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ABSTRACT

The topic of this dissertation is the control and optimization of aerospace systems under

the influence of stochastic disturbances, uncertainties, and subject to chance constraints.

This problem is motivated by the uncertain operating environments of many aerospace

systems, and the ever-present push to extract greater performance from these systems while

maintaining safety. Explicitly accounting for the stochastic disturbances and uncertainties

in the constrained control design confers the ability to assign the probability of constraint

satisfaction depending on the level of risk that is deemed acceptable and allows for the

possibility of theoretical constraint satisfaction guarantees.

Along these lines, this dissertation presents novel contributions addressing four dif-

ferent problems: 1) chance-constrained path planning for small unmanned aerial vehicles

in urban environments, 2) chance-constrained spacecraft relative motion planning in low-

Earth orbit, 3) stochastic optimization of suborbital launch operations, and 4) nonlinear

model predictive control for tracking near rectilinear halo orbits and a proposed stochastic

extension. For the first problem, existing dynamic and informed rapidly-expanding random

trees algorithms are combined with a novel quadratic programming-based collision detec-

tion algorithm to enable computationally efficient, chance-constrained path planning. For

the second problem, a previously proposed constrained relative motion approach based on

chained positively invariant sets is extended in this dissertation to the case where the space-

craft dynamics are controlled using output feedback on noisy measurements and are subject

to stochastic disturbances. Connectivity between nodes is determined through the use of

chance-constrained admissible sets, guaranteeing that constraints are met with a specified

xiii



probability. For the third problem, a novel approach to suborbital launch operations is

presented. It utilizes linear covariance propagation and stochastic clustering optimization

to create an effective software-only method for decreasing the probability of a dangerous

landing with no physical changes to the vehicle and only minimal changes to its flight

controls software. For the fourth problem, the use of suboptimal nonlinear model predic-

tive control (NMPC) coupled with low-thrust actuators is considered for station-keeping on

near rectilinear halo orbits. The nonlinear optimization problems in NMPC are solved with

time-distributed sequential quadratic programming techniques utilizing the FBstab algo-

rithm. A stochastic extension for this problem is also proposed. The results are illustrated

using detailed numerical simulations.
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CHAPTER 1

Introduction

The global aerospace industry is diverse and economically influential, spanning applica-
tions from small Unmanned Aircraft Systems (sUAS) to interplanetary spacecraft. The
2020 Federal Aviation Administration (FAA) forecast estimates a total number of commer-
cial sUAS in the U.S. to be 385,000 as of December 2019, a 40% growth over 2018 [1].
This large growth rate is driven in part by commercial applications such as agricultural
surveillance [2], disaster management [3], and delivery [4]. Additionally, the forecast calls
for U.S. carrier domestic airlines’ passenger growth over the next 20 years to average 2.0
percent per year. In 2018, the aerospace and defense industries contributed $374 billion (or
1.8%) to the U.S. gross domestic product (GDP), driven largely by the aircraft and space
systems sectors [5]. Figure 1.1 show the recovery of the global orbital space launch cadence
since the early 2000’s lull [6]. This growth has been driven in large part by non-government
launch providers such as SpaceX, ULA, and Rocketlab, and programs such as the National
Aeronautics and Space Administration (NASA) Commercial Resupply Services and Com-
mercial Crew Program.

Figure 1.1: Global orbital launch attempts by year.

The industry spans a broad range of diverse applications, but commonalities include
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tight safety factors, congested operating environments, fuel consumption considerations,
and the ever-present push to extract greater performance from these systems. Another
important commonality is the difficulty in modeling these complex systems, resulting in
significant differences between the engineering models’ predicted behavior, and the physi-
cal systems’ actual behavior. Sources of this uncertainty are numerous, including imperfect
vehicle mass properties information, wind gusts, navigational uncertainty, the oblateness of
the Earth, solar radiation pressure, thruster mis-alignments, etc.

A 1976 paper by George Box popularized the saying “All models are wrong, but some
are useful.” [7], which has a particular relevance to the fields of model-based control and
optimization. A controls engineer cannot hope to perfectly model every minute complexity
of a physical system and so the real world application of any controls engineering effort
will inevitably behave differently than the model upon which the control system is based.
Of course, some models are sufficiently representative of the real-world system as to be
useful, and for constraint satisfaction purposes, the differences between the two can of-
ten be accounted for with conservative margins or safety factors. The resulting control
or optimization scheme can then be validated with some combination of simulation and
experimentation, to ensure that the margins are sufficient for safe operation.

This thesis considers control methodologies that differ from the traditional approach by
directly addressing modeling uncertainty, with applications to several different aerospace
systems including multirotor sUAS, fixed-wing sUAS, and spacecraft in the atmospheric,
Low Earth Orbit (LEO), and cis-lunar flight regimes.

Consider an example scenario in which we are attempting to find the shortest safe flight
path for a sUAS through an urban environment. The initial state and desired final state are
both fixed, and the constraint of interest is avoiding collisions with buildings. If we assume
a deterministic model of sUAS flight, satisfying this constraint is a well-defined problem –
plan a flight trajectory that does not intersect the buildings.

If instead we assume that the model is inaccurate or uncertain, then the future behavior
of the system cannot be predicted exactly. Consider an exogenous disturbance of stochas-
tic wind and the propagation of this uncertainty along the vehicle’s trajectory, in which we
characterize the vehicle’s state at each time instant with a Probability Distribution Func-
tion (PDF) which does not have compact support. In this case, the constraints in this path
planning problem must be posed as a chance constraint, e.g., ensure that there is a β prob-
ability that the sUAS does not collide with the buildings.

Using techniques that are detailed in Chapter 2, this sample problem is solved for two
different values of β and the results are depicted in Figures 1.2 and 1.3. The tubes plotted
in both sub-figures represent the set inside which the vehicle has a β-probability of being
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for all time along the flight trajectory. Accordingly, this tube is larger for β = 0.9999 than
it is for β = 0.99. The probability tube starts as single point since the initial state of the
vehicle is known deterministically, grows with time due to the wind disturbance, and even-
tually stops growing as the vehicle’s feedback control law makes large deviations from the
nominal flight path unlikely. Thus, satisfaction of the chance constraint is achieved when
the probability tube does not intersect the obstacles. The buildings with which we are try-
ing to avoid a collision are represented below as red cuboids. In Figure 1.2, the collision
avoidance constraint is satisfied for β = 0.99 (or 99% probability) and the resulting proba-
bility tube is small enough to fit in the gap between the two buildings without collision. For
Figure 1.3, where β = 0.9999, the resulting probability tube is too large to fit within the
gap, so the optimal solution is a route that goes around the building, resulting in a longer
flight path.

Figure 1.2: Stochastic path planning for β =
0.99 or 99%.

Figure 1.3: Stochastic path planning for β =
0.9999 or 99.99%.

This sample problem illustrates a significant advantage of addressing uncertainty di-
rectly in the control of a stochastic system, when compared to a deterministic control
scheme with safety margins: the ability to directly assign the probability of constraint satis-
faction, which can sometimes result in dramatically different control actions (and therefore
costs) depending on the level of risk that is deemed acceptable. Additionally, stochastic
control strategies allow for the possibility of theoretical guarantees, such as the constraint
satisfaction guarantees presented in Chapter 3.

Figures 1.2 and 1.3 provide an illustration of these principles for fixed-wing atmo-
spheric flight, but similar considerations are valid for many other aerospace systems, as is
shown in the four subsequent chapters of this thesis (chapters 2-5). Common considera-
tions for these problems include control constraints (such as thrust saturation) and obstacle
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avoidance constraints. The latter could involve not only avoiding collisions with vehicles,
buildings, or other terrain features, but also reflects practical requirements dictated by flight
keep-out zones or sensor protection. Additional considerations include the fuel efficiency
of the resulting trajectories and the computational efficiency of the control algorithms.

Considering uncertainty directly in control schemes is not a new development. Existing
strategies for stochastic path planning include convex programming [8], Markov Decision
Processes [9], Graph Search [10], and Rapidly-exploring Random Trees (RRT) [11, 12].
The field of stochastic Model Predictive Control (MPC) is similarly well established [13–
16], and the closely related problem of propagating uncertainty has been addressed with
Monte Carlo (MC) simulations [17,18], Linear Covariance (LC) Uncertainty Quantification
(UQ) [19, 20], unscented transformation [21, 22], polynomial chaos expansions [23], and
Gaussian mixture models [24–26].

Chapters 2-5 are based on manuscripts that have been published in the form of either
a peer-reviewed journal article or conference proceedings and each chapter includes more
detailed literature review and problem statement. A summary of our technical contributions
and the layout of this dissertation is as follows:

Chapter 2: Rapid Uncertainty Propagation and Chance-Constrained Path Planning
for Small Unmanned Aerial Vehicles

Chapter 2 is based on material in [27] and [28] and details the development of a compu-
tationally efficient stochastic path planning algorithm for multirotor and fixed-wing sUAS.
In this chapter, we use linear covariance propagation in combination with a quadratic
programming-based collision detection algorithm to rapidly validate declared flight plans.
These algorithms are combined with a Dynamic, Informed RRT* algorithm and detailed
numerical examples for both fixed-wing and quadrotor sUAS models are presented. The
main contribution is the amalgamation of existing Dynamic RRT* and Informed RRT* al-
gorithms, and the addition of an obstacle buffer resizing technique, resulting in a single al-
gorithm that allows computationally efficient, chance-constrained path planning for sUAS.
In particular, this contribution addresses a dilemma in chance-constrained path planning un-
der uncertainty: trajectory re-planning changes the outcome of the covariance propagation,
which, when obstacles or exclusion zones are involved, may require further re-planning.
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Chapter 3: Spacecraft Relative Motion Planning Using Chained Chance-Constrained
Admissible Sets

Chapter 3 is based on material in [29] and presents a graph search-based stochastic path
planning technique for spacecraft in LEO.

This chapter extends a previously proposed constrained relative motion approach based
on chained positively invariant sets to the case where the spacecraft dynamics are controlled
using output feedback on noisy measurements and are subject to stochastic disturbances.
The methodology consists of constructing a connected graph (referred to as the virtual
net) of static equilibria nodes in the Clohessy-Wiltshire-Hill frame. Connectivity between
nodes is determined through the use of chance-constrained admissible sets, guaranteeing
that constraints are met with a specified probability. Unlike [30], where positive invariant
sets being chained are sublevel sets of Lyapunov functions, here we exploit chance con-
strained admissible sets to determine connectivity of forced equilibria. These sets are near
maximal and hence allow more vertices in the graph to be connected. Furthermore, our
approach is able to accommodate stochastic measurement and process noise, as opposed to
bounded disturbances as in [30]. We also propose a novel approach of handling non-convex
constraints by exploiting their inner approximation with a union of convex constraints and
we extend the connectivity conditions to this case. Further we demonstrate that the chance
constraint used as a requirement in the construction of chance constrained admissible sets
holds for the closed-loop trajectories with switching between forced equilibria.

Chapter 4: Suborbital Reentry Uncertainty Quantification and Stochastic Optimiza-
tion

Chapter 4 is based off material in [31] and focuses on two separate but related problems:
rapid uncertainty propagation for a vehicle reentering the atmosphere and stochastic op-
timization of ascent trajectories. For the former, we develop an algorithm that takes the
vehicle’s dynamics, physical parameters, initial state, and atmospheric conditions as in-
puts, and propagates the uncertainty associated with the vehicle’s state trajectory over the
specified flight horizon. For the latter, we develop an optimization method that, for a finite
number of ascent reference trajectories and assuming the ability to choose the best on the
day of flight, minimizes the probability of a landing zone constraint violation. Through
a combination of linear covariance uncertainty quantification and clustering optimization,
we solve for a small, finite set of optimal ascent reference trajectories for the launch vehicle
to follow during the boost mission phase. The result is a control scheme that ’shapes’ the
landing position probability density function to avoid dangerous landing zones, increasing
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the probability of a successful mission with no physical changes to the space vehicle and
only minimal changes to its flight control software.

Chapter 5: Suboptimal Nonlinear Model Predictive Control Strategies for Tracking
Near Rectilinear Halo Orbits

This chapter investigates the use of Nonlinear Model Predictive Control (NMPC) coupled
with low-thrust actuators for station-keeping on a Near Rectilinear Halo Orbit (NRHO),
a subclass of halo orbits in cis-lunar space. It is demonstrated through numerical simula-
tions that NMPC is able to stabilize a spacecraft to a reference orbit and handle control
constraints. Further, it is shown that the computational burden of NMPC can be managed
using new optimization algorithms [32] and Time Distributed Optimization (TDO) [33], a
kind of suboptimal MPC, to demonstrate that it is possible to meet closed-loop performance
requirements using little computational power. Our approach contrasts with the existing lit-
erature that typically considers impulsive thrusters and uses control methodologies based
on linearized models. The chapter concludes with a discussion of a stochastic extension to
the problem.
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CHAPTER 2

Rapid Uncertainty Propagation and
Chance-Constrained Path Planning for Small

Unmanned Aerial Vehicles

2.1 Introduction

2.1.1 Motivation

There were 110,604 registered sUAS in the United States at the end of 2017, and that
number is expected to quadruple by 2022 [34]. Most of these are of fixed-wing or multirotor
design, though other hybrid designs have garnered recent interest [35]. There has been great
interest, accordingly, in a UAS Traffic Management (UTM) system to handle the demands
of this rapidly growing aviation sector [36, 37]. In at least one potential design of such a
system, real-time communication channels exist between a central computation platform
and the sUAS. This would provide the vehicles access to valuable computation resources
and information about nearby vehicles, terrain, and atmospheric conditions, allowing for
safe and efficient route planning.

One of the responsibilities of such a UTM system will likely be to apply a risk-based
approach where geographical needs and use cases determine the airspace performance re-
quirements [38]. Addressing this will require a sUAS trajectory prediction model that
validates vehicle flight performance and allows for UTM to determine whether or not the
vehicle can operate in the airspace given real-time information about wind, other vehicles,
and/or obstacles. Given a large number of vehicles predicted to be in operation, this trajec-
tory prediction model must accommodate multiple vehicle types and airspace environments
(wind, terrain, etc.). Another challenge in this setting is that the trajectory could depend
on proprietary information such as control systems, methods and gain tuning specific to
a particular vehicle. Implementing a system that is reliant on such information could be
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prohibitive due to constant modifications that would be required to accommodate diverse
and evolving control laws and due to the potential legal barriers to acquiring proprietary
information from all operators.

In the context of UTM operations, where varied vehicle types and uncertainties are
expected, there is a need for a model that represents expected vehicle performance while
accounting for the uncertainty in the context of operational environments. The motivation
for the work detailed in this chapter is to develop computationally efficient trajectory val-
idation and planning algorithms that utilize UQ and propagation techniques to provide an
assessment of the vehicle performance and risk of violating constraints.

2.1.2 Problem Statement

The work described in this chapter focuses on two separate but related problems: rapid
uncertainty propagation for trajectory validation and chance-constrained path planning.

For the former, we seek an algorithm that takes the vehicle’s dynamics, initial state,
parameters, and desired trajectory as inputs, and outputs some quantification of the un-
certainty associated with the vehicle’s state trajectory over the specified flight horizon, as
well as an assessment of whether the probability of trajectories violating constraints is suf-
ficiently low at any given time instant. For the latter, we are interested in the ability to
re-plan or repair the trajectory if it is found that the vehicle’s probabilistic trajectory tube
intersects with a keep-out zone. Such a tube and constraint are illustrated in Figure 2.1.
In this example scenario, the vehicle’s state is known deterministically initially, and the
uncertainty tube grows as the vehicle attempts to follow the desired trajectory (solid line)
subject to disturbances such as wind gusts.

