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ABSTRACT 

Neuronal spiking activity carries information about our experiences in the waking world 

but exactly how the brain can quickly and efficiently encode sensory information into a 

useful neural code and then subsequently consolidate that information into memory 

remains a mystery. While neuronal networks are known to play a vital role in these 

processes, detangling the properties of network activity from the complex spiking 

dynamics observed is a formidable challenge, requiring collaborations across scientific 

disciplines. In this work, I outline my contributions in computational modeling and data 

analysis toward understanding how network dynamics facilitate memory consolidation. 

For experimental perspective, I investigate hippocampal recordings of mice that are 

subjected to contextual fear conditioning and subsequently undergo sleep-dependent fear 

memory consolidation. First, I outline the development of a functional connectivity 

algorithm which rapidly and robustly assesses network structure based on neuronal spike 

timing. I show that the relative stability of these functional networks can be used to identify 

global network dynamics, revealing that an increase in functional network stability 

correlates with successful fear memory consolidation in vivo. Using an attractor-based 

model to simulate memory encoding and consolidation, I go on to show that dynamics 

associated with a second-order phase transition, at a critical point in phase-space, are 

necessary for recruiting additional neurons into network dynamics associated with memory 

consolidation. I show that successful consolidation subsequently shifts dynamics away 

from a critical point and towards sub-critical dynamics. Investigations of in vivo spiking 

dynamics likewise revealed that hippocampal dynamics during non-rapid-eye-movement 

(NREM) sleep show features of being near a critical point and that fear memory 

consolidation leads to a shift in dynamics. Finally, I investigate the role of NREM sleep in 

facilitating memory consolidation using a conductance-based model of neuronal activity 

that can easily switch between modes of activity loosely representing waking and NREM 

sleep. Analysis of model simulations revealed that oscillations associated with NREM 
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sleep promote a phase-based coding of information; neurons with high firing rates during 

periods of wake lead spiking activity during NREM oscillations. I show that when phase-

coding is active in both simulations and in vivo, synaptic plasticity selectively strengthens 

the input to neurons firing late in the oscillation while simultaneously reducing input to 

neurons firing early in the oscillation. The effect is a net homogenization of firing rates 

observed in multiple other studies, and subsequently leads to recruitment of new neurons 

into a memory engram and information transfer from fast firing neurons to slow firing 

neurons. Taken together, my work outlines important, newly-discovered features of 

neuronal network dynamics related to memory encoding and consolidation: networks near 

criticality promote recruitment of additional neurons into stable firing patterns through 

NREM-associated oscillations and subsequently consolidates information into memories 

through phase-based coding. 
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Chapter 1  

Introduction 

 

 As we transverse through our waking lives, we observe our local surroundings, 

process the information we gather through our senses, and make decisions based on input 

we receive. Often, our decisions are guided by our memories, prior experiences that shape 

the way we process and respond to incoming information. How are these memories 

formed? What gives our memories their longevity and our ability to recall them seemingly 

at will? These are long-standing questions in the field of neuroscience and considerably 

shaped the work I present here. 

It is widely held that memories are constructs of neural activity in the brain: neurons 

are excitable cells that connect to form networks and subsequently processes information 

by generating patterns of electrochemical activity. Howgvbfever, the exact nature of neural 

activity patterns as they pertain to memory formation and consolidation is still being 

investigated. Paramount to these studies are the modeling and theoretical tools used to 

classify neural activity. Luckily, decades of research in fields like graph theory and 

statistical physics [1] provide a fundamental starting point of analytics, whether it be a 

pseudo-reconstruction of the underlying networks [2] or classifying dynamical state of 

neural activity [3]. These tools and others are becoming ubiquitous in studies of systems-

level neuroscience while the ability to apply these frameworks to a vast array of data raises 

another question: which data should be analyzed to understand memory consolidation? The 

answer is largely dependent on which type of memories are being studied. In the work 

presented here, I focus on sleep-dependent memory consolidation. As I will show, 

dynamics of neural activity during sleep can be greatly different than waking dynamics, 

providing active and necessary mechanisms for memory consolidation.  To begin, it is 

important to understand how neural activity patterns emerge, i.e. through the activations of 

neurons connected in networks. 
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1.1 Neurons and Networks 

Neurons, the primary information processing units in the brain, have semi-

permeable membranes that maintain electrochemical gradients of ions between the 

intracellular space and the extracellular space, resulting in a resting membrane potential 

𝑽𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆 = 𝑽𝒓𝒆𝒔𝒕~ − 𝟔𝟎 𝒎𝑽. Semi-permeable in this context refers to neurons’ 

utilization of transmembrane proteins to help facilitate the blockage and selective passage 

of polar ions and large macromolecules across the membrane. Ion channels, for example, 

are transmembrane proteins that can change their conformation from on open state, where 

a select type of ion can flow into or out of the cell, to a closed state, where ion movement 

across the membrane is not possible. The dynamics of these ion channels and other 

transmembrane proteins govern neural activity [4]. 

As positive ions flow into the cell (or negative ions out of the cell), the voltage 

across the membrane increases and activates (i.e. opens) voltage-gated ion channels 

permeable to sodium (Na+) ions. The intracellular concentration of Na+ is quite low 

compared to the extracellular concentration (5mM inside compared to ~100 mM outside), 

causing a rapid influx of sodium into the cell and resulting in a rapid increase in the 

membrane potential to 𝑽𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆~𝟒𝟎 𝒎𝑽. As voltage continues to increase, sodium 

channels start to inactivate (due to their reversal potentials, the voltage where ionic flux is 

not possible), effectively slowing sodium intake, as voltage-gated potassium (K+) channels 

activate, allowing potassium to flow from the intracellular space outward, along the K+ 

concentration gradient. The result is a rapid decrease in the membrane potential, past the 

resting membrane potential (𝑽𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆 < 𝑽𝒓𝒆𝒔𝒕) called a hyper-polarization. This entire 

process, called an action potential, lasting from initial depolarization to eventual hyper-

polarization, typically takes on the order of a millisecond. Given the large, abrupt 

fluctuations in membrane potential over such a short period of time, action potentials are 

generally referred to as “spikes” of activity. Each time a neuron spikes, its signal is 

propagated to other neurons along anatomical connections called synapses, providing the 

primary input neurons receive and forming expansive neuronal networks [4]. 

1.1.1 Synaptic Connections Form Neuronal Networks 

While neuron morphology varies greatly depending on function and brain region, 

a vast majority of neurons in the brain are so-called “multi-polar”: dendrites receive 
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incoming information and are spatially separated, via the soma of the neuron, from the 

axonal terminals, which send outgoing information to other neurons. The soma is 

commonly implicated as a site of integration (though it is known that already dendrites can 

act as nonlinear integrators of the incoming signals), where incoming signals are summed 

via subcellular mechanisms, producing spikes in axon hillock (the beginning of the axon, 

just past the soma) which subsequently propagate to the axonal terminals and out to 

dendrites of post-synaptic neurons. Connections, called synapses, between neurons thus 

predominantly form between the pre-synaptic axonal terminals and the post-synaptic 

dendrites. As a neuron spikes, it releases neurotransmitters into the synaptic cleft which 

can then bind to and activate voltage- and ligand-gated ion channels in the post-synaptic 

neuron, initiating the passage of ions into the post-synaptic neuron. The nature of these 

connections can either lead to subsequent spiking or suppression in post-synaptic neurons 

and relies heavily on whether the pre-synaptic neuron is excitatory or inhibitory.   

Excitatory neurons predominantly release the neurotransmitter glutamate and its 

analogs, which bind to N-methyl D-aspartate receptors (NMDARs) and α-3hydroxy-

5methyl-4-isoxazoleproprionic acid receptors (AMPARs) on the post-synaptic cell, each 

of which permits cationic flux  into the neuron (Na+ through AMPARs and Ca2+ through 

NMDARs) and out of it (K+ in both NMDARs and AMPARs). Though both these ion 

channels help facilitate excitatory synaptic connections, the timescales on which they act 

and the mechanisms they facilitate vary. AMPARs are thought to facilitate rapid signaling 

between neurons (on the order of tens of milliseconds at most): glutamate (or its 

competitive agonist analog AMPA) binds to the receptor, causing a conformational change 

and subsequent ionic flow. NMDARs, on the other hand, are blocked by magnesium (Mg+) 

ions unless the postsynaptic neuron is depolarized to 𝑽𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆~𝟎 𝒎𝑽, in which case 

Mg+ is expelled from the channel and ionic flow through NMDARs can proceed. Given 

that the primary depolarizing agent of a neuron is the activity of other neurons, NMDARs 

are thus activated when both pre- and post-synaptic neurons are active, indicating the 

importance of NMDARs in the relative strengthening and weakening of synaptic 

connections, which will be described shortly [4]. 

Converse to excitatory neurons, inhibitory neurons release the neurotransmitter γ-

aminobutyric acid (GABA), which binds to the respective receptors (GABARs) on the 
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post-synaptic neuron, leading to a signaling cascade which eventually causes a 

conformational change and a rapid influx of the negatively charged Chloride (Cl-) into the 

post-synaptic neuron, effectively lowering the membrane potential. The characteristic 

timescale of GABARs varies drastically depending on whether the receptor is ionotropic 

or metabotropic. Ionotropic receptors activate (possibly in a voltage-dependent manner) on 

the direct binding of a ligand to a receptor and lead to the direct flow of ions into or out of 

the cell. Metabotropic synapses, on the other hand, involve a much more complicated 

signaling mechanisms and act on the order of 100 milliseconds to seconds or longer, but 

aid in the diversity of synaptic signaling and contribute to important cognitive processes. 

In metabotropic synaptic signaling, ligands released pre-synaptically bind to post-

synaptic receptors and initiate a signaling cascade involving g-proteins and second 

messengers. Eventually, these second messengers bind to post-synaptic ligands 

intracellularly, causing those receptors to undergo a conformational change and subsequent 

flow of permeable ions along their concentration gradients. Metabotropic synapses, like 

ionotropic ones, can be excitatory or inhibitory and include relevant ligands such as 

serotonin (responsible for happiness), dopamine (implicated in reward feedback), 

acetylcholine (important for attention), and others. Taken together, ionotropic and 

metabotropic synapses support a multitude of signaling mechanisms between neurons and 

give the neurons great control over how and under which circumstances electrochemical 

activity is communicated. Going further, these connections can strengthen and weaken in 

time, referred to as synaptic plasticity, a process thought to be crucial for memory 

encoding. 

1.1.2 Plasticity: The Strengthening and Weakening of Synaptic Connections 

Decades of research support that neuronal networks are not static. Not only can new 

connections form and old connections be pruned, but the efficacy of existing connections 

can also be modified through plasticity mechanisms. From a biophysical perspective, there 

are multiple mechanisms that modify synaptic efficacy, effecting both the pre-synaptic 

terminals and post-synaptic dendrites. In post-synaptic neurons, plasticity can increase 

(potentiation) or decrease (depression) the number of available receptors, leading to a 

correlative size change in synaptic spine density [5]. NMDARs play a vital role in this 

process: as both pre- and post-synaptic neurons spike within a small time window of each 
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other, Ca2+ influx through unblock NMDARs in the post-synaptic cell aid in the trafficking 

of additional AMPARs into the post-synaptic membrane. In pre-synaptic neurons, 

feedback from post-synaptic neurons induces plasticity by increasing the number of 

neurotransmitters produced and released [6]. 

Plasticity can thus affect both the pre-synaptic axonal terminals and post-synaptic 

dendrites, but what dynamical mechanisms facilitate plasticity in the first place? Much 

evidence indicates that the relative spike timings between neurons play a major role in 

plasticity as it relates to information encoding [7, 8]. This process, called spike-timing 

dependent plasticity (STDP), dictates that the spike-timing between pre- and post-synaptic 

neurons, along with the order the spikes occur, determines whether a synaptic connection 

is strengthened or weakened. Evidence has shown that STDP has an active time window 

around 60 ms, where a pre-synaptic neuron firing before a post-synaptic neuron leads to a 

net increase in the synaptic weight; by comparison, the opposite ordering of spikes (post- 

before pre-) leads to a net decrease in the synaptic weight [7].  Other experiments suggest 

that plasticity rules change based on neuron firing rate [8] and differ between excitatory 

and inhibitory neurons [9]. Regardless, activity-based plasticity is thought to be evidence 

of Hebbian plasticity, that neurons who fire together, wire together [10], forming a neural 

correlate of memory. 

1.1.3 Synaptic Plasticity and Memory Formation 

Hebbian Plasticity plays a vital role in information encoding, preferentially 

strengthening connections among neurons that are co-active in time, called memory 

engrams, and are thought to represent a locale of memory. Early studies on the engram 

found that memories are widely distributed, so much so that removing targeted brain 

regions are not necessarily sufficient to block memory recall [11]. Recent studies using 

sophisticated biophysical techniques indicate that memory can be identified by a small 

group of neurons that reliably activate over extended periods of time during memory 

encoding and recall [12]. In this context, these identified neurons represent only a 

subsection of the distributed engram: the impermanence of synapses through plasticity 

[13], along with the confirmed recruitment of new neurons into an engram [14-16] show 

the robustness of an engram. Activity patterns of vast networks are thus responsible for 

encoding information and partial reconstruction of the activity pattern may be sufficient to 
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successfully reconstruct the full pattern, leading to a recall of the encoded memory, and 

thus forming a type of dynamical attractor [17]. This type of associative recall is familiar 

to most people, for example when smelling a certain type of food and remembering the 

restaurant you ate that food in, and who you were dining with.  

While a definitive explanation of how engrams are formed and consolidated is still 

lacking, it is obvious that neural activity is at the heart of the problem. What is it about the 

activity that permits plasticity-induced engram formation? How are various forms of 

activity classified? Do different dynamical classes of activity neuronal patterns provide 

differential mechanisms for memory consolidation and/or mediate different aspects of 

memory formation? These outstanding questions outline the importance of developing 

theoretical frameworks for understanding neural activity, including classifying the 

dynamical state of activity, how effective networks based on that activity arrange and 

subsequently help coordinate activity to form new memories. 

1.2 Dynamical States and Processes of Neural Activity Mediating Memory 

Formation 

 The brain represents a complex system of neuronal units that interact so that we 

may understand the world around us. From the point of view of activity dynamics, it is not 

fully understood how this occurs. Many theories exist which help explain how we are able 

to convert perceptions into neural activity, forming long-lasting memories, and doing so in 

an efficient manner. In the following, I outline two of these phenomena: self-organized 

critical dynamics in neural activity and the role of synchronization and oscillations in 

information encoding. 

1.2.1 Self-Organized Criticality: A Dynamical Classification of Neuronal Activity 

Classification of system dynamics was first introduced through statistical 

mechanics to describe the relative behavior of atoms in various stages of matter (i.e. solid, 

liquid, water, etc.) and so borrows many of its formalisms and concepts from that field. 

Chief among classification schemes, criticality has emerged as a ubiquitous description of 

the dynamical state of many systems, ranging from granular matter [18] to earthquakes 

[19] and neuroscience [3]. Criticality refers to system proximity to an unstable fixed point 

(or phase) in the system, where even slight deviation in constraints results in phase space 

can result in significantly different behavior, depending on the direction of deviation. In 
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water, for example, a critical point exists at the triple point [1], where deviation in volume, 

pressure, or temperature dictates if the water attains liquid, solid, or gaseous phase. At this 

critical point, water exists in each phase and in fact the size of each pocket of each phase 

arrange as power laws, indicating independence from a characteristic length scale. These 

changes occur simultaneously, but randomly, throughout the water and are thus said to 

have long-range correlations. 

In the 1980’s, criticality emerged as an explanation for pink noise in dynamical 

granular  systems, showing that bursts of activity, termed avalanches, arrange as power 

laws [18]. This description of critical dynamics eventually was used to show that bursts of 

neural activity in cortical slices likewise arrange as power laws [3], indicating that neural 

activity may be distinctly positioned at a phase transition between other, non-critical states. 

This raises two important questions: (1) What are the characteristic difference between 

critical and non-critical dynamics class and (2) what benefit would critical dynamics lend 

to the brain?  

To answer the first question, critical dynamics are typically distinguished between 

subcritical and supercritical dynamics. In terms of neuronal avalanches, subcritical 

dynamics produce small, temporally separated bursts of activity, indicating potentially 

random spiking among neurons and subsequently diminished signal propagation through a 

network. Supercritical dynamics, on the other hand, represent an “over-activation” of the 

system, where neuronal firing occurs nearly simultaneously between neurons. Hence, 

critical dynamics are thought to separate random firing states from completely 

synchronized firing states, and are often characterized as asynchronous and irregular but 

not random. But what benefit would such dynamics provide to neuronal networks? The 

answer to this question has driven exploration of the critical brain for nearly two decades. 

The seminal work by JM Beggs and D Plenz [3] showed that information transfer 

between neurons is maximized near criticality. Subsequent studies showed that critical 

dynamics provide a host of other benefits pertaining to neural computations, including 

increased metastable dynamics [20], increased dynamic range [21], maximized 

information storage capacity [22], increased complexity of spiking relationships among 

neurons [23], and that critical dynamics may help mediate temporal filtering of information 

[24]. At the same time, opponents of the critical theory of the brain argue that the traditional 



8 

 

means of detecting criticality, namely power-law distributions, can be explained by other 

phenomena or are inherent features of how the data is collected [25, 26]. Still, the field 

continues to progress and attempt to take these criticisms into account. Recent studies 

suggest that the brain may be not critical, but slightly sub-critical [23, 27] and that more 

clear distinctions between dynamical states can be achieved through regression analysis 

[26, 28], in part a response to the aforementioned criticisms. 

Critical dynamics is thus considered by many to be an important feature of 

information encoding [29, 30] and may lead to new insights into how memories are formed 

and consolidated. At the same time, however, the critical theory of the brain doesn’t 

intrinsically account for network-level interactions, which are known to mediate 

information processing. It is with this in mind that we will now consider network-level 

mechanisms, namely synchronization and oscillations, and their role in information 

processing. Namely, we will show in Chapter 3 that universally diverging susceptibility 

and correlation length mediate storage of new memory engrams during presentation of the 

stimulus.  

1.2.2 Oscillations and Synchrony as Dynamical Mechanisms of Binding Neuronal 

Representations 

Up to this point, I have claimed that external representations are internalized by the 

activity patterns of neurons in the brain, but which features of these activity patterns 

mediate information processing? Can individual neurons represent features, propagating 

information through the network one neuron at a time, or are simultaneous interactions 

responsible for binding physical constructs to digital constructs in the brain? This question 

has historically been mired by contention [31-33], with decades of research from the 

inception of neurophysiology supporting a rate-coding phenomenon of individual neurons 

now being upended by evidence of temporal-coding of networks. 

Rate-coding is where neurons or groups of neurons increase their firing rate in 

response to a stimuli, external or internal, and thus act as a representative of information. 

A pioneer study in the 1920s showed for the first time that neurons stimulated by muscles 

increased firing rate as the muscle was extend [34]. Since then, external sensations such as 

sight [35], hearing [36], and touch [37] have been shown to trigger neural activations 

following this scheme (though see the discussion on temporal coding, below). Proponents 
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of rate-coding have argued that it preferentially supports activity-based plasticity, like 

STDP, as evidence has shown that plasticity onset may require bursts of activity [38]. On 

the other hand, studies have pointed out that rate-coding may be insufficient to bind 

external features to neural activity within the cortex due to limits in the number of neurons 

[31, 32]: if one neuron increases its firing rate in the presence of a green apple and another 

for a red cherry, it follows that presentation of a red apple will require the activation of yet 

another neuron and ad infinitum for each object we’ve ever encountered. An alternative 

mechanism, colloquially referred to as temporal coding, proposes that the relative 

coactivation of neurons in time is responsible for binding features of the physical world to 

neural activity. 

Temporal coding schemes assume that the population activity of many neurons 

within a given instant of time facilitates feature binding, i.e. that synchronization among 

the activity of neurons is what encodes information [31, 32]. The time scale of temporal 

coding is generally assumed to be on the order of 10ms or shorter and neurons that are 

consistently mutually active within this time window are said to be synchronized. 

However, the firing of individual neurons can be highly variable over short time scales 

(~seconds), indicating that (1) neurons can participate in many different activity patterns 

and (2) that specific patterns of synchronized activity may collectively representing feature 

binding. In the past few decades, the role of synchronized activity has come to the forefront 

of neuroscience in the form of neuronal oscillations. 

Oscillations in the human brain were first identified in the 1920s [39]. Since then, 

the analysis of neurological recordings across animal species has led to the identification 

of multiple forms of oscillatory activity of neuronal firing. In mammals, biologically 

conserved bands of oscillatory activity have been identified including slow (delta [0.1-

4Hz], theta [4-12Hz], beta [20-30Hz]) and fast (gamma [30-80Hz], sharp-wave ripples 

[120Hz]) rhythms. Generally, slower oscillations are characterized by larger amplitudes 

and therefore indicate a greater number of neurons synchronized over larger spatiotemporal 

extents. Among all oscillatory modes, gamma and theta oscillations are commonly 

associated with feature binding across cortical sites [40, 41], as well as in learning and 

memory [42, 43]. Ongoing evidence suggests the synchronization of various brain rhythms 

(give the examples), called cross-frequency coupling [44], indicating that, while neuronal 
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synchrony produces oscillatory behavior, small groups of individual neurons may “ride the 

wave” of an oscillation, increasing their firing rate and providing precisely timed input at 

particular phases of the main oscillation (possibly forming a link between rate- and 

temporal-coding). This form of temporal coding is often referred to as phase-coding and 

has been most noticeably attributed to the identification of place and grid cells [45], but 

also has been identified in information transfer between brain regions and is thought to be 

important for memory consolidation [46-48]. 

