inner structure of the CubeSat is shown
in fig. 5.3. The analysis technique used to determine the ion energy distribution function
from RPA operations is detailed in appendix D.

Multiple Langmuir probes were used in this experiment to study the effects of the
current collection area on plasma property measurements and spacecraft charging behavior.
The largest LP had a surface area of 8.25× 10−4 m2 (area ratio∼ 160) whereas the smallest
LP had a surface area of 2.3× 10−4 m2 (area ratio∼ 565). The largest probe was a guarded,
rhenium-coated titanium cylinder that was originally designed for the ProSEDS mission
[159]. The remaining LPs were made of stainless steel and varied in length to achieve
different area ratios. These smaller probes used an eye loop at the end, so that a screw
and nut could be used to mount it to either a Teflon block or garolite tube. Furthermore,
the stainless steel LPs were not guarded; however, their length was very long relative to
their radius, such that end-effects were minimized. Moreover, their measurements (plasma
density and temperature) were checked against each other and the ProSEDS LP (when
available) to ensure accuracy and self-consistency. An example of both kinds of Langmuir
probes is shown in fig. 5.4. The various analysis techniques used to determine plasma
properties from LP operations are detailed in appendix C.

5.1.3 Twin-Probe Method Setup

Implementing the twin-probe method in the chamber required the CubeSat to be electrically
isolated from the chamber and for both Langmuir probes to be referenced relative to the
CubeSat. The measured isolation impedance between the CubeSat and ground was greater
than 20 GΩ at 100 V without a plasma present, using the isolation measures described in
the previous section. Only the CubeSat face connected to the rotation stage was grounded
(through the rotation stage itself). This isolation scheme allows for leakage current on the
order of a tenth of a nanoamp between the CubeSat and the chamber; however, it is minimal
compared to the ion (∼10 µA) and electron (∼1 mA) current collected by the CubeSat.

Referencing the Langmuir probes relative to the CubeSat was accomplished using
electronics outside the chamber in order to test the twin-probe method for various probe
sizes and orientations without breaking vacuum. The high-impedance probe used a 1 GΩ

sense resistor and a Keithley 6430 sourcemeter to track the spacecraft potential, while the
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(a) Image displays the LPs mounted next to the CubeSat while the CubeSat
is configured to rotate around its Z-axis. The ProSEDS LP is mounted on
the right of the CubeSat and the stainless steel LP is mounted on the left.

(b) Image displays the stainless steel LPs mounted onto the CubeSat while
the CubeSat rotates perpendicular to both the Z-axis and the ion drift
velocity.

Figure 5.4: The two configurations of the experiment are shown: a) an unmounted LP setup
and b) a mounted LP setup.
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swept probe was biased using a Keithley 2400. The full experiment system displaying the
source; translation and rotation stages; the CubeSat in both orientations; and the LPs is
shown in fig. 5.4, and a schematic of the twin-probe circuitry is shown in fig. 5.5.

Chamber Wall
Air SideVacuum Side

CubeSat

CubeSat Common

Langmuir probe 1 RSense

1 GΩ

V
Keithley 6430

Langmuir probe 2

Keithley 2400

Figure 5.5: Twin-probe circuitry for unmounted and mounted probe configurations.
The high-impedance probe was isolated from the CubeSat using a 1 GΩ sense resistor,
Langmuir probe 1 in this configuration.

5.2 Hollow Cathode Plume Homogeneity and Controls

Before any experiments studying the twin-probe method were performed, the plasma plume
was probed to understand its homogeneity and determine the best regions for performing
twin-probe measurements. In particular, three plasma properties of interest were studied:

1. An ion density nearly equal to the electron density. This equivalence ensures the
probes would be in the quasi-neutral portion of the plume and would minimize the
risk of having measurements impacted by chamber wall effects such as the wall’s
plasma sheath.

2. Electron temperatures and densities that are spatially symmetric along the axis of the
source. This ensures the measurements of each probe can be compared against the
other both with and without twin-probe method corrections.

3. A drift energy greater than 1 eV. A drifting plasma better approximates the plasma
environment found in LEO.

90



As shown in this section, each constraint was met with varying degrees of success. The
exhibited representative plume was produced from a source operating at a flow rate of
13.1 sccm and an anode current of 10 A. All plumes flow from east to west (top to bottom
in the figures below) and the source is always outside of the boundary of the plots shown.
The contour plots all demonstrate a measured or calculated plasma property, centered along
the source’s centerline, with a spatial resolution of approximately 5× 10−2 m.

(a) Representative electron density of plasma
plume.

(b) Representative ion density of plume.

(c) Representative electron density to ion density ratio of plasma plume.

Figure 5.6: Ion and electron densities measured in representative plasma plume.

Beginning with density measurements, the density is typically greater near the source’s
centerline, and decreases with distance away from the source (see figs. 5.6a and 5.6b). A
ratio of the electron density to the ion density demonstrates that the majority of the plasma
plume is quasineutral (see fig. 5.6c). Typically quasineutrality is broken at the farthest
corners of the mapping region where this ratio approaches 0.6, as the region becomes ion
rich near the walls of the chamber. Furthermore, there is a slight bias of greater densities
towards the northern side of the chamber. However, this bias is not enough to warrant
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drastic changes in the experiment’s design. The difference in densities between the north
and south side are within a factor of two, which is within the error of the measurements, and
so the plume is symmetric enough with regards to density. It should be noted that fig. 5.6c
is normalized by the largest ratio, such that the maximum value of the density ratio is
always 1. The electron temperature exhibits a similar behavior to that of the density. There
is a skew for hotter electron temperatures towards the north side of the plume. Finally,
the ion drift velocity is always measured to be at least 1 eV, and typically increases with
increased distance from the plasma source due to the potential drop between the source and
the chamber walls (see fig. 5.8b).

Figure 5.7: Representative electron temperature of plasma plume. Slight bias towards the
north side of the plume.

It is not fully understood why the north side of the plasma plume has higher densities
and electron temperatures. As shown in fig. 5.2a, the cathode and keeper are housed in
a conducting drum lined with Sm− Co magnets. Measurements of all magnets along
the drum and near the center of the plasma output orifice verified that the magnetic field
was axially symmetric. Furthermore, adjustments made to the magnetic field strength at
the output orifice, by adding or removing magnets from the cluster at the center of the
output, yielded no noticeable difference in the skew. Private correspondences with Dr.
Jesse McTernan confirmed that the ion drift velocity is not symmetric along the centerline
of the plasma source, as measured by the maximum current to a planar retarding potential
analyzer [176] (see fig. 5.8a). A possible theory is that the magnetic filter positioned at
the center of the source’s plasma output shadows the flow in such a way that produces the
skew, but this is mostly conjecture.
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(a) Maximum radial ion current as measured by
the planar retarding potential analyzer, CARLO.
Image from McTernan [176].

(b) Axial ion drift energy as measured by an
RPA.

Figure 5.8: Radial and axial ion velocities from hollow cathode source.

A fix for the skew is to float the cathode and keeper, and remove the anode from the
plasma source circuit. In this new electrical configuration, the cathode can be biased
positive relative to the chamber, guiding the plasma with a highly directional DC electric
field (see fig. 5.9). While this technique is effective, it introduces several additional
problems that make it difficult to analyze the results of these experiments. Chief amongst
these issues is the ability to drive the cathode potential by biasing the LPs or the CubeSat
with a large enough bias relative to the chamber and a noticeable increase in electron
temperature because the magnetic filter is no longer effective.

(a) Floating potential map with a floating,
unbiased cathode.

(b) Floating potential map with a cathode biased
at 60V above the chamber wall.

Figure 5.9: Floating potential map of the plasma plume for an unbiased and biased cathode.
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5.3 Results

The results and analysis section will focus on two distinct measurements that the twin-probe
method can improve using the tracked spacecraft potential: the electron temperature and the
electron density. The examples shown in sections 5.3.2.4, 5.3.4.1 and 5.3.5.1 correspond
to the same measurement set for an area ratio of 565. Its plasma and chamber properties
can be found in table 5.2. The voltage step size is also roughly 0.25Te, allowing for more
accurate determination of the plasma properties. If the experiment properties are different,
they are explicitly stated.

Electron temperature 0.16 eV

Plasma density 2.8× 1013 m−3

Main ion drift velocity 1.8 km s−1

Charge exchange ion drift velocity N/A

Background pressure 2.1× 10−4 Torr

Table 5.2: Range of plasma parameters for example measurement set.

Generally when studying the twin-probe method’s effect on a LP’s plasma property
measurements, there are three different types of measurements based on the LP’s electrical
reference:

1. Control measurements: Plasma properties corresponding to measurements where the
LP was referenced relative to the chamber. Analogous to a probe referenced against
a reference electrode at least 1× 104 times greater than the probe.

2. Uncorrected measurements: Plasma properties corresponding to measurements
where the LP was referenced relative to the notional 3U CubeSat.

3. Twin-probe corrected measurements: Plasma properties corresponding to
measurements where the LP was referenced relative to the notional 3U CubeSat, but
the applied voltage is corrected by the tracked spacecraft potential.

All probes were cleaned using electron heating and confirmed to have no hysteresis before
each experiment was conducted. However, the CubeSat’s current collection had noticeable
hysteresis and electron heating alone was not sufficient to fully remove it. One possibility
for the persistent hysteresis behavior is that the CubeSat was not rotated during the cleaning
process, and so the CubeSat faces may not have received equal treatment, possibly requiring
longer treatment, larger biases, or slow rotation during cleaning.
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5.3.1 Spacecraft Charging

The spacecraft charging behavior was successfully tracked during Langmuir probe

operation and the measured behavior was in agreement with modeling predictions.

The potential of the CubeSat was tracked using a high-impedance probe electrically
isolated from the CubeSat by a 1 GΩ sense resistor. As shown in fig. 5.10, the spacecraft
potential remains relatively constant as the LP is biased negative of the spacecraft. In
this configuration, the LP collects net ion current, and so the SC does not significantly
charge positive or negative, as it can collect sufficient electron current to compensate
for the current to the LP. As predicted by Nascap-2K (appendix A.2.5) and PSIC-LEO
(section 4.3), the potential will become increasingly negative with positive applied bias to
the LP, as the CubeSat tries to balance the electron current collected by the probe with ion
current collected by the CubeSat surface.

Figure 5.10: This plot is an example of a properly implemented high-impedance
measurement where all sweeps lie very close to one another.

5.3.1.1 Maximum Charging as a Function of Area Ratio

The area ratio has a clear relationship with the maximum negative spacecraft charging

levels that the CubeSat reaches. Generally, the greater the area ratio, the more stable the

spacecraft potential during the Langmuir probe sweep, and the less negatively charged

the spacecraft becomes, as shown in fig. 5.11. Therefore, as the area ratio increases, the
magnitude of the correction due to the twin-probe method in density and temperature
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measurements decreases. Indeed, fig. 5.37 indicates that the percent change between the
corrected and uncorrected density will decrease with increasing area ratio, regardless of
the employed method (discussed in section 5.3.5). This same relationship is observed
for electron temperature measurements, as discussed in section 5.3.4 (see fig. 5.32).
Cases where the percent difference between single and twin-probe measurements are low
(below about 20) correspond to cases with a combination of low plasma densities (low
1× 1012 m−3) and high area ratios (around 565). This is an expected result, as low plasma
densities (allowing for higher ion drift speeds, as shown in fig. 6.1a) and high area ratios
both lead to reduced spacecraft charging and less need for the twin-probe method.

Figure 5.11: The points represent the maximum negative potential for densities below
1× 1013 m−3 where the SC potential becomes more positive as the area ratio increases.

When studying the maximum charge as a function of area ratio, the case where densities
are greater than 1× 1013 m3 is excluded. This is because density and drift energy were
inversely proportional leading to significantly lower drifts speeds and greater negative
charging. Further, discussion on the correlation between drift energy and plasma density,
as well as drift energy and spacecraft charging can be found in section 6.1 (accompanied
by fig. 6.1). The range of plasma parameters accompanying fig. 5.11 is shown in table 5.3.
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Electron temperature 0.22 eV to 0.78 eV

Plasma density 1.8× 1012 m−3 to 3× 1012 m−3

Main ion drift velocity 3.8 km s−1 to 11 km s−1

Charge exchange ion drift velocity 0.47 km s−1 to 0.8 km s−1

Table 5.3: Range of plasma parameters for measurement sets in fig. 5.11.

5.3.1.2 Issues with Settling Time

As mentioned in section 3.2.2, considering the settling time is key to making proper
high-impedance measurements for the twin-probe method. For any set of measurements,
the Langmuir probe was swept with a sawtooth waveform from −10 V to 10 V. Between
each sweep, the bias to the probe was shut off, and there was some elapsed time that ranged
from a couple of seconds to tens of minutes. Thus, a large voltage step occurred between
the last measurement of one sweep (spacecraft at maximum negative potential) and the
first measurement of the subsequent sweep. Figure 5.12a is an example of capacitive
effects that can be experienced during a twin-probe measurement. In this particular set of
measurements, 4 seconds elapsed between Langmuir probe sweeps. The very first sweep
shows little to no transient effects, since the entire system was in equilibrium (i.e. all
conductors were at their floating potential). For subsequent sweeps, there is clear transient
behavior, and it will be shown that this transience is due to the CubeSat discharging, and

not the temporal limit of high-impedance measurements. These transient effects severely
impact uncorrected ion density measurements. In the first measurement of Figure 5.12b,
the ion densities between corrected and uncorrected measurements show little difference
(similar behavior is seen in section 5.3.2.4 for ion density measurements that are not
impacted by transient effects). However, for all subsequent measurements in fig. 5.12b,
there is a clear difference between uncorrected and corrected measurements. A sharp
increase in uncorrected ion density estimates, between the first sweep and subsequent
sweeps, is observed in Figure 5.12b. This increase is directly attributed to the negative
charging of the CubeSat, as uncorrected sweeps do not take the actual spacecraft potential
into account. As discussed in section 1.3, for stable spacecraft potentials, the measured
plasma potential is an estimate of the spacecraft floating potential. The uncorrected sweeps
for this measurement set consistently estimate a spacecraft floating potential of −1 V,
while the high-impedance probe measures spacecraft potentials of at least −1.5 V (see
measured potential for most negative applied bias of fig. 5.12a) . Since the uncorrected
sweeps could not account for the more negative spacecraft potential, the ion densities are
overestimated. However, the twin-probe corrected ion density estimates are noticeably

97



smaller than their uncorrected counterparts suggesting some level of correction occurred.

(a) This plot shows high-impedance measurements affected
by system capacitance, as the system settling time was not
satisfied between sweeps.

(b) Discrepancies between uncorrected and corrected ion
density estimates due to settling time issues.

Figure 5.12: Transient effects on spacecraft charging and ion density measurements.

Further studies into these capacitive effects verify that the settling times between biases in
any given sweep aren’t the source of capacitive effects. As shown in table 3.1, the settling
time of the high-impedance probe for the densities in these experiments is orders of
magnitude smaller than a millisecond, and does not hinder the LP bias slew. The Keithley
sourcemeters averaged measurements between 1 to 10 power line cycles to reduce the
effects of AC noise. As a result, they would take between 16 ms to 160 ms to integrate over
the DC signal when making current or voltage measurements [177]. However, the settling
time due to sheath capacitance for large voltage steps is considerably larger. Figure 5.13
demonstrates that if the elapsed time between LP sweeps is on the order of seconds, the
measured spacecraft potential displays transient behavior, after the initial sweep. The
source of the increased negative potential cannot be verified; however, one explanation
is that the spacecraft had not fully dissipated its induced negative charge from balancing
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Figure 5.13: Spacecraft charging behavior for two different elapsed times between sweeps.

electron current to the probe by the time the next sweep began. Additionally, facility
effects, such as longer cables and greater capacitances due to operating in the vacuum
chamber, contributed to longer than expected settling times.

Moreover, we can qualitatively compare transient times for different densities using
fig. 5.14 as an example. Figure 5.14a corresponds to measured transients for a high-density
case. Since these measurements were made with the nominal spacecraft system in a
mounted state, like the one shown in fig. 5.4b, the recorded plasma properties are off
center-line plasma properties, and the ion drift velocities are a rough approximation, since
plasma potential measurements at the same position as the RPA were not made. For
fig. 5.14b, the nominal spacecraft system was configured in an unmounted state, like the
one shown in fig. 5.4a, and more accurate measurements were made. While the area ratio
of the higher density case is greater than the lower density case, the higher density case
also had a slower ion drift speed, and thus, produced similar charging magnitudes to the
lower density case. Between the two cases, there is a noticeably shorter transient time
when the plasma density is greater, likely due to the nearly ten-fold increase in available
charge to dissipate charge buildup from the CubeSat. This suggests that in situations of
sparse plasmas with no additional methods of removing negative charge build up, such as
photoelectron current or an active electron beam emission, operators should be wary of
long transient times related to CubeSat discharge rates.
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(a) Transient effects observed for a plasma
density above 1× 1013m−3.

(b) Transient effects observed for an
approximate plasma density of 1× 1012m−3.

Figure 5.14: Transient effects observed at different plasma densities and area ratios.

Figure 5.14a Figure 5.14b

Electron temperature 0.26 eV 0.22 eV

Plasma density >1× 1013 m−3 2.5× 1012 m−3

Main ion drift velocity ∼2 km s−1 3.8 km s−1

Charge exchange ion drift velocity N/A 0.5 km s−1

Area Ratio 482 158

Number of Biases in a Sweep 51 101

Elapsed Time between Biases 0.9 s to 1 s 1.1 s to 1.2 s

Table 5.4: Range of parameters for measurement sets in fig. 5.14.

5.3.1.3 Tracking Spacecraft Potential for Different Probe Orientations

As will be shown below, the twin-probe method is able to correct impacted I-V curves,

regardless of orientation relative to the ion drift speed and spacecraft. To demonstrate this
capability, the CubeSat is rotated along its Y-axis (refer to fig. 5.15) such that one probe
changes its angle of attack relative to the ion drift velocity, and the other probe maintains
a nearly constant orientation relative to the plasma flow. A visual of the spacecraft
configuration is shown in fig. 5.4b. In this manner, a swept probe rotates around the
spacecraft to study how Langmuir probe orientation may affect spacecraft charging, or the
high-impedance probe can rotate to understand if its orientation affects the accuracy of the
twin-probe method.
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Figure 5.15: Rotation about the CubeSat’s Z-axis and Y-axis.

Consider a Y-axis rotation where the high-impedance probe changes attack angle
as the SC rotates and the sweeping probe remains stationary. Using fig. 5.4b as a
reference, the swept Langmuir probe is mounted vertically and the high-impedance probe
is horizontal. There were four high-impedance probe orientations: two orientations
where the high-impedance probe was perpendicular to the drift velocity, one orientation
where the probe was parallel to the ion drift velocity and in the ram direction, and a final
orientation where the probe was in the wake region and parallel to the ion drift velocity.
When twin-probe corrections are applied, the resulting I-V curves are in closer agreement
(i.e. curve trends were more similar) than uncorrected sweeps. However, there is a clear
offset between the corrected I-V curves (shown in fig. 5.16). As mentioned in section 3.1,
the twin-probe method shifts the reference of the LP to the high-impedance probe. Since
the plasma potential of the I-V curve is a measure of the floating potential of the reference
electrode (discussed in section 1.3), the plasma potential as a function of probe orientation
can be studied to determine the root of the offset. Indeed, fig. 5.17 shows that the plasma
potential changes with high-impedance probe orientation, even though the swept probe
has not changed orientation. The discrepancy between the two perpendicular cases is
likely due to the electron temperature being consistently hotter on the northern side of the
chamber relative to the southern side of the chamber (see fig. 5.7 for an example). When
perpendicular to the plasma flow, the high-impedance probe would be roughly 0.3 m from
center-line, and so the difference in temperature between one perpendicular orientation
and the other could vary by 0.05 eV to 0.08 eV, producing a noticeable difference in
high-impedance probe floating potential. If the corrected sweeps are shifted by their
individual plasma potentials, as depicted in fig. 5.18, it is clear that the corrected sweeps
are grouped more tightly than their uncorrected counterparts in fig. 5.16.
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Figure 5.16: Twin-probe LP corrections as the CubeSat rotates about its Y-axis. The
high-impedance probe changes its angle of attack relative to the ion drift velocity as the
CubeSat rotates (sweeping probe remains in the same location and orientation).

Figure 5.17: Plasma potential of twin-probe corrected I-V curves indicate that the
high-impedance probe’s floating potential varies as the CubeSat rotates around its Y-axis.
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Figure 5.18: Twin-probe LP corrections for a rotating CubeSat adjusted by their individual
plasma potentials. The high-impedance probe changes its angle of attack relative to the
ion drift velocity as the CubeSat rotates (sweeping probe remains in the same location and
orientation).

(a) Percent change of electron density estimates
using thermal current method.

(b) Percent change of electron temperature
estimates using log-linear method.

Figure 5.19: Percent change between corrected and uncorrected plasma property estimates
for a high-impedance probe that is perpendicular to the plasma flow, parallel to the flow in
the spacecraft ram, and parallel to the plasma flow in the spacecraft wake. The area ratio is
482.

Next, the percent change between twin-probe corrected and uncorrected electron
temperature estimates (using the log-linear method discussed in appendix C.5.3) and
electron density estimates (using the thermal current method discussed in appendix C.6.1)
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were studied. A comparison of the different methods for determining electron temperature
is given in section 5.3.4, and a similar comparison for electron density estimates is
presented in section 5.3.5. Three sweeps were performed at the four high-impedance probe
orientations, each with a different elapsed time between sweeps to account for settling
time issues (0.13 min, 2.13 min, 30.15 min). The results shown in fig. 5.19 represent the
average density (fig. 5.19a), or temperature (fig. 5.19b), and the corresponding standard
deviations. From fig. 5.19, it can be determined that the twin-probe method is not strongly
impacted by the high-impedance probe’s position. The largest discrepancy occurs at the
left-most perpendicular case where the percent change is a few percent greater compared
to the other orientations.

Figure 5.20: Maximum spacecraft potential induced by LP operation as the CubeSat rotates
the high-impedance probe around its Y-axis. The high-impedance probe changes its angle
of attack relative to the ion drift velocity as the CubeSat rotates (sweeping probe remains
in the same location and orientation).

It is assumed that the variations are due to changes in the spacecraft’s current collection
behavior. Even though the swept LP remained roughly in the same position and orientation
as the SC was rotated, it is likely that the CubeSat’s own orientation relative to the plasma
flow and facility effects (e.g. contamination of CubeSat surfaces and skew in plasma
properties discussed in section 5.2) affected the I-V characteristics. For instance, when
inspecting the maximum induced spacecraft potential (as was done in section 5.3.1.1), it
is clear that there is a difference in charge between the two perpendicular orientations (see
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fig. 5.20). Additionally, the orientation with the smallest induced potential also had the
smallest magnitude of correction.

As a word of caution, while chamber results do not show any strong impact on
twin-probe corrections due to high-impedance probe orientation, the same may not be true
in the wake region of satellites in space. When deep in the satellite’s wake, plasma densities
have been known to fall significantly [171], which can produce plasma resistances that
are too low for proper high-impedance measurements (see table 3.1 for the relationship
between plasma density and resistance).

Similarly, a Y-rotation of the CubeSat can be considered with probe roles reversed (the
swept probe rotates with the SC and the high-impedance probe remains stationary). In
this configuration, the swept probe will have the same orientations relative to the plasma
that the high-impedance probe had in the previous case. For the following discussion,
figs. 5.21 and 5.22 can be used as references. As a point of clarity, all LP sweeps in
fig. 5.21 are shifted such that each sweep’s plasma potential aligns with 0 V for ease of
comparison between control, uncorrected, and twin-probe corrected sweeps. The measured
plasma properties are not specifically detailed, since all comparisons will be made within a
measurement set; thus, only the tracked spacecraft potential and grouping of the corrected
probes are analyzed.

Figure 5.21: Twin-probe LP corrections as the CubeSat sweeping probe rotates around its
Y-axis (high-impedance probe remains in the same location and orientation). All sweeps
have been adjusted by their respective plasma potential; thus, 0 V corresponds to the
measured plasma potential.
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As expected, in the two orientations where the swept probe was perpendicular to
the ion drift velocity, the spacecraft charge induced from probe operation is roughly
equivalent. When the probe is oriented parallel to the drift velocity and in the ram
direction, it only collected thermal electrons and ions, leading to significantly less current
collection; and as a result, less spacecraft charging. Finally, when the LP was in the wake
of the spacecraft, the probe collected significantly more current, resulting in the most
negatively-induced spacecraft potentials. The dependence of probe orientation relative to
ion drift speed is discussed in section 5.3.2.2, but in terms of its effects on the charging
behavior of the satellite, it is clear that when the probe collects greater electron current, the

spacecraft charges to a more negative potential, as shown in fig. 5.22. When comparing
the twin-probe corrected LP sweeps to the control sweeps, in fig. 5.21, they both exhibit
the similar current characteristics, but are offset by a constant value, the floating potential
of the high-impedance probe. The variable offset between twin-probe corrected and
control values is likely due to the changing satellite and high-impedance probe floating
potentials at each orientation.

Figure 5.22: High-impedance measurements of spacecraft potentials as the CubeSat rotates
around its Y-axis. The swept probe rotates with the CubeSat.

5.3.2 Plasma Plume Ions

The first plasma property that is analyzed from LP current-voltage characteristics is
the ion density. For accurate ion density measurements, understanding the ion energy
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distribution function (IEDF), the number of distinct ion populations, and their respective
characteristics (temperature, drift speed, prevalence in the IEDF), which are parameters
obtained from RPA measurements, is invaluable. Ion densities are a useful plasma
property for determining the accuracy of electron density measurements, so reducing their
uncertainties is key in making reasonable comparisons.

5.3.2.1 Ion Energy Distribution Functions

Ion energy distribution functions were all measured using a retarding potential analyzer.
All measured IEDFs were smoothed using a SavitskY-Golay filter with a fourth order
polynomial and a window size that is 15 % of the total number of points. The aggressive
filtering was necessary to sufficiently smooth the peaks of the first derivative of the current,
but the window size will shift the peaks of the distribution slightly. Furthermore, as shown
in fig. 5.23a, there was clear ohmic leakage current at high biases relative to the plasma
potential. Since it is expected that the measured current approaches zero, this leakage
current should be removed from the measured current before analyzing its first derivative.
The following process was taken for every RPA measurement set to remove the ohmic
behavior:

1. A first order polynomial was fit to the final 25 % of the data. This is referred to as
”Ohmic Fit” in fig. 5.23a.

2. The Ohmic Fit is extended over the full range of biases that the RPA was operated
over, and subtracted from the measured currents.

As shown in figs. 5.23b and 5.23c, removing the ohmic current does not affect the
IEDF’s peak amplitudes, peak position, or the full width half maximum of each peak.
However, the high-energy tail of the distributions were slightly modified. Since this region
is not considered when fitting a Maxwellian to the individual peaks, the ion characteristics
remain unaffected by the Ohmic Fit. Generally speaking, there will always be one drifting
Maxwellian population and a CEX population that varies in prominence [178]. As noted
by Rubin et. al. [174], the charge exchange population is more prominent in regions with
greater neutral flow, since the charge exchange collision frequency increases with neutral
particle density and background pressure. Furthermore, the probability that a drifting ion
has a charge exchange collision increases the farther it travels from the plasma source.
Thus, the fraction of the ion population composed of CEX ions increases further from the
source.

CEX ions typically have no initial drift velocity; however, the complicated potential
structure near and downstream of a hollow cathode can provide the energy to accelerate
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(a) Measured current from RPA positioned 1.4m from
plasma source.

(b) Double peaked IEDF with small CEX ion population
1.4m from plasma source.

(c) Double peaked IEDF with more significant CEX ion
population 1.6m from plasma source.

Figure 5.23: Ion energy distribution functions representing plasma plumes with no charge
exchange ions and a significant charge exchange ion population.

CEX ions. There is a potential drop across the plasma plume that accelerates CEX ions
towards the chamber wall where CEX ions produced near the source experience the
greatest gain in kinetic energy. Figure 5.9 provides an example of this potential drop (note
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the potential drop of an LP’s floating potential is similar to the drop seen in the plasma
potential across the plume). Additionally, it is possible for a CEX ion to be created with
a non-negligible drift velocity. To understand this Goebel et. al. notes that the potential
structure immediately down stream of the hollow cathode accelerates ions towards center
line where they undergo charge exchange collisions with the neutrals. The neutralized ions
keep their kinetic energy and are eventually reionized, producing ions that carry the sum
of their thermal energy, the energy due to their initial acceleration, and the energy from
the plasma potential where they were reionized [179]. Thus, CEX ions produced at the
plasma source or throughout the plasma plume will gain kinetic energy as they travel to
the edge of the plasma plume (towards the chamber wall or the RPA). Refer to fig. 5.23c or
IEDF plots provided by Rubin et. al. [174] for examples of CEX ions with a non-zero drift
produced by the hollow cathode used in the experiments of this dissertation (section 5.1.1).
Since the exact relationship between flow rate, distance from plasma source, and CEX ion
population isn’t known, RPA measurements are taken in conjunction with each twin-probe
measurement set to estimate the ion population properties (examples shown in figs. 5.23b
and 5.23c). An in-depth description of the analysis methods employed to extract ion
temperature, drift speed, and the ion population’s prominence in the total ion distribution
is given in appendix D.

