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Abstract 
 

 

77 GHz Millimeter-wave (mmWave) radar serves as an essential component among many 

sensors required for autonomous navigation. High-fidelity simulation is indispensable for 

nowadays’ development of advanced automotive radar systems because radar simulation can 

accelerate the design and testing process and help people to better understand and process the radar 

data. The main challenge in automotive radar simulation is to simulate the complex scattering 

behavior of various targets in real time, which is required for sensor fusion with other sensory 

simulation, e.g. optical image simulation.  

In this thesis, an asymptotic method based on a fast-wideband physical optics (PO) 

calculation is developed and applied to get high fidelity radar response of traffic scenes and 

generate the corresponding radar images from traffic targets. The targets include pedestrians, 

vehicles, and other stationary targets. To further accelerate the simulation into real time, a physics-

based statistical approach is developed. The RCS of targets are fit into statistical distributions, and 

then the statistical parameters are summarized as functions of range and aspect angles, and other 

attributes of the targets. For advanced radar with multiple transmitters and receivers, pixelated-

scatterer statistical RCS models are developed to represent objects as extend targets and relax the 

requirement for far-field condition. A real-time radar scene simulation software, which will be 

referred to as Michigan Automotive Radar Scene Simulator (MARSS), based on the statistical 

models are developed and integrated with a physical 3D scene generation software (Unreal Engine 



 xxx 

4). One of the major challenges in radar signal processing is to detect the angle of arrival (AOA) 

of multiple targets. A new analytic multiple-sources AOA estimation algorithm that outperforms 

many well-known AOA estimation algorithms is developed and verified by experiments. 

Moreover, the statistical parameters of RCS from targets and radar images are used in target 

classification approaches based on machine learning methods. 

 In realistic road traffic environment, foliage is commonly encountered that can potentially 

block the line-of-sight link. In the second part of the thesis, a non-line-of-sight (NLoS) vehicular 

propagation channel model for tree trunks at two vehicular communication bands (5.9 GHz and 

60 GHz) is proposed. Both near-field and far-field scattering models from tree trunk are developed 

based on modal expansion and surface current integral method. To make the results fast accessible 

and retractable, a macro model based on artificial neural network (ANN) is proposed to fit the path 

loss calculated from the complex electromagnetics (EM) based methods. 

 In the third part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna 

designs are discussed to enable polarization diversity for next generation communication system. 

The first design is a compact horizontally polarized (HP) antenna, which contains four folded 

dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The second one is 

a circularly polarized (CP) antenna. It is composed of one ultra-wide-band (UWB) monopole, the 

compact HP antenna and a dedicatedly designed asymmetric power divider based feeding network. 

It has about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain 

of 0.9 dBi.   
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Chapter 1    Introduction 
 

1.1  Motivation 

Autonomous vehicle, a concept often seen in Sci-Fi films is coming to reality brought by 

the integration of many advanced technologies including sensors, control, communication and 

artificial intelligence. This topic of research is of importance to automotive industry, academia and 

policy makers as it is believed to benefit the society in many aspects including improving the road 

safety, relieving traffic congestion and parking problem, reducing the transportation cost and 

providing more mobility for young, old and disabled people [1]. Unlike many other technological 

innovations in this information era including computer, internet, cell phone and smart home 

devices, the failure or malfunction for autonomous vehicle is unacceptable since the mistake or 

failure of autonomous car may lead to injury or even death. Thus, before an autonomous car can 

be offered to the market, the autonomous vehicle’s performance is required to be tested for almost 

all traffic scenarios. In fact, millions of miles of road test is required for the autonomous car as an 

established standard by many well-known companies including Google/Waymo, Tesla, 

GM/Cruise, Ford, and etc. [2]. Sensors including radar, camera and Lidar must satisfy the 

requirements of performance and reliability in the road test as well.  

Sensors of the autonomous vehicle detect the environment and generate data to represent 

the surroundings. Among the three commonly seen sensors, camera and Lidar can provide higher 

resolution images than radar, but radar has the advantages of low cost and target range and speed 

measurement capability [3]. Radar has been installed on vehicles for decades. In the middle 1970s, 
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many automobile manufacturers like AEG-Telefumkenl/Bosch, Daimler-Benz/SEL and Lucas 

start to put radars on their products [4], and their main purpose was for collision warning/avoidance 

[5]. Advanced radars with beam-steering capabilities by either mechanical or digital beam-forming 

technique are also developed to produce radar images [6]-[9].  The radar images can be used in 

target recognition by itself or fused with the data obtained from other sensors for autonomous 

vehicle. 

 

Figure 1.1. Sensors distribution for a typical autonomous car [12] 

Automotive radars nowadays are regulated to mainly operate on two different bands: 24 

GHz and 77 GHz [7]. Among them, 77 GHz is more popular due to its potential higher resolution 

and smaller antenna dimensions. The 77 GHz millimeter wave (mmWave) band can be further 

divided into two bands: one from 76 GHz to 77 GHz is mainly used for long-range or medium-

range radar, and the other from 77 GHz to 81 GHz is usually applied by short-range radar [10]. 

The long-range mmWave radar is usually placed on the front of the car and the short-range radar 

could be on front, side or the back of the vehicle as is shown in Figure 1.1. The long-range radar 

has narrow beamwidth and is preferred beam-steering capabilities. The short-range radars have 

wide beamwidth for broad coverage, and wide bandwidth for accurate range resolution. They are 
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mainly used for collision detection/avoidance. The worldwide market size for automotive radar is 

4.7 billion dollars in 2018 and is expected to grow to 7.9 billion dollars in 2021 [11]. The growth 

of market demanding accelerate the emergence of advanced radar system with better performance.   

 During the continuous measurements in road test, it is difficult to compare the ground truth 

with measured data to evaluate the performance especially for the radar. The traffic scenes are 

usually complex and dynamic systems, and the ground truth information can hardly be monitored 

accurately and thoroughly. On the other hand, high-fidelity simulations are not only costing much 

less money and time, but also can provide all ground truths of the surroundings of the car. Besides, 

it can easily repeat scenes for more careful examinations about some important scenarios that rare 

occur in real life, e.g. traffic accidents. Moreover, radar simulation is more demanding than camera 

and Lidar since the data acquired by camera and Lidar are purely images and easier to be 

recognized by human, the corresponding targets can be more clearly identified and labeled 

manually for supervised learning. By contrast, the physical behaviors of radar signals are more 

complicated, counterintuitive and need more effort to be compared with ground truth. Therefore, 

simulations for radar response are more challenging and very valuable for autonomous car research. 

 Besides the automotive radar, another emerging application of mmWave technology in 

autonomous vehicle is the mmWave vehicular communication. The vehicular communication 

includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X) 

communication systems [13]. In vehicular communication, one vehicle is linked to other vehicles 

or infrastructure, the shared information may be for the safety or entertainment / working purpose. 

Information like accidents, road and weather condition, speed-warning message or sensory data 

from other vehicles are useful in improving the safety and comfort of passengers in the vehicle 

[14]. A wireless network in vehicles and infrastructures can also be applied in the intelligent 
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transportation system. The system is designed to provide higher level of security and convenience 

for vehicles and pedestrians, for example, it may coordinate the vehicles in changing lanes or 

choosing routes [14] [15]. A standard IEEE 802.11p has been assigned for vehicular 

communication with frequency band at 5.9 GHz and 75MHz bandwidth [15]. For autonomous 

vehicles’ communication, the demand in data rate could be hundreds of Mb/s to several Gb/s in 

sensory sharing system or video streaming [13], which drive the spectrum selection to mmWave 

range to achieve wider bandwidth. The potential mmWave (30-300 GHz) bands could be used in 

vehicular communication are unlicensed 60 GHz band, 5G band at 28 GHz and 38 GHz, and 

automotive radar bands (24 GHz and 77 GHz) [16]. The 60 GHz band is most promising in 

vehicular communication since it has the least interference with other communication / radar 

systems, and its 7 GHz bandwidth from 57 to 64 GHz is largest among all the bands [16][17]. The 

drawback of 60 GHz is the high signal attenuation in air due to the oxygen absorption with 

attenuation rate ranges from 7 to 15.5 dB/km [16], thus it is only suitable for short range 

communication system. Nevertheless most links in vehicular communication is in short range so 

it is still a good candidate band. 

1.2  MMW automotive radar response simulation and signal processing 

 

           

(a)                                                                                      (b) 

Figure 1.2. Simplified block diagram of FMCW radar signals in (a) time domain and (b) 

frequency domain 

𝑆𝑡(𝑡) 

𝑆𝑟(𝑡) 𝑆𝐼𝐹(𝑡) 

𝑆𝑡(𝑓) 𝐺(𝑓) 

𝑆𝑟(𝑓) 𝑆𝐼𝐹(𝑓) 
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 Radar can detect the range, speed, angle of arrival and radar cross section (RCS) of the 

targets. The simulation or signal processing for detecting range and speed has been well studied 

[18]-[22]. Depending on the type of radar, different mechanisms are utilized to detect range and 

speed. Frequency modulated continuous wave (FMCW) radar is the most popular type in 

automotive radar application due to its fast response time, low cost and low power consumption. 

The simplified block diagram of FMCW radar is shown in Figure 1.2 (a). Transmitter will generate 

frequency modulated signals and send EM wave signals out by antennas, then the signals get 

reflected by targets and captured by receivers. For FMCW radar, the received signals are mixed 

with transmitted signals by a frequency mixer, and by examining the spectrum domain of the IF 

signal, one can extract the range and speed information of targets. The same process in frequency 

domain is depicted in Figure 1.2 (b). The procedure that wave propagating in air and scattered 

back to receiver can be treated as a system 𝐺(𝑓), and the received signal 𝑆𝑟(𝑓) = 𝑆𝑡(𝑓) ∙ 𝐺(𝑓). 

The mixed signal in IF band is the convolution of the two signals in frequency domain.  

 Simulation for the RCS of targets, i.e. the frequency response of the system 𝐺(𝑓) is more 

complicated than signal processing simulation as RCS simulation relies on deep understanding of 

the electromagnetic (EM) scattering phenomenon from all types of targets. Typical traffic targets 

are electrically large, for example, a 1.8 m tall pedestrian is more than 400 wavelengths at 77 GHz, 

which makes it almost computationally impossible to be simulated by full-wave simulation 

methods like method of moment (MoM) [23], finite element method (FEM) [24] and finite-

difference time-domain method (FDTD) [25]. There are many high-frequency asymptotic methods 

for electrically large problems, including physical optics method (PO) [26]-[28], geometric optics 

(GO) or ray-tracing based shooting and bouncing rays method (SBR) [29] [30], and uniform 

geometric theory of diffraction (UTD) [31] [32]. Each of them has its own advantages and best 
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applicable scenarios. PO calculates scattered field from integral of equivalent surface current, and 

it is accurate for convex surface whose radii of curvature is much larger than the wavelength, but 

it is inefficient in calculating multi-scattering or higher order solutions. SBR treats EM wave 

propagation as light, and on boundary the wave gets reflected and/or refracted with GO rule. It can 

solve the multi-scattering problem so usually it is applied for concave geometry like cavities. UTD 

includes the diffraction field that neglected in GO solution and make it more accurate for edge or 

vertices scattering problem.  

 Another type of targets for automotive radar is distributed targets, i.e., the road surface. 

The road surface condition includes material, roughness, debris or pothole, weather related 

conditions like wet, icy or snowy. Correct recognition of road surface condition is important for 

driving safety especially in severe weather such as heavy rain, snow. Some researches use the 

speed sensor, GPS and/or accelerometer to detect the slip or friction coefficient between tire and 

road to identify the road conditions [33]-[35]. The drawback of such detection is that it could only 

detect the road condition under the vehicle with ignorance of the condition of front road, which 

cause potential danger to the autonomous vehicle as it may be too late to react for terrible or 

slippery road condition. The usage of optical sensors and cameras in recognition of the front road 

condition are reported in literatures as well [36] [37]. Compared to radar, optical sensor or camera 

has higher resolution and more sensitive to the change of roughness, but they are also more 

severely affected by weather conditions. Some radar measurements are reported for various road 

conditions at 24 GHz [38] and 94 GHz [39]. They show promising results in using radar to identify 

different road conditions. For mmWave radar, the backscattering from road surface are contributed 

by two parts: the surface scattering and volumetric scattering as described in Figure 1.3. The 

volumetric scattering from road surface is very difficult to evaluate numerically. Because first the 



 7 

distribution of permittivity of the ingredients in the road is unknown and varies from different 

types of road. Second, the dimensions the ingredients could be smaller or larger than wavelength 

in mmWave range so asymptotic methods may fail for this problem, besides full-wave methods 

requires too many computational resources that normal computers can acquire to accurately 

evaluate such problem.  

 

Figure 1.3. mmWave Backscattering from road can be divided into two parts: from rough surface 

and inhomogeneous medium of road 

In standard FMCW radar signal processing, during one chirp period of the FMCW radar, 

the frequency of the signal sent by FMCW radar is monotonic with time. For stationary targets, by 

taking Fourier transform (FT) of the mixed signal in time domain, one can obtain the frequency 

difference between received signal and transmitted signal, which is corresponding to the time 

difference between the two signals and the range information of targets [18]. If the target is moving 

relative to radar, the phase of the mixed signal contains a Doppler shifting term varying from chirp 

to chirp, by applying second FT, the speed information can be revealed [19][20]. To obtain the 

angle of arrival (AOA) or direction of arrival (DOA) information from targets, a straight forward 

solution is to scan its main beam either by mechanical scanning or digital beamforming through 

antenna array or MIMO array [21][22]. If the targets with the same range and Doppler bin are 

sparse, super-resolution AOA estimation algorithms for multiple sources can be applied to identify 
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the AOA with resolution much smaller than the beam width. There are many known AOA 

estimation algorithms such as subspace methods MUSIC [40][41], ESPRIT [42] and optimization 

approach maximum likelihood method [43]. In subspace methods, the essential idea is to obtain 

the correlation matrix of the signals, which requires at least M snapshot to have good performance, 

where M is the number of channels. However, in automotive radar application, a single snapshot 

AOA estimation is desired as vehicles could move very fast and different snapshots may be 

corresponding to different AOA. Maximum likelihood method is applicable but the computational 

complexity increases dramatically with the number of targets. Therefore, to support the real-time 

signal processing for highly dynamic systems like autonomous vehicles, a more efficient AOA 

estimation algorithm based on small number of or even single snapshot is needed. 

 The RCS information of target are useful not only in high-fidelity radar simulations, but 

also in target identification and classification. Radar has the ability of detecting target in further 

range than camera or Lidar, and target in far range can be considered as point target. Because of 

the complex geometry of traffic targets, the RCS usually fluctuates a lot as a function of frequency 

or aspect angles, however, statistically the RCS of different types of targets are distinct and the 

RCS of same types could be similar. For example, the RCS difference between an adult and a kid 

should be much smaller than that between an adult and a car. Some studies on target identification 

by Radar are based on the range or Doppler information [44] [45]. This thesis is focusing on 

classifying targets based on their RCS information.  

1.3  MMW propagation model for vehicular communication 

Wireless communication in real life often suffers from non-line-of-sight (NLoS) 

propagation issues like multipath or signal blockage. In mmWave band, such problem is more 

significant as obstacles are electrically larger for shorter wavelength and therefore can scatter and 
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block signals more severely. The obstacles in typical traffic scene include vehicles, buildings, 

pedestrians and cylindrical shape objects like tree trunk, lamp post, traffic light post, and etc. The 

complexity of traffic scene makes it very difficult to simulate the mmWave wave propagation in 

such environment, and many researchers are trying to characterize the mmWave propagation 

channel model by measurements [46]-[48]. Those linear or exponential models for the pathloss 

given in those literatures are simple and easy to use, but the variation of the measured data is 

significantly high among different locations with the same range, which indicates limited accuracy 

when applied to other scenarios. Compare to modeling the pathloss for the entire traffic scene, it 

will be easier and more accurate to model the pathloss for specific types of obstacles. The path 

loss due to NLoS propagation through vehicles and pedestrians in mmWave range are 

characterized by measurements in literatures [49]-[51]. They show rapidly changing in pathloss 

with small disturbance to the system, e.g. movement of vehicles or pedestrians. Because of the 

complexity of the wave scattering phenomenon, the pathloss is fitted into linear or exponential 

function of distance. 
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Figure 1.4. Illustration of NLoS propagation in V2V scenario 

1.4  Broadband Omnidirectional antenna design 

Omnidirectional antenna is favorable in many wireless communication applications since 

it can have largest signal coverage. With MIMO or synthetic aperture radar (SAR) techniques, 

high gain antenna pattern with beam-steering ability can be achieved by combining many 

omnidirectional antennas. Besides, broadband feature can enhance the data rate in communication 

and improve the resolution in radar system. Therefore, it is also desired in the vehicular 

communication and 5G communications, and in advanced radar system [54].  

Dipole and monopole antennas are the most commonly seen omnidirectional antennas and 

have been widely used in many types of communication systems like cellular base station, Wi-Fi 

router, and radios. The usage of such antennas has a long history and can be traced back to 1887 

by Heinrich Hertz [55]. Those antennas usually have simple structure and easily achieve small 

gain variance in azimuth direction, and high radiation efficiency. Since more than a decade ago, 

several wideband or ultra-wideband (UWB) monopole or dipole antennas have been reported 

[56][57][58]. Compared to traditional linear wire antennas, these antennas have large dimension 

in azimuth directions, therefore can form multipole resonances for the current. They can reach 

more than 100% impedance bandwidth. 

A dipole or monopole antenna is vertically polarized (VP) and has an omnidirectional 

radiational pattern. For better communication systems and polarimetric radar where polarization 

diversity is considered, horizontally polarized (HP) omnidirectional antenna is required. Ideally 

small loop antenna can be treated as magnetic dipole and thus provide HP omnidirectional 

radiation pattern [55], but because of its small impedance, small loop antenna has poor radiation 

efficiency and extreme narrow bandwidth. One way to overcome those issues is to increase the 



 11 

size of loop antenna. Some modified large loop antennas are reported to generate HP 

omnidirectional patterns [59]-[63], but still they all have limited bandwidth (<30%). To achieve 

wider bandwidth, many designs utilize square array geometry with four wideband horizontally 

polarized elements [64]-[66]. These antennas are reported to have bandwidth of 30%~41%. To 

further increase the bandwidth, one design employs 8-element array with octagonal shape [67]. It 

has about 62.5% bandwidth, however, its dimension is quite large (~0.79λ×0.79λ, λ is the 

wavelength for lowest operating frequency) and the gain variation is more than 3 dB in azimuth 

direction.  

In addition to linear polarization like VP and HP, another popular polarization in use is 

circular polarization (CP). CP wave has the property that the polarization of E field keeps rotating 

with time and distance from the antenna, therefore CP wave is insensitive to the orientation of 

transmitter’s or receiver’s antenna and has been widely used in satellite communication where 

ionosphere may alter the polarization of EM wave. Besides, the first reflection of CP wave from 

surfaces generates cross-polarization CP wave, i.e., if original CP wave is right-handed CP 

(RHCP), the reflected wave is left-handed CP (LHCP). This feature will benefit the 

communication system with less multipath impact as in many cases the strongest multipath effect 

is from the first order [68]. For radar system, CP antenna can largely reduce the crosstalk between 

transmitter and receiver and enhance the performance of radar imaging [54]. Hence, CP antennas 

have the potential to be applied in more advanced communication and radar systems. 

 Several omnidirectional CP antennas have been reported in the literature [69]-[79]. In 

some omnidirectional CP dielectric resonator antenna (DRA) design [69] [70], CP is created by 

adding parasitic slots [69] or dielectric wave polarizer [70] around an omnidirectional vertically 

polarized (VP) DRA. In such way the radiated VP fields are converted into CP fields. The DRA 
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using parasitic slots has usable bandwidth (overlapping of both axial ratio (AR) and impedance 

bandwidth) of 22% and the other design produces a conical radiation pattern with usable 

bandwidth of 41%. Another omnidirectional CP antenna based on circular TE21 modes is reported 

in [71]. The antenna combines two orthogonal TE21 modes and forms a 16-element circular array 

to create omnidirectional CP. Besides, it utilizes low-pass/high-pass phase shifter to create 

wideband phase shifting for enhancing the bandwidth. This antenna has an effective bandwidth of 

58%, but due to the return loss and resistive loss in feeding network, the lowest efficiency is only 

about 63%.  

Circular polarized EM field can be implemented by the superposition of two perpendicular 

linear polarized fields with same magnitude and 90° phase difference. The 90° phase difference is 

often achieved by the electrical length difference between the vertically polarized (VP) and 

horizontally polarized (HP) fields either in feeding or radiating stage. This setup has been 

successfully implemented in many omnidirectional CP antennas [72]-[79]. When a circular patch 

antenna or DRA is feed at the center of the circle, TM modes can be excited to radiate VP fields, 

and the HP fields are generated by several rotationally symmetric monopole or dipole like radiators 

around the antenna [72]-[77]. Besides this type of CP antennas, a CP Antenna composed of four 

inverted L-shape monopoles is reported in [78], and the VP and HP fields are generated by the 

horizontal and vertical part of the bended monopoles. For another compact omnidirectional CP 

antenna in [79], a slot antenna with fourfold parallel plate waveguide is designed to produce 

omnidirectional HP field, and VP field is excited by two PIFA antennas on the sides of the slot 

antenna. The antennas reported above have good omnidirectional CP property, but most have 

limited bandwidth (<10%). One idea to increase the bandwidth is to create multipole resonances 

with different exciting modes.  The usable bandwidth is increased to 14.4% [74] and 51.7% [75], 
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however, these two antennas have a conical radiation pattern and doesn’t generate CP field in 

horizontal plane. Recently, a wideband central-feed CP patch antenna is proposed [77]. Due to the 

symmetry of ground plane and antenna, this antenna’s main beam is on azimuth plane, and it 

utilizes capacitive feed instead of direct feed to increase the bandwidth to about 30%. 

1.5  Dissertation Overview 

 

Figure 1.5. Overview of Thesis 

  

Chapter 2: Fast wideband PO method, and GO-PO method 

Most targets in traffic scene like pedestrians, vehicles, tree trunks have convex geometry 

with large radii of curvature of the surface compared to the wavelength (~ 4 mm), therefore 

physical optics (PO) method is suitable to be applied here. In Chapter II, a novel fast wideband PO 

method will be discussed. Traditional PO method is only for single frequency, and to get the 

response for a wide band, all calculations are needed to repeat for different frequencies. In this 
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modified PO method, the phase term of far-field scattering E field, which is the only part changing 

rapidly with frequency, is separated from the total expression to be evaluated for all frequencies. 

Other calculation and the rest parts of the expression remain almost constant within the band and 

thus they only need to be computed once. 

For concave geometry that higher order solutions cannot be neglected, the PO method is 

combined with GO ray tracing technique to compute the higher order solutions more efficiently. 

The GO-PO method employs KD-tree data structure and adaptive rays’ refinement for fast 

computation. The developed numerical methods are then applied for simulating RCS for different 

traffic targets with a typical antenna pattern for automotive radar. 

Chapter 3: Near grazing incidence radar modeling of road surfaces at 77 GHz 

  The backscattering from roads in mmWave range can be divided into two parts: surface 

scattering and volumetric scattering. Compared to volumetric scattering, surface scattering 

problem has less unknowns and can be solved by full-wave methods thanks to the recently 

emerging high-performance computing (HPC) technology. In this chapter, simulation for surface 

backscattering coefficients from random rough surfaces are presented. The simulation is conducted 

in commercial simulation software AnsysEM (HFSS) with FEM method. In the simulation, the 

random rough surface is generated with exponential correlation function and about 5λ×5λ 

dimensions, and then simulated with periodic boundary conditions on the four sides and impedance 

boundary in the bottom. After many Monte Carlo simulations, the polarimetric backscattering 

coefficients (RCS per unit area) are modeled as functions of incident angles, permittivity of road 

and surface roughness. In order to find the volumetric scattering component for road surfaces, 

measurements are taken, and the volumetric scattering is analyzed based on radiative transfer (RT) 

method [39]. 
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Chapter 4: Statistical models and real-time radar response simulation 

 RCS of complex traffic targets is highly fluctuating with frequency, aspect angle and range. 

The traffic targets include but are not limited to pedestrians with different genders, heights and 

weights, various types of vehicles, stationary targets and animals. To characterize the pattern of 

RCS behind its random nature, we utilize statistical approach. The RCS data for a small range of 

aspect angles (±5°) and all frequency points are treated as independent samples and then fitted into 

given distribution. The parameters of the probability density function (PDF) of certain distribution 

then are modeled as functions of range and aspect angle, for pedestrians those parameters are 

further modeled as functions of action, gender, weight and height. For radar with small angular 

resolution and able to scan its main beam, 2D range-angle image can be generated for different 

targets. The neighboring pixels may not be independent random variables, and they can be 

considered as correlated random variables with multivariate distribution. With these statistical 

models for various targets, we can generate traffic scene RCS simulation in almost real time. In 

this thesis, such real-time simulation is implemented in a 3D simulation software Unreal Engine 4 

with C++, the simulation can achieve more than 10 fps just in an ordinary PC. 

Chapter 5: A Fast Analytic Multiple-Sources Radar Targets AOA estimation Algorithm 

 Traditionally, the angle of arrival (AOA) estimation problem for multiple sources is 

considered as a nonlinear problem with no analytic solutions. In this chapter, an analytic iterative 

multiple-source AOA algorithm (AIMA) is presented for fast and accurate estimation of the AOA. 

The approach is most useful for automotive MIMO radars where there can be a large number of 

scatterers in the scene. The AOA estimation problem is divided into two main tasks: (1) estimate 

one AOA with the prior knowledge of all other AOA; (2) estimate all AOA by iteratively solving 

Task 1. It can be shown that for a uniform linear array (ULA) Task 1 has analytic solutions and 
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Task 2 converges very fast, which makes this method effective, efficient and practical for real-

time processing. Unlike many other AOA estimation methods, this approach doesn’t need the 

information about the number of sources and can be applied for coherent signals and single 

snapshot as well. 

Chapter 6: Machine Learning-Based Target Classification for MMW Radar in Autonomous 

Driving 

As a result of recent development of artificial intelligence technology, many excellent 

machine learning software/libraries include Caffe [80], TensorFlow [81], and Matlab are available 

for researchers and publics. Those frameworks have good performance and efficiency and are easy 

to use for non-expert in machine learning. In this chapter, a machine learning based radar target 

classification is presented. Different forms of radar data are considered for target classification 

based on the type of radar and applicable scenario: when targets are in middle or far range (>50m), 

the targets may be treated as point targets, the statistical features of the RCS and the range-

distributed RCS are used in classification. If the targets are in near range and the radar has the 

beam-steering ability, radar images in range-azimuth angle domain or in 3D (x-y-z) domain are 

considered in target classification. Statistical features of RCS and time domain RCS are classified 

by supervised learning approach artificial neural network (ANN) and the radar images are 

classified by deep learning approach convolutional neural network (CNN). The traffic targets are 

divided into three major categories: pedestrians, vehicles and stationary targets. In particular, the 

targets include but are not limited to pedestrians with different poses, genders, heights and weight, 

vehicles like bike, motorcycle, sedan, SUV, trucks, buses, and stationary objects like signs, lamp 

posts, tree, bus stops etc., and animals like dog, deer, horse, etc. It is shown that good performance 
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(~90% accuracy) can be achieved for this classification approach in both scenarios with the 

gigantic dataset we generated for such targets. 

Chapter 7: Communication Channel Modeling for Foliage 

 Foliage is commonly encountered in traffic scene and is possible to block the LoS wave 

propagation as well, and for V2V scenario, the main component of foliage blocking signals is the 

tree trunk. The tree trunk can be approximated as dielectric cylinders, and the far-field scattering 

from circular cylinder has been well studied [52][53]. For mmWave vehicular communication, the 

vehicles are most likely to be in near-field range of tree trunk, and discussion on such case is hardly 

found in literature. In Chapter VII, a thorough analysis on the mmWave scattering from tree trunk 

in both near field and far field is performed. To make the model accessible for people not familiar 

with EM theory and convenient usage, the path loss model is further fitted by artificial neural 

network (ANN) as function of distance from transmitter to trunk, distance from receiver to trunk, 

azimuth angle, trunk’s radius and height. Besides, a multiple scattering model for tree trunks based 

on the infinite-long cylinders approximation is developed for the V2V communication channel 

model in the forest environment. Massive Monte-Carlo simulations have been conducted and 

generalized into a reduced path loss model for easy usage.  

 

Chapter 8: A Compact Broadband Horizontally Polarized Omnidirectional Antenna using 

Planar Folded Dipole Elements 

 In this chapter, two broadband omnidirectional antenna designs are developed. First one is 

a broadband omnidirectional HP antenna. It is composed of four modified folded dipole antennas 

arranged around the perimeter of a small square box. The antenna presents a smaller form factor 

compared to other wideband HP omnidirectional antennas (size of 0.34λ × 0.34λ), while maintain 
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a relatively low gain variation as a function of azimuth angle in the band of operation. The folded 

dipole antenna is chosen since it is reported to have a fractional bandwidth that can exceed 50%. 

One of the main issues of such array geometry is the mutual coupling between different dipole 

elements will degrade the performance of antenna, to compensate for the mutual coupling of 

different dipole elements and increase the bandwidth, the geometry of the antenna is carefully 

Optimized. Four modified folded dipole elements are fed with microstrip baluns and connected by 

an appropriate matching network to a coaxial feed. The matching network, the baluns, and the 

geometrical modification of the elements are codesigned to mitigate the mutual coupling effects 

and achieve the required bandwidth while minimizing the antenna array dimension. Their distances 

are carefully chosen to achieve best omnidirectional property. 

Chapter 9: Broadband Omnidirectional Circularly Polarized Antenna with Asymmetric 

Power Divider 

 Another design is broadband CP antenna. For an omnidirectional CP antenna based on VP 

and HP radiators, the challenges of broad bandwidth (>50%) include broad impedance bandwidth 

for both VP and HP radiators, maintaining omnidirectional pattern within the band, and 

maintaining small magnitude difference and 90º phase difference between VP and HP fields for 

all operating frequencies. In this design, divide-and-conquer strategy is used in achieving a 

broadband omnidirectional CP antenna. We first design an ultra-wide band (UWB) monopole 

antenna and broadband HP antenna which can meet the requirement for impedance bandwidth and 

almost constant radiation pattern. Since their gain difference are not constant but a function of 

frequency, then a dedicated optimized asymmetric power divider with wideband phase shifter is 

proposed to compensate the irregular gain difference between VP and HP as a function of 

frequency and maintain almost 90º phase difference over the entire band. A systematic analysis 
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for asymmetric power divider is performed as well. The main beam for the proposed antenna is on 

azimuth plane and the usable bandwidth reaches 53.4%. 
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Chapter 2    Fast Wideband PO Method, and GO-PO Method 
 

2.1  Introduction 

Automotive radar is of the critical sensors for the autonomous cars nowadays and is 

expected to be in the future. However, because of the complex nature of electromagnetic scattering 

from traffic targets, the full potential of automotive radar has not been fully investigated yet. To 

understand the radar signals comprehensively, one should first understand the EM scattering 

phenomenon. Compare to measurements, simulation is far more convenient, lower cost and more 

flexible. 

One of the major challenges in radar simulation is to the complexity and heterogeneity 

involved complicated targets. Theoretically, the electromagnetic wave scattering, and propagation 

can be accurately described by numerical methods based on Maxwell’s equations. Depending on 

the form of Maxwell’s equations (e.g. integral or differential equations), different numerical 

methods such as method of moment (MoM), finite element method (FEM) and finite-difference 

time-domain method (FDTD) are developed. However, these so called full-wave methods are 

prohibitively inefficient for electrically large objects. With proper approximations for the wave 

propagation and boundary conditions at high frequencies where the typical dimensions of the 

objects are large compared to the wavelength, there exist many asymptotic methods. These 

methods include physical optics method (PO), geometric optics method (GO) and uniform 

geometric theory of diffraction (UTD) which can provide excellent computational efficiency and 
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reasonable accuracy to many scattering problems. In this thesis, we focus on PO, GO and hybrid 

of GO-PO for higher order solutions.  

2.2  Wideband Physical Optics method 

2.2.1  EM scattering formulation using PO method 

Scattered fields calculated based on PO method are obtained from approximate surface 

electric (for metallic objects) or electric and magnetic (for dielectric objects) currents using far 

field approximation of Huygens principle [83]. The scattered electric field can be computed from:  

 
�⃑� 𝑠 =

𝑖𝑘0𝑒
𝑖�⃑� 𝑠∙𝑟 

4𝜋𝑟
(𝐼 ̿ − �̂�𝑠�̂�𝑠)∬[𝑍0𝐽 𝑠(𝑟

′) − �̂�𝑠 × �⃑⃑� 𝑠(𝑟
′)]𝑒−𝑖�⃑� 𝑠∙𝑟

′⃑⃑⃑⃑ 
𝑑𝑠′, (2.1) 

where 𝑘0 is the wavenumber, �̂�𝑠 is the direction of scattering, 𝑟  is the position of observation point, 

𝐼  ̿is the dyadic idemfactor, 𝑍0 is the characteristic impedance of free space, and 𝐽 𝑠 , �⃑⃑� 𝑠  are the 

equivalent electric and magnetic surface currents. Because the scattered fields from PO method 

are derived from Huygens principle, diffraction of EM waves are naturally included in this method. 

In the full-wave method MoM, the scattered far fields are also calculated by (2.1) and the 

difference between PO and MoM is in computing the equivalent surface currents. In MoM, the 

surface currents are obtained by solving integral equations, which is very accurate but 

computationally inefficient. If the radii of curvature of the target’s surface is much larger than the 

wavelength, the reflected fields (locally) are similar to that of infinitely large plane tangent to the 

surface. These fields are given by [28], 

 �⃑� 𝑟 = [−𝑍0�⃑⃑� 𝑖 ∙ �̂�𝑅𝑇𝑀(�̂�𝑟 × �̂�) + �⃑� 𝑖 ∙ �̂�𝑅𝑇𝐸 �̂�]𝑒𝑖�⃑� 𝑖∙𝑟 , (2.2) 

 �⃑⃑� 𝑟 = 1/𝑍0[�⃑� 𝑖 ∙ �̂�𝑅𝑇𝐸(�̂�𝑟 × �̂�) + 𝑍0�⃑⃑� 𝑖 ∙ �̂�𝑅𝑇𝑀 �̂�]𝑒𝑖�⃑� 𝑖∙𝑟 , (2.3) 

where �⃑� 𝑖  and �⃑⃑� 𝑖  are the incident electric and magnetic fields, �̂� is the tangential vector on the 

surface, defined as �̂� = (�⃑� 𝑖 × �̂�)/|�⃑� 𝑖 × �̂�|, �⃑� 𝑖 is the incident direction unit vector, �̂� is the normal 
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vector of the surface, 𝑅𝑇𝑀 and 𝑅𝑇𝐸 are the Fresnel reflection coefficient of the surface for TM and 

TE cases. Then the equivalent surface currents can be simply expressed as: 

 𝐽 𝑠 = �̂� × (�⃑⃑� 𝑖 + �⃑⃑� 𝑟) =
1

𝑍0
[𝑍0�⃑⃑� 𝑖 ∙ �̂�(1 + 𝑅𝑇𝑀)(�̂� × �̂�) + �⃑� 𝑖 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝐸 − 1)�̂�]𝑒𝑖�⃑� 𝑖∙𝑟 , (2.4) 

 �⃑⃑� 𝑠 = −�̂� × (�⃑� 𝑖 + �⃑� 𝑟) = [𝑍0�⃑⃑� 𝑖 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝑀 − 1)�̂� − �⃑� 𝑖 ∙ �̂�(1 + 𝑅𝑇𝐸)(�̂� × �̂�)]𝑒𝑖�⃑� 𝑖∙𝑟 . (2.5) 

 The Fresnel reflection coefficients 𝑅𝑇𝑀 and 𝑅𝑇𝐸 are given by, 

 𝑅𝑇𝐸 = (𝜂₂𝑐𝑜𝑠𝜃₁ − 𝜂₁𝑐𝑜𝑠𝜃₂)/(𝜂₂𝑐𝑜𝑠𝜃₁ + 𝜂₁𝑐𝑜𝑠𝜃₂) , (2.6) 

 𝑅𝑇𝑀 = (𝜂₁𝑐𝑜𝑠𝜃₁ − 𝜂₂𝑐𝑜𝑠𝜃₂)/(𝜂₁𝑐𝑜𝑠𝜃₁ + 𝜂₂𝑐𝑜𝑠𝜃₂). (2.7) 

Where 𝜂₁ and 𝜂₂ are the characteristic impedance of air and target, 𝜃₁ and 𝜃₂ are the incident and 

refraction angle with respect to the surface of targets. 

 The continuous surface of target can be discretized into many small triangular meshes with 

a CAD software. Each small triangular facet can be assumed to be illuminated by plane wave 

locally if the radar is in the far field of the facet, and then the equivalent surface currents on a facet 

can be expressed as: 

 𝐽 𝑠(𝑛, 𝑟 ′) = 𝐽 𝑠𝑚(𝑛)𝑒𝑖�⃑� 𝑖∙(𝑟 
′−𝑟 ), (2.8) 

 �⃑⃑� 𝑠(𝑛, 𝑟 ′) = �⃑⃑� 𝑠𝑚(𝑛)𝑒𝑖�⃑� 𝑖∙(𝑟 
′−𝑟 ). (2.9) 

Where 𝑟 ′ is a point on the facet n, and  𝐽 𝑠𝑚(𝑛) and �⃑⃑� 𝑠𝑚(𝑛) are constant vectors for all points on 

facet n, which are given by: 

 𝐽 𝑠𝑚(𝑛) =
1

𝑍0
[𝑍0�⃑⃑� 𝑖 ∙ �̂�(1 + 𝑅𝑇𝑀)(�̂� × �̂�) + �⃑� 𝑖 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝐸 − 1)�̂�], (2.10) 

 �⃑⃑� 𝑠𝑚(𝑛) = 𝑍0�⃑⃑� 𝑖 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝑀 − 1)�̂� − �⃑� 𝑖 ∙ �̂�(1 + 𝑅𝑇𝐸)(�̂� × �̂�). (2.11) 

Therefore, for each facet, the equivalent surface currents and scattered E field can be 

calculated based on (2.1): 

 
�⃑� 𝑠𝑛 =

𝑖𝑘0𝑒
𝑖(�⃑� 𝑠𝑛−�⃑� 𝑖𝑛)∙𝑟 

4𝜋𝑟𝑛
(𝐼 ̿ − �̂�𝑠𝑛�̂�𝑠𝑛)[𝑍0𝐽 𝑠𝑚(𝑛) − �̂�𝑠𝑛 × �⃑⃑� 𝑠𝑚(𝑛)]∬𝑒𝑖(�⃑� 𝑖𝑛−�⃑� 𝑠𝑛)∙𝑟′⃑⃑⃑⃑ 

𝑑𝑠′, (2.12) 
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Automotive radars are licensed to operate at a wide bandwidth from 76 GHz to 81 GHz. 

Hence scattering simulations is required over a wide frequency range. Traditionally PO method is 

used in evaluating scattered field at a single frequency and therefore calculation for wideband is 

rather time consuming. This is done by applying PO method to a discrete set of frequency points 

within the band. To expedite this calculation, we notice the scattered field for facet n in (2.12) can 

be divided into multiplication of two parts, the first part 
𝑖

4𝜋𝑟𝑛
(𝐼 ̿ − �̂�𝑠𝑛�̂�𝑠𝑛)[𝑍0𝐽 𝑠𝑚(𝑛) −

�̂�𝑠𝑛 × �⃑⃑� 𝑠𝑚(𝑛)] has almost no dependence on frequency (if the medium of target is dispersive, then 

this term will change with frequency), and second part 𝑘0𝑒
𝑖(�⃑� 𝑠𝑛−�⃑� 𝑖𝑛)∙𝑟 ∬𝑒𝑖(�⃑� 𝑖𝑛−�⃑� 𝑠𝑛)∙𝑟′⃑⃑⃑⃑ 

𝑑𝑠′ can be 

highly fluctuating when frequency changes. To more efficiently calculate the wideband scattered 

field from targets, the first part that has no frequency dependence is evaluated once for all 

frequency points and the second part is calculated at all frequencies.  

The phase integral term in (2.12) integrates the phase 𝑒𝑖(�⃑� 𝑖𝑛−�⃑� 𝑠𝑛)∙𝑟′⃑⃑⃑⃑ 
 for all points on one 

polygon facet (usually is triangle), and such integral can be converted into a summation based on 

the formulation introduced by Gordon [84]. Consider a triangular facet Sn shown in Figure 2.1, 

with three vertices of it located at 𝑣 1, 𝑣 2 and 𝑣 3 respectively. The unit normal vector to the triangle 

is denoted by �̂�, and the incident wave vector is �⃑� 𝑖𝑛 and the scattered wave vector is �⃑� 𝑠𝑛. O⃑⃑ ′ is 

point on the center of the facet, and r ′ is an arbitrary point on the facet. 

 

Figure 2.1. Demonstration of phase integral of a triangular facet 

𝒏ෝ 

�̂� 

�⃑⃑� 𝒊𝒏 �⃑⃑� 𝒔𝒏 
�⃑⃑� 𝟏 

�⃑⃑� 𝟐 

�⃑⃑� 𝟑 

�⃑⃑� ′ 
𝐫 ′ 
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 Let �⃑� = �⃑� 𝑖𝑛 − �⃑� 𝑠𝑛 = �⃑� 𝑛 + �⃑� 𝛼, where �⃑� 𝑛 is the component in �̂� direction, �⃑� 𝑛 = (�⃑� ∙ �̂�)�̂�, 

and �⃑� 𝛼 is the component on the surface of the facet. �̂� is a tangential unit vector on the surface 

perpendicular to �⃑� . The integral can be rearranged as: 

 
∬𝑒𝑖(�⃑� 𝑖𝑛−�⃑� 𝑠𝑛)∙𝑟′⃑⃑⃑⃑ 

𝑑𝑠′ = 𝑒𝑖�⃑⃑� ∙O⃑⃑ ′ ∬𝑒𝑖(�⃑⃑� 𝑛+�⃑⃑� 𝛼)∙(r 
′
−O⃑⃑ ′)𝑑𝑠′ = 𝑒𝑖�⃑⃑� ∙O⃑⃑ ′ ∬𝑒𝑖�⃑⃑� 𝛼∙(r 

′
−O⃑⃑ ′)𝑑𝑠′

= 𝑒𝑖�⃑⃑� ∙O⃑⃑ ′ ∬𝑒𝑖�⃑⃑� 𝛼∙(�⃑⃑� ′)𝑑𝑥′, 

(2.13) 

where 𝑥 ′ = r ′ − O⃑⃑ ′. Note that �⃑� 𝛼 ∙ �̂� = 0, we can define �̂� such that �⃑� 𝛼 = 𝑘𝛼�̂� + 𝑘𝑡 �̂�, where 𝑘𝑡 =

0, and 𝑥 ′ = 𝑥𝛼�̂� + 𝑥𝑡 �̂�. Then the phase integral becomes, 

 ∬𝑒𝑖�⃑⃑� 𝛼∙(�⃑⃑� ′)𝑑𝑠′ = ∬𝑒𝑖𝑘𝛼𝑥𝛼𝑑𝑥𝛼𝑑𝑥𝑡. (2.14) 

 Since 
d𝑒𝑖𝑘𝛼𝑥𝛼

𝑑𝑥𝛼
= 𝑖𝑘𝛼𝑒𝑖𝑘𝛼𝑥𝛼, then we have 

 
𝑒𝑖𝑘𝛼𝑥𝛼 =

1

𝑖𝑘𝛼
(
𝑑(𝑒𝑖𝑘𝛼𝑥𝛼)

𝑑𝑥𝛼
), (2.15) 

 
∬𝑒𝑖𝑘𝛼𝑥𝛼𝑑𝑥𝛼𝑑𝑥𝑡 =

1

𝑖𝑘𝛼
∬(

𝑑(𝑒𝑖𝑘𝛼𝑥𝛼)

𝑑𝑥𝛼
)𝑑𝑥𝛼𝑑𝑥𝑡. 

(2.16) 

Recall the Green’s theorem, 

 
∮ (𝑓

1
𝑑𝑥𝛼 + 𝑓

2
𝑑𝑥𝑡)

𝐿′
= ∬(

𝜕𝑓2
𝜕𝑥𝛼

−
𝜕𝑓1
𝜕𝑥𝑡

) 𝑑𝑥𝛼𝑑𝑥𝑡. (2.17) 

Let 𝑓2 = 𝑒𝑖𝑘𝛼𝑥𝛼 and 𝑓1 = 0, then 

 1

𝑖𝑘𝛼
∬(

𝑑(𝑒𝑖𝑘𝛼𝑥𝛼)

𝑑𝑥𝛼
)𝑑𝑥𝛼𝑑𝑥𝑡 =

1

𝑖𝑘𝛼
∮ 𝑒𝑖𝑘𝛼𝑥𝛼𝑑𝑥𝑡
𝐿′

. (2.18) 

For each triangular facet, the edge vector is defined as: 

 �⃑� 𝑖 = �⃑⃑� 𝑖+1 − �⃑⃑� 𝑖.       (𝑖 = 1,2,3, �⃑⃑� 4 = �⃑⃑� 1) (2.19) 

 𝑥 (𝑙) = 𝑣 𝑖 + 𝑙𝑒 .       (0 ≤ 𝑙 ≤ 1) (2.20) 

Therefore, 
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 𝑑𝑥 (𝑙) = 𝑒 𝑖d𝑙, 𝑑𝑥𝑡 = 𝑒 𝑖 ∙ �̂�d𝑙, 𝑥𝛼 = 𝑥 (𝑙) ∙ �̂�, (2.21) 

 1

𝑖𝑘𝛼
∮ 𝑒𝑖𝑘𝛼𝑥𝛼𝑑𝑥𝑡
𝐿′

=
1

𝑖𝑘𝛼
∑ ∫ 𝑒𝑖𝑘𝛼(�⃑⃑� 𝑖+𝑙�⃑� 𝑖)∙𝛼ෝ �⃑� ∙ �̂�d𝑙

1

0

3

1

=
1

𝑖𝑘𝛼
∑ �⃑� 𝑖 ∙ �̂�

𝑒𝑖𝑘𝛼�⃑⃑� 𝑖∙𝛼ෝ(𝑒𝑖𝑘𝛼�⃑� 𝑖∙𝛼ෝ − 1)

𝑖𝑘𝛼�⃑� 𝑖 ∙ �̂�

3

1

=
1

𝑖𝑘𝛼
∑ �⃑� 𝑖 ∙ �̂�

𝑒𝑖𝑘𝛼(�⃑⃑� 𝑖+�⃑⃑� 𝑖+1)∙𝛼ෝ/2 sin(
1
2
𝑘𝛼�⃑� 𝑖 ∙ �̂�)

1
2𝑘𝛼�⃑� 𝑖 ∙ �̂�

3

1
 

(2.22) 

Then the phase integral is in summation form: 

 

∬𝑒𝑖(�⃑� 𝑖𝑛−�⃑� 𝑠𝑛)∙𝑟′⃑⃑⃑⃑ 
𝑑𝑠′ = 𝑒𝑖�⃑⃑� ∙O⃑⃑ ′

1

𝑖𝑘𝛼
∑ �⃑� 𝑖 ∙ �̂�

𝑒𝑖𝑘𝛼(�⃑⃑� 𝑖+�⃑⃑� 𝑖+1)∙𝛼ෝ/2 sin(
1
2
𝑘𝛼�⃑� 𝑖 ∙ �̂�)

1
2𝑘𝛼�⃑� 𝑖 ∙ �̂�

3

1
. (2.23) 

As is discussed in Section 1.2  the goal of the numerical simulation is to find the radar 

response of targets 𝐺(𝑓), which is defined as 𝐺(𝑓) = 𝑆𝑟(𝑓)/𝑆𝑡(𝑓), where 𝑆𝑟(𝑓) and 𝑆𝑡(𝑓) are the 

complex signal or voltage at the transmitter and receiver. The relation between 𝐺(𝑓) and the 

scattered E field for one facet in (2.12) is given by, 

 
𝐺(𝑓) =

𝜆

4𝜋
∑

𝐸𝑠
𝑛𝐹𝑡𝑛𝐹𝑟𝑛

𝐸𝑖
𝑛𝑅𝑡𝑛𝑅𝑟𝑛

e𝑖𝑘(𝑅𝑡𝑛+𝑅𝑟𝑛) 

𝑛

. (2.24) 

where 𝐸𝑠
𝑛/𝐸𝑖

𝑛 is the scattering coefficient from facet n, 𝐹𝑡𝑛, 𝐹𝑟𝑛 are the transmitter and receiver’s antenna’s 

far field at facet n, where |𝐹𝑛|2 is the corresponding antenna’s gain, 𝑅𝑡𝑛, 𝑅𝑟𝑛  are the distance between 

transmitter, receiver and facet n. 

