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Abstract 
 

In recent decades statistical genetics has contributed substantially to our knowledge of 

human health and biology. This research has many facets: from collecting data, to cleaning, to 

analyzing. As the scope of the scientific questions considered and the scale of the data continue to 

increase, these bring additional challenges to every step of the process. In this dissertation, I 

describe novel approaches for each of these three steps, focused on the specific problems of 

participant recruitment and engagement, DNA contamination estimation, and linkage analysis with 

large data sets. In Chapter 1, we introduce the subject of this dissertation and how it fits with other 

developments in the generation, analysis and interpretation of human genetic data. 

In Chapter 2, we describe Genes for Good, a new platform for engaging a large, diverse 

participant pool in genetics research through social media. We developed a Facebook application 

where participants can sign up, take surveys related to their health, and easily invite interested 

friends to join. After completing a required number of these surveys, we send participants a spit 

kit to collect their DNA. In a statistical analysis of 27,000 individuals from all over the United 

States genotyped in our study, we replicated health trends and genetic associations, showing the 

utility of our approach and accuracy of self-reported phenotypes we collected. 

In Chapter 3, we introduce VICES (Verify Intensity Contamination from Estimated 

Sources), a statistical method for joint estimation of DNA contamination and its sources in 

genotyping arrays. Genotyping array data are typically highly accurate but sensitive to mixing of 

DNA samples from multiple individuals before or during genotyping. VICES jointly estimates the 



 xiii 

total proportion of contaminating DNA and identify which samples it came from by regressing 

deviations in probe intensity for a sample being tested on the genotypes of another sample. 

Through analysis of array intensity and genotype data from HapMap samples and the Michigan 

Genomics Initiative, we show that our method reliably estimates contamination more accurately 

than existing methods and implicates problematic steps to guide process improvements. 

In Chapter 4, we propose Population Linkage, a novel approach to perform linkage analysis 

on genome-wide genotype data from tens of thousands of arbitrarily related individuals. Our 

method estimates kinship and identical-by-descent segments (IBD) between all pairs of 

individuals, fits them as variance components using Haseman-Elston regression, and tests for 

linkage. This chapter addresses how to iteratively assess evidence of linkage in large numbers of 

individuals across the genome, reduce repeated calculations, model relationships without 

pedigrees, and determine segregation of genomic segments between relatives using single-

nucleotide polymorphism (SNP) genotypes. After applying our method to 6,602 individuals from 

the National Institute on Aging (NIA) SardiNIA study and 69,716 individuals from the Trøndelag 

Health Study (HUNT), we show that most of our signals overlapped with known GWAS loci and 

many of these could explain a greater proportion of the trait variance than the top GWAS SNP. 

In Chapter 5, we discuss the impact and future directions for the work presented in this 

dissertation. We have proposed novel approaches for gathering useful research data, checking its 

quality, and detecting associations in the investigation of human genetics. Also, this work serves 

as an example for thinking about the process of human genetic discovery from beginning to end 

as a whole and understanding the role of each part. 



 

 

1 

Chapter 1 Introduction 
 

Statistics has been applied to the field of genetics since its early days, both as a modelling 

tool and for analysis. Today, the field of statistical genetics is primarily concerned with how to 

study the effects of the naturally occurring genetic variation in humans as opposed to inducing 

genetic variation in cells or model organisms in the laboratory. Similar to other application areas 

of statistics, genetics has been revolutionized by advances in data collection, computing 

technology, and methods for large data sets. There are several major themes in statistical genetics 

that we will explore in this chapter and connect to other topics covered in later chapters of this 

dissertation.  

The predominant theme in statistical genetics research has been in the improvement of 

genotyping technology. Sanger sequencing was introduced in 1977 but was prohibitively 

expensive for sequencing more than a few genomic segments in more than a handful of individuals 

(Sanger, Nicklen, & Coulson, 1977). This was soon followed by RFLP (Botstein, White, Skolnick, 

& Davis, 1980) and PCR genotyping (1984) which allowed faster genotyping of a single known 

variant to up to a few thousand short tandem repeats (Broman, Murray, Sheffield, White, & Weber, 

1998). Genotyping arrays, invented in 1998, first allowed genotyping 1,500 variants in parallel 

and have continued to become more dense, with modern arrays sporting up to 4.3 million markers 

(Illumina, 2016; LaFramboise, 2009; Wang et al., 1998). Short-read sequencing, introduced in 

2005 (Mukhopadhyay, 2009), led to similar improvements and the number of whole human 

genomes sequenced has increased to over one hundred thousand in one study alone (Kowalski et 
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al., 2019). This improvement has coincided with a drop in the cost of sequencing a human genome 

from $9 million in 2007 to $1,000 in 2019 (Wetterstrand, 2019). These technologies also switched 

the focus from highly polymorphic indels to single-nucleotide polymorphisms (SNPs), which 

account for the majority of genetic variation in humans (Auton et al., 2015). While still in 

development, long-read sequencing technologies are seeing increasing application in human 

genetics for detecting structural variants (Merker et al., 2018) and in rapidly generating more 

accurate reference genomes (Miga et al., 2020). In sum, these improvements have led to gains of 

several orders of magnitude in the amount and types of variation that can be captured, and in the 

number of individuals assayed. These technologies form an ever-widening foundation for 

statistical genetics research in humans. 

These improvements in genotyping technology have also helped lead to many changes in 

how human genetic data is analyzed, in particular for mapping traits to genomic regions. Linkage 

analysis started for mapping traits to genomic regions with limited genotype data in families 

around (Morton, 1955). The first types of association tests were used in candidate gene studies but 

the majority of these had small sample sizes and had poor replicability (Hirschhorn, Lohmueller, 

Byrne, & Hirschhorn, 2002). With the introduction of affordable, dense genotyping arrays, these 

became ubiquitous as genome-wide association studies (Buniello et al., 2019). Genotype 

imputation (Li, Willer, Ding, Scheet, & Abecasis, 2010), improved reference panels (Auton et al., 

2015), and GWAS based on whole-genome sequencing allowed testing more variants and 

combining information across multiple studies to achieve larger sample sizes in meta-analysis 

(Willer, Li, & Abecasis, 2010; Willer et al., 2013). Despite the success of these methods in finding 

associated loci, significant GWAS variants have failed to explain more than a tiny fraction of the 

heritability of complex traits (Manolio et al., 2009). This paradox has motivated scientists to 
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innovate with new types of analysis that have a greater functional interpretation, like gene-based 

tests to focus on coding sequence changes or eQTL and TWAS analysis to focus on the role of 

changes in expression on disease (Gusev et al., 2016; Wu et al., 2011). Others have turned to using 

PGRSs to capture the infinitesimal contribution of many variants beyond GWAS hits to model and 

study the genetics of traits (Wray, Goddard, & Visscher, 2007). Still others have developed 

methods for testing for gene-environment interactions to explain the missing heritability (Hahn, 

Ritchie, & Moore, 2003; Manning et al., 2011). In summary, the analysis of human genetic data 

has diversified considerably and now allows scientists to answer more questions than what 

genomic locations appear to influence a particular trait or disease. 

The next step after mapping a trait to a particular gene or genomic region is often an 

experiment or analysis of additional -omics data to determine the function of a gene and how it 

influences the associated trait at the molecular level. While in vitro studies in human cell lines and 

in vivo studies in model organisms are considered the gold standard for functional characterization, 

these are expensive, time consuming, and findings may translate poorly to humans (Forstag & 

Anestidou, 2018). To complement these experimental methods, a number of bioinformatic 

approaches have been developed. At the most fundamental level, software has been developed to 

predict protein structure and function from its amino acid sequence (Yang et al., 2015), and 

changes in structure from a coding variant (Adzhubei et al., 2010). A variety of such algorithms 

for variant effect prediction were aggregated into CADD scores to predict the deleterious effect of 

any possible variant, even in noncoding or intergenic regions (Kircher et al., 2014; Rentzsch, 

Witten, Cooper, Shendure, & Kircher, 2019). Some methods use GWAS summary statistics to 

attempt to narrow down a causal variant through fine-mapping (Mägi et al., 2017) or constructing 

credible sets for causal variants (Maller et al., 2012). Many methods incorporate other types of -
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omics data and summary statistics, like co-localization studies between GWAS variants and 

eQTLs (Plagnol, Smyth, Todd, & Clayton, 2009), peaks from ChIP-seq (Anand, Kalesinskas, 

Smail, & Tanigawa, 2019), or genetic interactions captured by Hi-C (Martin et al., 2015). In 

particular, methods that can characterize large numbers of genes or variants have become more 

important as gene-mapping analyses have transitioned from finding few variants of very large 

effect driving Mendelian disorders to associating many loci of uncertain function in complex traits. 

As the aforementioned improvements in genotyping and sequencing technology have 

allowed researchers to assay an ever-increasing number and type of genetic variants, the number 

of individuals assayed has also rapidly increased and how cohorts are recruited, with new attention 

being turned to increasing the diversity of participants in genetic studies. Early linkage studies 

typically recruited a few dozen individuals from families that were enriched for the disease of 

interest (Fisher, Vargha-Khadem, Watkins, Monaco, & Pembrey, 1998; Tsui et al., 1985). The first 

GWAS studies typically recruited 100s to 1,000s of case and control individuals carefully matched 

on their demographics, and all of a single genetic ancestry (Consortium, 2007; Klein et al., 2005). 

More recent studies that have produced many findings include comprehensive genotyping of an 

entire community (Krokstad et al., 2013; Pilia et al., 2006), hospital system (Fritsche et al., 2018; 

Gaziano et al., 2016; Roden et al., 2008) or a national-level biobank (Hakonarson, Gulcher, & 

Stefansson, 2003; Metspalu, Köhler, Laschinski, Ganten, & Roots, 2004; Nagai et al., 2017; 

Sudlow et al., 2015). Direct-to-consumer genetics companies have also been able to engage 

millions in research with the services they provide (Stoekle, Mamzer-Bruneel, Vogt, & Herve, 

2016). Even though these study designs have all done a great deal to increase the inclusiveness 

and diversity of genetics research, many types of diversity are still poorly captured in genetic 

studies to date (Popejoy & Fullerton, 2016). This problem is well recognized and there is a 
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concerted push to address it (Hindorff et al., 2018). Several projects currently underway or in 

planning phases are making great strides in this respect and we can expect this to be a major theme 

in genetics studies of humans in the near future (Mapes et al., 2020; Nhlbi, 2018). 

Parallel to this trend in the number and types of individuals recruited for human genetic 

studies, there has been a diversification in how phenotypes are collected. While the largest meta-

analyses may still focus on a single or small number of traits (M. Liu et al., 2019), several of the 

most prolific individual studies include information on hundreds or even thousands of traits 

(Bycroft et al., 2018; Gagliano Taliun et al., 2020). In particular, studies that collect electronic 

health records are able to extract up to thousands of phenotypes on their participants by analyzing 

insurance billing codes (Carroll, Bastarache, & Denny, 2014), extracting values from laboratory 

tests generated during patient care (Goldstein et al., 2020), or text mining of physician notes from 

office visits (Denny, 2012). Many genetic studies are relying solely on self-reported phenotype 

data, particularly those recruited from direct-to-consumer genomics companies (Tsoi et al., 2017). 

In addition, many studies are collecting traits that are primarily behavioral or psychological rather 

than health-related, or that may not have an obvious genetic mechanism but which still yield 

genetic associations (Barban et al., 2016). 

While there are many constants in the area of data cleaning and quality checking (QC), this 

has also grown to meet the challenges brought by innovations in how data is collected and analyzed 

for genetic studies. As genetics studies have become larger and more diverse, classical methods 

for Hardy-Weinberg Equilibrium (HWE) testing were adapted for cohorts with multiple ancestries 

(Kwong et al., 2020). As studies transitioned from linkage to GWAS and sample sizes grew, faster 

methods were developed to estimate genetic relatedness to identify duplicates, sample swaps, and 

exclude close relatives in a robust fashion (Manichaikul et al., 2010). As meta-analyses came to 
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include millions of samples across hundreds of cohorts, it became more difficult to verify that a 

given sample was not a participant in multiple cohorts that contributed to the meta-analysis, 

particularly since researchers typically do not have permission to share individual-level data. A 

variety of approaches have been developed to address this, including calculating kinship on 

encrypted genotypes (Zhao, 2019) and estimating the overlap between samples using only the 

shared summary statistics (Sengupta, 2018). Self-reported and EHR-derived phenotypes are 

especially prone to over reporting of cases or mislabeling similar phenotypes as one another (like 

type 1 and type 2 diabetes), so approaches were developed to detect and potentially correct for 

these issues (Duffy et al., 2004; Ekstrøm & Feenstra, 2012). Some existing methods also found 

new applications, for example methods for contamination detection in sequence data were 

extended to identify droplets with multiple cells in single-cell RNA sequencing (Kang et al., 2018), 

or maternal DNA in fetal samples (Nabieva et al., 2020), or host and tumor DNA in cancer samples 

(Bergmann, Chen, Arora, Vacic, & Zody, 2016). 

The process of discovery in human genetic is multi-faceted and includes many steps in the 

collection, preparation, and generation of genetic and phenotypic data beyond gene mapping and 

functional characterization. In this dissertation, I present three chapters that represent advances in 

5 of these 6 themes in statistical genetics: recruitment, phenotyping, genotyping, quality control, 

and analysis. Specifically, I describe a novel strategy for building a genetics cohort over social 

media, a statistical method for joint estimation of DNA contamination and its sources, and a 

scalable framework for performing linkage analysis in population cohorts with tens of thousands 

of individuals. Figure 1-1 shows how these three projects intersect and connect to these larger 

themes in human genetics. The following sections in this chapter provide more details on what the 
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shortcomings and limitations of existing methods in these areas and how those shortcomings 

motivated the work presented in this dissertation. 

Participant recruitment and engagement 

As mentioned previously in this chapter, a great variety of study designs have been 

successfully applied in human genetics to study a wide array of human traits and conditions 

(Buniello et al., 2019). Despite this success, there continue to be many shortcomings in the 

recruitment of samples and collection of phenotype data that limit their diversity and translatability 

of findings to traditionally underserved communities. Academic efforts, while generally free for 

individuals who participate, often recruit participants from a particular medical center or health 

system and typically exclude people outside their geographic reach or who lack access to medical 

care (Shavers-Hornaday, Lynch, Burmeister, & Torner, 1997). Even biobank efforts that attempt 

to be more inclusive and include willing participants from across an entire country—like the UK 

Biobank—still require a lengthy, in-person assessment at one of their recruitment centers that 

represents a significant barrier to participation for many individuals (Bycroft et al., 2018). Direct-

to-consumer genomics companies have made great progress on some of these limitations and have 

recruited an impressive number of participants from around the world (Ehm et al., 2017), but since 

individuals usually must purchase the companies’ genotyping service to be included, these cohorts 

are limited in terms of the socioeconomic and racial diversity of their participants. 

To address some of these shortcomings, in Chapter 2, I introduce Genes for Good, a novel 

platform for participant contact, recruitment, and engagement over social media. Typically, 

prospective participants find the study through one of their social media contacts. After consenting, 

they have the option to take several surveys about their health, behavior, and psychology. Once a 

participant completes a required number of these, we would mail a spit kit to them to collect their 
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DNA. Upon returning this, their sample is genotyped and we return their decoded genotypes and 

an estimate of their genetic ancestry to them. We then use the data our participants shared to run 

analyses and contribute to large consortia conducting meta-analyses. Because anyone in the US 

over 18 and with a Facebook account can join and participation is completely free, Genes for Good 

represents an effort to explore potential solutions to the aforementioned issues with both academic 

and direct-to-consumer genotyping efforts. 

Chapter 2 fits primarily into the themes of direct recruitment of participants and collection 

of self-reported phenotypes as it aims to address shortcomings in these areas. Figure 1-1 indicates 

that it also intersects with the theme of genotyping since it is an application of genotyping array 

technology in building this cohort. In addition, we involved data cleaning and quality checks into 

Genes for Good, particularly to test the validity and utility of self-reported phenotype data from 

volunteers. Finally, Chapter 2 is an application of GWAS analysis methods to validate the accuracy 

of the data collected in the study. 

Contamination estimation  

Contamination, defined as the mixture of genetic material from individuals of the same 

species before or during genotyping, is a prolific problem known to affect array genotype calls and 

downstream analyses (Flickinger, Jun, Abecasis, Boehnke, & Kang, 2015). Existing methods for 

genotyping arrays include a hypothesis test for the presence of an individual in a specific DNA 

sample (Homer et al., 2008) and a variety of estimation algorithms based on allele frequencies (Jun 

et al., 2012). Researchers conducting a large-scale genotyping study are potentially interested in 

both estimating the proportion of contaminating DNA in a sample to determine its exclusion from 

further analysis and identifying the source of contamination to guide improvements in sample 

preparation and potential re-extraction and genotyping of clean DNA. In addition, contamination 
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methods based on allele frequencies become biased when the allele frequencies are calculated in 

a different population than the contaminating DNA is from, as can occur in a diverse study with 

samples from a variety of genetic ancestries. Currently, there is no unified framework to estimate 

the total proportion of contaminating DNA in a sample in a fashion that is robust to genetic 

ancestry and the individuals that contributed to it. 

 In Chapter 3 I introduce Verify Intensity Contamination from Estimated Sources (VICES), 

a statistical method that aims to directly address these goals by jointly estimating contamination 

and its sources in genotyped samples. The intuition behind VICES rests on the fact that 

contamination causes the distribution of array probe intensities to deviate from their expectation. 

VICES regresses these deviations in the array probe intensity of one sample on the genotypes of 

another sample. After using allele frequencies to control for the effect of greater dissimilarity 

between samples at common variants, the regression coefficient of the sample genotypes provides 

an estimate of the contribution of that sample to the overall mixture. These estimates and the 

estimate of total contamination can then be refined by jointly regressing the array probe intensities 

on the genotypes of all identified contaminating samples. VICES runs all these steps automatically, 

seamlessly, and efficiently to make it easy to use and scalable for large genotyping projects. 

Because VICES replaces allele frequencies with contamination sample genotypes, VICES aims to 

address the issues of biased estimates resulting from miss-specified allele frequencies in addition 

to providing researchers with more information about how contamination occurred. 

 The predominant theme in Chapter 3 is that of sample-level quality checks. It moves this 

sub-field forward by giving researchers better information to make decisions about excluding 

contaminated samples (particularly in a diverse setting) or choosing to regenotype them based on 

how contamination occurred. Chapter 3 is also highly integrated with the theme of genotyping 
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array technology, since the method is tailored to contamination estimation in arrays and depends 

on specific aspects of array genotyping. The chapter also includes some discussion of how 

contamination affects downstream analyses. 

Linkage analysis 

 Genome-wide association studies (GWAS) continue to report novel associations with ever-

increasing sample size, the collection of more phenotypes, denser genotyping arrays, and the 

increasing availability of short-read sequence data. However, new results, while impressive in 

number, often represent marginal gains in the proportion of trait variance explained and actual 

biological insights into the traits studied (Fritsche et al., 2013). One explanation that some have 

proposed for this “missing heritability” in GWAS is that single-variant tests do a poor job of 

capturing the contributions of ungenotyped variation, allelic heterogeneity and epistatic interaction 

in many traits (Manolio et al., 2009). Linkage analysis, a class of methods for testing for the co-

segregation of a trait with genomic segments within families, has been proposed as a solution to 

several of these problems (Hodge, Hager, & Greenberg, 2016; Manichaikul et al., 2010). These 

features, and the presence of large numbers of related individuals in many cohorts recruited for 

GWAS (particularly those from a population-based study) might make linkage an attractive choice 

for a secondary analysis in many studies. However, existing methods for linkage analysis have 

many drawbacks that make them impossible or impractical to run in a population cohort collected 

for a GWAS analysis. The first issue is that the classical methods for linkage analysis based on the 

Elston-Stewart or Lander-Green algorithms were developed when genotype information was 

relatively expensive to collect and scale poorly to data sets with hundreds of thousands of genetic 

markers across tens of thousands of individuals (Ott, Wang, & Leal, 2015). This problem is often 

solved by splitting large pedigrees into sib pairs or nuclear families (F. Liu, Kirichenko, 
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Axenovich, van Duijn, & Aulchenko, 2008), but the relatedness structure in a study collected for 

GWAS might contain more scattered pairs of loose relatives than complete pedigrees, if any 

pedigree information was collected from participants at all. Finally, linkage methods are often 

designed to use highly polymorphic microsatellite markers with many alleles for maximum 

informativeness for detecting recombination events between relatives, while GWAS studies 

typically collect single-nucleotide polymorphism (SNP) genotypes that are more ambiguous 

indicators of allelic segregation (Evans & Cardon, 2004). 

 All these problems have helped to motivate Population Linkage, a new method for scaling 

up linkage analysis to population-level data which I introduce in Chapter 4. Population Linkage 

works by first obtaining estimates of kinship and identical-by-descent (IBD) regions using 

genome-wide genotype data. It then fits these estimates in a fast approximation of a variance-

components model for a quantitative trait known as Haseman-Elston regression to obtain a point 

estimate and standard error of the trait variance attributed to IBD sharing in a region. The method 

then takes this point estimate and its standard error to test for evidence of linkage at that locus and 

repeats this process across the genome. Population Linkage addresses the problem of the 

scalability of linkage analysis by taking advantage of efficient methods for estimating IBD 

segments and fitting variance components models rather than performing full-pedigree likelihood 

calculations. Despite the minimal information in individual SNPs for inferring recombination 

events in linkage analysis, the initial step of calculating IBD estimates for Population Linkage 

effectively combines this information across multiple SNPs. Population Linkage can work with 

any arbitrary pedigree structure and takes all pairwise relationships into account simultaneously. 

It does not depend on reported pedigree information at all, instead using only the relationship 

information inferred from the genotype data. Population Linkage is a method intended to 



 

 

12 

complement a GWAS to provide additional insights for the proportion of trait variance explained 

by a region, and to capture the effects of ungenotyped variation, allelic heterogeneity, and epistatic 

effects that might be missed in a GWAS. 

 Chapter 4 is primarily concerned with the analysis of genetic data for mapping traits to 

genomic regions. It is specifically focused on applying linkage analysis in population cohorts that 

have many relative pairs and families. The phenotypes considered in Chapter 4 are also specifically 

focused on those that are chemically determined in the lab from biological samples, like blood 

lipid measurements. Finally, similar to Chapters 2 and 3, Chapter 4 is focused on conducting these 

analyses with genotyping array data. Chapter 4 also includes a brief discussion on how applying 

Population Linkage in a sequencing study may be different. 

Summary of objectives 

In this dissertation, we propose to demonstrate solutions for existing limitations through 

the following aims: 

1. Show success in recruiting a nation-wide genetics cohort based on self-reported phenotype 

data 

2. Design a more useful estimator of DNA contamination that reveals the source and probable 

cause of DNA contamination 

3. Develop a method for computationally tractable linkage analysis on population-scale 

genotype data with power to reveal novel insights about the traits being studied. 

These three objectives are addressed in Chapter 2 (Objective 1), Chapter 3 (Objective 2), 

and Chapter 4 (Objective 3). More detailed background, motivation, and results can be found in 

each of these chapters.  
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Figures 

 

Figure 1-1 Sequence of discovery in human genetics 

This figure details some of the steps in human genetic discovery, with particular emphasis on the 

approaches and technologies commonly used in statistical genetics. Within each step, several 

methods used in that step are listed. The methods for each step that intersect with the three projects 

in this dissertation are boxed. 
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Chapter 2 Genes for Good: Engaging the Public in Genetics 

Research Using Social Media1 
 

Introduction 

More than 10,000 genetic loci have been successfully linked to common and complex 

diseases (Welter et al., 2014). In previous decades, the major challenge for human genetic studies 

was the cost and complexity of the genotyping itself; however, researchers now face the bigger 

hurdle of obtaining large enough samples that also include useful, linked medical and health data. 

The study designs typically used to collect such data are expensive and often exclude individuals 

based on location or demographics. We reasoned that using social media platforms would not only 

allow us to recruit a large population cohort, but also help us to reach populations that might not 

typically participate in genetic studies due to the time commitment or distance to a research center. 

Potential advantages of social media-based study designs include the ability to reach diverse 

populations and the ability to engage participants in research over time. Potential concerns include 

representativeness and the ability of this approach to reproduce findings obtained using more 

traditional designs. 

We present a new study design to take advantage of recent developments in health survey 

methods using social media and widespread interest in direct-to-consumer genetic testing (Royal 

 
1 This work was published in the American Journal of Human Genetics as, “Genes for good: engaging the public in 

genetics research via social media,” 105(1), 65-77. I was one of three joint first authors and contributed in processing 

incoming genotype data, generating participant results and educational materials, running replication GWASs and 

accompanying tables and figures, writing sections about methods and results, and summarizing demographic and 

disease information in Genes for Good and comparison studies, along with creating the relevant tables and figures. 
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et al., 2010; Stoekle, Mamzer-Bruneel, Vogt, & Herve, 2016). Genes for Good is an ongoing, 

large-scale study of health, genetic, and behavioral information. We aim to engage tens of 

thousands of individuals in research through a Facebook application, reducing the expense of 

traditional epidemiologic designs and the exclusivity and high socioeconomic status associated 

with current direct-to-consumer efforts (Agurs-Collins et al., 2015).  

Our model of using social media for genetic research invites participants to complete online 

health assessments at their convenience, as has been successfully applied in numerous studies of 

health, behavior (Pedersen & Kurz, 2016), and psychology (Kosinski, Matz, Gosling, Popov, & 

Stillwell, 2015), including studies of rare genetic diseases (Abiad, Robbins, Morris, & Sobreira, 

2018), childbirth preferences (Arcia, 2014), and prediction of personality traits (Kosinski et al., 

2015). When a consenting participant has completed a minimum number of health history and 

health tracking surveys, they are mailed a spit kit to collect DNA for analysis. After genotyping, 

we test genetic variants for association with health, disease, and environmental information 

collected through online assessments.  

In this paper, we demonstrate that the Genes for Good study model is a viable complement 

to more traditional research study designs. The phenotypic and genotypic data we have collected 

thus far appear valid and reliable. Further, the incentive structure of Genes for Good – namely, 

altruism combined with the return of survey response summaries and genetic data to participants 

– is effective, as demonstrated by exponential recruitment from all fifty U. S. states. Importantly, 

the recruitment happened organically, with participants publicizing the study through their own 

networks, without relying on paid advertising. We briefly explored the use of study recruitment 

websites (such as ResearchMatch (Harris et al., 2012)), but only several hundred participants were 

recruited this way. We also saw large influxes of participants after online articles appeared in 
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Reddit (Free DNA Test from the University of Michigan, 2017) and Buzzfeed (Hughes, 2015). 