5.3.2.2 Ion Current Collection as a Function of Angle of Attack

Taking advantage of the fact that LPs were mounted on a rotating spacecraft, the ion current
as a function of angle of attack relative to the ion drift speed was measured for full 360°
rotations of the satellite. Figure 5.24a shows the result of several such rotations where
a LP was biased to −10 V, and measurements were taken every 0.5 s as the spacecraft
rotated clockwise and counterclockwise at a rate of 22.5 ° s−1. The angles of π/2 and
3π/2 correspond to probes that are perpendicular to the ion drift velocity, an angle of 0

corresponds to the probe being parallel to the drift velocity, and π corresponds to the probe
in the wake.

When compared to similar ion current measurements made by the AE missions (see
fig. 5.24b), there are some stark differences when the probe is pointed parallel to the ion
drift speed and when the probe is in the wake. For the AE measurements, probe end
effects enhanced ion current collection while angles ±15° from a 0° angle of attack are
at a local minimum for ion current collection. This local minimum more closely resembles
the local minimum seen in the chamber measurements (see current collection for parallel
probe orientation fig. 5.24a), where the probe current more closely resembles orbit motion
limited (OML) current collection for thermal ions instead of drifting ions. The wake region
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(a) Maximum ion current measured by LP at different angles of attack
relative to ion drift speed in the chamber.

(b) Ion current as a function of angle relative to drift velocity from
Atmospheric Explorer -C, -D, and -E missions. Figure from Brace et.
al. [153]

Figure 5.24: Comparing chamber and satellite measurements ion current relative to angle
of attack.

has the largest discrepancies between in-orbit and in-chamber measurements. Where the
ion current collected in the wake was near zero for in-orbit measurements, the wake ion
current was a global maximum in the chamber. This discrepancy is due to a combination
of factors but two major contributors at play are: 1) significant CEX ion population and 2)
the probe may be near a region of the wake where ions and electrons are focused by the
CubeSat potential profile. The larger population of CEX ions in the chamber decreases the
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size of the satellite’s wake region, as they are less energetic and can fill the wake region
more easily (discussed in section 5.3.2.3). Furthermore, higher background pressures in the
chamber can further distort the wake region due to an increase of charge-neutral collision
frequencies. Finally, Albarran et. al. [171] demonstrated that a CubeSat is capable of
focusing ions and electrons at the tail of its wake region where the densities increase by
an order of magnitude greater relative to the quasi-neutral region of the plasma. This ratio
roughly agrees with the ratio between the ion currents seen when the probe is parallel to
the ion drift speed and in the wake.

5.3.2.3 CubeSat Surface Ion Current Collection

Since each side of the CubeSat is isolated from the rest of the structure, the currents to each
face can be measured while the total structure is biased relative to the plasma. During
each sweep of notional CubeSat, the side that is initially in the ram direction and the
current to the rest of the structure were measured as a function of the attack angle between
the ram-facing side and the ion drift velocity, and bias relative to the plasma plume. As
described in section 5.1.2, the only face of the CubeSat that could not be biased relative
to the plasma was the face of the CubeSat grounded to the chamber, as it was physically
connected to the rotation stage. Thus, there are two total surface areas for the CubeSat
based on the axis of rotation. When the CubeSat was rotated along its Z-axis, a small face
of the CubeSat was mounted on the rotation stage, and so the total area is approximately
0.13 m2. Similarly, the total area of the CubeSat was approximately 0.11 m2 when it was
rotated about its Y-axis. Figures 5.25 and 5.26 exhibit the ion currents collected by the
nominal CubeSat surfaces for both axes of rotation. There is a factor of ten difference in ion
density between the case where the CubeSat rotates along its Z-axis and when the CubeSat
rotates along its Y-axis (see table 5.5 for a comparison of plasma properties). The denser
plasma for the Y-axis of rotation case results in significantly more ion current collection by
the CubeSat, when compared to the current collection in the Z-axis of rotation case.

Figure 5.25 compares the ram ion current to the total ion current collected by the
CubeSat for different ram-facing surface areas. Near the floating potential of the CubeSat, it
is difficult to determine the percent of the total current that is comprised of ram ion current.
This is because the floating potential of the ram-facing side and the total collected current
differ slightly, and so an accurate ratio is difficult to establish. As an example, fig. 5.25a
shows the large ram face and full CubeSat currents intersecting while still collecting net
negative current. In this situation, the floating potential of the whole CubeSat is slightly
more negative than the floating potential of the ram-facing side. At attractive potentials
several ion temperatures greater than the ion drift energy, the large face approaches 40 %
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to 50 % (see fig. 5.25c). Therefore, as the attractive potential reaches and surpasses the
ion drift energy, the non-ram-facing sides of the SC and its large ram-facing side will
equally comprise the total collected ion current. This behavior agrees with the modeled
oxygen ion ram and wake currents in Nascap-2K simulations, where ram ion currents
would represent close to 70 % of the total collected currents at low attractive potentials,
but would represent just 44 % of the total current when the attractive potential was twice
as large as the ion drift energy (refer to table A.1). Additionally, when the smaller side of
the 3U CubeSat is ram-facing, the small face is never as pronounced as the large side’s
ram-facing current collection. Even at the most attractive potentials, the small face’s
current collection represented roughly 10 % of the CubeSat’s total current collection (see
fig. A.19). Therefore, it should be expected that larger ram-facing areas will be a more
significant source of the total current collection of the CubeSat, as modeled by Nascap-2K

(see fig. A.19).

(a) Ion current collection when a 0.3m2 face is
in the ram direction.

(b) Ion current collection when a 0.1m2 face is
in the ram direction.

(c) Percentage of ram ion current collection as a
function of applied bias for a 0.3m2 ram-facing
side.

(d) Percentage of ram ion current collection as a
function of applied bias for a 0.1m2 ram-facing
side.

Figure 5.25: Ram and total ion current collection for differently sized ram direction areas
for Z-axis (0.13 m2 surface area) and Y-axis rotations (0.11 m2 surface area).

Beyond the ratio between the ram ion current collection and the total ion current
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collection, the wake ion currents were also studied. As shown in table A.1 of
appendix A.2.3, there should be negligible ion current collected in the wake region
when the satellite’s attractive potential is below the ion drift energy, unless there is a
significant presence of low energy ions. In the Nascap-2K simulations, the low energy
ions were light hydrogen ions, but in the chamber, these low energy ions are CEX ions.
Indeed, fig. 5.26 demonstrates non-negligible ion current collection in the wake region
of the CubeSat, even at low attractive potentials. This higher-than-expected wake ion
current collection is likely due to the presence of CEX ions and high neutral background
pressures helping to validate the theories presented in section 5.3.2.2. Additionally, the
presence of CEX ions increases the current collected by the sides of the CubeSat that are
not ram-facing, reducing the fraction of the total current that is attributed to the ram-facing
area presented in figs. 5.25c and 5.25d.

(a) Ion current collection when a 0.3m2 face is
in the ram direction.

(b) Ion current collection when a 0.1m2 face is
in the ram direction.

Figure 5.26: Ram and wake current collection for differently sized ram direction areas for
Z-axis (0.13 m2 surface area) and Y-axis rotations (0.11 m2 surface area).

Total Area 0.13 m2 Total Area 0.11 m2

Rotation Z-Axis Y-Axis

Ram-Facing Area 0.3 m2 0.1 m2

Electron temperature 0.20 eV 0.25 eV

Plasma density 2.9× 1012 m−3 3.1× 1013 m−3

Main ion drift velocity 3.9 km s−1 (3.15 eV) 3.7 km s−1 (2.85 eV)

CEX ion drift velocity 0.80 km s−1 (0.13 eV) 1.5 km s−1 (0.47 eV)

Table 5.5: Range of parameters for measurement sets in figs. 5.25 and 5.26.
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5.3.2.4 Ion Density

As seen in section 5.3.1, the spacecraft charge remains relatively unchanged when the LP
is biased negative of the spacecraft and collects net negative current (mainly ion current).
Therefore, it is not as critical to employ twin-probe corrections to the I-V curve when
analyzing the ion saturation regime. However, since the ion population can be composed
of both CEX and drifting ion populations, the analysis techniques detailed in section C.3
must be extended to include the situation where the ion density is composed of multiple
species.

To begin, when only the drifting Maxwellian population is present, the ion density is
calculated using the fitting algorithm that accompanies the full expression (eq. C.13),

IiDrift =
qApNiDriftvi

π

√
1 +

kBTi
miv2i

+
2q (VP − VA)

miv2i
.

In the situation where Maxwellian CEX ions (sometimes also drifting) are present
alongside the drifting ion population, the ion current is broadly estimated as the sum of the
currents due to both populations, without taking into account any current modifications
due to interactions between the two populations such as ion-ion collisions. Assuming the
CEX ion current can be estimated as OML current (eq. 2.18), the total ion current is then
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(5.1)

where ηCEX and ηDrift are the fraction of the total density that is comprised of CEX ions
and drifting ions, respectively. Since eq. 5.1 cannot be linearized by squaring the current,
as was done in section C.3, a non-linear fit of the current must be performed. The total ion
density is then given by

Ni =
πα

qAp
(5.2)

where α is the fit parameter. The uncertainty of the calculation of density is affected by
the non-linearity of the model, and so a Monte Carlo scheme is utilized to estimate the
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error [180]. This is accomplished by calculating the density while varying the plasma
potential, measured current, sourced voltage, ion temperatures, and the fractions of the
total density within their respective uncertainties. The density is then the average of all of
the calculated densities from the Monte Carlo scheme. The total error is the square root of
the sum of squares of the standard deviations of the calculated density due to variations in
each variable. This is effectively numerically calculating a first order approximation of the
standard error

σF =

√√√√ N∑
i=1

(
∂F

∂xi
σxi

)2

(5.3)

where N is the number of independent variables, xi is a distinct independent variable (e.g.
plasma potential, ion temperature, etc.), and F is the function of interest (in this case it is
ion density).

Figure 5.27: Ion density measurements where only a single drifting ion population was
present at the location of measurements.

Figure 5.27 provides an example of ion density measurements using the twin-probe
method when compared to control and uncorrected sweeps. As expected, the discrepancy

between uncorrected and twin-probe corrected measurements is nearly negligible as

the spacecraft potential is constant when the LP collects ions. Since the correction is
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effectively shifting the applied bias by a constant value, the I-V characteristics in the ion
saturation regime are identical between the two types of measurements. Discrepancies
between the control measurements and twin-probe corrected measurements are less than
10 % and can be largely attributed to variations in the plasma source during the experiment
and errors in the plasma potential and ion population properties (i.e. drift speed and
temperature).

5.3.3 Electron Energy Distribution Function

Figure 5.28: Example electron energy distribution measurement of the plasma source at
NASA MSFC.

Many of the analysis techniques employed below in sections 5.3.4 and 5.3.5 assume
that the EEDF is Maxwellian. Just as section 5.3.2.1 verified that the ion populations are
either Maxwellian or drifting Maxwellian, the same care should be taken to ensure the
electron population is Maxwellian. Figure 5.28 presents an example EEDF composed of
the control (left-most plot) and twin-probe corrected (right-most plot) sweeps for a single
measurement set. While the EEDF from the control sweep shows good agreement with a
Maxwellian distribution (the R2 is 0.9), the small sample size makes it difficult to argue
that the plasma is Maxwellian. To further provide evidence of the Maxwellian nature of the
hollow cathodes plasma, all twin-probe corrected sweeps for one measurement set (plasma
properties of this set are detailed in table 5.2) were analyzed for their respective EEDF.
The electron temperature and goodness of fit (GoF) quoted in the right most plot is the
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average temperature and GoF and the standard error is simply the standard deviation of the
measurement set.

Changes in the plasma source will cause slight deviations in the plasma properties
over the course of a measurement set; however, the Maxwellian fit is generally in
good agreement with the measured EEDF. Furthermore, fig. 5.31b presents a fairly
linear example semi-log plot of the electron retardation regime which is indicative of a
Maxwellian electron population. Therefore, for this work, it is assumed that neither the
magnetic filtering of the plasma source nor external facility effects cause the EEDF to
deviate from a Maxwellian distribution.

5.3.4 Electron Temperature

There are multiple ways of determining the electron temperature from the I-V
characteristics of a Langmuir probe. The reader is encouraged to review section C.5
as background for electron temperature estimates. This section specifically focuses on the
following methods:

• The non-drifting potential difference method: electron temperature is estimated
using the potential difference between the plasma and floating potential (described
in appendix C.5.1).

• The integral method: electron temperature is estimated by integrating the electron
retardation current (described in appendix C.5.2).

• The log-linear method: electron temperature is estimated by the inverse slope of the
linearized electron retardation regime (described in appendix C.5.3).

The potential difference method that uses the ion drift speed is not used due to the fact
that the method is not any more accurate than the non-drifting method and the non-drifting
method appears more stable (discussed in appendix C.5.1.2). Regardless of which method
was used, the calculated electron temperature when using the twin-probe correction was

always colder and closer to the control measurements than the uncorrected electron

temperature measurements. This is because the I-V characteristic of an uncorrected sweep
is always shallower due to the increasingly negative charge on the spacecraft during LP
operation.

5.3.4.1 Example Analysis Methods

As expected, each method varies in accuracy based on its assumptions and necessary inputs.
With the exception of the single point method, all methods generally agree with an electron
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temperature of roughly 0.2 eV.
The potential difference method is a candidate for measuring the electron temperature

with relatively high accuracy (fig. 5.29). A statistical analysis of all relative uncertainties
for control and twin-probe corrected measurements determined the percent error is
22±20 % and uncorrected sweeps have a percent error of 26±20 %. This method relies
heavily on the floating and plasma potentials and so its uncertainty is directly related to
the uncertainties of the two measured potentials. A discussion on the uncertainties of this
method is given in appendix C.5.1.2 and appendix C.5.1.1.

The integral method closely agrees with the results of the log-linear and potential
difference methods; however, it is much more inaccurate. The greater uncertainty is
apparent when comparing error bars in fig. 5.30 to those of figs. 5.29 and 5.31a. The
uncertainty of the integral method is inversely proportional to the number of measurements
included in the integral. Therefore, the voltage step size relative to the electron temperature
should be smaller than a quarter of the electron temperature. Furthermore, accurately
known floating and plasma potentials are required, as they define the lower and upper
bounds of the integral. This range affects both the number of measurements that are
included in the numerical integration and the percentage of the retardation regime sampled
during integration. Due to an insufficient sampling of the retardation regime, the relative
uncertainties are 52±39 % for the control and twin-probe corrected measurements, and
61±40 % for uncorrected measurements. A detailed description of the uncertainties for the
integral method are given in appendices C.5.2.1 and C.5.2.2.

The most accurate method is the log-linear method, which is typically the standard
analysis for determining electron temperature in a Maxwellian plasma (fig. 5.31a). It should
be noted that the error in the log-linear method is calculated using a Monte Carlo scheme
instead of an analytic equation, so it is possible that the uncertainty is underestimated
(see discussion of uncertainty in appendices C.5.3.1 and C.5.3.2). However, it is unlikely
that the uncertainty is grossly underestimated due to the linear form of the semi-log plot
(example shown in fig. 5.31b). The percent error for control and twin-probe corrected
measurements is 25±12 %, while uncorrected sweeps have a percent error of 26±13 %. The
slightly greater uncertainty for the uncorrected sweeps is likely due to the small non-linear
effects that spacecraft charging has on the IV characteristics in the electron retardation
regime.
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Figure 5.29: The potential difference method uses the difference between the plasma and
floating potential to estimate the electron temperature.

Figure 5.30: The integral method integrates the electron current between the floating and
plasma potential.
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(a) The log-linear method fits a first order polynomial to the log of the electron current.

(b) Semi-log plot of the electron current between each sweep’s respective floating and plasma
potentials. Each sweep has been normalized by their respective sweep’s minimum current, and the
biases have been adjusted so they all begin at the same potential.

Figure 5.31: Examples of log-linear analysis methods and results.
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5.3.4.2 Magnitude of Electron Temperature Corrections

To determine the magnitude of the correction due to implementing the twin-probe method,
the percent change between the uncorrected and corrected electron temperature of each
sweep is determined. The reported value of the correction (percent change) is the average
of all calculated percent changes in a measurement set, where the error is the standard
deviation of the array of percent changes. Since the most accurate methods were the
log-linear fit and potential difference methods, they will be the focus of discussion in
this section (the integral method is included for completeness). As shown in fig. 5.32,
using these methods in conjunction with the twin-probe techniques will lead to corrections
as great as 20 % for the lowest area ratios, dropping to about 7 % when the area ratio
approaches 600. As discussed in section 5.3.2.3, it is likely that the satellite would collect
less current collection in a space environment than in the chamber due to the lack of CEX
ions and larger wake regions. As a result, these calculated magnitudes should be considered
the best-case scenarios for correction. For clarity, the range of plasma properties captured
in fig. 5.32 is given in table 5.3.

Figure 5.32: The plot presents the percent change in correction of temperature
measurements as the area ratio is changed for densities between 1× 1012 m−3 to
1× 1013 m−3.
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5.3.5 Electron Density

There are multiple distinct methods of calculating the electron density from the I-V
characteristics of a Langmuir probe. The reader is encouraged to review section C.6
as background for electron density estimates. This section specifically focuses on the
following methods:

• Thermal current method: electron density is estimated using the electron current at
the plasma potential (see appendix C.6.1)

• Ideal OML Fit: electron density is estimated by fitting a power law function to the
electron saturation current assuming the current behaves like the ideal OML theory
shown in eq. 2.12 (see appendix C.6.2 with the assumption that γ = 0.5 and β =

2/
√
π)

• Single Point OML: electron density is estimated assuming the electron saturation
current behaves like ideal OML cylindrical probe theory and that the potential is
much greater than the electron temperature (refer to eq. C.41 in appendix C.6.2)

Before discussing the twin-probe method’s ability to improve electron density
estimates, it is important to determine whether or not OML theory applies when analyzing
the electron saturation regime by determining the probe’s sheath radius-to-probe radius
ratio. A soft minimum ratio of 30 is required to be considered OML current collection as
detailed in appendix C.6.2.2. The sheath radius-to-probe radius ratio can be calculated as
follows

rs
rp

=
rp + dsh
rp

=
rp + 3λD

rp
(5.4)

where dsh is the sheath thickness (assumed to be at least 3 Debye lengths thick). The
resulting sheath-to-radius ratios range from 4 to 20 for this experiment, placing them in a
transition region between thin sheath and thick sheath current collection.

This is further verified by attempting to linearize the electron saturation regime (lowest
and highest ratio examples shown in fig. 5.33). In appendix C.6.2, an OML fitting
algorithm is detailed that assumes the electron saturation regime can be described using a
power law function. The first step of the algorithm requires a linear fit of the logarithm of
the electron current as a function of the logarithm of the probe bias, relative to the plasma,
that is normalized by the electron temperature (log(φ/Te + 1)). For sufficiently large
sheath-to-radius ratios, the resulting line’s slope provides the appropriate scaling exponent
of the power law function. However, as can be seen by the control lines (representing
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LP sweeps referenced against the chamber wall) in fig. 5.33, a sufficiently straight line
that can be used to obtain the scaling exponent does not exist. Moreover, uncorrected
sweeps are further impacted by the induced spacecraft potential, as predicted by the
PSIC-LEO simulations in section 4.3.2 and fig. 4.10. The additional non-linearity makes
it infeasible to linearize the uncorrected curves and apply the fitting algorithm, even for
sufficiently large sheath-to-radius ratios. Unfortunately, while twin-probe corrected I-V
curves were closer to the control curves, the magnitude of the correction was sometimes
limited. For instance, in the left-most plot of fig. 5.33, the twin-probe corrected and control
curves are in good agreement, but the right-most plot shows the twin-probe corrected
curve to be somewhere between the uncorrected and control curves. At this time, there
is no satisfactory answer that explains why some twin-probe corrections agree with their
control counterparts and some don’t. While OML theory does not strictly apply to these
electron saturation curves, to ensure the same fitting method is compared between control,
uncorrected, and twin-probe corrected measurements, the electron saturation current is
assumed to be proportional to the square root of the applied bias (equivalent to eq. 2.12).
Greater uncertainties are assumed when estimating electron density to account for the less
than ideal conditions.

Figure 5.33: Plot of failed linearization of the electron current between each sweep’s
respective electron saturation regime due to small sheath-to-probe radius ratio. Each sweep
has been normalized and the biases have been adjusted so they all begin at the same
potential and the same arbitrary unit.

For the employed methods, the calculated electron density, when using the twin-probe
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correction, was always greater and closer to the control measurements than the

uncorrected electron density estimates. This is because the I-V characteristic of an
uncorrected sweep is always shallower, due to the increasingly negative charge on the
spacecraft during LP operation. Therefore, the same effect that produces hotter electron
temperatures in uncorrected sweeps will skew the calculated electron density to be lower
than the actual plasma property. Finally, as mentioned in section 2.4.7, ion density
estimates are typically more accurate than electron density estimates. Historically,
estimated electron densities are corrected using ion density measurements [3, 153]. While
such correction schemes aren’t used in this discussion, the example electron density
estimates provided in this subsection will be compared to ion densities measured by the
control sweep.

5.3.5.1 Individual Example Measurement Sets

Just as was seen for the electron temperature, each method for determining electron density
varies in accuracy based on its assumptions. The calculated electron densities all generally
agree with each other and the control estimates of electron density are within a factor of
two or three below the estimated ion density.

Figure 5.34: The thermal current method estimates the electron density from the current
measured at the plasma potential.

The thermal current method has the smallest shift between the uncorrected and
twin-probe corrected sweeps. Furthermore, the twin-probe corrected electron densities
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deviate the greatest from control measurements for the four considered methods. Part of
this small shift is due to the small negative charging induced on the spacecraft between the
spacecraft’s floating potential and when the probe is near the plasma potential. As a result,
the small current difference between the two sweeps causes a density difference that is
roughly 1× 109 m−3, in this case. It is likely, that for more severe charging conditions,
such as a smaller area ratio or a smaller CEX ion population, the corrected density shift
would be greater. As noted in appendices C.6.1.1 and C.6.1.2, this method is naturally
uncertain, and so the measurement’s uncertainty ranges from 50 % to 60 % regardless of
the sweep type considered.

Figure 5.35: The single point OML method estimates the electron density assuming the
attractive potential dominates random thermal motion. The ion density is a constant value
in this example.

Since the probe sheath to radius ratio was not guaranteed to be outside of the transition
region between thick and thin sheath current collection, the full algorithm described in
appendix C.6.1 was not used. Instead, it was assumed that all attracted electron currents are
proportional to the square root of the attractive potential and can be linearized by squaring
the currents. This assumption was made for the single point OML method (fig. 5.35) and the
ideal OML fit method (fig. 5.36a). It is clear from the twin-probe corrected sweeps that LP
sweeps referenced against the notional satellite do not probe the ambient plasma well above
the plasma potential. As a result, the minimum uncertainty of the single point OML method
is unlikely to have reached its asymptotic limit from fig. C.16b. Since the linearization is
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not always successful (fig. 5.36c) and only one measurement is considered to calculate
the electron density, the density’s uncertainty is estimated to be 50 % at a minimum. The
uncertainty estimates are provided in eq. C.42 and appendix C.6.2.2.

For the OML fit method, the electron density was determined from the slope of the
squared currents (see appendix C.6.1). Figures 5.36b and 5.36c demonstrate that this
linearization scheme is not always successful and so all calculated electron densities are
assumed to have a minimum uncertainty of 25 % combined with any additional systematic
uncertainties (as described in appendices C.6.2.1 and C.6.2.2). In the case of successful
linearization of control and twin-probe corrected sweeps (fig. 5.36b), it is clear that the
uncorrected sweep’s collected current was not proportional to the square root of the
accelerating potential, due to the spacecraft’s charging behavior (see fig. 4.10).

(a) The ideal OML fit method assumes the electron saturation regime follows ideal cylindrical
thick sheath electron current collection. The ion density is a constant value in this example.

(b) Successful linearization example where the
electron saturation current behaves close to a
square root function.

(c) Unsuccessful linearization example where
the electron saturation current behaves far from
a square root function.

Figure 5.36: Example of idea OML fit results and linearization.
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5.3.5.2 Magnitude of Electron Density Corrections

To determine the magnitude of the correction due to implementing the twin-probe method,
the percent change between uncorrected and corrected calculated electron densities of each
sweep is determined. The reported value of the correction is the average of all calculated
percent changes in a measurement set where the error is the standard deviation of the array
of percent changes. As shown in fig. 5.37, using these methods in conjunction with the
twin-probe techniques will lead to greater corrections at low area ratios that diminish with
increasing area ratio. For completeness, the range of plasma properties captured in fig. 5.37
is given in table 5.3.

The smallest correction at a low area ratio occurred when applying the thermal current
method. Its maximum correction was 20 %, dropping to just below 10 % when the area
ratio approaches 565. The OML methods, both the fit and single point schemes, resulted in
the highest corrections and the measurements consistently closest to the density estimates
made by control sweeps.

Figure 5.37: The plot presents the percent change in correction of density measurements
as the area ratio is changed for densities between 1× 1012 m−3 to 1× 1013 m−3.

5.4 Comparing PSIC-LEO Model to Experiment Results

The PSIC-LEO codes were developed to quickly estimate the measured spacecraft potential
using the twin-probe method, understand the effects of induced spacecraft charging on
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LP I-V characteristics, and develop new analytic techniques. Therefore, efforts should be
made to at least validate the charging behavior modeled by PSIC-LEO. Direct comparisons
between in-chamber measurements and the models are not possible due to three major
barriers: 1) a lack of exact analytic equations for current collections to a cuboid structure
to use in the model; 2) an asymmetric potential structure around the physical CubeSat
in the chamber because one side was grounded; and 3) the presence of CEX ions and high
background pressures altering the wake region. Even though the direct comparisons cannot
be made, the behavior between the model and in-chamber measurements can be compared
(qualitative comparisons are made using fig. 5.38). Experimental measurements are shown
in the left-most column and PSIC-LEO model results are shown on the right-most column.
In these comparisons, the modeled accelerated electron current is orbit motion limited.

(a) Chamber measurements for the smallest area
ratio.

(b) Predicted spacecraft charging behavior for
smallest area ratio used in the chamber.

(c) Chamber measurements for the largest area
ratio.

(d) Predicted spacecraft charging behavior for
largest area ratio used in the chamber.

Figure 5.38: Measured spacecraft potential and Langmuir probe potential. The red line
corresponds to Langmuir probe potentials and blue lines correspond to the spacecraft
potential.

To begin, both the chamber measurements and the model predict a measured spacecraft
potential near 0 as the floating potentials of the high-impedance probe and spacecraft would
be very similar when the swept LP is collecting a net ion current or it is at its floating
potential. As the LP is biased positive of its floating potential, the electron current begins
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to dominate over the ion current slowly inducing a negative charge on the satellite. This
is typically observed as the curved portion of the measured spacecraft potential and initial
negative charging. This limited charging behavior explains why the electron temperature
measurements have limited corrections relative to electron density corrections. As the LP
surpasses the plasma potential, the spacecraft potential becomes increasingly negative at
a near linear rate. The slope of the line is dependent on the area ratio and the magnitude
of the satellite’s ram-facing conductive surface area, but an exact expression has not been
developed at this time. Both the PSIC-LEO codes and chamber measurements exhibit the
same behavior but will predict different negative potentials at the most positive applied
biases to the LP.

(a) Comparison between experiment results and
PSIC-LEO model predictions of twin-probe
correction for electron temperature using the
log-linear method.

(b) Comparison between experiment results and
PSIC-LEO model predictions of twin-probe
correction for electron temperature using the
integral method.

(c) Comparison between experiment results and
PSIC-LEO model predictions of twin-probe
correction for electron density using the thermal
current method.

