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Abstract

This dissertation presents various machine learning applications for predicting

different cognitive states of students while they are using a vocabulary tutoring

system, DSCoVAR. We conduct four studies, each of which includes a comprehensive

analysis of behavioral and linguistic data and provides data-driven evidence for

designing personalized features for the system.

The first study presents how behavioral and linguistic interactions from the

vocabulary tutoring system can be used to predict students’ off-task states. The

study identifies which predictive features from interaction signals are more important

and examines different types of off-task behaviors. The second study investigates

how to automatically evaluate students’ partial word knowledge from open-ended

responses to definition questions. We present a technique that augments modern

word-embedding techniques with a classic semantic differential scaling method from

cognitive psychology. We then use this interpretable semantic scale method for

predicting students’ short- and long-term learning.

The third and fourth studies show how to develop a model that can generate

more efficient training curricula for both human and machine vocabulary learners.

xxix



The third study illustrates a deep-learning model to score sentences for a contextual

vocabulary learning curriculum. We use pre-trained language models, such as ELMo

or BERT, and an additional attention layer to capture how the context words are less

or more important with respect to the meaning of the target word. The fourth study

examines how the contextual informativeness model, originally designed to develop

curricula for human vocabulary learning, can also be used for developing curricula for

various word embedding models. We identify sentences predicted as low informative

for human learners are also less helpful for machine learning algorithms.

Having a rich understanding of user behaviors, responses, and learning stimuli

is imperative to develop an intelligent online system. Our studies demonstrate

interpretable methods with cross-disciplinary approaches to understand various

cognitive states of students during learning. The analysis results provide data-driven

evidence for designing personalized features that can maximize learning outcomes.

Datasets we collected from the studies will be shared publicly to promote future

studies related to online tutoring systems. And these findings can also be applied

to represent different user states observed in other online systems. In the future, we

believe our findings can help to implement a more personalized vocabulary learning

system, to develop a system that uses non-English texts or different types of inputs,

and to investigate how the machine learning outputs interact with students.
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Chapter 1

Introduction: Using Behavioral

and Linguistic Data to Improve

Learning Systems

The goal of this dissertation is to understand how users interact with learning systems

and provide data-driven evidence to improve the overall learning experience. To

achieve this, we use machine learning techniques on behavioral and linguistic data

to predict various cognitive states of students while they are using a contextual

vocabulary learning system. More specifically, this dissertation presents multiple

machine learning applications that solve unique challenges in developing a contextual

vocabulary learning system, including predicting students’ disengagement, measuring

partial knowledge of vocabulary with a fine-grained and interpretable method, and

estimating the amount of contextual information in a sentence with respect to target
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words for learning. We believe the interdisciplinary approach of our studies can

provide deeper understanding of how users interact with other information systems.

Also, the interpretability of our machine learning models can help developers identify

where their systems can be improved and help users understand the results they

see from these systems.

Learning can occur in various types of information systems. For example, online

learning systems like intelligent tutoring systems (ITS) or massive open online courses

(MOOCs) provide digital environments for learning, helping students develop their

knowledge of particular subjects through a carefully designed curriculum. Other

information systems that are designed for more general-purpose information seeking,

such as exploratory search systems or general search engines, are also valuable sources

for exploring new information (Rieh et al., 2016). Users of these systems develop

their knowledge through iterative search processes and by synthesizing pieces of

information that they found useful while using the system. However, building an

effective information system for learning cannot be done with accurate and efficient

retrieval algorithms alone. It also requires deeper understanding of how users

interact with the system (Sinatra et al., 2015; Waddington et al., 2016), detailed

representation of the learning process (Durso and Shore, 1991; Shore and Durso, 1990;

Van Inwegen et al., 2015), and presenting appropriate learning materials (Frishkoff

et al., 2016a; Papoušek et al., 2016) to maximize users’ learning outcomes.

In this dissertation, chapters address various cognitive states related to learning.

We investigate how machine learning models can use behavioral and linguistic data

to predict students’ different hidden states during learning, and we derive data-
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driven insights on how to improve the learning experience. Building a prediction

model for students’ disengagement can let the system know when to intervene with

a student and guide them to be more engaged with the task. It can also inform the

teacher about different types of related behaviors, such as semantically related vs.

lexical identical off-task responses (Chapter 3). Developing a fine-grained semantic

representation of a student’s partial word knowledge can be helpful for the system

to correctly evaluate a user’s progress and determine the best selection of next

learning materials. Also, interpretable representations of open-ended responses can

help both students and teachers easily understand where they stand and what needs

to be improved from learning (Chapter 4). Predicting the amount of contextual

informativeness of sentences would provide an automatic way to score the stimuli used

in a contextual word learning system. It has significant potential for automatically

developing curricula from a range of learning sources, from expert-edited textbooks

to crowd-generated learning materials from the Internet. In Chapter 5, we develop

a deep-learning model that can effectively predicts the amount of informativeness

from context. Chapter 6 further examines the application of the model, especially

for developing more efficient curricula for training word embedding models. We

believe the findings from these studies can improve the design of various information

systems that can be used for learning.

In the following sections, we explain more about the motivation to understand

different states during learning, and our problem-solving strategies with machine

learning methods (Section 1.1). Then we summarize the contribution of each study

(Section 1.2), and covers the organization of the following chapters (Section 1.3).
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1.1 Better understanding of User Behaviors and

Linguistic Data

We learn about the world by interacting with information. We use information to

identify problems (Wilson, 1997) and to decrease uncertainty of situations (Spink

and Cole, 2006). Understanding user behavior and linguistic inputs better is

important for identifying a student’s current knowledge level and how she perceive

the learning material provided from the system. Thus, it can be imperative for

making an effective personalized vocabulary learning system. Using machine learning

applications can help automatize this process and achieve scalability. However, it

would require clear definitions of the user state that the system wants to identify,

careful feature engineerings that can meaningfully represent the observed data, and

building an interpretable model for students to understand their learning progress

and for instructors to design future curricula.

1.1.1 Modeling User Engagement

Engagement is a crucial element that can ensure the effective delivery of

information (Walonoski and Heffernan, 2006). It is a comprehensive mental activity

that incorporates perception, attention, reasoning, volition, and emotions (Cocea

and Weibelzahl, 2011). Well-designed systematic guidance, such as prompting

motivational messages (Baker et al., 2006) or providing hints about which cognitive

skills to use to solve a task (Roll et al., 2007; Arroyo et al., 2007), can help users

learn more and stay longer in a learning system.
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In an educational context, understanding the multidimensional construct of

engagement can be helpful for developing personalized features and improving the

learning outcomes from a system. Engagement can be shaped by different factors.

Individual differences in users’ intrinsic interests, motivations, and prior knowledge

about the topic (Wilson, 1997), and preferences on positive results (White, 2013) or

particular information foraging strategies (Chi and Pirolli, 2006; Kendal et al., 2004)

can play important roles in determining patterns of user engagement in information

systems. A user’s engagement state may be observed with diverse behavioral

patterns. For example, over multiple question items, a user can show their off-

task state through repetitive responses or more random responses that are not in

the context of the provided questions. Exploring how these factors are related to

individual users’ engagement states would provide important evidence for designing

more engaging and effective learning systems.

In both on- and off-line learning environments, engagement is a crucial predictor

of learning outcomes (Bizas et al., 1999; Herrington et al., 2003; Goldberg et al.,

2011). Many studies have used behavioral signals, such as response time (Beck, 2005)

and frequency of hint use or repetitive mistakes (Baker et al., 2004; Paquette et al.,

2014), to predict users’ engagement states in learning systems. These studies were

often conducted with learning systems designed for STEM topics and structured

question formats. However, with a vocabulary learning system with open-ended

questions, designing predictive features for an engagement-related state has been

less investigated and would require different features that focus on the linguistic

properties of student responses.
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In the first study, we present novel features for predicting students’ off-task states

from a vocabulary learning system. Features include single-trial online variables,

which are derived from behavioral interactions and linguistic responses that are

collected from answering a single question, and context-sensitive online variables,

which further examine the linguistic relationship between past responses. We also

include analysis on feature importance that describes which types of context-sensitive

features are useful for predicting particular types of off-task responses.

1.1.2 Evaluating Partial Knowledge

Along with behavioral interactions, linguistic data can also provide much information

on how users learn by using the system. For example, compared to multiple-choice

responses, open-ended responses can provide more details about the user’s current

knowledge about the question (Durso and Shore, 1991; Adlof et al., 2016). Previous

studies showed that different cognitive states during learning, such as confusion (Yang

et al., 2015) or motivation (Chopra et al., 2018), can be predicted from the questions

that a user asked in a forum.

Learning a new vocabulary happens incrementally (Frishkoff et al., 2011). Using

machine learning methods to automatically evaluate students’ open-ended responses

would be important for the vocabulary learning system to track where students

are doing well or poorly, and suggest better learning items that can maximize

the efficiency of learning.

Unlike multiple-choice questions, responses from open-ended questions may

contain rich information about students’ knowledge, including partially correct
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responses. However, there are some existing challenges. First, automatically

evaluating open-ended responses can be a difficult task. It requires a machine to

have thorough knowledge in the domain and correctly understand the responses like

human experts do. With fast retrieval of an accurate representation of the meaning

of the target word, the vocabulary learning system can provide a correct evaluation

of students’ responses. Second, measuring a partial knowledge state is essential for

accurately tracking learning progress. Existing studies have often used a limited

number of categories (i.e., correct, partially correct, and incorrect) to represent

students’ knowledge states without detailed explanations (Durso and Shore, 1991;

Dale, 1965). Having a fine-grained representation of partial knowledge is essential to

identify the missing semantic component of a student’s knowledge about a word.

In thes second study, we suggest a novel semantic representation method that

combines a classic semantic differential scale method (Osgood et al., 1957) with

a modern neural word embedding technique (Mikolov et al., 2013). The results

of this study can provide an interpretable and scalable method for automatically

evaluating students’ responses from vocabulary learning systems. We also think that

this method can be used in different tasks, including semantic evaluation of longer

texts, or understanding semantic biases in different types of texts across time.

1.1.3 Informativeness of Learning Content

Suggesting adequate content is essential for retaining users’ motivation (Reeve, 2012)

and achieving a more satisfying user experience (Belkin, 2008) from an information

system. Especially in learning, identifying easier (or harder) learning materials and
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choosing a more efficient learning curriculum can benefit both machine (Bengio

et al., 2009) and human learners (Frishkoff et al., 2016a; Brown et al., 2005) with

a more efficient learning process.

Identifying better learning materials is nontrivial. For contextual word learning,

it requires a deeper understanding of the contextual information for the target

word that the user is about to learn. If we can reliably predict the quality of the

material, we can significantly improve the effectiveness of learning. For example,

in our previous study, we found that scaffolding the difficulty levels of learning

materials can improve learning outcomes in language learning (Frishkoff et al., 2015).

Moreover, a well-designed training curriculum can also be helpful for a machine

learning system to achieve a more efficient training process (Bengio et al., 2009).

In the contextual vocabulary learning scenario, predicting the amount of contextual

information from a text can enhance the outcome of contextual word learning for

both human and machine language learners.

For both human (Landauer and Dumais, 1997) and machine learners (Mikolov

et al., 2013), neighboring contextual information is an important source for learning

the meaning of a target word. However, not all contexts contain much information

about the target word; some contexts may contain more or less information than

others for learning. Our previous study showed that using more informative

sentences for the contextual word learning task can lead to more efficient learning

results (Frishkoff et al., 2016b).

In the third study, we introduce a deep-learning NLP model that can predict

the amount of contextual information from single- or multi-sentence contexts. The
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model achieves a significantly better performance than baseline models for predicting

contextual informativeness scores with single-sentence contexts, and it achieves

state-of-the-art performance with multi-sentence contexts. The model’s output is

easily interpretable, so it can tell which context words contribute more to the

informativeness of the sentential context. Moreover, we show that the model can be

useful for developing a more efficient training curriculum for simple word embedding

models. We believe the results of this study would be useful for various potential

applications, including machine reading, few-shot learning, personalized question sets

for learning systems, and inferring knowledge levels from various user text inputs,

by accurately capturing the contextual informativeness of a given context.

1.1.4 Curricula for Machine Learning Models

As we can reliably predict the amount of contextual information of the target word

from sentence(s), we also investigate the model’s applications. For example, many

machine learning models tend to perform better with large sized training data.

However, humans are known to be very good at making rich inferences from a

small number of example data. In the context of machine learning research, this

learning process is called few-shot learning (Fei-Fei et al., 2006; Lake et al., 2015). For

few-shot learning models, identifying the quality of instructional materials becomes

more critical for improving performance.

In the fourth study, we examine the use of the contextual informativeness model,

originally developed for contextual word learning of human students. We use this

model to create a more efficient curriculum for machine learning models, especially
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for word embedding models in various learning scenarios, including batch learning

and few-shot learning. We show that sentences predicted as low informative are

also less useful training materials for word embedding models, and simply filtering

out the low informative sentences from the training set significantly improves the

embedding models’ performance. In the future, identifying more optimized curricula

for word learning, and identifying factors related to the curriculum effect based on

contextual informativeness would provide more exciting opportunities to understand

how human and machine learners acquire knowledge of language.

1.2 Overall Contributions

This dissertation illustrates machine learning applications on behavioral and

linguistic data from a vocabulary learning system to predict students’ different

cognitive states. Based on an interdisciplinary approach, the studies deliver thorough

and interpretable analysis results that can improve understanding of students’

learning behavior and help make learning systems better in the following ways.

Data-Driven Insights for Personalized Learning Systems First, the results

from the studies provide data-driven insights on how to develop more sophisticated

personalized learning systems through interpretable analysis results. For example, we

conducted thorough ablation tests to investigate which predictive features are more

helpful than others in our model. Detailed failure analyses also identified potential

improvement points of our model. Based on these findings, each study suggests

how to improve students’ learning outputs from a vocabulary learning system. In

10



Chapter 3, feature analysis results show that the contextual features based on the

linguistic relationship between responses are more important than the traditional

single-trial features (Section 3.4.3). This is followed by a failure analysis that also

shows major types of off-task responses (e.g., orthographically identical responses vs.

semantically similar responses) and how the suggested model captures different off-

task cases on the student level (Section 3.4.3). Chapter 4 identifies which of Osgood’s

semantic scales are more important for predicting students’ learning (Section 4.4.3).

These data-driven results suggest how the system can develop smaller and faster

representation without sacrificing much prediction power on student short- and long-

term learning (Section 4.4.3). Chapter 5 includes visualizations on how contextual

informativeness is constructed from a sentence for the target word (Section 5.6).

Such interpretable results can be very useful for educators and curriculum developers

for contextual vocabulary learning by identifying more contributing context words

that help students to infer the meaning of the target word. Chapter 6 compares

the performance of word embedding models between various curricula based on the

contextual informativeness scores and the number of sentences included (Section

6.4). This method can provide a useful strategy for identifying more informative

materials for domain-specific models or better quality training materials for few-

shot learning tasks.

Interdisciplinary Approaches Second, our studies compare existing studies from

different research fields, such as psychology and machine learning, and combine

different techniques to extract meaningful information from behavioral and linguistic

data to predict students’ various hidden states during learning. Our first study
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in Chapter 3 focuses on not only the behavioral features that are often used in

existing ITS or learning psychology studies, but also the semantic relationships

between a student’s responses and the target, or across the series of responses that

are automatically estimated using the machine learning algorithm (Section 3.3.3).

The second study in Chapter 4 investigates the combination of traditional semantic

differential scales and the neural word embedding method (Section 4.3.2), which

can provide both scalability and interpretability when the system or domain expert

users evaluate students’ responses (Section 4.3.2). The third study in Chapter 5

compares our deep-learning based NLP model to a traditional approach based on

lexical properties (Kapelner et al., 2018) for quantifying the relationship between

context words and the target word (Section 5.4). The fourth study in Chapter 6

further examines how the model originally developed for human vocabulary learning

can also be used for improving the efficiency of machine learning algorithms on

word learning (Sections 6.5 and 6.6).

New Datasets Related to Vocabulary Learning Third, we are sharing new

datasets that we collected from students while they are using our vocabulary learning

system. Each study defines a novel problem and collects a related dataset from

students while they are using our vocabulary learning system. Datasets include

students’ behavioral and linguistic interactions during a meaning-generation task

(Chapter 3) and a series of practice question responses that can illustrate how

students learn the meaning of new target words by using a contextual vocabulary

learning system (Chapter 4). We believe this dataset could be useful for future

studies on understanding contextual word learning behavior. In could also be used

12



in designing an adaptive system that can improve students’ engagement and learning

outcomes in vocabulary learning. More technical details on how we collected online

interaction data are described in Chapter 2.

Moreover, we also collected various crowdsourced annotations to quantify the

amount of contextual informativeness of cloze sentences when they are used in

an instructional setting. In Chapter 5, we present cloze sentences with human

annotations for contextual informativeness scores that can be used to train an

effective prediction model for automatically scoring the learning material for

vocabulary learning. Further, the results from Chapter 6 show the model trained

from this dataset also can be used to quantify the potential effectiveness of different

corpora and to describe a new target word to learn. In this dissertation, we also

share the details of designing the crowdsourcing task (Appendix A.2) and annotating

protocols (Appendix A.2.2) for used in future studies. The collected datasets will

be shared through our vocabulary system’s web page1.

General Insights on Understanding Online User Behaviors Lastly, the

results from these studies can be useful for other information systems that are

not limited to vocabulary learning. Predicting off-task behaviors during learning

can help both instructors and the system by letting them know when to intervene.

The behavioral and linguistic features can also be applicable to any learning system

that uses open-ended questions. Detailed representation of semantic characteristics

can be used in various domains that may require interpretable representations of

text input. For example, summarizing the sentiment of a short paragraph, such

1http://dscovar.org/
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as a product review or Twitter feed, can be useful for researchers or product

managers who want to quickly understand the quality of unstructured text data

without much investment in gaining technical knowledge on word embedding. The

model for predicting contextual informativeness of text can be used for other tasks,

such as measuring the quality of students’ note-taking or determining the expertise

level of a user from a community Q&A post, where the amount of contextual

information can indicate users’ different knowledge states. Developing curricula

based on the contextual informativeness for machine learning models can introduce

useful comparison between NLP models and human language learners. Applying

our curricula building method to more sophisticated NLP models may also reveal

interesting insights on how to build a more effective curriculum for vocabulary

learning.

1.3 Thesis Organization

In Chapter 2, we introduce the contextual vocabulary tutoring system we used for

the studies: Dynamic Support of Contextual Vocabulary Acquisition for Reading

(DSCoVAR). This chapter covers a brief overview of DSCoVAR’s teaching strategy,

session structures, and how the system records the data used for each study.

Chapters 3, 4, 5, and 6 include four individual studies based on DSCoVAR.

Each study has different goals, but they commonly investigate how machine learning

models can capture different cognitive states of vocabulary learning students and use

the outcome to improve the learning experience. The studies conduct comprehensive
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analyses on behavioral and linguistic signals to predict particular user states, and

provide explainable results on how models suggested in each chapter work.

More specifically, in Chapter 3, we identify which behavioral and linguistic

predictors are more important for predicting students’ off-task states(Section 3.3.3

and Section 3.4.3) and illustrate how predictive features capture different types of

off-task behaviors (Section 3.4.3).

Chapter 4 focuses on suggesting interpretable metrics for automatically evaluating

a student’s partial knowledge state in the vocabulary learning system (Section 4.3.2

and Section 4.3.2)). The study also compares which Osgood scale has more predictive

power for predicting learning gain (Section 4.4.3 and Section 4.4.3).

Chapter 5 aims to develop a deep-learning model that can predict the amount

of contextual information in sentences with respect to the target word (Section 5.4

and Section 5.5). Multiple experiments are also conducted to check the model’s

generalizability (Section 5.5.4) and interpretability (Section 5.6).

Chapter 6 extends the contextual informativeness model from Chapter 5, and

investigates how the model’s output can also be used to develop more efficient

curricula for word embedding models in various settings, including batch learning

settings (Section 6.5) and few-shot learning settings (Section 6.6).

Chapter 7 illustrates the impact of the studies in related research fields, including

educational technology, psycholinguistics, and natural language processing. We also

discuss example applications that can potentially benefit from our findings, and

some limitations that can be addressed in future studies.
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Lastly, Chapter 8 concludes the dissertation by summarizing the findings of

individual studies and their broader implications.
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Chapter 2

Describing the System: Dynamic

Support of Contextual Vocabulary

Acquisition for Reading

In this dissertation, we investigate behavioral interactions and linguistic inputs used

in a vocabulary learning system called Dynamic Support of Contextual Vocabulary

Acquisition for Reading (DSCoVAR). DSCoVAR is a vocabulary learning system that

aims to teach students new vocabulary (target words) with contextual information

provided within a sentence. The contextual word learning (CWL) system does not

explicitly provide the meaning of the target word. Rather, students are asked to

use linguistic context, such as the nearby semantic and syntactic cues, to infer

the meaning of the unknown word. Through repeated practice, students learn the

meaning of the word from various contexts. The following sections describe some
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technical details on how we implemented DSCoVAR, the structure of DSCoVAR

that is related to experimental settings, and features from DSCoVAR that are closely

related to the individual studies of the dissertation. 1

2.1 Using a Computer System for

Contextual Word Learning

Each tutoring system may employ different strategies for vocabulary learning. For

example, associative word learning (AWL) applications use word pairs (e.g., semantic

or lexical association pairs) to represent the meaning of the target word (e.g.,

flashcards) (Jenkins et al., 1978; Mastropieri et al., 1985). Although AWL is an

effective strategy for learning simple, domain-specific, or concrete words (Solman and

Wu, 1995), it may not be suitable for learning more complex and abstract words,

such as Tier-2 words that have multidimensional meanings. These words are better

learned through different contexts, or CWL. For example, the word canny has a

similar meaning to smart, but it also implies an attitude or action that may be shrewd

or dishonest. An example context like “a canny showman adept at manipulating

the audience’s feelings and expectations” provides contextual cues that the meaning

of the word involves being manipulative or shrewd. This example illustrates how

1This chapter paraphrases a broader survey of DSCoVAR from the book chapter (Frishkoff et al.,
2016a) and technical details of the system from the unpublished work (Frishkoff et al., n.d.). Gwen
Frishkoff and Kevyn Collins-Thompson led the overall study design for DSCoVAR. Sungjin Nam
was responsible for technical implementations, such as developing the system client and database,
setting up the server instances, and evaluating the system’s scalability feature.
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CWL can provide deeper and more sophisticated knowledge about the target word,

especially for more advanced vocabularies (Huang and Eslami, 2013).

There are existing CWL systems that can provide adaptive target words, based

on pre-test results (Wang, 2016) or multimodal stimuli for learning (Ballard and Yu,

2003). DSCoVAR differs from the existing CWLs in the following ways.

First, DSCoVAR promotes active inferencing. Although learning through context

can deliver rich information about the target word, it may limit students from actively

guessing and learning the meaning of the word. However, the active inferencing

skill is necessary if less information exists and to develop full knowledge about

the word (Koren, 1999).

Second, DSCoVAR can provide a real-time assessment of student responses.

DSCoVAR uses computational methods to identify if a student is disengaged with

the task and to determine the partial word knowledge state. Knowing when a student

has disengaged from the task can help the student finish the task and can identify

other related states, such as confusion or frustration (Baker et al., 2010; Yang et al.,

2015; Picard and Picard, 1997). Estimating partial knowledge can help provide

immediate feedback during the training, and determine more personalized learning

material based on the detailed analysis. Chapters 3 and 4 illustrate initial attempts

to develop computational models for these features.

Third, DSCoVAR can provide contextual stimuli that was computationally

predicted by the system. To automatize the stimuli generation or collection process

for vocabulary learning, Chapter 5 investigates a NLP model that can predict the

quality of stimuli of sentence stimuli used in DSCoVAR.
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2.2 System Architecture

DSCoVAR consists of multiple components. This section briefly describes the role

of each component and how it can affect the learning experience in DSCoVAR.

2.2.1 Database

DSCoVAR’s database includes learning stimuli, students’ demographic information

and prior skill levels on vocabulary, and updates on how the students interacted

with the system during learning. First, the database contains instructional materials,

including the list of target words and pronunciations, training contexts (i.e., sentences

containing contextual information about the target words), and pre- and post-

test questions. Second, students’ subject records include their log-in identification,

demographics, grades, and language ability testing results measured before using

DSCoVAR. Third, the database records how users interact with DSCoVAR. These

records include information like timestamps for each question item loaded and

submitted, types of errors and their frequencies, a list of submitted responses,

and response accuracy.

2.2.2 Client Server

DSCoVAR is a web-based application. Students can use their desktop web browsers

to access DSCoVAR. We used a standard LAMP stack (Linux Apache HTTP web

server, MySQL database, PHP scripting) to build the client server.
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Figure 2.1: The overall system architecture of DSCoVAR. Students connect to
DSCoVAR and practice their vocabulary knowledge through questions based on
contextual sentences (3). The database (2) contains information on target words,
contexts, and other stimuli. It also records how students interact with the system.
As the students respond to the questions, their behavioral and linguistic interactions
are evaluated at a separate server in real-time (7).

2.2.3 Evaluation Server

We also hosted a dedicated server to process computationally expensive evaluations.

This includes real-time evaluation of student responses and predicting off-task
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states. In the training session, DSCoVAR provides real-time feedback to the student

based on the similarity between the response and the target word. We used

MESA (Collins-Thompson and Callan, 2007) to calculate the similarity between the

two words. MESA uses a random-walk-based method on web-based resources, such

as WordNet (Miller, 1995), to estimate the distance between the student’s response

and the target word. The same server instance can also be used to measure the

partial knowledge state of student responses. For this task, we hosted the Word2Vec

model as a service2, which could be accessed through the http call (more details about

the model can be found in Chapter 4). Other simple tasks, such as spell-checking, is

also hosted in the evaluation server. DSCoVAR uses GNU Hunspell,3 an open-source

spellchecker, to validate single word responses. Students receive spelling suggestions,

which is especially useful for younger or less skilled readers. Also, if a response is too

short (e.g., fewer than 2 characters) or contains non-alphabetic characters, DSCoVAR

generates an error message and prompts the student to enter a different response.

Both the client and evaluation servers are hosted in Amazon Web Services

(AWS)4, with dynamic scalability of the number of server instances (e.g., load

balancing). For example, if server utilization exceeds a particular point, DSCoVAR

automatically increases the number of instances to accommodate more access without

modifying any current connections. This way, we can easily increase (or decrease)

the capability of the client server to accommodate a wide range in the number of

2https://github.com/nishankmahore/word2vec-flask-api
3http://hunspell.github.io/
4https://aws.amazon.com/
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users. Our stress test results show that each c4.2xlarge instance could handle 35

simultaneous users with less than 3 seconds of latency.

2.3 Session Structure

The goal of DSCoVAR is to teach students how to use contextual information in a

sentence to infer the meaning of an unknown target word. DSCoVAR consists of

multiple sessions. Pre-test and post-test sessions measure the student’s knowledge of

target vocabularies before and after using the system. Between the pre-test and post-

test sessions, we have a training session, where the actual learning is happening. At

the beginning of the training session, the system shows videos that contain example

contextual word learning strategies. After the video, students can practice these

strategies with practice questions that contain the actual target words to learn.