2.2.2  Visibility algorithm 

Since PO method assumes the current only exists on lit region of the surface of targets, another 

challenge for PO method is to decide which part of the surface is lit and which part is shadowed. This is a 

classical visibility problem in computer graphics or computer geometry, and one of the most efficient 

algorithm is called z-buffering or depth-buffering algorithm [85][86]. The z-buffering algorithm can be 

simply described as following:  
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Table 2 - 1. Z-buffering Algorithm 

Algorithm: Z-buffering 

1. Rotate the coordinate such that the direction of radar view is along z axis 

2. In x-y plane of new coordinate, divide the entire region occupied by the targets into n by m 

equal size rectangular sub-regions 𝑹𝒎𝒏, and initialize all 𝑹𝒎𝒏 → ∅ 

3. For each facet of target 𝒇𝒊 

      If  𝒇𝒊 overlap with 𝑹𝒎𝒏 then 

               𝑹𝒎𝒏 → {𝑹𝒎𝒏, 𝒊} 

4. Initialize all facets as lit facets, i.e. 𝑳𝒊 → 𝐭𝐫𝐮𝐞 

5. For each facet of target 𝒇𝒊, find the sub-region 𝑹𝒎𝒏 contains the center of 𝒇𝒊, denotes as 𝑶𝒊 

     For each 𝒇𝒋 overlapped with 𝑹𝒎𝒏 but 𝒋 ≠ 𝒊 

            If a ray from radar to 𝑶𝒊 is blocked by 𝒇𝒋, then 

                   𝑳𝒊 → 𝐟𝐚𝐥𝐬𝐞 

 

 

Notice in the algorithm the way to determine whether a ray from radar to the center of one facet 𝑂𝑖 

is blocked by a second facet is to first exam whether the projection of the point in x-y plane is within the 

triangular projection of the second facet, and if so, then compare the z value of the intersect point on the 

second facet with 𝑂𝑖𝑧. If 𝑂𝑖𝑧 is larger, then the first facet is shaded by the second facet. 

2.3  GO-PO method for multi-scattering problem 

 For target with convex geometry where multiple scattering is insignificant, and the 

scattered field calculated by the first order PO solution dominates. If the target has concave 

component, then the multi-scattering effects cannot be ignored. In this case higher order PO 

calculations must be carried out to account for multi-scattering phenomena. Typically, there are 

two methods for higher order PO, one is called iterative PO and the other is called geometric optics 

PO (GO-PO). In the iterative PO approach, the higher order incident fields are calculated based on 

Huygens principle with the currents from lower order solutions, and then the higher order currents 

are derived from the new incident fields by following a similar process used for first order PO. It 

is noted that in iterative PO, the multi-scattering is assumed to be established between any two 
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facets that have direct light-of-sight (LoS), and it means the computational time complexity will 

be O(n2), where n is the number of facets or points on the surface. This requires extremely heavy 

computation for electrically very large objects like vehicles and human bodies in our application.  

 Note that if the surface has a much larger radii of curvature compared to the wavelength, 

the main direction of wave scattering will be very similar to that for light, and that phenomenon 

can be described by GO. Since only the facet/point in the specular direction is considered for higher 

order PO calculation, ideally the time complexity is reduced to O(n). However, in practical 

algorithm the time complexity is not simply O(n) but rather O(nlog(n)). This is due to the fact 

that the most challenging part of this method is not in calculating currents or fields in PO, but in 

ray tracing with GO. With tree-type data structure like KD-tree or BSP, the ray tracing time 

complexity can be as low as O(log(n)). This algorithm will be discussed later. 

 To illustrate higher order GO-PO, we can first take a look at the second order GO-PO. As 

is shown in Figure 2.2, 𝑟  is the location of the radar, and 𝑟 ′ and 𝑟 ′′ are the hitting point of ray on 

first order and second order facets. d𝑟 ′ and 𝑑𝑟 ′′ are two small vectors along the tangential direction 

of first order and second order facets. �⃑� 1, �⃑� 2 and �⃑� 3 are the three wavenumber vectors of the ray’s 

propagation.  

 

Figure 2.2. Illustration of second order GO-PO multi-scattering link 

 In GO approximation, the incident field at 𝑟 ′ is given by spherical wave function: 
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�⃑� 𝑖 (�⃑� 

′
) =

�⃑� 0𝑒
𝑖�⃑� 1∙(�⃑� 

′
−𝑟 )

|�⃑� 
′
− �⃑� |

, (2.25) 

 

�⃑⃑� 𝑖 (�⃑� 
′
) =

�̂�1 × �⃑� 𝑖 (�⃑� 
′
)

𝑍0
, 

(2.26) 

where �̂�1 is the unit vector indicating the direction of incidence. The reflected fields are given by (2.2) : 

 �⃑� 𝑟 (�⃑� 
′
) = [−�̂�1 × �⃑� 0 ∙ �̂�𝑅𝑇𝑀(�̂�𝑟 × �̂�) + �⃑� 0 ∙ �̂�𝑅𝑇𝐸 �̂�]𝑒

𝑖�⃑� 1∙(�⃑� 
′
−𝑟 )

/|�⃑� 
′
− �⃑� |, (2.27) 

 �⃑⃑� 𝑟 (�⃑� 
′
) = 1/𝑍0 ∗ [�⃑� 0 ∙ �̂�𝑅𝑇𝐸(�̂�𝑟 × �̂�) + �̂�1 × �⃑� 0 ∙ �̂�𝑅𝑇𝑀 �̂�]𝑒

𝑖�⃑� 1∙(�⃑� 
′
−𝑟 )

/|�⃑� 
′
− �⃑� |. (2.28) 

Let �⃑� 𝑟1 = [−�̂�1 × �⃑� 0 ∙ �̂�𝑅𝑇𝑀(�̂�𝑟 × �̂�) + �⃑� 0 ∙ �̂�𝑅𝑇𝐸 �̂�], �⃑⃑� 𝑟1 = 1/𝑍0 ∗ [�⃑� 0 ∙ �̂�𝑅𝑇𝐸(�̂�𝑟 × �̂�) +

�̂�1 × �⃑� 0 ∙ �̂�𝑅𝑇𝑀 �̂�], then the incident field at 𝑟 ′′ can be expressed as: 

 

�⃑� 𝑖 (�⃑� 
′′
) =

�⃑� 𝑟1𝑒
𝑖�⃑� 1∙(�⃑� 

′
−𝑟 )

𝑒
𝑖�⃑� 2∙(�⃑� 

′′
−�⃑� 

′
)

|�⃑� 
′
− �⃑� | + |�⃑� 

′′
− �⃑� ′|

=
�⃑� 𝑟1𝑒

𝑖(�⃑� 1−�⃑� 2)∙�⃑� 
′

𝑒−𝑖�⃑� 1∙𝑟 𝑒𝑖�⃑� 2∙�⃑� 
′′

|�⃑� 
′
− �⃑� | + |�⃑� 

′′
− �⃑� ′|

, (2.29) 

 
�⃑⃑� 𝑖(�⃑� ′′) =

�⃑⃑� 𝑟1𝑒
𝑖(�⃑� 1−�⃑� 2)∙�⃑� 

′

𝑒−𝑖�⃑� 1∙𝑟 𝑒𝑖�⃑� 2∙�⃑� 
′′

|�⃑� 
′
− �⃑� | + |�⃑� 

′′
− �⃑� ′|

. 
(2.30) 

Similar to equation (2.4) and (2.5), the equivalent surface current on 𝑟 ′′ is: 

 
𝐽 𝑠(𝑟 ′′) =

[𝑍0�⃑⃑� 𝑟1∙�̂�(1+𝑅𝑇𝑀
′ )(�̂�×�̂�)+�⃑� 𝑟1∙�̂�(�̂�∙�̂�𝑖)(𝑅𝑇𝐸

′ −1)�̂�]𝑒𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑⃑� ′𝑒−𝑖�⃑⃑� 1∙�⃑⃑� 𝑒𝑖�⃑⃑� 2∙�⃑⃑� ′′

𝑍0(|𝑟 ′−𝑟 |+|𝑟 ′′−𝑟 ′|)
, (2.31) 

 
�⃑⃑� 𝑠(𝑟 

′′) =
[𝑍0�⃑⃑� 𝑟1∙�̂�(�̂�∙�̂�𝑖)(𝑅𝑇𝑀

′ −1)�̂�−�⃑� 𝑟1∙�̂�(1+𝑅𝑇𝐸
′ )(�̂�×�̂�)]𝑒𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑⃑� ′𝑒−𝑖�⃑⃑� 1∙�⃑⃑� 𝑒𝑖�⃑⃑� 2∙�⃑⃑� ′′

|𝑟 ′−𝑟 |+|𝑟 ′′−𝑟 ′|
,  

(2.32) 

where 𝑅𝑇𝑀
′  and 𝑅𝑇𝐸

′  are the reflection coefficients in TM and TE case on the second order facet. 

Again, we can denote 𝐽 𝑠𝑚2 = [𝑍0�⃑⃑� 𝑟1 ∙ �̂�(1 + 𝑅𝑇𝑀
′ )(�̂� × �̂�) + �⃑� 𝑟1 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝐸

′ − 1)�̂�]/𝑍0, and 

�⃑⃑� 𝑠𝑚2 = 𝑍0�⃑⃑⃑� 𝑟1 ∙ �̂�(�̂� ∙ �̂�𝑖)(𝑅𝑇𝑀
′ − 1)�̂� − �⃑⃑� 𝑟1 ∙ �̂�(1 + 𝑅𝑇𝐸

′ )(�̂� × �̂�), such that: 

 
𝐽 𝑠(𝑟 ′′) =

𝐽 𝑠𝑚2𝑒𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑⃑� ′𝑒−𝑖�⃑⃑� 1∙�⃑⃑� 𝑒𝑖�⃑⃑� 2∙�⃑⃑� ′′

(|𝑟 ′−𝑟 |+|𝑟 ′′−𝑟 ′|)
, (2.33) 

 
�⃑⃑� 𝑠(𝑟 ′′) =

�⃑⃑⃑� 𝑠𝑚2𝑒
𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑⃑� ′𝑒−𝑖�⃑⃑� 1∙�⃑⃑� 𝑒𝑖�⃑⃑� 2∙�⃑⃑� ′′

|𝑟 ′−𝑟 |+|𝑟 ′′−𝑟 ′|
.  

(2.34) 
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The scattered E field of second order solution given by (2.1) is rearranged as: 

 
�⃑� 𝑠

(2)
=

𝑖𝑘0𝑒
𝑖�⃑⃑� 3∙�⃑⃑� 

4𝜋|�⃑� 
′′
−�⃑� |

(𝐼 ̿ − �̂�3�̂�3)∬ [𝑍0𝐽 𝑠𝑚2 − �̂�𝑠 × �⃑⃑� 𝑠𝑚2]
𝑒
𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑� 

′
𝑒−𝑖�⃑⃑� 1∙�⃑� 𝑒𝑖�⃑⃑� 2∙�⃑� 

′′
𝑒−𝑖�⃑⃑� 3∙�⃑� 

′′

|�⃑� 
′
−�⃑� |+|�⃑� 

′′
−�⃑� ′|

𝑑𝑠′′ =

𝑖𝑘0𝑒
𝑖(�⃑⃑� 3−�⃑⃑� 1)∙�⃑⃑� 

4𝜋|�⃑� 
′′
−�⃑� |

(𝐼 ̿ − �̂�3�̂�3) [𝑍0𝐽 𝑠𝑚2 − �̂�𝑠 × �⃑⃑� 𝑠𝑚2]∬
𝑒
𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑� 

′
𝑒𝑖(�⃑⃑� 2−�⃑⃑� 3)∙�⃑� 

′′

|�⃑� 
′
−�⃑� |+|�⃑� 

′′
−�⃑� ′|

𝑑𝑠′′  

(2.35) 

Note that when the intersected point of ray and second order facet changes from �⃑� 
′′

 to �⃑� 
′′

+ 𝑑�⃑� 
′′

, 

the intersected point of the ray and the first facet will change from �⃑� 
′
 to �⃑� 

′
+ 𝑑�⃑� 

′
, and (�⃑� 1 − �⃑� 2) ∙

(𝑟 ′ + 𝑑𝑟 ′) = (�⃑� 1 − �⃑� 2) ∙ 𝑟 ′ as the vector (�⃑� 1 − �⃑� 2) is normal to the first facet. Because | 𝑑𝑟 ′| ≪

|𝑟 ′ − 𝑟 |, and | 𝑑𝑟 ′′| ≪ |𝑟 ′′ − 𝑟 ′|, |𝑟 ′ − 𝑟 | + |𝑟 ′′ − 𝑟 ′| is approximated as a constant. Therefore, the 

second order scattered E field for the second facet can be written as: 

 
𝑑�⃑� 𝑠

(2)
=

𝑖𝑘0𝑒
𝑖(�⃑⃑� 3−�⃑⃑� 1)∙�⃑⃑� 𝑒

𝑖(�⃑⃑� 1−�⃑⃑� 2)∙�⃑� 
′

4𝜋|�⃑� 
′′
−�⃑� |(|�⃑� 

′
−�⃑� |+|�⃑� 

′′
−�⃑� ′|)

(𝐼 ̿ − �̂�3�̂�3) [𝑍0𝐽 𝑠𝑚2 − �̂�𝑠 × �⃑⃑� 𝑠𝑚2]∬ 𝑒𝑖(�⃑⃑� 2−�⃑� 3)∙�⃑� 
′′

𝑑𝑠′′  (2.36) 

 The higher order scattered E field with order m can be expressed in similar manner, 

 
𝑑�⃑� 𝑠

(𝑚)
=

𝑖𝑘0𝑒
𝑖[(�⃑⃑� 𝑚+1−�⃑⃑� 1)∙�⃑⃑� +(�⃑⃑� 1−�⃑⃑� 2)∙�⃑� 

(1)
+(�⃑⃑� 2−�⃑⃑� 3)∙�⃑� 

(2)
+⋯+(�⃑⃑� 𝑚−1−�⃑⃑� 𝑚)∙�⃑� 

(𝑚−1)
]

4𝜋|�⃑� 
(𝑚)

−�⃑� |(|�⃑� 
(1)

−�⃑� |+|�⃑� 
(2)

−�⃑� 
(1)

|+⋯+|�⃑� 
(𝑚)

−�⃑� 
(𝑚−1)

|)
(𝐼 ̿ −

�̂�𝑚+1�̂�𝑚+1) [𝑍0𝐽 𝑠𝑚
(𝑚)

− �̂�𝑠 × �⃑⃑� 𝑠𝑚
(𝑚)

]∬ 𝑒𝑖(�⃑⃑� 𝑚−�⃑� 𝑚+1)∙�⃑� 
(𝑚)

𝑑𝑠(𝑚),  

(2.37) 

where �⃑� 𝑚  is the k vector of the ray at 𝑚𝑡ℎ  bounce, 𝐽 𝑠𝑚
(𝑚)

 and �⃑⃑� 𝑠𝑚
(𝑚)

 are the induced surface 

electrical and magnetic current on the facet with 𝑚𝑡ℎ bounce of the ray. 

 One of the major challenges in GO-PO method is to efficiently locate the positions where 

the rays hit. This is a classical ray tracing problem in computer graphic [87], and is known as 

shooting and bouncing ray (SBR) in asymptotic computational electromagnetics [29][30]. The 

surface of target can be divided into many triangular facets, and hence the problem of finding 

intersected point of ray and target can be divided into two steps: first to find the facet intersecting 

with the ray, and second to find the intersected point on the facet. To search the targeting facet, 
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first all facets should be rearranged into a certain order or in certain data structure that can be 

located easily. The most efficient way for searching is to store all facets in a hierarchy manner, or 

tree-type data structure, which has a searching time complexity of O(log(n)) for one ray, where n 

denotes the number of facets. There are two popular data structures for storing the facets, one is 

called K-D tree and the other is known as binary space partitioning (BSP) [88].  

 In K-D tree data structure, the 3D space that is occupied by the target is divided into two 

equal-size boxes for each level, and in different levels, the division happens in different dimensions. 

For example, at level 1, the space is divided in x direction into two boxes, and at level 2, the 

resulting two boxes are divided in y direction, and etc. as shown in Figure 2.3 (a). Those boxes 

with certain dimensions are nodes in K-D tree data structure, and the facets are leaves. The 

relationship between nodes and leaves are shown in Figure 2.3 (b). The iteration stops when a 

specific requirement is meet. For instance, we can set a maximum level or a minimum dimension 

of the box, and when the iteration reaches the maximum level or the dimension of space at one 

level is smaller than the minimum dimension then it stops. When the iteration stops, the facet is 

put into that node. This data structure is relatively easy to implement compared to BSP, with the 

drawback that K-D tree can be an unbalanced tree because the target may not be symmetric. Since 

the focus of the study is not to develop an algorithm to maximize the computational efficiency, K-

D tree data structure is applied here. 

 

 

(a) 
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(b) 

Figure 2.3. Example of putting one facet into K-D tree data structure 

 As mentioned, the main task is to search where the ray hits on the target, or equivalently, 

to find which facet of the surface of target intersects with the ray. In the K-D tree data structure, 

the search process is also in a hierarchical manner as illustrated in Figure 2.4. The simplified ray 

tracing algorithm is described in Table 2 - 2. 

 

Figure 2.4. Example of searching intersected facet in K-D tree data structure 

 

Table 2 - 2. Ray tracing algorithm with K-D tree 

Algorithm: Ray tracing 

1. Generating rays regarding the dimensions, orientation of target(s) 

2. For each ray 𝑹𝒋 set the current order 𝜸 → 𝟎, intersected facets set 𝚽𝜸 → ∅ 

If 𝛾 < 𝛾𝑚𝑎𝑥 then set the current node as root node 

3.             If the ray intersects with current node then 

          If the ray intersects with any leaf 𝑓𝑖 of the node then 

                Put 𝑓𝑖 into Φ𝛾 

          If the ray intersects with any child node of current node then 
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                       Repeat the process in step 3 for the child node(s) 

4.             For each intersected facet in 𝚽𝜸 

                 Find the most front facet and find the hitting point on the facet 𝑷𝒋𝜸 

5. For each order 𝜸 

     For each triangle with vertices of 𝑷𝒋𝜸 by neighboring rays  

          If the three vertices are on the same plane on the target, then 

               Perform the EM calculation to find the scattered field 

 

 

2.4  Numerical results and validation of PO method 

In this section, the accuracy of the proposed GO-PO method is examined by simulating the 

backscattering RCS of some targets with known RCS values. Then it shows the numerical results 

for some real targets and the comparison of measurements. In the end, the contributions of different 

order of PO solutions are discussed for commonly seen traffic targets like pedestrian and vehicles. 

For electrically very large sphere, circular cylinder, and trihedral (corner reflector), there 

are theoretical solutions for their backscattering RCSs [89]. The backscattering RCS of an 

electrically large metallic sphere is: 

 𝜎 = 𝜋𝑟2,  (2.38) 

where r is the radius of sphere. The backscattering RCS of circular cylinder is: 

 𝜎 =
2𝜋𝑟ℎ2

𝜆
,  (2.39) 

where r is the radius of cylinder, and h is the height of the cylinder and 𝜆 is the wavelength. The 

backscattering RCS of trihedral is given by: 

 𝜎 =
4𝜋𝐿4

3𝜆2
,  (2.40) 

where L is the length of edge connecting a vertex to the corner as shown in Figure 2.5 (c). 
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(a)                                                     (b)                                                     (c) 

Figure 2.5. Geometry of known backscattering RCS targets: (a) sphere, (b) circular cylinder, and 

(c) trihedral.  

 The RCS for a metallic sphere with 0.1 m radius, a circular cylinder with r = 0.05m and h 

= 0.2m, and a trihedral with L = 0.1 m are simulated at 77 GHz and compared with theoretical 

solutions as demonstrated in Table 2 - 3. The difference between theoretical solutions and 

simulations are within 0.3 dB for all three targets, therefore, excellent accuracy of the proposed 

GO-PO method is shown for targets whose radii of surface is much larger than wavelength. 

Table 2 - 3. Comparison between simulated and theoretical backscattering RCS 

Backscattering RCS (dBsm) sphere Circular cylinder trihedral 

Theoretical solution -15.03 5.08 8.16 

Simulation -15.29 5.09 7.99 

 

 In addition, the GO-PO method is tested against measurements for some targets commonly 

seen in traffic scene. Metallic square posts are widely used as post for traffic signs or parking signs 

as shown in Figure 2.6 (a). The radar’s view usually has narrow beam width in elevation direction, 

thus the main backscattering for a traffic sign is from the post. The RCS of a square post with 2.5 

in by 2.5 in is measured in the anechoic chamber in the University of Michigan (by my colleague 
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Michael Giallorenzo) shown in Figure 2.6 (b). Figure 2.6 (c) depicts the CAD model of a metallic square 

post with the same dimension as the measured one. 

                                          

(a)                                     (b)                             (c) 

Figure 2.6. (a) Picture of a stop sign with square post, (b) the measurement setup of a square post 

inside anechoic chamber, and (c) A CAD model for the same square post in measurement. 

In the measurement, the square post is put on a turn table and a radar with 3 degree antenna 

beam width in both the elevation and azimuth direction is used to perform the measurement. The 

RCS of the target is measured at a distance of 18 m. Due to the rotational symmetry, the square 

post is measured for azimuth direction from -45 degree to 45 degree, and 0 degree represents one 

face of the square post is perpendicular to the direction of incidence. In the numerical simulation, 

the same setups are applied to find the RCS of square post. The comparison of measurement and 

simulation for all angles from -45 degree to 45 degree are shown in Figure 2.7 and the comparison 

of ±5º averaged RCS is given in Figure 2.8. Both figures show good agreements between the 

measured and simulated results. Notice that ±5º averaged RCS has excellent agreement, which 

means the statistical data from simulation can be more accurate and may be more meaningful.  



 35 

 

Figure 2.7. Comparison between measured and simulated RCS as a function of incident angle for 

a metallic square post  

 

Figure 2.8. Comparison between measured and simulated ±5º average RCS as a function of 

incident angle for a metallic square post  

 

 Besides the square post measurement inside an anechoic chamber, an outdoor measurement 

for a vehicle is performed and the RCS results are compared with simulation as well. In the 

measurement, a sedan is driven into a large turn table, and several wave absorbers with height 
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about 0.3 m are placed in front of car to block the response from turn table as shown in Figure 2.9. 

The turn table can only operate manually, so we cannot measure the data with an accurate azimuth 

angle. In this situation, we roughly labeled angles from -90 to 90 degree for each 10 degrees on 

the ground, and at each angle, the car was slightly rotated for several angles and the averaged RCS 

of them are collected. The distance between the radar and the target changes from 10 m to 20 m. 

The antenna beam width for the radar is 3 degree in both elevation and azimuth direction, and the 

bandwidth of radar is from 76 to 79 GHz.  

           

(a)                                                                  (b) 

Figure 2.9. (a) Picture of the outdoor measurement for the RCS of a sedan and (b) a CAD model 

of a sedan 

 The comparison between the measurements and simulated RCS results for a sedan at 10 m 

and 20 m is shown in Figure 2.10. In the figure, each data point represents the ±3 degrees and 

frequency averaged RCS. As can be seen, at both ranges, the averaged RCS values as a function 

of incident angle from simulation and measurement are similar. Because the CAD model is not 

exactly the same as the car under measurement, it is understood that the simulation and 

measurement results will not be the same. The good agreement between the simulated and 

measured averaged RCS indicates that the statistical features obtained from simulation and 

measurement behave similarly.  
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(a) 

 

(b) 

Figure 2.10. Measured and simulated averaged RCS as a function of incident angle for (a) range 

of 10 m and (b) 20 m 
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 Higher order solutions of the GO-PO methods are corresponding to multiple reflection of 

EM waves. It will be interesting to exam how large the higher order responses are for typical traffic 

targets like pedestrian and vehicles.  

 

 

2.5  Conclusion 

Radar simulation can help to better understand the radar signals from different targets, 

guide and test the radar design to meet the requirement of autonomous driving. Meanwhile, the 

simulation for mmWave radar is quite challenging as most traffic targets are complex and 

electrically very large. In this chapter, asymptotic methods based PO and GO-PO approaches are 

introduced to obtain high-fidelity radar response simulation results. To accelerate traditional PO 

method in a wideband problem, separation of variables is applied to largely reduce redundant 

calculation for different frequency points. In GO-PO method, the most challenging part ray-tracing 

technique with KD-tree data structure is described in detail. The accuracy of the proposed PO and 

GO-PO methods are validated through comparison with theoretical solution of simple geometry 

targets and measurements.  
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Chapter 3    Near Grazing Incidence Radar Modeling of Road Surfaces at 77 

GHz 
 

3.1  Introduction 

Road surfaces are usually rough, inhomogeneous and can be considered as random rough 

surfaces. The roughness of road will cause MMW scattering in backward direction and can 

detected by an MMW radar. The commonly seen types of road include asphalt, concrete and soil 

as shown in Figure 3.1. Depending on the weather, the road may also have different conditions 

like dry, wet, ice- or snow-covered. Different types of road surfaces and road with different 

conditions may result in different level of backscattering power. This phenomenon indicates that 

radars can also function for identifying road conditions, which is a very important function for 

enabling autonomous navigation. Because radar is usually mounted on the front or side of a vehicle 

and the fact that road surface assessment is needed at a distant point away from the vehicle, such 

EM scattering problem is for near grazing incident angle (> 80°) on the road surface. 
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Figure 3.1. Different road types: asphalt, concrete and soil road 

 

The radar backscattering from road surface is more complicated than that from regular 

targets such as vehicles and pedestrians because the roughness feature of road surface is smaller 

than or comparable to the wavelength at millimeter wave range and the extent of the illuminated 

area is much larger than the wavelength. As a result, high-frequency asymptotic methods including 

PO and GO are not suitable for calculation of scattering from such targets. In low frequency regime 

where both the RMS height and the correlation length are much smaller than the wavelength, 

analytical approaches such as small perturbation method [94], [95] can be used to find the radar 

backscattering from random rough surfaces. For scattering problems at very high frequency regime, 

where the roughness of the surface can locally be considered flat (the radii of curvature of the 

surface is much larger than the wavelength), then Kirchhoff approximation [96] can be applied to 

the scattering problems. In the mmWave radar application, the wavelength is about 4 mm, and 

both RMS height and correlation length of typical road surfaces are comparable to the wavelength, 
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which results in both small perturbation method or Kirchhoff approximation not applicable in this 

problem. 

 Generally, the radar backscattering from ground can be divided into two parts: surface 

scattering and volumetric scattering. Road surfaces are usually made up of heterogeneous materials 

having different permittivity values and different particle size distributions. This causes the volume 

scattering that is difficult to model electromagnetically and hence the scattering per unit volume 

of such materials  is usually obtained through measurement or using semi-empirical methods [39], 

[90].  Since both low-frequency and high-frequency approximation fails in the surface scattering 

problem, full-wave numerical approach is used to study the surface scattering component in this 

chapter. 

3.2  Road surface statistics and profile measurement 

The ground surface is considered as a random rough surface with certain statistical features. 

The statistical features include root-mean-square (RMS) height, autocorrelation function and the 

correlation length related to the autocorrelation function [91], [92], [93]. RMS height of a rough 

surface is defined as: 

 
𝑠 = √

1

𝐴
∬ (𝑧(𝑥, 𝑦) − 𝑧̅)2𝑑𝑥𝑑𝑦

𝐴
,  (3.1) 

where 𝑧(𝑥, 𝑦) is the height on the surface at position (x, y), A is the area of integration, and 𝑧̅ is 

the average height of the surface. 

Correlation function is used to describe how rapidly the height of surface changes with 

position (x, y), and is defined as following [93]: 

 𝐶(𝑥 − 𝑥′, 𝑦 − 𝑦′) =
1

𝑠2
〈𝑧(𝑥, 𝑦), 𝑧(𝑥′, 𝑦′)〉,  (3.2) 
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 Exponential autocorrelation function and Gaussian autocorrelation function are the most 

commonly used autocorrelation functions to describe rough surface. The exponential 

autocorrelation function is given by [93]: 

 𝐶(𝑥 − 𝑥′, 𝑦 − 𝑦′) = exp(−√[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]/𝑙2),  (3.3) 

where 𝑙 is the correlation length. The Gaussian correlation function is: 

 𝐶(𝑥 − 𝑥′, 𝑦 − 𝑦′) = exp(−[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]/𝑙),  (3.4) 

 In general, the rough surface with exponential correlation function is much rougher than 

that with Gaussian correlation function, and the rough surface generated from different correlation 

function may have quite different radar backscattering response. Therefore, it is important to find 

out the autocorrelation function of real road surfaces before further analysis. We use a laser 

profilometer on a linear stage to detect the height of ground surface as is shown in Figure 3.2. The 

laser profilometer can very accurately estimate the profile of ground surface in one dimension. The 

RMS height, autocorrelation function and correlation length can be calculated based on the 

measurement data, and by repeating the measurement for the same type of ground for many times, 

the averaged RMS height and correlation length can be obtained. 

 

Figure 3.2. Laser profilometer used to measure the roughness of ground surface 
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 Some examples of the correlation function obtained from measurements for asphalt are 

depicted in Figure 3.3. It can be seen that the correlation function created by measured data is 

closer to exponential function than Gaussian function, and therefore in future analysis exponential 

correlation function is assumed. Another interesting observation is that the correlation length 

varies largely for different samples. This indicates that the roughness of road surface is not 

homogenous even for measurements are taken in a local area.  

  

  

Figure 3.3. Two examples of correlation function comparison between measurement, Gaussian 

and exponential. 

 The measurements are taken with the help from another graduate student (Michael 

Giallorenzo). The profile of concrete, new asphalt and weathered asphalt ground surfaces are 
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measured and each of them has more than 50 samples. Their averaged RMS height and correlation 

lengths are shown below: 

Table 3 - 1. RMS height and correlation length for measured samples 

Ground Type 𝑠̅ (mm) 𝜎(𝑠) (mm) 𝑙 ̅(mm) 𝜎(𝑙) (mm) 

Weathered asphalt 1.24 1.17 2.71 2.48 

New asphalt 0.81 0.49 1.80 1.66 

Concrete 0.20 0.08 13.2 4.51 

 

 In the table above,  �̅�  denotes the average RMS height, and 𝜎(𝑠)  refers the standard 

deviation of RMS heights from all samples. It is shown that concrete surface has much smaller 

RMS height and larger correlation length than asphalt surface, which indicates that concrete 

surface is smoother than asphalt surface. Similarly, the weathered asphalt is rougher than new 

asphalt. The standard deviation on the correlation length is large for both asphalt and concrete 

surfaces, which is also a proof that the ground surface is not homogenous in roughness. 

 

3.3   Full-wave numerical method for surface scattering from near grazing incidence 

In reality the extent of road surfaces is much larger than the radar antenna footprint.  Thus, 

in numerical simulations, we have to truncate the dimensions of the road surface to have feasible 

simulation. To eliminate the edge effect of the finite rough surface in simulation, one approach is 

called tapered incident wave [97], [98]. Instead of using planar incident wave, this approach creates 

an artificial wave front such that there would be little incident field on the edge of the rough surface. 

However, in order to have good convergence, the dimensions of the rough surface must be 

increased with incident angle, and this will lead to requiring hundreds of wavelengths for incident 

angle more than 80° for accurate results [97]. Alternatively, periodic boundary conditions can be 
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applied to eliminate edge effect as well [99], [100]. With periodic boundary condition, the incident 

wave can be plane wave and the dimensions of rough surface don’t depend on the incident angle.  

 In this thesis, FEM based commercial software AnsysEM (HFSS) is chosen to perform 

simulations because first, FEM method is an accurate single frequency solver and AnsysEM has 

industrial standard adaptively meshing techniques for reducing the number of unknowns. Second, 

it provides periodic boundary condition to eliminate edge effect of rough surface. Figure 3.4 gives 

an example of the simulation setup for a dielectric random rough surface. The random rough 

surface in the example is generated with exponential correlation function with 𝑠 = 0.8mm and 

𝑙 = 1.8 mm. On the top of the rough surface is the air layer, and above the air layer is a perfect-

match layer (PML) to prevent wave reflection from to top boundary of air layer. Below the rough 

surface is the road layer, in this example, the road layer is considered as homogeneous dielectric. 

Below the road layer is an impedance boundary whose impedance is calculated such that almost 

no reflection from the bottom of the road layer. On the four sides of the entire model, the periodic 

boundary conditions are enforced. The total dimensions of the example model are about 20 mm 

by 20 mm by 10 mm (~5λ × 5λ × 2.5λ), and mesh size is about 0.1 λ.  

 

(a) 

PML layer 

Air layer 
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(b) 

Figure 3.4. Simulated setup of a rough surface in AnsysEM  

After perform simulation in AnsysEM for the rough surface model in Figure 3.4, the 

scattered tangential electric field on the top surface of air layer can be collected and drawn in 

Figure 3.5. Because the model has periodic boundary condition, the scattered E field outside the 

boundary will be the field inside the boundary times some phase term related to the incident phase 

difference. Hence, the scattered tangential E field everywhere with the same height can be obtained. 

According to equivalence theorem, the scattered electric far field can be calculated by near-field 

and far-field transformation [101]. 

Road layer 
Impedance 

boundary 
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Figure 3.5. Simulated scattered tangential E field on the top of air layer from one rough surface 

example 

 The detail of near-field and far-field transformation is given below. The cell shown in 

Figure 3.5 has periodicity in both x and y directions. Let the period in x direction is 𝐿𝑥 and in y 

direction is 𝐿𝑦 . Any point with coordinate values of ( 𝑥’, 𝑦’, 𝑧 ) can be represented as 

(𝑥 + 𝑛𝐿𝑥, 𝑦 + 𝑚𝐿𝑦, 𝑧) , with 0 ≤ x < 𝐿𝑥, 0 ≤ y < 𝐿𝑦, 𝑛,𝑚 ∈ ℤ . Due to the periodic boundary 

condition, the E field at (𝑥’, 𝑦’, 𝑧) is given by: 

 𝑬(𝑥 + 𝑛𝐿𝑥, 𝑦 + 𝑚𝐿𝑦, 𝑧) = 𝑬(𝑥, 𝑦, 𝑧)𝑒𝑗𝑘0(𝑛𝐿𝑥𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖+𝑚𝐿𝑦𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖),  (3.5) 

where 𝜃𝑖 and 𝜙𝑖 are the incident elevation and azimuth angle with respected to the surface. The E 

field inside the cell 𝑬(𝑥, 𝑦, 𝑧) can be expressed as Fourier transform of its spectral domain value: 

 𝑬(𝑥, 𝑦, 𝑧) =
1

4𝜋2 ∬ 𝑨(𝑘𝑥, 𝑘𝑦, 𝑧)𝑒
−𝑗𝑘𝑧𝑧𝑒−𝑗𝑘𝑥𝑥−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞
,  (3.6) 

𝑨(𝑘𝑥, 𝑘𝑦, 𝑧) is the inverse Fourier transform of 𝑬(𝑥, 𝑦, 𝑧): 

 𝑨(𝑘𝑥, 𝑘𝑦, 𝑧) = 𝑒𝑗𝑘𝑧𝑧0 ∬ 𝑬(𝑥, 𝑦, 𝑧0)𝑒
𝑗𝑘𝑥𝑥+𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦

∞

−∞
,  (3.7) 

In far field approximation, the electrical far field can be expressed as [101]: 
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 𝐸𝜃(𝜃, 𝜙, 𝑟) = 𝑗𝑘0
𝑒−𝑗𝑘0𝑟

2𝜋𝑟
(𝐴𝑥𝑐𝑜𝑠𝜙𝑠 + 𝐴𝑦𝑠𝑖𝑛𝜙𝑠), (3.8) 

 𝐸𝜙(𝜃, 𝜙, 𝑟) = 𝑗𝑘0
𝑒−𝑗𝑘0𝑟

2𝜋𝑟
𝑐𝑜𝑠𝜃𝑠(𝐴𝑦𝑐𝑜𝑠𝜙𝑠 − 𝐴𝑥𝑠𝑖𝑛𝜙𝑠),  

(3.9) 

where 𝜃𝑠  and 𝜙𝑠 are the elevation and azimuth direction of observation point. Thus, the task is to 

find the value of 𝐴𝑥 and 𝐴𝑦 for a given incident wave. Let the tangential A be At = 𝐴𝑥�̂� + Ay�̂�. 

We also have: 

 𝑨𝒕(𝑘𝑥, 𝑘𝑦, 𝑧0) = 𝑒𝑗𝑘𝑧𝑧0 ∬ 𝑬𝒕(𝑥, 𝑦, 𝑧0)𝑒
𝑗𝑘𝑥𝑥+𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦

∞

−∞
=

𝑒𝑗𝑘𝑧𝑧0 ∑ 𝑒𝑗𝑘0(𝑛𝐿𝑥𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖)𝑁
𝑛=−𝑁 𝑒𝑗𝑘𝑥𝑛𝐿𝑥 ∑ 𝑒𝑗𝑘0(𝑚𝐿𝑦𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝜙𝑖)𝑀

𝑚=−𝑀 𝑒𝑗𝑘𝑦𝑚𝐿𝑦 ×

∫ ∫ 𝑬𝒕(𝑥, 𝑦, 𝑧0)𝑒
𝑗𝑘𝑥𝑥+𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦

𝐿𝑥

0

𝐿𝑦

0
.  

(3.10) 

Note that the summation term is a sinc function, which becomes a delta function if N and 

M goes to infinite: 

 

∑ 𝑒𝑗𝑘0(𝑛𝐿𝑥𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖)𝑁
𝑛=−𝑁 𝑒𝑗𝑘𝑥𝑛𝐿𝑥 = {

1 + 2𝑁,    𝑘𝑥 = −𝑘0𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖 +
2𝜋𝑛

𝐿𝑥

𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒,   𝑘𝑥 ≠ −𝑘0𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜙𝑖 +
2𝜋𝑛

𝐿𝑥

,  (3.11) 

It indicates that it only has solutions for the discretized angles or called Bragg angles [102] 

with  𝑘𝑥 and 𝑘𝑦 satisfied the following conditions: 

 𝑘𝑥 = −𝑘0 𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜙𝑖 + 2𝜋𝑛/𝐿𝑥, 𝑛 ∈ ℤ, (3.12) 

 𝑘𝑦 = −𝑘0 𝑠𝑖𝑛 𝜃𝑖 𝑠𝑖𝑛 𝜙𝑖 + 2𝜋𝑚/𝐿𝑦, 𝑚 ∈ ℤ.  (3.13) 

 Since our interested scattering direction is in the back, the value of 𝐿𝑥 and 𝐿𝑦 are carefully 

chosen such that �̂�𝑠 = −�̂�𝑖. The equation (3.10) can be rewritten as: 

 

𝑨𝒕(𝑘𝑥, 𝑘𝑦, 𝑧0) = 𝑒𝑗𝑘𝑧𝑧0(1 + 2𝑁)(1 + 2𝑀)∫ ∫ 𝑬𝒕(𝑥, 𝑦, 𝑧0)𝑒
𝑗𝑘𝑥𝑥+𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦

𝐿𝑥

0

𝐿𝑦

0

 

=  𝑒𝑗𝑘𝑧𝑧0(1 + 2𝑁)(1 + 2𝑀)𝑨𝒕𝟎
.  

(3.14) 
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Where 𝑨𝒕𝟎
 represents the integration of simulated tangential E fields, and can be numerically 

evaluated.  

The main contribution of the backscattering field from a random rough surface is 

incoherent field, therefore, a term called scattering coefficient is used to characterize the radar 

response of the rough surface. Scattering coefficient is defined by the RCS per unit area, or: 

 
⟨𝜎𝑝𝑞

0 ⟩ = 𝑙𝑖𝑚
𝑅→∞

4𝜋𝑅2

𝐴0

|�̂� ∙ 𝑬𝑠|2

|�̂� ∙ 𝑬𝑖|2
, (3.15) 

where p and q are polarizations, usually is specified as horizontal or vertical polarization. In this 

application, 𝐴0 is the area of one unit cell, and 𝑬𝒔 is obtained by substituting 𝑨𝒕𝟎 into equation 

(3.8) and (3.9).  

3.4  Surface backscattering simulation results  

To examine the accuracy of FEM method with AnsysEM (HFSS) for this surface scattering 

problem, we first perform the simulation to find the scattered field from a flat dielectric surface in 

specular direction. The reflection coefficients for flat surface in specular direction is given by 

Fresnel’s equations [89]. The simulated reflection coefficients are simply the ratio between the 

magnitude of scattered E field and incident E field: 

 
|𝑅|𝑠𝑖𝑚 =

|𝐸𝑠|

|𝐸𝑖|
, (3.16) 

An example of the simulation for flat dielectric surface in both TM and TE cases are shown 

in Figure 3.6. It has dimensions of about 4mm by 4mm (λ × λ), dielectric constant of 3.18+0.1i, 

and is illuminated by a planewave with 𝜃𝑖 = 80°. The real part of the scattered E fields is depicted 

in the figure, and it appears to be a sine function as expected. The reflection coefficients are 0.458 

for TM case and 0.791 for TE case according to Fresnel equations in this problem. It can be 

observed from Figure 3.6 that the simulated reflection coefficients are 0.442 for TM case and 0.794 
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for TE case. Therefore, the error between simulated and theoretical results are very small (<0.016) 

which validate the accuracy of this simulation approach. 

 

(a)                                                                                    (b) 

Figure 3.6. The simulated scattered tangential E field on the top of air layer from a flat surface 

for (a) TM case and (b) TE case 

 The rough surfaces are random, therefore, their backscattering responses are random 

variables as well. In order to characterize the randomized behavior of the backscattering response, 

Monte Carlo simulations are performed. First question to ask is how many realizations are needed 

to achieve reliable results. In one example, Figure 3.7 depicts the simulated average backscattering 

coefficients as a function of number of realizations of the rough surfaces with the same statistical 

features (RMS height, autocorrelation function and correlation length). In the figure, VV, HH, 

VH/HV stand for different polarizations, in particular, V is for vertical polarization or TM 

polarization, and H is for horizontally polarization or TE polarization. VH means the transmitter 

is in V polarization and the receiver is in H polarization, etc. Due to the reciprocity of EM wave, 

the backscattering coefficients of VH coincides with that of HV, therefore only one curve is used 

to represent the two polarization states. It can be seen that after 30 realizations, the backscattering 
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coefficients for all polarizations converge. Therefore, 30 realizations are sufficient to achieve a 

relatively accurate result. In the following discussion, data are collected for about 40 realizations. 

 

Figure 3.7. The backscattering coefficients averaged from many realizations of random rough 

surfaces with the same statistical features 

 The time complexity and memory increase dramatically with the dimensions of rough 

surface in FEM simulation, meanwhile, the rough surface may not exhibit the correct statistical 

information if the dimensions are too small. Therefore, it is desired to find the smallest dimensions 

of the rough surface model that has good convergence to save the time and memory. Table 3 - 2 

gives the comparison of simulated backscattering coefficients and the computational costs between 

the rough surfaces with different dimensions. All randomly generated rough surfaces have the 

same statistical parameters (s = 0.5mm and h = 1.2 mm) and same incident angle (θ = 70 º). 𝜎𝑝𝑞
0  

denotes the backscattering coefficients with incident field of p polarization and scattered field of 

q polarization, and CPU time and memory are the averaged values for all 40 realizations. It is 

shown from the table that when the dimensions increase from 21mm (~5 λ) to 31 mm (~ 8λ), the 

variation in backscattering coefficients are lower than 1.5 dB for all polarizations but the CPU time 
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is increased by more than 3 times and memory is increased by 1.5 times. Hence, considering the 

tradeoff between accuracy and computational cost, 5 λ by 5 λ is used as the dimensions of rough 

surfaces in following simulations. 

Table 3 - 2. Comparison of the backscattering coefficients and computational resources for the 

rough surfaces with different dimensions and same statistics 

Dimensions (mm) 𝜎𝑣𝑣
0  (dB) 𝜎𝑣ℎ

0  (dB) 𝜎ℎℎ
0  (dB) CPU time (hrs) Memory (GB) 

~21×21 -22.0 -37.9 -25.1 7.99 105 

~25×25 -22.6 -38.6 -27.1 14.37 156 

~31×31 -23.0 -39.4 -26.5 32.47 250 

 

 The backscattering coefficients are treated as random variables. Characterizing the 

statistical features of the backscattering coefficients can help us better understand the scattering 

mechanism from random rough surfaces. In one example, the rough surface has RMS height equal 

to 0.8mm, correlation length of 1.8mm, and is illuminated by a plane wave with 𝜃𝑖 = 70°. Its 

backscattering coefficients are found to follow exponential distribution as is shown in Figure 3.8. 

In the figure the results for HV polarization are not shown because they are the same as those for 

VH polarization. The exponential distribution can be described with one parameter 𝜇, and its 

probability density function (PDF) is given by [103]: 

 
𝑓(𝑥) = {𝑒

−𝑥/𝜇/𝜇       𝑥 ≥ 0
0                   𝑥 < 0

, (3.17) 
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(a)                                                                      (b) 

 

(c) 

Figure 3.8. The comparison of empirical and fitted cumulative density function of backscattering 

coefficients with (a) VV polarization, (b) HH polarization and (c) VH polarization for the rough 

surfaces with the same statistical features 

 The mean value of the exponential distribution is 𝜇, and in the example of Figure 3.8, the 

parameter 𝜇 for the backscattering coefficients with different polarizations are: 𝜇𝑣𝑣 = 6.23𝑒 − 3,  

𝜇ℎℎ = 2.96𝑒 − 3, 𝜇𝑣ℎ = 1.65𝑒 − 4. Notice that since the backscattering coefficients are defined 

as RCS per unit area, they have unit of 𝑚2/𝑚2  or are unitless. One interesting property of 

exponential distribution is memoryless, which can be described as: 
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 𝑃(𝑋 > 𝑥 + 𝑥0|𝑋 > 𝑥0) = 𝑃(𝑋 > 𝑥),   ∀𝑥, 𝑥0 ≥ 0 (3.18) 

 In this rough surface radar backscattering problem, the backscattering power is dominated 

by incoherent summation, which means the total backscattering power can be treated as the sum 

of the backscattering power from all scatterers on the rough surface. The memoryless equation can 

be interpreted as: the probability of the occurrence of one strong scatterer on the rough surface is 

independent of the existing backscattering power of the rough surface. This is naturally true since 

the points on the rough surface are quickly uncorrelated, and thus the scatterers should be 

independent as well. It is shown that only one parameter 𝜇 is needed to describe the statistical 

features of backscattering coefficients. In the following discussion, parameter 𝜇  of the 

backscattering coefficients for different polarizations is studied, and the relation between 𝜇 and 

other parameters are discussed. 

3.5  Reduced surface backscattering models 

The Monte Carlo simulations for polarimetric radar backscattering coefficients are 

performed for the random rough surfaces with many different profile features and incident 

directions. In particular, the profile features are characterized as RMS height, correlation length, 

and dielectric constant. The simulated instances have RMS height from 0.4 mm to 1 mm, and 

correlation length from 1 mm to 3mm. The dielectric constant for road varies from 2 to 10, and the 

incidence angle ranges from 65º to 85º.  



 55 

 

(a)                                                                     (b) 

 

(c) 

Figure 3.9. The backscattering coefficients with different polarizations as functions of incident 

angle for the rough surfaces with (a) 𝑘𝑠 = 1.29, 𝑘𝑙 = 3.23, εr = 3.18 + 0.1𝑖, (b) 𝑘𝑠 =

1.29, 𝑘𝑙 = 2.41, εr = 3.18 + 0.1𝑖 and (c) 𝑘𝑠 = 0.81, 𝑘𝑙 = 1.93, εr = 3.18 + 0.1𝑖. 

 

To quantitatively examine the relations between polarimetric backscattering coefficients 

and road surface properties and incident angles, method of control variable is applied. To obtain a 

more general relations in the MMW band where automotive radar operates (76~81 GHz), though 
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the simulations are only performed for 77 GHz, we use unitless variables 𝑘𝑠 and 𝑘𝑙 instead of 

RMS height 𝑠 and correlation length 𝑙. 𝑘 is the wavenumber defined as 
2π

λ
.  

The relation between backscattering coefficients and incident angles are depicted in Figure 

3.9. In the three figures, variables 𝑘𝑠, 𝑘𝑙 and 휀𝑟 maintain the same values and the mean value 𝜇 of 

backscattering coefficients vary with incident angle only. They show that the backscattering 

coefficients can be modeled as functions of incident angle in the following form: 

 𝜎𝑝𝑞
0 = 𝑎0 cos𝑏0 𝜃𝑖 ,   𝑝, 𝑞 = ℎ 𝑜𝑟 𝑣, (3.19) 

where 𝑎0 and 𝑏0 are functions of other variables 𝑘𝑠, 𝑘𝑙 and 휀𝑟.  

  

(a)                                                                     (b) 

Figure 3.10. The backscattering coefficients with different polarizations as functions of 𝑘𝑠 for 

the rough surfaces with (a)  𝑘𝑙 = 1.93, εr = 3.18 + 0.1𝑖, 𝜃𝑖 = 70°, and (b)  𝜃𝑖 = 80°, 𝑘𝑙 =

3.23, εr = 3.18 + 0.1𝑖  

  

Figure 3.10 depicts how the backscattering coefficients change with RMS height while 

other variables remain constant. Figure 3.10 (a) and (b) have different 𝑘𝑙 and incident angle values. 
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In both situations the backscattering coefficients 𝜎𝑝𝑞
0  are proportional to 𝑘𝑠𝑏1, 𝑏1 can be a function 

of incident angle.  

 

(a)                                                                     (b) 

Figure 3.11. The backscattering coefficients with different polarizations as functions of 𝑘𝑙 for the 

rough surfaces with (a)  𝑘𝑠 = 1.29, εr = 3.18 + 0.1𝑖, 𝜃𝑖 = 70°, and (b)  𝜃𝑖 = 75°, 𝑘𝑠 =

0.81, εr = 3.18 + 0.1𝑖  

 

Figure 3.12. The backscattering coefficients with different polarizations as functions of normal 

incidence reflection coefficient 𝜌0 for the rough surfaces with 𝑘𝑠 = 1.29, 𝑘𝑙 = 2.41, 𝜃𝑖 = 70° 
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The mean values of backscattering coefficients as functions of 𝑘𝑙 are given in Figure 3.11. 

Similar to the previous analysis, 𝜎𝑝𝑞
0  is found to be proportional to 𝑘𝑙−𝑏2. In Figure 3.12, the mean 

values of backscattering coefficients are modeled as functions of normal incidence reflection 

coefficient 𝜌0. The normal incidence reflection coefficient is defined as: 

 
𝜌 =

√𝜀1−√𝜀0

√𝜀1+√𝜀0
, (3.20) 

where 휀1 is the permittivity of the road, equal to 휀𝑟휀0, and 휀0 is the permittivity of air. From Figure 

3.12, it is observed that the mean backscattering coefficient 𝜎𝑝𝑞
0  is proportional to 𝜌0

𝑏3, which in 

fact is a function of the dielectric constant of the road. 