Figure 5.39: Measured spacecraft potential and Langmuir probe potential. The red line
corresponds to Langmuir probe potentials and blue lines correspond to the spacecraft
potential.
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While their exact potentials cannot be compared, the predicted magnitude of the
twin-probe corrections for electron temperature and density made by the PSIC-LEO
codes can be compared by running the simulations with the plasma properties measured
in the experiment. The corrections predicted by the model the have the same trend and
are generally close to experiment results. For comparisons of temperature corrections,
the PSIC-LEO codes generally underpredict the magnitude of twin-probe corrections
when using the log-linear method (see fig. 5.39a). Similarly, when determining electron
temperature using the integral method (see fig. 5.39b), PSIC-LEO model predictions agree
with the experiment, with the exception of the area ratio of 280 where the model and
experiment differ greatly (about 12 %). Finally, corrections of electron density using the
thermal current method determined by the PSIC-LEO model and seen in the chamber
closely agree (see fig. 5.39c). The largest discrepancy occurs at the smallest area ratio and
is roughly 5 %. Again, the reported experiment value of the correction is the average of
the measurement set and the error bars are the standard deviation of the measurement set
for a given area ratio. The PSIC-LEO model results do not have error bars since the results
are analytic and would yield the same result regardless of how many times the simulation
is ran. This general agreement in the trends between the model predictions and experiment
lends credibility to the PSIC-LEO codes as a tool to understanding the effects of spacecraft
charging on LP measurements when designing future CubeSat missions.

130



CHAPTER 6

Applications and System Level Design

A very small satellite, which is the most likely to have issues of restrictive area ratios, is
any satellite lighter than 100 kg [181]. Implementing twin-probe correction may require
adding additional hardware to the satellite, so that it has spacecraft potential tracking
capabilities. As a result, there may not be enough mass or volume budget available for
the extra equipment, especially after accounting for more massive subsystems related
to power generation (solar panels), power supplies, and communications (radio and
antenna). Therefore, it is imperative to know under what conditions the twin-probe method
is most effective and what system level design choices can be made to maximize its
impact. In this chapter, the results from simulations and experiments are first interpreted.
Then, recommendations for general system level designs are detailed, including probe
dimensions and suggested analysis methods. Finally, possible future missions with
twin-probe method capabilities are highlighted and implementations to improve the
versatility of the twin-probe method are proposed.

6.1 Interpretation of Simulation and Experiment Results

To begin, the spacecraft charging results are most applicable for plasma environments
that are either devoid of sunlight, such as being in eclipse, or for plasma densities
greater than 1× 1011 m−3 where the effect of photoelectron and secondary electron
emission is minimal. Since neither the simulations nor the experiment campaign studied
the impact of photoelectron or secondary electron emission on spacecraft charging, no
parametric data can be presented to discuss these effects. However, in very low density
environments (Ne ∼1× 109 m−3), such as the Martian environment, photoelectron current
has been demonstrated to be sufficient in compensating for the limited ion current to the
spacecraft during probe operation. For instance, the Maven spacecraft did not exhibit
significant charging when operating a swept Langmuir probe [74, 75]. This suggests that in
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low-density situations, the effect of probe operation on small spacecraft may be mitigated,
as long as additional current sources to the spacecraft, such as photoelectron current, are
sufficiently large.

In the chamber experiments, the notional CubeSat charged between −7.5 V to −2.5 V

for area ratios ranging from 160 to 565, and so the percent difference between twin-probe
corrected measurements and uncorrected measurements changed accordingly. Also, slight
changes in ion drift speed affect the total charge on the spacecraft (see fig. 6.1b). Typically,
smaller drift speeds result in more severe charging. In turn, these charging differences
result in slight variations for the magnitude of twin-probe correction of both electron
temperature and density measurements (see highest area ratio twin-probe corrections of
figs. 5.32 and 5.37). Ion drift speed was correlated to the plasma density, as shown in
fig. 6.1a. Lower densities allowed for higher ion drift speeds, and a measurement set
from the NASA MSFC experiment campaign is not included in sections 5.3.1.1, 5.3.4.2
and 5.3.5.2 due to densities being too large to allow for nominal drift speeds.

(a) Ion energy decreases with ion density. (b) Spacecraft charging for similar area ratios
but different drift speeds.

Figure 6.1: Ion energy in relation to ion density and spacecraft charging.

Fortunately, the largest electron densities were encountered when the largest area ratios
were being tested. As a result, it is possible to study the effects of ion drift energy on
spacecraft charging for similar, large area ratios (i.e. those ranging from 540 to 570). For
instance, for drift energies above 3 eV, the measured spacecraft charging ranged between
negative 2 V to 3 V; however, when the ion drift speeds were below 1.75 eV, the charging
was comparable to area ratios below 200 (−6 V to −8 V). While these low drifting
conditions exemplify the importance of the ion drift speed on improving the CubeSat’s
current balance capabilities, they do not provide good comparisons for the expected
spacecraft charging levels seen in LEO. Interestingly, there appears to be some asymptotic
behavior for drift energy as there is not as drastic a change in maximal spacecraft charging
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between the 3 eV and 22 eV ion drift energies, when compared to the charging difference
seen between the sub-1.75 eV and 3 eV ion drift energies. At this time the cause if this
asymptotic behavior is not well understood and is only noted.

For transparency, fig. 6.1a only includes data when the hollow cathode used the
grounded anode to accelerate the ions. When the cathode is biased above the chamber
and the anode is not in use, the ion drift energies could be forced above 20 eV, but this is
not the intended use of the plasma source as it can not filter higher temperature electron
populations. Therefore, it can not be used to analyze the relationship between ion density
and ion drift energy when the anode is in use. Additionally, fig. 6.1b only contains data for
area ratios above 540, regardless of plasma source configuration, to isolate the effects of
ion drift energy .

Focusing specifically on the log-linear method of electron temperature determination,
the twin-probe method corrected temperatures by 20 % to 7 %, depending on the area
ratio. Notably, independent modeling by Shkarofsky and Szuszczewicz report similar
percent errors in temperature for area ratios below 1000 using different assumptions on
spacecraft geometry and charged particle current collection [182, 56]. At the larger area
ratios, corresponding to the least amount of charging and correction, the percent error
in the measurements overlap considerably with the corrections between the twin-probe
corrected and uncorrected measurements. As a result, correction factors in this regime
cannot be definitively confirmed, and more accurate measurements are required to validate
correction factors in these regions of minimal charging. Possible improvements to
these measurements focus on decreasing the voltage step size to increase the number of
measurements in the electron retardation regime, and performing more sweeps under the
same conditions to provide a larger sample size of measured currents for a given applied
bias. Comparing the experiment results to PSIC-LEO estimates of correction, modeling
estimates differ with experiment results by about 5 % to 10 % at the area ratios considered
(comparison shown in fig. 5.39a). However, more definitive statements are made for
correction factors in the area ratio regime below 300. In this region, the correction factors
are greater than the percent error of the individual measurements, and so it is clear that
uncorrected measurements overestimate the electron temperature by a significant margin.
At the smallest area ratios considered in the experiment, 165, uncorrected log-linear
measurements can be expected to deviate between 15 % to 20 % from the true temperature
measurements. Therefore, twin-probe corrections would be vital in ensuring more accurate
measurements of the electron temperature.

Similarly, using the thermal current method for electron density determination, one
could expect a 20 % to 10 % correction factor for uncorrected sweeps. However, due to
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the intrinsic and systematic uncertainties of the method, it is very difficult to obtain highly
accurate electron densities using this method. For these experiments, the uncertainty ranges
between 50 % to 60 %, and so conclusive statements on the correction factor using the
twin-probe method cannot be made, as the uncertainties in the measurements overlap with
the correction factor. Using the PSIC-LEO model predictions, the experimental estimates
of the correction factor are typically 5 % greater than model predictions, but both the model
and experiment show the same general trend (comparison in fig. 5.39c). Additionally, the
single point OML method demonstrated corrections ranging between just below 100 % for
the smallest area ratio to 20 % for the largest area ratio. The significantly greater correction
factor of the single point OML method, when compared to the thermal current method,
is due mostly to the region of the LP IV curve used for the respective measurements
(pictorial representation in fig. 6.2). The thermal current method studies the current near
the plasma potential where the spacecraft potential has minimally changed. In contrast,
the OML single point method uses the largest applied potential of the LP, corresponding to
the greatest amount of spacecraft charging. As a reminder, the single point OML method
estimates the electron density as follows

Ne ≈
πIe (φ)

Ap

√
me

2q3φ

where φ is the probe potential relative to the plasma potential. Therefore, the difference
between uncorrected and twin-probe corrected electron density determination is the probe
potential. For uncorrected sweeps, the maximum probe potential relative to the plasma
potential ranges between 8.8 V to 9 V. For corrected curves, the maximum potential ranges
from approximately 1.5 V to 6.3 V, where the smaller maximum potential corresponds to
the smaller area ratio. The percent change between twin-probe corrected and uncorrected
measurements would then be

%Change = 100

√
1

φCorrected
−
√

1
φUncorrected√

1
φUncorrected

where φCorrected is the corrected probe potential and φUncorrected is the uncorrected probe
potential. Substituting for the probe potentials above, the percent change would be broadly
estimated to be 143 % for the smallest area ratio considered in the experiment, and 19 %

for the largest ratio, which is close to the experimental percent change values. With a
combination of larger than expected electron densities and, at times, thicker than optimal
Langmuir probes, the electron saturation current did not behave like ideal OML current
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collection; thus, the uncertainties in density estimates using the OML single point method
were 50 %. To improve these estimates and further verify correction factors for area ratios
above 300, thinner probes should be employed at the lowest possible plasma densities that
can be generated in order to better approximate OML electron current behavior. Ultimately,
if the probe geometry allows for it, the electron saturation regime and OML theory should
be used to estimate electron density. The thermal current method should only be used if
other schemes are not available due to its small correction factors and intrinsic inaccuracies.

Figure 6.2: Example of the location of measurements used for thermal current and single
point OML methods of determining electron density.

6.2 Optimal System Design for Small Spacecraft

Using the information gleaned from simulations and experiments, we can begin to outline
optimal system level designs for small spacecraft. To begin, area ratios below 300 stand
to benefit the most from twin-probe operations. These are the regions where uncorrected
sweeps can be improved by the largest margins. Generally, the spacecraft should be
designed to have the largest amount of conductive surface area as possible to aide in ion
current collection. Furthermore, while the entire satellite can be available for current
balance, having a sizeable ram current collection area can further minimize the magnitude
of negative charging. Maximizing the surface area ratio can be accomplished through
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several methods, including fixing the CubeSat orientation such that the largest surface area
is ram-facing; or ensuring large, deployable structures are always ram-facing, such as solar
panels with ITO coated cover glass or conductive drag panels. However, maximizing the
ram-facing surface area also maximizes the drag on the spacecraft. While this may not be
an issue at higher altitudes, for altitudes below 600 km, drag effects play a significant role
in satellite orbital dynamics, and increasing the drag will inadvertently decrease orbital
lifetimes [183]. A trade study between ram ion current collection and orbital lifetime
should be conducted for small satellites that plan on implementing the twin-probe method.

Equally important to balancing the satellite drag and ram-facing surface area is
determining proper Langmuir probe dimensions for the expected electron densities and
temperatures. For instance, consider the probe dimensions for a mission, carrying twin
cylindrical Langmuir probes, in the F-region of Earth’s ionosphere. It will be made quickly
apparent that reaching proper OML dimensions is not feasible, and some compromises
must be made. In the Earth’s F-region, we can consider the typical electron temperature
to be 0.1 eV and the electron density to range from 1× 1010 m−3 to 5× 1011 m−3. The
corresponding Debye lengths are then between 2.34× 10−2 m to 3.3× 10−3 m, with the
longer Debye length corresponding to the sparser plasma. The diameter of the Langmuir
probe should be thin enough such that the sheath radius is at least 50 times greater than the
probe radius for all expected densities to approximate OML current collection. The ratio
can be calculated using

ratio =
rs
rp

=
rp + dsh
rp

where rp is the probe radius and dsh is the sheath thickness measured from the surface of
the probe. In this example, the probe diameter should be 4× 10−4 m, assuming the sheath
is 3 Debye lengths thick, which is prohibitively thin when considering mechanical strength,
and limiting to the magnitude of expected charged particle current collections. An attempt
to reconcile this can be made by relaxing the ratio requirement of 50 to one where the
ratio must be 5 or greater, so that it is still outside of the thin sheath regime. With this
new requirement, the probe can be as thick as 5× 10−3 m, which is still thin but much
more manageable. For comparison, the diameter of previous flight probes are those in the
m-NLP system at 5× 10−3 m [184, 73]; the probe that would have flown on ProSEDS had a
diameter of 4× 10−3 m [159]; and the Langmuir probe on the AE mission was 2× 10−3 m

[153].
Once the probe diameter is determined, the probe length can be decided based on

constraints due to the spacecraft and ambient plasma. Selecting the proper probe length,
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to ensure end effects are minimized, is typically a function of both the probe potential and
the Debye length. As the probe potential increases, the sheath structure around the probe
will expand around the probe tip, and consequently, the current collection is increasingly
affected by probe end effects. Agreement on the appropriate probe length-to-Debye length
ratio for the applied potential range considered, −10 V to 10 V, varies due to limited,
tested, plasma parameters and probe lengths, and can range between 5 to 600 [185, 186,
187]. In this case, the limiting factor is not the smallest Debye length, but rather the
longest. Assuming the smallest ratio is sufficient, the expected minimum probe length
is 1.17× 10−1 m. Understandably, this is prohibitively long for small satellites when also
taking into account the fact that the probe should be located outside the spacecraft sheath, as
discussed in section 3.2.1. Alternatively, a different criteria for a sufficiently long probe can
be considered, where the probe length-to-probe diameter ratio is considered. Jakubowski
estimates that a ratio of 40 was sufficient in the presence of a collisional plasma [156],
while Marholm et. al. found that a ratio of 10 was insufficient and a larger ratio closer
to 20 was more applicable in a collisionless plasma [188]. By utilizing these ranges, for a
5× 10−3 m diameter probe, the expected length would range from 0.1 m to 0.1 m. This is
again prohibitively long.

At this point, it can be appreciated that attempting to satisfy the ”infinitely long” probe
condition of most Langmuir probe theory is infeasible for small spacecraft. The purpose
of the ”infinitely long” assumption is to ignore end effects. Another method of eliminating
probe end effects is to use a guard. A guard can be used at one or both ends of a cylindrical
probe, but it is usually simpler to utilize a guard on only one end. The guard element
is a conductor of similar diameter to the Langmuir probe that precedes the probe along
the boom structure, but is electrically insulated from the probe. It has the same conductive
surface as the Langmuir probe, and is driven at the same potential; but, its current collection
does not have to be measured [153]. While the guard can be a few centimeters long, care
has to be taken to include the surface area of the guard into calculations when determining
the spacecraft-to-probe area ratio [3]. Effectively, a guard element allows for a probe whose
length is less than ideal by extending the uniformity of the electric field surrounding the
probe; however, the probe should still be made as long as possible to further reduce end
effects [187]. Some guard lengths that have been used for LEO missions and systems
include 1.5× 10−2 m on the m-NLP system [188]; and 2.5× 10−2 m for both the ProSEDS
LP and the AE LP [159, 153]. Assuming the notional probe is now guarded, let the allowed
probe length-to-diameter ratio decrease to 10, such that the probe length is 5× 10−2 m,
which is much more achievable. It should be noted, that this smaller length-to-diameter
ratio will still experience end-effects, but a guard eliminates such effects on one end of the
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probe [188, 187]. Again for comparison, the probe length-to-diameter ratios for the three
LEO cases are 5 for the m-NLP system, 12.5 for ProSEDS, and 37.5 for the AE mission.
Notably, the Atmospheric Explorer missions allowed for much longer boom and probe
structures due to the satellite’s larger size.

Another consideration for determining the probe length, once a diameter has been
chosen, is the area ratio between the spacecraft and probe. As mentioned earlier, because
the notional probe is guarded, the surface area of the guard must be taken into account as
well, given as

AreaRatio =
ASC

Ap + Ag

whereAg is the guard area. Here, we will assume the guard and probe have the same radius,
the guard length is 2.5× 10−2 m, and the reference satellite is perfectly conducting 3U
CubeSat, area of 0.14 m2. PSIC-LEO simulations demonstrated that the area ratio between
a spacecraft and LP should be greater than 70 to ensure spacecraft potential and electron
temperature measurements are unaffected after making twin-probe corrections (refer to
fig. 4.4). More stringently, to sample at least 5Te above the plasma potential, for LEO-like
conditions, the minimum area ratio is roughly 130. Therefore, the maximum probe length
would be 8.6× 10−2 m for an area ratio of 80 and 4.4× 10−2 m for an area ratio of 130.
As expected, if the guard is made longer, or shorter, the maximum length of the LP will
decrease, or increase, respectively; however, the area ratio will not change. In this instance,
the probe length calculated for a guarded LP, with a probe length-to-diameter ratio of 10,
is long enough to ensure an area ratio above 80, but is just short of the 130 area ratio mark
and may run into limitations when analyzing the twin-probe corrected electron saturation
regime. If studying the electron density is necessary for the mission, the probe and guard
can be made thinner, as was shown to be possible for the ProSEDS and AE Langmuir
probes, in order to increase the area ratio. For instance, if the probe has the thickness of the
AE probe, the maximum probe length for an area ratio of 130 is then 0.146 m. Similarly, for
the thickness of the ProSEDS LP, which was slightly thinner than the maximum diameter
of 5× 10−1 m, the maximum probe length would be 5.5× 10−2 m.

Once the probe dimensions have been determined, it is important to ensure the probe is
large enough to collect currents above the noise floor of the sensing circuitry. Assume
the design team decides to use a Lanmguir probe mounted on a triaxial boom that is
stored along a 0.30 m long side of the 3U CubeSat. Based on the expected charging
levels, a 0.20 m boom is deemed sufficient to remain outside the spacecraft sheath (see
fig. 3.4), a 2.5× 10−2 m guard is used, and the length of the LP should be no more than
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6× 10−2 m. This would allow for a 1.5× 10−2 m gap between the probe tip and the end of
the spacecraft, in case adjustments are necessary. Using the calculations above, the team
settles on 3 possible probe dimensions and opts to keep the guard and probe diameters as
similar as possible; the choices are given in table 6.1.

Option Length (m) Diameter (m) Probe Area (m2) Area Ratio

1 4.4× 10−2 5× 10−3 6.9× 10−4 130

2 5.5× 10−2 4.3× 10−3 7.4× 10−4 130

3 6× 10−2 2× 10−3 3.75× 10−4 260

Table 6.1: Example of various probe dimensions for a notional 3U CubeSat platform.
Guard dimensions are included in the area ratio calculation; the guard length is
2.5× 10−2 m, and the guard diameter is equal to the probe diameter.

Considering the options, it seems like option 2 and 3 are the best candidates. Options
1 and 2 have the same area ratio, but option 2 has a larger surface area, which equates
to greater current collection; a smaller diameter, so it is more likely to approximate
OML current collection; and a greater probe length-to-diameter ratio that should produce
slightly smaller probe end effects. Option 3 has the smallest diameter and greatest probe
length-to-diameter ratio. However, it also has the smallest probe area; and, while this
would result in reduced spacecraft charging, it also means less current collection. So the
next step would be to compare expected ion and electron currents to determine what the
requirements of the probe circuitry would need to be; expected current collection shown in
table 6.2.

Option Electron Thermal Current (µA) Ion Drift Current (µA)

2 0.06 to 3.1 0.003 to 0.15

3 0.03 to 1.6 0.002 to 0.08

Table 6.2: Estimated ion and electron currents to various LP dimensions and densities for
notional 3U CubeSat system. Electron thermal current was calculated using eq. 2.10 and
minimum ion drift current was calculated using eq. 2.19 for oxygen with 5 eV drift energy.

Comparing the ranges in expected electron and ion currents, it is clear that regardless
of which probe option is used, the probe circuitry must accurately sense ion currents in
the nanoampere regime. Notably, this is the minimum expected ion current, as it is the
ion current collected without an accelerating potential. Furthermore, the electron thermal
current is the electron current at the plasma potential, and should be expected to rise
with increased attractive potential. This implies that the probe circuitry should also be
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capable of measuring currents in the tens of microamps, but should not be expected to
measure currents greater than one hundred microamps. Experimental measurements for
densities roughly an order of magnitude greater in density could approach 200 µA at applied
potentials of 10 V (see examples in figs. 3.1 and 5.16); and since current is linear with
density, a factor of 10 decrease in density corresponds to an order of magnitude decrease in
current. Therefore, the requirements for the LP circuitry should be to reliably sense current
between 1 nA and 100 µA, regardless of the considered dimensions. As a result, option 3

should be the primary option unless other circumstances prohibit its use, such as cost of
manufacturing, difficulty in ensuring homogeneous surface work function, or insufficient
mechanical strength.

Assuming the appropriately-sized probe is chosen, many avenues for analysis are
available when using the twin-probe method. First, ensure the high-impedance probe has a
sufficiently large input impedance. As shown in fig. 4.19b, the input resistance should be
at least two orders of magnitude greater than the largest expected plasma resistance. Since
the plasma resistance is inversely proportional to its density, an input impedance of 5 GΩ

should be sufficient (see table 3.1 for expected plasma resistances). As an example, the
ProSEDS LP carried a 5 GΩ input resistance for its high-impedance probe [159] and the
ISS’s Floating Potential Monitor Unit (FPMU) uses an input resistance of 100 GΩ [189].

To determine ion density, the spacecraft’s mesothermal state is advantageous in
ensuring the dominant oxygen ion population is drifting at approximately 5 eV. Assuming
the probe is oriented perpendicular to the ion drift velocity, the ion density can then
be determined using the orbit motion limited theory (detailed in section C.3). Electron
temperature properties should be obtained by performing the log-linear method (detailed
in appendix C.5.3) on twin-probe corrected data. To help ensure the electron retardation
regime is properly sampled for the log-linear method, the voltage step size should be
no larger than 0.25Te. There are multiple schemes that can be used to accomplish this
resolution. These approaches include simply oversampling the LP sweeps based on
expected plasma temperatures from models and previous missions; a framing algorithm
that adjusts sweep parameters using a series of Langmuir probe, as was done on PVO
and was planned for ProSEDs [151, 159]; or a semi-logarithmic method where voltage
step sizes decrease near the zero applied potential point, as is executed on MAVEN [74].
Electron density approximations should be derived from the electron saturation regime;
however, true OML current collection behavior should not be expected. Instead, the
electron saturation current can be assumed to follow a power law function and steps can
be taken to determine the power of the function, as detailed in appendix C.6.2. Bear in
mind that this approach can only be applied on twin-probe corrected measurements. At
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these restrictive area ratios, spacecraft charging behavior will cause the electron saturation
current collection of uncorrected sweeps to deviate from the power law approximation, as
was discussed in section 5.3.5.

6.3 Applications for Future Missions

So far, discussion on the twin-probe method has centered around correcting Langmuir
probe sweeps by utilizing two identical probes. However, this method is flexible enough
to fit other roles and can be performed by systems that do not necessarily carry two
Langmuir probes. First, we will detail how to employ twin-probes to induce negative
charge on a spacecraft for wider ion sensing analysis by highlighting a proposed mission,
the Composition and Dynamics Experiment in the Topside Ionosphere (CODEX). Then,
the possibility of tracking the spacecraft potential by using a tethered end body is discussed
in the context of a series of tethered CubeSat missions called the Miniature Tether
Electrodynamics Experiment (MiTEE).

6.3.1 CODEX

The proposed CODEX mission focuses on studying mass resolved bulk properties and
non-thermal ion distribution functions associated with ion outflows near the polar regions
of the Earth’s ionosphere. To analyze the cold ion populations, CODEX carries an ion
composition and three-dimensional velocity analyzer, the 3-Dimensional ion velocity and
mass Imager (3DI) [190]. The 3DI instrument is optimized to separate H+, He+, O+, and
heavy ions (NO+, O+

2 , and N+
2 ). However, light ions such as H+ and He+ can be difficult

to measure since the spacecraft potential can charge positive, repelling the ions that are of
interest [191]. To counteract this positive charging, the CODEX satellite implements twin
Langmuir probes with a scheme to purposefully induce a negative charge on the spacecraft
in order to sample the full spectrum of available ions.

The CODEX satellite is a 6U CubeSat with two deployable solar panels, covered with
ITO coated cover glass, that are each roughly 0.3 m×0.3 m (see fig. 6.3). The area ratio
between the Langmuir probes and the total conductive surface area of the satellite (main
body and solar panels) is 360. As expected, the spacecraft will charge negatively when
operating the Langmuir probe. Simple Nascap-2K models of the CODEX satellite estimate
that the most severe charging reach −4.75 V with stowed solar panels and −3.5 V with
deployed panels. As an aside, the potential difference between deployed and stowed panels
highlights how effective additional, deployable, conductive structures can be in reducing
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the effects of probe operation on the spacecraft’s potential. As long as the satellite floating
potential is not greater than the magnitude of the maximum negative charge that the LP can
induce on the satellite—due to a combination of energetic outflowing ions, photoelectron
emission, and secondary electron emission—one of the Langmuir probes can drive the
spacecraft potential below the plasma potential. The remaining probe would be operated as
a high-impedance probe to track changes in the spacecraft potential. If the satellite floating
potential rises above the most negative potential the LPSP can induce, operating the probe
in this constant bias system would still help increase the range of the ion population that can
be sampled, but the full distribution would remain unavailable. Depending on how positive
the spacecraft floats relative to the plasma, this could be problematic for sampling the H+

and He+, since they are the first ions to be repelled due to positive spacecraft potentials.
Finally, the twin Langmuir probes, denoted as LPSP in fig. 6.3, are positioned relative to
spacecraft such that one probe can be shadowed while the other is sunlit to calibrate for
photoelectron current (as discussed in section 3.3.1).

Figure 6.3: CAD representation of fully deployed CODEX satellite. From personal
communication with Dr. Keiichi Ogasawara [192].
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6.3.2 MiTEE-I and MiTEE-II

MiTEE is a series of technology demonstration missions to demonstrate the capability
of short electrodynamic tethers (EDTs) for drag make-up and orbital maneuvers on
picosatellites and femtosatellites [193]. MiTEE-I focuses on validating current collection
models to a picosatellite-sized end body, and MiTEE-II will study the thrust capabilities
of a 10 m to 20 m EDT [194, 109]. Each MiTEE satellite will carry at least one Langmuir
probe, but the small area ratio guarantees that the spacecraft will charge negatively during
probe operation. Due to limited volume, carrying two Langmuir probes may be infeasible
for MiTEE-II. Instead, the MiTEE-II satellite team will study the feasibility of operating
the tethered end body as a high-impedance probe to track the spacecraft potential during
LP operation. With a tether length of 10 m to 20 m, this end body will be outside of the
main body’s sheath regardless of how negative the spacecraft charges. However, this
method is not without issues that are not necessarily dealt with for twin-probe corrections
using identical probes. As a reminder, the twin-probe correction is given by eq. 3.5, shown
here for convenience as

φLP = VA + (φHI − γ∆V ) + ~ET ·
(
~dHI − ~dLP

)
+WFHI −WFLP ,

γ = 1 +
RHI

Rin

+
RSC

Rin

.

The three major issues are as follows: 1) estimate the motional emf to correct tracked
spacecraft potential; 2) determine how the work functions would play a role in twin-probe
corrections; and 3) ensure the capacitance of the tether doesn’t produce unreasonably long
RC time constants.

Motional emf has to be considered for the lengths of the Langmuir probe boom structure
and satellite tether that are considered, as discussed in section 2.4.4. However, where the
boom masts are typically tens of centimeters long, a tether of 10 m should expect voltage
drops that are two orders of magnitude greater for the same orientation relative to the
ambient magnetic field and the satellite. Therefore, high-impedance measurements made
from a tethered end body should expect significantly larger measurement errors, unless
the motional emf term is accounted for. This would require that the satellite system has
the capacity to, at a minimum, keep track of both the end body position relative to the
main body and the position of the main body along its orbit. Further improvements to the
accuracy of the tracked spacecraft potential can be made by ensuring a taught tether, since
bends in the tether affect the total induced potential, and by directly measuring the ambient
magnetic field strength and direction.
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When implementing the twin-probe method with two Langmuir probes, the work
function difference between the probes is usually ignored because the probes can be
manufactured from the same material. However, this assumption fails for the case where
the Langmuir probe is used in conjunction with the end body. Exact estimates are difficult
to predict, as the work functions of the end body surface would be specific to the materials
used. However, it should be expected that the magnitude of the difference in work
functions is greater than 0. Therefore, ground experiments would likely be required to
determine this work function difference in a series of calibration tests, which may be
similar to measurements of contact potential difference [195].

For RC time constant estimates, the longer tether may introduce larger capacitances
into the system, so it becomes necessary to estimate what the settling times would be to
determine if they are prohibitively long. In this example, the same plasma resistances and
densities from table 3.1 are used; however, the input impedance is now 5 GΩ to give an
estimate closer to design specifications. The capacitance per unit length of the tether can
be estimated using the coaxial capacitor detailed by Bilén [196],

Csh =
2πε0

ln
(
rsh
ra

) (6.1)

where rsh is the sheath radius and ra is the tether radius. The sheath radius will change as
a function of voltage across the sheath, and so the sheath radius is given by

rsh '
√

3

(
Vaε0
qn0

) 5
12

r
1
6
a (6.2)

where Va is magnitude of the applied bias and n0 is the plasma density, as demonstrated
by Bilén [196]. Assuming the tether geometry is identical to that of the Tethered Satellite
System (TSS) missions, the tether radius is 0.43 mm [197]. Using eqs. 6.1 and 6.2, the
settling times can be calculated for a 10 m tether with a potential difference across the
sheath of either 1 V or 10 V, corresponding to different levels of charging the tethered
bodies can experience. The capacitance and settling time calculations are shown in
table 6.3; for a 20 m tether, the capacitance and settling time would be twice as large as
what is shown in the table.