Practice questions use various sentences that contain the target word. Each target

word appears multiple times within different context sentences. Figure 2.3 illustrates

the overall session structures.

2.3.1 Pre-test and Post-test Sessions

Questions in the pre- and post-test sessions include open-ended and multiple-choice

questions. Both the open-ended and multiple-choice questions ask students to

provide a synonym for the given target word.

Students answered the post-test questions twice, right after the training session

(immediate post-test session) and a week after the training session (delayed post-test
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Figure 2.2: Session structure diagram. Individual skills are measured before the
pre-test session. The pre-test session measures students’ knowledge on target words.
Students learn about target words in the training session. The post-test sessions
measure the immediate and delayed knowledge, by comparing the results from the
pre-test session.

session). Differences in student performance between the pre-test and immediate

post-test sessions indicate a short-term learning gain. Students’ performance on

the delayed post-test measured the long-term learning effect of using DSCoVAR.

Questions from the pre-test and post-test sessions are not subject to interventions.

2.3.2 Training Session

In the training session, students learn the meanings of target words through practice

questions. Before answering the questions, students watch videos that teach them

how to find contextual information from the sentence to infer the meaning of the

unknown word (Figure 2.3.2).

In the training session questions, students are asked to provide a synonym of the
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Figure 2.3: Screenshots of the instruction video. The video describes how to use
context cues to infer the meaning of the unknown target word (left). It also contains
examples for different context cues (e.g., an antonym relationship between sapid and
tasteless) so students can apply the strategies in their training session (right).

target word, using contextual information from a sentence that contains the target

word. The amount of contextual information in the sentence will determine the

question difficulty. Figure 2.3.2 presents an example of a question.

Figure 2.4: An example of the training session question. The student is asked to
provide the synonym of the target word (e.g., education) based on the contextual
information from an accompanying sentence and previous questions.

25



Students learn thirty unique target words in the training session (Chapter 4).

For each target word, four different questions are provided to the students. In

Chapter 4, we present the interpretable and fine-grained semantic scales that evaluate

students’ responses to the practice questions from the training session, and predict

the students’ short- and long-term learning gain derived from the pre- and post-

test (e.g., immediate and delayed) sessions.

2.4 Learning Materials

For the training session, we developed a set of sentences that contain different

amounts of contextual information with respect to the target word, which can be

considered the difficulty level. DSCoVAR can control different orders of problem

difficulties for the same target word. For example, the scaffolding condition suggests

practice questions in ascending order of difficulty (i.e., easy to hard). Opposite

scaffolding (i.e., hard to easy) or uniform (e.g., all medium) orders are also possible.

We hired undergraduate research assistants to generate sentences with different

amounts of contextual information. We provided a guide for how to differentiate the

amount of contextual information in a sentence (Appendix A.1). To validate the level

of contextual informativeness of generated sentences, we also designed crowdsourcing

experiments to collect human annotations and quantify the informativeness levels.

More details on instructions that we provided to crowdworkers (Appendix A.2.2),

how we designed the crowdsourcing task, and methods to quantifying the cloze

sentences (Appendix A.2) can be found in the later Appendix sections.
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These sentences are used in DSCoVAR for students to practice contextual word

learning. In Chapter 5, we also use this data to train a model that can automatically

predict the amount of contextual information about the target word from single-

and multi-sentence passages.

2.5 Behavioral and Linguistic Records

from DSCoVAR

DSCoVAR records rich behavioral and linguistic interaction data from the students

during learning (Section 2.2.1). For the behavioral data, DSCoVAR records temporal

data, such as timestamps of mouse-clicks on answer options, typing responses in

text boxes, and submitting responses. DSCoVAR includes some gaming prevention

methods, such as a spell checker and a format checker for answer responses. Both

checking modules guide students to input correctly spelled and formatted responses,

and the system records the number of erroneous interactions.

Linguistic interactions include students’ open-ended response contents.

DSCoVAR guides students to answer the questions with a single word (i.e., provide

a synonym for the target word in a sentence). In the training session, the similarity

score between a student’s response and the target word is recorded and used for

providing immediate feedback for learning.

In Chapter 3, we use behavioral and linguistic interaction features from the

pre-test session’s open-ended questions to predict the off-task state of students.

In Chapter 4, we use the results from pre- and post-test sessions’ multiple-choice
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question results to measure students’ learning gain from the system. We also

investigate how to evaluate the semantic qualities of linguistic responses from the

training session.

2.6 Is DSCoVAR Useful?

Our studies included in this dissertation does not directly investigate the effectiveness

of DSCoVAR. However, we conducted several lab studies that investigate how

contextual word learning strategy from DSCoVAR can help students learning difficult

Tier-2 words. For example, in the first study, we tested if computationally scored

response accuracy is helpful for immediate learning gain (Collins-Thompson et al.,

2012). The results from this study were later used for DSCoVAR’s real-time feedback

based on classifying relatedness between a response and the target.

In the second study, we tested if the real-time feedback on response accuracy

can improve students’ short- and long-term learning (Frishkoff et al., 2016b). The

results indicated that the group that received trial-by-trial feedback for responses

outperformed the control group who did not receive the feedback.

The third study investigated if scaffolding can be helpful for more efficient

vocabulary learning (Frishkoff et al., 2016a). Compared to using all easy contexts for

training, the scaffolded condition showed lower performance in short-term learning,

but higher performance in long-term learning evaluation.

From these studies, we show that contextual word learning implementation in
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DSCoVAR can help K-12 students to learn new vocabulary and retain knowledge

over the long-term.
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Chapter 3

Predicting Off-task States from

Behavioral and Linguistic Signals

3.1 Introduction1

Intelligent tutoring systems (ITS) aim to provide a student-centered environment

for more effective learning. Compared to traditional learning environments, ITS can

provide unique interaction opportunities between the learning system and students.

For example, a typical ITS can determine an appropriate difficulty level of questions

by modeling an individual student’s previous knowledge level (Ma et al., 2016;

Papoušek et al., 2016), or generate systematic feedback to student responses to help

them develop their own learning strategies (Arroyo et al., 2007; Roll et al., 2011).

By closely monitoring student behavior in ITS, educational researchers can observe

1This study was published as Sungjin Nam, Gwen Frishkoff, and Kevyn Collins-Thompson. 2018.
Predicting students disengaged behaviors in an online meaning-generation task. IEEE Transactions
on Learning Technologies, 11(3):362–375.

30



students’ current progress on learning and anticipate their future performance. These

advantages of ITS allow researchers to achieve deeper understanding of various

behaviors of students while they interact with ITS and design more effective learning

systems (Corbett and Anderson, 1994).

In order to provide a personalized learning experience, it is essential to estimate

some model of each student’s state. Measuring students’ engagement level is one way

to inform the ITS about the need for potential interventions. In many educational

and psychological studies, engagement is considered as an important factor for

predicting students’ learning outcomes (Rowe et al., 2010). In ITS, retaining student

engagement is also a critical factor for ensuring the effective delivery of educational

materials (Walonoski and Heffernan, 2006). Previous studies have shown that

engagement levels can be predicted based on various measures, such as student’s

response time for individual questions (Beck, 2004) or reading materials (Cocea

and Weibelzahl, 2007), students’ prior domain knowledge (Walonoski and Heffernan,

2006), and repetitive errors or help requests (Baker et al., 2004).

Our study is part of an effort to develop a web-based contextual word learning

(CWL) system that aims to help students acquire strategies for learning the meaning

of an unknown word based on contextual cues in the surrounding text. This

study investigates how log data from such a vocabulary-learning ITS can be used

to predict specific disengaged behaviors during an online meaning-generation task.

Disengaged behaviors examined in this study include students’ gaming behaviors

from (Baker et al., 2004), such as systematic or repetitive incorrect attempts, and

other motivation-related behaviors, like sharing responses with other students even if
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they were answering different practice questions from ITS. The meaning-generation

task used in this study is a part of the pre-test phase of our vocabulary tutoring

system. In this task, the CWL system asks free-response definition questions in

which students type what they think the meaning of a new word is. Although this

phase is not training oriented, it provides a well-defined yet challenging starting point

for modeling disengaged behavior during a language-based task.

As we show later, disengaged behaviors in this scenario are characterized by a

variety of response types, such as consistent use of nonsensical or irrelevant words,

names of friends or celebrities, or repetitive patterns across multiple responses (e.g., a

repeated word or a sequence like “one,” “two,” “three”). In this paper, we illustrate

how to extract meaningful features from the log data, including event components

and textual response features, and predict disengaged labels collected from human

judges. Findings in this paper will help to achieve better understanding of students’

disengaged behaviors in vocabulary-learning systems with open-ended questions, and

potentially broader types of adaptive ITS in complex cognitive domains.

3.2 Related Work

Our approach builds on three main areas of research: (1) research in psychology,

which describes the neurocognitive components of engagement, (2) studies in the

learning sciences, which have identified several categories of disengagement, and (3)

measurement and modeling of trial-based behavior within an intelligent tutoring
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system (ITS). In this section, we provide a brief summary of work in these three

areas. Then we summarize our aims and approach within the current study.

3.2.1 Neurocognitive Components of Engagement

Engagement is a complex construct that reflects multiple underlying processes in the

mind (Cocea and Weibelzahl, 2011). Specifically, studies in neuroscience points to

two key components of engagement: motivation and cognitive control (Koechlin

et al., 2003).

Motivation can be viewed as an emotion-driven tendency to act in a particular

way. For example, fear is a mental state often triggers disengagement or

withdrawal, whereas anger drives the compulsion to attack, and excitement motivates

positive engagement or approach (Dolan, 2002). Emotional states are associated

with distinct, but overlapping pathways in the brain, especially in subcortical

networks (LeDoux, 2003). There is abundant evidence for the role of motivation

in learning (Cocea and Weibelzahl, 2007; Johns and Woolf, 2006). The Yerkes-

Dodson model (Teigen, 1994) shows an inverse quadratic relation between the level of

motivation (“arousal”) and performance across a variety of cognitive and perceptual

tasks. This confirms that good learning outcomes require an optimal level of interest

or engagement. Either too little (boredom) or too much (anxiety) can lead to

disengagement and subsequent failures in school (Teigen, 1994).

Cognitive control is a second aspect of engagement, which involves top-down or

strategic (i.e., “executive”) attention (Van Veen and Carter, 2006), and is responsible

for attentional focus, and for monitoring the alignment of a past or present action
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with a particular goal (Braver, 2012). Neural pathways in cognitive control converge

in areas of the prefrontal cortex and are connected with subcortical pathways of

motivation-emotion (Koechlin et al., 2003). Cognitive control is often essential

for learning, particularly in tasks that require active decision-making (Gläscher

et al., 2012), sustained attention to particular cues among multiple competing

stimuli (Sarter et al., 2001), or integration of multiple cues in order to make an

appropriate response (Badre and Wagner, 2004).

Together, motivation and cognitive control lead to behaviors that can be labeled

as “engaged” or “disengaged”. Studies of real-world (e.g., classroom) learning have

shown that student engagement predicts learning outcomes, independent of prior

knowledge or experience (Rowe et al., 2010). For example, more motivated students

tend to choose deeper learning strategies, which typically require greater effort and

engagement (Nesbit et al., 2006).

It is important to note that the relation between motivation and attention is

context-sensitive, rather than simple and static. Consider a student who is highly

motivated but has poor cognitive control. As the task continues, the student is likely

to experience repeated failure, which can leads to frustration and disengagement from

the task. This example shows why it is important to capture changes in student

engagement with fine-grained measures throughout a task.

3.2.2 Levels of Engagement in Computerized Systems

Engagement can be characterized as a complex construct and can be represented

at different levels of granularity (O’Brien and Toms, 2010). In studies of learning
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within computer-based systems, some researchers have characterized engagement at

a relatively coarse-grained level. For example, (Kizilcec et al., 2013) characterized

students in a massive open online course (MOOC) as more or less engaged, depending

on their contributions to an online discussion group (also see (Sinha et al., 2014)).

These studies have shown that disengagement is a strong predictor of student

attrition (Kizilcec et al., 2013; Sinha et al., 2014).

Other studies have attempted to capture “trial-by-trial” changes (e.g., by every

question item) in student engagement using more fine-grained measures. For

example, Baker et al. (Baker et al., 2004) analyzed log data from student interactions

with a graphical tutoring system. They showed that trial-specific features —– such

as the latency, duration, and accuracy of individual responses —– were useful in

predicting item-level student engagement.

Based on multiple studies of behavior within adaptive tutoring systems,

Koedinger et al. (Koedinger et al., 2013) identified three types of disengaged

behaviors. The first type is “gaming the system” (Baker et al., 2004; Baker,

2007; Walonoski and Heffernan, 2006) and occurs when students exploit patterns

or regularities in an ITS in order to complete a task with minimal effort (e.g., “help

abuse” (Baker et al., 2004)). Students may attempt to game the system when they

are superficially motivated to complete the task (e.g., for a course grade), but are

either unwilling or unable to engage the deeper strategies that promote genuine

learning and mastery (Baker et al., 2008b). The second type includes behaviors that

are off-task, that is, oriented away from the ITS, e.g., talking to one’s neighbor,

sleeping, or spacing out (Baker, 2007). Both gaming and off-task behaviors reflect a
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lack of motivation to engage in a key cognitive processes, especially when they impose

a high cognitive load (Baker et al., 2008b; Walonoski and Heffernan, 2006). The third

type is careless mistakes, such as typographical errors or accidental clicking on a web

link. In some instances, these errors may reflect disengagement (e.g., a momentary

lapse of attention). However, they may also reflect a failure to execute the intended

action. Because accidental behaviors can be ascribed to more than one underlying

cause (e.g., motor-control versus engagement), they may be harder to predict than

intentional behaviors, such as gaming (Baker, 2007; Baker et al., 2004).

3.2.3 Modeling Trial-by-Trial Engagement

Trial-by-trial estimates of engagement are of interest for adaptive systems, because

they can be used to determine the most effective way for the system to respond

throughout a task (Hussar and Pasternak, 2010). Importantly, work by Baker,

Koedinger, et al. (Baker et al., 2004, 2008b; Walonoski and Heffernan, 2006) has

shown that different types of features are predictive of gaming versus other types

of disengaged behavior. In particular, they have shown that patterns of response

across trials (e.g., repetition of the same response (Baker et al., 2004)) can help to

predict student behavior. These findings suggest that trial-by-trial measurement and

modeling of engagement can benefit from the use of context-sensitive measures, as

well as single-trial measures of behavior. In addition to online measures, studies have

used various offline measures to capture student-level variables — such as skill level

(estimated knowledge of a particular topic, working memory, etc.) — and item-level

variables — such as problem difficulty (number of steps in a computation, written
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word frequency, etc.). Student- and item-level features can help capture sources of

variance that are not well accounted for by online measures.

Previous studies presented the results related for detecting students’

disengagement behaviors in ITS. Baker et al. (Baker et al., 2004) reported that

they achieved AUC score of 0.82 for predicting harmful gaming responses, such as

repetitively making errors or rapidly firing the help function accompanied with less

learning gain. Paquette et al. (Paquette et al., 2015) reported AUC scores from 0.829

to 0.901 across student data from multiple ITS for predicting gaming behaviors

defined in their previous study (Baker et al., 2008a) by using expert rule based

gaming features. Cocea and Weibelzahl reported up to 89.8% accuracy (equals to

10.2% error rate; reported recall rates were up to 0.94) on predicting disengaged

behaviors, defined as spending too much or little time on learning materials, in

computer programming tutoring systems (Cocea and Weibelzahl, 2009).

3.2.4 Overview of Current Study

Previous studies on modeling student disengagement typically focused on other

domains, such as science, technology engineering, and mathematics (STEM)

topics, (Baker et al., 2004; Paquette et al., 2014; Baker et al., 2008a; Cocea and

Weibelzahl, 2009). However, modeling students’ behavior in a vocabulary-learning

system with open-ended questions may require additional domain-specific features to

address important usage scenarios. Features based on students’ text responses, like

similarity between responses and target words or the number of erroneous attempts
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that try using non-alphabetic characters or misspelled answers, may more fully

represent students’ interaction with such a language-oriented system.

In the present study, we used data-driven methods to predict different patterns

of engagement within a vocabulary assessment task. During this task, the ITS

presented a word (known as the target word) and prompted students to type in

the word’s meaning. Response data were logged and used to generate a set of

trial-specific measures, including response time and task-related errors. Log data

were then provided to human experts, who were asked to flag responses that were

consistent with disengaged (gaming or off-task) behavior.

We had three specific research questions (RQ) and corresponding hypotheses.

• RQ1: Can we use trial-specific measures, based on responses to generating

synonym questions, to predict variability in student engagement on a trial-by-

trial basis?

Previous studies have shown that student interactions with an ITS (i.e., log data) can

be used to predict disengaged behaviors (Baker et al., 2004, 2008b; Walonoski and

Heffernan, 2006). In the present study, we extended this prior work by using free-text

data to predict variability in engagement. To this end, we computed each response’s

semantic features (e.g., similarity to the target word meaning) and orthographic

features (e.g., spelling similarity to a presented question item), as well as standard

log data such as response latency. This expected to provide a rich set of features

for prediction and analysis of student behavior.

• RQ2: Do context-sensitive measures predict variability in student engagement

that is not accounted for by single-trial features?
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In this study, we expected to replicate findings from Baker et al. (Baker et al.,

2004), which showed that context-sensitive measures are important predictors of

trial-specific engagement. To extend this prior work, we investigated how linguistic

measures, such as orthographic and semantic similarity measures among recent

responses, can improve the performance of predicting students’ disengaged behaviors.

• RQ3: How can we characterize patterns of disengaged behavior among students

with a strong tendency toward disengaged behavior?

Lastly, we also investigate how each contextual feature type captures particular

patterns of disengaged responses, including repetitive responses and semantically

related sequential responses.

3.3 Method

In this section, we describe methods for the acquisition and analysis of different types

of student behaviors within a vocabulary-training ITS. Section 3.3.1 describes the

procedures for acquisition of raw data, including free-text responses from a Meaning-

Generation task, which are the main focus of our analysis. Section 3.3.2 explains

the methods for gold-standard labeling of log data from the Meaning-Generation

task and the identification of predictive features, including online (single-trial and

context-sensitive) measures, as well as offline (student- and item-level) measures.

Finally, Section 3.3.4 describes the statistical models.
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3.3.1 Study Design

Participants

Thirty-three student participants (from 4th to 6th grade) were recruited from a small

laboratory school, which is located on a university campus in a medium-sized city

in the northeastern United States. Prior to the main task, students completed the

online version of the Gates-Macginitie Reading Test (GMRT), a standardized test

of reading comprehension ability (MacGinitie et al., 2000).

Data from 8 participants were excluded from the final analysis because they

did not complete the GMRT. The resulting dataset included data from fourteen

girls and eleven boys. There were ten 6th grade students, ten 5th grade students,

and five 4th grade students. All selected participants were native English speakers,

and did not have a history of developmental or reading disability. The twenty-five

participants included in our analysis scored well above average on the GMRT: the

median (composite) score was 75 (mean = 70.24; s.d. = 27.79).

Stimuli

Students were presented with 60 SAT-level (or so-called Tier 2) English

words (Blachowicz et al., 2006). These stimuli “target words” were balanced between

20 adjectives (e.g., defiant), 20 nouns (e.g., eminence), and 20 verbs (e.g., languish).

Individual students typically differ in their degree of familiarity and knowledge

with a particular word, reflecting different frequencies and types of exposure to

words. Given this observation, we selected 60 target words that, on average, we

expected to be difficult, but not necessarily novel; these items are sometimes referred
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to as “frontier” words, which have been viewed useful words to target within a

vocabulary intervention (Beck et al., 2013). To identify appropriate frontier words,

we used grade-specific language norms and selected a mixture of three types of

words: (1) Known words, which the participants would be able to recognize and

define (∼ 20 − 30%, based on word norms), (2) Familiar words, which they would

recognize, but be unable to define, (∼ 20 − 30%), and (3) Unknown words, which

would be novel, that is, indistinguishable from nonce words (∼ 40 − 60%). Our

strategy for word selection made it likely that there would be variability in word

knowledge across both students and items.

Experimental Tasks

As mentioned previously, data for the present analysis were collected during the first

(pre-test) session of a classroom experiment using a vocabulary-training ITS. The

pretest session comprised two parts. Part 1 included a familiarity-rating question

and a meaning-generation question. Part 2 was a synonym-selection task: accuracy

on Part 2 is used to evaluate learning outcomes (Frishkoff et al., 2016a). Because we

restrict our attention to patterns of behavior during the meaning-generation task,

Part 2 data were excluded from the present analysis.

Familiarity-Rating Task Students were presented with each of the 60 target

words and were asked to indicate if the word was completely unknown (“I have

never seen or heard this word before”), familiar (“I have seen or heard this word

before, but I do not know what it means”), or known (“I have seen or heard this

word before, and I know what it means”). Familiarity ratings were used as one
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of the predictor variables in the present analysis, to capture individual differences

in prior knowledge of words.

Meaning-Generation Task Immediately after each familiarity rating question,

students were asked to type the meaning (synonym or near-synonym) of each target

word. Students were instructed to enter only single-word responses and to avoid use

of non-alphabet characters, including hyphens (e.g., compound words) and spaces

(e.g., multi-word responses). Students were required to click an “Next” button

to submit each typed response.

The present version of the ITS used jQuery’s text field validation module to

verify that each response was a single word that is different from the target word. If

a student provided an ill-formatted response, the system generated an error message

and asked the student to enter a response that consists of a single word, with no

spaces or hyphens (in response to typographic errors), or a response that is different

from the target word (if the student tried to game the system by retyping the target).

Additionally, PHP’s Pspell extension was used for spell checking. If the student

provided a well-formatted (one-word) response that was orthographically incorrect

(i.e., a non-word string or a misspelled word), the ITS responded with an error

message and provided up to three spelling suggestions that were orthographically

similar with the provided response. After the student provided a well-formatted,

orthographically correct response, the ITS proceeded to the next item.
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Figure 3.1: Examples for familiarity-rating (top) and meaning-generation (bottom)
tasks from the pre-test session.
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3.3.2 Data Annotation

Log data recorded during the Meaning-Generation task were used to identify patterns

of student behavior that were judged to be disengaged (either gaming or off-

task). Operational definitions and rules for application of labels are described in

the present section.

Log Data

Log data comprised a total of 1,500 items, including free-text responses from 25

participants to 60 target words. Note that each item was associated with at least

one response since the task involves forced generation (Frishkoff et al., 2016a). In

the present sample, students provided an average of 1.26 responses to each target

word (SD = 0.981; median = 1).

For each item, the ITS recorded the following: the question onset (i.e., target

item load time), the student response (i.e., typed response string), the response

onset (i.e., the first typed in time), the response offset (i.e., response submission

time), and the number and types of error messages.

Gold-Standard Labeling of Log Data

Two native English speakers, one female and one male, provided gold-standard labels

for each response item in the log data. Both judges were undergraduate students

at the University of Michigan. Judges were informed that the student task was

to provide the meaning (synonym or near-synonym) for each word. They had no

additional knowledge of the experiment procedures, study methods, or hypotheses.
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Instructions to judges were modeled after Baker et al. (Baker et al., 2004). For

each of the 1500 items, they were asked to detect the “disengaged” response for

one or more of the following reasons:

• The response seemed “less serious or completely irrelevant” for a given

target word,

• The response was part of a series of “patterned responses over different

question items”, or

• The response was part of a series of “repetitive false submissions with

invalid answers”.

The log data was provided as a single spreadsheet file. For labeling, each judge

was instructed to sort the data in two formats. Format 1 consisted of responses

submitted to the system by each student (ordered by question onset time, grouped

within students). This ordering enabled the judges to detect response patterns over

time within each student (Table 3.1). Note that a single label was generated for

each item, even when the item triggered multiple disengaged responses (e.g., due

to repetitive spelling or related validation errors). Format 2 consisted of responses

submitted to the system in strict temporal order, without subject-level grouping.

This ordering enabled judges to detect patterns that were common across students

at around the same time, which could suggest answer sharing activities between

students (Table 3.2).
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Judges could go back and forth between different sorting formats to generate

the labels. Disengagement behavior labels were only counted for the analysis when

both judges agreed on their decisions for the same question item. Inter-rater

agreement between the two judges was moderately high (Cohen’s kappa, 0.734).

Both judges agreed on 276 of 1,500 responses (about 18.4%) as representing instances

of disengaged behavior.

Table 3.1: Examples of response sequences with disengaged responses (labeled with *)
occurring within highly disengaged students. The table shows how disengaged
behavior can vary including highly repetitive responses (A1, A2, A3), random
irrelevant words (B1, B3), and sequences (B2).

Student

A1 A2 A3 B1 B2 B3
blah∗ not∗ run∗ dark Twelve∗ cow∗

blah∗ sure run∗ pandas∗ Mimic dragon∗

hastily not∗ run∗ penguins∗ Thirteen∗ pear∗

blah∗ added run∗ donkey∗ Fourteen∗ orange∗

blah∗ not∗ run∗ bob hello∗ block
blah∗ not∗ hi∗ scared Flag argue

Table 3.2: Examples of disengaged responses from study data (labeled with *)
occurring across different students within a similar time frame. Students S3 and
S4 provided very similar responses almost concurrently even though they were
confronted with different target words. Both judges considered these responses as
disengaged behavior, suspecting the possibility that the students were talking with
each other.

Seq# Students Target Word Response

11 S1 reticent receive
12 S2 perturbed clean
13 S3 tenable rain∗

14 S4 vie Rain∗
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3.3.3 Predictor Variables

To represent and model student behaviors that were subsequently labeled as

“engaged” or “disengaged”, we considered three types of predictor variables (Table

3.3). The main predictors were based on data from the Meaning-Generation task;

henceforth, we refer to these as “online” (fixed effect) variables. These include

Single-Trial Online Variables (STOV) — which reflect individual responses on each

trial, without consideration of prior or future responses — and Context-Sensitive

Online Variables (CSOV) — which are defined on each trial, but also reflect patterns

of behavior across trials. Another set of variables are “offline” with respect to

the Meaning-Generation task (random effect variables); they include subject-level

factors (Grade, Skill), item-level factors (Target), and self-rated Familiarity

with each target word. For some online variables, we also computed the mean

and standard deviation (SD) to reflect the response patterns from question items

with multiple attempts.

Single-Trial Online Variables (STOV)

STOV characterize participant responses to a particular item (Target) during the

Meaning-Generation task. Each STOV is either an error-based feature, a temporal

feature, an orthographic feature, or a semantic feature.

Error-based features represent objective failures to comply with the task

instructions. NoErrForm is the number of ill-formatted responses to a particular

item (e.g., hyphenated and multi-word responses, or responses with non-alphabetical
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strings), and NoErrSpell is the number of misspelled responses to that item

(i.e., misspellings).

Temporal features represent the latency of each response and include response

time to type the first character of a response string (RTStart) and response time

to press the “Next” key to submit the completed response string (RTFinish). Both

features are measured in milliseconds, and values are natural log-transformed prior

to analysis.

Orthographic features include the length of the response (i.e., the number of

characters; RspLen) and the orthographic overlap between the response string and the

target item (SimOrth), based on trigram cosine similarity, which measures spelling

similarity between the response and the target word by three adjacent characters.