Taken together, while rate-coding has been historically attributed to feature 

binding, the role of temporal-coding through synchronization of spike times and the 

production of neural oscillations has provided much dynamical insight into how 

information is processed, and memories are formed. By switching between oscillatory 

modes, the brain is able to accomplish many different cognitive processes. This dynamical 

switching emerges as a natural process of the sleep-wake cycle, and so elucidating the 

interplay between wake and sleep in memory encoding and consolidation is essential. 

1.3 Sleep – A Behavior Mediating Memory Consolidation 

During periods of wakefulness, neurons throughout the brain increase their spiking 

firing rate in response to different stimuli, both in the peripheral nervous system and in 

subsequent regions (e.g. the visual and auditory cortices) in the brain. It has long been 

known that the corresponding neural activity emerges as high frequency oscillations in the 

gamma band of frequencies (20Hz-80Hz) with low amplitude, indicating a relatively low 

level of synchronization of spike timings among neurons. Still, STDP during wakefulness 

plays an important role in modifying neuronal networks and acts to form an initial memory 

engram, selectively strengthening connections among neurons firing in response to a given 

stimulus. These engrams are internal, network-level representations of synthesized extern 

input, including sensations such as sight, hearing, texture, and smell. However, our waking 

lives are separated by periods of sleep, when processing of external input is diminished, 

and neural activity is governed solely by internal, network-level dynamics. If new 

information is not being processed, then what role is sleep playing in information encoding 

in general? Is it just a passive process, allowing our brains to “turn off” for a while? 

Ongoing work suggests a much more active role of sleep in information processing and 

memory consolidation.  
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1.3.1 Sleep: Not Just a Passive Process 

While neural activity during waking is important for initial memory engram 

encoding, sleep has long been implicated in memory consolidation. Early studies showed 

that declarative memory tasks markedly improved after subsequent sleep [49], and many 

studies since have shown sleep to be vitally important for many cognitive functions, 

supporting memory consolidation and information processing in a variety of processes 

[50].How does this occur? What processes present during sleep help facilitate memory 

encoding and consolidation? There are two leading hypotheses that help to explain the role 

of sleep in memory. 

One hypothesis claims that sleep plays primarily a homeostatic role [51] by 

universally downscaling synaptic connections that were strengthened through activity-

driven plasticity during waking. In this sleep homeostasis hypothesis, important (i.e. highly 

strengthened) connections are maintained relative to “unimportant” connections, 

potentially conserving engrams for future use. This may serve not only to strengthen 

memories but also to prime the brain for subsequent engram formation in subsequent 

periods of wakefulness [50]. However, recent studies in sleep-dependent memories [52] 

have shown that sleep provides a necessary potentiation mechanism, paving the way for a 

potentially more active role of sleep in the formation and consolidation of memories.  

This more active role of sleep is often attributed to another hypothesis, active 

systems consolidation, which posits that features of sleeping dynamics help facilitate 

information transfer between regions of the brain [46, 47], e.g. between the hippocampus 

and neocortex, while simultaneously providing a system state conducive to feed-forward 

memory replay [53]. Accumulating evidence supports active systems consolidation during 

sleep and raises some important questions, namely, what is it about the dynamics of 

sleeping neural activity that promotes memory consolidation? 

1.3.2 Dynamical States of Sleep 

Sleep is generally broken down into two phases, rapid-eye movement (REM) sleep 

and non-REM (NREM) sleep. The most notable macroscopically observable distinction in 

dynamics between the two phases is the change in oscillatory tone: REM sleep, like wake, 

is characterized by gamma oscillations, as well as slower theta oscillations (4-12Hz), while 

NREM sleep is characterized by slow-wave, large-amplitude delta band oscillations (0.1-
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4Hz), indicating a slow, synchronized rhythmicity of neural activity. At the same time 

during NREM sleep, bursts of neural activity called sleep spindles (10-15 Hz range) and 

sharp-wave ripples (>100Hz) are thought to coordinate activations across brain regions 

[46, 48, 54]. How does the brain know to switch between the oscillating regimes in and 

across sleep? One hypothesis is that changes in the biochemical environment may be an 

explanation. In fact, growing evidence supports the role of acetylcholine in governing 

individual neuron and network-level dynamics. 

The relative concentration and production of acetylcholine (Ach) changes between 

waking and the different phases of sleep. During wake, Ach concentration levels are high 

and have been linked to attentive wakefulness and learning and memory [55]. During 

NREM sleep, the concentration of Ach drops significantly but rebounds during REM sleep; 

perhaps not by coincidence, REM sleep is associated with dreaming, where the brain 

simulates waking life. Growing evidence from our lab [53, 56] and others [57] support that 

Ach can have diverse effects on cell excitability, leading to various network-level activity 

features [50]. Ach reduces the slow potassium current through muscarinic acetylcholine 

receptors, effectively increasing the excitability of the neuron and switching input response 

from being T2 in NREM sleep, when Ach is low, to T1 in wake and REM, when Ach is 

high[57]. While the concentration of other neuromodulators also changes during sleep (e.g. 

changes in serotonin), Ach may provide a unique insight into how properties of individual 

neurons produce emergent oscillations via network-level interactions. 

At the same time, the fact that internal networks control brain dynamics during 

sleep has led some to posit that sleep dynamics are viable for being self-organized critical 

states. Indeed, studies show that neural activity during sleep across multiple organisms 

show near-critical dynamics [27, 58], while prolonged periods of wakefulness have been 

shown to disrupt internal dynamics [59]. If true, dynamic criticality during sleep would 

indicate that neural networks benefit from dynamical properties of systems undergoing a 

phase transition in activity: long-range correlations [1], increased dynamical range [21], 

and increased memory storage capacity [22].  

The rich dynamical state of sleep, together with the functional importance it plays 

in cognition, makes sleep an ideal candidate to study how memories are encoded in neural 

activity. One sleep-dependent memory consolidation paradigm, contextual fear 
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conditioning, is an encouraging model system to study, as learning is rapid and relies on 

the dynamics associated with sleep. 

1.4 An Example of Rapid Memory Formation: Contextual Fear Conditioning 

Contextual fear conditioning is a relatively simple, yet powerful training procedure 

that requires only one session. In this training session, mice are taken from their home cage 

and placed in a novel environment. Shortly thereafter, they are given a mild foot shock, the 

fear stimulus to be consolidated to memory. Mice are returned to their home cage for 24 

hours and engage in normal activity: they sleep, eat, explore, etc. Following the 24 hours, 

the mice are reintroduced to the novel environment and monitored for a change in behavior. 

Normally, mice are inquisitive by nature and routinely explore new environments. Upon 

successful consolidation of the foot-shock fear memory, however, mice remember they 

were shocked in the novel environment and no longer explore but instead cower in place. 

This “freezing” behavior is thus a macroscopic observable of successful contextual fear 

memory (CFM) consolidation.  

Numerous studies have shown that CFM is a sleep-dependent memory, 

consolidated within the hippocampus. Disruption of fear memory consolidation is simply 

achieved by sleep depriving the mice for six hours following fear exposure [60]. While 

evidence of a fear memory engram has been demonstrated [12], experts in CFMs seem to 

agree that the memory is distributed from engram to non-engram neurons via synaptic 

connections [61].  

In order to investigate the network level dynamics associated with CFM 

consolidation, collaborators in the Aton lab recorded neural activity from by implanting 

stereotrodes into hippocampal area CA1. These recordings track the activity of a few dozen 

neurons in the 24 hours prior to and following fear training, representing a sparse 

representation of the system. Probabilistically, these recordings don’t include engram cells 

directly, but their effect may be distinguished through a detailed understanding of network-

level activity.  

My PhD work focused on bridging the gap between this network-level activity and 

macroscopic observations of contextual fear conditioning. To this end, I developed 

multiple analytical frameworks in attempt to understand the dynamical context on neural 

activity related to memory consolidation. I likewise employed computational modeling to 
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help provide understanding of these processes not directly available from experimental 

data. I outline my findings in the following chapters. 

1.5 Outline of the Dissertation 

 Taken together, my dissertation focuses on elucidating the network-level dynamics 

and processes that account for memory encoding and sleep-dependent consolidation. In the 

following chapters, I combine computational simulations with characterization of neural 

activity dynamics of both in vivo and in silico spiking data to outline processes that are 

important for memory consolidation. 

 In the second chapter, I discuss a functional connectivity algorithm, called Average 

Minimal Distance, and how the relative stability of functional connectivity can be used to 

inform on memory consolidation. I show that functional network stability (FuNS) can be 

utilized to investigate various forms of dynamical correlates of memory, from 

distinguishing real, anatomical connections from non-anatomical connections, to 

characterizing how initial correlates of memory shape networks dynamics in a 

spatiotemporal manner. This work also features in latter chapters, where I start to identify 

mechanisms related to information encoding and consolidation. This work was originally 

published in the Journal of Neuroscience Methods [62]. 

 In the third chapter, I investigate the role of the dynamical state of neuronal 

networks and successful memory consolidation. I show that so-called critical dynamics are 

an important feature of neuronal activity, as this dynamical regime supports a maximized 

response to incoming information to be encoded and are subsequently required for 

successful consolidation of this information. I go on to show that successful consolidation 

causes a shift in the dynamical state away from criticality and toward a highly stable, sub-

critical regime. Importantly, these features are also identified in experimental recordings 

of hippocampal CA1, indicating that the brain likely utilizes near-critical dynamics in a 

similar way that I show in theory. This work was originally published in the journal 

Entropy [63]. 

 Finally, in the fourth chapter, I elucidate another potential mechanism important 

for sleep-dependent memory consolidation, phase-coding. In this work, I use a 

biophysically realistic model that can account for easy modification of the dynamical state 

of individual neurons in the system. I show that the initial correlates of a memory produce 
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oscillations in the network activity and serve to substantially increase FuNS. Subsequent 

plasticity intervals reveal that neuronal firing rates during periods of high Ach arrange 

neurons by phase in periods of low Ach: high firing rate neurons during waking lead slower 

neurons in terms of their phase-of-firing during an oscillation. By assessing the asymmetry 

of spiking data during bursts of activity recorded in vivo, I show that there is convincing 

evidence of a phase-based coding mechanism present during sleep which helps facilitate 

memory consolidation. 
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Chapter 2   

Functional Network Stability and Average Minimal Distance – A framework to 

rapidly assess dynamics of functional network representations 

 

In this work that I coauthored with Jiaxing Wu, we developed the analytical AMD and 

FuNS frameworks and applied them to surrogate data, simulation data of spiking neural 

networks, and in vivo data recorded from mouse hippocampus. We show how FuNS can 

track global changes in network dynamics related to memory encoding. This work was 

published in the Journal of Neuroscience Methods in 2018 [62]. 

 

 New multisite recording techniques have generated a wealth of data on neuronal 

activity patterns in various brain modalities [64-67]. An unresolved question is how, using 

such data sets, one can correctly identify large-scale network dynamics from populations 

of neurons which either may, or may not, include neurons involved in a particular cognitive 

process of interest. This is due in part to the fact that even high-density recordings sample 

only a sparse subset of the neural system responsible for the modality in question. It is also 

complicated by the inherent separation of temporal scales over which neural vs. behavioral 

measurements occur.  

In response to this question, multiple linear and non-linear techniques have been 

developed over the years to assess functional connectivity between neurons, and to possibly 

infer from it structural connectivity (see for example: [68-75]). More recent approaches 

utilize network theory to establish links between recorded data and the underlying 

connectivity (see for example: [76-99]). The idea is that, by estimating networks based on 

functional interactions, one can potentially gain insight into global dynamics, which reflect 

the general property of the whole network, instead of a specific subset of neurons. While 

all these approaches can provide insightful information, they share some the same 

problems. These methods are often limited by under-sampling (and potentially 
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unrepresentative sampling) of neuronal recordings, and are not optimized for monitoring 

changes in network structure across extended time periods (i.e., those associated with 

behaviors of interest, such as memory formation).  

Here we propose a novel technique that rapidly estimates functional connectivity 

between recorded neurons. Then, rather than characterizing details of the recovered 

network, the metric measures changes in the network dynamical stability over time. The 

technique is based on an estimation of Average Minimal Distance (AMD) between spike 

trains of recorded neurons, a metric which has previously been compared to other 

clustering algorithms [100]. Here, we expand on this work and show that the analytic 

estimation of AMD for the null case, when the two cells are independent, allows for rapid 

estimation of the significance of pairwise connections between the spike trains, without 

need for time-expensive bootstrapping.  

Further, Functional Network Stability (FuNS) is introduced and is monitored over 

timescales relevant for behavior. We show that FuNS measures global change in network 

dynamics in response to localized changes within the network. This, in part, alleviates the 

problem of sparse sampling so prevalent in neuroscience. 

 Below, the statistical underpinnings of AMD and FuNS are detailed. We compare 

AMD and cross-correlation (CC) on both surrogate data and model simulation data. Model 

results show the applicability of AMD and FuNS on excitatory-only networks, as well as 

on mixed networks of excitatory and inhibitory neurons poised near a balance between 

excitation and inhibition, a regime thought to be a universal dynamical state achieved by 

brain networks, resulting in enhanced information processing properties [101-105]. We end 

by analyzing experimental data recorded from the mouse hippocampus during contextual 

fear memory formation. Our results indicate that AMD yields results comparable to that of 

the gold-standard CC, but, importantly, it is orders of magnitude faster and reports 

statistically significant increases in FuNS due to behavioral-based network topological 

changes compared to CC FuNS. 

2.1 Assessing Functional Connectivity via Average Minimal Distance 

Pairwise functional connectivity is estimated using average minimal distance 

(AMD) [100] (Figure 2.1) separating the relative spike times between neurons. AMD is 

calculated as follows:  given the full spike trains {S1, S2, …, Sn} for n neurons within a 
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network, the pairwise functional relationship, FCij, of the ith and jth neurons is evaluated by 

comparing the average temporal closeness of spike trains Si and Sj to the expected sampling 

distance of train Sj (Figure 2.1a). That is, 

𝑨𝑴𝑫𝒊𝒋 =
𝟏

𝑵𝒊
∑ ∆𝒕𝒌

𝒊
𝒌 , 

where Ni is the number of events in Si and ∆𝒕𝒌
𝒊  is the temporal distance between an event 

k in Si to the nearest event in Sj. With AMD measured, the functional connectivity (FC) is 

calculated as 𝑭𝑪𝒊𝒋 = √𝑵𝒊 ∗ (𝑨𝑴𝑫𝒊𝒋 − 𝝁𝒋) 𝝈𝒋⁄ , which is expressed in terms of 

probabilistic significance of connectivity between pair ij. The mean and standard deviation, 

μj and σj, of the expected sampling distance, assuming that the spike trains are independent, 

can be calculated from either: 1) boot-strapping (i.e. randomizing the spike trains multiple 

times and reassessing the AMD for the null hypothesis being statistically independent of 

the two spike trains), or 2) numerical estimation of expected values given the distribution 

of inter-spike intervals (ISIs) on Sj. Hereafter, the analytical method is referred to as “fast 

AMD” and the bootstrapping method as “bootstrapped AMD”. For a system with n 

Figure 2.1: Calculation of AMD and analytical significance. The average minimal distance algorithm calculates shortest 

temporal length between spikes emitted by a neuron to the closest spikes in a reference neuron, looking in either both 

temporal directions (a), or in a single temporal direction (b), e.g. forward in time. The maximal possible distance between 

spikes is either half the interspike interval (c) or the full interspike interval (d), when looking in either both temporal 

directions or a single temporal direction, respectively. The measurements require a collective average timing sequence 

to be below one quarter (bidirectional) or one half the interspike interval (unidirectional) in order to be considered 

significant. 
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neurons, the functional connectivity value between each pair of spike trains is calculated, 

generating an n-by-n Functional Connectivity Matrix (FCM). 

In the fast AMD approach, the maximal distance between an input spike and any 

spike in the spike train to be analyzed is 
𝑰𝑺𝑰𝒊

𝟐
. Then, the expected mean distance between 

spikes in the independent spike trains is 𝝁𝒊 =
𝑰𝑺𝑰𝒊

𝟒
, where ISIi is the corresponding interspike 

interval of spike train i (Figure 2.1b). Calculating the first and second raw moments from 

the maximal distance then yields 𝝁𝟏
𝑳 =

𝟏

𝟒
𝑳 and 𝝁𝟐

𝑳 =
𝟏

𝟏𝟐
𝑳𝟐 for a specific ISI with length L. 

Taking into account the probability of observing an ISI with length L over the recording 

interval T,  𝒑(𝑳) =  
𝑳

𝑻
 , the first and second moment for sampling the whole spike train 

randomly are then 𝝁𝟏 = ∑
𝑳

𝑻
𝝁𝟏

𝑳 =
𝟏

𝟒𝑻
∑ 𝑳𝟐

𝑳𝑳  and  𝝁𝟐 = ∑
𝑳

𝑻
𝝁𝟐

𝑳 =
𝟏

𝟏𝟐𝑻
∑ 𝑳𝟑

𝑳𝑳 , respectively. 

The expected mean and standard deviation of a random spike train are then calculated as 

𝝁 = 𝝁𝟏 and 𝝈 =  √𝝁𝟐 − 𝝁𝟏
𝟐. 

2.1.1 Unidirectional AMD for Causality Detection 

The bidirectional AMD described above (i.e. the temporal distance between spikes 

of two different neurons, measured in either direction) can be extended to be unidirectional 

to identify causality between the two spike trains. In this scenario, the temporal distance is 

measured only forward in time and the mean delay time expected within the null hypothesis 

(i.e. independence of both spike trains) is only set to 𝝁𝒊 =
𝑰𝑺𝑰𝒊

𝟐
, assuming a maximal 

temporal distance equal to the ISI (Figure 2.1c and 2.1d). The calculation of first and 

second moment change accordingly to 𝝁𝟏 =
𝟏

𝟐𝑻
∑ 𝑳𝟐

𝑳  and 𝝁𝟐 =
𝟏

𝟑𝑻
∑ 𝑳𝟑

𝑳 ; the mean and 

standard are then calculated in the same manner as above. 

2.1.2 Functional Stability Matrices (FSMs) and Functional Network Stability (FuNS)  

The fast AMD metric offers critical advantage over the bootstrapped AMD method, 

as well as over the standard CC method, for quantifying functional connectivity measured 

over behaviorally-relevant timescales (i.e., hours to days). It allows rapid analysis of 

functional connectivity that can then be used to link neuronal activity with behavior. 
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The speed of the fast AMD metric is utilized to introduce Functional network 

stability (FuNS) as a way of measuring the dynamics of functional connectivity over time. 

Namely, we want to assess the stability of functional connectivity between the neurons 

within the network rather than to characterize the detailed network connectivity, which, 

again, is usually based on extremely sub-sampled systems. The remainder of this section 

is focused on characterizing the stability metric. Later, we show that changes in stability 

provide information about gross structural changes in the network.  

Calculating the stability of network-wide functional connectivity patterns across 

time requires a division of the data sets into at least two time-windows; the remaining 

theoretical discussion assumes two time-windows for simplicity. The functional 

connectivity matrices are denoted as FA and FB where A and B represent the first and second 

time windows, respectively. The functional stability between these data sets is then 

calculated using cosine similarity, 𝑪𝑨,𝑩 = 𝒄𝒐𝒔 𝜽𝑨𝑩 =
<𝑭𝑨,𝑭𝑩>

√<𝑭𝑨,𝑭𝑨>∗<𝑭𝑩,𝑭𝑩>
, with an absolute 

value of 1 denoting no change (maximum similarity) and 0 indicating great change (no 

similarity; orthogonality) between the time intervals (Figure 2.2a). Functional stability can 

thus be calculated in a pairwise manner across all time bins for a given recording in order 

to generate what we call a functional stability matrix (FSM; Figure 2.2b, see also Figure 

2.8), or only on directly-adjacent time windows (Figure 2.2a), to generate a single measure 

of stability: 𝑭𝒖𝑵𝑺 =
𝟏

𝑻
∑ 𝑪𝒕,𝒕+𝟏

𝑻−𝟏
𝒕=𝟎 . 
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FuNS can also be used to determine the effect behavior has on neural network 

dynamics. In this scenario, stability is calculated before and after the presence of a synaptic 

heterogeneity (see Methods 2.2), 𝑭𝒖𝑵𝑺𝑨,𝑩 and 𝑭𝒖𝑵𝑺𝑪,𝑫, respectively. The significance 

of stability increase over many simulations is then given as a Z-score: 𝒁𝒔 =  (𝝁𝑪,𝑫 −

𝝁𝑨,𝑩) (
𝝈𝑨,𝑩

𝟐

𝑵
+

𝝈𝑪,𝑫
𝟐

𝑵
 )

−𝟏
𝟐

 with values greater than 2 indicating a significant increase in stability 

due to behavioral effects and values less than -2 indicating a significant decrease in 

stability. Here, μ and σ represent the mean and standard deviation of functional network 

stability, respectively, taken over many simulations or recordings. 