In comparison to the shorter booms described in section section 3.2.2, the estimated
settling times of a tethered end body used as a high-impedance probe are considerably
larger. To determine whether or not the settling times are prohibitively long, consider a
256-point LP sweep that is twin-probe corrected. At each LP applied bias, the system
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must be allowed to settle; so when the tether potential is 1 V, the total time it would
take for a single sweep ranges from 38.4 ms to 20.6 s. Assuming an orbital velocity of
8 km s−1, a spacecraft would travel 0.31 km during the LP sweep, at the highest densities.
This distance is short enough that the plasma can be considered homogeneous. At lower
densities, the spacecraft would travel 165 km during the LP sweep, which is on the order
of plasma instabilities, such as equatorial bubbles [198]. Therefore, the region of space
where the tethered spacecraft will be operating is crucial in determining if the end body can
satisfactorily be used as a high-impedance probe. The MiTEE missions will be operating in
the F-region of the ionosphere, where ionospheric plasma densities are near their peak, so it
will likely be implemented successfully in this region. However, for low flying spacecraft
and rockets operating in the D and E regions of the ionosphere, this application of the
twin-probe method should be avoided in favor of the twin probes; that is, two identical
probes.

∆Vtether =1 V

N (m−3) Rp (Ω) RTotal (Ω) CTether (pF) τ (ms)

1× 109 3.49× 108 3.27× 108 95.9 94.0

1× 1010 3.49× 107 3.47× 107 114.9 12.0

1× 1011 3.49× 106 3.49× 106 143.2 1.5

1× 1012 3.49× 105 3.49× 105 190.2 0.20

∆Vtether =10 V

N (m−3) Rp (Ω) RTotal (Ω) CTether (pF) τ (ms)

1× 109 3.49× 108 3.27× 108 82.3 80.6

1× 1010 3.49× 107 3.47× 107 95.9 9.98

1× 1011 3.49× 106 3.49× 106 115 1.20

1× 1012 3.49× 105 3.49× 105 143 0.15

Table 6.3: Impedance probe settling time constants relative to plasma density for MiTEE
mission with a 10 m.
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CHAPTER 7

Summary, Future Work, and Conclusion

After studying the results of simulations and experiments, enough evidence has been
collected to answer the questions posed in section 1.3.4. First, work presented in this
dissertation and any supplemental publication is used to answer as many of the queries as
possible. Then, for the questions that aren’t adequately answered, a plan for future work is
presented. Finally, the dissertation is concluded.

To reiterate the questions asked at the beginning of this dissertation,

1. Can the spacecraft potential be tracked accurately enough during Langmuir probe
operation to properly correct I-V curves?

(a) What system level design choices limit the effectiveness of the twin-probe
method?

(b) Does probe orientation, size, or shape affect the efficacy of the twin-probe
method?

(c) What environmental effects limit accuracy?

2. Can spacecraft charging behavior during Langmuir probe operation be predicted by
analytic expressions?

(a) How does spacecraft charging affect the Langmuir probe’s I-V characteristics
in ways that cannot be resolved using the twin-probe method?

(b) What is the impact of individual spacecraft conductive surface areas on
spacecraft charging?

3. How can the twin-probe method be used synergistically with other space plasma
instruments?

For this discussion, effectiveness refers to the magnitude of correction, or the percent
difference, between uncorrected and twin-probe corrected estimates of plasma properties.
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7.1 Summary of Research

To begin, tracked spacecraft potential measurements demonstrated the high-impedance
probe’s capability of tracking decreased spacecraft charging with increased area ratio
(see section 5.3.1.1). Twin-probe corrections always produced electron temperature and
electron density estimates that were closer to the control measurement, indicating at least
some correction of the LP I-V sweeps (shown in sections 5.3.4 and 5.3.5). Additionally,
regardless of the spread of uncorrected sweeps, the resultant twin-probe corrected sweeps
were always more closely bundled, reducing variability in the measured plasma properties
(see section 5.3.1.3 and fig. 3.1). Therefore, it is possible to track the spacecraft potential
accurately enough to correct impacted Langmuir probe I-V curves, improving plasma
property measurements; and the corrections were most effective for stable high-impedance
probe floating potentials with area ratios less than 300, as shown in figs. 5.32 and 5.37.

Both settling time and area ratio have been shown to limit the twin-probe method’s
efficacy. Section 5.3.1.2 presented examples of transient effects impacting the tracked
spacecraft potential measurement when the Langmuir probe’s bias was mostly in the
ion saturation regime. The resultant twin-probe corrected ion density provided some
correction to the uncorrected measurements, in contrast to compared ion densities for
tracked spacecraft potentials that were not affected by transients where no correction
occurred. While these particular effects can be mitigated using twin-probe corrected data,
ensuring that enough time elapses between LP sweeps to respect settling times is still
good practice, as it is not always possible to distinguish where the transient effects end or
what the cause of the transient is. Furthermore, the magnitude of twin-probe corrections
decreased with larger area ratios. This is expected, as an increase in area ratio leads to
a more stable spacecraft potential during Langmuir probe operations. However, due to
the overlap between the magnitude of corrections and measurement uncertainties for area
ratios greater than 300, it is not possible to clearly demarcate when the spacecraft potential
is stable enough to minimally impact probe measurements (discussed in section 6.1). It is
recommended that improved simulations (i.e. ones that better capture physical processes)
should be performed to help inform the feasibility of a more focused experiment campaign
to find the minimally stable area ratio.

High-impedance probe orientation relative to the plasma flow does not appear to impact
its ability to track spacecraft charging (see section 5.3.1.3). However, care must be taken
for probes operating in the wake of in-orbit spacecraft, as nominal spacecraft wakes in a
chamber likely won’t capture in-space wake dynamics nor size. Moreover, the Langmuir
and high-impedance probes were never of equal size, but they were all cylindrical probes.
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This suggests that neither probe orientation, size, nor shape greatly affects the efficacy
of the twin-probe method. Instead, minimizing variations in the high-impedance probe’s
floating potential appears to be the dominant factor in properly correcting the Langmuir
probe sweeps. Many environmental effects can vary the high-impedance probe’s and
satellite’s floating potential, such as the local magnetic field, high energy charged particles,
and sunlight. While the general environmental effects were discussed in sections 2.4
and 3.3, more simulation work is needed to carefully analyze how they impact the accuracy
of the twin-probe method.

Multiple simulations, including those presented in this dissertation (see PSIC-LEO
model in section 4.3, and comparison between experiment and simulations in section 5.4),
have demonstrated that it is possible to model spacecraft potential behavior during
Lanmguir probe operation [29, 56, 182, 199]. PSIC-LEO simulations have demonstrated
that while the twin-probe method can correct spacecraft charging effects for area ratios
below 50, at these very small ratios, the Langmuir probe potential will not reach an
equipotential bias with the ambient plasma (see fig. 4.2a). As a result, only ion density
and electron temperature, can be inferred from the Langmuir probe sweep. In situations
where the area ratio is below 50, it is recommended that measures are taken to either
increase the area ratio to a more acceptable level; or that design changes are made to
control spacecraft charging by using active measures such as thermionic emitters, or more
passive measures, like building the spacecraft from materials with high secondary emission
coefficients [137].

In sections 5.3.1.3 and 5.3.2.3, it was shown that satellite bias and orientation dictated
whether the satellite’s conductive ram area or total conductive area was more important.
For the biases considered, up to −10 V, the larger ram-facing area (∼0.3 m2) always
dominated the total current collection of the CubeSat; however, the non-ram-facing sides
of the CubeSat played a non-negligible role at greater biases (see fig. 5.25a). Additionally,
the smaller ram-facing side (∼0.1 m2) only played a dominant role in ion current collection
when the spacecraft bias was very close to the plasma potential, or slightly more positive of
it (see fig. 5.25b). Therefore, while one should always consider maximizing the ram-facing
area ratio, if the spacecraft potential is guaranteed to charge several volts negative relative
to the plasma, during probe operation, the ram-facing area does not need to be maximized.
Instead, a smaller drag coefficient and longer orbital lifetime can be favored. Nascap-2K

demonstrated that the difference in the maximum negative potential of the spacecraft,
when comparing a large and small ram face, was at most roughly 1 V, with the smaller
ram face having the more negative potential (see appendix A.2.5).

To answer the last question, it was noted in section 6.3 that there are two major
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synergistic opportunities for the twin-probe technique. Should the CODEX mission be
accepted, it would provide an opportunity to demonstrate the ability of a Langmuir probe
to enhance the capabilities of ion energy analyzers by holding the spacecraft negative of
the ambient plasma, so the full local ion population can be sampled. Additionally, during
the MiTEE-2 mission, the possibility exists to use a tethered end-body as a high-impedance
probe to correct impacted Langmuir probe current voltage curves. While this technique
would be more error-prone relative to a true twin-probe system, it may provide a method
for maintaining the accuracy of Langmuir probes on tethered missions that may not have
the space for two identical Langmuir probes.

7.2 Recommendations for Future Work

The results of simulations and experiments presented in this work have raised new
questions. In this section, future work is proposed that can answer these questions to help
make more informed decisions on how to implement the twin-probe method, under what
conditions should it be implemented, and how to minimize its errors. These efforts will
focus primarily on simulation campaigns and, like in chapter 4, the PSIC-LEO codes are
used for iterative studies and developing new Langmuir probe analysis techniques, such as
calibration methods. The questions of interest are:

1. How does satellite current collection change with angle relative to plasma flow?

2. How does a varying high-impedance probe floating potential affect the effectiveness
of the twin-probe method and can they be accounted for? Processes that affect the
probe’s floating potential include:

• Spacecraft rotation

• Variable illumination

• Variable ambient magnetic field

• Variable orientation relative to a constant magnetic field

3. Is it possible to determine when it is no longer feasible to employ the twin-probe
method, i.e. when does the cost and time required to employ a variant of the
twin-probe method outweigh the improvements to plasma property estimates?
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7.2.1 Improvements to PSIC-LEO Codes

The PSIC-LEO simulations have a nonphysical asymptotic response in the electron
saturation regime of the modeled LP sweeps. The first step to produce more physically
accurate curves is to model the current collection to a CubeSat with either the analytic
equations used by Nascap-2K, shown in eq. A.1, or the derived equations from the
parametric studies detailed in appendix A.2.6. Using the new models, the analysis
performed in sections 4.3.2 and 4.4.2 should be redone with a focus on the electron
saturation regime to better estimate the magnitude of twin-probe corrected electron density
measurements. This may help identify if there exists an area ratio above 300 and below
1000 (the accepted lowest limit of spacecraft potential stability) for which the satellite
potential’s variability is sufficiently minimized, such that no correction nor charge control
is necessary.

Once the currents to a CubeSat are satisfactorily modeled, new physical processes that
vary the satellite and high-impedance probe’s floating potential can be introduced. These
processes include satellite rotation during LP sweeps, variable photoelectron current, and
variable motional emf. The goal of adding these processes is two-fold. First, it is important
to understand how a changing high-impedance probe and/or satellite floating potential
affects the efficacy of the twin-probe method. Then, once the effects are understood,
methods can be devised to account for them, and ensure the most accurate estimates of
plasma properties possible, when using the twin-probe method. Finally, current collection
models to a sphere can be added to determine how satellite and/or high-impedance probe
shape affects the twin-probe method.

7.3 Conclusion

It has been shown that the twin-probe method can correct LP I-V curves that are impacted
by spacecraft charging effects. Much has been achieved as a result of this research. A
computational program, PSIC-LEO, has been created that can model spacecraft charging
and its effects on LP sweeps. Nascap-2K simulations have been developed to predict
how space environmental effects may impact the twin-probe method for spacecraft in LEO
conditions. Earth-based chamber experiments were performed to provide invaluable data
in understanding which LP analysis methods are most effective for in-space operation, and
provide validity to numerical models. This work has extensively supported the MiTEE
missions, and has informed decisions for proposed future spacecraft. The path forward
involves improvements to current models, and may include further laboratory testing, to
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determine which conditions hamper the twin-probe method and how to account for them.
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Vigren, Mats André, C-Y Tzou, C Carr, and E Cupido. Evolution of the plasma
environment of comet 67p from spacecraft potential measurements by the Rosetta
Langmuir probe instrument. Geophysical Research Letters, 42(23):10–126, 2015.

[49] NJ Fox, MC Velli, SD Bale, R Decker, A Driesman, RA Howard, Justin C Kasper,
J Kinnison, M Kusterer, D Lario, et al. The solar probe plus mission: humanity’s
first visit to our star. Space Science Reviews, 204(1-4):7–48, 2016.

[50] JR Szalay, P Pokornỳ, SD Bale, ER Christian, K Goetz, K Goodrich, ME Hill,
M Kuchner, R Larsen, D Malaspina, et al. The near-sun dust environment: Initial
observations from Parker Solar Probe. The Astrophysical Journal Supplement Series,
246(2):27, 2020.

[51] JS Halekas, P Whittlesey, DE Larson, D McGinnis, M Maksimovic, M Berthomier,
JC Kasper, AW Case, KE Korreck, ML Stevens, et al. Electrons in the young
solar wind: First results from the Parker Solar Probe. The Astrophysical Journal
Supplement Series, 246(2):22, 2020.

[52] Richard T Bettinger. Offset voltages of Langmuir probes in the ionosphere. Review
of Scientific Instruments, 36(5):630–634, 1965.

[53] Noah Hershkowitz. How Langmuir probes work. Plasma diagnostics, 1:113–183,
1989.

155



[54] EO Johnson and Louis Malter. A floating double probe method for measurements in
gas discharges. Physical Review, 80(1):58, 1950.

[55] L Schott. Electrical probes. Plasma diagnostics, pages 668–731, 1968.

[56] Edward P Szuszczewicz. Area influences and floating potentials in Langmuir probe
measurements. Journal of Applied Physics, 43(3):874–880, 1972.

[57] Charles M Swenson, Don Thompson, and Chad Fish. The ISS floating potential
measurement unit. In title 9th Spacecraft Charging Technology Conference 9th
Spacecraft Charging Technology Conference, page 722, 2005.

[58] M Carruth, Jr, Todd Schneider, Matt McCollum, Miria Finckenor, Rob Suggs,
Dale Ferguson, Ira Katz, Ron Mikatarian, John Alred, and Courtney Pankop. ISS
and space environment interactions without operating plasma contactor. In 39th
aerospace sciences meeting and exhibit, page 401, 2001.

[59] KS Jacobsen, J-E Wahlund, and A Pedersen. Cassini Langmuir probe measurements
in the inner magnetosphere of Saturn. Planetary and Space Science, 57(1):48–52,
2009.

[60] Roger Gibbs. Cassini spacecraft design. In Linda Horn, editor, Cassini/Huygens:
A Mission to the Saturnian Systems, volume 2803, pages 246 – 258. International
Society for Optics and Photonics, SPIE, 1996. doi: 10.1117/12.253425. URL
https://doi.org/10.1117/12.253425.

[61] Omar Leon, Walter Hoegy, Jesse McTernan, L Habash Krause, Grant Miars, and
Brian E Gilchrist. Predicting spacecraft charging effects due to langmuir probe
operation on a CubeSat using analytic equations. In AGU Fall Meeting Abstracts,
2018.

[62] François Buisson. The DEMETER program: a pathfinder to a high performance
micro satellite line. 2003.

[63] PJ Bowen, Robert Lewis Fullarton Boyd, CL Henderson, AP Willmore, and
Sir Harrie Massey. Measurement of electron temperature and concentration from
a spacecraft. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 281(1387):514–525, 1964.

[64] LH Brace and PL Dyson. Documentation of Explorer 32 electron temperature
measurements used in comparisons with backscatter measurements at jicamarca.
1968.

[65] Gunnar Hok, Nelson W Spencer, and Wo G Dow. Dynamic probe measurements in
the ionosphere. Journal of Geophysical Research, 58(2):235–242, 1953.

[66] Walter R Hoegy and LH Brace. The dumbbell electrostatic ionosphere probe:
theoretical aspects. Technical report, 1961.

156

https://doi.org/10.1117/12.253425


[67] Larry H Brace. The dumbbell electrostatic ionosphere probe: ionosphere data.
Technical report, 1962.

[68] Aroh Barjatya and Charles M Swenson. Observations of triboelectric charging
effects on Langmuir-type probes in dusty plasma. Journal of Geophysical Research:
Space Physics, 111(A10), 2006.

[69] Tore Andre Bekkeng, Aroh Barjatya, U-P Hoppe, Arne Pedersen, Jøran Idar Moen,
Martin Friedrich, and Markus Rapp. Payload charging events in the mesosphere and
their impact on langmuir type electric probes. 2013.
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APPENDIX A

NASA/Air Force Spacecraft Charging Analyzer
Program Modeling

In this discussion of Nascap-2K, the following topics are covered:

• The potential structure of a 3U CubeSat under various Debye lengths and ion drift
energies.

• An overview of ion motion around a CubeSat biased negative of the plasma.

• Estimates of the current balance between a Langmuir probe and satellite for a
restrictive area ratio.

A.1 NASA/Air Force Spacecraft Charging Analyzer
Program Overview

Nascap-2K is a powerful tool, developed as a joint effort by the Air Force Research
Laboratory (AFRL) at Hanscom Air Force Base (AFB) and by NASA’s Space
Environments and Effects (SEE) program, for simulating the interaction between a
space plasma and a satellite . An overview is provided by Mandell et. al. [201] and the
full manual is given by Davis et. al. [200].

The Nascap-2K user interface is divided into multiple tabs corresponding to various
input parameters and configuration options, such as the properties of the ambient plasma
environment and the type of numerical simulation (e.g. analytic equations, PIC, and hybrid
PIC). In this section, each option used to model the spacecraft and the ambient plasma
environment is detailed and discussed, concluding with a presentation of several results of
interest. This section is divided as follows:

• The object and grid: The mesh and three-dimensional object that the plasma interacts
with is described.

• Numerical calculations: A general study of the numerical methods is detailed.

• The plasma environment: The general plasma properties and external current sources
(e.g. solar intensity) are chosen.
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• Model options: This subsection covers the following Nascap-2K input parameters:

– The types of problem being solved (e.g the potentials around the spacecraft
being determined, time-dependent plasma behavior, etc.)

– The potential structure around conductors (e.g. potentials resolved using
non-linear schemes, in accordance to Debye shielding, self-consistent with
particle trajectories, etc.)

– Particle generation for both time-dependent and time-independent simulations.

• Results: Here multiple results are detailed as an overview of general behaviors
observed during simulations, including:

– Sheath size and shape variation with respect to spacecraft potential and Debye
length

– Wake filling effect of low energy ions

– Spacecraft charging behavior

A.1.1 Object and Grid
Nascap-2K numerically computes the potentials and electric fields on surface elements
and in space using the Boundary Element and Finite Element Methods (discussed in
appendix A.1.2). The objects, defined using the Object Toolkit program, and the grids,
defined using GridTool program, determine the geometry of the simulations within
Nascap-2K. All Nascap-2K results focus on either the object or the grid; therefore, it is
necessary to carefully delineate the requirements of both to understand specific simulation
choices, such as grid resolution.

Beginning with objects, a full description of the Nascap-2K objects can be found
between pages 15 and 19 of Davis et. al. [200]; a summary of the object and its
requirements is given here. The Object Toolkit program is used to create finite-element
representations of spacecraft surfaces, including object dimensions, element resolution,
and material properties. Objects are defined by two characteristics: nodes, which are
points in space, and surface elements, which are defined using the nodes as vertices.
Each surface element is attributed to either a conductor (e.g. gold or aluminum) or an
insulator (e.g. Kapton). The choice of material impacts surface charging, the surface
elements’ interaction with the ambient plasma, and photoelectron and secondary electron
emission. Furthermore, each element is either a triangle or quadrilateral with an aspect
ratio (length/width) no greater than 2, whose dimensions are within a factor of 2 of the
local grid’s resolution. Individual surface element area should be at most a few percent
from the total object size, but coarser resolutions are allowed for flat, conductive areas.
In the interest of computational speed, and to remain within the upper limit of 4095 total
elements for an object, the individual surface element is roughly 10 % of the total object
size while maintaining a dimension no greater than two Debye lengths.

Figure A.1 provides an example object used in these simulations depicting a 3U
CubeSat, a boom structure, and a guarded Langmuir probe. Each surface element of an
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Figure A.1: Example of simulated 3U CubeSat, guarded Langmuir probe, and boom
structure.

object has two important attributes: material property and ”conductor number”, which
ranges from 1 to 100. Additionally, the conductor number 1 has the special designation
of being considered spacecraft common. The individual faces of the CubeSat structure
will always have the same conductor number assigned at their initial creation which will
correspond to the coordinate direction normal to the plane of each face (listed on the right
side of fig. A.1). Odd-numbered conductor numbers are always initially facing in the
”positive” coordinate direction (e.g. +x, +y, +z), and even-numbered conductor numbers
correspond to faces whose normal vector is in the ”negative” coordinate direction. The
CubeSat material is always fully conductive, either aluminum or gold. When the LP and
boom structures are attached to the CubeSat, the smallest available conductor number is
assigned to the boom structure and the conductor number is incremented for the guard,
and then once more for the Langmuir probe. For example, in fig. A.1, the boom has a
conductor number of 7, the guard’s conductor number is 8, and the LP’s conductor number
is 9. The boom structure is always attributed an insulating material, Kapton, and the guard
and Langmuir probe are always attributed conductive materials, typically gold.

Regarding Nascap-2K’s GridTool program, a full description is found between pages
19 and 24 of Davis et. al. [200]; a summary of the grid and its requirements is given
here. The GridTool program is used to define an arbitrarily nested grid structure about the
object (example shown in fig. A.2). A grid is necessary to simulate potentials in space, track
particles, and compute wake structure. To properly resolve these plasma structures, the grid
resolution in the ”sheath region” should be as few Debye lengths as possible, with no more
than 2 Debye lengths being ideal. Understandably, creating a single grid that is two Debye
lengths long for the entire simulation can lead to situations where the computation times
are unnecessarily long as computational resources are being expended on the quasi-neutral
region of the plasma. To resolve this issue, the GridTool program allows for nested grids
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by using a parent-child system where the outer most parent grid, called the primary grid,
encloses the full simulation space, and is far enough from the object that a quasi-neutral
plasma exists between the object’s sheath structure and the simulation space’s boundary.
Child grids are nested within their respective parent grid, with a grid resolution that is a
factor of 2 finer than their parent grid. Additionally, at the boundary between a parent and
child, the resolution of the parent grid is always taken. Therefore, the outermost boundary
of the child grid should not overlap with the outermost boundary of their parent to avoid
sudden changes in resolution. This is especially true if the child’s parent grid is itself a child
of a larger parent grid. In fig. A.2, the primary grid is the coarsest grid and all subsequent
grids are nested grids. The right-most side of the figure shows a collapsible list of nested
grids. In this example, grid 4 is a child of grid 3, and grid 1 is the primary grid.

Figure A.2: Nested grid example surrounding an object composed of a CubeSat and
Langmuir probe.

A.1.2 General Numerical Calculations
Nascap-2K is capable of solving for multiple types of physical effects including currents
to a surface, electric fields and potentials surrounding a spacecraft, and determining
spacecraft charging behavior in the presence of photoelectrons, secondary electrons, and
similar current sources. An in-detail description of the calculations is provided by Davis
et. al. [202]. In this subsection a general overview is presented for how Nascap-2K:
1) calculates currents to a surface; 2) performs boundary element analysis; and 3) uses
finite element methods to compute potentials in space.
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A.1.2.1 Currents to a Surface

When studying surface charging using analytic currents, the current density to a surface at
a potential, φ, is given by

j = q

∫ ∞
L

(
E

E ± φ

)
F (E ± φ) dE

where q is the charge of the particle, e is the charge of an electron, E is the energy at the
collector’s surface, L is 0 for repelled species and |φ| for attracted species, and F (E) is
the flux at infinity. In the case of E ± φ, the upper sign is for ions and the lower sign is
for electrons. In this work, analytic methods were used, but not highlighted, to validate
the current-voltage curves produced by tracking particles to a surface when employing PIC
methods.

As expected, F (E) is dependent on the model selected to describe the ions and
electrons. In the situation of a moving satellite, the charged particle flux model is described
using a convected Maxwellian,

F (E,χ) =

√
e

2πmT

E

T
n exp

−E + mU2

2
−
√

Em
2
U cosχ

T


where U is the plasma velocity from the object reference frame, n is the number density,
and χ is the angle between the flow vector and the incident velocity. Since the convected
Maxwellian requires integration over all possible angles and velocities, the full integral for
the current density is then given by

j = A

[∫ ∞
L

dv∞v∞
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v2∞ ∓

2eφ

m

)
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2eT
v2∞

)∫ π
2

0
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(m
eT
v∞U cos θ∞ cos θu

)
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(m
eT
v∞U sin θ∞ sin θu

)
sin θ cos θ

]
(A.1)

I0 (x) =
1

2π

∫ 2π

0

dψ exp (−x cosψ)

A = qn

√
eT

2πm
exp

(
− m

2eT
U2
)(m

eT

)2
where I0 (x) is a zeroth order modified Bessel function of the first kind; θ∞ is the
polar angle of the incident velocity at infinity, ~v∞; and θu is the polar angle of the flow
velocity [202, pg. 34].

A.1.2.2 Charging Using the Boundary Element Method

To calculate the electric fields on the surface of an object, Nascap-2K employs the
Boundary Element Method (BEM). Improved estimates of the electric field, in both
steady state and transient conditions, allow for more accurate numerical computation of a
spacecraft’s charging behavior. Ultimately, BEM relates electric fields on the exterior of
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the spacecraft to the charged surface of the spacecraft itself. The spacecraft is described by
surface elements (a summary of object surface elements given in appendix A.1.1) and each
surface element, j, has a constant charge density, σj . The relation between the potential
and electric field of a point charge is then

φ =
q

4πε0r
→ 4πε0φi =

∑
j

∫
d2~rj

σj
|~rij|

~E =
q

4πε0r2
→ 4πε0 ~Ei =

∑
j

∫
d2~rj

σj

|~rij|3
(~ri − ~rj)

where φi and ~Ei correspond to the potential and electric field, respectively, of the center of
a surface element. The matrix representation of the potentials, electric fields, and charge
densities are related in the following manner:

φi =
[
C−1

]
ij
σj(

~E · ~n
)
i

= Fijσj(
~E · ~n

)
i

= FikCkjφj

where C and F are the matrix representations of the integral sums shown above.

Figure A.3: Gaussian pillboxes to calculate surface charges on insulators (in green) and on
conductors (in blue). Image adapted from Davis et. al.[202, p.43]

While BEM provides the external electric fields normal to each surface element, it does
not account for internal fields between a surface insulator and its underlying conductor
(see fig. A.3). Such cases are frequently encountered for Nascap-2K objects, which can
be composed of both conducting and insulating surfaces. To account for surface element
charge attributed to both external and internal fields, the total charge on an insulating
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surface element is given by

qi = Ai

(
~E · ~n

)
i
+ Cic (φi − φc)

where Ai is the surface area, Cic is the capacitance between the insulator and conductor,
and φc is the potential of the conductor. For conductors, only the total charge, Qc, needs to
be known due to the mobility of charges, which is given by

Qc =
∑
bare

Ai

(
~E · ~n

)
i
−

∑
insulator

Cic (φi − φc) .

When calculating Qc a distinction is made between bare conductors (conductors exposed
to the plasma), and insulated conductors (conductors coated in insulation). The charge on
an object can now, again, be represented using matrices such that

Q = {q1, q2, . . . , qn, Qc}
Φ = {φ1, φ2, . . . , φn, φc}
Q = GΦ

where G is a charging matrix relating the surface element charge and surface element
potential. Nascap-2K computes currents to surface elements through either analytic
expressions or PIC methods, and so with an expression for the charge of the object, the
currents to the surface elements are related to the potentials such that

I = Q̇ = GΦ̇[
G− İ

]
Φ (t) =

[
G− İ

]
Φ (0) + I (0) t

While the exact derivations and treatments are found in pages 39 and 47 of the Nascap-2K
Scientific Documentation [202], charging rate issues attributed to the BEM calculations do
not affect steady state potentials, which are the focus of the simulations performed for this
thesis.