Figure 2.1: Nominal trajectory (solid line), probabilistic trajectory tube in the presence of
uncertainties and an obstacle (red).
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2.1.3 Literature Review

The source of uncertainty considered in this work is atmospheric turbulence and stochastic
wind gusts, which affect the response [39] and safety [40, 41] of aircraft. These effects are
particularly pronounced in relatively lightweight sUAS. Hoblit [42] provides a detailed de-
scription of discrete and continuous gust models and Richardson [43] provides a thorough
review of the modeling techniques involved. The Dryden and Von Kármán models are the
two most common gust/turbulence models [44–48], which are used in both FAA and mili-
tary specifications. Both consider the linear and angular velocity components of the gusts
to be varying stochastic processes and then specify those components’ Power Spectral Den-
sity (PSD). The Dryden model utilizes rational PSDs, while the Von Kármán model uses
irrational PSDs. The latter matches experimental gust observations more closely than the
former, but its use of irrational spectral densities prevents its spectral factorization from
being exactly expressed.

We also consider the problem of propagating the vehicle’s state uncertainty subject
to the aforementioned wind gust disturbances. Given an initial probability distribution
of a state, the objective of a UQ algorithm is to obtain a characterization of the state’s
probability distribution at a future instant in time. For this work, we require the algorithm
to compute the uncertainty for all time instants between the initial and final times. The
conceptually simple solution is through a MC simulation, but the computational intensity of
this method limits its usefulness for our application [17,18]. Linearization techniques suffer
from diminished accuracy for highly nonlinear systems or for long time horizons, but their
simplicity and high computational efficiency make them well-suited for real-time trajectory
optimization or path planning [19, 20]. Other nonlinear UQ methods include unscented
transformation [21, 22], polynomial chaos expansions [23], and Gaussian mixture models
[24–26]. A thorough survey of many other UQ methods is provided by Luo [49], though
none of these were deemed appropriate for our use due to our models’ large number of
states, the presence of stochastic inputs, and the need for rapid computations. For that
reason, the linear covariance propagation method is an attractive choice for our problem.
The ease of incorporating exogenous disturbances and computing a complete time history
of the covariance further distinguish it from the other UQ methods.

There is a wide array of solution strategies for planning a vehicle’s path subject to
uncertainty, including convex programming [8], mixed integer linear programming [50],
graph search [10], fast marching trees [51], and probabilistic roadmaps [9]. One of the more
popular approaches [52–56] utilizes a class of stochastic search algorithms called RRT
[11]. These algorithms are well suited for real-time implementation [53] and are sampling-
based, so they scale well with problem size, but only offer a probabilistic guarantee of
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completeness. A comparison of sequential quadratic programming, genetic algorithms,
and RRT is provided by Borowski and Frew [56]. Extensions to RRT such as RRT* [57],
Informed RRT* [58], and Dynamic RRT* [12], improve optimality of the solution, increase
sampling efficiency, and allow for dynamically changing constraints, respectively. These
three RRT extensions are utilized in this work.

2.1.4 Original Contributions

The main contribution of this chapter is the amalgamation of existing Dynamic RRT*
and Informed RRT* algorithms, and the addition of an obstacle buffer resizing technique,
resulting in a single algorithm that allows computationally efficient, chance-constrained
path planning for sUAS. In particular, this contribution addresses a dilemma in chance-
constrained path planning under uncertainty: trajectory re-planning changes the outcome
of the covariance propagation, which, when obstacles or exclusion zones are involved, may
require further re-planning.

This chapter builds upon previous work [28] that considered rapid uncertainty propaga-
tion, collision detection, and trajectory optimization for fixed-wing, 2D longitudinal flight
dynamics. The numerical examples presented here utilize both fixed-wing and quadrotor
sUAS in full 3D flight in a non-static atmosphere with inner loop and outer loop controllers
in closed form. Other contributions in support of the path planning algorithm are linear
covariance propagation of the uncertainty in initial states and exogenous disturbances for
three dimensional vehicle motion, and a quadratic programming-based approach to 3D col-
lision detection.

2.2 Modeling

The purpose of this chapter is to present and illustrate with simulations a procedure for rapid
uncertainty propagation and chance constrained path planning that is broadly applicable in
the sUAS setting in terms of models and uncertainties assumed. This section introduces
the two systems used for numerical examples in this work: a quadrotor sUAS model and a
fixed-wing sUAS model.

The quadrotor sUAS is modeled as a double integrator with quadratic aerodynamic
drag, constant drag coefficient, dynamic extension controller, and a Dryden-based wind
disturbance. The full model can be found in Appendix A. The fixed-wing sUAS model is
based on a 6-state model for longitudinal and lateral flight in a moving atmosphere, with
inner and outer-loop controllers added and a Dryden wind gust model. The full model can
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be found in Appendix B.
The above models given by Eqs. (A.2) – (A.11) for the quadrotor or Eqs. (B.27) –

(B.32) for the fixed-wing aircraft can be viewed as a single system of differential equations
of the form:

Ẋ = f
(
X,Xdes(t), n(t), θ

)
, (2.1)

where θ is the set of vehicle, environmental, and control parameters, n is the white noise
input, and the state for the quadrotor model or and for the fixed-wing model, respectively,
is:

Xquadrotor = [r, V0, ηx1, ηx2, ηx3]> (2.2)

Xfixed−wing = [x, y, h, V, ψ, γ, T, Vdes, ψdes, ηu, ηw, ηv]
> (2.3)

2.3 Technical Approach

2.3.1 Covariance Propagation

For the uncertainty propagation analysis, we linearize the sUAS model in Eq. (2.1). The
linearized model has the following form:

δẊ = A(t)δX(t) +Bn(t)n(t), (2.4)

A(t) =
∂f

∂X

∣∣∣∣∣X=X̄(t)
n=0

Xdes(t)

, (2.5)

Bn(t) =
∂f

∂n

∣∣∣∣∣X=X̄(t)
n=0

Xdes(t)

. (2.6)

Here, X̄(t) is the nominal trajectory obtained by propagating Eq. (2.1) subject to n = 0

and specified time history of Xdes. Physically, this corresponds to the nominal trajectory
that the sUAS would fly under no-wind conditions.

Under the assumption that n(t) is a standard white noise process, the state covariance
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matrix, P , satisfies the Lyapunov differential equation [59]:

Ṗ (t) = A(t)P (t) + P (t)A>(t) +Bn(t)B>n (t). (2.7)

Note that (2.7) can be solved using any standard Ordinary Differential Equation (ODE)
solver. The initial condition for P is the zero matrix if the vehicle’s initial state is known
deterministically, or may be chosen as a diagonal matrix of state covariances, otherwise.

Now, we can use the nominal trajectory X̄(t), covariance matrix P (t), and a Gaussian
distribution density function to estimate the probability that the vehicle is contained in a
specified set at time t. For the quadrotor model: given the mean r̄(t) = [x̄1(t), x̄2(t), x̄3(t)]>

and the block of the covariance matrix corresponding to these states, Σω(t) = P(1:3,1:3)(t),
we can build a set from the definition of a probability ellipsoid [60]:

Prob [ω ∈ R3 : (ω − r̄(t))>Σ−1
ω (t)(ω − r̄(t)) ≤ c2] = β, (2.8)

where β ∈ [0, 1] is a prescribed probability level and c is solved for using the three degree-
of-freedom chi-squared distribution [61]. Thus the vehicle has a β probability of being
within the set (??) at time t.

For verification purposes, Eq. (2.1) is also solved numerically in a series of MC simu-
lations. For these computations, the white Gaussian noise is computed using MATLAB’s
randn() function, scaled by the inverse square root of the integration time step [62]. A
comparison between the linear covariance propagation and the covariance matrix estimated
from the MC runs is shown in Section 2.4.

2.3.2 Collision Detection

For trajectory validation purposes, it is desirable to have a collision detection algorithm that
can quickly determine whether or not the trajectory tube formed by the set of probability
ellipsoids defined in Eqn. (??) intersects with an obstacle, represented in this work as a
cuboid, as illustrated in Figure 2.5.

The ellipsoid-cuboid intersection at time instant t is formulated as a Quadratic Pro-
gramming (QP) problem that can be solved by a standard QP solver:

min
z

(z − r̄(t))>Σ−1
ω (t)(z − r̄(t)) (2.9)

s.t.

AOz ≤ bO.
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Figure 2.2: β = 0.5 Figure 2.3: β = 0.9 Figure 2.4: β = 0.999

Figure 2.5: Collision scenario for varying values of β.

Here, z, the optimization parameter, is a concatenation of x1, x2 and x3 coordinates:
z = [x1, x2, x3]> and AOz ≤ bO are the linear inequalities that represent the cuboid obsta-
cle. Thus we are solving for the point z that belongs to the smallest ellipsoid centered at
r̄(t) that still touches the cuboid obstacle defined by AOz ≤ bO. Let z∗ denote the solution
to this QP and let c∗2(t) = (z∗ − r̄(t))>Σ−1

ω (t)(z∗ − r̄(t)). If c∗2(t) ≥ c2, then there is
no intersection between the ellipsoid and cuboid at time t, and the chance constraint is not
violated.

For the numerical implementation of this collision detection scheme, the frequency at
which collisions are checked is an algorithm tuning parameter, and (5.14) is only solved
after it has been determined that the overbounding spheres of the ellipsoid and cuboid
intersect. The latter check is computationally very simple.

2.3.3 Path Planning

In our prototypical UTM scenario mentioned in Section 2.1, the covariance propagation
and tube generation algorithms discussed in Section 2.3.1 inform the functionality to val-
idate aircraft trajectories. If a desired flight plan is found to be unsafe due to possible
collisions with obstacles, the UTM system should return a safe flight path for the UAS to
fly. Here, the UAS is operating in a densely populated urban environment with many no-fly
zones or obstacles. For scenarios such as this, with a large number of nonconvex obstacle
constraints, an RRT algorithm is useful.
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This section lays out the modifications made to the standard 2D RRT algorithm [11]
for the purpose of generating a desired constant-altitude flight path Xdes. Note that the
path planning is handled in two dimensions, under the assumption that the UAS operates
in an urban environment at a constant desired altitude, but all tube generation and collision
checks are three-dimensional.

2.3.3.1 Informed Subset

By their nature, RRT* algorithms find optimal paths between the initial state and every
state in the search space, regardless of what final state the user is actually interested in. This
is an inefficient use of computational resources that the Informed variant [58] attempts to
address. By only sampling within an ellipsoidal subset and excluding regions of the sample
space that cannot possibly improve the solution, the algorithm makes a better-informed
decision about where to look for optimal paths.

This informed subset is defined as follows:

Qf̂ =
{
q ∈ Q

∣∣ ‖xstart − q‖+ ‖q − xgoal‖ ≤ cbest
}

(2.10)

where cbest is the current best solution cost, Q is the global sample space, xstart is the initial
state and xgoal is the desired final state and ‖·‖ denotes the euclidean distance.

This Informed variant is outlined in Algorithm 2.1 from [58], where T is the current
set of nodes, rw is the rewiring radius, and N is the total number of iterations. Note that
the subroutine SampleEllipse(xstart, xgoal, cbest) returns a randomly sampled point that is
contained within the ellipse defined in (2.10), and lines 6–17 in Algorithm 2.2 include the
rewiring steps essential to the RRT* algorithm variant.

Algorithm 2.1 T = Informed RRT∗(x0, xf )

1: T0 ← x0

2: cbest ←∞
3: for k = 1 . . . N do
4: Tk+1 = AddNode(Tk)
5: end for
6: return TN
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Algorithm 2.2 Tk+1 = AddNode(Tk)
1: xrand ← SampleEllipse(xstart, xgoal, cbest); % cbest is cost of current best solution
2: xnearest ← Nearest(T , xrand);
3: xnew ← Steer(xnearest, xrand);
4: if NoCollision(xnearest, xnew) then
5: T ← T + xnew;
6: Xnear ← Near(T , xnew, rw);
7: xmin ← xnearest;
8: cmin ← Cost(xmin) + ||coordinates(xnearest)− coordinates(xnew)||
9: for ∀xnear ∈ Xnearest do

10: cnew ← Cost(xnear) + ||coordinates(xnear)− coordinates(xnew)||
11: if cnew < cmin then
12: if NoCollision(xnearest, xnew) then
13: xmin ← xnear
14: cmin ← cnew
15: end if
16: end if
17: end for
18: Parent(xnew)← xmin
19: end if
20: return T

2.3.3.2 Chance Constraints and Dynamic Extension

If the solution of Algorithm 2.1 was passed to the tube generation algorithm as Xdes, there
would be no guarantee that the generated tube would not intersect the obstacles. The so-
lution to a path planning problem with obstacles often passes very closely to the obstacle,
where any nonzero uncertainty in the state would produce a tube that would intersect the
obstacle. Thus a buffer region is added to the obstacles and adjusted periodically in a
manner informed by full covariance propagation.

This buffer can be seen in Figure 2.6, which represents a single outer-loop iteration in
which the buffer is held constant. Here, the green triangle is the starting point xstart, the
blue circle is the end point xgoal, the green line is the current best solution, the dashed red
ellipse is the current informed subset as defined in Eqn. (2.10), and the black lines represent
the total set of sampled nodes and connecting vertices. The solid red rectangle is the actual
obstacle, while the dashed red rectangle is the buffered obstacle that is actually passed
to Algorithm 2.1 and used in the subroutine NoCollision(xnearest, xnew). The bottom
subfigure is the same as the top, but with the covariance tube as defined by (??) overlaid,
illustrating how the buffer prevents the tube from intersecting the true obstacle.

The dynamic extension to this algorithm involves intermittently halting the standard
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Figure 2.6: Results of Algorithm 2.1 with a buffered obstacle.

RRT algorithm, propagating the nominal vehicle trajectory and covariance, and adjusting
the obstacle buffer sizes accordingly. This requires an algorithm that informs the buffer size
adjustments, answering the question: ”By how much should we grow or shrink the buffer
such that the covariance tube just touches the obstacle?”. To answer this, we start with
the easier question of ”What size ellipsoid just touches the obstacle?” This is illustrated in
Figure 2.7 and can be expressed as a QP:

min
z

(z − r̄(t))>Σ−1
r (t)(z − r̄(t)) (2.11)

s.t.

AOz ≤ bO. (2.12)

We alter (2.12) to take into account the size of the buffer as follows:

AOz ≤ bO + ld (2.13)

where l is a vector of ones and d is a scalar representing the size of the buffer. We can
then vary d until c2∗ = c2, which solves for the buffer size such that the smallest ellipsoid
that intersects the buffer is the same size as the actual covariance ellipsoid. This solution
is used as the buffer size for the next iteration. Note that this new buffer size is only an
approximation of the actual solution since the size of the covariance tube is dependent on
the solution to the inner loop, Xdes, which changes at every iteration.

Letting l be a vector of all ones has the effect of buffering the obstacle by an equal
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amount in all directions, as opposed to extending the buffer only in certain directions.
Equal buffering on all sides of the obstacle may result in less optimal trajectories in a
situation where the vehicle’s trajectory interacts with multiple edges of an obstacle and
this is viewed as the trade-off for not including the computationally nontrivial logic for a
more discriminating buffer re-sizing. Additionally, expanding the buffer in all directions
reduces the RRT search space more than merely expanding in one direction, which aids
convergence.

Figure 2.7: Cuboid buffer expansion illustration. The shaded ellipsoid and red cuboid rep-
resent the original confidence ellipsoid and obstacle, respectively. The wire mesh ellipsoid
and blue cuboid represent the expanded sets that just touch the original obstacle and confi-
dence ellipsoid, respectively.

