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ABSTRACT 

  Photochemistry obeys different rules than ground-state chemistry and by doing so opens 

avenues for synthesis and materials properties. However, the different rules of photochemistry make 

understanding the fine details of photochemical reactions difficult. Computational chemistry can 

provide the details for understanding photochemical reactions, but the field of computational 

photochemistry is still new, and many techniques developed for ground-state reactions are not directly 

applicable to photochemical reactions. As a result, many photochemical mechanisms are not 

understood, and this hinders the rational design and synthesis of new photochemistry. 

To address this need, this thesis develops techniques to search for and study photochemical 

reactions. Chapter 2 and 3 develop methods to calculate photochemical reactions in gas- and 

condensed-phases via minimum energy reaction paths. First, Chapter 2 develops a method to search 

the molecular 3N-6 space for photochemical reactions. This space, although vast, is not chaotic and 

can be efficiently searched using a concept familiar to chemists: breaking and adding bonds and driving 

angles and torsions. Furthermore, this procedure can be automated to predict new chemistry not 

previously identified by experiments. Chapter 3 furthers this research by leveraging the concept of 

molecules to enable the computational study of reactions in large multi-molecular systems like crystals. 

Specifically, the use of a new coordinate system involving translational and rotational coordinates 

allows decoupling of the coordinate systems of the individual molecules, which is necessary for the 

efficient algebra. Importantly, these methods are general, they can be used to study single molecules 

and crystals, and much in between.  

These methods are demonstrated on complex chemical problems including the isomerization 

pathways of ethylene and stilbene (Chapter 2), the photocycloaddition of butadiene (Chapter 2), the 

rotation of a crystalline gyroscope (Chapter 3), the bicycle pedal rotation of cis,cis-diphenylbutadiene 

(Chapter 4), and the mechanism of a reversible photoacid (Chapter 5). These problems have value in 

understanding the processes of vision, optomechanics, and high-energy materials, and through their
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study much needed insight is gained that can be useful for designing new syntheses and materials. 

Furthermore, the new computational methods open the possibility for many future investigations. 

The results of Chapter 2 find a novel roaming-atom and hula-twist isomerization pathway and use 

automated reaction discovery tools to identify a missing butadiene photoproduct and why the [4+2] 

cycloaddition is forbidden. The results of Chapter 3 and 4 build on Chapter 2 by including the 

influence of a steric environment. Chapter 3 demonstrates by application to a molecular gyroscope 

that extreme long-range correlated motion can be captured with GSM, and Chapter 4 details how the 

one-bond flip and hula-twist mechanisms are suppressed by the crystal cavity, the nature of the seam 

space in steric environments, and the features of the bicycle pedal mechanism. For example, the bicycle 

pedals rotate through the passageway in the adjacent monomers. However, the models do not capture 

the quantitative activation barriers and more work is needed. Finally, Chapter 5 provides the ultrafast 

details of how the photoacid isomerizes and ring-closes with experimental and computational 

evidence. Unfortunately, quantitative calculation of pKa cannot be provided with the computations 

employed herein. 

In summary, this thesis provides an advancement in the knowledge of photochemical mechanisms 

that can be used for the development of new syntheses and offers new tools with capacity to study 

complex photochemical problems.  
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 Introduction 

1.1 Overview and Importance 

Photochemistry is the branch of chemistry concerned with the chemical effects of light. 

Photochemical reactions proceed differently than temperature-driven reactions by accessing high-

energy excited-state intermediates, which have different chemical properties and reactivity than their 

ground-state counterparts1–4. Under light irradiation double-bonds become single-bonds5,6, aromatics 

become anti-aromatic7, and reactions which are ground-state forbidden become allowed8. The use of 

light energy also offers several physical advantages such as the possibility of using sunlight to drive 

reactions9,10, and the use of lasers to control the spatial and temporal extent of a reaction (e.g., photo-

lithography and photo-switching)11. However, despite these benefits, the dark side of photochemistry 

is that we have developed a less clear picture of photochemical reactions than thermal reactions 

because they occur on an ultrafast timescale and obey more complex principles. For example, the 

modern theory of photochemical reactions was not widely accepted until the early 1990s12 and even 

the details of “simple” photochemical reactions like double-bond isomerization (which will be 

discussed in detail in this thesis) are still being discovered. Consequently, photochemistry is an area of 

chemistry where many reactions are useful but a general lack of understanding limits rational design 

and synthesis. 

The obvious solution, then, is to learn more about this intriguing class of chemistry. Alas, 

learning more about photochemical mechanisms is easier said than done. Exposing many compounds 

to light over a long enough time can be a great way to learn about the scope of photochemical 

reactions, and in fact photochemical “farms” were some of the first examples of photochemistry 

research13. By learning the patterns in the experimental data, some details about the underlying 

mechanism and its atomic properties can be ascertained. However, without better spatial and temporal 

resolution, or otherwise cleverly trapping the intermediates14,15, which is not always possible, the finer
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details of photochemical reactions will always remain unknown. For example, meta arene-alkene 

photocycloaddition is one of the most widely studied photochemical reactions with several hundred 

examples known16–18. It reacts first by [3+2] cycloaddition of the arene and alkene and is followed by 

cyclopropane ring formation. The direction of the [3+2] cycloaddition is well explained by the 

polarization of the arene upon interaction with the alkene, but there exists no satisfying explanation 

of the later stage of the reaction19,20.  Another example that demonstrates why photochemistry is more 

than meets the eye is Woodward-Hoffman rules. Woodward-Hoffman’s rules describe why certain 

types of reaction are allowed in the excited-state by considering the symmetries of the molecular 

orbitals. While this theory is based in quantum mechanics, the actual mechanisms of photoexcited 

molecules is much more complex. Therefore, the application of simpler trends and models are of only 

limited practical application and more advanced analyses are required.   

Fortunately, there is a better way to gain a closer look at the mechanism of photochemical 

reactions, and that is through computation. For example, detailed information can be acquired by 

experiments like transient absorption spectroscopy which can probe the ultrafast (e.g. less than 1 

nanosecond) mechanisms of photoexcited reactions, including the nature and dynamics of the excited-

states. This information, however, must be interpreted from spectroscopic signatures, and this can be 

done through first-principles calculations (see Chapter 5). The fine details of reaction mechanisms can 

also be computed with high precision21,22 and used to guide experiments. For example, in 

computational chemistry, the location of the reactant, product and pathway connecting them via a 

transition state (TS) provide a great amount of detail including the structural details of the reaction 

like the electronic and steric parameters, and the kinetics (i.e. rate) of the reaction23. 

The true power and promise of computation, however, lies in its predictive capabilities such 

as automated reaction discovery.   Much work in recent years has shown that the location of transition 

states, which normally requires prior chemical knowledge and tedious manual steps, can be automated 

to predict reaction intermediates and products which were previously unidentified24,25. However, 

photochemical reactions occur on two or more potential energy surfaces, the excited-state(s) and the 

ground-state, and typically involve a crossing “seam” between the potential energy surfaces26,27. 

Therefore, the computational approaches which have been successful for studying and predicting 

ground-state reactions are not directly applicable to photochemical reactions. Consequently, most 
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computational photochemistry relies on extensive prior chemical knowledge and intuition and this 

limits their predictive and exploratory capabilities.  

Another area where computational chemistry is lacking is the study of reactions in condensed 

phases. Constraining photochemical reactions in condensed phases (e.g. crystal) is a particularly 

promising avenue28,29 because  the lifetime of excited molecules is short-lived (~ps) so pre-binding the 

molecules greatly increases their probability of reacting. Furthermore, photochemistry can react 

differently under confinement than in the gas-phase. For example, photoisomerization in crystals and 

proteins can take on new volume-conserving mechanisms which are not present in non-sterically 

demanding environments; an example of this can be found in Chapter 4 and reference 30. Restrictions 

on intramolecular rotations or specific interactions with the environment can also help make the 

reactions more efficient by directing the photon energy towards specific productive reaction 

outcomes31,32. For example, the process of vision in the eye is initiated by the photoisomerization of 

retinal in the rhodopsin protein. In the protein environment, isomerization occurs exclusively around 

a single bond 11-cis→all-trans33, and is highly photon efficient (>50%).  In contrast, in solution the 

isomerization results in several photoproducts, is much less efficient (~25%), and is about 20 times 

slower34. The computational study of photochemical reactions in condensed phases, however, is more 

difficult because of the increased system size, and/or increased difficulty in treating the dielectric 

medium.  

This thesis will present new computational techniques for the study of and prediction of 

photochemical reactions in gas- and condensed-phases and analyze photochemical reactions via a 

combination of theoretical and experimental evidence. These approaches leverage, where possible, the 

mathematical structure of chemistry to best solve the chemistry at hand. The first part will deal with 

the effective study of photochemical reactions, including the prediction of photochemical reactions 

from first principles27, the second part will deals with techniques for studying reactions in condensed 

phases, including crystals, and the last part will deal with a detailed theoretical and experimental 

investigation of two photoacids in water and aprotic solvent35,36. We begin with preliminary details on 

the theory of photochemistry and computational photochemistry, and then provide an outline for the 

remaining thesis.  
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1.2 Preliminary Details 

Here is provided preliminary details on the key concepts in computational chemistry and ultrafast 

spectroscopy which will be useful in later chapters.  

1.2.1 Minimum energy reaction paths 

This section will describe minimum energy reaction paths, which is a central computational 

strategy used in this thesis to study photochemical reactions. To begin, we know that a chemical system 

can be composed of atoms, ions, and molecules. These particles are very small. To get a feeling for 

just how small atoms are, astronomers have estimated that there are about 10,000 billion, billion stars 

in the observable universe (1022). In comparison, you would only need about 1 gram of sand (about 1 

grain) to have an equal number of atoms.  

The very small size of atoms means that only the most advanced instruments can view 

individual atoms, and that it is impossible to model any macroscopic object, with a galactic number of 

atoms. The very largest simulations currently available through first-principles calculations is about 1 

million atoms, or about the size of the smallest viruses37. More commonly, however, fully quantum 

mechanical calculations of greater than a few hundred atoms can become too computationally 

expensive to be feasible. Quantum mechanics/molecular mechanics can also be used to reduce the 

total cost of studying large systems by treating a subset of atoms with simpler empirical forces, but 

these are still memory intensive calculations38.  

Another factor to consider is that atoms are always moving, vibrating, and rotating. Even at 

the theoretically coldest temperature, 0 Kelvin, a molecule will vibrate with so-called zero-point 

energy. So, even if we can view atoms in a chemical system like a solution, it would appear like random 

vibrations and fluctuations. The picture is also more complex when considering reactions. Chemical 

reactions must satisfy several criteria to be successful for example, in a bimolecular reaction: 

1. the reacting particles must collide with each other  

2. the reacting particles must have enough energy to break the old bonds  

3. the particles must have the proper orientation 
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Consequently, because the vibrations of the individual particles occur on the 10-15 s timescale, and the 

chance of two particles colliding with enough energy and the proper orientation is much rarer, and far 

between (e.g. seconds or longer),  it would not be easy to observe a reaction take place.  

Fortunately, however, atoms and molecules follow straightforward principles of energy 

minimization which can make studying reactions and molecules easier. Like how a ball will roll down 

a bowl to the bottom, chemical systems will approach a minimum energy at equilibrium, and the 

random fluctuations of vibrating molecules can be averaged out.  For example, the average positions 

of an ensemble of identical molecules with different vibrational phases at equilibrium is the minimum 

energy geometry on the potential energy surface. Similarly, if one were to look at the reaction events 

of a real system (i.e. the fluctuating ensemble of reactants), only the reactants with the proper 

orientation will lead to products and their geometries will be distributed normally around the minimum 

energy path (Figure 1-1).  

The highest point along the minimum 

energy valley is called the transition state, 

which can be mathematically described as a 

first-order saddle point. Following from the 

principle of energy minimization the transition 

state has the special property that it determines 

the speed of the reaction: if the transition state 

energy is large, then the principle of energy 

minimization tells us that getting to that point 

is a very rare event, but if the energy is small 

then reaching this geometry happens much 

more frequently. The relationship between 

speed of a reaction i.e. rate and energy of the 

transition state, at a certain temperature, is described in the important equation  

𝑘𝑘 =
𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 

Equation 1-1 The Eyring equation  

Figure 1-1 Potential energy surface around the transition state 
geometry, i.e. saddle point. A real molecule with vibrational energy will 
tend to sample geometries equally distributed around the minimum 
energy path as it passes through the transition state. 
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Where Ea is the activation energy, R is the gas constant, kB is Boltzmann’s constant, h is Planck’s 

constant, and T is temperature.  

Consequently, finding the transition state geometry is important task for the computational 

chemist for learning about chemical reactions. For the great majority of chemical reactions, it is not 

necessary to simulate a realistic looking chemical system with millions of atoms or to have the chemical 

system obey any time-parameterized equation of motion (e.g. Newton’s equation of motion). Instead, 

we can think about the individual reactants and find the minimum energy pathways that connects 

reactants to products, because these are representative of the average positions that the real reactions 

would follow. Solvation effects can be added via implicit solvent models which simulate the dielectric 

nature of the chosen solvent, and entropic and enthalpic effects can be added by treating the atoms 

as a quantum rigid-rotor harmonic oscillator39,40.  