2.2 Computer Simulations  

2.2.1 Simulations of Integrate and Fire Networks 

Neural activity is simulated using leaky integrate-and-fire model neurons with 

dynamics given by �̇� = −𝜶𝑽 +  ∑ 𝝎𝒊𝒋𝑿𝒋𝒋 +  𝑰𝝃. 

The summation represents the total input from recently fired (within ~20ms) pre-synaptic 

neurons with connectivity strength 𝝎𝒊𝒋 and input dynamics given by the double exponential  

Figure 2.2: Calculation of Functional Network Stability and Construction of Functional Stability Matrices. a) Given the 

spike time series of neurons (top), the functional connectivity matrices (FCMs) are calculated over each interval (center), 

whereupon FuNS is calculated by measuring the mean cosine similarity between each consecutive time interval (bottom). 

b) Alternatively, similarity can be calculated in a pairwise manner across all time intervals to yield the functional stability 

matrix (FSM). 
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𝑿𝒋 = 𝒆𝒙𝒑(−(𝒕 − 𝒕𝒋
𝒔𝒑𝒌

)/𝟑. 𝟎) − 𝒆𝒙𝒑(−(𝒕 − 𝒕𝒋
𝒔𝒑𝒌

)/𝟎. 𝟑), where 𝒕𝒋
𝒔𝒑𝒌

 represents the timing 

of the last pre-synaptic spike. 

In addition to synaptic input, each neuron receives noisy input 𝑰𝝃 = 𝟎. 𝟏𝟓 +

 𝟏𝟎𝑯(𝝃 − 𝒑), where H is the Heaviside step function, 𝝃 = 𝟏𝟎−𝟓, and 𝒑 ∈ {[𝟎, 𝟏]} is real-

valued, random variable generated at every integration step from a uniform distribution.  

Networks are formed using 1000 excitatory neurons arranged on a ring network. 

Connection densities range from 1.5% to 4.5% of the network population and connection 

weights range from ω = 0.02 to ω = 0.045 unless stated otherwise. The networks are 

initially connected locally and subsequently rewired with probability pr. This parameter is 

varied from zero to unity, changing network topology from completely local connections 

to completely random. Each simulation is completed using the Euler integration method. 

 Additional network are simulated using a mixed population of excitatory/inhibitory 

cells.  In this scenario, connections are completely local (𝒑𝒓 = 𝟎), have a connection 

density of 2%, and synaptic weights are pulled from a uniform distribution 𝝎𝒋𝒊 ∈

{[𝟎, 𝟎. 𝟐]}. These networks follow the same dynamics as the excitatory only networks, 

except that 225 inhibitory neurons are added to the existing networks, evenly spaced among 

the excitatory cells, with inhibitory output connectivity strength 𝝎𝒋𝒊
∗ = −𝜷𝝎𝒋𝒊. The 

variable 𝜷 is used to investigate network dynamics when excitation or inhibition dominate. 

We calculate the ratio of excitation to inhibition, E/I, as the ratio between total excitatory 

to inhibitory synaptic input, averaged over all neurons not in the heterogeneity. Balance 

between excitation and inhibition (E/I ~ 1) occurs at 𝜷 = 𝟑. 𝟎. 

 

2.2.2 Introduction of Synaptic Heterogeneities and Their Long-range Dynamical 

Effects 

Sensory input causes topological changes in anatomical network structure through 

both the strengthening and weakening of synapses [106, 107] as well as through the 

introduction of new synapses [108] and depletion of unused synapses [109]. Here, we focus 

solely on the strengthening of synaptic coupling for simplicity. The effect of synaptic 

strengthening is mimicked by introducing a discrete heterogeneity in network connectivity, 

i.e. a small, localized region spanning 10% of the network, with increased synaptic 
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connectivity between nodes. To simplify comparing networks with and without these 

synaptic heterogeneities, the underlying pairwise connectivity and synaptic strengths are 

conserved. 

 To analyze the potential long-range effects of such a heterogeneity, we calculate 

the mean synaptic distance to the heterogeneity for each neuron not in the heterogeneity. 

The mean synaptic distance here is the average number of steps that need to be taken from 

neurons in the heterogeneity to any other neuron in the network, along synaptic 

connections. The calculation of the distance is adopted from Newman 2010 [78].  In the 

simplest way, the synaptic distance between every neuron can be measured by calculating 

AN, where A is the adjacency matrix and the power N is the number of synaptic steps 

necessary to reach every other neuron. With each successive multiplication of A, new non-

zeros entries appear, representing new long-range (i.e. not directly connected), multi-unit 

synaptic connections. The synaptic distance d is the number of multiplications of A with 

itself, necessary to give rise to the new long-range connection. With the full synaptic 

distance matrix populated, the mean synaptic distance to the heterogeneity is calculated by 

averaging over all heterogeneity distances calculated for a given neuron. The mean 

synaptic distance to heterogeneity, and indeed between any two neurons, changes based on 

the size and connectivity density of the network. We thus normalize the distance to 

heterogeneity with a value of 1 representing neurons farthest from the heterogeneity, 

incorporating the entire network, and a value of 0 representing the minimum degree of 

separation from the heterogeneity (i.e. within the heterogeneity). It should be noted that by 

definition of d, the shortest distance to heterogeneity would be for a neuron not in the 

heterogeneity but connected to every other neuron within the heterogeneity, attaining a 

normalized value of =
𝟏

𝑵
 . 

2.3 Experimental Design 

2.3.1 Recordings from Mouse CA1 Before and After Contextual Fear Conditioning 

(CFC) 

 To test the effects of memory formation on network dynamics in vivo, C57BL/6J 

mice (age 1-4 months) were implanted with custom-built drivable headstages (see [110, 
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111]) with bundles of stereotrodes targeting hippocampal area CA1. For a full description 

of the experimental procedure, please refer to Appendix A.1. 

2.4 Benchmark Testing of the Analytical AMD Algorithm 

 We first compare the bootstrapped and fast AMD metrics for different distributions 

of ISIs (Figure 2.3): Gaussian, Poisson, uniform, and exponential. To measure the 

performance of the metrics, a single spike train following any one of these distributions is 

generated and cloned, with clones receiving a bidirectional jitter of their spike times equal 

to the jitter width depicted on the x axis (Figure 2.3). The jitter from every spike is drawn 

Figure 2.3: Comparison of bootstrapped and fast AMD metrics for rapid estimation of functional connectivity (FC). Two 

identical spike trains were artificially generated using various distributions of inter-spike intervals: a) Gaussian, b) 

Poisson, c) uniform, and d) exponential; the second spike train was jittered using the same type of statistical distribution, 

with various jitter widths (x-axis) to progressively de-correlate the spike trains. Each set of spiking data represents a 1s 

long recording (the time length is arbitrary, however all values are scaled to length) and contains 30 spikes. The analytical 

value of pairwise functional connectivity (FC21) is calculated using the method described in the text (Methods 1.1). For 

all the distributions, AMD detects the significant functional connectivity when jitter width is small. The average value at 

which FC loses significance is a quarter of mean ISI, ~ 8ms. For a Poisson distribution (b), due to the fact that the mean 

value and standard deviation are controlled by the same parameter, when the jitter width equals around 17ms, the mean 

value of jitter is also around 17ms, and the maximal value of the AMD and therefore FC has the most negative value. 

The same reasoning applies when the jitter width is around 33ms. The significance from bootstrapping was obtained by 

shuffling the ISIs of the second train 100 times. As before, the Z-score of the AMD values represents the FC. The results 

agree with the analytical values. 
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from the same distribution as the original spike train, of which the standard deviation serves 

as the jitter width. For all cases, the mean ISI is arbitrarily chosen to be ~33ms (this ISI 

gives a 30Hz signal, representative of awake brain oscillations). Figure 2.3 depicts the 

mean z-score and its standard deviation, calculated as a function of the jitter width for the 

two approaches. In all four instances, the two AMD methods perform nearly identically.  

Next, we compare the performance of fast AMD to CC, using the same distributions 

as above, i.e. Gaussian, Poisson, etc., with jittering (Figure 2.4). To calculate CC between 

two spike trains, the two spike trains are convolved with a Gaussian having one of three 

different widths,  = 1ms, 5ms, or 33ms. Both metrics are calculated for 0 temporal shift 

between the spike trains. Importantly, we note that AMD does not have any free parameters 

and, at the same time, better captures finer characteristics for Poisson spike distributions 

compared to CC with any Gaussian convolution width. 

Figure 2.4: Comparison between fast AMD and CC. We compared the traditional cross-correlation (CC) method to fast 

AMD using a) Gaussian, b) Poisson, c) uniform, and d) exponential distributions, as in Figure 2.3. For the CC calculation, 

spike trains are convolved with a Gaussian waveform having a standard deviation σ as a free parameter. We used sigma 

σ = 1ms, 5ms and 33ms respectively. As before, the Z-score of CC was based on bootstrapping. AMD and CC results 

are equivalent for σ = 1ms. For larger σ, CC cannot capture the specific features of ISIs distributions, but behaves 

generally in a similar manner as AMD for increasing jitter width. 
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Critically, the fast AMD approach provides a rapid estimation of the significance 

of pairwise functional connectivity. Figure 2.5 shows the computing times of fast AMD, 

bootstrapped AMD, and CC with zero time-shift and bootstrapping for spike trains having 

various numbers of spikes and network sizes. The reduction of the computing time for fast 

AMD is very significant (up to 10000 times faster) which may be crucial for multiscale 

data analysis. 

2.5 Comparison of Bidirectional and Unidirectional AMD Performance. 

 Next, the performance of unidirectional fast AMD and bidirectional fast AMD on 

surrogate data sets is compared (Figure 2.6). A set of 5 spike trains are generated such that 

they are: 1) coincident (but not causal) with respect to each other, or 2) are causal, with 

FCMs calculated in each scenario. First, one spike train is generated from a Gaussian 

distribution. In the case of coincidence, the “master” spike train is copied and each spike 

is subsequently jittered following the same distribution. This process is repeated, with 

subsequent spike trains copying the previously jittered spike train. In the case of causality, 

copied spike trains retain the same interspike intervals as the original master copy, but are 

delayed slightly in time. Figure 2.6 depicts the result of bidirectional AMD (Figure 2.6a) 

Figure 2.5: Comparison of computation speeds obtained for fast AMD, bootstrapped AMD, and bootstrapped CC. We 

measured the calculation time (recorded by CPU time from MATLAB) for three methods: CC, bootstrapped AMD and 

fast AMD. a) Calculation time for increasing the number of cells in the system. B) Calculation time for increasing the 

number of spikes in a two-cell system. Fast AMD is more than 20 times faster than bootstrapped AMD, and 200 times 

faster than CC calculation. For two-cell systems with different number of spikes (b), the advantage of fast AMD is more 

significant for larger spike trains, up to four orders of magnitude less than CC when the number of spikes is 10000. The 

sharp increases in CC computation time is most likely related to the memory allocation of the computer. The results for 

fast and bootstrapped AMD were averaged over 200 realizations, whereas 10 realizations were used for CC. The reported 

results are based on shuffling the ISIs 100 times for CC and bootstrapped AMD calculations. 
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and unidirectional AMD (Figure 2.6b) estimation for coincident spike trains. As expected, 

bidirectional AMD reports highly significant temporal relations between the two trains 

whereas the unidirectional AMD estimation reports lack of causality (i.e., the significance 

is lower that one standard deviation). Figure 2.6c and 2.6d depict similar calculations for 

causally related spike trains. Here both measures report high temporal coincidence, 

however unidirectional AMD provides additional information about causal relationships. 

2.5.1 Functional Stability between Functional Connectivity Matrices (FCMs). 

We sought to determine how functional stability between FCMs can capture the 

similarity between different functional connectivity patterns in the network. Changing 

functional connectivity patterns are constructed by jittering five copies of a master spike 

train. For increasing jitter amplitude, all spike trains become increasingly de-correlated, 

resulting in different functional connectivity patterns. The FCM is first calculated using the 

Figure 2.6: Bidirectional AMD and unidirectional AMD FCMs. An example of functional connectivity matrices (FCMs) 

calculated using two AMD methods for coincidence (a, b; bidirectional time lags taken into account) and causality (c, d; 

unidirectional time-lags taken into account) of functional connectivity (FC) patterns. Color represents the significance of 

fast AMD. In the case of coincidence, the FCM calculated by bidirectional AMD is almost symmetric and captures the 

functionally connected neurons (a), but unidirectional AMD does not (b); conversely in the causality case, the anti-

symmetric FC matrix given by unidirectional AMD indicates the causal relationship (d), while bidirectional AMD does 

not differentiate from the coincidence case (c). The results were averaged over 100 realizations. 
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fast AMD metric for the five spike trains. Then, the stability between FCMs for different 

realizations of the spike trains having various jitter width is determined (Methods 1.3). 

Figure 2.7 shows the functional stability as a function of jitter of the compared spike trains. 

For small jitter, the FCMs yield stability values close to one, indicating high similarity 

between the FCMs. On the other hand, when a small jitter FCM is compared to a high jitter 

FCM, similarity rapidly declines to negative values. This is due to switching from a well-

defined network structure to a random one. Finally, when two largely random states are 

compared (i.e. both FCMs have high jitter and are de-correlated) the stability value hovers 

around 0.2. Taken together, these results indicate that functional stability reasonably 

quantifies the similarity between functional connectivity in the network. 

Figure 2.7: Similarity between FC patterns. A five-cell system is simulated, where the other four spike trains were jittered 

from the master train with same jitter width. Each train contains 30 spikes and time recording is set arbitrarily to 1 second. 

After calculating the functional connectivity matrix (FCM) for each jitter width, the similarity between each pair of 

FCMs is measured. The result is averaged over 100 realizations. Similarity is high when both jitter widths are small as 

the AMD values are small for both cases. There is a transition to negative values as one of the jitter widths gets 

significantly larger. For the pair of FCMs, both with high-valued jitter width, FC patterns are relatively random and 

similarity is low (~0.2). 
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2.5.2 Functional Stability Matrix (FSM) and FuNS as a Monitor of Changes in 

Functional Connectivity Patterns 

 Following the data generating procedure used in Figure 2.8, a five cell system is 

simulated to demonstrate the applicability of the Functional Stability Matrix (FSM) (Figure 

2.8) in monitoring changes in dynamical network states over time. A bidirectional jitter 

with a width of 8ms is applied during the first and last 7 seconds of the spike train, while a 

bidirectional jitter of width 15ms (Figure 2.8a and 2.8c) or unidirectional jitter of width 

8ms (Figure 2.8b and 2.8d) is applied during the middle 7 seconds. After segmenting the 

time series into 21 bins of equal size and calculating the 5-by-5 FCMs using the fast AMD 

algorithm, the FSM is obtained by calculating the functional stability between each pair of 

FCMs (Figure 2.8a and 2.8b). For both cases, significantly positive stability values in 

region I and III and low values in region IV indicate the temporal relationship between 

different functional connectivity patterns in the network. Importantly, region V in both 

cases demonstrates that the functional connectivity returns to the same pattern observed in 

the first 7s, subsequent to the changes occurring during the 8-14s time window. In the 

bidirectional case, the network loses stability during the middle 7s in region II (Figure 

2.8a), while in unidirectional case region II (Figure 2.8b), due to the corresponding 

unidirectional shifts, the stability between FCMs attains a high value. Hence, FSM gives 

effective information to keep track of the similarity in functional connectivity patterns in 

the network at any time point. Figure 2.8c and 2.8d illustrate the functional stability trace 

over time, with the red line indicating FuNS, i.e. the mean of the stability values (0.4362 

for bidirectional and 0.7720 for unidirectional). As expected, the minimum similarity in 

both cases happens at the point when FC changes, at the end of 7s and 14s, respectively. 
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These results thus give a reliable way to track functional network changes in time, which 

may be due to cognitive processing, for example. 

2.5.3 Estimation of Fast AMD for Functional Connectivity for Mutually Delayed Spike 

Trains. 

We tested the performance of fast AMD on spike trains with applied time delay 

(Figure 2.9). Two random spike trains with Gaussian ISIs are generated with a jitter width 

of 5ms. Time delay is added to the second train by shifting each spike time by a constant 

value. In Figure 2.9a, the FC and standard deviation between two trains are estimated by 

fast AMD for different time delays. Around a delay of 7.5ms, FC is around 0 due to the 

fact that the second train is shifted to one quarter of the average ISI (33ms). FC values 

become negative with the increase of the delay time, indicating an anti-correlation between 

two trains.  

Figure 2.8: Functional Similarity Matrix (FSM) and similarity trace over time. Simulation of temporal changes in spike 

relationships between five neurons. The spike trains are jittered bidirectionally with a jitter width of 8ms from the master 

train during the first and last 7 seconds of the spike train. During the middle 7 seconds, jitter was bidirectional with width 

15ms (a,c) and unidirectional with width 8ms (b,d), respectively.  The spike trains were binned into 21 time windows 

and a five by five functional connectivity matrix (FCM) was calculated by bidirectional AMD for each window. (a,b) 

Similarity value between each pair of FCMs. FCMs originating from spike trains having common properties show high 

similarity (c,d). Similarity trace over time, within which only FCMs in adjacent time windows are compared. Red line 

indicates the functional network stability (FuNS), the average of the similarity trace values. 
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Next, fast AMD is utilized to detect the delay and to recover the original, non-

delayed z-score. The estimated delay time (DT) from Si to Sj, as given by fast AMD, is 

defined as 𝑫𝑻𝒊𝒋 =
𝟏

𝑵𝒋
∑ (𝒕𝒌

𝒋
− 𝒕′𝒌

𝒊 )𝒌 , where 𝒕𝒌
𝒋
 is the temporal value of the kth spike in Sj and 

𝒕′𝒌
𝒊  refers to the temporal value of the nearest event to 𝒕𝒌

𝒋
 in Si. Then, Sj is shifted by –DT12 

and FC is re-calculated using fast AMD. The red line on Figure 2.9a depicts the FC values 

after the shift, and as a function of original delay time. Fast AMD reliably detects the delay 

and restores FCs back to the level of no delay (indicated by the black dash line). As a 

comparison, we also calculated the FC with and without subtracting the estimated DT for 

non-delayed spike trains (Figure 2.9b). There is no significant difference after subtracting 

DT, indicating that no spurious correlations were introduced for non-delayed spike trains. 

 

 To further test performance of the tools on the delayed spike trains, we calculated 

FuNS for a 5-cell system with jittering and applied variable time-delay (Figure 2.10); with 

mean delay time in the system denoted on the y-axis. The total recording time duration was 

10s. FuNS was calculated from 10 equal length time bins. The top row indicates the system 

without delay. When the system is strongly connected (i.e., a small jitter width), FuNS is 

highly robust to delays, reporting nearly identical values as the case without delay. For 

bigger jitter width, as expected, FuNS is low when the delay time is around one quarter of 

Figure 2.9: Fast AMD can be adjusted to account for time delays. A copy of the original random spike train having 

Gaussian ISIs is jittered with a jitter width of 5ms and then is shifted by variable time-delay. a) The FC between two 

trains is estimated by fast AMD (blue trace). Next the second train is shifted back by the amount of delay that is estimated 

by fast AMD algorithm, and FC is re-calculated (red trace). The black dashed line shows the FC for non-delayed spike 

times. b) The same analysis is applied to spike trains with no delay, and the FCs show no significant differences. The 

results were averaged over 100 realizations. 
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the average ISI, i.e. when the FC between spike trains loses significance. Thus, even though 

FC values can be affected by delays, FuNS can still quantify the stability level of the system 

effectively. 

 

2.6 Effects of Localized Network Heterogeneity in Model Networks 

Using the statistical tools introduced above, we investigate networks of leaky 

integrate-and-fire neurons for dynamic stability. The focus here is to establish how the new 

metrics help to elucidate network connectivity structure, as well as potential changes in 

network dynamics, due to the formation of localized network heterogeneities. As noted 

previously, these heterogeneities represent the formation of localized cognitive 

representations (e.g. memories) within the network. 

2.6.1 Identification of Direct Structural Connections within the Network. 

 We first constructed sparsely connected, excitatory only networks to investigate 

whether, and for what ranges of connectivity parameters, is it possible to statistically 

separate sets of neurons with direct structural connectivity from those who lack direct 

connections. This corresponds to adjacency matrix entries of 1 and 0, respectively. We use 

the bidirectional, fast AMD metric to measure the functional connectivity between pairs of 

neurons that share direct structural connections and those that do not. The distribution of 

Figure 2.10: Functional Network Stability (FuNS) of the delayed dataset. A 5-cell system is simulated by adding jitter 

and time delay to spike trains to randomly generate spike train using Gaussian distribution of ISIs. The color scale 

represents FuNS calculated after binning the data into 10 one-second time windows. A control realization, where no 

delay is added to the spike trains, is indicated by the top row. The results were averaged over 10 simulations. FuNS 

reports robust stability despite the delay. 
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FC values are then characterized (i.e. their mean and variance are calculated) for the two 

populations and we subsequently calculate the statistical separation between groups in 

terms of a Z-score: 𝒁𝒔 =  (𝝁𝒘𝒄 − 𝝁𝒏𝒄) (
𝝈𝒘𝒄

𝟐

𝑵
+

𝝈𝒏𝒄
𝟐

𝑵
 )

−𝟏
𝟐
, where wc, wc and  nc, nc 

represent mean and standard deviation of the distributions of functional connectivity values 

for directly coupled pairs and non-coupled pairs, respectively. Figure 2.11 shows the Z-

Score comparison between these two populations (Figure 2.11a). Each colored panel 

represents the statistical separation of the two populations as a function of network 

topology for increasing synaptic connectivity. The obtained results indicate that there is a 

well-defined parameter region where the two populations can be separated with a large 

degree of accuracy. As expected, weak network connectivity prohibits this separation 

(Figure 2.11b). Also, the statistical significance is lower in networks deviating from local 

to random connectivity (Figure 2.11b-f). Importantly, significance between the groups is 

seen even under very strong connectivity, though eventually the response is saturated and 

no new network parameter values result in an increase in significance (Figure 2.11e and 

2.11f). 
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2.6.2  Changes in Functional Connectivity and Stability of the Network with 

Introduction of Network Heterogeneity. 