Because the size of the probability ellipsoids vary spatially, the optimal buffer size is
not necessarily the same for every obstacle. Thus, buffer changes happen independently
for every obstacle. There are two cases to be considered: the buffer shrinks or stays the
same, and the buffer grows. If a buffer is shrunken or left unchanged, no RRT nodes are
changed, and the algorithm continues as normal. However, if a buffer grows, the nodes and
connecting vertices that are now contained within the newly-sized obstacle are no longer
valid. They are thus deleted, leaving only the parent trees and the now-stranded branches.
Then, the Informed RRT* algorithm is used to grow branches from the parent tree until any
part of the stranded branch is re-connected. At this point, any nodes left without a parent
are removed from the set of nodes, and the Informed RRT* algorithm continues to run
according to Algorithm 2.1 until the next covariance propagation and buffer resize. This is
laid out in more detail in Algorithm 2.3.
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Algorithm 2.3 T = Dynamic Informed RRT∗(x0, xf )

1: T0 ← x0

2: cbest ←∞
3: δ ←∞
4: for m = 1 . . .M do
5: k = 0
6: while k < Nmax AND δ > tol do
7: k = k + 1
8: Tk = AddNode(Tk−1)
9: costi = FindBestPath(Ti)

10: if i > Nconv then
11: δ = | costi−costi−Nconv

costi−Nconv
|

12: end if
13: end while
14: if m 6= M then
15: d = CompObsDist(Tk, O) % Compute distance between obstacle and covari-

ance tube
16: for j = 1 . . . Nobs do
17: if dj ≥ 0 then
18: bj = bj − dj
19: else if dj < 0 then
20: bj = bj − dj
21: T = CleanupNodes(T , Oj) % remove nodes that are no longer valid
22: T = Regrow(T , Oj, params) % regrow until orphaned nodes are re-

connected or pruned
23: end if
24: end for
25: end if
26: end for
27: return T
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2.4 Results

2.4.1 Trajectory Validation

The first result of interest is a validation of the LC propagation described in Section 2.3.1
versus the results of the MC simulations. For both the fixed-wing and quadrotor mod-
els, a simple desired trajectory was prescribed, and the state covariance computed from a
10,000 run MC simulation is compared to the LC results computed from Eqn. (2.7). For
the quadrotor model, the desired trajectory is a three phase ascent-cruise-descent mission
profile. For the fixed-wing model, it is a constant-altitude trajectory with a sinusoid shape
in the lateral direction.

The comparison results are shown in Figures 2.8 – 2.11. Here, x̄1, x̄2, x̄3, x̄, ȳ, and h̄
represent either the mean position, or the nominal trajectory X̄(t), from the MC and LC
simulations, respectively. All plots show good agreement between MC and LC, with the
largest deviations being ≈ 15% in the σ2

x2 channel in Figure 2.8. This justifies our use of
LC propagation in path planning under uncertainty. Note that the deviations in x̄2 appear
large in the plot, but the vertical axis range is quite small. Also note that the nominal
trajectory for the fixed-wing example does not track the desired trajectory exactly, but that
is a function of the model’s controller, which is not the focus of this work, as explained in
Section 3.2.

All computations are performed in the MATLAB environment running on a dual-core
Intel Core i5 at 2.7 GHz, and all confidence ellipsoid tubes use β = 0.999. This value was
chosen for illustration purposes, though some UTM applications may call for smaller or
larger values. For the quadrotor model, the LC propagation took 0.062s of computation
time for 40s of simulated flight time. For the fixed-wing model, it took 0.18s of computa-
tion time for 35s of simulated flight time.

2.4.2 Path Planning

Now that we have shown that the LC propagation scheme is sufficiently fast and accurate
when compared to MC simulations of the nonlinear system, we can use the LC propagation
algorithm to enable chance-constrained path planning as laid out in Section 2.3.3. For
brevity, only the quadrotor model is utilized in this section.

Figures 2.12 and 2.13 show the results of Algorithm 2.3 for a three obstacle scenario.
A solution is found that is very close to the minimum path length between xstart and xgoal,
while still ensuring that the β confidence ellipsoid tube does not intersect any of the obsta-
cles. Total computation time for this example was 30.5s.
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Figure 2.8: State and covariance time histories for prescribed quadrotor trajectory.

Figure 2.9: Quadrotor 3D trajectory. The covariance tube is constructed from a set of
confidence ellipsoids defined by (??), the dashed line is the desired trajectory, and the solid
line is the nominal trajectory X̄(t).

Figure 2.10: State and covariance time histories for prescribed fixed-wing trajectory.
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Figure 2.11: Fixed-wing sUAS 3D trajectory. The covariance tube is constructed from a
set of confidence ellipsoids defined by (??), the dashed line is the desired trajectory, and
the solid line is the nominal trajectory X̄(t).

Figure 2.12: Chance-constrained Informed Dynamic RRT* solution for quadrotor model
with three obstacles.

Figure 2.13: 3D plot of obstacles and flight path with β confidence tube overlaid.
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Note that the buffer re-sizing algorithm converges, but only to a region, the size of which
is dictated by tol. There is no guarantee that the algorithm will exit without a constraint
violation, but, based on extensive simulation studies, the magnitude of the violation will be
sufficiently small for sufficiently large M and small tol.

2.5 Conclusions

Future UTM systems will need to rely on rapid UQ for trajectory validation and path plan-
ning in order to account for the effects of wind turbulence/gusts and other uncertainties
and disturbances. This work combines existing Dynamic RRT* and Informed RRT* al-
gorithms, and adds an obstacle buffer resizing technique to solve a challenge of chance-
constrained path planning: trajectory re-planning changes the outcome of the covariance
propagation. The results presented here shows that this RRT*-based algorithm, in combi-
nation with QP-based collision checking for trajectory validation, successfully solves the
aforementioned problem, resulting in a computationally efficient chance-constrained path
planner. Trajectory validation examples were presented for both quadrotor and fixed-wing
models in 3D flight in a non-static atmosphere. Path planning examples were presented for
the quadrotor model, showing near-optimal navigation around 3 obstacles while enforcing
chance state constraints.
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CHAPTER 3

Spacecraft Relative Motion Planning Using
Chained Chance-Constrained Admissible Sets

3.1 Introduction

As of April 2019, the U.S. Space Surveillance Network was tracking 19,404 pieces of or-
bital debris [63]. Two major contributors to this debris are the 2007 Chinese anti-satellite
missile test and the 2009 Iridium-Kosmos satellite collision, though other minor collisions
contribute to the debris count yearly [64]. The need to operate satellites safely in the pres-
ence of this orbital debris, as well as other operational satellites, motivates the develop-
ment of relative motion planning algorithms that include nonconvex obstacle avoidance
constraints. Other mission considerations include handling modeling uncertainties and
measurement uncertainties while relying on the limited computational capabilities of many
spacecraft.

Spacecraft Relative Motion Planning (SRMP) is concerned with the design of orbital
maneuvers with respect to a reference point on a nominal orbit. To handle nonconvex
obstacle avoidance constraints, one approach involves solving a sequence of convexified
problems that eventually recovers the original optimal solution [65]. Richards et al. pro-
poses a framework in which the fuel-optimal spacecraft trajectory optimization problem
subject to avoidance constraints is expressed as a mixed-integer linear program [66]. A
MPC approach for rendezvous and proximity operation is presented in [67], while [68] ap-
proaches the SRMP problem with a computationally efficient, sampling-based algorithm.
A comprehensive survey of spacecraft formation flying can be found in [69].

A graph search framework for SRMP proposed in [30,70,71] benefits from the compu-
tational efficiency and simplicity of algorithms such as Dijkstra’s [72] and A∗ [73] search.
The approach involves building a connectivity graph for a set of forced equilibria or natural
motion trajectories and the use of safe, positively invariant sets to determine connectiv-
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ity between graph vertices. The resulting motion planning framework can accommodate
obstacles and bounded disturbances.

The developments in [30] are based on assumptions of full state measurement and set
bounded disturbances. Under these conditions, positively invariant sets are constructed
around forced equilibria, which guarantee that the closed-loop response satisfies the con-
straints for any initial condition in this set when the selected equilibrium reference com-
mand is the one corresponding to this set. A safe transition between two forced equilibria
can be accomplished if the first equilibrium is in the interior of the positively invariant set
for the second equilibrium. Such forced equilibria are then treated as vertices in a directed
graph (a virtual net in the terminology of [30]) and are connected by an edge. Based on
the family of such equilibria, spacecraft motion planning reduces to a graph search for the
sequence of the equilibria to hop between to arrive at the target equilibrium while minimiz-
ing suitably constructed cumulative transition cost. This approach is extended in [70] to
include periodic natural motion trajectories, in [74] to include non-periodic trajectories, and
in [71] to handle set bounded disturbances and minimum thrust constraints. Related ideas
have been explored for the development of motion planners for self-driving cars in [75,76].

In this chapter, we consider the case when the system model is linear, the full state mea-
surement is not available and the measured outputs are contaminated by random Gaussian
measurement noise. In addition, the system is affected by random Gaussian disturbances
which could represent the effect of unknown forces such as thrust errors or other pertur-
bations acting on the spacecraft. In this setting, an observer is introduced to estimate the
state, and state constraints are imposed as chance (probabilistic) constraints. Note that hard
constraints cannot be enforced for all times as disturbances and measurement noise values
are not compactly supported. For this setting, chance constrained admissible sets are de-
fined as sets of initial state estimates such that the chance constraints hold for all future
times for the given constant reference. As the chance constraints are dependent on the ini-
tial estimation error covariance matrix, a simplifying assumption is made–the observer has
reached steady-state and hence this matrix is equal to the steady-state error covariance ma-
trix. Unlike [30], where positive invariant sets being chained are sublevel sets of Lyapunov
functions, here we exploit chance constrained admissible sets to determine connectivity of
forced equilibria. These sets are near maximal and hence allow more vertices in the graph
to be connected. Furthermore, our approach is able to accommodate stochastic measure-
ment and process noise, as opposed to bounded disturbances as in [30].

We also propose a novel approach of handling non-convex constraints by exploiting
their inner approximation with a union of convex constraints and we extend the connec-
tivity conditions to this case. Further we demonstrate that the chance constraint used as a
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requirement in the construction of chance constrained admissible sets holds for the closed-
loop trajectories with switching between forced equilibria.

This chapter is organized as follows. Section 3.2 describes the relative motion dynamics
and disturbance model. Section 3.3 describes the chance constrained admissible sets and
how to construct them. Section 3.4 describes the construction of the virtual net and its
extension for obstacle avoidance, while Section 3.5 presents some numerical examples.

3.2 Modeling

Consider a system with a linear discrete-time model given by

xk+1 = Axk +Buk + Γwk, (3.1)

yk = Cxk + Fvk, (3.2)

where xk is an nx-vector state, uk is an nu-vector control input, wk is an nw-vector distur-
bance, yk is an ny-vector measured output, and vk is an nv-vector measurement noise. We
make the following assumptions:

1. The disturbance and measurement noise sequences are independent and identically
distributed Gaussian processes with zero mean and unit covariance matrix, i.e.,

wk ∼ N (0, I), vk ∼ N (0, I). (3.3)

2. The variables x0, {wk}k∈Z≥0
, and {vk}k∈Z≥0

are independent.

In this chapter focused on SRMP, the nominal dynamics are represented by the lin-
earized Clohessy-Wiltshire (CW) equations [77], which describe the motion of a chase
spacecraft relative to a target spacecraft orbiting a central body in a circular orbit. The
continuous-time CW equations are given by:
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ẋ = Actx+Bctu, (3.4)

Act =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


, (3.5)

Bct =

[
03,3

I3

]
, n = 0.00116

rad

s
, (3.6)

where x =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]ᵀ
, and the value for n used here corresponds to an

orbital period of 90 minutes, or LEO. The x1 axis is along the direction from the central
body to the target spacecraft, the x3 axis is along its angular momentum vector, and the x2

axis completes the right-handed reference frame. Discretizing these equations with a zero
order hold and sampling period of ∆T results in (3.1)-(3.2) with:

A = eAct∆T , B =

∫ ∆T

0

eAct(∆T−τ)dτBct, (3.7)

and with the process noise and sensor noise matrices, Γ and F , and the output matrix C
defined as:

Γ =
1

100



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


, F =

1

100

1 0 0

0 1 0

0 0 1

 , (3.8)

C =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (3.9)
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For state estimation, a Luenberger observer of the following form is augmented:

x̂k+1 = Ax̂k +Buk + L(ŷk − yk), (3.10)

= Ax̂k +Buk + L(Cx̂k − Cxk − Fvk). (3.11)

We also consider a nominal feedback control law of the form:

uk = Kx̂k +Gr, (3.12)

where r is the set-point. Here, L andK are any stabilizing gain matrices andG is computed
as

G =
(
C(I− A−BK)−1B

)−1
, (3.13)

so that y = r in steady-state in the disturbance free case.

3.3 Chance Constrained Admissible Sets

3.3.1 Covariance Computation

Define the estimation error as
ek = xk − x̂k. (3.14)

Then the estimation error dynamics are represented by the following equations,

ek+1 = Aek + Γwk + LCek + LFvk (3.15)

= Aoek +Bo

[
wk

vk

]
, (3.16)

where
Ao = (A+ LC), Bo =

[
Γ LF

]
. (3.17)

The matrix Ao is assumed to be Schur (all eigenvalues are inside the unit disk).
The evolution of the state estimate, x̂k, is determined from (3.11), (3.12) and (3.14) by

x̂k+1 = Acx̂k +Bcr + Γc

[
ek

vk

]
, (3.18)

27



where

Ac = (A+BK), (3.19)

Bc = BG, (3.20)

Γc =
[
−LC −LF

]
. (3.21)

The control gain K is assumed to be stabilizing so that the matrix Ac is Schur.
Let

x̃k = x̂k − (I− Ac)−1Bcr. (3.22)

Then

x̃k+1 = Acx̃k + Γc

[
ek

vk

]
, (3.23)

xk = x̂k + ek = x̃k + ek + (I− Ac)−1Bcr. (3.24)

If the closed-loop system (including the plant and the observer) has operated for a
sufficiently long period of time, the observer error dynamics (3.15) can be assumed to be
in steady-state and the error to be normally distributed with zero mean and steady-state
covariance matrix, P∞ � 0, satisfying

P∞ = AoP∞A
ᵀ
o +BoB

ᵀ
o . (3.25)

That is, ek ∼ N (0, P∞) for all k. Note that since Ao is Schur, the error covariance matrix
at time instant k, Pk → P∞ as k →∞ [78].

3.3.2 Chance Constraints

Consider now enforcing a state constraint of the form

Hxk ≤ h,∀k, (3.26)

where h is an nh-vector. This constraint can be written using (3.14) and (3.22) as:

Hx̃k +Hek ≤ h−H(I− Ac)−1Bcr. (3.27)

We now consider approaches to enforce the constraint (3.26) with probabilistic guar-
antees based on the model (3.15) and (3.23). Re-stating the model and the constraint for
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convenience here, we have [
x̃k+1

ek+1

]
=

[
Ac −LC
0 Ao

]
︸ ︷︷ ︸

=:Aaug

[
x̃k

ek

]

+

[
−LF
LF

]
︸ ︷︷ ︸

=:Baug

vk +

[
0

Γ

]
︸︷︷︸
=:Γaug

wk, (3.28)

Hx̃k +Hek ≤ h−H(I− Ac)−1Bcr, (3.29)

where
vk ∼ N (0, I), wk ∼ N (0, I). (3.30)

Let k be the current time instant, and consider t ≥ 0 to be running time over the
prediction horizon. Denote by x̃t|k the predicted value of x̃k+t and by et|k the predicted
value of ek+t. The dynamics of

[
x̃t|k, et|k

]ᵀ are given as[
x̃t+1|k

et+1|k

]
= Aaug

[
x̃t|k

et|k

]
+Baugvk+t + Γaugwk+t. (3.31)

We can predict the time-varying covariance matrix of
[
x̃t|k, et|k

]ᵀ using

P̃t+1|k = AaugP̃t|kA
ᵀ
aug +BaugB

ᵀ
aug + ΓaugΓ

ᵀ
aug︸ ︷︷ ︸

=

0 0

0 ΓΓᵀ


, (3.32)

where

P̃0|k =

[
0 0

0 P∞

]
. (3.33)

Note that x̃0|k = x̃k, as the observer output, is measured, thus, cov(x̃0|k, x̃0|k) =

cov(x̃0|k, e0|k) = 0. We assume that cov(e0|k, e0|k) = P∞ for all k, where P∞ is de-
fined in (3.25), which is a reasonable approximation if the closed-loop system including
the observer has operated for a sufficiently long period of time.