 The process of calculating a transition state geometry, however, is still difficult41. There are 

3N-6 degrees of freedom for a reacting system, where N is the number of atoms. Geometry 

Figure 1-2  Contour plot illustration of the double-ended growing string method (GSM) on the Muller-Brown potential. GSM 
iteratively grows the reaction path to avoid placing nodes in high-energy regions of space (e.g. the green region) which can cause 
the simulation to fail. After finishing growing an exact TS is found. The yellow node is the transition state which is a first-order 
saddle point connecting the reactant and product wells.  
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optimization of reactants should therefore proceed in (ideally) no more than 3N-6 steps, one step for 

each degree of freedom. However, the process of finding a transition state is more difficult than 

reactant optimization because these algorithms will not optimize to the higher energy transition state 

given a lower energy (more stable) geometry nearby. Thus, the common strategy to find transition 

state geometries is to manually move the geometry closer to the transition state before starting the 

optimization algorithm.  Understandably this technique is very error prone, even for experts, because 

the transition state is unstable in the reaction direction. For these reasons, much effort has gone into 

the development of transition states algorithms that are more reliable, and  do not require manually 

guessing the transition state geometry23,42–44. The approach that this thesis focuses on is called the 

Growing String Method (GSM)23,42.  

Chapters 2 and 3 will provide more information on GSM so only a brief overview will be given 

now. First, GSM can operate in either double-ended23 or single-ended mode42. An illustration of the 

double-ended GSM is given in Figure 1-2. DE-GSM begins by interpolating two geometries along the 

reaction path tangent towards the transition state, and then optimizing them in all orthogonal degrees 

of freedom. If either of the frontier nodes become sufficiently low energy in the directions orthogonal 

to the reaction tangent, as determined by the gradient of the potential energy surface, then new nodes 

can be grown along the tangent connecting the frontier nodes.  See for example, the green nodes in 

Iteration 2 and 3 of Figure 1-2. This process is repeated until a specified number of nodes are grown, 

usually 9 or 1123. After the string has converged to a predefined threshold an exact transition state 

search is started and the TS is found. Overall, this process is much preferable to the guess and check 

method of standard TS optimization. Furthermore, DE-GSM is more efficient in comparison to other 

reaction-path optimizers because the entire path is not interpolated at once but is done so iteratively 

which avoids placing the nodes in high-energy regions of space.  

In SE-GM the reaction path is grown from the reactant side given a search direction called a 

driving coordinate, which can consist of any combination of adding and breaking bonds and driving 

angle and torsion. For example, “ADD ATOM 1 to ATOM 2”, if they are not already bonded. This 

is a highly efficient way of looking for transition states because a product structure is not required, 

and SE-GSM operates identically to DE-GSM after the string is fully grown. Furthermore, in addition 

to guessing the driving coordinate based on the geometry and the expected products, the driving 

coordinates can be generated combinatorially between a set of reactive atoms. Therefore, SE-GSM 
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can help discover new chemistry and identify missing pathways which would not be obvious to even 

the expert chemist45,46. 

1.2.2 Photochemical Mechanisms 

This section will describe the elementary differences between thermal and photochemical 

reactions, in Chapter 2 the more advanced aspects of photochemical reactions will be described. The 

basic additional requirement for a photochemical reaction is that light must be absorbed, and the 

reaction must take place in an excited-state (i.e. thermal heating by the light absorption is not 

photochemistry). The actual details of a photochemical reaction, however, are more complicated and 

can proceed in more than one way 

1. A photochemical reaction can occur in a similar way as a reaction on the ground-state except 

that it starts with the absorption of light and ends with the fluorescence of light. A reaction 

step that proceeds between two potential energy basins on the same electronic state is referred 

to as an adiabatic process47. 

2. A photochemical reaction can proceed by decay through the crossing region between potential 

energy surfaces known as a conical intersection. A reaction step that proceeds by passage 

through a conical intersection, either directly or first over a barrier without an intermediate 

energy well is known as a non-adiabatic process48.  

3. A photochemical reaction can proceed by intersystem crossing to a potential energy surface 

which has different spin-multiplicity. This is like decay through a conical intersection but 

involves spin-orbit coupling instead of non-adiabatic coupling49.  

An example of the difference between photochemical and thermal reactions is given in Figure 1-3. 

Interestingly, real crossing points were once believed to be rare, but it is now known that they are 

common12.  

This thesis deals primarily with photochemical reactions that involve conical intersections, but 

both adiabatic and non-adiabatic pathways are discussed. The study of intersystem crossing is also 

possible through the same machinery discussed in greater detail below, except for a slight difference: 

the seam is 3N-8 dimensional for conical intersections but is 3N-7 dimensional for intersystem 

crossing.  Chapter 2 dives deeper into the details of conical intersections, so the meaning of this 

difference won’t be explained here but should be kept in mind when studying intersystem crossing.  



9  

1.2.3 Electronic Structure Theory 

The energy of molecules is obtained from first principles by the Schrodinger equation 

𝐻𝐻�Ψ(𝐫𝐫;𝐑𝐑) = 𝐸𝐸Ψ(𝒓𝒓;𝑹𝑹) 

Equation 1-2 The Schrodinger equation 

Where Ψ is the wavefunction of the electrons, which is a function of the positions of the electrons, 

𝒓𝒓,  and parameterized by the positions of the atomic nuclei, 𝑹𝑹,  𝐻𝐻� is the electronic Hamiltonian, and 

𝐸𝐸 is the electronic energy. The Hamiltonian includes the kinetic energy of the electrons, the kinetic 

energy of the nuclei, the electron-electron repulsion, the electron-nuclear attraction, and the nuclear-

nuclear repulsion. The exact solution of Equation 1-2 is not possible for multi-electron wavefunctions 

but the exact answer can be approached with sophisticated theories.  

The common solutions of Equation 1-2 is the Hartree-Fock theory, and density functional 

theory50. The investigation of conical intersections, however, require electronic structure theories 

which treat ground- and excited-states on an equal footing, known as multi-reference theories. Single-

reference methods like Hartree-Fock and DFT, do not properly capture the cone-shape of a conical 

intersection51,52. In this thesis, we will use the multi-reference, complete-active space self-consistent 

(CASSCF) theory for all calculations of conical intersections. Unlike HF and DFT, however, CASSCF 

Figure 1-3 Example difference between thermal and photochemical reaction paths. Thermal reactions involve adiabatic passage over a 
transition state. Photochemical reactions can involve non-adiabatic passage (which can also include a transition state) through a conical 
intersection. This figure also illustrates why photochemical reactions are often considered forbidden on the ground-state because the 
ground-state transition state is often very high energy for these transformations.  
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is not a blackbox method and requires carefully selecting the size and identity of the orbitals in the 

active space53. For example, for cycloaddition and cyclization reactions the orbitals determined by 

Woodward Hoffmann rules to be important are a good place to start. Also, the bonding and 

antibonding orbital of any bond that is breaking or forming should be in the active space. However, 

the choice of the active space is a non-trivial task and the interested reader should consult the 

literature53. Nevertheless, once chosen, the geometry and reaction path optimization algorithms 

described in chapters 2 and 3 which obtain CASSCF energies and energy gradients from external 

packages like MOLPRO54 and TeraChem55  take careful precaution to maintain active space 

consistency. 

1.2.4 Transient Absorption Spectroscopy 

Transient absorption spectroscopy is an experimental technique to measure the ultrafast 

details of a light-activated process. This technique can track the evolution of processes that occur on 

very short timescale that are relevant to photochemistry (e.g. femtosecond to nanoseconds) and can 

give access to information about the excited-states. 

Transient absorption spectroscopy is performed by a series of pump and probe measurements 

(Figure 1-4). First, the probe pulse which is a “white” light continuum measures the ground-state 

absorption. Next, the pump and probe, which are delayed by the variable time-delay stage, impinge 

Figure 1-4 Schematic of the transient absorption spectrometer. Note that the signal reported in transient absorption is the difference 
with pump on and pump off as function of time, 𝚫𝚫𝑨𝑨(𝝀𝝀, 𝒕𝒕). This allows the excited-state processes to be studied as a function of time 
without convolution with the ground-state. Courtesy of Dr. Ted Wiley. 
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on the sample. The pump pulse was previously blocked by the chopper wheel. The pump arrives first 

and excites some of the molecules to the excited state (but not all!), and therefore when the probe 

arrives it measures a combination of ground and excited-state absorptions. The probe also causes 

some stimulated emission from the excited-state. However, because this pump on measurement 

measures a combination of ground and excited state absorption it is necessary to remove ground-state 

absorption and this is the purpose of the pump off measurement. By taking the difference of pump 

on, and pump off measurements the contribution of the ground-state can be removed. Therefore, the 

four types of signals in transient absorption spectroscopy are:  

1. ground-state bleach, a negative signal in the region of the ground-state absorption that arises 

from a decrease of ground-state population due to photoexcitation 

2. excited-state absorption, a positive signal arising from an increase in absorption from the 

excited-state   

3. stimulated emission, a negative signal that stems from the stimulated fluorescence of excited 

molecules by light. From the detectors point of view this is negative absorption. Typically, this 

band resides in the same region as fluorescence. 

4. photoproduct absorption, a positive signal that will not have accompanying stimulated 

emission, and will also be long lived 

 

1.3 Dissertation Outline 

Chapter 1 presents an introduction to the importance and challenges of computational 

photochemistry including the need to effectively search for conical intersections and study 

photochemistry in condensed phases. A background on minimum energy reaction paths, 

photochemical mechanisms and transient absorption spectroscopy is given because later chapters will 

rely on advanced aspects of these topics, without much review.   

Chapter 2 presents algorithms for the study of photochemical reactions including a single-

ended method for the location of conical intersections and a growing string method for the location 

of seams of conical intersections in either single- or double-ended mode. These techniques are applied 

to the photoisomerization of stilbene and the photocycloaddition of butadiene. In the former, a wider 

array of isomerization pathways was found, including a conical intersection likely responsible for 
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isomerization in sterically constraining environments like proteins and crystals. In the latter, the 

experiments failed to identify one of the photoproducts. The computations identify the most likely 

missing photoproduct via an automated reaction discovery algorithm.  

Chapter 3 presents a linear scaling growing string method for the study of large multi-molecule 

systems such as crystals and proteins.  The new algorithms achieve linear scaling in multi-molecule 

systems by block-matrix linear algebra and by  distributing the reaction tangent, which is used to grow 

and optimize the minimum energy path, into each block which represents a molecule or fragment. 

This tangent is a multi-dimensional vector, and acts as a constraint, which prevents motion along that 

local direction. This results in a stable GSM algorithm for large multi-molecule systems and has the 

added benefit of being a good proxy for correlation analysis.  The method is demonstrated by 

application to a crystalline gyroscope, which shows extreme long-range correlated motion.  

Chapter 4 presents a computational picture of the bicycle pedal isomerization, a 

photochemical process which occurs exclusively in the crystal phase. Much physical insight is gained 

into how the steric environment influences isomerization mechanisms including how the one-bond 

flip and hula-twist mechanisms are suppressed by the crystal cavity, the nature of the seam space in 

steric environments, and the mechanics of the bicycle pedal motion.  

Chapter 5 present a combined theoretical and experimental analysis of two reversible 

photoacids. The study provides the early time details of the mechanism including how the trans-acid 

isomerizes to the cis-form, and the timescale for deprotonation, and ring-closing. Also, the reason for 

why the photoacids are acidic is investigated by computation.  

Chapter 6 includes Future Work and Conclusions, in which the findings of the prior chapters 

are reviewed, and some ideas on extending the tools and capabilities outlined in this thesis are given. 

Minimum energy reaction paths are a foundational tool for the study of chemical reactions, including 

photochemistry. The work presented herein opens many new avenues for computational 

investigations of reaction mechanisms, and much insight into long-standing chemical problems has 

already been found 
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 Discovery of Conical Intersection Mediated Photochemistry 

with Growing String Methods 

 

This chapter is largely based upon published work: 

Aldaz, C., Kammeraad, J. A. & Zimmerman, P. M. Phys. Chem. Chem. Phys. 20, 27394–27405 (2018). 

 

2.1 Abstract 

 Conical intersections (CIs) are important features of photochemistry that determine yields and 

selectivity. Traditional CI optimizers require significant human effort and chemical intuition, which 

typically restricts searching to only a small region of the CI space. Herein, a systematic approach 

utilizing the growing string method is introduced to locate multiple CIs. Unintuitive MECI are found 

using driving coordinates that can be generated using a combinatorial search, and subsequent 

optimization allows reaction pathways, transition states, products, and seam-space pathways to be 

located. These capabilities are demonstrated by application to two prototypical photoisomerization 

reactions and the dimerization of butadiene. In total, many reaction pathways were uncovered, 

including the elusive stilbene hula-twist mechanism, and a previously unidentified product in 

butadiene dimerization. Overall, these results suggest that growing string methods provide a predictive 

strategy for exploring photochemistry. 

2.2 Introduction 

 Photochemistries such as double-bond isomerization and electrocyclic reactions often pass 

through conical intersections (CI) on the pathways leading from initial excitation to the product state.1–

5 In these reactions, CIs act like funnels that enable ultrafast, nonradiative decay to lower-lying 

electronic states (Figure 2-1). This funneling effect causes the molecule to access nuclear 

configurations that would otherwise be thermally disallowed, which in turn allows photochemical 

reactions to reach unique outcomes compared to their ground state counterparts. In a sense, CIs can 

be envisioned as analogous to ground state transition states (TS), where passing through these regions 

correspond to important reactive events. Just like TSs, CIs are not single points, but whole regions of 
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space. These regions are called seams, and different sections of the seam can lead to qualitatively 

different photo products. When molecules are excited with energetic photons, the product distribution 

will be determined by the presence and accessibility of these seams.6,7  

 Minima on the seam, called minimum energy conical intersections (MECI), are important 

structures for describing photochemical reactions8–18. Conventional MECI and seam-space 

optimization algorithms, however, require extensive expert knowledge of photochemistry and CI 

geometries, which are far different from stable chemical structures. These techniques therefore do not 

easily permit the discovery of new types of photochemical reactions or simple ways to explore seam 

spaces. To explore complex photochemical reaction mechanisms and improve computation’s ability 

to discover photoreactivity, new methods are required.  