It is still not clear how localized changes in network structure (i.e. inclusion of a 

network heterogeneity) affect network-wide dynamics. To address this, functional 

connectivity and the subsequent stability of these matrices is measured between the 

neurons that are not included in the heterogeneity, using the fast AMD method. Simulations 

are cut into two parts and we subsequently measure both the change in FC as well as FuNS, 

both given as a function of network topology and connectivity density (Figure 2.12). Figure 

2.12a depicts FuNS in the same network before the heterogeneity is introduced (black line) 

Figure 2.11: Z-Score significance between functional connectivity matrices as a function of network topology. Functional 

connectivity matrices (FCMs) were parsed based on the existence or non-existence of synaptic connections between 

neurons and fast AMD results for these two groups were generated. a) Mean grouped-averaged functional connectivity 

as a function of connectivity density for a connection strength of ω = 0.0325 and rewiring parameter equal to 0 (red 

traces: directly connected neurons; black traces: unconnected neurons). Error bars represent standard error of the mean. 

Lack of variation in network structure (i.e. there is no rewiring of local connections) results in uniformly small standard 

error; the network for each simulation is exactly the same and so responds to random input in nearly the same manner. 

b-f) Color images indicate the logarithmically scaled significance, with warmer colors indicating a greater significance, 

with the white bands indicating the level above which the Z-score is significant (consistent with two standard deviations 

from the mean). As synaptic connectivity strength ω increases from very low values (b) through moderate values (c) to 

higher values (d), significance increases between the parsed groups over an increasingly large topological parameter 

region. As ω further increases, more than half of the parameter region has a significant separation between groups (e) 

but saturates, admitting no additional significant parameters (f). The black box in panel (c) indicates the range of data 

used to generate panel (a). All results were averaged over five trials. 
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and after its introduction (red line) as a function of the connection rewiring parameter. 

Significant changes in network stability are observed for localized network topologies with 

significance decreasing as the topologies become more random. Figure 2.12b depicts 

changes of network stability upon the introduction of a heterogeneity, as a function of both 

connectivity density and network topology, and compares it to changes in mean value of 

FC, averaged over all pairwise indices of the corresponding FCM, for the network (Figure 

2.12c). We note that while FuNS changes are quite significant for a wide parameter range 

(up to Z-score of 64, noting the logarithmic scale), the changes in mean functional 

connectivity are quite insignificant and provide a less clear picture of how the FCM itself 

changes. This leads us to conclude that measuring the changes of FuNS is a more tenable 

indicator of global change in network dynamics in response to introduction of network 

heterogeneity compared to FC. 

 

2.6.3 FuNS as a Global Measure of Structural Network Changes. 

We have shown above that FuNS is sensitive to the introduction of a discrete 

network heterogeneity. Thus, it allows the identification of the existence of structural 

network changes without the requirement of measuring specific cells that participate in that 

Figure 2.12: Functional Network Stability detects dynamic changes due to synaptic heterogeneities over a large 

topological parameter region. a) FuNS as a function of connection rewiring parameter for networks before (black trace) 

and after (red trace) introduction of a synaptic heterogeneity. Synaptic heterogeneities are defined as spatial regions 

within the network, where connections between neurons only in the region were appointed a greater synaptic connectivity 

compared to the rest of the network. Error bars indicate the standard error of the mean. b) Z-score of FuNS as a function 

of connection density ρ and rewiring parameter, scaled using a logarithm of base two. Warmer (cooler) colors denote an 

increase (loss or no change) in stability due to the introduction of a synaptic heterogeneity. The black bar on the color 

scale indicates the minimum value needed to be considered significant. The black box in the main panel shows the 

parameter region used to generate FuNS curves in the left panel. c) Difference in average FC over the entire FCM as a 

function of ρ and rewiring parameter is less robust than analyzing FuNS. All results shown are for a synaptic coupling 

strength of A = 0.03, averaged over five trials. 
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change. This is of paramount importance in the situation when the experimental 

measurement is critically under-sampled and there is no way to identify either the specific 

neurons participating in the structural network reorganization or the anatomical network 

structure. To quantify the long-range effects of synaptic heterogeneities, we set out to 

measure the synaptic distances from network heterogeneity where significant changes in 

network stability are observed.  

Neurons are grouped depending on their mean synaptic distance from heterogeneity 

(Methods 2.2). Functional connectivity matrices for each group of cells is calculated 

separately, whereupon we determine the mean change in FuNS within each group due to 

introduction of heterogeneity (Figure 2.13). Figure 2.13a shows an example of change in 

FuNS as a function of mean distance from heterogeneity, normalized by the maximum 

possible distance to the heterogeneity. Some network parameters results in a persistently 

significant separation of FuNS at long distances from the heterogeneity, while other 

parameters result in a rapid decline of FuNS away from the heterogeneity. Thus, the Z-

score of FuNS is calculated between networks with and without synaptic heterogeneity at 

each synaptic distance in order to determine the normalized distance where significance is 

lost. Figure 2.13b depicts the normalized mean distance from the heterogeneity at which 

the results become insignificant, as a function of connection density and strength. Here, a 

Figure 2.13: Local synaptic heterogeneities globally increase FuNS. a) Example FuNS traces as a function of normalized 

synaptic distance from the heterogeneity for networks before (darker colors) and after (lighter colors) introduction of a 

synaptic heterogeneity. Some values of the simulation parameters result in a distance dependent decrease or no change 

in FuNS Z-scores (blue traces), while others result in consistent, network-wide significance (red traces). The black, 

dashed line indicates the normalized distance where FuNS loses significance in the example case shown. Error bars 

indicate standard error of the mean. b) Normalized distance from the heterogeneity where FuNS significance is lost. 

Values of one indicate that the global network observes an increase in FuNS due to a localized synaptic heterogeneity. 

All results averaged over five trials. 
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value of one corresponds to the situation where we can detect changes in FuNS throughout 

entire network. We observe that localized heterogeneity has global dynamical effects on 

the system under a large array of network topologies, giving credence to the notion of 

dynamical attractors in neural networks. 

2.6.4 FuNS Sensitivity to Structural Heterogeneity in Mixed Excitatory and Inhibitory 

Networks.  

Finally, we measure changes in FuNS in response to introduction of network 

heterogeneity in mixed inhibitory and excitatory networks. Specifically, FuNS is measured 

as a function of the ratio of total excitation and inhibition generated by neurons in the 

network (i.e. E/I ratio; Methods 2.1). Generally, we observe that for low values of E/I ratio 

the reported FuNS is low regardless of the presence of a heterogeneity and, at the same 

time, a high E/I ratio saturates FuNS in both cases (Figure 2.14). The greatest response of 

the networks, in terms of stabilizing dynamics in presence of heterogeneity, is near a 

balance between excitation and inhibition, i.e. E/I ~ 1 (Figure 2.14b). Thus, only near such 

an E/I balance can the dynamics of the network respond in a distributed manner to the 

introduction of heterogeneity. This provides another piece of evidence that mixed networks 

near E/I balance increase their dynamic range in response to even localized structural 

network changes, in agreement with previous studies [21, 103]. 

Figure 2.14: Introduction of synaptic heterogeneities maximize increased Functional Network Stability near a balance 

between excitation and inhibition. a) FuNS as a function of the ratio between excitation and inhibition. Introduction of 

synaptic heterogeneities (red traces) increases stability over networks missing a synaptic heterogeneity (black traces). b) 

Difference in FuNS between networks containing and not-containing synaptic heterogeneities. All error bars indicate the 

standard deviation of the mean, taken over five trials. 
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We further compare FCM and FuNS measurements between the fast AMD 

approach and the CC approach (Figure 2.15) at the point where FuNS observes a maximum 

increase in Figure 2.14b, i.e. E/I ~ 1. As expected, the FCM analysis for both methods is 

very similar and, indeed, does not show a significant difference between networks with and 

without a synaptic heterogeneity (Figures 2.15a and 2.15b). However, we observe a 

significant increase in FuNS for the fast AMD method (Figure 2.15d) but not for the CC 

method (Figure 2.15c), assuming a non-normalized Gaussian distribution for both. Thus, 

though the resulting FCMs are similar, FuNS more accurately picks up on discrete changes 

in functional network topologies generated using AMD compared to cross-correlation. 

Figure 2.15: Comparing FC and FuNS between AMD and CC near the E/I Balance. The probability of observing a mean 

FC value was measured for functional structures from both CC (a) and AMD (b) derived methods, only over the 

excitatory neurons in the mixed networks, before (black) and after (red) adding a network heterogeneity. The distributions 

were not significantly different, within a 5% confidence interval (K-S test; CC: p = 0.83, AMD: p=0.54).  Similarly, non-

normalized Gaussian distributions of FuNS were constructed for CC (c) and AMD (d) before (black) and after (red) 

introduction of a synaptic heterogeneity. Calculating FuNS for AMD yielded significantly different distributions whereas 

FuNS for CC did not, within a 5% confidence interval (K-S test; CC: p = 0.09, AMD: p = 7 × 10−9). Error bars represent 

standard error of the mean, whereas Gaussian widths stem from the standard deviation. Averaged over 5 trials. 
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2.7 FuNS Applied to in vivo Data 

Finally, we wanted to know whether functional connectivity and stability changes 

could be detected following network reorganization in vivo (Figure 2.16). We hypothesize 

that synaptic plasticity in hippocampal area CA1 following single-trial contextual fear 

conditioning (CFC) [112] is a plausible biological model to investigate how rapid structural 

network changes underlying memory formation affects network dynamics. CA1 network 

activity is necessary for fear memory consolidation in the hours following CFC [113]. For 

this reason, we recorded the same population of CA1 neurons from C57BL/6J mice over a 

24-h baseline and for 24 h following CFC (placement into a novel environmental context, 

followed 2.5 min later by a 0.75 mA foot shock) to determine how functional network 

dynamics are affected by de novo memory formation. CFC affects many aspects of CA1 

network dynamics; for a detailed description of the obtained results, please refer to 

Appendix A.1. 
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The results presented here focus on comparing performance of the metrics (fast AMD and 

CC, both together with FuNS assessment) for the case when mouse was subjected to 

successful memory consolidation (success was determined by observing behavioral 

changes 24 hours after training). First, the 6-hour baseline and 6-hour post stimulation are 

divided into 1-minute time windows, and FCMs are calculated in each bin, which are 

further used to calculate FSM. Figure 2.16 shows comparisons of the distribution of 

functional connectivity values (Figures 2.16a and 2.16b) and stability values (Figures 2.16c 

and 2.16d). Comparing with CC, AMD is shown to be more sensitive to capture the change 

Figure 2.16: Application of AMD and FSM to in vivo mouse data. We extracted spike data from intervals of slow wave 

sleep across 6-hour recordings for both before (baseline) and after (post stimulation) the contextual fear conditioning. 

The spike trains were first divided into multiple one-minute bins, then the functional connectivity (FC) pattern for each 

bin is calculated by bidirectional AMD and CC. We compared the distribution of both FC values (a,b) and stability values 

(c,d). For FC values, the elements are extracted collectively from all the FCMs. The histogram shows us that AMD is 

able to capture the functional connectivity changes from baseline to post contextual fear conditioning more sensitively 

than CC. For stability values, the elements were extracted from the FSMs for baseline and post-stimulation respectively, 

and calculated as described in Results 1.4. We observe significant shift in stability for both CC and AMD calculation, 

however, AMD gives a more statistically significant separation between the two distributions. 



41 

 

of functional connectivity and stability in the network during memory consolidation. 

Furthermore, the more significant shift of similarity distribution indicates that stability is a 

better measurement of the change in global network properties. 

2.8 Discussion 

The advent of new recording techniques allowing for prolonged recordings from an 

increasing number of neurons in the brain drives the necessity to develop new analysis 

tools to meaningfully process data. Two underlying issues however need to be overcome. 

First, there is a severe under-sampling problem: how is it possible to identify universal 

properties of neuronal dynamics during information processing if the number of recorded 

cells remain tremendously small in comparison with number of cells participating in the 

computation? Second, and related to the first question, is how to characterize the data so 

that the (small) recorded population provides a representative picture of the dynamics of 

whole modality? Solutions to the latter attempt to bridge the timescales between neuronal 

activity and behavioral states which they encode, while prolonged recordings on freely 

behaving mice are now possible, they generate enormous data sets which need to be 

meaningfully processed in a finite amount of time.   

In this paper we have addressed both of these problems - we have introduced a 

framework, based on the AMD between spikes in individual neurons’ recorded spike trains, 

which allows for rapid assessment of network functional connectivity structure throughout 

extended time periods. We showed that we can extend the developed metrics so that we 

can rapidly estimate significance of functional connectivity between neuronal pairs, based 

on analysis of distribution of ISI intervals of the neurons in question, not only without loss 

of resolution, but often with improved sensitivity as compared to cross-correlation based 

methods. At the same time, rapid assessment of significance allows us to speed up 

functional connectivity reconstruction by a couple of orders of magnitude, primarily due 

to the fact that we can bypass typical bootstrapping methods without loss of accuracy 

(Results 1.1-1.5). 

Further, we used this fast, AMD-based method to reconstruct instantaneous 

functional connectivity within the network and subsequently introduced Functional 

Network Stability (FuNS), a measure that assesses the temporal stability of functional 

connectivity networks. We showed that FuNS is especially useful in detecting changes in 
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network-wide dynamics due to discrete changes in network structural connectivity, 

referred to here as synaptic heterogeneities. Namely, we show that localized and relatively 

small heterogeneities can induce dynamical changes throughout the entire network, as is 

evidenced by high FuNS in neuronal groups distantly connected to the heterogeneity region 

(Figure 2.14). This in turn allows for robust detection of such changes experimentally, even 

in the conditions of severe under-sampling [111]. These results indicate that while 

reconstruction of functional connectivity between the recorded neurons may yield 

ambiguous results as the functional relation of the recorded cells to the computational task 

is unknown, the changes in the global dynamics of the representations is a more robust 

measure of local network changes in response to computational tasks. (Results 2.1-2.4) To 

better exemplify this point, we used both model simulations and in vivo experimental 

recordings to show that discrete changes to network structure may yield ambiguous results 

in terms of reconstruction of detailed changes in functional network connectivity, but at 

the same time show robust stabilization of dynamical network representations (Results 

3.1). 

Finally, we investigate whether observed stabilization of dynamical network 

representations can inform us about universal network properties that are underlying the 

computation. Here, we show that in mixed excitatory-inhibitory networks, the highest 

sensitivity (in terms of changes in global network representations) to introduction of 

localized heterogeneity is achieved near a balance between excitation and inhibition (E/I 

balance; Results 2.5).  This result is in line with other existing results which have shown 

that E/I balance emerges naturally in neural networks [114] and that neurons operating in 

networks near E/I balance exhibit faster linear responses to stimulation, and greater 

dynamic range [114]. Recent findings have also shown that E/I balance is required for 

heightened neuronal selectivity [105]. 

Altogether, we believe that the introduced framework for rapid calculation of 

functional network connectivity allows for robust analysis of multiunit recordings. 

Numerous linear and nonlinear, methods have been developed over the last decade to 

reconstruct and characterize functional network connectivity. We have earlier compared 

the performance of functional grouping based on AMD assessment to some of these 

methods [100]. Many of the developed tools require assessment of functional adjacency 
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matrix. We believe that the algorithm proposed here provides a robust alternative for the 

commonly used cross-correlation method. Further we believe that fast AMD together with 

evaluation of FuNS helps to overcome two major constraints in neuroscience: under 

sampling and the difficulty of bridging diverse timescales of neuronal dynamics and 

cognition. We believe that this framework will be widely applicable to numerous problems 

in systems neuroscience.  
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Chapter 3  

Critical dynamics mediate learning of new distributed memory representations in 

neuronal networks 

In this chapter, I explore the role of critical dynamics of neuronal networks as they pertain 

to the encoding of new information. I show these dynamics are necessary for new 

information to be encoded and subsequently consolidated but that consolidation shifts 

dynamics toward sub-criticality. I go on to show that these features, critical dynamics 

during learning and sub-critical dynamics post-learning, are distinguishable in mouse 

hippocampal related to fear memory consolidation. This work was published in the journal 

Entropy in 2019 [63]. 

 

 Phase transitions and critical phenomena are of central importance to statistical 

physics and there is growing evidence that also it can play a crucial role in living systems 

[29, 115, 116]. Here we investigate how near critical network dynamics may recruit 

neurons and facilitate formation of a new distributed memory in a situation where the 

incoming input must compete with the already stored (native) memories for neuronal 

resources.   

 It is widely hypothesized that new information is encoded in brain circuits through 

activity dependent, long-term synaptic structural changes [106] which are a putative 

substrate for memory formation [117, 118]. While features of memory traces can be 

localized to specific cell populations (e.g., location information encoded in place cell 

activity), in general, tracing so-called “engrams” to neural circuits has been an elusive task 

[117]. Attempts at disrupting well-established memories through brain lesions [11] or, 

more recently, through optogenetic silencing [119] have shown that they are robust to 

alterations in communication between individual neurons or brain areas. A parsimonious 

and longstanding explanation of these phenomena is that a process termed “systems 

consolidation” leads to diffuse, widespread memory encoding and storage. However, 
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despite more than a century of study, it is not well understood how engrams are initially 

formed and subsequently stored across vast distances (in terms of numbers of synaptic 

connections between neurons) in the brain. 

 A major problem to understanding the mechanisms for systems consolidation is 

that very little is known about how the formation of new memories (i.e., learning) impacts 

neural network dynamics. The general, long-accepted assumption is that either 

strengthening of existing synaptic connections, or the de novo creation of additional 

synapses (i.e., formation of a discrete structural heterogeneity), leads to the formation of a 

dynamical attractor [17]. If this is the case, then the dynamical state of the network must 

support long-range correlations across the network, as the number of neurons actively 

involved in encoding a specific memory trace is thought to constitute only a small fraction 

of the total neuronal population [12]. Moreover, individual synapses in regions like the 

hippocampus have a surprisingly brief lifetime (~1-2 weeks on average [13]), necessitating 

rapid dissemination and consolidation of information. These requirements raise two 

questions: 1) how do permanent and widely-distributed neural engrams form from initial, 

transient changes to a discrete subset of the network’s synapses during learning, and 2) 

what mediates transformation of local representations of disparate features to global 

memory representation? New experimental [111] and computational work shows that theta 

band oscillatory patterning and/or dynamics associated with sharp wave ripples can 

mechanistically coordinate neuronal activity recruiting them into the representation [61].   

 In this work, we show computationally that in addition to large scale temporal 

pattering of neuronal activity, near-critical dynamics in the brain could be an important 

factor in facilitating memory consolidation. Specifically, we show that storage of new 

information that is weakly and/or sparsely impinged on the network is mediated through 

plastic, state-dependent changes in network connectivity and can be successfully 

consolidated (which is associated with attractor formation) near criticality - a point 

associated with second order phase transitions [1]. This storage is followed by a subsequent 

shift from critical to sub-critical dynamics.  

 The idea that the brain operates at or near dynamical critically is not new (see Ref. 

[29, 120, 121] for comprehensive reviews) and it was experimentally observed in in vivo 

and in vitro preparations [3, 27, 58, 103, 122-127]. A large body of work also investigated 
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the potential functional benefit of operating in a near-critical regime [21-23, 30, 128]. Here, 

we specifically identify very basic, underlying importance for the brain to reside near 

criticality and demonstrate that near-critical dynamics may be essential for a system-wide 

consolidation of new memories in a situation when the sensory input is weak and/or sparse 

in comparison with signals generated by memories native to the network (i.e. those 

previously stored).  

 To substantiate these hypotheses, we analyze in vivo recordings associated with 

contextual fear memory (CFM) consolidation. Contextual fear conditioning (CFC) is an 

optimal experimental paradigm in this regard as it allows for rapid formation and 

consolidation of memory (i.e. after single-trial learning) [110, 111]. In this particular case, 

the CFM consolidation is associated with normal sleep, which has been shown to play a 

vital role in various types of memory consolidation [110, 111, 129, 130].  Here, we first 

characterize hippocampal dynamics in mice subjected to CFC and show that: 1) the 

hippocampus operates in a near critical regime pre- and post-CFC training, and 2) 

successful, behaviorally-verified consolidation of fear memory leads to an underlying shift 

in hippocampal dynamics towards a subcritical state, similar to what we predict in our 

model simulations. 

 Together, these results indicate that novel learning may occur preferentially near a 

critical regime and leads to universal widespread stabilization of network activity patterns, 

which in turn drives the formation of widely-distributed engrams (i.e., systems memory 

consolidation). 