Then, [
x̃t|k

et|k

]
∼ N

(
Ataug

[
x̃k

0

]
, P̃t|k

)
, (3.34)
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so

[
H H

]︸ ︷︷ ︸
=:Haug

[
x̃t|k

et|k

]
∼ N

(
HaugA

t
aug

[
x̃k

0

]
,

HaugP̃t|kH
ᵀ
aug︸ ︷︷ ︸

=:Σt|k

)
. (3.35)

Due to the fact that the disturbance and noise signals are unbounded, it is in general
not possible to enforce the constraint (3.26) for all possible realizations of disturbance and
noise sequences. Therefore, we instead consider a chance constraint imposed over the
prediction horizon of the form,

Prob{Hxt|k ≤ h} ≥ 1− α, t ≥ 0, (3.36)

where 0 < α < 1. This chance constraint can be re-stated as

Prob
{
Haug

[
x̃t|k

et|k

]
≤ h−H(I− Ac)−1Bcr

}
(3.37)

≥ 1− α, t ≥ 0.

Assume for the moment that the constraint is scalar, nh = 1 (this assumption will be
relaxed using a risk allocation approach later in this section). In this case, the constraint
(3.37) can be re-stated as

HaugA
t
aug

[
x̃k

0

]
≤ h−H(I− Ac)−1Bcr

−
√

2Σt|k erf−1(1− 2α), (3.38)

where erf is the error function [79],

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (3.39)

Motivated by the above considerations, define the chance constrained admissible set,
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Õ∞(r), as

Õ∞(r) =

{
x̃0 : HaugA

t
aug

[
x̃0

0

]
≤ h(r)

−
√

2Σt|0 erf−1(1− 2α), t ≥ 0

}
, (3.40)

where
h(r) = h−H(I− Ac)−1Bcr. (3.41)

For numerical implementation, Õ∞(r) is constructed as described in [80]. For nh ≥ 1,
letHi denote the ith row ofH and hi denote the ith entry of h. Based on Boole’s inequality,
the chance constraint (3.36) can be satisfied by enforcing the following set of constraints:

Prob{Hixt|k ≤ hi} ≥ 1− α′, (3.42)

for all i = 1, ..., nh, where α′ = α
nh

. Then, we define Õ∞(r) as

Õ∞(r) =

nh⋂
i=1

Õ∞,i(r), (3.43)

where Õ∞,i(r) is defined using (3.40) with H , h, and α replaced by, respectively, Hi, hi,
and α′.

3.4 Virtual Net

3.4.1 Graph Construction

In its simplest form, the virtual net constrained motion planning framework exploits a dis-
crete set of set-points, R = {r1, r2, · · · , rnr}, and reduces the trajectory design problem
to an online graph search for the path in this set of set-points. Once the path is determined
through the graph search, an online switching logic is used to execute the path whereby
a switch from one set-point to the next is effected when suitable switching conditions are
satisfied.

The virtual net guarantees safety (constraint enforcement) by declaring that a connec-
tion (edge) between set-points ri and rj exists if

(I− Ac)−1Bc(r
i − rj) ∈ int

(
Õ∞(rj)

)
, (3.44)
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i.e., a connection between set-points ri and rj exists if the vector from the disturbance-
free equilibrium of rj to the disturbance-free equilibrium of ri lies within the chance-
constrained admissible set of rj . This ensures that there will necessarily be some k for
which a safe switch between set-points ri and rj is possible. Specifically, suppose the sys-
tem has been operating with the set-point ri for a while. Then the dynamics of x̃k have
been evolving according to (3.23) with r = ri. Under the assumptions made, x̂k will enter
an arbitrary small neighborhood of the disturbance-free equilibrium, (I − Ac)−1Bcr

i, for
some k. In particular, the condition,

x̂k − (I− Ac)−1Bcr
j ∈ Õ∞(rj) (3.45)

is guaranteed to hold (with probability 1) for some k. If this condition holds, then the switch
of the set-point ri to rj can be effected at the time instant k while guaranteeing that if the
set-point rk is maintained at rj for all the subsequent time instants, the constraint (3.38)
and hence the chance constraint (3.36) will be satisfied. These properties of the framework
will be formally presented as Propositions 1 and 2.

The online switching controller monitors the state estimate, x̂k, and checks whether for
the next set-point in the path, r+, the switching condition,

x̂k − (I− Ac)−1Bcr
+ ∈ Õ∞(r+), (3.46)

is satisfied. Once (3.46) holds, the switch rk ← r+ is made.
With the goal of generating fuel-efficient trajectories, the weight of the edge from node

ri to node rj , G(i, j) is defined as the approximate amount of fuel needed for the spacecraft
to travel from node ri to node rj . This amount of fuel is estimated based on (3.1) with
control (3.12) propagated subject to zero disturbance and perfect observations, i.e., Γ = 0

and x̂ = x. The initial condition is set as x0 =

[
ri

0

]
and the reference is set as r = rj . The

simulations are run until

∣∣(I− Ac)−1Bcr
j − xk

∣∣
2
≤ 0.05

∣∣(I− Ac)−1Bc(r
j − ri)

∣∣
2

(3.47)

and the edge weighting is set as

G(i, j) =
k∑
l=0

|ul|2 . (3.48)
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Proposition 1: Suppose that the initial pair of state estimate and set-point (x̂0, r0)

satisfies x̂0 − (I − Ac)−1Bcr0 ∈ Õ∞(r0), and wk, vk ∼ N (0, I), e0|k ∼ N (0, P∞) for all
k ≥ 0. Further, suppose that all of the set-point switches are made when the switching
condition (45) is satisfied. Then, the probability of satisfying the constraint (24) is no less
than 1− α, i.e., Prob(Hxk ≤ h) ≥ 1− α, for all k ≥ 0.

Proof: For any k ≥ 0, let k′ = max
(
{t | 1 ≤ t ≤ k, rt 6= rt−1} ∪ {0}

)
. Note that k′ is

a random variable. According to the definition of k′ and the set-point switching condition
(3.46), for any realization of k′, the corresponding set of realizations of state estimate and
set-point trajectory {(x̂t, rt)}kt=0 must all satisfy x̂k′ − (I − Ac)

−1Bcrk′ ∈ Õ∞(rk′) and
rt = rk′ for all t = k′, . . . , k. Then, by the definition of Õ∞(rk′), the conditional probability
measure of the subset of trajectories satisfying Hxk ≤ h must be no less than 1 − α,
i.e., Prob(Hxk ≤ h | k′) ≥ 1 − α, where Prob(· | k′) denotes the probability measure
conditioned on the realized k′. Then, using the formula of total probability, we obtain
Prob(Hxk ≤ h) =

∑k
k′=0 Prob(Hxk ≤ h | k′)Prob(k′) ≥ (1−α)

∑k
k′=0 Prob(k′) = 1−α,

since
∑k

k′=0 Prob(k′) = 1. �
Proposition 2: For a path determined by the graph search algorithm, as a sequence of

set-points {r0, r1, ..., rf} satisfying

(I− Ac)−1Bc(r
i−1 − ri) ∈ int

(
Õ∞(ri)

)
for all i = 1, ..., f , suppose that r0 = r0 and set-point switches rk ← r+ are made when
the switching condition (3.46) is satisfied. Then, there almost surely exists kf ∈ N such
that rk = rf for all k ≥ kf , i.e., the terminal set-point of the path rf , as the reference point
for the spacecraft to track, is reached by rk in finite time.

Proof: For any i = 1, ..., f , since (I−Ac)−1Bc(r
i−1− ri) ∈ int

(
Õ∞(ri)

)
, there exists

an open set U containing 0 such that U + (I− Ac)−1Bcr
i−1 ⊂ Õ∞(ri) + (I− Ac)−1Bcr

i.
Considering the system (3.23), by the fact that Ac is strictly Schur, for any initial condition
x̃0, there almost surely exists k′ ∈ N such that x̃k′ ∈ U [80]. This implies that if rk =

ri−1 for a sufficiently long period of time, there almost surely exists k′ ∈ N such that
x̂k′ ∈ U + (I − Ac)−1Bcr

i−1 ⊂ Õ∞(ri) + (I − Ac)−1Bcr
i, where the set-point switching

condition (3.46) is satisfied and thus rk′ ← ri. Then, the statement of Proposition 2 follows
from the fact that the above result holds for all i = 1, ..., f . �

3.4.2 Obstacle Avoidance

The framework presented in Section 3.4.1 enables the spacecraft to satisfy the chance con-
straints of the form (3.36), however obstacle avoidance necessitates handling non-convex
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constraints that cannot be expressed in the form Hxk ≤ h. In this work, we consider a sce-
nario in which the spacecraft’s motion is constrained to be inside a set defined by Hxk ≤ h

and outside of the obstacle defined by Qxk ≤ q.
This problem is solved by an inner approximation of the non-convex set Cnc = { ξ |

Hξ ≤ h }\{ ξ | Qξ ≤ q } by a union ofNs convex sets Cc =
Ns⋃
i=1

{ ξ | Hiξ ≤ hi } such that

Cc ⊆ Cnc. This is illustrated in Figure 3.1, which depicts an example with a cube obstacle
inside outer box constraints. For each of these new sets Cc,i = { ξ | Hiξ ≤ hi }, i =

1, . . . , Ns, a chance-constrained admissible set may be defined as in (3.40) and (3.41),

Õ∞,i(r) =

{
x̃0 :

[
Hi Hi

]
Ataug

[
x̃0

0

]
≤ hi(r)

−
√

2Σt|0 erf−1(1− 2α), t ≥ 0

}
, (3.49)

where
hi(r) = hi −Hi(I− Ac)−1Bcr. (3.50)

Thus a connection between set-points ri and rj exists if

(I− Ac)−1Bc(r
i − rj) ∈ int

(
Õ∞,i(r

j)
)
. (3.51)

for any i = 1, . . . , Ns.
Corollary 1: Suppose that x̂0 − (I − Ac)

−1Bcr0 ∈ Õ∞,i(r0) for some i = 1, ..., Ns,
and wk, vk ∼ N (0, I), e0|k ∼ N (0, P∞) for all k ≥ 0. And suppose that all of the set-point
switches rk ← r+ are made when the switching condition x̂k−(I−Ac)−1Bcr

+ ∈ Õ∞,i(r+)

is satisfied for some i = 1, ..., Ns. Then, the probability of staying in the safety set Cnc is
higher than 1− α, i.e., Prob(xk ∈ Cnc) ≥ 1− α, for all k ≥ 0.

Proof: By a similar proof as that for Proposition 1, it can be shown Prob(xk ∈ Cc) ≥
1 − α for all k ≥ 0. Then, the statement Prob(xk ∈ Cnc) ≥ 1 − α for all k ≥ 0 follows
from the fact that Cc ⊆ Cnc. �

Remark 1: The approach we presented assumes a static obstacle/debris, however, the
extension to moving obstacles/debris, including at high relative velocity, is straightforward
following [30]. In this case, Qxk ≤ q defines a polyhedral set which overbounds the obsta-
cle path (i.e., union of obstacle positions over time), and has to be avoided by the spacecraft
trajectory, while the set {ζ|Hζ ≤ h} represents the other constraints the spacecraft motion
has to satisfy.
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Figure 3.1: Inner approximation of a non-convex set Cnc by a union Cc of convex sets.

3.5 Simulations

The simulation case studies presented here use the model described in Section 3.2. The
discrete-time sampling period and chance constraint probability used for simulation are
∆T = 10s and β = 1 − α = 0.9, respectively. The gain matrices K and L are computed
by solving the discrete-time algebraic Riccati equation with the corresponding weighting
matrices QK = 10−7I6, RK = 10I3, QL = 10−7I6, and RL = I3.

This section presents the solution for two different scenarios. In the first scenario, the
obstacle used is a 9-sided pyramid emanating from the origin, which is intended to represent
a sensor-based keep-out zone. In this scenario, it is envisioned that our chaser spacecraft
has an optical sensor that is constantly pointing at the target spacecraft at the origin, and
the pyramid approximates the cone representing the region in which the sensor would be
damaged by the Sun. The second scenario’s obstacle is a polyhedral set which overbounds
the path of a piece of orbital debris passing through the relative motion frame, as described
in Section 3.4.2, Remark 1.

Figure 3.2 depicts an example of one particular chance-constrained admissible set,
Õ∞([97, 0, 0]>). Note that this set does not extend all the way to box constraints and
that it is non-symmetric about the x1 and x2 axes. Figure 3.5 gives an intuitive explanation
of these features. The same Õ∞ set is shown projected onto the x1−x2 plane and the trajec-
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tory tubes from two separate simulations are overlaid: one where x0 ∈ Õ∞ and one where
x0 /∈ Õ∞. The former shows that the box chance constraints are satisfied while in the latter
simulation they are not, illustrating how the asymmetries in the relative orbital dynamics
manifest in the asymmetric Õ∞ set.

Figure 3.2: Visualization of Õ∞([97, 0, 0]>) for the cuboid constraints shown in red.

After the graph G is constructed, the standard Dijkstra’s algorithm is used for path
planning and the solution trajectory is propagated for a 1,000 run Monte Carlo simulation.
Figures 3.6, 3.7, and 3.8 show the resulting β-probability trajectory tube of the solution to
scenario 1. This tube is defined as the union of β-probability ellipsoids for different k,

{ ω ∈ R | (ω − x1:3,k)
ᵀP−1

1:3,k(ω − x1:3,k) ≤ c2 }, (3.52)

where c is solved for using the three degree-of-freedom chi-squared distribution [61]. Fig-
ures 3.9 and 3.10 show the solution to scenario 2.

In these simulations, the spacecraft successfully navigates from x0 to the final reference
point rf while satisfying the chance state constraints and avoiding the obstacle. Addition-
ally, it is shown that the experimentally computed covariance of e matches the theoretical
value of P∞ from (3.25).

3.6 Conclusions

In this chapter, the constrained SRMP framework based on chained positively invariant con-
straint admissible sets in [30] was extended to the setting of stochastic disturbances and out-
put measurement with stochastic measurement noise. With the proposed approach, chance
constraints are considered and maximal chance-constrained admissible sets are exploited
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Figure 3.3: Example trajectory where x0 ∈
Õ∞ and the β chance constraints are satis-
fied, as illustrated by the β-probability tra-
jectory tube residing fully within the box
constraint.

Figure 3.4: Example trajectory where x0 /∈
Õ∞ and the β chance constraints are not
satisfied, as illustrated by the β-probability
trajectory tube extending past the box con-
straint.

Figure 3.5: Comparison of safe and non-safe trajectories, as shown by the Õ∞ set.

Figure 3.6: Position estimated states x̂ and position error states e from Monte Carlo simu-
lations. Green shaded region is the computed β-probability distribution and the dashed red
line is the β-probability distribution predicted by (3.25). Initial errors are assumed to be
zero.
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Figure 3.7: Three-dimensional trajectory tube defined by (3.52), trackingR (circular mark-
ers), while avoiding the red conical obstacle. The dot markers are the nodes of the virtual
net.

Figure 3.8: Second view of Figure 3.7.
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Figure 3.9: Solution to chance-constrained motion planning problem for second scenario,
representing orbital debris obstacle avoidance.