 A few unconventional methods have proposed to enable excited-state reaction discovery. For 

example, this was attempted by Maeda and Morokuma with the anharmonic downward distortion 

following (ADDF) and the artificial-force-induced reaction (AFIR) methods, which have been used 

to locate MECI.19–25 Uncovering complete photochemical reaction mechanisms—including MECI, 

the seam, excited-state TS, and photoproducts—is still a challenging task, however, leaving room for 

new methodologies.  

 Research in our laboratory has made extensive use of the growing string method (GSM) to 

determine thermal reaction pathways and transition states (TSs) without prior knowledge of the TS 

structure.26–28 In GSM, qualitative reactive coordinates such as bond additions/breaking and/or angle 

changes—called driving coordinates—are used to locate TSs, products, and the reaction paths 

connecting them. When combined with the reaction discovery tool, ZStruct,29–31 many TSs, some 

unexpected, can be found at once in a parallel computation. These features would be equally useful in 

the context of photochemistry where MECI optimization and seam minimum energy paths are 

challenging to optimize.  

 The GSM/ZStruct strategy is herein investigated for the first time for photochemistry, where 

reaction pathways include CIs and seams as well as TSs and products (Figure 2-1). This method 

includes the integration of GSM with CI optimizers, penalty function optimization, and CI topography 

analysis (see Theoretical Details). To show that complex photochemical reaction spaces can be 

explored, photoisomerizations of ethylene and stilbene, and dimerization of butadiene are examined. 
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Photoisomerization pathways are of interest for understanding molecular motors, molecular switches 

and retinal chromophores, but are notoriously challenging to study because the S1/S0 degeneracy 

persists along the torsional coordinate, leading to complex reaction mechanisms.6 Butadiene 

dimerization was chosen because it can involve several modes of reaction ([2+2], [3+2], [4+2]), which, 

to our knowledge, has not been completely elucidated.32,33 Overall, the results will indicate that 

GSM/ZStruct provides a thorough, robust and highly predictive method for identifying 

photochemical reaction mechanisms.  

2.3 Background 

 The theory of conical intersection mediated photochemistry dates to the early 1930s, but was 

not widely accepted nor a practical theory until the development of high performance computing and 

multireference electronic structure theory.34 Robb et al, pioneered this effort with the development of 

a general purpose MECI algorithm.35 Locating MECIs has subsequently been performed using other 

optimizers such as the composed-step, and double-Newton-Raphson algorithms, which strive to 

reduce computational cost.36–40 Although there are several variants of MECI solver, these optimizers 

all operate by minimizing the energy gap between states and total energy simultaneously and all require 

an initial starting structure that is geometrically near the MECI to be successful. This article will show 

that single-ended growing string method (SE-GSM) can be used to generate these structures and 

optimize to the MECI.  

 Beyond MECIs, the seam8,9,11,12,14–17,41 and non-

MECI points such as seam TSs (saddle points), 

minimum energy path CIs,42 and minimum distance 

CIs43 are also vital components of the photochemical 

reaction landscape. Methods for seam optimization 

include seam minimum energy paths (e.g from a seam 

TS),36 constrained MECI optimization,40,44,45 and the 

nudged elastic band (NEB) method which connects 

two MECIs.46 GSM will also be shown capable of 

connecting two MECIs, and the single-ended GSM 

will additionally be useful for locating seams starting Figure 2-1 Key points of interest for photochemistry 
involving crossing between potential energy surfaces. 
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from just one MECI. Seam mapping with GSM is expected to be advantageous due to its lower cost 

compared to NEB and standard string methods,47,48 and its ability to be easily integrated with the SE-

GSM method.  

 MECIs and seams give key transition regions between electronic states, and further analysis 

can then determine the photoproducts. First, the existence or absence of TS along the reaction path 

from the Frank Condon region to the CI shows whether the CI is accessible. Given that the CI is 

accessible, the topology near the CI influences the relaxation directions to the photoproducts.49–51 One 

way to find these directions is to plot the energy around the CI within the branching plane (BP), which 

breaks the degeneracy to first order. The BP topography can be parametrized through the CI pitch, 

tilt, and asymmetry.52 Ultimately, dynamical trajectories to and from the CI dictate photoproduct 

yields,5,46,53–59 and several approaches have been used to approximate such trajectories.60,61 Such 

simulations, however, are highly costly, leaving room for potential energy surface analysis to map out 

complicated photochemical reaction pathways.  

 When performing analysis of seams, CIs, and photochemical reaction paths, the results will be 

sensitive to the choice of electronic structure theory. Therefore, we note that the methods used here 

are compatible with any electronic structure theory that treats conical intersections, gradients, and 

derivative couplings. For methods without derivative coupling vectors programmed, these vectors can 

be approximated using the branching plane updating method,62 or using a Davidson algorithm, 

recently developed in our lab, which requires only standard gradients.63 

2.4 Theoretical Methods 

 The CI space is a central concept for the proposed methodologies, and is defined64 in terms 

of the coordinate system 

𝑸𝑸 = (𝒙𝒙,𝒚𝒚,𝑸𝑸3,𝑸𝑸4, … ,𝑸𝑸3𝑁𝑁−6) . 

Equation 2-1 The CI space 

The first subspace (𝒙𝒙,𝒚𝒚) is called branching plane (BP), where 𝒙𝒙 and 𝒚𝒚 are the difference gradient and 

derivative coupling vectors, respectively. 𝒙𝒙 and 𝒚𝒚 are orthogonal to all other coordinates, 𝑸𝑸𝑖𝑖 . At a CI,  

motion along 𝒙𝒙 and 𝒚𝒚 changes the energy gap and produces the characteristic cone shape of a CI 

between two electronic states. The second subspace (𝑸𝑸3 …𝑸𝑸3𝑁𝑁−6) is denoted the seam space (SS) and 
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corresponds to the 3N-8 internal coordinates which do not affect the energy gap to first order. 

Throughout this text, bold font signifies vectors and matrices.  

2.4.1 Composed-Step Optimizer 

 MECI optimization reduces the SS gradient and energy gap between two electronic states to 

zero. Most MECI optimizers achieve this by starting with a good guess structure for the MECI, 

projecting out the BP contributions from the (Cartesian) gradient, and optimizing in the SS. On the 

other hand, one can directly construct the CI space in delocalized internal coordinates (𝑼𝑼) which are 

non-redundant vectors that fully span the 3N-6 degrees of freedom within a molecular system and 

have improved geometry optimization properties.26,65,66  

 To form the CI subspaces, 𝑼𝑼 is formed using the standard procedure,65 and 𝒙𝒙 and 𝒚𝒚 (originally 

Cartesian vectors) are projected into the basis of internal coordinates (𝑼𝑼𝑥𝑥,𝑼𝑼𝑦𝑦), but are not 

orthonormal.  Then, the Gram-Schmidt process is applied to the set ��𝑼𝑼𝑥𝑥,𝑼𝑼𝑦𝑦�, (𝑼𝑼𝑘𝑘;𝑘𝑘 = 1 … 3𝑁𝑁 −

6)� to produce the orthonormal vectors 

𝑽𝑽 = {�𝑼𝑼𝑥𝑥,𝑽𝑽𝑦𝑦�, (𝑽𝑽𝑘𝑘; 𝑘𝑘 = 3,4,5 … 3𝑁𝑁 − 6)}  

Equation 2-2 The CI space in delocalized internal coordinates 

where the first two vectors represent the BP, orthonormalized with respect to 𝑼𝑼𝑥𝑥, and the 𝑽𝑽𝑘𝑘 vectors 

define the SS.  

 With these vectors, the composed-step optimizer (Figure 2-2)36,38 consists of two component, 

the first  

Figure 2-2 Composed-step optimizer in delocalized internal coordinates. Each cycle of the optimizer takes a composed step until 
the gradient and energy gap are converged. 
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Δ𝒗𝒗𝑥𝑥 = − Δ𝐸𝐸
|𝒈𝒈𝒙𝒙|𝑼𝑼𝑥𝑥  

Equation 2-3 First composed step minimizing energy gap between potential energy surfaces 

moves the geometry closer to the CI, where Δ𝐸𝐸  is the energy gap between the upper and lower 

surfaces and |𝒈𝒈𝒙𝒙| is the magnitude of the difference gradient. The second component minimizes the 

total energy by an eigenvector optimization in the seam-space: 

Δ𝒗𝒗�𝑆𝑆𝑆𝑆,𝑖𝑖 = − 𝒈𝒈�𝒊𝒊
𝑯𝑯�𝒊𝒊𝒊𝒊+𝜆𝜆

𝑽𝑽�𝑆𝑆𝑆𝑆,𝑖𝑖   

Equation 2-4 Second and final composed step part minimizing energy along the seam 

where 𝑽𝑽�𝑆𝑆𝑆𝑆,𝑖𝑖 and 𝑯𝑯�𝒊𝒊𝒊𝒊 are the eigenvectors and eigenvalues of the seam-space Hessian, respectively, 𝒈𝒈�𝒊𝒊 

is the average gradient, and λ a shift factor.  After back-transforming Equation 2-4 to the CI basis (𝑽𝑽), 

the optimization step is composed of Equation 2-3 and Equation 2-4:  

𝛥𝛥𝒗𝒗 = 𝛥𝛥𝒗𝒗𝑥𝑥 + 𝛥𝛥𝒗𝒗𝑆𝑆𝑆𝑆 

Equation 2-5 Composed step  

These steps are taken until the MECI is reached. 

2.4.2 Locating MECI with GSM 

 GSM develops a reaction path by iteratively adding and optimizing discrete structures, called 

nodes, along a specified reaction tangent,26,28 and herein will be shown to be useful for locating MECIs 

starting far from the seam space. Figure 2-3 details the key steps of the GSM algorithm for finding 

MECI. The reaction tangent of GSM is defined using the standard delocalized internal coordinates 

(𝑼𝑼) as  

𝑼𝑼𝑐𝑐 = � (𝛥𝛥𝒒𝒒𝑝𝑝|𝑼𝑼𝒌𝒌)𝑼𝑼𝒌𝒌

3𝑁𝑁−6

𝑘𝑘=1

 

Equation 2-6 GSM reaction coordinate  

where 𝛥𝛥𝒒𝒒𝑝𝑝 is the specified change in primitive internal coordinates (𝒒𝒒) describing the reaction. These 

vectors, called driving coordinates, allow GSM to explore in a specific direction (e.g. by the arrows of 

Figure 2-1 or Figure 2-3) using the coordinate system 
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𝑽𝑽∗ = {(𝑼𝑼𝑐𝑐), (𝑽𝑽𝑘𝑘∗ ; 𝑘𝑘 = 2,3,4 … 3𝑁𝑁 − 6)}  

Equation 2-7 Delocalized internal coordinates with reaction coordinate  

where coordinates 𝑽𝑽𝒌𝒌∗  are orthogonal to 𝑼𝑼𝑐𝑐.   

 To locate a MECI, single-ended GSM moves along 𝑼𝑼𝑐𝑐 and optimizes in all orthogonal 

directions on the energy surface43 defined by 

Figure 2-3 Single-ended growing string method for locating minimum energy conical intersections. 
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𝐸𝐸(𝑽𝑽∗) =  𝐸𝐸�𝑖𝑖𝑖𝑖(𝑽𝑽∗) + 𝜎𝜎
𝛥𝛥𝐸𝐸𝑖𝑖𝑖𝑖(𝑽𝑽∗)2  
𝛥𝛥𝐸𝐸𝑖𝑖𝑖𝑖(𝑽𝑽∗) + 𝛼𝛼

 

Equation 2-8 Penalty potential energy for finding MECI 

where 𝐸𝐸�𝑖𝑖𝑖𝑖 is the average energy, 𝜎𝜎 and 𝛼𝛼 are penalty parameters, and 𝛥𝛥𝐸𝐸𝑖𝑖𝑖𝑖 is the energy gap. This 

strategy therefore permits a simultaneous search and optimization to the nearest conical intersection 

in the search direction. Once the frontier node of GSM gets close to a CI, the composed step optimizer 

fully refines the MECI. The computational details section describes the criteria for switching between 

driving and optimization steps. 

2.4.3 Seam Space GSM 

 The seams connecting MECIs will be mapped using GSM as well. This procedure combines 

the tangent vector (defined using Equation 2-9) with the two BP vectors in a coordinate system 

𝑽𝑽′ = {(𝑼𝑼𝑐𝑐), �𝑽𝑽𝒙𝒙,𝑽𝑽𝑦𝑦�, (𝑽𝑽𝑘𝑘; 𝑘𝑘 = 4,5,6. . .3𝑁𝑁 − 6)}. 

Equation 2-9 Delocalized internal coordinates with orthogonal reaction coordinate and branching space  

As before, the Gram-Schmidt process is applied to produce a nonredundant, orthonormal set, 𝑽𝑽′, 

with 3N-6 total degrees of freedom. All vectors are orthonormalized with respect to 𝑼𝑼𝑐𝑐 to preserve 

Figure 2-4 Multidimensional representation that shows the operation of the growing string method seam mapping. Curved contour 
plot is the seam space (3N-8 dimensional) represented in the full molecular space (3N-6 dimensional). Minima on the contour plot 
are minimum energy conical intersections. Purple line is the tangent constraint vector (Uc). A composed step along along (Vx) and 
(Vk; k=4,5,6,…,3N-6) is required to optimize the minimum energy seam path (dashed line).   
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the direction of 𝑼𝑼𝒄𝒄. This means that 𝑼𝑼𝒄𝒄 will 

typically overlap with the original BP until the path 

converges fully to the seam, and in practice this 

choice results in stable optimization. Node 

optimization is performed using the composed-

step algorithm in the unconstrained part (3N-7 

dimensions) of the coordinate space (Figure 2-4).  