While resources still go toward answering questions about the study and resolving technical issues, 

efficient participant recruitment and engagement allowed us to dedicate a larger fraction of 

resources to sample collection, processing and downstream analyses. The long-term goals of the 

study fall broadly into five main categories: (a) to identify novel genetic loci associated with a 

variety of phenotypes, (b) to longitudinally track an array of health and behavioral measures, (c) 

to enable genotype-first study designs (such as detailed phenotypic assessments of participants 

with naturally-occurring knockout variants), (d) to educate participants and make the data available 

to them, and (e) to encourage data sharing among researchers. Here, we present our study design 

and methods, as well as initial findings about our sample demographics and important health 

indicators.  

One particular advantage of hosting our study on social media is that we can reach 

participants in an environment that many already visit regularly as part of their daily routines. 

Social media use in the U.S. has dramatically increased in the last decade – rising from 7% in 2005 

to over 65% in 2015 (Perrin, 2015) – and so we have the potential to reach a majority of the U.S. 

population through our application. In the last few years, several research groups have recognized 

the major advantages social media offers: flexible timing, the possibility of incentives and 

reminders, and the ability to reach non-urban communities. There has already been substantial 

success in recruiting for studies via Facebook (Fenner et al., 2012) as well as in using it to prevent 

loss-to-follow-up (Mychasiuk & Benzies, 2012). Further, the flexible framework of Genes for 

Good allows us and other research groups to continue adding new surveys and activities to address 

future research questions. Our study takes advantage of the opportunity for repeated contact that 
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social media offers and represents the first large genetic study of tens of thousands of individuals 

conducted via Facebook. 

Considering their ubiquity and ease of use, social media and mobile devices as research 

tools are important avenues to explore further (Steinhubl, Muse, & Topol, 2015). However, we 

recognize some of the potential disadvantages we are likely to face: (a) inaccurate data, (b) low 

response rate (Kapp, Peters, & Oliver, 2013), (c) high attrition, and (d) a sample limited to those 

who have a Facebook account. In the first year of the study, we prioritized testing and combatting 

several of these expected limitations. With the aforementioned challenges in mind, we 

implemented various methods to assess the quality of our data. First, we looked at common 

diseases and phenotypes to validate our results – and thus our approach to data collection – by 

comparing them to prior findings from traditional research and meta-analysis designs. When 

expected phenotypic relationships hold true, such as that between BMI and Type 2 diabetes, we 

gain confidence in the quality of the survey responses we are collecting. Additionally, we assessed 

the quality of the genetic data by replicating findings from genome wide association studies 

(GWAS) for a variety of traits that are known to have genetic components, such as diabetes, 

asthma, BMI, hair color, and eye color, confirming that our data yields the expected signals.  We 

also examined rates of chronic health conditions, such as hypertension and diabetes, to explore 

how our study participants compare to the overall U.S. population. 

Material and Methods 

We have implemented a large, IRB-approved genetic study using social media. Participants 

must be at least 18 years old, live in the U.S., and have a Facebook account. They are recruited via 

snowball sampling, i.e. by finding our Genes for Good Facebook application through friends, 

family, and social media connections. Once a person has consented, they are invited to complete 
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online health history assessments at their convenience. The surveys consist of health history 

questionnaires, daily tracking surveys, and an optional health conditions module in which 

participants can list other conditions that they have. Once they have completed a minimum number 

of required questionnaires, they are mailed a spit kit to collect DNA for analysis. The cost of each 

participant is about $80, which includes postage, DNA extraction, and genotyping; there is 

essentially no cost associated with recruitment or data collection. Throughout the course of the 

study, we have typically employed 2-3 full-time staff (study coordinator, developers), several 

graduate and undergraduate students, and a part-time administrative assistant to assist with sending 

and receiving spit kits. 

Genetic analysis 

DNA is genotyped at ~600,000 SNPs using either the Illumina Infinium CoreExome-24 

v1.0 or v1.1 arrays for nonsynonymous exonic variants and a panel of common genome-wide 

markers (Illumina, 2017). The standard set of markers on the array is augmented with missense, 

loss of function, and potential lipids and myocardial infarction variants identified in the HUNT 

whole genome sequencing and whole exome sequencing projects (Krokstad et al., 2013); height-

associated variants from GIANT (Wood et al., 2014); potential stop-gain variants in 96 genes at 

loci potentially implicated in type 2 diabetes, blood lipid levels, Alzheimer’s disease, 

nicotine/alcohol metabolism, and several others with mutations implicated in serious but treatable 

health conditions; complex trait associated variants in the EBI/NHGRI GWAS catalog (Welter et 

al., 2014); a random subset of Neanderthal SNPs from the 1000 Genomes Project (Sankararaman 

et al., 2014); ancestry informative markers identified by Paschou et al. that were highly correlated 

with the principal components of Human Genome Diversity Project samples (Paschou, Lewis, 

Javed, & Drineas, 2010); and pain related variants proposed by Dr. Chad Brummett of the 
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University of Michigan Division of Pain Research. Genotypes at an additional >30 million variants 

in the 1000 Genomes Phase 3 panel (Auton et al., 2015) are imputed using Minimac3 (Das et al., 

2016). After quality control, local genetic ancestry is estimated using RFMix (Maples, Gravel, 

Kenny, & Bustamante, 2013), global ancestry with ADMIXTURE (Alexander, Novembre, & 

Lange, 2009), and principal components analysis performed with TRACE (Wang, Zhan, Liang, 

Abecasis, & Lin, 2015), using the Human Genome Diversity Project samples as a reference panel 

(Li et al., 2008) for all three analyses. We provide each Genes for Good participant with a section 

in the app to view these estimates of genetic ancestry on the sample they provided.  

For the GWAS of Genes for Good participants’ BMI, the BMI measurements were 

calculated from the Height and Weight survey in the app, which was derived from height and 

weight questionnaires available from PhenX Toolkit (Hamilton et al., 2011). Weight 

measurements for the first several thousand genotyped participants were bottom-coded at 80 lbs 

and top-coded at 251 lbs; then, the top-coded value was changed to 381 lbs partway through the 

study to capture a greater range of variation. For participants that were pregnant at the time of 

answering the survey, we used their pre-pregnancy weight obtained from the same survey. The 

BMI values were then regressed on sex, age, array chip version, and the first five principal 

components; the residuals were inverse-normal transformed in order to compare effect size 

estimates to the largest published meta-analysis of BMI (Locke et al., 2015) and to reduce the 

impact of extreme observations. We used the SAIGE software (Zhou et al., 2018) to run a mixed 

model GWAS, accounting for sample relatedness and population structure. Polygenic risk scores 

were calculated using PLINK (Chang et al., 2015). 
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Participant engagement 

 We provide participants with several ways to interact with both their own data and the 

research study as a whole. After each health history survey is completed, we provide charts 

summarizing the information, in some cases comparing each participant’s answers to the Genes 

for Good study population (example in Figure 2-7 Example Health History resultFigure 2-7). 

Similarly, for daily tracking surveys, we generate summaries of each participant’s health behavior 

over time as well as summary statistics for the entire study (example in Figure 2-8). In addition to 

providing this ongoing feedback and summary of the survey responses, we also offer participants 

who submit a sample a breakdown of their genetic ancestry; the current version includes 7 

continental human populations (Europe, Africa, East Asia, Central/South Asia, West Asia/North 

Africa, Americas, and Oceania), and results are served in the form of a global ancestry estimate, 

local ancestry inference, and principal components analysis using the methods described 

previously (RFMIX, ADMIXTURE, TRACE). Before seeing their estimates of genetic ancestry, 

they are required to watch a short video on how to interpret their results. Participants can also 

download their array and imputed genotypes. 

Privacy and data security 

All Genes for Good data is divided into two classes: (a) personally identifiable information, 

such as email addresses, Facebook user IDs, and physical mailing addresses; and (b) research 

information, such as survey responses and genetic data. Each class of data is stored in a distinct 

relational database and served from a distinct server. Extracts for outside researchers include only 

research-specific data. We plan to ask participants to allow use of their mailing address to link to 

information such as geocode pollution, built environment (for instance, the number of fast food 

outlets or public parks within a certain radius of one’s home), and census tract data. In these cases, 
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the participants’ physical address would still be withheld from external collaborators, but variables 

generated using addresses could be shared upon request. 

The privacy of Genes for Good data is monitored by the University of Michigan 

Institutional Review Board. All genetic and survey results are stored in a secure server on campus 

that is not directly connected to the public internet, and DNA samples are stored in physically 

secure spaces with restricted access. In addition, all archived data is de-identified to protect subject 

privacy including participants’ demographic summary and genetic information. Even though 

Genes for Good uses Facebook to authenticate login, Facebook does not access information we 

collect through the App and we do not use participant’s social media postings and connections in 

our research. We make efforts to communicate with participants about the extensive measures we 

take in ensuring the privacy of their data and to ease their worries about using social media as a 

platform for genetic research. 

All communication to and from the application is encrypted. Participants are authenticated 

using a Facebook account and Facebook’s OAuth implementation, ensuring that participants only 

have access to their own data once inside the application.  Communication with Facebook servers 

is limited to authentication only; although Facebook receives and retains information about which 

Facebook accounts have accessed the Genes for Good app, all other information provided by 

participants is provided directly to Genes for Good servers. Facebook cannot see any of the data 

entered by participants. 

Once participants have their genetic data analyzed, they are notified that they may access 

results inside the app with a Results Access Code, a randomly generated alphanumeric code that 

must be requested by the participant and will be delivered to the email address on the participant’s 

Genes for Good profile. Participant genotype data is processed internally on University of 
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Michigan servers and is distributed to participants upon request via Box, a secure third-party file-

sharing platform. Participants may request their raw genotypes as often as they like from within 

the genetic results section of the app. Each request compresses and uploads raw genotype data and 

supplementary information to a private, password-protected Box account directory. For security 

purposes, all requested genotypes automatically expire from Box servers three days after being 

uploaded. 

Results 

Since the launch of Genes for Good on January 19th, 2015 (Martin Luther King Jr. Day), 

we have seen steadily increasing participant recruitment and consistent use of the Facebook 

application. Genes for Good now has enough participants to begin conducting meaningful analyses 

with the data. As of March 2019, 117,652 participants had tried the app, with 81,110 who signed 

the electronic consent form. Consenting users have completed over 2.9 million surveys, answering 

>22 million questions. Genes for Good has mailed 33,427 spit kits to eligible participants, of which 

27,470 have been returned (as of March 2019). The genetic data freeze used for this paper contains 

data from 20,232 participants whose genotypes passed quality control checks as of mid-2018. 

Sample characteristics and phenotypes 

Participants were recruited successfully from all fifty states, with areas of peak participant 

density roughly overlapping with major U.S. population centers (Figure 2-1). About 90% of users 

have residential addresses outside of Michigan. Compared to the U.S. population, our sample is 

younger (Genes for Good median age of 33, U.S. adult median age of 44) and enriched for females 

(74% of participants are women, compared to 51% for US adults, Table 2-1). Our sample also 

closely resembles the U.S. population on household income, although it is enriched for individuals 
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from middle-income households with an annual income of $35,000 - $100,000; Table 2-3). In 

contrast, the majority of the participants in the research cohort from 23andMe are from households 

with an annual income over $100,000 (Tung et al., 2011). To confirm the quality of the data 

collected from our sample, we also compared disease rates to those in the general U.S. population 

(Table 2-2). In looking at important risk factors for cardiovascular disease, we observed relatively 

similar rates of high cholesterol, hypertension, and smoking. However, our sample had lower rates 

of disease outcomes such as stroke and myocardial infarction. Our genotype data freeze contained 

20,232 individuals, of which 76.3% were non-Hispanic white, 3.8% Asian, 2.7% African 

American, 8.8% multi-racial/other, and 8.3% Hispanic/Latino as determined by self-report through 

our Demographics survey. 

In addition to the phenotype information collected from survey responses, 12,216 

participants have reported 64,401 cases of 3,067 health conditions in an optional section of the app 

that allows participants to search for and report disorders using the Systematized Nomenclature of 

Medicine (SNOMED) dictionary (Lee, Cornet, Lau, & de Keizer, 2013). These participant-entered 

data show that Genes for Good has attracted an unusually high proportion of individuals with 

certain rare diseases, like Ehlers-Danlos Syndrome (565 cases or 0.93% of GfG participants 

compared to ~0.02% prevalence worldwide) (Levy, 2018).  The 5 most commonly reported 

disorders were generalized anxiety disorder (1,803 cases), asthma (1,389), hypothyroidism (941), 

depressive disorder (920), and migraine (918). Higher BMI was associated with increased risk for 

all 5 conditions in logistic regression of each of the five traits on BMI, sex, and age (odds ratios of 

1.02, 1.03, 1.04, 1.01, 1.03 per unit higher BMI, p-values of 7.6×10-9, 2.1×10-20, 3.9×10-24, 1.5×10-

4, 6.3×10-14). 
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To evaluate the quality of our data, we used our survey data to verify known phenotypic 

relationships. Taking diabetes as an example, we analyzed the association of the disease with BMI. 

Given the rapidly increasing prevalence of diabetes in the U.S., this is a particularly important 

outcome to examine. Over the past three decades, the number of diagnosed Americans has more 

than tripled, from 5.6 million in 1980 to 21 million in 2012 (CDC, 2014). And because about one-

third of diabetics are undiagnosed, national survey statistics consistently underestimate the true 

prevalence of diabetes (CDC, 2014). We compared rates of diabetes in our sample, within each 

BMI bracket, to those reported from nationally representative samples (Bays, Chapman, Grandy, 

& Group, 2007) and found a similar trend of increasing diabetes prevalence as BMI increased 

(Figure 2-2). We further explored this relationship by calculating the estimated effect of BMI on 

diabetes status, adjusting for age, sex, and race, using NHANES and Genes for Good data 

separately. We found that the relationship between BMI and diabetes was comparable between 

studies (95% CI for odds ratio per 1-unit increase in BMI, NHANES: 1.07-1.10; 95% CI, GFG: 

1.08-1.10). When comparing simple correlation coefficients between BMI and diabetes status 

across studies, we found no notable difference between Genes for Good and NHANES (rGFG=0.18, 

rNHANES=0.19, p = 0.83). Though our sample is quite different from NHANES in terms of wealth, 

age distribution, and ethnic diversity, we observe similar trends in both cohorts when comparing 

diabetes cases and controls: diabetics typically have higher rates of obesity, higher age, lower 

income, and lower education (Supplementary Table 2-1). 

Genetic associations 

To validate the quality of our self-reported phenotypes, we analyzed a data freeze of 20,232 

genotypes to see if we could replicate known genetic associations. We first analyzed traits related 

to pigmentation and BMI, because these traits are known to have strong genetic factors. For 
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example, most variation in eye color is determined by 6 SNPs in HERC2 and OCA2 (F. Liu et al., 

2009). Figure 2-3 shows the number of participants with each combination of eye color and 

genotype at one of the SNPs with the strongest association signal, rs12913832. We observed strong 

evidence of association between eye color and genotype (X2 = 15,599, df = 8,  p = 10-3376, 

N=19,974), and the direction of effects is consistent with what was previously reported. Other 

pigmentation traits like hair color, skin sun response, and hair texture are also consistent with prior 

studies. Supplementary Table 2-2 shows detailed GWAS results, and Supplementary Table 2-3 

compares our results to several larger studies. We show that Genes for Good replicates the top 

pigmentation associations in prior studies at least nominally (p < 0.05), and frequently does so at 

genome-wide significance (p < 5x10-8). 

We next compared results for a mixed model GWAS of BMI, using measurements obtained 

from the Height and Weight health history survey, to results from the GIANT consortium (Locke 

et al., 2015). We obtained effect sizes consistent with those published for the top ten GIANT loci. 

We also obtained nominally significant (p < 0.05) association results at all 10 loci. Figure 2-4 

summarizes the comparison of our results with published GIANT results, showing consistency of 

direction of effect, magnitude, and relative significance (Figure 2-5 shows regional association in 

our top signal, at FTO). Given the relatively small sample size of our data, our effect estimates 

necessarily have wider confidence limits compared to the meta-analysis. However, the meta-

analysis point estimates are contained within these limits for nearly every SNP, which provide 

evidence that self-reported phenotypes collected within our cohort are reliable.  

We next expanded our comparison of GWAS results obtained with Genes for Good data 

to include the traits of type 1 diabetes, type 2 diabetes, and asthma. For all traits except asthma, 

our association signals are consistent with reports from published large GWAS and show some 
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significant hits (Supplementary Table 2-2, Supplementary Table 2-3, and Supplementary Table 

2-4; Supplementary Figure 2-1). Our asthma analysis did not give any genome-wide significant 

results, but when we examined the eighteen SNPs associated with asthma in the study of Demenais 

et al. (2018) we found that all had a consistent direction of effect in Genes for Good data but with 

smaller effect sizes (Supplementary Table 2-4). Our asthma cases and controls were defined based 

on answers to “Was your asthma ever confirmed by a doctor?” with 4,378 cases and 11,715 

controls reported. Given the large proportion of cases (27.2%), we believe that some individuals 

who answered “Yes” did not meet the standard for an asthma diagnosis used in Demenais et al. 

(2018) A similar observation has been made in other studies of self-reported phenotypes — for 

example, in a study of psoriasis including data from 23andMe customers, it was estimated that 

only ~36% of individuals who self-reported having psoriasis met the criteria used in clinical 

studies, diluting association signals and effect size estimates (Tsoi et al., 2017). We did an 

adjustment proposed by Duffy et al. (2004) to account for the apparent over-reporting of cases 

(Duffy et al., 2004). We also did a power calculation at the 0.05 significance level to determine 

our ability to replicate the findings in Demenais et al. and estimated that we should replicate 

approximately 7 of 18 SNPs (summing estimated power across eighteen variants gives expected 

number of 6.8 replicated signals). After the Duffy adjustment over half of our odds ratios were 

closer to the effect sizes reported in Demenais et al., though some odds ratios were overcorrected 

to have effect sizes larger than those reported in Demenais et al. As our power calculation 

suggested, we were able to replicate 7 of the 18 SNPs at the 0.05 significance level (Table S4) 

(Demenais et al., 2018; Tsoi et al., 2017). Reassuringly, we also found that, when we calculated 

polygenic risk scores (PRS) for type 1 and type 2 diabetes using publicly available GWAS 

summary statistics (Bycroft et al., 2018; Lunshof, Church, & Prainsack, 2014), PRS for type 2 
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diabetes was strongly associated with self-reported type 2 diabetes status (OR increase per PRS 

quintile=1.47; p=7.63 x 10-37) and that PRS for type 1 diabetes PRS was strongly associated with 

self-reported type 1 diabetes status (OR increase per PRS quintile=1.66; p=5.13 x 10-9) (Figure 

2-6). We found similar support for an association between asthma PRS and self-reported asthma 

(OR increase per PRS quintile=1.16; p=3.17 x 10-26) (Figure 2-6). 

 Somewhat unexpectedly, we observed that in our type 2 diabetes results the signal at 

CDKAL1 was stronger than at TCF7L2, which is typically the top signal reported for type 2 

diabetes GWAS. Hypothesizing that this might be due to the younger age of Genes for Good 

participants, we split the Genes for Good data at the median age to test for changes in diabetes risk 

between the below-median age and above-median age groups for the TCF7L2 and CKDAL1 

variants (median age = 32; casesBelow-Median = 65, controlsBelow-Median = 8,385; casesAbove-Median = 722, 

controlsAbove-Median = 7,728). Although we saw a trend to a larger diabetes risk for carriers of the 

TCF7L2 variant rs7903146 in the above-median group (ORBelow-Median = 1.21, ORAbove-Median = 

1.34), we saw the same trend for carriers of the CDKAL1 variant rs7756992 (OR Below-Median = 1.04, 

ORAbove-Median = 1.37). Regardless, the differences between the below-median and above-median 

age groups for both SNPs were not significant (p > 0.05).  

Discussion 

We set out to recruit a large, diverse sample of engaged volunteers that might provide 

information about the diverse U.S. population. For each volunteer, we used surveys to collect 

health and behavioral data that might inform a variety of genomic research studies. With rapid and 

inexpensive recruitment, we have quickly developed a participant pool with which to validate the 

quality of the data. We are optimistic about our ability to obtain the large sample size required for 

valid genetic association studies of complex diseases and behaviors. With our current analysis of 
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20,232 individuals, we have successfully validated several known genotype-phenotype 

relationships and contributed to several consortium meta-analyses (Jiang et al., 2018; M. Liu et 

al., 2019; Sanchez-Roige et al., 2017; Zhan et al., 2017). 

We have good representation with respect to geography, age, and gender, though our 

sample does have some noticeable differences from a sample of random U.S. adults. One 

characteristic that presents both an opportunity and a challenge is the younger age of Genes for 

Good participants compared to the U.S. adult population. While a younger demographic may be 

more interesting for some measures (behavioral data, activity levels), it will be less useful for 

others (age-associated cancers and development of other late-onset chronic disease). We do see 

slightly lower rates of the chronic conditions examined here compared to the general U.S. 

population, which we attribute to the lower average age of our participants; even if participants 

have the relevant risk factors, they may not have had the time to develop those long-term outcomes. 

For instance, we see much lower rates of heart attack in our participants despite comparable 

hypertension rates, and we see lower rates of type 2 diabetes despite comparable BMI (Figure 2-2). 

At the same time, Genes for Good’s recruitment strategy may have led to an enrichment of 

individuals with certain rare diseases like Ehlers-Danlos Syndrome, perhaps because of network 

effects within these communities.  

Most participants completed the minimum number of health history surveys required to 

receive a spit kit (15 surveys), with many going well above that number. Completion of daily 

tracking surveys was modest, with most genotyped participants completing only the minimum 

number required to obtain a spit kit. None of our surveys are mandatory and it is certainly possible 

that participants will avoid surveys that are more onerous or which they are not comfortable with, 

introducing ascertainment biases (for example, individuals who are not skilled at reasoning puzzles 
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might choose to skip the reasoning).  The most completed surveys were generally those that appear 

higher in the list of available surveys within our app (Supplementary Figure 2-2; Supplementary 

Figure 2-3 provides additional details of survey completion rates). 

Another challenge we face is that our sample is heavily skewed female. While targeted 

recruitment in the future may bring the gender distribution into balance, we also recognize the 

immediate potential to conduct a large-scale study of women’s health and have implemented 

relevant survey measures regarding polycystic ovarian syndrome and pregnancy outcomes. 

Genetic information, privacy, and ethics 

There are a number of incentives for participation in Genes for Good besides the altruistic 

contribution and potential positive impact of genetics research on society. Firstly, we provide 

interactive graphs and visualizations by which users can compare their survey responses to those 

of other participants (examples in Figure 2-7 and Figure 2-8). Secondly, Genes for Good allows 

participants to view estimates of their genetic ancestry and download their raw genetic data, which 

some have argued should be the fundamental right of participants who contribute DNA to research 

(Lunshof et al., 2014).  When downloading genetic data, we require participants to review a short 

slide show that explains the data we generate is suitable for a research study but does not meet the 

standards used for clinical genetic tests. We emphasize that, compared to the data used in clinical 

tests, research data might be more susceptible to error. Around 70% of participants with genotypes 

available have requested a download link for their raw genetic data, which we provide in 23andMe 

format, a format known to be widely accepted at third-party interpretation sites. Many participants 

have told us they upload their data to third-party sites to obtain more detailed ancestry estimates, 

find DNA relatives, and even seek health interpretation. A recent review paper (Hollands et al., 

2016) investigating reactions to a clinical genetic risk assessment concluded that in general, 
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patients do not engage in risk-reducing behavior after receiving information about genetic 

predisposition. We expect that Genes for Good participants are unlikely to base major health or 

life decisions on the research-grade data we have returned.  In addition, we will continue to develop 

Genes for Good web-based software applications to promote literacy of individuals about their 

genetic information. 

Along with raw genetic data, we also return to participants their genetic ancestry 

information based on DNA analysis. The primary anticipated risk of the return of ancestry 

information is the discovery or suspicion of non-paternity and/or secret adoption by participants, 

i.e. discovering one’s ancestry is inconsistent with what the participant knows about the ancestry 

of their supposedly biological parents. This has the potential to cause emotional or psychological 

stress on participants and their families, and we provide education about this risk during the 

informed consent.  

Significance and future directions  

The online platform implemented in Genes for Good is a viable study design for 

population-based genetic research. Now in the study’s fourth year, we have already had great 

success in recruitment, health history survey analysis, and genetic analysis. We are currently 

exploring the more than 300 phenotypes collected so far and continue to participate in ongoing 

collaborations. As the sample size grows, our power to detect novel associations and our ability to 

contribute more meaningful data to researchers will increase.  

The flexibility of the study design and our ongoing relationship with participants also 

makes it possible to implement new methods of data collection with relative ease. Additional data 

collection techniques are being developed and validated in a wide array of studies, including 

wireless sensors for continuous collection of data related to physical activity (Appelboom et al., 
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2014; Dobkin & Dorsch, 2011), heart rate (El-Amrawy & Nounou, 2015), body temperature, sleep 

(Montgomery-Downs, Insana, & Bond, 2012), and GPS location logging to infer habits and 

environmental exposures (Glasgow et al., 2016). These measures and more are currently available 

through a combination of smartphone and wrist sensors (e.g. FitBit), and many more wireless 

sensors exist for more specialized tasks (e.g. breathalyzers, insulin levels, QT interval). These and 

other novel data collection methods are developing rapidly, holding great promise in the near 

future for the efficient collection of large quantities of precise longitudinal data with minimal 

participant burden. The implementation of such devices would facilitate the collection of tracking 

data within Genes for Good. 

Having verified the quality of our data and several known associations with particular loci, 

we are now poised to begin exploring new genotypic-phenotypic relationships, such as those with 

behavioral and health tracking information. Research in other settings with Genes for Good data 

show that our results are consistent with those of prior studies. Liu et al. (2017) show that a PRS 

calculated from SSGAC’s educational attainment data is effective in predicting 4% of the trait 

variance, which is consistent with previously reported out-of-sample predictive power for 

educational attainment (Branigan, McCallum, & Freese, 2013). We are also working to streamline 

data sharing methods to facilitate collaborations with other researchers. Finally, we are actively 

developing new tools to provide participants with meaningful data summaries at the personal and 

study level. We believe these steps will keep participants engaged and invested in the genetic 

research and will also help encourage longitudinal survey completions.  