A.1.2.3 Calculated Potentials in Space Using Finite Element Methods

To calculate the potential at any point in the simulated space, Nascap-2K requires an object
and a grid (detailed in appendix A.1.1) where a finite element approach is applied at every
element of the grid with interpolants along the edges. An example of calculated space
potentials is shown in fig. A.4. The quasi-neutral plasma is shown in orange, the potential
structure of a positively biased LP is shown in green and beige, and the potential structure
of negatively biased CubeSat is in black and purple.

Nascap-2K solves Poisson’s equation through its associated variational principle,

∂

∂φ

(∫
dV

[
1

2
(∇φ)2 +

ρφ

ε0

]
+

∫
φ∇φ · d~S

)
= 0,

175



Figure A.4: Potential structure of quasi-neutral plasma and biased structures within
simulation space.

where each term corresponds to the Laplacian operator, the space charge contribution, and
the surface charge contribution, respectively. Poisson’s equation is always solved with
fixed surface potentials. Furthermore, the potential and electric field are defined at each
grid node where the potential inside each grid volume element is interpolated from the
value of each of its vertices. The interpolation scheme allows for only continuous electric
fields, ensuring proper electric fields for computing particle trajectories. Each node in a grid
is assigned 4 interpolation functions corresponding to the potential and a 3-axis potential
gradient. A detailed description of how each term of the integral is numerically computed
and interpolated is provided in pages 51 and 53 of the scientific documentation [202].

For grid spaces that contain surface elements of the object, the approach for
interpolating the potentials and electric fields depends on the type of grid element. The
elements of interest are bounded by three types of surfaces: 1) square surfaces bounded by
grid edges and shared with adjacent, empty elements; 2) object surfaces; and 3) surfaces
bounded by both object nodes, or edges, and grid points, or edges. On type 1 surfaces,
the interpolation scheme does not change from the interpolation between empty grid
elements since the boundary is between two grids. For type 2 boundaries, the object’s
surface element potentials and electric fields describe the potential and electric field in the
space immediately surrounding the object. Finally, for type 3 surfaces, the electric field
and potential must be interpolated using a combination of techniques from type 1 and 2
surfaces, and is described on page 54 of the scientific documentation [202].

When solving Poisson’s equation, the ratio between Debye length and the grid
spacing, Λ, is critical for determining the stability of the calculations. Nascap-2K uses
a two-pronged scheme to help improve the stability of the calculations. The first method
uses partial implicitization of the repelled density, which was determined to be a more
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stable numerical algorithm than explicit forms. The second method limits the charge
in a node depending on Λ. When Λ ≥ 1, no charge limiting occurs since the potential
within a volume element of the plasma is altered by no more than the plasma temperature.
However, for Λ << 1, several Debye lengths can be needed to fill the space of one volume
element, amplifying numerical noise and plasma features such as sheath thickness. In such
situations, the charge is limited to a reduced value such that potential variations are more
appropriate to the spatial resolution of the grid. In practice, when a simulation is created
where a boundary potential is screened within the code’s lower limit of resolution, one to
two grid elements, Nascap-2K redistributes the sheath charge to allow the potential to be
screened over enough elements for stable computation. Further discussion on the charge
density model used in the potential solver for the simulation problems of interest can be
found in section A.1.4.3.

A.1.3 The Plasma Environment

Figure A.5: General plasma properties are inputted in the LEO environment tab.

The Nascap-2K environment tab changes depending on the plasma environment.
Nascap-2K is programmed to handle the plasma environments found in LEO, a
plasma plume, geosynchronous orbits, an auroral environment, and the interplanetary
environment. For the results presented in this section, the LEO option was always chosen
as the representative plasma environment. Figure A.5 displays the environments tab for
LEO. To simulate a satellite in LEO, the spacecraft velocity was always chosen such
that the ion drift energy was roughly 5 eV. Additionally, the relative solar intensity
was always set to 0 to eliminate the effects of photoelectrons, and the magnetic field
strength was also 0 T to eliminate the effects of magnetic drift for electrons. While these
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physical phenomena can exist in LEO, they are ignored in these simulations to focus
on the relationship between spacecraft charging and area ratio, as well as, spacecraft
current collection and each of the following properties: plasma density and electron
temperature, ion drift energy, and conductor orientation relative to the plasma flow.
Electron temperatures were within 0.1 eV to 0.35 eV, with the ion temperature being equal
to the electron temperature. Finally, as discussed in, section 2.1.1, the plasma density in the
F-region of the Earth’s ionosphere ranges from roughly 1× 1010 m−3 to 0.5× 1012 m−3.
However, to properly model the spacecraft and LP for the larger area ratios of interest,
their individual dimensions were sometimes increased by a factor of 10. As a result, the
Debye length also had to be increased by a factor of 10, and so, for enlarged CubeSats,
the plasma density was modeled to be a factor of 100 less than what has been measured
in orbit (approximately 1× 108 m−3 to 0.5× 1010 m−3). Simple simulations of a 3U
CubeSat structure at the standard size (0.1 m×0.1 m×0.3 m), with the appropriate plasma
density, and the enlarged 3U CubeSat (1 m×1 m×3 m), with a reduced plasma density,
collect identical thermal currents and have nearly identical current collection behavior for
a biased structure.

A.1.4 Modeling Options
The benefit of Nascap-2K as a simulation tool is its capacity to numerically calculate
plasma-spacecraft interactions through a variety of analytic models and PIC algorithms.
To properly present the available options that Nascap-2K can handle, this subsection is
divided into Nascap-2K’s individual tabs, presented in the following order: problem,
applied potentials, space potentials, and particles.

A.1.4.1 Problem Tab

The problem tab (example shown in fig. A.6) is key in determining the type of analysis
performed, referred to as the problem type (e.g. potentials in space, surface charging, time
dependent plasma); specifying the plasma environment; and loading the aforementioned
object and grid into the Nascap-2K program. While many options are available for a LEO
environment, not all simulation options are exercised to solve the central questions of this
dissertation. Nascap-2K is primarily used to estimate spacecraft charging behavior while
an LP is swept across a range of potentials referenced against the satellite. However, to
understand the estimated spacecraft charging behavior, the individual current collection of
the CubeSat and LP, as well as the potential structure of the CubeSat, also needs to be
modeled.

To understand the potential surrounding the CubeSat, the ”Potentials in Space”
problem type is chosen with analytic space charge. Further discussion is highlighted in
section A.1.4.3, but ultimately, this option calculates the electric potential surrounding the
object using analytic charge density models. Current collection to the CubeSat structure
or LP are studied using the ”surface currents” problem type where currents collected by
the surface elements are computed using tracked particles. Finally, the current balance
between the LP and the spacecraft is numerically solved using the time-dependent plasma
option where the surface potentials are self-consistent with tracked particle currents, or the
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Figure A.6: Problem tab of Nascap-2K that determines which properties are calculated.
Image adapted from Davis et. al. [200, p.14].

surface charging option with tracked particle currents. The charging behavior for either
case generally agreed with one another and typically differed by at most a few tenths of a
volt.

A.1.4.2 Applied Potentials Tab

Regardless of the type of problem being considered, the surface potentials, and how the
surface potentials change with respect to the plasma, must be specified in Nascap-2K’s
applied potentials tab (example shown in fig. A.7). The top half of the applied potentials
tab deals specifically with conducting surfaces. For each conductor number there
are three options: 1) floating potential, where the potential can freely vary based on
plasma-spacecraft interactions; 2) fixed potential; and 3) fixed bias relative to spacecraft
common. To study the current collection of a CubeSat, all faces of the satellite were
equipotential, and a script was written to ”sweep” the CubeSat potential relative to the
ambient plasma at fixed potentials from −10 V to 10 V. The lower half of the tab is related
to insulated materials, where the conductor number related to the LP boom structure
can be fixed to 0 V. When validating Langmuir probe current as a function of potential
relative to the plasma, the boom structure was designated as an insulator, and the LP and
guard were ”swept” from −10 V to 10 V. Finally, for current balance modeling using PIC
simulations, spacecraft common is allowed to float, the remaining sides of the CubeSat are
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equipotential to spacecraft common, and the LP and guard are biased relative to spacecraft
common (again, swept from −10 V to 10 V).

Figure A.7: Applied potentials tab of Nascap-2K that determines the initial surface
potentials of the object.

A.1.4.3 Space Potentials Tab

As described in section A.1.2.3, Nascap-2K numerically calculates for the potential
surrounding the object by solving Poisson’s equation. Space charge is computed by either
particle tracking, using analytical expressions, or in a hybrid manner. For these specific
simulations, Nascap-2K’s predefined non-linear charge density model was used, as it is
appropriate for LEO. As detailed in Davis et. al. [202, p. 18], the non-linear charge model
is given as

ρ

ε0
= −g φ

λ2D

max
(

1, C
(
φ,
∣∣∣ ~E∣∣∣))

1 +
√

4π
∣∣ φ
T
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where g is a plasma density reduction factor that ranges between 0 and 1; T is the
temperature in eV; ~E is the electric field; and C

(
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∣∣∣ ~E∣∣∣) is a convergence model

developed by solving the Langmuir-Blodgett problem, given by
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This scheme interpolates between Debye screening at low potentials and an accelerated
particle distribution. Furthermore, because the spacecraft potentials are adequately
screened by the plasma, due to relatively small potentials and a large primary grid, the
boundary potential is 0 V at the boundary of the simulation space.

A.1.4.4 Particles Tab

Nascap-2K can generate macroparticles to represent electrons and ions in the simulation
space. This allows users to study particle trajectories, calculate surface currents, and study
spacecraft charging. Particle creation options are available in the particles tab and there are
two subtabs of interest for this work: surface currents and time-dependent.

Figure A.8: Surface current subtab of the particles tab. Image adapted from Davis et. al.
[200, p.50].

As shown in fig. A.8, the surface currents subtab generates particles at different
regions of the simulation space. For these simulations the boundary generation method
was chosen. When boundary generation is chosen, the outer surface of each primary grid
boundary element is divided into squares and particles are generated in their centers. The
macroparticles created in these squares represent current passing through the area. The
macroparticles can be created to sample different regions of a Maxwellian distribution
(see dialog box in fig. A.9). While there are many options available in the advanced
particle parameters dialog box, we are interested mainly in 3 input sections: 1) the fraction
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Figure A.9: Particle generation advanced options window. Image adapted from Davis et.
al. [200, p.59].

of distribution, 2) the subdivision rate, and 3) the particle splitting option. The fraction
of distribution section specifies how the Maxwellian velocity distribution in each axis
is to be divided. The Maxwellian is divided into 5 sections: a negative tail, a negative
bulk, a positive bulk, a positive tail, and a high-energy tail. For these simulations, the
distribution is sampled as follows: 10 % of the distribution is on the negative tail, 40 %
of the distribution constituting the bulk of the negative velocity particles, 40 % of the
distribution constituting the bulk of the positive velocity particles, and finally 10 % of
the distribution is on the positive tail. The high-energy tail is not included. The particle
splitting option governs the density of particles created along grid boundaries. Typically,
the default subdivision rate of 2 is kept, but for some calculations subdivision rates of 4
and 8 were chosen for more exact current estimates. Finally, the particle splitting option
will split the particles at the boundaries between a parent and child. This option is only
exercised if the particle that is split carries more charge than a similar particle created in the
subgrid, and if its temperature is greater than 0.05 eV. Particle splitting is used sparingly
in these simulations. The surface current particle generation option is used to study
the current collection to individual CubeSat and Langmuir probe objects to understand
ram/wake currents, the impact of orientation on current collection, to understand how
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current collection changes when the ion population is composed of two species, and during
current balance simulations.

When a time-dependent problem is being performed, macroparticles can be generated
at the boundary, or through the entire simulation space, as shown in fig. A.10. When
the boundary injection option is chosen, the macroparticles are generated at the primary
grid boundary exactly as described above. However, instead of the macroparticles
representing current through the surface, the macroparticles represent charge passing
through the boundary during a user-specified time. The charge is equal to the plasma
thermal current multiplied by the time interval that is user-defined. If instead the initial
uniform distribution is chosen, the macroparticles are created throughout the simulation
space at points appropriate for the system’s weighting functions. If the splitting option is
chosen, each macroparticle is split into eight particles in the plasma’s frame of reference
to maintain the proper momentum and energy distribution. Time-dependent calculations,
using both the boundary injection and uniform distribution together, were performed to
balance the current between the LP and spacecraft, and estimate the steady-state spacecraft
potential as a function of applied bias to the LP. Finally, during current balance when using
either the time-dependent or surface charging options, time steps of no more than 2 µs
were used per applied bias.

Figure A.10: Time-dependent subtab of the particles tab. Image adapted from Davis et. al.
[200, p.51].
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Regardless of how the macroparticles are generated, they are tracked in the simulation
space. Particle are tracked along electric and magnetic field lines using a third-order
energy-conserving algorithm that accounts for position and velocity [202, p.68]. Particles
are tracked until one of the following conditions are met: 1) the particle strikes the object, 2)
the particle exits the simulation space, 3) the trajectory time reaches the maximum tracking
time, or 4) the number of substeps exceeds the maximum substep number. Once tracking
is complete, Nascap-2K records the total current to the object, as well as the current lost
due to particles leaving the simulation space.

A.2 Modeling Results
To quickly reiterate, potential structures around an object were always calculated using the
potentials in space option with analytic space charge. Examples of spacecraft potential
structures shown in appendices A.2.1 to A.2.3 indicate the direction of the drifting ion
population in the top left with an arrow marked vi. The left side of the spacecraft are in
the ram region and the right side of the spacecraft are in the wake region (a description
of ram and wake is provided in section 2.1.1). Surface currents were always calculated
using PIC simulations. Finally, spacecraft charging simulations were accomplished using
the surface charging option with tracked particle currents and were supported using the
separate time-dependent plasma with tracked particle currents. The results discussed in
this section give an overview of qualitative behaviors observed; more precise simulations
are planned for future works, as discussed in appendix A.2.6.

A.2.1 Potential Effect on Sheath Form
The first effect studied is the impact of satellite potential on the CubeSat’s sheath when
immersed in a plasma with a 5 eV drifting oxygen ion population. Three accelerating
potentials relative to the plasma are shown in fig. A.11: −1 V, −10 V, and −50 V.
Additionally, the ambient plasma density is 5× 1012 m−3. For this discussion, fig. A.11 is
used as a reference. First, the sheath is compressed against the CubeSat on its ram side,
even at the largest modeled accelerating potentials. Furthermore, the sheath is extended
behind the CubeSat, its wake region. This wake is due to an ion deficit region (further
discussed in appendix A.2.3). When the accelerating potential is a fraction of the ion
drift energy, the sheath is mostly parallel to the sides of the CubeSat, and the sheath
thickness is a fraction of the lengths and widths of the CubeSat (see fig. A.11a). However,
as the accelerating potential increases and surpasses the ion drift energy, fewer ions have
sufficient energy to overcome the spacecraft’s potential barrier, and so the sheath expands
and begins to round (see fig. A.11b). Once the accelerating potential is ten times the drift
energy, the CubeSat sheath is nearly centered around the spacecraft and almost ellipsoidal
(see fig. A.11c). This transition from a ”thin sheath” form with a wake tail to a nearly
ellipsoidal structure has not been captured using exact analytic expressions for a cuboid,
requiring numerical simulations or spherical analytic approximations.
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(a) Plasma sheath shape around a 3U CubeSat,
biased to −1V relative to the plasma, due to a
roughly 5 eV drifting oxygen ion population.

(b) Plasma sheath shape around a 3U CubeSat,
biased to −10V relative to the plasma, due to a
roughly 5 eV drifting oxygen ion population.

(c) Plasma sheath shape around a 3U CubeSat,
biased to −50V relative to the plasma, due to a
roughly 5 eV drifting oxygen ion population.

Figure A.11: Sheath size and shape variation with potential changes for the densest
ionospheric plasma. vi indicated the direction of the ion velocity, and the black outline
provides a rough estimate of the sheath edge.

A.2.2 Debye Length Effect on Sheath Size
When the plasma density is decreased to 1× 1011 m−3 (and all other parameters kept the
same), the Debye length relative to the high-density cases increases by a factor of 7. If the
sheath thickness is assumed to be at least three times the Debye length before accounting
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(a) Plasma sheath shape around a 3U CubeSat,
biased to −1V relative to the plasma, due to a
roughly 5 eV drifting oxygen ion population.

(b) Plasma sheath shape around a 3U CubeSat,
biased to −10V relative to the plasma, due to a
roughly 5 eV drifting oxygen ion population.

Figure A.12: Sheath size and shape variation with potential changes for the sparsest
ionospheric, F-region plasma. vi indicated the direction of the ion velocity, and the black
outline provides a rough estimate of the sheath edge.

for accelerating potentials, this would imply that the sheath of the lower density scenarios
is at least 21 times greater than the densest modeled plasmas. Indeed, when comparing
the examples shown in fig. A.12 for accelerating potentials of −1 V and −10 V to the
same accelerating potentials in fig. A.11, it is clear that the sheath dimensions for lower
densities are much larger than high densities. However, while there is still some semblance
of ram/wake effects at the lowest accelerating biases, such effects are not apparent when
the spacecraft potential is twice the ion drift energy. While it is possible that the enlarged
sheath at lower spacecraft potentials do mask ram/wake effects, more precise simulations
where the spacecraft sheath is self-consistent with ion trajectories should be performed to
better understand sheath shape as a function of plasma density [203].

A.2.3 Low Energy Ion Wake Filling Effect
To glean some understanding in the changes of sheath structure as a function of satellite
potential, shown in appendix A.2.1, oxygen ions were tracked in the ram and wake
sides of the CubeSat. The tracked oxygen ion trajectories are shown in fig. A.13. For
clarity, the plasma and satellite properties in this section are the identical to those in
appendix A.2.1. At potentials below the ion drift energy, most particles are collected on
the ram side and the sides parallel to the ion drift velocity. Few oxygen ions are collected
on the wake side, as most have sufficient energy to escape the satellite’s potential barrier
(fig. A.13a). Furthermore, while both bias cases demonstrate an ion focusing region behind
the spacecraft, it is clearer in the smaller biases, where ion trajectories that originated
”above” the satellite intersect with ion trajectories that began ”below” the CubeSat. This
ion focusing effect has been observed for similar simulations using cylinders, cubes, and
pillbox geometries for the biased structure [204, 171, 205]. At biases greater than the
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ion drift energy, fewer ions escape the potential well created by the spacecraft, producing
larger, rounded sheath structures in the ”wake” (fig. A.13a). These traced ion trajectories
highlight an underlying physical process that explains the diminishing ram/wake effects
as the spacecraft accelerating potential increases, as shown in fig. A.11. That is, as the
spacecraft becomes increasingly negative, the attractive potential dominates over the ion
drift energy, and so the CubeSat will increasingly collect current isometrically as the
sheath expands.

When lighter hydrogen ions are present with the heavier oxygen ions, these previously
empty wake zones are now filled by hydrogen, which is less affected by the CubeSat’s
orbital velocity (see hydrogen lines filling empty wake region in fig. A.14). For comparison,
while oxygen’s drift energy is approximately 5 eV, hydrogen’s drift energy is roughly
0.3 eV. Therefore, hydrogen’s drift energy is much closer to the ion temperatures used in
these models, being either equal to or a factor of three greater than the thermal temperature,
where as oxygen’s drift energy is 16 to 50 times greater than the ion temperature, depending
on the ion temperature. As a result of hydrogen’s wake filling effect, more ion current
is collected in the CubeSat’s wake region, as hydrogen makes up larger fractions of the
total ion population (see table A.1). Additionally, fig. A.15 demonstrates that as hydrogen
plays a more prominent role in the wake region, the sheath structure collapses toward the
CubeSat, when compared to fig. A.11. These potential effects in the wake region are very
apparent when the ion population is composed solely of hydrogen.

Spacecraft Bias = −1 V

Ion
Comp.

Ram
Current (µA)

Fraction of
Total Current

Wake
Current (µA)

Fraction of
Total Current

Total
Current (µA)

O+ 19.2 0.69 0.0 0.0 28.0
0.9 O+

0.1 H+

19.2 0.66 0.2 0.01 29.4

0.8 O+

0.2 H+

19.3 0.63 0.4 0.01 30.8

H+ 20.5 0.48 1.7 0.04 42.6

Spacecraft Bias = −10 V

Ion
Comp.

Ram
Current (µA)

Fraction of
Total Current

Wake
Current (µA)

Fraction of
Total Current

Total
Current (µA)

O+ 20.4 0.44 1.5 0.03 46.9
0.9 +

0.1 H+

20.9 0.40 3.3 0.06 51.7

0.8 O+

0.2 H+

21.3 0.38 5.1 0.09 56.5

H+ 27.2 0.28 16.6 0.17 96.7

Table A.1: Simulated ram and wake currents for various ion compositions.
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(a) Oxygen particle tracking for CubeSat
biased to −1V below the ambient plasma
with an ion composition that is comprised
of only oxygen.

(b) Oxygen particle tracking for
CubeSat biased to −10V below
the ambient plasma with an ion
composition that is comprised of
only oxygen.

Figure A.13: Tracked oxygen particles around a 3U CubeSat object. 1 out of every 7
tracked macroparticle is shown.

(a) Hydrogen particle tracking for CubeSat
biased to −1V below the ambient plasma
with an ion composition that is only
hydrogen.

(b) Hydrogen particle tracking for
CubeSat biased to −10V below the
ambient plasma with an ion composition
that is only hydrogen.

Figure A.14: Tracked hydrogen particles around a 3U CubeSat object. 1 out of every 7
macroparticles are shown.
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(a) Plasma sheath shape around a 3U CubeSat,
biased to −1V relative to the plasma, due
to a roughly 0.33 eV drifting hydrogen ion
population.

(b) Plasma sheath shape around a 3U CubeSat,
biased to −10V relative to the plasma, due
to a roughly 0.33 eV drifting hydrogen ion
population.

Figure A.15: Sheath size and shape variation with potential changes for the densest
ionospheric plasma composed of various ratios of oxygen and hydrogen ions.

A.2.4 CubeSat Ion Current Collection
Current balance between an LP and CubeSat depends on multiple factors including the
primary grid size, the angle between the object and ion drift velocity, and the particle
generation method. Any CubeSat that is not symmetric along all three central axes of
rotation will collect different total currents based on its axis of rotation. Therefore,
understanding the change in ion current collection of each face for different orientations
informs the amount of charging that one can expect when operating an LP. There are
two axes of rotation considered, as shown in fig. A.16: a rotation about the CubeSat’s
Z-axis and a rotation about its Y-axis. Additionally, all estimated currents in these studies
are due to PIC simulations using a boundary particle generation scheme. Furthermore,
for figs. A.17 to A.19, the 3U CubeSat was scaled to be 1 m×1 m×3 m, but the density
was adjusted to 1× 109 m−3. Finally, rotation in this context refers to how the CubeSat
changes orientation; the satellite was not rotating during simulations. Instead, I-V curves
are calculated for each discrete angle.
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Figure A.16: Rotation about the CubeSat’s Z-axis and Y-axis. Rotation arrows not
necessarily indicative of true rotation.

The first type of rotation is about the CubeSat’s Z-axis, which is π/2 symmetric, due to
the fact that a 1 m×3 m face, referred to as a large face, is always ram-facing (see fig. A.17).
Under Z-axis rotation, the large faces are always parallel to the axis of rotation; that is,
a vector normal to their surfaces is always perpendicular to the Z-axis. By extension,
the CubeSat’s small faces (dimensions of 1 m×1 m each) are always perpendicular to the
Z-axis. In the left-most panels, the current collection of the two large faces displayed
are initially in the ram (blue line) and wake (red line). As the CubeSat rotates 180°
counter-clockwise (using a ”right-hand rule” approach–the curl of your fingers when your
thumb is pointed upward indicates counter-clockwise rotation), these faces will end in the
wake and ram regions, respectively, as indicated by the appearance that the two lines are
near equal reflections about the 90° mark. The middle panels depict two large faces that
are initially parallel to the ion drift velocity. As the CubeSat rotates, one large face passes
through the ram region and the other passes through the wake. This is most noticeable
at 90° when one face is fully ram-facing and the other is wake-facing, resulting in the
largest separation. The right-most panels display the current collection of the two small
faces as the CubeSat rotates. As expected, under a Z-axis rotation, the small faces do
not change their angle relative to the ion drift velocity, and so their ion current does not
change significantly under this rotation. The rotational current collection behavior of all
faces is identical, regardless of whether the bias is −1 V or −10 V, suggesting that as long
as ram/wake effects are significant, this π/2 rotational symmetry should be expected for
faces parallel to the axis of rotation.

The other rotation is a rotation about the CubeSat’s Y-axis (results shown in fig. A.18).
This rotation is orthogonal to both the ion drift velocity and the satellite’s Z-axis. A Y-axis
rotation is π symmetric, as the large faces and small faces alternate being in the ram-facing
direction every 90° rotation. Therefore, two large faces will always be parallel to the
axis of rotation, while the remaining two large faces and the two small faces are always
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(a) Ion current collection by a 3U CubeSat biased to −1V rotating about its Z-axis.

(b) Ion current collection by a 3U CubeSat biased to −10V rotating about its Z-axis.

Figure A.17: Ion current collection dependence on Z-axis rotation.

perpendicular to the axis of rotation. Comparisons between fig. A.17 and fig. A.18 can now
be drawn in order to highlight the different symmetries. Comparing the left-most panels
of fig. A.18 to the left-most panels of fig. A.17, it can be seen that the general behavior
is identical. This is expected, as the CubeSat is initialized in the exact same manner,
and the faces represented in these panels will rotate to switch between the ram-facing and
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(a) Ion current collection by a 3U CubeSat biased to −1V rotating about its Y-axis.

(b) Ion current collection by a 3U CubeSat biased to −10V rotating about its Y-axis.

Figure A.18: Ion current collection dependence on Y-axis rotation.

wake-facing regions regardless of the axis of rotation (Z-axis or Y-axis). The middle panels
of fig. A.18 must be compared to the right-most panels of fig. A.17. In fig. A.18, the large
faces are always perpendicular to the axis of rotation, and they are always parallel to the ion
drift velocity. There is a noticeable peak in the large face’s current collection at 90° for a
Y-axis rotation, in contrast to the generally constant current collection of the small face for
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a Z-axis rotation. When a large face is in the ram direction, corresponding to 0° and 180°,
the drifting ions must be collected as they travel over the 1 m thickness of the CubeSat.
However, when a small face is in the ram direction, the full 3 m vertical length of the
CubeSat is parallel with the drift velocity, and so the ions are attracted to the CubeSat over
a longer period of time before the ions reach the wake region, making it more likely that
they would be collected on these parallel sides. This indicates that for CubeSat sides that
are not squares, the orientation of the CubeSat will impact the magnitude of its ion current
collection. Finally, the right-most plots of fig. A.18 must be compared to the middle plots
of fig. A.17. Like before, when the small face current collection peaks at 90°, the other
small face is in the wake.

The X-axis rotation, a rotation about the axis parallel to the drift velocity, is not
highlighted here because it is the only case where the current collection does not change
with rotation. This is because the angle of each face of the CubeSat relative to the ion drift
speed does not change, so the ion current as a function of angle for any side is similar to
the right-most plots of fig. A.17.

(a) Ion current collection by a swept 3U CubeSat
with a large face in the ram direction.

(b) Ion current collection by a swept 3U CubeSat
with a small face in the ram direction.

Figure A.19: Ion current collection by a scaled up 3U CubeSat for various potentials and
ram surface areas.

Understandably, the collected ion current also changes with attractive spacecraft
potential, and the collected current behavior is different for each side of the CubeSat.
Starting with a large face in the ram direction, fig. A.19a demonstrates the current
collection of each side of the CubeSat when a large face collects ram ion current. For small
attractive and retarding potentials, the ram ion current represents a considerable fraction of
the total collected ion current. As the attractive potential increases, the currents collected
by the sides of the CubeSat parallel to the ion drift velocity increase as well, but they
never individually surpass the current collected by the ram-facing side of the CubeSat.
Additionally, there are two distinct pairs of collected ion currents, which correspond to
one pair of large faces and one pair of small faces. Finally, the wake current collection is
nearly negligible at the considered potentials. The wake ion current only begins to show a
noticeable increase until the potential is nearly −10 V.

Figure A.19b depicts the ion current collection when a small face is in the ram direction.
In this scenario, the 4 sides of the CubeSat parallel to the ram direction are all large faces,
so their collected currents are nearly equal for all applied biases relative to the plasma. At
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small attractive potentials and retarding potentials, the ion current to the small ram face will
also represent a majority of the total corrected current. However, the large parallel faces
will collect more current than the ram face for attractive potentials greater than the ion drift
energy, due to the size discrepancy between large and small CubeSat faces.

Comparing the net current between the two orientations suggests that if the CubeSat
is expected to charge very negatively, there may be little difference between the net
current collection of a 3U CubeSat with a large face or small face in the ram direction.
Therefore, other factors such as the drag on the satellite can be weighed more heavily
when determining the ideal satellite orientation. However, if minimal charging is expected
(i.e. the LP sweep range is reduced, or the system has a large area ratio), then orienting the
satellite to have a large face in the ram direction is crucial in minimizing possible charge
buildup on the spacecraft due to LP operation.