 This coordinate system enables two modes 

of operation for seam optimization in GSM. First, 

double-ended GSM is available to connect pairs of 

MECIs, by growing inward and adding additional 

nodes until the string connects. Alternatively, a 

single-ended search starting from one MECI can 

explore via driving coordinates, permitting a 

search along a seam for a second MECI. After the 

full string is formed with either method, full 

optimization of the seam in the coordinate system 

of Equation 2-9 is performed, providing a 

minimum energy path along the seam (Figure 2-4).  

2.4.4 Determining photoproducts 

 Photoproduct determination and optimization is initialized by taking small displacements (0.1 

Å) in the BP, based on a cross-section analysis defined in polar coordinates as52   

𝐸𝐸(𝑟𝑟,𝜃𝜃) = 𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀 + 𝛿𝛿𝑔𝑔ℎ�𝜎𝜎 cos(𝜃𝜃 − 𝜃𝜃𝑠𝑠) −�1 + Δ𝑔𝑔ℎ cos 2𝜃𝜃�  

Equation 2-10 Energy around CI in branching space 

where 𝛿𝛿𝑔𝑔ℎ is the pitch, 𝜃𝜃𝑠𝑠 is the tilt heading, and Δ𝑔𝑔ℎ is the asymmetry. These parameters can be 

calculated given 𝒙𝒙,𝒚𝒚 and the average energy gradient. Because the BP vectors can be interchanged at 

a CI through rotation of the electronic states, 𝒙𝒙,𝒚𝒚 are chosen such that Δ𝑔𝑔ℎ>0 and 𝜃𝜃𝑠𝑠 ∈ [0, 𝜋𝜋
2

].   

Figure 2-5 Strategy for optimizing photoproducts from a conical 
intersection: take a small step along the minimum and maximum 
directions leading from the CI. 
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 Displacement in the direction of the minima and maxima of Equation 2-10 are chosen as 

starting pathways to photoproducts, see Figure 2-5. Optimization from the minima is analogous to 

the minimum energy pathways proceeding downhill from the CI, whereas optimization from the 

maxima in the cross-section are also investigated because they sometimes lead to minima not in the 

immediate vicinity of the CI cross-section.49 Therefore, photoproduct optimization can be initialized 

given the BP vectors, and the sensitivity of the decay channels to the topography (e.g. minimum versus 

maximum) will be captured by sampling of both types of pathways.   

 

2.5 Computational Details:  

 GSM methods are implemented in C++, and will be made available online on Github.67 The 

Hessian is formed at each step of the optimization, from the Hessian in primitive coordinates  

𝑯𝑯 = 𝑼𝑼𝑅𝑅′𝑯𝑯𝑝𝑝𝑼𝑼′  

Equation 2-11 Hessian in delocalized internal coordinates.  

but only the non-constrained seam space coordinates are diagonalized and used in the Newton-

Raphson optimization. The Broyden−Fletcher−Goldfarb−Shanno (BFGS) method is used to update 

a diagonal initial Hessian in primitive coordinates, which is transformed into a delocalized internal 

coordinate Hessian at each step.68–71 The MECI is considered converged when the energy gap between 

the two states is less than 0.01 kcal mol-1 and the seam-space root-mean-squared (RMS) average 

gradient is less than 0.0005 Ha/Å. For seam mapping the calculation terminates when all the nodes 

are converged to the string within a predefined threshold or the total gradient of the string is below a 

predefined threshold that is dependent on the system size and number of nodes. Each node is 

considered converged when the energy gap between the two states is less than 1.0 kcal mol-1 and the 

gradient is converged to 0.0025 Ha/Å. The total gradient convergence criterion was chosen to be 

(𝑀𝑀− 2) ∗ 0.0025 ∗ √3𝑁𝑁 − 6, where M is the number of GSM nodes.  

 Knowing where to stop the SE-GSM algorithm and initiate the composed step optimizer is 

an important criterion for the successful location of MECI. Since SE-GSM should be generally 

moving closer to the CI—not further away—string growth terminates when 𝛥𝛥𝐸𝐸𝑖𝑖𝑖𝑖 increases at the 

frontier node. Alternatively, if the string reaches the “product” specified by Δq (Equation 2-7), this 
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indicates that no further growth of the string is possible, and the composed step optimizer is turned 

on immediately.  

 MECI SE-GSM calculations employed a maximum of 5 iterations per node, and a maximum 

growth step size (dqmax) of 0.4 Å-radians. Larger dqmax generally decreases the number of nodes in 

a calculation and therefore decreases the number of total gradients. In the small systems investigated 

here, however, a small dqmax is beneficial for MECI optimization because the final node is usually 

closer to the seam. The last node before MECI optimization is optimized for at most 60 steps, or until 

converged within 0.001 Ha/Å. The penalty function optimizer utilized σ as 1.0, for all nodes except 

for the final guess node, which is optimized using σ as 3.5. Staggering σ from small to large helps SE-

GSM correctly find the desired MECI.  

 Seam mapping GSM calculations employed 3-5 optimization iterations per node per cycle, and 

dqmax values from 0.2 to 0.8 Å-radians. The optimization success is sensitive to these parameters and 

string growth should be monitored. In general, a smaller dqmax should be used for small molecules 

and short seams to ensure a refined reaction pathway. 

The ZStruct method was used to generate driving coordinates consisting of add and break moves 

between reactive atoms. This is usually subject to the constraint that the driving coordinate can have 

up to two adds and one break, and the coordination of the atoms doesn’t exceed a maximum and 

minimum coordination number.30 In this work, however, add connection moves are used exclusively, 

leading to 𝑁𝑁4 scaling in the number of generated driving coordinates, where N is the number of 

reactive atoms.  

 The methods invoke MOLPRO CASSCF to provide the quantum mechanical energies, 

gradients and derivative coupling vectors.72 Active space selection was performed by considering the 

electrons involved in the excitation and reaction coordinate. Active space choices are listed in the 

figures below.   
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2.6 Results and Discussion 

2.6.1 Exploratory via SE-GSM 

 In many photoreactions the qualitative reaction coordinates are known but not precisely 

quantified. For example, in the photoisomerization of ethylene the qualitative reaction coordinate is 

double bond torsion, but the CI also introduces pyramidalization of the carbon. SE-GSM captures 

this behavior by adding nodes along a driving coordinate (torsion) and optimizing in orthogonal 

directions (pyramidalization). Therefore SE-GSM identifies and follows directions to MECI that are 

not necessarily specified prior to the search. Importantly, different MECI within the same reactive 

system can be found by sampling a variety of driving coordinates. To show the capabilities of these 

methods, photoisomerization pathways for ethylene and stilbene are investigated as the initial test 

cases.  

2.6.2 Ethylene Conical intersections 

 The well-known twisted-pyramidalized 

(also called H-bridging73) and ethylidene-like 

MECIs between S0 and S1 are reproduced here 

using SE-GSM (Figure 2-6).74 While both 

MECIs were found by driving a torsional 

coordinate, the second case also used two driving 

coordinates, one of which specified H-atom 

transfer (Table 2-1).  

 Performance metrics for SE-GSM with 

these two MECI are reported in Table 2-1. 

Driving cycles represent the computational costs of generating the MECI guess structures. Once this 

initial structure is found, the MECI optimization quickly reaches accurate MECIs because the RMS 

distance from the guess to the true MECI is small, under 0.07 Å. Compared to a standard MECI 

optimizer in Molpro,35 the final geometries agree well (to within 0.01 Å RMS) and the energies to 

within 0.05 kcal/mol. These examples demonstrate that the SE-GSM process for MECI optimization 

provides reasonable results for ethylene, at computational costs of less than 100 gradients for each 

MECI.  

Figure 2-6 Ethylene minimum energy conical intersections 
calculated using CAS(4,4)/6-31G* with SE-GSM. Energy is 
reported in kcal/mol with respect to Franck-Condon point. Paths 
to the MECI are barrierless.60. Numbers in figure are driving 
coordinate indices (see Table 2-1). 
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Table 2-1 Ethylene MECI Results from SE-GSM, compared to standard optimizers. 

MECI Driving Coordinatesa Driving 
Cycles 

MECI        
Cycles 

Guess to 
MECI 

Distance  

(RMSD Å)b 

Calc. MECI vs. Ref. MECI,  

(RMSD Å)c 

Calc. E(MECI) 
– Ref. 

E(MECI) 
(kcal/mol)c 

1a TORSION(1,2,3,4) = 90 56 10 0.0611 0.0011 0.01 

1b 
TORSION(1,2,3,4)=120,  

ADD(4,2), BREAK(3,4) 
55 39 0.0658 0.0076 -0.03 

a TORSION(1,2,3,4)=90, refers to a driving coordinate to push angle 1-2-3-4 towards 90 degrees, starting from its current 
position. b root-mean squared distance in Å from penalty optimized structure to composed-step (CS) optimized MECI. c root-
mean squared distance in Å from composed-step (CS) optimized MECI to MECI from MOLPRO, see computational details.  

 Three seam reaction pathways and 

corresponding TSs were found for the ethylene 

system using the GSM seam optimization 

approach, and these are reported in Figure 2-7. 

Among these three, a seam TS (2a) between 1a 

and 1b has been previously reported and is 

reproduced here.46 2a can be found using 7 or 9 

GSM nodes and has energy relative to the FC 

point of -66.5 kcal/mol. A second, unexpected 

low energy seam TS was also found between 1a 

and 1b, which occurs along a roaming atom 

reaction pathway (2b).21,75 Seam TS 2b was 

found using 11 or 13 GSM nodes, and has energy 

relative to the FC point of -84.5 kcal/mol. Two 

seam TSs were located (using the same string 

endpoints) due to a difference in step size during 

GSM growth, with 7 nodes having a larger step size than 11 nodes. Interestingly, GSM can locate the 

two paths of this bifurcating potential energy surface, a “long” path and a “short” path, by just 

adjusting the step size during string growth. Lastly, a seam TS 2c between tilt isomers of 1a has been 

reported46 and is reproduced here. This conical intersection is distinguished by a pyramidalized, but 

not tilted methylene group. Seam TS 2c was found using 11 GSM nodes, and has an energy relative 

to the FC point of -84.1 kcal/mol. 

Figure 2-7 Ethylene seam TS (STS) calculated using 
CAS(4,4)SCF/6-31G* with DE-GSM. Energies in kcal/mol with 
respect to the Franck-Condon point.  
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 The tests on the ethylene system demonstrate that GSM has significant exploratory ability, 

providing not only the CI structures that are previously known, but an additional seam-space TS that 

has not been reported. The tests that follow will affirm these initial indications.   

2.6.3 Stilbene Conical Intersections 

 Compared to ethylene, stilbene has additional available photoreaction pathways due to the 

asymmetry around its central double bond. Stilbene is most stable in the trans conformation but can 

isomerize after absorption of a photon to cis via one-bond flip, cis via hula-twist, or ring-close to 

dihydrophenanthrene (DHP). The hula twist mechanism, which preserves the relative position of the 

phenyl groups has been hypothesized as favored for cis-trans isomerization in constrained media, as 

this mechanism reasonably preserves the molecular volume.73,76,77  

 For stilbene, cis-kinked (twisted pyramidalized78) and DHP-like MECI have been reported.79 

For related polyene systems, such as butadiene and hexatriene, additional CIs have been found such 

as cis-kinked diene, trans-kinked diene and H/vinyl (H-bridging) MECI, as well as seam saddle points 

hypothesized to be responsible for the hula-twist mechanism.80 Analogies for all of these structures 

were found for stilbene using SE-GSM starting from a trans geometry. The driving coordinates and 

structures are shown Table 2-2 and Figure 2-8, respectively.  

 In total, five MECI (3a-3e) and one seam TS (3f) were located using SE-GSM (Figure 2-8). 

Additional seam TSs for the tilt seam coordinate (between 3a and 3c) and hydrogen transfer 

coordinate (between 3c and 3d) were found using DE-GSM (see Supporting Information). 3a and 3c 

are cis-kinked MECI analogous to twisted-pyramidalized MECI 1a, but differ from each other by the 

tilt of their phenyl ring with respect to the central double bond. 3b is the trans-kinked MECI related 

to CIs in polyenes,80 and was found by a one-bond flip of the central double bond. 3d is analogous to 

the ethylidene-like conical intersection 1b and leads to a reactive carbene intermediate or cis- and trans-

stilbene. 3e is the DHP-like MECI which can ring close to DHP. Lastly, 3f is related to the volume 

conserving hula-twist CI reported by Houk et al for dienes,80 and was found using SE-GSM by rotation 

of the phenyl ring in 3c. 3a and 3e agree with structures reported in the literature.78,79 To our 

knowledge 3b-3d and 3f have not been reported for stilbene, but they do resemble conical intersection 

geometries in dienes.73,80  
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  Thus, a wide range of tilt and dihedral angles, and degree of hydrogen bond transfer are present 

in the MECI and seam TSs and these lead to different reaction possibilities. As can be seen in the CI 

structures, 3a-3c flip the orientation of the phenyl groups (i.e. atoms 1 and 6 will land on the same 

side), whereas 3f preserves the relative orientation of the phenyl groups with respect to each other. 

Table 2-2 Stilbene MECI results from SE-GSM. 