As we seek opportunities for long term funding of the study, we are currently not collecting 

spit kits from new participants. Although enrollment has decreased since we stopped offering spit 

kits (we currently collect only health survey responses), interest remains high, as evidenced by the 
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email inquiries we receive on a weekly basis. We plan to collect and genotype additional samples 

when future funding becomes available; when doing so, we expect to implement several changes 

to study protocol that will solve issues observed throughout the course of the study. For example, 

we noticed that survey completion correlates with the order that the survey appears on the app 

homepage (Supplementary Figure 2-2); something as simple as randomizing the order upon refresh 

may remedy this. 

Supplemental Data 

Supplemental data contain four tables and three figures. 
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Web Resources 

Genes for Good Facebook application: https://app.genesforgood.org 

Genes for Good informational website: https://www.genesforgood.org 

Full text of all Genes for Good survey: https://genesforgood.org/for_researchers 

Information on Box compliance with HIPAA guidelines: 

https://www.box.com/industries/healthcare  

https://app.genesforgood.org/
http://www.genesforgood.org/
https://genesforgood.org/for_researchers
https://www.box.com/industries/healthcare
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Figures 

 
Figure 2-1 Geographic Distribution 

The geographic distribution of Genes for Good participants as of October 2017. The colors indicate 

the number of participants who have logged into the app from that county, with darker colors 

representing higher density. 
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Figure 2-2 Relationship between BMI and diabetes rates 

The relationship between BMI and diabetes rates in participants is consistent with that seen in the 

general U.S. population. Type 2 diabetes is a phenotype of particular interest because of its 

increasing prevalence, impact on cardiovascular health, and relatively well-characterized genetics. 

Here, we have compared the rates of diabetes in Genes for Good participants to the rates found in 

the nationally representative studies SHIELD and NHANES (Bays et al., 2007). 
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Figure 2-3 Eye Color by Genotype 

Distribution of eye color among participants with different genotypes at rs12913832 (the top signal 

when performing GWAS using blue eye color in Genes for Good participants), a marker in the 

HERC2 gene known to play a role in eye color determination.  
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Figure 2-4 BMI GWAS Effect Sizes 

Effect size estimates of a GWAS for BMI in our study sample compared to findings from a meta-

analysis. We compare effect estimates from Genes for Good to published findings from the Locke 

et al 2015 meta-analysis of BMI GWAS (Locke et al., 2015). Specifically, we looked at the top 10 

reported signals and were able to replicate all of these effects in direction and nominal significance 

(p < 0.05). The forest plot on the right compares effect size estimates across studies; the dashed 

lines represent the confidence intervals around the Genes for Good estimates, while the solid lines 

represent results from Locke et al. Given the relatively small sample size available in this data 

freeze, our estimates have fairly wide confidence limits. However, Locke’s estimates are 

completely contained within our limits for 8 of 10 SNPs. 

*Imputed variant 
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Figure 2-5 LocusZoom Plot of FTO 

LocusZoom plot showing single-variant association results for BMI in the gene FTO. This result 

is consistent with other studies that reported their strongest evidence for association in this gene. 

The effect size at the nearby SNP rs1558902 (0.081) was consistent with the effect size (0.081) 

reported previously in Locke et al. (2015). 
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Figure 2-6 Genetic Risk of Diabetes 

Prevalence for self-reported Type 1 and Type 2 diabetes across polygenic risk score quintiles (five 

bins of equal sample size). An increase in the genetic risk score is associated with increasing 

prevalence of disease. We also evaluated associations between polygenic risk score quintile and 

Type 1 diabetes, Type 2 diabetes, and asthma status, adjusted for age and sex. We found that all 

three self-reported traits were significantly associated with calculated PRS quintile (pT1D=5.13 x 

10-9, pT2D=7.63 x 10-37, pasthma= 3.17 x 10-26). 

  



 

 

 

47 

 
Figure 2-7 Example Health History result 

An example of how participants’ results to the Personality survey are displayed within the Genes 

for Good app. The bars show this participant’s percentile scores on the five personality attributes 

measured by the survey. 
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Figure 2-8 Example daily tracking result 

An example of how participants’ answers to the daily sleep tracking survey are displayed, showing 

(A) average hours of sleep for this participant, compared to other participants of the same age 

range and sex, and to all other Genes for Good participants, (B) average hours of sleep reported 

for different days of the week when this participant has taken the survey, (C) average hours of 

sleep over the past 7 days, past 30 days, and over all responses from this participant, and (D) 

average hours of sleep reported for different days of the week for all Genes for Good participants 

stratified  by sex.  
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Tables 

Table 2-1 Demographics 

 Genes for Gooda U.S. Populationb Facebook-using 

populationc 

Age    

Median, years 33 44d  

18-24 17.0% 13.2% 19.5% 

25-34 37.1% 17.1% 27.0% 

35-44 21.6% 16.4% 19.6% 

45-54 11.9% 18.3% 16.5% 

55+ 12.4% 35.5% 17.4% 

Sex    

Male 25.9% 49.2% 49% 

Female 74.1% 50.8% 51% 

aData source for our study data is based on all valid responses as of August 9th, 2017 
bData for U.S. population from the 2010 U.S. Census (Howden & Meyer, 2011)   
cData for Facebook population from Statistica (Distribution of Facebook users in the United States 

as of January 2017, by age group and gender, 2017; eMarketer & Squarespace, 2017)  
dMedian age of U.S. persons over age 18 reported in the U.S. 2010 Census 
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Table 2-2 Chronic health indicators in study sample compared to overall United States population 

 Genes for Gooda U.S. Populationb 

BMI, mean, kg/m2 29.80 29.38 

Underweight (BMI < 18.5) 1.9% 1.6% 

Normal weight (BMI 18.5 - 24.9) 31.6% 27.2% 

Overweight (BMI 25 - 29.9) 26.0% 31.6% 

Obese (BMI ≥ 30) 40.4% 39.7% 

High cholesterol 26.1% 29.3% 

Hypertension 24.9% 29% 

Previous stroke 1.3% 2.9% 

Previous MI 1.5% 4.5% 

Diabetes (Type 1 or 2) 6.5% 9.3% 

Current smoker 17.0% 15.1% 

aData source for our study data is based on all valid responses as of August 9th, 2017 
bData from nationally representative samples to determine U.S. rates of obesity (CDC & NCHS, 

2017), high cholesterol, hypertension (Nwankwo, Yoon, Burt, & Gu, 2013), stroke (Mozaffarian 

et al., 2015) , MI, diabetes, and smoking (Ward, Clarke, Nugent, & Schiller, 2016)  
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Table 2-3 Income distribution 

Income Category Genes for Good (%) US Populationa (%) 23andMeb (%) 

Less than $35,000 28.0 30.2 10.2 

$35,000 to $50,000 18.9 12.9 7.2 

$50,000 to $75,000 19.8 17.0 13.9 

$75,000 to $100,000 14.5 12.3 14.7 

More than $100,000 18.9 27.7 54.0 

Distribution of household income among Genes for Good participants based on answers to the 

Demographics survey as of August 9, 2017 compared to the general U.S. population. 
aData from U.S. Census Table H-17 (Semega, Fontenot, & Kollar, 2017) 
bData describing 23andMe research cohort approximated from 2011 ASHG poster (Tung et al., 

2011) 
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Supplementary Tables 

Supplementary Table 2-1 Diabetes cases and controls demographics 

Diabetes Cases and 

Controls, Genotyped 

Samples 

    

 

GfG Cases 

(N=948) 

GfG Controls 

(N=16,581) 

NHANES Cases 

(N=809) 

NHANES 

Controls 

(N=4,796) 

BMI 35.71 (8.63) 29.11 (7.79) 32.58 (7.75) 28.80 (6.83) 

Underweight 1.0% 1.9% 0.5% 1.7% 

Normal weight 8.4% 34.6% 12.5% 30.0% 

Overweight 17.0% 27.4% 29.0% 32.0% 

Obese 73.6% 36.1% 58.0% 36.3% 

Age     

<21 1.1% 6.3% 0.1% 7.0% 

21-30 8.1% 40.0% 2.8% 19.1% 

31-40 21.3% 28.3% 5.7% 18.3% 

41-50 20.1% 11.7% 12.0% 16.4% 

51-60 27.7% 8.2% 21.5% 14.9% 

61-70 16.5% 4.3% 31.1% 12.3% 

>70 5.2% 1.1% 26.7% 11.8% 

Sex     

Female 65.8% 68.5% 45.7% 52.8% 

Male 34.2% 31.5% 54.3% 47.2% 

Race     

Hispanic 7.4% 8.4% 38.1% 29.8% 

Asian 1.0% 3.9% 8.9% 12.5% 

Black 3.1% 2.6% 23.6% 20.8% 

White 79.8% 76.2% 26.1% 33.1% 

Multiracial/Other 8.7% 8.9% 3.3% 3.9% 

Income     

<$35K 33.7% 26.6% 50.6% 38.7% 

$35K-$75K 38.0% 38.1% 30.3% 31.6% 

$75K-$100K 14.4% 15.3% 6.9% 10.8% 

>$100K 13.9% 20.0% 12.2% 19.0% 

Education     

No HS 3.5% 2.0% 32.8% 22.7% 

HS Diploma 16.3% 11.3% 21.9% 23.0% 

Some college or 

Associate's degree 45.8% 41.3% 27.6% 29.6% 

Bachelor's or higher 34.5% 45.5% 17.7% 26.2% 

Comparison of Genes for Good cohort (genotyped diabetes cases and controls) to NHANES (CDC 

& NCHS, 2017) cohort. 
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Supplementary Table 2-2 Genome-wide significant hits for various pigmentation and health phenotypes 

  Locus CHR POS (hg38) Nearest Genes EA EAF N Beta SE p-value 

Hair Color Depth 

rs12203592 6 396,321 IRF4 T 0.149 19,143 0.42 0.01 2.8×10-289 

rs1129038 15 28,111,713 HERC2 T 0.697 19,143 -0.20 0.01 1.8×10-97 

rs17184180 14 92,314,043 SLC24A4 A 0.407 19,143 -0.13 0.01 1.7×10-56 

rs12821256 12 88,934,558 KITLG C 0.091 19,143 -0.20 0.01 3.8×10-46 

rs16891982 5 33,951,588 SLC45A2 G 0.876 19,143 -0.22 0.02 3.2×10-39 

rs72928978 11 69,063,896 TPCN2 A 0.102 19,143 -0.16 0.01 2.1×10-32 

rs1805008 16 89,919,736 MC1R T 0.055 19,143 -0.21 0.02 1.2×10-31 

rs80293268 1 8,147,519 ERRFI1, SLC45A1 C 0.038 19,143 -0.18 0.02 9.3×10-18 

rs1205312 20 34,261,610 ASIP G 0.934 19,143 0.13 0.02 7.3×10-15 

rs71443018 2 28,390,435 FOSL2 C 0.043 19,143 -0.14 0.02 2.9×10-13 

rs17349283 2 221,225,077 EPHA4 G 0.427 19,143 -0.06 0.01 1.1×10-11 

rs1126809 11 89,284,793 TYR A 0.252 19,143 -0.06 0.01 2.0×10-11 

rs9544609 13 77,818,521 EDNRB, SLAIN1 A 0.561 19,143 -0.05 0.01 1.9×10-10 

rs112232483 17 47,879,446 SP2, SP6 C 0.257 19,143 -0.05 0.01 3.0×10-8 

rs17248377 5 53,820,293 ARL15, NDUFS4 A 0.223 19,143 -0.05 0.01 4.9×10-8 

  Locus CHR POS (hg38) Nearest Genes EA EAF N Beta SE p-value 

Hair Texture 

rs36010924 1 152,116,368 TCHH G 0.177 19,983 -0.27 0.01 9.0×10-170 

rs80293268 1 8,147,519 ERRFI1, SLC45A1 C 0.038 19,983 -0.21 0.02 1.9×10-26 

rs121908120 2 218,890,289 WNT10A A 0.021 19,983 0.26 0.03 3.3×10-24 

rs56210557 20 63,533,171 PTK6 A 0.055 19,983 0.15 0.02 2.6×10-20 

rs12951078 17 40,754,960 KRT25, KRTAP A 0.529 19,983 -0.07 0.01 1.7×10-18 

rs11170678 12 53,760,390 HOXC13 G 0.235 19,983 -0.07 0.01 6.8×10-16 

rs4149433 2 108,380,806 SULT1C4, EDAR T 0.056 19,983 -0.17 0.02 6.0×10-15 

rs1419295 10 8,259,689 GATA3 G 0.140 19,983 -0.08 0.01 5.1×10-13 

*rs1918719 8 116,293,163 EIF3H C 0.209 19,983 -0.06 0.01 7.0×10-11 

rs62405519 6 10,293,990 OFCC1 A 0.582 19,983 0.05 0.01 3.1×10-10 
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*rs7499783 16 79,768,781 MAFTRR C 0.183 19,983 0.06 0.01 3.3×10-9 

  Locus CHR POS (hg38) Nearest Genes EA EAF N Beta SE p-value 

Skin Sun Response 

rs12203592 6 396,321 IRF4 T 0.138 17,633 0.22 0.01 2.3×10-66 

rs1805007 16 89,919,709 MC1R T 0.060 17,633 0.26 0.02 3.0×10-44 

rs62211989 20 33,950,585 RALY C 0.059 17,633 0.19 0.02 9.2×10-26 

rs16891982 5 33,951,588 SLC45A2 G 0.868 17,633 0.17 0.02 7.0×10-24 

rs1126809 11 89,284,793 TYR A 0.243 17,633 0.09 0.01 2.1×10-18 

rs12350739 9 16,885,019 BNC2 A 0.508 17,633 0.08 0.01 1.0×10-17 

rs116858369 7 17,211,369 AHR A 0.011 17,633 0.24 0.04 9.5×10-9 

rs117886461 15 27,985,232 OCA2 A 0.008 17,633 0.26 0.05 4.1×10-8 

  Locus CHR POS (hg38) Nearest Genes EA EAF N OR CI p-value 

Blue Eyes 

rs1129038 15 28,111,713 HERC2 T 0.701 19,982 2.84 (2.66, 3.02) 2.7×10-232 

rs1126809 11 89,284,793 TYR A 0.253 19,982 1.54 (1.45, 1.62) 1.9×10-51 

rs4904866 14 92,302,159 SLC24A4 T 0.407 19,982 1.47 (1.40, 1.55) 7.7×10-51 

rs12203592 6 396,321 IRF4 T 0.151 19,982 1.45 (1.36, 1.55) 1.1×10-27 

rs10960730 9 12,631,099 TYRP1 G 0.573 19,982 1.27 (1.2, 1.34) 4.7×10-19 

rs16891982 5 33,951,588 SLC45A2 G 0.880 19,982 1.93 (1.66, 2.24) 2.2×10-17 

rs9723267 22 45,969,677 WNT7B T 0.315 19,982 1.17 (1.11, 1.23) 2.2×10-8 

  Locus CHR POS (hg38) Nearest Genes EA EAF N Beta SE p-value 

Height 

rs62346126 4 144,639,014 HHIP A 0.778 19,581 0.07 0.01 4.0×10-12 

rs9892365 17 61,414,023 TBX2 G 0.664 19,581 -0.05 0.01 3.6×10-11 

rs13077048 3 141,388,112 ZBTB38 T 0.417 19,581 0.05 0.01 1.5×10-10 

rs1897112 2 55,888,333 EFEMP1 C 0.235 19,581 -0.06 0.01 7.3×10-10 

rs584961 11 75,566,583 SERPINH1 G 0.893 19,581 -0.08 0.01 1.6×10-9 

rs9634212 12 93,599,490 SOCS2 A 0.216 19,581 0.06 0.01 3.1×10-9 

rs3760318 17 30,920,697 CENTA2 A 0.367 19,581 -0.05 0.01 3.1×10-9 

rs1000972 20 6,641,070 BMP2, CASC20 A 0.653 19,581 -0.05 0.01 6.3×10-9 

rs11205303 1 149,934,520 MTMR11 C 0.380 19,581 0.05 0.01 8.3×10-9 
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rs2707450 4 17,940,937 LCORL T 0.733 19,581 -0.05 0.01 1.3×10-8 

rs57026767 6 34,251,921 C6orf1 T 0.807 19,581 -0.06 0.01 1.4×10-8 

rs798489 7 2,762,169 GNA12 T 0.242 19,581 -0.05 0.01 4.1×10-8 

rs244711 5 177,082,192 ZNF346, FGFR4 T 0.692 19,581 0.05 0.01 4.2×10-8 

  Locus CHR POS (hg38) Nearest Genes EA EAF N Beta SE p-value 

BMI 

rs28432761 16 53,789,966 FTO C 0.495 19,278 0.08 0.01 1.1×10-15 

rs62107261 2 422,144 FAM150B C 0.039 19,278 -0.18 0.03 3.5×10-12 

rs539515 1 177,919,890 SEC16B C 0.192 19,278 0.08 0.01 7.2×10-10 

rs55835921 3 186,113,685 ETV5 C 0.178 19,278 -0.08 0.01 5.7×10-9 

rs118178156 8 86,283,096 SLC7A13, WWP1 T 0.007 19,278 0.34 0.06 1.5×10-8 

rs185527056 2 12,275,975 LPIN1, TRIB2 G 0.005 19,278 -0.40 0.07 2.4×10-8 

  Locus CHR POS (hg38) Nearest Genes EA EAF N OR CI p-value 

Type 1 Diabetes rs9273363 6 32,658,495 HLA-DQB1 A 0.263 17,529 3.77 (2.69, 5.29) 1.3×10-14 

  Locus CHR POS (hg38) Nearest Genes EA EAF N OR CI p-value 

Type 2 Diabetes rs12660618 6 20,677,079 CDKAL1 T 0.169 17,529 1.52 (1.32, 1.76) 1.5×10-8 

*Associations not reported in previous studies.  

All associations are consistent with findings in previous studies (McMahon et al., 2018) except for the hair texture hits at rs1918719 and 

rs7499783. CHR, chromosome; POS38, build 38 chromosome position; EA, effect allele; EAF, effect allele frequency; N, number of 

participants included in analysis; SE, standard error.  
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Supplementary Table 2-3 Comparison of Genes for Good top GWAS hits to previously reported results 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N Beta p-value Trait N Beta p-value 

Hair 
Color 
Depth 

rs12913832 HERC2 A 1 - Blond 283,410 0.50 <10-100 1 - Blond 19,143 0.20 1.0×10-96 

rs12203592 IRF4 T 2 - Red 283,410 0.38 <10-100 2 - Red 19,143 0.42 2.8×10-289 

rs17184180 SLC24A4 A 3 - Light Brown 281,197 -0.20 <10-100 3 - Light Brown 19,143 -0.13 1.7×10-56 

   4 - Dark Brown    4 - Dark Brown    

   
5 - Black 

   
5 - Black 

   
Reference Study: (Hysi et al., 2018) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N Beta p-value Trait N Beta p-value 

Hair 
Texture 

rs17646946 TCHHL1 A Level 1 - Straight 28,964 −0.21 5.8×10-134 1 - Straight 19,983 -0.25 1.3×10-153 

rs74333950 WNT10A G Level 2 - Wavy 28,964 0.06 9.5×10-18 2 - Wavy 19,983 0.09 1.1×10-17 

rs11203346 PADI3 G Level 3 - Curly 28,964 −0.07 9.2×10-17 3 - Curly 19,983 -0.06 1.5×10-7 

   
 

   4 - Very Tight Curls    
Reference Study: (F. Liu et al., 2018) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N OR p-value Trait N Beta p-value 

Skin Sun 
Response 

rs12203592 IRF4 T Level 1 - Low Tan Response 121,296 1.74  1.1×10-581 1 - Never burns 17,633 0.22 2.3×10-66 

rs369230 MC1R G Level 2 - High Tan Response 121,296 1.60  1.0×10-522 2 - Burns rarely 17,633 0.10 4.2×10-24 

rs6059655 RALY/ASIP A  121,296 1.69  1.4×10-315 3 - Burns moderately 17,633 0.18 4.3×10-24 

   
 

   4 - Often burns    

   
 

   5 - Always burns    
Reference Study: (Visconti et al., 2018) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N OR p-value Trait N OR p-value 

Blue Eye 
Color 

rs8039195 HERC2 T Blue vs. green/brown 5,130 13.10 3.9×10-129 5,148 blue vs. 19,982 2.88 3.7×10-132 

rs4904868 SLC24A4 T  5,130 0.67 2.5×10-14 14,834 not-blue 19,982 0.74 4.2×10-32 

rs1408799 TYRP1 T   5,130 0.71 1.5×10-9   19,982 0.79 8.5×10-17 

Reference Study: (Sulem et al., 2008) 

        Reference GFG 
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Published 
Locus 

Nearest 
Gene EA Trait N Beta p-value Trait N Beta p-value 

Height 

rs724016 ZBTB38 A Height (m) 252,972 -0.08 3.2×10-158 Height (in) 19,581 -0.05 7.1×10-10 

rs143384 GDF5 A   247,786 -0.08 1.2×10-121   19,581 -0.04 1.3×10-7 

rs8756 HMGA2 A   253,008 -0.06 4.5×10-90   19,581 -0.03 5.2×10-5 

Reference Study: (Wood et al., 2014) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N Beta p-value Trait N Beta p-value 

BMI 

rs1558902 FTO A BMI (kg/m²) 336,974 0.08 1.1×10-156 BMI (kg/m²) 19,278 0.08 2.6×10-14 

rs6567160 MC4R C  339,006 0.06 6.7×10-59  19,278 0.06 1.1×10-6 

rs13021737 TMEM18 G  333,169 0.06 5.4×10-54  19,278 0.07 6.4×10-7 

Reference Study: (Locke et al., 2015) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N OR p-value Trait N OR p-value 

Type 1 
Diabetes 

rs9273364 
HLA-
DQB1 G 

2,660 cases 
391,416 2.26 2.8×10-142 

106 cases 
17,529 3.77 1.3×10-14 

rs2596560 MICA C 288,756 controls 391,416 1.63 1.1×10-46 17,424 controls 17,529 2.20 4.4×10-6 

rs689 INS-IGF2 T  391,416 1.33 8.1×10-20  17,529 1.27 0.12 

Reference Study: (Bycroft et al., 2018) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N OR p-value Trait N OR p-value 

Type 2 
Diabetes 

rs7903146 TCF7L2 T 48,286 cases 298,957 1.27 1.4×10-212 848 cases 17,529 1.30 8.4×10-6 

rs1558902 FTO A 250,671 controls 298,957 1.12 1.6×10-50 16,898 controls 17,529 1.24 8.8×10-5 

rs7756992 CDKAL1 A  298,957 0.90 1.2×10-41  17,529 0.74 5.7×10-7 

Reference Study: DIAGRAM Consortium T2D GWAS meta-analysis - European Summary Statistics (Mahajan et al., 2018) 

  

      Reference GFG 

Published 
Locus 

Nearest 
Gene EA Trait N OR p-value Trait N OR p-value 

Asthma rs2952156 

ERBB2, 
PGAP3, 
MIEN1 G 19,954 cases 127,669 0.86 7.6×10-29 4,378 cases 16,093 0.93 0.01 

rs9272346 
HLA-
DRB1, A 107,715 controls 127,669 1.16 4.8×10-28 11,715 controls 16,093 1.09 5.6×10-4 
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HLA-
DQA1 

rs10455025 
SLC25A46, 
TSLP C  127,669 1.15 2.0×10-25  16,093 1.06 0.04 

Reference Study: (Demenais et al., 2018) 

*Associations not reported in previous studies.  

Replications of the top three hits from various studies of pigmentation and health traits (Bycroft et al., 2018; Demenais et al., 2018; Hysi 

et al., 2018; F. Liu et al., 2018; Locke et al., 2015; Mahajan et al., 2018; Sulem et al., 2008; Visconti et al., 2018; Wood et al., 2014). 

Direction of effect for all variants is consistent between the reference studies and Genes for Good, and most Genes for Good results 

attain at least nominal significance (p < 0.05).  EA, effect allele; N, number of participants included in analysis; OR, odds (log-additive) 

ratio. 
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Supplementary Table 2-4 Comparison of Genes for Good asthma results to previously reported results 

 

Published 
Locus Nearest Gene EA 

Reference GFG 

19,954 European-ancestry cases 
107,715 European-ancestry 

controls 

Unadjusted  Adjusted 

p-
value 

4,378 cases 652 cases  

11,715 controls 15,441 controls  

N OR p-value N 
Unadj. 
OR 

Adj. 
OR 

Power 
(α=0.05) 

Asthma 

rs2952156 ERBB2, PGAP3, MIEN1 G 127,669 0.86 7.6×10-29 16,093 0.93 0.80 0.65 0.005 

rs9272346 HLA-DRB1, HLA-DQA1 A 127,669 1.16 4.8×10-28 16,093 1.09 1.84 0.67 0.001 

rs10455025 SLC25A46, TSLP C 127,669 1.15 2.0×10-25 16,093 1.06 1.46 0.61 0.045 

rs1420101 IL1RL1, IL1RL2, IL18R1 T 127,669 1.12 9.1×10-20 16,093 1.02 1.11 0.46 0.565 

rs992969 RANBP6, IL33 G 127,669 0.85 1.1×10-17 16,093 0.96 0.90 0.67 0.205 

rs20541 IL13, RAD50, IL4 G 127,669 0.89 1.4×10-14 16,093 0.94 0.83 0.37 0.043 

rs2033784 SMAD3, SMAD6, AAGAB G 127,669 1.11 2.5×10-14 16,093 1.005 1.03 0.37 0.862 

rs2325291 BACH2, GJA10, MAP3K7 A 127,669 0.91 8.6×10-13 16,093 0.98 0.94 0.31 0.454 

rs7927894 EMSY, LRRC32 T 127,669 1.10 3.5×10-11 16,093 1.04 1.32 0.35 0.118 

rs11071558 RORA, NARG2, VPS13C G 127,669 0.89 1.9×10-10 16,093 0.91 0.76 0.26 0.011 

rs17806299 CLEC16A, DEXI, SOCS1 A 127,669 0.90 2.1×10-10 16,093 0.99 0.97 0.28 0.729 

rs17637472 ZNF652, PHB A 127,669 1.08 3.3×10-9 16,093 1.06 1.46 0.25 0.035 

rs1233578 GPX5, TRIM27 G 127,669 1.11 5.3×10-9 16,093 1.05 1.37 0.23 0.184 

rs2589561 GATA3, CELF2 G 127,669 0.90 1.4×10-8 16,093 0.996 0.99 0.29 0.914 

rs2855812 MICB, HCP5, MCCD1 T 127,669 1.10 1.7×10-8 16,093 1.02 1.12 0.28 0.589 

rs12543811 TPD52, ZBTB10 A 127,669 0.93 3.4×10-8 16,093 0.98 0.94 0.22 0.447 

rs167769 STAT6, NAB2, LRP1 T 127,669 1.08 1.6×10-7 16,093 1.07 1.55 0.25 0.014 

rs7705042 NDFIP1, GNDPA1, SPRY4 A 127,669 1.08 1.6×10-6 16,093 1.01 1.09 0.24 0.637 

  Reference Study: (Demenais et al., 2018)Demenais et al (2018) Nature Genetics 50, 42-53 
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Genes for Good replications of eighteen asthma hits found in Demenais et al. (2018). Adjustments to odds ratios (OR) and sample sizes 

were made using the approach of Duffy et al. (2004) to correct for response misclassification. Power calculations were made at the 0.05 

significance level using the Genes for Good adjusted sample size, disease frequencies and relative risk values from Demenais et al. 