Finally, the accuracy of the response is represented by the semantic similarity

between the response word and the target word. In the present analysis we use

Markov Estimation of Semantic Association (MESA) (Frishkoff et al., 2008) to

compute semantic similarity (SimSem).

Context-Sensitive Online Variables (CSOV)

CSOV also characterize free-text responses on a particular trial. However, unlike

STOV, CSOV are defined with respect to student responses on previous trials. In

the present study, we define two such variables. The first, PattOrth, represents the

orthographic overlap between the response to the current item and the responses

on one or more consecutive trial(s). The second, PattSem, represents the semantic
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overlap between the current response and responses on previous trials. In each case,

mean and standard deviation were computed.

We also determined the optimal window size by comparing results from the

variable selection process (described later in Section 3.3.4) for window sizes of one,

three, five, and seven. For example, if the window size is seven, CSOV are defined

over eight consecutive trials (where the eight trial is the current trial, and trials

1-7 represent information from previous trials). In this case, CSOV values are only

computed for trials 8-60. Thus, models with CSOV were trained and evaluated

with the dataset that excludes trials 1-7.

Offline Variables

Offline variables include subject- and item-level predictors. Subject-level predictors

vary across students, but not across items. In the present analysis, we included

two subject-level predictors: Grade (4th, 5th, or 6th) and Skill (whether the

GMRT composite score is above median or below). GMRT is consisted of three

scores: Reading, Comprehension, and Vocabulary scores. In this study, we used

a score from Comprehension as a random effect variable since it is a composite

score of other two. Item-level features vary across items. In the present analysis,

Target (target words) was included as an item-level feature. Finally, Familiarity

(known, familiar, unknown) was used to represent individual differences in self-rated

knowledge of each item. Familiarity was considered “offline” because it was acquired

outside the Meaning-Generation task.
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3.3.4 Modeling Methods

In this section, we describe methods for identification of predictive features and

selection of accurate and robust models. All analyses were conducted in R (R Core

Team, 2015).

Identification of Predictive Features

To select the structures of main predictors (fixed effect) for subsequent modeling,

we applied a two-stage process. In both stages, the hill-climbing (HC)

algorithm (Margaritis, 2003) and a step-wise selection process were applied to the

dataset including all 25 participants. In the first stage, we performed structure

learning using the HC algorithm to automatically extract the pairwise interactions

of fixed-effect variables that can be used to predict disengaged behavior labels.

Further higher order interaction structures were not considered in this study for easier

interpretation. In the second stage, the pairwise interactions identified in step one

were entered into a step-wise variable selection process with other online and offline

variables. The direction of edges in pairwise interactions was ignored at this stage.

Interaction Structure Learning. To identify pairwise interactions between

fixed effect variables, we used the HC algorithm, implemented in R’s bnlearn

package (Scutari, 2009). The algorithm was applied for 1,000 iterations using the

boot.strength function. This process results in a Bayesian network structure that

contains the probability of each edge and direction estimated by bootstrap samples.

Non-significant edges were filtered out from the averaged output by using the
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averaged.network function. Lastly, the Bayesian network output was summarized

by extracting Markov blanket nodes of disengaged behavior labels. A Markov blanket

is a set of variables that contains enough information to predict the value of the

particular node, which includes parents, children, and children’s other parents of the

node that is going to be predicted (Pearl, 2014).

Variable Selection. As a second stage of structure learning, we used a step-

wise process with the Akaike information criterion (AIC) that maximized model

fit. To extract features for the logistic regression (LR) models, we used R’s built-in

step function. This step-wise algorithm repeatedly added and dropped fixed-effect

variables based on the model’s AIC score.

In the case of mixed effect logistic regression (MLR) models, fixed effect variables

were initially selected by backward-fitting process, removing each variable if it does

not improve the model’s AIC score. After this process, each random effect variable

was tested. As an initial starting point, Familiarity was added to the MLR model.

Other random effect variables, such as Target, Grade, and Skill, were added to the

model if the model’s F score changed significantly (p < 0.05) by adding the variable.

Lastly, another backward-fitting process for fixed effect variables was conducted to

see if any fixed effect variables could improve the AIC score with the updated random

effect variable setting. This process was done by using the fitLMER.fnc function of

LMERConvenienceFunctions package (Tremblay et al., 2015).
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Statistical Modeling

To predict disengaged response patterns (see Section 3.3.2 for response labeling),

we compared two families of statistical models: logistic regression (LR) and mixed-

effects logistic regression (MLR). LR is a regression model that is widely used for

classifying data with binary labels. MLR is a more general form of regression

model that incorporates random effect variables to capture variations among repeated

measures. Although it may not be conventional to use LR models with data that

contains repeated measures over items and students, we included LR models in our

analysis because several of our CSOV features, such as those computed from both

a student’s current response and response history, do in fact capture per-student

and per-item correlation.

We used R’s built-in glm function to compute LR models and glmer, as defined

in lme4 package (Bates et al., 2014), to compute MLR models. Coefficients for fixed

and random effect variables of MLR models were estimated with nAGQ = 1, which

represents the number of points per axis for testing the Gauss-Germite approximation

to the log-likelihood (Bates et al., 2014).

To estimate model accuracy in generalizing to previously unseen students, we

used cross-validation over the set of students. Parameters for regression models

were estimated from the training set, and performance was averaged over held-out

sets. We computed the average error rate (proportion of incorrect classifications),

precision, recall, and F1 score results across 25 folds that were created from leaving

out each student’s data as a held-out validation set. Binary values of predicted

labels in the first two evaluation methods were decided using a threshold probability
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of 0.5: if the predicted probability of disengagement for the item was bigger than

0.5, the item was considered to be representing disengaged behavior. After this,

feature analysis was performed to identify the relative importance of variables for

predicting disengaged behaviors.

3.4 Results

We now discuss the learned prediction models (Section 3.4.1), compare the models’

disengaged behavior prediction accuracy (Section 3.4.2), and assess the relative

importance of different variable sets in selected prediction models for disengaged

behaviors (Section 3.4.3).

3.4.1 Structure Learning

Interaction Structures from the Hill-climbing Algorithm

The HC algorithm identified Bayesian networks that capture conditional

dependencies between the fixed-effect variables. Each predictor set included

single-trial online variables (STOV) or additional context-sensitive online variables

(STOV+CSOV). The resulting Bayesian network structures are shown in Figure 3.2.

From Figure 3.2, we could extract the number of pairwise interactions among

STOVs. The results show conditional dependency relationships between variables,

which can be translated into pairwise interactions in the regression model, including

relationships between time for start typing responses and orthographic similarity,
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Figure 3.2: The Bayesian network structures learned for fixed-effect variables using
single-trial online variables only (left) and single-trial + context sensitive online
variables (right). Solid lines represent the pairwise interaction structures extracted
from the HC algorithm, and tested in a step-wise process. Compared to the structure
from STOV only, adding CSOVs to the model reduces the number of pairwise
interaction structures extracted from the HC algorithm (STOVs: red circles; CSOVs:
blue circles; disengagement label: black circles (J)).

time for complete typing response and response length, and response length and

semantic similarity.

When single-trial online variables and context-sensitive online variables were

combined, the interaction variable structure was slightly simpler, and included

dependencies between mean response time for finishing typing in and mean response

length, and mean response length and standard deviation of orthographic similarity

between previous responses and the target word.

These interaction structures were passed on to a step-wise process and treated

as candidate predictive features with other fixed effect online variables. The results

for selected predictors are presented in the next section.
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Selected features in LR models

A step-wise variable selection process was followed with interaction structures

suggested from the HC algorithm. In the logistic regression model with single

response variables (LR:STOV ), coefficients indicated that the response was

significantly likely to be disengaged when following behavioral patterns were

observed (p < 0.05):

• If there was a short response time for both initiating the accepted response

(RTStart.final) and then completing it (RTStart.final);

• If the average length of responses was short (RspLen.mean) or variation among

length of responses was large (RspLen.sd);

• If the last submitted response (SimOrth.final) was orthographically dissimilar

to the target word;

• If the accepted response was semantically dissimilar to the target word

(SimSem.final).

During the step-wise variable-selection process, variables for the number of

misspelled or illegally formatted responses were dropped. If we add interaction to

the model structure, interactions between the finishing time and response length of

the accepted response was found to be statistically significant (p < 0.001). This

means short and quickly typed responses tend to be classified as disengaged.

When introducing the context-sensitive online variables to the

model (LR:STOV+CSOV ), most single-trial online variables remained statistically
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significant (p < 0.05). In the model, context-sensitive variables described

additional information of disengaged behaviors. Disengaged behaviors were more

likely to be observed if the mean (SemPatt.p3.mean) or standard deviation

(PattSem.p3.sd) of semantic similarity between the current response and the

previous responses (p < 0.05) were high. Interaction between average length of

the response and standard deviation of orthographic similarity among the previous

responses was found to be significant as well (RspLen.mean : PattOrth.p7.sd;

p < 0.05) in STOV+CSOV condition. This means disengaged behaviors were

more likely to be observed if the response was short and placed within an

orthographically less diverse response pattern.

Selected features in MLR models

As with LR models, we built MLR models using two different variable sets (STOV

and STOV+CSOV ) and interaction structures. Results from the step-wise algorithm

with MLR models were also similar to those for LR models. Some noticeable

differences were that the p-values for selected fixed-effect predictors were more stable

than the ones in the LR models; less number of variables were selected; and none of

the response time type variables (RTStart and RTFinish series) were significant

predictors if the model included context-sensitive information (STOV+CSOV

models). Lastly, all pairwise interaction structures from single-trial online variables

were dropped during the step-wise process.

Each offline variable was added as a random intercept and also evaluated in

the step-wise process. Table 3.5 explains variances and standard deviations of
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Table 3.5: Results for selected random intercepts in MLR models. Adding CSOV to
MLR models decreased the amount of information explained by some offline variables
like Familiarity and Skill. (†: The model includes interactions)

Variance (Std. Dev.)

(Int.) STOV STOV+CSOV STOV+CSOV†

Familiarity 1.54 (1.24) 0.95 (0.97) 0.81 (0.90)
Target NA NA NA
Grade 0.14 (0.38) 0.14 (0.38) 0.14 (0.37)

Skill 0.28 (0.53) NA NA

selected random intercepts. In a single-trial online variable condition (STOV ),

Familiarity, Grade, and Skill were selected as random intercepts. In models with

context-sensitive information (STOV+CSOV ), Familiarity and Grade were selected

as random intercepts. Adding context-sensitive online variables, which contain

information about the relationship between responses, to MLR models decreased

the amount of information that was explained by Familiarity and Skill variable.

Overall, a step-wise process selected the list of predictors that increase LR and

MLR models’ goodness of fit that measured in AIC score. The nature of the resulting

single-trial online variables suggests that disengaged behaviors can be explained by

such measures as time elapsed for initiating or completing the answer, length of the

response, and orthographic or semantic relationship between the response and the

target word. Multiple context-sensitive variables were also found to be significant

predictors for both logistic regression and mixed-effect logistic regression models,

suggesting that information about performance in previous questions also can be

useful for predicting disengaged behaviors.
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3.4.2 Model Evaluation

In this section, we evaluate various models’ prediction performance and identify

which model is better than others for predicting student behaviors labeled as

disengaged behavior. All measures are reported by using a leave-one-subject-out

cross-validation process.

Overall Error Rate

Table 3.6: Average classification error rates for prediction models (lower numbers
are better). Logistic regression models (LR) were performing marginally better than
mixed effect models (MLR). Adding context-sensitive information (STOV+CSOV )
and interaction structures for fixed-effect variables provided marginal improvements
for models’ average error rates (†: model includes interactions, a: single-trial online
variable (STOV ) models evaluated with STOV dataset, b: STOV models evaluated
with STOV+CSOV dataset that does not include the first seven items) (Scores in
bold: the best performing model with a given variable set; NA: MLR models without
any significant fixed-effect interactions)

STOVa STOVb STOV+CSOV

Models Mean 95% CI Mean 95% CI Mean 95% CI
Baseline 0.184 [0.101, 0.267] 0.192 [0.106, 0.279] 0.192 [0.106, 0.279]
LR 0.154 [0.104, 0.204] 0.155 [0.106, 0.205] 0.112 [0.067, 0.156]
LR† 0.148 [0.098, 0.198] 0.152 [0.104, 0.200] 0.109 [0.066, 0.152]
MLR 0.155 [0.103, 0.206] 0.155 [0.106, 0.205] 0.116 [0.071, 0.162]
MLR† NA NA NA NA 0.118 [0.071, 0.164]

First, the models’ performance was measured with average error rates. Error

rate in this paper was defined as following:

error rate =
number of incorrectly classified items

total number of items
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We used a baseline prediction model that simply guesses the majority label (i.e.,

non-disengaged responses) for a given response, which is an initial target to surpass

for prediction models. For the dataset used to train single-trial online variable

models (STOV ), the baseline error rate was 18.4%, the proportion of disengagement

labels in the collected data. The baseline for the dataset used to train models with

additional context-sensitive online variables (STOV+CSOV ) was slightly different

at 19.2%, since the CSOVs require responses having a history window of at least

seven prior responses.

Our results showed that the average scores of all STOV models performed better

than the baseline model (Table 3.6). Using either LR or MLR prediction models

with STOV predictors reduced the average error rate compared to the baseline from

15.8% to 16.3%. For LR model, adding interaction structures learned from the

hill-climbing algorithm improved the prediction performance only by an additional

3.9% over the regular STOV models (step-wise process for MLR model dropped

all interaction structures).

Models including context-sensitive online variables used a slightly smaller

dataset than the STOV model evaluation results. Using the same dataset from

STOV+CSOV evaluation on STOV models yield from 19.3% to 20.8% better

performance than the baseline model.

The largest improvements came from adding context-sensitive online variables to

prediction models (STOV+CSOV ). Compared to the STOV model, the performance

of STOV+CSOV models was improved from 25.2% to 27.3%. Also, in STOV+CSOV

models, adding interaction variables among fixed-effect variables only brought -1.7%
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to 2.7% improvements. Lastly, we found that LR and MLR models did not have

significantly different prediction accuracy for this task.

Precision and Recall Measures

For further comparison of models with different measures, we also analyzed models

with standard evaluation metrics, such as precision, recall, and F1 scores. From

the data collected from 25 students, we had eight students who did not have any

labels for disengaged behaviors. With students’ data without any disengagement

labels, it was impossible to measure precision and recall if disengaged behaviors are

considered as positive cases. For example, if we consider disengagement labels to

be positive cases, data from those eight students do not contain any real positive

conditions, which makes the denominator value of recall zero. Moreover, if the

classifier correctly guesses all true labels from those students, as all negative cases

(engaged state) throughout the task, it also makes the denominator value of precision

zero. Therefore, in this section, precision, recall, and F1 results were calculated by

treating disengagement behaviors as negative cases.

The perfect recall value of the baseline model means that it never misses the

positive cases (labels for engaged state) since it always predicts the item as positive.

Since other LR and MLR prediction models contain inevitable noise and fail to

predict a few instances of on-task states, it seems like they perform worse than the

baseline model. However, this does not mean that our models also perform poorly

than the baseline model in other evaluation measures

Overall, precision, recall, and F1 scores showed similar patterns of performance
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Table 3.7: Precision, recall, and F1 scores for prediction models. Mixed effect models
(MLR) perform better than logistic regression models (LR). Adding context-sensitive
variables (STOV+CSOV ) marginally increased the precision, recall, and F1 scores.
Adding interaction structure was also maginally helpful for increasing precision and
F1 scores. (†: model includes interactions; Scores in bold: the best performing
model with the scoring theme; NA: MLR models without any significant fixed-effect
interactions)

STOV

Precision Recall F1

Models Mean 95% CI Mean 95% CI Mean 95% CI
Baseline 0.816 [0.733, 0.899] 1.000 [1.000, 1.000] 0.881 [0.818, 0.944]
LR 0.853 [0.786, 0.921] 0.959 [0.939, 0.980] 0.892 [0.846, 0.938]
LR† 0.855 [0.787, 0.922] 0.967 [0.951, 0.982] 0.896 [0.850, 0.942]
MLR 0.866 [0.797, 0.932] 0.956 [0.932, 0.979] 0.896 [0.852, 0.940]
MLR† NA NA NA NA NA NA

STOV+CSOV

Precision Recall F1

Models Mean 95% CI Mean 95% CI Mean 95% CI
Baseline 0.808 [0.721, 0.894] 1.000 [1.000, 1.000] 0.875 [0.810, 0.939]
LR 0.889 [0.838, 0.940] 0.979 [0.972, 0.986] 0.927 [0.896, 0.957]
LR† 0.893 [0.843, 0.942] 0.979 [0.971, 0.987] 0.929 [0.899, 0.958]
MLR 0.888 [0.837, 0.940] 0.981 [0.973, 0.989] 0.927 [0.896, 0.958]
MLR† 0.894 [0.845, 0.943] 0.980 [0.971, 0.990] 0.930 [0.901, 0.959]

to the average error rate results. Models with context-sensitive online variables

performed marginally better than single-trial online variable models (Table 3.7). For

example, the LR:STOV+CSOV model with interactions performed better than the

LR:STOV model with interactions by 4.4% in precision, 3.7% in recall, and 3.7% in

F1 score. In terms of precision and F1 score, all LR and MLR models performed better

than the baseline model. For example, the LR:STOV+CSOV model with interaction

structure achieved a 9.5% better precision rate and a 5.81% better F1 score than the

baseline model. MLR models performed similar or marginally better than LR models
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in all variable conditions. Adding interaction structures for the context-sensitive

online variable condition also only marginally improved the models’ performance.

Evaluation on Disengaged Student Subset

An ROC curve is a collection of true positive rate and false positive rate pairs based

on different classifier thresholds. With an ROC curve, we can compute the area under

the ROC curve statistic (AUC) as a robust overall evaluation metric for classifier

effectiveness. However, regardless of how we conceptualize the positive cases (i.e.,

consider labels for either engaged or disengaged behaviors as the negative case), AUC

is measurable only when both positive and negative cases exist in real label data.

Therefore, analysis in this section measured the AUC score for prediction models

with subset of student data that did not include those students who did not show a

single disengaged behavior labels (17 of 25 students). Although this analysis setting

may reduce the explanatory power of our results by conducting the analysis with

a smaller-sized sample, we think it may provide additional information on how our

models would perform with highly disengaged student data.

Results in Table 3.8 show AUC statistics from ROC curve and average error rates

for students who exhibit at least one disengaged behavior event. In terms of AUC

score, both LR models and MLR models performed substantially above the baseline.

We confirmed that adding variables for context-sensitive information to models

helped to improve the AUC scores and average errors. All MLR models performed

better than LR models with AUC scores. However, adding interaction structures of

fixed-effect variables did not increased the AUC scores. In terms of average error rate,
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Table 3.8: The Area Under the ROC curve (AUC) statistic and average error rate for
the disengaged student subset. Overall, including context-sensitive online variables
improves the prediction performance (STOV+CSOV ). In terms of AUC score, mixed
effect models (MLR) perform better than logistic regression models (LR). Including
additional interaction structure only improves the average error rate of LR models.
(†: model includes interactions) (Scores in bold: the best model performance with a
given variable set; NA: MLR models without any significant fixed-effect interactions;
AUC: higher is better; Avg.Error: lower is better)

AUC

STOVa STOVb STOV+CSOV

Models Mean 95% CI Mean 95% CI Mean 95% CI
Baseline 0.500 [0.500, 0.500] 0.500 [0.500, 0.500] 0.500 [0.500, 0.500]
LR 0.764 [0.695, 0.834] 0.764 [0.695, 0.834] 0.820 [0.760, 0.879]
LR† 0.759 [0.691, 0.828] 0.759 [0.691, 0.828] 0.807 [0.732, 0.883]
MLR 0.822 [0.760, 0.884] 0.821 [0.759, 0.883] 0.865 [0.824, 0.907]
MLR† NA NA NA NA 0.838 [0.767, 0.909]

Avg. Error

STOVa STOVb STOV+CSOV

Models Mean 95% CI Mean 95% CI Mean 95% CI
Baseline 0.271 [0.172, 0.369] 0.283 [0.182, 0.384] 0.283 [0.182, 0.384]
LR 0.217 [0.168, 0.265] 0.225 [0.180, 0.271] 0.156 [0.106, 0.207]
LR† 0.206 [0.159, 0.253] 0.205 [0.163, 0.248] 0.148 [0.104, 0.191]
MLR 0.201 [0.146, 0.256] 0.212 [0.158, 0.266] 0.149 [0.103, 0.194]
MLR† NA NA NA NA 0.159 [0.112, 0.205]

MLR model only outperformed LR models in single-trial online variable condition.

Adding interaction structures improved performance of LR models.

3.4.3 Feature Importance Analysis

Results from Section 3.4.2 illustrated that both LR and MLR models perform similar

or better by including interaction structures for both STOV and STOV+CSOV

conditions. In this section, we identify which features are more important than

others in terms of improving the prediction accuracy. We also examine how different
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types of context-information variables are helpful for predicting particular response

patterns of disengaged behaviors.

Individual Features

In order to identify more details about each feature’s contribution to the prediction

model, we conducted a feature ablation analysis that removed a single feature at

a time from the model and evaluated the resulting loss in prediction accuracy,

averaged across leave-one-subject-out cross-validation folds. All models used in this

analysis included interaction structures (if possible) to illustrate more information

on importance levels of various predictive features.

Table 3.9 presents the list of predictive features ordered by importance level,

measured by changes in average classification error rate of selected models. Due to the

discrepancy between the model-fitting process, which used AIC statistics to maximize

goodness-of-fit through a step-wise process, and the prediction process, which used

average classification error rates over cross-validation, some features provided better

(harmful) or same (neutral) average error rates if they were taken off the model.

Overall, the results are in accord with what we already observed in Section 3.4.1.

In Table 3.9, we can observe that adding context information to the LR model

makes temporal features (RTStart or RTFinish series) less critical for prediction. In

both single-trial online variable models (LR:STOV and MLR:STOV ), the results

show that temporal features and orthographic features are helpful for improving

the models’ prediction performance. In models containing context-sensitive online
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variables (STOV+CSOV ), variables like semantic similarity among recent responses

were considered as more important features than other STOV features.

Contextual Features

The results from previous sections repeatedly showed that introducing context-

sensitive variables (CSOV) significantly improved the model’s performance on

predicting labels for disengaged behaviors. To get more detailed insights into

which types of CSOVs are responsible for this improvement, we also evaluated

the average increase in prediction error (across leave-one-subject-out folds) when

a particular CSOV variable type is removed from the model. In this analysis, the

MLR:STOV+CSOV model with interaction structure was used for evaluation. In

the previous section, this model showed that its model structure is more stable than

the corresponding LR model (Table 3.9).

For this analysis, we categorized context-sensitive online variables into two

different types: (1) CSOVs related to orthographic similarity scores (e.g.,

(PattOrth.p3.mean)), and (2) CSOVs related with semantic similarity scores (e.g.,

(PattSem.p7.sd) and (RspLen.mean:PattSem.p7.sd)). This included fixed effect

interaction structures that associated with the CSOV. Analyzing the model’s

performance without each type of CSOV will demonstrate how different relationship

among the current response and previous responses can be useful for predicting

different patterns of individual student’s disengaged behaviors.

The results of our analysis are summarized in Figure 3.3, which compares the

individual student level of average prediction error when each context-sensitive online
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variable type is included in the MLR model. Students are sorted by ascending

proportion of disengaged responses (and thus, the baseline error rate of individuals).

They are also labeled (x-axis) according to the same rubric used for Table 3.1, into

lower disengaged response rates (O, under 30% — the first quartile of disengaged

behaviors ratio); high disengagement rates (over 30%) with performance increase

from including orthographic similarity measures to the model (A); or including

semantic similarity measures to the model(B). Generally, we considered A group as

students with many repeated responses and B group as students with semantically

similar responses.

Figure 3.3: Subject-level error rate for predicting disengaged responses. The results
show the significant reduction in error rate from adding context-sensitive information
variables (CSOV) for students with high disengagement rates (A and B student
groups). Features based on orthographic similarity score was helpful for decreasing
error rate on A students. Semantic similarity based features helped to improve the
model’s performance on B students.

First, we see that there is wide variation in disengaged behavior across

individual students. In particular, while many students showed little or no

disengaged behavior, the right-most six students (the 3rd quartile of total samples)

exhibited disengagement rates of 40% to 80%. Second, we see how prediction

with linguistic context measures, either orthographic or semantic similarity related
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measures, gives a modest but consistent reduction in error for students with higher

disengagement rates. Third, context-sensitive online variables that relate with

orthographic similarity measures give a very significant reduction in error for some

category A disengagement students, those who showed many repeated responses.

Interestingly, using other CSOV based on semantic similarity measures provided

similar improvements. Lastly, context-sensitive online variables that relate with

semantic similarity measures provided relatively smaller improvements for capturing

disengaged responses from B students (e.g., name of animals or fruits, parts of

numeric sequences).

Thus, we can conclude that different types of linguistic context measures can be

useful for improving the overall accuracy of the model and predicting complementary

types of disengaged behaviors.

3.5 Discussion

Disengaged behaviors do not necessarily represent a particular cognitive state; such

behavior could arise from a variety of mental activities that relate to perception,

attention, reasoning, volition, and emotions (Cocea and Weibelzahl, 2009). Because

of the complex nature of disengaged responses, the instruction for disengaged labeling

was kept deliberately flexible, relying on human cognition to recognize potential

occurrences. Thus, while features from log data may not explain why users engage

or disengage with the system, such features can provide behavioral representations

of student engagement in an intelligent tutoring system.
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As a part of developing a web-based contextual word learning system, this study

provides a starting point for modeling disengaged behavior during a vocabulary

learning task. The performance of selected LR and MLR predictive models ranged

from average error rates of 0.109 to 0.148, and recall of 0.956 to 0.981 for the entire

participant dataset. AUC scores for students who showed at least one disengaged

behaviors ranged from 0.759 to 0.865. These results are slightly better or similar to

previous studies (Baker et al., 2004; Paquette et al., 2014; Cocea and Weibelzahl,

2009), depending on the different evaluation metrics that previous studies used.

Thus, we argue that the modeling process and developed features proposed in this

paper, such as single response variables (STOV) or context information variables

(CSOV), are effectively predicting disengaged behaviors in a language learning ITS.

Recorded responses based on gaming or off-task behaviors would be less directly

toward the task, while the careless mistakes include incorrect, but task-related

responses. Our results showed that our model could capture different types of

disengaged behaviors and responses. Identifying off-task responses are also important

since it can also be adapted in a ‘productive and constructive’ way (Baker et al.,

2013). For example, as the system observes disengaged behaviors, it can issue a

prompt message that can bring the student’s attention back to the system, such as

text messages (Arroyo et al., 2007) or animated visual cues (Baker et al., 2006).

Making students identify their disengaged behaviors can help to reduce the off-

task states and increase learning gain (Baker et al., 2013). For ITS, being able

to predict the student’s off-task state would be an important step to making the

tutoring system more adaptive.
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Results in this paper suggest several more points for discussion. First, the

parsimonious characteristics of MLR for selecting predictors led the model to use

fewer predictors than LR models while achieving similar prediction accuracy. This

result could be helpful for people who are designing the log data structure of ITS

for predicting disengaged behaviors.