 Synthesize all the observations shown above, the mean values of backscattering 

coefficients are modeled as the following function: 

 
𝜎𝑝𝑞

0 = 𝐴
cos𝛼1 𝜃 |𝜌0|

𝛼2  (𝑘𝑠)𝛼3𝑐𝑜𝑠𝜃+𝛼4

(𝑘𝑙)𝛼5𝑐𝑜𝑠𝜃+𝛼6
  (

𝑚2

𝑚2
) , 𝑝, 𝑞 = ℎ 𝑜𝑟 𝑣 

(3.21) 

In the function, the coefficients A, 𝛼1 to 𝛼6 are obtained by curve fitting from the simulated 

data, and are different for different polarizations. The values of those coefficients are shown in 

Table 3 - 3. 

Table 3 - 3. Coefficients of the reduced backscattering model for different polarizations 

Coefficient 𝜎𝑣𝑣
0   𝜎ℎℎ

0   𝜎ℎ𝑣
0  or 𝜎𝑣ℎ

0  

A 10.77 2.73 0.927 

𝛼1 2.67 3.15 2.96 

𝛼2 1.86 1.24 2.61 

𝛼3 5.40 1.38 -2.27 

𝛼4 0.47 1.94 3.42 

𝛼5 0.78 1.16 0.83 

𝛼6 2.38 1.86 2.43 
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(a)                                                                (b) 

 

(c) 

Figure 3.13. The regression performance of the proposed reduced backscattering model for (a) 

VV polarization, (b) HH polarization and (c) VH/HV polarization 

The linear regression performance of the reduced backscattering model described in (3.21) 

is shown in Figure 3.13. The x axis represents the original data and the y axis represents the data 

calculated from the reduced model. Very good agreements between original data and the results 

generated by reduced model can be observed from the figures. The root-mean-square error for VV 

polarization is 0.76 dB, that for HH polarization is 0.69 dB and that for VH/HV polarization is 

1.05 dB. Therefore, the accuracy of the proposed reduced empirical model is validated. 
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3.6  Semi-empirical volumetric backscattering models 

The reduced backscattering models derived in previous section can only be applied to 

surface backscattering problem with homogeneous random rough surface. In the homogeneous 

rough surface assumption, the permittivity of the rough surface is constant in different locations, 

and the RMS height and correlation length are statistically identical in different locations. However, 

in real road like asphalt road, the homogeneous assumption is invalid and the volumetric 

backscattering due to the inhomogeneity of the material contributes largely to the entire 

backscattering power. To characterize the volumetric backscattering coefficients, the radiative 

transfer equation methods [89] [104] are applied. The radiative transfer equation is given by [90] 

[105], 

 𝑑𝑰(𝒓, �̂�)

𝑑𝑠
= −𝜅𝑒𝑰(𝒓, �̂�) + ∫ 𝑷(�̂�, �̂�′)𝑰(𝒓, �̂�′)𝑑Ω′

𝟒𝝅

, 
(3.22) 

where 𝑰(𝒓, �̂�) is specific intensity at location 𝒓 and radiating to direction �̂�, 𝑠 denotes the path 

length in the direction �̂�, 𝜅𝑒 is extinction coefficient contributed by both absorption and scattering, 

𝑷(�̂�, �̂�′) denotes phase matrix from incident direction �̂�′ to scattering direction �̂�.  

 Because the random property of the permittivity, density and geometry of scatterers inside 

different roads are unknown, it is difficult to obtain the extinction coefficient and phase matrix by 

theoretical analysis or numerical simulation. Therefore, a semi-empirical model is proposed in [90] 

to find the backscattering coefficients, and the backscattering coefficients for different 

polarizations are given by: 

 𝜎𝑣𝑣
0 = 4𝜋 cos 𝜃0 |𝑡01

𝑣 |2|𝑡10
𝑣 |2

𝑝1

2𝜅𝑒
,  

 𝜎ℎℎ
0 = 4𝜋 cos 𝜃0 |𝑡01

ℎ |
2
|𝑡10

ℎ |
2 𝑝1

2𝜅𝑒
,  

 𝜎𝑣ℎ
0 = 4𝜋 cos 𝜃0 |𝑡01

ℎ |
2
|𝑡10

𝑣 |2
𝑝2

2𝜅𝑒
,  

 𝜎ℎ𝑣
0 = 4𝜋 cos 𝜃0 |𝑡01

𝑣 |2|𝑡10
ℎ |

2 𝑝2

2𝜅𝑒
, (3.23) 
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where 𝜃0 denotes the incident angle, 𝑡01
𝑣  denotes the transmission coefficient from air to the road 

with vertical polarization or TM wave, and  𝑡10
ℎ  denotes the transmission coefficients from the road 

to air with horizontal polarization or TE wave, 𝑝1 and 𝑝2 are the terms in phase matrix related to 

co-polarization and cross-polarization, respectively. 

 The values of 
𝑝1,2

2𝜅𝑒
 are obtained from measurement data, and therefore the equation (3.23) 

is called semi-empirical model. Three different types of road, weather asphalt, new asphalt and 

concrete, are measured with 77 GHz continuous wave radar. The pictures of the roads are shown 

below: 

     

(a)                                             (b)                                      (c) 

Figure 3.14. Radar measurements for (a) weathered asphalt, (b) fresh asphalt and (c) concrete 

road 

 Figure 3.14 shows the pictures of measurement for different types of ground. The radar is 

scanning its main beam in elevation direction manually, and at each elevation angle, the radar can 

scan its beam in azimuth direction mechanically, resulting in more than 30 samples of radar 

backscattering measurement, and the backscattering coefficients are obtained from the RCS values 

divided by the beam’s footprint area as is shown in Figure 3.14 (a). From the measured 

backscattering coefficients, the values for  
𝑝1,2

2𝜅𝑒
 can be found and are given in Table 3 - 4.  
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Table 3 - 4. Values of 
𝑝1,2

2𝜅𝑒

 for different types of road 

Roads 
𝑝1

2𝜅𝑒
 

𝑝2

2𝜅𝑒
 

Weathered asphalt 0.0064 0.0015 

Fresh asphalt 0.0029 0.00085 

Concrete 0.00083 0.0000167 

 

 

(a)                                                                      (b) 

 

(c) 
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Figure 3.15. Comparison of backscattering coefficients between measurements and semi-

empirical model for weathered asphalt with (a) VV polarization, (b) HH polarization and (c) VH 

polarization 

  

(a)                                                                      (b) 

 

(c) 

Figure 3.16. Comparison of backscattering coefficients between measurements and semi-

empirical model for concrete with (a) VV polarization, (b) HH polarization and (c) VH 

polarization 

 The comparison of measured data and the data from radiative transfer models are shown 

in Figure 3.15 and Figure 3.16. Good agreement is found between measurement data and the data 
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generated by semi-empirical model. It should be noted that the values of  
𝑝1,2

2𝜅𝑒
 may only be applied 

to the road conditions of the samples under test and could be different for the same type of road 

but with different conditions.  

3.7  Conclusion 

In this chapter, millimeter wave backscattering coefficients with different polarizations for 

various road surfaces are studied. The backscattering power from road is divided into two parts: 

surface scattering and volumetric scattering. For surface scattering, the road surface profiles are 

measured, and their statistical features are obtained. Then the random rough surfaces with different 

statistical features are generated and simulated by full-wave numerical simulation software. By 

applying the near field and far field transformation, the backscattering coefficients can be derived 

from the full-wave simulation and the average backscattering coefficients are obtained through 

Monte-Carlo simulations. Finally, the backscattering coefficients with different polarizations are 

modeled as reduced analytical functions of the road surfaces’ statistical features, dielectric constant 

and incident angle. 

Volumetric scattering usually dominates the backscattering power from road. The study of 

volumetric scattering is based on radiative transfer theory. The backscattering models utilizing 

measurement data are presented in this chapter. The measured roads including fresh asphalt, new 

asphalt and concrete roads. Good agreements are observed between the measured data and the 

semi-empirical models. 
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Chapter 4    Radar Statistical Models and Real-time Radar Response 

Simulation 

 

4.1  Introduction 

The traffic targets are usually complex and electrically very large in MMW band. As a 

result, their radar cross-section (RCS) often fluctuate rapidly as a function of incident angle and 

frequency. This phenomenon can be addressed with PO simulations. For example, the RCS of a 

1.8 m tall walking man is simulated at the range of 50 m for all incident azimuth directions at 77 

GHz is shown in Figure 4.1 (a). It is shown that the simulated backscattering RCS may change 

more than 20 dB if the incident angle alters slightly. The RCS of targets could fluctuate with 

frequency as well. In another example, the RCS as a function of frequency for a sedan is shown in 

Figure 4.1 (b). More than 15 dB RCS variation is observed with frequency. Therefore, statistical 

approach should be applied to reveal the intrinsic property of the apparently randomized data.  

The study on the statistical behavior of RCS for complex target can be traced back to 1950s 

by Peter Swerling, and the proposed statistical models are also called Swerling target models [109]. 

The Swerling models can be generalized as Chi-square distribution models, which are actually 

special cases of gamma distribution [110]. For example, Swerling I model, which has been widely 

used in aviation targets, is gamma distribution with shape parameter k=1, or exponential 

distribution. Besides gamma distribution, other statistical distributions like Lognormal distribution 

[111], [112] and Weibull Distribution [113], [114], [115] have been used to characterize the 

fluctuation of RCS for different types of targets including aircrafts, ships, vehicles and sea clusters 



 66 

in different frequency band. However, the statistical models for traffic targets like pedestrians and 

vehicles in MMW band hasn’t been reported in literature yet. 

 

(a) 

 

(b) 
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Figure 4.1. Simulated RCS as a function of (a) incident angle for a 1.8m pedestrian, and (b) 

frequency for a sedan 

 Accurately characterize the RCS statistical features for pedestrians and vehicles can enable 

fast radar simulation and assist the autonomous car to identify targets as well. In this chapter, 

numerous RCS data are generated first for various targets including pedestrians, vehicles and other 

stationary targets. Pedestrians are examined with different weights, heights, ages, genders and 

poses, vehicles include sedans, SUVs, hatchbacks, buses, trucks, bike and motorcycles, other 

stationary targets include traffic lights, traffic signs, lamp posts, trash bins, tree trunks, animals etc. 

Then the RCS data of one target with similar ranges, frequencies and incident angles are fit to 

several known statistical distributions, and the statistical parameters are summarized and recorded. 

In the end, the statistical RCS models are utilized to perform real-time Radar response simulation 

from traffic scene in Unreal Engine 4. 

4.2  RCS statistical models of pedestrians for real-aperture radar 

For real-aperture or beam-steering radar that has one transmitter and one receiver, a traffic 

target can be represented by one RCS value. The RCS value is treated as a random variable whose 

features could be a function of incidence angle, range and other parameters of targets. Regarding 

the driving safety, pedestrians are the most important targets and therefore, the first priority is to 

study the RCS behavior of pedestrians.  

  



 68 

(a) 

  

(b)                                                          (c) 

Figure 4.2. CAD models of male pedestrians for (a) different poses during one period of walking, 

(b) different heights with walking motion and (c) different weights with jogging motion (same 

height) 

One of the major challenges in simulation for the RCS of pedestrians is the dynamic 

behaviors of pedestrians. In traffic scene, pedestrians usually exhibit various poses during walking 

or jogging motion. To capture the features of RCS response from different behaviors, we first 

generate the computer-aid-design (CAD) models for human with multiple poses of one motion 

(walking or jogging). Some examples of human CAD models with different poses, heights and 

weights are depicted in Figure 4.2.  The CAD model for a human with arbitrary height and body 

shape is created by an open-source software MakeHuman [106], and the poses during walking and 

jogging are obtained from CMU’s motion capture database [107]. Finally, the poses are integrated 

into a given pedestrian CAD model in another open source 3D computer graphic software Blender 

[108]. The CAD models are generated for different genders as well. For each gender, CAD models 

are created for more than five different heights, and for each height, there are five different body 

shapes. For pedestrian with specific gender, height and weight, CAD models are further created 

for two motions: walking and jogging. For each motion, more than 10 poses are generated for each 

person. The hierarchy structure of CAD models for pedestrians are illustrated in Figure 4.3. 
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Figure 4.3. Hierarchy of CAD models generated for pedestrians 

 In the numerical simulation, the antenna’s beamwidth of the radar is assumed to be 3º, and 

the first side-lobe level is compressed to -26 dB lower than the main lobe. The radiation pattern of 

the antenna is given in Figure 4.4. The radiation pattern is corresponding to a 2D antenna array 

with triangular tapered current distribution among antenna array elements. 
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Figure 4.4. Radiation pattern of the antenna employed in simulation 

CAD models of 10+ continuous poses of one period of walking or jogging motion for one 

pedestrian are used in the simulation, and their RCS values may differ for the same range and 

incident angle. Because it is difficult to track the exact incident angle and pose of one pedestrian, 

the simulated RCS data of one pedestrian with different poses at one range and ±5º incident angles 

are considered as independent samples in statistical analysis. For example, Figure 4.5 shows the 

averaged RCS and standard deviation of RCS from different incident angles at range of 100 m for 

a 1.7m tall walking woman. The averaged RCS has peak values at 0º, 90º, 180º and 270º, which 

are corresponding to the two sides, front and back of the person. Due to the rotational symmetry 

of pedestrians, it is found that the mean values can be fit by a Fourier series up to fourth order of 

incident angle ϕ, which is given by: 

 
< 𝜎𝑣𝑣(𝜙) >= ∑ 𝑎𝑛𝑐𝑜𝑠(𝑛𝜙) +

4

𝑛=1
𝑏𝑛𝑠𝑖𝑛(𝑛𝜙) + 𝑐0(𝑚

2), 
(4.1) 

where 𝑐0  denotes the average RCS value of all azimuth angles, and 𝑎𝑛 , 𝑏𝑛  are coefficients of 

Fourier series, which determine the variation of mean RCS at different azimuth angles. The values 
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of 𝑎𝑛, 𝑏𝑛 can be obtained from curve fitting for the 10º averaged RCS as a function of azimuth 

angle. 

 

Figure 4.5. Mean values and mean ± standard deviation values of RCS as a function of incident 

angles for a 1.7m tall walking woman in the range of 100 m 

Notably, the concept of RCS is for point target, and point-target approximation requires 

the radar to be in the far-field range of the target. The far-field range equation is given in (4.2), 

where D is the largest dimension of target and 𝜆 is the wavelength. In one example, the far-field 

range for a 1.8m tall pedestrian is more than 1600 m at 77 GHz. Hence, the radar usually operates 

in the near-field range of traffic targets. Besides, depending on the range and beamwidth, the 

pedestrian may be partially illuminated, which results in the RCS value to be a function of range. 

Therefore, the Fourier coefficients 𝑎𝑛, 𝑏𝑛 and 𝑐0 should be functions of range as well.  

 
𝑙 =

2𝐷2

𝜆
. 

(4.2) 

 To find how those values change with range, first massive simulations are performed for 

pedestrians at different ranges from 5 m to 100 m. The averaged RCS values of all azimuth angles 

and all poses can be displayed as a function of range as depicted in Figure 4.6. It shows that at near 

range where the pedestrian is partially illuminated, the averaged RCS is almost a linear function 
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with range, and after the range where the pedestrian is fully illuminated, the RCS gradually 

increases with the distance to the radar. Therefore, we can define a reference range Rref denotes 

the range that the target is fully illuminated. In this example of a 1.8 m tall pedestrian and 3° 

beamwidth radar, rref = 42 𝑚.  

 

Figure 4.6. Backscattering RCS for a 1.8m tall walking man averaged for all azimuth angles and 

poses as a function range 

 While 20° averaged RCS can be properly fit by an analytic function shown in Figure 4.5, 

the corresponding standard deviation cannot. To best describe the statistical property of RCS from 

pedestrians, the RCS data are fitted by known statistical distributions to obtain the corresponding 

statistical parameters instead of just mean values and standard deviations. In the example shown 

in Figure 4.7, the RCS data are fitted into Weibull, lognormal and gamma distribution.  

The probability density function (PDF) for Weibull distribution is given by: 

 
𝑓(𝑥|𝐴, 𝐵) =

𝐵

𝐴
(
𝑥

𝐴
)
𝐵−1

𝑒𝑥𝑝 {− (
𝑥

𝐴
)
𝐵

}, 
(4.3) 

 
 

 

where A and B are two parameters of Weibull distribution. That for lognormal distribution is: 
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𝑓(𝑥|𝜇, 𝜎) =

1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 {−

(ln 𝑥 − 𝜇)2

2𝜎2
}, 

(4.4) 

 

where 𝜇 and 𝜎 are two parameters of lognormal distribution. The PDF for gamma distribution is: 

 
𝑓(𝑥|𝑎, 𝑏) =

1

𝑏𝑎Γ(𝑎)
𝑥𝑎−1𝑒𝑥𝑝 {−

𝑥

𝑏
}, 

(4.5) 

where 𝑎 is a shape parameter and b is a scale parameter of gamma distribution, and Γ(𝑎) is Gamma 

function. 

Figure 4.7 depicts the fitting performance of the three distributions described above for the 

RCS of a 1.8 m tall walking man with range of 15 m and incident angle of 45°. It shows that both 

Weibull distribution and gamma distribution have excellent fitting performance in this example. 

To quantitatively evaluate the fitting performance, a fitting error in CDF is defined as: 

 

𝛿 =
√∑ (𝐹𝑓𝑖𝑡(𝑥) − 𝐹𝑒𝑚𝑝(𝑥))

2
𝑁
1

𝑁
, 

(4.6) 

where 𝐹𝑓𝑖𝑡(𝑥) is the CDF fitted to a known distribution, 𝐹𝑒𝑚𝑝(𝑥) is the empirical CDF.  

  

(a)                                                                       (b) 

Figure 4.7. (a) Probability density functions and (b) cumulative density functions comparisons 

between empirical data and several statistical distributions 
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 The fitting error is evaluated for all ranges and incident angles, and the performance for 

different distributions are given in Table 4 - 1. It shows that Weibull distribution has the best fit to 

the RCS of 1.8 m tall pedestrian. Similarly, the simulated RCS data for other pedestrians can be 

best fitted by Weibull distribution as well. Therefore, Weibull distribution is chosen as the 

statistical distribution of RCS in the following discussion. 

Table 4 - 1. Fitting errors 𝛿 of different statistical distributions for the RCS of a 1.8 m tall 

walking man 

Distribution Lognormal Weibull Gamma 

Fitting error 0.0368 0.0159 0.0256 

 

 In Weibull distribution, A is scale parameter and B is shape parameter. When B = 1, 

Weibull distribution is reduced to exponential distribution (Swerling I model), which has been 

successfully applied to represent the fluctuation of RCS for many aircrafts in the far field. As 

mentioned, the radar is operating in the near field range of pedestrians, and the RCS is a function 

of range as shown in Figure 4.6. To find proper analytic expressions for the Weibull parameters 

as functions of incident angle and range, control variable method is applied. The parameters A and 

B are first fitted as functions of incident angle in fixed range by Fourier series and then the Fourier 

coefficients are modelled as functions of range. For example, Figure 4.8 depicts the Weibull 

parameters A and B as functions of incident angle for different ranges for a 1.8 m tall walking man. 

The functions of incident angle are fitted by the following Fourier series:  

 𝐴(𝜙, 𝑟) = 𝛽1𝑎(𝑟)𝑠𝑖𝑛(𝜙) + 𝛼2𝑎(𝑟)𝑐𝑜𝑠(2𝜙) + 𝛽3𝑎(𝑟)𝑠𝑖𝑛(3𝜙) + 𝛼4𝑎(𝑟)𝑐𝑜𝑠(4𝜙)
+ 𝛾0𝑎(𝑟)(𝑚

2), 
(4.7) 

 𝐵(𝜙, 𝑟) = 𝛽1𝑏(𝑟)𝑠𝑖𝑛(𝜙) + 𝛼2𝑏(𝑟)𝑐𝑜𝑠(2𝜙) + 𝛽3𝑏(𝑟)𝑠𝑖𝑛(3𝜙) + 𝛼4𝑏(𝑟)𝑐𝑜𝑠(4𝜙)
+ 𝛽5𝑏(𝑟)𝑠𝑖𝑛(5𝜙) + 𝛼6𝑏(𝑟)𝑐𝑜𝑠(6𝜙) + 𝛾0𝑏(𝑟). 

 

(4.8) 
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The Fourier coefficients 𝛼𝑖 and 𝛽𝑗 for Weibull parameters A and B as functions of range 

are shown in Figure 4.9. Those coefficients then are fitted by polynomial functions of range. Notice 

that the range shown in the Figure is the normalized range, which is defined as 𝑟 𝑟𝑟𝑒𝑓⁄ . 

 

 

(a) 

 

(b) 
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Figure 4.8. Values of Weibull parameters (a) A and (b) B as functions of incident angle in 

different ranges and their fitted curves by Fourier series (solid lines) 

 

(a) 

 

(b) 
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Figure 4.9. Fourier coefficients for Weibull parameters (a) A and (b) B as functions of range and 

are fitted by polynomial functions (solid lines) 

 In one example of 1.8 m tall walking man, the coefficients  𝛼𝑖 and 𝛽𝑗, which are shown in 

Figure 4.9, are expressed in the following functions. For parameter A: 

 
𝛾0𝑎 = −0.029 − 0.0184

𝑟

𝑟𝑟𝑒𝑓
+ 0.542(

𝑟

𝑟𝑟𝑒𝑓
)

2

− 0.256(
𝑟

𝑟𝑟𝑒𝑓
)

3

 
 

 
𝛽1𝑎 = 0.006 − 0.041

𝑟

𝑟𝑟𝑒𝑓
+ 0.082 (

𝑟

𝑟𝑟𝑒𝑓
)

2

− 0.027(
𝑟

𝑟𝑟𝑒𝑓
)

3

 
 

 
𝛼2𝑎 = −0.016 + 0.104

𝑟

𝑟𝑟𝑒𝑓
+ 0.14 (

𝑟

𝑟𝑟𝑒𝑓
)

2

− 0.123(
𝑟

𝑟𝑟𝑒𝑓
)

3

 

 

 

 
𝛽3𝑎 = −0.0011 + 0.031

𝑟

𝑟𝑟𝑒𝑓
− 0.06 (

𝑟

𝑟𝑟𝑒𝑓
)

2

+ 0.01 (
𝑟

𝑟𝑟𝑒𝑓
)

3

 

 

 

 
𝛼4𝑎 = 0.0039 − 0.042

𝑟

𝑟𝑟𝑒𝑓
+ 0.151(

𝑟

𝑟𝑟𝑒𝑓
)

2

− 0.048(
𝑟

𝑟𝑟𝑒𝑓
)

3

 

 

(4.9) 

 For parameter B: 

 𝛾0𝑏 = 0.288 + 2.  12 𝑟
𝑟𝑟𝑒𝑓⁄ − 2.58(𝑟 𝑟𝑟𝑒𝑓⁄ )2 + 1.04(𝑟 𝑟𝑟𝑒𝑓⁄ )3 

 

 

 𝛽1𝑏 = −0.073 + 0.17 𝑟
𝑟𝑟𝑒𝑓⁄ − 0.099(𝑟 𝑟𝑟𝑒𝑓⁄ )2 

 

 

 𝛼2𝑏 = −0.296 + 2.01 𝑟
𝑟𝑟𝑒𝑓⁄ − 2.98(𝑟 𝑟𝑟𝑒𝑓⁄ )2 + 1.29(𝑟 𝑟𝑟𝑒𝑓⁄ )3 

 

 

 𝛽3𝑏 = −3.05𝑒 − 4 − 0.072 𝑟
𝑟𝑟𝑒𝑓⁄ + 0.071(𝑟 𝑟𝑟𝑒𝑓⁄ )2 

 

 

 𝛼4𝑏 = −0.0013 + 0.117 𝑟
𝑟𝑟𝑒𝑓⁄ − 0.046(𝑟 𝑟𝑟𝑒𝑓⁄ )2 

 

 

 𝛽5𝑏 = 0.0369 − 0.139 𝑟
𝑟𝑟𝑒𝑓⁄ + 0.072(𝑟 𝑟𝑟𝑒𝑓⁄ )22

 

 

 

 𝛼6𝑏 = −0.0162 + 0.038 𝑟
𝑟𝑟𝑒𝑓⁄ − 0.025(𝑟 𝑟𝑟𝑒𝑓⁄ )2 

 

(4.10) 

 Notice that for different pedestrians the coefficients of the functions can be different. 

Particularly, people with different weight and height may have different coefficients on the 
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Weibull parameters. It is understood that the weight and height are highly correlated, that a tall 

person usually has more weight than a shorter person given the same body shape. In order to isolate 

the impact of height on weight, two concepts are introduced. The first one is called standard weight 

(w0), which is the weight for a given height normal shape person. We used the standard of normal 

shape defined by the human CAD generation software MakeHuman. It is noted that the standard 

weight is different for man and woman, and the standard weight as a function of height is given 

by: 

 
𝑤0(ℎ) = 64.38ℎ2 − 112.1ℎ + 65.78 (𝑘𝑔), for man 

(4.11) 

 𝑤0(ℎ) = −0.714ℎ2 + 91.73ℎ − 95.02(𝑘𝑔), for woman (4.12) 

where ℎ is the height of the person, with unit in m, and ranging from 1.4 m to 2 m. 

 The second quantity is called shape factor (sf) and is defined as 𝑤/𝑤0. Shape factor is used 

to represent how a person’s weight deviated from its standard weight.  For example, the standard 

weight for a 1.7 m tall woman is 57.4 kg according to (4.12), and a woman with 1.7 m height and 

50 kg weight then has shape factor of 0.871. Figure 4.10 illustrates the CAD models of 1.7 m tall 

woman with different body shapes. The demonstrated body shapes include skinny shape (#1) to 

overweighted shape (#7), and their weights and body factors are given in Table 4 - 2. The weight 

is measured by multiplying the volume of the CAD model and density of human body (0.985 g/ml). 

Many software including autoCAD can evaluate the volume of a CAD model, and one of the 

algorithm is to divide the entire CAD model into many small tetrahedrons, and for each tetrahedron, 

there is analytical solution to calculate the volume [116].  

 The statistical analysis and curve fitting process mentioned before are repeated for the 

pedestrians with different genders (man and woman), actions (walking and jogging), heights (1.4m 

to 2m) and shape factors (0.65 to 2.2). The coefficients 𝛼𝑖, 𝛽𝑗 and 𝛾0 as functions of range are 
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recorded and tabulated for all different pedestrians. The tabulated statistical data can be applied to 

quickly generate RCS values of a pedestrian given the information of range and aspect angle in a 

real-time radar simulation application.  For a pedestrian with arbitrary weight and height, his/her 

shape factor will be calculated first, and his/her corresponding statistical parameters will be 

calculated based on linear interpolation from the lookup table generated from massive simulations.  

 

Figure 4.10. CAD models for 1.7 m tall walking woman with different shape factors 

Table 4 - 2. Weights and shape factors for different samples of 1.7 m tall woman 

Sample # 1 2 3 4 5 6 7 

Weight (kg) 38.4 48.6 57.4 59.2 72.9 88.8 104.0 

Shape factor 0.67 0.85 1 1.03 1.27 1.55 1.81 

 

 This semi-lookup table semi-analytic model can be efficiently used to find the RCS value 

of a given pedestrian. Here gives an example to fast generate RCS value of a 1.75 m tall walking 

man with weight of 70 kg, and he faces the radar at the range of 30 m. The first task is to evaluate 

the corresponding Weibull parameters A and B of the RCS, and then we can generate the RCS 

value through Weibull distribution random number generator. The standard weight for a 1.75 m 

tall man is 66.77 kg according to (4.11). Thus, his shape factor is 1.05. Because in the tabulated 
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library, there is no male model with 1.75 m tall and shape factor of 1.05, but instead there are 

models for 1.7 m tall man and 1.8 m tall man, and shape factor of 1 and 1.25. To calculate the 

Weibull parameters A and B in this example, first the values of Weibull parameters A and B for 

four different cases are evaluated: (1) 1.7 m tall walking man with shape factor of 1, (2) 1.7 m tall 

walking man with shape factor of 1.25, (3) 1.8 m tall walking man with shape factor of 1, and (4) 

1.8 m tall walking man with shape factor of 1.25. The Weibull parameters A and B for those 

models can be evaluated from analytical fitted curve with the methods described previously. The 

parameters for those four models at range of 30m and azimuth angle of 90º (front view) are given 

in Table 4 - 3, and the estimated Weibull parameters for a 1.75 m tall waking man with weight of 

70 kg is: A = 0.127 and B = 0.853. Notice that the Weibull parameters for the pedestrians with 

small difference in weight and height are quite similar and the differences are smaller than the 

differences between Weibull parameters from different aspect angles for one pedestrian. Therefore, 

the statistical RCS information cannot be used to identify a person’s weight and height. 

Table 4 - 3. Weibull parameters for the four pedestrians with different height and weight in the 

range of 30 m and azimuth angle of 90º 

Weibull Parameters: A B 

1.7 m tall man with shape factor of 1 0.137 0.863 

1.7 m tall man with shape factor of 1.25 0.112 0.851 

1.8 m tall man with shape factor of 1 0.120 0.840 

1.8 m tall man with shape factor of 1.25 0.117 0.868 

 

4.3  RCS statistical models of vehicles and other targets for real-aperture radar 
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Other than pedestrians, there are many other important targets can be detected by MMW 

radar in a traffic scene. Those targets include but are not limited to vehicles like bikes, motorcycles, 

sedans, SUVs, trucks, buses and etc., other targets like lamp posts, traffic lights, traffic signs, tree 

trunks, dogs, and etc. The failure of detecting those targets may also result in serious accidents. 

Similar to pedestrians, those targets are usually electrically very large, and the RCS values are 

fluctuating with both frequency and aspect angle. In this situation, the statistical approach is 

applied as well. Compared to the pedestrians, vehicles are larger in size and thereby when a beam-

steering radar is scanning in azimuth directions, it might just illuminate different portion of the 

vehicle, and the RCS values different portions may be correlated rather than independently 

distributed.  

In the following discussion, we take a sedan (Mazda 6) as an example to demonstrate the 

statistical analysis for large targets such as vehicles. The CAD model of the sedan is shown in 

Figure 4.11. The radar used in simulation has 3° beam width in both azimuth and elevation 

direction. Notice that in near range, the radar may only illuminate a portion of the vehicle, and in 

the initial study, the RCS values are collected when the radar is focusing on the center of the 

vehicle.  It is illustrated in Figure 4.1 (b) that its RCS value is a function of frequency with a given 

aspect angle and range.  
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Figure 4.11. CAD model for a sedan with model of Mazda 6 

 

 

(a) 
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(b) 

Figure 4.12. RCS of a Mazda 6 sedan as a function of azimuth angle for (a) range of 10 m and 

(b) range of 30 m 

The frequency averaged RCS values as a function of aspect angle is given in Figure 4.12. 

In the figures, aspect angle of 0° refers to the right side of the car and 90° refers the front of the 

car. It is shown that the frequency averaged RCS values still vary more than 30 dB with the aspect 

angle of the car. 

 The RCS data in one range, aspect angle 𝜙 ± 2.5°, and different frequencies are considered 

have the same statistical distribution, and those values are fitted to known distributions such as 

Weibull distribution and Lognormal distribution as described in section 4.2. Some examples of the 

fitting performance of different statistical distributions are shown in Figure 4.13. It is shown that 

for some aspect angle and range, Weibull distribution has better fit, while for some other aspect 

angle and range, Lognormal fitting has better performance.  
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(a)                                                                           (b) 

Figure 4.13. The comparison between empirical CDF and fitted Lognormal and Weibull CDF for 

(a) range of 30 m, aspect angle of 20° and (b) range of 15 m, aspect angle of 300° 

  To best characterize the statistical features of the RCS for a vehicle, the following strategy 

is applied: first, fit the RCS data in one range, at one aspect angle ± 2.5°, and at different 

frequencies into both Weibull (𝑊𝐴,𝐵(𝑟, 𝜙)) and Lognormal distribution (𝐿𝜇,𝜎(𝑟, 𝜙)), and this 

process is repeated for all ranges and angles, and all data are recorded into a library. In this example, 

the Weibull parameters A and B as functions of range and aspect angle are shown in Figure 4.14 

and the Lognormal parameters 𝜇 and 𝜎 as functions of range and aspect angle are shown in Figure 

4.15. Because the radar is in the near field range of the sedan, the statistical parameters will be 

functions of range, and those values change rapidly with aspect angles as well.  



 85 

 

Figure 4.14. The fitted Weibull parameters (a) A and (c) B as a function of range for different 

azimuth angles, and (b) A and (d) B as a function of angle for different ranges 

Second, find the RMS error between the fitted CDF and empirical CDF for the data of each 

range and each angle set and record the distribution with the smallest RME error. This is referred 

as the hybrid statistical distribution, and can be expressed as: 

 
𝐷(𝑟, 𝜙) = {

𝑊𝐴,𝐵(𝑟, 𝜙), 𝑖𝑓 𝑅𝑀𝑆𝐸 (𝑊𝐴,𝐵(𝑟, 𝜙)) ≤ 𝑅𝑀𝑆𝐸 (𝐿𝐴,𝐵(𝑟, 𝜙))

𝐿𝜇,𝜎(𝑟, 𝜙),          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

(4.13) 
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Figure 4.15. The fitted Lognormal parameters (a) 𝜇 and (c) 𝜎 as a function of range for different 

azimuth angles, and (b) 𝜇 and (d) 𝜎 as a function of angle for different ranges 

Finally, the statistical features can be calculated for any range and aspect angle of the 

vehicle with the following steps. Step 1: navigate the specific range and angle set in the library; 

step 2: use the statistical distribution with the smallest RMS error; step 3: obtain the statistical 

parameters from linear interpretation method.  

 Figure 4.16 depicts the RMS error of the CDF for different statistical distributions. It shows 

that in the range of 50 m, Weibull distribution has the better performance in some angles, and 
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Lognormal distribution has the better fit in the rest angles. Figure 4.16 (b) shows the error 

performance of the hybrid distribution 𝐷(𝑟, 𝜙), and the overall averaged RMS error for 𝐿𝜇,𝜎, 𝑊𝐴,𝐵 

and 𝐷 at 50 m are 0.054, 0.038 and 0.033 respectively.  

  

(a)                                                                           (b) 

Figure 4.16. The RMS error in CDF for (a) Weibull (𝑊𝐴,𝐵(𝑟, 𝜙)) and Lognormal distribution 

(𝐿𝜇,𝜎(𝑟, 𝜙)) and (b) the best of the two distributions 𝐷(𝑟, 𝜙) for the sedan at 50 m and different 

azimuth angles 

 When a vehicle is in the near range of a radar, the radar may see different parts of the 

vehicle if it can scan its narrow main beam as illustrated in Figure 4.17. In the Figure, the 

coordinate is defined in the same way as shown in Figure 4.11, and the radar scanning angle is 

denoted as ψ. ψ = 0° means the radar is looking at the center of the vehicle. For each value of ψ, 

the corresponding detected RCS value can be treated as a random variable. Because the shapes of 

different parts of a vehicle are usually well-defined, the radar response from different parts of the 

vehicle may be correlated. Therefore, the random variables representing RCS with different values 

of ψ should be correlated and treated as multivariant random variables with a given correlation 

matrix/covariance matrix. For example, suppose the radar locates at 𝑟 = 20 𝑚 and 𝜙 = 45°, and 
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the scanning angle ψ is between −6° and 6° with 1.5° step. There are in total 9 random variables 

for different value of  ψ in this case: [−6°, −4.5°, −3°, −1.5°, 0°, 1.5°, 3°, 4.5°, 6°]. The mean 

values of the RCSs for different ψ are illustrated in Figure 4.18 (a). Notice that ψ = 0° only means 

the radar is focusing on the center of the car, and the detected RCS at ψ = 0° may not be the 

highest value. In the example shown in Figure 4.18, the beam with ψ = −3° has the highest mean 

RCS value. 

 

 

Figure 4.17. Coordinate system used in the scenario when radar is scanning main beam  
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(a) 

  

(b) 

Figure 4.18. (a) Mean RCS values as a function of scanning angle for a sedan and (b) the 

correlation matrix of the RCS random variables with different scanning angles 

 The correlation coefficient of two random variables 𝑋 and 𝑌 is defined by: 

 
𝜌𝑋,𝑌 =

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
, 

(4.14) 

where 𝐸[∗] is the expected value, and 𝜇𝑋 and 𝜎𝑋 are the mean value and standard deviation of 

variable X, respectively. 

 It is known that correlation coefficient with value of 1 means linearly dependent and 0 

means independent. The correlation coefficients between each pair of the nine RCS random 
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variables define the correlation matrix, and the correlation matrix for the example described above 

is shown in Figure 4.18 (b). It shows that the highly correlated region is between the angle 𝜓 

between −4.5° and  −1.5°, which are the angles with the highest mean RCS values. 

 Use the correlation matrix to generate multivariant random variables of radar response can 

provide better fidelity for large and/or near target. The multivariant random variables for normal 

distribution have been well studied [117]. The generation of multivariant normal distribution 

variables is available in MATLAB with function name of “mvnrnd”, and in C++, the generation 

of multivariant random variables with normal distribution can be implemented with “Eigen” 

library [118] as well. The multivariant random variables for other distributions, like Weibull and 

Lognormal distribution in this case, can be obtained from the transformation of multivariant 

normal distribution random variables [119].  

The task is to generate multivariant random variables 𝑋 = (𝑥 1, 𝑥 2 … , 𝑥 n)
T , and each 

variable follows a given statistical distribution. The mean value, variance of each variable, and the 

covariance matrix C is given as well. The covariance matrix is defined as: 

 
CX =  E [(𝑋 − 𝜇 )(𝑋 − 𝜇 )

𝑇
]. 

(4.15) 

 To start with, we first generate multivariant normal distribution random variables 𝑍 =

(𝑧 1, 𝑧 2 … , 𝑧 n)
T with zero mean, variance of 1 and the same covariance matrix C as CX. This can be 

done by applying the library in C++ or MATLAB, or a method called Cholesky decomposition 

[120]. In Cholesky decomposition approach, n independent normal distribution random variables 

with 0 mean and variance of 1 𝑍′⃑⃑  ⃑ = (𝑧 ′1, 𝑧 ′2 …𝑧 ′n) are generated first. Because variables in 𝑍′⃑⃑  ⃑ are 

independent, the covariance matrix of 𝑍′⃑⃑  ⃑ is 𝐶𝑍′ = 𝐸 [𝑍′⃑⃑  ⃑𝑍′𝑇⃑⃑ ⃑⃑ ⃑⃑ ] = 𝐼 ,̿ and 𝐼 ̿is identity matrix. Notice 

that the covariance matrix is symmetric, and always positive semi-definite. The covariance matrix 
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is positive definite if there are no two variables are linearly dependent to each other [121]. Then, 

the covariance matrix CX can be decomposed by [120]: 

 
CX = LLT, 

(4.16) 

where L is a lower triangular matrix. Then, 

 CX = LLT = C = LLT = L𝐸 [𝑍′⃑⃑  ⃑𝑍′𝑇⃑⃑ ⃑⃑ ⃑⃑ ] LT = 𝐸 [𝐿𝑍′⃑⃑  ⃑𝑍′𝑇⃑⃑ ⃑⃑ ⃑⃑ 𝐿𝑇]. (4.17) 

Meanwhile, recall that CX = 𝐸[𝑍 𝑍 𝑇], thus the multivariant normal distribution random 

variables 𝑍  can be generated from n independent normal distribution random variables 𝑍′⃑⃑  ⃑: 

 
𝑍 =  𝐿𝑍′⃑⃑  ⃑. 

(4.18) 

 Next step is to convert the multivariant normal distribution random variables to the 

multivariant random variables with given distributions. This can be done by utilizing the property 

of CDF function. For a random variable V, if V has continuous and strictly increasing CDF 𝐹𝑉, 

then 𝑦 = 𝐹𝑉 has uniform distribution on 0 ≤ 𝑦 ≤ 1 [122]. With this property, a random variable 

with a given distribution whose CDF is continuous and strictly increasing can be related to a 

normal random variable by: 

 
𝑋 = 𝐹𝑋

−1(𝑦) = 𝐹𝑋
−1(𝐹𝑍(𝑍)), 

(4.19) 

where 𝑋 is the targeting random variable, 𝐹𝑋
−1(𝑦) is the inverse cumulative distribution function 

of distribution for 𝑋 , 𝑍  is the normal random variable, and 𝐹𝑍  is the cumulative distribution 

function of normal distribution. 

 The cumulative distribution function of normal distribution is given by [123]: 

 
𝐹(𝑥|𝜇, 𝜎) =

1

𝜎√2𝜋
∫ 𝑒

−(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞

=
1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)], 

(4.20) 

where erf () is the error function. 
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 The targeting distributions are Weibull or Lognormal distribution, and both distributions 

have continuous and strictly increasing CDF, therefore, their random variables can be generated 

from the method described above. The inverse CDF for Lognormal distribution is: 

 
𝑥 = 𝐹−1(𝑝|𝜇, 𝜎) = 𝑒𝑥𝑝[𝜎(−√2erfcinv(2𝑝) + 𝜇)], 

(4.21) 

where 𝑝 is the CDF random variable and erfcinv() is the inverse error function. The inverse CDF 

for Weibull distribution is: 

 
𝑥 = 𝐹−1(𝑝|𝐴, 𝐵) = 𝐴(− ln(1 − 𝑝))1 𝐵⁄ . 

(4.22) 

Table 4 - 4. Comparison between targeting Lognormal parameters and the measured parameters 

from randomly generated data 

Parameters Variable 1 Variable 2 Variable 3 

𝜇𝑡𝑎𝑟𝑔𝑒𝑡 1 2 3 

𝜇𝑑𝑎𝑡𝑎 0.968 1.977 2.973 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡 1 1.2 1.5 

𝜎𝑑𝑎𝑡𝑎 0.973 1.167 1.460 

Targeting Correlation 

Matrix 
[

1 0.96 0.86
0.96 1 0.94
0.86 0.94 1

] 

Measured Correlation 

Matrix 
[

1 0.94 0.74
0.94 1 0.88
0.74 0.88 1

] 

 

To validate the approach described above, about 1000 set data samples for multivariate 

random variables with given distributions are generated and analyzed. The comparison between 

targeting statistical parameters and measured statistical parameters of generated data for one 

example of Lognormal multivariate random variables are shown in Table 4 - 4, and that for Weibull 

multivariate random variables are displayed in Table 4 - 5. In both cases, there are good agreements 

between statistical parameters for single variable (𝜇, 𝜎 𝑜𝑟 𝐴, 𝐵), and the strong correlation between 

random variables are observed from the data as desired. There are some errors in correlation matrix, 
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which are due to the non-linearity of the CDF and inverse CDF operation, but after all the strong 

correlation are simulated, which can improve the fidelity of real-time radar simulation. 

Table 4 - 5. Comparison between targeting Weibull parameters and the measured parameters 

from randomly generated data 

Parameters Variable 1 Variable 2 Variable 3 

𝐴𝑡𝑎𝑟𝑔𝑒𝑡 1 2 3 

𝐴𝑑𝑎𝑡𝑎 0.93 1.94 2.96 

𝐵𝑡𝑎𝑟𝑔𝑒𝑡 0.5 1 1.5 

𝐵𝑑𝑎𝑡𝑎 0.48 0.96 1.43 

Targeting Correlation 

Matrix 
[

1 0.96 0.86
0.96 1 0.94
0.86 0.94 1

] 

Measured Correlation 

Matrix 
[

1 0.86 0.69
0.86 1 0.92
0.69 0.92 1

] 

 

 The multivariate statistical analysis is performed for many different types of vehicles and 

other stationary targets. The types of vehicles include but are not limited to sedan, SUV, pickup 

truck, heavy truck, RV, bus, motorcycle and bicycle, the other targets include bus station, trees, 

lamp post, traffic sign, traffic light, trash bins and animals like dog, deer and horse. All data are 

stored in one library and can be used to simulate the radar response in real-time traffic scene 

simulation for autonomous driving. 

4.4  Real-time radar image simulation for real-aperture beam steering radar 

A typical radar signal processing is first do 2D FFT to obtain the range-Doppler image and 

then find the angle-of-arrival (AOA) of each target. For a narrow-beamwidth beam-steering radar, 

the AOA of target can be simply obtained by the scanned angle. Beam-steering ability can be done 

either by digital/analog beamforming, MIMO techniques or mechanically scanning. Practically, 

the automotive radar only scans on azimuth direction due to the limitation of cost. In many 



 94 

scenarios, the 2D range-azimuth angle images are sufficient for separation of targets, given that 

the radar has narrow beam in elevation direction. In some cases, Doppler information may not be 

needed in targets separation, for example, If the Doppler information is used to isolate the response 

of targets involving a pedestrian, the pedestrian might be falsely considered as multiple targets due 

to multiple Doppler bins exhibited by a pedestrian. Notably, there are some cases the Doppler 

information is required for separation of targets, for example, in a scenario where a car is moving 

under a bridge. If Doppler information is not used to separate signals, the car might be miss-

detected. In our preliminary research, the scenarios where two objects overlapping in elevation 

direction are not studied and the 2D range-azimuth angle images of dynamic traffic scenes are 

presented.  

The objective of the radar simulation is to generate radar data as close to those in the 

physical world as possible. To demonstrate the similarity, some radar images from measured data 

and simulation are presented and compared. One example of the 2D radar image from 

measurement is shown in Figure 4.19. Figure 4.19 (a) depicts the photograph of a parking lot under 

measurement. The MMW radar in use has 3-degree antenna beam width, and its beam is scanned 

manually with 1.5-degree step from -30 degree to 30 degree in azimuth plane. Many cars in the 

measuring scene can be identified from the radar images shown in Figure 4.19 (b). Figure 4.24 

shows another 2D radar image example generated by simulation. In Figure 4.24 (a), a traffic scene 

with cars, trees and pedestrians are shown. Figure 4.24 (b), (c) and (d) depicts the 2D radar images 

with 2°, 3° and 1.5° antenna beamwidth and -13 dB, -26 dB and -26 dB side-lobe levels, 

respectively. In general, the image generated by narrower beam width, and lower side-lobe level 

radar has better image quality that can reduce the false detection rate. Notably, in PO numerical 
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simulation, the simulation time for one frame is around 30 minutes for a single core CPU in an 

ordinary PC. 

 

      

(a)                                                                         (b) 

Figure 4.19. (a) Radar measurement in a parking lot (b) The corresponding 2D radar images 

  

(a)                                                                       (b) 
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(c)                                                                           (d) 

Figure 4.20. (a) A crossroad traffic scene for numerical simulation with PO. The corresponding 

2D radar images for (a) 2° beamwidth and -13 dB sidelobe radar, (b) 3° beamwidth and -26 dB 

sidelobe radar and (c) 1.5° beamwidth and -26 dB sidelobe radar 

To accelerate the simulation into real time, statistical models are applied. The real-time 

radar simulation is performed in Unreal Engine 4 [124], which is best known as a game engine for 

many popular 3D video games. It can generate 3D scene and run video animation efficiently, which 

makes it a good candidate for autonomous driving simulation software. In this real-time simulation, 

the radar response from ground surface is simulated as well. One example of a traffic scene created 

in Unreal Engine 4 is displayed in Figure 4.21. There are many vehicles including sedans, SUVs, 

bus and motorcycles, trees, bus station, and pedestrians in the traffic scene. Among the two asphalt 

roads displayed, one road is covered by fresh snow. The statistical model for snow is derived from 

semi-empirical scattering models. 
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Figure 4.21. A dynamic crossroad traffic scene built in Unreal Engine 4 for real-time radar 

images simulation 

In the simulation setup, each target is initialized with its own radar statistical models, 

depending on the aspect angle and range to the radar during simulation, a set of statistical 

parameters for RCS are calculated and the RCS values are generated by random number generators. 

Then the received power level at each radar scanning angle is derived from the radar equation with 

RCS values and corresponding antenna’s gains. The simulation is performed for a dynamic 

environment, where the objects can move in their pre-programed traces. 

The dynamic traffic simulation with setup shown in Figure 4.21 is displayed in Figure 4.22. 

It shows three frames from a continuous simulation. The large sector shows the 2D radar image 

generated for a forward-looking radar, and the radar used in this example has 1.5° beam width, -

26 dB side-lobe level, 0.5 m range resolution and 1.5° angular resolution. The two small sectors 

below are corresponding to a near-grazing looking radar. The two images are corresponding to VV 

and HH polarizations. The results for cross-polarization is not shown because the power level for 

it is much lower than VV and HH, and usually below the noise floor.  
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(a) 

 

(b) 



 99 

 

(c) 

Figure 4.22. A dynamic traffic scene simulation in Unreal Engine 4 of (a) starting frame, (b) 

middle frame 1, and (c) middle frame 2. 

 In Figure 4.22 (a), the major targets including vehicles, trees and bus station can be clearly 

observed from the radar images. Figure 4.22 (b) shows that near targets has stronger radar response. 

The snow backscattering is detected in Figure 4.22 (c), where in the lower radar images, a 

boundary showing the different backscattering level between ordinary asphalt and snow covered 

asphalt can be identified.  