Figure 3.10: Second view of Figure 3.9.
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in defining connectivity and possibility of safe transitions between forced equilibria. The
relative motion planning problem reduces to the graph search for a path between connected
equilibria. As in [30], extensions to the case of multiple control gains appear possible as
well as the use of multiple observer gains; details are left to future work. Connectivity
is determined via chance-constrained admissible sets, which allows the consideration of
output feedback and Gaussian process and measurement noise while still enforcing obsta-
cle avoidance constraints. The resulting graph was searched using Dijkstra’s algorithm,
resulting in a fuel-efficient trajectory that satisfied the chance constraints with specified
probability.
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CHAPTER 4

Suborbital Reentry Uncertainty Quantification
and Stochastic Optimization

4.1 Introduction

4.1.1 Motivation

Suborbital space launch vehicles are a crucial component of the space industry. They allow
access to a region of the atmosphere inaccessible to weather balloons, provide a cheaper
platform than orbital launches for scientific experiments and sub-scale demonstrations, and
their use as space tourism vehicles is of increasing interest. Between the fiscal years 2008
- 2018, NASA alone launched 178 sounding rockets from over a dozen different launch
sites, for a variety of scientific purposes [81]. The private spaceflight company Blue Origin
has flown their suborbital New Shepard vehicle 12 times as of January 2020 [82], with the
ultimate goal of being a platform for suborbital tourism and scientific payloads.

There are a wide range of suborbital vehicles with mission profiles that are equally
as varied, but one important commonality is that all will reenter the atmosphere and land,
either ballistically or under chutes. Other vehicles that fall under this category are expended
booster stages from orbital vehicles (some of which fall under chutes) and manned space
capsules after a ballistic abort.

The landing zones for these vehicles are of great interest from a safety perspective.
Whether in an attempt to protect payloads or to protect assets on the ground, it is common
for the region of potential landings to include keep-out zones. Examples include spent
boosters reentering the atmosphere and colliding with valuable ground support equipment
or human-occupied buildings. Conversely, there may be some areas of the landing zone
where a valuable payload or human-occupied capsule cannot land safely, such as heavily
forested or rocky areas. It is also common for the re-entering vehicle to not have active
control over its downrange or crossrange position, such as in the case of a ballistic reentry,
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or reentry under symmetric parachutes.
Though the reentry portion of the mission profile may be uncontrolled, it is often the

case that a vehicle’s ascent trajectory is controlled, and may be biased in the crossrange or
downrange directions, affecting the capsule or booster’s state at separation and effectively
exerting control over the landing location. One solution might be to have a large num-
ber of ascent reference trajectories prepared a priori and to pick the best option on launch
day based on current wind conditions, but this may be infeasible for software qualification
reasons. Each additional ascent trajectory that is maintained in the vehicle’s software re-
quires more MC simulations to be conducted to prove it is safe to fly, which is labor and
time intensive. It is desirable, therefore, to maintain a small number of ascent reference
trajectories to choose from on the Day of Flight (DoF), and that is the motivation for this
work.

4.1.2 Problem Statement

The work described in this chapter focuses on two separate but related problems: rapid
uncertainty propagation for a vehicle reentering the atmosphere and stochastic optimization
of ascent trajectories.

For the former, we seek an algorithm that takes the vehicle’s dynamics, physical param-
eters, initial state, and atmospheric conditions as inputs, and outputs some quantification of
the uncertainty associated with the vehicle’s state trajectory over the specified flight hori-
zon. For the latter, we seek a method of trajectory optimization that, for a finite number
of ascent reference trajectories and the ability to choose the best on DoF, minimizes the
probability of a landing zone constraint violation.

It is assumed that the optimized variable in this optimization problem is the vehicle’s
state at engine cut-off or separation, which is effected via design of the ascent reference
trajectory. This choice is justified by another assumption that small differences to the ve-
hicle’s downrange or crossrange positions at separation affect downrange or crossrange
positions at landing but do not have an appreciable effect on payload delivery, and thus are
acceptable optimization parameters from a system level.

4.1.3 Literature Review

A major source of uncertainty considered in this work is stochastic wind gusts. For aircraft,
Hoblit [42] provides a detailed description of discrete and continuous gust models and
Richardson [43] provides a thorough review of the modeling techniques involved. The
Dryden and Von Kármán models are the two most common models [44–48], for which
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there are both Federal Aviation Administration and military specifications. Both consider
the linear and angular velocity components of the continuous gusts to be varying stochastic
processes and then specify those components’ PSD. The Dryden model utilizes rational
PSDs, while the Von Kármán model uses irrational PSDs. The latter matches experimental
gust observations more closely than the former, but its use of irrational spectral densities
prevents its spectral factorization from being exactly expressed. The development of wind
gust models for suborbital vehicles is an open area of research; other works [83] have
adapted a Dryden model to other applications, and we attempt the same here, under an
assumption that such a model can be tuned to match higher fidelity wind gust models
representative of suborbital vehicles. We also believe that the key steps in treating the
problem (which we exemplify below) can still be adopted even if the model of atmospheric
disturbances used is very different.

We also consider the problem of propagating the vehicle’s state uncertainty subject to
the aforementioned continuous wind gust disturbances. Given an initial probability distri-
bution of a state, the objective of a UQ algorithm is to obtain a characterization of the state’s
probability distribution at a future instant in time. One potential solution is a MC simula-
tion, but the computational intensity of this method limits its usefulness for the stochastic
optimization techniques with which we hope to use the UQ algorithm [17, 18]. Lineariza-
tion techniques suffer from diminished accuracy for highly nonlinear systems or for long
time horizons, but their simplicity and high computational efficiency make them well-suited
for computationally sensitive applications [19, 20]. Other nonlinear UQ methods include
unscented transformation [21, 22], polynomial chaos expansions [23], and Gaussian mix-
ture models [24–26]. A thorough survey of many other UQ methods for problems in orbital
mechanics is provided by Luo [49]. The LC method has been chosen for UQ in our problem
due to its computational speed and its ability to sufficiently quantify uncertainty along the
vehicle’s trajectory. In particular, LC UQ methods excel at handling white noise inputs (an
important feature of the system considered in this work) when compared to methods such
as polynomial chaos or Gaussian mixture models, despite being less capable of capturing
strongly nonlinear dynamics. The LC UQ used here is validated against MC UQ in Section
4.4.

The optimization problem considered in this work belongs to a special class called clus-
tering optimization [84] which involves minimizing the cluster function of the following
form,

F (z1, . . . , zk) =
∑
a∈A

min
(
φ(z1, a), φ(z2, a), . . . , φ(zk, a)

)
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where A is a finite subset of a finite dimensional space [85]. The optimization of this
’sum of minima’ function with respect to z1, . . . , zk corresponds to our problem statement
of optimizing a finite number of ascent reference trajectories, from which we have the
capability of choosing the lowest cost on DoF. For this application, the cardinality of A is
large, thus F has a large number of shallow local minima. Such problems are nonsmooth,
nonconvex, and are best solved using gradient-free optimization methods [86].

4.2 Modeling

4.2.1 Vehicle

As in our previous work [28], the model used is relatively simple, to make the uncertainty
quantification more computationally tractable, and has key physical parameters that may
be tuned to better match a real-world vehicle. In particular, we consider a model of a
suborbital vehicle based on a double integrator with quadratic drag. Modeling fidelity is
improved with the inclusion of Coriolis and centripetal accelerations, and by having many
parameters depend on altitude and vehicle speed:

r =

x1

x2

x3

 , V0 =

ẋ1

ẋ2

ẋ3

 , V = V0 −
(
wn(x3) + wg

)
, (4.1)

Ω =

0

0

ω


×

, g =

 0

0

g0(x3)

 , s = ‖V ‖ (4.2)

V̇0 = g − 1

2m
ρ(x3)S(x3)CD(s, x3)sV − Ω2r − 2ΩV0, (4.3)

where x1, x2, and x3 are the vehicle’s coordinates in an earth-centered, earth-fixed (ECEF)
reference frame, V is its velocity with respect to the atmosphere, wn ∈ R3 is the velocity of
the nominal local atmosphere with respect to the ground, wg is the velocity of wind gusts,
ω is the rotation rate of the earth, and m is the vehicle mass. Local gravitational accelera-
tion g0, mean atmospheric wind wn, atmospheric density ρ, surface reference area S, and
coefficient of drag CD are all indexed by the ’up’ vehicle coordinate x3. Additionally, CD
is indexed by vehicle speed s.

These non-constant parameters, g0, wn, ρ, S, and CD are modeled to vary with altitude
to account for the wide-ranging flight regimes a spacecraft experiences during reentry. Ad-
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ditionally, this allows us to account for parachute opening dynamics, as one could vary S
and CD to emulate the deployment of chutes at a specified altitude.

4.2.2 Mean Atmospheric Conditions

The ultimate goal of this work is to minimize the overall probability of a landing zone con-
straint violation, and one way to achieve this is to optimize over a finite but representative
set of atmospheric conditions. For illustrative purposes, all atmospheric data used in this
work are randomly generated, using a random walk for mean wind velocities wn and an
exponential decay law for atmospheric density, as shown in Figures 4.1 and 4.2. In a flight
vehicle implementation of these algorithms, it is anticipated that the atmospheric profiles
used for simulation and optimization would come from sources more specific to the launch
site, such as outputs from NASA’s Earth-GRAM software [87], or measurements from ra-
diosonde and LIDAR equipment. The end result would thus be a set of NA vectors for
ρ(x3), wn(x3), and g0, indexed by altitude.

Figure 4.1: Wind velocities w as a function of altitude, for NA sets of atmospheric condi-
tions.

Figure 4.2: Atmospheric density ρ forNA sets of atmospheric conditions across all relevant
altitudes to this problem (left plot) and magnified (right plot).
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4.2.3 Wind Gusts

Finally, we consider the model for our wind gust disturbance wg. A Dryden wind model
specifies the PSD for the body-fixed longitudinal, lateral, and vertical directions of a fixed-
wing aircraft, but here we have replicated the longitudinal channel in the x1, x2, and x3

directions of the inertial frame. The resulting Dryden-like wind model is summarized as

Ai =
−s
Li
, (4.4)

Bi = 1, (4.5)

Ci =
√

2sσi

√
Li
s

1

Li
√
π
, (4.6)

η̇i = Aiηi +Bini, (4.7)

wi = Ciηi, (4.8)

for i = {1, 2, 3}. Here, Ai, Bi, and Ci are the state space realization of the Dryden model
coloring filter, σi is the gust intensity parameter, Li is the characteristic length, and n is the
Gaussian white noise input [42]. The output of this model, wg = [wg1, wg2, wg3]>, is the
wind gust velocity vector in (4.1).

4.2.4 Modeling Summary

We summarize the preceding equations of motion as:

Ẋ = f
(
X,n(t), θ

)
, (4.9)

where the state is X = [r, V0, η1, η2, η3]>, θ is the set of vehicle and environmental param-
eters, and n is the Gaussian white noise input.

46



4.3 Technical Approach

4.3.1 Uncertainty Quantification

The linearized model corresponding to (4.9) has the following form:

δẊ = A(t)δX(t) +Bn(t)n(t), (4.10)

A(t) =
∂f

∂X

∣∣∣∣∣
X=X̄(t)
n=n̄

, (4.11)

Bn(t) =
∂f

∂n

∣∣∣∣∣
X=X̄(t)
n=n̄

. (4.12)

Here, X̄(t) is the nominal trajectory obtained by propagating Eq. (4.9) subject to n = 0.
Physically, this corresponds to the nominal trajectory that the vehicle would fly under no-
gust conditions.

Under the assumption that n(t) is a standard white noise process, the state covariance
matrix, P , satisfies the Lyapunov equation [59]:

Ṗ (t) = A(t)P (t) + P (t)A>(t) +Bn(t)B>n (t). (4.13)

Note that (4.13) can be solved using any standard ODE solver and the initial condition
for P is the zero matrix if the vehicle’s initial state is known deterministically.

Now, we can use the nominal trajectory X̄(t), covariance matrix P (t), and a Gaussian
distribution density function to estimate the probability that the vehicle is contained in a
specified set at time t. Given the mean r̄(t) = [x̄1(t), x̄2(t), x̄3(t)]> and the block of P
corresponding to these states, Σω(t) = P(1:3,1:3)(t), we can determine an ellipsoid corre-
sponding to a given probability level, β:

Prob [ω ∈ R3 : (ω − r̄(t))>Σ−1
ω (t)(ω − r̄(t)) ≤ c2] = β, (4.14)

where c is solved for using the three degree-of-freedom chi-squared distribution [61].

4.3.2 Clustering Optimization

When considering the design objective of minimizing the overall probability of a landing
zone constraint violation, a crucial component of the DoF operations is the ability to choose
the optimal separation condition from the set of k separation conditions, given current
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atmospheric conditions. This knowledge is assumed to be gathered via a weather balloon,
atmospheric sensing LIDAR system, or likewise.

Thus if we are optimizing over NA sets of atmospheric conditions and are able to pick
the lowest cost of the k separation conditions, we are attempting to minimize the sum of
minima. This gives way to a clustering optimization problem [85] with:

F (z1, . . . , zk) =
∑
a∈A

min
(
φ(z1, a), . . . , φ(zk, a)

)
(4.15)

where each z1, . . . , zk is the set of separation conditions to choose between on DoF, z =[
x1(0) x2(0)

]>
where time 0 is the time of stage separation. These vectors z1, . . . , zk are

the parameters over which we will be optimizing subject to additional constraints such as
on maximum deviation (”max divert distance”.) The variable a represents a single set of
atmospheric conditions belonging to the larger set of NA atmospheric conditions A. The
sub-cost function φ(z, a) reflects the liklihood of a landing zone constraint violation for a
specific set of separation and atmospheric conditions. The preferred option for this sub-
cost φ(z, a) would be to propagate the vehicle’s state following the UQ procedure laid out
in Section 4.3.1 and compute the actual probability of landing zone constraint violation,
which may be possible by integrating vehicle probability density function (PDF) over the
set excluded by landing zone constraints. However, this would be prohibitively compu-
tationally intensive and so a heuristic sub-cost function is adopted instead. This function
φ(z, a) takes a large value in regions of a landing zone constraint violation, and smoothly
transitions to lower values elsewhere, as shown in Figure 4.3. Thus the calculation of this
heuristic subcost is based only on the simulated mean of the vehicle’s landing position
while the vehicle’s landing PDF is utilized only for validation purposes in Section 4.4.

The subcost φ(z, a) is smooth, but the cost function F is nonsmooth. For such func-
tions, non-gradient-based solvers have proven to be more effective in searching for a so-
lution. The optimization algorithm used in this work is MATLAB’s implementation of a
pattern search algorithm [88], patternsearch(). Straightforward extensions of the
approach with the cost function (4.15) modified to average over the a priori PDF of atmo-
spheric conditions (if known) are possible but are not pursued in this dissertation.

4.4 Results

The results of a single propagation of Equations (4.9) and (4.13) with initial conditions
X0 = [0, 0, 105, 0, 200, 2000, 0, 0, 0]> are shown in Figures 4.4 and 4.5, which depict the
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Figure 4.3: Subcost φ(z, a) as a function of x1 and x2 at landing.

vehicle’s position coordinates and trajectory, respectively, from stage separation to reentry
and landing. Figure 4.4 illustrates that at high altitudes and low air density, the atmospheric
forces are negligible and gravitational, Coriolis, and centripetal accelerations dominate. At
around 450 s simulation time, the vehicle begins to reenter the atmosphere, its acceleration
in the x3 direction slows, and its accelerations in the x1 and x2 directions are dominated by
nominal and gust wind velocities, wn and wg.