Second, our results on variable selection and feature importance analysis showed

that some features are consistent regardless of regression technique we applied. In

Section 3.4.1, we found that variables related to response length, semantic similarity

between the target word and current response, and orthographic similarity between

the target word and current response were common predictors across all models.

In Section 3.4.3, we analyzed further details of individual feature importance.

We found that variables related to response length and orthographic similarity

between the target word and the current response (STOV) were commonly helpful

predictors across all models. Variables for semantic similarity between the target

word and the current response (STOV) and the average semantic similarity among

previous responses and the current response (CSOV) were helpful in both logistic

regression (LR) and mixed-effect logistic regression (MLR) models when context-

based information variables were included (STOV+CSOV).

Third, variables related to response latency were less important predictors when

context-based information was included in the model. In MLR:STOV+CSOV

models, they did not incorporate response-time variables (RTStart and RTFinish

measures) as significant predictors. The results from feature importance analysis

also showed that response time variables are relatively less important when CSOVs
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are included in LR:STOV+CSOV models. This is interesting because in multiple

previous ITS studies (Johns and Woolf, 2006; Beck, 2004), response time was

considered an important predictor of behavior. However, this outcome may caused

by the nature of the experimental task. For example, the Meaning Generation

task from this study was not a time-sensitive task and would require much more

cognitive resources from participants than other multiple choice questions (Beck,

2004). It would require additional study to see if CSOVs can provide better prediction

performance than using variables related to response latency in a time-sensitive

vocabulary learning task.

Fourth, orthographic similarity based context-sensitive variables were not as

effective as semantic similarity based context-sensitive variables. For example, in

Section 3.4.3, responses from A type students, who were considered as disengaged

by providing repeated responses, were equally captured with both orthographic and

semantic based context-sensitive features. We think this can be related to high

semantic similarity among orthographically similar responses, as orthographically

identical responses would elicit perfect semantic similarity scores from MESA. In

future work, using different window sizes for each context-sensitive variable type

could increase prediction performance by capturing more details of the student’s

mixed patterns of disengaged behaviors.

Fifth, combining models can increase the prediction performance. In this paper,

because of the window size of context-sensitive online variables, STOV+CSOV

models were trained and tested on the data without a sequence of the earliest

questions. In a future study, multiple prediction models may be applied based on
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the student’s current question order, such as using the single-trial online variables

in early questions and using the model with context-sensitive online variables in

later sequences.

Lastly, mixed-effect models performed similar to or only marginally outperformed

fixed-effect models. This is likely because the correlations between responses in item-

level and individual student-level may have already been captured by the context-

based variables, which use an individual student’s response history. Moreover, both

step-wise process and hill-climbing algorithm, the two structure-learning algorithms

used in this paper, rely on a model’s AIC score. Using AIC score in the feature

selection process deals with the trade-off between the complexity of model structure

and goodness of fit. In other words, as we saw from the results of individual feature

analysis (Section 3.4.3, the variable structures identified for the suggested models

may not be the optimal model structure for maximizing the model’s prediction

performance. Further investigation is needed with more data collection and detailed

feature analysis. Using more robust modeling methods, such as bootstrapping and

Markov chain Monte Carlo for estimating the parameters of mixed-effect models, or

different structure learning methods like LASSO or Elastic Net are other possible

options to derive a more accurate prediction model.

3.6 Limitations

Several aspects of this study could be refined in future studies. First, the models here

were limited to predict disengaged responses with log data from the pre-test task. In
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future work, we will examine how disengaged behaviors are associated with learning

outcomes in other learning-oriented task settings. Second, disengagement labels

generated from human judges do not address every type of disengaged behavior.

Capturing other types of disengaged behaviors, such as a student cheating with his

or her smartphone during the task or communicating with neighboring students,

could be addressed by including external observations during the task or using more

sophisticated latent-variable learning algorithms with larger datasets that can reveal

these types of patterns from the log data. Third, acquiring disengagement labels can

become more affordable in a crowdsourcing setting. However, it would require more

carefully described instructions or simpler task design to collect reliable judgments

from anonymous crowdworkers. Fourth, this study’s relatively small number of

participants also may not be representative of broader classes of behavior. For

example, certain kinds of disengaged behaviors may be associated with different

demographic groups, such as students with less experience with technology or poor

core reading skills. Further studies with larger, more diverse student populations

will help give a more complete picture of this complex phenomenon.

3.7 Conclusion

This study focused on developing and evaluating prediction models for students’

disengaged responses in a meaning-generation task of a contextual word learning

tutoring system. Our suggested model performed significantly better than the

majority-class baseline in predicting disengaged behaviors. Compared to previous
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studies, the performance was similar or slightly better than disengaged behavior

detectors on non-vocabulary tutoring systems. The models were developed based on

data-driven methods. From different features that can be derived from a vocabulary

learning system, we found that adding context-based features to the prediction model

greatly improved prediction accuracy. Additional marginal improvements were also

found when pairwise interaction structures were introduced to the prediction model

with single-response-based variables. We also observed that context information

variables based on linguistic relationships between responses were effective at

capturing different types of disengaged responses, such as repeating the same answer

or providing semantically sequential responses in the Meaning Generation task.

A central problem in the science of learning is to determine how much assistance

(e.g., instructional help or support) to provide during learning (Teigen, 1994;

Koedinger et al., 2013). Findings from this study will be useful for understanding

the relationship between disengaged behaviors and learning outcomes. The results

can be helpful to develop a real-time detector of student engagement which can

make our contextual word learning (CWL) adapt more effectively to individual

students’ skill levels and performance.
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Chapter 4

Capturing Partial Word

Knowledge State with Word

Embeddings and Semantic

Differential Scales

4.1 Introduction1

Studies of word learning have shown that knowledge of individual words is typically

not all-or-nothing. Rather, people acquire varying degrees of knowledge of many

words incrementally over time, by exposure to them in context (Frishkoff et al.,

1This study was published as Sungjin Nam, Gwen Frishkoff, and Kevyn Collins-Thompson.
2017. Predicting short-and long-term vocabulary learning via semantic features of partial word
knowledge. In Proceedings of the 10th International Conference on Educational Data Mining, pages
80–87.
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2011). This is especially true for so-called “academic” words that are less common

and more abstract — e.g., pontificate, probity, or assiduous (Frishkoff et al., 2016b).

Binary representations and measures model word knowledge simply as correct or

incorrect on a particular item (word), but in reality, a student’s knowledge level

may reside between these two extremes. Thus, previous studies of vocabulary

acquisition have suggested that students’ partial knowledge be modeled using a

representation that adding an additional label corresponding to an intermediate

knowledge state (Durso and Shore, 1991) or further, in terms of continuous metrics

for semantic similarity (Collins-Thompson and Callan, 2007).

In addition, there are multiple dimensions to a word’s meaning (Osgood et al.,

1957). Measuring a student’s partial knowledge on a single scale may only provide

abstract information about the student’s general answer quality and not give enough

information to specify which dimensions of word knowledge a student already has

learned or needs to improve. In order to achieve detailed understanding of a student’s

learning state, online learning systems should be able to capture a student’s “learning

trajectory” that tracks their partial knowledge on a particular item over time, over

multiple dimensions of meaning in a multidimensional semantic representation.

Hence, multidimensional representations of word knowledge can be an important

element for building an effective intelligent tutoring system (ITS) for reading and

language. Maintaining a fine-grained semantic representation of a student’s degree

of word knowledge can be helpful for the ITS to design more engaging instructional

content, more helpful personalized feedback, and more sensitive assessments (Ostrow

et al., 2015; Van Inwegen et al., 2015). Selecting semantic representations to model,
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understand, and predict learning outcomes is important to designing a more effective

and efficient ITS.

In this paper, we explore the use of multidimensional semantic word

representations for modeling and predicting short- and long-term learning outcomes

in a vocabulary tutoring system. Our approach derives predictive features using a

novel application of existing methods in cognitive psychology combined with methods

from natural language processing (NLP). First, we introduce a new multidimensional

representation of a word based on the Osgood semantic differential (Osgood et al.,

1957), an empirically based, cognitive framework that uses a small number of scales to

represent latent components of word meaning. We compare the effectiveness of model

features based on this Osgood-based representation to features based on a different

representation, the widely-used Word2Vec word embedding (Mikolov et al., 2013).

Second, we evaluate our prediction models using data from a meaning-generation

task that was conducted during a computer-based intervention. Our study results

demonstrate how similarity-based metrics based on rich semantic representation can

be used to automatically evaluate specific components of word knowledge, track

changes in the student’s knowledge toward the correct meaning, and compute a rich

set of features for use in predicting short- and long-term learning outcomes. Our

methods could support advances in real-time, adaptive support for word semantic

learning, resulting in more effective personalized learning systems.
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4.2 Related Work

The present study is informed by three areas of research: (1) studies of partial word

knowledge; (2) the Osgood framework for multiple dimensions of word meaning, and

(3) computational methods for estimating semantic similarity.

4.2.1 Partial Word Knowledge

The concept of partial word knowledge has interested vocabulary researchers for

several decades, particularly in the learning and instruction of “Tier 2” words (Yonek,

2008). Tier 2 words are low-frequency and typically have complex (multiple,

nuanced) meanings. By nature, they are rarely learned through “one-shot” learning.

Instead, they are learned partially and gaps are filled in over time.

Words in this intermediate state, neither novel nor fully known, are sometimes

called “frontier words” (Dale, 1965). Durso and Shore operationalized the frontier

word as a word the student had seen previously but was not actively using it (Durso

and Shore, 1991). Based on this definition, the student may have had implicit

memory of frontier words, such as general information like whether the word indicates

a good or bad situation or refers a person or an action. They discovered that

students are more familiar with frontier words than other types of words in terms

of their sounds and orthographic characteristics (Durso and Shore, 1991). This

previous work suggested that the concept of frontier words can be used to represent

a student’s partial knowledge states in a vocabulary acquisition task (Dale, 1965;

Durso and Shore, 1991).
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In some studies, partial word knowledge has been represented using simple,

categorical labels, e.g., multiple-choice tests that include “partially correct” response

options, as well as a single “best” (correct) response. In other studies, the student

is presented with a word and is asked to say what it means (Adlof et al., 2016). The

definition is given partial credit if it reflects knowledge that is partial or incomplete.

For example, a student may recognize that the word probity has a positive

connotation, even if she cannot give a complete definition. However, single categorical

or score-based indicators may not explain which specific aspects of vocabulary

knowledge the student is missing. Moreover, these studies relied on human ratings to

evaluate students’ responses for unknown words (Durso and Shore, 1991). Although

widely used in psychometric and psycholinguistic studies (Coltheart, 1981; Osgood

et al., 1957), hiring human raters is expensive and may not be done in real time

during students’ interaction with the tutoring system.

To address these problems, we propose a data-driven method that can

automatically extract semantic characteristics of a word based on a set of relatively

simple, interpretable scales. The method benefits from existing findings in cognitive

psychology and natural language processing. In the following sections, we illustrate

more details of related findings and how they can be used in an intelligent tutoring

system setting.

4.2.2 Semantic Representation & the Osgood Framework

To quantify the semantic characteristics of a student’s intermediate knowledge

of vocabulary, this paper uses a “spatial analogue” for capturing semantic
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characteristics of words. In (Osgood et al., 1957), Osgood investigated how the

meaning of a word can be represented by a series of general semantic scales. By using

these scales, Osgood suggested that the meanings of any word can be projected and

explored in a continuous semantic space.

Osgood asked human raters to evaluate a set of words using a large number

of scales (e.g., tall-short, fat-thin, heavy-light) and captured the semantic

representation of a word (Osgood et al., 1957). Respondents gave Likert ratings,

which indicated whether they thought that a word meaning was closer to one extreme

(-3) or the other (+3), or basically irrelevant (0). A principal components analysis

(PCA) was used to represent the latent semantic features that can explain the

patterns of response to individual words within this task.

In our study, we suggest a method that can automatically extract similar

semantic information that can project a word into a multidimensional semantic

space. By using semantic scales selected from (Osgood et al., 1957), we verify if

such representation of semantic attributes of words is useful for predicting students’

short- and long-term learning.

4.2.3 Semantic Similarity Measures

Studies in NLP have suggested methods to automatically evaluate the semantic

association between two words. For example, Markov Estimation of Semantic

Association (MESA) (Collins-Thompson and Callan, 2007; Frishkoff et al., 2011) can

estimate the similarity between words from a random walk model over a synonym

network such as WordNet (Miller, 1995). Other methods like latent semantic
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analysis (LSA) are based on co-occurrence of the word in a document corpus. In

LSA, semantic similarity between words is determined by using a cosine similarity

measure, derived from a sparse matrix constructed from unique words and paragraphs

containing the words (Landauer, 2006).

For this paper, we use Word2Vec (Mikolov et al., 2013), a widely used

word embedding method, to calculate the semantic similarity between words.

Word2Vec’s technique (Li et al., 2015) transforms the semantic context, such as

proximity between words, into a numeric vector space. In this way, linguistic

regularities and patterns are encoded into linear translations. For example, using

outputs from Word2Vec, relationships between words can be estimated by simple

operations on their corresponding vectors, e.g., Madrid− Spain+ France = Paris,

or Germany + capital = Berlin (Mikolov et al., 2013).

Measures from these computational semantic similarity tools are powerful because

they can provide an automated method for evaluation of partial word knowledge.

However, they typically produce a single measure (e.g., cosine similarity or Euclidean

distance), representing semantic similarity as a one-dimensional construct. With

such a measure, it is not possible to determine represent partial semantic knowledge

and changes in knowledge of latent semantic features as word knowledge progresses

from unknown to frontier to fully known. In following sections, we describe how we

address this problem, using novel methods to to estimate the contribution of Osgood

semantic features to individual word meanings.
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4.2.4 Overview of the Study

Based on findings from existing studies, this study will suggest an automatized

method for evaluating students’ partial knowledge of vocabulary that can be used

to predict students’ short-term vocabulary acquisition and long-term retention.

To investigate this problem, we will answer the following research questions with

this paper.

• RQ1: Can semantic similarity scores from Word2Vec be used to predict

students’ short-term learning and long-term retention?

Previous studies in vocabulary tutoring systems tend to focus on how different

experimental conditions, such as different spacing between question items (Pavlik

and Anderson, 2005), difficulty levels (Ostrow et al., 2015), and systematic

feedback (Frishkoff et al., 2016b), affect students’ short-term learning. This study will

answer how computationally estimated trial-by-trial scores in a vocabulary tutoring

system can be used to predict students’ short-term learning and long-term retention.

• RQ2: Compared to using regular Word2Vec scores, how does the model

using Osgood’s semantic scales (Osgood et al., 1957) as features perform for

immediate and delayed learning prediction tasks?

As described in the previous section, the initial outcome from Word2Vec returns

hundreds of semantic dimensions to represent the semantic characteristics of a word.

Summary statistics for comparing such high-dimensional vectors, such as cosine

similarity or Euclidean distance, only provide the overall similarity between words.
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If measures from Osgood scales work in a similar level to models using regular

Word2Vec scores for predicting students’ learning outcomes, we can argue that it can

be an effective method for representing students’ partial knowledge of vocabulary.

4.3 Method

4.3.1 Word Learning Study

This study used a vocabulary tutoring system called Dynamic Support of

Contextual Vocabulary Acquisition for Reading (DSCoVAR) (Frishkoff et al.,

2016a)). DSCoVAR aims to support efficient and effective learning vocabulary in

context. All participants accessed DSCoVAR in a classroom-setting environment

by using Chromebook devices or the school’s computer lab in the presence of

other students.

Study Participants

Participants included 280 middle school students (6th to 8th grade) from multiple

schools, including children from diverse socio-economic and educational backgrounds.

Table 4.1 provides a summary of student demographics, including location (P1 or

P2), age and grade level, sex. Location P1 is a laboratory school affiliated with a

large urban university in the northeastern United States. Students from location P1

were generally of high socio-economic status (e.g., children of University faculty and

staff). Location P2 includes three public middle schools in a southern metropolitan

area of the United States. All students from location P2 qualified for free or reduced
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lunch. The study included a broad range of students so that the results of this

analysis were more likely to generalize to future samples.

Table 4.1: The number of participants by grade and gender
6th grade 7th grade 8th grade

Group Girl Boy Girl Boy Girl Boy
P1 16 28 19 23 18 13
P2 53 51 12 6 21 20

Study Materials

DSCoVAR presented students with 60 SAT-level English words (also known as Tier

2 words). These “target words,” lesser-known words that the students are going

to learn, were balanced between different parts of speech, including 20 adjectives,

20 nouns, and 20 verbs. Based on previous works, we expected that students

would have varying degrees of familiarity with the words at pre-test, but that

most words would be either completely novel (“unknown”) or somewhat familiar

(“partially known”) (Frishkoff et al., 2016a). This selection of materials ensured

that there would be variability in word knowledge across students for each word

and across words for each student.

In DSCoVAR, students learned how to infer the meaning of an unknown word in

a sentence by using surrounding contextual information. Having more information in

a sentence (i.e., a sentence with a high degree of contextual constraint) can decrease

the uncertainty of inference. Instructions used for creating sentences for practice

questions can be found in Appendix A.1.

In this study, the degree of sentence constraint was determined using standard

cloze testing methods: quantifying the diversity of responses from 30 human judges
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when the target word is left as a fill-in-the-blank question. If the lexical entropy of

collected responses was low, the sentence was considered as high constrained (or easy)

sentence. For example, high constrained sentences collected less diverse responses

from crowdworkers since more contextual information included in the sentence can

restrict the range of likely responses. If these high constrained sentences are used

as a stimuli in practice questions with target words, it would be easier for students

to infer the meaning of the target word, since the sentence contains relatively more

contextual information about the target word. Details for collecting cloze responses

can be found in Appendix A.2.2.

Study Protocol

The word learning study comprised four parts: (1) a pre-test, which was used to

estimate baseline knowledge of words, (2) a training session, where learners were

exposed to words in meaningful contexts, (3) an immediate post-test, and (4) a

delayed post-test, which occurred approximately one week after training.

Pre-test The pre-test session was designed to measure the students’ prior

knowledge of the target words. For each target word, students were asked to answer

two types of questions: familiarity-rating questions and synonym selection questions.

In familiarity rating questions, students provided their self-rated familiarity levels

(unknown, known, and familiar) for presented target words. In synonym-selection

questions, students were asked to select a synonym word for the given target word

from five multiple choice options. The outcome from synonym-selection questions
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provided more objective measures for students’ prior domain knowledge of target

words.

Training Approximately one week after the pre-test session, students participated

in the training. During training, students learned strategies to infer the meaning of

an unknown word in a sentence by using surrounding contextual information.

A training session consisted of two parts: an instruction video and practice

questions. In the instruction video, students saw an animated movie clip about how

to identify and use contextual information from the sentence to infer the meaning of

an unknown word. In the practice question part, students could exercise the skill that

they learned from the video. DSCoVAR provided sentences that included a target

word with different levels of surrounding contextual information. The amount of

contextual information for each sentence was determined by external crowd workers.

In the practice question part, each target word was presented four times within

different sentences. Students were asked to type a synonym of the target word, which

was presented in the sentence as underlined and bold. Over two weeks, students

participated in two training sessions with a week’s gap between them. Each training

session contained the instruction video and practice questions for 30 target words.

An immediate post-test session followed right after each training session.

Students were randomly selected to experience different instruction video

conditions (full instruction video vs. restricted instruction video). Additionally,

various difficulty level conditions and feedback conditions (e.g., DSCoVAR provides

a feedback message to the student based on answer accuracy vs. no feedback) were

tested within the same student. However, in this study, we focused on data from
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Figure 4.1: An example of a training session question. In this example, the target
word is “education” with a feedback message for a high-accuracy response.

students who experienced a full instruction video and repeating difficulty conditions.

Repeating difficulty conditions included questions with all high or medium contextual

constraint levels. By doing so, we wanted to minimize the impact from various

experimental conditions for analyzing post-test outcomes. Moreover, we filtered out

response sequences that did not include all four responses for the target word. As a

result, we analyzed 818 response sequences from 7,425 items in total.

Immediate and Delayed Post-test The immediate post-test occurred right after

the students finished the training; the delayed post-test was conducted one week later.

Data collected during the immediate and delayed post-tests were used to estimate

short-and long-term learning, respectively. Test items were identical to those in the

pretest session, except for item order, which varied across tests. For analysis of the

delayed post-test data, we only used the data from target words for which the student
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• bad – good

• passive – active

• powerful – helpless

• big – small

• helpful – harmful

• complex – simple

• fast – slow

• noisy – quiet

• new – old

• healthy – sick

Figure 4.2: Ten semantic scales used for projecting target words and
responses (Osgood et al., 1957).

provided a correct answer in the earlier, immediate post-test session. As a result,

449 response sequences were analyzed for predicting the long-term retention.

4.3.2 Semantic Score-Based Features

We now describe the semantic features tested in our prediction models.

Semantic Scales

For this study, we used semantic scales from Osgood’s study (Osgood et al., 1957).

Ten scales were selected by a cognitive psychologist as being considered semantic

attributes that can be detected during word learning (Figure 4.2). Each semantic

scale consists of pairs of semantic attributes. For example, the bad–good scale

can show how the meaning of a word can be projected on a scale with bad and

good located at either end. The word’s relationship with each semantic anchor

can be automatically measured from its semantic similarity with these exemplar

semantic elements.
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Basic Semantic Distance Scores

To extract meaningful semantic information, we have applied the following measures

that can be used to explain various characteristics of student responses for different

target words. In this study, we used a pre-trained model for Word2Vec,2 built based

on the Google News corpus (100 billion tokens with 3 million unique vocabularies,

using a negative sampling algorithm), to measure semantic similarity between words.

The output of the pre-trained Word2Vec model contained a numeric vector with

300 hundred dimensions.

First, we calculated the relationship between word pairs (i.e., a single student

response and the target word, or a pair of responses) in both the regular Word2Vec

(W2V) score and the Osgood semantic scale (OSG) score. In the W2V score,

the semantic relationship between words was represented with a cosine distance

between word vectors, denoted as:

Dw2v(w1, w2) = 1− |sim(V (w1), V (w2))|. (4.1)

In this equation, the function V returned the vectorized representation of the word

(w1 or w2) from the pre-trained Word2Vec model. By calculating the cosine similarity

(sim) between two vectors, we could extract a single numeric similarity score between

two words. This score was converted into a distance-like score by taking the absolute

value of the cosine similarity score and subtracting from one.

For the OSG score, we extracted two different types of scores: a non-normalized

2API and pre-trained model for Word2Vec was downloaded from this URL:
https://github.com/3Top/word2vec-api
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score and a normalized score. A non-normalized score showed how a word is similar

to a single anchor word (e.g., bad or good) from the Osgood scale.

Snon
osg (w, ai,j) = sim(V (w), V (ai,j)) (4.2)

Dnon
osg (w1, w2; ai,j) = |Snon

osg (w1, ai,j)| − |Snon
osg (w2, ai,j)| (4.3)

In equation 4.2, ai,j represents the j-th anchor word in the i-th Osgood scale. The

similarity between the anchor word and the evaluating word w was calculated with

cosine similarity of Word2Vec outcomes for both words. In a non-normalized setting,

the distance between two words given by a particular anchor word was calculated by

the difference of absolute cosine similarity scores (equation 4.3).

The second type of OSG score is a normalized score. By using Word2Vec’s ability

to represent the semantic relationship between words through simple arithmetic

calculations of word vectors (Mikolov et al., 2013), the normalized OSG score

provided a relative location of the word from two anchor ends of the Osgood scale.

Snrm
osg (w, ai) = sim(V (w), V (ai,1)− V (ai,2)) (4.4)

Dnrm
osg (w1, w2; ai) = |Snrm

osg (w1, ai)− Snrm
osg (w2, ai)| (4.5)

In equation 4.4, the output represents the cosine similarity score between the word

w and two anchor words (ai,1 and ai,2). For example, if the cosine similarity score of

Snrm
osg (w, ai) is close to -1, it means the word w is close to the first anchor word

ai,1. If the score is close to 1, it is vice versa. In equation 4.5, the distance
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between two words was calculated as the absolute value of the difference between

two cosine similarity measures.

Deriving Predictive Features

Based on semantic distance equations explained in the previous section, this section

explains examples of predictive features that we used to predict students’ short-

term learning and long-term retention.

Distance Between the Target Word and the Response. For regular

Word2Vec score models and Osgood scale score models, distance measures between

the target word and the response (by using equations 4.1 and 4.5) were used to

estimate the accuracy of the response to a question. This feature represents the

trial-by-trial answer accuracy of a student response. Each response sequence for

the target word contained four distance scores.

Difference Between Responses. Another feature that we used in both types of

models was the difference between responses. This feature captures how a student’s

current answer is semantically different from the previous response. From each

response sequence, we could extract three derivative scores from four responses. An

example for deriving distance based features is illustrated at Figure 4.3.

Convex Hull Area of Responses. Alternative to the difference between

responses feature, Osgood scale models were also tested with the area size of

convex hull that can be generated by responses calculated with non-normalized
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Figure 4.3: An example of distance based features by using normalized OSG scores
from equation 4.4. Dist represents the distance between the target word and the
response. Resp represents the difference between responses. This example illustrates
how the student’s responses get closer to the the target word uncouth over trials
(noted as superscript numbers 1-4) in a good–bad Osgood scale.

Osgood scale scores (equation 4.3). For example, for each Osgood scale, a non-

normalized score provided two-dimensional scores that can be used for geometric

representation. By putting the target word in an origin position, a sequence of

responses can create a polygon that can represent the semantic area that the student

explored with responses. Since some response sequences were unable to generate the

polygon by including less than three unique responses, we added a small, random

noise that uniformly distributed (between −10−4 and 10−4) to all response points.

Additionally, a value of 10−20 was added to all convex hull area output to create

a visible lower-bound value.

Unlike the measure of difference between responses, this feature also considers

angles that can be created between responses and the target word. This

representation can provide more information than just using difference between

responses. An example of this representation can be found in Figure 4.3.2.
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Figure 4.4: Response sequences represented in a non-normalized Osgood scale (bad-
good) for the target word ‘uncouth’. Convex hull is calculated from the area inside
the polygon that generated by response points.

4.3.3 Building Prediction Models

To predict students’ short-term learning and long-term retention, we used a mixed-

effect logistic regression model (MLR). MLR is a general form of logistic regression

model that includes random effect factors to capture variations from repeated

measures.

Off-line Variables

Off-line variables capture item- or subject-level variances that can be observed

repeatedly from the data. In this study, we used multiple off-line variables as

random effect factors.

First, results from familiarity-rating and synonym-selection questions from the

pre-test session were used to include item- and subject-level variances. Both variables
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include information on the student’s prior domain knowledge level for target words.

Second, the question difficulty condition was considered as an item group level factor.

In the analysis, sentences for the target word that were presented to the student

contained the same difficulty level, either high or medium contextual constraint

levels, over four trials. Third, a different experiment group was used as a subject

group factor. As described in Section 4.3.1, this study contains data from students

in different institutions in separate geographic locations. The inclusion of these

participant groups in the model can be used to explain different short-term learning

outcomes and long-term retention by demographic groups.

Model Building

In this study, we compared the performance of MLR models with four different

feature types. First, the baseline model was set to indicate the MLR model’s

performance without any fixed effect variables but only with random intercepts.