 The radar images simulation in Unreal Engine 4 has more than 20 frame-per-second (FPS) 

(or <50 ms per frame) on an ordinary PC with Intel i7-7700 CPU for the traffic example described 

above. Depending on the complexity of traffic scene and simulation platform, the simulation speed 

can be faster or slower. The program can export the radar image data out for future signal 

processing as well. 
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4.5  Multi-scatterer RCS statistical models for MIMO radar 

For MIMO radar system where more than one transmitter/receiver are considered, the RCS 

statistical models should be further extended to multi-scatterers for better fidelity. In MIMO radar 

system, the signal processing for angle-of-arrival (AOA) is different from that for beam-steering 

radar and is derived from the phase and amplitude distribution among different communication 

channels (transmitters/receivers). Therefore, it is crucial to have accurate simulation of the relative 

phase and amplitude of different channels. In the aforementioned statistical models for traffic 

targets, one target is considered as one scatterer, which will result in uniform magnitude 

distribution for different channels. This is unlikely to happen in real radar measurement especially 

for large traffic targets like vehicles as the targets are not far enough to be considered as point 

targets. For example, for a car with largest dimension of 2.5 m on the cross section, its far-field 

range is 3125 m according to equation (4.2), and the typical radar operation range is within 300 m. 

Therefore, to capture the correct magnitude and phase distribution for different channels, multiple-

scatterer model is developed. In multiple-scatterer model, the targets are represented by more than 

one scatterers. One challenge of multiple-scatterer model is to identify the position of each 

scatterer. Besides, similar to the single-scatterer statistical model, the RCS values of each scatterer 

may also be fluctuating with incident angle, which requires further statistical analysis. 

A scatterer is defined as a point target, which means it has a position and an RCS value but 

no volume. Any point on the surface of a target can be considered as a scatterer. As a result, there 

could be infinite number of scatters. On the other hand, it is known that if the radar is locating in 

the far field of target, the response from different scatterers on the target can be approximated by 

the response from one scatterer. Therefore, the problem can be simplified by dividing the entire 
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target into many small portions such that for each portion, the radar is in the far field range. 

Thereby the scatterers on one portion can be considered as one scatterer. 

In this model, the entire space occupied by the target is divided into small pixels with 

dimensions of 0.1m by 0.1m by 0.1m. This value is chosen because the far-field range for target 

with dimension of 0.1 m is about 5 m at 77 GHz. In the other words, if the radar is more than 5 m 

away from the target, this approximation is valid. The RCS of each scatterer is considered as a 

random variable, and the statistical features of each random variable are summarized from massive 

numerical simulations from small variation of incidence angles in both elevation and azimuth 

direction. Notably, since each scatterer is a point target, its RCS value should be constant for 

different frequencies and ranges greater than 5 m.  

The RCS statistical features for each scatterer are summarized in ±2.5° in both azimuth 

and elevation direction with 100 samples. The data are fitted into Gamma distribution, and some 

examples of the fitting results for the RCS of one scatterer on a sedan from one angle are shown 

in Figure 4.23. It shows Gamma distribution has a good fit to the empirical data. In the pixelated 

model, every (0.1m)3 volume may be considered as one scatterer, however, many volumes are 

empty or have very small RCS values, and to reduce the complexity of the problem, the scatterers 

with RCS value less than -40 dBsm are ignored. The positions and randomly generated RCS values 

of the significant scatterers for some typical targets in traffic scenes including a sedan, a man riding 

a bike and a pedestrian are displayed in Figure 4.24. In Figure 4.24 (a), a sedan is illuminated from 

the back, and it shows the strongest scatterers locate on the back of the car. Figure 4.24 (b) depicts 

the scatterers distribution for a man riding a bike when radar is on the side. It shows the major 

scattering happens on the bike, while the human body also has some contribution.  Figure 4.24 (c) 

and (d) depict the scatterer distribution for a jogging man illuminated by the radar from the side 
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and the back, respectively. The scatters form the shape of human body, and the strong scatters 

locate on the surface of human body whose normal vector is almost parallel to the radar direction. 

 

Figure 4.23. Comparison of empirical and fitted CDF for the RCS of two scatterer on a sedan 

 

(a) 

 

(b) 
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(c)                                            (d) 

Figure 4.24. The positions and randomly generated RCS values of scatters for (a) a sedan 

illuminated from the back, (b) a man on a bike illuminated from 45° off to the front, and a 

jogging man (c) illuminated from the side and (d) illuminated from the back. 

  

4.6  Real-time radar response simulation for MIMO radar 

In FMCW MIMO radar system, the voltage at the 𝒊th receiver’s antenna can be calculated 

by the radar equation: 

 
𝑉𝑗𝑖 =

√𝑃𝑡𝑗𝑍𝑖𝜆

(4𝜋)3/2 
∑

√𝜎𝑙𝐹𝑙𝑖𝐹𝑙𝑗

𝑅𝑙𝑖𝑅𝑙𝑗
𝑒𝑖𝑘0(𝑅𝑙𝑖+𝑅𝑙𝑗)

𝑙
, 

(4.23) 

where 𝑃𝑡𝑗  is the transmitted power from the 𝑗th  transmitter, 𝑍𝑖  denotes the impedance of 𝑖 th 

receiver’s antenna, 𝜆 is the wavelength, 𝑘0 is the wave number, and both 𝜆 and 𝑘0 are functions 

of freuqncy, 𝜎𝑙 is the RCS for scatterer 𝑙, 𝐹𝑙𝑖, 𝐹𝑙𝑗  are the antenna far field for scatterer 𝑙 with respect 

to 𝑗th transmitter and 𝑖th receiver , and 𝑅𝑙𝑖 , 𝑅𝑙𝑗 are the distance from 𝑙th scatterer to 𝑗th transmitter 

and 𝑖th receiver, respectively. 
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Notice that FMCW radar transmits and receives wideband and multipole-chirp signals 

during one frame of operation as depicted in Figure 4.25. In (4.23), the parameter 𝝀 and 𝒌𝟎 are 

functions of frequency and 𝑹𝒍𝒊, 𝑹𝒍𝒋 are functions of chirp (time). As a result, the received signals 

of one frame requires the calculation of (4.23) for all frequencies and chirps.  

 

Figure 4.25. The transmitted signal’s frequency as a function of time during one frame for a 

typical FMCW radar 

 A single frame of FMCW radar signals usually contain tremendous data. For example, a 

MIMO radar with range resolution of 0.3m, maximum unambiguity range of 150 m, speed 

resolution of 0.3 m/s, and maximum unambiguity speed of 80 m/s has 256 chirps in one frame, 

and 512 frequency points for each chirp. Assume the MIMO radar has three transmitters and four 

receivers, or equivalently 12 communication channels for the radar, and then the number of total 

data samples in one frame is 1,572,864 (512*256*12). In order to generate such amount of data in 

real time (< 100 ms), parallel computing with both CPU and GPU should be applied. The parallel 

computing with CPU is implemented by OpenMP library [125], and NVIDIA parallel programing 

tool CUDA [126] is utilized for GPU parallel computing. To test the performance of parallel 

computing, the radar simulation of one frame is performed for different hardware with the scene 

containing 100 scatterers. The radar setup has 12 channels, 512 frequency samples and 256 chirps. 

The computer that runs the simulation utilizing the CPU of Intel Core i7-7700 (4 cores, 3.6 GHz) 

and the GPU of Nvidia GeForce GTX 1060 (1280 cores, 1.7 GHz). The comparison of simulation 
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time for the one frame simulation between different hardware is shown in Table 4 - 6. It is shown 

that compared to single core CPU, parallel computing with GPU is about 60 times faster and able 

to be run in real time (< 100 ms) with an ordinary GPU for a PC. 

Table 4 - 6. Comparison of the simulation time for different hardware 

 Single core, CPU Four cores, CPU 
GPU (double 

precision) 

GPU (single 

precision) 

Simulation time 5.8 s 1.5 s 270 ms 94 ms 

 

The GPU-based radar response simulation module has been developed and referred as 

Michigan Automotive Radar Scene Simulator (MARSS). It can be run as a standalone program 

with given traffic scene information or it can be integrated into Unreal Engine 4 (UE4) as part of 

the real-time autonomous driving simulation as well. In both simulation environment it will 

generate the same results, so in this dissertation we just show the results in UE4 as examples. One 

example of the simulation process is depicted in Figure 4.26. In this example, the simulation is set 

to operate every 100 ms. When the unreal Engine starts, it will load the MARSS dynamic link 

library (DLL) and other libraries and initialize the solver. During the radar simulation, it will first 

read ground truth data from the traffic scene in UE, and then convert the traffic scene into a 

plurality of scatterers, and afterwards calculate the radar response for all the scatterers. It provides 

options to export the radar response data for external signal processing as well. In the next step, 

the simulated data will be put into the signal processing module, which will output the positions, 

speeds and angles of all detected targets. The signal processing module will be our future work.  

Figure 4.27 shows an example of traffic scene for radar signal simulation in UE4. The radar 

has the same setup as described before (512 frequency points, 256 chirps, 12 channels), and there 

are 4 vehicles in the traffic scene. The shadowing effect is considered in the simulation, which 

means the scatterers of one target blocked by others will be excluded in the simulation.   
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Figure 4.26. The flow chart of radar response simulation for multiple radars with Unreal 

Engine 4 

 

Figure 4.27. The example of a static traffic scene built in Unreal Engine 4 
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(a)                                                                                (b) 

  

(c)                                                                        (d) 

Figure 4.28. (a) The received power in frequency domain for one channel and one chirp, (b) The 

received power as a function of range (time domain response after Fourier transform), (c) the 

range-Doppler image (2D Fourier transform to the 256 chirps, 512 frequencies per chirp data) 

and (d) 2D radar image for the traffic scene (after angle of arrival estimation) 

 

The simulated radar response and radar images after signal processing are displayed in 

Figure 4.28. The received power of one channel and one chirp as a function of frequency is shown 

Figure 4.28 (a). The received power is defined as |𝑉𝑗𝑖|
2
/𝑍𝑖, and 𝑉𝑗𝑖 is calculated by (4.23), 𝑍𝑖 by 
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default is 50 Ω. Figure 4.28 (b) shows the received power of one channel as a function of range. 

It is derived from the FFT of the radar response in frequency domain. It is shown that some targets 

can be detected in the scene. Combining the response of many chirps, the range-Doppler image is 

given in Figure 4.28 (c). The last task is to find the angle of arrival of targets. The range-Doppler 

images are generated for all 12 channels, and for each cluster of the range-Doppler image, a single 

target AOA estimation algorithm is applied. The range-azimuth angle radar images then can be 

constructed and is shown in Figure 4.28 (d). 

The MARSS simulator for UE4 can also simulate the radar response for more than one 

radar and display the radar detections on the screen. Because the signal processing module is not 

covered in this thesis, the displayed detections are just the true positions of targets shown in Figure 

4.29. It shows the positions of each scatterer detected by each radar, and to have better visibility, 

the z position of scatterers are moved above the targets. It also provides the option to display the 

radial speed of detected scatterers. In this six-target and two-radar simulation example, the 

simulation time is about 130 ms per frame (with ~6 million data). 
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Figure 4.29. The display of radar detection module of MARSS in the UE4 editor, the green and 

yellow dots represent the scatterers detected by different radars. 

 

4.7   Conclusion 

In the first part of this chapter, the RCS statistical models for traffic targets including 

pedestrians, vehicles and other targets are presented, and then a real-time radar image simulation 

for real-aperture radar with Unreal Engine 4 is demonstrated. The radar statistical models are based 

on a massive databases of RCS values generated by fast wideband PO method from Chapter 2, and 

the RCS values are modeled as Weibull, Lognormal or Gamma distributions. The statistical 

features of one target is further modeled as functions of range and aspect angle and other property 

of targets, for example, the weight and height of a pedestrian. 

Radar #1 

Radar #2 
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In the second part, near and large traffic targets are represented by multi-scatterer RCS 

statistical models. In this model, targets are discretized into small scatterers with separation of 0.1 

m. The RCS of each scatterer is found to be best fitted by Gamma distribution. The multi-scatterer 

RCS statistical model enables high-fidelity real-time radar response simulation, which is referred 

as MARSS, and examples of real-time FMCW radar response simulation performing in Unreal 

engine 4 (>30 FPS) is demonstrated. 
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Chapter 5    A Fast Analytic Multiple-Sources AOA Estimation Algorithm for 

Automotive MIMO Radars 
 

5.1  Introduction 

Direction finding (DF) of wireless signals is a classical problem with a long history. The 

angle (direction) of arrival (AOA/DOA) estimation has a wide range of applications in the wireless 

communication and radar systems. For example, it can be used to improve channel quality, reduce 

jamming impact, and find the positions of signal sources or radar targets [127]. Particularly, high-

resolution multiple-signal AOA estimation with single snapshot can enhance the performance of 

multiple-input multiple-output (MIMO) automotive radars [128].  

Traditionally, many high-resolution multiple-signal AOA estimation algorithms can be 

divided into two categories: subspace based methods like MUSIC [40][41] or ESPRIT [42][130], 

and optimization based method maximum likelihood estimation (ML) [43][131][132][133]. The 

subspace methods require many snapshots to construct correlation matrix and the number of 

sources needs to be known in advance. ML performs N-dimensional optimization (N is the number 

of signals) and becomes computationally inefficient for large N. Recently, many new AOA 

estimation methods are proposed, including nulls-synthesis signal segregation method ASSIA 

[134][135] and machine learning [136]-[138] or compressed sensing [139] based approaches. 

Signal segregation method requires signal’s angular spacing is larger than the array beamwidth, 

and it also relays complicated nulls-synthesis and beam-steering process in each iteration of 

subtraction of signals, which is computationally expensive. Machine learning based methods are 

only applicable to a specific band and array arrangement, and requires large amount of data for 
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sources in different directions and with different power and noise levels for training. Because 

machine learning approach cannot be applied to the data outside the range of training data, the 

training data size increases dramatically with the number of sources, which makes it difficult to 

detect more than three sources. 

To support the real-time signal processing for highly dynamic systems like autonomous 

vehicles, a more efficient AOA estimation algorithm based on small number of or even single 

snapshot is required. In this thesis, a novel analytic iterative multiple-source AOA algorithm 

(AIMA) is proposed to meet the requirement. In this method, the AOA estimation problem is 

divided into two main tasks: (1) estimate one AOA with the prior knowledge of all other AOA; (2) 

estimate all AOA by iteratively solving Task 1. It can be shown that for a uniform linear array 

(ULA) Task 1 has analytic solutions and Task 2 converges very fast, which makes this method 

effective, efficient and practical for real-time processing. 

5.2  Signal model 

 In the classical AOA estimation signal model for a uniform linear array (ULA) as shown 

in Figure 5.1 (a), the measured signals on an 𝑀-element antenna array from 𝑁 signal sources are 

given by: 

 
𝑥 = 𝐴(𝜃)𝑠 + �⃑� , 

(5.1) 

where 𝑥  is a 𝑀 × 1  vector, 𝐴(𝜃) is the 𝑀 × 𝑁  steering matrix with 𝐴𝑖𝑗 = 𝑒𝑖𝑘𝑑𝑖 sin𝜃𝑗 , 𝑘  is the 

wavenumber, 𝑑𝑖 denotes the position of 𝑖𝑡ℎ element and 𝑑𝑖 = 𝑑𝑖 in uniform linear array (ULA) 

with array spacing 𝑑. 𝜃𝑗  is defined as angle deviated from the boresight of the antenna array for 

𝑗𝑡ℎ source, 𝑠  is a 𝑁 × 1 vector denoting the amplitude of signals from 𝑁 sources, and �⃑�  is a 𝑀 × 1 

zero-mean Gaussian random vector and denotes the noise. 
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(a)                                                                           (b) 

Figure 5.1. The coordinate system for (a) the classic signal model and (b) the MIMO radar signal 

model 

 Similar model can be derived for radar signals. The transmitters (TXs) and receivers (RXs) 

coordinate for the signal model is depicted in Figure 5.1 (b). Assuming there are 𝑀 ULA channels 

from 𝑁 major targets/scatterers, then the received signal at 𝑚𝑡ℎ channel by radar equation can be 

represented by: 

 
𝑥𝑚 =

𝜆

4𝜋
∑

𝑆𝑛𝐹𝐹𝑚𝑛
𝑡 𝐹𝐹𝑚𝑛

𝑟

𝑅𝑚𝑛
𝑡 𝑅𝑚𝑛

𝑟

𝑁

𝑛=1
𝑒𝑖𝑘(𝑅𝑚𝑛

𝑡 +𝑅𝑚𝑛
𝑟 )𝑉𝑚 + 𝑛𝑚, (5.2) 

Where 𝜆  is the wavelength at center frequency, 𝑆𝑛  is the scattering coefficient of nth target, 

𝐹𝐹𝑚𝑛
𝑡 , 𝐹𝐹𝑚𝑛

𝑟  are the transmitter and receiver antenna far field, and  |𝐹𝐹𝑚𝑛
𝑡 |2 = 𝐺𝑚𝑛

𝑡 , 𝐺𝑚𝑛
𝑡  denotes 

the gain of the transmitted antenna for 𝑚𝑡ℎ channel in the direction of the 𝑛𝑡ℎ target. 𝑅𝑚𝑛
𝑡 , 𝑅𝑚𝑛

𝑟  

denote the distance between transmitter and receiver to the 𝑛𝑡ℎ  target, respectively. 𝑉𝑚  is the 

voltage for the transmitted signal, and 𝑛𝑚 denotes the noise term for 𝑚𝑡ℎ channel. For simplicity, 

we can assume the targets locate in the far field of the radar, and the transmitter and receiver has 

the same gain. Then (5.2) can be rewritten as: 
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𝑥𝑚 ≈

𝜆

4𝜋
∑

𝑆𝑛𝐺𝑛

𝑅𝑛
2

𝑁

𝑛=1
𝑒𝑖𝑘(2𝑅𝑛+sin𝜃𝑛𝑑𝑚)𝑉𝑚 + 𝑛𝑚, (5.3) 

where 𝐺𝑛  is the antenna’s gain in the direction of the 𝑛𝑡ℎ  target, and 𝑅𝑛  denotes the distance 

between the first transmitter (TX) of radar and the 𝑛𝑡ℎ scatterer. Also 𝑑𝑚 = 𝑑𝑚𝑡
+ 𝑑𝑚𝑟 ,  where 

𝑑𝑚𝑡
 is the distance between the first TX the TX for 𝑚𝑡ℎ channel and 𝑑𝑚𝑟 is the distance between 

the first TX and the RX for the 𝑚𝑡ℎ channel. 

In matrix form, the signal model is the same as (5.1), with  

 
𝐴(𝜃) = [

𝑒𝑖𝑘𝑠𝑖𝑛𝜃1𝑑1 … 𝑒𝑖𝑘𝑠𝑖𝑛𝜃𝑁𝑑1

… … …
𝑒𝑖𝑘𝑠𝑖𝑛𝜃1𝑑𝑀 … 𝑒𝑖𝑘𝑠𝑖𝑛𝜃𝑁𝑑𝑀

] , 𝑎𝑛𝑑 𝑠 = [𝑠1, … , 𝑠𝑁]𝑇 (5.4) 

where 𝑠𝑛 =
𝜆𝑉𝑡

4𝜋

𝑆𝑛𝐺𝑛

𝑅𝑛
2 e𝑖𝑘2𝑅𝑛 . 

5.3  Analytic solution of Nth AOA for ULA 

If there is only one source, its AOA can be easily estimated from the phase difference of 

signals between antenna elements of the ULA array.  

 

sin 𝜃1
(1)

= 𝐸 [
arg (

𝑥𝑚

𝑥𝑚−1
)

𝑘𝑑
]  (5.5) 

where E[*] is the expected value, arg(
𝑥𝑚

𝑥𝑚−1
) returns the phase different of mth element and (m-1)th 

element. The next question to ask is if there are two sources, can the AOA of the second source be 

evaluated analytically if the AOA of the first source is known? To simplify the problem, the noise-

free situation is examined first. The noise-free signal 𝑥 ′ can be defined as: 

 𝑥 ′ = 𝑥 − �⃑� = 𝐴(𝜃)𝑠  (5.6) 

 In the two-source problem,  

 𝑥𝑚
′ = 𝑒𝑖𝑘𝑑𝑚sin𝜃1𝑠1 + 𝑒𝑖𝑘𝑑𝑚sin𝜃2𝑠2. (5.7) 

Assume 𝜃1 is known, and multiply the both sides of (5.7) by 𝑒−𝑖𝑘𝑑𝑚sin𝜃1, we have 
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 𝑒−𝑖𝑘𝑑𝑚sin𝜃1𝑥𝑚
′ = 𝑠1 + 𝑒𝑖𝑘𝑑𝑚(sin𝜃2−sin𝜃1)𝑠2 (5.8) 

We can eliminate 𝑠1 by subtracting the (𝑚 − 1)𝑡ℎ equation from 𝑚𝑡ℎ equation: 

 𝑒−𝑖𝑘𝑑𝑚sin𝜃1𝑥𝑚
′ − 𝑒−𝑖𝑘𝑑(𝑚−1)sin𝜃1𝑥𝑚−1

′

= (𝑒𝑖𝑘𝑑𝑚(sin𝜃2−sin𝜃1) − 𝑒𝑖𝑘𝑑(𝑚−1)(sin𝜃2−sin𝜃1))𝑠2 

(5.9) 

we can eliminate 𝑠2 and end up with 

 
𝑒𝑖𝑘𝑑(sin𝜃2−sin𝜃1) =

𝑒−𝑖𝑘𝑑 sin𝜃1𝑥𝑚
′ − 𝑥𝑚−1

′

𝑥𝑚−1
′ − 𝑒𝑖𝑘𝑑 sin𝜃1𝑥𝑚−2

′  (5.10) 

Then sin 𝜃2 can be found by 

 

sin 𝜃2 =

arg (
𝑒−𝑖𝑘𝑑 sin𝜃1𝑥𝑚

′ − 𝑥𝑚−1
′

𝑥𝑚−1
′ − 𝑒𝑖𝑘𝑑 sin𝜃1𝑥𝑚−2

′ )

𝑘𝑑
+ sin 𝜃1, 

(5.11) 

where 3 ≤ 𝑚 ≤ 𝑀. 

 

Moreover, in a ULA for any 𝑁 ∈ [2,𝑀 − 1], there exists an analytic solution such that 

sin 𝜃𝑁 can be expressed as a function of 𝜃1 to 𝜃𝑁−1. Let sin 𝜃𝑛 be 𝑇𝑛, and with some mathematic 

manipulation, the following relations can be shown: 

 
𝑒𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1) =

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)′

Γ𝑚−1,𝑁−1
(1,2,…,𝑁−1)′

,    𝑁 + 1 ≤ 𝑚 ≤ 𝑀, (5.12) 

where Γ𝑚,𝑛
(𝑙,2,3,…,𝑛)′

 can be obtained recursively: 

 

Γ𝑚,𝑛
(𝑙,2,3,…,𝑛)′

=
Γ𝑚,𝑛−1

(𝑙,2,…,𝑛−1)′

Γ𝑚,𝑛−1
(𝑛,2,…,𝑛−1)′

− 
Γ𝑚−1,𝑛−1

(𝑙,2,…,𝑛−1)′

Γ𝑚−1,𝑛−1
(𝑛,2,…,𝑛−1)′

. (5.13) 

  The initial conditions for Γ𝑚,𝑛
(𝑙,2,3,…,𝑛)′

are: 

 Γ𝑚,1
(1)′

= 𝑒−𝑖𝑘𝑑𝑚𝑇1𝑥𝑚
′ − 𝑒−𝑖𝑘𝑑(𝑚−1)𝑇1𝑥𝑚−1

′ , (5.14) 

 Γ𝑚,1
(𝑛)′

= 𝑒𝑖𝑘𝑑𝑚(𝑇𝑛−𝑇1) − 𝑒𝑖𝑘𝑑(𝑚−1)(𝑇𝑛−𝑇1), 𝑛 ≠ 1. (5.15) 
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The proof of (5.12) can be given by mathematic induction. The proof can be divided into 

three steps: 

1, prove that if there are 𝑙 signals, the follow equation is true: 

 Γ𝑚,𝑙−1
(1,2,…,𝑙−1)′

= Γ𝑚,𝑙−1
(𝑙,2,…,𝑙−1)′

𝑠𝑙, 2 ≤ 𝑙 ≤ 𝑀 − 1,   𝑙 ≤ 𝑚 ≤ 𝑀 (5.16) 

 2, prove that  

 Γ𝑚,𝑛−1
(𝑛,2,…,𝑛−1)

′

Γ𝑚−1,𝑛−1
(𝑛,2,…,𝑛−1)

′
= 𝑒𝑖(𝑘𝑑)(𝑇𝑛−𝑇𝑛−1), 2 ≤ 𝑛 ≤ 𝑀 − 1,   𝑛 + 1 ≤ 𝑚 ≤ 𝑀 (5.17) 

 3, Final step, show that 

 Γ𝑚,𝑛−1
(1,2,…,𝑛−1)

′

Γ𝑚−1,𝑛−1
(1,2,…,𝑛−1)

′
= 𝑒𝑖𝑘𝑑(𝑇𝑛−𝑇𝑛−1), 𝑛 + 1 ≤ 𝑚 ≤ 𝑀 (5.18) 

To start with, assume there are two sources with magnitude of 𝑠1 and 𝑠2 and AOA of 𝜃1 

and 𝜃2. From (5.5), we have: 

 𝑥𝑚
′ = 𝑒𝑖𝑘𝑑𝑚𝑇1𝑠1 + 𝑒𝑖𝑘𝑑𝑚𝑇2𝑠2, 1 ≤ 𝑚 ≤ 𝑀 (5.19) 

By eliminating 𝑠1 from the equations, the following relations can be obtained: 

 𝑒−𝑖𝑘𝑑𝑚𝑇1𝑥2 − 𝑒−𝑖𝑘𝑑𝑚−1𝑇1𝑥1 = (𝑒𝑖𝑘𝑑𝑚(𝑇2−𝑇1) − 𝑒𝑖𝑘𝑑𝑚−1(𝑇2−𝑇1))𝑠2, 2 ≤ 𝑚 ≤ 𝑀 (5.20) 

 

(5.14) shows the initial condition of step 1 is true, which is 𝑙 = 2 case, and 

 Γ𝑚,1
(1) ′

= 𝑒−𝑖𝑘𝑑𝑚𝑇1𝑥2 − 𝑒−𝑖𝑘𝑑𝑚−1𝑇1𝑥1,  

Γ𝑚,1
(2) ′

= (𝑒𝑖𝑘𝑑𝑚(𝑇2−𝑇1) − 𝑒𝑖𝑘𝑑𝑚−1(𝑇2−𝑇1)) 

(5.21) 

Suppose when 𝑙 = 𝑝, step 1 is true, which is, 

 Γ𝑚,𝑝−1
(1,2,…,𝑝−1)′

= Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

𝑠𝑝, 2 ≤ 𝑝 ≤ 𝑀 − 1,   𝑝 ≤ 𝑚 ≤ 𝑀 (5.22) 

Then if (5.10) is also true for 𝑙 = 𝑝 + 1, it is true for all 𝑙 ≥ 2 by mathematic indcution. 
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When 𝑙 = 𝑝 + 1, a new signal with magnitude of 𝑠𝑝+1 and AOA of 𝜃𝑝+1 is added to the 

system. Because of the linearity of the system, the following condition holds: 

 Γ𝑚,𝑝−1
(1,2,…,𝑝−1)′

= Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

𝑠𝑝 + Γ𝑚,𝑝−1
(𝑝+1,2,…,𝑝−1)′

𝑠𝑝+1, 𝑝 ≤ 𝑚 ≤ 𝑀  (5.23) 

 One can validate the (5.17) by considering 𝑠𝑝 = 0, then there are still 𝑝 sources in the 

system, and (5.17) is reduced to (5.16) by replacing Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

𝑠𝑝 with Γ𝑚,𝑝−1
(𝑝+1,2,…,𝑝−1)′

𝑠𝑝+1. In 

(5.17), both sides are divided by Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

: 

 Γ𝑚,𝑝−1
(1,2,…,𝑝−1)′

Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

= 𝑠𝑝 +
Γ𝑚,𝑝−1

(𝑝+1,2,…,𝑝−1)′

Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

𝑠𝑝+1, 𝑝 ≤ 𝑚 ≤ 𝑀  (5.24) 

(5.18) is the 𝑚𝑡ℎ  equation, and subtract the 𝑚𝑡ℎ  equation by  (𝑚 − 1)𝑡ℎ  equation for 𝑝 + 1 ≤

𝑚 ≤ 𝑀. It leads to: 

 Γ𝑚,𝑝−1
(1,2,…,𝑝−1)′

Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

−
Γ𝑚−1,𝑝−1

(1,2,…,𝑝−1)′

Γ𝑚−1,𝑝−1
(𝑝,2,…,𝑝−1)′

= (
Γ𝑚,𝑝−1

(𝑝+1,2,…,𝑝−1)′

Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′

−
Γ𝑚−1,𝑝−1

(𝑝+1,2,…,𝑝−1)′

Γ𝑚−1,𝑝−1
(𝑝,2,…,𝑝−1)′

)𝑠𝑝+1,   (5.25) 

Recall the recursive relation given in (5.7), and (5.19) becomes: 

 Γ𝑚,𝑝
(1,2,…,𝑝)′

= Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)′

𝑠𝑝+1,    𝑝 + 1 ≤ 𝑚 ≤ 𝑀 (5.26) 

Then the step 1 is true for all  2 ≤ 𝑙 ≤ 𝑀 − 1. 

In step 2, the initial condition is 𝑛 = 2, and the left hand side can be expressed as: 

 Γ𝑚,1
(2)

′

Γ𝑚−1,1
(2)′

=
𝑒𝑖𝑘𝑑𝑚(𝑇2−𝑇1) − 𝑒𝑖𝑘𝑑𝑚−1(𝑇2−𝑇1)

𝑒𝑖𝑘𝑑𝑚−1(𝑇2−𝑇1) − 𝑒𝑖𝑘𝑑𝑚−2(𝑇2−𝑇1)
=

𝑒𝑖𝑘(𝑑𝑚−𝑑𝑚−1)(𝑇2−𝑇1) − 1

1 − 𝑒𝑖𝑘(−𝑑𝑚−1+𝑑𝑚−2)(𝑇2−𝑇1)
 (5.27) 

In ULA, 𝑑𝑚 − 𝑑𝑚−1 = 𝑑𝑚−1 − 𝑑𝑚−2 = 𝑑, therefore,  

 Γ𝑚,1
(2)

′

Γ𝑚−1,1
(2)′

=
𝑒𝑖𝑘(𝑑)(𝑇2−𝑇1) − 1

1 − 𝑒𝑖𝑘(−𝑑)(𝑇2−𝑇1)
= 𝑒𝑖𝑘𝑑(𝑇2−𝑇1) (5.28) 

Thus it shows that for 𝑛 = 2, the equation in step 2 is true. 
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Suppose when 𝑛 = 𝑝 (5.11) is true: 

 Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)

′

Γ𝑚−1,𝑝−1
(𝑝,2,…,𝑝−1)

′
= 𝑒𝑖(𝑘𝑑)(𝑇𝑝−𝑇𝑝−1), 2 ≤ 𝑝 ≤ 𝑀 − 1,   𝑝 + 1 ≤ 𝑚 ≤ 𝑀 (5.29) 

When 𝑛 = 𝑝 + 1, we have 

 

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

′

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

′
=

Γ𝑚,𝑝−1
(𝑝+1,2,…,𝑝−1)′

Γ𝑚,𝑝−1
(𝑝,2,…,𝑝−1)′ − 

Γ𝑚−1,𝑝−1
(𝑝+1,2,…,𝑝−1)′

Γ𝑚−1,𝑝−1
(𝑝,2,…,𝑝−1)′

Γ𝑚−1,𝑝−1
(𝑝+1,2,…,𝑝−1)′

Γ𝑚−1,𝑝−1
(𝑝,2,…,𝑝−1)′ − 

Γ𝑚−2,𝑝−1
(𝑝+1,2,…,𝑝−1)′

Γ𝑚−2,𝑝−1
(𝑝,2,…,𝑝−1)′

=

𝑒𝑖𝑘𝑑(𝑇𝑝+1−𝑇𝑝−1)

𝑒𝑖𝑘𝑑(𝑇𝑝−𝑇𝑝−1) − 1

1 −
𝑒𝑖𝑘𝑑(−𝑇𝑝+1+𝑇𝑝−1)

𝑒𝑖𝑘𝑑(−𝑇𝑝+𝑇𝑝−1)

=
𝑒𝑖𝑘𝑑(𝑇𝑝+1−𝑇𝑝) − 1

1 − 𝑒𝑖𝑘𝑑(𝑇𝑝−𝑇𝑝+1)
= 𝑒𝑖𝑘𝑑(𝑇𝑝+1−𝑇𝑝) 

(5.30) 

This is the same form as (5.11) in step 2, therefore, the statement of step 2 is proved. 

The proof of statement in step 3 is relatively easy: use the equation (5.10) in step 1, and divide the 

𝑚𝑡ℎ equation by  (𝑚 − 1)𝑡ℎ equation of (5.10): 

 Γ𝑚,𝑙−1
(1,2,…,𝑙−1)′

Γ𝑚−1,𝑙−1
(1,2,…,𝑙−1)′

=
Γ𝑚,𝑙−1

(𝑙,2,…,𝑙−1)′

Γ𝑚−1,𝑙−1
(𝑙,2,…,𝑙−1)′

= 𝑒𝑖𝑘𝑑(𝑇𝑙−𝑇𝑙−1),   𝑙 + 1 ≤ 𝑚 ≤ 𝑀 (5.31) 

 It will be interesting to check the equations in the three steps when the array is a nonuniform 

linear array. It can be observed that equations in step 1 and 3 can be applied to the nonuniform 

linear array, but (5.11) in step 2, the left hand side cannot be simplified into the right hand side.Let 

the left hand side of (5.11) to be Λ𝑚,𝑛−1
(𝑛,2,…,𝑛−1)

, and from the recursive relation (5.7), we have: 

 

Λ𝑚,𝑛−1
(𝑛,2,…,𝑛−1)

=
Γ𝑚,𝑛−1

(𝑛,2,…,𝑛−1)
′

Γ𝑚−1,𝑛−1
(𝑛,2,…,𝑛−1)

′
=

Γ𝑚,𝑛−2
(𝑛,2,…,𝑛−2)′

Γ𝑚,𝑛−2
(𝑛−1,2,…,𝑛−2)′ − 

Γ𝑚−1,𝑛−2
(𝑛,2,…,𝑛−2)′

Γ𝑚−1,𝑛−2
(𝑛−1,2,…,𝑛−2)′

Γ𝑚−1,𝑛−2
(𝑛,2,…,𝑛−2)′

Γ𝑚−1,𝑛−2
(𝑛−1,2,…,𝑛−2)′ − 

Γ𝑚−2,𝑛−2
(𝑛,2,…,𝑛−2)′

Γ𝑚−2,𝑛−2
(𝑛−1,2,…,𝑛−2)′

=

Λ𝑚,𝑛−2
(𝑛,2,…,𝑛−2)

Λ𝑚,𝑛−2
(𝑛−1,2,…,𝑛−2) − 1

1 −
Λ𝑚−1,𝑛−2

(𝑛−1,2,…,𝑛−2)

Λ𝑚−1,𝑛−2
(𝑛,2,…,𝑛−2)

 (5.32) 
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The initial condition of Λ𝑚,𝑛−1
(𝑙,2,…,𝑛−1)

 is when 𝑛 = 2, which is Λ𝑚,1
(𝑙)

, and it is with the same 

form as (5.21): 

 
Λ𝑚,1

(𝑙)
=

𝑒𝑖𝑘(𝑑𝑚−𝑑𝑚−1)(𝑇𝑙−𝑇1) − 1

1 − 𝑒𝑖𝑘(−𝑑𝑚−1+𝑑𝑚−2)(𝑇𝑙−𝑇1)
 (5.33) 

 Thereby, for nonuniform linear array, Λ𝑚,𝑛−1
(𝑛,2,…,𝑛−1)

 can be represented as a function of 

(𝑇1, … , 𝑇𝑛), and 𝑇𝑛 is the only unknown. Notes in (5.25), we have: 

 Γ𝑚,𝑛−1
(1,2,…,𝑛−1)′

Γ𝑚−1,𝑛−1
(1,2,…,𝑛−1)′

=
Γ𝑚,𝑛−1

(𝑛,2,…,𝑛−1)
′

Γ𝑚−1,𝑛−1
(𝑛,2,…,𝑛−1)

′
= Λ𝑚,𝑛−1

(𝑛,2,…,𝑛−1)
 (5.34) 

 The left hand side can be derived from 𝜃1, … 𝜃𝑁−1 and 𝑥 . Hence, the only unknown 𝑇𝑛 can 

be calculated from this sophisticated equation (5.28). Because it is a complicated nonlinear 

equation, an analytic solution is hard to find while it can always be solved numerically. Therefore, 

for nonuniform linear array, the proposed method can still find the AOA of last source but not 

efficiently. 

Notice that the analytic solutions are for ULA with noise-free case, and they are derived 

from the noise-free signal 𝑥′, not the measured signal 𝑥. To deal with the noise, we can start from 

the initial condition of Γ𝑚,𝑙−1
(𝑙,2,…,𝑙−1)′

 in (5.8) and (5.9). (5.8) can be rewritten as: 

 Γ𝑚,1
(1)′

= 𝑒−𝑖𝑘𝑑𝑚𝑇1𝑥𝑚 − 𝑒−𝑖𝑘𝑑(𝑚−1)𝑇1𝑥𝑚−1 + 𝑛𝑚
(1)

, (5.35) 

where 𝑛𝑚
(1)

 is a zero mean Gaussian noise, 

 𝑛𝑚
(1)

= −𝑒−𝑖𝑘𝑑𝑚𝑇1𝑛𝑚 + 𝑒−𝑖𝑘𝑑(𝑚−1)𝑇1𝑛𝑚−1 (5.36) 

In (5.9), Γ𝑚,1
(𝑛)′

 has no noise term. It can be shown that Γ𝑚,𝑛
(𝑙,2,…,𝑛)′

 doesn’t contain the noise 

term if 𝑙 ≠ 1, and Γ𝑚,𝑛
(1,2,…,𝑛)′

= Γ𝑚,𝑛
(1,2,…,𝑛)

+ 𝑛𝑚
(1,2,…,𝑛)

. Where Γ𝑚,𝑛
(1,2,…,𝑛)

 is the same form of Γ𝑚,𝑛
(1,2,…,𝑛)′

 

except substituting 𝑥𝑚
′  by 𝑥𝑚, and 𝑛𝑚

(1,2,…,𝑛)
 denotes a zero mean Gaussian noise. This can also be 
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proved by mathematic induction from the recursive relations (5.7). The initial condition of the 

statement is true as given in (5.29) and (5.30). Suppose at 𝑛 = 𝑝, it is true, which is: 

 
Γ𝑚,𝑝

(𝑙,2,…,𝑝)′
= {

Γ𝑚,𝑝
(1,2,…,𝑝)

+ 𝑛𝑚
(1,2,…,𝑝)

,   𝑙 = 1

Γ𝑚,𝑝
(𝑙,2,…,𝑝)

,                         𝑙 ≠ 1
 (5.37) 

When 𝑛 = 𝑝 + 1, and 𝑙 = 1, we have: 

 

Γ𝑚,𝑝+1
(1,2,…,𝑝+1)′

=
Γ𝑚,𝑝

(1,2,…,𝑝)′

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)′

− 
Γ𝑚−1,𝑝

(1,2,…,𝑝)′

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)′

=
Γ𝑚,𝑝

(1,2,…,𝑝)
+ 𝑛𝑚

(1,2,…,𝑝)

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

− 
Γ𝑚−1,𝑝

(1,2,…,𝑝)
+ 𝑛𝑚−1

(1,2,…,𝑝)

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

=
Γ𝑚,𝑝

(1,2,…,𝑝)

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

− 
Γ𝑚−1,𝑝

(1,2,…,𝑝)

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

+
𝑛𝑚

(1,2,…,𝑝)

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

− 
𝑛𝑚−1

(1,2,…,𝑝)

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

= Γ𝑚,𝑝+1
(1,2,…,𝑝+1)

+ 𝑛𝑚
(1,2,…,𝑝+1)

, 

(5.38) 

where 𝑛𝑚
(1,2,…,𝑝+1)

 follows the recursive relation and is a zero mean Gaussian noise, 

 
𝑛𝑚

(1,2,…,𝑝+1)
=

𝑛𝑚
(1,2,…,𝑝)

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

− 
𝑛𝑚−1

(1,2,…,𝑝)

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

 (5.39) 

If 𝑙 ≠ 1, the 𝑛 = 𝑝 + 1 case is simple to derive: 

 

Γ𝑚,𝑝+1
(𝑙,2,…,𝑝+1)′

=
Γ𝑚,𝑝

(𝑙,2,…,𝑝)′

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)′

− 
Γ𝑚−1,𝑝

(𝑙,2,…,𝑝)′

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)′

=
Γ𝑚,𝑝

(𝑙,2,…,𝑝)

Γ𝑚,𝑝
(𝑝+1,2,…,𝑝)

− 
Γ𝑚−1,𝑝

(𝑙,2,…,𝑝)

Γ𝑚−1,𝑝
(𝑝+1,2,…,𝑝)

=

= Γ𝑚,𝑝+1
(𝑙,2,…,𝑝+1)

. 

(5.40) 

Therefore, the statement (5.31) is proved. Next, (5.6) can be rewritten as: 

 
𝑒𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1) =

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

+ 𝑛𝑚
(1,2,…,𝑁)

Γ𝑚−1,𝑁−1
(1,2,…,𝑁−1)

+ 𝑛𝑚−1
(1,2,…,𝑁)

 (5.41) 
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In (5.35), the term Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

 can be analytically obtained from the recursive relation 

given by (5.7) with the known variable 𝜃1, … 𝜃𝑁−1 and 𝑥 . Moreover, (5.35) can be rearranged as a 

linear equation: 

 Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

= 𝑒𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1)Γ𝑚−1,𝑁−1
(1,2,…,𝑁−1)

+ 𝑛𝑚−1
(1,2,…,𝑁)′

, 𝑁 + 1 ≤ 𝑚 ≤ 𝑀 (5.42) 

where 𝑛𝑚−1
(1,2,…,𝑁)′

= 𝑒𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1)𝑛𝑚−1
(1,2,…,𝑁)

− 𝑛𝑚
(1,2,…,𝑁)

 is also a zero mean Gaussian noise. There 

are 𝐾(𝑀 − 𝑁) equations of (5.36) for 𝐾 snapshot angle of arrival. Then the slope term can be 

estimated by linear regression: 

 [𝑏0, 𝑒
𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1)] = (𝑋′𝑋)−1𝑋′𝑌 (5.43) 

where 𝑏0 is the offset term in this linear regression problem, and 𝑋 and 𝑌 are given by, 

 
𝑋 = [

1 1 … 1

Γ𝑁,𝑁−1
(1,2,…,𝑁−1)

Γ𝑁+1,𝑁−1
(1,2,…,𝑁−1)

… Γ𝑀−1,𝑁−1
(1,2,…,𝑁−1)]

𝑇

 (5.44) 

 𝑌 = [Γ𝑁+1,𝑁−1
(1,2,…,𝑁−1)

Γ𝑁+2,𝑁−1
(1,2,…,𝑁−1)

… Γ𝑀,𝑁−1
(1,2,…,𝑁−1)]

𝑇
 (5.45) 

After solving (5.37), 𝑇𝑁 can be obtained from  𝑒𝑖𝑘𝑑(𝑇𝑁−𝑇𝑁−1) as well, and finally, 𝜃𝑁 can 

be derived from 𝑇𝑁. 

 Another way to interpret (5.35) is  

 Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

+ 𝑛𝑚
(1,2,…,𝑁)

= 𝑎𝑒𝑖𝑘𝑚𝑑(𝑇𝑁−𝑇𝑁−1), 𝑁 + 1 ≤ 𝑚 ≤ 𝑀 (5.46) 

where 𝑎 is some constant. We can take logarithm to both sides of (5.40): 

 
log Γ𝑚,𝑁−1

(1,2,…,𝑁−1)
+ log(1 +

𝑛𝑚
(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

) = log 𝑎 + 𝑖𝑘𝑚𝑑(𝑇𝑁 − 𝑇𝑁−1) + 2𝑖𝑛𝜋, 𝑛

∈ ℤ 

(5.47) 

If |
𝑛𝑚

(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)| ≪ 1, log (1 +

𝑛𝑚
(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)) ≈

𝑛𝑚
(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1), and then (5.38) can be rewritten as: 
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log Γ𝑚,𝑁−1

(1,2,…,𝑁−1)
= log 𝑎 + 𝑖𝑘𝑚𝑑(𝑇𝑁 − 𝑇𝑁−1) −

𝑛𝑚
(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

+ 𝑖2𝑙𝜋, 𝑙 ∈ ℤ (5.48) 

To evaluate 𝑇𝑁 − 𝑇𝑁−1, we just need the imaginary part of (5.42): 

 
arg Γ𝑚,𝑁−1

(1,2,…,𝑁−1)
= arg 𝑎 + 𝑘𝑚𝑑(𝑇𝑁 − 𝑇𝑁−1) − imag(

𝑛𝑚
(1,2,…,𝑁)

Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

) + 2𝑙𝜋, 𝑙 ∈ ℤ (5.49) 

Then 𝑇𝑁 − 𝑇𝑁−1 can be found through linear regression as described in (5.37). 

Notice that (5.42) contains the phase ambiguity term 𝑖2𝑙𝜋, which may be a problem in 

claculation. To solve this issue, we can first examine the phase difference between adjacent 

element (e.g. 𝑚 and 𝑚 − 1 term) of Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

′ . For a ULA with element spacing 𝜆/2, the phase 

difference of Γ𝑚,𝑁−1
(1,2,…,𝑁−1)

′  and Γ𝑚−1,𝑁−1
(1,2,…,𝑁−1)

′  is 𝑘𝑑(𝑇𝑁 − 𝑇𝑁−1) = 𝜋(𝑇𝑁 − 𝑇𝑁−1) . In the ULA 

assumption, the targets can be detected only on one side of the linear array, which means −90° <

𝜃𝑁 < 90° . Therefore, the phase difference is between 𝜋(−1 − 𝑇𝑁−1)  and 𝜋(1 − 𝑇𝑁−1) . In 

practical situation, due to the limitation of antenna’s beamwidth, the angular range of the detectable 

target is smaller than 180°, and thus can further limit the potential phase difference. This can help 

in resolving the phase ambiguity if the phase noise is not too large. (5.50) is preferable compared 

to (5.36) because it is less sensitive to the noise. 

5.4  Iterative AOA estimation of all sources 

The ultimate AOA estimation task to find the AOA of all sources without piror knowlege 

of any of them in a single snapshot. In this section, an algorithm that iteratively solving the task 

described in Sec. 5.3 is proposed to solve this problem effectively and efficiently. The detail of the 

algorithm is described in Algorithm 5.1. In the beginning of the algorithm, assume there is only 

one source. Its AOA can be simply estimated based on the antennas elements’ phase differences. 

The sources’s magnitude 𝑠1
(1)

 can be estimated by: 
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𝑠1
(1)

= (𝐴(𝜃1
(1)

))
+

𝑥   (5.51) 

where (𝐴)+ is the pseudo inverse of A. Then the estimated received signals denotes as 𝑥 ′(1)
 can 

be obtained by 𝑥 ′(1)
= 𝐴(𝜃1

(1)
)𝑠1

(1)
. Its corresponding root-mean-square error is given by: 

 

𝑟𝑚𝑠 (𝑥 − 𝑥 ′(1)
) = √∑ (𝑥𝑖 − 𝑥′

𝑖
(1)

)
2𝑀

𝑖=1
  (5.52) 

Next step, assume there are two sources. The AOA of the second source is estimated from 

the analytic approach described by 5.3 with the AOA estimated from step 1. Then the AOA of the 

first source is evaluated from the same approach with the previously estimated AOA of the second 

source. This process will continue until convergence. Then the second order estimated signal 𝑥 ′(2)
 

can be evaluated and so is the 𝑟𝑚𝑠 (𝑥 − 𝑥 ′(2)
). Comparing the RMSE of 𝑥 ′(2)

 and 𝑥 ′(1)
, if they 

are very close, then there might be just one sources and the algorithm will stop. Otherwise the 

algorithm will continue until the close RMSE criterion is met. 

Algorithm 5.1 Iterative AOA estimation 

Input: 𝑥 , d, M          Output: 𝜃 , 𝑠  
Initial condition: N=1 (1 source) 

  1: estimate 𝜃1
(1)

, 𝑠1
(1)

 from the antennas’ phase differences 

  2: while true    

  3:      N=N+1; 𝜃 (𝑁) = 𝜃 (𝑁−1); 𝜃𝑁
(𝑁)

= 0; 𝑥 ′(𝑁)
= 𝐴(𝜃(𝑁)) (𝐴(𝜃(𝑁)))

+

𝑥  

  4:      while not converge or not reach maximum iteration 

  5:           𝑥 ′
𝑜𝑙𝑑
(𝑁)

= 𝑥 ′(𝑁)
, 𝜃 𝑜𝑙𝑑

(𝑁)
= 𝜃 (𝑁) 

  5:           for i = N to 1 do 

  6:                estimate 𝜃𝑖
(𝑁)

 from the rest 𝜃𝑗
(𝑁)

, 𝑗 ≠ 𝑖  

  7:           end for 

  8:           𝑥 ′(𝑁)
= 𝐴(𝜃(𝑁)) (𝐴(𝜃(𝑁)))

+

𝑥  

  9:           if (rms(𝑥 − 𝑥 ′(𝑁)
) > rms(𝑥 − 𝑥 ′

𝑜𝑙𝑑
(𝑁)

)-𝛿) then 

10:                𝜃 (𝑁) = 𝜃 𝑜𝑙𝑑
(𝑁)

; break 

11:           end if 
12:       end while 
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13:       𝑠 (𝑁) = (𝐴(𝜃(𝑁)))
+

𝑥 ;  𝑥 ′(𝑁)
= 𝐴(𝜃(𝑁))𝑠  

14:       if (rms(𝑥 − 𝑥 ′(𝑁)
) > rms(𝑥 − 𝑥 ′(𝑁−1)

) -𝛿) then 

15:            𝜃 = 𝜃 (𝑁−1); 𝑠 = 𝑠 (𝑁−1); break 
16:       end if  
17: end while 

 

 

5.5  Simulation Results 

To demonstrate how the proposed algorithm works and its effectiveness, a three-source 

AOA estimation example is shown. The basic idea of the iterative approach is to find the AOA of 

the strongest source first, then find that of the second strongest one and so on. Therefore, the most 

challenge scenario is when all sources have the same amplitude. In one example, we examine a 

three-source AOA estimation with a 10-element half-wavelength spacing ULA. The three sources 

have the same amplitude and different AOA: 𝑠1 = 𝑠2 = 𝑠3 = 1, and 𝜃1 = 5.1°, 𝜃2 = 10.4°, 𝜃3 =

−4.2°. The signal to noise ratio (SNR) is 30 dB and the analysis are based on just one snapshot. 