Figure 4.6 validates the linear covariance propagation method laid out in Section 4.3.1
against a 1000-run Monte Carlo simulation of the full nonlinear system (4.9) and numerical
computation of the means (x̄1, x̄2, x̄3) and variances (σ2

x,1, σ2
x,2, σ2

x,3,). The only significant
difference between the two is in σ2

x,3 after atmospheric reentry, likely due to the strong
influence of the nonlinear drag acceleration during this part of the simulation. Because this
work is primarily concerned with the vehicle’s covariance in the x1 − x2 plane at landing,
and the landing time prediction is based on the mean x̄3 which is accurately predicted, this
deviation between the linear and nonlinear UQ schemes is considered acceptable. Hence
LC UQ is utilized for the remainder of this work. In the MATLAB coding environment,
running on a single core at 2.7 Ghz, approximate computation time is 0.65 s for LC UQ
and 130 s for MC UQ.

Repeating this simulation for every set of atmospheric conditions in A results inNA tra-
jectories andNA landing probability ellipses formed by the intersection of the β-probability
tube with the x3 = 0 plane, as shown in Figure 4.7. The probability ellipses are very close
to circular, corresponding to a covariance matrix that is very close to diagonal. The corre-
sponding PDF is shown in Figure 4.8. By integrating the portions of the PDF that intersect
the landing zone constraints, we determine that the probability of a landing zone constraint
violation is p = 0.205.
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Figure 4.4: Vehicle coordinates as function of time, with β-probability bands.

Figure 4.5: 3D β-probability trajectory tube of vehicle’s trajectory from stage separation to
reentry and landing. Landing zone constraints are shown in red.
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Figure 4.6: Comparison of Monte Carlo UQ (MC, red) and linear covariance UQ (LC,
blue).

Figure 4.7: Landing ellipses without trajectory biasing, with landing zone constraints
shown in red.

Figure 4.8: Landing PDF without trajectory biasing, with landing zone constraints shown
in red. The probability of a landing zone constraint violation is p = 0.205.
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Minimization of the cost function (4.15) subject to the maximum divert distance con-
straint of 5000m, i.e., (∆x1(0))2 + (∆x2(0))2 ≤ 50002, where ∆x1(0) and ∆x2(0) are
deviations of x1 and x2 from the nominal at the time of stage separation, results in the set
of k optimal separation conditions shown in Figure 4.9. These separation conditions can
be mapped back to a set of optimal ascent reference trajectories. Figure 4.9 reflects three
optimal separation conditions resulting from the optimization and a nominal non-diverted
trajectory which has also been included in the set for practical reasons. Specifically, in the
envisioned application scenario the objective was to augment this non-diverted trajectory
already used in existing launch operations. Finally, we re-simulate trajectories for every set
of atmospheric conditions in A while incorporating the trajectory biasing logic and using
whichever of the 4 optimal separation conditions results in the lowest cost of φ(z, a). This
produces the landing PDF shown in Figure 4.10 that has been ’shaped’ away from landing
zone constraints, lowering the overall probability of a constraint violation to p = 0.004 and
resulting in safer operation of the space vehicle.

Figure 4.9: Solution to (4.15) with three separation conditions on the control constraint
boundary and the nominal separation condition prescribed at [0 0]>.

By repeating this optimization and simulation for different values of the max divert
control constraint, we can show how p decreases as the control constraint is relaxed (Figure
4.11).

4.5 Conclusions

In this paper we have considered an approach to optimally designing a set of trajectories,
parameterized by the target cross track separation coordinates from the nominal (separation
conditions) which can be followed by a suborbital space vehicle. Practical requirements
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Figure 4.10: Landing PDF with trajectory biasing, with landing zone constraints shown in
red. The probability of a landing zone constraint violation is p = 0.004.

Figure 4.11: Semilog plot of p’s sensitivity to the max divert distance.
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dictate that a finite set of trajectories be designed and certified a priori and one of these
finite number of trajectories be selected on the day of flight depending on the atmospheric
conditions. We have shown that such a problem reduces to a clustering optimization prob-
lem and illustrated how models, cost function, and constraints can be defined to perform
this clustering optimization for our suborbital space vehicle. We have additionally shown
that the linear covariance propagation is accurate in predicting the effects of the continuous
wind gusts on the cross track deviation of the trajectory at landing while is significantly
faster computationally as compared to Monte Carlo simulations. Simulations show that
our trajectory selection scheme reduced the probability of a landing zone constraint viola-
tion from p = 0.205 to p = 0.004. This illustrates an effective software-only method for
decreasing the probability of a dangerous landing with no physical changes to the vehicle
and only minimal changes to its flight controls software.
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CHAPTER 5

Suboptimal Nonlinear Model Predictive Control
Strategies for Tracking Near Rectilinear Halo

Orbits

5.1 Introduction

It has been more than 40 years since a human last traveled beyond low earth orbit (LEO)
on the Apollo 17 spacecraft in 1972. Recently, there has been renewed interest in human
exploration of the solar system. In particular, cis-lunar space has emerged as a focus area
as evidenced by the Global Exploration Roadmap [89, 90] and the NASA Artemis pro-
gram [91], including the 2024 lunar landing goal [92]. Operations in cis-lunar space will
support space-based facilities for robotic and human missions to the Moon and eventually
to destinations such as asteroids or Mars.

Near Rectilinear Halo Orbits (NRHOs) have emerged as promising candidates for a
long term lunar gateway module and/or as staging orbits between LEO and low lunar or-
bit [93,94]. NRHOs are limit cycles near the co-linear L1 and L2 Lagrange points. Certain
NHROs possess several useful properties including the existence of low-energy transfer
orbits [95], good stability characteristics, unobstructed views of Earth, and favorable res-
onance properties that allow them to avoid eclipses [96]. They were first identified in the
Circular Restricted Three Body Problem (CR3BP) and are periodic natural motion trajec-
tories in the simplified setting of the CR3BP [97].

While certain NRHOs are stable or nearly stable in restricted three body systems [93],
in reality maintaining the spacecraft on them is challenging due to perturbations caused by
gravitational forces from other celestial bodies, navigational errors, hardware limitations,
solar radiation and magnetic forces. This provides the motivation for the development of
active station-keeping algorithms that can stabilize the orbit despite these disturbances. Ide-
ally, these algorithms should optimally balance tracking error with propellant/energy con-
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sumption. Computing actions/policies offline and uploading them reduces onboard com-
puting requirements but may reduce robustness to disturbances. Alternatively, computing
actions online can incorporating feedback leading to improved robustness. In particular,
Model Predictive Control (MPC) is a promising methodology for online optimal control
that can systematically account for constraints, nonlinearities, and both trajectory tracking
and fuel minimization requirements [98–100]. However, online optimization approaches
can be prohibitively expensive from a computational or power consumption perspective.

There is a growing body of literature on station-keeping for NRHOs. Dynamical sys-
tems theory based techniques using Cauchy-Green Tensors and X-Axis Crossing meth-
ods have, in particular, been investigated [96, 101]. Set-invariance and analytical mini-
mum energy-based solutions to a linearized problem that account for measurement uncer-
tainty have been proposed [102], and linear MPC and linear quadratic regulator (LQR) ap-
proaches have been developed [103]. There is also interest in station-keeping for other halo
orbits about the L1 and L2 points. The Optimal Continuation Strategies method, based on
2-point boundary value problems, was validated in-flight during NASA’s ARTEMIS mis-
sion [104] which flew longer period halo orbits around the L1 and L2 points. Discrete
time sliding mode control has been applied to station-keeping on Halo and Lissajous orbits
around L2 [105]. Analytical methods for station-keeping on Halo orbits in the CR3BP us-
ing the continuous-time linear quadratic regulator [106] (LQR), Floquet theory [107], and
invariant manifolds [108] have also been investigated.

In this paper, we investigate the use of nonlinear model predictive control (NMPC) for
station keeping on NRHOs using a low-thrust propulsion system. We show that NMPC is
able to successfully maintain spacecraft flight along a halo orbit, satisfy thrust constraints,
and demonstrates a high degree of robustness to disturbances and model mismatch. More-
over, while low-thrust actuators are well suited for long duration station-keeping, they re-
quire more frequent control updates, leading to more demanding onboard computing re-
quirements. As such, we leverage new optimization algorithms [32] and time-distributed
optimization [33] (TDO), a kind of suboptimal MPC, to demonstrate that it is possible
to meet closed-loop performance requirements using little computational power. Our ap-
proach contrasts with existing literature which often assumes impulsive thrusters and uses
control methodologies based on linearized models.

5.2 System Modelling

When considering spaceflight in the cis-lunar flight regime, it is most natural to consider
the restricted three body problem in which the third body is of negligible mass compared
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to the two primary bodies (as is the case for a spacecraft, the moon, and the earth) [109].
The two restricted three body problems considered in this work are the circular restricted
three body problem (for reference trajectory generation and control prediction model), in
which the primary and secondary bodies are assumed to travel in circular orbits about their
barycenter, and the elliptical restricted three body problem (for simulation and validation),
in which the orbits of the primary and secondary bodies are assumed to have nonzero
eccentricities.

For both systems of equations, described below, the primary and secondary bodies lie
along the x axis with the barycenter at the origin. The z axis points in the direction of angu-
lar momentum of the primary-secondary system, and the y axis completes the orthogonal
frame.

5.2.1 The Elliptical Restricted Three Body Problem

The equations of motion of the spacecraft in the pulsating frame of Elliptic Restricted Three
Body Problem (ER3BP) are given by:

x′′ − 2y′ =
1

1 + e cos(θ)

∂U

∂x
+ ux (5.1a)

y′′ + 2x′ =
1

1 + e cos(θ)

∂U

∂y
+ uy (5.1b)

z′′ + z =
1

1 + e cos(θ)

∂U

∂z
+ uz (5.1c)

where (·)′ denotes differentiation with respect to the true anomaly of the primaries θ, u =

(ux, uy, uz) are the control accelerations provided by thrusters and

U(x, y, z) =
1

2
(x2 + y2) +

1− µ
‖(x+ µ, y, z)‖2

+
µ

‖(x− 1 + µ, y, z)‖2

, (5.2)

is the pseudo-potential function, shown in Figure 5.1. Note that the independent variable
in (5.1) is the true anomaly which is related to time, t by

t′ =
1

(1 + e cos(θ))2
. (5.3)

In the absence of eccentricity, i.e., with e = 0, the ER3BP reduces to the circular
restricted three body problem (CR3BP):

x′′ − 2y′ =
∂U

∂x
+ ux y′′ + 2x′ =

∂U

∂y
+ uy, z′′ + z =

∂U

∂z
+ uz. (5.4a)
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Figure 5.1: Contour plot of the pseudo-potential (5.2) with Lagrangian points L1 and L2
marked.

Note that in the circular case, the rate of change of time with respect to true anomaly is
unity and so, barring wrap-around issues (θ ∈ [0, 2π]) , t = θ.

The equations of motion can be simplified by introducing the velocity v = (x′, y′, z′)

and position r = (x, y, z) vectors. Then (5.1) becomes[
r′

v′

]
=

[
0 I

A21 A22

][
r

v

]
+

[
0

I

](
∇U(r)

1 + e cos(θ)
+ u

)
(5.5)

where

A21 =

0 0 0

0 0 0

0 0 1

 , A22 =

 0 2 0

−2 0 0

0 0 0

 . (5.6)

Finally, introducing the state vector ξ = (r, v), (5.5) can be written compactly as

ξ′ = fc(θ, ξ, u). (5.7)

5.2.2 Halo Orbits

Halo orbits are families of periodic orbits near the collinear Lagrange points in the Circular
Restricted Three Body Problem (CR3BP) [97]. Members of these orbital families that
occur closer to the secondary body begin to exhibit properties of NRHOs, traveling very
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nearly in a plane normal to the orbital plane of the primaries.
When considering the construction of these orbits in CR3BP we exploit the following

property: the velocities x′ and z′ are equal to zero when the orbit crosses the x-z plane (y =

0) at apoapsis and periapsis. Additionally, orbits are symmetric across the x-z plane, so if
we assume initial conditions of X0 = [x0, 0, z0, 0, y

′
0, 0] and integrate until the trajectory

again crosses the x-z plane at Xf = [xf , 0, zf , x
′
f , y
′
f , z
′
f ], we only need to enforce x′f =

z′f = 0 to ensure a periodic orbit. In this work, a single-shooting method is used to solve
this problem, iterating on the initial conditions z0 and y′0 for a given x0 until the condition
x′f = z′f = 0 is met to within some specified tolerance. Finally, in an attempt to reduce
the discontinuity when a controller is tracking the reference trajectory over multiple orbital
periods, the state at each time instant is shifted linearly such that the shift at X0 is zero and
the shift at Xf is such that XF = X0. This results in a reference trajectory that is no longer
a natural motion trajectory, but it eliminates the aforementioned discontinuity. A family of
periodic orbits about L2 is shown in Figure 5.2.

Figure 5.2: Family of Earth-Moon L2 halo orbits in CR3BP.

The single-shooting method utilized in this chapter is limited to finding periodic orbits
in system (5.1) only for e = 0. The use of a more sophisticated multiple-shooting and
homotopy methods to enable finding periodic reference trajectories in ER3BP for e 6= 0 is
left to future work.
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5.3 Control Design

This section describes the proposed controller. An MPC controller has three constituent
components, a prediction model used to evaluate the impact of control actions, an Optimal
Control Problem (OCP) formulation encapsulating the control problem, and an implemen-
tation strategy for solving the OCPs online.

5.3.1 Prediction Model

MPC uses a prediction model to estimate the response of the system to control actions.
Such a model is typically of the form

ξk+1 = f(θk, ξk, uk), (5.8)

where ξk = ξ(θk) and uk = u(θk). We derive a suitable prediction model in this form by
discretizing (5.1). The control signal is held constant over each interval [θk, θk+1] so the
exact model is given by the state transition equation

ξk+1 = φ(θk, ξk, uk) = ξk +

∫ θk+1

θk

fc(θ, ξ(θ), uk) dθ. (5.9)

We approximate (5.9) numerically using a standard 4th order Runge-Kutta (RK4) method:

ξk+1 = f(θk, ξk, uk) = ξk +
∆θ

‖b‖1

4∑
i=1

bi ki(θk, ξk, uk), (5.10)

ki = fc(θk + ∆θ ci, ξk + ∆θ ai ki−1, uk), k0 = 0,

with a uniform step size ∆θ > 0 and where a = (0, 0.5, 0.5, 1), b = (1, 2, 2, 1), and
c = (0, 0.5, 0.5, 1) are the coefficients of the method.

5.3.2 Optimal Control Problem Formulation

In MPC the feedback law is defined implicitly through the solution of a receding horizon
OCP. LetN > 0 be the length of the prediction horizon, i be the index along the prediction
horizon, and k be the discrete true anomaly index. We use the notation ξi|k to denote the
predicted state i steps into the prediction horizon at the sampling instant k and denote the
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planned control actions ui|k analogously. The OCP formulation is then

min
ξ̃,ũ

||ξi|k − ξ̄i|k||2Q +
1

2

N−1∑
i=0

||ξi|k − ξ̄i|k||2Q + ||ui|k||2R (5.11a)

s.t. ξ0|k = ξk, (5.11b)

ξi+1|k = f(θi|k, ξi|k, ui|k), i = 0, . . . , N−1, (5.11c)

‖ui|k‖∞ ≤ umax, i = 0, . . . , N, (5.11d)

where θi|k = θk+i∆θ, ξ̃ = (ξ0|k, . . . , ξN |k) and ũ = (u0|k, . . . , uN−1|k) are the optimization
variables, ξ̄i|k is the desired state, umax > 0 is an upper bound on the input acceleration,
f is defined in (5.10), and Q = QT � 0 and R = RT � 0 are weighting matrices. The
control input is then uk = u∗0|k where (·)∗ denotes a minimizer of (5.11).