Second, the response time model was built to be compared with semantic score-based

models. Many previous studies have used response time as an important predictor

of student engagement and learning (Beck, 2005; Ma et al., 2016). In this study, we

used two types of response time variables, the latency for initiating the response and

finishing typing the response, as predictive features. Both variables were measured

in milliseconds over four trials and natural log transformed for the analysis. Third,

semantic features from regular Word2Vec scores were used as predictors. This

model was built to show how semantic scores from Word2Vec can be useful for

predicting students’ short- and long-term performance in DSCoVAR. Lastly, Osgood
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scale-based features were used as predictors. This model was compared with the

regular Word2Vec score model to examine the effectiveness of using Osgood scales

for evaluating students’ performance in DSCoVAR. For these semantic-score based

models, we tested out different types of predictive features that were described in

Section 4.3.2. All models shared the same random intercept structure that treated

each off-line variable as an individual random intercept.

For Osgood scale models, we also derived reduced-scale models. Reduced-scale

models were compared with the full-scale model, which uses all ten Osgood scales.

In this case, using fewer Osgood scales can provide easier interpretation of semantic

analysis for intelligent tutoring system users.

Model Evaluation

To compare performance between different models, this study used various evaluation

metrics, including AUC (an area under the curve score from a response operating

characteristic (ROC) curve), F1 (a harmonic mean of precision and recall), and error

rate (a ratio of the number of misclassified items over total items). 95% confidence

interval of each evaluation metric was calculated from the outcome of a ten-fold

cross-validation process repeated over ten times.

To select the semantic score-based features for models based on regular Word2Vec

scores and Osgood scale scores, we used rankings from each evaluation metric. The

model with the highest overall rank (i.e., sum the ranks from AUC, F1, and error

rate, and select the model with the lowest rank-sum value) was considered the best-

performing model for the score type (i.e., models based on the regular Word2Vec
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score or Osgood scale score). More details on this process will be illustrated in

the next section.

4.4 Results

4.4.1 Selecting Models

In this section, we selected the best-performing model based on the models’ overall

ranks in each evaluation metric. All model parameters were trained in each fold of

repeated cross-validation. We calculated 95% confidence intervals for comparison.

To calculate the confidence interval of F1 and error rate measures, the maximum (F1)

and minimum (error rate) scores of each fold were extracted. These maximum and

minimum values were derived from applying multiple cutoff points to the mixed-

effect regression model.

Predicting Immediate Learning

First, we built models that predict the students’ immediate learning from the

immediate post-test session. From models based on regular Word2Vec scores (W2V),

the model with the distance between the target and responses and the difference

between responses (Dist+Resp) provided the highest rank from various evaluation

metrics (Table 4.2). From models based on Osgood scales (OSG), the model with

the difference between responses (Resp) provided the highest rank.

The selected W2V model provided significantly better performance than the

baseline model. The selected OSG model also showed significantly better
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performance than the baseline model, except for the AUC score. The selected

W2V model was significantly better than the model using response time features

in the AUC score and error rates.

The selected W2V model showed significantly better performance than the OSG

model only with the AUC score. Figure 4.5 shows that the W2V model has a

slightly larger area under the ROC curve than the OSG model. In the precision

and recall curve, the selected W2V model provides more balanced trade-offs between

precision and recall measures. The selected OSG model outperforms the W2V model

in precision only in a very low recall measure range.

Table 4.2: Ranks of predictive feature sets for regular Word2Vec models (W2V)
and Osgood score models (OSG) in the immediate post-test data. All models are
significantly better than the baseline model. (Bold: the selected model with highest
overall rank.)

W2V models
Features AUC F1 Err
baseline 0.68 [0.67, 0.69] (5) 0.74 [0.73, 0.74] (5) 0.33 [0.33, 0.34] (5)
RT 0.69 [0.68, 0.70] (4) 0.75 [0.75, 0.76] (3) 0.31 [0.31, 0.32] (4)
Dist 0.72 [0.71, 0.74] (1) 0.76 [0.75, 0.76] (2) 0.29 [0.28, 0.30] (2)
Resp 0.70 [0.69, 0.71] (3) 0.75 [0.74, 0.76] (4) 0.31 [0.30, 0.32] (3)
Chull NA NA NA
Dist+Resp 0.72 [0.71, 0.73] (2) 0.76 [0.75, 0.77] (1) 0.29 [0.28, 0.30] (1)
Dist+Chull NA NA NA

OSG models
Features AUC F1 Err
baseline 0.68 [0.67, 0.69] (5) 0.74 [0.73, 0.74] (5) 0.33 [0.33, 0.34] (7)
RT 0.69 [0.68, 0.70] (2) 0.75 [0.74, 0.76] (2) 0.31 [0.31, 0.32] (2)
Dist 0.67 [0.66, 0.68] (7) 0.73 [0.73, 0.74] (7) 0.33 [0.32, 0.34] (6)
Resp 0.69 [0.68, 0.70] (1) 0.75 [0.75, 0.76] (1) 0.31 [0.30, 0.32] (1)
Chull 0.69 [0.68, 0.70] (3) 0.74 [0.73, 0.75] (4) 0.32 [0.31, 0.33] (4)
Dist+Resp 0.68 [0.67, 0.69] (4) 0.74 [0.73, 0.75] (3) 0.31 [0.31, 0.32] (3)
Dist+Chull 0.67 [0.66, 0.68] (6) 0.74 [0.73, 0.74] (6) 0.33 [0.32, 0.34] (5)
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Predicting Long-Term Retention

We also built prediction models to predict the students’ long-term retention in

the delayed post-test session. In this analysis, a student response was included

only when the student provided correct answers to the immediate post-test session

questions. Among W2V score-based models, the best-performing model contained

the same feature types as the immediate post-test results (Table 4.3). By using

the distance between the target and responses and difference between responses

(Dist+Resp), the model achieved significantly better performance than the baseline

model, except for the AUC score.

For OSG models, the model with a convex hull area of responses (Chull) provided

the highest overall rank from evaluation metrics (Table 4.3). The results were

significantly better than the baseline model, and marginally better than the W2V

model. Both selected W2V and OSG models were marginally better than the

response time model, except the error rate of the OSG model was significantly better.

In Figure 4.5, the selected W2V model slightly outperforms the OSG model in

mid-range true positive rates, while the OSG model performed slightly better in a

higher true positive area. Precision and recall curves show similar patterns to those

we observed from the immediate post-test prediction models. The OSG model only

outperforms the W2V model in a very low recall value area.

Comparing Models

Compared to the selected W2V model in the immediate post-test condition,

the selected W2V model in the delayed post-test retention condition showed a
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Table 4.3: Ranks of predictive feature sets for W2V and OSG models in the delayed
post-test data. All models are significantly better than the baseline model. (Bold:
the selected model with highest overall rank.)

W2V models
Features AUC F1 Err
baseline 0.65 [0.64, 0.67] (5) 0.75 [0.74, 0.76] (5) 0.33 [0.32, 0.34] (5)
RT 0.67 [0.65, 0.68] (3) 0.76 [0.76, 0.77] (4) 0.31 [0.30, 0.32] (3)
Dist 0.66 [0.64, 0.68] (4) 0.77 [0.76, 0.78] (3) 0.31 [0.30, 0.32] (4)
Resp 0.69 [0.67, 0.71] (1) 0.77 [0.76, 0.78] (2) 0.30 [0.29, 0.31] (2)
Chull NA NA NA
Dist+Resp 0.68 [0.66, 0.70] (2) 0.78 [0.77, 0.79] (1) 0.30 [0.29, 0.31] (1)
Dist+Chull NA NA NA

OSG models
Features AUC F1 Err
baseline 0.65 [0.64, 0.67] (5) 0.75 [0.74, 0.76] (7) 0.33 [0.32, 0.34] (7)
RT 0.67 [0.65, 0.68] (3) 0.76 [0.76, 0.77] (5) 0.31 [0.30, 0.32] (5)
Dist 0.66 [0.64, 0.68] (4) 0.78 [0.77, 0.79] (3) 0.30 [0.29, 0.31] (3)
Resp 0.63 [0.61, 0.65] (7) 0.76 [0.75, 0.77] (6) 0.32 [0.31, 0.33] (6)
Chull 0.69 [0.68, 0.71] (1) 0.78 [0.77, 0.79] (2) 0.28 [0.27, 0.29] (1)
Dist+Resp 0.64 [0.62, 0.66] (6) 0.77 [0.76, 0.78] (4) 0.31 [0.29, 0.32] (4)
Dist+Chull 0.69 [0.67, 0.71] (2) 0.78 [0.78, 0.79] (1) 0.29 [0.27, 0.30] (2)

significantly lower AUC score, marginally higher F1 score, and marginally higher

error rate. In terms of OSG models, the selected OSG model for delayed post-test

retention showed a significantly better F1 score and error rates than the selected OSG

model in the immediate post-test condition. Based on these results, we can argue

that Osgood scale scores can be more useful for predicting student retention in the

delayed post-test session than predicting the outcome from the immediate post-test.

In terms of selected feature types, the best-performing OSG models used features

based on the difference between responses (Resp) or the convex hull area (Chull) that

was created from the relative location of the responses. On the other hand, selected

W2V models used both the distance between the target word and responses and
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difference between responses (Dist+Resp). When we compared both W2V and OSG

models using the difference between responses feature, we found that performance is

similar in the immediate post-test data. However, the OSG model was significantly

better in the delayed post-test data. These results show that Osgood scale scores

can be more useful for representing the relationship among response sequences.

Figure 4.5: ROC curves and precision and recall curves for selected immediate post-
test prediction models (left) and delayed post-test prediction models (right). Curves
are smoothed out with a local polynomial regression method based on repeated cross-
validation results.
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4.4.2 Failure Analysis

From the previous section, we identified that the regular Word2Vec score based

model and the Osgood scale score based model provide error rates around 30%.

However, selected predictive models contain some errors. Different false predictions

can be made on particular response patterns or participant groups. In this section,

we compared patterns of false positive and false negative errors observed in the

repeated cross-validation process from the regular Word2Vec score based model

(W2V), the Osgood semantic scales based model (OSG) , and the response time

based model (RT). For W2V and OSG models, we will use the selected models

from the previous section.

Overall Comparison Between Models

To analyze, we used 0.5 probability as a cutoff to distinguish positive and negative

predictions from the prediction model. For example, if the mixed-effect logistic

regression model returned the probability of higher than 0.5, we considered the

prediction as a positive prediction. By using the fixed threshold, the outcome can be

different from the previous section, which compared multiple cutoff points that can

maximize or minimize scores of F1 measure and error rates. Confidence intervals of

outcomes from repeated cross-validation process will be compared between models.

We found that the OSG model show significant higher recall rates (W2v: 0.71

[0.70, 0.73] vs. OSG: 0.75 [0.74, 0.77]) in predicting retention, while the W2V

model have marginally higher precision rate for predicting the immediate post-test

outcomes (W2V: 0.68 [0.66, 0.69] vs. OSG: 0.66 [0.65, 0.67]). The OSG model
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showed marginally higher false discovery rate (W2V: 0.49 [0.46, 0.52] vs. OSG: 0.53

[0.50, 0.56] – for the immediate post-test outcome; W2V: 0.53 [0.49, 0.57] vs. OSG:

0.54 [0.51, 0.58] – for the delayed post-test retention), which is a ratio of the number

of false positive cases over true positive cases. False omission rate, which is a ratio of

the number of false negative cases over true negative cases, was higher in the OSG

model with the immediate post-test data (W2V: 0.60 [0.56, 0.64] vs. OSG: 0.61 [0.57,

0.65]). However, with the delayed post-test retention data, the W2V model showed

higher false omission rate W2V: 0.93 [0.80, 1.06] vs. OSG: 0.87 [0.74, 1.01]). This

means that the OSG model made relatively more false positive errors. False negative

errors were more likely to be observed in the delayed post-test results.

The RT model showed similar performance with W2V and OSG models in the

immediate post-test data. However, the RT model performed significantly inferior

in recall (0.74 [0.72, 0.76]) and error rate (0.40 [0.39, 0.41]) from the OSG model in

the delayed post-test data (recall: 0.81 [0.79, 0.83], error rate:0.37 [0.36, 0.38]).

Hand-picked Examples

To explore more details of these false prediction cases, we handpicked some false

positive and false negative examples. We could find some false positive cases occur

in repetitive but higher quality answers. For the target word uncouth, some students

provided rude as a single unique response that repeated over all four trials. However,

while both the W2V and the OSG model predicted these response sequences as

positive case, some items turned out as false positives in the delayed-post test.
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Table 4.4: False prediction examples. For false positive cases, we could see that
the model tend to predict as the student learned the meaning of the word in the
delayed-post test when he or she provided the (correct) repetitive responses. On
the contrary, there were also some false negative cases when the responses tend to
unique between each other. These results show that including additional engagement
related or linguistic features would benefit the model’s performance.

False Pred. Type Target word Responses
False Positive uncouth rude–rude–rude–rude

gramercy thanks–thanks–thanks–thanks
False Negative uncouth disgusting–embarrassing–limits–disrespectful

gramercy thankfulness–grateful–thank–gratefulness

Similar examples were observed in the target word gramercy with repetitively

responding by entering thanks.

Some False negative cases showed an opposite pattern. For target words

uncouth and gramercy, few false negative cases were found in response sequences

containing more than two unique responses (Table 4.4). These results indicate

that our prediction models may benefit from including additional features, such as

response time or orthographic similarity, to address more information on students’

engagement states and further linguistic characteristics (Nam et al., 2018) while

answering the questions.

Comparison of Off-line Variables

We also explored how prediction models performed differently by individual subject

or item group factors. As a result, we could observe that if the student is better

prepared with the target word (e.g., higher familiarity score or provided correct

answer in the pre-test’s synonym selection question), confronted with easier questions
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(e.g., questions with high contextual constrain conditions), and recruited from the

university owned laboratory school (P1 group), models tend to yield lower error rates,

false discovery rates, and false omission rates. For example, the OSG model with

the immediate post-test data provided decreasing error rates by higher familiarity

score (0.39 [0.38, 0.41], 0.33 [0.31, 0.35], and 0.28 [0.26, 0.30] (low to high)). Similar

pattern was observed with the delayed post-test retention data (0.45 [0.44, 0.47],

0.37 [0.34, 0.39], and 0.21 [0.19, 0.24], low to high familiarity scores). All differences

between familiarity scores were significant.

Another interesting comparison was by the number of unique responses provided

from the student. If one or two unique responses existed in the response sequence,

the OSG model with the immediate post-test data provided significantly higher recall

and precision scores than if the number of unique responses were greater than two

(recall: 0.54 [0.52, 0.56] vs. 0.93 [0.92, 0.94], precision: 0.61 [0.59, 0.64] vs. 0.68

[0.67, 0.70]). False discovery rates (0.69 [0.62, 0.76] vs. 0.48 [0.45, 0.52]) and error

rates (0.38 [0.37, 0.39] vs. 0.32 [0.31, 0.33]) were also significantly lower in less

number of unique response cases. However, the false omission rate was higher in this

case (0.63 [0.59, 0.68] vs. 0.68 [0.54, 0.82]). Similar patterns were observed with

the delayed post-test data ( recall: 0.52 [0.49 0.55] vs. 0.99 [0.99, 1.00], precision:

0.59 [0.56 0.63] vs. 0.69 [0.67, 0.70], false discovery rates: 0.96 [0.75 1.17] vs. 0.48

[0.45, 0.52], false omission rates: 0.87 [0.73 1.00] vs. 2.33 [2.10, 2.56], and error

rates: 0.42 [0.40 0.45] vs. 0.32 [0.30, 0.34] ).

From these results, we can conclude that models performed better with the
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response data collected from better prepared student groups, easier questions, or

containing less number of unique responses.

4.4.3 Comparing the Osgood Scales

To identify which Osgood scales are more helpful than others for predicting students’

performance, we conducted a scale-wise importance analysis. The results from this

section reveal which Osgood scales are more important than others, and how the

performance of prediction models with a reduced number of scales is comparable

with the full-scale model.

Identifying More Important Osgood Scales

In this section, based on the selected Osgood score model from Section 4.4.1, we

identified the level of contribution for features based on each Osgood scale. For

example, the selected OSG model for predicting the immediate post-test data uses the

difference between responses in ten Osgood scales as features. In order to diagnose

the importance level of the first scale (bad–good), we can retrain the model with

features based on the nine other scales and compare the performance of the newly

trained model with the existing full-scale model.

In Table 4.5, we picked the top five scales that were important in individual

prediction tasks. We found that big-small, helpful-harmful, complex-simple, and fast-

slow were commonly important Osgood scales for predicting students’ performance in

immediate post-test and delayed post-test sessions. Scales like bad-good and passive-
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active were only important scales in the immediate post-test prediction. Likewise,

new-old was an important scale only in the delayed post-test prediction.

Table 4.5: Scale-wise importance of each Osgood scale. Scales were selected based on
the sum of each evaluation metric’s rank. (Bold: Osgood scales that were commonly
important in both prediction tasks; *: top five scales in each prediction task including
tied ranks)

Imm. post-test Del. post-test
Scales AUC F1 Err All AUC F1 Err All
bad-good 1 1 1 1* 4 10 4 6
passive-active 2 4 3 2* 8 6 6 7
powerful-helpless 7 9 6 7.5 10 8 10 10
big-small 3 3 4 3* 1 3 2 2*
helpful-harmful 4 6 5 5.5* 2 1 1 1*
complex-simple 8 5 2 5.5* 3 5 7 4.5*
fast-slow 5 2 7 4* 6 4 3 3*
noisy-quiet 6 8 8 7.5 7 9 9 9
new-old 9 7 9 9 5 2 8 4.5*
healthy-sick 10 10 10 10 9 7 5 8

Performance of Reduced Models

Based on the scale-wise importance analysis results, we built reduced-scale models

that only contain features with more important Osgood scales. The prediction

performance of reduced-scale models was similar or marginally better than full-scale

OSG models. For example, the OSG model for predicting the immediate post-

test outcome with the top two scales (bad–good and passive–active) were marginally

better than the full-scale model (AUC: 0.71 [0.70, 0.72], F1: 0.76 [0.75, 0.77], error

rate: 0.30 [0.29, 0.30]). Similar results were observed for predicting retention in

the delayed post-test (selected scales: helpful–harmful, big–small) (AUC: 0.71 [0.69,
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0.72], F1: 0.79 [0.78, 0.80], error rate: 0.28 [0.27, 0.29]). Although differences

were small, the results indicate that using a small number of Osgood scales can

be similarly effective to the full-scale model.

4.5 Discussion and Conclusions

In this paper, we introduced a novel semantic similarity scoring method that uses

predefined semantic scales to represent the relationship between words. By combining

Osgood’s semantic scales (Osgood et al., 1957) and Word2Vec (Mikolov et al., 2013),

we could automatically extract the semantic relationship between two words in a

more interpretable manner. To show this method can effectively represent students’

knowledge in vocabulary acquisition, we built prediction models that can be used to

predict the student’s immediate learning and long-term retention. We found that our

models performed significantly better than the baseline and the response-time-based

models. Our model also performed significantly worse than the Word2Vec model

in predicting students’ performance in the immediate post-test task, but marginally

better with the delayed post-test task. In the future, we believe results from using

an Osgood scale-based student model could be used to provide a more personalized

learning experience, such as generating questions that can improve an individual

student’s understanding for specific semantic attributes.

Based on our findings, we have identified the following points for further

discussion. First, in Section 4.4.1, we found that models using Osgood scale scores

perform similarly with models using regular Word2Vec scores for predicting students’

110



long-term retention of acquired vocabulary. However, we think our models can be

further improved by incorporating additional features. For example, non-semantic

score-based features like response time and orthographic similarity among responses

can be useful features for capturing different patterns of false predictions of current

models. Moreover, some general measures to capture a student’s meta-cognitive

or linguistic skills could be helpful to explain different retention results found even

if students provided the same response sequences. Similarly, in Section 4.4.1, we

found that Osgood scores can be a better metric to characterize the relationship

between responses in terms of predicting students’ retention. A composite model

that uses both regular Word2Vec score-based feature (target-response distance) and

Osgood scale score-based feature (response-response distance) may also provide

better prediction performance.

Second, we found that models with a reduced number of Osgood scales performed

marginally better than the full-scale model. However, differences were very small.

Since this study only used some of the semantic scales from Osgood’s study (Osgood

et al., 1957), further investigation would be required to examine the validity of these

scales, including other scales not used for this study, for capturing the semantic

attributes of student responses during vocabulary learning.

Also, there were some limitations in the current study and areas for future work.

First, expanding the scope of analysis to the full set of experimental conditions used

in the study may reveal more complex interactions between these conditions and

students’ short- and long-term learning. Second, this study used a fixed threshold

of 0.5 for investigating false prediction results. However, an optimal threshold for
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each participant group or prediction model could be selected, especially if there are

different false positive or negative patterns observed for different groups of students.

Lastly, this study collected data from a single vocabulary tutoring system that was

used in a classroom setting. Applying the proposed method to data that was collected

from a non-classroom setting or other vocabulary learning system would be useful

to show the generalization of our suggested method.

4.6 Author Contributions

Sungjin Nam was the main contributor to the study, including developing the

experimental tutoring system, designing the study, conducting statistical analysis,

and writing the manuscript. Dr. Kevyn Collins-Thompson and Dr. Gwen Frishkoff

contributed to designing the tutoring system, developing the cloze sentences used

in the experiment, and revising the manuscript.
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Chapter 5

Attention-based Learning Models

for Predicting Contextual

Informativeness

5.1 Introduction

We learn the vast majority of our new vocabulary with significant help from

context. Humans acquire the meanings of unknown words partially and

incrementally Frishkoff et al. (2008) by repeated exposure to clues in the surrounding

text or conversation. As part of literacy training, contextual word learning methods

can help students by teaching them different techniques for inferring the meaning

of unknown words by recognizing and exploiting semantic cues such as synonyms

and cause-effect relationships (Heilman et al., 2010). However, not all contexts are
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1) My friends, family, and I all really like tesgüino.

2) There is a bottle of tesgüino on the table.

3) Brewers will ferment corn kernels to make tesgüino.

Figure 5.1: The three sentences have the same length but provide very different
information – contextual informativeness – about the meaning of the target word,
tesgüino. We introduce a new dataset and computational models to quantify the
degree and nature of this target-specific informativeness for learning.

equally informative for learning a word’s meaning. As Figure 5.1 shows, there can

be wide variation in the amount and type of information about a ‘target’ word to

be learned, via semantic constraints implied by the context.

Humans are very good at ‘few-shot learning’ of new vocabulary from such

examples, but the instructional quality of initial encounters with a new word is

critical. Identifying the degree and nature of contextual informativeness in authentic

learning materials is an important problem to solve for designing effective curricula

for contextual word learning (Webb, 2008; Frishkoff et al., 2015). As we elaborate

in Section 5.2, predicting and characterizing contextually informative passages is

quite different from other context-based prediction tasks such as n-gram prediction

or cloze completion. It also has broad potential applications for both human and

machine learning.

In this study, we introduce a new dataset and models for predicting the degree and

nature of the contextual informativeness of a passage with respect to the meaning

of a target word to be learned. First, we introduce a new dataset of contextual

informativeness ratings for learning target words in single-sentence contexts. Second,

we show that recent advances in deep semantic representations are highly effective

for this task. We develop models based on ELMo (Peters et al., 2018) and
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BERT (Devlin et al., 2019), combined with an attention layer. We demonstrate

that the learned models generalize effectively across very different datasets, showing

state-of-the-art performance on both our single-sentence context dataset and the

multi-sentence context dataset of Kapelner et al. (2018). Third, beyond predicting a

score, we provide a quantitative evaluation of how models capture the contributions

of a particular passage to correctly infer a target word’s meaning, demonstrating

that attention activation provides fine-grained, interpretable characterizations of

contextual informativeness. Further, using the dataset of Santus et al. (2015), we

show that informativeness learned through this mechanism is robust across various

semantic relations. Our results are applicable not only to developing educational

curricula for vocabulary instruction, but also to NLP tasks like few-shot learning

of new words or concepts from text.

5.2 Related Work

Our study focuses on measuring contextual informativeness with respect to a specific

target word. This has some connection to the predictability of the word, or the

“likelihood of a word occurring in a given context” in psycholinguistics (Warren,

2012), but with important differences that we describe further below. Generic

definitions of informativeness have been defined as the density of relevant information

that exists in a dialog (Gorman et al., 2003), or the number of different semantic

senses included in a sentence (Lahiri, 2015). Entropy-based measures like KL-

divergence have been used to represent reader ‘surprise’ from reading a new text
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compared to their prior knowledge (Peyrard, 2018). Compared to these generic

definitions, the contextual aspect relative to a target concept is a critical distinction:

different words in the same sentence may have very different degrees of semantic

constraint imposed by the rest of the sentence.

Computational lexical semantics has long studied how to characterize word

meaning in context (Turney and Pantel, 2010; Mikolov et al., 2013; Pennington

et al., 2014) and how contextual informativeness can be used to select word

meaning (Szarvas et al., 2013; Melamud et al., 2016; McCann et al., 2017; Peters

et al., 2018). However, these models typically assume informative contexts are

given, and do not predict or characterize the varying degrees of informativeness

with respect to a target word or concept.

5.2.1 Contextual Informativeness in Reading and Literacy

Research

Beck et al. (1983) characterized the informativeness of contexts for learning new

words, distinguishing between pedagogical (specifically chosen to teach meaning) vs.

natural (unintentionally informative). They reviewed two basal reading series and

found that sentences fell into four contextual informativeness categories: misdirective

(actually leading to erroneous learning: about 3% of observations); non-directive

(ambiguous sentences with little information value about the target word: 27%);

general (sentences that help place the target word in a general category: 49%);
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and directive (sentences that happen to point the student to the target word’s

specific, correct meaning: 13%). 1

More recent research has shown that both high- and low-informative contexts

play important roles in optimizing long-term retention of new vocabulary, as they

invoke different but complementary learning mechanisms. Low-informative contexts

force more retrieval from memory, while high-informative contexts elicit a variety of

inference processes that aid deeper word comprehension (van den Broek et al., 2018).

Exposing a reader to the right carefully-chosen curriculum of different contexts can

lead to significantly better long-term retention of new words. For example, Frishkoff

et al. (2016a) showed that using a scaffolded series of informative contexts (initially

highly informative, then progressively less informative) resulted in the best long-term

retention of new words (+15%), compared to all other curriculum designs.

5.2.2 Models for Contextual Informativeness

The predictability of a word given its surrounding context is often represented as

a probability calculated from a large corpus (Jurafsky et al., 2001). Language

models, in particular, can provide useful information on which words may come after

the given context. However, language modeling alone may not adequately capture

semantics for contextual informativeness: additional longer-range dependencies, or

more sophisticated semantic relations and world knowledge may be needed (Shaoul

et al., 2014). Our work focuses on the instructional aspect, which investigates

1In our study, the terms non-directive, general, and directive map to low, medium, and high
information respectively. We omit the misdirective case for now given its relative rarity.
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whether and how context words facilitate making correct inferences about the

meaning of the target word (Beck et al., 1983).

Recent models like context2vec (Melamud et al., 2016) or ELMo (Peters et al.,

2018) use LSTM layers (Hochreiter and Schmidhuber, 1997) to capture semantic

information from a sequence of words. Transformer-based models like BERT (Devlin

et al., 2019) can be also used to represent contexts that consist of word sequences.