(2018) control samples, 7.7% population prevalence, and an additive disease model. EA, effect allele; N, number of participants included 

in analysis. Filtered at AF > 0.005 and AC > 15 
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Supplementary Figures 

 

Supplementary Figure 2-1 GWAS panel of common traits in Genes for Good 

Manhattan plots for GWAS analysis of various pigmentation and health traits. The x-axis indicates 

chromosomal location. The y-axis represents –log10(p-value). The red line indicates genome-wide 

significance (p = 5×10
-8

). Each genome-wide significant locus is labeled with the gene nearest to 

it.   
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Supplementary Figure 2-2 Survey completion count for Health History surveys available in Genes 

for Good 

Survey completion count for Genes for Good surveys. Surveys are ordered by date implemented, 

with the oldest surveys at the top. The first ten surveys were all available at launch. The Reasoning 

and Patterns surveys are known to be on the longer side.  
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Supplementary Figure 2-3 Histogram of Health History and Daily Tracking survey completion 
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Chapter 3 Estimation of DNA Contamination and Its Sources in 

Genotyped Samples2 
 

Introduction 

Array genotyping is the standard method to genotype large numbers of individuals for 

genome-wide association studies (GWAS), consumer genomics, evaluation of copy number in 

clinical settings, and sample quality control prior to sequencing (Diskin et al., 2008). Consortium 

efforts now include millions of directly genotyped samples, and array genotyping has successfully 

been applied to traits as diverse as height (Marouli et al., 2017), body mass index (Locke et al., 

2015), blood pressure (Hoffmann et al., 2017), type 2 diabetes (Mahajan et al., 2014), 

schizophrenia (Goes et al., 2015), and inflammatory bowel disease (Liu et al., 2015), among many 

others. When coupled with imputation, genotyping arrays can achieve a similar coverage of the 

genome to sequencing for a fraction of the cost (Y. Li, Willer, Ding, Scheet, & Abecasis, 2010). 

Typically, genotyping arrays use fluorescent-tagged nucleotides or oligonucleotides that 

are specific to each allele of a genetic polymorphism. Measurements of allele-specific intensities 

are collected in parallel at 100,000s of loci, post-processed and clustered to distinguish genotypes 

at different bi-allelic markers (G. Li, 2016). These steps are sensitive to DNA sample 

contamination and mixing so that contaminated samples will have a higher probability of missing 

 
2 This work appeared in Genetic Epidemiology as “Estimation of DNA contamination and its sources in genotyped 

samples.” 43(8), 980-995. I was first author. 
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or erroneous calls that can result in a loss of power (Flickinger, Jun, Abecasis, Boehnke, & Kang, 

2015) or in erroneous downstream inferences. 

This DNA sample contamination is a common problem in large-scale studies. For example, 

the 1000 Genomes project reported that 3% of the sequenced samples were excluded due to high 

contamination (Flickinger et al., 2015). To address this problem, there are now several methods 

for detecting DNA contamination in both genotyping and sequencing data. Early methods flagged 

contaminated samples, but did not estimate the proportion of contamination (Homer et al., 2008). 

Newer methods like VerifyIDintensity and BAFRegress estimate contamination proportions by 

examining sample-specific shifts in allele intensity clusters for each genotype (Jun et al., 2012). 

Similar methods exist to examine the proportion of reads in sequencing data that are from 

contaminating DNA, for example ContEst and VerifyBAMID (Cibulskis et al., 2011; Jun et al., 

2012). Contamination estimation has even been applied to array methylation data (Heiss & Just, 

2018). Although our focus here is on within-species contamination, methods also exist for 

estimating cross-species contamination in sequencing data (Schmieder & Edwards, 2011). 

However, none of these methods can simultaneously estimate both contamination and its sources 

in genotyping array samples. 

Here we present a new method, VICES (Verification of Intensity Contamination from 

Estimated Sources) that estimates contamination proportions and identifies contaminating samples 

in genotyping array data. VICES initially uses sample allele frequencies to estimate contamination 

and then revises this estimate by iteratively searching for sources of contamination among other 

genotyped samples.  When the contaminating sample can be identified, our method provides 

improved estimates of contamination proportions compared to existing methods VerifyIDintensity 

and BAFRegress. Identifying contaminating samples also helps revise laboratory protocols to 
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prevent future contamination. Finally, by examining data from ongoing studies, we show that 

VICES can help flag problematic sample processing steps where contamination occurred. 

Methods 

Our method has three steps: 1. identifying contaminated samples, 2. identifying likely 

contaminating samples for each contaminated sample, and 3. producing a final estimate of 

contamination, quantifying contributions from each contaminating sample (Figure 3-1). 

We will first introduce some notation. We consider a set of individuals, each genotyped 

using an array. For each marker 𝑗, we assume two alleles, arbitrarily labelled A and B. We denote 

the frequency of B at this marker as 𝐴𝐹𝑗. We let 𝐺𝑖𝑗 denote the estimated genotype for individual 

𝑖 at marker 𝑗, encoded as 0 (homozygous for A), 1 (homozygous for B), or ½ (heterozygous). 

Following convention, we let 𝐼𝑖𝑗 denote the relative intensity of the B-allele probe, measured on a 

0 to 1 scale by interpolating allele intensity values with respect to the centers of the three genotype 

clusters and truncating any values that fall outside the 0 to 1 range (Illumina, 2010). Although 

other definitions of 𝐼𝑖𝑗 are possible, we choose this one because estimates are readily available 

from Illumina genotyping software. 

The following model relates 𝐼𝑖𝑗 of the sample being tested to its estimated genotype and to 

the genotypes of each potential contaminating sample. Let 𝛼𝑖 be the total proportion of 

contaminating DNA in sample 𝑖 and 𝛼𝑖𝑘 the proportion of DNA mixture from sample 𝑘. 

 

𝐸(𝐼𝑖𝑗) = (1 − 𝛼𝑖)𝐺𝑖𝑗 +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘      (Equation 1) 
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Directly fitting this model performs poorly because even in the absence of contamination, average 

intensity 𝐼𝑖𝑗 ≤ 1 when 𝐺𝑖𝑗 = 1 and average intensity 𝐼𝑖𝑗 ≥ 0 when 𝐺𝑖𝑗 = 0. Instead, we fit three 

genotype specific background intensity values 𝛾0, 𝛾½, and 𝛾1 which model the expected intensity 

for each genotype class. This results in the model: 

 

𝐸(𝐼𝑖𝑗) = (1 − 𝛼𝑖)𝛾[𝐺𝑖𝑗] + ∑ 𝛼𝑖𝑘𝛾[𝐺𝑘𝑗]𝑘     (Equation 2) 

 

which requires numerical optimization to estimate the total contamination proportion, 𝛼𝑖, and the 

contamination proportions 𝛼𝑖𝑘 from each contaminating sample. Fitting the following linear 

regression model 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘       (Equation 3) 

 

gave estimates within 0.1% of Equation 2 for the contamination proportion from each 

contaminating sample, 𝛼𝑖𝑘, while using only a fraction of the computational time. The 𝛾[𝐺𝑖𝑗] 

intercept terms allow for a different mean 𝐼𝑖𝑗 for each cluster of sample genotypes, with each 𝛼𝑖𝑘 

coefficient having the convenient interpretation as the contamination proportion from sample 𝑘.  

Identification of the contaminated and contaminating samples in a genotyping cohort, and 

estimation of the contamination proportion from each contaminating sample 𝛼𝑖𝑘 proceeds as 

follows: 

Identification of contaminated samples 

We substitute the contaminating sample genotypes in Equation 3 with the allele frequencies 

𝐴𝐹𝑗 to obtain initial estimates of the contamination proportion 𝛼𝑖 for each sample being considered. 
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This enables us to exclude uncontaminated samples from the computationally intensive search for 

samples that contributed contaminating DNA. 

We fit the following model to obtain 𝛼̂𝑖𝐴𝐹, an initial estimate of the contamination 

proportion 𝛼𝑖: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗      (Equation 4) 

 

When fitting this model, we recommend excluding any sites with minor allele frequency less than 

0.1 to reduce the influence of monomorphic and rare variants on the parameter estimation. 

If this first estimate of the contamination proportion based on allele frequencies, 𝛼̂𝑖𝐴𝐹, is 

below a user-specified threshold 𝑇 (we recommend 𝑇 no less than 0.005), then we assume the 

sample is uncontaminated and estimation stops here. If it is above that threshold, then our method 

attempts to identify the contaminating samples among the other genotyped samples. 

Find the samples that contributed contaminating DNA 

After identifying the contaminated samples using allele frequencies, the next step is to 

estimate a set of likely samples that contributed DNA to them. To do this, we fit the following 

linear regression model where we regress allelic intensity on the contaminated sample genotypes, 

allele frequency, and the genotypes of each candidate contaminating sample in turn: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 + 𝛼𝑖𝑘𝐺𝑘𝑗     (Equation 5) 

 

This step identifies a series of candidate contaminating samples for each contaminated sample. We 

specifically focus on pairings of contaminated and contaminating samples where the estimate of 
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𝛼̂𝑖𝑘 is greater than our contamination threshold 𝑇. For these potential combinations of 

contaminated and contaminating samples, we proceed to the final step to calculate an improved 

contamination estimate. 

Fit the final model with all contaminating samples to produce a final estimate 

After identifying likely contaminating samples, this final step fits the following regression: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘     (Equation 6) 

 

with the intensities 𝐼𝑖𝑗 and estimated genotypes 𝐺𝑖𝑗 of the contaminated sample, the allele 

frequencies 𝐴𝐹𝑗, and the genotypes 𝐺𝑘𝑗 of all the samples whose estimated contribution 𝛼̂𝑖𝑘 to the 

contamination proportion was greater than the contamination threshold 𝑇.  

Since contamination only affects 𝐼𝑖𝑗 at sites where 𝐺𝑖𝑗 ≠ 𝐺𝑘𝑗, such sites tend to be highly 

polymorphic. As a result, any individual 𝑘′, even if it did not contribute DNA to sample 𝑖, is likely 

to have many 𝐺𝑖𝑗 ≠ 𝐺𝑘′𝑗 at those sites with large 𝐼𝑖𝑗 − 𝐺𝑖𝑗, and can appear to explain some of the 

contamination. Therefore, the set of potential contaminating samples identified in Step 2 may 

include false positives. When the contributions of these “false positive” contaminating samples are 

estimated jointly with those of the true contaminating samples, we expect their 𝛼̂𝑖𝑘 coefficients to 

drop near zero. Therefore, we expect the best estimates of contamination proportions will be 

obtained after estimation in step 3 (using Equation 6). If at this point, there are any 𝛼̂𝑖𝑘 < 𝑇, we 

exclude the sample with the smallest 𝛼̂𝑖𝑘 and refit the regression, repeating this step until we have 

excluded all  candidate contaminating samples whose contributions 𝛼̂𝑖𝑘  are below 𝑇. 

After inclusion of all contaminating samples, the background contamination estimate 

should also drop to near or below 0. We define background contamination as 𝛼𝑖𝐴𝐹 in equation 6. 
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To be consistent with this interpretation, once all samples with contamination contribution 𝛼̂𝑖𝑘 less 

than 𝑇 are removed, this background contamination term 𝛼𝑖𝐴𝐹 is also dropped if it is estimated ≤ 

0 since the proportion of contaminating DNA from any source cannot be negative. 

The final model and resulting estimate of contamination can be one of the following three 

possibilities: 

1. The estimated contamination contribution from allele frequencies, 𝛼̂𝑖𝐴𝐹, drops to or 

below 0 and the model is refit with the estimated contaminating samples only. The estimate of the 

total contamination proportion is then the sum of the contamination contribution from each 

estimated source, as in Equation 3: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘 .       (Equation 3) 

 

2. No contaminating samples remain in the model, leaving only the contamination 

contribution from allele frequencies. This results in the model in Equation 4 and the same 

contamination proportion estimated in Step 1: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗.       (Equation 4) 

  

3. Both estimated contaminating samples and allele frequencies remain in the model. Then 

the 𝛼̂𝑖𝐴𝐹 coefficient can be interpreted as the proportion of contamination that came either from 

outside the genotyping cohort or from contaminating samples in the cohort but at proportions that 

were too small to be estimated reliably. The estimate of the total contamination proportion is then 
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the sum of the contamination contribution from the estimated sources and the contamination 

contribution from allele frequencies. In this scenario, the final model is as in Equation 6: 

 

𝐸(𝐼𝑖𝑗) = 𝛾[𝐺𝑖𝑗] + 𝛼𝑖𝐴𝐹𝐴𝐹𝑗 +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘 .     (Equation 6) 

 

Implementation 

We have implemented VICES in a free software package written in C++ and available for 

download at http://genome.sph.umich.edu/wiki/VICES. 

Experimental Data 

We analyzed contamination in two sets of genotyping data. These different data sets 

allowed us to quantify the effect of contamination in the context of different arrays and 

experiments. It also allowed us to compare the performance of VICES with previous 

contamination methods VerifyIDintensity and BAFRegress under different scenarios (Jun et al., 

2012). 

Intentionally contaminated HapMap samples 

To evaluate the effect of contamination on genotype calling and the performance of our 

method, we used intensity data and genotype calls generated by Jun et al. (2012) from 34 samples 

that were intentional mixtures of DNA from 4 HapMap cell lines (International HapMap et al., 

2010). The samples were 100:0, 0.5:99.5, 1:99, 2:98, 3:97, 5:95, and 10:90 mixtures of mixed 

European ancestry (CEU) samples NA07055 and NA06990, and 0:100, 0.5:99.5, 1:99, 2:98, 5:95, 

and 10:90 mixtures of Yoruban (YRI) samples NA19200 and NA18504 (Table 3-1) and genotyped 

on the Illumina MetaboChip (Voight et al., 2012) at 196,725 markers. We obtained contaminating 

http://genome.sph.umich.edu/wiki/VICES


 

 

 

79 

sample genotypes and allele frequency estimates for contamination estimation from the 1000 

Genomes Phase 3 version 5 at sites that overlapped with the MetaboChip (Genomes Project et al., 

2015). We estimated contamination in these 34 samples using: (1) VICES with contaminating 

sample genotypes (VICES-Geno), (2) VICES with allele frequencies (VICES-AF), (3) 

VerifyIDintensity (VID) and (4) BAFRegress (BAFR). Specifically, we compared root-mean-

squared-error (RMSE), bias, and trend in absolute error as contamination increased for the four 

sets of contamination estimates. 

For the estimates calculated using VICES-Geno, the contaminating sample was already 

known in each case, so we estimated the contamination proportion by fitting the model in Equation 

3. For all mixtures of HapMap YRI cell lines, we used the 1000 Genomes genotypes from sample 

NA19200 to estimate contamination. For the uncontaminated CEU samples from NA07055, we 

randomly chose an unrelated CEU sample from 1000 Genomes, NA12776, to provide the 

contaminating sample genotypes to fit in the model. For the CEU mixture samples, we used the 

metabochip genotypes of NA07055 as the contaminating sample. We only used NA19200 

genotypes at sites with minor allele frequency above 10% in in 661 African ancestry samples of 

the 1000 Genomes Project (AFR). Similarly, we only used NA12776 or NA07055 genotypes at 

sites with minor allele frequency above 10% in 503 European ancestry samples of the 1000 

Genomes Project (EUR). 

For the estimates calculated using VICES-AF, we regressed the Metabochip intensities on 

their respective genotypes and allele frequencies as in Equation 4. We used 1000 Genomes EUR 

allele frequencies to estimate contamination in the CEU samples and 1000 Genomes AFR allele 

frequencies to estimate contamination in the YRI samples. As in the previous, we only used allele 

frequencies with MAF above 10%. We used the same sets of allele frequencies to estimate 
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contamination with BAFRegress and VerifyIDintensity. We ran BAFRegress with default settings 

and VerifyIDintensity using the per-marker analysis option recommended by the authors of the 

software (Jun et al., 2012). 

We also used the intentionally mixed HapMap samples to illustrate the effect of using allele 

frequencies from a mis-specified population on contamination estimation with VICES-AF, 

BAFRegress, and VerifyIDintensity. For this analysis, we used the 1000 Genomes EUR allele 

frequencies to estimate contamination in the YRI samples, and the 1000 Genomes AFR allele 

frequencies to estimate contamination in the CEU samples. Again, we only used allele frequencies 

with MAF above 10% and the per-marker analysis option for VerifyIDintensity. 

Michigan Genomics Initiative 

Next, we compared estimates from VICES with VerifyIDintensity and BAFRegress, in a 

large genotyping study where contamination may have occurred unintentionally. For this, we used 

data from the Michigan Genomics Initiative (Fritsche et al., 2018), an ongoing study of genetic 

data and health records from patient volunteers at the University of Michigan Hospital. We used 

22,366 samples genotyped at 603,583 markers on a customized Illumina Infinium 

HumanCoreExome-24 v1.0 array (Illumina, 2017). DNAs, extracted from blood, were assayed in 

batches of 288 to 576 samples (3-6 plates of 96 samples each) per run according to the Illumina 

Infinium HTS Assay Protocol Guide (Illumina, 2013). The smallest assay runs with 288 samples 

were combined with larger batches for genotype calling in GenomeStudio (Illumina, 2016), so sets 

of genotype calls ranged in size from 384 to 864 samples. We considered contamination between 

samples from different set of genotype calls to be unlikely, so we ran our method on each set of 

genotype calls separately using VICES with the default settings. We also ran VerifyIDintensity on 

each set of genotype calls separately and with the per-marker analysis option. BAFRegress was 
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run under default settings. For both VerifyIDintensity and BAFRegress, we used variants that 

overlapped with the HumanCoreExome array and whose 1000 Genomes EUR MAF was above 

10% at overlapping sites. VICES calculates allele frequencies for initial estimation so no external 

allele frequencies were used. The true contamination proportions were not known in MGI, but we 

were able to compare the concordance of the three methods’ contamination estimates, the 

proportion of samples with estimated contamination greater than 0.5%, and how strongly 

contamination estimates were correlated with the number of missing and excess heterozygous 

genotype calls as calculated by Plink 1.9 (Chang et al., 2015). 

Results 

HapMap 

Shift in probe intensities - HapMap 

We examined how contamination changed overall intensity for homozygous A/A, 

heterozygous, and homozygous B/B genotypes. We saw that, in each case, intensity clusters were 

shifted towards the contaminant genotype. This result supports the validity of the assumption in 

Equation 2 that the intensities shift in proportion to the contamination and the genotypes of the 

contaminant sample. The kernel density plots in Figure 3-2 show the distributions of the intensities 

for an uncontaminated sample and for a sample contaminated at the 10% level, as a function of 

genotypes for the contaminating sample. The distribution of the intensities in the contaminated 

sample is shifted towards the genotypes of the contaminating sample (for example, when the 

contaminating sample has genotype B/B, all intensities are shifted towards the B allele). As 

expected, the distribution of intensities for the uncontaminated sample is independent of the 

genotypes of the potential contaminating sample. 
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Estimation - HapMap 

We next examined whether we could accurately estimate contamination in the intentionally 

mixed HapMap samples. These samples were prepared by Jun et al. (2012) to assess the 

performance of their own methods to estimate contamination. A total of 179,935 markers 

overlapped between the Metabochip and 1000 Genomes. Of these, we used AFR allele frequencies 

of 90,401 markers with MAF above 10% and EUR allele frequencies of 88,747 markers with MAF 

in EUR above 10%. Compared to the intended contamination, VICES-Geno had a root-mean-

squared-error (RMSE) of 0.0057 and bias of -0.0035 across the 34 samples (Table 3-2 and Figure 

3-3). As contamination increased, the absolute error of VICES-Geno estimates increased on 

average by 0.0012 for each percentage increase in contamination. VICES-Geno performed better 

than VICES-AF, which had RMSE of 0.0068, bias of -0.0041, and an increase in absolute error of 

0.0015 for each percentage increase in contamination. This shows an additional benefit in 

estimating contamination by using the genotypes of the contaminating sample as opposed to 

sample or population allele frequencies. 

VICES-Geno’s performance was within 0.001 of existing method BAFRegress on the three 

criteria and outperformed VerifyIDintensity by a much wider margin. BAFRegress had a RMSE 

of 0.0054, bias of -0.0024, and absolute error increased by 0.0011 for each percentage increase in 

contamination, while VerifyIDintensity had RMSE of 0.0310, bias of -0.0085, and absolute error 

increased by 0.0056 for each percentage increase in contamination (Figure 3-3). The results of this 

comparison are also summarized in Table 3-2. 

Estimation with Misspecified Allele Frequencies - HapMap 

We next evaluated the impact of ancestral population for reference allele frequencies on 

estimates of contamination. We expected this choice would have only a very limited impact for 
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VICES-Geno as long as contaminating sample genotypes were available. However, the impact 

would be potentially larger for BAFRegress and VerifyIDintensity since they rely on estimated 

allele frequencies to estimate contamination. 

We used 1000 Genomes allele frequencies calculated in EUR with MAF > 10% at 88,747 

markers that overlapped with the Metabochip to estimate contamination in the intentionally mixed 

HapMap YRI samples. Similarly, we used 1000 Genomes allele frequencies calculated in AFR 

with MAF > 10% at 90,401 markers that overlapped with the Metabochip to estimate 

contamination in the CEU samples. Compared to the intended contamination, VICES-AF using 

mis-specified allele frequencies had RMSE of 0.0231, bias of -0.0140, and absolute error increased 

by 0.0057 for each percentage increase in contamination across the 34 samples. When the correct 

allele frequencies were used, VICES-AF had RMSE of 0.0068, bias of -0.0041, and a 0.0015 

increase in absolute error for each percentage increase in contamination. 

The other two methods also showed a similar drop in performance when using the 

misspecified allele frequencies. BAFRegress had a RMSE of 0.0261, bias of -0.0150, and the 

absolute error increased by 0.0065 for each percentage increase in contamination, while 

VerifyIDintensity had RMSE of 0.0312, bias of -0.0086, and the absolute error increased by 0.0056 

for each percentage increase in contamination. The results of this comparison between our method, 

BAFRegress, and VerifyIDintensity with misspecified allele frequencies are also summarized in 

Table 3-3. 

All three methods performed worse when the population for the allele frequencies was 

misspecified than when they were correctly specified, as shown in Table 3-2. This result implies 

that when using BAFRegress or VerifyIDintensity, prior knowledge of the ancestry of 

contaminating DNA is necessary to find contaminated samples and exclude their genotype calls 
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from downstream analyses, an impractical step in a large GWAS cohort of diverse ancestry. This 

result highlights the benefit to estimating samples that contributed contaminating DNA so that 

estimation is not as sensitive to the choice of population for allele frequencies. 

Shift in allele frequencies with misspecified allele frequencies - HapMap 

We further explored the previous point about how using misspecified allele frequencies 

can lead to an underestimation of contamination levels. Figure 3-4 shows the distribution of 

intensities for each genotype for a contaminated and an uncontaminated sample in different 1000 

Genomes EUR minor allele frequency bins instead of contaminating sample genotypes as in Figure 

3-2. As expected, contamination results in a greater shift in the intensity distribution at markers 

with higher allele frequencies. Figure 3-5 recapitulates Figure 3-4 but uses minor allele frequencies 

calculated from 1000 Genomes AFR individuals. As shown, the distribution of probe intensities is 

similar in the uncontaminated sample regardless of MAF of the population in which the MAFs 

were calculated. However, the shift in the intensity distribution at higher allele frequencies is less 

pronounced when using 1000 Genomes AFR MAFs compared to using 1000 Genomes EUR 

MAFs. This result highlights the benefit of using estimated contaminating sample genotypes for 

improving contamination estimation in genotyping samples.  

Michigan Genomics Initiative (MGI) 

Estimation - MGI 

Our next aim was to investigate whether our method could accurately estimate 

contamination in a large-scale genotyping experiment. A test of the three methods in the 22,366 

MGI samples suggests that VICES strikes a balance between the low estimates provided by 

BAFRegress and the higher estimates provided by VerifyIDintensity, consistent with our analysis 
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of intentionally contaminated HapMap samples (see Figure 3-3, Table 3-2). Among the 22,366 

samples, VICES found 354 with contamination greater than 0.5%, BAFRegress found 291 

samples, while VerifyIDintensity found 4,498, or 20% of the samples tested. 

This last result raised the question of why VerifyIDintensity estimated contamination 

greater than 0.5% for 4,188 samples for which both BAFRegress and VICES estimated 

contamination less than 0.5%. Upon investigation, it turned out that in samples where VICES 

estimated contamination less than 0.5%, the VerifyIDintensity estimates tended to be higher when 

there was a greater mean squared difference between the probe intensity and called genotype 

centroid (Figure 3-7). The same relationship was not seen in the BAFRegress or VICES estimates 

in the same set of samples. This result shows that VerifyIDintensity is prone to overestimating 

contamination in samples with greater variability in their probe intensities.  

The true contamination proportions were not known in MGI, but we compared the 

estimates from the three methods to one another to determine which represented the best 

consensus. We found that the samples which VICES estimated as contaminated greater than 0.5% 

were validated more often by the other methods than the samples estimated as contaminated greater 

than 0.5% by BAFRegress or VerifyIDintensity. The bar plot in Figure 3-8 shows the counts for 

the number of samples with estimated contamination greater than 0.5% by at least two of the three 

methods, which also shows that VICES had the highest number of samples (316) with estimated 

contamination greater than 0.5% verified by at least one other method. VICES also had lower root-

mean-squared-difference with estimates from BAFRegress (0.0075) and VerifyIDintensity 

(0.0062) than they did with each other (0.0089). 

Comparing the contamination estimates to call rate and excess heterozygosity of the MGI 

samples provided an independent metric which further supports the accuracy of VICES. Figure 
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3-9 and Figure 3-10 show that all three methods exhibited the same relationship that, as estimated 

contamination increased, genotype call rates decreased and excess heterozygosity increased. 