3.1 Attractor Neural Networks Elucidate Mechanisms for Storage and 

Consolidation of New Memories 

We modeled a neuronal network with easily controllable dynamics using a mean-

field, Hopfield-like formalism [17]. In this context, instantaneous neuronal states are 

modeled as binary variables, 𝑺𝒊 = ±𝟏, corresponding to a firing (+1) and a quiescent (-1) 

neuronal state, respectively. Instantaneous states are updated based on a neuron’s input  

 𝒉𝒊 =
𝟏

𝒌
∑ 𝑱𝒊𝒋𝑺𝒋

𝒌
𝒋=𝟏  , (1) 

which serves to align that neuron’s state with that input, so that 𝒔𝒈𝒏(𝑺𝒊) = 𝒔𝒈𝒏(𝒉𝒊) with 

probability 
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 𝑷(𝒉𝒊, 𝜷 ) =  
𝟏

𝟏+𝒆𝒙𝒑 (−𝟐𝜷|𝒉𝒊|)
, (2) 

where k is the incoming degree of each neuron, 𝒔𝒈𝒏(𝒙) is the sign function, and J is the 

connectivity matrix, discussed in detail below. The term 𝜷 =  𝑻−𝟏 is a control parameter 

which directly controls the dynamical state of the system: when  𝜷 ≪ 𝟏, 𝑷(𝒉𝒊, 𝜷) →
𝟏

𝟐
  and, 

conversely, 𝜷 ≫ 𝟏, 𝑷(𝒉𝒊, 𝜷) → 𝟎, with the critical point typically located near 𝑻 =  𝟏. 

These dynamics describe properties of the standard Hopfield model in the absence of an 

external field [17, 131, 132]. 

The network we use here consists of 𝑵 = 𝟏𝟎𝟎𝟎𝟎 neurons, arranged in a 

directional, small-world network (10% chance of rewiring a local connection) [133] with 

~2% incoming connectivity, but with no self-connections allowed. Initially the network is 

seeded with 𝒑 native memories (hereafter collectively referred to as the native state and 

designated by the superscript n) defined by a random configuration of states 

{𝝃𝒊
𝒏 = ±𝟏 | 𝒊 ∈ [𝟏, 𝑵] } for each memory, and with the weighted connectivity matrix 

indices defined as  

 𝑱𝒊𝒋 =  
𝟏

𝒑
∑ 𝝃𝒊,𝝁

𝒏 𝝃𝒋,𝝁
𝒏𝒑

𝝁=𝟏 , (3) 

for all incoming connections (hence, 𝑱𝒊𝒊 = 𝟎). 

With 𝒑 memories already embedded in the network through Eq. 3, we want to 

investigate how the network responds to, and possibly consolidates, a new representation 

with randomly configured states similar to the native memories, {𝝃𝒊
𝒆 = ±𝟏 | 𝒊 ∈ [𝟏, 𝑵] } 

(the superscript e hereafter representing a configuration of states associated with the new 

memory). However, throughout evolution of the network the new representation influences 

only a small subset, 𝑵′, of network neurons; here, the neurons belonging to 𝑵′ are 

randomly selected from the full network. The instantaneous states of these neurons do not 

change throughout the simulation and are set to 𝑺𝒊(𝒕) = 𝝃𝒊
𝒆, ∀ 𝒕, 𝒊 ∈ 𝑵′. In addition, a 

connection emanating from these input neurons is modified to: 

 𝑱𝒊𝒋 =  
 𝒘𝒆

𝒑
𝝃𝒊

𝒆𝝃𝒋
𝒆 ∀ 𝒋 ∈ 𝑵′, (4) 

where the 𝒘𝒆 term is the additional weight of the connections corresponding to the new 

state relative to the native connectivity (Eq. 3). We formulated the input in this way to 

mimic real biological processes of learning and memory. The subset of the input neurons 
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and their corresponding connectivity is to roughly represent the memory backbone formed 

rapidly during the presentation of the new input (associated with the new representation). 

At the same time the freezing of the dynamics of these neurons is to correspond to input 

constancy during the experience, or, reactivation of these neurons during sleep that was 

observed experimentally [134, 135]. 

Although the majority of neurons in the network encode for the native memories, 

those receiving input from neurons representing the new state will align with it if the new 

state is fractionally stronger than the native state at any time. The competition between the 

native and new states are encapsulated in the total input a neuron receives,  

 

 𝒉𝒊(𝒕) = ∑ 𝑱𝒊𝒋𝑺𝒋(𝒕) + 𝒘𝒆𝒙𝒕 ∑ 𝑱𝒊𝒍𝝃𝒍
𝒆

𝒍∈𝑵′𝒋∉𝑵′ ≡ 𝒉𝒊
𝒏(𝒕) + 𝒉𝒊

𝒆𝒙𝒕, (5) 

 

where  𝒉𝒊
𝒏(𝒕) is given by Eq. 1 and 𝒉𝒊

𝒆𝒙𝒕 represents input from the constant external field, 

here facilitated by fixed neuron states. 

We assessed the presence of attractors in the network by measuring the overlap of 

the final state of the network with one of the native configurations (𝒎𝝁
𝒏 =

|
𝟏

|𝑵−𝑵′|
∑ 𝝃𝒊,𝝁

𝒏 𝑺𝒊𝒊∈𝑵−𝑵′ |) and/or the new configuration (𝒎𝒆 = |
𝟏

|𝑵−𝑵′|
∑ 𝝃𝒊

𝒆𝑺𝒊𝒊∈𝑵−𝑵′ |), where 

the averages are over all non-fixed neurons in the network (i.e. the relative compliment of 

𝑵 and 𝑵′).  

3.1.1 Critical Dynamics Mediate New Memory Encoding and Consolidation through 

Plasticity 

First, we examined the overlap of the network with the new configuration (red solid 

line in Figure 3.1a; with |𝑵′| = 𝟕𝟎𝟎) and the native ones (black solid line in Figure 3.1a) 

when only one native memory is stored in the system (𝒑 = 𝟏) as a function of temperature 

T. The universal dynamical properties of the system at criticality maximizes the 

susceptibility to the external input at the critical point.  In this work, we define 𝑻𝒄 as the 

point where the order parameter (i.e. 𝒎𝝁
𝒏) reaches a half-maximal value (when quantified, 

it is found via linear interpolation between point pairs). This point coincides with the half 

maximal value achieved by stability, another order parameter of the system (black line, 

Figure 3.3b). Here, the critical point has been well-characterized as a second order phase 
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transition that separates the phase of high-stability dynamics (𝑻 < 𝑻𝒄; characterized by 

convergence to stored attractors) from disordered dynamics (𝑻 > 𝑻𝒄) [132]. The result is a 

well-defined regime, where the network overlap with the new configuration, impinged on 

the system through external input, is higher than that of native memories. When the system 

is sub-critical (𝑻 < 𝑻𝒄), the overlap with one of the native memories dominates the system. 

In contrast, the super-critical network (𝑻 > 𝑻𝒄) is in a disordered state where neither the 

native configuration nor the new configuration dominates dynamics. At (𝑻~𝑻𝒄) the 

attractor associated with native memory becomes unstable, and at the same time magnetic 

susceptibility peaks making the overlap of the network with the new representation 

significantly higher. However, if the states of the input neurons are set to the values of the 

natively stored configuration, i.e. 𝝃𝒊
𝒆 =  𝝃𝒊

𝒏, 𝒊 ∈ 𝑵′ (during a memory recall event, for 

example), the stability of the native memory is extended over the critical range (Fig. 1a 

dashed black line), shifting the phase transition towards higher temperatures. Thus, 

depending on the input configuration, at (𝑻~𝑻𝒄) both, native memory can be stabilized or 

new memory representation can be fractionally successfully impinged on the system. This 

theoretically provides the network with agility to store a new memory or to retrieve a 

known one. Such shift away from criticality in presence of structured input was also 

observed in self organizing recurrent networks (SORNs [136]), and may explain slightly 

subcritical brain state observed in vivo [27]. 

 We next wanted to investigate how proximity to the external input (through 

numbers of connections) effects the corresponding overlap, 𝒎𝒆 for different temperature 

ranges. We measure fractional overlap of the final network state with the new configuration 

as a function of the number of connections that neurons receive from the external input 

neurons (Figure 3.1b); those neurons receiving higher native input should align with the 

native configuration, whereas neurons with higher non-native input should be driven to 

adopt the new configuration (under the right dynamical state, given by the control 

parameter 𝜷). We observe, as predicted, that the mean overlap of neuronal states with the 

new configurations is significant and highest (Figure 3.1b, red curve) for neurons receiving 

the external input at criticality, as compared to sub-critical (black points), and super-critical 

(blue points) regimes. Thus, at criticality, as opposed to sub-critical and super-critical 
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regimes, even sparse and/or weak input can lead to global changes in the network, 

providing a plausible mechanistic explanation for the distributed nature of memory traces. 

We investigated whether application of a type of activity-dependent synaptic 

plasticity rule observed experimentally [7] can lead to consolidation of the new 

configuration. Here by consolidation we mean whether a) the overlap between the new 

configuration and stability of the network in the presence of input can be increased, and b) 

whether the stable (in absence of the external input) attractor representing the new 

configuration can be successfully formed.  

We implement these synaptic changes in the model by introducing state-based 

changes in connectivity strengths,  

 ∆𝑱𝒊𝒋(𝒕) = 𝜺𝑺𝒊(𝒕)𝑺𝒋(𝒕).  (6) 

During the learning phase, both the neural states and the connections were updated (with 

𝜺 = 𝟎. 𝟏), with the exception of neurons pertaining to the external input (i.e. those neurons 

remain fixed and so receive no relevant input).  

 We investigated the range of the control parameter, T, for which the network is able 

to successfully store the new configuration (i.e. the emergence of a new attractor with a 

large value of 𝒎𝒆). We found that the system successfully consolidated the new 

configuration starting near 𝑻𝑪, indicated by an increase in 𝒎𝒆 post-learning (Figure 3.1c). 

Figure 3.1 New memory consolidation occurs only near criticality. a) Overlap of the system with the native configuration 

without external input (solid black line) and with external input (dashed black line), as well as overlap with the new 

configuration (red) represented by external input, as a function of temperature before learning. Note that maximal 

susceptibility of the new configuration only occurs near the initial critical temperature of the system, where overlap with 

the native configuration declines. Here, we define the critical temperature to be the temperature where the order parameter 

(Overlap) reaches its half-maximal value, as indicated by the blue line. b) Overlap of the new configuration after learning 

for neurons grouped based on their number of connections to the input. Colors represent pre-learning sub- (blue) super- 

(black) and critical (red) temperatures. c) Overlap of the system with the native (black) and new (red) configurations as 

a function of system temperature after learning. Few changes in overlap occur before the initial critical temperature, after 

which (near criticality) the system aligns to the new configuration. Note also that the new configuration overlap occurs 

for larger values of temperature, indicating consolidation and a shift in critical temperature due to learning. All error bars 

in (a-c) represent the standard error of the mean. 
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This shows that new memory consolidation occurs only near criticality, when susceptibility 

to external input drives the increased overlap with new configuration (Figure 3.1c). In 

addition, we observed that consolidation shifts 𝑻𝑪 to higher values of T, causing an initially 

critical regime to become sub-critical. These changes (due to the unbounded learning rule) 

lead to an increase of the overall magnitude of synaptic coupling, resulting in a stronger 

external field and ultimately leading to a peak in 𝒎𝒆 at 𝑻 >  𝑻𝑪 after learning. 

3.2 Memory Consolidation at Criticality is Robust to Input Type and Strength 

 We next investigated how the consolidation depends on the number of input 

neurons, i.e. the size of 𝑵′, and the magnitude of the weight of the connections stemming 

from the input (Eq. 4). We varied both parameters and monitored maximal change in 

magnitude of new-state overlap from pre-learning (as exemplified on Figure 3.1a) to post-

learning (Figure 3.1c). These results are presented in Figure 3.2a – one can observe that 

the number of input neurons can be as small as 4% of the total network size to observe 

meaning full change in the overlap over the rest of the network. Conversely the 𝒘𝒆𝒙𝒕 can 

be as low 2.3 to observe increase of the overlap. Hence, even weak and sparse input can 

have noticeable impact on network dynamics, but only near criticality. The asterisk 

represents the parameter configuration used to generate results presented on Figure 3.1.     

Up to this point, we have examined network response to external input represented 

by fixed neuronal states in the network. Alternatively, instead of the new memory being 

represented by specific neurons, we can represent the new memory as persistent input to 

all neurons in the network by defining an extra term for the observed input,  

 
𝒉𝒊(𝒕) = 𝒉𝒊

𝒏(𝒕) + 𝒉𝒊
𝒆𝒙𝒕

𝒉𝒊
𝒆𝒙𝒕 =  

𝒘𝒆𝒙𝒕

𝒑
𝝃𝒊

𝒆 , (7) 

with 𝒉𝒊
𝒏(𝒕) again being represented by Eq. 1. We ran the simulation in the presence of fixed 

external field applied to all neurons with learning (a pre-learning phase followed by a 

learning phase), followed by an additional phase with 𝒉𝒊
𝒆𝒙𝒕 = 𝟎 and then subsequently 

calculated the difference in the final overlap between the new and the native memory. We 

found that the system only consolidates the new configuration given sufficiently high 

external field strength, and only near the critical temperature (Figure 3.2b). Hence, the 

system is able to adapt to the new configuration, regardless of its source, only near the 
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critical regime, in support of previous studies [22]. Importantly, higher field magnitude 

increases the range of temperatures for which the new memory is consolidated (top of 

Figure 3.2b). 

3.3 Consolidation of New Memory Subsequently Shifts Dynamical State towards 

Sub-criticality 

 These results show evidence of the possible importance of near-critical dynamics 

in storing new memories. To be more robust with our findings, we further examined the 

properties of new memory consolidation. We first calculated the amount of time (i.e. the 

number of iterations) needed for the network to align with the new configuration, so that 

𝒎𝒆 ≥  
𝟏

𝟐
 (Figure 3.3a). Near the initial (i.e. pre-learning) value of 𝑻𝑪, only a fraction of the 

learning time was required to consolidate the new configuration, and with increasing T, the 

consolidation time increased exponentially before abruptly increasing to an interval greater 

than the simulation time. In contrast, sub-critical and super-critical states were marked by 

prohibitively long consolidation periods (left- and right-hand sides of Figure 3.3a, 

respectively).  

Figure 3.2 Robustness of new memory consolidation as a function of input strength. a) Peak change in overlap of the new 

state between pre- and post-learning as a function of input size (percentage of fixed nodes in the network) and strength 

(we). The asterisk represents the parameters used to generate the data showed in Figure 3.1. b) Change in overlap (color) 

between the new and native configurations post-learning as a function of temperature for increasing values of external 

field strength applied during learning. Blue colors represent cases where the native configuration is still stable after 

learning, red colors are where the new configuration is stable, and green is where neither configuration is stable. Note 

that for sufficiently high field strength, we see a slight increase in the maximal critical temperature. 
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Next, we examined how changes to the learning rate (𝜺 in Eq. 6) affects both the 

consolidation of the external input representing the new configuration and the dynamical 

properties of the system. To assess the transition point (i.e. 𝑻𝑪), we measured the network’s 

Figure 3.3 Dynamical properties of consolidating new information. a) Time (steps) required for the system to consolidate 

the new configuration, as a function of temperature. Values not shown (on the left and right sides) indicate timescales 

longer than the simulation runtime, i.e. that it takes a prohibitively long time to consolidate a new memory. b) Data and 

fit sigmoidal functions for mean number of changes in the neurons’ state Si per iteration as a function of temperature, 

pre- (solid black line) and post-learning (dashed lines); the learning rate ε increases left-to-right and from darker to lighter 

colors of the dashed lines. Error bars represent the standard error of the mean. The horizontal line labeled Tc represents 

the half-maximal point of the where we calculate the critical temperature via linear interpolation. c) Change in observed 

critical temperature 𝑻𝒄, calculated using the sigmoidal half-maximum values (b) as a function of the learning rate ε. 

Colors correspond to the curves shown in (b). d) Critical temperature 𝑻𝒄 as a function of the memories per degree 

distribution 𝛂 before (black points) and after (red shaded region) learning for a new-state connectivity strength of 𝒘𝒆 =
𝟑. 𝟎. Note that the minimal value of the critical temperature for the new configuration post-learning closely matches the 

critical temperature pre-learning, but that the effect of learning is a broadening of the stable regime. 
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configuration stability, 𝒇(𝑻), as a function of temperature for different values of 𝜺. Stability 

here is defined as the mean number of changes from active (+1) to quiescent (-1) states 

occurring in the network for fixed simulation length; the expected number of these activity 

changes is 0 in the sub-critical regime and ~N/2 in the super-critical regime, due to Eq. 2. 

We subsequently fit sigmoidal functions to the transition numbers as a function of 

temperature, taking the form 𝒇(𝑻) =
𝟎.𝟓

𝟏+𝒆𝒙𝒑 (−
𝑻−𝑻𝒄,𝒊

𝝁
)
, where the slope μ represents the change 

in stability due to changing regime and we designate 𝑻𝒄,𝒊, the temperature where the 

transitions reach their half-maximum value, as a proxy for critical temperature (Figure 

3.3b); as previously mentioned, 𝒇(𝑻) is thus an order parameter of the system. We next 

calculated the change in the critical temperature due to learning, ∆𝑻𝒄,𝒊 = 𝑻𝒄,𝒊
 (𝒕𝟎) −

𝑻𝒄
 (𝒕𝒇𝒊𝒏𝒂𝒍), and found that consolidation of new information shifts the stability, and 

therefore the critical regime, of the system approximately linearly with the learning rate 

(Figure 3c). 

Finally, we investigated the behavior of the system when it is loaded with multiple native 

configurations, and when the location of the critical point is a function of both memory 

loading α and temperature T [131].  We thus pre-loaded additional native configurations 

into the network. It is known that memory recall fails for T=0 at 𝜶𝒎𝒂𝒙 =
𝒑𝒎𝒂𝒙

𝑵
~𝟎. 𝟏𝟒 (with 

𝒑𝒎𝒂𝒙 being the maximal number of configurations stored and N number of neurons in the 

network) for a fully connected network [132],  but this value changes for a sparsely 

connected system and is proportional to nodal degree k, 𝜶𝒎𝒂𝒙 =
𝒑𝒎𝒂𝒙

<𝒌>
.   

 We found that regardless of the number of memories pre-loaded into the system 

(below the loading limit), successful consolidation of new configuration always occurs 

near 𝑻𝑪 (Figure 3.3d). Here, the black curve represents the location of the pre-learning 

critical point, estimated as the first point where rapid decline of stability for the native 

configuration occurs (i.e. 𝒎𝒏 < 𝟎. 𝟒𝟓), whereas the red area is the parametric space where 

the new memory is consolidated (𝒎𝒆 ≥ 𝟎. 𝟒𝟓).   

 Taken together, the model simulations outline how the process of learning is 

affected by dynamics near criticality. Here, the system is highly susceptible to network 

input and subsequently consolidates new configurations through state-based plastic 

changes in network connectivity strengths. If, on the other hand, the input corresponds to 
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one of the native memories their stability is extended over the critical temperature range. 

Thus, the critical state on one hand provides metastability to native configurations allowing 

their retrieval in presence of correct external input, but also provides dynamical substrate 

for storage and consolidation of the new configurations. 

  Further, during learning, the synaptic plasticity shifts the critical point, extending 

the sub-critical regime post-learning. To test whether these are general principals of 

learning in neuronal networks in vivo, we next analyzed spike data recorded from neurons 

in mouse hippocampal area CA1 during consolidation of a fear memory. 

3.4 Evidence of Criticality and Consolidation-induced Dynamical Shift in 

Recordings of Mouse Hippocampus 

 We analyzed spiking data recorded from hippocampal area CA1 of mice subjected 

to contextual fear conditioning (CFC) in order to investigate the effect of learning on 

network dynamics. Specifically, mice are placed in the novel environment that they are 

allowed to explore briefly. They are subsequently exposed to electric shock while in the 

novel environment (induction of CFC) or not (sham) through the wire mesh placed in the 

floor. The mice exposed to the shock exhibit a freezing behavior (i.e. they stop moving) in 

the novel environment on subsequent presentation while the sham mice do not. Using CFC, 

long-lasting fear memories (CFMs) can be successfully consolidated in mice in the hours 

following a single training trial, consisting of placement in a novel environmental context 

paired with a foot shock. This single-trial learning, unlike more elaborate training 

procedures (e.g. object recall or track learning), provides clear boundaries between baseline 

and post-conditioning and allows for direct comparisons of network dynamics. Further, 

memory consolidation in general [130] and fear memory consolidation in particular [110, 

111, 129] is known to rely on sleep, a vigilance state characterized by internally driven 

dynamics and thus allowing the possibility for truly self-organized neural behavior [137].  

 Successfully consolidated CFMs manifest as visual changes in behavior, where 

mice cower in place (i.e. freezing behavior) instead of adopting their normally 

inquisitive/explorative nature [110, 111]. The level of success of memory consolidation is 

quantified by a percent change in this behavior as compared to baseline, which we hereafter 

refer to as the learning score. In this study, we thus compare the behavior and analysis of 

hippocampal recordings across two groups of mice: 1) contextual fear conditioned mice 
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(CFC) that are given a fear stimulus in a novel environment and have ad lib sleeping 

patterns in the 24 hours following the stimulus; and 2) sham mice that are introduced to the 

novel environment but do not receive a foot shock and are not sleep deprived. More 

information about the experimental procedure can be found in Appendix A.1. We indeed 

found that CFC mice had higher learning scores post-stimulus compared to their Sham 

counterparts (Figure 3.4a). 