Unlike LSTM-based models, the latter can be more effective in understanding long-

range dependencies or unusual relationships between words. In this paper, we use two

contextual pre-trained embeddings, ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2019) and compare the performance in our model.

In the most closely related work to ours, a study by Kapelner et al. (2018)

addressed the task of predicting contextual informativeness. They explored a

heavily feature-engineered approach using predictive models based on random forests

that combined over 600 different pre-specified text features. Our approach differs

in significant ways. First, our approach learns effective feature representations

automatically using attention-based deep learning. We also show that a hybrid

model that combines and analyzes the benefits of both types of feature representation

attains the best overall performance. Second, we explore and evaluate the

interpretability of the resulting models, to characterize how a particular context

gives information about a given target word. Third, their specific goal was to

achieve high precision in finding highly informative contexts from authentic online

texts. In contrast, we focus on predicting and characterizing a range of low- and

high-informative contexts.
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The REAP project Collins-Thompson and Callan (2004) used NLP methods

to identify appropriate contexts for vocabulary learning, but focused on filtering

entire web pages by tagging sentences with specific criteria, not individual prediction

of informative contexts. Similarly Hassan and Mihalcea (2011) used a feature-

engineering approach with supervised learning to develop a classifier to label entire

documents as ‘learning objects’ for concepts (e.g., computer science).

Our suggested model was inspired in part by Liu et al. (2018) who used an

attention-based model to classify customer sentiment towards particular product

aspects, by capturing the relationship between context words and a target word.

5.2.3 Similar Tasks

Various NLP tasks involve examining the meaning of a word in a particular

context. First, several lexical tasks focus on predicting acceptable words for a

given informative context. Lexical substitution tasks have the model choose the

correct word that can replace an existing word in a sentence, which can be shown

once per sentence (McCarthy and Navigli, 2007), or multiple times in different

locations (Kremer et al., 2014). Lexical completion tasks, like the Microsoft Sentence

Completion Challenge (Zweig and Burges, 2011), have the model generate a word

that can correctly fill in the blank without providing an example target word.

However, our task aims to predict the degree of informativeness of a context,

assuming the amount of contextual information can vary depending on the selected

target word.

Second, previous studies proposed tasks for predicting the semantic properties of
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predetermined concepts (Wang et al., 2017) or named entities (Pavlick and Pasca,

2017), including particular semantic senses for a target. However, they do not

address the case where the target concepts or entities are not presented in the

training set. Our annotated task focuses on having a model predict the degree of

semantic constraint in a single- or multi-sentence context without using predefined

lists of concepts for evaluation.

Third, nonce word tasks include various learning scenarios for unseen words.

Studies like Lazaridou et al. (2017); Herbelot and Baroni (2017) investigated how

contextual information can be used to infer the meaning of synthetically generated

target words. However, they also relied on the assumption that the provided

context contains enough information to make an inference, by manually selecting

the training sentences for synthetic words. In contrast, our contextual informative

task involves diverse examples where some contexts can be less or more helpful.

Our model also attempts to characterize the nature of the explicit cues that exist

for learning the target word.

5.3 Contextual Informativeness Datasets

We used two different datasets to train and evaluate our model’s performance

on predicting contextual informativeness. These datasets have different context

lengths (single- vs. multi-sentence contexts), labeling methods (relative vs. absolute

assessment scales), and number of included contexts per target word. Using

datasets with varied characteristics helps test the generality of our suggested
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model structure and whether it can effectively predict contextual informativeness

in different situations. Both datasets use as gold-standard labels for contextual

informativeness, a value on a numerical scale that is based on the perceived learning

effectiveness of the context for the given target word. This effectiveness summarizes,

for example, the precision and variety of any cues that are present in the context that

help a reader infer the precise, correct meaning of the target word. Specific examples

of cues might include synonymy, antonymy, cause-effect, whole-part, frequent co-

occurrence, or other relationships that help comprehend the meaning of a new word.

However, because of the virtually unlimited nature of these cues, for both datasets,

annotators were not given explicit relation types as a basis for judgment.

5.3.1 Dataset 1: Single-sentence Contexts

Our first dataset is a new collection of pedagogical single-sentence contexts for

contextual vocabulary learning. This annotated data consists of 1783 sentences.

Each sentence contains exactly one target word drawn from a set of 60 words (20

nouns, 20 verbs, and 20 adjectives). These target words were ‘Tier 2’ words (critical

for literacy but rarely encountered in speech), carefully normed to achieve a balanced

set of psychometric properties (abstract/concrete, age of acquisition, etc.).

With these target words, researchers (not the authors) with literacy research

background generated sentences with high, medium, or low informativeness2. The

sentences were normed to control variability in semantic and syntactic properties,

such as length and difficulty. The average length of these sentences was 12.49 words

2The phrase level of semantic constraint is sometimes used to describe the level of contextual
information.
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(σ2 = 2.75 words), and the average relative location of the target word was 64.37%

from the beginning (σ2 = 2.83%). Further details are in Appendix A.1.

Annotating Perceived Informativeness. For these generated sentences, we

cross-checked the original researcher-provided labels with additional crowdsourced

annotations using the best-worst scaling (BWS) method. BWS is often preferable

to other strategies like ranking with a Likert scale in cases where annotators can

reliably distinguish between items (e.g., which sentence is more informative), while

keeping the size of annotations manageable. Previous studies like Kiritchenko and

Mohammad (2017) and Rouces et al. (2018) have used BWS annotation to create

semantic lexicons. For our task, we asked non-expert crowdworkers to “find the

most- and least-informative sentences” with respect to the word’s meaning. For

each question item, workers selected the best or worst informative sentence from

a set of four sentences.

Annotation results for BWS scores were highly reliable. Following best practices

for measuring annotation replicability as outlined in Kiritchenko and Mohammad

(2016), we simulated whether similar results would be obtained over repeated trials.

Annotations were randomly partitioned into two sets and then each used to compute

the informativeness scores, comparing the rankings of two groups. We repeated this

process 10 times, and found the average of Spearman’s rank correlation coefficients

was 0.843 (σ2=0.018, all coefficients were statistically significant (p < 0.001)),

indicating high replicability in the scores. Inter-rater agreement rates for the best

and worst sentence picks for each tuple were 0.376 and 0.424 with Krippendorff’s

α. More details are in Appendix A.2.
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5.3.2 Dataset 2: Multi-sentence Contexts

The meaning of a target word can be also determined from information in multiple

surrounding sentences. To test the generalizability of our models to the multi-

sentence scenario, we used an existing dataset from the only previous study,

to our knowledge, on contextual informativeness Kapelner et al. (2018). This

dataset contains 67,833 multi-sentence contexts selected from the DictionarySquared

database (µ = 81 words, σ2 = 42). Each context contains exactly one of 933 unique

target words, which were selected to range across difficulty levels. Like the single-

sentence dataset, this dataset was also designed for contextual vocabulary learning,

but in contrast to our BWS procedure, crowdworkers annotated informativeness of

context passages for a target word with an ordinal four-point Likert scale roughly

corresponding to the four categories in Beck et al. (1983).

5.4 Model Structure

Our approach is based on a deep learning model with some pre-trained components

(orange blocks in Figure 5.2) that can easily fetch vector representations of contexts

and the target word. Specifically, we use pre-trained versions of ELMo (Peters

et al., 2018) and BERT (Devlin et al., 2019). During training, we updated the

pre-trained models’ parameters; however, to avoid overfitting, we only fine-tuned

selected parameters: for ELMo-based models, we updated parameters that determine

the aggregating weights of LSTM and word embedding layers; for BERT-based

models, we updated the parameters for the last encoding layer. For each model,

123



Xfatt

softmax

att.mask

Avg. Pool

ReLU

linear

Score

Sentence

Lex. Features

Pre-trained
Embedding

Figure 5.2: The structure of our proposed model. The model consists of a pre-trained
embedding (orange) with masked attention block (blue) to create attention weighted
context vectors, and regression block (yellow) to predict the numeric contextual
informativeness score. For the multi-sentence context dataset, we also tested lexical
features from Kapelner et al. (2018) (green) as a complementary model’s additional
input.

we treated the target word as unknown (<UNK> for ELMo) or masked ([MASK]

for BERT) token so that the model must use contextual information to infer the

meaning of the ‘unknown’ target word.

The input for the attention layers (blue blocks) is the vector for the target word

and context tokens. Using a multiplicative attention mechanism (Luong et al.,

2015), we calculated the relationship between the token that replaced the target

word and context words (fatt). We used softmax to normalize the output of the

attention layer. The output of the softmax layer masked non-context tokens as

zero, to eliminate the weights for padding and the target word (att.mask). The
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masked attention output was then multiplied with the contextual vectors from the

pre-trained model to generate attention-weighted context vectors. For the multi-

sentence context dataset, we also tested lexical features from Kapelner et al. (2018)

as input features (green block), by concatenating with attention-weighted context

vectors (e.g., +Att+Lex in Figure 5.3).

The regression layers (yellow blocks) used an average pooling result of attention-

weighted context vectors. First, the ReLU layer was applied, followed by a fully-

connected linear layer that estimated the score of contextual informativeness on a

continuous scale. We used root mean square error (RMSE) as a loss function. Full

details for the model and hyperparameters are in Appendix B.1.3

5.5 Experiment 1: Predicting Contextual

Informativeness

In the first experiment, we examined the prediction performance of our attention-

based model by (a) comparing its effectiveness to both simple and more complex

baseline classifiers; (b) comparing the effectiveness of deep vs lexical-based

representations and their combination; (c) cross-prediction, training on one dataset

and testing on the other; and (d) examining variations in the deep learning design,

using ELMo or BERT, and the role of the attention block in prediction performance.

3Data and code will be open sourced upon acceptance.
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5.5.1 Experimental Setup

For baselines, we used (1) a dummy model that always predicts the average

informativeness score from a fold (Base:Avg); (2) a ridge regression model using

the co-occurrence information of context words (Base:BoW), which represents a

prediction independent of the target word; and (3) a linear regression model based

on sentence length (Base:Length). Such baselines represent simple estimations of

contextual informativeness without using external resources like ELMo or BERT.

Prediction performance is measured using two scores: RMSE and ROCAUC.

RMSE shows how the model’s prediction scores diverge from the true scores. For

ROCAUC, we set specific thresholds to investigate how the model performed in

predicting binary labels for high (e.g., top 20% or 50%) or low (e.g., bottom 20%)

informative sentences. Per Section 5.2.1, selecting a range of context informativeness

levels can be important in learning applications, while the high-precision setting

resembles the goal of the previous study by (Kapelner et al., 2018). All reported

results are based on 10-fold cross validation. Each fold was randomly selected based

on the target word, to ensure the model did not see the sentence with the same

target word during the training process.

5.5.2 Results: Single-sentence Contexts

In Figure 5.3, with single-sentence contexts, the sentence-length baseline

(Base:Length) shows that, as expected, raw word count provides some information

about contextual informativeness. However, in most cases, ELMo- and BERT-

based models with attention block (+Att) performed significantly better than the
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Figure 5.3: Binary classification results with the single-sentence context dataset
(top) and multi-sentence context dataset (bottom; higher means better). ELMo
and BERT-based models performed significantly better than the baseline models
in most cases. Adding the attention block (+Att) also improved the prediction
performance, especially for BERT-based models. For the multi-sentence contexts, the
complementary model using lexical features from Kapelner et al. (2018) (+Att+Lex)
showed the best prediction performance.

baselines (e.g., 95% CI of ROCAUC scores in 50:50 classification were 0.736-0.775

(Base:Length), 0.787-0.834 (ELMo+Att), and 0.824-0.860 (BERT+Att)). Adding the

attention block to the model introduced either slight (ELMo-based) or significant

(BERT-based) improvement (Appendix B.3.1).

5.5.3 Results: Multi-sentence Contexts

For training and evaluation based on the multi-sentence context dataset

from Kapelner et al. (2018), we added our replication of the random forest model

from that paper as an additional baseline model, using lexical features provided
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by the authors. Our baseline replicated their results, with very similar R2 scores

(e.g., 0.179 vs. 0.177).

In Figure 5.3, with multi-sentence contexts, all ELMo- and BERT-based models

performed significantly better than the baseline models. Moreover, all BERT-

based models outperformed the ELMo-based models significantly. (e.g., 95% CIs

in 50:50 classification were 0.691-0.705 (Kapelner et al.), 0.720-0.734 (ELMo+Att),

and 0.770-0.785 (BERT+Att)) The attention block (+Att) provided marginal gain for

BERT-based models in prediction performance. The complementary model, which

concatenated attention-weighted context vectors with lexical features (+Att+Lex),

provided the best overall prediction performance for both ELMo- and BERT-based

models (Appendix B.3.2).

5.5.4 Cross-Prediction

We also tested the generalization ability of our model by cross-training. Table 5.1

demonstrates that the model trained with the multi-sentence context dataset was

effective at predicting the contextual informativeness scores for the single-sentence

context dataset, showing that our model captures some essential aspects of contextual

informativeness. In this scenario, both models performed better than random chance

(0.50), while the BERT-based model performed better than the ELMo-based model.

The weaker performance in this transfer learning setting suggests that models are

learning context-type-specific cues of contextual informativeness, rather than general

strategies, implying that general contextual informativeness models should see a

variety of contexts to perform well.
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ROCAUC ↓ 20% Info 50:50 ↑ 20% Info
ELMo+Att 0.711 0.678 0.651
BERT+Att 0.784 0.752 0.715

Table 5.1: Models trained on the multi-sentence dataset were effective at predicting
contextual informativeness scores for the single-sentence context dataset. However,
less effective prediction results were observed in the other direction (Appendix B.3.3).

5.6 Experiment 2: Evaluating Attention Weight

Quality

In the second experiment, we examined how the model’s attention mechanism can

provide interpretable details on informative contexts, by identifying contextual cues

that facilitate more precise inference of the meaning of the target word.

5.6.1 Quantifying the Quality of Attention

To evaluate our model’s attention output across different types of contextual

relationships, we used the EVALution dataset (Santus et al., 2015), originally

designed for evaluating whether word embedding models capture nine different

semantic relations between word pairs. It includes over 1800 unique words and

seven thousand word-pairs, used in automatically generated example sentences.

Each sentence mirrors lexico-syntactic patterns expressing a particular semantic

relationship (e.g., Hearst, 1992; Pantel and Pennacchiotti, 2006; Snow et al., 2005),

so a contextual cue to the meaning of a target word is easily identifiable. Although

formulaic, this regular structure allows us to control for many contextual confounds

and to test which types of relational information are identified by the model.
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Figure 5.4: Comparing the normalized rank scores from the BERT-based model on
the EVALution dataset (Santus et al., 2015). Higher means better. The BERT-
based model with the attention block was able to capture important contexts, such
as the pair word (pair) and relational cues (rcue) better than randomly sampled
rank scores. For 4 of 9 relations, both pair and rcue contexts were captured better
than the random baseline.

For example, in the sentence “An account is a type of record,” the meaning of

the target word “account” is informed by a single contextual pair word “record”,

and a relational cue word “type” that says how the pair word relates to the target

semantically. If the attention mechanism reflects an interpretable explanation of

informativeness, it should put more weights on the pair word and relational cue

word in the context. Our analysis examines whether our model attention weights

rank these salient contextual cues highly, by measuring the normalized rankings

1− rank(x)−1
N−1 of the pair or relational cue words’ attention weights from each sentence.

For comparison, we used a baseline where the pair or relational cue word is assigned

a random rank.

5.6.2 Results

Figure 5.4 compares the performance of the BERT+Att model (trained with the

multi-sentence context dataset) and the randomized rank baseline on the EVALution

dataset (Santus et al., 2015). The BERT+Att model captures the pair word better

than the baseline in 7 of 9 relations, and the relational cue words in 6 of 9 relations.
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Figure 5.5: Example attention weight distributions from the BERT-based model
trained with multi-sentence contexts. Our model successfully captures meaningful
attention weights in the high-informative sentences. The dotted line marks the
average weight value for each sentence. Each target word (highlighted) was masked
for the model.

Surprisingly, the model did not perform well at ranking the pair word highly in

the IsA and Antonym relationships, despite these pair words providing the most

evidence of meaning. In contrast, the model was able to correctly rank meronyms

(e.g., MadeOf, PartOf , and MemberOf ) as having high semantic information.

The ELMo+Att model captured the pair words better, but did worse with the

relational cue words (Appendix B.3.4).

Qualitative Evaluation Figure 5.5 shows how the model learned a relationship

between the target word and context words with example sentences4. For the (first)

low-informative sentence, the model put more weight on function tokens (e.g., ’s,

we), suggesting that the sentence lacked sufficient content words to constrain the

meaning. However, for the (second) high informative sentence, the model tended to

put more weight on individual content words (e.g., howls, dogs, too ) that help infer

the meaning of the target word. The last sentence shows the output for a synonym-

4The first two sentences are drawn from our single-sentence context dataset.

131



relation sentence (Santus et al., 2015). The model’s attention activation successfully

highlighted the pair word (record) but not the relational cue word (same). Further

analysis is needed to examine why some context cues were not highlighted, and

how methods for fine-grained interpretation of contextual informativeness could help

curriculum instruction or improve prediction performance.

5.7 Discussion

We view our study as bridging recent deep learning advances in semantic

representation with new educational applications. Predicting, characterizing, and

ultimately, optimizing the quality of a learner’s initial encounters with content

has many potential applications for both human and machine learners. Our

results showed that attention-based deep learning models can provide both effective

and interpretable results for capturing the instructional aspect of contextual

informatinveness.

For human learners, contextual informativeness models could be applied to

diverse sources of classroom-generated text, such as video transcripts or class notes,

to find the most supportive lecture contexts that help learn or review specific

terminology. Search engines could emphasize the most contextually informative

educational Web content examples for a given term or concept. Custom pre-trained

models (e.g., BioBERT (Lee et al., 2019) for biomedical terms and content) would

enable more domain-specific applications.

On the algorithmic side, accurate prediction and characterization of contextual
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informativeness would be highly valuable in NLP applications, including finding

educationally supportive sentences for automatic summarization, or automatic

curriculum design for few-shot learning NLP tasks (Herbelot and Baroni, 2017),

where the quality of the training examples is critical. Conversely, our new dataset

could be a valuable resource for systematically evaluating the few-shot learning

capabilities of sophisticated language modeling systems (e.g., Brown et al., 2020).

We also discuss here a few limitations of this study that may inspire further

research. First, a more complete model of contextual informativeness would include

an individual component capturing a specific user’s background knowledge of the

target concept, although such models can be challenging to learn and evaluate. For

example, individual differences in word knowledge (Borovsky et al., 2010) or language

proficiency (Elgort et al., 2018) may result in different levels of comprehension or

faster processing of orthographic information. In the annotation phase, we tried to

minimize these confounds by collecting multiple responses per sentence and limiting

the geographic location of annotators to native English speaking countries. However,

further comparison between different learner profiles, such as L1 vs. L2 learners,

could benefit developing more personalized and/or group-oriented prediction.

Second, because our initial students were English-language learners, our efforts

focused on developing English sentences. Further studies based on non-English

datasets, accounting for more richly inflected languages, more complex grammatical

rules, or semantic biases associated with different cultures (Osgood et al., 1957;

Bolukbasi et al., 2016) would be a valuable complement to the science of reading

literature.
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5.8 Conclusion

Both humans and machines rely on context for acquiring a word’s meaning—yet

not all contexts are equally informative for learning. We introduced a new high-

quality dataset labelled for contextual informativeness, and showed that attention-

based deep learning models can effectively capture and predict a general conception

of contextual informativeness, in a way that generalizes across significantly

different datasets. Moreover, we showed that deep neural representations learned

automatically can replace or augment a complex, feature-engineered model for this

contextual informativeness task. Further, we demonstrated that learned attention

mechanisms can provide interpretable explanations that match human intuition as

to which specific context words help human readers infer the meanings of new words.
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Chapter 6

Smaller and Stronger: Developing

Curricula for Word Embedding

Models Based on Contextual

Informativeness Scores

6.1 Introduction

We learn a significant number of new vocabulary terms through understanding

contextual information (Landauer and Dumais, 1997). Through iterative practice,

students learn the meanings of words from various contexts and develop deeper

and more sophisticated knowledge of advanced vocabularies (Huang and Eslami,

2013). Various machine learning algorithms have also suggested different methods
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Low Informative Sentence: We couldn’t agree on whether the din
was acceptable.
High Informative Sentence: The barks and howls of dogs created
too much din for us to sleep.

Figure 6.1: Each sentence differs in the amount of contextual information for the
same target word din.

to capture the semantic information of words based on contextual information (Blei

et al., 2003; Mikolov et al., 2013; Devlin et al., 2019). Without explicit definitions or

associated words presented for the target (unknown) word, contextual word learning

utilizes linguistic context, such as nearby semantic and syntactic cues, for learners

to infer the meaning of the target word.

Studies have shown that identifying the level of contextual informativeness is

crucial for designing more effective curricula for contextual word learning for human

learners (Webb, 2008; Frishkoff et al., 2015). However, not all contexts are equally

informative for instructional purposes. As Figure 6.1 shows, the amount of contextual

information with respect to a target word may vary greatly. It is a non-trivial task to

automatically quantify the amount of information included in a target word’s context

and use it to develop better curricula for vocabulary learning (Kapelner et al., 2018).

Compared to many machine learning models, humans can learn from a relatively

small number of examples (Fei-Fei et al., 2006; Lake et al., 2015). When availability

of training data is limited, such that learning takes place over only a small number

of examples for human language learners or automated few-shot learning algorithms,

the quality of the instructional materials in the training set becomes critical to

achieve better learning outcomes. Thus here we investigated whether contextual
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informativeness scores used for designing a vocabulary learning curriculum for human

learners can be also useful for word representation learning algorithms in multiple

learning scenarios.

We examined how a deep learning model developed for predicting contextual

informativeness in human language acquisition can also benefit machine learning

algorithms. We compared the performance of word embedding models in two

scenarios, batch learning and few-shot learning, according to different training

curricula that were based on predicted contextual informativeness scores. The

results show that training only on low-informative sentences significantly lowered

performance on downstream tasks. Further, simply detecting and removing the least-

informative 50% of examples in the training corpus provided significantly better

performance for word embedding models.

6.2 Related Work

We first review work on the prediction task itself, contextual informativeness in the

context of word learning, and then discuss connections with curriculum learning

for NLP.

Contextual Informativeness & Word Learning. Repetitive exposure to

contextual cues from text or conversation can provide much information about the

meaning of unknown words (Frishkoff et al., 2008). Contextual word learning is an

instructional method that teaches students how to infer the meaning of unknown
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words by recognizing and utilizing semantic cues, such as synonyms and cause-effect

relationships (Heilman et al., 2010).

Previous studies such as Kapelner et al. (2018) have shown that machine

learning models can be useful for determining high-quality instructional material

for vocabulary learning. However, their model was less generalizable since it relied

on a large number of pre-defined lexical features, made it hard to interpret which

context words were more important, and focused on precisely identifying the high-

informative contexts only. In Section 6.3.1, we describe the deep learning-based

model used for our curriculum construction that addresses these issues and attains

better performance.

Recent studies have also investigated how to develop meaningful curricula for

vocabulary learning by humans. For example, Frishkoff et al. (2016b) showed that

using an ordered series of informative contexts (e.g., starting from highly informative,

followed by less informative examples) provided better long-term retention of new

words than several other curriculum designs. Since different levels of informativeness

can elicit different learning behaviors (e.g. low-informative contexts facilitate

retrieval from memory, while high-informative contexts can promote various inference

processes and comprehension (van den Broek et al., 2018)) it is important to

distinguish different levels of informative learning materials in contextual word

learning.

Curriculum Learning in NLP. Previous machine learning studies have focused

on achieving more efficient training (Bengio et al., 2009). For example, multiple NLP

studies investigated the role of training curriculum on performance. Among others,
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Sachan and Xing (2016) showed that easy (e.g., smaller losses), but diverse training

examples can provide better performance for NLP models to solve QA tasks. The

properties of the learning target, such as topical domain or part-of-speech, may also

affect the stability of word embedding models (Wendlandt et al., 2018; Antoniak

and Mimno, 2018). Particular context words can be more important than others for

predicting the target word, and weighting each context word differently can improve

training efficiency (Kabbach et al., 2019).

However, unlike these studies, our study focuses on the idea that applying

vocabulary learning strategies that help human students can also benefit machine

learning models. By using a model that predicts contextual informativeness, we score

sentences from the corpus and developed simple filtering heuristics for producing

higher-quality training curricula. We also examine how contextual informativeness

scores can be used for more efficient training of word embedding models.

6.3 Models

We now describe the two types of models used in this study, for (a) contextual

informativeness prediction and (b) word embedding. We used the contextual

informativeness prediction model described in Chapter 5 (Section 5.4) to score

sentences from a corpus. Based on the predicted score, we applied a variety of filtering

heuristics to the training corpus and used these to train different word embeddings.

We did a task-based evaluation of curriculum quality according to its effect on several

important downstream similarity tasks that used the word embeddings.
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6.3.1 Contextual Informativeness Model

We used the deep learning model from Chapter 5, which originally developed for

predicting the contextual informativeness of sentences in an instructional context

to score sentences from the corpus.

The model used a pre-trained BERT (Devlin et al., 2019) with an additional

masked attention mechanism. The model was trained with the existing dataset

from Kapelner et al. (2018), but did not used lexical features for prediction. We

chose this variant of the contextual informativeness model since it provided the best

performance in a generalized task (e.g., Table 5.1 or Figure 5.4). A diagram for the

model we used for this study can be found in Appendix C.1.

6.3.2 Word Embedding Models

To examine the effect of different curricula based on contextual informativeness

scores, we tested three word embedding models. As further described in Sections

6.5 and 6.6, we used FastText and Word2Vec models for a batch learning scenario

analysis, and Nonce2Vec model for a few-shot learning scenario.

First, Word2Vec is a word embedding model that captures the meaning of

the word based on the surrounding context words using an algorithm like skip-

gram (Mikolov et al., 2013). We chose Word2Vec since it is widely used and has

been a strong traditional baseline in many NLP tasks.

Second, FastText is an extension of Word2Vec that incorporates a character-level

encoding (Bojanowski et al., 2017), intended to handle rare words better, or even

represent out-of-vocabulary words through n-gram information.
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Third, Nonce2Vec is another variant of Word2Vec that specializes in learning

with a smaller training corpus for nonce words (Herbelot and Baroni, 2017). This

model employs a higher initial learning rate and customized decay rate, to provide

provide a riskier but more effective learning strategy for unseen words with a small

number of training sentences.

6.4 Curriculum Building

Our curriculum used sentences from the ukWaC corpus (Ferraresi et al., 2008) to

train the word embedding models. ukWaC is a corpus of British English collected

from web pages with the .uk domain, using medium-frequency words from the British

National Corpus as seed words. Since the corpus is collected from a broad set of

web pages, its sentences contain different types of writings with various contextual

informativeness levels.

Semantic Similarity Tasks. To test the performance of word embedding models,

we employed three semantic similarity tasks. First, SimLex-999 includes 999 pairs

of nouns, verbs, or adjectives. It also distinguishes more associated word pairs.

Second, as the name suggests, Simverb-3500 includes verb pairs. It uses the same

guidelines as SimLex-999 for collecting human annotations (Gerz et al., 2016). Third,

WordSim-353 includes scores for noun pairs (Finkelstein et al., 2002).