A.2.5 Spacecraft Charging Estimates
Finally, we have reached the spacecraft charging estimates where the currents between the
LP and CubeSat are balanced using PIC simulations. In the presented simulations, the area
of the LP is 7.15× 10−4 m2 with a guard area of 3.41× 10−4 m2 to simulate the guarded
ProSEDS Langmuir probe [159]. The probe and guard are biased at the same potential
relative to a 1U (area ratio=50), 2U (area ratio=84), and 3U (area ratio=117) CubeSat. The
ambient plasma density is 1× 1011 m−3; the plasma temperature is 0.1 eV; and the 1U,
2U, and 3U CubeSats and probe are not enlarged. Two probe orientations are considered
in fig. A.20: an orientation perpendicular to the plasma flow and an orientation parallel to
the flow. In the case where the probe is perpendicular to the flow, a large face of the 2U
and 3U CubeSat are in the ram direction. When the probe is parallel to the flow, the small
face of the CubeSat is in the ram direction. Regardless of area ratio or probe orientation,
the spacecraft potential remains at a near constant level when the probe is biased negative,
and the spacecraft potential has a considerable, nearly linear decrease in potential when
the applied bias is positive and increasing. The numerical noise when the applied bias
is negative is likely due to noise in the estimated ion currents to the LP. Furthermore, it
is difficult to obtain low-noise results near the plasma potential as Nascap-2K has issues
resolving spacecraft charging behavior in this regime. However, some additional expected
results are observed. The magnitude of the most negative charging decreases with increased
area ratio and the charging is less severe for larger ram-facing surface areas. In the case of
the 1U CubeSat reference (left-most panels of fig. A.20), it is expected that the charging
behavior would be nearly symmetric due to the symmetry of a 1U CubeSat. However, the
parallel case likely experiences slightly more negative charging that the perpendicular case,
due to an increase in electron current collection to the probe tip.
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Figure A.20: Spacecraft charging behavior for the same probe operated from 1U, 2U, and
3U CubeSat reference.

A.2.6 Summary and Improvements
Nascap-2K highlighted many physical processes that can affect current collection to a
spacecraft, and in turn, the stability of the satellite’s floating potential, such as changes
in the sheath structure due to bias and density, and the wake filling effects of low energy
ions (see appendices A.2.1 to A.2.3). These processes are not captured in the most recent
version of the PSIC-LEO model, which has a strict upper bound on the ion current that
a satellite can collect (refer to section 4.2.2). By updating PSIC-LEO to include more of
these physical processes, the modeled spacecraft charging behavior will likely estimate less
negative charging and produce more realistic effects on the LP’s I-V characteristics due to
the greater, non-asymptotic ion current collection. Discussion for future work on advancing
the PSIC-LEO model is provided in section 7.2.1.

Nascap-2K has proven to be a powerful program for modeling current collection
to cuboids and cylinders. First and foremost, it is necessary to improve the latest
PIC simulations to obtain more accurate Langmuir probe and CubeSat current voltage
characteristics. Improvements include reducing the size of the primary grid, while
increasing the number of elements in the primary grid. By reducing the size and increasing
the number of elements, the macroparticle density at the edge of the primary grid increases
when using the Boundary method, making it more likely that macroparticles will collide
with object surfaces. This would produce more stable and accurate current collection
curves, especially for applied biases near 0 V.

The new currents to the CubeSat body can be validated using Nascap-2K’s surface
detector scheme. Using the Object Toolkit, elements on the surface of an object can
be designated as detectors. Macroparticles are then created at the detectors and tracked
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backwards to determine their origin. If the particles leave the simulation boundary, they
are considered to be from the ambient plasma and counted as current to the surface [200].
Using both PIC simulations and reverse trajectory calculations, the currents to a 1U, 2U,
3U, and 6U CubeSat can be modeled for various potentials and angles relative to the plasma
flow. By compiling multiple I-V curves for various cuboid sizes and orientations, analytic
expressions can be derived for use in PSIC-LEO.
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APPENDIX B

Plasma Spacecraft Interaction Codes for Low
Earth Orbit Code

This appendix provides the full source code for the PSIC-LEO program. PSIC-LEO has one
main script where the problem parameters are defined. This example is setup for a single
area ratio case, but it is capable of calculating several cases in one execution. The brunt
of the calculations are done in the current balance function. It numerically determines the
potential of the satellite required to balance the LP and spacecraft currents. The remaining
functions provide the current collection models and normalization constants.

B.1 Main File

1 % Main executable file for PSIC−LEO.
2

3 %% Conversions and Constants
4

5 amu2kg = 1.66054e−27; % kg/AMU
6 q = 1.6e−19; % Unit Charge
7 Electron mass = 9.1e−31; %kg
8

9 %% Setup for Problem
10

11 % Problem can be defined by area ratio
12

13 % Area Ratios
14 Area ratio = 285.;
15

16 % Problem can be defined by probe dimensions
17

18 Probe length = 0.1143; %meters
19 Probe diameter = 0.0013; % meters
20

21
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22 % Sweep Start and End
23

24 VS = −10;% Start Voltage
25 VE = 10; % Stop Voltage
26 dV = 10e−3; % Voltage Step Size
27 points = abs(VE−VS)/dV+1; % Points in a sweep
28

29 % Plasma Parameters
30

31 Te = 0.25; % Electron Temperature [eV]
32 Density = 1e+12; % Plasma Density [mˆ−3]
33 Drift speed = 8; % Ion Drift Speed [km/s]
34

35 Ion mass = 16.; % Ion mass in amu
36

37 % Probe Parameters
38

39 Probe area = pi*Probe length*Probe diameter;
40

41 %% Functions to Calculated Actual Floating Potential
42

43 Kmps2eV = @(x) 0.5*Ion mass*amu2kg*(x*1e3).ˆ2/1.6e−19;
44

45 % Currents
46

47 % Electron Retarding
48

49 I ret = @(Te,V) Probe area*Density*q*...
50 sqrt(q*Te/(2*pi*Electron mass))*exp(V/Te);
51

52 % Ion Accelerating
53

54 Ion current model = @(v drift,Ti,V)(Probe area*q/pi)*Density*...
55 sqrt(q*Ti./(2*Ion mass*amu2kg)).*2*sqrt(V/Ti+v drift/Ti+...
56 (V/Ti+0.5*v drift/Ti)./(V/Ti+v drift/Ti));
57

58 % Fzero calculates potential where currents are equal
59 FP actual LP = fzero(@(x) I ret(Te,x)−...
60 Ion current model(Kmps2eV(Drift speed),Te,−x),[−10,0]);
61

62 %% Preallocating Matrices
63

64 FP actual SC = zeros(1,numel(Area ratio)); % Spacecraft floating potential
65 Area ratio check = FP actual SC; %Check to verify area ratio correct
66 I LP all = zeros(points,numel(Area ratio)); % Matrix of Net LP Current
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67 I e LP all = I LP all; % Matrix of LP Electron Current
68 I i LP all = I LP all; % Matrix of LP Ion Current
69 I SC all = I LP all; % Matrix of Net SC Currents
70 V A all = I LP all; % Applied Voltages
71 Phi SC all = I LP all; % SC Potential w.r.t. Plasma
72 Phi LP all = I LP all; % LP Potential w.r.t. Plasma
73

74 %% Running Current Balance Function
75

76 for i=1:numel(Area ratio)
77 % Calculating Current Balance Using Probe Length and Diameter
78 % N S1 and N S2 denote the number of same sized CubeSat faces
79 % A S1 is the area [mˆ2] of the sides counted by N S1
80 % A S2 is the area [mˆ2] of the sides counted by N S2
81

82 [I LP,I e LP,I i LP,I SC,...
83 V applied,Phi SC,Phi LP,...
84 Area Ratio,SC float] = CurrentBalance(VS,VE,...
85 'Step Size',dV,'Electron Temperature',Te,...
86 'Plasma Density',Density,'Ion Mass',Ion mass,...
87 'Ion Drift Speed',Drift speed,...
88 'Guard Diameter',0,'Guard Length',0,...
89 'Probe Length',Probe length,...
90 'Probe Diameter',Probe diameter,...
91 'N S1',4,'N S2',2,...
92 'A S1',0.03,'A S2',0.01);
93

94 I LP all(:,i) = I LP(:);
95 I e LP all(:,i) = I e LP(:);
96 I i LP all(:,i) = I i LP(:);
97 I SC all(:,i) = I SC(:);
98 V A all(:,i) = V applied(:);
99 Phi SC all(:,i) = Phi SC(:);

100 Phi LP all(:,i) = Phi LP(:);
101

102 Area ratio check(i) = Area Ratio;
103 FP actual SC(i) = SC float;
104 end

B.2 Current Balance

1 function [I LP,I e LP,I i LP,I SC,...
2 V applied,Phi SC,Phi LP,AreaRatio,SC float] = ...
3 CurrentBalance(VS,VE,varargin)
4
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5 % This function calculates the spacecraft potential as a function of
6 % applied bias to the LP. The fzero function is used to balance the
7 % currents and determine the spacecraft potential.
8

9

10 %% Constants
11

12 in2cm = 2.54; % inches to cm
13 cm2m = 1e−2; % cm to meters
14 amu2kg = 1.6605389e−27; %AMU to kg
15 km2m = 1e3; % km to meters
16

17 %% Parse User Inputs
18

19 % Default Options
20

21 %%%%%%%%%Sweep Options%%%%%%%%%%%
22

23 dV = 10e−3;
24

25 %%%%%%%%%Probe Dimensions%%%%%%%%%
26

27 pd = 0.168*cm2m*in2cm; % Probe Diameter [m]
28 pl = 2.1*cm2m*in2cm; % Probe Length [m]
29

30 %%%%%%%%%Guard Dimensions%%%%%%%%%
31

32 gd = 0.15*cm2m*in2cm; % Guard Diameter [m]
33 gl = 1*cm2m*in2cm; % Guard Length [m]
34

35 %%%%%%%%%Probe Orientation%%%%%%%%%
36

37 theta = 90.; % Angle of SC vertical axis relative to ion flow
38

39 %%%%%%%%%CubeSat Dimensions%%%%%%%
40

41 N S1 = 4; % Number of sides of type 1. Ram facing side.
42 N S2 = 2; % Number of sides of type 2. Non−ram or wake facing side.
43 N S3 = 0;
44

45 A S1 = 30.*10.*cm2mˆ2; % Area in mˆ2
46 A S2 = 10*10*cm2mˆ2; % Area in mˆ2
47 A S3 = 0;
48

49 AR = []; %Possible variable to force area ratio
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50

51 %%%%%%%%%Plasma Properties%%%%%%%%%
52

53 Te = 0.1; % Electron Temperature [eV]
54 Ti = 0.1; % Ion Temperature [eV]
55 M = 16; % Ion Species mass [amu]
56 W = 7.8; % Ion Drift speed [km/s]
57 N = 1e12; % Plasma Density [1/mˆ3]
58

59 % Parse Variable Arguments into their name valued pairs.
60

61 p = inputParser;
62

63 % Probe Dimensions
64

65 addOptional(p,'Probe Diameter',pd,@isnumeric)
66 addOptional(p,'Probe Length',pl,@isnumeric)
67

68 % Probe Sweep Options
69

70 addOptional(p,'Step Size',dV,@isnumeric)
71

72 % Guard Dimensions
73

74 addOptional(p,'Guard Diameter',gd,@isnumeric)
75 addOptional(p,'Guard Length',gl,@isnumeric)
76

77 % Probe Orientation
78

79 addOptional(p,'Probe Orientation',theta,@isnumeric)
80

81 % CubeSat Dimensions
82

83 addOptional(p,'N S1',N S1,@isnumeric)
84 addOptional(p,'N S2',N S2,@isnumeric)
85 addOptional(p,'N S3',N S3,@isnumeric)
86 addOptional(p,'A S1',A S1,@isnumeric)
87 addOptional(p,'A S2',A S2,@isnumeric)
88 addOptional(p,'A S3',A S3,@isnumeric)
89 addOptional(p,'Area Ratio',[],@isnumeric)
90

91 % Plasma Properties
92

93 addOptional(p,'Electron Temperature',Te,@isnumeric)
94 addOptional(p,'Ion Temperature',Ti,@isnumeric)
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95 addOptional(p,'Ion Mass',M,@isnumeric)
96 addOptional(p,'Ion Drift Speed',W,@isnumeric)
97 addOptional(p,'Plasma Density',N,@isnumeric)
98

99 parse(p,varargin{:})
100

101 [New Param] = setdiff(p.Parameters,p.UsingDefaults);
102

103 for i=1:numel(New Param)
104 a = char(New Param(i));
105 switch a
106 case 'A S1'
107 A S1 = p.Results.A S1;
108 case 'A S2'
109 A S2 = p.Results.A S2;
110 case 'A S3'
111 A S3 = p.Results.A S3;
112 case 'Step Size'
113 dV = p.Results.Step Size;
114 case 'Electron Temperature'
115 Te = p.Results.Electron Temperature;
116 case 'Guard Diameter'
117 gd = p.Results.Guard Diameter;
118 case 'Guard Length'
119 gl = p.Results.Guard Length;
120 case 'Ion Drift Speed'
121 W = p.Results.Ion Drift Speed;
122 case 'Ion Mass'
123 M = p.Results.Ion Mass;
124 case 'Ion Temperature'
125 Ti = p.Results.Ion Temperature;
126 case 'N S1'
127 N S1 = p.Results.N S1;
128 case 'N S2'
129 N S2 = p.Results.N S2;
130 case 'N S3'
131 N S3 = p.Results.N S3;
132 case 'Plasma Density'
133 N = p.Results.Plasma Density;
134 case 'Probe Diameter'
135 pd = p.Results.Probe Diameter;
136 case 'Probe Length'
137 pl = p.Results.Probe Length;
138 case 'Probe Orientation'
139 theta = p.Results.Probe Orientation;
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140 case 'Area Ratio'
141 AR = p.Results.Area Ratio;
142 end
143 end
144

145 %% Calculations Based on Inputs%%%
146

147 pr = pd/2; % Probe Radius
148

149 AreaLP = pd*pl*pi;% [m]
150

151 AreaGuard = gd*gl*pi;% [m]
152

153 AreaInst = AreaLP+AreaGuard; % Area of Probe and Guard
154

155 % Calcualting Spacecraft Surface Areas for Current Collection
156

157 if isempty(AR)
158

159 Electron area = A S1*N S1+A S2*N S2+N S3*A S3;
160

161 else
162

163 A T = AR*AreaInst;
164

165 % Calculates the area of a 3U CubeSat
166

167 A S1 = (3/14)*A T; % Type 1 Face
168 A S2 = A S1/3; % Type 2 Face
169

170 Electron area = A S1*N S1+A S2*N S2+N S3*A S3;
171 end
172

173 AreaRatio = Electron area./AreaInst;
174

175 %% Calculations
176

177 %%%%%%%%%Generating Random Currents and Normalized Speeds%%%%%%%
178

179 [Ier,Ionr,S]= RanCur(N,Te,Ti,M,W*sind(theta));
180

181 %%%%%%%%%%Calculating Spacecraft Floating Potential%%%%%%%%%%%%%%%
182

183 options = optimset('Display','off');
184
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185 SC float = fzero(@(x) CubeSat Collection(x,W*km2m,Te,Ti,M*amu2kg,...
186 Ier*Electron area,Ionr*A S1,Ionr*A S2),[−10,0],options);
187

188 %%%%%%%%%Probe Sweep Properties%%%%%%%%%
189

190 V applied = VS:dV:VE;
191

192 % Allocating array for spacecraft potential
193

194 Phi SC = zeros(1,numel(V applied));
195

196 %%%%%%%%%Determining Plasma Debye Length and Sheath Size%%%%%%%%
197

198 Lambda D = 740*cm2m*sqrt(Te/(N*power(cm2m,3))); % Debye Length
199

200 a = 3*Lambda D+pr; % Sheath radius measured from probe center
201

202 Ratio = a/pr; % Ratio between sheath radius and probe radius
203

204 %%%%%%%%%%Calculating Spacecraft Potential%%%%%%%%%%%%%%%
205

206 % Defining current balance function
207 myfun = @(x,V applied) CubeSat Collection(x,W*km2m,Te,Ti,M*amu2kg,...
208 Ier*Electron area,Ionr*A S1,Ionr*A S2)+...
209 (AreaLP+AreaGuard)*...
210 LP collection(x+V applied,Ratio,Te,Ti,S,Ier,Ionr);
211

212 % Iterating through applied bias for current balance
213

214 for i=1:numel(V applied)
215 Phi SC(i) = ...
216 fzero(@(x) myfun(x,V applied(i)),...
217 max(V applied)*[−2,2],options);
218 end
219

220 % Calculating LP potential w.r.t. plasma
221

222 Phi LP = V applied+Phi SC;
223

224 %%%%%%%%%Generating LP and Guard Current%%%%%%%%%
225

226 % Normalized Net Current
227 [I N,Ie N,Ii N] = ...
228 LP collection(Phi LP,Ratio,Te,Ti,S,Ier,Ionr);
229
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230 % Electron current to LP
231 I e LP = AreaLP*Ie N;
232

233 % Ion current to LP
234 I i LP = AreaLP*Ii N;
235

236 % Net Current to LP
237 I LP = AreaLP*I N;
238

239 %%%%%%%%%%Generating CubeSat Current%%%%%%%%%%%%%%%
240

241 I SC = CubeSat Collection(Phi SC,W*km2m,Te,Ti,M*amu2kg,...
242 Ier*Electron area,Ionr*A S1,Ionr*A S2);
243 end

B.3 Normalization Constants

1 function [Ie ran,Ion ran,S long]= RanCur(density,Te,Ti,Mass,DSC long)
2

3 % Calculates the random ion and electron currents of an Ionospheric Plasma
4 % and a necessary drift term. The random currents are area normalized.
5

6 % Density in 1/mˆ3
7 % Temperature in eV
8 % Mass in amu
9

10 %% Constants
11

12 me=9.10938215e−31;% Mass of Electron
13 amu=1.6605389e−27;% Atomic Mass Unit in kg
14 q=1.602177e−19;% Charge of Electron
15 km2m = 1e3; % kilometer to meter
16

17 Mass = Mass*amu;
18

19 N q=q*density;% Charge Density
20

21 v i therm=sqrt(Ti*q/(2*pi*Mass)); % Ion Thermal Speed
22

23 v e therm = sqrt(Te*q/(2*pi*me)); % Electron Thermal Speed
24

25 %% Normalized Thermal Currents
26

27 % Electron Current
28
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29 Ie ran=v e therm*N q; % Randome
30

31 % Ion Current
32

33 Ion ran=v i therm*N q;
34

35 %% Normalized Drift Speeds
36

37 % Drift Term
38

39 S long=DSC long*km2m/(v i therm*2*sqrt(pi)); % Normalized Drift Speed
40 end

B.4 Langmuir Probe Current Collection Model

1 function [I,Ie,Ii] = LP collection(V,ratio,Te,Ti,K,Ier,Ionr)
2

3 % Modeling Langmuir Probe Current Collection
4 % Refer to Kanal 1964 for Ion Current Theories
5

6 %% Preallocating Arrays for Currents
7

8 array length =numel(V);
9

10 Ie = zeros(1,array length); % Electron Current
11 Ii = Ie; % Ion Current
12

13 %% Creating General Constants Based on Sheath−to−Probe Ratio
14

15 gamma2=1./((ratio.ˆ2)−1);
16 gamma=sqrt(gamma2);
17

18 alpha = sqrt(gamma2+1);
19

20 %% Calculating Electron Current
21

22 % Retardation Regime
23

24 Ie(V<=0) = exp( V(V<=0)/Te);
25

26 % Acceleration Regime
27

28 V acc = V(V>0);
29

30 % Creating Specific Constants
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31

32 rtV=sqrt(V acc/Te);
33 beta 1=alpha.*rtV;
34 beta 2=gamma.*rtV;
35

36 Ie(V>0) = exp(V acc/Te).*erfc(beta 1)+ratio.*erf(beta 2);
37

38 %% Calculating Ion Current
39

40 for i=1:array length
41

42 V n = −V(i)/Ti;
43

44 % Acceleration Regime
45

46 if V n>=0
47

48

49 Ii(i) = IonAcc(V n,K,gamma);%IonAcc(V n,K);%
50

51 else
52

53 % Retardation Regime
54 ion temp1 = IonRet(V n,K);
55 Ii(i)= ion temp1;
56 %{
57 if ion temp1<=1e−3
58 Ii(i:array length)=0;
59 break
60 else
61 Ii(i) = −1*ion temp1;
62 end
63 %}
64 end
65

66 end
67

68 %% Total Current
69

70 Ie = Ie*Ier;
71

72 Ii = Ii*Ionr;
73

74 I = Ie−Ii;
75 end
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76 %% Ion Current Models
77

78 function Ia=IonAcc(V,K,gamma)
79 % Ion Acceleration Current
80

81 f = @(x,K,V) x.*sqrt(x.ˆ2+V).*exp(−(x−K).ˆ2).*...
82 besseli(0,2.*x.*K,1);
83

84 g = @(x,K) x.ˆ2.*exp(−(x−K).ˆ2).*besseli(0,2.*x.*K,1);
85

86 gamma2 = gamma.ˆ2;
87

88 split = gamma*sqrt(V);
89

90 int1 = integral(@(x) f(x,K,V),split,inf);
91 int2 = integral(@(x) g(x,K),0,split);
92

93 Ia = 4/sqrt(pi)*(int1 + sqrt((1+gamma2)/gamma2)*int2);
94

95 end
96

97

98 function Ia=IonRet(V,K)
99

100 % Ion Retardation Current
101

102 f = @(x,K,V) x.*sqrt(x.ˆ2+V).*exp(−(x−K).ˆ2).*...
103 besseli(0,2.*x.*K,1);
104

105 split = sqrt(−V);
106

107 int1 = integral(@(x) f(x,K,V),split,inf);
108

109 Ia = 4/sqrt(pi)*int1;
110 end

B.5 Spacecraft Current Collection Model

1 function I = CubeSat Collection(V,v0,Te,Ti,m,...
2 e therm,Ion therm 1,Ion therm 2)
3

4 % Modeling Spacecraft Current Collection
5 % v0 is the initial drift in m/s
6 % V is the bias in Volts
7 % T is the temperature in eV
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8 % m is the mass in kg
9

10 %% Preallocating Arrays
11

12 Ie = zeros(size(V)); % Electron Current
13 Ii = Ie; % Ion Current
14

15 %% Calculating SC Currents
16

17 % Electron Retardation Regime
18

19 V ret = V(V<=0);
20

21 Ie(V<=0) = ElectronRet(V ret/Te);
22 Ii(V<=0) = −Ion therm 1*((IonACC(v0,Ti,m))+...
23 2*IonACC(0,Ti,m))−2*Ion therm 2*IonACC(0,Ti,m);
24

25 % Accelerating Regime
26

27 V acc = V(V>0);
28

29 Ie(V>0) = ElectronACC();
30 Ii(V>0) = −Ion therm 1*(IonRet(v0,−V acc,Ti,m)+...
31 2*IonRet(0,−V acc,Ti,m))−2*Ion therm 2*IonRet(0,−V acc,Ti,m);
32

33 % Total Current
34

35 I = Ii+e therm*Ie;
36

37 end
38

39 %% Current Models
40

41 function Ia = IonACC(v0,T,m)
42 % Accelerated Ion Current
43

44 % Constants
45

46 q = 1.6e−19;
47

48 v d = v0./sqrt(2*q*T/m); % Normalized Drift Speed
49

50 Ia = exp(−power(v d,2))+sqrt(pi).*v d.*erfc(−v d);
51 end
52
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53 function Ia = IonRet(v0,V,T,m)
54 % Retarded Ion Current
55

56 % Constants
57

58 q = 1.6e−19;
59

60 v d = v0./sqrt(2*q*T/m); % Normalized Drift Speed
61

62 V0 = sqrt(−V./T); % Normalized Potential
63

64 Ia = exp(−power(V0−v d,2))+...
65 sqrt(pi).*v d.*erfc(V0−v d);
66 end
67

68 function Ia = ElectronACC()
69 % Accelerated Electron Current
70

71 Ia = 1;
72 end
73

74 function Ia = ElectronRet(V)
75 % Retarded Electron Current
76

77 Ia = exp(V);
78 end
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APPENDIX C

Langmuir Probe Analysis with Uncertainties

Here we present a full analysis of LP sweeps that have been generalized for a cylindrical
probe in a non-magnetic, drifting plasma in the absence of additional current sources such
as photoelectrons. All of the methods detailed in this appendix can be programatically
applied, and any method which can not be numerically automated is not included in this
appendix.

Consider a generic LP sweep (fig. 1.2) where there are three areas of interest: the ion
saturation regime, the electron retardation regime, and the electron saturation regime. We
will break down the analysis in the same order as is required for real data. Several methods
are demonstrated for each plasma characteristic that can be determined, from an LP sweep.
Furthermore, each method will have two uncertainties: 1) the method’s intrinsic uncertainty
and 2) systematic uncertainties. The square root of the sum of squares of these uncertainties
determines the total uncertainty for the method (eq. C.1)

σTotal =
√
σ2
method + σ2

systematic. (C.1)

Furthermore, the instrumental uncertainties affect all methods, as they affect both the
measured current and the sourced voltage. Since Keithley sourcemeters were used to
source voltage in a 20V range and measure currents up to a 100 µA range, the instrumental
uncertainties of the source meters are [177]

σVinst = Vsourced ∗ 0.02% + 2.4× 10−3 V

σIinst = Imeasured ∗ 0.025% + 6× 10−9 A

A typical LP analysis procedure broadly looks as follows:

1. Use a smoothing algorithm to minimize the effects of noise. A Savitsky-Golay
algorithm is typically sufficient with a window size of 1 % to 2 % of the total number
of points and a polynomial of order 4 [206, 207].

2. Determine the floating potential and the plasma potential.

3. Use the floating and plasma potentials to roughly estimate the electron temperature.
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4. Calculate the ion density.

5. Determine the ion current and subtract it from the net current to calculate the electron
current.

6. Calculate the electron temperature and density.

C.1 Floating Potential
The floating potential, VF , of a Langmuir probe is the potential at which the current is net
zero. As a result, the floating potential exists when the ion current and electron currents are
equal but opposite. Any plasma characteristic that affects these currents, such as electron
temperature or ion drift speed, will in turn affect the magnitude of the floating potential.

C.1.1 Systematic Uncertainties
Due to the complex nature of instrument electronics and plasmas themselves it is difficult
to accurately ”land” on the floating potential during a sweep. VF is calculated by averaging
the two potentials attributed to the currents closest to a net zero current (eq. C.2). The
systematic uncertainty is the square root of the sum of the squares of the uncertainties of
each measured potential (eq. C.3). Naturally, the uncertainty of each potential contains
the instrumental uncertainty of the sourced voltage. However, the uncertainty due to the
measured current is also a factor, since these voltages were chosen based on their respective
current’s proximity to 0. This relationship between the instrumental uncertainty of the
measured current and the voltage’s uncertainty is correlated by the inverse of the first
derivative of the net current with respect to the voltage evaluated at the two potentials
of interest.

VF =
V1 + V2

2
(C.2)

V1 = V (max(I < 0))

V2 = V (min(I > 0))

σVF =
1

2

√
σ2
V1

+ σ2
V2

(C.3)

σVi =

√√√√σ2
Vinst

+

[(
dI

dV

)−1
σIinst

∣∣∣∣∣
VA=Vi

]2

C.1.2 Minimum Uncertainty due to Method
Programmatically, the floating potential is found using the follow procedure:

1. Search the measured currents for a current value that is exactly zero. If the
zero current exists, the corresponding voltage is the floating potential, and the
uncertainties are purely due to systematic uncertainties.
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2. If no current is exactly zero, search through measured currents of the I-V curve for
two adjacent current measurements where one is positive and the other is negative.

3. Average the corresponding voltages of the two currents.

Figure C.1: Minimum uncertainty of the floating potential method.

Figure C.1 shows the minimum uncertainty of the floating potential method as a
function of bias step size normalized by the electron temperature. To determine the percent
error, LP I-V curves were modeled using the difference between the retarded electron
current (eq. 2.13) and the accelerated ion current (eq. 2.19) over a range of electron
temperatures (0.1 eV to 0.2 eV) and a 5 eV drifting Maxwellian ion population. Assuming
perfectly known currents and voltages, the floating potential was numerically calculated
using a the fzero MATLAB function that determines the root of nonlinear functions using
a combination of interpolation schemes [169]. This numerically determined floating
potential was compared to the floating potential obtained using the four step procedure
previously detailed. The minimum uncertainty shown in fig. C.1 is the average of the
percent errors of the floating potential measurements for all temperatures at a given step
size. The error bars are the standard deviation of the set. Generally speaking, if the bias
step size is equal to the electron temperature, the uncertainty in this method is roughly
10 %. To achieve a minimum uncertainty of 5 %, the voltage step size must be roughly
0.5Te, and a 1 % minimum uncertainty is achieved at a step size of roughly 0.25Te.