 In order to substantiate our model hypothesis that (a) near-critical dynamics may 

be important for memory consolidation and (b) that consolidation actually stabilizes the 

system, CA1 neurons’ spiking data was analyzed for proximity to a critical state by 

calculating the branching parameter [3]. While other metrics have been used to determine 

dynamical states - namely, power-law-distributed avalanches [3, 137]- the benefit of the 

method described here is that it better controls for spurious correlations between the data 

and can account for slowly varying dynamical changes [28]. A previous study by the 

Priesemann group addressed this issue by showing a more accurate branching parameter 

can be determined by taking into account the relationship between the variance and 

covariance of the branching parameter and by eliminating data sets that showcase non-

stationarities [28]. In this study, we used the python package associated with their study to 

calculate the optimal branching parameter σ (Python Package Index - mrestimator v 0.1.4; 

https://pypi.org/project/mrestimator). For each Slow Wave sleep (SWS) interval, we 

binned hippocampal spiking data into sub-intervals of 16 ms, calculated the avalanche size 

(i.e. the number of spikes) in each interval, and then used the provided software to calculate 

the branching parameter. Data sets that failed tests of non-stationarity (e.g. due to fast 

fluctuation between up and down states or from external drive; see [28]) were removed, 

and the average branching parameter was calculated.  

We calculated σ from CA1 spike data recorded in the two groups (CFC and Sham) 

from every bout of SWS sleep during 24h time interval post CFC. We analyzed only SWS 

as during wake the mice are constantly swamped with new input making assessment of 

intrinsic hippocampal dynamical state impossible. At the same time REM sleep bouts in 

mice are few and short in duration making branching parameter estimate unstable (i.e. it 

failed many criteria set forth in [28]). We found that mice in both groups had branching 

parameters near σ ~ 1 (Figure 3.4b), indicating that the mouse brain naturally has near-

https://pypi.org/project/mrestimator
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critical dynamics. After the learning interval, we observed a noticeable decrease in σ in 

most CFC compared to Sham mice (Figure 3.4c). Indeed, we found that an increase in 

learning score generally exhibited a decrease in their branching parameter (Figure 3.4c) 

away from a critical state and that CFC mice exhibited a more significant reduction due to 

learning (p < 0.02) compared to Sham animals (p < 0.10). These data indicate that (a) 

typical in vivo dynamics lie near criticality and that (b) consolidation of memory in vivo 

causes a deviation from critical to sub-critical behavior, as predicted by modeling.  

Figure 3.4 Branching parameter and its changes as a function of quality of memory consolidation during SWS. a) 

Percentage of freezing behavior observed in mice before (baseline) and after learning (post-cond.) for sham (circles) and 

CFC (squares) groups. Different colors represent different mice. b) Branching parameters σ during SWS before (baseline) 

and after learning (post-cond.). Colors and shapes are conserved as in (a). Error bars represent the standard error of the 

mean, calculated for each mouse over all intervals. c) Change in freezing behavior vs change in branching parameter 

across the learning interval. Error bars represent the propagation of standard errors between Pre and Post in (b). d) Mean 

change in branching parameter within each group. Error bars represent the standard error of the mean. * p < 0.10 

confidence interval that the reduction was significant; ** p < 0.02 confidence interval that the reduction was significant, 

using the one-way T test. 
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The smaller drop in branching parameter in sham group may also be associated 

with (smaller) degree of consolidation of the new environment even without the electric 

shock.  

3.5 Discussion 

 The question we address in this paper is how relatively sparse input can 

dynamically compete with already stored representations, to be stored and later 

consolidated into a distributed memory (engram).  Through computational modeling work 

and analysis of in vivo hippocampal recordings, we show that criticality may play a pivotal 

role in mediating stabilization and subsequent storage of the new memory as a distributed 

representation. Namely, we show in a reduced attractor network, that only when the system 

is near a critical point can the new representation globally impinge its activity pattern on 

the network, making it fractionally dominant as compared to the native representation 

(Figure 3.1). This is primarily due to the fact that at criticality, when the system has the 

highest susceptibility to the external input, this input biases the state of the network towards 

the new representation, and the emergence of long-distance correlations allows it to spread 

throughout the system.  Subsequently, state dependent synaptic plasticity allows for long-

term storage (consolidation) of this new representation, even as it competes with a broad 

range of native configurations (Figure 3.3d). Thus here, similarly to results shown in self-

organizing recurrent models [7], presentation of organized input results in a shift in the 

parametric location of criticality (Figure 3.1b), due to increased stability of native 

representation or storage of the new representation (Figure 3.3b).   

 We thus hypothesize that criticality on one hand provides metastability to already 

stored configurations, so that if a native memory is presented through input, the memory 

is retrieved via the stabilized attractor, while on the other hand criticality provides a 

dynamical substrate for storage and consolidation of the new representations. 

 We find that successful new memory consolidation possibly changes the underlying 

dynamical state from being near-critical to being slightly sub-critical (Figure 3.3). Previous 

studies have reported a similar, slightly sub-critical dynamical state of the brain [27] which 

here seems to be the result of system consolidation to new information. Indeed, we see a 

similar deviation from critical to sub-critical dynamics in hippocampal recordings of mice 

successfully consolidating fear memories in vivo (Figure 3.4). This phenomenon can be 
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explained as follows: before learning, susceptibility to external input is maximal near a 

critical point but, as learning commences, the system adapts by strengthening the 

connectivity to consolidate this new information extending the region of dynamical 

stability.  

 Our results indicate that the brain operates near criticality, possibly slightly sub-

critical, and that plasticity plays an active role in reducing the dynamical state away from 

criticality during learning and consolidation. This is an agreement with previous work that 

suggests slightly sub-critical dynamics still impart increased tunability, response to 

external input, and long-range spatial and temporal correlations [138]. The extension of the 

Hopfield model we present here suggest that the critical point is indeed shifted (Figure 3b), 

rather than the phase transition region is widened, what would be indicative of emergence 

of Griffith phase [139]. However, some of our unpublished results obtained in models of 

self-organized criticality, which are similar to integrate and fire models, suggest that the 

critical point may indeed expand suggesting emergence of Griffith phase (data not shown). 

 This raises an interesting question: how does the brain finally reset to a near-critical 

state after learning, so that another (new) memory can be consolidated? Our work here 

does not address this issue, but previous work by others has shown that neurons and 

networks in the brain have built-in homeostatic mechanisms which serves to recalibrate 

synaptic efficacies (see e.g. Refs. [51, 140-143]), a process that was proposed to happen 

also during development [144]. Thus, it could be that homeostatic plasticity together with 

reduced external input during sleep is sufficient to drive the system towards criticality, as 

shown by Zierenberg, J. et al. [145]. Indeed, our in vivo analysis indicates that the role of 

sleep is not purely homeostatic [51], but instead involves active learning processes, in line 

with previous reports [135, 146]. As an additional consideration: both the model system 

and mice subjected to fear stimuli involve relatively strong inputs to be learned. In 

processes that occur over longer time periods, the dynamical shift may be weak compared 

to homeostatic dynamical rescaling, making it hard to detect on such short time scales as 

we show here. Future work should thus be done to investigate the interplay between 

homeostatic-based and learning-based changes in system dynamics near criticality. 
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Chapter 4  

Slow-wave sleep facilitates hippocampal consolidation of contextual fear memory 

through temporal coding of neuronal representations 

 

In this final chapter, I combine modeling and analysis of in vivo hippocampal recordings 

to elucidate the role of NREM-associated oscillations in driving STDP to consolidate 

memories. I show that phase-coding of information during sleep following rate-coding 

during wake may account for the observation of homogenized neuronal firing rates. This 

work is in preparation to be submitted to the journal of eLife. 

 

How the brain binds features of the physical world into a neural code is a long-

standing question in neuroscience. Ongoing evidence across multiple systems indicate that 

synaptic plasticity between time-synchronized neuronal spike patterns plays a major role 

in this process [7, 31, 107], selectively strengthening connections among neurons and 

creating lasting memory traces. A widely-accepted hypothesis, supported by experimental 

evidence, is that plasticity preferentially potentiates connections between neurons whose 

activity undergo experience-associated changes (often referred to as “engram neurons”) 

[12]. Such representation of information constitutes a mnemonic “rate code”. However, 

rate coding has limitations for long-term information storage in the brain in vivo.  

First, individual neurons have widely divergent baseline firing rates which would 

constitute background “noise”, obscuring firing rate changes in a sparse subset of neurons 

representing new information. Second, because individual neurons have a fairly limited 

dynamic range over which their firing rates can vary (e.g. due to homeostatic plasticity), 

rate coding has a limited capacity for neuronal information integration over time. In other 

words, neurons’ peak firing rates would represent a “ceiling”, after which no additional 

information could be carried by a given neuron by rate-coding alone. Third, changes in 

firing rate will alter spike timing-dependent plasticity (STDP) rules governing activity-
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dependent synaptic strengthening or weakening between constituent network neurons. As 

neurons increase their firing rates, they will either reduce STDP-mediated synaptic 

strengthening/weakening (due to differences in firing rates between pre- and postsynaptic 

neurons), or bias STDP toward potentiation [8]. In either case, the information-carrying 

capacity of STDP for the network is limited by firing rate increases. Thus, for long-term 

information storage (consolidation) in a network of heterogeneous neurons, non-rate-based 

coding mechanisms must be invoked. 

Another long-accepted assumption is that following information encoding during 

learning, memories are consolidated, via either modification of existing synaptic 

connections or de novo creation of additional synapses. Such synaptic changes constitute 

a structural network heterogeneity, which subsequently serves as a so-called dynamical 

attractor in the network [7, 17]. When such an attractor is present, incomplete patterns of 

spiking among engram-encoding neurons could lead to subsequent recollection of the 

complete pattern, i.e. a memory.  This recollection process possibly consists of 

augmentation of a memory trace with new populations of cells that were not as active 

initially [15]. It remains unclear what activity-dependent mechanisms could mediate 

consolidation leading to such an attractor formation. However, oscillatory patterning, such 

as that occurring during sleep, has been implicated in promoting synaptic plasticity [15, 

48, 53, 147-149], thereby affecting the network thought to be an integral part of memory 

representations.   

Various network oscillations appear preferentially in specific brain circuits (e.g., 

hippocampal and thalamocortical circuits) during particular behavioral states (i.e. waking, 

REM and NREM sleep) and have been established to be highly predictive of state-

dependent cognitive processes and network plasticity [150]. Further, network oscillations 

have been implicated in promoting STDP by precisely timing the firing between pairs of 

neurons [12, 53]. Thus, hypothetically, oscillatory dynamics could mediate a switch 

between rate coding (present during learning) and timing-dependent coding (in which 

neurons’ respective timing, rather than firing rate, carries information). We have recently 

shown that in a weakly coupled regime, an activity-dependent shift in theta-band cellular 

resonance among neurons may play an important role in explaining learning-initiated 

network reorganization, via STDP-based mechanisms [43, 53]. We hypothesize that, for 
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the reasons outlined above, this switch from rate to phase coding (i.e. neurons’ respective 

phase of firing on each cycle conveys the information about the network patterning) is 

essential for long-term information storage in brain networks. 

Here, we combined computational modeling of a highly reduced CA1 network with 

the analysis of in vivo mouse CA1 activity to elucidate the role of coincident firing during 

theta band (4-12 Hz) oscillations in short- and long-term reorganization of hippocampal 

network structure and dynamics during contextual fear memory (CFM) consolidation. 

Contextual fear conditioning (CFC) leads to rapid formation and consolidation of new 

memories (i.e. after single-trial learning) [110]. CFM consolidation relies on ad lib sleep 

in the hours immediately following CFC [146], and is associated with augmented theta-

frequency activity in CA1 in the hours following CFC [43]. Critically, recent in vivo work 

has shown CFM is disrupted when theta oscillations are suppressed during post-CFC sleep 

via optogenetic or pharmacogenetic inhibition of CA1 fast-spiking interneurons [111]. 

Conversely, CFM consolidation can be rescued from disruption caused by experimental 

sleep deprivation when theta oscillations are driven optogenetically (via rhythmic 

activation of fast-spiking interneurons) in CA1 [43].  

We show that resonance properties of the CA1 network model, mediated via 

changes in Ach levels during varying vigilance states, are sufficient to recreate all of these 

experimental phenomena, including temporal stabilization of network representations after 

CFC during NREM, the state-dependence of fear memory consolidation, and disruption of 

consolidation through interneuron inhibition. Furthermore, we demonstrate that STDP-

based memory consolidation during a dynamical network state analogous to sleep: (1) 

causes increased stability of functional network functional connectivity, subsequently 

leading to (2) an asymmetric change in synaptic connectivity patterns, between fast and 

slow spiking neurons, and (3) causes dramatic, differential changes in the activity profile 

of highly active vs. sparsely firing neuronal populations. These same dynamic changes are 

not observed during the dynamical network state corresponding to waking.  

Together, these results show that successful memory consolidation requires the 

brain to switch between information coding schemes which occur naturally through the 

sleep-wake cycle.  In so doing, the functional network structures associated with engrams 

become more stable and leads to successful long-term memory storage.  
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 Finally, similar frequency dependent changes in firing frequency mediated by 

NREM sleep, were observed in other modalities than the hippocampus (i.e. visual cortex 

[15]). Thus we conclude that even though this study is limited to investigating role of theta 

frequency network oscillations in fear memory, it may yield insight into potential universal 

neuronal network mechanisms of information storage in the brain. 

4.1 The Introduction of Memory Traces Augments Network Oscillatory Dynamics 

and Stability of Functional Connectivity Patterns. 

We hypothesized that network plasticity in hippocampal area CA1 following 

single-trial contextual fear conditioning (CFC) [112] would be a plausible biological 

system to investigate how rapid memory encoding affects the underlying neural network 

dynamics. Since CA1 network activity is necessary for fear memory consolidation in the 

hours following CFC [113], we analyzed and simulated recordings of the same population 

of CA1 neurons over a 24-h baseline and for 24 h following CFC to determine how 

functional network dynamics were affected by de novo memory formation. For brief 

description of the experimental protocol see methods, for more details please see [110].  

To investigate the mechanisms involved in sleep-dependent memory consolidation, 

we simulated a reduced CA1 network model composed of two cell types: excitatory 

pyramidal neurons and inhibitory interneurons that loosely represent parvalbumin positive 

(PV+) interneurons. In the model, the time-dependent voltage 𝑽𝒊 of a single neuron is given 

by 

𝑪𝒎

𝒅

𝒅𝒕
𝑽𝒊 = −𝑰𝑵𝒂 − 𝑰𝑲 − 𝑰𝑲𝒔

− 𝑰𝒍𝒆𝒂𝒌 + 𝑰𝒆𝒙𝒕 − 𝑰𝑺𝒚𝒏𝒂𝒑𝒕𝒊𝒄 

where 𝑪𝒎 is the membrane capacitance, 𝑰𝒆𝒙𝒕 is the fixed external input used to elicit 

spiking, 𝑰𝒍𝒆𝒂𝒌 = 𝟎. 𝟎𝟐(𝑽𝒊 + 𝟔𝟎) is the leakage current, and 𝑰𝑺𝒚𝒏𝒂𝒑𝒕𝒊𝒄 =

(∑ 𝒈𝑬−𝑿𝒋∈𝑬𝒙𝒄𝒊𝒕𝒂𝒕𝒐𝒓𝒚 𝑺𝒊𝒋)(𝑽𝒊 − 𝑽𝑬𝒙𝒄𝒊𝒕𝒂𝒕𝒐𝒓𝒚) + (∑ 𝒈𝑰−𝑿𝒋∈𝑰𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓𝒚 𝑺𝒊𝒋)(𝑽𝒊 − 𝑽𝑰𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓𝒚) 

is the total summed synaptic input received by a neuron from its pre-synaptic partners and 

𝒈𝑰−𝑿 and 𝒈𝑬−𝑿 represent the synaptic conductance for connections from inhibitory and 

excitatory neurons to their post synaptic targets X (values provided below). The synaptic 

reversal potentials are 𝑽𝑬𝒙𝒄𝒊𝒕𝒂𝒕𝒐𝒓𝒚 = 𝟎 𝒎𝑽 and 𝑽𝑰𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓𝒚 = −𝟕𝟓 𝒎𝑽. Here, 𝑺𝒊𝒋 =

𝒆𝒙𝒑 (−
∆𝒕𝒋𝒊

𝒔𝒑𝒌

𝝉𝒔
) − 𝒆𝒙𝒑 (−

∆𝒕𝒋𝒊
𝒔𝒑𝒌

𝝉𝒇
) represents the shape of the synaptic current, given the 
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difference in spike timing between the post-synaptic neuron 𝒊 and the recently fired pre-

synaptic neuron 𝒋, (∆𝒕𝒋𝒊
𝒔𝒑𝒌

), with  𝝉𝒇 = 𝟓 𝒎𝒔 and 𝝉𝒔 = 𝟐𝟓𝟎 𝒎𝒔 or 𝝉𝒔 = 𝟑𝟎 𝒎𝒔 for 

excitatory synaptic currents and inhibitory synaptic currents, respectively. 

The ionic currents are 𝑰𝑵𝒂, 𝑰𝑲, 𝒂𝒏𝒅 𝑰𝑲𝒔
, representing sodium (Na), potassium (K), 

and muscarinic slow potassium (Ks), respectively. More specifically: 𝑰𝑵𝒂 =

 𝒈𝑵𝒂𝒎∞
𝟑 𝒉(𝑽𝒊 − 𝑽𝑵𝒂), with 𝒎∞ = (𝟏 + 𝒆𝒙𝒑 (

−𝑽𝒊−𝟑𝟎

𝟗.𝟓
))−𝟏 being the activation of the 

channel and where 𝒉, the inactivation, is given by the solution to 
𝒅

𝒅𝒕
𝒉 = (𝒉∞ − 𝒉)/𝝉𝒉, 

with 𝒉∞ = (𝟏 + 𝒆𝒙𝒑 (
𝑽𝒊+𝟓𝟑

𝟕
))−𝟏 and 𝝉𝒉 = 𝟎. 𝟑𝟕 + 𝟐. 𝟕𝟖(𝟏 + 𝒆𝒙𝒑 (

𝑽𝒊+𝟒𝟎.𝟓

𝟔
))−𝟏; 𝑰𝑲 =

𝒈𝑲𝒏𝟒(𝑽𝒊 − 𝑽𝑲) with 
𝒅

𝒅𝒕
𝒏 = (𝒏∞ − 𝒏)/𝝉𝒏 where 𝒏∞ = (𝟏 + 𝒆𝒙𝒑 (

−𝑽𝒊−𝟑𝟎

𝟏𝟎
))−𝟏 and 𝝉𝒏 =

𝟎. 𝟑𝟕 + 𝟏. 𝟖𝟓(𝟏 + 𝒆𝒙𝒑 (
𝑽𝒊+𝟐𝟕

𝟏𝟓
))−𝟏; and 𝑰𝑲𝒔

= 𝒈𝑲𝒔(𝑽𝒊 − 𝑽𝑲) with 
𝒅

𝒅𝒕
𝒔 = (𝒔∞ − 𝒔)/𝟕𝟓 

where 𝒔∞ = (𝟏 + 𝒆𝒙𝒑 (
−𝑽𝒊−𝟑𝟗

𝟓
))−𝟏. The reversal potentials are 𝑽𝑵𝒂 = 𝟓𝟓 𝒎𝑽 and 𝑽𝑲 =

−𝟗𝟎 𝒎𝑽 and the maximal conductances are 𝒈𝑵𝒂 = 𝟐𝟒 
𝒎𝑺

𝒄𝒎𝟐, 𝒈𝑲 = 𝟑. 𝟎 
𝒎𝑺

𝒄𝒎𝟐. Each 

simulation was completed using the RK4 integration method with a step size of h = 0.05 

ms. 

 The slow potassium conductance, 𝒈𝑲𝒔
, serves as a control parameter for individual 

neuron dynamics, switching the neuron’s response to input from being integrative to 

resonant [151]. Integrators, also called Type 1 (T1) excitable oscillators, exhibit a decrease 

in timing between spikes regardless of when excitatory external input is received. 