These tasks use human annotations on semantic similarity between word pairs as

their gold standard. We trained word embedding models for each task, calculated
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the cosine similarity between words, and analyzed the correlation with the human-

annotated scores (Spearman’s r).

Training Sentences for Word Embeddings. To carefully control the learning

materials and compare outcomes between curricula, we chose sentences from the

corpus as follows.1

First, we divided sentences into non-target sentences and target sentences. Non-

target sentences are sentences that do not contain any target word from the three

tasks (about 8.1M sentences, 2.4M unique tokens, 133.7M tokens in total). Non-

target sentences were used to train the background model, which represents the

model’s prior knowledge about other words before they learn about target words.

On the other hand, each target sentence contains the target word only once. Later,

target sentences are scored with the contextual informativeness model and used for

developing the training curricula. All sentences containing multiple target words

were removed from the analysis.

Second, we selected sentences that are 10–30 words long, which is similar to

the length of average English sentences (15-20 words; (Cutts, 2013)). This criterion

filtered out sentences that are too short or too long. It also controlled potential

correlation between the sentence lengths and contextual informativeness scores, and

kept the number of words between curricula relatively similar.

Third, we only analyzed target words that had more than a certain number of

sentences in the corpus. We sampled 512 sentences per target word. Each sentence

1Details on the distribution of informativeness scores and relationship with sentence length are
in Appendix C.2.
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contained the target word only once. If a target word had less than 512 training

sentences meeting all criteria above, we excluded the target word from the analysis.

As a result, we analyzed 94.16% (SimLex-999; 968 of 1028 unique target words),

80.89% (SimVerb-3500; 669 of 827), and 95.65% (WordSim-355; 418 of 437) of

target words of each task.

6.5 Experiment 1: Batch Learning

For this study, we conducted two experiments. Each experiment tested different

learning scenarios, batch learning scenario and few-shot learning scenario, for

word embedding models. We evaluated how each curriculum based on contextual

informativeness scores can affect word embedding models’ performance across

different numbers of target sentences used per target word. The first experiment

tested Word2Vec and FastText models.

6.5.1 Experimental Setup

First, we trained the background model with non-target sentences. This simulates a

model with existing knowledge of English words excluding the target words. Second,

we developed the training curriculum by selecting k (k = 2i, i = 1, ..., 9) target

sentences per each target word. For the experiment, we tested five simple heuristics

to build curricula (Table 6.1). The results compare how curricula based on contextual

informativeness scores can bring different results for updating the same background

word embedding model. Figure 6.2 visualizes the curriculum development process.
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Figure 6.2: An illustration of curriculum developing process. First, we separated
sentences into non-target and target sentences, based on if the sentence contains
any target word from the semantic similarity tasks. Second, target sentences were
scored by the contextual informativeness model. Non-target sentences were used to
train the background model. Third, different curriculum heuristics were developed
to update the background model with target sentences.

6.5.2 Results: Similarity Tasks

To evaluate the learning performance, we calculated Spearman’s rank coefficient

scores for each semantic similarity task between cosine similarity scores of word pair

vectors and human-annotated scores. Word2Vec is known to perform at various

levels for the similarity tasks.2 Although we used a different corpus and parameters,

we were able to achieve similar performance with our Word2Vec models with a

larger number of target sentences.

Figure 6.3 shows that the contextual informativeness model can successfully

distinguish less helpful training sentences from the corpus. In most cases, the low

informative sentence curriculum provided significantly worse performance.

2Reported Spearman’s r scores for Word2Vec models were 0.414 (Hill et al., 2015, SimLex-999;),
0.274 (SimVerb-3500; Gerz et al., 2016), and 0.655 (WordSim-353; Hill et al., 2015)
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Curriculum Description
Low Informative Selecting k low informative sentences per target word
High Informative Selecting k high informative sentences per target word
Rand. Select Random k sentences per target word
Rand. Non-Low Random k sentences per target word from the top half

informative sentences (256)
Rand. Non-High Random k sentences per target word from the bottom

half informative sentences (256)

Table 6.1: Five curriculum building heuristics based on contextual informative scores.

Figure 6.4 shows more clearly that for SimLex-999 and SimVerb-3500 tasks,

the non-low informative sentence models tend to perform better, especially with

more sentences per target word (e.g., > 24). However, the non-high informative

sentence models tended to perform worse. These results indicate that contextual

informativeness scores may improve the word embedding models’ performance

by removing less informative contexts from the training set. We also noted

that FastText models were significantly better than the Word2Vec models when

trained with the lower number of training sentences. However, using all training

sentences, the performance of these models eventually converged within a similar

score range. The results confirm that FastText models were better for representing

rare words (Bojanowski et al., 2017) and as such, the differences between curricula

are smaller for FastText models than for Word2Vec models.

6.5.3 Results: By Part of Speech

We further analyzed the results from the SimLex-999 task with different target word

attributes, such as part of speech (POS) and associated pairs.
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Figure 6.3: Batch learning results on FastText© and Word2Vec: models with SimLex-
999, SimVerb-3500, and WordSim-353 tasks. Shades represent the 95% CI. The
results show that the contextual informativeness score can successfully distinguish
less helpful sentences for the batch learning models. The FastText models are
significantly better than Word2Vec models, with fewer training sentences. Notice
that scales are different between the tasks.

The results by different target word POS were similar to the previous results

from Simverb-3500 and WordSim-353 tasks (Figure 6.5). For example, with the verb

pairs (222) the high informative sentence models performed significantly better than

the low informative sentence models. The distinction between the high informative

models and the randomly selected sentence models were also significant. For the noun

pairs (666), the non-low informative random sentence models performed consistently

better than other models. For the adjective pairs (111), we observed unusual

examples of early learning (e.g., 20–23) from the low informative sentence Word2Vec

models. However, it did not link to as much continuous improvement as the model

trained with a larger number of sentences.
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Figure 6.4: Differences between curricula relative to random curriculum performance.
Black lines represent 95% CI. Filtering out low informative sentences increased
embedding models’ performance in many cases. For SimLex-999 and SimVerb-
3500, as the number of sentences per target word increased, the non-low informative
sentence models performed significantly better than others, while the non-high
informative sentence models performed worse. Note that scales are smaller for
FastText models (which does better for rare words) but still shows a consistent
trend.

6.5.4 Results: By Associated Pairs

For the associated and non-associated pairs, we observed that contextual

informativeness scores worked consistently well in distinguishing less vs more helpful

training sentences for both models.

For example, with the non-associated target word pairs (666), the non-

low informative random sentence models performed at least as well as the

random sentence models. The high informative models showed consistently better

performance than the low informative models. For the associated pairs (333), unlike

other analysis results, FastText models did not show early learning advantages,

showing that the associated pair task is a hard task for both Word2Vec and FastText
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Figure 6.5: Batch learning results on FastText© and Word2Vec: with different POS
of SimLex-999 target words. In most sentences per target word conditions, filtering
out low informative sentences provided significantly better performance than the
model trained only with low informative sentences. For verbs, the high informative
sentence models showed significantly better performance than the randomly selected
sentence models. For nouns, the non-low informative sentence models performed
significantly better than models trained on random sentences.

word embedding models. For this analysis, Word2Vec models trained with the non-

low informative random sentences performed best.

With the batch learning setting using Word2Vec and FastText models, we

found that our contextual informativeness model effectively distinguished less useful

sentences from the training set. In most cases, the non-low informative random

sentence models performed best. The performance of the all-high informative

sentence models and the all-low informative sentence models were also significantly

different in many cases. Based on these results, we suggest that filtering out

low-informative sentences from the training set can significantly improve model

performance. In the next section, we looked into few-shot learning using Nonce2Vec.
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Figure 6.6: Batch learning results on FastText© and Word2Vec: with associated and
non-associated target word pairs (SimLex-999). The non-low informative random
sentence models performed best in both tests. FastText models did not show an
advantage with smaller sentence sizes for the associated word pairs.

6.6 Experiment 2: Few-Shot Learning

The second experiment tested the effect of curriculum design with the Nonce2Vec

model, which is explicitly designed for few-shot learning.

6.6.1 Experimental Setup

We follow the same experimental setup for training Nonce2Vec as in Herbelot and

Baroni (2017), which first trains a background model and then tests he effect of

adding new sentences. The background corpus contained non-target sentences and

∼60% of target sentences per target word; training curricula were derived from other

40% of target sentence and used to update the nonce word vectors. More details

on Nonce2Vec model are in Appendix C.5.

We used 2, 4, or 6 target sentences per target word to train the model. For a more

robust comparison, we selected each curriculum stochastically. For example, we first

created a sampling pool of 50 sentences (about 10% of sentences per target word) for
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each curriculum type (with overlaps)3. From each pool, we then randomly sampled 2,

4, or 6 target sentences per target word to develop the curriculum for each iteration.

For evaluation, we compared the median ranks of newly-learned nonce word

vectors and the gold-standard word vectors included in the background model.

Ideally, if the nonce word learning process of Nonce2Vec was perfect, the embedding

vector for the nonce word and the gold-standard word from the background model

(e.g., insulin vs. insulin gold) should be identical (rank = 1). Similarly, lower

median rank scores for the target words (e.g., SimLex-999) would indicate better

embedding quality derived from a curriculum.

We also compared Spearman’s rank correlation scores of each semantic similarity

task. For Nonce2Vec models, we took the average of two cosine similarity scores for

a word pair, as we conducted the nonce learning for each target word separately.

For example, for the word pair old–new, we first conducted nonce word learning for

the word old and calculated the cosine similarity score with the word new from the

background model. Then we conducted the same process vice versa. The average of

these two cosine similarity scores was calculated for the word pair.

6.6.2 Results: Nonce2Vec on SimLex-999

We used SimLex-999 for the few-shot learning analysis, as the task includes word

pairs with various lexical attributes. Figure 6.7 shows how Nonce2Vec models

(epoch = 5, learningrate = 0.5) performed with different curricula.

First, we compared the quality of updated nonce word vectors by comparing

3For non-low and non-high informative curricula, we firstly filtered out 256 low or high
informative sentences and then sampled 50 sentences from the rest.
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the similarity ranking with the gold-standard word vector. We observed similar

patterns from the batch learning results. The median rank scores indicate that the

low-informative sentences performed significantly worse than other curricula. Also,

the non-low informative random sentences tended to perform better than others.

The high-informative sentence models showed significantly better results than the

low informative sentence models, but not much different from the randomly selected

sentence models. These results show that our contextual informativeness model

can effectively distinguish less-helpful sentences for the few-shot learning tasks.

Moreover, based on the random non-low results, we see that excluding the least

informative ones, together with using diverse levels of contextual informativeness

stimuli (medium and high), can improve word embedding model performance.

Second, we analyzed the rank correlation between the Nonce2Vec word vectors

and human-annotated scores from SimLex-999. The low-informative sentence models

performed marginally worse than other curricula. The non-low informative models

and randomly selected sentence models performed similarly. However, we did not

observe significant differences between curricula.

6.7 Discussion

Our results show that filtering out low informative sentences from the training set

provides better learning outcomes across various sentence sizes and similarity tasks,

which suggests three potential modeling improvements.

First, more detailed analysis on where the BERT-based contextual
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Figure 6.7: Few-shot learning results (Nonce2Vec) on SimLex-999 dataset. The
low informative sentence and non-low informative sentence curricula provided the
worst and best embedding quality respectively, compared to the gold-standard word
vectors. Spearman’s r score tended to increase as the number of sentences per target
word increased, while there were no significant differences observed between curricula.

informativeness model fails in predicting contextual informativeness scores could

improve the derived curriculum. For example, the predicted scores were less accurate

for some sentences that contain less-frequent words or many special characters. This

may due to BERT’s small vocabulary size. Grammatically complex (or incorrect)

sentences can be also difficult for current pre-trained NLP models to precisely encode

contextual information. Example-based analysis, such as word-level permutation, to

investigate which context words most impact prediction results (Kaushik et al., 2019),

might be helpful for identifying various types of difficult cases.

Second, there is room to optimize the curriculum development strategies. As

previous studies in vocabulary acquisition (Frishkoff et al., 2016a) and machine

learning (Tsvetkov et al., 2016; Sachan and Xing, 2016) suggest, developing more

effective curricula can be non-trivial. Different levels of informative contexts have

different roles in learning (van den Broek et al., 2018). As we observed from Sec. 6.5.2
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and 6.6.2, the non-low informative sentence models, which filtered out the less-

informative sentences but kept diverse levels of informativeness scores for target

sentences, performed better than the high-informative sentence models in almost

every case. Developing more sophisticated learning strategies, such as using high-

informative sentences for the initial higher loss state and low-informative sentences

in a more mature model state, could be an interesting curriculum learning problem

and opportunity to compare with human students learning in a scaffolded condition.

Third, we could further analyze what accounts for the curriculum effects we

observed. For example, Word2Vec and FastText models’ performance seemed to

reach a plateau relatively quickly (e.g., ≥ 28 sentences per target word (Figure

6.5.2)). Bigger models, such as transformer or LSTM based models, may have more

performance headroom for testing the curriculum effect with a larger number of

target sentences. With respect to curriculum content, target words with different

parts of speech could be found in sentences within different grammatical structures.

Some context words might be more informative than other context words (Kabbach

et al., 2019). High-informative sentences may contain fewer redundant or frequent

words than low-informative sentences. In this way, deeper understanding of the

relationship between context words and a target word in a sentence could improve

curriculum quality.
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6.8 Conclusion

When learning vocabulary, the right curriculum can substantially improve students’

learning. We demonstrate that an analogous approach for curriculum selection can

help improve the representations learned by various types of word embedding models.

In a series of experiments across batch learning and few-shot learning, we test the

effectiveness of rating contexts by informativeness to prioritize those contexts likely

to aid to learning word meaning. Our results show that (i) sentences predicted as

low-informative by the model are indeed generally less effective for training word

embedding models and (ii) in most cases, filtering out low-informative sentences

from the training set substantially improves word representations for downstream

tasks. In the future, we will further investigate how to build optimized curricula

for word learning, and identify factors related to the curriculum effect based on

contextual informativeness.
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Chapter 7

Discussion

This dissertation explored how we can predict students’ latent cognitive states while

they use an intelligent tutoring system, by analyzing implicit signals like behavioral

interactions and linguistic inputs. Our findings would help instructors identify

students’ current states while using the system and provide data-driven evidence for

system developers to design personalized features that can maximize their learning

experience in various ways. In the following sections, we will discuss the broader

implications of the findings from our studies and some future study plans.

7.1 Broader Implications

Identifying off-task states can provide important information to the system on when

to intervene with a student during a learning task. We believe our findings in

Chapter 3 can be transferable to other intelligent tutoring systems using linguistic

inputs from students. For example, features based on semantic or lexical similarity
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scores between open-ended responses can be effective for identifying various types

of disengaged behaviors in tutoring systems for non-vocabulary-related topics, such

as social science or natural science, that focus on learning about the new concept.

The features can also help to identify repetitive or related responses that are not

addressing what actual questions ask to students.

Studies from other disciplines have suggested similar interpretable scales for

distributional semantic models to understand changes in semantic senses of a word

over time (Rudolph and Blei, 2018; Hamilton et al., 2016) or to quantify racial

or gender bias incorporated in the models (Bolukbasi et al., 2016; Caliskan et al.,

2017). However, these studies only examined the limited range of semantic senses

that they wanted to capture from the computational model. Our findings in Chapter

4 present a more generalizable approach based on a classic semantic differential

method (Osgood et al., 1957) which focused on providing a set of semantic senses that

can be applicable in a wide range of words. We believe that Osgood’s semantic scales

can be used for various applications. For example, combining semantic differential

scales and NLP models can be used to solve word-level semantic tasks like polysemy

or antonym distinction, or other word disambiguation tasks that may benefit from

using discrete semantic scales for effectively narrowing down the semantic search

space. Moreover, we think the method could be used for characterizing the semantic

content from longer texts, such as developing fine-grained semantic representations

of product reviews or questions in community Q&A, to let system administrators

understand the overall quality of text data and let users explore contents from

other uses more effectively.
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In Chapter 5, we presented a model for predicting contextual informativeness.

We achieved competitive performance by using a vector representation of sentential

context provided by pre-trained NLP models. Compared to a previous study, which

required hundreds of lexical features to be processed for the prediction (Kapelner

et al., 2018), our model provides a more flexible adaptation for texts from diverse

domains by learning an effective representation automatically. For example, the

prediction performance of our model can be easily improved as a more sophisticated

pre-trained language model is developed in the future. Moreover, our results show

that our model can be generalizable across different datasets, such as single-sentence

contexts that researchers manually generated (Frishkoff et al., 2016a) or multi-

sentence contexts crawled from the Internet (Kapelner et al., 2018). We believe

our model can also be applied to calculate the contextual informativeness of other

texts, like measuring the quality of a student’s note, identifying more sophisticated

questions from discussion forums, or selecting more informative instructional material

to understand other domain-specific concepts.

Lastly, in Chapter 6, we showed how the contextual informativeness model could

be used to distinguish less helpful sentences from the training data, and develop more

efficient curricula for word embedding models. These results suggest that contextual

word learning of human language learners and machine learning algorithms may

share some similar attributes. In the future, existing studies on human language

acquisition can be adapted for designing a more sophisticated curriculum developing

strategies for machine learning models. Identifying the specific role of low and high

informativeness sentences (Webb, 2008) in the machine learning curriculum can help
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achieve more robust and efficient learning strategies for NLP models. Identifying

factors related to the curriculum effect based on contextual informativeness may also

provide further insights for improving the performance of machine learning models

and accurately modeling the human language acquisition process.

7.2 Limitations and Future Studies

Implementing the findings included in the dissertation would introduce various

intelligent and adaptive features into a vocabulary tutoring system. For example,

based on the off-task state prediction results, the system may adjust the question

difficulty (e.g., showing easier or more informative sentences for off-task students in

their next iterations ), or display prompting messages that can encourage students to

keep working on the task. As the student’s partial knowledge state is evaluated from

open-ended responses, the system can intelligently choose the next stimuli that allow

the student to focus on improving the specific partial knowledge that the student

currently lacks. Predicting the amount of contextual informativeness would help

to automatically determine the quality of learning materials for contextual word

learning can greatly improve the efficiency of developing personalized curricula.

At the same time, being able to train efficient machine learning models through

curriculum learning can provide more light-weighted and accessible educational

applications for mobile devices or other less expensive computing devices.

Moreover, these findings can also be applied to other educational applications.

Comparing the behavioral and linguistic sequence of responses, such as responses
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that are not related to the task but related to each other, would provide essential

signals on users’ off-task states. The semantic differential scaling method can be used

flexibly. Once the instructor or system designer identifies semantic anchor terms that

cover various semantic dimensions to evaluate, we believe the method can be applied

to evaluate text responses from educational applications in diverse domains. The

contextual informativeness model can be used to assess the instructional quality

of various texts that are related to learning, including student notes, textbook

phrases, or online forum posts. We can also select quality subsets from a corpus and

quickly develop a domain-specific NLP model by using fewer but more informative

sentences. And most importantly, integrating these features into a single system

and investigating the interactions between developed features would significantly

increase the effectiveness of a personalized learning system. For example, we

can investigate the relationship between the off-task state and question difficulty

based on the contextual informativeness score. There may be more optimal

semantic scales to support predicting off-task responses or the amount of contextual

informativeness of texts from various domains. These results will provide a more

in-depth understanding of how students learn from an intelligent tutoring system,

and how their learning behaviors are affected by machine-learning-based features

in the educational application.

There are some limitations of studies that can be improved in the future. First,

we presented data-driven evidence for designing a better vocabulary learning system.

Yet, we did not test the effectiveness of suggested interventions or new design

features. Many previous studies investigated different personalization features in
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information systems, like customized intervention messages (Szafir and Mutlu, 2012;

Arroyo et al., 2007; Roll et al., 2007), contents (Shen et al., 2005; Teevan et al., 2010;

Lagun and Lalmas, 2016), or user interfaces (Sarrafzadeh et al., 2016; Gajos et al.,

2008; Reinecke and Bernstein, 2011), to maximize the user’s satisfaction (O’Brien and

Toms, 2008) and information gain (Baker et al., 2006). Integrating the findings from

this dissertation into a contextual vocabulary learning system, such as DSCoVAR,

would be worth investigating in the future. It would require careful experimental

design to examine the effectiveness of various adaptive features and compare these

results with the findings from previous studies.

Second, the studies in Chapters 3, 4, 5, and 6 only examined the English learning

context. The linguistic features in these chapters were based on models that trained

with the English language. Further examination on non-English-language vocabulary

learning applications would examine the generalizability of the suggested features and

may introduce unique challenges, especially with learning low-resource languages like

Inuit or Sindhi. Moreover, if a vocabulary learning system is used by diverse groups

of students, additional factors would be needed for accurate modeling of student

behaviors. Different types of native languages or age groups can be important

indications that may explain behavioral and linguistic interactions with a system.

For example, Osgood illustrated how particular semantic scales can be more or

less important to represent semantic senses of words in different languages and

cultures (Osgood et al., 1957). A careful data collection approach and sophisticated

machine learning method would be required to solve such a problem.

Third, some of computational linguistic models rely on relatively simple word
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embedding models (Mikolov et al., 2013; Herbelot and Baroni, 2017). For example,

Chapters 3 and 4 used Word2Vec to extract predictive features. Using more

sophisticated and context aware embedding models like ELMo (Peters et al., 2018) or

BERT (Devlin et al., 2019) would provide more accurate representation of student

responses collected from a vocabulary learning system, and improve its capacity

to correctly understanding multi-word responses. Chapter 6 used Word2Vec and

Nonce2Vec to evaluate the application of generated curricula. However, recent

algorithms like transformers (Vaswani et al., 2017) can be used to represent more

sophisticated and non-linear relationships between the target and context words,

unlike Word2Vec based models that simply averages the information of the words

within the context window to induce the semantic information of the target

word (Mikolov et al., 2013). Further examination of curricula based on contextual

informativeness and recent computational linguistic models would provide a more

in-depth understanding of how recent deep-learning architectures utilize less or more

rich contextual information to represent language.

Lastly, it would be interesting to investigate students’ tendency in reacting to the

stimuli from the vocabulary tutoring system. For example, off-task behaviors may

be observed more from stimuli (e.g., cloze sentences) that are related to particular

semantic information like a person’s name or the names of activities. Partial

knowledge measured on some scales can be easier to improve than other semantic

senses, since students may be more sensitive to information related to particular

semantic scales. Crowdsourced annotations for contextual informativeness can be

interpreted in a similar way. Crowdworkers may be more susceptible to the particular
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lexical characteristics or semantic senses that they are more knowledgeable when

they recall the potential responses for the cloze sentences. Investigating how human

bias or subjectivity can affect language learning applications would be an interesting

subject of future research. In the future, including these individual-level factors

in online interactions or annotation data will enable deeper analysis on students’

vocabulary learning behavior and improve understanding of how humans perceive

contextual informativeness from a passage.

162



Chapter 8

Conclusion

This dissertation illustrated multiple machine learning applications that can help

improve our understanding of students’ vocabulary learning processes, and contribute

to developing more automatized and intelligent vocabulary learning systems. We

conclude the dissertation by summarizing the motivations, results, and overall

contributions of these included studies.

Vocabulary Learning System: DSCoVAR We first introduced our vocabulary

learning system, Dynamic Support of Contextual Vocabulary Acquisition for Reading

(DSCoVAR): An Intelligent Tutoring System (Chapter 2). DSCoVAR is a contextual

word learning system that lets students practice active inference techniques for

learning the meaning of new words from sentential context. It is an online

tutoring system that students can access through their desktop web browser. For

the study, the system collected online interaction signals from students during

their learning, including behavioral interaction and linguistic input data. We also
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generated sentence stimuli from research assistants and evaluated each sentence’s

informativeness quality based on crowdsourcing tasks. Based on these data,

subsequent chapters investigated how to use behavioral and linguistic data to predict

different cognitive states observed while using a vocabulary learning system.

Understanding Off-Task Behaviors Chapter 3 examined a prediction model to

predict students’ off-task states while using a vocabulary learning system. Based

on existing studies on student engagement or gaming the system (Baker et al.,

2010; Beck, 2005; Paquette et al., 2014) in online learning systems, we used online

interaction signals collected from the system, and suggested predictive models using

various features, including semantic and lexical features to capture characteristics

of student responses.

An investigation of feature importance revealed that features about students’

response history mostly improve the prediction performance. We could also identify

different types of off-task responses: lexical repetitive responses or semantically

related responses were the most common off-task responses in our vocabulary learning

system. In the future, the findings from this study could be used to determine when

the system could intervene with students to improve their engagement with the

learning system to potentially further improve learning outcomes.

Capturing Partial Word Knowledge State Chapter 4 explored a more

interpretable and scalable method to represent students’ partial knowledge state

during the vocabulary learning. Semantic differential scales (Osgood et al., 1957)

are easily interpretable, but can be expensive to develop since they rely on human
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annotations. On the other hand, a word embedding model (Mikolov et al., 2013) can

be trained with a large corpus quickly, but its high-dimensional vector representation

can be often less interpretable. In this study, we tested how ten handpicked Osgood

scales can be used to represent student responses in Word2Vec embedding space,

and predicted students’ short- and long-term learning outcome from a vocabulary

learning system.

As a result, we found that combining Osgood’s scales with Word2Vec can provide

both interpretable representations and effective prediction results, compared to

using a less interpretable vector output from the original Word2Vec model. In

the future, we may expand this approach with more extensively selected semantic

scales and more recent computational linguistic models to analyze longer passages

in various domains.

Predicting Contextual Informativeness of Sentences Chapter 5 investigated

how to build a model that can score contextual informativeness of sentence stimuli.

Contextual word learning is known to be effective method to learn the meaning of

words, especially if the word has complex or abstract meanings. However, not all

contexts are equally informative for vocabulary learning. Being able to predict the

amount of informativeness automatically can greatly reduce the cost of generating

or collecting sentence stimuli for a contextual vocabulary learning system.

Compared to an existing study using a “kitchen sink” approach to feature

representation (Kapelner et al., 2018), our deep learning approach using pre-trained

language models showed better prediction performance and more generalizable
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results across different datasets. In the future, we will test how automatically

generated curriculum can make human vocabulary learning more efficient.

Curriculum Development for Human and Machine Learners Like humans,

many machine learning models also use contextual information to understand

language. In Chapter 6, we showed that the contextual informativeness model from

Chapter 5, originally developed for students’ vocabulary learning, can be also helpful

for developing more efficient curricula of machine learning models.

The results presented that sentences predicted as low-informative by the

contextual informativeness model are also less effective for training word

embedding models in batch learning (e.g., Word2Vec (Mikolov et al., 2013) and

FastText (Bojanowski et al., 2017)) or few-shot learning (e.g., Nonce2Vec (Herbelot

and Baroni, 2017)) settings. Moreover, simply filtering out low-informative sentences

from the training set significantly improved the embedding models’ performance. We

think the effectiveness of curriculum learning can be further improved by identifying

more optimized methods for machine learning models. Identifying factors related to

the curriculum effect would be important to compare how humans and machines

acquire knowledge of language.

Overall Contributions Our studies provided thorough and interpretable analysis

that can improve understanding of students’ latent learning states and provide data-

driven evidence to develop more personalized features for a vocabulary learning

system. It was possible by bridging research fields like psychology and machine

learning and combining different techniques to extract meaningful information from
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behavioral and linguistic data that we collected from a vocabulary learning system.