Minimum 
Energy 
Conical 

Intersection 

Driving Coordinates Driving 
Cycles 

MECI        
cycles φ(2,3,4,5) φ(H3,2,3,H4) φ(3,4,5,6) 

3a TORSION(2,3,4,5)=90, 
TORSION(H3,3,4,H4)=0 83 25 114.3 41.5 -98.1 

3b TORSION(2,3,4,5)=90 81 20 93.9 140.9 36.3 

3c TORSION(2,3,4,5)=180, 
TORSION(H3,3,4 H4)=90 77 41 146.6 61.1 -53.1 

3d TORSION(2,3,4,5)=120, 
ADD(H4,3), BREAK(H4,4) 95 18 84.5 114.4 179.4 

3e TORSION(H3,3,4,H4)=0, 
TORSION(2,3,4,5)= 0, ADD(1,6) 119 11 21.4 16.7 10.7 

3fa TORSION(3,4,5,6)=50 - - 137.9 71.1 47.9 
aSeam transition state found from MECI 3c. 

Figure 2-8 Stilbene conical intersections calculated using CAS(2,2)SCF/6-31G with SE-GSM. Energies in kcal/mol with respect to 
the S1 minimum. Atom numbers are driving coordinate indices (see Table 2-2). 
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Therefore, 3a-3c are important for the one-bond flip mechanism, and 3f is predicted to be important 

for the hula-twist mechanism.  

 Importantly, a comparison of the driving coordinates (which are qualitative) to the 

(quantitative) dihedral angles of the MECIs (Figure 2-8) shows that prior quantitative details of these 

MECI geometries are unnecessary for their optimization via SE-GSM. Instead, the driving coordinates 

take the Franck-Condon initial geometry, perturb it in the direction of each of these MECIs, and thus 

permit facile discovery of all 5 MECIs from the same starting structure. Together with the results from 

ethylene, the stilbene simulations demonstrate that GSM is effective at optimizing MECIs and seam-

space reaction pathways. In the next section, a more complex photoreaction will be studied to show 

the full power of MECI exploration using GSM. 

2.6.4 Butadiene dimerization reaction discovery 

 Photochemical reactions with changes 

in covalent bonding are key challenges for 

simulation. In this space, reaction path 

discovery is possible with SE-GSM using 

driving coordinates that are systematically 

generated to sample many possible changes in 

bonding. To do this, the ZStruct reaction 

discovery method29–31 is used to combinatorially sample search directions based on bond addition and 

breaking coordinates, where SE-GSM completes the MECI optimizations. ZStruct has seen extensive 

use in ground-state reactions,81–87 and is applied here for the first time for photo-induced reactivity. 

 As a challenging test case, the dimerization of butadiene is studied32,33 as a complex 

photoreaction with many product channels (Figure 2-9). Under direct UV irradiation, butadiene has 

been observed to form 50% 2-vinylbicyclo[3.1.0]hexane and/or 3-vinylbicyclo[3.1.0]hexane (I),  30% 

1,2-divinylcyclobutane (II), and 8% cycloocta-1,5-diene (III).  A fourth species accounting for the 

remaining product (~10%) was unidentified. While 1,3-divinylcyclobutane was not mentioned in the 

original study, it is possible that this was not separated from 1,2-divinylcyclobutane. Interestingly, this 

product distribution is markedly different than seen in triplet sensitization and thermal reactions. For 

example, 4-vinylcyclohex-1-ene (V) is a major product in triplet-sensitized reactions of butadiene and 

Figure 2-9 Experimental photoproduct distributions from ref. [42]. 
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has also been observed in the thermal dimerization but does not appear in the UV chemistry. This 

diversity of products provides a great opportunity for reaction discovery simulations to provide details 

about the photoproduct generation mechanisms and corresponding CI space.  

 SE-GSM and ZStruct method were applied to a pair of cis-butadiene molecules, which were 

promoted to their lowest energy excited state. ZStruct generated 120 combinations of driving 

coordinates for the dimerization reaction, considering all carbon, but not hydrogen, as reactive. Of 

these combinations, 37 produced unique MECI based upon root-mean-squared distances and 

coordinate connectivity metrics.  

 Because existence of a MECI does not guarantee its accessibility, multiple reaction paths to 

each MECI were considered, starting from the handful of local minima of the excited state surface 

near the Franck-Condon points. From the initial ZStruct-aligned structures, five excited-state minima 

were located (Figure 2-10). S1 minima 4a and 4b are tetraradicaloid and the lowest in energy. 4b is 

related to the so-called pericyclic minimum.33 4c-4e minima have one radical from each molecule 

interacting with the other.  

 The reaction paths from the lower energy intermediates, 4a and 4b, typically result in higher 

activation energies to reach the MECIs, compared to 4c-4e. A typical case is shown in Figure 2-11. 

From 4b to the 5-coordinate MECI  (c-1 in supporting information), the reaction path has an 

activation barrier of 12.0 kcal/mol, which is in agreement with previous results calculated using 

CAS(4,4)SCF/4-31G.33 The pathway, in contrast, is largely downhill from 4c, with a small barrier of 

7.8 kcal/mol. A similar effect is found in other pathways to reach the various MECI (see reaction 

pathways in SI).    

Figure 2-10 Optimized geometries for S1 minima located with CAS(8,8)SCF/6-31G* from aligned ZStruct structures. Energies in 
kcal/mol with respect to the global S1 minimum, structure 4a. 
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 From the accessible MECI, 

photoproducts were optimized from the 

minima and maxima of the MECI branching 

plane cross-sections. In total, 12 energetically 

accessible constitutional isomers and their 

diastereomers were identified (Figure 2-12). 

Additional photoproducts were also 

identified but are not accessible due to having 

high energy MECI or large excited state 

activation barriers with respect to the S1 local 

minima.   

 All experimentally observed photoproducts, (I), (II), and (III) have at least one low energy 

pathway, as well as additional, higher energy pathways arising from differences in S1 minima, MECI 

or stereochemistry. Diastereomers of (I) form from a [3+2] cycloaddition, which upon ring-closing 

form an unstable methylene. The methylene carbon promptly ring-closes to form the resulting three-

membered ring (see Figure 2-13). If the methylene and vinyl group are on the opposite sides of the 5-

membered ring, then (1S,2R,5R)-(I) or (1S,2S,5R)-(1) forms. When these groups are on same side, 

(1R,3s,5S)-(I) or (1R,3r,5S)-(I) forms. 4-vinylcyclohex-1-ene (V) also forms from all MECI leading to 

the diastereomers of (I) and therefore is produced from the same reaction pathways. (V) forms, 

however, from different initial directions leading away from the MECI funnel. Diastereomers of (II) 

form from rhomboidal [2+2] cycloaddition MECI which agree with previously reported MECI.33 The 

boat and chair conformations of cyclo-1,5-octadiene (III) form from [4+4] cycloaddition MECI close 

to the initial geometries of 4a and 4b. Bicyclo[5.1.0]oct-3-ene forms from the same MECI of (III) 

along different initial relaxation coordinates. Based on the results in Figure 2-12, the unidentified dimer 

(IV) from experiment is likely bicyclo[5.1.0]oct-3-ene, which shares the same conical intersection as 

(III), and has similar yield (~10 %).   

Figure 2-11 Reaction path analysis reveals that excited-state barrier 
depends on the binding of the dimers before reaching the MECI. 
Reaction paths were computed using DE-GSM with CAS (8,8)SCF/6-
31G*. The FC point is the aligned, but unoptimized planar monomers. 
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 These results are largely in agreement with available experimental results, but lead to an 

important question: why are there energetically accessible 4-vinylcyclohex-1-ene (V) pathways, but this 

species is not observed in experiment?  A possible explanation comes from a reaction path to the 

MECI that gives (V) and (I)-(1R,3r,5S), which contains a nearby extended seam (Figure 2-13a). The 

first accessible CI along this seam is a minimum distance conical intersection (MDCI),43 which would 

be the first CI approached along this path starting from the S1 minimum. 

Figure 2-12 Reaction products discovered using combinatorial reactive hypothesis generator ZStruct and single-ended GSM. 
Activation energies are in kcal/mol with respect to the labeled local minima. Ea’ correspond to different MECI leading to the same 
product. Inaccessible products due to large reaction pathway barriers and high MECI energies.  
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  The photoproducts of this (V)/(I) 

reaction path are shown in Figure 2-13b. (I)-

(1R,3r,5S) forms from the maxima of the MECI 

cross-section, and (V) forms from the minima. In 

the latter case, the biradical recouples in a [4+2] 

arrangement. At the MDCI, which considerably 

differs in bond length A from the MECI, forms 

(I) or returns to the reactant structure without 

producing   photoproduct. The MDCI can revert 

to reactants because carbon-carbon bond A has 

not yet been formed and therefore the geometry 

does not recouple to form (V). Thus, we hy-

pothesize that decay at the MDCI, rather than 

the MECI, prevents the formation of (V).  

 In arene-alkene cycloaddition, the seam 

TS connecting [3+2] cycloaddition MECI has 

been hypothesized to be responsible for para 

([4+2]) selectivity.10 In butadiene dimerization, 

however, it is possible that the seam contains 

high energy points that prevent [4+2] 

dimerization (Figure 2-13b). Therefore, to 

provide additional insight, a SE-GSM seam 

calculation was performed (Figure 2-13c) from 

the MECI in Figure 2-13a using a breaking 

carbon-carbon bond A and a forming carbon-

carbon bond B as driving coordinates. The SE-GSM seam method was necessary since the [3+2] 

MECI with carbon-carbon bond A was not found in the MECI search using ZStruct, and therefore 

no DE-GSM seam could be optimized. Notably, unlike the seam in arene-alkene cycloaddition that 

contains a low lying seam TS and MECI along this coordinate,10 no such TS or MECI was located, 

which is consistent with the SE-GSM and ZStruct findings. Thus, the seam landscape is significantly 

Figure 2-13 (a) Reaction path from 4c to MECI leading to (I)-
1r,3s,5s and (V) products that shows ground and excited-state 
merging to form a seam and a minimum distance CI (MDCI) (b) 
photoproducts from the minimum and maximum of the CI 
branching plane cross-section for the MECI and MDCI (c) SE-
GSM seam using breaking bond A and adding bond B driving 
coordinate. 
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different from the arene-alkene cycloaddition and may be the source of the difference in reactivity. 

Future studies including dynamics will be valuable to better investigate how the extended seam affects 

photoproduct distributions.  

  

2.7 Conclusions 

 The growing string method is a powerful tool for reaction path optimization, and this tool has 

now been enabled to search for conical intersections and seam space reaction pathways. These 

methods provide a useful platform for studying photochemical reactions and have the important 

distinction of being useful even when little prior knowledge of the photochemical reaction pathways 

is available.  

 GSM located new excited state reaction pathways even in the well-understood ethylene and 

stilbene isomerization reactions. In addition, a combination of GSM with ZStruct was able to 

systematically explore reaction possibilities for the photodimerization of butadiene. The major, 

experimental photoproducts were found in the set of computed, energetically accessible products. The 

unidentified product in the experiment is likely bicyclo[5.1.0]oct-3-ene, since it shares the same conical 

intersection as cycloocta-1,5-diene and has similar yield. Interestingly, a non-stationary point on the 

seam, explored using GSM, is found to be important in the formation (or lack thereof) of 4-

vinylcyclohex-1-ene. We anticipate that continued applications of the ZStruct/GSM combination will 

be useful to map CI spaces in emerging, complex photoreactions. 
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 A Linear Scaling Growing String Method with Correlated 

Motions 
 

3.1 Introduction 

The computation of minimum energy paths (MEPs) and transition states (TSs) is an important 

task for the investigation of reaction mechanisms. The location and characterization of TSs provides 

information of a reaction including the rate of the elementary steps (i.e. kinetics) and steric and 

electronic parameters. However, the location of TSs is a non-trivial task because it is a first-order 

saddle point on the potential energy surface. Therefore, geometry optimization of TSs can easily revert 

to the more stable equilibrium geometries in the direction along the MEP if given a bad initial starting 

point.  

Consequently, there has been much work on the development of methods for the location of TSs 

such as the nudged-elastic band (NEB)1,2, string method (SM)3 and growing string methods (GSM)4,5 

which endeavor to optimize TSs in a more reliable way. These methods optimize a chain-of-states 

along the MEP, instead of a single point toward the transition structure, and therefore tend to produce 

more reliable TS optimization in the direction of the MEP in comparison to the standard guess-and-

check optimization approach.   Chain-of-states methods, however, can break down in several ways. 

NEB and SM requires the complete initial path to be present at the onset. However, creating a good 

initial pathway is a significant challenge for interpolation methods because the MEP is a curved 

pathway in a highly dimensional space, therefore NEB and SM can cause significant problems if the 

initial pathway is of poor quality6,7. 

GSM improves upon NEB and the SM8–10 by growing the path, i.e. string, from the outside-in, 

such that new nodes are only added after the frontier nodes are sufficiently optimized which avoids 

placing new nodes into high energy regions of space. The interpolation can also be improved by using 
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methods such as linear synchronous transit11, or interpolation in delocalized internal coordinates 

(DLC), which are combinations of bonds, angles, and torsions9,12. The latter is particularly efficient 

because DLC are a curvilinear coordinate system which means they have improved interpolation and 

optimization for angular and rotational motion13.GSM with DLC have been heavily utilized4,5,9,14 and 

will be investigated further herein. A drawback of GSM with DLC, however, is that it is not directly 

usable in environments such as crystals, proteins, metal surfaces and other condensed phases because 

DLCs become numerically unstable or too computationally intensive.  For example, GSM using DLCs 

will cause error in the study of metal surface chemistry, where the atoms of the surface are packed 

tightly, because the concept of bonds, angles and torsions is not meaningful for metals. However, 

changing to mixed delocalized internal (mDLC) coordinate system where the metal atoms are treated 

with Cartesian coordinates and the adsorbate is treated with internal coordinates, enables GSM to 

investigate metal-surface chemistry10. Changing the coordinate system for geometry optimization is 

also known to be an effective way to improve geometry optimization performance. For example, 

DLCs were shown to decrease the number of geometry optimization steps in comparison to Cartesian 

coordinates because DLCs are less coupled than Cartesian coordinates13. There have also been studies 

that employ primitive internal coordinates such as explicit translations and rotational internal 

coordinates (TRIC)15 and lattice parameters16, which can improve the quality of geometry optimization 

for different types of chemistry.  