However, the underestimation of BAFRegress was more pronounced in samples with a high level 

of contamination. BAFRegress did not estimate contamination greater than 13% for any sample, 

even for 11 samples that VICES and VerifyIDintensity both estimated as having contamination 

proportions greater than 20%. For this reason, the trend between estimated contamination and 

excess heterozygosity, and estimated contamination and call rate was weaker with the BAFRegress 

estimates (R2 0.03 for both call rate and excess heterozygosity) than VICES (R2 0.18 for call rate, 

R2 0.19 for excess heterozygosity) or VerifyIDintensity (R2 0.11 for call rate, R2 0.12 for excess 

heterozygosity).  

Since the plot of sample call rate against VICES estimated contamination in Figure 3-9 

appeared to show two trend lines, we sought an explanation. Specifically, we observed that many 

contaminated samples had a lower call rate than would be predicted by their contamination as 

estimated by VICES (Figure 3-9, left panel). We found that log2 R ratio, a measure of the average 

genotyping array probe intensity for a sample (Peiffer et al., 2006), was a strong predictor of call 

rate (R2 0.48, Figure 3-11). In Figure 3-12 we removed all 165 samples with log2 R ratio 2 standard 

deviations below the mean before plotting sample call rate against estimated contamination. In this 

plot, compared to Figure 3-9, the relationship between contamination and call rate was stronger 

and more distinct (R2 0.71, 0.13, and 0.55 respectively for VICES, BAFRegress, and 

VerifyIDintensity). This result shows that this second trend line in Figure 3-9 was not due to 

underestimation by our method, but by heterogeneity in the array probe intensity among the 

samples. 
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Contaminating sample search - MGI 

We sought to evaluate how often our method could find contaminating samples and 

whether the estimates implicated a clear mechanism for contamination. We used the VICES results 

from the 22,366 samples genotyped in the Michigan Genomics Initiative (MGI) and found that our 

method found contaminating samples from the same set of genotype calls for 301 or 85% of the 

354 samples with estimated contamination above 0.5%. A total of 365 contaminating samples were 

estimated. Of these, 342 or 94% were on the same sample processing plate of 96 samples as the 

contaminated sample, and 328 or 90% were on the same genotyping array of 24 samples, showing 

that VICES estimates of contaminating samples are not random, but in fact consistently implicate 

a step in the sample preparation and genotyping process where contamination often occurred. 

The number of contaminating samples offers further support for the accuracy of the VICES 

estimates relative to the other methods. Figure 3-6 shows that BAFRegress failed to detect 

contamination greater than 0.5% in 38 samples where VICES estimated such a level of 

contamination and found a contaminating sample, and VerifyIDintensity failed to detect 

contamination in 31 such samples. There were 26 such samples where neither BAFRegress nor 

VerifyIDintensity estimated contamination greater than 0.5%. These results suggest that 

BAFRegress and VerifyIDintensity may be prone to false negatives in contamination estimation, 

allowing contaminated samples through QC filters. 

Based on the data in Figure 3-6, we wondered if any of the samples estimated as 

contaminated by VICES but not all three methods were false positives. One reason is that VICES 

found contaminating samples for a higher proportion (92%) of the 279 samples with estimated 

contamination greater than 0.5% by all three methods than in the 75 samples estimated as 

contaminated greater than 0.5% by VICES alone or by VICES and only one other method (57%). 
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One explanation is that VICES estimated much lower contamination for the samples that were 

estimated to be uncontaminated by either BAFRegress or VerifyIDintensity. VICES estimated 48 

(64%) of the 75 samples (estimated as contaminated by VICES but not all three methods) to be 

contaminated below 1%, compared to 28 (10%) of the 279 samples estimated as contaminated by 

all three methods. Small discrepancies in the estimates between the three methods may have 

pushed the estimates for some samples either just above or just below the contamination threshold 

𝑇 for a subset of the methods. For this reason, we expect that VICES will have more difficulty 

estimating sources of contamination for samples with borderline detectable contamination than for 

samples with high contamination. 

In addition to improving estimation, finding the contaminating samples enables 

understanding and troubleshooting the cause of contamination. In the MGI samples, Figure 3-13 

shows that the contaminated samples as estimated by VICES appear adjacent to one another on 

both the sample processing plate and the genotyping array. Running the contaminating sample 

search algorithm reveals that the estimated contaminating samples for each contaminated sample 

were adjacent to it on the array but not the processing plate. Since it would be more difficult to 

explain the pattern between contaminating and contaminated samples on the processing plate, this 

constitutes strong evidence for contamination occurring on the genotyping array between adjacent 

inlet ports during sample loading or array sections during hybridization due to leaky seals. 

Discussion 

Contamination, or the mixture of DNA from multiple individuals prior to genotyping, 

decreases the quality of genotypes. Since genotyping arrays remain the predominant tool in genetic 

association studies, the ability to accurately diagnose contaminating DNA and its sources has the 

potential to improve data quality checks and data production for many genetic studies. Our results 
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show that our method outperforms previous methods and can reliably find the contaminating 

samples, even at small contamination proportions. It can also perform contamination estimation in 

genotyping cohorts of mixed ancestry without relying on external allele frequency information or 

knowledge of the population origin of the contaminating samples. This feature makes the software 

appropriate for a wide range of genetic association studies. We also illustrate how one can conclude 

that contamination occurred on a genotyping array as opposed to during other steps in sample 

preparation, which may lead to improved genotyping protocols. 

One of our central findings is that, compared to estimating contamination and its sources 

separately, doing so jointly, as described here, improves both and gives users of VICES a more 

useful combination of results. After contamination has been detected, researchers may be faced 

with several follow-up questions. For example, should a contaminated sample be excluded from 

downstream analyses? Can a sample be re-genotyped and yield uncontaminated genotype calls? 

Or is a sample’s DNA fit for whole-genome or whole-exome sequencing? VICES gives 

researchers accurate information to answer to these questions. 

The above analysis illuminated several ways in which contamination and contaminating 

sample identification can be further improved.  One remaining issue is that the deviations in array 

probe intensities caused by contamination can appear to be correlated to the genotypes of any 

individual, and not only the contaminating sample. We observed a similar effect at the population 

level, with the shift in allele frequencies showing the strongest correlation with frequencies in the 

contaminating sample population but weaker correlation when the contaminating population allele 

frequencies were misspecified.  

This correlation between probe intensities and the genotypes of a sample that did not 

contribute DNA can be partially mitigated by including the sample allele frequencies in the 
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regression as in Equations 5 and 6. However, at particularly high levels of contamination (greater 

than 25%) many false positive contaminating samples may still be identified. This problem can be 

improved by increasing the contaminating sample threshold for highly contaminated samples 

instead of the default threshold of 0.5%. There are alternatives to threshold based selection of 

contaminating samples that may be worthy of future exploration. For example, instead of including 

samples in the final model based on a point estimate for contamination contribution, inclusion 

could have been decided by p-value or false discovery rate-adjusted q-value, or estimating inflation 

in contamination contribution estimates. 

An alternative strategy to make the contamination estimates more robust to the genetic 

ancestry of the contaminating DNA could be to iteratively estimate the ancestry of the 

contaminating allele frequencies instead of using the fixed allele frequencies of the sample or 

population. Such an approach could result in more accurate contamination estimates when no 

contaminating sample is found or could be used to narrow the search by the ancestry of the 

contaminating sample, resulting in greater computational efficiency.  However, we have found 

that using contaminating sample genotypes improves contamination estimates compared to using 

population allele frequencies, even when the contaminating samples’ population is correctly 

specified (Table 3-2). Furthermore, using population allele frequencies, the user would not gain 

any insight as to how contamination occurred in their study.  

In addition, several potential extensions or adaptations of this method exist. For example, 

a cross-array contamination check might be useful in studies where multiple arrays are used. In 

addition, the method could be adapted to impute missing and incorrect calls to salvage 

contaminated samples, as the CleanCall package does with contaminated sequencing data 
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(Flickinger et al., 2015). Our own preliminary analyses suggest this would reduce the rate of 

missing and incorrect genotype calls in contaminated samples. 

Genotype probe intensities are approximately normally distributed around the values of 0, 

½, and 1 (depending on the underlying genotype), with truncation resulting in additional point 

masses at 0 and 1. Contaminating DNA results in a proportional shift in these distributions, as 

reflected in Figure 3-2. In principle, direct modeling of this intensity distribution (see Appendix) 

would enable us to predict the distribution of probe intensities for samples with different degrees 

of contamination, to model resulting increases in missing genotype rates (when intensities are 

drawn from the shifted distributions they will fall more often in ambiguous regions that lie between 

two expected genotype clusters) and in genotyping error rates. These models would allow 

predictions of the impact of genotyping error rate on power (as in Sobel, Papp, and Lange (2002)) 

or, potentially, methods for association analysis that model the underlying intensity data directly 

rather than relying on discrete genotype calls (as done in Kim, Gordon, Sebat, Ye, and Finch (2008) 

for structural variants, for example). 

In our own work, we often must decide on acceptable thresholds for sample contamination. 

For simple regression-based approaches that model phenotypes as a function of genotypes and 

covariates, it’s tempting to be lenient and analyze samples that have modest amounts of 

contamination – after all, a contaminated sample with a few erroneous genotypes will still provide 

some useful information, albeit less information than an uncontaminated sample. However, many 

modern genetic analyses include additional analysis steps that involve sharing of information 

across samples – these steps might include haplotype estimation (which relies on identification of 

shared IBD segments between samples and is a key step in genotype imputation analyses) and also 

estimation of genetic kinship matrices or principal components of ancestry (which are also key 
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steps for modern large scale genetic analyses that include related individuals or samples of diverse 

ancestry). In our experience, contaminated samples can have more deleterious effects for these 

analyses, corrupting the information contributed by other uncontaminated samples. Empirically, 

we typically recommend that samples with contamination greater than ~1% to 3% should be 

excluded from downstream analyses.  

In conclusion, we have introduced VICES, a method that performs joint estimation of 

contamination and its sources in genotyping array samples. This innovation results in more 

accurate contamination estimates which are robust in genotyping cohorts of diverse ancestry. 

VICES allows researchers to estimate contamination easily without importing allele frequencies 

and provides additional information on how their samples were contaminated, so that it can be 

prevented or dealt with more effectively. 
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Tables 

Table 3-1 HapMap sample mixture proportions 

No. Samples NA06990 (CEU) NA07055 (CEU) NA18504 (YRI) NA19200 (YRI) 

6 0% 100% 0% 0% 

2 99.5% 0.5% 0% 0% 

2 99% 1% 0% 0% 

2 98% 2% 0% 0% 

2 97% 3% 0% 0% 

2 95% 5% 0% 0% 

2 90% 10% 0% 0% 

6 0% 0% 100% 0% 

2 0% 0% 99.5% 0.5% 

2 0% 0% 99% 1% 

2 0% 0% 98% 2% 

2 0% 0% 95% 5% 

2 0% 0% 90% 10% 

Composition of 34 mixtures of HapMap cell lines from NA06990, NA07055, NA18504, and 

NA19200. The contamination percentages are in bold. 
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Table 3-2 Accuracy metrics of contamination methods, correct allele frequencies 

 VICES-Geno VICES-AF BAFRegress VerifyIDintensity 

RMSE 0.0057 0.0068 0.0054 0.031 

Bias -0.0035 -0.0041 -0.0024 -0.0085 

Increase in abs. 

error per 1% 

increase in 

contamination 0.0012 0.0015 0.0011 0.0056 

Root-mean-squared-error (RMSE), bias, and change in absolute error per 1% higher contamination 

of the three methods against the intended contamination of the 34 HapMap CEU samples. 
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Table 3-3 Accuracy metrics of contamination methods, incorrect allele frequencies 

 VICES-AF BAFRegress VerifyIDintensity 

RMSE 0.023 0.026 0.031 

Bias -0.014 -0.015 -0.0086 

Increase in abs. 

error per 1% 

increase in 

contamination 

0.0057 0.0065 0.0056 

Root-mean-squared-error, bias, and change in absolute error per 1% higher contamination of the 

three methods against the intended contamination of the 34 intentionally mixed HapMap samples 

when 1000 Genomes allele frequencies from the incorrect population were used. 
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Figures 

 

Figure 3-1 Flowchart of the contamination estimation algorithm 

The flowchart shows how the algorithm progresses as contaminated samples are identified using 

allele frequencies, then potential contaminating samples are found for them and model selection 

performed to prune contaminating samples and calculate the final estimates.  
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Figure 3-2 Distribution of array probe intensities by genotype 

Kernel density plots showing the distribution of array probe intensities for an uncontaminated 

HapMap Yoruban sample (NA18504, left) and a 10% contaminated HapMap European sample 

(NA06990, right) as a function of the genotypes of NA07055. It is apparent that the intensities of 

the contaminated sample shift in the direction of NA07055 genotypes. 
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Figure 3-3 Comparison of contamination estimates in HapMap 

Comparison of estimates from our method using contaminating sample genotypes, BAFRegress, 

and VerifyIDintensity on the 34 mixtures of HapMap DNA to the intended contamination 

proportion.  
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Figure 3-4 Distribution of array probe intensities by correctly-specified MAF 

Kernel density plots showing the distribution of array probe intensities for an uncontaminated 

HapMap Yoruban sample (NA18504, left) and a 10% contaminated HapMap European sample 

(NA06990, right) at different 1000 Genomes European minor allele frequency (MAF) bins. The 

sample NA07055 that contributed DNA to the contaminated sample on the right is from the same 

ancestral population that the MAFs were calculated in, so using the MAFs to estimate 

contamination with a method like BAFRegress in this case would result in a good estimate for the 

intended contamination of 10%. 
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Figure 3-5 Distribution of array probe intensities by misspecified MAF 

Kernel density plots showing the distribution of array probe intensities for an uncontaminated 

HapMap Yoruban sample (NA18504, left) and a 10% contaminated HapMap European sample 

(NA06990, right) at different 1000 Genomes African minor allele frequency (MAF) bins. The 

sample NA07055 that contributed DNA to the contaminated sample on the right is European while 

the MAFs were calculated from African samples, so using the MAFs to estimate contamination 

with a method like BAFRegress in this case would result in a dramatic underestimate for the 

intended contamination of 10%. 
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Figure 3-6 Count of contaminated MGI samples by method 

Venn diagram showing (black) the count of all Michigan Genomics Initiative samples with 

estimated contamination greater than 0.5% by VICES, BAFRegress (BAFR), or VerifyIDintensity 

(VID) or any combination of the three methods, and (red) the count with estimated contamination 

greater than 0.5% and a contaminating sample found by VICES. 
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Figure 3-7 VerifyIDIntensity contamination estimates affected by noisy array intensities 

Estimated contamination of the three methods as a function of mean-squared-error between 

intensity and called genotype, in 22,012 Michigan Genomics Initiative samples with contamination 

< 0.5% as estimated by VICES. 
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Figure 3-8 Agreement of contamination estimates in MGI by method 

Bar plot of the count of Michigan Genomics Initiative samples with estimated contamination 

greater than 0.5% by VICES, BAFRegress, or VerifyIDintensity and at least one other method. 
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Figure 3-9 Contamination estimates and call rate by method 

Comparing estimated contamination in 22,366 Michigan Genomics Initiative samples and their 

call rates. Left: VICES. Center: BAFRegress. Right: VerifyIDintensity. In all three plots, the red 

triangles denote the samples that had a contaminating sample detected by our method. 

 

 

Figure 3-10 Contamination estimates and excess heterozygosity by method 

Comparing estimated contamination in 22,366 MGI samples and excess heterozygosity as 

calculated using Plink 1.9. Left: VICES. Center: BAFRegress. Right: VerifyIDintensity. In all 

three plots, the red triangles denote the samples that had a contaminating sample detected by our 

method. 
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Figure 3-11 Sample probe intensity vs call rate in MGI 

Scatterplot of sample call rate for 22,366 genotyped samples from the Michigan Genomics 

Initiative and average array probe intensity as measured by log2 R ratio. The black line shows the 

regression fit to these data. 

 



 

 

 

107 

 

Figure 3-12 Contamination estimates and call rate by method, low intensity samples removed 

Comparing estimated contamination against call rates in 22,201 Michigan Genomics Initiative 

samples that had average array probe intensity (defined as log2 R ratio) greater than a cutoff set at 

2 standard deviations below the mean. Left: VICES. Center: BAFRegress. Right: 

VerifyIDintensity. In all three plots, the red triangles denote the samples that had a contaminating 

sample detected by our method. 
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Figure 3-13 Position of contaminated samples in a genotyping experiment in MGI 

Left: Eight contaminated samples as they appeared on part of the sample preparation plate. The 

letters to the left of the plate indicate the rows and numbers below indicate columns. Arrows 

indicate our method's estimates for which sample contributed DNA to each contaminated sample. 

Right: The position of the same samples on the genotyping array. Letters and numbers indicate 

the row and column of the plate from which the samples were transferred. Arrows have the same 

interpretation. 

This figure shows that the contaminated samples are adjacent to their contaminating sample on the 

array, while far apart and without a clear pattern on the processing plate. The relative ease of 

explaining the pattern of adjacent mixing on the array compared to the processing plate suggests 

that the DNA mixture occurred on the array itself. 
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Chapter 4 A Fast Linkage Method for a Population GWAS Cohort 

with Related Individuals 
 

Introduction 

Linkage analysis jointly models the inheritance of a trait and genetic material in a family. 

One group of methods developed to study linkage of quantitative traits uses variance-component 

models to relate identical-by-descent (IBD) sharing to phenotype similarity. Variance components 

models are statistical models that partition trait variances and co-variances.  A typical variance 

components model for quantitative trait analysis will model the observed trait values using a 

multivariate normal distribution, and partition trait variances and covariances into shared additive 

genetic effects and individual specific environmental effects. When used for linkage analysis, the 

variance components model usually also contains a component for region-specific genetic effects 

influencing the trait (Amos, 1994). Using this model, it is possible to construct a test for genetic 

linkage by estimating and testing this variance component for region-specific genetic effects. 

A variety of algorithms exist for estimating and testing variance components have been 

applied to linkage analysis. These include iterative methods for fitting variance components in a 

general setting like maximum likelihood (Lange & Boehnke, 1983), restricted maximum 

likelihood (Van Arendonk, Tier, Bink, & Bovenhuis, 1998), and generalized estimating equations 

(Amos, 1994). In addition to these iterative methods, Haseman and Elston developed a regression-

based approach to estimate variance components for the specific application of inferring genetic 

linkage in sibling pairs (Haseman & Elston, 1972). Haseman-Elston regression fits variance 
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components by a methods of moments estimator derived from the expectation of either the product, 

squared sum, or squared difference of pairs of observations (Sham & Purcell, 2001). Their 

approach has since been generalized to linkage analysis in other relationship types (Sham, Purcell, 

Cherny, & Abecasis, 2002) and to estimating genetic variance components in unrelated individuals 

(G. B. Chen, 2014). 

The class of linkage methods that exist today was developed when genotype data were 

relatively sparse and expensive to collect. With the current ability to assay genetic variation at a 

large number of markers using genotyping arrays or short-read sequencing at much lower costs, 

genome-wide association scans (GWAS) have become widespread as a method for gene-mapping. 

Even so, many researchers still use linkage methods either because they collected their data before 

genotyping arrays were commercially available or to supplement a GWAS analysis of the same 

individuals (Kathiresan et al., 2007). Some have justified running linkage analysis in parallel with 

GWAS on the grounds that linkage outperforms GWAS in the presence of population structure or 

allelic heterogeneity (Minster et al., 2015). Linkage also continues to be a useful tool to associate 

traits with complex variation that is difficult to genotype like structural variants, copy number 

variants (Kathiresan et al., 2007), variants in highly repetitive regions (Mousavi, Shleizer-Burko, 

Yanicky, & Gymrek, 2019), or in loci that exhibit epistatic interaction (Hodge, Hager, & 

Greenberg, 2016). 

As the cost of genotyping has fallen dramatically in recent decades, the development of 

linkage methods has lagged behind GWAS in its ability to keep up with the size and structure of 

modern data sets. To illustrate, consider MERLIN, a widely-used implementation of a variance-

components linkage method (Abecasis, Cherny, Cookson, & Cardon, 2002). In order to run linkage 

analysis with MERLIN in an old-order Amish pedigree with 364 individuals and genotypes at 
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1991 microsatellite markers, the single large pedigree had to be split into nuclear families in order 

to complete the analysis in a tractable amount of time (Georgi et al., 2014). In addition, existing 

linkage methods are limited in their ability to model allele sharing between distant relatives when 

genotypes for intervening relatives are not available (Thompson, 2019). 

In addition, existing linkage analysis methods often ignore the cryptic relatedness found 

even in studies that target unrelated individuals. Though Day-Williams and colleagues (2011) 

proposed a method to reconstruct pedigrees and perform linkage analysis using genotype data, 

their approach requires pedigrees which can be uniquely reconstructed from pairwise kinship data. 

This method could not be applied in a large biobank cohort with many pairs of relatives but few 

complete families.  

A few have taken a more unified approach to linkage analysis and GWAS. The KELVIN 

method supports both linkage and association analysis in pedigrees, based on a posterior 

probability of linkage calculation from a Haseman-Elston regression fit (Vieland et al., 2011). This 

method was successfully used to study autism (Piven et al., 2013) and musical ability (Oikkonen 

et al., 2015). However, this method requires that families and the genetic relationships in pedigrees 

be defined prior to analysis and scales poorly beyond nuclear families. 

In this paper, we propose Population Linkage, a fast method to perform variance-

component linkage analysis on hundreds of traits with arbitrarily related individuals. IBD and 

kinship estimation only need to be performed once, then a variance components model fit for each 

trait at each region using Haseman-Elston regression, making the method scalable for studying 

hundreds of traits in thousands of individuals. The resulting estimates of the trait variance 

attributable to IBD sharing at a locus and its standard error can then be used to test for linkage and 

calculate LOD scores, a standard yardstick for genetic linkage signals. Our method uses only the 
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estimated relatedness and IBD segregation between pairs of individuals. We do not require 

knowledge of pedigree information or attempt to reconstruct pedigrees using the genetic data. 

Material and Methods 

Population linkage has four basic steps: 1. preparing the input data, including estimating 

kinship and identical-by-descent (IBD) regions for the cohort, 2. running diagnostic tests to select 

the appropriate variance-components model, 3. running the linkage analysis using Haseman-Elston 

regression, and 4. processing the results. In this section, we will describe these steps in detail 

together with various improvements in IBD estimation and Haseman-Elston regression that make 

our method feasible as well as our own innovations to achieve scalability to large datasets. Figure 

4-1 is a flow chart that outlines some of the major steps in this method. 

Notation 

First, we introduce relevant notation. Assume we have genotype information on n 

individuals, and values for a quantitative trait, y. For each pair of individuals, i, j, their relatedness 

can be summarized by their kinship 𝜙𝑖𝑗, which is the probability that two randomly sampled alleles 

(one from each individual) are identical-by-descent (IBD). The full kinship matrix for all 

𝑛(𝑛 − 1) 2⁄  pairs of individuals is denoted as 𝚽. Two alternate summaries of the relationships 

between individuals include 𝑝𝑖𝑗, the total proportion of DNA that is shared in IBD segments, and 

𝑐𝑖𝑗𝑙, the total proportion of chromosome ends that are IBD in the first and last l megabases of each 

chromosome. These two additional summaries are important in ensuring calibration of our method 

as they enable us to cope with biases of population based IBD estimates. We denote the full 

matrices of 𝑝𝑖𝑗 and 𝑐𝑖𝑗𝑙 as 𝐏, and 𝐂𝑙, respectively. The full set of IBD segments are contained in 𝑆, 

where each element 𝑠𝑖𝑗𝑐𝑠𝑒 indicates the IBD status (1 or 2) for individuals i and j, for the segment 
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starting on chromosome c and starting at position s and ending at position e. The IBD status (0, 1, 

or 2) for individuals i and j at marker m can also be indicated as 𝑑𝑖𝑗𝑚, with the full matrix of all 

individuals’ IBD sharing at marker m as 𝐃𝑚. 

Input data preparation 

The first step for Population Linkage is to prepare the input data. These consist of 

quantitative trait values from the cohort of interest and estimates of genetic relationships and allelic 

segregation (in the form of IBD estimates) between all pairs of individuals. The structure and 

requirements of these data will be described in greater detail in the following sub-sections. 

Traits 

This paper only considers linkage analysis with quantitative traits. The raw values 𝒚∗ 

should be prepared for analysis by regressing on relevant covariates like age, sex, medication 

usage, and principal components, and the residuals inverse-normalized. This not only has the 

benefit of reducing the effect of extreme observations, but also results in trait values 𝒚 that are 

standardized and centered around 0, which will be helpful for obtaining a cross product 𝒚𝒚𝑇 that 

does not depend on the mean and variance of 𝒚∗. 

Kinship 

There are a variety of different estimators for kinship 𝚽 that can be used for Population 

Linkage to model the contribution of overall genome-wide effects to the variance of a trait. The 

choice of any such estimator is associated with its own advantages and disadvantages. In this paper, 

we chose to estimate kinship from observed genotypes rather than reported pedigree relationships 

because in many large GWAS cohorts pedigree information can be absent, incomplete, or incorrect 

(Thomson & McWhirter, 2017). In addition, relationships estimated from genotypes can be more 
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informative than relationships reported from pedigrees since they will reflect how much genetic 

material is actually shared between a pair of relatives rather than theoretical expectations, which 

for some relationship types can diverge by a large amount. 