C.2 Plasma Potential
The plasma potential, VP , is the bias along an LP sweep where the probe is at the same
potential as the surrounding plasma. In the current-voltage curve, this point is characterized
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by a change in concavity and is a maximum in the first derivative of the current with respect
to the applied voltage.

C.2.1 Systematic Uncertainties
The numerical scheme used to determine the first derivative is shown in eq. C.4. To ensure
the voltage and current array sizes remain constant, the derivative scheme uses forward and
backward differentiation at the appropriate end points and a midpoint scheme everywhere
else. The equation and systematic uncertainty of the plasma potential are shown in eqs. C.6
and C.7. The systematic uncertainty is governed by the accuracy of the sourced voltage
and the error in the numerical differentiation scheme.

dI

dV
≈



4In+1−In+2−3In
2VStep

n ≤ 2

In−2−8In−1+8In+1−In+2

12VStep
2 < n < N − 1

3In−4In−1+In−2

2VStep
n ≥ N − 1

(C.4)

σ dI
dV
∝



V 2
Step

3
n ≤ 2

V 4
Step

30
2 < n < N − 1

V 2
Step

3
n ≥ N − 1

(C.5)

VP = VB s.t.
dI

dV

∣∣∣∣
max

(C.6)

σVP =
√
σ2
Vinst

+ σ2
dI
dV

(C.7)

C.2.2 Minimum Uncertainty due to Method
Programmatically, the plasma potential is found using a derivative procedure as follows:

1. Using eq. C.4 calculate the first derivative of the I-V curve using the measured
currents and voltages.

2. Normalize the first derivative by the local maximum. This should be the peak.

3. Employ a peak-finding algorithm such as the findpeaks MATLAB function [169]
to determine the voltage corresponding to the peak. Peak characteristics such as
a minimum height can be used to help select the peak amongst any smaller local
maxima that appear due to noise.
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(a) Minimum uncertainty of the plasma potential using only the
derivative method.

(b) Minimum uncertainty of the plasma potential using only the
framing method.

(c) Minimum uncertainty of the plasma potential using the robust
derivative method.

Figure C.2: Minimum uncertainties of plasma potential measurements using various
methods.
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Figure C.2a shows the minimum uncertainty of the simple derivative method for
determining the plasma potential as a function of bias step size normalized by the electron
temperature. The plasma potential is exactly zero for the purposes of the simulation,
and so the percent error is simply a factor of 100 greater than the calculated plasma
potential. LP I-V curves were modeled using the retarded electron current (eq. 2.13) and
the accelerated electron current (eq. 2.11) for the thick sheath condition over a range of
electron temperatures (0.1 eV to 1 eV). The minimum uncertainty is the average percent
error of plasma potential for all temperatures that were considered. The error bars are the
standard deviation of the set.

Generally, there is a distinct shift between underestimating and overestimating the
plasma potential when the voltage step size is roughly half the electron temperature.
Additionally, the smaller the voltage step size relative to Te, the better the accuracy
of the plasma potential measurements. This behavior can be broadly attributed to the
Nyquist–Shannon sampling theorem [208, 209] where the sampling rate must be less than
or equal to half of the frequency of interest to avoid aliasing. In this case, the bias step
size is analogous to the sampling rate and the electron temperature is analogous to the
frequency. It is typically appropriate to sample at a voltage step size that is half of the
plasma temperature, although smaller step sizes are preferred.

To achieve a minimum uncertainty of 20 %, the voltage step size must be roughly 0.5Te
and a 5 % minimum uncertainty is achieved at a step size of roughly 0.1Te. This simple
method is highly susceptible to problems related to large signal-to-noise ratios or effects
that round the knee of the first derivative, such as probe surface contamination, operating in
the sheath of another conductor, or ambient magnetic fields [210, 211, 212]. Therefore, it is
useful to have an estimate of the plasma potential, which doesn’t rely on the derivative, in
order to determine a window of potentials to search for the peak in the first derivative. Such
an estimate was derived by Brace and is detailed in the University of Michigan’s Langmuir
Probe Spacecraft Potential (LPSP) instrument’s end item specification document [159].
The framing method is accomplished as follows:

1. Choose a current, I1, that is in the ion saturation regime. This current is assumed to
be the ion current, devoid of any electron current.

2. Since the ion current is typically much smaller than the electron current, a new
current, I2 = −I1, is assumed to be close enough to the floating potential such that
the potential at I2, V2, is a reasonable approximation to VF . As an additional point,
the electron current at V2 is given by

I2 = Ie2 − Ii = −I1 = Ii

=⇒ Ie2 = 2Ii (C.8)

3. Estimate the electron temperature by finding the voltage, V3, that is one Te greater
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than V2. The net current at V3 is

I3 = Ithermexp

(
−VP − V3

Te

)
− Ii

= Ithermexp

(
−VP − (V2 + Te)

Te

)
− Ii

= exp (1) Ithermexp

(
−VP − V2

Te

)
− Ii

= exp (1) Ie2 − Ii
= 2exp (1) Ii − Ii

∴ I3 = −4.436I1

4. If it is assumed that the potential difference between the floating potential and plasma
potential is roughly 3Te, then the estimate of the plasma potential, V4, is given by

V4 = V2 + 3 (V3 − V2) (C.9)

Equation C.9 gives an estimate of the plasma potential without any prior knowledge of
the additional plasma characteristics, such as temperature and floating potential. However,
as shown in fig. C.2b, it is a fairly inaccurate approximation of the plasma potential. In
the voltage step size of interest, V4 is typically 50 % off from the true plasma potential, and
as the voltage step size approaches and grows greater than an electron temperature, this
estimate can be very inaccurate surpassing 200 %. Therefore, the window to search for the
plasma potential using the first derivative is given by

V2 ≤ VA ≤ V4 + α (V3 − V2)

where α defines the upper bound of the applied voltages considered as a possible candidate
for the plasma potential and typically ranges from 3 to 5 depending on the voltage step
size. Figure C.2c demonstrates the end result of the robust derivative method (the global
maximum of the first derivative is found within a window determined by the framing
method) using modeled currents and voltages. As expected, it is identical to fig. C.2a, but
predetermining a range of potentials that can be the plasma potential circumvents issues
that can arise due to noise or rounded knees in the first derivative.

C.3 Ion Density
To determine the ion density, refer back to the current collection theory of a cylindrical
probe in a drifting plasma detailed in section 2.3.2. There are three methods used to
determine ion density using the current collection theory to a cylindrical probe in a moving
plasma. They are

1. Use assumed or measured values of the ion temperature and drift speed to use the
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full expression in eq. 2.21

Ii =
qApNivi

π

√
1 +

kBTi
miv2i

+
2q (VP − VA)

miv2i
(C.10)

2. Assume the ion drift speed dominates over the effects of the attracting potential and
random thermal motion such that

Ii =
qApNivi

π
(C.11)

3. Assume the attracting potential dominates over the effects of drift speed and random
thermal motion such that

Ii =
qApNi

π

√
2q (VP − VA)

mi

(C.12)

C.3.1 Full Ion Current Collection Expression
In orbit, the ion drift speed is equivalent to the orbital drift speed of the satellite and
the temperature can typically be assumed to be equal to the electron temperature, if an
ion energy analyzer is not available. However, in ground experiments, an ion energy
analyzer, such as a retarding potential instrument, must be used to determine drift speed
and temperature. These terms are necessary to obtain the ion density as the equation would
have 3 unknowns and the system would be underdetermined otherwise.

C.3.1.1 Systematic Uncertainties

There are two ways to use the full expression to determine the ion density: 1) a single
point approximation or 2) a fitting algorithm. As the name implies, the single point
approximation will evaluate the measured ion current at a single applied bias to extract the
ion density. The ion density given by the single point method is given by

Ni =
Iiπ

qApvi

(
1 +

kBTi
miv2i

+
2q (VP − VA)

miv2i

)− 1
2

. (C.13)

To make the calculation of the uncertainty easier to understand, let

α =
Ii
Apvi

β =

(
1 +

kBTi
miv2i

+
2q (VP − VB)

miv2i

)− 1
2

.
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Then the systematic uncertainty of the single point method is

σNI =
π

q

√
(βσα)2 +

(
αβ3

2
σβ

)2

(C.14)

σα =

√(
σIi
Apvi

)2

+

(
Ii
σAp
A2
pvi

)2

+

(
Iiσvi
Apv2i

)2

σβ =

√(
kBσTi
miv2i

)2

+

(
2q

σVP
miv2i

)2

+

(
2q

σVB
miv2i

)2

+

(
2kBTi + 4q (VP − VB)

miv3i
σvi

)2

Notably, some of the terms in this uncertainty have minimal impact on the overall
calculation. For instance, the probe area is very accurately known, and the ion temperature
has little effect compared to the accelerating bias. These terms can generally be safely
ignored but are included here for completeness.

To determine the ion density from a fitting algorithm, begin by linearizing eq. C.10 by
squaring both sides. Then, the ion density is calculated from the slope of the line as follows

I2i = αVB + β

β =
1

mi

(
qApNi

π

)2 (
miv

2
i + kBTi + 2qVP

)
α = −2q3

mi

(
ApNi

π

)2

Ni =
π

Ap

√
αmi

2q3
(C.15)

σNi =

√
π2mi

2q3

√(√
ασAp
A2
p

)2

+

(
σα

2Ap
√
α

)2

(C.16)

where α is the slope, which is negative due to the decreasing ion current with increasing
applied bias. Similar to the single point approximation, the probe area should be much
more accurate than the errors due to fitting, and uncertainties due to the measured probe
area can likely be ignored.

C.3.1.2 Minimum Uncertainty due to Method

When using the single point approximation, the ion density is found by simply choosing a
current in the ion saturation regime and using eq. C.13. To determine the percent error, LP
I-V curves were modeled using the difference between the accelerated ion current (eq. 2.19)
over a variety of ion drift speeds between 1 eV to 10 eV and an ion temperature of 0.1 eV.
Figure C.3 shows the minimum uncertainty of this method as a function of probe potential
normalized by the ion drift speed and for three ratios between electron and ion temperature.
That is the electron temperature was modeled as being 1, 5, and 10 times greater than
the ion temperature. Then, the ion temperature was assumed to be equal to the electron
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Figure C.3: Minimum uncertainty of the ion density using the single point approximation
of the full ion current expression.

temperature when calculation the ion density. As can be seen from fig. C.3, even when
the ion temperature is overestimated by a factor of 10, the greatest percent error is roughly
5 %. Therefore, an acceptable approximation for in-orbit conditions is that the ion and
electron temperatures are equal. Unsurprisingly, for large probe potentials relative to the
ion drift speed, the percent error reaches a maximum of 0.5 %. Physically, this is due to
the fact that the accelerating potential completely dominates any effects due to drift speed
or random thermal motion. This is also seen numerically, as eqs. 2.16, 2.19 and 2.21
all give nearly identical results for large probe potentials. Therefore, when using this
single point approximation, the uncertainties will mostly likely be dominated by systematic
uncertainties, as opposed to the method’s intrinsic uncertainty.

Another analysis method that employs the full ion current collection expression is to
use it as a model to fit to the measured ion current. The procedure for this method would
go as follows:

1. Linearize the measured I-V curve by squaring the currents. An example of the
linearized current is given in fig. C.4a.

2. Fit the appropriate region of the linearized ion current using a first order polynomial.
The difficulty here is determining the range of potentials to apply the fit to.

3. Use eq. C.15 to determine the ion density from the resulting slope of the fit.

From fig. C.4a, it is apparent that the net current is linear when squared until the probe
potential is near the floating potential. This is due to the electron current beginning to
dominate the collected currents. The difficulty in employing this fitting method is deciding
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(a) Linearized ion current for three example ion drift speeds. The local minimum is the floating
potential.

(b) Minimum uncertainty of the ion density using the fit of the full ion current expression. VUL is
the upper limit of the fit. The normalization is the ratio of difference between the floating potential
and this upper limit and the electron temperature.

Figure C.4: Minimum uncertainties of ion density measurements using a fit of the full ion
current collection expression.
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the most positive potential that is still within the ion saturation regime (assuming the
lower bound is the most negative potential to which the probe was biased). As shown
in fig. C.4b, choosing an upper potential limit that is seven to ten electron temperatures
below the floating potential ensures the intrinsic percent error of this method is below 1 %.
Choosing an upper potential limit that is too close to the floating potential can drastically
affect the minimum uncertainty of the ion density depending on the electron temperature
and ion drift speed. Generally, hotter electron temperatures and faster ion drift speeds
have greater errors. This relationship with drift speed and electron temperature, combined
with window of the moving average filter, produces the sawtooth pattern in fig. C.4b. To
determine the percent error, LP I-V curves were modeled using the difference between the
retarded electron current (eq. 2.13) and the accelerated ion current (eq. 2.19) over a range of
electron temperatures (0.1 eV to 1 eV) and a range of ion drift speeds (1 eV to 10 eV). The
ion density used to model the currents was then compared to the ion density obtained using
the three step fitting procedure previously detailed. The minimum uncertainty is obtained
using a moving average filter with a window size of 0.1 % of the total number of calculated
percent errors. The error bars are calculated using a moving standard deviation filter with
the same window size. From fig. C.4b, a potential that is at least 7Te below the floating
potential should be chosen as the upper bound of the fit.

C.3.2 Drift Speed Dominant Approximation
The benefit of the drift speed dominant approximation (eq. C.11) is its independence of
ion temperature, which is rarely known unless specifically measured. However, its lack
of potential dependence implies that it will begin to deviate strongly for sufficiently large
attracting potentials.

C.3.2.1 Systematic Uncertainties

By manipulating eq. C.11, the ion density and its systematic uncertainties are given as

Ni =
πIi
qApvi

(C.17)

σNi =
π

q

√(
σIi
Apvi

)2

+

(
IiσAp
A2
pvi

)2

+

(
Iiσvi
Apv2i

)2

(C.18)

The most likely dominant source of error here is the ion drift speed, as it requires either
an RPA to make direct measurements of the ion’s energy distribution function, or accurate
knowledge of a spacecraft’s orbital velocity.

C.3.2.2 Minimum Uncertainty due to Method

When assuming the ion drift speed is the dominant term in the collected ion current, the
ion density is found by simply choosing a current in the ion saturation regime and using
eq. C.17. Figure C.5 shows the minimum uncertainty of this method as a function of probe
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potential normalized by the ion drift speed. To determine the percent error, LP I-V curves
were modeled using the difference between the accelerated ion current (eq. 2.19) over a
variety of ion drift speeds between 1 eV to 10 eV and an ion temperature of 0.1 eV. The
minimum uncertainty shown in fig. C.6 is obtained by averaging over the results of all ion
drift speeds at each potential to drift speed ratio. The error bars are the standard deviation
of the same set. The probe bias must be less than the ion drift speed for this approximation
to be valid, as the minimum uncertainty grows nearly exponentially for all cases of a probe
bias larger than an ion drift speed. To achieve a minimum uncertainty of 10 %, the bias
must be roughly 0.2vi and a 5 % minimum uncertainty is achieved at a potential of roughly
0.1vi.

Figure C.5: Minimum uncertainty of the dominant ion drift speed approximation.

C.3.3 Dominant Accelerating Bias Approximation
The benefit of the dominant accelerating bias approximation (eq. C.12) is its ability to
approximate the density without needing to know the ion drift speed nor ion temperature.
The ion temperature does not typically affect the collected currents greatly, however this
approximation is best applied for large biases relative to the ion drift speed.

C.3.3.1 Systematic Uncertainties

By manipulating eq. C.12, the ion density and its systematic uncertainties are given as
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Ni =
πIi
qAp

√
mi

2qφ
(C.19)

φ = − (VA − VP )
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(C.20)

The most likely dominant sources of error is error due to the plasma potential.
Additionally, this approximation diverges as the probe bias approaches the plasma
potential and so it should not be applied when the probe potential relative to the plasma
potential, φ, is less than the ion drift speed.

C.3.3.2 Minimum Uncertainty due to Method

Figure C.6: Minimum uncertainty of the dominant accelerating potential approximation.

When assuming the accelerating potential is the dominant term in the collected ion current,
the ion density is found by simply choosing a current in the ion saturation regime and
using eq. C.19. Figure C.6 shows the minimum uncertainty of this method as a function of
probe potential normalized by the ion drift speed. To determine the percent error, LP I-V
curves were modeled using the difference between the accelerated ion current (eq. 2.19)
over a variety of ion drift speeds between 1 eV to 10 eV and an ion temperature of 0.1 eV.
The minimum uncertainty shown in fig. C.6 is obtained by averaging over the results of
all ion drift speeds at each potential to drift speed ratio. The error bars are the standard
deviation of the same set. The probe bias must be greater than the ion drift speed for this

224



approximation to be valid. The uncertainties grow nearly exponentially for all cases of a
probe bias smaller than an ion drift speed. To achieve a minimum uncertainty of 10 %, the
bias must be roughly 5vi, and a 5 % minimum uncertainty is achieved at a bias of roughly
10vi.

Interestingly, the ion drift speed dominant and accelerating potential dominant
approximations are the reciprocals of one another in terms of minimum uncertainty. Their
minimum uncertainties agree at their shared limit where the probe potential is equal to the
ion drift speed. At that point, their minimum uncertainty is approximately 44 %.

C.4 Electron Current Determination
Regardless of the appropriate ion current collection scheme, the electron current is always
obtained using the following method:

1. Perform a linear fit of the ion saturation region.

2. Evaluate the fit result for all biases between the plasma potential and the most
negative applied probe potential.

3. Subtract the calculated currents from the net current to estimate the electron current.

C.4.0.1 Systematic Uncertainties

The linear fit can be interpreted as a first order Taylor expansion of the true ion current
whose error is the difference between the ion current scheme (i.e. thin sheath, OML,
drifting Maxwellian), Iischeme , and the linear fit. The electron current equation and its
corresponding uncertainty are shown in eqs. C.21 and C.22. Using the electron current, the
electron density and temperature can now be determined.

Ie = I − Iifit (C.21)

σIe =
√
σ2
Iinst

+ σ2
Iifit

(C.22)

σIifit = Iischeme − Iifit

C.4.0.2 Minimum Uncertainty due to Method

Figure C.7 shows the minimum uncertainty of this method as a function of probe potential
normalized by the electron temperature. To determine the percent error, LP I-V curves
were modeled using the difference between the retarded electron current (eq. 2.13) and
the accelerated ion current (eq. 2.19) over a range of electron temperatures (0.1 eV to
1 eV), a range of ion drift speeds (1 eV to 10 eV), and an ion temperature of 0.1 eV. For
clarity, the average value at each ratio of potential to electron temperature is reported. The
electron current used to model the currents was then compared to the calculated electron
current obtained using the three step fitting procedure previously detailed. In the electron
retardation regime, the minimum uncertainty of this method ranges from less than 1 %,
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Figure C.7: Minimum uncertainty of the electron current calculation using a linear ion
current estimate.

when within an electron temperature from the plasma potential, to roughly 30 %, when
the electron current is nearly extinguished at 5Te below the plasma potential. Below
5Te from the plasma potential, the error increases exponentially because the calculation
is effectively dividing a linear polynomial by an exponential function that is approaching
0. Eventually, the calculation is no different than attempting to divide by zero. As a result,
this uncertainty becomes meaningless beyond seven to ten electron temperatures below the
plasma potential.

C.5 Electron Temperature
There are many methods used to determine the electron temperature with a variety of
assumptions. The methods that are analyzed here are:

1. Potential difference methods: These methods estimate the electron temperature based
on the difference between the plasma and floating potential.

2. Integral method: This method focuses on integrating the calculated electron current.

3. Log-linear fitting method: This method linearizes the calculated electron current and
determines the temperature from the inverse of the slope of the fit.

4. Single point method: This method evaluates the ratio between the electron thermal
current and derivative at the plasma potential to produce the electron temperature.
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5. EEDF method: This method starts by estimating the electron energy distribution
from the calculated electron current and then analyzing the EEDF to determine the
temperature.

C.5.1 Potential Difference Method
There are two possible estimates of electron temperature based on the potential difference
between the plasma and floating potential. If the plasma is stationary, the relationship
between these two potentials is [213]

Te =
VF − VP

ln
[
0.6
√

2πme
mi

] . (C.23)

where the ion current is assumed to be due to ions moving with the Bohm velocity, and
the electron current is given by eq. 2.13. If the plasma has a directional flow, then the ion
current, given by eq. C.10, and the electron current, modeled using eq. 2.13, are equal at
the floating potential and the temperature can be estimated as follows
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√
1 +

kBTi
miv2i

+
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πkBTe
2v2ime

)
≈ 2 (VP − VF ) (C.24)

where eq. C.10 is assumed to be dominated by the drift current (see eq. C.11).

C.5.1.1 Systematic Uncertainties

The systematic uncertainty in eq. C.23, is given by

σTe = ln

[
1

0.6

√
mi

2πme

]√
σ2
VF

+ σ2
VP

(C.25)

The error in the potential difference method with a drifting plasma is calculated using
Monte Carlo methods to vary the plasma potential, floating potential, and ion drift speed
within their respective uncertainties. The total error is then the square root of the sum of
squares of the standard deviations of the calculated temperature due to uncertainties in the
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measurements.

C.5.1.2 Minimum Uncertainty due to Method

The intrinsic uncertainty of the electron temperature estimate of the potential difference
method, assuming a stationary plasma (shown in fig. C.8), was calculated using two
separate models. LP I-V curves were modeled using the difference between the retarded
electron current (eq. 2.13) and the accelerated ion current (eq. 2.19) over a range of
electron temperatures (0.1 eV to 1 eV) and a range of ion drift speeds (1 eV to 10 eV).
For the non-drifting ion case, the ion current was modeled using eq. 2.19 for the case
where s = 0. The calculated electron temperature for both cases are then compared to the
temperature used to model the currents. The minimum uncertainty for both cases are then
averaged at each drift energy to electron temperature ratio. The error bars are the standard
deviation of each set.

Figure C.8: Minimum uncertainty of the potential difference method in a stationary plasma.

As expected, when the currents were modeled with a non-drifting ion population,
the stationary plasma temperature approximation is highly accurate, with less than a 1 %
error regardless of temperature. However, if the plasma was modeled with a drifting ion
population, the error in the method would grow as the drift energy to electron temperature
ratio increases. For typical ionospheric temperatures, this ratio ranges from 10 to 50 and
so the minimum uncertainty would be roughly 10 % to 30 %, with colder plasmas having
higher uncertainties. If it is assumed that the ion population had a non-zero drift speed,
the flowing plasma drift potential temperature estimate is 10 % to 20 % over the same
range (shown in fig. C.9). The drifting plasma approximation runs into problems at both
extremes of the ratio. As the drift energy to electron temperature ratio approaches 0, the
logarithmic portion approaches infinity. When the ratio is very large, the logarithmic
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portion of eq. C.24 tends towards negative infinity. Since this method is divergent at its
boundaries, it is usually safer to use the non drifting potential difference method.

Figure C.9: Minimum uncertainty of the potential difference method in a flowing plasma.

C.5.2 Integration of Measured Current Method
The integral method, highlighted in [150], is a general method that is independent of
the electron distribution and provides an average electron temperature. Therefore, for an
electron population with a single peak distribution, such as the Maxwellian distribution, the
average electron temperature is the electron temperature. However, if the distribution has
a high energy tail or is double peaked, like the Bi-Maxwellian distribution, the resultant
calculated temperature would be the average of the temperatures for each distinct segment
of the distribution.

While the integral method for determining electron temperature can be used for a
general EEDF [150], the scope of the following proof will focus solely on a Maxwellian
electron energy distribution. Assuming the majority of the electron current is between the
floating and plasma potentials,∫ VP

Vf

Ie (φ) dφ = IethermkBTe exp

(
φ

Te

)∣∣∣∣VP
Vf

=⇒ Te =
1

Ietherm

(
1− exp

(
VF
Te

)) ∫ VP

Vf

Ie (φ) dφ

∴ =⇒ Te ≈
1

Ietherm

∫ VP

Vf

Ie (φ) dφ (C.26)
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where Ietherm is the electron current at the plasma potential and φ is the potential difference
between the LP bias and the ambient plasma potential. A simplification is made by
assuming that exp

(
VF
Te

)
<< 1. Since the magnitude of the electron current at the floating

potential is negligible when compared to the electron saturation current this simplification
is generally valid.

C.5.2.1 Systematic Uncertainties

While a strong benefit of this method is its independence on the underlying electron
distribution, it has multiple sources of error that could affect its final result,such as the
number of points used for integration and properly selecting the boundaries of integration.
The method and error analysis are shown in eqs. C.27 and C.28.

Te =
1

Isat

∫ VP

VF

Ie(VB)dVB =
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N∑
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(VP − VF )

2N
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[
σI(Vn) + σI(Vn+1)

]]2 1
2

It should be noted that the last term of eq. C.28 will simplify to (VP − VF )σIe if the error of
each current term is equal. Additionally, in eqs. C.27 and C.28, N is the number of points
used in the integral.

C.5.2.2 Minimum Uncertainty due to Method

The intrinsic uncertainty of the electron temperature estimate using an integral method
follows a trend similar to that of the plasma potential method’s uncertainty. From
fig. C.10, there are three regions of interest to discuss. When the step size is larger than
about half the electron temperature, the percent error consistently increases. This is
likely due to under-sampling the electron retardation regime resulting in an increasingly
larger overestimation of the electron temperature. The upper bound for when this
technique should be used is when the voltage step size is roughly a quarter of the electron
temperature, as all step sizes at or below this limit have a minimum uncertainty that ranges
from 1 % to 3 %. When the retardation regime is properly sampled, this method will
always underestimate the electron temperature, as the highest energy electrons are still
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being collected at potentials below the floating potential, and are therefore unaccounted
for.

Figure C.10: Minimum uncertainty of the integral method in a flowing plasma.

LP I-V curves were modeled using the retarded electron current (eq. 2.13) over a range
of electron temperatures (0.1 eV to 1 eV). The minimum uncertainty is reported as the
average of all percent errors for a given ratio of voltage step size to electron temperature.
The error bars are the standard deviation of the same data set.

C.5.3 Log-Linear Fitting Method
Assuming the electron population is described by a Maxwellian distribution, the collected
electron current is described by eq. 2.13. The calculated electron current can then be
linearized such that

ln (I (φ)) ≈ φ

Te
+ Ietherm (C.29)

where Ietherm is the electron thermal current.

C.5.3.1 Systematic Uncertainties

To determine the temperature from the log-linear fit method,

1. Linearize the the calculated electron current by taking the natural logarithm of the
current between the floating potential and plasma potential.

2. Fit a first degree polynomial to the linear region.
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3. The inverse of the slope of the fit is the electron temperature estimate.

(a) Example of first degree polynomial fit to linearized electron current using measured currents.

(b) The number of points included in the fitting algorithm based on ratio between step size and
temperature.

Figure C.11: Linear fit to determine electron temperature example and estimate of step size
required for proper fitting.

Following the last line of the procedure, the electron temperature is given as

Te =
1

α
(C.30)
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where α is the slope of the line. The uncertainty of this method is estimated using Monte
Carlo schemes where the plasma potential, floating potential, electron current, and voltages
are varied.

C.5.3.2 Minimum Uncertainty due to Method

With the analytic schemes that have modeled the electron and ion currents so far, it
is not possible to replicate the issues observed with this method near the floating and
plasma potential when analyzing physically measured currents. This is because near
these potentials, the plasma behavior between retarded and accelerated currents tends to
overlap slightly. Generally, there are non-linear behaviors near the floating potential and
plasma potential that must be avoided to minimize the uncertainty due to this method (see
fig. C.11a). Assuming the retardation regime is properly sampled, the simplest way of
avoiding the non-linear segments of the linearized electron current is to fit the currents that
correspond to potentials ranging from

VF +
1

4
(VP − VF ) ≤ φ ≤ VP −

1

4
(VP − VF ) .

This range effectively fits the electron retardation region with a 25 % spread above and
below the midpoint between the plasma and floating potentials. As shown in fig. C.11b, a
ratio of 0.25Te or below is the ideal voltage step size for a proper fit, but a voltage step size
of 0.5Te would be the absolute upper limit for applying this method. LP I-V curves were
modeled using the retarded electron current (eq. 2.13) over a range of electron temperatures
(0.1 eV to 1 eV). The minimum number of measurements in the fit are then averaged over
all temperatures for each ratio.

C.5.4 Single Point Method
The single point method takes advantage of the exponential behavior of the retarded
electron current. The first derivative of the current is also exponential, just like the
calculated electron current, and so the electron temperature is given by the ratio of the
electron current and its first derivative [214] (eq. C.31).