The iteration steps of the algorithm are shown in Figure 5.2. In the beginning, the algorithm 

assumes there is only one source, and it detects one AOA of 5.4°. Then it assumes there are two 

sources and in the second iteration, it estimates the two AOA are -4.4° and 11.6°. It converges in 

two iterations and then it adds one more source to the problem. After four iterations, the 

convergence condition is met and it gives the estimation of three AOA: -4.31°, 4.90° and 10.34°. 

Next, it further adds one source to the estimation problem, but the RMSE of (𝑥 − 𝑥 ′) doesn’t drop 

significantly, therefore, the algorithm concludes there are only three sources and their estimated 

AOA are given previously. It shows that the proposed algorithm can quickly estimate the number 

of sources and the corresponding AOA. The RMS error of the AOA estimation is 0.14°, which 

shows very good performance with high SNR. 
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Figure 5.2. The estimated AOA and RMS error as a function of iterations of AIMA for a three-

source problem 

In some case that there existing two close sources with identical magnitude, the algorithm 

will converges to one sources with AOA to be in the center of the two sources. To solve this 

problem, a very small coefficient can be added to all the preknown AOAs. For example, if there 

are two identical sources with AOA of 5° and 6°, and the SNR is 40 dB. For a 10-element ULA, 

the first estimation of AOA will be about 5.5°, if there is no perturbation, it is likely the second 

estimation angle is also 5.5° and then the algorithm will conclude that there is only one source 

locates at 5.5°. In this example, 0.01° is added to the preknown angle every time performing the 

analytic method for AOA estimation, and the estimated AOA and the corresponding RMSE of 

𝑥 ′(𝑙) is depicted in Figure 5.3. It is shown that in 4 iterations the angles converge to 4.97° and 

5.96°, respectively.  
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Figure 5.3. The estimated AOA and RMS error as a function of iterations of AIMA for two close 

targets 

 The proposed method is compared with some classical AOA estimation algorithms 

including MUSIC-SS [41], maximum liklihood method with alternating projection (ML-AP) [133], 

and ASSIA [134].  In the first example, assume there are three equal-amplitude sources with 

angular spacing larger than the array beamwidth. A 10-element ULA with half wavelength spacing 

is used to estimate AOA. The half power beam width (HPBW) of this array can be approximately 

given by 
70𝜆

𝑑
= 14°. The AOA and source amplitudes are given as: 𝜃1 = 5.5°, 𝜃2 = 30.5°, 𝜃3 =

50°, 𝑠1 = 𝑠2 = 𝑠3 = 1. Because MUSIC-SS requires at least M snapshot to evaluate covariance 

matrix, in this example, 10 snapshots are used for each algorithm. MUSIC-SS, ML-AP and ASSIA 

estimate the AOA on grid, and in this example, each of them has angular step of 0.5°, and the 

number of sources are given in MUSIC-SS and ML-AP algorithm. To evaluate the performance 

of AOA estimation, the average RMS-error of the three AOA as a function of SNR is shown in 

Figure 5.4. Figure 5.5 shows the normalized time performance of the four different algorithms. 

The average RMS-error of AOA for one SNR value is generated by 200 Monte Carlo simulations. 
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It shows that AIMA has the second-best accuracy to estimate the AOA for SNR < 20 dB, and its 

average RMSE of all three AOA is less than 0.3° for SNR > 10 dB in this three-source AOA 

estimation problem. Compared to ML-AP algorithm, AIMA has slightly larger RMSE of AOA but 

is about 100 times faster. It is also twice faster than MUSIC-SS algorithm in this problem.  

 

Figure 5.4. The average RMSE of the three estimated AOA (𝜃1 = 5.5°, 𝜃2 = 30.5°, 𝜃3 = 50°) 

as a function of SNR for different algorithms with 10 snapshots 

 

Figure 5.5. The time performance comparison of different algorithms for the three AOA 

estimation problem (𝜃1 = 5.5°, 𝜃2 = 30.5°, 𝜃3 = 50°)  
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 In another example, a two-source problem with close angular spacing is used to compare 

the performances of different AOA estimation algorithms mentioned previously. In this problem, 

the angular spacing is smaller than the antenna beamwidth: 𝜃1 = 5.2°, 𝜃2 = 10.3°. It is noted that 

these two angles are off-grid for MUSIC-SS, ML-AP and ASSIA. The two sources are assumed 

to be equal amplitude. A 10-element ULA with half wavelength spacing is used in this example as 

well. The average RMSE of the two estimated AOA as a function of SNR for different algorithms 

is depicted in Figure 5.6, and the simulation time comparison for different algorithm is shown in 

Figure 5.7. It is found that in this close-source AOA problem, AIMA has the second best angular 

RMSE performance when SNR < 27 dB and has the smallest RMSE when SNR > 35 dB. It is still 

about 100 time faster than the ML-AP algorithm and about 10 times faster than ASSIA and 3 times 

faster than MUSIC-SS.  

 Besides the preferable AOA estimation performance and efficiency, AIMA possesses other 

advantages like no requirement of prior knowledge of the number of sources, and can be applied 

in single snapshot problem compared to many classic AOA estimation algorithm.  

 

Figure 5.6. The average RMSE of the two close AOA (𝜃1 = 5.2°, 𝜃2 = 10.3°) as a function of 

SNR for different algorithms with 10 snapshots 
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Figure 5.7. The time performance comparison of different algorithms for the two AOA 

estimation problem (𝜃1 = 5.2°, 𝜃2 = 10.3°)  

 Among the four AOA estimation algorithms, AIMA and ASSIA has the advantage of no 

need to know the number of sources, and the lack of the prior knowledge of number of sources is 

very common in radar and communication applications. MUSIC algorithm will fail if it predicts a 

wrong number of sources especially for coherent signals. Regarding ML-AP, if the number of 

source is not known, it can estimate the number successively. For example, assume the number of 

source is N (start from N=1), and it  can test the RMSE performance of order N and order N+1, if 

they are close, then it may conclude there are N sources, otherwise it will continue the process to 

N+2. Because the computational complexity increase dramatically with the number of sources, 

this process is even more time-consuming than the ordinary ML-AP with number of sources 

known. Figure 5.8 (a) demonstrates the normalized simulation time for the three algorithms (ML-

AP, ASSIA and AIMA) with no prior knowledge of number of sources with 1000 Monte Carlo 

simulations for a three source problem. It shows that in this condition AIMA is about 200 times 

faster than ML-AP.  
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In addition, ASSIA and ML-AP are grid-based algorithm, which means they estimate the 

AOA with discretized angles. For off-grid AOA estimation, both algorithms could estimate wrong 

number of sources as additional weak sources may be included to the estimation to compensate 

the error from off-grid estimation. The over estimation of source number will lead to more 

processing time as well. Such issue doesn’t exist for AIMA as AIMA can estimates the AOA 

arbitrarily off grid. The time performance comparison of the three algorithms in an off-grid AOA 

estimation problem is shown in Figure 5.8(b). The simulation time is summarized from 1000 

Monte Carlo simulations and normalized. It shows that in this off-grid problem, AIMA is about 

400 times faster than ML-AP and more than 20 times faster than ASSIA. 

 

(a)                                                                      (b) 

Figure 5.8. The normalized time performance comparison for different algorithms without 

knowing the number of sources in (a) a three AOA (𝜃1 = 5.5°, 𝜃2 = 30.5°, 𝜃3 = 50°) problem 

and (b) a two AOA (𝜃1 = 5.2°, 𝜃2 = 10.3°) estimation problem. 

Besides the SNR and the angular space between signals, the performance of AOA 

estimation is limited by the number of array elements and the array spacing as well. Theoretically, 

for an array with M elements, the proposed algorithm can be applied to find (M - 1) sources because 
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each iteration of estimation 𝑁𝑡ℎ angle only requires (𝑁 + 1) equations. However, only using 𝑁 +

1 elements may not get the AOA correctly as there are in total 2𝑁 unknowns (each source has two 

unknowns: amplitude and AOA), and requires at least  2𝑁 equations to solve it. More elements 

will lead to more accurate results particularly in the single snapshot problem because adding 

equations can provide better estimation under noise condition. 

To demonstrate how the AOA estimation performance is impacted by the number of array 

elements for the proposed algorithm, the RMSE of the AOA estimated with AIMA is studied for 

different numbers of array elements with the same array spacing (λ/2). The AOA estimation 

performance for a two-source estimation problem (𝜃1 = −15°, 𝜃2 = 0°, SNR1 = 30dB, SNR2 =

20dB) with a single snapshot is shown in  Figure 5.9 (a), and that for a three-source estimation 

problem (𝜃1 = −15°, 𝜃2 = 0°, 𝜃3 = 10°, SNR1 = 30dB, SNR2 = 25dB, SNR3 = 20dB) with a 

single snapshot is depicted in Figure 5.9. (b). Each RMSE of AOA is obtained from more than 500 

Monte Carlo simulations. It shows that for the two-source problem the RMSE in estimated angle 

is less than 1 dB when there are more than 6 elements, and for the three-source problem, the RMSE 

is less than 1 dB when there are more than 8 elements. Therefore, it is recommended to have 2𝑁 +

2 or more array elements in this half wavelength spacing ULA to apply the AIMA for estimation 

of AOA. 
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(a)                                                                      (b) 

Figure 5.9. The RMSE of AOA estimated with AIMA as a function of the number of array 

elements of a half-wavelength spacing ULA for (a) a two AOA (𝜃1 = −15°, 𝜃2 = 0°) problem 

and (b) a three AOA (𝜃1 = −15°, 𝜃2 = 0°, 𝜃3 = 10°) estimation problem. 

When the number of elements is fixed, the spacing between array elements determines the 

aperture size of the antenna array. Generally, the larger the aperture size is, the better the antenna 

array can recognize the sources. In this example, this idea is examined for AIMA algorithm. Figure 

5.10 (a) shows the simulated RMSE of the estimated AOA as a function of array spacing of a 6-

element ULA in a two-source problem and that of a 8-element ULA for a three-source problem is 

depicted in Figure 5.10 (b). Each RMSE of the angular spacing is summarized from 500 Monte 

Carlo simulations. It shows that wide antenna spacing can largely improve the performance of 

AOA estimation. However, if the spacing is too large, for example, larger than one wavelength, it 

may introduce grating lobes and causing false detection on some directions. 
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(a)                                                                      (b) 

Figure 5.10. The RMSE of AOA estimated with AIMA as a function of array spacing of (a) a 6-

elment ULA for a two AOA (θ_1=-15°, θ_2=0°) problem and (b) a 8-element ULA for a three 

AOA (θ_1=-15°, θ_2=0°, θ_3=10°) estimation problem. 

 In the last simulation example, the proposed AOA estimation algorithm AIMA is applied 

to a radar simulation scenario. The radar system has 12 channels forming a ULA with separation 

of half wavelength. It operates at 77 GHz as center frequency with bandwidth of 500 MHz. It is a 

FMCW radar, and there are 512 frequency samples in each chirp, and one frame contains 256 

chirps. There are 3 pairs of point targets with similar RCS, range and velocity in the scene, and 

their positions and velocities are given in Figure 5.11 (a). Because each pair of the targets has the 

same range and velocity, the six targets turn out to be three points shown in a range-Doppler map 

of each channel as depicted in Figure 5.11 (b). Some traditional AOA estimation algorithms may 

fail at this point as they may conclude there are only three targets. In Figure 5.11 (b), the power is 

normalized with the maximum value as 0 dB, and the SNR is about 30 dB. There are 12 range-

Doppler maps for all 12 channels, and therefore for each peak in the range-Doppler maps, there 

are 12 signals corresponding to each channel. These signals are processed with AIMA algorithm, 
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and the estimated position is plotted in Figure 5.11 (c). It shows a very good agreement between 

the true position and estimated position of the six targets. 

 

(a)                                               (b)                                                 (c) 

Figure 5.11. (a) The positions and velocities for the six targets for the radar simulation problem, 

(b) the normalized range-Doppler map of one channel for the six targets and (c) the comparison 

between the retrieved positions by AIMA and the true positions of targets. 

5.6  Measurement Results 

To validate the effectiveness of the proposed algorithm, multiple-source AOA 

measurements are performed. A six-element antenna array with spacing of half wavelength is used 

for the measurement. The antenna is an inset-fed rectangular microstrip patch antenna [140] with 

center frequency of 10 GHz and bandwidth of about 1 GHz, and the 3 dB beamwidth is more than 

60°. The photo of the antenna array is shown in Figure 5.12 (a). The six elements are connected to 

an electrically controlled switch by equal-length transmission lines. Three horn antennas that 

represent signal sources are demonstrated in Figure 5.12 (b). The three sources are almost in the 

same range of the antenna array, and because their heights and gains are different, the signal’s 
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amplitude can be quite different. shows that a six-element array is capable to find the AOA of two 

sources but not good for finding the AOA of three or more sources. Therefore, in this measurement, 

we only examine the two-source problem. 

In the measurement, one port of a vector network analyzer (VNA) is connected to the 

switch connected to the antenna array, and the other port is connected to the sources. In the first 

measurement, only Source II in Figure 5.12 (b) is connected, and the 𝑆21 is measured for each of 

the array elements, and they can be denoted as 𝑆21,𝑖
(𝐼𝐼)

, 𝑖 denotes 𝑖𝑡ℎ element of the array. These data 

are used for calibration. The SNR for each element is greater than 20 dB. Next, each pair of the 

three sources are connected to one port of the VNA through an equally power dividing power 

divider. Similarly, we measured the 𝑆21 for each element and denote them as 𝑆21,𝑖
(𝐼,𝐼𝐼)

, 𝑆21,𝑖
(𝐼,𝐼𝐼𝐼)

 and 

𝑆21,𝑖
(𝐼𝐼,𝐼𝐼𝐼)

. In one example, both source II and source III are transmitting signals, and Figure 5.13 (a) 

shows the measured 𝑆21,𝑖
(𝐼𝐼,𝐼𝐼𝐼)

 as a function of frequency for different array elements. By taking fast 

Fourier transform (FFT), the possible multipath from the wall or ground of the chamber can be 

filtered out and only left the signal directly propagating from sources. Then the signal 𝑥  can be 

obtained by calibrating the peak value of 𝑆21,𝑖
(𝐼𝐼,𝐼𝐼𝐼)

 after FFT: 

 

𝑥𝑚
(𝐼𝐼,𝐼𝐼𝐼)

=
max (FFT(𝑆21,𝑚

(𝐼𝐼,𝐼𝐼𝐼)))

max (FFT(𝑆21,𝑚
(𝐼𝐼) ))

,   1 ≤ 𝑚 ≤ 𝑀  (5.53) 

The amplitude and phase of the received signals for different array elements are given in 

Figure 5.13 (b). Those data are put into AIMA algorithm to find the AOA of each source. The 

comparisons between the estimated AOA and the true AOA are given in Table I. It shows that the 

proposed algorithm can accurately estimate the AOA with less than 1° error with SNR more than 

20 dB. The RMSE in estimated AOA is about 0.6°. 
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(a)                                                                      (b) 

Figure 5.12. (a) The picture of the six-element antenna array, the six elements are connected to an 
electrically controlled switch; (b) the picture of the three sources, they are in the same range to the 

receivers and two of them will be fed the same power in each measurement. 
 

 

 

(a)                                                                      (b) 

Figure 5.13. (a) The measured 𝑆21,𝑖
(𝐼𝐼,𝐼𝐼𝐼)

 for different array elements as a function of frequency; (b) 

the amplitude and phase of the received signals 𝑥𝑚
(𝐼𝐼,𝐼𝐼𝐼)

 after calibration for each antenna element. 
  

 

Antenna array 

Switch 

Source I 

Source II 

Source III 



 137 

Table 5 - 1. Performance of the AOA estimation of AIMA with measurement data 

 Source I Source II Source III 

True AOA (°) -10.7 0 11.5 
I&II only, estimated AOA (°) -9.78 0.71 NA 
I&III only, estimated AOA (°) -10.75 NA 11.38 

II&III only, estimated AOA (°) NA -0.04 12.41 

 

5.7  Conclusion 

In this paper, a novel analytic iterative algorithm for multiple-source AOA estimation is 

presented. The algorithm involves two major tasks: 1, analytically evaluate the AOA of the last 

source from the AOA of all other sources without knowing their amplitude. 2, iteratively solving 

task 1 to have the smallest RMSE in measured signals and moreover to obtain the number of 

sources and their AOA and amplitude. This approach doesn’t require the knowledge of number of 

sources, and can be applied in single-snapshot condition. This iterative method converges quickly 

and outperforms many known algorithms in terms of time efficiency. This method has a wide 

range of applications particularly in dynamic systems such as automotive radars for autonomous 

vehicles. 
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Chapter 6    Machine Learning-Based Target Classification for MMW Radar 

in Autonomous Driving 
 

6.1  Introduction 

The technology for autonomous vehicles with radar was first envisioned in the late 90’s 

[39][90][142][143], but only recently has tremendous progress been made towards the 

development of these revolutionary vehicles[141]. In autonomous driving, one of the main 

challenges is to reliably detect and identify all targets in a complex environment. Targets are 

detected by a multitude of sensors and are represented by different types of data. The most 

commonly used sensors include optical cameras, lidars and radars. Cameras present targets as 2D 

colored images , lidars  generate 3D point cloud representation of targets[144], and radars measure 

the range, velocity and the radar cross-section (RCS) of the targets. Each type of sensor has its 

ownstrengths and wakness, for example, cameras have the highest angular resolution for short 

distances but are not accurate for range detection and perform poorly at night or in inclement 

weather conditions (rain, fog, and snow); lidar can measure the distance of targets and has excellent 

spatial resolution, however it suffers from low sensitivity and it has difficulty detecting highly 

reflective objects (objects with specular surfaces), in addition to having poor performance in bad 

weather conditions. On the other hand, radar can detect targets at longest range, it is able to directly 

measure a target’s range and velocity, and its performance is unaffected by poor weather 

conditions. The drawbacks of radar sensors include poor angular resolution and possible false 

alarms due to multipath issues [146][146]. 
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For the traffic target classification problem, many studies have been carried out for cameras 

and lidars [147]-[149] due to their high resolutions and the intuitive nature of data interpretation.   

However, the performance of cameras or lidars will be largely degraded by poor visibility 

conditions whereas radar data is, for the most part,  unaffected by the atmospheric conditions and 

the time of day [146]. Hence it is important to develop solutions for target classification using 

radar data. 

Radar based target classification has been studied in the field of remote sensing for decades. 

Radar classification methods have been applied to aircrafts, military vehicles,  and terrestrial 

targets for various remote sensing applications. Since aircrafts must be detected at long range, they 

are usually modeled as point targets, and the frequency or time (range) response of the radar signals 

are used to classify the targets [150][151]. Terrestrial  [152] [153] and military vehicles [154][155] 

can be detected by airbone or satellite synthetic aperture radar (SAR), and therefore the target 

classification is based on processing the SAR images of targets. For the application at hand, MMW 

automotive radar can encounter traffic targets at different ranges that may only be partially 

illuminated and thus cannot always be considered as classical point targets. Synthetic aperture 

radar methods are obviously not applicable either. 

Pedestrians and bicyclists are often encountered in both urban and rural environments, and 

are considered to be the most important targets to be correctly identified. Because a moving 

pedestrian will frequenty have different positions on the arms and legs when a pedestrian is moving, 

it is observed that moving pedestrians exhibit quite different Doppler radar response patterns from 

those for vehicles. This feature is described and utilized to distinguish pedestrians from vehicles 

in many studies [156]-[158]. However, when there is no observable Doppler signature, i.e. targets 
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are stationary or they have zero down range velocity with respect to the radar, these methods are 

not applicable. 

Recent advances in machine learning techniques including convolutional neural network 

(CNN) [159][160] and convolutional recurrent neural network (RNN) [161] enable new methods 

for radar target classifications. In [162], multiple frames for the range-Doppler images of a 

continous movement of a target is put into target classifications models based on RNN. Similar to 

other Doppler based target classification methods, this approach can only be applied to moving 

targets. In [163], the phase and magnitude of each antenna element is inputted into a deep neural 

network to distinguish a pedestrian and a vehicle. While greater than 90% accuracy is achieved, 

the data samples in the paper are very limited (only based on one vehicle and one pedestrian), 

which limits the scope and applicability of the model. For some advanced radars that are capable 

of imaging, the targets then can be represented by radar images in target classification [165][166]. 

In [165], the proposed algorithm applies CNN to classify static targets as parked vehicles or non-

vehicles. In [166], targets are visualized as radar point clouds, where RCS information is discarded, 

and zero-Doppler data are excluded, which means only dynamic targets are used in classification. 

A convincing target classification model based on machine learning requires a 

comprehensive dataset including an exhaustive list of targets. Measurements can provide reliable 

data; however, gathering them can be very expensive, time consuming and sometimes impractical 

for some targets. For example, it is difficult to take the radar measurement from all azimuth 

directions and any range for a heavy truck or bus as it is almost impossible to put a large vehicle 

on a turn table for accurate angular variation. By contrast, simulation can be performed for any 

kind of target from any angle and range with much lower cost. Furthermore, pedestrian models 

with all ages, weights and heights can easily be generated and examined in simulation, whereas 
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such measurements usually have very limited samples and can be time consuming and 

uncomfortable for the test subject. 

In this chapter, four traffic target classification approaches for different types of radars 

regardless of target motion are proposed, and a comparative study of these approaches is performed. 

The proposed models utilize the statistics of RCS data for different target categories generated by 

a high-fidelity RCS simulation program. In addition, some measurements are also taken to verify 

the accuracy of the simulations. In this classification problem, the targets are categorized into three 

major groups: pedestrians, vehicles, and other objects. For traditional radars, depending on the 

radar range resolution and the size of the  targets, the RCS of targets are examined as point or 

distributed targets. A novel statistical analysis is proposed that makes use of a large dataset for 

different targets and an artificial neural network (ANN). This approach is applied to both point 

and distributed targets. For a radar capable of imaging, 2D or 3D radar images are generated from 

simulation as well and used in target classifications with CNN. This paper is an extension of our 

preliminary work in [167], with more data samples, target classification methods, discussions and 

experimental validations. 

This paper is organized as follows: in Section 6.2, the forward scattering model and 

simulation used for calculation of RCS of targets (both as point or distributed target), and the radar 

images in 2D and 3D forms are presented. In Section 6.3, the radar target classification models 

based on machine learning for different types of radar data are implemented and discussed. In 

Section 6.4, radar measurements for some targets are performed and the radar data are examined 

with the off-line target classification models for verification. Finally, concluding remarks are 

provided in Section 6.5. 

6.2  High-fidelity radar response simulation for different types of radar 
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At W band frequencies, traffic targets like vehicles and pedestrians have dimensions on the 

order of hundreds to thousands of wavelengths. The full-wave methods including method of 

moment (MoM), finite element method (FEM) and finite-difference time-domain method (FDTD) 

can generate accurate results but may require exorbitant amounts of time to run the simulations for 

these electrically very large targets. Asymptotic methods like physical optics method (PO) and 

physical theory of diffraction (PTD) have been successfully used to evaluate the backscattering 

RCS of traffic targets at MMW frequency. In this thesis, the PO method is used since most 

common traffic targets do not often present any sharp edges and are for the most parts convex. The 

detailed information and validation of PO approach is described in Chapter 2. 

6.2.1  RCS simulation results 

The RCS of pedestrians, vehicles and other static targets are simulated at different 

frequencies, aspect angles and ranges. In these simulations, the vehicles are considered as metallic 

objects and pedestrians and trees are treated as dielectric materials. The complex dielectric 

constant for human skin is reported in the literature [168]-[170] to be within the ranges of 6.5 ≤

휀𝑟
′ ≤ 11.6 and 3.9 ≤ 휀𝑟

′′ ≤ 11.2. In this research, the dielectric constant model created by Gabriel 

[169] is used (휀𝑟 = 6.57 + 8.92𝑖 at 77 GHz). Regarding the permittivity of canopies, the dielectric 

model developed by Matzler [171] is applied, and for a palm tree, the dielectric constant is given 

as 휀𝑟 = 4.01 + 3.35𝑖 at 77 GHz. 

 The RCS of complex traffic targets fluctuates rapidly with both frequency and aspect angle. 

For example, Figure 6.1 (b) shows  the RCS as a function of frequency for three different targets, 

a pedestrian, a sedan, and a dwarf palm tree, whose geometries are shown in Figure 6.1 (a). In the 

simulations, targets are 50 m away from the radar. It is shown that the RCS can fluctuate up to 20 

dB over 1 GHz bandwidth, which is less than 1.3% fractional bandwidth. This is mainly due to the 
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multiple scattering centers on large complex traffic targets that can add constructively or 

destructively. This argument also holds for the variation of RCS as a function of incidence angle. 

Note that the average RCS value of a pedestrian and that of a dwarf palm tree from some angles 

are similar, but the variances are different. This feature may be used in target classification. The 

RCS statistics is also a function of azimuth incident angle. The frequency averaged RCS as a 

function of azimuth angle for a 1.8 m tall pedestrian, a sedan and a dwarf palm tree are depicted 

in Figure 6.1 (c). It shows a significant variation of the RCS over different incident angles for these 

targets. If the entire target is within the antenna illumination, its statistical information is  range 

independent as shown in Figure 6.1 (d). 

   

(a) 

 

(b)                                                    (c) 
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(d) 

Figure 6.1. (a) The CAD model of a 1.8 m tall pedestrian, a sedan, and a dwarf palm tree;  (b) the 

simulated RCS as a function of frequency for the three targets from 𝜙 = 0°, 35°, and  105°, 

respectively in the range of 50 m; (c) the frequency averaged RCS as a function of azimuth angle 

in the range of 50 m; (d) the average RCS over all azimuth angles as a function of range for the 

three targets. 

 The time domain radar response can be obtained by taking fast Fourier transform (FFT) of 

the frequency domain data. This will reveal the extent and intensity of scattering centers of the 

target as a function of range. In the example shown in Figure 6.1 (b), the radar has 1 GHz 

bandwidth and 512 frequency samples, which corresponds to 0.15 m range resolution and 76.8 m 

maximum unambiguous range. The time domain responses of the three target in Figure 6.1 (b) is 

illustrated in Figure 6.2 (a). It is shown that though the RCS level of the pedestrian and that of the 

dwarf palm are similar, their widths/shapes in the time domain are different and this feature can 

be used for target classification. Figure 6.2 (b) shows the time domain response of a sedan at 

different incident angles. The three angles 𝜙 = 0°, 45° and 90° correspond to the back, back-right, 

and the right-side directions. When the car is illuminated from behind, the main scattering points 

are on the very back of the car while some other illuminated surfaces can contribute some 
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considerable backscatter. If the car is illuminated at 45°, several scatterers at different ranges from 

the radar have similar backscatter power level. When the side of the car is perpendicular to the 

radar, the backscattered power from the door panels dominates and constitutes a single peak in the 

backscatter direction. 

 

(a)                                                                    (b) 

Figure 6.2. The simulated RCS as a function of range for (a) the three targets in Fig. 6.1 (a) with 

𝜙 = 0°, 35°, and 105°, respectively at the range of 50 m, and (b) a sedan with 𝜙 =

0°, 45° and 90° in the range of 50 m. 

6.2.2  Radar images simulation results 

When the radar has beam-steering capability, radar images can be generated, and more 

features of the target can be obtained. One of the most effective beam steering techniques is digital 

beamforming with a fixed antenna array. The beamforming is equivalent to synthesizing a narrow 

beamwidth antenna pattern by properly changing the phase of each element. 

 It is critical to have low sidelobe levels for radar imaging applications. The low sidelobe 

level can be created by proper weighting the received signals of the array elements. In this 
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simulation, a triangular weighting function is applied to a uniform linear array (ULA) to generate 

lower than -26 dB sidelobe levels. The triangular weighting function is given by: 

 
𝑊𝑖 = 1 − |

2𝑖

𝑁 + 1
− 1| ,   1 ≤ 𝑖 ≤ 𝑁  (6.1) 

where 𝑁 is the number of antenna elements. In one example, the triangular weighting function is 

applied to a 50-element ULA with 𝜆/2 spacing, and the radiation pattern for the antenna array 

with main beam at 0° (boresight) or 30° are shown in Figure 6.3. The half-power beamwidth 

(HPBW) is about 3° when the main beam is at 0° and 3.5° when the main beam is at 30°. The 

sidelobe levels are less than -26 dB for both cases. 

 

Figure 6.3. The radiation pattern of a 50-element ULA with λ/2 spacing and triangular weighting 

function. 

Different portions of a short-range target can be viewed by the radar with the main beam 

scanning over the target. For a radar that can scan the beam in azimuth direction, a range-azimuth 

angle (𝑟 − 𝜙) image can be created since the range information is obtained by the time domain 

response. Consider a radar with a 50-element ULA having inter-element spacing of 0.7 wavelength. 

This beam-steering radar is capable of providing 2° beamwidth in the boresight direction. Suppose 

the radar is operating from 76 GHz to 77 GHz and collects 512 frequency samples. Each antenna 
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element is assumed to have uniform pattern in the azimuthal plane, and to increase the antenna’s 

gain, each element is given about 6° beamwidth in the elevation plane. Figure 6.4 shows the 

processed radar images for some commonly seen traffic targets. To generate one radar image, the 

target is simulated for 512 frequency points and 50 transceivers. The radar beam is processed in 

steps of 1°, and the resulting range-angle images are threshold to maintain a dynamic range of 

about 30 dB. These images are shown in Figure 6.4 in dB scale and are normalized to their 

maximum RCS values. It is shown that the shape of large targets like vehicles can be identified to 

some extent, but the small targets like pedestrians and traffic signpost are hard to be distinguished 

with the  𝑟 − 𝜙 radar images. 

 

(a)                              (b)                               (c)                             (d) 
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(e)                            (f)                             (g)                          (h) 

Figure 6.4. The simulated range-azimuth angle (rϕ) images for (a) an SUV, (b) a motorcycle, (c) 

a bus, (d) a truck, (e) a walking pedestrian, (f) a squatting man, (g) a deer and (h) a stop sign in 

the range of 10 m with a 2° beamwidth radar in azimuth direction. 

 

For more advanced radar with beam steering capability in both azimuth and elevation 

directions, azimuth-elevation angle (𝜙 − 𝜃) radar images and 3D (x-y-z) radar images can be 

obtained. In one simulation example, a MIMO radar has 50 transmitters (TX) in the z direction 

and 50 receivers (RX) in the x direction, and each have 0.7 wavelength spacing, resulting in about 

2° beamwidth in azimuth and elevation at boresight. The radar uses 0.5 GHz bandwidth and 512 

frequency samples are recorded. The beam is scanned from -15° to 15° for 𝜙 and -10° to 10° for 

𝜃 in steps of 1°. In the signal processing stage, first an FFT to the frequency domain data of all 

2500 channels is taken, then for each scanned angle, the triangular weighting function is applied 

to all channels. 

 Some examples of the 𝜙 − 𝜃 radar images and 3D radar images are shown in Figure 6.5. 

The value of one pixel represents the RCS detected for one scan angle, and they are normalized to 

the maximum value in the image. Because the sidelobe level of the ULA with proposed weighting 

function is lower than -26 dB, every pixel that has an RCS value 26 dB less than the maximum 

value is discarded. Figure 6.5 demonstrates the radar images for a pedestrian, a sedan, and a man 

riding a bike. It is shown that the profile of each target is recognizable from the radar images, and 

therefore the 𝜙 − 𝜃  radar images or 3D radar images exhibit the best potential for target 

classification. 
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(a)                                                  (b)                                          (c) 

 

(d)                                       (e)                                     (f) 

Figure 6.5. The simulated azimuth-elevation angle (ϕ-θ) images for (a) a pedestrian, (b) a sedan, 

(c) a man riding a bike, and their corresponding 3D images (d) (e) and (f) in the range of 10 m 

with a 2° beamwidth radar. 

 

6.3  MMW Radar Target Classification 

In this section, target classification algorithms based on different forms of radar data are 

developed and compared. Depending on the radar mode of operation, four different forms of radar 

data are utilized for target classification: statistical RCS information, distributed (time domain) 

radar response, 2D range-azimuth angle radar images and 3D radar images. If the targets are at 

long range or the radar doesn’t have imaging capabilities, the methods based on statistical RCS 
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and time domain radar response data are used, and due to the complexity of the problem, the 

artificial neural network (ANN) approach is used for target classification. If targets are at close 

range and radar is capable of beam steering, the convolutional neural network (CNN) classification 

approaches with radar images can be used to provide more accurate classification results. 

The forward scattering model is used to generate radar data for many types of traffic targets. 

Based on the importance of targets, commonly seen traffic targets are divided into three categories: 

pedestrians, vehicles and all other objects. Simulations are run for a variety of pedestrians ranging 

from 1.2 m tall children to 70 year olds, including different genders, poses (squat, standing, 

walking, and jogging), and body types (skinny, average, and overweight). The simulated vehicles 

include, but are not limited to bikes, motorcycles, sedans, supercars, SUVs, buses, vans, 

hatchbacks, pickup trucks, and heavy trucks. Other objects include traffic targets other than 

pedestrians and vehicles, including animals  (dogs, deer, horses, etc.), and stationary objects like 

traffic signs, traffic light posts, traffic drums, lamp posts, trees, trash bins, roadblock, road fence, 

bus stops, mailboxes, etc. In all approaches described below, more than 6,000 samples of data are 

created from different incident angles of about 90 different targets for classification, and to avoid 

bias issues in classification, the number of samples for different categories are kept almost the 

same. 

6.3.1  Target classification based on statistical RCS 

For traditional radar without imaging ability, or the target is far enough such that a traffic 

target can be isolated from range-Doppler map and represented by one or more RCS values. The 

RCS values are highly fluctuating with aspect angle, frequency and range. To demonstrate the 

random behavior of the radar response, an example of radar measurement of a sedan on a turn table 

is given. Figure 6.6 shows the picture of the measurement and the convention used for aspect angle. 
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Figure 6.7 shows the measured radar response of the sedan in the range of 11 m and aspect angle 

of 10° and 20°. The radar utilizes a vector network analyzer (VNA) to measure the frequency 

response of the target, and it operates from 76.5 GHz to 79.5 GHz. It has one transmitter and one 

receiver with 3° antenna beam width in both elevation and azimuth directions. The response of the 

sedan can be gated out in time domain, as is shown in Figure 6.7 (a) and (c), where the red dash 

line refers to the radar response of the sedan. It shows that at different aspect angle, the peak value 

of the radar response can have more than 10 dB difference. Then the radar response of the sedan 

in frequency domain can be obtained by taking FFT to the gated time domain response, which is 

depicted in  Figure 6.7 (b) and (d). It shows that the radar response, which is proportional to the 

RCS, can have up to 20 dB variation at different frequencies.  

 

                    

Figure 6.6. The 77 GHz radar measurement scene for a sedan and the coordinate system. 

𝜙0 
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(a)                                                                         (b) 

  

(c)                                                                         (d) 

Figure 6.7. The measured 𝑆21 in time domain as a function of range and the gated response of the 

sedan in the range of 11 m with (a) 𝜙0 = 10° and (c) 𝜙0 = 20°; the corresponding frequency 

domain response of the gated 𝑆21 of the sedan after FFT for  (b) 𝜙0 = 10° and (d) 𝜙0 = 20°. 

 The mean RCS of all azimuth angles is a good indicator in radar target classification, 

however, it is not praticle to measure the RCS of all azimuth angles of targets during road driving. 

During road mesurement, it is required that the radar can classify targets in real time.Therefore, 

the RCS data used in classification are limited, which could be just for slightly changes in aspect 
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angle and frequency. The RCS values for large targets, e.g. a vehicle, may varies dramatically with 

azimith aspect angles as is shown in Figure 4.12 in Chapter 4. It is observed that the frequency 

averaged RCS of a sedan with some aspect angle will not be too different from that for a pedestian 

(~-10 to -5 dBsm), and therefore, it is hard to distinguish a vehicle from a pedestrian based on the 

raw RCS data.  

 The most commonly used statistical information is the mean value and standard deviation. 

The pairs of mean values and standard deviations for different targets are depicted in Figure 6.8. 

It is shown that the standard deviation is close to the mean values for all different types of targets, 

which indicates that the statistical distribution of RCS is close to the exponential distribution. 

These results agree with the famous Swerling models [109][111] for the RCS of complex targets. 

Because the mean value and standard deviation are highly correlated, it is difficult to distinguish 

different types of targets based only on these two features. 

 

(a)                                                                         (b) 

Figure 6.8. The simulated mean value and standard deviation for different targets with categories 

in (a) pedestrians and vehicles and (b) pedestrians and other objects. 
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To achieve a better contrast of the data for different types of targets, it is desirable to have 

more distinguishable features. It is better to find the statistical distribution of the simulated RCS 

data. Examining the data carefully, it is found that the Weibull distribution is the best fit for the 

RCS values of traffic targets in the MMW or sub-MMW band [172][173]. The probability density 

function (PDF) of the Weibull distribution is given by, 

 
𝑓(𝑥|𝐴, 𝐵) =

𝐵

𝐴
(
𝑥

𝐴
)
𝐵−1

exp {− (
𝑥

𝐴
)
𝐵

},  (6.2) 

where A is the scale parameter and B is the shape parameter. If B = 1, the Weibull distribution 

becomes the exponential distribution. Different B parameters can be used to represent how the 

statistical distribution deviates from the exponential distribution, and therefore the Weibull 

distribution is used to provide more distinct statistical features. 

 All groups of RCS data are fitted into the Weibull distribution, and the pairs of A and B 

parameters are obtained for each dataset. Since the data for different targets may have different 

fitting performance to Weibull distribution, the fitting error is considered as an additional feature 

in this classification problem as well. The fitting error is measured by the Kolmogorov-Smirnov 

(KS) test defined as the RMS error between the empirical cumulative density function of the raw 

data and the fitted cumulative density function of Weibull distribution with best fitting parameters 

[173]. The A and B parameters and the fitting errors for different types of targets are displayed in 

Figure 6.9. Though many parameters still overlap for different target types, compared to Figure 

6.8, this approach provides greatly improved distinction for different target types. 
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(a)                                                                         (b) 

Figure 6.9. The parameters A and B and the fitting error of Weibull distribution for different 

targets with categories in (a) pedestrians and vehicles and (b) pedestrians and other objects. 

 

Artifical neural network (ANN) approach is applied to classify the traffic targets based on 

the statistical features described above. The structure of the ANN used in this classification 

problem is illustrated in Figure 6.10. In the figure, each black circle represents one value and is 

called “neuron”, and the line with arrow represents a functional relationship. The variables 

𝑏0, … , 𝑏𝑚  are constant 1, and the variables �̂�1,2  are normalized input values from the training 

dataset such that the range of �̂�1,2 are between -1 and 1.  �̂�1 is normalized from parameter A, �̂�2 is 

normalized from parameter B. The neurons 𝑎𝑖𝑗 is a function of variables in previous layer. The 

output values �̂�1,2,3 have the range between 0 and 1, and they are the probability of being classified 

as pedestrians, vehicles and other objects, respectively.  More specifically, the relations are: 

 
�̂�1 =

2(𝐴 − min (𝐴))

max(𝐴) − min (𝐴)
− 1 

(6.3) 

 
�̂�2 =

2(𝐵 − min (𝐵))

max(𝐵) − min (𝐵)
− 1 

(6.4) 
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𝑎1𝑖 = 𝑡𝑎𝑛ℎ (𝑏0𝑤0𝑖
0 + ∑�̂�𝑗𝑤𝑗𝑖

0

2

𝑗=1

) 

(6.5) 

 

𝑎𝑘𝑖 = 𝑡𝑎𝑛ℎ (𝑏𝑘−1𝑤0𝑖
𝑘−1 + ∑ 𝑎(𝑘−1)𝑗𝑤𝑗𝑖

𝑘−1

𝑛𝑘−1

𝑗=1

) 

(6.6) 

 

�̂�𝑖 =
1

2
[𝑡𝑎𝑛ℎ (𝑏𝑚𝑤0𝑖

𝑚 + ∑𝑎𝑚𝑗𝑤𝑗𝑖
𝑚

𝑛𝑚

𝑗=1

) + 1] 

(6.7) 

 

 

Figure 6.10. Structure of the ANN used for target classification with statistical features 

 When use the ANN model, it will take the statistical features A and B of the RCS data of 

one target as inputs and generate output values for �̂�1,2,3. The target is classified into the category 

with the highest probability. More than 6000 pairs of parameters A and B for different targets are 

used to obtain the ANN model. In the training process, 70% data are randomly selected as training 

set, and 15% of data are used for validation and the rest are test data. The ANN model is trained 

by Matlab with Levenberg-Marquardt backpropagation algorithm. In this example, an ANN model 
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with three hidden layers is generated to perform the target classifications. Each layer has 10 

neurons.  

 Table 6 - 1 shows the performance of the target classification model based on the mean 

values and standard deviations, and the model in Table 6 - 2 is based on the Weibull parameters. 

It shows that when the data of all three categories are used, the pedestrians and vehicles can be 

correctly identified with more than 90% accuracy for both models, but the predictions for other 

objects are very poor. The reason is that the extent of other objects are diverse and as indicated in 

Figure 6.8, some statistical parameters of the RCS of some objects are similar to those of 

pedestrians, and those of the others are more close to those of vehicles. 

Table 6 - 1. Performance of target classification based on mean RCS values and standard 

deviations 

 Pred. Target 
Pred. Target 

(Veh. excluded) 

True 
Target 

 Ped. Veh. 
Other 

Obj. 
Ped. 

Other 
Obj. 

Ped. 95.3% 0.3% 4.4% 95.8% 4.2% 

Veh. 1.3% 92.9% 5.8% - - 
Other 

Obj. 
19.7% 51.2% 29% 26.4% 73.6% 

 

Table 6 - 2. Performance of target classification based on mean RCS values and standard 

deviations 

 Pred. Target 
Pred. Target 

(Veh. excluded) 

True 
Target 

 Ped. Veh. 
Other 

Obj. 
Ped. 

Other 
Obj. 

Ped. 95.4% 0.2% 4.4% 96.2% 3.8% 

Veh. 0.8% 93.3% 5.8% - - 
Other 

Obj. 
16.3% 47.0% 36.7% 17.0% 83.0% 
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If vehicles are static and only pedestrians are needed to be identified, then in both models 

more than 95% of pedestrians will be correctly identified and less than 10% of non-pedestrians 

will be wrongly classified since the number of samples of vehicles and other objects are similar. 

If the vehicles are moving or we only consider the targets near the sidewalk, then we only need to 

identify the pedestrians from the other static objects. In this case, the model based on mean values 

and standard deviations of RCS has 95.8% accuracy for pedestrians and 73.6% accuracy for other 

objects, and the model based on Weibull parameters give even better results of 96.2% accuracy 

for pedestrian and 83% accuracy for other objects. This shows that the models based on Weibull 

parameters can provide better classification results. 

6.3.2  Target classification based on distributed RCS response (time domain) 

The time domain radar response reflects the scattering strength of scatterers distributed 

over a target. This response can be used in target classification as the target response span in range 

for different targets can be different. For example, a pedestrian has much smaller extent in azimuth 

direction than a vehicle, and therefore, the shape of the time domain radar response of a pedestrian 

is different from that of a vehicle. The time domain response depends on the radar parameters as 

well. In this paper, a radar is chosen to have a bandwidth of 1 GHz which can provide a range 

resolution of about 0.15 m. In order to isolate the response of the target for classification, the time 

domain data samples are truncated into 61 points (9 m in range). Because usually the maximum 

RCS value occurs at points on the target nearest to the radar, the time domain signal truncation is 

made such that one third of the points (20 points or 3 m) are before the maximum RCS and two 

thirds of the points (40 points or 6 m) are after the maximum RCS value. 

Compared to the point target data, the distributed (time domain) response is more impacted 

by the presence of noise since the small scattered power in time domain may not be detected if the 
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noise level is high. For the example considered next, it is assumed that the signal to noise ratio 

(SNR) is high enough such that scatterers with -30 dBsm are detectable, and any RCS data in time 

domain below -30 dBsm is discarded. Some examples of the time domain RCS for different targets 

with an arbitrary incident angle is shown in Figure 6.11. In the figures, 0 on the x-axis in a relative 

range representing the location of the RCS peak of the target in time domain. The time domain 

RCS in Figure 6.11 are distinguishable for different types of targets. 

 

(a)                                                                         (b) 

Figure 6.11. The time domain RCS comparison among (a) a pedestrian, heavy truck and a sedan 

and (b) a pedestrian, a horse and a streetlight from a randomly selected incident angle. 

 ANN is applied in the target classification based on time domain RCS. This ANN structure 

has 61 inputs representing the time domain response, 3 hidden layers with 60, 30 and 20 neurons 

in each layer and three outputs with values between 0 and 1 referring to the probability of the target 

being classified as of the three categories. The hidden layers are chosen based on best performance 

while minimizing the number of layers and neurons and avoiding the overfitting issue. Like the 

ANN for statistical RCS, 70% of the dataset is randomly picked as training data, and the rest is 

used as testing and validation data. The ANN is trained in MATLAB as well. 
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The performance of the classification is provided in Table III. It shows that when all targets 

are classified, more than 90% of pedestrians and vehicles can be correctly identified, and about 

65% of the other objects can be correctly classified. This result outperforms the classification 

model based on statistical RCS. However, the classification performance when excluding vehicles 

is not as good as that for the model based on statistical RCS. The advantage of using the time 

domain response is that it can detect the extent in range of a target, and many targets like traffic 

signs, traffic lights, tree trunks, etc. have similar azimuth dimensions as pedestrians in terms of the 

radar’s range resolution. Furthermore, the RCS values in classification here are not statistical RCS, 

therefore the radar response of pedestrians and some other objects may not be differentiable in the 

time domain. 

Table 6 - 3. Performance of target classification based on time domain RCS 

 Pred. Target 
Pred. Target 

(Veh. excluded) 

True 
Target 

 Ped. Veh. 
Other 

Obj. 
Ped. 

Other 
Obj. 

Ped. 91.3% 0.0% 8.7% 91.6% 8.4% 

Veh. 0.0% 94.0% 6.0% - - 
Other 

Obj. 
26.5% 8.0% 65.5% 25.8% 74.2% 

 

6.3.3  Target classification based on Radar images 

One of the major factors that limits the performance of target classification with traditional 

radar is the number of features. To achieve better accuracy of classification, a radar with imaging 

capability is desired. Radar images can be created in many different ways and in this simulation, 

they are generated using digital beamforming. Compared to the frequency domain or time domain 

RCS classification methods, radar images provide additional dimensions (azimuth and/or elevation) 

of data and therefore can capture the shape or size of the targets. 
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The range-azimuth angle (𝑟 − 𝜙) images can be generated if the radar can scan its beam in 

azimuth direction. It is noted that the significant angular features of a target depend on the range, 

the radar’s beamwidth and the angular resolution of scanning angles. To study the effect of range, 

and radar’s beamwidth on the target classification performance, the 𝑟 − 𝜙 image simulations are 

performed for targets in different ranges and by varying the number of elements or antenna 

spacings (resulting in different antenna beamwidths). More than 6000 𝑟 − 𝜙 images are generated 

for different targets from all azimuth angles in each range and radar configuration. Each 𝑟 − 𝜙 

image is truncated into 9m by 30° in azimuth direction, with 61×31 pixels (ranges×angles) and is 

generated by simulating 25,600 or 51,200 RCS data (512 frequency samples and 50 or 100 antenna 

elements) for one target. 50 antenna elements generate 3° beamwidth using λ/2 inter-element 

spacing or 2° beamwidth using 0.7λ inter-element spacing. 100 elements create 1° beamwidth 

using 0.7λ inter-element spacing at boresight. Some examples of the 𝑟 − 𝜙 radar images are shown 

in Figure 6.4. 

 

Figure 6.12. The Structure of the CNN used for target classification with rϕ radar images. 
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The radar image classification algorithm is implemented using CNN. The proposed CNN 

has five convolutional layers, five rectified linear unit (ReLU) layers, five pooling layers and one 

fully connected layer as shown in Figure 6.12. The detailed description of each layer can be found 

in [174]. The CNN is trained using the MATLAB Deep Learning toolbox [177]. 70% of the data 

is randomly selected as training data and the rest is used as validation data. In the training step, 80 

epochs are employed, and each epoch goes through 23 iterations of training process. After training 

the models, the validation data have similar accuracy as that for training data, which implies the 

models do not have an overfitting issue. The classification performance of the models for different 

ranges and beamwidths are given in Table 6-4. For comparison, all models have the same number 

of layers, and the radar scanning angle step is 1° for all beamwidths. It shows that short range 

targets have better classification accuracy than long range targets, and the radar with narrow 

beamwidth can provide better classification performance. This result is intuitive because in the 

case with nearer targets or narrower radar beamwidth, more useful features of targets can be 

detected by the radar. Compared to the classification models based on frequency domain or time 

domain radar response data, the radar images-based models can provide better accuracy for 

classification at short range. 

Table 6 - 4. Performance of target classification based on range-azimuth angle radar images 

 True Positive rate with 3° beamwidth 

Range Pedestrians Vehicles Other Obj. 