In this paper, we use the estimator from Manichaikul et al that is implemented in the KING 

software package (2010) 

𝚽̂𝑖𝑗 =
𝑁𝐴𝑎,𝐴𝑎−2𝑁𝐴𝐴,𝑎𝑎

2𝑁𝐴𝑎
(𝑖) +

1

2
−

1

4

𝑁𝐴𝑎
(𝑖)
+𝑁𝐴𝑎

(𝑗)

𝑁𝐴𝑎
(𝑖)       (Equation 1) 

where 𝑁𝐴𝑎,𝐴𝑎 is the number of variants heterozygous in both individuals i and j, 𝑁𝐴𝐴,𝑎𝑎 is the 

number of homozygous discordant variants between individuals i and j, 𝑁𝐴𝑎
(𝑖)

 is the number of sites 

heterozygous in individual i, and 𝑁𝐴𝑎
(𝑗)

 is the number of sites heterozygous in individual j. For i = 

j, we set 𝚽̂𝑖𝑗 = 0.5, the maximum kinship coefficient in outbred individuals. Using this estimator 

has several advantages in our context. The first is that this pairwise calculation is extremely 

computationally efficient in large data sets with tens of thousands of individuals. In addition, 

Equation 1 does not depend on allele frequencies and is robust in cohorts with population structure, 

capturing primarily genetic similarity due to recent family relationships as opposed to population-

level genetic similarity. This is particularly important for a variance-components linkage analysis 

like Population Linkage since increased genome-wide genetic sharing for a pair of individuals 

from belonging to the same ancestral group does not translate to the pair having more co-

segregated alleles from a recent ancestor. Finally, while the accuracy of Equation 1 drops off for 

more distant relationship types compared to close relatives, it is very accurate in close relatives 

who are likely to share large amounts of genetic material, and relative differences in 𝚽̂𝑖𝑗 are still 

useful for predicting IBD sharing in more distant relatives. 
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This kinship estimator differs from what is calculated by default in variance components 

software like GEMMA and GCTA, which calculate a genetic relationship matrix (GRM) 𝐀 using 

the following equation 

𝐀 =
1

𝑀
𝐖𝐖𝑇         (Equation 2) 

where 𝐖 is the matrix of centered, standardized genotypes for the cohort, and M is the number of 

genetic markers (Yang, Lee, Goddard, & Visscher, 2011; X. Zhou & Stephens, 2012). We chose 

not to use a GRM estimate for kinship for Population Linkage because of the computational 

complexity of calculating a GRM in large cohorts, the fact that it captures population structure in 

addition to relatedness, and that it returns dissimilar 𝐀𝑖𝑗 values for the same relationship type. 

IBD segments 

In addition to kinship estimates which capture genome-wide similarity between pairs of 

individuals, Population Linkage requires estimates of which genomic segments are shared between 

relatives in order to map a trait to a particular genomic region. To accomplish this, we chose to use 

estimates of identical-by-descent (IBD) segments between pairs of individuals, similar to previous 

variance-components linkage methods for quantitative traits (Amos, 1994). 

To estimate the set of all IBD segments 𝑆 in our cohort, we identify contiguous blocks of 

at least 64 markers and 2.5 Mb in length between pairs of individuals that are consistent with IBD 

2 (identical genotype for both) or IBD 1 (no discordant genotype pairs). We then call IBD 2 

segments first since this condition is more stringent, followed by IBD 1. Any remaining genetic 

material is classified as IBD 0 between the pair. We used a particularly fast implementation of this 

method in the software package KING to estimate 𝑆. From 𝑆̂, we calculate the matrix 𝐃̂𝑚 at the 
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unique endpoints of all IBD segments in 𝑆̂ where there is a change in IBD status. For the diagonal 

entries 𝑖 = 𝑗, we set 𝐃̂𝑖𝑗𝑚 = 2 at all markers m. 

We chose to estimate 𝑆 and 𝐃 with this simple algorithm as opposed to a hidden Markov 

model method like that described in (Boehnke & Cox, 1997) primarily for its computational 

simplicity. Because Population Linkage is designed to work without reported pedigree 

relationships, IBD segments between all pairs of individuals had to be considered to avoid biased 

results. Even limiting the search to pairs above a modest estimated kinship 𝚽̂𝑖𝑗 would have been 

problematic because it would have caused any trait with a strong genetic basis to appear to be 

linked with IBD sharing in a given region, even where no such relationship exists. In contrast, 

using the above method between all pairs in its KING implementation can practically scale to 

estimate IBD in GWAS cohorts with hundreds of thousands of individuals. 

Proportion of IBD 

A single statistic for genome-wide genetic similarity between pairs of individuals can fail 

to capture all the subtleties and nuances that exist in genetic relationships. For this reason, in 

addition to estimated kinship, 𝚽̂, we also calculate the genome-wide proportion 𝐏̂ of genetic 

material estimated to be shared IBD between pairs of individuals from the set of all IBD segments 

𝑆̂ using the following formula:  

𝐏̂𝑖𝑗 =
∑ 𝑠̂𝑖𝑗𝑐𝑠𝑒𝑠̂𝑖𝑗𝑐𝑠𝑒∈𝑆̂𝑖𝑗

2∑ 𝑙𝑒𝑛(𝑐)
𝑁𝑐
𝑐=1

        (Equation 3) 

where 𝑆̂𝑖𝑗 is the set of all estimated IBD segments between individuals 𝑖 and 𝑗, 𝑁𝑐 indicates the 

number of chromosomes, 𝑐 an individual chromosome, 𝑙𝑒𝑛(𝑐) is a function that returns the length 

of chromosome 𝑐 in base-pairs, and 𝑠̂𝑖𝑗𝑐𝑠𝑒 indicates the estimated IBD status (1 or 2) for individuals 

𝑖 and 𝑗, for the segment on chromosome c starting at position s and ending at position e. In Equation 
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3, each 𝐏̂𝑖𝑗  is a simple average of the estimated IBD status at every genomic position between 

individuals 𝑖 and 𝑗. We set 𝐏̂𝑖𝑗 = 2 for all 𝑖 = 𝑗. 𝐏̂ is more accurate than 𝚽̂ for close relatives, but 

is biased downward for distant relatives since the above method for estimating 𝑆 does not consider 

IBD segments less than 2.5 Mb or 64 markers in length. Empirically, this downward bias in distant 

relatives appears to be most severe near chromosome ends. Estimates of 𝐏̂𝑖𝑗  in distant relatives 

who share short IBD segments would therefore be underestimates of the true proportion 𝐏𝑖𝑗 .  

Proportion of IBD chromosome ends 

There are additional challenges to estimating IBD segments at the ends of chromosomes. 

The end of each chromosome physically truncates the length of IBD segments, commercial 

genotyping arrays typically have lower marker density near telomeres, and the higher 

recombination rate results in shorter IBD segments that are more difficult to identify. These factors 

all lead to downward bias in 𝐃̂𝑖𝑗𝑚 toward the ends of chromosomes, and importantly, the shared 

segments that can be identified tend to be concentrated in closer relatives who often have more 

similar trait values because of shared non-genetic but familial factors.  

For these reasons, for all pairs of individuals we estimate 𝐂𝑖𝑗𝑙, the proportion of 

chromosome ends (of length 𝑙) that contain an IBD segment between individuals 𝑖 and 𝑗. We use 

the following formula: 

𝐂̂𝑖𝑗𝑙 =
1

4𝑁𝑐
∑ (∑ 𝑠𝑖𝑗𝑐𝑠𝑒𝑠<𝑙 +∑ 𝑠𝑖𝑗𝑐𝑠𝑒𝑒>𝑙𝑒𝑛(𝑐)−𝑙 )
𝑁𝑐
𝑐=1     (Equation 4) 

where 𝑁𝑐 indicates the number of chromosomes, 𝑐 an individual chromosome, 𝑙𝑒𝑛(𝑐) is a function 

that returns the length of chromosome 𝑐 in base-pairs, and 𝑠𝑖𝑗𝑐𝑠𝑒 indicates the IBD status (1 or 2) 

for individuals i and j, for the segment starting on chromosome c and starting at position s and 

ending at position e. For 𝑖 = 𝑗, we set 𝐂̂𝑖𝑗𝑙 = 1, the maximal value. 
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There are several advantages to estimating 𝐂̂𝑙 with Equation 4. The length parameter 𝑙 can 

be tuned according to what works best for a particular data set or phenotype. This tuning process, 

described in greater detail later in this section, is achieved by testing Population Linkage with 

different values of 𝑙 on a subset of the data. The value of 𝑙 that results in the best performance can 

then be used to analyze the complete data. Also, since IBD estimates near the ends of chromosomes 

are inherently unreliable for the aforementioned reasons, Equation 4 does not attempt to estimate 

the proportion of IBD between pairs of individuals in the ends of chromosomes, a quantity we are 

not interested in. Instead, Equation 4 only captures the presence of estimated IBD segments to 

identify the pairs of individuals that are more likely to have an estimated IBD segment there and 

can therefore be used to account for the bias in IBD estimates these regions. 

Statistical model 

After the input data has been prepared, there are many options for which inputs can then 

be used for variance-components estimation and linkage analysis. We begin this section by 

describing our framework for variance-components estimation and linkage analysis using cross-

product Haseman-Elston regression, then by outlining a strategy for users of Population Linkage 

to decide on a variance-components model for linkage analysis.  

Single-VC model 

For a model with a single variance component for additive genetic effects, 𝜎𝑲
2, we model 

trait variance in the following way:  

𝑣𝑎𝑟(𝒚) = 𝐊𝜎𝑲
2 + 𝐼𝜎𝑒

2        (Equation 5) 

where 𝐊 is a matrix of genetic relationships that has been centered so all rows and columns sum 

to 0 and scaled by the mean of its diagonal terms, and 𝐼 is an n-by-n identity matrix. Centering and 
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scaling 𝐊 in this way accounts for the scaling and centering of 𝒚 that took place during its inverse-

normal transform and which changes the variance-covariance matrix of 𝒚. In addition, since 𝐊 is 

scaled, 𝜎𝑲
2 can also be interpreted as the proportion of variance explained (PVE) by additive genetic 

effects and 𝜎𝑒
2 = 1 − 𝜎𝑲

2 is the proportion of trait variance attributed to environmental effects and 

individual variability. 

We obtain point estimates for 𝜎𝑲
2 and 𝜎𝑒

2 by cross-product Haseman-Elston regression 

using the following formulas from (X. Zhou, 2017) 

𝑞 = (𝒚𝑇𝐊− 𝒚𝑇
𝑛

𝑛−1
)𝒚       (Equation 6) 

𝑠 = 𝑡𝑟(𝐊𝐊) −
𝑛2

𝑛−1
        (Equation 7) 

And obtain the estimate of the variance components: 

𝜎̂𝑲
2 =

𝑞

𝑠
          (Equation 8) 

and 

𝜎̂𝑒
2 = 1 − 𝜎̂𝐊

2.          (Equation 9) 

Standard errors for 𝜎̂𝑲
2 and 𝜎̂𝑒

2 are obtained using the following formulas from (X. Zhou, 

2017) 

𝑉(𝑞) = 2 (𝒚𝑇𝐊− 𝒚𝑇
𝑛

𝑛−1
) (𝜎̂𝐊

2𝐊+ 𝜎̂𝑒
2𝐼) (𝒚𝑇𝐊− 𝒚𝑇

𝑛

𝑛−1
)
𝑇
   (Equation 10) 

𝑉(𝜎̂𝑲
2) =

𝑉(𝑞)

𝑠2
         (Equation 11) 

𝑆𝐸(𝜎̂𝑲
2) = √𝑉(𝜎̂𝑲

2).        (Equation 12) 

Both the point estimates and standard errors are implemented in the GEMMA software 

package. 
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Multi-VC model 

To fit a model with 𝑘 > 1 variance components,  

𝑣𝑎𝑟(𝒚) = ∑ 𝐊𝑎𝜎𝑲𝑎
2𝑘

𝑎=1 + 𝐼𝜎𝑒
2      (Equation 13) 

The formulas for the point estimates become  

𝒒 = (

𝒚𝑇𝐊1 − 𝒚
𝑇 𝑛

𝑛−1

⋮

𝒚𝑇𝐊𝑘 − 𝒚
𝑇 𝑛

𝑛−1

)𝒚       (Equation 14) 

𝐒 = (
𝑡𝑟(𝐊1𝐊1) ⋯ 𝑡𝑟(𝐊1𝐊𝑘)

⋮ ⋱ ⋮
𝑡𝑟(𝐊𝑘𝐊1) ⋯ 𝑡𝑟(𝐊𝑘𝐊𝑘)

) −
𝑛2

𝑛−1
     (Equation 15) 

𝝈̂2 = 𝐒−1𝒒         (Equation 16) 

𝜎̂𝑒
2 = 1 − ∑ 𝜎̂𝐊𝑎

2𝑘
𝑎=1 .         (Equation 17) 

And the standard errors: 

𝑉(𝒒) = 2(

𝒚𝑇𝐊1 − 𝒚
𝑇 𝑛

𝑛−1

⋮

𝒚𝑇𝐊𝑘 − 𝒚
𝑇 𝑛

𝑛−1

)(∑ 𝐊𝑎𝜎̂𝑲𝑎
2𝑘

𝑎=1 + 𝐼𝜎̂𝑒
2)(

𝒚𝑇𝐊1 − 𝒚
𝑇 𝑛

𝑛−1

⋮

𝒚𝑇𝐊𝑘 − 𝒚
𝑇 𝑛

𝑛−1

)

𝑇

 (Equation 18) 

𝑉(𝝈̂2) = 𝐒−1𝑉(𝒒)𝐒−1       (Equation 19) 

𝑆𝐸(𝜎̂𝑲𝑎
2 ) = √𝑉(𝜎̂𝑲𝑎

2 ) ,∀ 𝑎 ∈ {1,… , 𝑘}.     (Equation 20) 

Similar to Equation 10, Equation 18 is an asymptotic approximation for 𝑉(𝒒) and corresponds to 

an n-fold speedup (complexity 𝑂(𝑘2𝑛3) to 𝑂(𝑘2𝑛2)) for estimating the standard errors compared 

to using the expected information matrix (X. Zhou, 2017). 
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2-VC linkage model 

The simplest variance-components model for linkage analysis is one with 𝑘 = 2. 

Specifically, 𝐊1 will be the centered and scaled version of one of either 𝚽̂, 𝐏̂, or 𝐂̂𝑙 and 𝐊2 the 

centered and scaled matrix 𝐃̂𝑚 at a particular marker 𝑚.  Three possible options include: 

𝑣𝑎𝑟(𝒚) = 𝚽̃𝜎𝚽̃
2 + 𝐃̃𝑚𝜎𝐃̃𝑚

2 + 𝐼𝜎𝑒
2      (Equation 21) 

𝑣𝑎𝑟(𝒚) = 𝐏𝜎𝐏̃
2 + 𝐃̃𝑚𝜎𝐃̃𝑚

2 + 𝐼𝜎𝑒
2      (Equation 22) 

𝑣𝑎𝑟(𝒚) = 𝐂̃𝑙𝜎𝐂𝑙
2 + 𝐃̃𝑚𝜎𝐃̃𝑚

2 + 𝐼𝜎𝑒
2.      (Equation 23) 

The tilde over the matrices reflects that these are the centered and scaled versions of these matrices 

and not the original estimates. The fitting procedure for these models to obtain point estimates and 

standard errors of the variance components are the same as Equations 14-20 with 𝑘 = 2. This fit 

must then be repeated at all marker locations 𝑚 that will be tested for linkage. 

After obtaining 𝜎̂𝐃̃𝑚
2  and 𝑆𝐸 (𝜎̂𝐃̃𝑚

2 ), we calculate a one-sided p-value using the inverse of 

the standard normal cumulative distribution function (CDF), here denoted as 𝐹−1, using the 

following formula 

𝐹−1 (
𝜎̂𝐃̃𝑚
2

𝑆𝐸 (𝜎̂𝐃̃𝑚
2 )

⁄ ).       (Equation 24) 

Logarithm of odds (LOD) is a traditional statistic for the strength of evidence for (or against) 

genetic linkage (Morton, 1955). For Population Linkage, we define  

LOD = log10 𝐿(𝜎̂𝐃̃𝑚
2 ) 𝐿(𝜎𝐃̃𝑚

2 = 0)⁄ ,       (Equation 25) 

and  

𝐿 (𝜎̂𝐃̃𝑚
2 ) = 𝑓 (

𝜎̂𝐃̃𝑚
2

𝑆𝐸 (𝜎̂𝐃̃𝑚
2 )

⁄ ).      (Equation 26) 
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𝑓 here denotes the probability density function (PDF) of the standard normal distribution. From 

this likelihood, we can derive a simple equation for LOD score 

 LOD =

{
 
 

 
 0, 𝜎̂𝐃̃𝑚

2 ≤ 0

(
𝜎̂𝐃̃𝑚
2

𝑆𝐸(𝜎̂
𝐃̃𝑚
2 )

⁄ )

2

2log (10)
, 𝜎̂𝐃̃𝑚

2 > 0

.     (Equation 27) 

We set LOD = 0 when 𝜎̂𝐃̃𝑚
2 ≤ 0 because negative estimates for variance components do not 

constitute evidence for linkage. We use the established threshold of LOD > 3 for genome-wide 

significance which approximately corresponds to a one-sided p-value of 10-4 (Risch, 1991). 

Multi-VC linkage model 

In some settings it may be desirable to run a linkage analysis with 𝑘 > 2, that is, with 

separate variance-components terms for 𝚽̃, 𝐏, and 𝐂̃𝑙 or some subset of these in addition to 𝐃̃𝑚. 

This can help to control for inflation in LOD scores when a single variance component is not 

sufficient to capture the effects of genome-wide genetic similarity between pairs of individuals. 

The main tradeoff to this approach is that the computational complexity of calculating 𝜎̂𝐃̃𝑚
2  and 

𝑆𝐸 (𝜎̂𝐃̃𝑚
2 ) increases quadratically with 𝑘. 

One solution to the increased computational complexity is to fit variance components for 

𝚽̃, 𝐏, and 𝐂̃𝑙 or a subset of these jointly without 𝐃̃𝑚 and then reweight and combine into a single 

composite matrix 

𝐊̃ = (𝚽̃𝜎𝚽̃
2 + 𝐏𝜎𝐏̃

2 + 𝐂̃𝑙𝜎𝐂𝑙
2 )

𝟏

𝜎
𝚽̃
2+𝜎

𝐏̃
2+𝜎

𝐂̃𝑙

2      (Equation 28) 

to run linkage analysis with 𝐃̃𝑚. This approach simplifies the linkage analysis because the matrices 

𝚽̃, 𝐏, and 𝐂̃𝑙 do not depend on 𝑚 and their fit relative to one another only needs to be calculated 

once rather than repeated at all markers 𝑚. The rest of the analysis proceeds identically to the 
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linkage analysis with 𝑘 = 2 described in the previous subsection. Later, we present results on using 

𝐊̃ for linkage analysis compared to separate variance components for 𝚽̃, 𝐏, and 𝐂̃𝑙. 

Strategy for model selection 

The preceding subsection gives several options for running Population Linkage. Users can 

choose between 𝑘 = 2 variance component models with one of either 𝚽̃, 𝐏, or 𝐂̃𝑙 and 𝐃̃𝑚 or 𝑘 >

2 models with a combination of 𝚽̃, 𝐏, or 𝐂̃𝑙 and 𝐃̃𝑚. In addition, the length 𝑙 for calculating 𝐂̃𝑙 is 

variable and there is a choice whether to combine individual matrices 𝚽̃, 𝐏, or 𝐂̃𝑙 or a subset of 

these into a composite matrix 𝐊̃ for linkage analysis. This subsection gives some strategies for how 

to weigh these options and decide on a path forward for analysis. 

The first step for deciding on a model for linkage analysis is to establish objective criteria 

for comparing the different models. Here, we outline some specific model criteria for Population 

Linkage to use rather than general statistics of model fit like AIC, BIC, or deviance. Genomic 

control (a.k.a. GC-lambda), a common metric for inflated test statistics in GWAS, can also be 

calculated from the test statistics generated in a genome-wide linkage scan since these follow the 

same distribution under the null hypothesis (Devlin & Roeder, 1999). In addition, the proportion 

of variance explained (PVE) by a variance component, if comparable in size to the other 

components, is a good indication that it is capturing genetic effects not adequately represented by 

the other components and is helpful for controlling for the confounding between 𝐃̃𝑚 and overall 

additive genetic effects. Visual inspection of a plot of LOD scores can reveal additional problems 

with an analysis (for example, inflation at the ends of chromosomes) not captured by GC-lambda. 

Users of Population Linkage should choose the model with GC-lambda nearest 1 and maximum 

total PVE, but performance on these criteria must be weighed against constraints on runtime and 

RAM usage that the user faces. The effects of more complex models on computational cost can be 
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mitigated by combining individual variance-component matrices into a composite matrix 𝐊̃, but 

the accuracy of linkage peaks found with this computational convenience should be checked 

against the model with the individual matrices. 

If a study has a large sample size (for example, 𝑛 > 10,000) and multiple traits, then it 

may be helpful to select a subset of traits and individuals for evaluating the choice of model. 

Individuals (and corresponding rows and columns of 𝚽̃, 𝐏, 𝐂̃𝑙, and 𝐃̃𝑚) can be randomly sampled 

to produce a smaller testing set, and traits can be either randomly selected from a list of those 

available, chosen to represent traits with different genetic architectures, or simulated to ensure 

there are no real linkage signals. Such a subsetting approach can vastly reduce the amount of time 

needed to optimize the linkage analysis for a particular cohort before running it on the full data. 

The next step is to test all models with 𝑘 = 2 variance components with a linkage analysis. 

If none of these appear to be satisfactory in terms of its GC-lambda, PVE, and LOD plot, then the 

user should test all models with 𝑘 > 2 variance components. If 𝐂̃𝑙 is included in the final model, 

then the user should run linkage analyses with different values of 𝑙 and decide on an optimal value. 

Finally, if a model with 𝑘 > 2 variance components has outperformed the models with 𝑘 = 2 

variance components in terms of better GC-lambda, PVE, and LOD plot compared to the models, 

then the user should test whether combining variance-component matrices produces comparable 

results. 

Linkage analysis and integration with GWAS 

 After selecting the appropriate model and other parameters for analysis, the next steps are 

to run the linkage analysis genome-wide across all available traits at the full sample size and 

integrate the linkage results with GWAS summary statistics on the same traits. The linkage 

analysis begins by fitting the static variance components 𝚽̃, 𝐏, and 𝐂̃𝑙 for each trait to reweight 
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and combine these into the composite matrix 𝐊̃ as in Equation 28. We then run the linkage analysis 

genome-wide by fitting variance components with 𝐊̃ and 𝐃̃𝑚 at different markers 𝑚 using 

Haseman-Elston regression as in Equations 13-20. We proceed with linkage analysis in this way 

because the variance-components model both provides point estimates and standard errors of 𝜎𝐃𝑚
2  

for evaluating evidence of linkage while controlling for genome-wide effects on the trait. 

After completing the linkage analysis and calculating LOD scores across the genome, we 

report which loci show evidence of linkage with the trait of interest. Since the region over which 

LOD is greater than 3 can be large and span many loci tested with many small increases and 

decreases in LOD score, we report a specific site as a linkage peak if its LOD is greater than 3 and 

greater than the LOD scores of the two adjacent sites to the right and the two adjacent sites to the 

left. This definition effectively results in assigning the linkage signal in a region to the marker with 

the local maximum of LOD score. We do this because the LOD scores at nearby markers are highly 

correlated and LOD scores greater than 3 at sites near the peak are likely shadows of the stronger 

signal. This practice of focusing on the top signal in a region is consistent with previous 

approaches. This peak marker then becomes the focus for follow up analyses.  

Once GWAS results have been generated for the same data used in the linkage analysis, it 

becomes possible to integrate and compare these with the linkage results. We extract all GWAS 

variants within 5 Mb of each linkage peak and choose the one with the smallest p-value for 

comparison. This top GWAS SNP gives a finer-resolution picture for the region that is driving the 

linkage signal and narrows down the list of candidate genes in that region. We chose to focus our 

search for GWAS variants within 5 Mb of linkage peaks because the 2.5 Mb minimum length to 

detect IBD segments limited the resolution of linkage peaks. 
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Computational approach 

The previous sections describe how Population Linkage uses variance components 

estimated by Haseman-Elston regression to perform a genome-wide linkage analysis on population 

level data. Despite this improvement in scalability over full-likelihood linkage methods based on 

the Elston-Stewart or the Lander-Green algorithm, Population Linkage must still deal with several 

large 𝑛 × 𝑛 matrices as input and iterate over a dense marker map that can make the analysis time-

consuming and challenging. This section describes several strategies we implemented to remedy 

these challenges by limiting the number of sites tested, managing the input data, and re-using 

several terms in the Haseman-Elston fit while calculating variance components across the genome. 

Our first strategy for improving the runtime of Population Linkage is to limit the number 

of sites tested to the unique endpoints of estimated IBD segments in 𝑆̂. It is redundant to fit the 

Haseman-Elston regression at two adjacent markers 𝑚1 and 𝑚2 where 𝐃̂𝑖𝑗𝑚1
= 𝐃̂𝑖𝑗𝑚2

 for every 

pair 𝑖, 𝑗. Instead, we only fit Haseman-Elston regression and test for linkage at all the start and end 

coordinates in the set of 𝑆̂. In practice there is a considerable amount of overlap in the start and 

end points of estimated IBD segments, so this can reduce the number of sites tested from the full 

number of genotyped markers to only those with distinct patterns of IBD sharing. 

Even after removing redundant sites from the linkage analysis, there might still be too many 

IBD segment endpoints to complete a genome-wide analysis in a reasonable amount of time. To 

further limit the number of tests, we implemented an option in our software to fit variance 

components and test for linkage at fixed intervals of physical genomic distance across the genome, 

performing a specified number 𝑀′ of equally spaced tests. We perform these tests at fixed physical 

distance as opposed to genetic map distance because several other key parameters, such as the 
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minimum length of estimated IBD segments were defined in term of physical distance and we 

wanted to ensure that low-recombination regions would still receive an adequate number of tests. 

Our next strategy for improving the runtime of Population Linkage was to manage how our 

software processes input data. Because of the large size of 𝚽̂, 𝐏̂, 𝐂̂𝑙, 𝐊̃ and 𝐃̂𝑚, reading in the files 

containing this information at each marker being tested is computationally burdensome and time 

consuming. Since the matrices 𝚽̃, 𝐏, 𝐂̃𝑙, and 𝐊̃ are identical at all markers, whichever of them are 

being used for linkage analysis can be read once, kept in RAM, and reused to fit the Haseman-

Elston regression at all markers. The first 𝑘 − 1 terms in the 𝒒 vector from Equation 14 and the 

first 𝑘 − 1 rows and columns of the 𝐒 matrix from Equation 15, and the intermediate calculation 

𝒚𝑇𝐊𝑖 − 𝒚
𝑇 𝑛

𝑛−1
, 𝑖 < 𝑘 only depend on 𝚽̃, 𝐏, 𝐂̃𝑙 or 𝐊̃ and not 𝐃̃𝑚, so we compute these terms only 

once, store the results in RAM and reuse them at all markers m to avoid multiplying these large 

matrices repeatedly. 