Despite the known benefits of modifying coordinate systems which can help extend GSM to more 

complex systems, only DLCs and mDLC were previously available in GSM9,10. Furthermore, these 

approaches do not address the challenging task of coordinate transformation, which scales as the 

number of internal coordinates cubed, and becomes prohibitive in many-atom simulations. Thiel et 

al, developed a hybrid delocalized coordinate system (HDLC)17 which combines internal coordinates 

and Cartesian coordinates (this is similar to mDLC except every atom has Cartesian coordinates) and 

performs linear scaling coordinate transformation, but this has not been applied in GSM until now.  

In this letter, a GSM algorithm is presented which employs efficient block-matrix linear algebra to 

achieve linear scaling in the number of molecules or fragments. This new algorithm is necessary to 

study large multi-molecule systems like crystals and is highly customizable for different types of 

reactions (e.g. gas phase, or solvent phase); it can use DLC, HDLC, TRIC, or mDLC. To demonstrate 
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the new methods, we show how GSM can capture the long-range correlated motions of a crystalline 

molecular gyroscope.  

 

3.2 Theoretical Details 

3.2.1 GSM Background 

To begin, the growing string method (GSM) computes minimum energy paths connecting 

intermediates and transition state geometries9,18,19. Until now, GSM specialized in molecular systems 

(e.g. less than 300 atoms), and substantial changes were needed to handle larger, condensed phase 

systems (greater than 1,000 atoms). Therefore, we briefly review the approach before describing the 

advances in GSM for the condensed phase.  

GSM works in the basis of delocalized internal coordinates (DLC)13. The coordinate basis (𝑼𝑼) 

is modified to isolate a reaction coordinate 𝑈𝑈𝑐𝑐  by applying the Gram-Schmidt procedure to obtain a 

set of nonredundant, orthogonal vectors that span the possible atomic motions, 

𝑽𝑽 = {𝑈𝑈𝑐𝑐;𝑉𝑉𝑘𝑘 𝑘𝑘 = 2,3,⋯ 3𝑁𝑁 − 6} 

Equation 3-1  Delocalized internal coordinates with reaction coordinate 

where 𝑉𝑉𝑘𝑘 are unrestrained motions. Iterative growth and optimization within this coordinate system 

is used to find reaction paths and transition states. The original coordinate vectors are represented by 

𝑈𝑈𝑘𝑘, the modified coordinate vectors are represented by 𝑉𝑉𝑘𝑘. The coordinate Uc represents the local 

tangent of the reaction path, and is obtained by projection of a primitive internal coordinate 

differences 𝛥𝛥𝑞𝑞𝑝𝑝 into the space spanned by 𝑼𝑼 

𝑈𝑈𝑐𝑐 = 𝛼𝛼�⟨𝛥𝛥𝑞𝑞𝑝𝑝|𝑈𝑈𝑘𝑘⟩𝑈𝑈𝑘𝑘

3𝑁𝑁

𝑘𝑘=1

 

Equation 3-2 GSM reaction coordinate 

Here 𝛼𝛼 is a normalization constant, and 𝛥𝛥𝑞𝑞𝑝𝑝 can be computed between two geometries (e.g. reactant 

and product) or defined from a single structure. The former is called double-ended GSM, which 

iteratively grows and optimizes the reaction path between two structures. The latter is called single-
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ended GSM, which can find reaction paths, transition states and products given a user defined reaction 

coordinate. For more details see reference 5,9 and 18.  

3.2.2 Delocalized Internal Coordinates 

A major difficulty with the above approach, however, is 

the formation of the DLCs 𝑼𝑼, which is formed by 

diagonalization of the 𝑮𝑮 matrix, 𝑮𝑮 = 𝑩𝑩𝑩𝑩𝑅𝑅, where 𝐵𝐵𝑖𝑖𝑖𝑖 =

𝑑𝑑𝑞𝑞𝑖𝑖/𝑑𝑑𝑥𝑥𝑖𝑖  is the Wilson B-Matrix. This step scales as the number 

of internal coordinates cubed and must be performed multiple 

times because back-transformation to Cartesian coordinates 

requires iterative inversion of 𝑮𝑮. For these reasons, the 

formation and utilization of DLC is prohibitive when too many 

atoms are present.  Furthermore, the quality of 

optimization with DLC declines for intermolecular systems 

because a fictitious bond must be added to couple the fragments 

into one supramolecular structure, Figure 3-1.  Rotations are not 

well defined with respect to a single axis of rotation and the Hessian elements of the intermolecular 

bond are too strong because they are meant to represent a true bond not a fictitious one. The latter 

problem can be partially alleviated by treating the intermolecular bond with the long-range portion of 

the Lennard-Jones potential, 𝑟𝑟−6, which can give improvement of intermolecular optimization20.  

Overall, however, while DLCs are great for intramolecular optimization they are not well suited for 

intermolecular optimization.  

Another type of coordinate system, known as hybrid delocalized internal coordinates (HDLC), 

add Cartesian coordinates to the set of internal coordinates and has been developed to reduce the 

computational cost of coordinate transformation17. HDLC negates the need for a minimum spanning 

bond which couple the fragments because the full 3N degrees of freedom including the rotations and 

translations are described by Cartesian coordinates. Consequently, linear scaling formation can be 

achieved if the Wilson B-matrix is  organized into blocks corresponding to each non-bonded fragment 

and only the non-zero elements stored and used in computations such as matrix multiplication, and 

matrix diagonalization17.  

Figure 3-1 Delocalized internal coordinates 
require a minimum spanning bond to couple 
intermolecular fragments. 
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 Other variant of DLC have also been developed including adding explicit translation and 

rotation internal coordinates (TRIC).15  TRIC shows improved performance for intermolecular 

optimization in comparison to DLC, Cartesian coordinates, and HDLC. Furthermore, TRIC do not 

require a minimum spanning bond and therefore block-matrix techniques can be applied. There are 

also other variants of DLC which include the explicit dependence of the lattice parameters on the 

positions of all unit cell atoms, which can be helpful for optimizing crystals, but these internals are 

not used here16. Finally, a subset of atoms can be treated with Cartesian coordinates, and the rest 

treated with TRIC, HDLC or DLC. We refer to this as mixed DLC (mDLC). Using different 

Figure 3-2 Comparison of G-Matrices, 𝐆𝐆 = 𝐁𝐁𝐁𝐁𝐁𝐁, where 𝐁𝐁𝐢𝐢𝐣𝐣 = 𝐝𝐝𝐝𝐝𝐢𝐢/𝐝𝐝𝐝𝐝𝐣𝐣 , with different combinations of primitive internal coordinates 
for butadiene+ethylene a) DLC b) HDLC c) TRIC d)  mDLC (TRIC for butadiene and Cartesian coordinates for ethylene).  

a) b) 

c) d 
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coordinates for different regions was first done in the context of metal-surface chemistry10 (vide supra) 

but can also make the total size of the matrix smaller to diagonalize. To summarize, there are four 

types of primitive internal coordinate sets studied here: 

a) Delocalized internal coordinates (DLC) composed of bonds, angles and torsions 

b) Hybrid DLC (HDLC) which include Cartesian coordinates for every atom 

c) Translation and rotation internal coordinates (TRIC) 

d) Mixed delocalized internal coordinates (mDLC) which treat a subset of atoms with TRIC (or 

HDLC), and the remainder with Cartesian coordinates 

A comparison of the four different G-Matrices are given in Figure 3-2 to demonstrate the differing 

structure and sparsity.  Note that all coordinate systems besides DLC (which is one block), can take 

advantage of the block-diagonal structure to do efficient block-matrix linear algebra necessary for 

coordinate transformations.  

3.2.3 Linear Scaling GSM 

 Achieving linear scaling in GSM however, 

requires further consideration due to the inclusion of 

𝑈𝑈𝑐𝑐 which represents the reaction coordinate. One 

possible solution would be to consider the constraint 

in only the reactive fragment, which, for example, is 

done in the partial nudged elastic band21. However, to 

include the possibility for correlated motion between 

the reactive fragment and the remainder of the 

system, we use a projection scheme which can include 

the contribution of multiple fragments (Figure 3-3). 

𝑈𝑈𝑐𝑐 is split into segments defined by the length of each block, which corresponds to the number of 

primitive internal coordinates,  

𝑈𝑈𝑐𝑐 =  | 𝑈𝑈𝑐𝑐1,𝑈𝑈𝑐𝑐2 , … ,𝑈𝑈𝑐𝑐3𝑁𝑁−1 ,𝑈𝑈𝑐𝑐3𝑁𝑁� =  |(𝑈𝑈𝑐𝑐)1 , (𝑈𝑈𝑐𝑐)2, … , (𝑈𝑈𝑐𝑐)𝑛𝑛⟩ ≈ 𝑽𝑽|𝐶𝐶⟩ 

Equation 3-3 Constraint coordinate in the block-matrix form. 

Where n is the number of blocks, and the final approximate equality will become clear soon.  

𝑽𝑽𝟐𝟐 

𝑽𝑽𝟏𝟏 

 
𝑈𝑈𝑐𝑐 

Figure 3-3 Illustration for distributing the constraint 
coordinate into the block matrices, for example, butadiene 
and ethylene.  
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For each block, the magnitude of the constraint (a fraction of one) is saved and stored in a 

vector with length equal to the number of degrees of freedom (3N) 

𝐶𝐶 = � (𝑐𝑐1,1, 𝑐𝑐1,2, … , 𝑐𝑐1,3𝑁𝑁1�, … , �𝑐𝑐𝑖𝑖,1, … 𝑐𝑐𝑖𝑖,3𝑁𝑁𝑖𝑖�, … , (𝑐𝑐𝑛𝑛,1, … 𝑐𝑐𝑛𝑛,3𝑁𝑁𝑛𝑛)� 

𝑐𝑐𝑖𝑖,1 = |(𝑈𝑈𝑐𝑐)𝑖𝑖| 

𝑐𝑐𝑖𝑖,𝑘𝑘 = 0; 𝑘𝑘 = 2,3, … 3𝑁𝑁𝑖𝑖 

Equation 3-4 The C-vector 

Where the magnitudes are stored in the first position of each corresponding block, and the remaining 

positions are zeros. Finally, each 𝑼𝑼𝑖𝑖 are orthogonalized with respect to normalized (𝑈𝑈𝑐𝑐)𝒊𝒊. Importantly, 

only block constraints with magnitude greater than a certain threshold are allowed because a vector 

cannot be orthogonalized with respect to zero. Therefore, a slightly reduced tangent vector (Equation 

3-2) is used in practice, and this also has an effect on the extent of the correlations (see below) . Here 

we have chosen a threshold of 1𝑥𝑥10−3 which has shown stable numerical performance in a wide 

variety of cases. The resulting orthogonalized blocks are  

𝑽𝑽 = {𝑽𝑽1,𝑽𝑽2, … ,𝑽𝑽𝑛𝑛} 

Equation 3-5 Delocalized internal coordinates in block-matrix form 

where each block 𝑽𝑽𝑖𝑖 may or may not contain a constraint vector, depending on value of 𝑐𝑐1,𝑖𝑖. Now, 

multiplication of 𝑽𝑽 and 𝐶𝐶 picks out the constraint coordinate and restores the original individual 

magnitudes of each constraint component.  

In a similar way, the overlap of 𝐶𝐶 (Equation 3-4) and the gradient in the DLC basis provides 

the magnitude of the gradient along the constraint. Therefore, to optimize the geometry in the non-

constrained coordinates the gradient can be formed by projection 

𝑔𝑔𝑛𝑛𝑐𝑐 = 𝑔𝑔 −  ⟨𝑔𝑔|𝐶𝐶⟩𝐶𝐶 

Equation 3-6 The non-constrained gradient 

Likewise, the Hessian in the non-constrained coordinates can be found by projection with 𝐶𝐶  
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𝑯𝑯𝑛𝑛𝑐𝑐 = (𝑰𝑰 − |𝐶𝐶⟩⟨𝐶𝐶|)𝑯𝑯(𝑰𝑰 − |𝐶𝐶⟩⟨𝐶𝐶|) 

Equation 3-7 The non-constrained Hessian 

The Hessian is initialized in primitive internal coordinates and updated using the BFGS method in 

primitive internal coordinates9. For large systems (>1000 atoms) the Hessian or primitive Hessian is 

not formed explicitly but second-order optimization is still achieved using the limited-memory BFGS 

method22.   