10 m  91.9% 99.5%  91.6%  
20 m  93.3% 98.5%  87.0%  
30 m 90.8%   98.8% 81.5%  

 True Positive rate with 2° beamwidth 
10 m 97.4% 99.6% 91.7% 

20 m 93.8% 98.1% 81.4% 
30 m 96.4% 97.8% 80.1% 

 True Positive rate with 1° beamwidth 
10 m 94.9% 99.1% 93.2% 

20 m 94.0% 99.7% 88.4% 
30 m 87.0% 96.7% 93.5% 
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 The 3D radar images have the added dimension of elevation compared to 𝑟 − 𝜙 images. 

Similarly, more than 6,000 3D radar images are generated for different targets for a given range 

and radar beamwidth. In this classification example, a 3D radar image has 61×31×31 pixels 

(9m×31°×31°) and is created by simulation for 1.3 million data with a MIMO radar with 512 

frequency samples and 50×50 channels. The equivalent antenna beamwidth is 3° (λ/2 spacing) or 

2° (0.7λ spacing). Some examples of 3D radar images with 2° antenna beamwidth are given in 

Figure 6.5. 

CNN is used for target classification with 3D radar images as well. The layers and the 

convolution operation in the new CNN have three dimensions, unlike the CNN for 2D images. 

The CNN is trained using the MATLAB Deep Learning toolbox as well. The proposed structure 

has five convolution layers as shown in Figure 6.13. 

 

Figure 6.13. The Structure of the CNN used for target classification with 3D radar images. 

The classification results for 3D radar images are given in Table V. It shows excellent 

performance (>98% accuracy for pedestrians and vehicles and >94.5% accuracy for other objects) 

for both 3° beamwidth and 2° beamwidth for the range from 10 m to 30 m. It is also observed that 
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the classification accuracy is better if targets are closers and the radar has narrower beamwidth. 

Because more features can be detected by 3D radar images, it is not surprising that the radar target 

classification based on 3D radar images outperforms the other models in terms of accuracy. The 

drawback of the 3D radar images-based target classification is that it requires a more advanced 

radar and more effort to process the data than other approaches, and the quality of radar images 

will be degraded for targets at longer ranges. 

Table 6 - 5. Performance of target classification based on 3D radar images 

 True Positive rate with 3° beamwidth 
10 m 99.5% 99.5% 99.4% 

20 m 99.3% 99.2% 97.8% 
30 m 98.0% 98.6% 96.5% 

 True Positive rate with 2° beamwidth 
10 m 100% 99.9%  99.7%  
20 m 100% 99.7% 94.5% 

30 m  98.9%  99.0% 97.8% 

 

6.4  Experimental validation of the classification models 

In order to validate the proposed radar target classification models, several targets are 

measured by a 77 GHz instrumental radar. The radar has one transmitter and one receiver with 3° 

antenna beamwidth in both azimuth and elevation directions. The radar is connected to a vector 

network analyser (VNA) to sweep over the operating frequency band of 76 GHz to 79 GHz. Due 

to limitations on the available hardware, this radar cannot generate radar images, and only the 

model based on statistical RCS with Weibull parameters is examined.  

The measured targets include a mannequin covered in a reflective coating in three different 

poses, two traffic sign posts (one square shape and one U shape) and three vehicles (two sedans 

and one SUV). Pictures of these measurements are included in Figure 6.14. The targets are on a 

turntable and measured from all azimuth directions. The mannequin and the traffic sign posts are 

measured in an anechoic chamber at a range of 18 m, and the vehicles are measured in an open 
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parking lot with a range of 30 m. The measured data are gated and calibrated to obtain the RCS 

from which the Weibull parameters are extracted. The parameters A, B, and the fitting errors are 

depicted in Figure 6.15. 

 

(a) 

            

(b) 



 166 

 

(c) 

Figure 6.14. The 77 GHz radar measurement for (a) a mannequin with three different poses, (b) 

two different traffic sign posts and (c) two sedans and one SUV. 

 

Figure 6.15. The Weibull parameters summarized from the RCS of the measured targets. 

 The Weibull parameters are put into the off-line models trained in Sec. 6.3.1, and the 

classification performance is given in Table 6-6. It shows that more than 80% statistical RCS data 

of the mannequin and vehicles can be correctly classified and the classification for traffic sign 

posts is poor as expected. If the data for the mannequin and the traffic sign posts are put into the 
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off-line model without vehicle training data, the mannequin can be identified with more than 95% 

accuracy while the true positive rate for the traffic signposts increases to 57%. The difference 

between the performance for measured data and for simulated data is due to the lack of samples in 

the measurement. The simulated other objects include many targets that have RCS values very 

different from pedestrians, while the RCS of the traffic sign posts have a large overlap with that 

of pedestrians. It can be observed from Figure 6.15 that many data of traffic sign posts overlap 

those of the mannequin. 

Table 6 - 6. Performance of target classification based on statistical RCS with measured data 

 Pred. Target 
Pred. Target 

(Veh. excluded) 

True 
Target 

 Ped. Veh. 
Other 

Obj. 
Ped. 

Other 
Obj. 

Mann. 80.2% 0.9% 18.9% 95.6% 4.4% 

Veh. 5.2% 86.0% 8.8% - - 
Sign 

Post 
41.0% 20.1% 38.9% 43.0% 57.0% 

 

6.5  Conclusion 

This paper presents four automotive radar target classification models with statistical RCS 

(point target), time-domain RCS (distributed target in range), range-azimuth angle radar images, 

and 3D radar images. The four models can be applied in different scenarios using different types 

of radar: the statistical RCS and time-domain RCS-based models can be applied to traditional 

radars at both short and long range, and the 2D/3D radar image-based models require a shorter 

range targets and a radar with imaging capability, but can provide much better classification 

accuracy. The models are trained with a large high-fidelity simulation dataset, and some models 

are validated by measurement. The classification models with statistical RCS and time domain 

RCS are based on ANN approach, and those with 2D and 3D radar images are based on CNN. The 

performance of different models with targets at different ranges and radar configurations are 
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compared as well. In the presented example, good classification accuracy has been achieved. This 

research shows that MMW and sub-MMW radar has great potential to be used for target 

classification, and that this can improve the situational awareness of an autonomous vehicle, 

especially in inclement weather conditions when other sensors are compromised, ultimately 

leading to improved safety for autonomous vehicles and the people around them. 
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Chapter 7    Vehicular Communication Channel modeling for foliage 
 

7.1  Introduction 

Autonomous driving system and intelligent transportation systems (ITS) put strict 

requirements on reliable and high-speed Vehicle-to-Vehicle (V2V) communications. The 

upcoming 5G wireless system is expected to support these applications and in particular, 802.11p-

based dedicated short-range communications (DSRC) at 5.9 GHz has been specially regulated for 

vehicular communications[178]. Furthermore, massive connections among vehicles and 

infrastructure and broadband multimedia  sensing  and  transmissions  motivate  the  adoption of 

millimeter-wave (mmWave) at 60 GHz for vehicular communications, owing to the multi-GHz 

bandwidth [13],[179].  

The vehicular communication antennas are usually mounted on the top of vehicles to avoid 

signal blockage from other similar vehicles [180],[181]. In practical V2V wireless communication, 

the LoS link can be blocked by many obstacles including large vehicles, buildings, foliage and 

other commonly seen cylindrical shape objects like lamp post and traffic light post. If  the  V2V  

LoS  is  blocked  by  buildings  or  a  large  vehicle like  a  bus  or  a  truck,  the  signals  are  usually  

totally  blocked. On the other hand, when the LoS is blocked by foliage or a cylindrical shape 

object, the signal is not completely blocked due to the diffraction nature of electromagnetic (EM) 

waves. Since there are various species, shape and dimensions of foliage, it is challenging to  

accurately capture the signal attenuation due to the foliage, and make the model efficiently 

retractable in practical autonomous driving. In a typical V2V communication scenario, the vertical 
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position of antenna is between 1.2m to 2m above the ground. The analysis of wave propagation 

can be focused in a 2D plane, where the transmitter and receiver are almost in the same plane[182]. 

Moreover, due to the extremely narrow beamwidth enabled by the mmWave beamforming 

technology and/or high gain antenna, the aligned beam from the transmitter is pointed directly to 

the receiver. As a result, reflection from the ground and scattering from tree branches and leaves 

can be neglected assuming the lowest branches are above the antenna’s height. In this case, the 

tree trunks are the only scatters that interfere with the signal propagation in mmWave V2V 

communications, as illustrated in Fig.  1.  Such interference is critical in some scenarios, for 

example,  in  T-junction  or  cross-road  traffic scene,  the  LoS  link  between  two  vehicles  with  

right  angle might be blocked by tree trunks and failure of communication may lead to dangerous 

consequences.  

Literature Review: The literature concerning electromagnetic scattering and propagation 

through foliage is rather intensive. At a low frequency where the wavelength is greater than the 

dimensions of trunk and branches, the tree is considered as a homogeneous dielectric cylinder with 

the equivalent permittivity [52], [53]. At higher frequency where the diameters of branches and 

trunk are much smaller than the wavelength while  length  is  comparable  or  greater  than  the  

wavelength, the  branches  and  trunk  are  approximated  as  1-D  scatter  and the corresponding 

scattering amplitude tensors are derived to calculate the far-field scattering field [183], [184]. As  

frequency  grows,  the  diameter  of  cylinder  becomes comparable  to  the  wavelength  and  the  

length  of  cylinder  is much larger than wavelength. In such case the infinitely-long cylinder 

approximation can be applied,  and  the  scattered  far fields  are  evaluated  analytically  [185],  

[186],  [187].  In  a  forest scenario  that  many  trunks  are  parallel  and  closely  placed, the  

higher  order  scattered  fields  are  computed  and  the  total scattered  coefficient  from  trunks  
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are  modeled  as  a  function of  incidence  angle  by  Monte  Carlo  simulations  [186].  In  [186], 

both  transmitter  and  receiver  are  in  the  far  field  of  trunks, and it shows the first order 

scattering dominates for relatively sparse forest. In [187], a statistical approach with the analytical 

solutions is presented to find the scattered field and path loss inside a forest with frequency from 

L band to X band. In this model,  the  transmitter  is  placed  in  the  far  field  of  trunks  as well. 

For  mmWave  band,  geometric-optics  (GO)  approximation is   applied   to   find   the   

backscattering   response   from   tree trunk  [188],  however,  GO  method  is  not  appropriate  for  

forward  propagation  direction  since  it  assumes  fully  blockage of  signal  in  such  direction.  

In [189],  the  full-wave  numerical method finite-difference time-domain method (FDTD) is used 

to calculate the scattering field of foliage. Although good accuracy can be achieved, the simulation 

process is prohibitively inefficient, time consuming and not available for the entire trunk 

simulation. In addition, several empirical models for the path loss caused by foliage based on the 

measurements have been reported [190]-[193].  In some models, path loss is a function of the 

distance, tree types and vegetation density at 900 MHz and 2.4 GHz [190], [191].  Since the wave 

front scattering behaves differently at lower frequencies compared to the mmWave band, these 

empirical models cannot be directly applied to V2V communications, besides, those models only 

consider the mean value of the foliage attenuation and the variation or statistical distribution is not 

presented. Moreover, in V2V communication the scattering from tree trunks can be in the near-

field of transmitter and/or receiver while most models are for far-field scattering only.  As a result, 

the efficient near-field tree-trunk scattering model for V2V communications in the mmWave band 

is still missing. Many methods mentioned in literature are either complex EM scattering analysis 

or EM numerical methods.  Though good accuracy can be achieved, it is difficult to fast extract 

the solution and evaluate the communication link in real time. The straightforward solution will 
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be lookup table models, where the results are required to be evaluated for all values of all 

parameters.  Though the lookup table models are simple to implement and apply, the required data 

points increase dramatically with number of parameters. By contrast, artificial neural network  

(ANN)  model  requires  relatively  much  less  number of data points in training and can achieve 

excellent prediction performance  [194].  Besides, in ANN models, users only need hundreds of 

coefficients of neurons to reconstruct the model. On the other hand, to use the lookup table model 

people need all data points, which could be millions of data.  The  idea of  ANN  is  inspired  by  

the  operation  of  human  brain,  and many important study of ANN like backpropagation 

algorithm can be traced back to 1970s [195], [196],[197]. Recently due to the development of 

computational ability of computers, ANN becomes one of the most popular tools in machine 

learning and has  been  successfully  applied  to  many  areas  in  both  science and  engineering  

for  data  classification,  pattern  recognition and  curve-fitting  [198].  There  are  many  other  

types  of  neural networks (NN) like convolutional neural network (CNN) [199] or recurrent neural 

network (RNN) [200], and their typical ap-plications are in image, voice or video recognition. 

Compared to other NN, ANN has simpler structure and therefore faster to use.  In this reduced  

channel  modeling  problem,  ANN  model is sufficient to achieve good performance without 

making the neural network too complicated.  

Our Contributions: In this paper, systematic analysis on the scattering phenomenon from 

cylindrical trunk in both near-field and far-field regions is performed for V2V communication. To 

allow for computational tractable simulation of wave scattering and propagation, the complicated 

EM models are further reduced into a macro-model, by invoking an artificial neural network 

(ANN). The signal loss through branches and leaves for mmWave V2I communication is studied 

by Monte-Carlo simulation with commercial ray tracing (RT) software, and its statistical features 
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are summarized. The main contributions are summarized as follows. First, for V2V 

communication, we derive semi-exact semi-closed-form formulas for the far-field as well as near-

field scattering from a tree trunk for the mmWave V2V communications and then validate them 

by the full-wave solver and reciprocity [201]. Second, we carry out extensive numerical 

evaluations on the scattered fields, by varying the position of receiver and transmitter, the trunk 

radius, the trunk height, the permittivity of the tree, and the frequency. The path loss caused by the 

tree in the mmWave band varies in a non-linear fashion in terms of the aforementioned parameters. 

Third, we further invoke the ANN model to provide curve fitting for pathloss. Fourth, in a forest 

environment, we perform theoretical analysis to accurately estimate the multiple scattering 

between tree trunks and then massive Monte-Carlo simulations are performed with randomly 

distributed tree trunks. Finally, the statistical information of the path loss model for foliate and 

defoliate trees are presented. The resulting macro-model is extracted to compute the overall link 

analysis in the V2V foliage propagation. The developed macro-model can be integrated as a useful 

tool to efficiently and accurately analyze real-time mmWave channel quality in vehicular 

communications.  This  paper  is an  extension  of  our  preliminary  study  in [182],  with  many 

more  details  in  near-field  validation,  path  loss  analysis  and ANN-based macro-model for the 

path loss caused by the tree scattering.  

 

7.2  Semi-analytic Single Tree Trunk Scattering Model for Millimeter-wave Band 

In V2V communications, the presence of a tree may result in attenuation or small 

enhancement in signal depending on the receiver’s and transmitter’s locations. The strength of EM 

signal is proportional to the total electric field, which is equal to the sum of incident field, �⃑� 𝑖, and 

the scattered field, �⃑� 𝑠, given by: 
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 �⃑� (𝑟 ) = �⃑� 𝑖(𝑟 ) + �⃑� 𝑠(𝑟 )  (7.1) 

where 𝑟  denotes the position of the receiver. The attenuation of the foliage or the path loss in the 

communication link can be defined as the received power without the foliage over that with the 

foliage: 

 

𝐴𝐹𝑜𝑙 =
𝑃𝑟𝑛𝑜𝐹𝑜𝑙

𝑃𝑟𝐹𝑜𝑙

= |
�⃑� 𝑖(𝑟 )

�⃑� (𝑟 )
 |

2

= 𝑃𝐿2 (7.2) 

where 𝑃𝐿 is defined as |
�⃑� 𝑖(𝑟 )

�⃑� (𝑟 )
 | in this thesis. 

 

Figure 7.1. V2V foliage propagation and its equivalence to cylinder scattering. 

 

Since any polarization state of electromagnetic wave can be represented by the linear 

combination of vertical (transverse magnetic (TM) case) and horizontal polarization (transverse 

electric (TE) case), thus only these two cases need to be considered. Without loss of generality, a 

coordinate system can be defined as illustrated in Figure 7.1, where the cylinder is along the z axis, 

and the incident direction is in x-z plane, with angle of 𝜃𝑖 . Later analyses are based on this 

coordinate system. Because the length of the trunk is much larger than the wavelength at either 5.9 

GHz or 60 GHz, the internal field or equivalent surface current can be approximated by those for 

infinitely long cylinder with the same radius. These fields/currents can be derived from cylindrical 
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wave expansions [52]. The scattered field of the foliage, �⃑� 𝑠(𝑟 ), is obtained from the equivalent 

surface current by Huygens Principle, given by, 

 
�⃑� 𝑠(𝑟 ) = ∬ [𝑖𝜔𝜇0𝐽 𝑠(𝑟 ′) {(

3

𝑘2𝑅2
−

3𝑖

𝑘𝑅
− 1) �̂��̂� + (1 +

𝑖

𝑘𝑅
−

1

𝑘2𝑅2
) 𝐼}̿

𝑠′

− (𝑖𝑘 −
1

𝑅
) (�̂� × 𝐽 𝑚(𝑟 ′)) ∙ 𝐼]̿

𝑒𝑖𝑘𝑅

4𝜋𝑅
𝑑𝑠′  

(7.3) 

where 𝑘 is the wavenumber in free space, 𝐼 ̿is the dyadic idemfactor, 𝐽 𝑠 and 𝐽 𝑚 are the equivalent 

surface electric and magnetic current, respectively, and𝑅 is the length of the vector from source 

point 𝑟 ′ to observation point 𝑟 : 

 
�̂� =

𝑟 − 𝑟 ′

|𝑟 − 𝑟 ′|
, 𝑅 = |𝑟 − 𝑟 ′|. (7.4) 

Notice that under far-field approximation (𝑘𝑅 ≫ 1), the scattered field shown in (7.3) 

reduces to, 

 
�⃑� 𝑠(𝑟 ) = 𝑖𝑘(𝐼 ̿ − �̂��̂�) ∙ ∬ [𝑍0𝐽 𝑠(𝑟 ′) − (�̂� × 𝐽 𝑚(𝑟 ′))]

𝑒𝑖𝑘𝑅

4𝜋𝑅
𝑑𝑠′ 

𝑠′

 (7.5) 

where 𝑍0 denotes the characteristic impedance of free space. 

The transmitter or receiver can be in either near field of far field of the tree trunk. 

Depending on the positions of transmitter and receiver, different approximations can be made. For 

practical applications, the following scenarios are considered: both transmitter and receiver are in 

the far-field region of the trunk (subsection 7.2.1 and 7.2.2), transmitter is in the far field while the 

receiver is in the near-field region of the trunk (subsection 7.2.1 and 7.2.3), and transmitter is in 

the near-field region of the trunk regardless of the receiver's position (subsection 7.2.4). 

7.2.1  Transmitter in the Far-field Region 

When transmitter is in the far-field of tree trunk, plane wave incidence approximation can 

be applied. The equivalent electric and magnetic currents on the surface of trunk are derived from 
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cylindrical modal expansion of plane wave [52]. The electric and magnetic surface currents for 

TM case in cylindrical coordinate system are given by: 

 
𝐽 𝑠
𝑇𝑀(𝑎, 𝜙, 𝑧) = 𝑖𝜔휀1𝑒

𝑖𝑘𝑧𝑧 ∑ 𝐶𝑛𝑘1𝜌𝐽𝑛
′ (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�

∞

𝑛=−∞
, (7.6) 

 
𝐽 𝑚
𝑇𝑀(𝑎, 𝜙, 𝑧) =

𝑒𝑖𝑘𝑧𝑧𝑘𝑧

𝑎
∑ 𝑛𝐶𝑛𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�

∞

𝑛=−∞

+ 𝑒𝑖𝑘𝑧𝑧𝑘1𝜌
2 ∑ 𝐶𝑛𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�

∞

𝑛=−∞
, 

(7.7) 

where 𝐶𝑛  is the modal coefficient at 𝑛𝑡ℎ  mode, a is the radius of cylinder, 𝜙  and  𝑧  are the 

cylindrical coordinate of one point on the cylinder, and 𝐽𝑛  and 𝐽𝑛
′  are the Bessel function of the 

first kind and its derivative with order of n. Also 𝑘𝑧 = 𝑘0 cos 𝜃𝑖 , 𝑘𝜌 = 𝑘0sin𝜃𝑖 , 휀0 and 휀1 are the 

permittivity for free space and the dielectric cylinder, 𝑘1𝜌 = 𝑘𝜌√
𝜀1

𝜀0
  . The solutions for TE case 

can be easily derived from those for TM case using duality relations, therefore they are not shown 

in this paper. 

By applying boundary condition regarding the continuity of the tangential E and H fields 

at 𝜌 =  𝑎, The unknown coefficient 𝐶𝑛 can be obtained and is given by: 

 
𝐶𝑛 = 𝐸0(−𝑖)𝑛 sin 𝜃𝑖

𝑘𝜌

𝑘1𝜌
2

𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛
′ (𝑘𝜌𝑎) − 𝐻𝑛

(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘𝜌𝑎)

𝑘1𝜌𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛′ (𝑘1𝜌𝑎) − 𝑘𝜌𝐻𝑛
(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘1𝜌𝑎)

 , (7.8) 

where 𝐻𝑛
(1)

 and 𝐻𝑛
(1)′

 are Hankel function and its first derivative with order of n, and 𝐸0 is the 

magnitude of incident E field at the origin. 

7.2.2  Receiver in the Far-field Region 

If the receiver is also in the far-field region of the cylinder, after lengthy mathematical 

manipulations of (7.5) (details are described in Appendix), the electric field in the far-field region 

can be calculated from:   
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�⃑� 𝑠(𝑅) =

𝑖𝑘0𝑒
𝑖𝑘0𝑅

4𝜋𝑅
(𝐼 ̿ − �̂�𝑠�̂�𝑠) ∙ 𝑏

sin𝑉

𝑉
Υ, (7.9) 

where 𝑉 = [𝑘𝑧𝑘0 cos 𝜃𝑠]𝑏/2, b is the length of the cylinder, �̂�𝑠 denotes the scattering direction, 

and Υ is given in the Appendix.  

7.2.3  Receiver in the Near-field Region 

When the transmitter is in the far-field region, but receiver is in the near field of the tree 

trunk, the analytical solution in (7.9) becomes inaccurate. However, as transmitter is in the far field, 

plane wave incidence approximation can still be used to obtain the surface currents on the trunk 

by (7.6), (7.7) and the scattered field can be calculated numerically by taking integral of surface 

currents with equation (7.3). This approach is referred to as surface current integral method (SCIM). 

7.2.4  Transmitter in the Near-field Region 

If the transmitter is in the near-field region of the entire tree trunk, to avoid complex near-

field calculation, segmented-cylinder method (SCM) may be applied. In this method, the entire 

trunk is divided into smaller segments but still large compared to the wavelength, and then the 

transmitter can be in the far-field range of each small segment. As a consequence, the methods 

based on plane-wave incidence approximation are still valid for each segment and the total 

scattered field is the sum of that from all segments, as shown in Figure 7.2. 

 

Figure 7.2. The transmitter and receiver locate in the near-field of whole trunk but in the far-field 

of small segment. 
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Figure 7.3. Transmitter is in near-field range of the cylinder, comparison between (a) spherical / 

cylindrical wave incidence and (b) plane wave incidence approximation. 

However, in scenarios where the transmitter is in the near-field with respect to the diameter 

of trunk, the plane-wave incidence approximation is no longer valid. Intuitively this can be 

explained in Figure 7.3. The far-field radiation of antenna can be approximated as 0th order 

spherical Hankel wave, with the form of 𝐸𝑖  =  𝐴
𝑒𝑖𝑘0𝑟

𝑟
, where 𝑟 is the propagation distance, and A 

is a constant to ensure the incident E field to be 𝐸0 at origin. A is denoted as 𝐴 = 𝐸0𝑟/𝑒
𝑖𝑘0𝑟 . The 

wave propagation from transmitter to the trunk is depicted in Figure 7.3 (a), and plane wave 

incidence approximation is demonstrated in (b).  

Sommerfeld identity [202] can be used to transfer the spherical wave function into 

cylindrical wave functions. With some efforts, the equivalent electric and magnetic surface 

currents can be written as: 

 
𝐽 𝑠
𝑇𝑀(𝑎, 𝜙, 𝑧) = −
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−∞ 
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∞

𝑛=−∞
], (7.10) 

 
𝐽 𝑚
𝑇𝑀(𝑎, 𝜙, 𝑧) = −

𝑖𝐴

2
∫ 𝑑𝑘𝑧𝑒

𝑖𝑘𝑧𝑧
𝑘𝜌

𝑘0
[
𝑘𝑧

𝑎
∑ 𝑛𝐶𝑛

′ 𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�
∞

𝑛=−∞

∞

−∞ 

+ 𝑘1𝜌
2 ∑ 𝐶𝑛

′ 𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�
∞

𝑛=−∞
)]. 

(7.11) 

The derivation and the expression for 𝐶𝑛
′  are describe in the Appendix. Note that (7.10) 

(7.11) require evaluating Sommerfeld integral at each point on the trunk's surface for all orders of 
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Bessel functions, and practically it needs hundreds of orders to ensure convergence. For mmWave 

band the trunk's surface can be discretized into hundreds of thousands of points, which makes the 

computation extremely extensive. 

 Alternatively, due to the fact that the distance from the transmitter to trunk is usually much 

larger than the wavelength, i.e.  𝑘𝜌|𝜌| ≫ 1, the spherical wave front can be approximated as 

cylindrical wave front for any observation point on the surface of the tree trunk: 

 𝑒𝑖𝑘|𝑟 −𝑟 ′|

|𝑟 − 𝑟 ′|
≈

𝑒𝑖𝑘𝑧(𝑧−𝑧′)𝐻0
(1)

(𝑘𝜌|𝜌 − 𝜌 ′|)

|𝑟 − 𝑟 ′|√2/(𝑖𝜋𝑘𝜌|𝜌 − 𝜌 ′|)

, 
(7.12) 

where 𝑟 ′ = 𝜌 ′ + 𝑧′�̂�  is the source position of the spherical wave and 𝑟 = 𝜌 + 𝑧�̂�  denotes the 

observation point. The cylindrical wave with center at 𝜌 ′  can be expanded as cylindrical 

eigenfunctions with center at 𝜌  by: 

 
𝐻0

(1)
(𝑘𝜌|𝜌 − 𝜌 ′|) = ∑ 𝐻𝑛

(1)
(𝑘𝜌𝜌

′)𝐽𝑛(𝑘𝜌𝜌)𝑒𝑖𝑛(𝜙−𝜙′)

∞

𝑛= −∞

, (𝜌 ≤ 𝜌′) (7.13) 

 Because the observation point is on the surface of trunk, and the source is outside the trunk, 

the condition 𝜌 ≤ 𝜌′ is naturally satisfied. To simplify the calculation, the observation points with 

same 𝑘𝑧 and 𝑘𝜌 values can be treated as illuminated by the same cylindrical wave, and these points 

are on a conical surface with center at the source point. This conical surface intersecting with the 

trunk creates an ellipse as shown in Figure 7.4 (a). Assume with a small thickness, the elliptical 

small piece of trunk then is approximately illuminated by cylindrical wave with fixed 𝑘𝜌 together 

with a propagating phase front in z direction with  𝑘𝑧. Therefore, the whole cylinder can be divided 

into small segments by conical surfaces with center at the source point as is shown in Fig. Figure 

7.4 (b) and each segment is illuminated by different cylindrical wave. The angular step 𝑑𝜃 is 

exaggerated in the figure and in simulation  𝑑𝜃 = 0.2° is chosen for good accuracy. 
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Figure 7.4. (a) Spherical wave incidence on one cross-section can be approximated by cylindrical 

wave incidence and (b) The trunk is divided by conical surfaces with center at the transmitter 

After some algebra, the surface currents turn out to be the same form as (7.6), (7.7) with 

𝐶𝑛 replaced by 𝐶𝑛
′′, which is given by: 

 
𝐶𝑛 =

𝐴𝐻𝑛
(1)

(𝑘𝜌𝜌′)𝑒−𝑖𝑛𝜙′
𝑘𝜌

𝑘1𝜌
2 √

2((𝑧 − 𝑧′)2 + 𝜌′2)
𝑖𝜋𝑘𝜌𝜌′

𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛
′ (𝑘𝜌𝑎) − 𝐻𝑛

(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘𝜌𝑎)

𝑘1𝜌𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛′ (𝑘1𝜌𝑎) − 𝑘𝜌𝐻𝑛
(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘1𝜌𝑎)

 , 
(7.14) 

 Once the equivalent surface currents are computed, the scattering field at any position 

regardless of far-field or near-field condition can be evaluated by (7.3) numerically. Remarkably, 

the proposed cylindrical-wave incidence segmented-cylinder method (CISCM) can also be applied 

in far-field incidence situation. Compared to the plane-wave approximation for far-field incidence 

case, this approach will yield slightly more accurate results but need much more computations. 

Regarding the trade-off of accuracy and efficiency, the approach based on plane-wave 

approximation is chosen in numerical simulation for far-field incidence case. 

7.3  Multiple Scattering Model of randomly distributed tree trunks 

In some scenarios of vehicular communication, the communication channel can be 

interfered by more than one tree trunk. For example, in a scenario where two cars drives on a 
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curved road with many trees on the sides, the LOS link may be blocked by the trees as illustrated 

in Figure 7.5. As many trees locates on or near the LOS link between vehicles, the scattered field 

due to multiple scattering between trees cannot be ignored. Though the aforementioned current-

integral based semi-analytic solutions can accurately evaluate the multiple scattered fields in the 

near-field range of tree trunks with free space Green’s function, the calculation will become 

extremely expensive if applied to multiple scattering problem. With the assumption that the 

distance between transmitters / receivers and the trees are in the near field range of trees and only 

sacrifices small accuracy (will be discussed in the next section), the problem can be approximated 

as 2D scattering problem where the tree trunks are approximated as infinite long dielectric 

cylinders.  

                       

(a)                                                                           (b) 

Figure 7.5. (a) A photograph and (b) a 2D illustration of a curved road scenario where the 

vehicular communication link may be blocked by randomly distributed trees. 

 Many literatures [203][204] have studied the higher order scattered fields between metallic 

cylinders excited by a plane wave. In this thesis, a modal expansion-based approach for dielectric 

cylinders illuminated by cylindrical wave is presented. Assume the source 𝑠0 locates at (𝑥0, 𝑦0) 

and there are 𝑙 cylinders locating at (𝑥1, 𝑦1), …, (𝑥𝑙 , 𝑦𝑙) with radius of 𝑎1,…,𝑎𝑙, respectively.  
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Figure 7.6. The coordinate system of the multiple scattering problem for dielectric cylinders 

For simplicity, only TM case (vertical polarization) is considered in this analysis. The 

coordinate system for this problem is shown in Figure 7.6. The incident field at (𝑥, 𝑦) from the 

source 𝑠0 is given by: 

 𝐸𝑖𝑧
(0)(𝑥, 𝑦) = 𝐻0

(1)
(𝑘𝜌|𝜌 − 𝜌 0|) = 𝐻0

(1)
(𝑘𝜌√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2), (7.15) 

where 𝑘𝜌 is the wavenumber in free space. For any cylinder 𝑗, the incident field can be expanded 

as cylindrical eigen functions with center of (𝑥𝑗 , 𝑦𝑗) as given in (7.13). By applying boundary 

conditions that enforce the continuity of both electric fields and magnetic fields on the surface of 

cylinder, the first order scattered fields at (𝑥, 𝑦) can be evaluated from: 

 
𝐸𝑠𝑗

(1)
= ∑ 𝐻𝑛

(1)
(𝑘𝜌𝜌0𝑗)𝐴𝑗,𝑛𝑘𝜌

2𝐻𝑛
(1)

(𝑘𝜌𝜌𝑟𝑗)𝑒
𝑖𝑛(𝜙𝑟𝑗−𝜙0𝑗)

∞

𝑛= −∞

, (7.16) 

where 𝜌0𝑗  denotes the distance between source 𝑠0  and the center of cylinder 𝑗 , 𝜌0𝑗 =

√(𝑥0 − 𝑥𝑗)
2
+ (𝑦0 − 𝑦𝑗)

2
, and ϕ0𝑗 denotes the angle of source 𝑠0 with respect to the center of 

cylinder 𝑗, 𝜙0𝑗 = atan2(𝑦0 − 𝑦𝑗 , 𝑥0 − 𝑥𝑗). Similarly, 𝜌𝑟𝑗 = √(𝑥 − 𝑥𝑗)
2
+ (𝑦 − 𝑦𝑗)

2
 and 𝜙𝑟𝑗 =
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atan2(𝑦 − 𝑦𝑗 , 𝑥 − 𝑥𝑗) . 𝐴𝑗,𝑛  is the modal coefficient corresponding to the 𝑛𝑡ℎ  order Hankel 

function for plane wave incidence on cylinder 𝑗 except the (−𝑖)𝑛 term [185]: 

 
𝐴𝑗,𝑛 =

𝑘𝜌𝐽𝑛
′ (𝑘𝜌𝑎𝑗)𝐽𝑛(𝑘1𝜌𝑎𝑗) − 𝑘1𝜌𝐽𝑛(𝑘𝜌𝑎𝑗)𝐽𝑛

′ (𝑘1𝜌𝑎𝑗)

𝑘𝜌
2𝑘1𝜌𝐻𝑛

(1)
(𝑘𝜌𝑎𝑗)𝐽𝑛′ (𝑘1𝜌𝑎𝑗) − 𝑘𝜌

3𝐻𝑛
(1)

′(𝑘𝜌𝑎𝑗)𝐽𝑛(𝑘1𝜌𝑎𝑗)
. (7.17) 

where 𝑘1𝜌 denotes the wavenumber for the dielectric cylinder, 𝑎𝑗 denotes the radius of cylinder 𝑗. 

 𝐸𝑠𝑗
(1)

 can be rearranged as: 

 
𝐸𝑠𝑗

(1)
= ∑ 𝐹𝑠𝑗0,𝑛

(1)
𝐻𝑛

(1)
(𝑘𝜌𝜌𝑟𝑗)𝑒

𝑖𝑛𝜙𝑟𝑗

∞

𝑛= −∞

= 𝐹 𝑠𝑗0 ∙ �⃑� 𝑟𝑗, (7.18) 

where 𝐹𝑠𝑗0,𝑛
(1)

= 𝐻𝑛
(1)

(𝑘𝜌𝜌0𝑗)𝐴𝑗,𝑛𝑘𝜌
2𝑒−𝑖𝑛𝜙0𝑗  , 𝐹 𝑠𝑗0 = [𝐹𝑠𝑗0,−𝑁

(1)
, … , 𝐹𝑠𝑗0,𝑁

(1)
] , given that the infinite 

summation is truncated into 2𝑁 + 1 terms. The different cylindrical eigenfunctions of scattered 

fields from cylinder 𝑗 to observation point 𝑟 can form a vector �⃑� 𝑟𝑗, and �⃑� 𝑟𝑗 is defined as: 

 
�⃑� 𝑟𝑗 = [𝐻−𝑁

(1)
(𝑘𝜌𝜌𝑟𝑗)𝑒

−𝑖𝑁𝜙𝑟𝑗 , 𝐻−𝑁+1
(1)

(𝑘𝜌𝜌𝑟𝑗)𝑒
−𝑖(𝑁−1)𝜙𝑟𝑗 , … , 𝐻𝑁

(1)
(𝑘𝜌𝜌𝑟𝑗)𝑒

𝑖𝑁𝜙𝑟𝑗]
𝑇

. (7.19) 

For integer 𝑛,  the Bessel functions have the following property: 

 𝐿−𝑛(𝑥) = (−1)𝑛𝐿𝑛(𝑥), (7.20) 

where 𝐿𝑛 can be 𝐽𝑛, 𝐽𝑛′, 𝐻𝑛
(1)

 or 𝐻𝑛
(1)

′ in this problem. After some algebra, the −𝑛𝑡ℎ term and 𝑛 

term of 𝐹 𝑠𝑗0 and �⃑� 𝑟𝑗 can be simply related by the following equations: 

 𝐹𝑠𝑗0,−𝑛
(1)

𝑒−𝑖𝑛𝜙0𝑗 = (−1)𝑛𝐹𝑠𝑗0,𝑛
(1)

𝑒𝑖𝑛𝜙0𝑗 , (7.21) 

 𝑉𝑟𝑗,−𝑛𝑒
𝑖𝑛𝜙𝑟𝑗 = (−1)𝑛𝑉𝑟𝑗,𝑛𝑒

−𝑖𝑛𝜙𝑟𝑗 , (7.22) 

Therefore, we only need to evaluate 𝐹𝑠𝑗0,𝑛
(1)

 and 𝑉𝑟𝑗,𝑛 for 0 ≤ 𝑛 ≤ 𝑁, and the rest can be 

readily obtained. In the second order scattering analysis of cylinder 𝑘 with respect to cylinder 𝑗, 

the incident fields on the surface of cylinder 𝑘 is the same as the scattered field of cylinder 𝑗 as 

given in (7.18). To obtain the scattered fields of cylinder 𝑘, the Graf's Addition Theorem of Bessel 
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functions [205] is applied to expressed the 𝑚𝑡ℎ  order wave function 𝐻𝑚
(1)

(𝑘𝜌𝜌𝑟𝑗)𝑒
𝑖𝑚𝜙𝑟𝑗   on the 

surface of cylinder 𝑘 as a summation of cylindrical eigenfunctions with center at (𝑥𝑘, 𝑦𝑘): 

 
𝐻𝑚

(1)
(𝑘𝜌𝜌𝑟𝑗)𝑒

𝑖𝑚𝜙𝑟𝑗 = 𝑒𝑖𝑚(𝜋+𝜙𝑗𝑘) ∑ 𝐻𝑛−𝑚
(1)

(𝑘𝜌𝜌𝑗𝑘)𝐽𝑛(𝑘𝜌𝜌𝑟𝑘)𝑒
𝑖𝑛(𝜙𝑟𝑘−𝜙𝑗𝑘)

∞

𝑛= −∞

, (7.23) 

where 𝜌𝑗𝑘 and 𝜙𝑗𝑘 denote the range and angle of the center of cylinder 𝑗 with respect to the center 

of cylinder 𝑘, and 𝜌𝑟𝑘 and 𝜙𝑟𝑘 are the range and angle of the observation point on the surface of 

cylinder 𝑘 with respect to the center of cylinder 𝑘.  

 By applying the boundary condition, the second order scattered field of cylinder 𝑘 by the 

𝑚𝑡ℎ order cylindrical wave 𝐻𝑚
(1)

(𝑘𝜌𝜌𝑟𝑗)𝑒
𝑖𝑚𝜙𝑟𝑗 from cylinder 𝑗 can be given by: 

 
𝐸𝑠𝑘𝑗,𝑚

(2)
= ∑ 𝐹𝑠𝑘𝑗,𝑚𝑛

(2)
𝐻𝑛

(1)
(𝑘𝜌𝜌𝑟𝑘)𝑒

𝑖𝑛𝜙𝑟𝑘

∞

𝑛= −∞

, (7.24) 

where 

 𝐹𝑠𝑘𝑗,𝑚𝑛
(2)

= 𝑒𝑖𝑚(𝜋+𝜙𝑗𝑘)𝐻𝑛−𝑚
(1)

(𝑘𝜌𝜌𝑗𝑘)𝐴𝑘,𝑛𝑘𝜌
2𝑒−𝑖𝑛𝜙𝑗𝑘

= (−1)𝑚𝐻𝑛−𝑚
(1)

(𝑘𝜌𝜌𝑗𝑘)𝐴𝑘,𝑛𝑘𝜌
2𝑒𝑖(𝑚−𝑛)𝜙𝑗𝑘 . 

(7.25) 

 

In real implementation, the number of orders of Bessel functions are truncated into the 

ranges (−𝑀 ≤ 𝑚 ≤ 𝑀,−𝑁 ≤ 𝑛 ≤ 𝑁).  We can define a vector �⃑� 𝑠𝑘𝑗
(2)

 as: 

 
�⃑� 𝑗

(2)
= [𝐸𝑠𝑘𝑗,−𝑀

(2)
, 𝐸𝑠𝑘𝑗,−𝑀+1

(2)
, … , 𝐸𝑠𝑘𝑗,𝑀−1

(2)
, 𝐸𝑠𝑘𝑗,𝑀

(2)
]
𝑇

, (7.26) 

Similarly, define a (2M+1) by (2N+1) matrix �̿�𝑠𝑘𝑗 with the element in 𝑚𝑡ℎ row and 𝑛𝑡ℎ 

column equal to 𝐹𝑠𝑘𝑗,𝑚𝑛
(2)

. Then the following expression can be obtained: 

 �⃑� 𝑗
(2)

= �̿�𝑠𝑘𝑗�⃑� 𝑟𝑘. (7.27) 

The total second order scattered field of cylinder 𝑘 from cylinder 𝑗 is: 
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𝐸𝑠𝑘𝑗

(2)
= ∑ 𝐹𝑠𝑗0,𝑚

(1)
𝐸𝑠𝑘𝑗,𝑚

(2)

∞

𝑚= −∞

= 𝐹 𝑠𝑗0 ∙ �⃑� 𝑗
(2)

. (7.28) 

 Notably, the coefficient vector 𝐹 𝑠𝑗0 and matrix �̿�𝑠𝑘𝑗 are reusable in higher order scattered 

field calculation. Generally, in an L-cylinder problem, the 𝑣𝑡ℎ order solutions can be derived from 

the product of an adjacency matrix and the (𝑣 − 1)𝑡ℎ order solutions: 

 

[
 
 
 
 �⃑�
 
1
(𝑣)

�⃑� 2
(𝑣)

…

�⃑� 𝐿
(𝑣)

]
 
 
 
 

=

[
 
 
 
 0 �̿�𝑠21 … �̿�𝑠𝐿1

�̿�𝑠12 0 … �̿�𝑠𝐿2

… … 0 …

�̿�𝑠1𝐿 �̿�𝑠2𝐿 … 0 ]
 
 
 
 

[
 
 
 
 �⃑�
 
1
(𝑣−1)

�⃑� 2
(𝑣−1)

…

�⃑� 𝐿
(𝑣−1)

]
 
 
 
 

, (7.29) 

 

𝐸𝑠
(𝑣)

= [𝐹 𝑠10 … 𝐹 𝑠𝐿0] ∙ [
�⃑� 1

(𝑣)

…

�⃑� 𝐿
(𝑣)

], 

(7.30) 

where �⃑� 𝑘
(1)

= �⃑� 𝑟𝑘, which is given by (7.19). 

The entry of the adjacency matrix �̿�𝑠𝑘𝑗 denotes the EM coupling from cylinder 𝑗 to cylinder 

𝑘. In practical simulation, if two cylinders far apart from the direct link between transmitter and 

receiver, the contribution of multiple scattering can be very weak and therefore the corresponding 

entry of the adjacency matrix can be set as 0 to reduce the computational expense. 

 

 

7.4  Numerical Results and Validation of the Single-Scattering Models for Tree Trunk 

Depending on whether transmitter and receiver are in the far field of the trunk, different 

approaches are applied to obtain the scattered fields. In this section, validation of the accuracy of 

EM theoretical methods are discussed. Then, analysis on the scattered fields and path loss is 

presented. 

7.4.1  Validation of Semi-exact Solution and SCIM 
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The semi-exact analytic solution in (7.9) is applied in the scenario where both the 

transmitter and receiver are in the far-field region of the trunk. To verify this method, the result is 

compared with that from a full-wave simulator based on method of moment (MoM). Here we use 

the commercial simulation software AnsysEM (HFSS). The full-wave simulation requires much 

more computational resources and time but has no approximation and very good accuracy. In the 

validation, the cylinder's dimension is set to be 4𝜆 × 10𝜆(about 0.2 m × 0.5 m for 5.9 GHz) and 

relative permittivity is 10+5i in both the HFSS and the semi-exact solution. The results are shown 

in Figure 7.7. The root-mean-square error (RMSE) of the result from the two methods is 0.18 dB 

for VV polarization and 0.51 dB for HH polarization, which indicates that the semi-exact solution 

shows excellent agreement with that from MoM. 

 Similar to the semi-exact solution, SCIM method is also based on plane-wave incidence 

approximation to obtain equivalent surface currents. In fact, semi-exact solution is a special case 

of SCIM method when receiver is in far-field region of the trunk. Therefore, the results from these 

two methods should be the same for far-field receiver. In addition, suppose the receiver is very 

close to the trunk, then only a portion of trunk with height close to the observation point contributes 

to the scattered field. As a result the length of trunk no longer matters in this situation, and scattered 

E field will be similar to that for infinitely long cylinder. The scattered E field from infinitely-long 

cylinder is an analytic solution [185], and the detail of this solution is given in Appendix. 
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(a)                                                                   (b) 

Figure 7.7. Comparison of RCS simulation for semi-exact solution and MoM, for the 

cylinder with 4 λ diameter and 10 λ height, with scattering directions on (a) azimuth plane (𝜃𝑠 =

90°) and (b). elevation plane (𝜃𝑠 = 180°) 

The comparison of the scattered E fields calculated by SCIM and two analytic solutions 

for receiver in the far field and very near range are depicted in Figure 7.8. The scattered E fields 

are normalized to the incident field |𝐸0|. 

It is shown that 𝐸𝑠 calculated by SCIM coincides with that by far-field analytic semi-exact 

solution in the far range and is very close to that derived from infinitely long cylinder solution for 

very near range. As a result, the accuracy of the surface integral method is validated. 
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(a)                                                                 (b) 

Figure 7.8. Comparison of SCIM with analytic solutions for normalized |𝐸𝑠| as a function of 

distance between receiver and the trunk with plane wave incidence for 2 m long trunk with (a) 

0.2 m radius at 5.9 GHz and (b) 0.1 m radius at 60 GHz. 

 

(a)                                                                 (b) 

Figure 7.9. Path loss as a function of distance to the trunk comparison for varying transmitter or 

receiver’s position, while the other is located sufficiently far away for 2 m long and 0.2 diameter 

trunk with at (a) 5.9 GHz and (b) 60 GHz. 
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7.4.2  Validation of SCM and CISCM 

For near-field incidence, the two methods SCM and CISCM mentioned in Sec. 7.2.4 are 

used to compute the scattered field. Since we have the accurate solution of scattered field from 

trunk with transmitter in the far-field and receiver in the near-field of trunk, the near-field incidence 

method can be verified by reciprocal property of EM wave in time-invariant linear media. Suppose 

two antennas are placed on the two sides of a tree trunk: one antenna denoted as antenna A locates 

in the far-field of the trunk, and the other denoted as antenna B is in the near-field of the trunk. 

Reciprocity states that the received signal at antenna A sent from antenna B should be the same as 

that at antenna B transmitted from antenna A if transmitted signal is the same. Therefore, the path 

loss should obey reciprocity as well. 

Let antenna A be in the far field of trunk and antenna B be in the near field with distance 

to the trunk as a variable. The path loss for signal transmitted from antenna A to B denotes as 𝑃𝐿𝐴𝐵, 

and that from antenna B to A denotes as 𝑃𝐿𝐵𝐴. 𝑃𝐿𝐴𝐵 can be accurately obtained by SCIM with 

plane wave incidence, and 𝑃𝐿𝐵𝐴 is calculated based on the two methods under validation. Figure 

7.9 depicts the path loss of 𝑃𝐿𝐴𝐵 and 𝑃𝐿𝐵𝐴 as a function of distance from antenna B to the trunk. 

The results show that at both 5.9 GHz and 60 GHz, the path loss calculated by CISCM has an 

excellent agreement with the far-field incidence solution for the range greater than 1 m. In addition, 

the solution based on SCM fails when the transmitter is in the near field of the cross-section of tree 

trunk (i.e., 1.6 m distance at 5.9 GHz and 16 m distance at 60 GHz for 0.2 m diameter). Reasonable 

accuracy is presented for the method with cylindrical wave incidence approximation if source is 

more than 1 m away from the trunk and the analysis shown in the following section are based on 

CISCM. 
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Figure 7.10. Scattered field for V2V foliage propagation at (a) 5.9 GHz, (b) 60 GHz, and the 

total field at (c) 5.9 GHz and (d) 60 GHz. 

7.4.3  Scattered Fields and Path Loss Analysis 

In the following discussion, the scattered field/path loss of signal is investigated for different 

receiver's locations, transmitter's locations, dimensions and dielectric properties of the trunk. To 



 191 

examine how the scattered field and total field change with receiver's location, examples of the E 

fields normalized to the incident field at the center of the trunk are illustrated in Figure 7.10 at both 

5.9 GHz and 60 GHz. In this example, the transmitter is located at 10 m away from the trunk (i.e., 

𝑑1 = 10 𝑚), and the radius and height of the trunk is 0.1 m and 2 m, respectively. The heights of 

the transmitter and the receiver are equal to 1 m. It shows that the scattered fields and total fields 

are nonlinear and fluctuating as functions of the distance and the azimuth angle. The azimuth 

directions of the fields are chosen to be from 150° to 210° for 5.9 GHz and 170° to 190° for 60 

GHz, this is due to the fact that the normalized scattered power outside the ranges are negligible 

compared to LoS signal’s power(<-20 dB).  

 

Figure 7.11. Incident, scattering and total E fields in forward scattering direction and path loss as 

a function of distance to the cylinder at (a) 5.9 GHz and (b) 60 GHz. 

The normalized incident, scattered, total fields and the corresponding path loss in the 

forward scattering direction as a function of receiver's distance to the trunk are shown in Figure 

7.11. It shows that for the same trunk the path loss at 60 GHz is much higher than that at 5.9 GHz. 

This is due to the fact that the short wavelength at 60 GHz behaves like light wave, where the total 

field is more substantially attenuated by the blockage, compared to that for the longer wavelength 

signal. 
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The relative permittivity of the tree trunk depends on the frequency and the water content 

of the tree, and thus it changes over seasons. The permittivity of trunk has small impact on the 

total field in the forward scattering direction as can be shown in Figure 7.12. This is because for 

an electric large lossy object like the tree trunk, when LoS is blocked, the EM wave can hardly 

penetrate through regardless of the permittivity. The total field is dominated by the diffraction, 

which mainly depends on the shape and dimension of the object. 