5.3.3 Controller Implementation

An efficient method for solving (5.11) is essential for implementing NMPC. In this chapter,
we use a suboptimal variant of Sequential Quadratic Programming (SQP) algorithm that
exploits the time sequential structure of MPC. The OCP (5.11) can be written compactly
as the nonlinear programming problem

min.
w

φ(w) (5.12a)

s.t. g(w, ξk) = 0, h(w) ≤ 0, (5.12b)

where w = (ξ̃, ũ). The NLP is solved using the sequential quadratic programming iteration

wi+1|k = wi|k + d∗, λi+1|k = λ∗, vi+1|k = v∗, (5.13)

where λ and v are dual variables associated with the equality and inequality constraints,
respectively, zi|k = (wi|k, λi|k, vi|k) is the solution estimate at the sampling instant θk af-
ter i SQP iterations and (d∗, λ∗, v∗) is the primal-dual solution to the following quadratic
program

min.
w

dT∇2
wφ(wi|k)d+∇wφ(wi|k)

Td (5.14a)

s.t. g(wi|k, ξk) +∇wg(wi|k, ξk)d = 0, (5.14b)

h(wi|k) +∇wh(wi|k)d ≤ 0. (5.14c)
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In time-distribution optimization, the SQP algorithm is limited to ` > 0 iterations and the
final solution guess from previous timestep is used to warmstart the SQP algorithm, i.e.,
z0|k+1 = z`|k. This leads to a coupled plant-optimizer system as shown in Figure 5.3. Under
appropriate assumptions it is possible to show that TDO based MPC recovers the stability
and robustness properties of optimal MPC using a finite number of iterations [33].

𝜉!"# = 𝑓$(𝜉! , 𝑢!)

𝑢! = 𝜅(𝜉!)

𝜉𝑢

𝜉!"# = 𝑓$(𝜉! , 𝑢!)

𝑧! = 𝒯ℓ 𝑧!&#, 𝜉!
𝑢! = Ξ 𝑧!

𝜉𝑢

Optimal MPC Time-distributed  MPC

Figure 5.3: A comparison between optimal MPC, which is a static feedback law, and time-
distributed MPC, which is a dynamic compensator. The operator T` represents a fixed
number of SQP iterations and Ξ selects the control input from the full solution.

Analytic derivatives, potentially coupled with symbolic optimization [110], are impor-
tant for accelerating the SQP routine. The cost function and the inequality constraints are
quadratic and linear functions so their derivatives are readily available. The derivative of
the equality constraints, i.e., of the prediction model, are more complicated due to the RK4
integration scheme used in (5.10). Algorithm 5.1 evaluates the sensitivities ∇ξf and ∇uf .
Finally, the quadratic programming algorithm used to solve (5.14) significantly influences
the overall computation time. We use the FBstab method [32] which can exploit the spar-
sity structure of (5.14) and be easily warmstarted between SQP iterations. The plant and
controller are both implemented in Simulink 2019b MATLAB function blocks and com-
piled into C code. We use a MATLAB implementation of FBstab1 that is compatible with
automatic code generation.

5.4 Simulation Results

The specific parameters used for simulations in this work are presented in Table 5.1. Sim-
ulations are performed under white Gaussian process noise with zero mean and variance
τ . Figures 5.4-5.7 show the results of simulating Equation (5.1) with e = 0 subject to
the NMPC methodology described in the Control Design Section. Because the reference
trajectory being tracked is a periodic orbit in the CR3BP, the spacecraft is able to track the

1https://github.com/dliaomcp/fbstab-matlab
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Algorithm 5.1 Sensitivities of RK4 Integration
Inputs: ∆θ, ξ, u,θ
Outputs: f(θ, ξ, u),∇ξf(θ, ξ, u), ∇uf(θ, ξ, u)

1: k0 = 0, A0 = 0, B0 = 0
2: for i = 1, . . . 4 do
3: θi = θ + ci∆θ
4: ξi = ξ + ai∆θki−1

5: ki = fc(θi, ξi, u)
6: Ai = ∇ξfc(θi, ξi, u) [I + ai∆θAi−1]
7: Bi = ∇ξfc(θi, ξi, u) [ai∆θBi−1] +∇ufc(θi, ξi, u)
8: end for
9: f(θ, ξ, u) = ξ + ∆θ

‖b‖1

∑4
i=0 biki

10: ∇ξf(θ, ξ, u) = I + ∆θ
‖b‖1

∑4
i=0 biAi

11: ∇uf(θ, ξ, u) = ∆θ
‖b‖1

∑4
i=0 biBi

reference with comparatively lower state errors and less control input than when the sim-
ulation model eccentricity is set to e = 0.055, as in Figures 5.8-5.10. Additionally, both
simulation scenarios utilize the CR3BP (e = 0) in the controller prediction model.

m 10, 000kg Spacecraft mass
N 35 OCP horizon length
M 3 Maximum number of SQP iterations
∆θ 0.01rad Discrete step size
µ 0.012 Mass ratio
e 0.055 Eccentricity
τ 10−10 km

s2
Process noise variance

Q 103

[
10I3 03

03 I3

]
Cost function weighting

R I3 Cost function weighting
umax 200mN or 2000mN Max control constraint

Table 5.1: Simulation parameters

A comparison of Figures 5.6 and 5.9 shows the difference in tracking error between
the two simulations, and a comparison of Figures 5.7 and 5.10 illustrates the difference in
control utilization and constraint handling. The spacecraft in this simulation required the
max control constraint umax to be an order of magnitude higher (2N vs 200mN ) in order to
stabilize the system with a nonzero eccentricity. This robustness to large model mismatches
and the ability to seamlessly accommodate changes in control constraints is an advantage
of the MPC methodology.

In order to compare the spacecraft’s performance for different values of M , we intro-
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Figure 5.4: State trajectories for spacecraft in CR3BP tracking halo orbit.

Figure 5.5: Spacecraft trajectory in CR3BP tracking halo orbit, displayed in non-
dimensional length units [LU].
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Figure 5.6: State error trajectories for spacecraft in CR3BP tracking halo orbit.

Figure 5.7: Control history and OCP residual ||F || for spacecraft in CR3BP tracking halo
orbit.
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Figure 5.8: Spacecraft trajectory in ER3BP tracking halo orbit, displayed in non-
dimensional length units [LU].

Figure 5.9: State error trajectories for spacecraft in ER3BP tracking halo orbit.
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Figure 5.10: Control history and OCP residual ||F || for spacecraft in ER3BP tracking halo
orbit.

duce a cost function J , analogous to (5.11a),

J =
∑
j

||ξj − ξ̄j||2Q + ||uj||2R (5.15)

for all discrete θ instants from θ = 0 to the end of the simulation (here, 5 full revolutions
of the halo orbit). The results of this sensitivity study are shown in Figure 5.11, showing
minimal optimality benefits to running the SQP scheme for more than three iterations. This
justifies the use of M = 3 and illustrates the computational efficiency benefits of the TDO
scheme.

Figure 5.11: Sensitivity study between max SQP iterations M and relative optimality of
spacecraft trajectory tracking J .
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5.5 Extension to Stochastic Case

This final section introduces the concept of addressing uncertainty directly in the controller
formulation instead of relying on deterministic closed loop feedback to reject disturbances.
Being able to enforce chance constraints with a prescribed probability allows one to more
easily balance performance and safety margins when compared to a deterministic control
scheme with static buffers, in some scenarios resulting in dramatically different trajectories.
This is introduced in more detail in Chapter 1.

The NRHO station-keeping problem is well-suited for a stochastic NMPC architecture
because of the large number of uncertainties associated with spaceflight in the cis-lunar
regime and also because of the relatively slow dynamics of the system, allowing plenty of
time for computations in between MPC iterations.

5.5.1 OCP Reformulation

The OCP formulation presented in Section 5.3.2 has no state constraints aside from enforc-
ing the system dynamics, so it makes little sense to consider chance constraints. However,
there is another formulation for spacecraft station-keeping that involves trajectory tube con-
straints and makes for a more natural extension to the stochastic case:

min
ξ̃,ũ,s

1

2

N∑
i=0

||ui|k||2R + γsi (5.16a)

s.t. ξ0|k = ξk, (5.16b)

ξi+1|k = f(θi|k, ξi|k, ui|k), i = 0, . . . , N−1, (5.16c)

‖ξi|k − ξ̄i|k‖∞ ≤ ξmax − di + si, i = 0, . . . , N, (5.16d)

‖ui|k‖∞ ≤ umax, i = 0, . . . , N, (5.16e)

si ≥ 0, i = 0, . . . , N. (5.16f)

Here, si are slack variables to ensure the OCP is always feasible, γ is a scalar weighting
to penalize use of the slack variables, the scalar ξmax defines a cube state constraint centered
at reference state ξ̄i|k, and d is a vector of dynamically-scaled buffers to ensure probabilistic
satisfaction of the state constraints. Computation of d is covered in Section 5.5.2.

This formulation is motivated by fuel-sensitive missions in which the spacecraft might
not need to be tracking the reference trajectory exactly but merely needs to be within some
region of it. The OCP formulation does this by removing the quadratic penalty on state
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errors, instead opting to only penalize control usage and constrain the spacecraft to be
within a tube defined by the union of cube constraints centered on the reference trajectory.

5.5.2 Uncertainty Quantification

A detailed literature review on UQ methods is presented in Chapter 2, but it is envisioned
that for real-time stochastic NMPC implementations, a linear covariance analysis is most
appropriate.

Consider the discrete-time system given above in Equation 5.8 for an eccentricity of
e = 0 so there is no explicit dependence on θ,

ξk+1 = f(ξk, uk), (5.17)

and its θ-varying linearization,

ξk+1 = A(θk)ξk +B(θk)uk + Γwk, (5.18)

A(θk) =
∂f

∂ξ

∣∣∣∣∣ξ=ξ̂(θk)
u=û
w=0

, (5.19)

B(θk) =
∂f

∂u

∣∣∣∣∣ξ=ξ̂(θk)
u=û
w=0

, (5.20)

where wk is an nw-vector disturbance. Here, ξ̂(θk) is the nominal trajectory obtained by
propagating Eq. (5.17) subject to w = 0 and the optimal control sequence generated by
the previous MPC iteration. Physically, this corresponds to the nominal trajectory that the
spacecraft would fly under zero-disturbance conditions.

We assume that the disturbance noise sequence is an independent and identically dis-
tributed Gaussian process with zero mean and unit covariance matrix, i.e.,

wk ∼ N (0, I), (5.21)

and the process noise matrix Γ is defined as
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Γ =
1

100



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


. (5.22)

The state is a then stochastic vector with Gaussian distribution

ξk ∼ N (µk, Pk), (5.23)

and its corresponding mean value µk and covariance matrix Pk may be propagated accord-
ing to

µk+1 = A(θk)µk +B(θk)ûk (5.24)

Pk+1 = A(θk)PkA(θk)
ᵀ + ΓΓᵀ. (5.25)

Thus it is possible to use (5.25) to compute the state covariance matrix at each discrete
instant within the OCP prediction horizon.

Similar to the trajectory tube generation described in Chapter 2, we can use the nominal
trajectory ξ̂(θk), covariance matrix P (θk), and a Gaussian distribution density function to
estimate the probability that the vehicle is contained in a specified set at discrete instant k.
Given the mean position r(θk) = [µ1(θk), µ2(θk), µ3(θk)]

ᵀ and the block of the covariance
matrix corresponding to these states, Σ(θk) = P(1:3,1:3)(θk), we can build a set from the
definition of a probability ellipsoid [60]:

Prob [ω ∈ R3 : (ω − rk)ᵀΣ−1
k (ω − rk) ≤ c2] = β, (5.26)

where β ∈ [0, 1] is a prescribed probability level and c is solved for using the three degree-
of-freedom chi-squared distribution [61]. Thus the vehicle has a β probability of being
within the set (5.26) at discrete instant k.

Finally, we assign di to be equal to the radius of the over-bounding sphere of the proba-
bility ellipsoid at discrete instant i for all i = 0, . . . , N , ensuring that the stochastic trajec-
tory tube defined by (5.26) does not violate the tube constraint defined by ξmax.
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5.5.3 Simulation Results

The vehicle and simulation parameters used in the section are detailed in Table 5.1 with
e = 0 and β = 0.99. Figures 5.12 and 5.13 show that this stochastic formulation is capable
of tracking the reference trajectory just as effectively as in Section 5.4, and Figures 5.14
and 5.15 illustrate the reformulation’s advantages. The spacecraft’s state error trajectory
Figure 5.14 shows the spacecraft drifting with little control input until it approaches the
covariance adjusted tube constraints, at which time control action is take to keep the trajec-
tory feasible. Here we can clearly see that the spacecraft is satisfying the tube constraints in
a probabilistic sense. Additionally, Figure 5.15 shows that the stochastic NMPC formula-
tion accomplishes this while utilizing less control authority than either example previously
shown in Figures 5.7 and 5.10.

Figure 5.12: State trajectories for spacecraft in CR3BP tracking halo orbit.

5.6 Conclusion

In this chapter we have presented a nonlinear MPC-based approach to the station-keeping
of halo orbits in the Earth-Moon system. A method is described for generating periodic
halo orbits in the CR3BP and the same equations of motion, in combination with an RK4
integration scheme, are used in the prediction model for the controller. This nonlinear
optimization problem is solved with time-distributed SQP techniques utilizing the FBstab
quadratic programming algorithm. Finally, the controller is validated in numerical simu-
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Figure 5.13: Spacecraft trajectory in CR3BP tracking halo orbit, displayed in non-
dimensional length units [LU].

Figure 5.14: State error trajectories for spacecraft in CR3BP tracking halo orbit with
stochastic OCP formulation. The β-probability band for state errors are marked in green.
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Figure 5.15: Control history and OCP residual ||F || for spacecraft in CR3BP tracking halo
orbit with stochastic OCP formulation.

lations of the CR3BP and ER3BP with process noise across several full revolutions of the
halo orbit.

The results showed that even for large disturbances and model mismatch, the NMPC
scheme is capable of stabilizing the system about the reference trajectory while satisfying
control constraints. Additionally, it is shown that a TDO approach to the NMPC prob-
lem allows for the use of fewer computational resources without significant reduction in
performance.

Finally, a stochastic extension to the NRHO station keeping problem is introduced,
illustrating state constraint satisfaction in a probabilistic sense.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has presented four different methodologies for the control and optimiza-
tion of aerospace systems with stochastic disturbances, uncertainties, and constraints. Specif-
ically, we focused on the development and application of stochastic control algorithms
for multirotor and fixed-wing sUAS, LEO spacecraft, atmospheric reentry, and cis-lunar
spacecraft while considering control constraints, state constraints, obstacle avoidance, fuel
efficiency, and computational efficiency.

Firstly, we considered the trajectory validation and path planning needs of future UTM
systems. We combined existing Dynamic RRT* and Informed RRT* algorithms, and added
an obstacle buffer resizing technique with QP-based collision checking to solve the stochas-
tic path planning problem with chance constraints in a computationally efficient manner.
Trajectory validation examples were presented for both quadrotor and fixed-wing mod-
els in 3D flight in a non-static atmosphere. Path planning examples were presented for the
quadrotor model, showing near-optimal navigation around multiple obstacles while enforc-
ing chance state constraints.

Secondly, we extended the constrained Spacecraft Relative Motion Planning (SRMP)
framework based on chained positively invariant constraint admissible sets to the setting of
stochastic disturbances and output measurement with stochastic measurement noise. Max-
imal chance-constrained admissible sets are exploited in defining connectivity and the pos-
sibility of safe transitions between forced equilibria subject to chance constraints. The
relative motion planning problem reduces to the graph search for a path between connected
equilibria, resulting in a fuel-efficient trajectory that satisfies the chance constraints with
specified probability.