 Transition state optimization can be performed with an eigenvector-following algorithm4, or 

in the case of large systems a climbing image algorithm which does not require diagonalizing the 

Hessian2,9. The gradient in the direction of the constraint is  

𝑔𝑔𝑐𝑐 =  ⟨𝑔𝑔|𝐶𝐶⟩𝐶𝐶 

Equation 3-8 The constrained gradient 

 Lastly, in reactions which involves crossings between surfaces, e.g. internal conversion or 

intersystem crossing, the evaluation of the crossing seams between the potential energy surfaces can 

provide information on the range of decay pathways to the lower state18,23,24. GSM can calculate 

minimum energy paths in the seam by adding additional constraints which preserve the electronic 

degeneracy18. For example, the coordinates which break the degeneracy of a conical intersection to 

first order are known as the branching plane (x,y). Thus, to map the seam the vectors U are 

orthogonalized with respect to the constraint coordinate and the branching plane,  

𝑽𝑽 = {𝑈𝑈𝑐𝑐,𝑉𝑉𝑥𝑥,𝑉𝑉𝑦𝑦;𝑉𝑉𝑘𝑘 𝑘𝑘 = 3,4,5 … 3𝑁𝑁} 

Equation 3-9 Delocalized internal coordinates with orthogonal reaction coordinate and branching space  

In the block—matrix formalism, this can be rewritten using 

𝐶𝐶𝑐𝑐 = ||(𝑈𝑈𝑐𝑐)1|, 0,0 … , |(𝑈𝑈𝑐𝑐)2|, 0,0, … , … , |(𝑈𝑈𝑐𝑐)𝑛𝑛|, 0,0, … ⟩ 

𝐶𝐶𝑥𝑥 = |0, |(𝑉𝑉𝑥𝑥)1|, 0 … ,0, |(𝑉𝑉𝑥𝑥)2|, 0 … , … , 0, |(𝑉𝑉𝑥𝑥)𝑛𝑛|, 0 … ⟩ 

𝐶𝐶𝑦𝑦 = |0, 0, ��𝑉𝑉𝑦𝑦�1�… ,0,0, ��𝑉𝑉𝑦𝑦�1�… , … , 0,0, ��𝑉𝑉𝑦𝑦�𝑛𝑛�… � 

Equation 3-10 C-vectors for reaction coordinate and branching space 
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Where the non-zero magnitudes are in the appropriate location within each block, and the 

corresponding vectors can be recovered as 

 

𝑈𝑈𝑐𝑐 ≈ 𝑽𝑽|𝐶𝐶𝑐𝑐⟩ 

𝑉𝑉𝑐𝑐 ≈ 𝑽𝑽|𝐶𝐶𝑥𝑥⟩ 

𝑉𝑉𝑦𝑦 ≈ 𝑽𝑽|𝐶𝐶𝑦𝑦⟩ 

Equation 3-11 Photochemical coordinates in block-matrix form 

 

 

3.3 Results 

First the results present speed comparison of the formation of the different DLC for increasingly 

larger systems. Then, the capabilities of GSM are demonstrated for a crystal gyroscope, which is 

known to have correlated motions25,26.  

3.3.1 Speed comparison of delocalized internal coordinate systems 

In this section we will demonstrate the cost of DLC formation with different primitive internal 

coordinate sets for cyclohexane crystals. Figure 3-4 presents the computational cost (time) of 

Figure 3-4 Computational cost for forming coordinate systems of a cyclohexane crystal of increasing size:  delocalized internal 
coordinates (DLC), hybrid delocalized internal coordinates (HDLC), translation and rotation internal coordinates (TRIC), and mixed 
DLC (mDLC)  (TRIC for one cyclohexane monomer and Cartesian coordinates for the rest).   
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coordinate formation, without constraints, for cyclohexane systems ranging from 1 monomer to a 

4x4x4 unit cell which contains 286 monomers.  

As expected, the scaling of DLCs is 𝑁𝑁3 because it diagonalizes the full sparse G-Matrix. However, 

the scaling for formation of DLC is also worse initially because forming the set of primitive internal 

coordinates is more computationally intensive than TRIC or HDLC because it adds bonds, angles and 

torsions between all the fragments.  Therefore, even getting to the point of doing interesting 

computational chemistry (e.g geometry optimization) could take a considerable amount of time. In 

contrast, for the coordinate systems which do not require a minimum spanning bond it is only 

necessary to check the connections within the fragment for each fragment, which is linear scaling with 

respect to the number of fragments.  

The scaling for formation of HDLC and TRIC are nearly indistinguishable in the cyclohexane 

systems. The difference is that HDLC have simpler to evaluate derivatives, but there are more 

primitive internals for HDLC than TRIC so the scaling can depend slightly on the system. The TRIC 

coordinate system, however, is recommended owing to the improved intermolecular optimization15.  

In both cases, most of the computation time was spent on the formation of the G-Matrix, not 

diagonalization. But this depend on the system (and the code implementation). For larger fragments, 

the computational cost of diagonalization of the G-Matrix blocks will become more dominant.  

Finally, further reduction in coordinate transformation can be achieved by treating a subset of the 

atoms with Cartesian coordinates, and the rest with primitive internal coordinates (mDLC Figure 

3-4d). The decrease in computational cost is proportional to the decrease in primitive internal 

coordinates. However, the choice of the TRIC and Cartesian regions should be carefully selected as 

the computational cost of coordinate transformation is not the only factor in determining the 

efficiency of geometry optimization. Different simulation strategies require different amount of 

correlated motion and therefore different coordinate combinations. For example, in the study of 

highly correlated motions the use of TRIC is preferable to Cartesian coordinates because of its 

improved optimization performance15. In contrast, in the solvent-perturbed approach27  all the atoms 

except the reacting system are frozen to approximate a dynamic system, which has short ranged 

correlations, so most atoms can be treated with Cartesians to yield the fastest coordinate 

transformation.  Lastly,  in the study of crystal nano-clusters with quantum mechanics/molecular 
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mechanics (QM/MM) there are (usually) no periodic boundary conditions, therefore the outer layer 

of the nano-cluster can be frozen in order to enforce a crystal packing28 and can be treated with 

Cartesian coordinates to reduce computational cost of coordinate transformations.  

3.3.2 Example GSM for correlated motions 

In this section GSM will be applied to the rotation of a molecular gyroscope25,26 in a crystalline 

environment. The rotation of the 

molecular gyroscope in crystals has 

been previously shown to display 

long-range correlated motions25, 

and is therefore an excellent 

example to demonstrate how 

correlated motions are treated in 

the block-matrix formulism 

(Equation 3-4).  

The previous study25 applied a 

series of constraints (frozen atoms) and translational and dihedral restraints to maintain crystal 

packing. When all atoms except the central rotor were frozen the rotational barrier was high (80.4 kcal 

mol-1) owing to the lack of relaxation of the surrounding crystal in response to the rotation. By 

systematically releasing the constraints, and therefore enabling more lattice relaxation, they obtained 

rotational barriers of 25.3, 17.5 and 15.5 kcal/mol, which shows that long-range correlated motions 

are important. Therefore, in this study all atomic coordinates will be treated with TRIC.  

In Figure 3-5, the pathway for rotation of a single gyroscope in the crystalline environment is shown, 

and the structures along the pathway are shown in Figure 3-6. Like the previous investigation25, the 

MEP shows a saw-tooth potential owing to the asymmetry with respect to rotation. An exact 

reproduction of the previous study with GSM, however, is not possible. The previous study only 

scanned the rotational coordinate (via a dihedral angle) and did not find the exact transition state. 

Herein, the exact TS is found via the climbing image algorithm9. Furthermore, the set of molecular 

mechanics parameters and constraint set that we have used are slightly different (see Computational 

Details below). We have also decided to use periodic boundary conditions since this should only affect 

Figure 3-5 GSM reaction path for rotation of a crystalline molecular gyroscope, with 
and without constraints 
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the energies and gradients to a minor extent compared to non-periodic molecular mechanics if the 

constraint set is good. The TS energy we have calculated is 20.1 kcal/mol which is ~5 kcal/mol higher 

than the previous investigation. Releasing all the constraints within the crystalline environment results 

in a barrier of 19.8 kcal/mol. The experimental free-energy of rotation has been estimated to be 

between 12-14 kcal/mol26,29. Nevertheless, considering the differences in level of theory, constraints, 

and numerical procedure the transition state energy is in-line with the previous calculations.   

Figure 3-6 shows the structures of the nodes along the reaction path with the structures with high 

correlated motion shown in licorise representation and with colors representing the magnitude of the 

correlation. Dark green have lower correlation and red has high correlation. Correlation refers to the 

response of the environment to the reacting system, via the reaction tangent, Equation 3-4. 

Specifically, the colors are the magnitudes of the reaction tangent for each molecule/fragment which 

are stored in the 𝐶𝐶 vector, and are a measure of importance of the motion of that fragment to the 

total reaction path. The rotor and stator of each gyroscope were treated as individual fragments to 

view the differences in correlation between rotors and stators. 

Sensibly, the fragments with higher correlation to the reaction path changes as the gyroscope 

rotates. When the gyroscope is in the equilibrium “vertical” position, the motion out of this well 

disturbs the fragments which are above and below the gyroscope. Likewise as the gyroscope rotates 

the fragments with largest contribution to the reaction path rotates with the gyroscope. For example, 

the correlated fragments swap sides going from node 8 to node 1.  

The most correlated fragment to the rotational reaction path (besides the rotating rotor) are 

the benzene solvents which co-crystalize in a tight packing around the gyroscope rotor. Specifically, 

there are four benzenes which are in the immediate vicinity of the gyroscope rotor; node 5 of Figure 

3-6 shows them clearly. The two benzenes that lay on the diagonal edges of the rotor and are 

represented in pink color (because of their strong correlation) have strong correlation at every angle 

of rotation. The hydrogen of these benzenes come into close contact with the rotor as the rotor rotates 

and this causes the benzenes to translate back and forth in a breathing motion. The other two benzenes 

are angled on the opposite side of the diagonal edge of the rotor so they are less affected except when 

the rotor is nearly perpendicular to them; see for example, node 6.  
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Figure 3-6 Rotation of a gyroscope 180 degrees embedded in the crystalline environment. The color of the fragment represents the 
contribution of the fragment to the reaction tangent (Equation 3-4)  i.e. correlation. Red licorice representation represents the largest 
correlation. Light green line representations have magnitudes less than 0.05, cyan lines have zero correlation. Node 0 and node 9 (not 
shown) have the same correlations as node 1 and node 9 respectively because they use the same tangent vector.  
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The second strongest correlated fragment is the stators shown in the white color (stronger 

correlation than dark green) which have phenyls that intercalate between the benzene solvent and rest 

approximately perpendicular to the rotor at the equilibrium position. These stators experience a strong 

steric repulsion during the rotation and behave in a breathing motion as the rotor rotates, similar to 

the two closest benzene. Also note that the rotor attached to those rotors are not significantly 

correlated, they are light green lines. Looking closely, the primary way that these stators breathe is by 

rotating which affects surrounding stators but does not affect its own rotor.  

Finally, it is relevant to consider the weak correlations with magnitude less than 0.05 shown in 

light green lines. It is interesting that the motion of the rotor is correlated completely in the vertical 

direction. Only in the horizontal direction does the correlation die out (cyan lines). The extent of 

correlation is dependent on the threshold for determining if a fragment’s contribution is signifant 

enough (see Theoretical Details). GSM uses a threshold of 1𝑥𝑥10−3 which has given a stable numerical 

procedure in a variety of cases, so there is no reason to change this value.  

3.4 Conclusions 

In summary, a general-purpuse, linear scaling growing string method has been presented which 

can be used to study correlated motions in multi-molecular systems like crystals and proteins, or it can 

be tailored to study reacting systems embedded in a frozen system, and much in between. The new 

algorithms achieve linear scaling in multi-molecule systems by block-matrix linear algebra and by  

distributing the reaction tangent, which is used to grow and optimize the minimum energy path, into 

each block which represents a molecule or fragment. This tangent is a multi-dimensional vector, and 

acts as a constraint which prevents motion along that local direction. This results in a stable GSM 

algorithm for large multi-molecule systems and has the added benefit of being a good proxy for 

correlation analysis.   
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3.5 Computational Details 

All computations were done in the 

Python3 version of the growing string 

method (pyGSM) which is available for 

download, for free, on Github.com30 and is 

interfaced with OpenMM for MM 

calculations31.  The gyroscope was 

parameterized with the generalized Amber 

force-field (GAFF) and use restrained 

electrostatic potential charges (RESP) 

derived from quantum mechanics (HF/6-

31g*). The atom types and charges are provided in the supporting information.  

The transition states are considered optimized when the gradient RMS, max gradient, and reaction 

tangent are converged to 0.0005 Ha/ Bohr rad, and the difference in energy between successive 

iterations was less than 0.1 kcal/mol.   

In an effort to reproduce the previous investigation, similar constraints were used (Figure 3-7). 

The red licorice representation is the reacting gyroscope and is free from all constraints and restraints. 

The benzenes in black licorise representation were kept frozen throughout optimization, this is 

supposed to preven slippage of the cage benzenes during rotation. The blue spheres were restrained 

to their initial position by a 100 kcal/mol∙Å harmonic restraining potential. Lastly, for all gyroscopes 

except the reacting system three torsion restraints were applied between the trityl groups (the stators), 

one for each pair, to restrain them to the initial relative rotation.  
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 The Mechanics of the Bicycle Pedal Photoisomerization in 

Crystalline cis,cis-1,4-diphenyl-1,3-butadiene 
 

4.1 Abstract 

Direct irradiation of crystalline cis,cis-1,4-diphenyl-1,3-butadiene  (cc-DPB) forms trans,trans-

1,4-diphenyl-1,3,-butadiene via a concerted two bond isomerization called the bicycle pedal 

mechanism. However, little is known about photoisomerization pathways in the solid-state and there 

has been much debate surrounding the interpretation of volume-conserving isomerization 

mechanisms. The bicycle pedal photoisomerization is investigated using the QM/MM complete active 

space self-consistent field (CASSCF)/generalized amber force field (GAFF) method. Important 

details about how the steric environment influences isomerization mechanisms are revealed including 

how the one-bond flip and hula-twist mechanisms are suppressed by the crystal cavity, the nature of 

the seam space in steric environments, and the features of the bicycle pedal mechanism. Specifically, 

in the bicycle pedal the phenyl rings of cc-DPB are locked in place and the intermolecular packing has 

an open passageway allowing for a smooth rotation of the central diene in a volume-conserving 

manner.. In contrast, the bicycle pedal rotation in the gas-phase is not a stable pathway, so single-bond 

rotation mechanisms become operative instead.  Lastly, the reaction barriers of the different crystalline 

conformations within the unit cell of cc-DPB are compared to investigate the possibility for 

conformation-dependent isomerization. Although some difference in reaction barriers are observed, 

the difference is most likely not responsible for the experimentally observed periods of fast and slow 

conversion. However, presently the models do not capture the quantitative activation barriers and 

more work is needed to better model reactions in crystals. 
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4.2 Introduction: 

The ability of light to trigger 

mechanical changes via photoisomerization 

is well known in vision and phototaxy, 

driving efforts to replicate these features in 

artificial molecular machines and 

optomechanical devices. This has led to the 

study of specific isomerization mechanisms 

such as one-bond flip (OBF, also known as 

the double-bond twist), volume-conserving 

hula-twist (HT), and the bicycle pedal (BP)  mechanisms1. The relative importance of these 

photoisomerization steps in condensed phases, however, is particularly sensitive to the steric 

environment. Furthermore, the study of these mechanisms is notoriously difficult because thermal 

isomerization about carbon-carbon single bonds can mix the photoproducts. As a result, many 

questions and debate2–6 surround the interpretation of photoisomerization mechanisms, and this 

confusion inhibits rational design.  