While high-performance computing systems can generally handle keeping the matrices 𝚽̃, 

𝐏, 𝐂̃𝑙, or 𝐊̃ in RAM for repeated use, when 𝑛 is large and there are a large number of IBD segments 

in 𝑆̂, it may not be feasible to store all IBD segments for the entire genome in RAM to calculate 

𝐃̃𝑚 and fit variance-components at every marker m. Even on systems that have enough RAM to 

store 𝚽̃, 𝐏, 𝐂̃𝑙, or 𝐊̃ and a single matrix 𝐃̃𝑚 for Haseman-Elston regression, the collection of all 

estimated IBD segments can be several orders of magnitude larger. To deal with this issue, we 

only keep a single uncentered and unscaled 𝐃̂𝑚 in RAM at any one time. We divide 𝑆̂ into small 

files by genomic segments and update 𝐃̂𝑚 with the IBD changes at each position in 𝑆̂, as described 

in the next paragraph. This approach results in identical output compared is much faster.  

To accomplish this goal of calculating 𝐃̂𝑚 at every marker with a low memory footprint, 

we pre-process the file containing all IBD segments in 𝑆̂ by storing the chromosome, position, IBD 
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status and sample IDs for all segment endpoints in separate files that each correspond to one 

megabase (Mb) of genomic distance. This helps because it avoids sorting the entire file containing 

possibly billions of IBD segments at once. These IBD segment endpoints are stored in a binary 

format so the segments can be written and read faster. After all the IBD segments in 𝑆̂ have been 

processed this way, we read the first file into RAM, sort it, use the IBD states for all pairs of 

individuals at the first position to construct 𝐃̂1, center and scale to obtain 𝐃̃1, estimate 𝜎𝐃1
2  using 

Haseman-Elston regression, and perform the first linkage test. We have saved 𝐃̂1 prior to centering 

and scaling so at the next position 𝑚 = 2, most entries can be kept in 𝐃̂2 and only the entries that 

represent pairs of individuals that begin or end an IBD segment at 𝑚 = 2 need to be updated. At 

this point, Haseman-Elston can be fit again to test for linkage at this second marker or skipped if 

the user chose to limit the number of tests. This process of iteratively updating 𝐃̂𝑚 and fitting (or 

skipping) Haseman-Elston can then be repeated until all positions in the file have been exhausted. 

Then, the next file containing the IBD segment endpoints for the next 1 Mb chunk is read in and 

the same process repeated. This process continues on each file until the entire genome has been 

iterated over. Handling the estimated IBD segments this way allows calculating the IBD matrix 

𝐃̂𝑚 and performing Haseman-Elston regression at every genomic position where IBD changes 

without loading all IBD segments into RAM simultaneously. 

Implementation 

The method we used for kinship and pairwise IBD estimation described in the section Input 

data preparation were implemented in KING versions 2.1.2 and higher (W. M. Chen, Manichaikul, 

Nguyen, Onengut-Gumuscu, & Rich, 2017). We ran KING with default settings, the options 

“kinship” and “ibdseg” invoked, and on up to 46 CPU cores in parallel. The Haseman-Elston 

regression in Equations 13-20 was implemented in GEMMA 0.96 (X. Zhou, 2017), which we 
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modified to directly read in the output from KING, incorporate the computational approach 

described in this paper, and calculate LOD scores for linkage. This modified version of GEMMA 

0.96 for Population Linkage is available for download at https://github.com/gjmzajac/GEMMA-

population-linkage. 

Experimental data: SardiNIA 

To test Population Linkage, our approach for limiting the number of tests and whether we 

could replicate GWAS associations for lipid traits, we used genotypes and phenotype information 

from the SardiNIA project (Pilia et al., 2006). SardiNIA is an ongoing genotyping and sequencing 

study of individuals from a population isolate in the Lanusei valley of the Italian island of Sardinia. 

Two of the distinctive features of this data set that make it useful for our project are the detailed 

information collected on a wide range of quantitative traits and the high degree of relatedness 

between individuals in the sample.  

The SardiNIA project data we obtained consists of 6,602 samples with genotype data at 

18,754,911 variants. All samples were genotyped on 4 commercial genotyping arrays which 

together had a total of 890,542 variants. A subset of 2,120 of these were also sequenced and used 

to impute genotypes at an additional 17.6 million variants in the rest of the samples. Because of 

the effect of genetic isolation from the rest of Europe in the Sardinia population (Chiang et al., 

2018) and strong relatedness in this cohort specifically, the imputed genotypes were of much 

higher accuracy than would be typical with publicly available imputation panels (Pistis et al., 2015; 

Sidore et al., 2015). In addition to the genotype data, we also obtained LDL, HDL, and total 

cholesterol and triglycerides measurements that had been regressed on sex, age and age2 and the 

residuals inverse-normal transformed by the SardiNIA study team prior to our analysis. The 

https://github.com/gjmzajac/GEMMA-population-linkage
https://github.com/gjmzajac/GEMMA-population-linkage
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SardiNIA study team also shared GWAS summary statistics generated by running EMMAX (Kang 

et al., 2010) with default settings on these same data. 

We wanted to test whether our method could replicate GWAS signals at these lipid traits 

and also evaluate whether limiting the number of tests affected our ability to detect linkage signals. 

For this, we estimated marker specific IBD status, pairwise kinship, proportion of IBD in 1 Mb 

chromosome ends, and genome-wide IBD proportion with KING 2.2 in the full set of variants. 

After testing the performance of different 2-VC models for linkage, we settled on using genome-

wide IBD proportion 𝜎𝐏
2 and marker-specific IBD status 𝜎𝐃𝑚

2  in Population Linkage, varying the 

number of tests performed 𝑀′ with 1,000, 5,000, 10,000, and 20,000 equally spaced tests. We then 

integrated the linkage results with the GWAS summary statistics we obtained from the SardiNIA 

study team and compared these in terms of LOD score and PVE of each linkage peak and the p-

value and R2 of the top GWAS variant. 

Experimental data: HUNT 

To see how well our method could scale to larger cohorts and reveal additional insights 

into the genetics of lipid traits, we chose to test for linkage in the HUNT study (Krokstad et al., 

2013). Because of the multi-generational time scale and high participation rate in this sparsely 

populated region of Norway, the HUNT cohort contains a very large number of family 

relationships that can be inferred using the genetic data and used to test for genetic linkage. HUNT 

does not collect any reported pedigree information. Genetic samples in the HUNT study totaling 

69,716 in number were collected over 24 years from three population-based health surveys of all 

adults in Nord-Trøndelag County in Norway. All samples were genotyped on a version of the 

IlluminaHumanCore-24 Exome array with custom content (Illumina, 2017) with a total of about 

600,000 genetic markers. We obtained genotypes at 359,432 genetic markers after QC and phasing 



 

 

 

134 

with SHAPEIT2 (Delaneau, Zagury, & Marchini, 2013). In addition to the genotype data, we also 

obtained imputed dosages at 45,453,131 autosomal variants from the Haplotype Reference 

Consortium as described in (Nielsen et al., 2018) in order to run GWAS analyses. 

The first step is to prepare the input data for Population Linkage. For this we estimated 

IBD and kinship with the 359,432 genotyped variants we obtained from HUNT using KING 2.1.3 

and used these to derive the estimated genome-wide IBD proportion, 𝐏̂, and the IBD proportion at 

the ends of chromosomes, 𝐂̂𝑙. For all HUNT participants with genetic data we also obtained LDL, 

HDL, and total cholesterol and triglycerides measurements for our linkage analysis. We also 

obtained body-mass-index (BMI) measurements as a control phenotype to help with model 

selection. To analyze all these phenotypes in HUNT in a systematic fashion, we regressed each 

phenotype on genetic principal components 1-4, genotyping batch, age at time of measurement, 

and sex. We ran our linkage analysis and GWAS on the inverse-normalized residuals of these 

phenotypes with the covariates regressed out. 

After preparing the input data, we proceeded to select the optimal model for linkage 

analysis as described in the section, Strategy for model selection. To do this, we randomly sampled 

25,000 of our HUNT participants to evaluate the choice of different variance components more 

quickly than with the full data. Any linkage analyses run on this subset for model selection 

purposes were also limited to 𝑀′ = 1,000 equally spaced tests to further improve computational 

time. To help with this evaluation, we decided to run a null simulation with no true linkage signals. 

Since an independent, identically distributed phenotype would not have satisfactorily captured the 

correlation in any trait from analyzing related individuals, we simulated a correlated phenotype for 

our cohort with covariance based on the genotype relatedness matrix (GRM) described in Equation 

2. To generate the GRM, we used GEMMA 0.96 on the complete set of phased genotype data. To 
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simulate the correlated phenotype, we performed Cholesky decomposition 𝐀 = 𝐋𝐋T of our GRM 

𝐀 and multiplied ((0.25)𝐼 + (0.75)𝐋) by a vector 𝒙 of independent, identically distributed values 

randomly sampled from the standard normal distribution. Using LDL and BMI measurements and 

these simulated phenotype values across our random subset of 25,000 individuals, we tested using 

estimated kinship 𝚽̃, genome-wide IBD proportion 𝐏, and proportion of chromosome ends that 

are IBD 𝐂̃𝑙 individually and all combinations of these along with IBD estimates 𝐃̃𝑚 in a variance-

components model for linkage analysis. We evaluated these based on the proportion of variance 

explained (PVE) by the variance components and genomic-control (GC) lambda values from 

linkage analysis. After choosing a model, we also tested different lengths of chromosome ends 𝑙 

between 50 kb and 5 Mb for calculating 𝐂̃𝑙. We also tested the performance of combining 𝚽̃, 𝐏, 

and 𝐂̃𝑙 into a single composite matrix 𝐊̃ to run linkage analysis with 𝐃̃𝑚 compared to using separate 

variance components for all of them. 

After running the preceding tests for model selection on the subset with 25,000 individuals, 

we decided to use all available variance components 𝚽̃, 𝐏, and 𝐂̃𝑙 with 𝑙 = 500 kb, reweighted and 

combined into a single matrix for the linkage analysis of the four lipid traits in the full HUNT 

cohort. Similar to during model selection, we limited the linkage analysis to 𝑀′ = 1,000 equally 

spaced tests so that computation could complete in less than two weeks on a single CPU core for 

each phenotype. We also compiled our modified version of GEMMA v0.96 to store all values at 

float instead of double precision to reduce the memory footprint of the analysis and produce nearly 

identical results. 

After generating the linkage results and determining significant loci for each trait (HDL, 

LDL, and total cholesterol and triglycerides), we compared these with GWAS results to validate 

our linkage signals and investigate whether linkage would be advantageous to single-variant tests 
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for some sites. We performed two GWAS in the HUNT data for each of same four lipid traits as 

in the linkage analysis for this comparison, one using the 359,432 genotyped variants, and one 

with 8.6 million imputed variants that remained after filtering out variants with imputation info R2 

< 0.3 and minor allele frequency (MAF) < 1%. For both of these we used the SAIGE package (W. 

Zhou et al., 2018) to perform single-variant tests while controlling for the relatedness in HUNT. 

In addition to these GWAS in the HUNT data, we also obtained summary statistics from the Global 

Lipids Genetics Consortium (GLGC) meta-analysis of these four lipid traits in 1.6 million 

individuals of European ancestry across 75 million variants. For each of our significant linkage 

peaks, we extracted the variant with the smallest p-value for the same trait within 5Mb from each 

of these three GWAS data sets as described in the section, Linkage analysis and integration with 

GWAS. From there, we were able to examine whether each linkage peak was replicated at genome-

wide significance (p < 5×10-8) in the HUNT genotyped GWAS, the HUNT imputed GWAS, and 

the GLGC meta-analysis. 

Results 

SardiNIA 

 We examined the overall structure of relatedness and IBD sharing in SardiNIA. Using 

KING 2.2, we estimated 44,006 relative pairs of 3rd degree or closer and a total of 316,729,132 

IBD segments in the set. 97% of individuals had at least one relative of 3rd degree or closer and 

all but 7 individuals shared at least one IBD segment with another individual. Table 4-1 

summarizes the number of relative pairs, total and average number of IBD segments, and total and 

average length of IBD segments for each relationship type. This shows that the vast majority of 

estimated IBD segments (98.9%) were in more distant relatives of 3rd degree or greater. These 
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IBD segments estimated in distant relatives are potentially informative for inferring evidence of 

linkage but would have been excluded in a linkage analysis that split the SardiNIA cohort into 

smaller pedigrees to test for linkage using classical methods (Liu, Kirichenko, Axenovich, van 

Duijn, & Aulchenko, 2008). 

 We next proceeded to test different variance components models to choose one for linkage 

analysis with the SardiNIA data. KING 2.2 estimated kinship, genome-wide IBD proportion, and 

3,316,301 unique IBD-segment endpoints for all pairs of individuals. We then fit single-variance 

component models using estimated kinship, genome-wide IBD proportion, and proportion of 1 Mb 

chromosome ends that were IBD for each of the four lipid traits: high-density lipoprotein (HDL), 

low-density lipoprotein (LDL), and total cholesterol (TC) and triglycerides (TG) to calculate the 

proportion of variance explained (PVE) and then ran linkage analyses at 1,000 equally spaced sites 

with each of these same variance components to calculate genomic-control (GC) lambda values. 

The full results of these tests are reported in Table 4-2. Using the estimated kinship matrix resulted 

in the highest PVE for each trait (HDL 40.1%, LDL 32.4%, TC 38.7%, TG 26.3%), but GC lambda 

values were high for some traits (HDL 2.7, LDL 1.7, TC 1.9, TG 0.9). However, when we used 

the genome-wide IBD proportion matrix, GC lambda values were lower (HDL 1.2, LDL 1.0, TC 

1.1, TG 0.9). These GC lambda values for the IBD proportion matrix were reasonable and visual 

inspection of the LOD plots (for example, see Figure 4-2) did not reveal any problems, so we did 

not proceed to test models with additional variance components. We used the genome-wide IBD 

proportion along with marker-specific IBD status to run linkage analysis of the four lipid traits at 

larger numbers of equally spaced sites and determine significant linkage peaks for SardiNIA. 

Having selected a model for linkage analysis and calculated LOD scores, we checked the 

results for evidence of linkage in any of these 4 lipid traits. We had two significant peaks, one for 
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the trait LDL and one for total cholesterol, both on chromosome 19 near the gene APOE (LDL 

LOD 3.9, PVE 5.0%; TC LOD 3.5, PVE 4.7%). These linkage peaks are reported in Table 4-3. 

The SardiNIA study in 2015 associated the missense variants rs7412 and rs429358 in the gene 

APOE with variation in LDL and total cholesterol and rs429358 with levels of high-sensitivity C-

reactive protein (Sidore et al., 2015). rs429358 in particular is well-known as a variant that disrupts 

APOE function in lipid transport and metabolism, influencing risk for Alzheimer’s disease, 

macular degeneration, and other traits (Jiang et al., 2008; Liutkeviciene et al., 2018). The 2015 

SardiNIA paper showed that rs7412 and rs429358 were independent signals for LDL and total 

cholesterol with R2 values of 2.4% and 0.8% for LDL and 1.7% and 0.5% for total cholesterol. 

Our linkage analysis estimated that IBD sharing in the APOE locus explained 5.0% of the variance 

in LDL measurements and 4.7% for total cholesterol, higher than the R2 values for rs7412 and 

rs429358 found in the 2015 GWAS. This implies that our linkage test is able to capture the effects 

of both these variants and additional genetic variation in the region (for example in the genes 

APOC1 or APOC2 (Jong, Hofker, & Havekes, 1999)) that influence LDL and total cholesterol 

levels. 

After we had identified these significant linkage peaks for LDL and total cholesterol near 

the gene APOE, we wanted to know how our ability to detect this linkage signal was impacted by 

our choice of the number of equally spaced genetic markers across the genome at which we test 

for linkage. To evaluate this, we report the top linkage signal for LDL and total cholesterol that 

we observed when running Population Linkage at 1,000, 5,000, 10,000, and 20,000 equally spaced 

genetic markers in Table 4-3. These results show that our method is able to detect evidence for 

linkage with LOD > 3 for LDL and total cholesterol whether 1,000, 5,000, 10,000, or 20,000 

equally spaced genetic markers are tested (LDL LOD: 3.54, 3.74, 3.74, and 3.88; total cholesterol 
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LOD: 3.05, 3.46, 3.49, 3.54). These results show that while the number of sites tested does impact 

the largest observed LOD score in a region, running Population Linkage at 1,000 markers in order 

to improve runtime is sufficient to detect the strongest linkage signals present in a cohort. 

We next wanted to compare the performance of Population Linkage to GWAS in lipid 

genes beyond APOE. In Figure 4-2, we illustrate the overlap between GWAS hits and LOD scores 

from our linkage analysis for LDL. As previously mentioned, our linkage analysis successfully 

replicates the strongest GWAS signal in the gene APOE and also shows elevated LOD scores near 

other GWAS peaks in HBB and PCSK9. This result indicates that Population Linkage does capture 

some of the signal in known lipid genes beyond APOE and that rerunning this analysis with a 

larger sample size might be able to yield additional linkage peaks with LOD > 3 near these genes. 

HUNT 

Our first step for analyzing the HUNT cohort was to examine the structure of its relatedness 

and IBD sharing. KING 2.1.3 estimated 6,867,367,662 IBD segments in 341,100,522 pairs of 

individuals that shared at least one IBD segment. This resulted in a total of 279,100 IBD segment 

endpoints. Table 4-4 gives a summary of the number of pairs of parent-offspring, full sibling, 2nd 

degree, 3rd degree and more distant relationships, and the average and total number and length of 

estimated IBD segments in these relationship types. The vast majority (99.6%) of estimated IBD 

segments were in more distant relatives of 3rd degree or greater. These IBD segments estimated 

in distant relatives are potentially informative for inferring evidence of linkage but would have 

been excluded in a linkage analysis that split the HUNT cohort into smaller pedigrees to test for 

linkage using classical methods. 

We then proceeded to select the optimal variance-components model to run Population 

Linkage in HUNT. A preliminary analysis using a 2-variance-component model with genome-
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wide IBD proportion and marker-specific IBD sharing like we used in SardiNIA revealed severe 

inflation in the test statistics, particularly at the ends of chromosomes, even with the null simulated 

phenotype (Figure 4-3, top). Further investigation revealed that IBD estimates were significantly 

biased toward close relatives near the ends of chromosomes relative to the middle (Figure 4-3, 

bottom). The closeness of relatives IBD at a locus was almost perfectly correlated with the 

proportion of variance explained (PVE) by IBD estimated at that locus (Pearson’s correlation 0.99, 

Figure 4-4), illustrating the effect of this confounding. 

After this preliminary analysis, we began a systematic evaluation of all potential models 

for Population Linkage described in the methods section of this paper using our randomly sampled 

subset of 25,000 samples. We began by fitting low-density lipoprotein cholesterol (LDL), body 

mass index (BMI), and our simulated trait with single-variance-component models of kinship, 

pairwise IBD proportion, and average IBD in chromosome ends to assess their relative ability to 

explain the correlation structure in these traits. We also ran linkage analyses with the same traits 

and each of the same individual variance components together with the matrix of marker-specific 

IBD sharing, 𝐃̃𝑚 to calculate genomic-control (GC) lambda values. These analyses revealed that 

while the chromosome ends had the largest PVE (50.2% LDL, 37.0% BMI, and 68.8% 

Simulation), using the pairwise IBD proportion for linkage resulted in the lowest GC lambda 

values for LDL and BMI (2.73 and 2.33) when used for linkage and kinship resulted in the best 

GC lambda for the simulation (3.62, full results in Table 4-5). However, all of these 2-variance-

component models had inflated test statistics as shown by these observed GC lambda values much 

greater than 1. 

Since none of the 2 variance component models for linkage could adequately control for 

inflation, we ran all combinations of estimated kinship, genome-wide IBD proportion, and 
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proportion of IBD in chromosome ends both with and without marker-specific IBD sharing 𝐃̃𝑚 to 

test if one of these models would mitigate the issue. The results were that running kinship, 

chromosome ends, and Dm resulted in the highest PVE (50.3% LDL, 37.0% BMI, 68.9% 

Simulation), while kinship, pairwise IBD proportion, and chromosome ends resulted in the 

smallest GC lambda (1.06 LDL, 1.15 BMI, 0.91 Simulation). The full results for this analysis are 

in Table 4-6. Because this model with all variance components appeared to control for inflation 

best in this subset of 25,000 individuals, we decided to use it moving forward. 

After deciding on the appropriate variance components, it was of interest to determine if 

reweighting estimated kinship, IBD proportion, and IBD in chromosome ends and combining into 

a single composite matrix 𝐊̃ for linkage analysis as described in the section Multi-VC linkage 

model would have any drastic effect on the LOD scores calculated by our method. In our subset 

with 25,000 individuals, we found that fitting the three static VCs once for a phenotype and 

recombining into a single 𝐊̃ matrix based on the estimated VC weights to fit with IBD at all sites 

resulted in z-scores that were almost perfectly correlated with those from the multi-vc fit (r > 0.999 

for LDL, BMI, and simulation) and LOD scores were, on average, 0.0103, 0.0098, and 0.0124 

lower for LDL, BMI, and the simulation, respectively. Based on these results we concluded that 

using the combined 𝐊̃ matrix would result in nearly identical results at a negligible cost in 

statistical power but at a greater than two-fold savings in computational time and RAM for the 

linkage analysis. 

It was also of interest to know whether the length 𝑙 extracted from the ends of each 

chromosome to calculate the matrix of IBD sharing at the ends of chromosomes 𝐂̃𝑙 would impact 

the results. The optimal lengths in terms of GC-lambda were different for LDL (0.3 Mb with GC 

lambda 1.0), BMI (0.4 Mb with GC lambda 1.1), and the simulated phenotype (0.2 Mb with GC 
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lambda 0.9), but overall were very similar for any length less than 1 Mb (Table 4-7). We chose to 

proceed with extracting a length of 0.5 Mb as this seemed to be a conservative choice yet still near 

the optimal values for each trait. 

Once we had decided on this model with estimated kinship, genome-wide IBD proportion 

and IBD sharing at the ends of chromosomes, we proceeded to run linkage analysis on the 4 lipid 

traits (high-density lipoprotein (HDL), LDL, and total cholesterol and triglycerides) at the full 

sample size. The sample sizes of our traits ranged from 67,429 for LDL measurements to 69,479 

for triglycerides levels. Running each trait on one CPU core used an average of 133 GB RAM over 

11 hours, 35 minutes for reweighting and combining matrices and 81 GB RAM over 11 days, 20 

hours for linkage analysis. We observed a total of 25 significant linkage peaks with LOD > 3 across 

19 distinct loci for the four traits. HDL had 7 significant linkage peaks, LDL 9, total cholesterol 7, 

and triglycerides 2. All these peaks and supporting GWAS evidence for them are reported in Table 

4-8. 

Our strongest signals, both in terms of LOD score and proportion of variance explained 

(PVE), were between the trait LDL and the region of chromosome 19 near the gene APOE (LOD 

29.3, PVE 4.0%) and HDL and the region of chromosome 16 near the gene CETP (LOD 30.2, 

PVE 4.3%). These peaks are shown in the LOD plots for HDL and LDL in Figure 4-5 and Figure 

4-6. APOE and CETP are well known genes for lipid regulation (Freeman & Remaley, 2016) and 

were also supported in the HUNT GWAS of genotyped variants, imputed variants, and the GLGC 

meta-analysis (Table 4-8). Multiple genetic variants in APOE have been associated with 

differences in LDL, in particular the relatively common missense variants rs7412 and rs429358 

which correspond to the APOE ɛ2 and ɛ4 alleles and which together are estimated to explain 

between 3.2% and 4.9% of variance in LDL measurements (Burman et al., 2009; Chasman, 
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Kozlowski, Zee, Kwiatkowski, & Ridker, 2006). The CETP locus is also an example of allelic 

heterogeneity since multiple variants have been shown to be independently associated with 

differences in HDL levels, including upstream variant rs183130 and missense variant rs5880 

(Spirin et al., 2007). These results show that our method can capture the effects of multiple variants 

in a region that contribute to a trait. 

In addition to CETP and APOE, the majority of our significant linkage peaks were in other 

established lipid loci that were easily replicated by our GWAS of genotyped and imputed HUNT 

variants and the GLGC meta-analysis. These peaks were PCSK9 (LDL LOD 5.9, TC LOD 4.6), 

CELSR2 (LDL LOD 5.0, TC LOD 3.5), APOB (LDL LOD 6.6, TC LOD 6.3), GCKR (TG LOD 

4.0), ABCG8 (LDL LOD 5.6, TC LOD 5.4), LPA (LDL LOD 3.8), ABCA1 (HDL LOD 7.0), 

ZNF259 (HDL LOD 4.1, TG LOD 10.3), SCARB1 (HDL LOD 3.0), ALDH1A2 (HDL LOD 9.1), 

LDLR (LDL LOD 15.7, TC LOD 10.8). LOD plots showing these peaks are shown in Figure 4-5, 

Figure 4-6, Figure 4-7, and Figure 4-8. Table 4-8 contains these peaks and p-values from the 

GWAS. This shows that results from Population Linkage are in line with expectations and are able 

to highlight the most important lipid genes. 

In addition to confirming known lipid genes, it was of interest to know where Population 

Linkage could provide additional insights beyond GWAS. There were 5 peaks with LOD > 3 

which were not replicated at genome-wide significance in the HUNT GWAS of 359,432 

genotyped variants. All of them were replicated in either the HUNT GWAS of imputed variants 

or the GLGC meta-analysis. The first of these peaks was for the trait HDL and the region on 

chromosome 16 near the gene GPR139 (LOD 3.1, GLGC p-value 8.3×10-13). The locus near 

GPR139 and nearby gene GPRC5B had previously been associated with differences in BMI (Pulit 

et al., 2019) and HDL (Tekola-Ayele, Lee, Workalemahu, & Sánchez-Pozos, 2019). The next peak 
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for HDL was near the gene CDH1 (LOD 3.4, imputed p-value 1.5×10-42, GLGC p-value 9.2×10-

46). While CDH1 is better known as a protein that helps form epithelial tissues and as a tumor 

suppressor gene, the top SNP rs571298027 is also near (11 kb) to the TANGO6 gene that has been 

associated with differences in HDL (More et al., 2007; Richardson et al., 2020). The peaks for 

LDL were near the genes LLGL1 (LOD 4.2, GLGC p-value 6.4×10-13) and CEBPA (LOD 6.0, 

imputed p-value 3.6×10-9, GLGC p-value 3.3×10-12). LLGL1 has been previously associated with 

LDL levels (Klarin et al., 2018), and CEBPG is a transcription factor involved in adipogenesis and 

is part of the PEPD-CEBPA-CEBPG locus that has been associated with waist-to-hip ratio (Lotta 

et al., 2018) and lipid levels (Freeman & Remaley, 2016). The last peak was for total cholesterol 

and a region containing AC005307.3 and several other non-coding genes (LOD 4.1, imputed p-

value 6.8×10-9). AC005307.3 is a pseudogene of SHCBP1 (Carithers & Moore, 2015) whose 

function has not been extensively described. Since these 5 peaks did not have a genome-wide 

significant variant among single-variant tests of 359,432 genotyped variants that were used in the 

linkage analysis but were confirmed in either the HUNT GWAS of imputed variants or the GLGC 

meta-analysis, these results confirm that Population Linkage is able to detect linkage signals in 

ungenotyped variants. 