Sharing data that we collected from the studies, including online interaction data

and sentence curriculum data, would help other researchers to investigate contextual

word learning behaviors with online tutoring systems. Findings from our studies

would also be applicable to understand various user states in other online systems,

including user engagement, tracking learning progress, selecting better text content,

and training more light and effective machine learning models based on behavioral

and linguistic interaction signals. In the future, we could investigate how to integrate

these findings into a single personalized vocabulary learning system, how to apply the

findings to different types of inputs, such as non-English texts or interaction data

from different learning systems, and investigate how the outcomes of our models

may interact with students and shape their learning experience.
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Appendix A

Creating and Annotating Cloze

Sentence Dataset

A.1 Process for Generating Cloze Sentences

For the single-sentence context dataset, Our researchers manually generated

sentences in different contextual informativeness levels with respect to the target

word. We provided general instructions (Table A.1) for creating low, medium,

and high informative cloze sentences. We also included example sentences and

descriptions A.2) in different contextual informativeness levels and target words’

part-of-speech to help researchers to create cloze sentences correctly. We additionally

provided example phrases (Table A.3) and poor example sentences (Table A.4) for

low contextual informative cases, to further control the quality of cloze sentences.
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Lv. Instructions
High 1. Use simple sentence structures. Note that target grade level for these

contexts is 4th grade. All sentences should be between 9 and 13 words
long (mean 11).
2. Use only easy, familiar words (except for target of course). Note that
the average grade level for our contexts in the previous study was 4th
grade.
3. Target word should be placed towards the end of the sentence whevever
possible. You may find that this requirement completes with #1. Do
your best.
4. Refer to list of synonyms, near synonyms, and cohorts.
5. Remember to avoid difficult (Tier 2) words. Look for simple synonyms
and related words using LSA and/or a good thesaurus.
6. Each sentence should work with BOTH the very rare words and
their Tier 2 synonyms. Please take the time to try to understand correct
usage. Use the following website to look up actual usage of words if you’re
not sure: http://www.onelook.com (Onelook.com links to two sites that
are particularly helpful: Vocabulary.com and https://www.wordnik.com,
which provide a good range of example sentences, as well as definitions
and explanations of correct usage).

Med (in addition to 1-6 above) 7. It is not easy to know a priori whether
a sentence will turn out (based on cloze data) to be medium or high
constraint. In addition, this classification depends on the metric (e.g.,
whether we’re looking at lexical/cloze data or at a derived measure that
captures semantic constraint).Nonetheless, I’ve tried to assemble what I
think are good a priori examples of Med vs. High C. Don’t sweat the
difference too much. We’ll need cloze data to determine which way they
fall.

Low 1. Use simple sentence structures. Note that target grade level for these
contexts is 4th grade. All sentences should be between 9 and 13 words
long (mean 11).
2. Use only easy, familiar words (except for target of course). Note that
the average grade level for our contexts in the previous study was 4th
grade.
3. Target word should be placed towards the end of the sentence whevever
possible. You may find that this requirement completes with #1. Do
your best.
4. For low-constraint sentences, avoid any content words (adjectives,
nouns, or verbs) that could prime specific concepts.

Table A.1: The instructions for generating cloze sentences in different contextual
informativeness levels.
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Lv. POS Example sentence / Descriptions
High Noun We covered our ears to block the loud from the crowd.

Bolded words all prime the concept ‘noise’. ‘Ears’ and ‘loud’ are
super constraining. Try out Hi-constraining sentences on a few
friends, colleagues to ensure that they don’t come up with other
concepts you didn’t think of when you created sentence. The cloze
probability for ‘noise’ was 70%

Adj Wendy used to be fat, but after her illness she looked .
‘but’ indicates that missing word is opposite of ‘fat’ (thin, skinny,
gaunt). Note that ‘illness’ suggests negative rather than positive
characteristic (so ‘skinny’ or ‘gaunt’ were both common responses).
The joint cloze probability for ‘thin’ + ‘skinny’ was > 70%.

Verb The burglar was caught by police while trying to the jewelry.
‘burglar’, ‘police’ suggest criminal activity; ‘try to’ suggest activity
was thwarted, so ‘buy’ for example would be pragmatically odd.
The cloze probability for ”steal” was around 70%.

Med Noun I enjoyed my flight to Paris except for all the .
‘enjoy ’ or ‘except ’ suggests that refers to something
undesirable/unpleasant. On a flight there are usually lots of people,
incl. screaming babies & small children → ‘noise’. However, there
is also ‘turbulence’ and ‘delays’, two other concepts that were
also provided by several respondents on the cloze task. The cloze
probability for ‘noise’ was 13% (cloze for ‘turbulence’ was ∼25%)

Adj The doctor warned the woman she was too from a poor diet.
Could be ‘thin’ or ‘skinny,’ but also ‘fat’ or ‘sick.’ The joint cloze
probability for ‘thin’ + ‘skinny’ was 29%.

Verb Sam said he would have a million dollars if he it.
People said ‘invest’, ‘earn’, and ‘save’ as often as they said ‘steal.’
The cloze probability for ‘steal’ was around 30%.

Low Noun The group did not choose that one because of all the .
‘did not choose’ is not very constraining since we don’t know what
‘that one’ refers to.

Adj I was surprised to find that it was .
‘surprise’ doesn’t suggest anything in particular about the
characteristics of the noun (it); ‘it’ can refer to almost anything.

Verb We were interested to learn that Sally had decided not to .
‘interested to learn’ is could refer to almost anything; same with
‘decided not to .’

Table A.2: The list of good cloze sentence examples with descriptions used for
generating cloze sentences with different semantic constraint levels.
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POS Example Phrases
Noun appeared/disappeared, turn into , came into

sight, think about/imagine , found/lost/discovered ,
remember/recall , buy/lend , write about , have ,
forget about

Adj is/seems/looks/appears , decide/judge whether it is ,
become/turn , think/believe/know it is , say/argue it is

Verb decide to , hard/impossible to , used to , more/less
often (in the future), agree to , see/watch someone , try to

, have/need to , imagine what it’s like to , learn (how)
to , remember (how) to

Table A.3: Example phrases provided for generating low constraining sentences.

POS Example sentence / Descriptions
Noun Morgan did not like Bob because she thought he was a(n) .

‘did not like’ suggests that the target word refers to something
undesirable/displeasing; linking target word to ‘Bob’ may bias
reader to think of ‘male’ traits, occupations.

Adj I was disappointed to find that the boat was .
‘disappointed’ suggests that the target word refers to something
undesirable; ‘the boat’ is much too constraining (the target word
can only refer to properties of boats).

Verb We were thrilled to learn that Sally had decided not to .
‘thrilled to learn’ has positive connotations (so it increases the
constraint)

Table A.4: The poor examples for the low informative sentences with descriptions.
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A.1.1 Iterative Refinement of Contexts

Most of our target words were lower-frequency, “Tier 2” words that are critical in

writing but are rarely encountered in everyday speech. It is therefore not surprising

that researchers (even those with excellent vocabulary) sometimes generated contexts

that misuse target words. This might happen because researchers relied on the

synonym and cohort words to come up with new examples, rather than retrieving

them from high-quality published sources. In any case, new human-generated

contexts must be vetted for correct usage.

A.2 Annotating the Single-Sentence Context

Dataset

All crowdsourcing tasks were conducted on FigureEight1 platform. Two types of

crowdsourcing annotation were performed. The first task is the Best-Worst Scaling

(BWS) annotations as described in Section 5.3.1 of the main paper. Workers were

shown 10 tuples at a time per page of annotation and paid $0.25 per page. To

ensure quality, during annotation one control question was randomly inserted per

page, which had a known judgment (e.g., being the most informative sentence of a

tuple). Workers were required to maintain at least 80% accuracy on these during

annotation to continue annotating.

The choice of using 4-tuple sets for the task is based on previous studies and our

own pilot testing. Each tuple set included four randomly selected different sentences

1https://www.figure-eight.com/
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as options to be selected as the best or least informative sentences; each tuple was

then scored by 3 different crowdworkers. We sampled sentences using the following

criteria brought from Kiritchenko and Mohammad (2016).

• No two k-tuples have the same k terms

• No two terms within a k-tuple are identical

• Each term in the term list appears approximately in the same number of k-

tuples

• Each pair of terms appears approximately in the same number of k-tuples.

From the entire questionnaire, each sentence appeared in 8 different tuple sets (as

2×n 4-tuple sets were included in the entire questionnaire set, following Kiritchenko

and Mohammad (2016)). In total, each sentence appeared as an option of the tuple

set 24 times. If the sentence was marked as the most informative or the least

informative sentence from the question, each rating was converted to an integer

score (+1 or −1) respectively, while the unmarked case was considered to be 0.

Figure A.1 includes the instruction page that we presented to crowdworkers. It

includes the definition of high or low contextual informativeness with examples.

A.2.1 Measuring Contextual Informativeness through

Semantic Density

To complement the BWS-based scores of contextual informativeness, we also

considered a second method of measuring contextual informativeness by examining
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Figure A.1: Instructions used for collecting cloze sentence annotations.
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the types of words annotators would insert into the sentence-sentence contexts in

place of the target word. Here, each sentence is treated a cloze task where the target

word is hidden and annotators are asked to suggest a substitute word in its place.

Then, we computationally measure how different or similar are the semantics of

the substitute words to quantify contextually informativeness. The intuition behind

this scoring is highly informative contexts will select for words with very similar

semantics that appear a dense cluster in a semantic space, where as uninformative

contexts will select for words scattered throughout the semantic space. We refer to

this measurement of contextual informativeness as semantic density.

Crowdworkers provided a single word that correctly completes the sentence. We

collected 30 responses each for 1783 cloze sentences (53490 responses total). Collected

cloze responses can be considered as how crowdworkers interpreted the contextual

informativeness with respect to the blank in a cloze sentence. Crowdworkers were

restricted to workers in the US, Canada, and the UK. Instructions used for collecting

cloze responses can be found in Table A.5.

The contextual informativeness of the cloze responses is then converted into a

semantic density score. The semantic density score relies on the crowdworkers’ lexical

prediction activity for cloze sentences (Vainio et al., 2009). This can be a complex

activity that requires multiple mental stages, such as comprehending the given

sentence and recall the vocabulary that fits. Thus, the scoring results may be different

form how people perceive the level of informativeness semantically (Scarborough,

2010; Neely, 1991)

To calculate the semantic density score, we first use GloVe (Pennington et al.,
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Figure A.2: Distributions of the semantic density score and the BWS score (Both
were min-max normalized). Two scores were moderately correlated.

2014) to retrieve the vector for a cloze response within a sentence, and calculate

the weighted average of cosine similarity between cloze-response pairs for each cloze

sentence (Equation A.1). Although the outcome form GloVe might not provide the

most accurate semantic similarity scores between cloze responses, we could separate

distributional embeddings used for the prediction model and semantic density scores.

The BWS score was moderately correlated with the semantic density score (r =

0.292, p < 0.001 in Spearman’s rank correlation).

S(X) =
1(
N
2

) N∑
i=1

N∑
j=1

sim(xi, xj) (i 6= j;N = 30) (A.1)

A.2.2 Instructions for Collecting Cloze Responses
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Overview This task is a very simple fill-in-the-blanks quiz where you will
see some text and be asked to enter the missing word. You will
be provided a few sentences and there will be one word missing,
represented by “ ”. Your job is to guess what that word is.

Rules Do not search the web to find hints or solutions to the question.
All answers must be a single word. This means your answer should
just be one word (only alphabets A-Z).

Example The quick brown jumped over the fence. Missing word: fox

Table A.5: Instructions for Collecting Cloze Responses

SLow: We weren’t able to tell if he was a or not.
Original Target Word: recluse
BWS Score: 0.239, Sem. Den. Score: 0.027
Crowd Substitutes: cop(2), idiot(2), criminal(2), ...

SHigh: The barks and howls of dogs created too much for us to sleep.
Original Target Word: din
BWS Score: 0.913, Sem. Den. Score: 0.881
Crowd Substitutes: noise(28), racket(1), rouse(1)

Table A.6: Each sentence may have a different amount of information with respect
to a target word. In the proposed task, we let systems rate the informativeness of the
sentential context with respect to a target word (shown as a blank), ranging from low
contextual informativeness (top) to high (bottom). Numbers in parentheses show the
frequency of responses that we collected from a crowdsourcing task.
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Appendix B

Informativeness Model Analysis

B.1 Hyperparameters

During the training process of ELMo-based and BERT-based models, we fine-tuned

the pre-trained models. Because of the differences in the number of trainable

parameters of each pre-trained model, we used different learning rates for each ELMo-

based (1e−3) and BERT-based (3e−5) model. Other hyper-parameters remained

constant across models (batch size: 16, iteration: 5 (for the single-sentence) or 3

(for the multi-sentence context dataset). The dimension of ReLu layer was 256. The

dimensions for the attention block layers used same dimensions with the pre-trained

embeddings (ELMo: 1024, BERT: 768).

For the baseline model using co-occurrence information, the ridge regression

model was trained with scikit-learn’s default alpha value. Co-occurrence matrix

was built for words that appeared more than five times in the training data.
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The replicated random forest model from Kapelner et al. (2018) followed the

original paper’s setting, including setting the number of estimators as 500, and

bootstrapping sample size as 10000.

B.2 Computing Resource for Training

For this study, we used a single NVIDIA 2080 TI GPU with Intel i7 CPU. For training

the model with the single-sentence context dataset, it took about 1 minute per fold

(90% of the data). For the multi-sentence context dataset, it took approximately

30 minutes per fold.

We used pre-trained versions of ELMo (Peters et al., 2018, https://tfhub.dev/

google/elmo/2) and BERT (Devlin et al., 2019, https://tfhub.dev/tensorflow/

bert_en_cased_L-12_H-768_A-12/1) from the public repository. Our ELMo-based

model with attention block had about 426k trainable parameters, while the BERT-

based counterpart had about 7.3M trainable parameters.

B.3 Additional Analysis Results

The following sections include additional analysis results that we did not included

in Sections 5 and 6.

B.3.1 Single-Sentence Contexts

Table B.1 shows more details of suggested models’ performance on both semantic

density and BWS informative scores of the single-sentence dataset.
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B.3.2 Multi-Sentence Contexts

Lexical Features from Kapelner et al. (2018) Kapelner et al. (2018)

used lexical features including n-gram frequencies from Google API, Coh-Metrix

features (McNamara et al., 2014), sentiments (Crossley et al., 2017), psycholinguistic

features (Crossley et al., 2016), and other lexical sophistication features (Crossley

et al., 2016; Kolb, 2008).

In their original paper, the authors reported that the most important lexical

features from contexts include top 10 words that include synonymous words from

the target, top 10 context words that frequently collocate with the target words,

frequency of the target word, context words’ politeness, age of acquisition, and

meaningfullness of context words.

Table B.2 shows more details of suggested models’ performance on the multi-

sentence context dataset.

B.3.3 Cross-Predicting Contexts

Table B.3 shows that the ELMo-based and the BERT-based model that trained

with the single-sentence context dataset did not performed well in predicting the

multi-sentence context dataset.

B.3.4 EVALUtion dataset

Table B.4 shows the list of relations and templates that Santus et al. (2015) used

to create example sentences.

208



Table B.5 includes the randomized rank scores for each relation that used as a

baseline for EVALution dataset (Santus et al., 2015). Table B.6 shows the results

from models trained with the single-sentence context data. And Table B.7 shows the

results from models trained with the multi-sentence context data.

209



R
M

S
E

↓
20

%
In

fo
50

:5
0

↑
20

%
In

fo
B

as
e:

A
v
g.

0.
17

3,
(0

.1
70

,
0.

17
6)

0.
50

0
(0

.5
00

,
0.

50
0)

0.
50

0
(0

.5
00

,
0.

50
0)

0.
50

0
(0

.5
00

,
0.

50
0)

B
as

e:
L

en
gt

h
0.

17
3,

(0
.1

70
,

0.
17

6)
0.

51
1

(0
.5

05
,

0.
51

7)
0.

50
7

(0
.5

00
,

0.
51

4)
0.

50
2

(0
.4

95
,

0.
50

9)
B

as
e:

B
oW

0.
20

9,
(0

.2
07

,
0.

21
1)

0.
63

0
(0

.6
20

,
0.

64
0)

0.
58

9
(0

.5
82

,
0.

59
6)

0.
57

9
(0

.5
72

,
0.

58
6)

K
ap

el
n
er

et
al

.
(2

01
8)

0.
15

7,
(0

.1
54

,
0.

15
9)

0.
73

6
(0

.7
29

,
0.

74
3)

0.
69

8
(0

.6
91

,
0.

70
5)

0.
68

0
(0

.6
69

,
0.

69
2)

E
L

M
o

0.
15

2,
(0

.1
46

,
0.

15
9)

0.
76

8
(0

.7
57

,
0.

77
9)

0.
72

9
(0

.7
21

,
0.

73
7)

0.
70

5
(0

.6
96

,
0.

71
5)

E
L

M
o+

A
tt

0.
15

3,
(0

.1
49

,
0.

15
6)

0.
77

0
(0

.7
60

,
0.

78
0)

0.
72

7
(0

.7
20

,
0.

73
4)

0.
70

1
(0

.6
89

,
0.

71
3)

E
L

M
o+

A
tt

+
L

ex0.
15

2,
(0

.1
49

,
0.

15
5)

0.
78

9
(0

.7
79

,
0.

79
9)

0.
74

6
(0

.7
39

,
0.

75
4)

0.
72

5
(0

.7
19

,
0.

73
1)

B
E

R
T

0.
13

9,
(0

.1
36

,
0.

14
2)

0.
80

7
(0

.7
97

,
0.

81
7)

0.
76

4
(0

.7
57

,
0.

77
2)

0.
75

1
(0

.7
39

,
0.

76
3)

B
E

R
T

+
A

tt
0.

13
8,

(0
.1

36
,

0.
14

0)
0.

81
6

(0
.8

06
,

0.
82

5)
0.

77
7

(0
.7

70
,

0.
78

5)
0.

76
8

(0
.7

57
,

0.
77

8)
B

E
R

T
+

A
tt

+
L

ex0.
14

5,
(0

.1
42

,
0.

14
9)

0.
82

2
(0

.8
14

,
0.

83
1)

0.
78

2
(0

.7
75

,
0.

78
8)

0.
77

3
(0

.7
65

,
0.

78
1)

T
ab

le
B

.2
:

A
ve

ra
ge

R
M

S
E

an
d

b
in

ar
y

cl
as

si
fi
ca

ti
on

re
su

lt
s

(R
O

C
A

U
C

)
w

it
h

th
e

m
u
lt

i-
se

n
te

n
ce

co
n
te

x
t

d
at

as
et

(K
ap

el
n
er

et
al

.,
20

18
).

T
h
e

B
E

R
T

-b
as

ed
m

o
d
el

w
it

h
th

e
at

te
n
ti

on
b
lo

ck
p

er
fo

rm
ed

si
gn

ifi
ca

n
tl

y
b

et
te

r
th

an
th

e
b
as

el
in

e
an

d
E

L
M

o-
b
as

ed
m

o
d
el

s,
in

te
rm

s
of

R
M

S
E

an
d

R
O

C
A

U
C

sc
or

es
.

A
d
d
in

g
fe

at
u
re

s
fr

om
th

e
or

ig
in

al
p
ap

er
(K

ap
el

n
er

et
al

.,
20

18
)

(+
L
e
x
)

al
so

in
cr

ea
se

d
th

e
p
re

d
ic

ti
on

p
er

fo
rm

an
ce

.
N

u
m

b
er

s
in

p
ar

en
th

es
es

ar
e

th
e

95
%

co
n
fi
d
en

ce
in

te
rv

al
.

210



↓ 20% Info 50:50 ↑ 20% Info
ELMo+Att 0.577 0.556 0.532
BERT+Att 0.502 0.497 0.492

Table B.3: ROCAUC results for predicting the multi-sentence contexts from models
trained with the single-sentence context dataset. Prediction performances are slightly
better than random (e.g., ROCAUC = 0.5))

Relation Pairs Relata Senence template
IsA (hypernym) 1880 1296 X is a kind of Y

Antonym 1660 1144 X can be used as the opposite of Y
Synonym 1086 1019 X can be used with the same meaning of Y
Meronym 1003 978 X is ...
- PartOf 654 599 ... part of Y

- MemberOf 32 52 ... member of Y
- MadeOf 317 327 ... made of Y

Entailment 82 132 If X is true, then also Y is true
HasA (possession) 544 460 X can have or can contain Y

HasProperty (attribute) 1297 770 Y is to specify X

Table B.4: The list of relations, number of pairs, and sentence template examples
from Santus et al. (2015). In a sentence template, X means the target word, while
Y is the pair, and italicized words are relational cues.

Relations Rdm:pair Rdm:rcue

Antonym 0.507 (0.491, 0.523) 0.494 (0.478, 0.510)
Entails 0.482 (0.414, 0.550) 0.452 (0.380, 0.524)

HasA 0.485 (0.457, 0.513) 0.507 (0.479, 0.535)
HasProperty 0.498 (0.479, 0.516) 0.507 (0.489, 0.525)

IsA 0.508 (0.492, 0.523) 0.502 (0.487, 0.517)
MadeOf 0.550 (0.512, 0.587) 0.487 (0.446, 0.527)

MemberOf 0.425 (0.307, 0.543) 0.494 (0.375, 0.612)
PartOf 0.501 (0.473, 0.529) 0.476 (0.449, 0.502)

Synonym 0.493 (0.474, 0.512) 0.503 (0.484, 0.522)
Overall Avg. 0.503 (0.495, 0.510) 0.498 (0.491, 0.506)

Table B.5: Random baseline performance for EVALution dataset (Santus et al.,
2015).
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Appendix C

Curriculum Learning Analysis

C.1 Contextual Informativeness Model

We used a deep learning based contextual informativeness model (Figure C.1)

from Chapter 5.

We used root mean square error (RMSE) as a loss function. During training,

we fine-tuned BERT’s last encoding layer. After the validation process, we chose

hyper-parameters as following:

• Batch size: 16

• Iteration: 3

• Learning rate: 3e−5

• ReLu layer dimension: 256.

• Attention block layers dimension: 768 (same as BERT’s output)
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fatt X

softmax

att.mask

Score

linear

ReLU

Avg. Pool

Sentence

Pre-trained
Embedding

Figure C.1: The contextual informativeness prediction model used a pre-trained
BERT model (Devlin et al., 2019) (orange block) to initially represent context
words. Masked attention blocks (blue) provided the attention distribution of
context words with respect to the target word, and calculated the attention-weighted
context representation. Lastly, the regression block (yellow) predicted the contextual
informativeness score of a passage. More details are in Appendix C.1.

For the study, we used our replication of the random forest model from Kapelner

et al. (2018). We followed the original paper’s setting, including setting the number

of estimators as 500, and bootstrapping sample size as 10000. We validate our

comparison by replicating their original model results R2=0.179 with very similar

results R2=0.177 in our replication.

When lexical features from Kapelner et al. (2018) were used with contextual

embedding features, we could observe a small performance increase (RMSE: 0.145,

(0.142, 0.149), ↓ 20% Info.: 0.822 (0.814, 0.831), 50:50: 0.782 (0.775, 0.788), ↑

20% Info.: 0.773 (0.765, 0.781)).
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0.0 0.2 0.4 0.6 0.8
Predicted Scores

SimLex-999
SimVerb-3500
WordSim-353

Figure C.2: Distributions of predicted contextual informativeness scores for target
sentences from ukWaC corpus. Predicted scores were centered around the center,
with enough number of relatively low or high informative sentences (µ ≈ 0.5, σ ≈
0.13).

C.2 Contextual Informativeness Scores for Target

Sentences

Before the experiments, we briefly explored properties of target sentences. Figure C.2

shows the distribution of the predicted scores from the contextual informativeness

model. For all three semantic similarity tasks, contextual informativeness scores

for target sentences were distributed around the score of 0.5, and showed that there

were enough number of low or high informative sentences to test different curriculum

building heuristics (σ ≈ 0.13).

Figure C.3 shows that sentence lengths and predicted informative scores of

SimLex-999’s target sentences in ukWaC corpus are not correlated. This ensures

that similar amount of lexical information was provided to the embedding models

throughout the different curricula. Target sentences for SimVerb-3500 and WordSim-

353 tasks also showed similar results.
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Figure C.3: Relationship between sentence length and contextual informativeness
predictions. Each plot represents when 4, 32, and 256 sentences are selected per
target word. Distributions of the predicted scores are not affected by the length of
sentences.

C.3 SimLex-999: by POS and Association Pairs

Figure C.4 shows the comparison between curricula from the random curriculum by

different POS and association pairs of SimLex-999 target words. We can observe

similar patterns from other similarity tasks’ results, as the low informative models

perform worse than other curriculum and the non-low informative sentence models

perform better than other cases.

C.4 Word2Vec and FastText Models

For consistent analysis results, we used the same hyper-parameters to train the

background models for Word2Vec, FastText, and Nonce2Vec:
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• Skip-gram algorithm

• Embedding dimension: 400

• Window size: 5

• Negative sampling words: 5

• Minimum word counts: 50

• Alpha: 0.025

• Sampling rates: 0.001

When updating Word2Vec and FastText models, we changed the minimum word

count to 0 for learning to accommodate learning with small-sized training sentences.

C.5 Nonce2Vec Models

We used Nonce2Vec models for the few-shot learning analysis. Compared to

Word2Vec and FastText, Nonce2Vec had unique training process. We also tested

more numbers of hyper-parameters for Nonce2Vec, since the model’s results were

much more sensitive to parameter settings.

C.5.1 Background Model

We used a regular Word2Vec model (with the same parameters) as a background

model with both target and non-target sentences. Nonce2Vec model takes the nonce

word (i.e., target word) as an input. The model simulates first-time exposure to
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the target word by changing the label of the existing target word’s vector from

the background model, and adds a newly initialized word vector for the target

word. For example, if the target word is insulin, Nonce2Vec copies the target

word’s vector from the background model with a different label, like insulin gold.

Then the model randomly initialize the original target word’s vector, and learns

the new vector representation for the target word with a small number of target

sentences Herbelot and Baroni (2017).

C.5.2 Nonce2Vec Results in Different Hyper-parameters

For updating Nonce2Vec models, we followed the settings from Herbelot and Baroni

(2017), using 15 window words, 3 negative sampling words, 1 minimum word counts,

and 10000 sampling rates. We also tested different learning rates {0.5, 1, 2}, and

epochs {1, 5} for Nonce2Vec models.

Figures C.5 and C.6 shows Nonce2Vec models’ results in different hyper-

parameter settings. Higher epoch setting (e.g., epoch = 5) tended to show more

stable results. The learning rate of 1.0 showed the best performance in median rank

scores, but performed worse in Spearman’s r scores.
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Figure C.5: Few-shot learning results (Nonce2Vec) on SimLex-999 dataset, with
different learning gains {0.5, 1.0, 2.0} and epoch = 1 settings.
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Figure C.6: Few-shot learning results (Nonce2Vec) on SimLex-999 dataset, with
different learning gains {1.0, 2.0} and epoch = 5 settings. A higher epoch setting
tended to show more stable results.
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