Thirdly, we introduced a novel approach to suborbital launch operations. We presented
a model of a suborbital space launch vehicle, implemented a linear covariance propaga-
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tion scheme, and formulated a stochastic clustering optimization problem with the goal
of reducing the probability of a landing zone constraint violation by biasing the rocket’s
ascent trajectory. Simulations showed that this trajectory selection scheme increases the
probability of a safe landing by almost two orders of magnitude. This illustrates an effec-
tive software-only method for decreasing the probability of a dangerous landing with no
physical changes to the vehicle and only minimal changes to its flight controls software.

Finally, we applied a suboptimal NMPC scheme to the problem of station-keeping on
halo orbits in the Earth-Moon system. We use the CR3BP equations of motion to generate
periodic halo orbits and as the prediction model for the controller, then solve the nonlinear
optimization problem with time-distributed SQP techniques utilizing the FBstab quadratic
programming algorithm. Numerical simulations show that the NMPC scheme is capable
of stabilizing the system about the reference trajectory while satisfying control constraints,
even for large process disturbances and model mismatch. Additionally, it was shown that a
TDO approach to the NMPC problem allows for the use of fewer computational resources
without significant reduction in performance. A stochastic extension to the NRHO station
keeping problem with numerical simulation results was presented.

6.2 Future Work

There is ample opportunity to develop convergence guarantees for our Dynamic, Informed,
RRT* path planning problem. Each of the individual RRT variants that have been utilized
have convergence guarantees, individually. The author expects that some similar results
could be produced for the buffer re-sizing algorithm.

The chance-constrained SRMP algorithm implemented in Chapter 2 utilizes chance
state constraints for obstacle avoidance, but the methodology could just as easily accomo-
date control constraints. Thrust saturation constraints are very relevant to real-world SRMP
applications and would be a valuable development. Additionally, extensions to the case of
multiple control and observer gains, as in [30], seems possible.

The suborbital reentry optimization application presented in Chapter 4 would benefit
greatly from more realistic sets of environmental parameters, such as those that might be
obtained from NASA Earth-GRAM or similar software. Additionally, the use of a heuris-
tic as the subcost in the clustering optimization problem was motivated by computational
simplifications, but optimality could be improved by replacing this heuristic with a direct
computation of the probability of a landing zone constraint violation.

Finally, the stochastic extension to the NRHO NMPC problem presented in Chapter 5
is ripe for expansion. Uncertainties related to the mass properties of spacecraft, thruster
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mis-alignments, engine-out scenarios, and unmodeled dynamics of cis-lunar flight make
this application a good candidate for stochastic control.
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[99] Grüne, L. and Pannek, J., “Nonlinear model predictive control,” Nonlinear Model
Predictive Control, Springer, 2017, pp. 45–69.

[100] Ellis, M., Durand, H., and Christofides, P. D., “A tutorial review of economic model
predictive control methods,” Journal of Process Control, Vol. 24, No. 8, 2014,
pp. 1156–1178.

[101] Davis, D., Bhatt, S., Howell, K., Jang, J.-W., Whitley, R., Clark, F., Guzzetti, D., Zi-
movan, E., and Barton, G., “Orbit maintenance and navigation of human spacecraft
at cislunar near rectilinear halo orbits,” 2017.

[102] Muralidharan, V., Weiss, A., and Kalabic, U. V., “Control Strategy for Long-Term
Station-Keeping on Near-Rectilinear Halo Orbits,” AIAA Scitech 2020 Forum, 2020,
p. 1459.

[103] Kalabic, U., Weiss, A., Di Cairano, S., and Kolmanovsky, I., “Station-keeping and
momentum-management on halo orbits around L2: Linear-quadratic feedback and
model predictive control approaches,” Proc. AAS Space Flight Mechanics Meeting,
2015, pp. 15–307.

84

https://www.nasa.gov/what-is-artemis
https://www.nasa.gov/what-is-artemis


[104] Folta, D. C., Pavlak, T. A., Haapala, A. F., Howell, K. C., and Woodard, M. A.,
“Earth–Moon libration point orbit stationkeeping: theory, modeling, and opera-
tions,” Acta Astronautica, Vol. 94, No. 1, 2014, pp. 421–433.
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APPENDIX A

Quadrotor Modeling

As a balance between model fidelity and computational efficiency, the quadrotor model
used for uncertainty propagation is built upon double integrator dynamics augmented with
aerodynamic drag of the following form:

r =

x1

x2

x3

 , V0 =

ẋ1

ẋ2

ẋ3

 , Vq = V0 − w, (A.1)

V̇0 = u− 1

2m
ρSCDVq ‖Vq‖ , (A.2)

where x1, x2, and x3 are the vehicle’s coordinates in an inertial reference frame, Vq is its
velocity with respect to the atmosphere, w ∈ R3 is the velocity of the local atmosphere
with respect to the ground, u ∈ R3 is the control input, m is the vehicle mass, ρ is the air
density, S is the reference area, and CD is the coefficient of drag, assumed to be constant.
This model assumes that an inner-loop controller for vehicle attitude and thrust has been
implemented that has a feed forward term to cancel out gravity and has sufficiently high
bandwidth that we can control acceleration directly. It also assumes a non-static atmosphere
and a drag coefficient that remains constant regardless of vehicle state or direction of the
relative wind vector Vq. Uncertainty in the drag coefficient can, however, be handled using
our UQ and planning algorithms.

When using the above model for uncertainty propagation, it is important that a con-
troller be added so that the uncertainty in vehicle states does not grow so large as to be
useless for trajectory prediction purposes. The method presented here is agnostic to con-
troller choice, but for modeling purposes, it is beneficial if the controller can be expressed in
a closed form that is easily linearizable. This work utilizes a dynamic extension controller
of the following form:

e = r − rdes, (A.3)
Sc = ė+Kqe, (A.4)
u = r̈des −Kqė− ΛqSc, (A.5)

where Kq ∈ R3×3 and Λq ∈ R3×3 are controller gains that may be treated as tuning pa-
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rameters to match the flight characteristics of our model to the flight characteristics of a
real-world vehicle for which the UTM may be trying to predict its trajectory.

Finally, we consider the model for our wind disturbance. A Dryden wind model spec-
ifies the power spectral density (PSD) for the body-fixed longitudinal, lateral, and vertical
directions of a fixed-wing aircraft. Other works [83] apply this model directly to quadro-
tors. Here, the longitudinal channel is replicated in the x1, x2, and x3 directions of the
inertial frame. The resulting Dryden-like wind model is summarized as

Hi(s) = σi

√
2Li
π||V0||

1

1 + Li

||V0||s
, (A.6)

Ai =
−||V0||
Li

, (A.7)

Bi = 1, (A.8)

Ci =
√

2||V0||σi

√
Li
||V0||

1

Li
√
π
, (A.9)

η̇i = Aiηi +Bin, (A.10)
wi = Ciηi, (A.11)

for i = {x1, x2, x3}. Here, Hi is the transfer function of the Dryden model coloring filter,
Ai, Bi, and Ci are its state space realization, σi is the gust intensity parameter, Li is the
characteristic length, and n is the Gaussian white noise input [42]. The output of this
model, w = [w1, w2, w3]>, is the wind velocity vector in (A.2).
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APPENDIX B

Fixed-Wing Aircraft Modeling

To illustrate another typical setting which involves sUAS, the EOMs for a fixed-wing air-
craft under closed-loop control in a non-static atmosphere were derived. Hull [111] pro-
vides EOM’s for longitudinal flight with a moving atmosphere and EOM’s for full three-
dimensional flight in a static atmosphere, but does not provide EOM’s for 3D flight in a
moving atmosphere.

Figure B.1 shows the unit vectors and rotations necessary to define flight in three di-
mensions. Here, frame A is the inertial frame, while frames B, C, and D are rotated by
angles ψ, γ, and µ, respectively, where ψ is velocity yaw or heading angle, γ is velocity
pitch, and µ is velocity roll.

Figure B.1: Three-dimensional flight: unit vectors and rotations.

Additionally, the thrust, drag, lift and gravity forces acting on the aircraft can be defined
as follows:
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~T = T îD, (B.1)
~D = −DîD, (B.2)
~L = −Lk̂D, (B.3)

m~g = mgk̂A, (B.4)

and the velocity of the aircraft can be represented as ~V = V îD, as seen in Figure B.2.

Figure B.2: Three-dimensional flight: forces and velocity.

following equations:

µ = κµ(ψdes − ψ), (B.5)
CL = C̄L + κCL

(γdes − γ), (B.6)

Ṫ = κT,1(Tdes − T ), (B.7)
Tdes = T̄ + κT,2(Vdes − V ). (B.8)

Here, ψdes, γdes, Tdes, and Vdes are the desired values of the vehicle’s yaw, pitch, thrust,
and velocity, respectively. The feed forward terms C̄L and T̄ are the values of CL and T ,
respectively, that are required to maintain steady flight:
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C̄L =
2mg cos(γ)

SV 2ρ
, (B.9)

T̄ = mg sin(γ) +
1

2
CD0SV

2ρ+
2Kdm

2g2 cos2(γ)

SV 2ρ
. (B.10)

The vehicle’s drag polar parameter is denoted Kd. Similar to the quadrotor model,
controller gains κµ, κCL

, κT,1, and κT,2 may be tuned to better replicate the behavior of a
real-world UAS.

The outer-loop controller is separated into two components: longitudinal and lateral. Its
design requires us to add two additional states (Vdes and ψdes) and to estimate η̈des via finite
differences, which is undesirable from a computational efficiency perspective, but avoids
wrap-around issues.

For the longitudinal controller, V is assumed to be constant and only the ḣ dynamics
are considered:

ḣ = V sin(γ), (B.11)
Control : γ, (B.12)
e = h− hdes, (B.13)
ė = −κe, (B.14)

γdes = sin−1

(
ḣdes − κ(h− hdes)

V

)
. (B.15)

Note that because the above controller is part of the outer-loop, the output is γdes and
not γ.

For the lateral controller, we need to control ψ̇ so a different approach is pursued. Here,
γ is assumed to be constant and only the ẋ and ẏ kinematics are considered:
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ẋ = V cos(γ) cos(ψ), (B.16)
ẏ = V cos(γ) sin(ψ), (B.17)

Controls : V̇ , ψ̇, (B.18)

η =

[
x
y

]
, e = η − ηdes, (B.19)

S = ė+ κe, (B.20)

Ṡ = η̈ − η̈des + κė, (B.21)

Ṡ =

[
cos(γ) cos(ψdes) −Vdes cos(γ) sin(ψdes)
cos(γ) sin(ψdes) Vdes cos(γ) cos(ψdes)

] [
V̇des
ψ̇des

]
− η̈des + κė, (B.22)

Ṡ = Aν − η̈des + κė, (B.23)

Ṡ = − ΛfS, − Λf Hurwitz, (B.24)[
V̇

ψ̇

]
= A−1[η̈des − κė− ΛfS]. (B.25)

This control is invalid if A is singular, corresponding to a pitch angle of ±90◦ or a
desired velocity of Vdes = 0, which are flight conditions not encountered in this work.

For the wind disturbance, the Dryden wind model defines wind in the longitudinal, lat-
eral, and vertical body fixed directions, not in the x, y, h directions. In the two dimensional
case [28], we assumed that γ is small and thus we have wind in the x and h directions.
In the three-dimensional case, however, we cannot necessarily make the same assumptions
about ψ. Thus, the following wind definitions are used:

w = wuîD + wwĵD + wvk̂D = wxîA + wy ĵA + whk̂A. (B.26)

We can now write the full equations of motion as follows:
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ẋ =V cos(γ) cos(ψ) + wx, (B.27)
ẏ =V cos(γ) sin(ψ) + wy, (B.28)

ḣ =V sin(γ) + wh, (B.29)

V̇ =
T −D
m

− g sin(γ)− ẇx cos(γ) cos(ψ)

− ẇy cos(γ) sin(ψ) + ẇh sin(γ), (B.30)

ψ̇ =
−1

V m cos(γ)

[
L sin(µ)−mẇx sin(ψ)

+mẇy cos(ψ)
]
, (B.31)

γ̇ =
1

V m

[
L cos(µ)−mg cos(γ) +mẇx cos(ψ) sin(γ)

+mẇy sin(γ) sin(ψ) +mẇh cos(γ)
]
, (B.32)

where

wx = wu cos(γ) cos(ψ)− ww(cos(µ) sin(ψ)

+ cos(ψ) sin(γ) sin(µ))− wv(sin(µ) sin(ψ)

− cos(µ) cos(ψ) sin(γ)), (B.33)
wy = wv(cos(ψ) sin(µ) + cos(µ) sin(γ) sin(ψ))

+ ww(cos(µ) cos(ψ)− sin(γ) sin(µ) sin(ψ))

+ wu cos(γ) sin(ψ), (B.34)
wh = wv cos(γ) cos(µ)− wu sin(γ)

− ww cos(γ) sin(µ), (B.35)

CD = CD0 +KdC
2
L, (B.36)

L =
1

2
CLρSV

2, (B.37)

D =
1

2
CDρSV

2. (B.38)

If we assume that |ẇu|, |ẇw|, |ẇv| � |γ̇|, |ψ̇|, |µ̇| then we can express the wind acceler-
ations as follows:
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ẇx = ẇu cos(γ) cos(ψ)− ẇw(cos(µ) sin(ψ)

+ cos(ψ) sin(γ) sin(µ))− ẇv(sin(µ) sin(ψ)

− cos(µ) cos(ψ) sin(γ)), (B.39)
ẇy = ẇv(cos(ψ) sin(µ) + cos(µ) sin(γ) sin(ψ))

+ ẇw(cos(µ) cos(ψ)− sin(γ) sin(µ) sin(ψ))

+ ẇu cos(γ) sin(ψ), (B.40)
ẇh = ẇv cos(γ) cos(µ)− ẇu sin(γ)

− ẇw cos(γ) sin(µ). (B.41)

The power spectral densities (PSD) for the Dryden model are defined following [42].
For the longitudinal channel:

Φu(Ω) = σ2
u

2Lu
π

1

[1 + L2
u + Ω2]2

, (B.42)

For the lateral channel:

Φw(Ω) = σ2
w

Lw
π

1 + 3L2
wΩ2

[1 + L2
wΩ2]2

, (B.43)

For the vertical channel:

Φv(Ω) = σ2
v

Lv
π

1 + 3L2
vΩ

2

[1 + L2
vΩ

2]2
, (B.44)

where Ω = ω
V

. The corresponding coloring filters are as follows:

Gu(s) = σu

√
2Lu
πV

1

1 + Lu

V
s
, (B.45)

Gw(s) = σw

√
Lw
πV

1 +
√

3Lw

V
s(

1 + Lw

V
s
)2 , (B.46)

Gv(s) = σv

√
Lv
πV

1 +
√

3Lv

V
s(

1 + Lv

V
s
)2 . (B.47)

These have state space realizations of the form:

η̇i = Aiηi +Bin, (B.48)
wi = Ciηi, (B.49)
ẇi = CiAiηi + CiBin, (B.50)
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for i ∈ {u,w, v}, where n is the Gaussian white noise input and the matrices are defined as
follows:

Au =
−V
Lu

, Aw =

[
−2V
Lw

−V 2

L2
w

1 0

]
, Av =

[
−2V
Lv

−V 2

L2
v

1 0

]
, (B.51)

Bu = 1, Bw =

[
1
0

]
, Bv =

[
1
0

]
, (B.52)

Cu =

√
2V σu

√
Lu

V

Lu
√
π

,Cw =
V σw

√
Lw

V

Lw
√
π

[√
3 V

Lw

]
,

Cv =
V σv

√
Lv

V

Lv
√
π

[√
3 V

Lv

]
. (B.53)
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