Resonators, called Type 2 (T2) excitable oscillators, exhibit an increase in timing between 

spikes when excitatory input is received soon after an initial spike but a decrease in spike 

timing when excitatory input is received later in the firing cycle [151].  Studies have shown 

that T2 oscillators have robust spike-frequency adaptation compared to T1 oscillators [53] 

but that T1 oscillators are characterized by wider firing-rate distributions and attain overall 

higher firing-rates compared to T2 oscillators. Further, due to the biphasic response of T2 

neurons, they can synchronize much more easily to input compared to T1 oscillators, 

indicating that synchronization is mediated by both internal neuronal properties as well as 

how neurons are connected. 
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 In this model, the 𝒈𝑲𝒔
 conductance controls the action of muscarinic acetylcholine 

(ACh) receptors [57, 152]: high ACh concentration blocks pyramidal cells’ slow-varying 

potassium currents through these receptors, yielding increased gain in the firing frequency 

response to varying (excitatory) input and decreased capacity for firing to synchronize with 

rhythmic input, i.e. T1 dynamics. Low concentrations of ACh allows these slow-varying 

potassium currents to play a larger role in membrane excitability, switching them to T2 

oscillators: firing rate distributions are narrowed [56], neurons experience considerably 

enhanced spike-frequency adaptation [53], and, as we will see, are able to synchronize their 

dynamics much more easily than T1 oscillators.  Hence, I can control the effective amount 

of Ach in the system just by changing the values of this slow potassium conductance: 

𝒈𝑲𝒔
= {

𝟎 
𝒎𝑺

𝒄𝒎𝟐         𝒊𝒇 𝑨𝑪𝒉 𝒊𝒔 𝒉𝒊𝒈𝒉 

𝟏. 𝟓 
𝒎𝑺

𝒄𝒎𝟐    𝒊𝒇 𝑨𝑪𝒉 𝒊𝒔 𝒍𝒐𝒘
. 

 As we have discussed, the high concentrations of Ach have been implicated in 

attentive wakefulness and is thought to play a role in the initial binding of memories into 

neural codes [55, 153]. During NREM sleep, the level of Ach drops precipitously before 

rebounding in REM sleep. Conveniently then, modifying the value of 𝒈𝑲𝒔
 allows us insight 

into a simple model approximation of the biochemical differences between wake and sleep 

and how the emergent processes of networks facilitate information encoding. 

The network used in these studies consists of N=1000 neurons, with 𝑵𝒆 = 𝟖𝟎𝟎 

excitatory neurons and 𝑵𝑰 =  𝟐𝟎𝟎 inhibitory neurons. Connections are arranged to form a 

random network with different levels of connectivity dependent on the pairwise pre- and 

post-synaptic neuron identity: Inhibitory neurons project to 50% of the inhibitory neurons 

and 30% to the excitatory neurons whereas excitatory neurons project to just 6% of both 

the inhibitory and excitatory neurons, with self-connections being forbidden in all cases. 

The initial synaptic weights are 𝒈𝑰−𝑰 = 𝟎. 𝟎𝟎𝟏𝟑 𝒎𝑺/𝒄𝒎𝟐, 𝒈𝑰−𝑬 = 𝟎. 𝟎𝟎𝟎𝟓 𝒎𝑺/𝒄𝒎𝟐, 

𝒈𝑬−𝑰 = 𝟎. 𝟎𝟎𝟎𝟒𝟔
𝒎𝑺

𝒄𝒎𝟐
, and 𝒈𝑬−𝑬 = 𝟎. 𝟎𝟎𝟎𝟎𝟑 𝒎𝑺/𝒄𝒎𝟐 but can be changed (manually or 

through synaptic interactions) to form an initial memory engram. 

 Neural correlates of memory are thought to emerge due to the strengthening and 

weakening of synaptic strengths in an activity-based manner following spike timing-

dependent plasticity (STDP)[7]. Here, we use a symmetric learning rule that uniformly 
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increases or decreases synaptic weights based on the time-ordering of pre- and post-

synaptic pair firings, only in excitatory-to-excitatory connections. If a pre-synaptic neuron 

fires before its post-synaptic partner, the conductance increases by an amount  

𝝆 𝑬𝒙𝒑 (−
𝒕𝒑𝒓𝒆

𝒔𝒑𝒌
−𝒕𝒑𝒐𝒔𝒕

𝒔𝒑𝒌

𝟏𝟎
); similarly, a weakening of synaptic strength occurs by an amount 

𝝆 𝑬𝒙𝒑 (−
𝒕𝒑𝒐𝒔𝒕

𝒔𝒑𝒌
−𝒕𝒑𝒓𝒆

𝒔𝒑𝒌

𝟏𝟎
) when a post-synaptic neuron fires before its pre-synaptic partner, 

roughly following experimental trends [7]. In both cases, if the time difference between 

spike pairs is too great, the change in synaptic strength will approach zero. On the other 

hand, highly coincident spike pairs will have a maximal change given by the learning rate 

𝝆 = 𝟏𝟎−𝟑. It should be noted that while the synaptic weight is prohibited from becoming 

negative, there is no upper-bound set on the synaptic strength, though previous work has 

shown saturation of synaptic weights given enough time [53]. 

Within this framework, we first investigated how changes in connectivity to a 

limited subset of neurons, an analogy for memory encoding by engram neurons (i.e. the 

end result of a previous learning experience using STDP), affect network activity patterns. 

To this end, we mimicked the formation of an engram by first artificially increasing the 

outgoing synaptic connections of a randomly chosen subset pyramidal neurons by various 

degrees, which we refer to as the “memory strength”. Comparing raster plots for the 

Figure 4.1 Model networks respond to sparse strengthening of excitatiory synapses through emergance of theta rhythm 

and phase-locking. a-b) Raster plots of the network before (left) and after (right) introduction of a memory of strength 

20. Neurons below the red, dashed line are excitatory and those above the line are inhibitory. Inhibitory neurons connected 

randomly to 50% of the other inhibitory neurons and to 30% of the pyramidal neurons whereas excitatory neurons 

connected randomly to 6% of both the excitatory and inhibitory neurons; a random subset of excitatory neurons increased 

their synaptic strength to other excitatory neuron, constituting the memory strength. c) Fourier transform of the excitatory 

network signal reveals a sharp increase in spectral power only near 8 Hz; black line marks baseline; red line – spectral 

power after synaptic strenghtening. 
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network when pyramidal neurons exhibit type 2 dynamics, before vs. after introduction of 

the engram (Figure 4.1a-b; corresponding to a memory strength of 20), reveals the 

emergence of well-defined oscillations and, correspondingly, an increase in theta-band 

spectral power (4-12 Hz; Figure 4.1c).  The emergence of network oscillations with 

temporally locked neuronal spiking (i.e. characteristic oscillations in the theta-band 

regime) might be sufficient to generate reliable sequences of spiking patterns thought to 

play an important role in memory consolidation. 

4.2 Hippocampal Network Stabilization in vivo Predicts Effective Memory 

Consolidation. 

To investigate how emergence of oscillations affects formation of the temporal 

patterning between the neuronal firing patterns, we calculated the stability of network 

functional connectivity, using the functional network stability metric (FuNS; see Chapter 

2.1) [62]( Figure 4.2).  

The FuNS metric is sensitive to reconfiguration of functional connectivity patterns 

within the network, but not to fluctuations in the precise spike order between pairs of 

neurons. High stability can be detected for weak but consistent functional connectivity 

patterns. Therefore, FuNS qualitatively provides information about temporal evolution of 

functional connectivity as compared to direct assessment of correlation between spike 

bouts. We thus used FuNS to measure stability of functional connectivity measured from 

the experimental recordings as well as in the model simulations. 

Experimentally, the mice underwent CFC (n = 5 mice), sham conditioning (n = 3 

mice), or CFC followed by 6 h of sleep deprivation (SD; a manipulation known to disrupt 

fear memory consolidation [43, 129, 146]; n = 5 mice); a full description of the experiments 

and subsequent recordings performed can be found in Appendix A.1. 

We measured changes in FuNS in these recordings after each manipulation by 

quantifying FuNS on a minute-by-minute basis over the entire pre- and post-training (i.e., 

24 h duration) intervals and calculating their respective difference within each animal. 

Consistent with previous findings [110], we observed a significant increase in FuNS over 

the 24 h following CFC during NREM sleep (Figure 4.2a). In contrast, no change in NREM 

FuNS was seen in Sham mice or following CFC (during recovery sleep) in SD mice.  
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Group differences in NREM FuNS were reflected in the behavior of the mice 24 h 

post-training, when context-specific fear memory was assessed (inset Figure 4.2c, inset). 

Mice allowed ad lib sleep following CFC showed significantly greater freezing behavior 

when returned to the conditioned context than did Sham or SD mice. Moreover, training-

induced changes in NREM-specific FuNS for individual mice predicted context-specific 

freezing during memory assessment (Figure 4.2c). Thus, successful consolidation of a 

behaviorally-accessible memory trace in vivo is accompanied by increased FuNS in the 

CA1 network. 

In terms of in silico modeling, we allowed synapses between pyramidal neurons to 

undergo STDP while we monitored changes in FuNS. We simulated networks with 

differential exposure to learning (i.e. strengthening the connectivity between the subset of 

“engram” neurons as described in above section) and varying vigilance states (type 1 for 

wake or type 2 for NREM sleep) to mimic the experiments described above. Specifically, 

to model sleep deprivation (SD), pyramidal neurons were set to type 1 excitability in the 

presence of engram neurons (memory strength = 10), whereas to model NREM effects on 

CFC and Sham the pyramidal cells were set to type 2 excitability, with CFC having a 

similarly defined engram as SD and Sham having no engram.  

We found that only when the engram was present in networks with type 2 

excitability was the network capable of successfully consolidating information, 

maintaining stable network dynamics over time (Figure 4.2b). Conversely, type 2 networks 

without an engram and type 1 networks with an engram showed no significant increase in 

stability, even in the context of STDP-based learning. These results led us to hypothesize 

that oscillatory patterning is critical for successful STDP-based consolidation of a 

hippocampal memory trace. We focus on this phenomenon in the following sections. 

 Further, to investigate how initial memory strength (corresponding to just after CFC 

experimentally) affects FuNS and power of theta band oscillations we measured the two 

quantities as a function of strengthening of synaptic connections between “engram” 

neurons (i.e. the memory strength, Figure 4.2d).  By increasing the memory strength, we 

observed a positive linear relationship between increased FuNS and increased theta-band 

power in the model network (Figure 4.2d). This suggests that both the locking of neuronal 

firing with network oscillations and the associated stabilization of network functional 
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connectivity patterns is driven by synaptic potentiation between engram neurons and other 

neurons in the network. This finding agrees with experimental results, showing that 

contextual fear memory consolidation is associated with both increased theta-band 

oscillations, and increased FuNS, during sleep in the hours immediately following 

conditioning [43, 110, 111]. We proceed to show that it is this phase-locking of neurons to 

underlying oscillations that is important for memory consolidation.  

 

Figure 4.2 Functional network stability predicts future level of memory consolidation. a) Analysis of in vivo recordings 

in the mouse hippocampus CA1 area following CFC for corresponding behavioral states (sham — black [n = 3] , SD — 

blue [n = 5], CFC – Gold [n = 5]) reveals that ad lib sleep post conditioning leads to the  greatest increase in FuNS. b) 

Model predictions for the change in FuNS in each simulation group: Sham (learning in NREM states without selective 

connectivity strenghtening; n= 5) and SD (learning in Wake dynamical state with selective connectivity strenghtening; n 

= 5) show only marginal changes in FuNS whereas CFC (learning in NREM dynamical state with selective connectivity 

strenghtening; n = 5) show a maximal increase in FuNS. All error bars represent the standard error of the mean. c) 

Examining the change in FuNS as a function of change in learning (% freezing; raw values shown as inset) reveals a 

linear relationship with a goodness of fit R2 = 0.54327. d) Measuring the change in stability as a function of the change 

in spectral power density (integrated over theta-band frequencies) for increasing the strength of those selected synaptic 

connections reveals a linear releationship. The color bar represents the magnitude of synaptic strength change from 

baseline. 
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4.3 Input-dependent Phase Locking of firing to Network Oscillations Predicts 

Firing rate Reorganization across a Period of Sleep 

A series of recent studies have demonstrated that sleep has heterogeneous effects 

on neuronal firing rates within neural circuits. Specifically, initially highly active neurons 

reduce their firing rates across a period of sleep, while sparsely firing neurons 

simultaneously increase their firing rate [15, 147, 154]. Sleep is essential for this 

redistribution of firing rates, as firing rate changes do not occur in animals that are 

experimentally sleep deprived [15]. 

 

We hypothesized that this phenomenon could result from an asymmetric plasticity 

mechanism accompanying an input-dependent phase-locking of neurons’ firing to 

oscillations observed during sleep. Specifically, we predict that neurons that are highly 

active during wake would fire at an earlier phase than sparsely-firing neurons during 

subsequent NREM oscillations. Figure 4.3 illustrates the relationship between model 

Figure 4.3: Neurons arrange in NREM oscillatory phase by Wake firing rate. Normalized phase of firing in NREM versus 

normalized wake frequency of pyramidal neurons reveals that the neurons firing with the highest frequency align with 

an earlier phase of the pyramidal network population whereas slower firing neurons align with later phases. 
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neurons’ phase of firing calculated during type 2 dynamics before learning as a function of 

the normalized frequency during type 1 dynamics pre-learning. Specifically, the phase 

relationships reported were calculated using a continuous inhibitory signal (inhibitory 

spikes convolved with a Gaussian function with μ = 0 ms and σ = 5 ms) from the inhibitory 

neuron population spike vector. Peaks in the inhibitory signal acted as the start and end of 

a given phase and non-engram excitatory spike times were used to calculate the phase 

difference between an individual neuron and the signal. The phase difference was 

normalized to give values between 0 and 1.  

We observed that the activation of fastest firing neurons during waking indeed 

occurs earlier in the phase of the pyramidal network oscillation during sleep. This suggests 

that neurons take on a phase-based, temporal coding strategy during strongly coherent 

network oscillations (i.e., those occurring during sleep) which reflects relationships in the 

prior rate coding strategy present during wake.  Based on this relationship, we hypothesized 

that excitatory connections from high-firing to low-firing neurons are strengthened via 

STDP during sleep, while connections from low-firing to high-firing neurons are 

weakened. 

To investigate whether this phase-locking phenomenon can be observed 

experimentally, we compared in vivo and in silico spiking dynamics using a metric 

detecting frequency dependent spiking asymmetry between the pairs of firing neurons; for 

a full description of the following, please refer to Appendix B. Briefly, in CFC and Sham 

Figure 4.4 Analysis of spiking asymmetry reveals enhanced wake frequency dependent temporal relationships between 

firing neurons after CFC. a) Pairwise spiking asymmetry recorded in an example CFC mouse during NREM; rows and 

columns have been arranged by wake frequency (y-axis). b) Example cumulative distribution functions of pairwise 

asymmetry Z-Scores (Z) [NREM Asymmetry ordered by Wake Frequency] for baseline (Black) and  post-conditioning 

(Red) recordings. Inset: difference between the two distributions. c) Weighted average of differences in CDFs for CFC 

mice (Black) and Sham mice (blue). 
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hippocampal recordings, we first detected bursts of activity in NREM and we subsequently 

calculated the frequency dependent spiking asymmetry between neurons – i.e. whether, 

statistically, neurons that fire more frequently during wake tend to lead spiking during 

NREM sleep. We define the asymmetry matrix A, an 𝑵 × 𝑵 matrix whose rows and 

columns were ordered by the firing rate of the same neurons within wake (Figure 4.4a), 

leaving the lower triangular matrix to represent neurons with a positive frequency 

difference during wake. We subsequently calculate the significance of the results, a Z score 

for every pair, by performing bootstrapping; by convention, 𝒁𝒊𝒋 > 𝟎 indicates a positive 

asymmetry and we take 𝒁𝒊𝒋 ≥ 𝟐 to be significant. 

We next compared the cumulative distribution functions (CDFs) of 𝒁𝒊𝒋 calculated 

before and after exposure to CFC (Figure 4.4b) or sham. The inset in Figure 4.4b shows 

the difference between the two distributions. Finally, we calculated the weighted average 

of the differences between CDFs of the CFC and sham animals, respectively, and found 

that that the difference in CFC distributions (with respect to baseline)  are skewed towards 

positive Z values as compared to sham ones (Figure 4.4c), indicating that CFC significantly 

increases the number of the locked pairs in the frequency dependent manner. This further 

indicates presence of a phase-coding mechanism. 

Figure 4.5 Disruptions to network oscillations lead to diminished temporal relationships between firing neurons.  

Weighted sum of differences in experimental CDFs between DMSO and CNO experimental recordings (a) and between 

model CDFs, between full networks and networks with blocked inhibitory interneurons (b). 
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4.4 Disruption of Oscillatory Rhythms Affects Temporal Coding During Sleep.   

We next wanted to investigate how disruptions in network-wide oscillations affect 

phase-coding mechanisms. To this end, we analyzed the spiking asymmetry of 

hippocampal recordings of mice that were transgenically modified so that the presence of 

an inhibitory block (CNO dissolved in DMSO) shuts down PV+ interneuron activity and 

subsequently ablates network-wide oscillations and diminishes learning, whereas the 

presence of DMSO alone does not adversely affect oscillations or learning [43] (an 

experimental description is found in Appendix A.2). We observed a decrease in positive 

asymmetries taken from post-learning recordings in CNO threated animals as compared to 

DMSO only threated ones, indicating a subsequent disruption in frequency dependent 

phase-coding due to disruptions in network oscillations (Figure 4.5a). We found a similar 

disruption of phase-coding in our model simulations (Figure 4.5b), when we blocked 

inhibitory neurons from firing.  

4.4.1 Frequency dependent Firing Asymmetry Affects Network Reorganization in the 

Presence of STDP. 

As a last step, we examined how individual neuron frequencies change due to 

STDP-based synaptic reorganization during NREM sleep. In our network model, we 

compared the effects of this reorganization when networks had type 2 pyramidal cell 

excitability (low Ach, indicative of NREM sleep) with a condition where network 

oscillations are abolished by silencing inhibitory neurons (similar to CNO mice in vivo).  

 We examined the changes in wake-state neuronal firing frequencies after a 

reorganization interval in these two scenarios. In the model, when STDP-based synaptic 

reorganization took place when networks had type 2 dynamics, we observed a significant 

increase in the firing rates of excitatory neurons initially firing at low rates during wake; in 

contrast, those with the highest initial firing showed a decrease in firing rate (Figure 4.6a). 

We color-coded neurons based on their relative change in frequency across sleep and 

identify in the corresponding pre-reorganization raster plot (Figure 4.6a inset) that neurons 

that fire faster (slower) also fire earlier (later) in the oscillation during type 2 dynamics 

(consistent with Figure 4.3) and show a decrease (increase) in firing frequency due to 

learning. Note that some neurons did not fire during NREM and so did not show a 

significant change in firing frequency due to learning (black points in Figure 4.6a). By 
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comparison, silencing of inhibitory neurons in the network led to a homogenous increase 

in firing rates for those neurons active consistently across learning (Figure 4.6b). We 

compared these results with data recorded from the hippocampus of mice subjected to 

corresponding experimental manipulations [43]. We measured the change in log firing 

frequency across a six-hour time interval at the start of the animals’ rest phase (i.e., starting 

at lights on), with recordings occurring either the day before CFC (baseline) and 

immediately after training (post CFC). Following CFC, mice either were (a) allowed ad lib 

sleep with administration of a vehicle (DMSO), or (b) were allowed ad lib sleep with 

pharmacogenetic inhibition of hippocampal PV+ fast-spiking interneurons (CNO). 

Changes in log firing rate for all stably-recorded neurons were calculated in each condition, 

as a function of their baseline firing rate. The resulting best-fit lines reveal that all cases 

show relatively low rescaling before exposure CFC but that initially low firing neurons 

increase their firing rate in response to fear conditioning, with the greatest increase seen in 

the control condition, DMSO mice (Figure 4.6c). Indeed, comparing the slopes of firing 

rate change (Figure 4.6d) for post-shock recordings show significantly weaker 

reorganization of firing rates in CNO than in in DMSO treated mice. This rescaling of 

firing rates across the network is an important prediction of the model, as it suggests a 

possible universal network-level correlate of sleep-based memory consolidation in vivo. 
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Figure 4.6 Memory consolidation during sleep differentially affects frequency of firing neurons – model prediction and 

experiment. MODEL: a) Changes in individual neuron firing frequency (normalized to baseline) due to memory 

consolidation during sleep as a function of normalized baseline firing frequency. Neurons are color-coded based on their 

change in frequency from baseline and the color is conserved in the raster plot; black-colored neurons are those which 

did not fire during NREM sleep. Of the neurons that are consistently active, those with initially lower frequency increase 

their frequency whereas neurons with initially higher frequency decrease their frequency. Excitatory-excitatory 

connectivity strength was increased to gE−E = 0.00001 mS/cm2 to proctect against synaptic depression. Inset:a 

snapshot of the corresponding raster plot in NREM sleep before learning. b) Change in firing frequency (normalized to 

baseline) as a function of normalized baseline firing frequency when blocking inhibition diminished oscillations. Unlike 

in (a), firing frequency changes homogenously across baseline firing rates. EXPERIMENT: c) Best fit lines of the 

change in log firing rates vs the initial log firing rate, comparing baseline recordings (solid lines; composite n = 11) to 

post recordings (dashed lines) for the first 6 hours post CFC in experimental DMSO (Yellow; n = 3), CNO (Teal; n = 3), 

and SD (Blue; n = 5). d) Slope comparison of change in log firing rates for DMSO, CNO, and SD baseline and post-

shock recordings. Analysis of covariation revealed statistically significant slope differences between DMSO and CNO 

(*, p = 0.0114), and DMSO and Baseline (**, p < 0.0001). 
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4.5 Discussion 

Sleep has long been known to be vital for successful memory consolidation. Sleep’s 

requirement for long-term memory storage has been demonstrated across organisms and 

across different types of memories (e.g., those mediated by network activity in the 

hippocampus vs. sensory cortex; [150]). Similarly, recent advances have shown that 

varying oscillatory dynamics accounts for different aspects of memory consolidation [52, 

155]. Here, we argue that neuronal phase-locking to network oscillations expressed during 

NREM sleep promotes feed-forward synaptic plasticity (i.e., STDP) from highly active 

neurons to less active ones that promotes long-term memory storage. 