Discussion 

We have demonstrated the feasibility of genome-wide linkage analysis on 10,000s of 

individuals with 100,000s of markers with our method and that this approach is able to replicate 

known associations in lipid traits. Sample relatedness is a nearly unavoidable situation in 

population or case-control cohorts of GWAS-scale, prompting the development of an entire class 

of methods for linear-mixed-model GWAS to correct and control for the effect of sample 

relatedness (Kang et al., 2010; Kang et al., 2008; W. Zhou et al., 2018; X. Zhou & Stephens, 2012). 
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In contrast, our method provides the opportunity to use this relatedness to map traits to genetic 

loci, often with greater variance explained in a region than the top associated SNP in GWAS. 

Additionally, because Haseman-Elston regression had been successfully extended to binary traits 

with the phenotype-correlation-genotype-correlation (PCGC) approach (Golan, Lander, & Rosset, 

2014), we are hopeful that our method can be similarly adapted to perform linkage on binary traits 

with thousands of cases and controls. 

One limitation of the results we have presented here is that several of our peaks were near 

our threshold of LOD 3.0 (approximately a one-sided p-value of 10-4) and would no longer be 

significant after adjusting for testing for linkage in 4 traits. Any multiple-testing adjustment would 

have to account for the autocorrelation of the test statistics and that many of the separate traits, like 

LDL and total cholesterol, were not truly independent. Even so, we feel confident the results 

presented here do not contain a large number of false positives since all 27 peaks we observed with 

LOD > 3.0 across both HUNT and SardiNIA had a supporting GWAS SNP within 5 Mb. 

One of the purported benefits of linkage analysis over GWAS is the ability to test for 

linkage in untyped genetic variation, as long as IBD segments in the region can be identified. Our 

results for high-density lipoprotein (HDL), LDL, and total cholesterol from the HUNT study 

support this claim since we observed 5 linkage signals with LOD > 3 where the evidence for 

association from the GWAS of genotyped variants was not genome-wide significant but GWAS 

with additional variants was genome-wide significant. In addition, our results for linkage in the 

APOE region in the SardiNIA study show how a test for linkage, even at a single marker, is able 

to capture the effects of multiple variants in the region that influence LDL levels. Since the 

inclusion of an individual SNP has little effect on the IBD estimates calculated in a region, this 
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feature of linkage analysis would extend to capturing the effects of ungenotyped variants that 

influence the trait as well. 

Since this work only considers applying Population Linkage to genotyping array data, a 

natural question that arises is how the analysis would differ in a sequencing study. Some of the 

advantages of working with whole-genome sequencing data include having a denser set of 

genotypes with which to estimate IBD sharing. This can potentially improve the resolution of IBD 

segment endpoints and help to estimate shorter IBD segments in more distantly related individuals, 

which can improve statistical power. Sequencing will also result in having more variants to use for 

following up on and interpreting significant linkage signals. One tradeoff to using sequencing data 

is the higher error rate compared to genotyping arrays, which could also impact IBD segment 

estimation. Possible remedies for this include using an algorithm for IBS segment estimation that 

is more robust to genotyping errors than the one used here, or one that can determine IBD segments 

based on genotype probabilities rather than hard genotype calls. 

One drawback of using Haseman-Elston regression to estimate variance components, and 

of methods of moments generators is general, is a loss in statistical efficiency that can affect the 

accuracy of variance components estimates and power of tests for linkage. While these are 

legitimate concerns for a method like Population Linkage, our use of Haseman-Elston regression 

as presented here enables linkage analysis with a number of genetic relationships several orders of 

magnitude larger than was previously possible with the classical methods. Such a tradeoff between 

statistical efficiency and the ability to analyze a greater sample size exists in many application 

areas, and there are many examples of where the benefits of using more data outweigh the 

statistical concerns. 
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This work opens up new possibilities for how linkage analysis might be further applied and 

developed in the future. Scaling linkage analysis up by another order of magnitude than what we 

presented here, for example to the UK Biobank (Bycroft et al., 2018), will require additional 

computational simplifications, for example by subdividing the data into smaller groups and meta-

analyzing, or reworking the fitting of variance-components to avoid multiplying over all possible 

pairs of individuals. In addition, recent innovations in finding shorter IBD segments in more 

distant, apparently unrelated, individuals (Delaneau, Zagury, Robinson, Marchini, & Dermitzakis, 

2019) has the potential to increase power and resolution if applied to linkage analysis. Most 

importantly, a seamless integration of variance components linkage analysis and GWAS into a 

mixed effects model can together increase the power and utility of both. Such an approach can not 

only combine the signal from both linkage and association for a more powerful test to find 

additional novel associations, but also opens up the possibility of testing a variant for association 

conditioned on the genetic background of individuals in a region. This can help to fine map causal 

variants in a region that shows evidence for association and further our understanding of how they 

impact our biology and risk for disease. 
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Tables 

Table 4-1 Relatedness and IBD sharing statistics in SardiNIA 

Degree 

Relationship 

N pairs Tot. N IBD 

Segments 

Avg. N IBD 

Segments per 

Pair 

Tot. IBD 

Segment 

Length (Tb) 

Avg. IBD 

Segment 

Length (Mb) 

MZ Twins 16 1,455 91 0.1 59 

Parent – 

Child 

4,655 255,672 55 13 49 

Full Siblings 5,442 906,470 167 15 16 

2nd Degree 12,262 959,258 78 18 18 

3rd Degree 21,631 1,386,018 64 17 12 

> 3rd Degree 21,745,895 313,220,259 14 1,453 4.6 

The number of pairs, total number of IBD segments estimated, average number of IBD segments 

per pair, total length of IBD segments estimated, and average length of IBD segments per pair by 

relationship type in SardiNIA, as estimated by KING 2.2. 
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Table 4-2 Choice of fitting single variance components for linkage in SardiNIA 

Pheno N VC PVE (%) GC Lambda 

HDL 5,942 Kinship 40.1 2.74 

HDL 5,942 IBD prop 36.7 1.16 

HDL 5,942 Chr ends 38.5 4.44 

LDL 5,937 Kinship 32.4 1.69 

LDL 5,937 IBD prop 27.7 1.00 

LDL 5,937 Chr ends 30.5 2.96 

Total Cholesterol 5,937 Kinship 38.7 1.87 

Total Cholesterol 5,937 IBD prop 33.7 1.10 

Total Cholesterol 5,937 Chr ends 37.1 3.31 

Triglycerides 5,905 Kinship 26.3 0.94 

Triglycerides 5,905 IBD prop 20.8 0.91 

Triglycerides 5,905 Chr ends 22.9 2.37 

A table comparing the impact of different choices of single variance components on the proportion 

of variance explained (PVE) and genomic-control lambda (GC Lambda) in a linkage analysis of 

the phenotypes high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total 

cholesterol and triglycerides measurements. “IBD prop” refers to the proportion of IBD shared 

genome-wide and “Chr ends” refers to average IBD sharing in the first and last Mb of each 

chromosome. 
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Table 4-3 Linkage peaks in SardiNIA (19M SNPs) at different numbers of markers tested 

Sites 

Tested 

Trait Gene Chr Pos PVE (%) LOD 

1,000 LDL APOE 19 47,471,344 4.8 3.54 

Total Cholesterol APOE 19 47,471,344 4.3 3.05 

5,000 LDL APOE 19 48,030,170 4.9 3.74 

Total Cholesterol APOE 19 48,030,170 4.7 3.46 

10,000 LDL APOE 19 48,030,170 4.9 3.74 

Total Cholesterol APOE 19 48,287,640 4.8 3.49 

20,000 LDL APOE 19 47,880,669 5.0 3.88 

Total Cholesterol APOE 19 47,880,669 4.7 3.54 

Table of all linkage peaks with LOD > 3 in SardiNIA. The proportion of variance explained (PVE) 

and LOD for linkage, are reported at 1,000, 5,000, 10,000, and 20,000 equally spaced linkage tests. 

IBD estimates are from KING 2.2. 
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Table 4-4 Relatedness and IBD sharing statistics in HUNT 

Degree 

Relationship 

N pairs Tot. N IBD 

Segments 

Avg. N IBD 

Segments 

Tot. IBD 

Segment 

Length (Tb) 

Avg. IBD 

Segment 

Length (Mb) 

Parent – 

Child 

47,113 2,042,502 43 125 61 

Full Siblings 35,888 4,058,463 113 72 18 

2nd Degree 117,478 7,524,029 64 162 22 

3rd Degree 251,385 13,031,221 52 187 14 

> 3rd Degree 2,429,673,606 6,833,336,344 2.8 3,192 0.5 

The number of pairs, total number of IBD segments estimated, average number of IBD segments 

per pair, total length of IBD segments estimated, and average length of IBD segments per pair by 

relationship type in HUNT, as estimated by KING 2.1.3. 
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Table 4-5 Choice of fitting single variance components for linkage in HUNT 

Pheno VC PVE (%) GC Lambda 

BMI Kinship 24.0 8.29 

BMI IBD prop 17.3 2.33 

BMI Chr ends 37.0 5.95 

LDL Kinship 30.0 20.29 

LDL IBD prop 26.0 2.73 

LDL Chr ends 50.2 12.61 

Simulation Kinship 62.8 3.62 

Simulation IBD prop 32.9 3.74 

Simulation Chr ends 68.8 15.83 

A table comparing the impact of different choices of single variance components on the proportion 

of variance explained (PVE) and genomic-control lambda (GC Lambda) in a linkage analysis of 

the phenotypes LDL, BMI, and the simulation. All results are from the random n=25,000 subset. 

“IBD prop” refers to the proportion of IBD shared genome-wide and “Chr ends” refers to average 

IBD sharing in the first and last Mb of each chromosome. 
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Table 4-6 Choice of fitting multiple variance components for linkage 

Pheno VCs Kinship 

PVE (%) 

IBD 

prop 

PVE (%) 

Chr ends 

PVE (%) 

Total 

PVE (%) 

GC 

BMI Kinship, 

IBD prop 

20.0 8.1  28.1 1.49 

BMI Kinship, 

Chr ends 

18.6  18.4 37.0 2.70 

BMI IBD prop, 

Chr ends 

 8.7 26.8 35.5 1.34 

BMI Kinship, 

IBD prop, 

Chr ends 

17.7 4.7 13.8 36.2 1.15 

LDL Kinship, 

IBD prop 

22.3 15.7  38.0 1.54 

LDL Kinship, 

Chr ends 

21.7  28.5 50.3 6.56 

LDL IBD prop, 

Chr ends 

 15.8 31.6 47.4 1.29 

LDL Kinship, 

IBD prop, 

Chr ends 

19.3 11.5 17.4 48.2 1.06 

Sim Kinship, 

IBD prop 

60.4 5.0 
 

65.4 0.99 

Sim Kinship, 

Chr ends 

60.3 
 

8.6 68.9 1.95 

Sim IBD prop, 

Chr ends 

 17.2 48.7 65.8 1.41 

Sim Kinship, 

IBD prop, 

Chr ends 

59.6 3.8 4.9 68.3 0.91 

A table comparing the impact of different combinations of variance components on the proportion 

of variance explained (PVE) and genomic-control lambda (GC) in a linkage analysis of the 

phenotypes LDL, BMI, and the null simulation. All results are from the random n=25,000 subset. 

“IBD prop” refers to the proportion of IBD shared genome-wide and “Chr ends” refers to average 

IBD sharing in the first and last Mb of each chromosome. 
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Table 4-7 Choice of length of chromosome ends extracted 

Mb 

Extracted 

LDL 

PVE (%) 

LDL 

GC  

BMI 

PVE (%) 

BMI  

GC  

Sim 

PVE (%) 

Sim  

GC 

0.05 48.62 1.0477 36.47 1.1605 68.84 0.8991 

0.1 48.67 1.0476 36.49 1.1573 68.80 0.8976 

0.2 48.66 1.0478 36.45 1.1607 68.75 0.8958 

0.3 48.58 1.0427 36.61 1.1255 68.68 0.8993 

0.4 48.61 1.0432 36.66 1.1194 68.46 0.9090 

0.5 48.35 1.0523 36.37 1.1306 68.34 0.9145 

2 47.78 1.0536 35.87 1.1476 67.80 0.9221 

2 46.54 1.0750 34.42 1.1861 67.48 0.9191 

3 44.90 1.1712 33.29 1.2260 66.05 0.9760 

4 43.48 1.1614 32.46 1.2356 65.52 0.9878 

5 42.51 1.1670 31.52 1.2584 64.87 1.0380 

A table comparing the impact of different choices of chromosome length extracted on the 

proportion of variance explained (PVE) by kinship, proportion of IBD shared, and average IBD 

sharing at the ends of chromosomes fit as a combined matrix and genomic-control lambda (GC) 

in a linkage analysis of the phenotypes LDL, BMI, and the null simulation. All results are from 

the random n=25,000 subset. 
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Table 4-8 HUNT Linkage peaks 

Trait N Chr:Mb PVE 
IBD 
(%) 

LOD Geno  
p-value 

Imputed 
p-value 

GLGC 
p-value 

Top SNP rsid Top SNP 
Gene 

HDL 69,214 9:110 1.18 7.0 3.9×10-61 3.7×10-61 1.3×10-420 rs2740488 ABCA1 

HDL 69,214 11:118 0.60 4.1 4.8×10-30 4.8×10-30 1.4×10-637 rs964184 ZNF259 

HDL 69,214 12:126 0.89 3.0 1.9×10-18 3.0×10-30 5.6×10-188 rs61941677 SCARB1 
HDL 69,214 15:61 1.20 9.1 4.1×10-66 6.1×10-67 2.3×10-1162 rs261290 ALDH1A2 

HDL 69,214 16:25 0.82 3.1 1.7×10-7 1.1×10-7 8.3×10-13 rs9938120 GPR139 

HDL 69,214 16:58 4.26 30.2 1.6×10-225 1.1×10-234 2.2×10-5270 rs183130 CETP 

HDL 69,214 16:74 0.54 3.4 6.4×10-6 1.5×10-42 9.2×10-46 rs571298027 CDH1 

LDL 67,429 1:57 0.85 5.9 5.3×10-72 2.8×10-70 5.2×10-1390 rs11591147 PCSK9 

LDL 67,429 1:110 0.81 5.0 1.5×10-46 1.2×10-46 4.7×10-1726 rs12740374 CELSR2 
LDL 67,429 2:22 0.59 6.6 2.3×10-51 3.0×10-48 1.3×10-927 rs934197 APOB 

LDL 67,429 2:43 0.79 5.6 6.0×10-35 5.1×10-35 1.4×10-470 rs4299376 ABCG8 

LDL 67,429 6:162 0.89 3.8 9.8×10-13 5.3×10-28 5.5×10-377 rs10455872 LPA 

LDL 67,429 17:15 0.55 4.2 3.4×10-4 9.4×10-8 6.4×10-13 rs28811342 LLGL1 

LDL 67,429 19:10 1.19 15.7 1.8×10-86 2.2×10-88 1.4×10-2108 rs73015024 LDLR 

LDL 67,429 19:33 0.83 6.0 5.0×10-4 3.6×10-9 3.3×10-12 rs147791730 CEBPG 
LDL 67,429 19:47 4.05 29.3 0* 0* 5.6×10-8411 rs7412 APOE 

TC 69,234 1:57 0.70 4.6 3.8×10-62 4.4×10-61 1.5×10-1119 rs11591147 PCSK9 

TC 69,234 1:110 0.62 3.5 1.5×10-33 1.5×10-33 9.0×10-1298 rs12740374 CELSR2 

TC 69,234 2:22 0.59 6.3 1.7×10-39 1.1×10-36 2.8×10-781 rs934197 APOB 

TC 69,234 2:43 0.73 5.4 1.4×10-33 1.1×10-33 8.6×10-436 rs4299376 ABCG8 
TC 69,234 19:10 0.91 10.8 1.2×10-69 4.2×10-70 1.0×10-1679 rs73015024 LDLR 

TC 69,234 19:29 0.88 4.1 5.2×10-4 6.8×10-9 1.1×10-7 rs62108075 AC005307.3 

TC 69,234 19:47 2.70 17.9 0* 0* 8.3×10-4123 rs7412 APOE 

TG 69,479 2:27 0.35 4.0 4.5×10-30 1.4×10-29 6.6×10-1357 rs1260326 GCKR 

TG 69,479 11:116 1.21 10.3 1.4×10-99 1.4×10-99 2.5×10-3336 rs964184 ZNF259 

Table of all linkage peaks with LOD > 3 in HUNT. The PVE and LOD are from our linkage 

analysis. The smallest observed p-values within 5 Mb of each linkage peak from our GWAS of 

genotyped variants in HUNT, our GWAS of imputed variants in HUNT, and the GLGC meta-

analysis are reported in the table. The rs ids and gene names in the table refer to the SNP with the 

smallest of these p-values for each linkage peak.  

*P-values of 0 are the result of underflow in the software used. 
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Figures 

 
Figure 4-1 A flow chart of Population Linkage 

A flow chart showing the basic steps for researchers to run Population Linkage on their own data.  
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Figure 4-2 Overlap of LOD Scores for LDL with Known Regions 

Above: LOD plot for the linkage analysis of LDL in SardiNIA. Below: GWAS of LDL in 

SardiNIA. Highlighted regions are the same in both plots.  
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Figure 4-3 HUNT inflation example 

Above: LOD plot from linkage analysis of the null simulated phenotype across 69,716 HUNT 

samples, using genome-wide pairwise IBD proportion and region-specific IBD sharing as variance 

components. Below: The average kinship values for individuals IBD across the genome. The 

phenotype below is LDL (n = 67,429) so 2,287 samples in the simulation above do not appear in 

the plot below but otherwise the plots would be identical since the values of kinship and estimated 

IBD status at each marker do not depend on the phenotype. 
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Figure 4-4 Proportion of variance explained vs mean kinship of IBD pairs 

The estimated proportion of variance explained by IBD sharing at 1,000 sites from a linkage 

analysis of the HUNT null simulation phenotype plotted against the average kinship values for 

individuals IBD at each locus tested. 
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Figure 4-5 HUNT HDL LOD Scores 

LOD plot from linkage analysis of high-density lipoprotein cholesterol measurements from 

HUNT. 
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Figure 4-6 HUNT LDL LOD Scores 

LOD plot from linkage analysis of low-density lipoprotein cholesterol measurements from HUNT. 
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Figure 4-7 HUNT Total Cholesterol LOD Scores 

LOD plot from linkage analysis of total cholesterol measurements from HUNT. 
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Figure 4-8 HUNT Triglycerides LOD Scores. 

LOD plot from linkage analysis of triglycerides measurements from HUNT. 
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Chapter 5 Conclusion 
 

In this dissertation, we have 1. implemented a platform for collecting human genetic data 

and phenotypes at a national scale, 2. described a novel method for joint estimation of DNA 

contamination and its sources in a genotyping study, and 3. extended a well-known method for 

linkage analysis to population-scale data.  

The Genes for Good platform described in Chapter 2 has had the most easily measurable 

impact thus far. To date the study has recruited participants resembling the US distribution for 

income and chronic health indicators in all 50 states, received 2.9 million survey responses, and 

genotyped and returned results to 27,000 participants. We have contributed data to 4 studies and 

meta-analyses (Jiang et al., 2018; Liu et al., 2019; Sanchez-Roige et al., 2017; Savage et al., 2018). 

Most recently, we contacted participants to take our survey on COVID-19 and study the genetics 

of this new disease. 

In addition to Genes for Good, there are now several academic or publicly-funded 

genotyping efforts that have a component of direct interaction with participants and return of 

results. The Healthy Nevada Project has partnered with 23andMe and Helix to genotype and return 

results to their study population and has successfully recruited and genotyped an ethnically and 

geographically diverse cohort of over 26,000 participants (Joseph J. Grzymski et al., 2018; J. J. 

Grzymski et al., 2020). All of Us is a particularly large study of health and epidemiology that aims 

to recruit over 1 million individuals from health centers and clinics all over the United States which 

places special emphasis on providing participants with access to their data, including returning 
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data on clinically actionable genetic variants and offering genetic counseling services (Denny et 

al., 2019). DNA.land is another academic effort that operates differently from these others in that 

it does not recruit participants for genotyping, but offers them genetic interpretation services 

including genetic ancestry inference and trait prediction for individuals who share genotypes they 

have already obtained from a direct-to-consumer genotyping company (Yuan et al., 2018). Use of 

DNA.land services is also not conditional on providing research data to the study. 

The VICES method described in Chapter 3 has facilitated more accurate and more robust 

contamination estimation while yielding more useful results to researchers. This method has been 

incorporated into quality control pipelines for both the Michigan Genomics Initiative and Genes 

for Good. In the latter, we were able to conclude that contamination had occurred on the 

genotyping array for about 30 samples and were thus able to regenotype DNA from an earlier step 

to obtain clean results without collecting new DNA from participants. Using these same results, 

we were also able to communicate with Illumina about the contamination issues with their arrays 

and receive a commitment from them to address this issue in future products. 

Since the publication of Chapter 3 of this dissertation and distribution of VICES, there have 

been additional developments in the area of contamination estimation that have also addressed 

some of the issues raised in that chapter. Specifically, Zhang et al (2020) introduced 

verifyBamID2, which performs joint estimation of sample genetic ancestry and contamination in 

sequencing reads. This approach, though distinct from VICES, also addresses the dependence of 

previous contamination methods on correctly specified allele frequencies to effectively estimate 

contamination and produces more robust results in diverse settings. 

 In Chapter 4, which introduced Population Linkage, we have enabled linkage analysis to 

be run on larger sample sizes and to run faster than ever before. In particular, we have showed how 
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Haseman-Elston regression—originally developed to test for genetic linkage in sibling pairs 

only—can be used as a general, method-of-moments approximation to variance components 

estimation with pairwise relationship and identical-by-descent estimates. While less powerful than 

the classical, full-likelihood linkage methods, Population Linkage allows applying this method to 

larger data. Such a tradeoff is a common theme in statistical genetics (Howie, Fuchsberger, 

Stephens, Marchini, & Abecasis, 2012). This work has also opened up new potential for running 

linkage and GWAS in tandem on large data sets and using the two to complement and strengthen 

one another. 

 While working on Population Linkage, a new algorithm for fitting genetic variance 

components with Haseman-Elston regression was introduced (Hou et al., 2019; Pazokitoroudi et 

al., 2020) that claims to achieve a speedup of several orders of magnitude over the method from 

Zhou (2017) used in Chapter 4. The method, called RHE-mc, achieves such speed by multiplying 

vectors of random subsets of genotypes to estimate a term in the Haseman-Elston regression that 

is normally calculated by multiplying genotype relatedness matrices together. By taking this 

approach, RHE-mc skips these costly calculations that depend on large matrices. While the method 

itself is not directly applicable to linkage since it uses individual SNP genotypes and not estimated 

IBD segments, several ideas from RHE-mc can be taken as inspiration for how to improve linkage 

analysis of large-scale genotyping data using Haseman-Elston regression. Possible benefits of 

developing a similar strategy for estimating variance components from IBD segments would 

include faster runtime, the ability to analyze even greater numbers of samples, and also the 

potential to estimate variance components for different genomic regions jointly from a single 

Haseman-Elston fit rather than from individual fits at each region being tested. 
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 As statistical genetics continues to advance into the 2020s, we can expect to see more 

progress with respect to the topics presented in this dissertation. More genetic data from a variety 

of platforms will continue to be generated and from increasingly diverse groups of individuals. 

This will motivate new needs for statistical methodology in terms of participant recruitment, more 

nuanced approaches to quality checking, and new needs in terms of downstream analysis. These 

needs will become particularly relevant as long-read sequencing and trans-omics approaches 

become more ubiquitous. Even while we can expect a great deal of change for statistical genetics 

in the years ahead, the drive for discovery and the shared mission to learn what shapes us as human 

beings and how we can improve our health will doubtless remain as strong as ever. 
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Appendix  
 

In an uncontaminated sample, the following probability distribution relates array intensity 

for sample 𝑖 at marker 𝑗, 𝐼𝑖𝑗, to the genotype 𝐺𝑖𝑗: 

 

Pr(𝐼𝑖𝑗 = 𝑥|𝐺𝑖𝑗) =

{
 
 

 
 Φ(−

𝐺𝑖𝑗

𝜎
) 𝑖𝑓 𝑥 = 0

1 −Φ(
1−𝐺𝑖𝑗

𝜎
) 𝑖𝑓 𝑥 = 1

𝑥~𝑁(𝐺𝑖𝑗 , 𝜎
2)

0

𝑖𝑓 0 < 𝑥 < 1
𝑜. 𝑤.

. 

 

Under this model, intensities are normally distributed around the genotype 𝐺𝑖𝑗 with additional 

point masses reflecting the truncation at boundaries 𝐼𝑖𝑗 = 0 and 𝐼𝑖𝑗 = 1. 𝜎2 represents the 

naturally-occurring variability in intensity values. 

For a contaminated sample, 𝐼𝑖𝑗 is instead distributed around a linear combination of the 

sample’s own genotype and the genotypes of each contaminating sample, which we denote as 𝜇𝑖𝑗. 

Let 𝛼𝑖 be the total proportion of contaminating DNA in sample 𝑖 and 𝛼𝑖𝑘 the proportion of DNA 

mixture from sample 𝑘. Then, we define 

 

𝜇𝑖𝑗 = (1 − 𝛼𝑖)𝐺𝑖𝑗 +∑ 𝛼𝑖𝑘𝐺𝑘𝑗𝑘       

 

and the distribution of 𝐼𝑖𝑗 in the presence of contamination now becomes 
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Pr(𝐼𝑖𝑗 = 𝑥|𝜇𝑖𝑗) =

{
 
 

 
 Φ(−

𝜇𝑖𝑗

𝜎
) 𝑖𝑓 𝑥 = 0

1 − Φ(
1−𝜇𝑖𝑗

𝜎
) 𝑖𝑓 𝑥 = 1

𝑥~𝑁(𝜇𝑖𝑗 , 𝜎
2)

0

𝑖𝑓 0 < 𝑥 < 1
𝑜. 𝑤.

.    
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