 

Figure 7.12. Comparison of the path loss in forward scattering direction with different 

permittivity at (a) 5.9 GHz and (b) 60 GHz. 

The distance between transmitter and trunk affects the path loss as well. Figure 7.15 shows 

that the path loss for nearer transmitter is usually greater than that for further transmitter, intuitively, 

when the transmitter is placed closer to the trunk, wider angle of view will be blocked by the trunk, 

and remarkably, the path loss is not a linear or other simple function to the transmitter's distance. 

The same reason can be applied when considering larger radii of the trunk where higher path loss 

values are observed, which is shown in Figure 7.13 and Figure 7.14. It is shown that the path loss 

cannot be simply scaled with the dimensions of trunk. Notice the length of trunk doesn't affect the 
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path loss too much because both the transmitter and receiver are in the near-field range and only a 

portion of the trunk contributes to the attenuation of the communication link.  

In summary, the path loss is a complex function of transmitter and receiver locations and 

the trunk's dimensions. Also the path loss has little dependence on the permittivity of the trunk as 

long as there is enough loss.   

 

Figure 7.13. Comparison of the path loss in forward scattering direction with different (a) 

radii and (b) lengths of trunk at 5.9 GHz. 

 

Figure 7.14. Comparison of the path loss in forward scattering direction with different (a) 

radii and (b) lengths of trunk at 60 GHz. 
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Figure 7.15. Comparison of the path loss in forward scattering direction with different 

distance to the trunk for transmitter Rt (a) at 5.9 GHz (b) at 60 GHz. 

7.5  Artificial neural network model for the path loss of single tree trunk 

For the example of scattered and total fields shown in Figure 7.10 (𝑑𝑡 = 10 m, radius = 0.1 

m and length = 2 m), the path loss can be fitted by analytic functions with respect to receiver's 

distance to the trunk and its corresponding azimuth angle, as described in [182]. However, when 

generalized to arbitrary dimension of trunk and any position of the transmitter, the analytic curve-

fitting functions become prohibitively complicated with compromised performance. To generate 

an accurate and easy-use model for the path loss, the artificial neural network (ANN) approach is 

applied. 

In the following, the path loss is modeled as a function of the distance between transmitter 

and cylinder, distance between receiver and cylinder, azimuth angle, radius and length of the trunk 

with ANN. Then, we extract a macro-model to describe the overall link gain of V2V foliage 

propagation, which is promisingly useful for autonomous driving ITS. 

ANNs can be treated as complicated mathematical functions to map input space 𝑥   to 

output space Y. For this application, the input space 𝑥  constructs as [𝑟0, h, 𝑑𝑡 , 𝑑𝑟 , 𝜙𝑟], which 
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denote the radius of trunk, height of trunk, distance between transmitter and trunk, that between 

receiver and trunk and the azimuth angle of receiver, respectively. The output space Y is the path 

loss PL in dB (10𝑙𝑜𝑔10|𝐸_𝑖/𝐸𝑡𝑜𝑡|) scale. The idea of ANN is to imitate the biological neural 

network, in which some intermediate variables are created. The intermediate variables are non-

linear functions of inputs or other intermediate variables, and the final output is also a non-linear 

function of the intermediate variables. 

The structure for the ANN model is shown in Figure 7.16, which is mainly composed of 

three parts: input layer, hidden layers and output layer. Each circle represents one variable, and the 

line with arrow from one circle to the other indicates the latter variable is a function of the former 

variable. Inputs 𝑥1, . . . , 𝑥5 are normalized as 𝑥 𝑖 such that each variable has similar range from -1 

to 1. The output of the neural network �̂� is a normalized value as well, and can be mapped to the 

scale of path loss values PL inversely. 

 

Figure 7.16. Structure of an artificial neural network with 5 inputs, 1 output and m hidden 

layers. 
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 More than one million different datasets have been generated from EM models for curve-

fitting. In training process, the datasets are randomly categorized into three parts: 70 % data are 

used to train the ANN, and 15 % are used in validation and the rest 15 % are testing data. The 

purpose of validation data is to ensure no over-fitting issue for a trained ANN, and that for testing 

data is to find the ANN with the best performance with many validated ANNs. The number of 

hidden layers and neurons is determined based on the performance of the ANN.  The training 

process is implemented in Matlab, and Levenberg-Marquardt backpropagation algorithm is chosen 

as the training algorithm for its good performance and excellent time efficiency. 

The correlation coefficient R and RMSE in dB are used to evaluate the performance of data 

fitting. Figure 7.17 shows the linear regression and correlation coefficient between the fitted and 

model path loss at 5.9 GHz with a neural network which contains two hidden layers and 10 neurons 

on each layer. It shows extremely strong correlation between the fitted data and model data, and 

very similar error performance for training, validation and test data indicates this neural network 

model is free from over-fitting problem. The RMSE between the fitted and model path loss of all 

dataset is 0.22 dB. Figure 7.18 depicts curve-fitting by this neural network for two examples with 

randomly chosen parameters. Reasonable agreement between fitted and model data is observed. 

Note that the range for 𝜙 is from 150° to 180° degree instead of 210°, this is due to the symmetry 

of trunk that the path loss at 180° + Δ𝜙 is the same as that at 180° - Δ𝜙. 
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(a) 

 

(b) 
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Figure 7.17. Data regression performance for curve-fitting of path loss of the ANN with 

two hidden layers at (a) 5.9 GHz and (b) 60 GHz. 

 

Figure 7.18. ANN Curve fitting of path loss at 5.9 GHz for examples of (a) radius = 

0.1m, height = 3m, 𝑑𝑡 = 8m and 𝑑𝑟 = 26.9m and (b) radius = 0.2m, height = 2.0m, 𝑑𝑡 = 28m and 

𝑑𝑟 = 5m. 

 

Figure 7.19. ANN Curve fitting of path loss at 60 GHz for examples of (a) radius = 0.1m, 

height = 2.2 m, 𝑑𝑡 = 8 m and 𝑑𝑟 = 35.7 m and (b) radius = 0.2m, height = 2.8m, 𝑑𝑡 = 36 m and 

𝑑𝑟 = 5 m. 

 Similarly, we can generate ANN to fit the path loss data for 60 GHz. Because the function 

at 60 GHz is more irregular and unpredictable, structure with three hidden layers and 10 neurons 

in each layer is selected. The linear regression of fitted data is shown in Figure 7.17 (b). Similar to 
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5.9 GHz, excellent linearity between fitted data and model data is observed. The overall RMSE 

for path loss at 60 GHz fitted by this three hidden layers neural network is about 0.36 dB. Figure 

7.19 gives two curve-fitting examples with randomly chosen parameters. In both examples the 

fitted and model data agree very well. 

 The average time for evaluating path loss through the proposed off-line ANN model is 

about 50 𝜇𝑠, which can enable the real-time assessment of communication channel. By contrast, 

the time for obtaining the similar path loss results from semi-analytical numerical simulation 

ranges from several seconds to several minutes, depending on the dimensions of tree trunk and 

frequency. 

7.6  Simulation results and reduced multiple scattering model for multiple tree trunks  

The permittivity of trunk is determined by the frequency 𝑓  and gravimetric moisture 

content 𝑀𝑔. With the model given in [209], the permittivity of trunk is calculated as 33.2+9.75i at 

5.9 GHz and 11.3+7.59i at 60 GHz, with the assumption that 𝑀𝑔 = 0.6. Higher order scattered 

fields between cylinders can be evaluated by (7.29) and (7.30). The number of cylindrical 

eigenfunctions �⃑� 𝑟𝑗 of each cylinder directly determine the calculation expense of this approach. It 

is known that the increase of number of eigenmodes 2𝑁𝑗 + 1 will result in a more accurate solution. 

The optimal number of eigenmodes depends on both frequency and the radius of the cylinder. Here 

parametric study is used to find the optimal number of 𝑁 as a function of 𝑘𝑎, where 𝑁 is the 

maximum order of eigenmode, k is the wavenumber in free space, and a is the radius of the cylinder. 

As the frequency band in our particular application is 5.9 GHz and 60 GHz, the study of number 

of eigenmodes are presented on these two bands.  Figure 7.20 shows the path loss as a function of 

(N/(ka)), and (2N+1) is the number of eigenmodes. The path loss is obtained in a scenario where 

source and observation point are on the two side of the trunk and both are 5 m away from the trunk. 
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It shows that the path loss converges when N >1.2* ka in all scenarios, and in the following 

simulations, N =round(1.4* ka) is chosen. For example, for a 0.1 m radius cylinder, 33 modes 

(N=16) at 5.9 GHz and 327 modes (N = 163) at 60 GHz are selected for the cylinder in simulation. 

  

(a)                                                                         (b) 

Figure 7.20. Path loss of one trunk with different radii as a function of N/(ka) at (a) 5.9 

GHz and (b) 60 GHz. 

To demonstrate the multiple scattering effect between tree trunks, a two-cylinder scattering 

problem is examined first. In the first scenario, the source locates at (0,0), and the two tree trunks 

locate at (-0.1, 3.6) and (0, 4), respectively. Both tree trunks have 0.1 m radius. The path loss of E 

fields in dB scale at 5.9GHz and different locations with single and multiple scattering are shown 

in Figure 7.21. It shows that when one tree trunk is shaded by the other, the result based on single 

scattering method is not accurate and requires higher order scattering solutions. In this two-

cylinder problem, second order solution can provide excellent accuracy as shown in Figure 7.21 

(d). In another example shown in Figure 7.22 where two cylinders are not shaded by each other, 

even they are close the first order solution dominates in the scattered E fields as well as the path 
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loss. This feature can be used to determine whether the higher order scattering is significant 

between two given cylinders. 

      

(a)                                                                        (b) 

    

(c)                                                              (d) 

Figure 7.21. path loss of two overlapping tree trunks at 5.9 GHz with (a) single scattering, (b) 

double scattering and (c) five times scattering; (d) the path loss comparison between different 

orders of scattering at a function of receiver’s x position, (y = 10m). 
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(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 7.22. path loss of two non-overlapping tree trunks at 5.9 GHz with (a) single scattering, 

(b) double scattering and (c) five times scattering; (d) the path loss comparison between different 

orders of scattering at a function of receiver’s x position, (y = 10m). 

 The accuracy of the analytic multiple scattering method is validated with full wave 

simulation method of moment (MoM). In the example of simulation, the source locates at (0 m, 0 

m) and two dielectric cylinders with relative permittivity of (33+10i) and radius of 0.1 m locates 

at (0 m, 3 m) and (0 m, 4 m), respectively. The receiver’s y position is at 10 m, and its x position 
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is sweeping as depicted in Figure 7.23 (a). The comparison of the pathloss between MoM and the 

multiple scattering solution at 5.9 GHz is shown in Figure 7.23 (b). It shows that the analytic 5th 

order solution has excellent agreement with the full-wave solution. 

  

(a)                                                                        (b) 

Figure 7.23. The simulation setup (a) and (b) path loss as a function of receiver’s x position 

comparison between analytic solution and method of moment solution for a two-cylinder 

scattering problem at 5.9 GHz. 

The forest environment demonstrated in Figure 7.5 can be modeled as a random medium 

with randomly distributed dielectric cylinders. Intuitively, the path loss through this random 

medium is mainly determined by three parameters: the number density of trees 𝜌𝑡𝑟𝑒𝑒 (number of 

trees per 𝑚2), the mean radius of tree trunks �̅�  and the foliage depth 𝑑 . Under this complex 

environment, the path loss should be a random variable, and to analysis the statistical property of 

the path loss, Monte Carlo simulation are performed. Some examples of randomly generated tree 

distributions are shown in Figure 7.24. Figure 7.24 (a) depicts the sparse tree distribution with 

𝜌𝑡𝑟𝑒𝑒 = 0.1/𝑚2 and �̅� = 0.1𝑚, a more dense example is given in Figure 7.24 (b), where 𝜌𝑡𝑟𝑒𝑒 =

0.7/𝑚2, �̅� = 0.07𝑚. As a reference, a typical forest in Michigan’s Upper Peninsula has 𝜌𝑡𝑟𝑒𝑒 =

0.17/𝑚2, �̅� = 0.07𝑚 [207]. The forest in both examples have 20 m by 10 m area, and the trees 
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are generated with the constraint that any pair of two trees are not too close to each other. Assuming 

both the transmitter and receiver are one the two side of the trees and are about 10 m away from 

the trees, e.g. the transmitter locates at (0,0), the trees distributed for y from 10m to 20m and the 

receivers’ y positions are at 30 m. The path loss as a function of receiver’s x position for the two 

randomly generated scenarios in Figure 7.24 are displayed in Figure 7.25. It shows that in the 

sparse tree environment, double-scattering solution is sufficient to provide an accurate result, but 

in a dense tree environment, it needs fifth order scattering solution to converge. Therefore, in the 

Monte-Carlo simulation, the scattered fields are evaluated based on fifth order scattering solutions. 

It can also be seen that the path loss fluctuates rapidly for a very small change of receiver’s position, 

therefore statistical analysis has to be performed to obtain significant channel model. 

  

(a)                                                                (b) 

Figure 7.24. The randomly generate dielectric cylinder distribution for (a) 𝜌𝑡𝑟𝑒𝑒 = 0.1/𝑚2, �̅� =

0.1𝑚, 𝑑 = 10𝑚 and (b) 𝜌𝑡𝑟𝑒𝑒 = 0.7/𝑚2, �̅� = 0.07𝑚, 𝑑 = 10𝑚. 
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(a)                                                                (b) 

Figure 7.25. The simulated path loss as a function of receiver’s x position (receiver’s y position 

at 30m,and transmitter at (0,0)) with different scattering orders for the trees with (a) 𝜌𝑡𝑟𝑒𝑒 =

0.1/𝑚2, �̅� = 0.1𝑚, 𝑑 = 10𝑚 and (b) 𝜌𝑡𝑟𝑒𝑒 = 0.7/𝑚2, �̅� = 0.07𝑚, 𝑑 = 10𝑚. 

 

Figure 7.26. The simulated average |𝐸𝑡𝑜𝑡/𝐸𝑖| as a function of number of realizations for different   

𝜌𝑡𝑟𝑒𝑒 and �̅� = 0.07𝑚, 𝑑 = 10𝑚. 

To determine how many realizations are required in the Monte-Carlo simulation, the 

average received total E field with respect to the incident E field as a function of number of 
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simulation realizations for different tree density with  �̅� = 0.07𝑚, 𝑑 = 10𝑚. It shows that for all 

scenarios, the averaged received relative E field or pathloss converges when the number of 

realizations is greater than 50. Therefore, in the parametric study, 50 realizations are performed 

for each scenario with different parameters. 

The attenuation through the random medium can be considered as a random variable. It is 

better to find the statistical distribution of the random variable than just mean value and variance 

to describe the features of the random variable.  For the scenario with each parameter, the path loss 

(|𝐸𝑖/𝐸𝑡𝑜𝑡|) is fitted into many known statistical distributions: Gaussian, Lognormal and Weibull 

distribution. One example of the comparison of the fitting accuracy of different distribution for the 

path loss is shown in Figure 7.27. Fifty randomly generated forests with 𝜌𝑡𝑟𝑒𝑒 = 0.3, and �̅� =

0.07𝑚, 𝑑 = 12𝑚 are simulated at 5.9 GHz to obtain the path loss data. The data are fitted to 

different distributions with linear scale and displayed in dB scale in Figure 7.27. It shows that the 

Lognormal distribution provides the best fit for the path loss. The PDF of Lognormal distribution 

is given by: 

 
𝑓(𝑥|𝜇, 𝜎) =

1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 {−

(ln 𝑥 − 𝜇)2

2𝜎2
}. (7.31) 
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Figure 7.27. The comparison of the empirical CDF and the fitted CDF with Lognormal, Weibull 

and Gaussian distribution of path loss at 5.9 GHz for the forest with 𝜌𝑡𝑟𝑒𝑒 = 0.3, and �̅� =

0.07𝑚, 𝑑 = 12𝑚. 

 Three parameters are considered in this forest V2V communication channel modeling, the 

tree density, mean tree radius and the foliage depth as mentioned above. To reveal the relation 

between each parameter and the V2V communication path loss, the control variates method is 

applied with the Monte-Carlo simulations. Figure 7.28 (a), (b) and (c) shows the Lognormal 

parameters fitted by the path loss data at 5.9 GHz from Monte-Carlo simulations as functions of 

foliage depth 𝑑, the mean tree radius �̅� and the tree density 𝜌𝑡𝑟𝑒𝑒, respectively.  

  

(a)                                                                        (b) 
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(c) 

Figure 7.28. The Lognormal parameters 𝜇 and 𝜎 of path loss at 5.9 GHz (a) as functions of  

foliage depth 𝑑 with 𝜌𝑡𝑟𝑒𝑒 = 0.2, and �̅� = 0.07𝑚, (b) as functions of mean radius �̅� with 𝜌𝑡𝑟𝑒𝑒 =

0.2  𝑑 = 10𝑚 and (c) as functions of tree density 𝜌𝑡𝑟𝑒𝑒 with �̅� = 0.07𝑚, 𝑑 = 12𝑚. 

 In this preliminary study, the Monte-Carlo simulations are performed for 𝜌𝑡𝑟𝑒𝑒 from 0.1 

per 𝑚2 to 0.7 per 𝑚2, �̅� from 0.05 m to 0.11 m and 𝑑 from 10 to 18 m. Both the lognormal 

parameters 𝜇 and 𝜎 are fitted into the following expressions: 

 𝑦 = 𝛽1𝑎
𝛽2𝑑𝛽3𝜌𝛽4 ,    𝑦 = 𝜇 𝑜𝑟 𝜎. (7.32) 

 The mean path loss of the lognormal variable is given by: 

 𝑃𝐿̅̅̅̅ = exp (𝜇 + 𝜎2/2). (7.33) 

After fitting to the simulated data, the values for 𝛽0 to 𝛽4 are given in Table 7 - 1, and the 

fitting performance is shown in Figure 7.29. It shows that the model has a reasonable accuracy to 

predict the statistical parameters of the tree trunks’ path loss for vehicle communication. 

Table 7 - 1. Fitted coefficient for the empirical model of 𝜇 and 𝜎 at 5.9 GHz 

Parameters 𝛽1 𝛽2 𝛽3 𝛽4 

Lognormal 𝜇 0.868 0.484 0.514 0.537 
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Lognormal 𝜎 0.71 0.232 0.273 0.226 

 

 

(a)                                                                        (b) 

Figure 7.29. The fitting performance of the empirical models for the Lognormal parameters (a) 𝜇 

and (b) 𝜎 of path loss at 5.9 GHz. 

7.7  Conclusion 

In this paper, we provided an analytical free-space propagation model and semi-exact semi-

closed-form scattered field expressions are derived for the far-field as well as near-field range of 

a single trunk and multiple scattering between trunks in V2V foliage propagation. The proposed 

path loss model is verified by full-wave solver and reciprocity. 

Extensive numerical simulations on the scattered fields were carried out at 5.9 and 60 GHz. 

Then, we developed ANN curve-fitting model for the path loss of single trunk or any other 

cylindrical object, mainly as a function of the radius and length of trunk, distance of transmitter, 

distance and azimuth angle of receiver. The ANN curve-fitting model shows high accuracy with 

the numerical results. In a multiple-trunk scenario, the path loss is modeled as a Lognormal random 

variable. Finally, we extracted a macro-model for the total field of V2V foliage propagation, which 
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can be integrated as a useful tool to efficiently and accurately analyze real-time mmWave channel 

quality in vehicular communications. 

A multiple-scattering model for tree trunks is developed to obtain the path loss in forest 

environment in the chapter as well. The  

 

Appendix – A: Scattered E field of a cylinder in the far field region 

Let the length of a cylinder to be b and the radius to a, the position of the current on the 

cylinder’s surface is defined as, 

 𝑟 ′ = 𝑎cos𝜙′�̂� + 𝑎sin𝜙′�̂� + 𝑧′�̂�. (7.34) 

 The integral term Υ in (7.9) is given by, 

 
Υ = ∫ [𝑍0𝐽 𝜌(𝑎, 𝜙′) − �̂�𝑠 × 𝐽 𝑚𝜌(𝑎, 𝜙′)]𝑒−𝑖𝑘0�̂�𝑠𝜌∙�⃑⃑� ′𝑎𝑑𝜙′

𝜋

−𝜋

 (7.35) 

where 𝐽 𝜌(𝑎, 𝜙′) and 𝐽 𝑚𝜌(𝑎, 𝜙′) in TM case can be derived by, 

 
𝐽 𝜌(𝑎, 𝜙′) = ∑ 𝑒𝑖𝑛𝜙(𝐽𝑠𝑛𝑧�̂� + 𝐽𝑠𝑛𝜙�̂�)

∞

𝑛=−∞ 

, (7.36) 

 
𝐽 𝑚𝜌(𝑎, 𝜙′) = ∑ 𝑒𝑖𝑛𝜙(𝐽𝑚𝑛𝑧�̂� + 𝐽𝑚𝑛𝜙�̂�)

∞

𝑛=−∞ 

. 
(7.37) 

Each term of the current with order n, 𝐽𝑠𝑛𝑧, 𝐽𝑠𝑛𝜙, 𝐽𝑚𝑛𝑧 and 𝐽𝑚𝑛𝜙 are given by, 

 𝐽𝑠𝑛𝑧 = 𝑖𝜔휀1𝐶𝑛𝑘1𝜌𝐽𝑛
′ (𝑘1𝜌𝑎), (7.38) 

 𝐽𝑠𝑛𝜙 = 0, (7.39) 

 
𝐽𝑚𝑛𝑧 = −

𝑛𝐶𝑛𝑘𝑧

𝑎
𝐽𝑛(𝑘1𝜌𝑎), 

(7.40) 

 𝐽𝑚𝑛𝜙 = 𝐶𝑛𝑘1𝜌
2 𝐽𝑛(𝑘1𝜌𝑎), (7.41) 
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where 𝜔 = 2𝜋𝑓, 휀1  is the permittivity of the dielectric cylinder, 𝐶𝑛  is given in (7.8) and 𝑘1𝜌 

denotes the wavenumber in azimuth direction inside the cylinder, 𝐽𝑛 and 𝐽𝑛
′  are the Bessel function 

of the first kind and its derivative with order of n.  

 To solve the integral Υ, we can first separate the x, y and z components: 

 Υ = Υ𝑥�̂� + Υ𝑦�̂� + Υ𝑧�̂�. (7.42) 

After lengthy algebra, each component of Υ is given by, 

 
Υ𝑥 = 2𝜋𝑎 ∑ 𝑒𝑖𝑛𝜙𝑠𝑖𝑛(𝑍0𝐽𝑠𝑛𝜙(−𝐼𝑛sin) − 𝑘𝑠𝑦𝐽𝑚𝑛𝑧𝐽𝑛(−𝑘𝜌𝑠𝑎) + 𝑘𝑠𝑧𝐽𝑚𝑛𝜙𝐼𝑛cos)

∞

𝑛=−∞ 

 (7.43) 

 
Υ𝑦 = 2𝜋𝑎 ∑ 𝑒𝑖𝑛𝜙𝑠𝑖𝑛(𝑍0𝐽𝑠𝑛𝜙(𝐼𝑛cos) + 𝑘𝑠𝑥𝐽𝑚𝑛𝑧𝐽𝑛(−𝑘𝜌𝑠𝑎) + 𝑘𝑠𝑧𝐽𝑚𝑛𝜙𝐼𝑛sin)

∞

𝑛=−∞ 

 
(7.44) 

 
Υ𝑧 = 2𝜋𝑎 ∑ 𝑒𝑖𝑛𝜙𝑠𝑖𝑛(𝑍0𝐽𝑠𝑛𝑧𝐽𝑛(−𝑘𝜌𝑠𝑎) − 𝐽𝑚𝑛𝑧(𝑘𝑠𝑥𝐼𝑛cos + 𝑘𝑠𝑦𝐼𝑛sin))

∞

𝑛=−∞ 

 
(7.45) 

where 𝑘𝜌𝑠 = 𝑘 sin 𝜃𝑠, and 𝐼𝑛sin, 𝐼𝑛cos are given by, 

 
𝐼𝑛cos = −𝑖cos𝜙𝑠𝐽𝑛

′ (−𝑘𝜌𝑠𝑎) +
𝑛 sin𝜙𝑠

𝑘𝜌𝑠𝑎
𝐽𝑛(−𝑘𝜌𝑠𝑎), (7.46) 

 
𝐼𝑛𝑠𝑖𝑛 = −𝑖sin𝜙𝑠𝐽𝑛

′ (−𝑘𝜌𝑠𝑎) −
𝑛 cos𝜙𝑠

𝑘𝜌𝑠𝑎
𝐽𝑛(−𝑘𝜌𝑠𝑎), 

(7.47) 

Appendix – B: Surface current of a cylinder with spherical wave incidence 

Spherical wave with center at 𝑟 ′ and observation point at 𝑟  can be expanded as an integral 

of cylindrical wave times a plane wave in z direction by Sommerfeld identity: 

 e𝑖𝑘|𝑟 −𝑟 ′|

|𝑟 − 𝑟 ′|
=

𝑖

2
∫ 𝑑𝑘𝑧𝑒

𝑖𝑘𝑧(𝑧−𝑧′)𝐻0
(1)

(𝑘𝜌|𝜌 − 𝜌 ′|)
∞

−∞

. (7.48) 

where 𝑘𝜌 = √𝑘2 − 𝑘𝑧
2. Then the incident E field on the surface of trunk can be expressed as a 

summation of different cylindrical eigen-modes: 
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𝐸𝑖𝑧

𝑇𝑀(𝜌, 𝜙, 𝑧) =
𝐴𝑖

2
∫

𝑑𝑘𝑧𝑒
𝑖𝑘𝑧(𝑧−𝑧′)𝑘𝜌

𝑘0
∑ 𝐻𝑛

(1)
(𝑘𝜌𝜌

′)𝐽𝑛(𝑘𝜌𝜌)𝑒𝑖𝑛(𝜙−𝜙′)

∞

𝑛=−∞

∞

−∞

. (7.49) 

where A is some constant related to the transmitted power. By applying boundary conditions for 

all eigen-modes and following the similar procedure for plane wave incidence, equivalent surface 

currents can be derived: 

 
𝐽 𝑠
𝑇𝑀(𝑎, 𝜙, 𝑧) = −

𝜔휀1𝐴

2
∫ [𝑑𝑘𝑧𝑒

𝑖𝑘𝑧𝑧
𝑘𝜌

𝑘0

∞

−∞ 

∑ 𝐶𝑛
′𝑘1𝜌𝐽𝑛

′ (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�
∞

𝑛=−∞
], (7.50) 

 
𝐽 𝑚
𝑇𝑀(𝑎, 𝜙, 𝑧) = −

𝑖𝐴

2
∫ 𝑑𝑘𝑧𝑒

𝑖𝑘𝑧𝑧
𝑘𝜌

𝑘0
[
𝑘𝑧

𝑎
∑ 𝑛𝐶𝑛

′ 𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�
∞

𝑛=−∞

∞

−∞ 

+ 𝑘1𝜌
2 ∑ 𝐶𝑛

′ 𝐽𝑛 (𝑘1𝜌𝑎)𝑒𝑖𝑛𝜙�̂�
∞

𝑛=−∞
)]. 

(7.51) 

where 𝐶𝑛
′  is given by: 

 
𝐶𝑛

′ =
𝐻𝑛

(1)
(𝑘𝜌𝜌′)𝑒−𝑖𝑛𝜙′

𝑘𝜌

𝑘1𝜌
2

𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛
′ (𝑘𝜌𝑎) − 𝐻𝑛

(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘𝜌𝑎)

𝑘1𝜌𝐻𝑛
(1)

(𝑘𝜌𝑎)𝐽𝑛′ (𝑘1𝜌𝑎) − 𝑘𝜌𝐻𝑛
(1)′(𝑘𝜌𝑎)𝐽𝑛(𝑘1𝜌𝑎)

 , (7.52) 
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Chapter 8    A Compact Broadband Horizontally Polarized Omnidirectional 

Antenna using Planar Folded Dipole Elements 
 

8.1  Introduction 

Omnidirectional antennas are widely used in mobile and wireless communication devices, 

such as cellphone base stations, WLAN routers and many portable devices. Since the bandwidth 

of antenna directly determines the data rate of communication, to satisfy the requirements for 

higher data rate and multiple-band communication, the system’s antenna bandwidth also needs be 

largely increased. For example, the 5G network in the near future (around 2020) is expected to 

have peak data rate of 10 Gb/s for low mobility and 1Gb/s for high mobility nodes [215]. LTE in 

the mobile communication has more than 20 different frequency bands for different regions and 

carriers ranging from 698MHz to 960MHz (31.6%) and 1710MHz to 2690MHz (44.6%) [216]. In 

both cases wider bandwidth antennas are required. Also to improve the data rate, different diversity 

schemes, such as polarization and pattern diversity, broadband systems are being 

considered[217][218][219][220]. Other emerging applications are multistatic all-direction 

imaging radar systems that require omni-directional broadband antennas [221][222]. Usually, 

vertically polarized antennas, such as broadband biconical and mono-conical   antennas, are used 

for these systems because of their simple structure and good omnidirectional radiation pattern. 

However, for more advanced communication and radar applications where polarization diversity 

is considered, a horizontally polarized (HP) omnidirectional antenna is also required to obtain 

higher efficiency in communication system and improved isolation between transmit and receive 

antennas in imaging radar systems.  
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Theoretically, loop antennas can generate good omnidirectional horizontal polarization 

since they are equivalent to magnetic dipoles (vertical magnetic current). However, small magnetic 

loop antennas provide very limited bandwidth. One design of this kind is the Alfred loop antenna 

[59][60], which provides less than 6% bandwidth. In [61], a MNG-TL loop antenna and its array 

are introduced. This antenna can generate good omnidirectional horizontally polarized (HP) 

radiation pattern, but its impedance bandwidth is less than 10% for a single element. A loop 

antenna with loaded capacitors and inductors is presented in [62]. It has multiple resonant 

frequencies with bandwidth less than 3% for each band. In [63], a segmented loop antenna is 

proposed, which has a -10 dB return loss bandwidth of less than 10%. Recently, many wider 

bandwidth omnidirectional HP antennas have been reported in the literature. A loop antenna with 

periodically capacitive loading is shown in [223]. This antenna is reported to have 31.2% 

bandwidth (2.17 to 2.97 GHz). Other than loop antennas, multipole broadband linearly polarized 

elements arranged in different orientations are proposed to achieve wider bandwidth. In [64], an 

antenna is proposed that contains four printed arc dipoles to form a circular shape, and provides a 

bandwidth of 31% (1.66 to 2.27 GHz). This antenna has a good omnidirectional property with gain 

variation less than 1.5 dB. A design using four printed pairs of flag-shaped dipoles with parasitic 

strips as radiators is presented in [65]. This antenna targets 4G LTE band with bandwidth of 41% 

(1.76 to 2.68 GHz). Parasitic strips are added to the antenna to obtain the reported bandwidth at 

the expense of increasing the antenna dimension (0.59λ×0.59λ, λ is for the lowest frequency of 

operation). Also azimuthal gain variation increases at high frequency portion of the operational 

band. Another design using four pairs of wide arc dipole is shown in [66]. This antenna is reported 

to have 34.1% bandwidth for one element, with peak gain of 1.7dBi. It is also shown that, by 

stacking the four-element array vertical direction, the gain can be increase to 7.2 dBi. These 
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antennas have significant bandwidth improvement compared to the traditional HP loop antenna, 

but their bandwidth is limited to about 40% or less. In [67], an 8-element omnidirectional array 

antenna is reported. It has 8 dipole elements printed on octagonal substrate. It has very wide 

bandwidth (62.5%), with the drawback of having a larger dimension (0.79λ×0.79λ, where λ is the 

wavelength at the lowest frequency of operation) and much higher gain variations of about 4.5 dB. 

This paper reports on a compact HP omnidirectional antenna with an almost octave 

bandwidth. It is composed of four modified folded dipole antennas arranged around the perimeter 

of a small square box. The antenna presents a smaller form factor compared to other wideband HP 

omnidirectional antennas (size of 0.34λ×0.34λ), while maintain a relatively low gain variation as 

a function of azimuth angle in the band of operation. The folded dipole antenna is chosen since it 

is reported to have a fractional bandwidth that can exceed 50% [68]. To compensate for the mutual 

coupling of different dipole elements and increase the bandwidth, some geometric modifications 

are made and analyzed. Four identical dipole elements are fed with microstrip baluns and 

connected by an appropriate matching network to a coaxial feed. The matching network, the baluns, 

and the geometrical modification of the elements are co-designed to mitigate the mutual coupling 

effects and achieve the required bandwidth while minimizing the antenna array dimension. Their 

distances are carefully chosen to achieve best omnidirectional property. The antenna’s geometry, 

its principle of operation and its parametric study are discussed in Section II. The fabrication and 

the measurement results for return loss and radiation pattern are presented in Section III. 
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(a)                                                                        (b) 

 

(c) 

Figure 8.1. Structure of the proposed antenna (a) overview, (b) top view, and (c) side view. 

8.2  Antenna Architecture and Design 

8.2.1  Antenna configuration 

The structure of the proposed wideband, omni-directional, and horizontally polarized 

antenna is shown in Figure 8.1. The proposed antenna consists of an array of four modified folded 

dipole antennas and one feeding network with incorporated baluns. The geometry of the antenna 

is an open square box with four modified folded dipole elements on the side faces and baluns and 
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matching network on the bottom face. Both the antenna elements and the baluns are printed on 

Rogers RO4003C substrate (εr = 3.55, tanδ = 0.0027). 

 The operation of the proposed antenna can be best explained by examining the performance 

of the elements of the square array. The folded dipoles are placed in the horizontal plane along the 

x- and y-axis to achieve horizontally polarized radiation. Each dipole is expected to have radiation 

null along the dipole axis with an approximate radiation pattern proportional to sine-squared 

function. The radiation patterns of the orthogonal elements, because of 90ºrotation, are hence 

proportional to cosine-squared function and as a result an omnidirectional radiation pattern is 

expected if the elements are fed equal in magnitude and phase or 180ºout of phase. The antenna 

can be viewed as two two-element arrays that are perpendicular to each other. Considering a pair 

of face-to-face antenna elements as one array, it becomes obvious that the two elements of this 

array should be positioned with a separation of about λ/2 and fed with the same power but 180º 

out of phase. This way the lateral dimension of the antenna is kept small and the far fields of the 

two elements at their respective boresights add up coherently. Another artifact of this arrangement 

is the creation of a null surface at the perpendicular bisector plane of the two elements which 

includes the z-axis. This is a desired feature as it allows the placement of the feed network on or 

near the perpendicular bisector plane without the mutual effect between the antenna elements and 

the feed network of the other pair. 

 

8.2.2  Dipole elements’ separations study 

The radiated far-field from two parallel elements add up coherently in the boresight 

direction in case the separation between the two elements is 0.5λ. However, at other azimuthal 

angles, say at 45 degree offset from the boresight, there is no intuition about the azimuthal gain 
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deviation from its value at the boresight directions. The gain variation should be a function of 

elements’ separation distance. To study the effect antenna separation and finding an optimal 

distance for best omnidirectional radiation pattern a simple analytical model for the square shape 

arrangement of dipole array is constructed. For simplicity, the model uses simple half wave dipole 

for each array element for which a sinusoidal current distribution is assumed. For this array the far 

field radiation pattern is calculated analytically using superposition. Figure 8.2 depicts the 

calculated radiation pattern for different separation between parallel dipole elements. In this 

simulation the antenna size is chosen to be 0.4λ and the separation between parallel dipoles is 

changed from 0.4λ to 0.6λ. It is shown that the smaller is the distance between the parallel antenna 

elements, the lower is the pattern variation as a function of azimuthal angle. Therefore, in order to 

achieve a better omnidirectional pattern from the square array, it is better to keep the separation as 

small as possible while adjusting the phase between the elements. In practice, there are two factors 

constraining the minimization of antenna separation. The first pertains to mutual coupling between 

the elements which increases with decreasing the separation and the second factor is related to the 

antenna size. Basically, making radiating elements small, the bandwidth becomes small [224][225]. 

After many simulations for minimizing the distance between elements while maintaining the 

bandwidth, the distance is chosen to be 85 mm, which is about 0.45λλ for the designed center 

frequency 1.6GHz. Figure 8.3 shows the return loss comparison for different separation distances. 

As we can see, if the distance is smaller than 85mm, it is very difficult to get the entire band below 

-10dB for S11. 
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Figure 8.2. The calculated radiation pattern comparison for different distance between opposite 
antenna elements for idea half wavelength dipole. 

 

Figure 8.3. The simulated return loss for the antenna with different elements separation distances. 
Matching networks for all cases are optimized separated. 

 

8.2.3  Modified folded dipole design and parametric study 

To achieve a broadband operation, array elements themselves must be broadband. Folded 

dipole structure can provide higher bandwidth than ordinary dipoles, but such structure still does 

not provide the required bandwidth. The planar folded dipole antenna (PFDA)  is chosen as 

radiation element because of its wide bandwidth (more than 50%), and its radiation pattern is very 

similar to that of an ordinary dipole antenna. The antenna can be considered as the superposition 
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of one wide-strip planar dipole and one folded dipole with different resonant frequencies which 

produce wider bandwidth [82]. One drawback of this geometry for the application at hand is the 

size of the elements. This prohibits designing the square array in a plane. To keep the spacing 

between the elements as small as possible, the PFDA elements are arranged in vertical direction, 

unlike the arrays used in [64]-[67], in such a way as to form a square box with each element on its 

four sides (see Figure 8.1). 

 

(a)                                                                          (b) 
Figure 8.4. S parameters for the four ordinary folded dipole antennas before matching network 
with (a) source impedance of 50 Ω, (b) source impedance equal to complex conjugate of input 

impedance of one element; S11 is below -35dB and not shown in (b). 

 

(a)                                                                          (b) 

Figure 8.5. The simulated impedance as a function of frequency for (a) a folded dipole in the array 

when other elements are terminated by 50Ω (without returning power from other ports), and (b) a 

folded dipole when all other dipoles are also fed with the same power. 
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With the vertical architecture, the required spacing between parallel elements can be met; 

however, the vertical arrangement leads to increased mutual coupling among the four elements of 

the array. In arrays, high level of mutual coupling in turn results in performance degeneration of 

the antenna array [226]. To examine the effects of mutual coupling for the proposed geometry, the 

array is viewed as a four-port antenna where each port is connected to the input of the balun for 

each planar folded dipole element (the matching network is not considered here). The simulation 

is carried out using a commercial software (ANSYS HFSS). Figure 8.4 (a) shows the simulated S 

parameters for the four folded dipole antennas with the shape proposed in [82] choosing a source 

impedance of 50Ω. The port numbering is as follows: dipole 1 is adjacent to dipole 2 and 4, and 

opposite to dipole 3. Note that since the matching network is not part of the simulation, the 

condition for broadband operation is sought for by finding a smooth impedance response with 

frequency. As shown in Fig. 4, S21 and S41 are comparable to S11 at certain frequencies, which 

indicates a high level of the mutual coupling between adjacent elements. 

Moreover, to examine the mutual coupling effect more accurately, another simulation is 

carried out in which the port impedance is chosen to be the complex conjugate of the antenna 

element for all frequencies. Under this ideal condition, S11 disappears and the parameters S21, 

S31 and S41 represent the coupling coefficients and are shown in Figure 8.4 (b). It can be seen 

that the coupling between adjacent elements is much higher than those between opposite elements. 

It should be noted that S21 and S41 are supposed to identical and the observed differences are due 

to numerical errors caused by asymmetric meshing of the geometry. The power from dipole 1 to 

dipole 2 and 4 is about -10 dB at 1.2GHz and decreases monotonically with frequency to a level 

of -18dB at 2GHz. This coupling phenomenon has a considerable effect on the overall return loss. 
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 Before we solve this complex four ports coupling problem, let us simplify it first. The four 

dipole-elements are treated equally, and their radiation patterns are supposed to be symmetrical, 

so it means the four dipoles and their matching network should be identical. Thus, the matching 

of the four ports problem is equivalent to the matching of one port problem assuming that all other 

ports are fed identically (same source and same source impedance). The return loss for one port in 

this case is the sum of S11, S21, S31 and S41, as it considers the returning power from all other 

elements. To examine the effect of mutual coupling another simulation where one port is excited 

and other ports are matched to   loads is also carried. The input impedance for this case will 

be referred to as “without returning power from other ports”. Figure 8.5 shows the impedance 

comparison for the antenna with and without considering the returning power from other ports. 

When the coupling is included (all four ports excited) the impedance of the antenna shows sharp 

variations with frequency, and this of course leads to strong mismatch at certain frequencies which 

makes the task of broadband matching very difficult if not impossible. It is noted that the overall 

return loss behavior is influenced by the impedance mismatch of the antenna element itself and 

the mutual coupling among the elements. In the other words, the total return loss consists of the 

power returning from each antenna element, and the power coupled from one element to all other 

elements. In the four-port model mentioned above, those power are corresponding to the four S 

parameters. Notices that S parameters are all complex numbers and the total return loss is the sum 

of the phasors. So reducing all the four returning power is not the only way to reduce the total 

return loss, if we can change the S parameters such that they cancel each other over the desired 

band, then a low overall return-loss can be achieved. 
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Figure 8.6. The simulated return loss for the antenna with different truncated corner’s sizes,   is 
the horizontal length of the corner. 

Without increasing the distance between the elements, there is little that can be done to 

reduce this coupling unless the element configuration itself can be changed. However, changes in 

the element configuration can affect the input impedance as well. Therefore, to achieve a wideband 

operation, a configuration must be considered such that the variation in the impedance of the dipole 

elements as a function of frequency is compensated for by the frequency variations of the mutual 

coupling. One way to reduce coupling is to increase the separation between the edges of the 

adjacent elements. This can be done by tapering the edges of the ground planes, and by this 

approach the length of the dipoles and the distance between the elements can be preserved. This 

also to some extent allows for controlling the frequency response of the coupling simply by 

changing the tapering angle. The simulated S11 for the entire antenna with different corner taper 

angle is shown in Figure 8.6. Here 5 , referring to Figure 8.1(c), is varied to control the taper angle. 

mm145 =  is chosen since it can provide the widest bandwidth. Then other parameters of the folded 

antenna are further tuned to achieve a wider bandwidth for the array. Figure 8.7 shows the 

impedance of an optimized folded dipole with other elements terminated to match load (not 

considering the returning power coupled from other ports) and the impedance for a dipole antenna 
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when all ports are fed, which is of course four times of the entire antenna’s impedance before 

matching. All tuning and optimizing process is done by trial and error. It is shown that although 

the impedance of a single element still varies sharply with frequency, the overall impedance of the 

four elements connected together has less variations with frequency. For more clear comparison, 

Figure 8.8 shows the return loss of the antenna in Smith Chart after considering the matching 

network for both the ordinary folded dipole elements and the modified dipole elements. We can 

observe that the bandwidth for the ordinary folded dipole array is only about 130 MHz, by contrast, 

the bandwidth for the modified dipoles is reached to about 800MHz. 

 

(a)                                                                (b) 

Figure 8.7. The simulated impedance as a function of frequency for (a) one modified folded 
dipole antenna with other elements terminated to match load, and (b) one modified folded dipole 

antenna when other elements are fed with equal power. 

 
(a)                                                                (b) 

Figure 8.8. The simulated S11 in Smith Chart of the HP antenna with (a) ordinary folded dipole, 
(b) modified structure folded dipole. 
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To keep the S11 below -10 dB for the entire band, other modifications are made to the 

PFDA including open windows on the ground planes of each element and providing inductive 

short circuits towards the end of the slot lines.  To cut out windows in the ground plane with 

minimal effect on the antenna performance, the current distribution on the ground plane should be 

studied. The areas with lowest current density can be cut out to lower the multi-reflection of waves 

within the square box. Figure 8.9 (a) shows the current distribution over an ordinary PDFA at the 

center frequency. It is shown that the current density is high around the slot and near the edges. 

This suggests that the metal in the middle of the ground plane on each side of the feed can be 

removed with minimal effect on the input impedance and antenna radiation. Figure 8.9 (b) depicts 

the current distribution over the modified PDFA. Figure 8.10 shows the two return loss results for 

the antenna with and without windows. It is shown that the windows can help reducing the return-

loss at certain frequencies within the band. The location of the two short circuits in the slot 

determines the frequencies of all the resonances. Figure 8.11 shows the return loss comparison for 

different shorts’ locations. It is shown that when the distance between two shorts becomes smaller 

the first and third resonant frequencies become higher while the second resonance shifts to lower 

frequency. The current density distributions at different resonant frequencies are shown in Figure 

8.12. It is noted that at the first and third resonant frequencies, the current is mainly concentrated 

around the edge of the slot, thus when the slot becomes shorter, the resonances shift to higher 

frequencies because of the shorter current path. For the second resonance the current leaks out 

further due to the inductive nature of the short to produce the second resonance. After optimization, 

mm521 =  is selected as the distance between two shorts. 
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(a) 

 

(b) 

Figure 8.9. The current distribution on the dipole elements at the center frequency of the 

frequency band (1.6GHz) for (a) no windows, (b) with windows. 

 

Figure 8.10. The simulated return loss for the antenna with windows and without windows at the 

center frequency (1.6GHz). 
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Figure 8.11. The simulated return loss of the antenna for different distance between two shorts. 

 
(a) 

 
(b) 

 
(c) 

Figure 8.12. The current density distribution at (a) first resonance (1.22GHz), (b) second 

resonance (1.45GHz), and (c) third resonance (1.85GHz). 
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8.2.4  Baluns and matching network 

The baluns and matching network are shown in Figure 8.1 (b). The balun used here is a 

classical broadband microstrip balun used for many applications [227][228]. The challenge here 

is to design balun that can also match the input impedance of the antenna over the desired wide 

band and can combine the four elements into a single port which is matched to a 50Ω coaxial line. 

This balun is also to achieve the desired 180º phase shift between the parallel elements. The 180

ºphase shift is conveniently achieved by choosing opposite directions for the microstrip crossings 

over the slots. The matching of microstrip to the antenna element is accomplished by choosing a 

proper slot gap and width for the co-planar strips. The matching network and combiner is 

constructed from four quarter-wavelength transformers as shown in Figure 8.1. In this design the 

width and the length of the transmission line are adjusted through trial and error to achieve the 

desired bandwidth. Usually the balun and the matching network result in reducing the bandwidth 

of the antenna, however, in this design, the entire antenna structure including the four dipole 

elements, the balun, the transmission line transformers are optimized together using full-wave 

analyses to achieve the widest bandwidth. 

8.2.5  Overall Geometry of the proposed antenna 

The electrical and metric dimensions for the entire antenna are, respectively, given by 0.34λ

×0.34λ×0.11λ and 85mm×85mm×26.7mm, where λ is the wavelength at the lowest frequency 

of operation. The folded dipole antennas and the feeding network are fabricated using printed 

circuit board technology. The substrate for the dipole antenna elements and the feeding network is 

chosen to have εr = 3.55,tanδ = 0.0027εr = 3.55, tanδ = 0.0027 corresponding to commercial 

substrate RO3002C by Rogers. Also the thickness of the substrate for the dipole elements is chosen 

to be 0.813mm (32 mil) and that for the feeding network is chosen to be 1.525mm (60 mil). The 
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thicker substrate for the feeding network provides the required rigidity for the antenna structure 

and the thinner substrate for the modified dipoles ensure lower signal blockage from other array 

elements. After all the optimization and parameters study, all the parameters of the antenna are 

listed in Table 8-1. 

Table 8 - 1. Geometric Parameters for the Proposed Antenna 

s1 85mm g1 15mm 

g2 1.5mm fw1 2.1mm 

fw2 0.6mm Sly 20mm 

Slx 1mm fl1 26.1mm 

fl2 3mm fl3 17mm 

fl4 6.25mm fl5 6.5mm 

fl6 3.95mm fl7 4.35mm 

l1 52mm l2 62mm 

l3 69.6mm l4 41.6mm 

t1 0.808mm t2 1.52mm 

h1 26.7mm h2 2.2mm 

h3 4.7mm w1 3mm 

w2 2mm a1 14mm 

b1 14mm a2 3.95mm 

b2 5mm a3 2.1mm 

 

Different shape of the structure will also impact the azimuthal variations of directivity. 

Simulations imply that a circular or octagonal structure provide better omni-directionality for a 

given dimension. However, considering the coupling issues, it is found that the smallest distance 

between elements can best be achieved for square geometry which most affects the uniformity in 

the array’s far-field radiation. 

8.3  Experiment Results 

The square array described in the previous section was fabricated for measurements and 

comparison against the simulation results. Figure 8.13 shows the prototype of the proposed 



 230 

omnidirectional horizontally polarized antenna. All components of the antenna are fabricated with 

low cost PCB materials and different parts were soldered together to form the box structure. Figure 

8.14 depicts both the measured and simulated reflection coefficient (S11) of the proposed antenna. 

The measured 10 dB return loss bandwidth is about 53.2% (from 1.19GHz to 2.05GHz). A very 

good agreement between the simulated and measure results is shown. 

                  

(a)                                                                (b) 

Figure 8.13. The top view (a) and back view (b) of the prototype of the antenna. 

 

Figure 8.14. Return loss comparison of the measured and simulated result of the HP antenna. 