 Our model demonstrates that the initial encoding of memories in the 

hippocampus during CFC increases theta-band oscillation power (Figure 4.1, 4.2d). The 

augmentation of these oscillations occurs in a NREM sleep-like, low-ACh, type 2 network 

state This is due to the fact that the neurons are less responsive to input (i.e. the input-

frequency curve flattens), and they exhibit higher propensity to synchronization as their 

phase response curve becomes type 2.  Subsequently, these oscillations mediate input-

dependent phase locking of neuronal spiking. This locking to network oscillations leads to 

more stable firing relationships between neurons. We observe this increase in stability (i.e. 

increase in FuNS) both in our hippocampal network model after introduction of a 

synaptically-encoded memory and experimentally after hippocampus-dependent memory 

encoding in vivo (Figure 4.2).  

By assessing the relative change in FuNS recorded in the CA1 network following 

CFC, we have determined the salient features of network wide dynamics that accompany 

successful sleep-dependent memory consolidation (Figures 4.2-4.6) [15, 43, 110, 112, 147, 

156]. We find that increased FuNS is not only a result of stronger low-frequency oscillatory 

patterning of the network, but that it also predicts whether experimental conditions will 

support, disrupt, or rescue fear memory consolidation (Figure 4.2c). 

This increased stability in turn mediates mapping between frequency response 

during wake and relative phase-of-firing patterns during sleep dynamics (Figure 4.3) – 

neurons that fire with higher frequency during wake tend to fire during sleep before those 

with lower spiking frequency during wake. We showed that this frequency/timing 

relationship can be detected in experimental data during sleep phases (Figure 4.4). 
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Moreover, when the oscillations are abolished by blocking activity of PV+ interneurons (in 

the experiments and in the model, Figure 4.5) the frequency/timing relationship is reduced, 

indicating that oscillations do play central role in this process.    

Finally, when model networks subsequently undergo structural re-organization 

through classic STDP mechanisms, we observe renormalization of firing frequencies, with 

sparsely firing neurons increasing their firing rate substantially, and highly active neurons 

decreasing their firing rate. These results are consistent with experimental observations in 

CA1 during CFM consolidation (Figure 4.6). Furthermore, we again observed reduction of 

these effect when the activity of PV+ neurons is blocked. Similar firing rate changes were 

also reported in neurons across periods of sleep in other brain structures [15, 147]. 

Thus, taken together, our results hint at a universal mesoscopic network mechanism 

underlying what is commonly referred to as systems consolidation. Our results further point 

to the hypothesis that while the brain may use a rate code to initiate memory encoding 

during experience, memories may be preferentially consolidated through phase-based 

information coding, in the form of phase locking of firing network oscillations in 

subsequent sleep. This is supported by the idea that rate-based information coding in the 

brain is highly limited (as described in the introduction) and is experimentally supported 

by our data showing that CFM consolidation does not occur in the absence of sleep (Figure 

4.2 inset) – unless a network oscillation is artificially generated in CA1 [43].  A simplified 

schematic of this idea is shown in Figure 4.7.  

While the present study is focused on matching parameters of computational 

models to data from the hippocampus during fear memory consolidation, we believe that 

the mechanisms outlined here may be universally true. For example, sleep, and sleep-

associated network oscillations, are required for consolidation of experience-dependent 

sensory plasticity in the visual cortex [52, 157, 158]. Moreover, similar frequency-

dependent changes in neuronal firing rates are also observed across periods of sleep in the 

visual cortex [15]. Based on these and other recent data linking network oscillations in 

sleep to many forms of memory consolidation, this suggests a unifying principle for sleep 

effects on cognitive function, and one that could reconcile discrepant findings on how sleep 

affects synaptic strength [150]. It also paints a more complex but complete role of sleep in 

memory management that is often proposed [51]. Here we show that sleep may on one 
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hand facilitate disconnection of high frequency cells that initially participate in memory 

coding, but at the same time, mediates recruitment of new neuronal populations during 

consolidation of memory engram.  

 

 

Figure 4.7: Proposed progression of memory consolidation and replay during wake and sleep. Top (wake): Rate coding 

during wakefulness arranges spiking behavior in order of frequency, where neurons receiving a larger input fire faster. 

Learning during rate coding effectively speeds up the firing frequency and causes a uniform increase in all synaptic 

connectivity strengths. Middle (Sleep): Phase coding, on the other hand, occurs when neurons are firing at nearly the 

same frequency, with those neurons receiving greater input occurring first in a firing sequence. The effect of learning 

during rate coding is a preferential increase in synaptic connectivity strength, as well as de novo creation of new synapses, 

following the sequence. The firing phases eventually even out and then switch, so that the neurons firing first in the 

original sequence fire simultaneously and then last as learning progresses, respectively. Switching back to rate-coding 

after consolidation occurs during phase-coding effectively switches the order of the fastest firing neurons. Thereby, the 

process repeats itself and those neurons that are phase locked will see a net potentiation and therefore consolidation of a 

fear memory. 



79 

 

Chapter 5  

Conclusion 

 Our brains have evolved to become efficient information processing machines, 

easily converting analog sensory signals into compressed digital codes. Interpreting this 

code is effortless for the brain itself but remains mysterious for those of us trying to 

understand it. Steady advancement of technology over the past century has provided a 

wealth of tools at our disposal to crack the brain’s coding scheme and monumental efforts 

have been enacted to do just that. Studies show that information is contained in the temporal 

coding of spikes among neurons, which is facilitated by networks of synaptic connections. 

How this code should be interpreted is an ongoing discussion with many competing and 

cooperating theories for all manners of neurological processes. In the work presented here, 

I outlined three interconnected theories relating to the process of memory consolidation: 

functional network stability, system criticality, and oscillation-driven phase-coding. At 

first, the interplay between critical dynamics and oscillations and functional network 

stability seems counterintuitive. How can criticality, a state often defined as an 

asynchronous and irregular state [138, 144], produce synchronization leading to emergent 

oscillations and stable networks?  

 The explanation is that the time scale between these processes is not necessarily the 

same. Critical dynamics are typically assessed on the order of system-wide interspike 

intervals [58] while synchronization may utilizes longer time scales and the oscillations 

produced can vary in frequency from very slow as in NREM sleep (Delta [0.1-4Hz] & 

Theta [4-12Hz]) to fast as in Wake (Beta[12-30Hz], Gamma [30-80Hz]) and FuNS is 

limited by features of functional connectivity identification (though AMD is “parameter 

free” and has no characteristic time scale). At the same time, evidence has shown that 

critical dynamics and oscillations coexist due to the network structure itself [159], 

indicating that these feature may be inextricably linked and that the results I present above 

are indeed present in tandem. 
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 The importance of criticality in information processes has been shown in numerous 

studies [3, 20-23, 120]. Here, I showed for the first time that criticality may be important 

for the storage of new memories. Long-range correlations in the model network support a 

transfer of information about the new configuration throughout the network (Figure 3.2b), 

allowing the initial encoding of new information near criticality (Figure 3.2a) to be 

successfully consolidated into a stable attractor through plasticity (Figure 3.2c). Upon 

storage, critical dynamics are shifted to become more stable and help facilitate the 

existence of a dynamical attractor representing the new memory (Figure 3.2, 3.3), a feature 

I found evidence of in NREM hippocampal recordings of mice exposed to fear stimuli 

(Figure 3.4). This dynamic stabilization was similarly observed at the network level in the 

same mice (Figure 2.16, 4.2) (further proof of link between these dynamical 

classifications), indicating that (1) the FuNS algorithm is powerful and (2) that oscillatory 

activity of NREM is providing a convenient mode of communication between neurons 

through temporal coding.  

 The results in Chapter II show many features that may be important in 

understanding information encoding at the network-level: (1) Average-minimal distance 

provides an analytical framework to rapidly asses relationships among neurons (Figures 

2.3-2.6), which may be important in time-sensitive situations such as in identifying the 

onset of epileptic seizures [160]; (2) tracking network similarity over time using FuNS 

reveals potential metastable networks utilized by the brain to represent distinct features; 

and (3)  that AMD and FuNS are robust with respect to how data is generated and can even 

be used to track the stability in space as well as time. Oscillations are thought to provide 

this spatiotemporal means of communication. 

  Oscillatory activity is ongoing in the brain, with different modes of oscillations 

attributed to different vigilance states and cognitive functions. In Chapter IV, I found that 

slow-wave oscillations associated with NREM may facilitate a phase-coding mechanism, 

where neurons that are highly active during wake lead oscillations during NREM, whereas 

less active neurons in wake lag within oscillations during NREM. In model simulations, I 

showed that heterogeneity in synaptic connections leads to emergent oscillations among 

resonator, Type 2 (T2), neurons (Figure 4.1) which was revealed to precisely structure 

spike timings in a frequency dependent manner (Figure 4.3). Ongoing evidence supports 
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that sleep may be a period of active [15, 147], and not just passive[51] plasticity, and may 

then, when combine with this precise spike ordering, preferentially strengthen connections 

from fast-spiking neurons to slow-spiking neurons (while weakening in the other 

direction), leading to a homogenization of firing rates among neurons (Figure 4.6; see also 

[15, 147, 156]). Hence, phase-coding may provide the dynamics to facilitate FuNS in 

NREM sleep for mice that learn well. 

 Taken together, I showed that dynamical characterizations of spiking activity help 

provide mechanistic explanations of how the brain processes, encodes, and consolidates 

new information. While contention about the critical brain rages on [25, 27], I showed that 

it can be a unifying mechanism, cooperating with neuronal oscillations to form dynamical 

attractors as stable network interactions.  

5.1 Future Directions 

 The work I presented here only scratches the surface on the dynamical interplay 

between these mechanisms and their collective and individual roles in elucidating brain 

function. I believe that future projects stemming from this work should attempt to answer 

two central questions: (1) how does the interplay between various plasticity mechanisms 

shape network structure and dynamics in the context of memory?; and (2) what affects does 

hippocampal memory recall have on the dynamical state of other cortical areas? 

5.1.1 Investigating Plasticity Mechanisms and Their Role in Memory Consolidation 

 In the work I present here, I investigated activity-based plasticity. In Chapter 3, this 

took the form of a standard spike-timing dependent plasticity between excitatory neurons. 

Multiple other forms of synaptic plasticity are known to exist, including plasticity of 

inhibitory connections  and between inhibitory neurons [9] as well as homeostatic plasticity 

mechanisms, which are thought to be responsible for maintaining a relative stability of 

firing rates in individual neurons [51, 161]. Homeostatic plasticity in particular is thought 

to facilitate synaptic downscaling, where connections are reduced and prime networks for 

subsequent periods of learning. The sleep homeostasis hypothesis claims that this is the 

main role of plasticity during sleep [51], though our results in Chapter 2 and 3 show that 

sleep may play a more active role in plasticity. Still, understanding how these plasticity 

mechanisms interact and the effect they have on networks and spiking dynamics could 

provide potentially useful information about encoding multiple memories. One simple way 
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to investigate STDP together with homeostatic plasticity is through an extension of the 

model outlined in Chapter 3. Instead of plasticity only occurring during short time windows 

when both pre- and postsynaptic neurons are active, STDP can be set to compete with a 

constant synaptic change which attempts to fix input and output strength to a (possibly 

predetermined) level. This homeostatic plasticity would have to be relatively weak overall, 

lest it adversely shut down STDP. At the same time, evidence exists that STDP may require 

a bursts of activity between pre- and post-synaptic scales to be switched on [38]. This could 

also be accounted for in the model by introducing a gating variable (following a standard 

sigmoidal distribution) for changing synaptic weight. Together, these studies may provide 

insight into more realistic means of synaptic plasticity that permit both the storage of new 

memories and the maintenance required to continually encode them. 

5.1.2 Multiscale Brain Dynamics during Hippocampal Memory Recall 

 Each model considered here was confined to a single layer of neuronal networks, 

but the brain is known to be multilayered and hierarchical [2]. It would be interesting to 

investigate whether adding new layers with more extensive connectivity motifs adversely 

affects dynamical states and how information would propagate through the layers. This 

opens potentially new avenues of tracking dynamics and information transfer across 

regions of the brain. Are all parts of the brain firing under a universal dynamical state as 

suggested by the theory of brain criticality, or do different regions have slightly different 

firing patterns? If so, what are the benefits? Does this help information transfer between 

regions? Can rate-coding play a larger role in this context?  

 In the context of contextual fear conditioning, this raises the possibility of tracking 

how hippocampal fear memory reactivation propagates to other cortical regions. It may be 

that hippocampal reactivation of the fear memory elicits a similarly stable network 

response in somatosensory cortex, for example, which processes tactile stimulations; 

recording from both regions across the training cycle may reveal a hierarchical processing 

that unifies dynamics across cortical regions. At the same time, output from the 

hippocampus may be tracked and the signal can be related to oscillatory tone of the brain, 

further revealing potential temporal-coding processes related to information transfer 

between regions. 
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Appendix A  

Experimental Methods 

A.1 Hippocampal Recordings, Fear Conditioning, and Sleep Deprivation  

All procedures were approved by the University of Michigan Animal Care and Use 

Committee. Male C57BL/6J mice between 2 and 6 months were implanted (described in 

more detail in [110, 111]) consisted of custom built drivable headstages with two bundles 

of stereotrodes implanted within right-hemisphere CA1. 3 EMG electrodes were placed in 

nuchal muscle to monitor activity. The signals from the stereotrodes were split into local 

field potential (0.5-200 Hz) and spike data (200 Hz-8 kHz). Single neuron data was 

discriminated as described in Ognjanovski N et al. 2014 [110], and only neurons stably 

recorded across each 24 hour period were used in the subsequent analyses.  

The mice underwent CFC (placement into a novel environmental context, followed 

2.5 min later by a 2-s, 0.75 mA foot shock; n = 5 mice), sham conditioning (placement in 

a novel context without foot shock; Sham; n = 3 mice), or CFC followed by 6 h of sleep 

deprivation (SD; n = 5 mice). Spike data from individual neurons was discriminated offline 

using standard methods (consistent waveform shape and amplitude on the two stereotrode 

wires, relative cluster position of spike waveforms in principle component space, ISI ≥ 1 

ms) [15, 43, 52, 110, 111]. Only neurons that were stably recorded and reliably 

discriminated throughout the entire baseline and post-conditioning period were included in 

subsequent analyses of network dynamics. 

 Post-shock, animals were either allowed ad lib sleep or 6 hours of sleep deprivation 

via gentle handling. 24 hours later, freezing behavior to conditioning context was assessed 

to evaluate the formation of a contextual fear memory.  

A.2 Pharmacogenetic Inhibition of Interneurons 

2-3-month-old male Pvalb-IRES-CRE mice were bilaterally injected with either the 

inhibitory receptor hM4Di (rAAV2/Ef1A-DIo-hM4Di-mCherry; UNC Vector Core: Lot 

#AV4,708) or a control mCherry reporter (raav2/Ef1A-DIo-mCherry; UNC Vector Core: 
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Lot #AV4375FA) (methods further elaborated in [111]). Using the same implant 

procedures described above, the animals were implanted with stereotrode bundles.  

 After allowing 4 weeks for viral expression, the animals underwent contextual fear 

conditioning (as described above). Post-shock, mice were either given 0.04 mL i.p. 

injecting of either 0.3 mg/kg clozapine-N-oxide (CNO) dissolved  in DMSO (to activate 

the DREADD) or DMSO alone (as a control). Further detail can be found in Ognjanovski 

N et al. 2018 [43], where this data set was originally published. 
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Appendix B  

Analytical Methods 

B.1 Burst Detection and Spiking Asymmetry 

 In order to elucidate the presence of a phase-coding mechanism, we analyzed bursts 

of activity for spiking asymmetry between active neurons. First, recordings of a given 

interval of length L were segmented into smaller windows of length x (25 ms in CFC, 50 

ms in CNO/DMSO (Appendix A.2), and 100ms in model simulations; with times chosen 

to maximize number of pairwise co-activations occurring) with windows overlapping by 

12.5 ms to increase the sampling of the interval L and to reduce effects of windows onset. 

Then, the total number of active neurons, in each window is determined and used to define 

a burst-detection threshold: a burst occurs if the activity in a window is significantly greater 

than the mean background activity, averaged over all intervals of a given vigilance state. 

More precisely, if a window 𝒘𝒊 has a corresponding number of active neurons 𝒌𝒊, then the 

set of windows representing bursts over all intervals is given as 𝑩 = {𝒘𝒊|𝒌𝒊 ≥ 𝝁𝒌 + 𝟐𝝈𝒌}, 

where 𝝁𝒌 and 𝝈𝒌 are the mean and standard deviation across all w. 

Spiking Asymmetry Calculation 

 Next, the pairwise spiking asymmetry A is calculated across all bursts, where A is 

an NxN matrix with entries 𝑨𝒎,𝒏 > 𝟎 if the spikes of neuron m occur before the spikes of 

neuron n on average, and 𝑨𝒎,𝒏 < 𝟎 in the opposite case. The exact value of an entry 𝑨𝒎,𝒏 

is given as the normalized sum of percent differences between the number of spikes of 

neuron n occurring after and before each spike of neuron m, across all detected bursts B:  

𝑨𝒎,𝒏 = (
𝟏

𝑩𝒎,𝒏
) ∑ ∑

(𝑻𝒏>𝒎 − 𝑻𝒏<𝒎)

(𝑻𝒏>𝒎 + 𝑻𝒏<𝒎)
 

Where 𝑻𝒏>𝒎 represents the number of spikes of neuron n occurring after a given spike of 

neuron m, the inner sum is over the number of spikes of neuron m within a given burst, the 

outer sum is over all bursts, and the normalization factor is the total number of bursts where 

neurons n and m are coactive. Given that the firing rate of each neuron is (at least) slightly 
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different, the asymmetry is typically not symmetric about the 𝑨𝒎= 𝒏 diagonal, i.e. 𝑨𝒎,𝒏 −

𝑨𝒏,𝒎 ≠ 𝟎. 

B.2 From Spiking Asymmetry to Phase Asymmetry 

 The asymmetry matrix A informs on the relative spike timings between different 

neurons but does not necessarily inform about corresponding phase relationships. Thus, to 

bridge the gap between spiking asymmetry and phase asymmetry, the rows and columns 

of A are sorted by neuron spiking rate measured within a given vigilance state. Sorting in 

this way and working within the framework of our hypothesis, spiking asymmetry of slow 

firing rate neurons compared to high firing rate neurons will (a) compose the lower 

triangular matrix of A and (b) will be more positive than the upper triangular matrix of A 

if faster firing neurons lead slower firing neurons. We thus compared each pairwise entry 

of 𝑨𝒎,𝒏 in the lower triangular matrix with its reciprocal 𝑨𝒏,𝒎 in the upper triangular, 

�̃�𝒎,𝒏 = 𝑨𝒎,𝒏 − 𝑨𝒏,𝒎 

under the expectation that if �̃�𝒎,𝒏 > 𝟎, then the faster firing neuron leads the slower firing 

neuron on average. This comparison is thus a remapping from the NxN matrix to vector of 

length 0.5(N2-N), where we have excluded the �̃�𝒎=𝒏 entries. 

We next determined the significance of each �̃�𝒎,𝒏 by randomizing the timing of each 

neuron’s spike within each burst, 100 times. The value of significance is then given by the 

Z-score,  

𝒁(�̃�)
𝒎,𝒏

=
�̃�𝒎,𝒏 −< �̃�𝒎,𝒏 >𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅

𝝈(�̃�𝒎,𝒏)𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅

, 

where < �̃�𝒎,𝒏 >𝒓𝒂𝒏𝒅𝒐𝒎𝒊𝒛𝒆𝒅 ~𝟎 in all cases (due to the method of randomization) and thus 

𝒁(�̃�)
𝒎,𝒏

≥ 𝟐 indicates that neuron m leads neuron n in a significant way. Moving forward, 

it is this distribution of Z-scores Z that we use to assess the phase asymmetry. 

We have found that the most concise way of characterizing changes in Z (e.g. due to 

learning) is by comparing the cumulative distribution functions, CDF(Z). For example, 

imagine there are two CDFs, 𝑪𝑫𝑭𝟏 and 𝑪𝑫𝑭𝟐, with the same range and span of Zs. Then, 

at any particular value 𝒁𝒙, 𝑪𝑫𝑭𝟏(𝒁𝒙) > 𝑪𝑫𝑭𝟐(𝒁𝒙) indicates that there are more 𝒁 > 𝒁𝒙 

remaining in 𝑪𝑫𝑭𝟐 than in 𝑪𝑫𝑭𝟏. We make use of this relationship by taking the weighted 

averaged of differences in CDFs, 
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𝑫 =
𝟏

∑ (𝑵𝟏 + 𝑵𝟐)𝒈𝒈
∑ (𝑵𝟏 + 𝑵𝟐)𝒈(𝑪𝑫𝑭𝟏(𝒁) − 𝑪𝑫𝑭𝟐(𝒁))𝒈

𝒈
 

Where N represents the size of each vector Z and the summation is over all recordings 

belonging to a specific group (e.g. all CFC mice). 
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