Ie (φ)
dIe(φ)
dφ

∣∣∣∣∣
φ=VP

=
Ietherm exp( φ

Te
)

Ietherm
Te

exp( φ
Te

)

∣∣∣∣∣
φ=VP

= Te (C.31)

The ratio is evaluated specifically at the plasma potential such that the exponentials are
both 1.
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C.5.4.1 Systematic Uncertainties

The uncertainty of the single point method is given by

σTe =

√√√√√√
 σIe(φ)
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dφ

∣∣∣∣∣
φ=VP

2
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)2
∣∣∣∣∣∣∣
φ=VP


2

(C.32)

C.5.4.2 Minimum Uncertainty due to Method

As is generally the case with single point methods, the single point method for determining
electron temperature has high uncertainties and should be used as a rough estimate at
best. Even when the step size of the potential is a quarter of the electron temperature,
the minimum uncertainty can be as high as 20 % at the larger electron temperatures that we
considered (see fig. C.12). LP I-V curves were modeled using the retarded electron current
(eq. 2.13) and the accelerated electron current (eq. 2.11) for the thick sheath condition over
a range of electron temperatures (0.1 eV to 1 eV). The minimum uncertainties for both
cases are then averaged over all temperatures for the same voltage step size ratio.

Figure C.12: Minimum uncertainty of the single point method as a function of step size
relative to electron temperature.

C.5.5 EEDF Method
The final temperature determination method analyzes the electron energy distribution
function. In the 1930s, Druyvesteyn determined that, for isotropic distribution functions,
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the retarded electron current is related to the energy distribution function as follows [215]

f (ε) =
2

q2Ap

√
2m (−φ)

q

d2I

dV 2
(C.33)

where ε is the particle energy. Since the electron energy distribution function is
Maxwellian, the second derivative of the calculated electron current must be compared to
the energy-dependent form of the Maxwellian distribution,

f (ε) =
2

T
3
2
e

√
ε

π
exp

(
− ε

Te

)
. (C.34)

To determine the electron temperature:

1. Calculate the second derivative of the calculated electron current.

2. Evaluate eq. C.33 and normalize it by its peak.

3. Fit eq. C.34, when normalized by its own peak, to the normalized form of eq. C.33.

C.5.5.1 Systematic Uncertainties

Since all equations are normalized, the systematic uncertainty is due purely to the plasma
potential measurement’s uncertainty, the error in the fit, and the error in the sourced
voltage. To calculate the error, a Monte Carlo method is used to vary the plasma potential
and sourced voltage, within their respective limits due to its uncertainty. Then the total
uncertainty is

σTe =
√
σ2
Vp

+ σ2
φ + σ2

fit (C.35)

where σVp is the standard deviation of the electron temperature due to the error in the
plasma potential, σφ is the standard deviation of the electron temperature due to the error
in the sourced potential, and σfit is the standard error of the mean of all of the fits used in
the Monte Carlo method.

C.5.5.2 Minimum Uncertainty due to Method

Figure C.13 demonstrates the minimum uncertainty of EEDF fit method over a range of
ratios between the voltage step size and the electron temperature. As has been the case
with all other methods, for voltage step sizes greater than half an electron temperature, the
minimum uncertainty grows dramatically. At 0.5Te the minimum uncertainty is roughly
12 %; however, voltage step sizes at half of a Te are the extreme upper bound of this method.
To achieve a minimum uncertainty of 6 %, the bias must be roughly 0.25Te, and a 2 %
minimum uncertainty is achieved at a bias of roughly 0.2Te. This method doesn’t improve
much for voltage step sizes smaller than 0.2Te.
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Figure C.13: Minimum uncertainty of the EEDF fit method as a function of the ratio
between the potential step size and electron temperature.

LP I-V curves were modeled using the retarded electron current (eq. 2.13) over a range
of electron temperatures (0.1 eV to 1 eV). The minimum uncertainty for both cases are then
averaged using a moving average filter with a window size of 1 % of the total number of
calculated percent errors. The error bars are calculated using a moving standard deviation
filter with the same window size.

C.6 Electron Density
The last plasma characteristic to determine is the electron density. Like the ion density and
electron temperature, there are many methods used to determine the electron density with
a variety of assumptions. The methods analyzed here are:

1. Thermal current method: This method determines the electron thermal current to
calculate the electron density.

2. OML current approximation: This method analyzes the electron saturation regime
under orbit motion limited conditions.

3. EEDF method: This method starts by estimating the electron energy distribution
from the calculated electron current and then analyzing the EEDF to determine the
density.

236



C.6.1 Thermal Current Method
The thermal current method determines the electron density through the electron current at
the plasma potential, otherwise known as the electron thermal current,

Ietherm = qApNe

√
kBTe
2πme

∴ Ne =
Ietherm
qAp

√
2πme

kBTe
(C.36)

C.6.1.1 Systematic Uncertainties

This method generally has large uncertainties due to its dependence on both the plasma
potential and the electron temperature. Its systematic uncertainty is
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where the uncertainty of the thermal electron current is related to both the uncertainty of
calculated electron current and the electron current’s dependence on the probe potential.

C.6.1.2 Minimum Uncertainty due to Method

Since this method relies on a single measurement, it is incredibly sensitive to the choice of
electron current. Specifically, the electron current must be evaluated as close to the actual
plasma potential as possible. As seen in fig. C.14, deviations from the plasma potential as
large as one electron temperature above or below the plasma potential results in minimum
uncertainties of 60 %. Furthermore, to achieve about a 10 % minimum uncertainty,
the electron current must be evaluated within 0.1Te of the plasma potential. However,
these constraints are typically difficult to meet as both the plasma potential and electron
temperature have uncertainties that are roughly 20 % each. Additionally, overestimating
the plasma potential results in slightly more accurate measurements, but the difference is
typically 1 % to 2 %.

LP I-V curves were modeled using the retarded electron current (eq. 2.13) and the
accelerated electron current (eq. 2.11) for the thick sheath condition over a range of electron
temperatures (0.1 eV to 1 eV). There was no averaging done for the analysis of this method.
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Figure C.14: Minimum uncertainty of the thermal current method as a function of the ratio
between the probe potential and electron temperature.

C.6.2 OML Current Method
The OML current method analyzes the electron current at least 2Te above the plasma
potential using a model of the form

Ie = qApNe

√
kBTe
2πme

β

(
1 +

φ

Te

)γ
(C.38)

where β ranges from 1.02 to 1.13 depending on the probe radius to Debye length ratio
[216]. γ also varies with this ratio where γ approaches 0 when the radius is much larger
than the Debye length (a thin sheath approximation). For a thick sheath approximation,
γ, would in theory, approach 0.5 and agree with eq. 2.11 in the thick sheath limit for
large voltages. To determine the electron density, two methods are available: 1) a fitting
algorithm and 2) a single point approximation. The procedure for the fitting algorithm is

1. Linearize eq. C.38 by taking the natural logarithm to both sides.

2. Fit a first order polynomial to the linearized form of eq. C.38. γ is the slope
of the line. The intercept of the line provides the β parameter such that
β = exp(yint)/Itherm.

3. Linearize eq. C.38 again by raising both the electron current by a power of γ−1.

4. Fit a first order polynomial to the re-linearized form of eq. C.38. The density is then
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given by

Ne =

√
2πme

q
3
2Apβ

T
γ− 1

2
e αγ (C.39)

where α is the slope of the linearly fit line.

For the single point approximation, γ is again assumed to be 0.5, β = 2/
√
π, and

φ >> Te such that the electron density is approximated as follows
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(C.40)

=⇒ Ne ≈
πIe (φ)
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√
me

2q3φ
(C.41)

C.6.2.1 Systematic Uncertainties

Due to the non-linearity of many of the sources of error, such as the choice of γ, an estimate
of the error can be determined using a Monte Carlo scheme. The varied variables would
be the plasma potential, the electron temperature, the electron current, the sourced voltage,
the probe area, β, and γ.

For the single point method, the systematic uncertainty is
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(C.42)

σφ =
√
σ2
Vinst

+ σ2
VP

where the smallest source of uncertainty is due to the error in the probe area.

C.6.2.2 Minimum Uncertainty due to Method

The OML fit method requires both a large sheath relative to the probe radius, and to fit
a sufficient number of points for biases greater than 2Te. Referencing fig. C.15a, ratios
greater than 30 are sufficiently linear for any temperature above 0.1 eV. Effectively, this
can be thought of as a blurry boundary for current collection that is considered orbit motion
limited, or ”thick sheath”. Figure C.15b, provides an example of log linearization for 3
sheath-to-probe radius ratios. When the current collection is undoubtedly in the OML
region, a ratio of 100, applying a natural logarithm to both sides of eq. C.38 produces
a clearly linear line. However, when the ratio is on the boundary of thin sheath current
collection, a/r = 3, there is still clear curvature after attempting to linearize the current.
LP I-V curves were modeled using the accelerated electron current (eq. 2.11) over a range
of electron temperatures (0.1 eV to 0.5 eV), a range of a/r values that range from 3 to 100.
There was no averaging done for the analysis of this method.
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(a) Measure of linearity due to logarithmic linearization as a function of the ratio between the
sheath and probe radii. A GoF of one is perfectly linear.

(b) Example of linearization for an accelerated electron current with an electron temperature of
0.5 eV. When the sheath to probe radius ratio is too small, there is clear non-linear behavior at
higher voltages.

Figure C.15: Linearizing electron saturation regime using natural logarithms.
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(a) Minimum uncertainty of the OML fit method as a function of the ratio between the probe
potential and electron temperature.

(b) Minimum uncertainty of the OML single point method as a function of the ratio between the
probe potential and electron temperature.

Figure C.16: Minimum uncertainty for estimating electron density using an OML
approximation.

From fig. C.16a, it clear that when properly applied, the OML fit method is incredibly
accurate relative to other methods that are analyzed. At its most uncertain, the minimum
percent error is 4 % and as the ratio increases, the minimum uncertainty asymptotically
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approaches 0 for all temperatures considered. However, both γ and β had to be determined
from the logarithmic linearization to achieve the low percent errors. If a static β is chosen,
the minimum uncertainty will be larger than the minimum uncertainties presented here. LP
I-V curves were modeled using the accelerated electron current (eq. 2.11) over a range of
electron temperatures (0.1 eV to 0.5 eV), a range of a/r values that range from 30 to 100.
The calculated density was then compared to the density used to model the currents. As
before, there was no averaging done for the analysis of this method.

As shown in fig. C.16b, the minimum uncertainty of the OML single point method has
a complex relationship with the ratio between the probe potential and electron temperature
and the actual value of γ. LP I-V curves were modeled using the accelerated electron
current (eq. C.38) over a range of electron temperatures (0.1 eV to 1 eV), a range of γ
values that range from 0 to 1, and β = 2/

√
π. The modeled current and its corresponding

potential were then used to estimate the electron density using eq. C.41. There was no
averaging done for the analysis of this method. When the probe potential to temperature
ratio is 1, the effect of the attractive potential doesn’t overtake random thermal motion,
and so the electron density will always be overestimated. In this scenario, the amount of
overestimation increases with γ where only γ = 0 has a nearly 0 percent error simply
because the modeled current is a straight line whose value is exactly

Ie = qApNe

√
kBTe
2πme

β.

For all values of γ < 0.5, the minimum uncertainty decreases with increasing bias
eventually underestimating the density for sufficiently large attractive potentials. At a ratio
of 20, the range of percent error ranges from 24 % to 78 % for a range of γ values between
0.4 and 0 where the more accurate approximations are for values of γ that approach 0.5.
When γ = 0.5, the minimum uncertainty when φ/Te = 1 is about 44 % and this uncertainty
will asymptotically approach 0 as the potential increases (e.g. at φ/Te = 20, the minimum
uncertainty is roughly 2 %). Finally, for all values of γ greater than 0.5, the percent error
curves will increase with greater accelerating biases; however, there is a local minimum
in all curves corresponding to γ > 0.5. For example, when γ = 0.9, the local minimum
exists at a potential that is 1.25Te, and when γ = 0.6, the local minimum exists when the
potential is 5Te. Ultimately, the OML single point method is best used for reasonably large
potentials relative to the electron temperature when γ is close to 0.5. Otherwise, the method
can be used when the potential is equal to the electron temperature as long as γ < 0.5.

C.6.3 EEDF Method
Just as was done for electron temperature determination, the electron density can be
obtained from the electron energy distribution function. However, while a fitting algorithm
was used to calculated electron temperature, the electron density requires integration of
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the EEDF. As shown by Sudit et. al. the electron density is given by [216]

Ne =

∫ ∞
0

4

qAP

√
meφ

2q

d2Ie
dφ2

dφ (C.43)

C.6.3.1 Systematic Uncertainties

To determine the systematic uncertainty of the EEDF integral method for electron density,
the most straight forward approach is to use Monte Carlo methods. The probe area,
measured current, and φ are all varied within their respective uncertainties and the electron
density is calculated for each individual iteration. The error in the electron density is the
the square root of the sum of squares of the standard deviation in electron density due to
variations in each variable. The largest source of uncertainty is due to φ, whose uncertainty
depends on both the sourced voltage and the error in the plasma potential.

C.6.3.2 Minimum Uncertainty due to Method

Figure C.17: Minimum uncertainty of the EEDF integral point method as a function of the
ratio between potential step size and electron temperature.

As expected, a voltage step size that is less than or equal to 0.25Te is necessary for proper
application of the EEDF integral method (refer to fig. C.17). Above this limit, the integral
method will increasingly underestimate the density, due to undersampling of the electron
retardation regime. LP I-V curves were modeled using the retarded electron current
(eq. 2.13) and the accelerated electron current (eq. 2.11) for the thick sheath condition
over a range of electron temperatures (0.1 eV to 1 eV). The minimum uncertainty for both
cases are then averaged using a moving average filter with a window size of 1 % of the
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total number of calculated percent errors. The error bars are calculated using a moving
standard deviation filter with the same window size.
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APPENDIX D

Retarding Potential Analyzer Analysis with
Uncertainties

Here we present a full analysis of RPA sweeps that have been generalized for a
non-magnetic, drifting plasma, in the absence of additional current sources such
as secondary electron emission. The method detailed in this appendix can be
programmatically applied.

Figure D.1: Retarding potential analyzer mechanical drawing. Image adapted from
McTernan et. al. [173, p. 3893].

The RPA used to study the plasma’s ion energy distribution function is composed of
four grids and a collector plate, as shown in fig. D.1. The first grid is the grounded grid,
and it minimizes the effects of the internal electric fields of the RPA on the quasi-neutral
plasma. The second grid, the electron suppression grid (E.S.), is biased negative of the
plasma to reject any electrons, and ensure that only ions are collected by the collector
plate. The E.S. grid is followed by the discriminator grid. This grid is biased from 0 V
to a sufficiently positive potential such that the collected current is 0 A. At this positive
voltage, all ions are fully suppressed and the entire ion energy distribution function has
been sampled similarly to how an electron energy distribution function is sampled using a
Langmuir probe. The final grid is the secondary electron suppression (S.E.S.) grid. This is
typically the most negatively biased grid in the set, whose function is to repel any secondary
electrons emitted from the collector plate’s surface due to ions colliding with the plate.

An RPA is crucial in understanding the energy distribution function of the ion
population. While it isn’t possible to determine the mass of the ions, it is possible
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to determine the ion drift velocity and temperature with known ion mass. In the case
of multiple ion populations, an estimate of the magnitude of the contribution of each
population to the total ion current can also be made.

Just like in appendix C, the method described in this appendix has two uncertainties:
1) the method’s intrinsic uncertainty and 2) systematic uncertainties. The square root of
the sum of squares of these uncertainties determines the total uncertainty for the method
(eq. D.1)

σTotal =
√
σ2
method + σ2

systematic (D.1)

Furthermore, the instrumental uncertainties affect all methods, as they are properties
of both the measured current and the sourced voltage. A National Instrument’s data
acquisition system was used to measure the currents to the collector plate. A high voltage
power supply in conjunction with a voltage divider was used to sweep the discriminator
grid. The instrumental uncertainties of the measured current and sourced voltage are
estimated to be 1 % of the value, such that

σVinst = Vmeasured ∗ 1%

σIinst = Imeasured ∗ 1%

A typical RPA analysis procedure broadly looks as follows:

1. Use a smoothing algorithm to minimize the effects of noise. A Savitsky-Golay
algorithm is typically sufficient with a window size of 10 % to 15 % of the total
number of points and a polynomial of order 4 [206, 207].

2. Adjust the discriminator bias by subtracting the ambient plasma potential. This shifts
the reference from chamber ground to the ambient plasma.

3. Take the first derivative of the measured current with respect to the adjusted bias.

4. Normalize the derivative by its greatest peak.

5. Determine the bias at the highest peak; this is the ion drift energy of the main
population.

6. Determine the full-width half maximum of the main ion peak to estimate the ion
temperature.

7. Fit a normalized drifting Maxwellian model (eq. D.4) to the main peak. This validates
the estimated ion temperature.

8. Use the unnormalized magnitude of the main peak to estimate the ion density this
distinct population.
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9. Search the first derivative at potentials below and above the primary peak for
additional peaks. For instance, in the presence of charge exchange (CEX) ions, there
will be a second peak at potentials below the primary peak, as long as the primary
peak is due to a drifting ion population. A method of determining whether additional
peaks exist would be as follows:

(a) Reflect the normalized first derivative over the x-axis and add 1 to the full
distribution. This converts any local minimum in the distribution, referred to
as valleys, to local maximum in the reflected case.

(b) Use a peak finding algorithm, such as MATLAB’s findpeaks function [169], to
find local maxima in the reflected derivative and their corresponding potentials.

(c) If any valleys exist, search for peaks in the original normalized first derivative
at potentials below the valley, if the valley exists at a potential below the main
peak; and at potentials above the valley, if the valley exists at a potential above
the main peak.

10. If a second peak exists, determine the potential of the peak.

11. Determine the full-width half maximum of the secondary ion peak and fit a drifting
Maxwellian model to the peak to determine its ion temperature.

12. Use the amplitude of the second peak to estimate the ion density of this additional,
distinct population.

13. Calculate the ratio of the ion density of each population to the total ion density. This
is an estimate of how prominent each ion population is in the total ion distribution.

The magnitude of the unnormalized peaks can be used to estimate the ion density using
the equation described by Feng et. al. [217], as shown in

Ni = − 1

q2ηAp

√
πmikBTi

2

(
dI

dφ

)
Max

(D.2)

where η is the transparency of the RPA (assumed to be 1 in this appendix). For this
analysis, currents due to oxygen ions are modeled as if they are collected by a planar
plate using eq. 2.7. Drifting ions have a drift energy of 5 eV and a temperature that ranges
from 0.1 eV to 0.5 eV. Charge exchange ions have an ion drift energy near 0.5 eV and
an ion temperature that is half of the temperature of drifting ions (refer to discussion
in section 5.3.2 for examples of IEDFs with two ion populations and how CEX attain
non-negligible drift energies).

D.1 Single Peak Population
The single peak population will generally be the cleanest measured single and so the
analysis method is relatively straightforward. The ideal measured current and first
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(a) Modeled ion current for an ion distribution composed of only oxygen
drifting at 5 eV.

(b) Modeled ion distribution for singly ionized oxygen drifting at 5 eV.

Figure D.2: Ideal I-V characteristics of RPA measurements of a single drifting ion species.

derivative for an oxygen ion drifting at 5 eV is shown in fig. D.2. In this scenario,
the amplitude will always be one, as the normalization factor is the magnitude of the
peak as determined by the fourth step in the procedure detailed above. The ion drift
energy is then given by the potential that corresponds to the peak of the distribution.
The only measurement that is left to calculate is the ion temperature. The full width
half maximum (FWHM) of the normalized distribution can be used to estimate the ion
temperature as follows
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0.5 = exp

− mi

2qTi

[√
2qφ

mi

− vi

]2
log(0.5) = − mi

2qTi

[√
2qφ

mi

− vi

]2

=⇒ Ti = − mi

2q log(0.5)

[√
2qφ

mi

− vi

]2
. (D.3)

There are two potentials, φ, that satisfy the requirement for the full width half
maximum of the distribution; therefore, the average of the estimated temperatures from
both potentials should be used when possible. Furthermore, it is difficult to have a value
at exactly 0.5 in the first derivative; in practice, it is best to use whichever potentials are
closest to the 0.5 value and then use a nonlinear fitting algorithm to fit a peak-normalized
drifting Maxwellian model to the top half of the distribution to obtain a more accurate ion
temperature, shown in eq. D.4,

Inorm (φ) = A exp

− mi

2qTi

[√
2qφ

mi

− vi

]2 (D.4)

where A is the amplitude of the distribution and vi is the ion drift speed in m s−1.

D.1.1 Systematic Uncertainties
The systematic uncertainties of the ion drift speed and temperature have a non-linear
relationship with the underlying instrumental uncertainties. Therefore, a Monte Carlo
scheme where the plasma potential, measured currents, and sourced voltage are varied
within their respective uncertainties is required. The total error is then the square root
of the sum of squares of the standard deviations of the calculated temperature due to
uncertainties in the measurements.

D.1.2 Minimum Uncertainty due to Method
Figure D.3 shows the minimum uncertainty of ion property measurements as a function of
bias step size normalized by the ion temperature. The minimum uncertainty is obtained by
averaging the percent errors for every ratio. The error bars are the standard deviation for
each ratio. The main source of error for a single drifting ion distribution function will not
come from uncertainties in the method, but rather systematic uncertainties, as the minimum
uncertainty in the model will be below 3 % for both temperature and drift speed. If only
the charge exchange ions are modeled, the uncertainty in drift speed peaks at roughly 15 %,
but is below 5 % when the step size is a quarter of the ion temperature. Similarly, the
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(a) Minimum uncertainty for the drift speed
measurement of a single drifting population
IEDF.

(b) Minimum uncertainty for the temperature
measurement of a single drifting population
IEDF.

(c) Minimum uncertainty for the drift speed
measurement of a single CEX population IEDF.

(d) Minimum uncertainty for the temperature
measurement of a single CEX population IEDF.

Figure D.3: Minimum uncertainty of ion properties measured by an RPA when a single ion
population is present.

ion temperature estimates are more uncertain for CEX ions than drifting ions. When the
voltage step size is half of the CEX ion temperature, the minimum uncertainty peaks at
3 %, and the minimum uncertainty is below 1 % when the step size is a quarter of the ion
temperature. Therefore, the model presented in eq. D.4 has more difficulty fitting the ion
distribution for ion populations of lower drift energies.

D.2 Mixed Ion Distribution
An example of the possible current and first derivative of collected ions due to an ion
population that is composed of 75 % drifting ions and 25 % charge exchange ions is
shown in fig. D.4. In reality, these curves will vary greatly depending on individual
ion temperatures, drift speeds, and the ion population’s prominence in the total ion
distribution. The first drop in in the current shown in fig. D.4a is mainly due to the
CEX ions being discriminated and the second drop is due to the main drifting population
being discriminated. In the first derivative (see fig. D.4b), there are two distinct peaks
corresponding to CEX ions and a main drifting population with a valley in between the
two peaks. The relative magnitude of each peak does not correspond to the fraction of the
composition they make up in the total current due to their differences in ion temperature
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(see discussion in appendix D.2.2).

(a) Modeled ion current for an ion distribution composed of a drifting
Maxwellian population mixed with a CEX ion population.

(b) Modeled first derivative for an ion distribution composed of a drifting
Maxwellian population mixed with a CEX ion population.

Figure D.4: Ideal I-V characteristics of RPA measurements of a drifting ion species and a
smaller CEX ion population.

D.2.1 Systematic Uncertainties
The systematic uncertainties of the ion drift speed and temperature have a non-linear
relationship with the underlying instrumental uncertainties. Therefore, a Monte Carlo
scheme must be performed where the plasma potential, measured currents, and sourced
voltage are varied within their respective uncertainties. The total error is then the square
root of the sum of squares of the standard deviations of the calculated temperature due to
uncertainties in the measurements.
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D.2.2 Minimum Uncertainty due to Method
To begin, for this discussion, ”amplitude” is the fractional percent of the ion density that
corresponds to a particular population of ions. For instance, the amplitudes of an ion
population whose density is 25 % CEX ions and 75 % drifting ions would be 0.25 and
0.75, respectively. Using this definition, the magnitudes of the peaks in the full distribution
do not correlate with the percentage of the ion current that corresponds to the individual ion
population. The ratio of temperature between the charge exchange ions and the main drift
population drastically affects the magnitudes of the peaks relative to one another. As shown
in fig. D.5a, the minimum uncertainty of the amplitude is related to the ratio of CEX and
drifting ion temperatures. The smaller the ratio, the more uncertain the the estimates of the
amplitude become. When the CEX ion temperature is a factor of 100 less than the main drift
species, the average uncertainty in the amplitude of the main drift population approaches
75 % underestimation, while the uncertainty of the amplitude for CEX ions approaches
150 %. Therefore, both the magnitude of the peaks and the individual ion temperatures
must be taken into account to determine the amplitude of each ion population. Using
eq. D.2, the individual densities of each population can be calculated and the amplitude
would then be the ratio between the individual ion density and the total ion density, shown
here as

Aj =
Nj∑N
j=1Nj

, (D.5)

where Aj is the amplitude of the ion population, Nj is the ion density of the ion population,
and N is the total number of distinct ion populations, typically 1 or 2 for this work,
depending on the prevalence of the CEX ion population. Figure D.5b shows the calculated
amplitudes using eq. D.5 and is the proper method to use, as the minimum uncertainty is
approximately zero regardless of temperature ratio. Even when the potential step size is
on the order of the CEX ion temperature, the minimum uncertainties of the amplitudes
are roughly 2 % (refer to fig. D.5c). Therefore, the uncertainties of the amplitudes will be
dominated by systematic uncertainties due to the error of the measured current and changes
in the distribution due to filtering the data.

When analyzing the peaks for ion drift speed and ion temperature, two cases were
studied: 1) a case where the ion distribution is originally 25 % CEX ion and 75 % drifting
ions and 2) a case where the ion distribution is originally 50 % CEX ion and 50 %
drifting ions. Figures D.6 and D.7 demonstrate the minimum uncertainties for various ion
speeds and temperatures, which are plotted as a function of voltage step size normalized
by the CEX ion temperature. The minimum uncertainty is obtained by averaging the
calculated percent errors at each ratio and the error bars are the standard deviation. The
peak uncertainty for CEX ions reaches 15 % regardless of whether it was the main peak
(fig. D.7a) or the secondary peak (fig. D.6c). The uncertainty in the ion drift speed for a
drifting Maxwellian ion population remains below 2 %. In terms of temperature estimates,
for drifting ions, the minimum uncertainty in the temperature reaches a maximum of
roughly 10 %. Similarly, the minimum uncertainty for the temperature measurements
of CEX ions remains near 10 % when it is the secondary peak and 5 % when it is the
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(a) Minimum uncertainty of the measured amplitudes of
the ion distributions using only the relative size of the
amplitudes as a function of temperature ratios and preset
amplitude.

(b) Minimum uncertainty of the measured amplitudes of
the ion distributions using the ratio of calculated densities
as a function of temperature ratios and preset amplitude.

(c) Minimum uncertainty of the measured amplitudes of
the ion distributions using the ratio of calculated densities
as a function of voltage step size normalized by CEX ion
temperature.

Figure D.5: Minimum uncertainty of amplitude of distribution under various constraints.
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(a) Minimum uncertainty of ion drift speed of
the main ion population.

(b) Minimum uncertainty of ion temperature of
the main ion population.

(c) Minimum uncertainty of ion drift speed of
the secondary ion population.

(d) Minimum uncertainty of ion temperature of
the secondary ion population.

Figure D.6: Minimum uncertainties of the properties of each ion energy distribution
functions composed of 25 % CEX and 75 % main population.

primary peak, at voltage step sizes that are less that half the ion temperature of the CEX
ion population.

There is some interdependence between the uncertainties of each ion population due
to the fact that as the CEX ions are being discriminated, the very low-energy tail of the
drifting ions are also being discriminated. As a result, the IEDF of the CEX ions are being
affected by low-energy tail of the drifting Maxwellian. Similarly, the high-energy tail of
the CEX IEDF affects the low energy portion of the drifting Maxwellian IEDF. A possible
solution to the issue of cross-contamination is to limit the fitting bounds on the side where
the distribution mixing occurs. For instance, in the case of fitting CEX ions, the upper
bounds of the fit would be restricted by some potential below the valley.
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(a) Minimum uncertainty of ion drift speed of
the main ion population.

(b) Minimum uncertainty of ion temperature of
the main ion population.

(c) Minimum uncertainty of ion drift speed of
the secondary ion population.

(d) Minimum uncertainty of ion temperature of
the secondary ion population.

Figure D.7: Minimum uncertainties of the properties of each ion energy distribution
functions composed of 50 % CEX and 50 % main population.
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