For pattern and absolute gain measurements two double-ridged waveguide horn antennas 

operating in the band of 1-18GHz (model 3115 Double-Ridged guide antenna) are used. The 
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absolute gain is measured by the three-antenna gain measurement method.  In this approach a 

calibrated vector network analyzer (VNA) is used to measure S21 in between pairs antennas inside 

the anechoic chamber of the University of Michigan. Using the distance and the setup unchanged, 

three measurements of S21’s are obtained by permutation of the three antennas with unknown 

gains. Radiation patterns in E-plane (x-y plane) and H-plane (x-z plane) are shown in Fig. 15 and 

Fig 16. In azimuth plane, the RMS value for the gain is 0.30 dB, 0.32 dB, 0.52 dB and 0.73 dB for 

the frequency of 1.2 GHz, 1.5 GHz, 1.8 GHz and 2 GHz, respectively. The gain variations for the 

four frequencies are 1.1 dB, 1.15 dB, 1.85 dB and 2.8 dB, respectively. The isolation between the 

co-pol (HP) and cross-pol (VP) in all direction of azimuth plane is better than 20 dB for frequencies 

below 1.9 GHz, and it degrades to 15 dB for certain direction at 2 GHz but still better than 20 dB 

for most directions. Fig. 17 shows the co-pol and cross-pol gain comparison along x-axis direction 

as a function of frequency. It is shown that the gain is almost constant but with a slightly decreasing 

trend with frequency but the isolation between HP and VP is more than 20 dB for the entire desired 

frequency band from 1.2 GHz to 2GHz. The radiation efficiency and the total efficiency including 

the return loss are depicted in Fig. 18. It is shown at the desired band the radiation efficiency is 

more than 90% and the total efficiency is more than 80%. 

               

(a)                                                                     (b) 
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(c)                                                                     (d) 

Figure 8.15. Measured radiation pattern in x-y plane for the HP antenna at (a) 1.2GHz, (b) 

1.5GHz, (c) 1.8GHz, and (d) 2GHz. 

 
(a)                                                             (b) 

 
(c)                                                             (d) 

Figure 8.16. Measured radiation pattern in x-z plane for the HP antenna at (a) 1.2GHz, (b) 

1.5GHz, (c) 1.8GHz, and (d) 2GHz. 
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Table II shows performance comparison for different broadband omnidirectional HP 

antennas. This shows a favorable performance of the proposed antenna considering the bandwidth, 

antenna dimensions, and gain variations in azimuth over the desired band. The proposed antenna 

provides a wide elevation beam width at the cost of lowering the gain in azimuth plane. 

Table 8 - 2. Comparison of other broadband omnidirectional HP antennas and this work 

Antenna 

Dimension in 

term of 

wavelength of 

lowest operating 

frequency 

Antenna type, 

number of radiation 

elements 

-10 dB 

S11 

bandwidth 

Cross-pol 

isolation 

Gain variation at 

center frequency 

Peak gain 

at center 

frequency 

[12] 0.34λ×0.34λ Loop 31.2% 20 dB Not mentioned 2.5 dBi 

[13] 0. 57λ×0.57λ Multiple radiators, 4 31% 20 dB 1.5dB 
About 0 

dBi 

[14] 0.59λ×0.59λ Multiple radiators, 4 41% 15 dB Not mentioned 4 dBi 

[15] 0.45λ×0.45λ Multiple radiators, 4 34.1% Not mentioned 3 dB 1.7 dBi 

[16] 0.79λ×0.79λ Multiple radiators, 8 62.5% Not mentioned ~3 dB ~0 dBi 

This work 0.34λ×0.34λ Multiple radiators, 4 53.2% 20 dB 1.6 dB 1.2 dBi 

 

 

Figure 8.17. Measured and simulated realized co-pol (HP) and cross-pol (VP) gain for the 

proposed antenna in the x axis direction (ϕ = 0º) changing with frequency. 
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Figure 8.18. Simulated radiation efficiency and the total power efficiency including the return 

loss as a function of frequency. 

8.4  Conclusion 

This paper presents a compact broadband omnidirectional horizontally polarized antenna 

for UWB communication and radar applications. The antenna is composed of four printed 

broadband folded dipole antennas orientated perpendicular to each other and each covering a 

quadrant in the horizontal plane and one feeding network to match the antenna to a single 50 Ω 

port. The 10 dB the return loss bandwidth is about 53.2% (1.192GHz to 2.056 GHz), and the 

variation of the measured gain in all directions of horizontal plane is less than 2 dB for frequency 

of 1.2 GHz to 1.9 GHz, and slightly increases to 2.8 dB at  2 GHz. This antenna shows highest 

realized gain of 1.1 dBi at 1.2GHz and 1.2 dBi around 2 GHz. The isolation between HP and VP 

is more than 20 dB in all directions in the antenna H-plane over the frequency band of operation. 

Regarding the bandwidth performance, gain variations, and antenna dimensions, the proposed 

antenna shows considerable improvements over other similar type of antennas. This antenna meets 

the bandwidth requirement of the LTE system and probably is a good candidate for the 5G wireless 

network of the future. The gain of the antenna in azimuth plane can be increased by stacking a 
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number of these antennas to form a vertical array without compromising its bandwidth, 

polarization purity, and azimuthal pattern variations. 
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Chapter 9    Broadband Omnidirectional Circularly Polarized Antenna with 

Asymmetric Power Divider 
 

9.1  Introduction 

Prosperity of technology witnesses the exploding growing of the number of wireless 

connected devices and demand on high data rate. More than 20.4 billion Internet of Things (IoT) 

devices including smart personal devices, vehicles and industrial sensors will be installed by 2020 

according to Gartner [229]. Examples like autonomous vehicles need extensive wireless 

communications in both vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) scenarios to 

ensure best safety for the vehicles, and in the coming fifth generation (5G) telecom technology, 

more than 1Gb/s per device and 10 Gb/s data rate for base station are required. Wider bandwidth 

is a naturally solution to implement higher data rate, and since the frequency allocations for many 

communication purposes/standards are close to each other, wideband antennas are in favor for 

supporting multiband communication as well. For radar application, wide bandwidth is always 

desirable since the range resolution is directly proportional to the bandwidth of operation.  

Circular polarization (CP) has been widely used in many communication systems include 

satellite communication, global positioning system (GPS) and radio frequency identification 

(RFID). In communication with circularly polarized EM wave, the signal strength is less affected 

by the orientation of device/antenna and multipath effect can be largely reduced compared to linear 

polarization [68]. Besides the mentioned advantages, in radar system, CP antenna can largely 

reduce the crosstalk between transmitter and receiver and enhance the performance of radar 

imaging [54].  
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Many wireless devices or systems require omnidirectional antennas for maximum signal coverage 

include the cellphone base station, WLAN router, vehicular communication, and in 2D all-

direction synthetic aperture imaging radar [54]. Recently, several omnidirectional CP antennas 

have been reported [69]-[79]. In some omnidirectional CP dielectric resonator antenna (DRA) 

design [69][70], CP is created by adding parasitic slots [69] or dielectric wave polarizer [70] 

around an omnidirectional vertically polarized (VP) DRA. In such way the radiated VP fields are 

converted into CP fields. The DRA using parasitic slots [69] has usable bandwidth (overlapping 

of both axial ratio (AR) and impedance bandwidth) of 22% and the other design [70] produces a 

conical radiation pattern with usable bandwidth of 41%. Another omnidirectional CP antenna 

based on circular 𝑇𝐸21-type modes is reported in [71]. The antenna combines two orthogonal 𝑇𝐸21 

modes and forms a 16-element circular array to create omnidirectional CP. Besides, it utilizes low-

pass/high-pass phase shifter to create wideband phase shifting for enhancing the bandwidth. This 

antenna has an effective bandwidth of 58%, but due to the return loss and resistive loss in feeding 

network, its efficiency is only around 65% for more than half of the entire bandwidth. 

Circular polarized EM field can be realized by superposition of two perpendicular linearly 

polarized fields with same magnitude and 90° phase difference. The 90° phase difference is often 

achieved by the electrical length difference between the vertically polarized (VP) and horizontally 

polarized (HP) fields either in feeding or radiating stage. This setup has been successfully 

implemented in many omnidirectional CP antennas [72]-[79], [230]. When a circular patch 

antenna or DRA is feed at the center of the circle, TM modes can be excited to radiate VP fields, 

and the HP fields are generated by several rotationally symmetric monopole or dipole like radiators 

around the antenna [72]-[77]. Besides this type of CP antennas, a CP Antenna composed of four 

inverted L-shape monopoles is reported in[78], and the VP and HP fields are generated by the 
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horizontal and vertical part of the bended monopoles. For another compact omnidirectional CP 

antenna in [79], a slot antenna with fourfold parallel plate waveguide is designed to produce 

omnidirectional HP field, and VP field is excited by two PIFA antennas on the sides of the slot 

antenna. The antennas reported above have good omnidirectional CP property, but most have 

limited bandwidth (<10%).  

One idea to increase the bandwidth is to create multipole resonances with different exciting modes 

[75], [76].  The usable bandwidth is increased to 14.4% [75] and 51.7% [76], however, these two 

antennas have a conical radiation pattern and do not generate CP field in horizontal plane. Recently, 

a wideband central-feed CP patch antenna is proposed [77]. Due to the symmetry of ground plane 

and antenna, this antenna’s main beam is on azimuth plane, and it utilizes capacitive feed instead 

of direct feed to increase the bandwidth to about 30%.  

For an omnidirectional CP antenna based on VP and HP radiators, the challenges of broad 

bandwidth (>50%) include broad impedance bandwidth for both VP and HP radiators, maintaining 

omnidirectional pattern within the band, and maintaining small magnitude difference and 90º 

phase difference between VP and HP fields for all operating frequencies.  For a directional antenna, 

the VP and HP radiators can be the same antenna, but one is rotated by 90º. In this case an equal 

power divider can solve the problem. However, in omnidirectional antennas, VP and HP radiators 

are usually very different elements, and their gains and impedance as functions of frequency may 

have large discriminations as well. This increases the difficulty of designing the feeding network. 

Wilkinson power divider and its modified versions are widely used for splitting power equally or 

in arbitrary ratio [231]-[235]. The original Wilkinson power divider [232] has simple structure and 

good performance but only for equal power division and narrow band application. The theoretical 

analysis for multi-section Wilkinson power divider with arbitrary power split ratio is introduced 
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in [233]. It manipulates impedance of each transmission line while keeping their length to be λ/4 

to obtain the optimal bandwidth performance. In [234], the dimensions of arbitrary ratio power 

divider are reduced by adding novel loading transmission lines. An optimization process based on 

method of least squares are applied to design a broadband multisection Wilkinson power divider 

with arbitrary power split ratio [235], but the quasi-Newton method based optimization can only 

guarantee to find the local optimal value. Many power divider designs in literatures can split power 

with arbitrary ratio, nevertheless, all the reported arbitrary ratios are constant with frequency, 

which cannot meet the requirement in this broadband CP antenna application. 

In this paper, divide-and-conquer strategy is used in designing a broadband omnidirectional CP 

antenna. We first design a ring-shape ultra-wide band (UWB) monopole antenna based on a 

circular-shape UWB monopole antenna [238] and a broadband omnidirectional HP antenna [236] 

that can meet the impedance bandwidth requirement. Those antennas are carefully designed to 

achieve desired performances. Since the gain and impedance of VP and HP elements exhibit large 

differences, and those differences are also functions of frequency, an asymmetric Wilkinson power 

divider is studied and optimized by particle swarm optimization (PSO) to obtain the dedicated 

power split ratio as a function of frequency. The feeding network also includes a wideband 

Schiffman phase shifter to maintain almost 90º phase difference for the VP and HP electrical far 

fields over the entire band. The main beam for the proposed antenna is on azimuth plane and the 

usable bandwidth reaches 53.4%.  

The chapter is organized as following. In Sec. 9.2, the entire antenna structure and 

geometric parameters are introduced, then the design and optimization process of each component 

including a double-ring shape UWB monopole antenna, a broadband omnidirectional HP antenna 

and a feeding network containing a dedicated optimized asymmetric power divider are presented 
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in detail. The parametric study of an asymmetric power divider is discussed as well. In Sec. 9.3, 

The simulation and measurement results of the proposed antenna are demonstrated and discussed. 

Finally, the concluding remarks are included in Sec. 9.4. 

9.2  Antenna design and optimization 

The proposed Broadband Omnidirectional Circularly Polarized (CP) Antenna is shown in 

Figure 9.1. It is designed to operate at L band from 1.2 GHz to 2 GHz. The dimensions for this 

antenna are 100mm×100mm×125mm, or 0.4λ×0.4λ×0.5λ, where λ is the wavelength as the lowest 

frequency of operation (1.2GHz). It is composed of an optimized broadband omnidirectional HP 

radiation element (from our previous work [236]), a double-ring shape UWB monopole antenna 

(VP element) and a very carefully designed feeding network that can divide the power properly 

between HP and VP components and maintain the required phase difference over the desired 

frequency band. Both the antenna elements and the feeding network are printed on Rogers 

RO4003C substrates (εr = 3.55, tanδ = 0.0027). The thickness of the substrate for the feeding 

network of HP radiators shown in Figure 9.1 (d) is 1.52 mm (60 mil) and the rest are printed on 

substrates with 0.81 mm (32 mil) thick. The geometric parameters of each components of the 

proposed antenna is given in Table 9 - 1. 
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(a)                                                          (b)                                         (c) 

 

 

(d)                                                                        (e) 

Figure 9.1. The geometry of (a) the proposed CP antenna, (b) the double-ring monopole antenna, 
(c) the power divider-based feeding network, (d) feeding network for the four HP radiators and (e) 

one element of the HP radiator. 

Table 9 - 1. Geometric Parameters 

Parameters for double-ring monopole and ground plane 

𝑟𝑖1 19.8 mm 𝑤50 1.81 mm 

𝑟𝑖2 22.0 mm 𝑙𝑚1 11.25 mm 

𝑟𝑜1 27.63 mm ℎ𝑔1 9.41 mm 

𝑟𝑜2 32.5 mm ℎ𝑔2 43.45 mm 

𝑑𝑚1 1.6 mm 𝑤𝑔1 45 mm 

Parameters for power divider 

𝑤𝑑1 0.35 mm 𝑙𝑑1 34.67 mm 

𝑤𝑢1 0.47 mm 𝑙𝑢1 24.16 mm 

𝑤𝑑2 0.79 mm 𝑙𝑑2 22.69 mm 

𝑤𝑢2 0.66 mm 𝑙𝑢2 41.88 mm 

𝑤50 1.81 mm 𝑙𝑑3 27.72 mm 

𝑅1 300 Ω 𝑙𝑢3 27.30 mm 

𝑅2 150 Ω 𝑙𝑢4 15.30 mm 

Parameters for HP radiators’ feeding network 

𝑤 100 mm 𝑙𝑓12 7 mm 

𝑤𝑠 1 mm 𝑙𝑓13 17 mm 

𝑙𝑠 18.5 mm 𝑤𝑓2 3.5 mm 

𝑔1 15 mm 𝑙𝑓2 12.03 mm 

𝑔2 1.5 mm 𝑤𝑓3 0.39 mm 

𝑤𝑓1 2 mm 𝑙𝑓3 32.72 mm 



 242 

𝑙𝑓11 20.97 mm   

Parameters for HP radiator 

ℎℎ1 28 mm 𝑙ℎ4 45 mm 

ℎℎ2 5 mm 𝑙ℎ5 3 mm 

ℎℎ3 2.4 mm 𝑙ℎ6 2 mm 

ℎℎ4 2.1 mm 𝑙ℎ7 4 mm 

𝑙ℎ1 56 mm 𝑎ℎ 14 mm 

𝑙ℎ2 71 mm 𝑏ℎ 14 mm 

𝑙ℎ3 79 mm   

 

9.2.1  Vertically polarized (VP) component design 

Ultra-wideband (UWB) circular monopole antenna has been studied for more than a decade 

[237][238], and its broadband features in both impedance and omnidirectional property make it a 

good candidate for our vertically polarized component. The design of VP radiation element starts 

with a typical UWB monopole antenna as shown in Figure 9.2 (a). It is a ring shape monopole 

antenna feed by microstrip line and is printed on a double side PCB board, with antenna and ground 

on different sides. The design is modified from traditional UWB circular monopole antenna: the 

upper boundary of the ground plane is modified as elliptical shape to increase the symmetry of the 

current on the antenna. This ensures that the highest gain is on azimuth plane. This VP antenna 

can provide the required bandwidth and the isolation between VP and HP is more than 30 dB, but 

the gain variance in azimuth direction is as large as 1.5 dB at the center frequency (1.6 GHz).  

 

(a)                                (b)                                              (c) 
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Figure 9.2. The geometry of (a) Ring UWB monopole antenna, (b) Two-cross-rings UWB 
monopole antenna and (c) the proposed monopole component for this CP antenna. 

 To improve its omnidirectional property, a geometry with two perpendicular ring radiators 

intersecting with each other is proposed as shown in Figure 9.2 (b). This geometry is further 

adjusted such that the feed structure for the HP antenna is also included as depicted in Figure 9.2 

(c). The addition of ground traces on the horizontal plane assists further the monopole feature of 

the VP antenna and can enhance the uniformity of the radiation pattern in the horizontal plane. The 

three monopole antennas shown in Figure 9.2 are labeled as monopole-1, monopole-2 and 

monopole-3 antennas. The radiation pattern in azimuth plane for monopole-1, 2, 3 are shown in 

Figure 9.3. It shows that the double-ring geometry can reduce the gain variation significantly. All 

geometric parameters of the monopole antennas are carefully designed to make sure the return loss 

is greater than 10 dB for the entire required band. The normalized input impedance for monopole-

3 antenna at different frequencies on a Smith chart are illustrated in Figure 9.4 (a). It shows that 

for this UWB antenna there is no obvious resonant frequency and the entire band has VSWR less 

than 2 (10 dB return loss). Figure 9.4 (b) depicts the radiation pattern on azimuth plane for 

monopole-3 antenna at three resonant frequencies (zero reactance): around 1.2 GHz, 1.4 GHz and 

2 GHz. Excellent omnidirectional property is observed for the antenna at all frequencies, and the 

directivity at 1.2 GHz and 1.4 GHz are almost the same. The gain drops for about 0.7 dB at 2 GHz 

due to the fact that main beam moves up from the azimuth plane at high frequency. 
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Figure 9.3. Radiation pattern in azimuth plane comparison at center frequency (1.6GHz) for the 
three monopole antennas. 

 

(a)                                                      (b) 

Figure 9.4. (a) Return loss of monopole-3 antenna when terminated by 50 Ω impedance. (b) 
Radiation pattern on azimuth plane at different frequencies for monopole-3 antenna. 

 

9.2.2  Horizontally polarized (HP) component design 

The broadband HP omnidirectional antenna with planar folded dipole is selected as the HP 

radiation element. It has the required bandwidth, good omnidirectional property, and 

omnidirectional shape radiation pattern as we desired. In ordinary non-dispersive wave 
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propagation the phase term βd is linear with frequency, however, for the original proposed HP 

antenna [236], the phase of the radiated electric far field at the low frequency band (typically from 

1.2GHz to 1.3GHz) is not linear with frequency as is shown in Figure 9.5. This is due to different 

resonant mechanism for the antenna at low frequency. The non-dispersive property is important 

for maintaining the 90º phase difference between VP and HP all over the band. In order to alleviate 

this problem, the HP antenna is scaled up to shift the dispersive response outside the operating 

band, and many parameters have been modified to keep the antenna’s impedance bandwidth. The 

simulated results are provided in Figure 9.5. It shows that for w = 90mm, the phase deviated from 

normal propagation is more than 50 degrees at 1.2 GHz while those for w = 100mm and w = 

110mm are about 20 degrees, which are acceptable for circular polarization criteria. 

 

Figure 9.5. The phase of electrical far field at same distance and the phase deviation from normal 
propagation (linear function of frequency) as a function of frequency. 

 

9.2.3  Simulation for combining VP and HP components 



 246 

The geometry of the combined VP and HP components of the CP antenna is shown in 

Figure 9.6. When terminated by 50Ω impedance, the S parameters of the two components are given 

in Figure 9.7 (a). The return loss for VP component is greater than 10 dB for the entire band and 

that for HP antenna is greater than 10 dB for most part of the frequency band of interest. The 

coupling between VP and HP is lower than -25 dB and therefore good isolation between VP and 

HP is achieved with this geometry placement. The radiation pattern in H plane for both VP and 

HP components are shown in Figure 9.7 (b). The gain variation for different azimuth directions is 

about 0.6 dB for VP and 2 dB for HP. Their averaged gain has about 1.6 dB difference when both 

antenna components are feed with the same power. The comparison of dimensions between CP 

antenna and its linear polarized (LP) components are given in Table 9 - 2. The implementation of 

circular polarization is at the cost of increase in size as well. 

 

Figure 9.6. Geometry of the combination of VP and HP components without feeding network. 

 

Due to the rotational symmetry of both VP and HP components, the largest variation of 

gain in azimuth plane is between ϕ=0º and ϕ=45º, therefore analysis on these two directions is 

enough for examination of the omnidirectional property in the azimuth plane for this antenna. The 
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simulated realized gain of the VP and HP field for ϕ=0º and ϕ=45º as a function of frequency are 

given in Figure 9.8 (a). The gain for VP is almost constant for the frequency band from 1.2GHz to 

2 GHz, while that for HP has a minimum at around 1.5GHz. The gain difference between VP and 

HP field are shown in Figure 9.8 (b). These results are used in designing the feeding network to 

divide the input power to VP and HP component as a function of frequency such that the VP and 

HP gain difference is as small as possible. Notice the gain differences change with different 

azimuth directions, and those at ϕ=0º and ϕ=45º have at most 2.5 dB difference within the band, 

so the goal for the feeding network is to have the power dividing ratio matching the average gain 

difference, which is the dot line shown in the figure. 

Table 9 - 2. Dimensions of the CP antenna and its LP components 

 CP antenna HP component VP component 

x 100 mm 100 mm 100 mm 

y 100 mm 100 mm 100 mm 

z 125 mm 28 mm 75 mm 

 

   

(a)                                                          (b) 

Figure 9.7. (a) S parameters of the VP and HP components when terminated by 50 Ω ports, (b) the 
radiation pattern in azimuth plane for H polarization and V polarization components at center 

frequency (1.6GHz) when feed with the same power. 
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(a)                                                          (b) 

Figure 9.8. (a) The simulated gain in horizontal plane for VP and HP at ϕ=0º and ϕ=45º as a 
function of frequency. (b) The gain differences of VP and HP at ϕ=0º, ϕ=45º and average over ϕ 

as a function of frequency. 

 Another important quantity for two orthogonal polarization waves to form circular 

polarization is the phase difference. Ideal for a nondispersive medium, the phase difference (βΔl) 

between VP and HP is a linear function of frequency and by adding a nondispersive transmission 

line in the VP’s or HP’s signal path for phase compensation, the phase difference will be constant 

zero for the entire band. Figure 9.9 depicts the phase difference between VP and HP fields after 

compensation at the center frequency. The phase differences are between -10º to 10º for the entire 

band, and it indicates that there is only small dispersion for both VP and HP component. 

 

Figure 9.9. The phase difference for HP and VP after phase compensation by simple transmission 
line at ϕ=0º and ϕ=45º as a function of frequency. 
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9.2.4  Wideband phase shifter for feeding network 

To achieve circular polarization, the feed network for this broadband circular polarized 

antenna is required to create 90º phase difference between VP and HP fields and compensate their 

gain difference such that both VP and HP fields have the same magnitude over the entire band.  

A popular method to implement 90º phase difference is to utilize the propagation path 

difference of VP and HP signals in transmission line, antenna itself or wave propagation in the air. 

This solution is fine for narrow band design, but problem will arise for broadband application. It 

is noted that the phase difference (βΔl) between VP and HP is a linear function of frequency if the 

antenna and transmission line are nondispersive for EM signals propagating from feeding port to 

far field. Therefore, the phase difference between VP and HP is no longer 90º for the frequency 

other than the center frequency. For an ideal CP antenna with center frequency 𝒇𝟎, the axial ratio 

as a function of frequency is depicted in Figure 9.10, given that the magnitudes of E fields for VP 

and HP are identical over the entire band. It shows that the maximum axial ratio bandwidth for a 

nondispersive CP antenna is 44% (0.78𝒇𝟎 to 1.22𝒇𝟎) if nondispersive method is applied to create 

90º phase difference. Therefore, more sophisticated phase shifting technique is required for 

broadband (>50% bandwidth) CP antenna. 

 

Figure 9.10. The phase difference for HP and VP after phase compensation by simple 

transmission line at ϕ=0º and ϕ=45º as a function of frequency. 
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Schiffman phase shifter [24] is used to create broadband 90º phase difference in this design. 

The schematic in Advanced Design System (ADS) is shown in Figure 9.11 (a). It is composed of 

a quarter wavelength couple line with one end shorted. It can create a broadband 90º phase 

difference compared to the response of a ¾ λ long transmission line, where λ is the wavelength for 

the central frequency. The simulated results are illustrated in Figure 9.11 (b). For the frequency 

from 1 to 2.2 GHz the phase difference between S_21 and S_43 is about 90±5°. 

   

(a)                                                          (b) 

Figure 9.11. (a) The schematic of the Schiffman phase shifter and (b) the phase difference 

between port 2 and 4, given that port 1 and 3 are in phase. 

9.2.5  Analysis and optimization of an asymmetric power divider 

 As shown in Sec. 9.2.3, the gain difference between VP and HP changes with frequency. Thus 

the feed network should be capable to divide the power with a prescribed ratio varying with 

frequency.  

  It is found that when breaking the symmetry of the power divider (two splitting transmission 

lines have different impedance and length), the power dividing ratio is no longer constant with 

frequency. The drawbacks of this power divider are more loss in the resistors and there will be some 

power leakage between port 2 and port 3 shown in the left part of Figure 9.12 (large |S32|, |S23|). 
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The loss issue can be reduced by carefully optimizing the power divider and the power leakage is 

not a serious problem for this antenna application. Because in transmitting mode, the radiated power 

only depends on |S21| and |S31|, and large value of |S32| or |S23| won’t increase the return loss or 

reduce the radiation efficiency. In receiving mode, if the incident wave is circularly polarized as 

desired, the receiving efficiency should be the same as that in transmitting mode due to the 

reciprocity. In such case, the leakage power from port 2 to port 3 is actually cancelling the return 

loss from port 3 that to ensure maximum efficiency of power input from port 3 to port 1.  

  Since the power divider now is not symmetric, conventional “even-odd” mode analysis [231] 

cannot be applied here. Instead, since the n-stage Wilkinson power divider can be treated as 

cascaded 4-port network with transmission lines and shunt resistors, transmission matrix method 

(also known as ABCD matrix) is used to analyze this network. The three-port network Wilkinson 

power divider can be equivalent to a four-port network as is shown in Figure 9.12, with 𝑉1’ =

 𝑉4’ = 𝑉1, 𝐼1  = 𝐼1’ + 𝐼4’ [235]. 

 

Figure 9.12. N-stage Wilkinson power divider and its equivalent 4-port network. 

                              

(a)                                                          (b) 

Figure 9.13. The four-port schematic for (a) two transmission lines and (b) a shunted load. 
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The overall transmission matrix of the four-port network can be simply calculated by the 

multiplication of the transmission matrix of each component. The transmission matrix relates the 

voltages and currents in port 2 and 3 to those in port 1 and 4 in Figure 9.13, as described by: 

 [𝑉1, 𝑉4, 𝐼1, 𝐼4]
𝑇 = [𝐴][𝑉2, 𝑉3, 𝐼2, 𝐼3]

𝑇 ,  (9.1) 

where A is the transmission matrix. The transmission matrix for two transmission lines (shown in 

Figure 9.13 (a)) 𝐴2𝑡𝑙𝑖 and that for a shunted load with impedance 𝑅𝑖 (shown in Figure 9.13 (b)) 

𝐴𝑅𝑖 are given by [231]. Then the overall transmission matrix is: 

 [𝐴′] = [𝐴2𝑡𝑙1][𝐴𝑅1] … [𝐴2𝑡𝑙𝑛][𝐴𝑅𝑛].  (9.2) 

The impedance matrix [𝑍′] of the four-port network shown in the right part of Figure 9.12 

can be derived from its transmission matrix[𝐴′] with some algebra. By applying the boundary 

condition 𝑉1’ =  𝑉4’ = 𝑉1, 𝐼1  = 𝐼1’ + 𝐼4’,which means directly connecting port 1 and 4, the four 

port impedance matrix [𝑍′] can be reduced to three-port impedance matrix [𝑍]. Then the S matrix 

can be calculated from the impedance matrix together with the knowledge of the impedance of the 

three ports by: 

 [𝑆] = [𝐹]([𝑍] − [𝑍𝑝])([𝑍] + [𝑍𝑝])
−1

[𝐹]−1,  (9.3) 

where [𝑍𝑝] is a diagonal matrix with element in 𝑖th row and 𝑖th column is the impedance of port 

𝑖, 𝑍𝑝𝑖, and [𝐹] is also a diagonal matrix with element 𝐹𝑖𝑖 = 1/(2√Re(𝑍𝑝𝑖)). 

This reciprocal three-port S matrix contains 12 independent quantities (magnitude and 

phase of 6 S parameters S11, S21, S31, S22, S23 and S33), and for our antenna application, four 

quantities are important: the return loss at port 1 (|S11|), the power dividing ratio between port 2 

and 3 (|S21|/|S31|,), the phase difference between port 2 and 3 (Arg(S21/S31)) and the power 

dissipate in resistors (1 − |S11|
2 − |S21|

2 − |S31|
2).  
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Before optimizing the parameters of the power divider, a parametric analysis is performed 

to examine how the geometric parameters of asymmetric power divider impacts the performance. 

For simplicity, single stage power divider is taken as an example. The parameters for power divider 

include the impedance and length of the two transmission line arms and the resistance of the center 

resistor. In the captions of Figure 9.14 to Figure 9.16, the wavenumber 𝛽 corresponds to the center 

frequency 1.6 GHz. If we only change the impedance of the lower transmission line Zd = 150Ω 

and keep the rest parameters unchanged, this will result in unequally power splitting and the 

dividing ratio will be almost constant for the entire band as is shown in Figure 9.14. 

Figure 9.15 depicts the simulated results for the single stage power divider with unequal 

length of transmission line. The dividing ratio between port 2 and 3 of this power divider is 

changing with frequency, with about 1dB at 1 GHz and -5 dB at 2 GHz. Notice it has drawback 

that the loss in resistor is large and the phase difference is a non-linear function of frequency. One 

way to reduce the loss in resistor is to increase its resistance, Figure 9.16 shows the results of the 

same power divider in Figure 9.15 except the impedance of the load increases to 1000 Ω. It can be 

seen that the power loss in resistor is largely decreased but it reduces the power dividing ratio as a 

function of frequency. In conclusion, the power dividing ratio depends on all the parameters of 

power divider, and asymmetric length of the two transmission lines is the key to make the power 

dividing ratio varying with frequency. 
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(a)                                                          (b) 

Figure 9.14. Simulated results of (a) the S parameters and (b) phase difference between port 2 and 

3 and power loss in resistive load for a single stage power divider with unequal 𝑍𝑢 and 𝑍𝑑 (𝑍𝑢 =

70.7𝛺, 𝑍𝑑 = 150𝛺, 𝛽𝑙𝑢 = 𝛽𝑙𝑑 = 90°, 𝑍𝐿 = 100𝛺 and all port impedances are 50 Ω). 

    

(a)                                                          (b) 

Figure 9.15. Simulated results of (a) the S parameters and (b) phase difference between port 2 

and 3 and power loss in resistive load for a single stage power divider with unequal 𝑙𝑢 and 𝑙𝑑 

(𝑍𝑢 = 𝑍𝑑 = 70.7𝛺, 𝛽𝑙𝑢 = 90°, 𝛽𝑙𝑑 = 150°, 𝑍𝐿 = 100𝛺 and all port impedances are 50 Ω). 
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(a)                                                          (b) 

Figure 9.16. Simulated results of (a) the S parameters and (b) phase difference between port 2 

and 3 and power loss in resistive load for a single stage power divider with unequal 𝑙𝑢 and 𝑙𝑑, 

and large resistive load (𝑍𝑢 = 𝑍𝑑 = 70.7𝛺, 𝛽𝑙𝑢 = 90°, 𝛽𝑙𝑑 = 150°, 𝑍𝐿 = 1000𝛺 and all port 

impedances are 50 Ω). 

It is difficult to optimize both the power dividing ratio and phase difference simultaneously 

for the power divider because both quantities highly depend on the length of upper and lower 

transmission line of the divider. To circumvent this problem, first two 50 Ω transmission lines are 

added to the end of the power divider to compensate for the phase difference. Then, all parameters 

of the power divider and the lengths of the transmission lines are optimized simultaneously. To 

monitor the power that goes into VP and HP components for optimization purpose, two 

hypothetical ideal directional couplers are used. For the convenience of cascading S parameters, 

here the two directional couplers are put in one block diagram. In Figure 9.17, the black numbers 

indicate the ports for the directional coupler block, and the red numbers refer to the ports for the 

entire system. In the block diagram, the S parameters for VP & HP antenna components are 

obtained from simulation shown in Sec.9.2.3. 
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Figure 9.17. Block diagram of the feeding network with hypothetical ideal directional coupler. 

 

The frequency independent S parameters for the hypothetical ideal directional couplers 

with all port terminated by 50 Ω impedance is given by: 

 

[𝑆] =

[
 
 
 
 
 
 
 
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0]

 
 
 
 
 
 
 

,  (9.4) 

 The power ratio for VP and HP antenna components is |
𝑆3′1

𝑆4′1
|
2

, and their phase difference 

is given by 𝐴𝑟𝑔 (
𝑆3′1

𝑆4′1
)  for the entire system in Figure 9.17. Since the impedance of two 

components are not exact 50 Ω but functions of frequency, 
𝑆21

𝑆31
 then is not equal to 

𝑆3′1

𝑆4′1
. Instead, 

because of the linearity of this ideal directional coupler, those two quantities have the following 

relation: 

 𝑆3′1

𝑆4′1
= 𝑔(𝑓)

𝑆21

𝑆31
,  (9.5) 

where the coefficient 𝑔(𝑓) is a function of frequency 𝑓. 
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Moreover, the ratio between the electrical far fields with VP and that with HP is linear to 

the ratio of feeding power for the VP and HP components for each frequency, and can be related 

by a coefficient 𝑔2(𝑓), as is described by: 

 𝐸𝑣

𝐸ℎ
= 𝑔2(𝑓)

𝑆3′1

𝑆4′1
= 𝑔2(𝑓)𝑔(𝑓)

𝑆21

𝑆31
.  (9.6) 

 It should be noted that the hypothetical directional couplers will not affect the performance 

of the system, and it is only used in simulation to optimize the power divider. 

 Regarding the bandwidth, power dividing ratio, loss in resistors and complexity of the 

network, a two-stage power divider is chosen to be optimized. The optimization goals for the 

power divider are to divide the power with ratio as desired function of frequency, keep the return 

loss and resistive loss minimum, and to maintain the phase difference to create circular polarization 

for VP and HP components. Practically, it is difficult to achieve all goals simultaneously, and for 

our application the most important property for the antenna is the omnidirectional circular 

polarization property, for other features like return loss or resistive loss of the feeding network can 

be tolerated within a certain range. More specifically, the return loss should be higher than 10 dB 

and the resistive loss in the circuit should be lower than 20%. The overall optimization cost 

function F is defined as the following equation: 

 F = 𝑎1𝑅(|S11|
2 − |S11|req

2 ) + 𝑎2𝑅(1 − |S11|
2 − |S21|

2 − |S31|
2 − 0.2)

+ 𝑎3 ||
𝑆21

𝑆31
|
2

− |
𝑆21

𝑆31
|
𝑟𝑒𝑞

2

| + 𝑎4 |𝐴𝑟𝑔 (
𝑆21

𝑆31
) − 𝐴𝑟𝑔 (

𝑆21

𝑆31
)
𝑟𝑒𝑞

|,  
(9.7) 

where |S11|req
2  is the required return loss and equals 0.1 (-10 dB), 𝑅(𝑥) is the ramp function, which 

is equal to x when x>0 and is equal to 0 when x<0. |
𝑆21

𝑆31
|
𝑟𝑒𝑞

2

 and 𝐴𝑟𝑔 (
𝑆21

𝑆31
)
𝑟𝑒𝑞

 are the required 
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power ratio and phase difference derived from simulated results for the combined VP and HP 

components. They are functions of frequency. (
𝑆21

𝑆31
)
𝑟𝑒𝑞

 is given by: 

 
(
𝑆21

𝑆31
)
𝑟𝑒𝑞

=
𝐸𝑣/𝐸ℎ

𝑔2(𝑓)𝑔(𝑓)
,  (9.8) 

where 𝐸𝑣/𝐸ℎ is the required average ratio between electric far field with V-pol and H-pol in all 

azimuthal directions and is equal to 1∠ − 90° for circular polarization. Coefficients 𝑎1 to 𝑎4 in 

(9.7) are weighting parameters for each optimization goals. Here we set 𝑎1 = 𝑎2 = 2, 𝑎3 = 𝑎4 =

1. The optimization process is to minimize the value of F. 

 The impedance and electrical length of each transmission line is optimized by a process 

similar to particle swarm optimization (PSO) algorithm with random optimization (RO) algorithm 

in Advanced Design System (ADS). The process is described in Figure 9.18. In this application, 

the number of iterations m = 50 and when the optimization process finishes, the global optimal 

result and its corresponding 𝑥 loc are obtained. The feeding network is implemented by microstrip 

line and is printed on 0.81 mm thick PCB boards with substrate RO4003C (εr = 3.55, tanδ = 0.0027). 

The width and length of each microstrip line are calculated from its corresponding optimized 

impedance and electrical length, and the resistance of resistors 𝑅1, 𝑅2 is set to the value of 150 Ω 

and 300 Ω due to their availabilities. The geometry of the feeding network is shown in Figure 

9.1(c), and the parameters including the width and length of the microstrip line is described in 

Table 9-1. 

 The magnitude and phase of the optimized and target 𝑆21/𝑆31 as a function of frequency 

are shown in Figure 9.19. The optimized feeding network has less than 0.7 dB deviation from the 

goal in the ratio of dividing power for two polarization components for the entire band (1.2 to 2 

GHz). The return loss and resistive loss of the optimized feeding network when connected with 
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the VP and HP components is depicted in Figure 9.20 (a) and (b). Both return loss and resistive 

loss satisfy the requirement of 10 dB and less than 20% for all operating frequencies. 

 

Figure 9.18. Optimization process for the feeding network. 
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(a)                                                          (b) 

Figure 9.19. The magnitude (a) and phase (b) for 
𝑆21

𝑆31
 as functions of frequency comparison 

between the simulated result after optimization and the desired one (optimal circular 

polarization). 

          

(a)                                                          (b) 

Figure 9.20. The simulated (a) return loss |𝑆11|
2 and (b) resistive loss of the feeding network by 

circuit model in ADS after optimization. 

9.3  Antenna simulation and measurement results 

The optimized feeding network together with the VP and HP radiating components are 

simulated with full-wave simulation software AnsysEM (HFSS). It is fabricated and measured as 

well. The antenna is printed on printed circuit board (PCB) with substrate RO4003C (εr = 3.55, 

tanδ = 0.0027) and is fed with an SMA connector. The pictures of the exterior and inner structure 

are shown in Figure 9.21. The HP radiating components are on the inner side of the square box, 

and the feeding network is inside the box. The simulated and measured return loss for the entire 

antenna is depicted in Figure 9.22 (a). Good agreement is observed between simulation and 

measurement and the 10 dB return loss bandwidth is about 66.7% (1.05 to 2.1 GHz) from 

measurement result. Figure 9.22 (b) demonstrates the simulated radiation efficiency (only 
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considering resistive loss) and total efficiency (including both resistive loss and return loss). The 

resistive loss in full-wave simulation is higher than that from circuit simulation because the 

resistive loss in radiating element is not included in the circuit simulation. It is shown that the 

radiation efficiency is above 80 % and the total efficiency is above 70 % for the entire band from 

1.2 to 2 GHz. 

   

(a)                                                          (b) 

Figure 9.21. Picture of (a) exterior and (b) inner structure of the proposed CP antenna. 

       

(a)                                                          (b) 

Figure 9.22. (a) The simulated and measured |S11| and (b) the simulated radiation efficiency and 

overall efficiency for the proposed CP antenna. 
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 The antenna’s gain and radiation pattern in azimuth plane are measured in the anechoic 

chamber of the University of Michigan. To measure the circular polarized gain of this antenna, a 

linear polarized (LP) antenna with known gain is used as the receiver. The received VP and HP E-

fields are measured in the same location, and the total E-field is the sum of both VP and HP E-

fields, then by decomposing the total field into RHCP and LHCP components, the corresponding 

RHCP and LHCP gain can be obtained. The realized gain of this antenna for both RHCP and 

LHCP in azimuth plane for different frequencies are shown in Figure 9.23. Good agreement can 

be observed between simulated and measured results. The gain variations for RHCP are 1.3 dB 

and 1.8 dB at 1.3 GHz and 1.9 GHz respectively. 

In Figure 9.24 (a), the solid and dash line represent the RHCP and LHCP gain averaged 

over all azimuth angles and the upper or lower bar denote the mean value plus or minus the 

standard deviation of gains for all azimuth angles at that frequency (μ𝑔𝑎𝑖𝑛 ± 𝜎𝑔𝑎𝑖𝑛). The average 

realized RHCP gain for all azimuth angles and frequency within the operating band is about -0.99 

dBi and the peak gain is 0.9 dBi at 1.3 GHz. The isolation between the RHCP and LHCP averaged 

over all azimuth angles is more than 20 dB for frequencies larger than 1.25 GHz. The measured 

and simulated axial ratio results are depicted in Figure 9.24 (b). The upper and lower bars for 

measurement data denote the mean AR plus and minus the standard deviation of AR of all azimuth 

angles of one frequency (μ𝐴𝑅 ± 𝜎𝐴𝑅). The measured axial ratio averaged over azimuth directions 

is less than 2 dB for frequencies from 1.25 GHz to 2.15 GHz, and is less than 3 dB for frequencies 

from 1.215 GHz to 2.2 GHz (~57.7 % bandwidth). The usable bandwidth that includes the 10 dB 

return loss bandwidth and 3 dB axial ratio bandwidth on azimuth plane is 53.4% from 1.215 GHz 

to 2.1 GHz. The simulated radiation pattern for elevation plane is shown in Figure 9.25. It shows 
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the antenna pattern remains unchanged with frequency, and maximum RHCP gain occurs at θ=90º 

as desired. 

 

(a)                                                          (b) 

Figure 9.23. The simulated and measured realized gain of RHCP and LHCP in azimuthal plane 

(x-y plane) for (a) 1.3 GHz, and (b) 1.9 GHz. 

 

(a)                                                          (b) 

Figure 9.24. (a) The measured realized gain of RHCP and LHCP in azimuthal plane (x-y plane) 

and (b) axial ratio as a function of frequency. 
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(a)                                                          (b) 

Figure 9.25. The simulated realized gain of RHCP and LHCP in elevational plane (x-z plane) for 

(a) 1.3 GHz, and (b) 1.9 GHz. 

Table 9 - 3. Comparison of different broadband omnidirectional CP antennas 

Antenna 

Dimension in term 

of wavelength of 

lowest operating 

frequency 

Antenna type 
Usable 

bandwidth 

Maximum Gain 

and its 

corresponding 

elevation angle 

Minimum 

efficiency 

within the 

band 

[69] 
0.32λ×0.32λ×

0.26λ 
DRA with wave polarizer 22% 1.48 dBi at 90º 84% 

[70] 
0.91λ×0.91λ×

0.44λ 
DRA with wave polarizer 41% 6.3 dBi at 30º 

Not 

mentioned 

[71] 
0.92λ×0.92λ×

0.18λ 

Excitation of Two 

Orthogonal Circular TE21 

Modes 

58% 2 dBi at 50º 63% 

[76] 
0.63λ×0.63λ×

0.11λ 

Combination of VP and HP 

radiators 
51.7% 1 dBi at 125º 

Not 

mentioned 

[77] 0.5λ×0.5λ×0.07λ 
Combination of VP and HP 

radiators 
31.3% 0.5 dBi at 90º 85% 

This 

work 
0.4λ×0.4λ×0.5λ 

Combination of VP and HP 

radiators 
53.4% 0.9 dBi at 90º 72% 

 

The comparison between the proposed antenna and other broadband omnidirectional CP 

antennas is shown in Table III. Compared to other antenna designs in literature, the proposed 

antenna has the largest usable bandwidth for antennas whose maximum gain is on horizontal plane 

and has the most compact dimensions in azimuth plane for antennas with more than 30% 
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bandwidth. Therefore, the proposed antenna is favorable in applications that require 

omnidirectional CP on horizontal plane. 

9.4  Conclusion 

This chapter proposes a broadband omnidirectional circularly polarized antenna based on 

two dissimilar wideband VP and HP radiating components and a feeding network with a dedicated 

optimized asymmetric and frequency-dependent broadband power divider. Systematic analysis is 

performed for the asymmetric power divider and its ability of manipulating power dividing ratio 

as a function of frequency is investigated. An optimization process particle swarm optimization 

(PSO) algorithm is presented to obtain the optimal power divider for this application. The final 

design of antenna is simulated, fabricated and measured. The proposed antenna has an effective 

bandwidth (overlapping of 10 dB return loss bandwidth and 3 dB AR bandwidth) of 53.4% and 

average antenna gain of -1 dBi for all azimuthal angles and frequencies within the band. This 

antenna has the potential for application in next generation wireless communication and advanced 

bistatic radar systems that require omnidirectional CP antennas. 
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Chapter 10    Conclusion 
 

10.1  Summary 

 

This thesis presents many applications of electromagnetics for autonomous vehicles and 

demonstrates novel solutions to some existing problems related to electromagnetics for 

autonomous vehicles. In particular, three EM related areas for autonomous vehicles are studied: 

the automotive radar, the vehicular communication channel modeling, and antenna design.  

In this thesis, the automotive radar related research includes the asymptotic numerical 

simulation approaches fast wideband PO and GO-PO, the MMW radar backscattering models for 

road surfaces from near grazing incidence, statistical models for the RCS of commonly seen traffic 

targets to enable real-time radar signal simulation, a fast multiple-source angle-of-arrival 

estimation algorithm and the radar target classification algorithms based on machine learning 

approaches. The proposed fast wideband PO methods and GO-PO methods can efficiently and 

accurately simulate the radar response for electrically very large targets, and provide the ability to 

quantitively study the radar response from targets with different parameters (e.g. weight and height 

for a pedestrian).  

The radar backscattering from road surfaces are divided into two categories: surface 

scattering and volumetric scattering. The surface scattering is studied by Monte-Carlo simulations 

of many randomly generated dielectric rough surface with full-wave simulation software HFSS. 

In each simulation, the periodic boundary condition is enforced, and the tangential near fields are 
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collected. The scattered far field then is calculated from the tangential near fields by near-field far-

field transformation. Finally, the backscattering coefficients with different polarizations are 

modeled as reduced functions of the rough surfaces’ statistical features (RMS height and 

correlation length), dielectric constant and incident angle. The volumetric scattering is studied by 

measurement data and semi-empirical model with radiative transfer function.  

By applying the PO or GO-PO method, the RCS of many traffic targets including 

pedestrians, vehicles and other targets are obtained. Because the RCS values fluctuate a lot with 

incident angle and frequency, the statistical information of the RCS for different types of targets 

are summarized. For advanced automotive radar like MIMO radar or imaging radar, the RCS of 

different parts of the radar targets are simulated and generalized into the statistical models. The 

entire radar target is modeled as a points cloud with the RCS of each point as a Gamma random 

variable. The statistical models of the targets then are applied in the real-time radar simulations. 

By using the parallel computing technique with GPU, one frame of MIMO radar simulation for all 

channels with 1.5 million data from 100 scatterers takes less than 100 ms to run on an ordinary PC 

(CPU: intel i7-7700, GPU: Nvidia GTX 1060).  

Multiple-source AOA estimation is critical in MIMO radar signal processing when there 

are more than one targets with the same radial speed and range with respect to the radar. This thesis 

presents an analytic iterative multiple-source AOA estimation algorithm, which is much more 

efficient compared to many classical AOA estimation algorithm including MUSIC and ML. 

Besides, this approach doesn’t require the knowledge of number of sources and can be applied in 

coherent signals and even single-snapshot condition.  

Radar target classification can provide better reliability to autonomous driving compared 

to the state-of-art target classification methods based on cameras or lidars since the radar is more 
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robust than cameras or lidars under increment weather condition. Four radar target classification 

models are developed to be applied in different scenarios using different types of radar: the 

statistical RCS and time-domain RCS-based models can be applied to traditional radars at both 

short and long range, and the 2D/3D radar image-based models require a shorter range targets and 

a radar with imaging capability, but can provide much better classification accuracy.  

The EM wave will not be totally blocked by cylindrical shape object even in MMW band 

due to the refraction. While the field scattering for infinite-long cylinder and the far field scattering 

for finite-length cylinder have been well-studied, the analysis of the near field scattering of a finite-

length cylinder with a near-field point source has not been reported yet. This thesis provides a 

thorough analysis on the MMW channel model when the LoS is blocked by a cylindrical shape 

object regardless the position of transmitter and receiver. The channel model is reduced into an 

artificial neural network model for convenient usage. In the forest environment, the wave 

scattering between tree trunks is approximated as a 2D scattering problem. The multiple scatterings 

between cylinders have been studied analytically, and finally the path loss through a forest is 

modeled as functions of tree density, foliage depth and the mean radius of tree trunk. 

In the last part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna 

designs are discussed. The first design is a compact horizontally polarized antenna, which contains 

four folded dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The 

second one is a circularly polarized antenna. It is composed of one ultra-wide-band monopole, the 

compact HP antenna and a dedicatedly optimized asymmetric power divider-based feeding 

network. The asymmetric power divider is optimized by swarm particle optimization, and it has 

about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain of 0.9 

dBi. 
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