Herein, the isomerization of crystalline cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB),7,8 to 

trans,trans-1,4-diphenyl-1,3-butadiene (tt-DPB) is investigated (Figure 4-1a). This isomerization may 

proceed through the concerted BP mechanism, which has been noted in crystalline butadienes9–11,12, 

some of which produce macroscopic motion like peeling12, hexatrienes13,14, photoactive yellow 

protein15, and has been implicated in the visual retinoid cycle16. Photoirradiation of crystalline cc-DPB 

is interesting amongst these because in the solution and glassy phase the BP isomerization is minor or 

absent. For example, photoirradiation of cc-DPB in ethanol17 produces ct-DPB  via OBF or HT, and 

a minor amount of tt-DPB through a phenylallylbenzyl intermediate which is not a concerted rotation 

as portrayed in the BP mechanism17.  Furthermore, irradiation of cc-DPB in viscous media like glassy 

phases mostly do not undergo BP isomerization: photoirradiation  in the viscous isopentane glass 

resulted a mixture of single double-bond isomerization and BP isomerization7, whereas 

photoirradiation in the harder EPA (ether:isopentane:ethyl alcohol=5:5:2) glass resulted in no BP 

isomerization(Figure 4-1b)18. This is unexpected because isomerization in volume restricting 

environments is generally expected to proceed via the more volume-conserving mechanism (e.g. HT 

 

 

a) 

b) 

Figure 4-1 Irradiation of cc-DPB in different steric environments 
results in different isomerization products a) crystal b) viscous 
environment. 
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vs OBF)1. These observations therefore suggest that specific steric and structural interactions must be 

present in the crystal which inhibit the single double-bond isomerization and enable the BP pathway. 

In order to gain more information into this intriguing mechanism, it is useful to perform ab 

initio computational analysis. Previous studies on related compounds19–25 have demonstrated that 

quantum chemical simulations can provide important details of photoisomerization mechanisms that 

would be useful for understanding cc-DPB photochemistry. Specifically, conical intersections 

(crossings between potential energy surfaces) enable efficient non-radiative decay between states, and 

therefore control photoproduct formation. Quantum mechanical studies of conical intersections 

responsible for the BP mechanism, however, are to the best of our knowledge unexplored. 

Furthermore, the investigation of reaction mechanisms in crystal environments is more difficult than 

their gas-phase counterparts. H. Zimmerman was the first to report ab initio investigations of crystal 

photochemical reactions by approximating crystal packing with an inert gas-shell model26. Later, the 

same author optimized mini-lattices, also known as a cluster model, using a quantum 

mechanics/molecular mechanics (QM/MM) ONIOM approach27,28. Recent advances in related 

techniques applied to crystal photochemistry29 have permitted improved geometry optimization as 

well as better treatment of short-range30  and long-range electrostatic effects31,32 in crystals with 

quantum mechanics/quantum mechanics’ methods (QM/QM’) methods.  

In this article, a recently developed reaction path optimization method (Chapter 3)33,34 is 

applied to analyze photoisomerization of cc-DPB. First, analysis of traditional single double-bond 

isomerization pathways provides evidence towards why these pathways are forbidden in crystals. 

Detail of the BP mechanism are then revealed for the first time. The descriptions of these pathways 

will reveal how the crystal phase affects conical intersections and on how the broader seam topography 

depends on restrictions on intramolecular rotation. Finally, a hypothesis about the isomerization rate 

varying on a conformer-specific level is evaluated8,35,36. Altogether, this information provides a close 

look at the effects of environment on photoisomerization mechanisms and explains how qualitative 

changes in reaction pathways can come with entry of molecules into the crystal phase. 
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4.3 Methods:  

4.3.1 Cluster model 

The  cc-DPB crystal structure was 

retrieved from the Cambridge crystal 

database (CIF #29021)7. A 3x3x3 cluster 

was prepared and a four-layer QM/MM 

approach was utilized for all calculations 

unless otherwise stated (Figure 4-2). The 

innermost layer is treated with quantum 

mechanics, the second layer is treated with 

molecular mechanics and the outermost 

layer is kept frozen to enforce crystal 

packing. An extra layer arises here because 

of the hybrid Cartesian and translation-

rotation internal coordinate (TRIC) 

system (see below)34. The choice of layers 

is as follows. The first layer is the QM residue, which depends on the specific conformation of the 

unit cell being investigated (see below). The second layer is defined as all monomers with all atoms 

less than 5 Å from the QM residue. The third layer is defined as monomers with all atoms greater than 

5 Å away from the QM residue and less than 10 Å from the QM residue. The fourth layer is all 

monomers with all atoms greater than 10 Å from the QM residue which is kept frozen. The QM layer 

is treated with the state-averaged complete active space self-consistent field (SA-CASSCF) method. 

All layers besides the QM layer are treated with the Amber force field and utilize restrained 

electrostatic potential charges (RESP) derived from quantum mechanics. The atom types and charges 

are provided in the Supporting Information. The choice of active space in the SA-CASSCF is 

discussed below because that requires further experimental and theoretical considerations. 

4.3.2 Reaction Path Optimization 

Reaction path optimization was performed with the growing string method (GSM) as 

implemented in Python337. The core GSM algorithm has been described separately38,39, and 

modifications necessary to treat large systems will be described in detail elsewhere33. Therefore, only 

a brief description is given here. GSM is an efficient reaction path optimization algorithm that can be 

Figure 4-2. 3x3x3 cluster model of cc-DPB. The colors represent the four-
layer geometry optimization approach. Red VDW: non-frozen QM region 
treated with TRIC, blue VDW: non-frozen MM region treated with TRIC, 
transparent VDW orange: non-frozen MM region treated with Cartesians, 
line cyan: frozen MM region treated with Cartesians.  There are 12960 atoms 
total. 
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operated in either single-ended or double-ended mode. Single-ended mode requires an initial structure 

and a driving coordinate direction (e.g. adding or breaking bond) and is therefore well suited for 

reaction discovery and exploration40. This mode has also been shown to be useful for finding MECI 

starting from stable equilibrium geometries41. The double-ended mode requires an initial and final 

structure as input. GSM employs delocalized internal coordinates (DLCs) which are superior to 

Cartesian coordinates for geometry optimization42. In the present implementation of GSM, translation 

and rotation internal coordinates34 are used to reduce the computational cost of coordinate 

transformations. With the inclusion of TRIC, the individual molecules of the cluster are decoupled 

and therefore block-matrix diagonalization techniques are used to achieve 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 scaling computational 

costs33. 

Python GSM is available for free on Github37 and is interfaced with the GPU accelerated 

TeraChem for QM and QM/MM calculations43–45, and OpenMM for MM calculations46. Initial 

geometry optimization of the 3x3x3 crystal was performed with OpenMM without the frozen 

constraints to relax the MM region. MECI optimization was performed using an iterative penalty 

potential47. Gradient RMS, gradient maximum, and energy difference criteria were used to determine 

optimization convergence. Transition state optimization was performed using a climbing image 

algorithm38. The transition states are considered optimized when the gradient RMS, and reaction 

tangent are converged to 0.0005 Ha/ Bohr rad, and the difference in energy between successive 

iterations was less than 0.1 kcal/mol. Seam saddle point were optimized with climbing image 

optimization using the same criteria except on the penalty potential with σ of 10. 

4.3.3 Complete active space self-consistent field 

 Photoisomerization can proceed through crossings between potential energy surfaces, which 

requires electronic structure theory that can treat electronic degeneracies48. The CASSCF method is 

therefore a workhorse in the study of photoisomerization and photochemical reactions. Previous 

computations on 1-phenyl-1,3-butadiene have analyzed the potential energy surface with the SA2-

CAS(10,10)SCF/6-31+G* level of theory, which include the 10 carbon p orbitals involved in π-

bonding22. These computations showed the excited state is more planar due to increased coupling 

between the phenyl and diene moiety, and a low energy (3 kcal mol-1 higher than the S1 minimum) 

conical intersection was found leading to a spiro-cyclization photoproduct, which agrees with available 

experimental data. In contrast, the isomerization pathways were found to be much higher at about 25 
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kcal mol-1 above the S1 minimum. The isomerization MECI can be described as s-transoid (s-trans with 

respect to the phenyl diene single bond), and a central MECI by analogy with butadiene19.  

Butadiene has also been extensively studied and it has been found that SA-CASSCF with the 

nonintuitive active space of four electrons in three orbitals closely approximates both second order 

MS-CAS(4,4)PT249 and experiment. This choice of active space destabilizes the S1 surface while 

leaving the S2 surface largely unchanged, restoring the near-degeneracy of S2 and S1 in the Franck-

Condon region. The transoid MECI is about 39 kcal mol-1 below the Franck Condon point, the S1 

minimum of butadiene is a twisted methylene. At the higher SA-3-(4,4)-MSPT2/6-31G** level of 

theory 21 the transoid MECI is about 22 kcal mol-1 below the planar 2 1Ag state, and 41.5 kcal mol-1 

below the Franck-Condon point.  

 The full π space of cc-DPB requires a (16,16) active space which is at the high-end of 

computational capabilities, especially for the relaxed reaction path optimization performed herein. 

Furthermore, a larger active space is not always better, and this is perhaps evident in 1-phenyl-1,3-

butadiene that has a large isomerization barrier at the CAS(10,10) level. Therefore, for an initial 

investigation it is reasonable to begin with a smaller active space. To our satisfaction,  SA3-

CAS(4,3)SCF captures spectroscopic characteristics in agreement with SA-3-(4,4,)-MS-PT2 

calculations: the S1 is the bright state and, like PB, is described as bichromophoric (see Supporting 

Information). The SA3-CAS(4,4)SCF level, in contrast, predicts S2 as the bright state and the 

excitation is localized on the butadiene chromophore.  

 

4.4 Results and Discussion 

The analysis of cc-DPB photoisomerization pathways begins with a brief description of the 

crystal and gas-phase ground- and excited-state structures. Next, single double-bond isomerization 

mechanisms are revealed, with details about why these are prohibited in the crystal. Then a 

comprehensive analysis of BP pathways is provided. Finally, the BP reaction paths for all conformers 

within the unit crystal are compared to determine if certain conformations isomerize with faster rates 

than others.   
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4.4.1 Crystal Description 

 The cc-DPB unit cell contains 

two conformers of the monomer, for a 

total of four DPB molecules. One of the 

conformers has the phenyls in 

perpendicular planes (A,B) and the other 

has phenyls in parallel planes (C,D), see 

Figure 4-3. The two conformers of cc-

DPB arrange in edge-to-face alternating 

arrays: the perpendicular conformers 

clasp together in a row of the array, and 

the parallel conformers clasp together in 

the next row of the array.  The parallel and 

perpendicular conformers are also stable 

geometries in the gas-phase. However, at 

the CASSCF level of theory and in the gas 

phase the angle of the diene with respect 

to the phenyl planes is 90°. 

The calculated vertical and 

adiabatic excitation energies of each of the 

conformers in the crystal phase and gas-

phase are reported in Table 4-1. The 

experimental vertical and adiabatic 

excitation energy can be estimated from 

the excitation and emission spectrum, respectively, and are approximately 3.387 eV (366 nm) and 

3.024 eV (410 nm)8. In contrast, in cyclohexane solution the vertical and adiabatic excitation energies 

are about 4.27 eV (290 nm), and 3.56 eV (360 nm)50. Therefore, the crystal exhibits a strong 

bathochromic shift with respect to solution31,32. CASSCF is known to lack dynamical electron 

correlation which causes large excitation energies. The inclusion of dynamical correlation with 

CASPT2 bring the energies down in line with solution values but still lacks the electrostatic effects of 

the bulk crystal. 

Table 4-1 CASSCF excitation energies in eV, (CASPT2 
energies of the single monomer ) 

Geometry ∆Evert ∆Eadiab 

A isomer  5.942 4.468 (3.794) 
B isomer 6.000 4.600 (3.767) 
C isomer  5.827 4.250 (3.562) 
D isomer  6.050 4.453 (3.771) 
Perpendicular 
Vacuum 5.727 4.317 

Parallel Vacuum 7.513* 4.175 
* C2h symmetry 

Figure 4-3. Unit cell with labels. Cyan: A, Purple: B, Red: C, Green D. 
The lighter colored monomers are members of adjacent cells, which 
interact with the central conformers.  
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4.4.2 Single Double Bond Rotation 

The photoisomerizations of conformer C were examined first because this conformer has the 

lowest energy initial excited state. Two cis,cis-s-transoid MECIs were found, where the s-trans 

nomenclature is with respect to the central single bond. These MECI are labeled as cc-transoid-L and 

cc-transoid-R because they resemble the rotation of the left and right side of a bicycle pedal, respectively 

(top row Figure 4-4, and Table 4-2).  To understand how the crystal steric environment affects these 

MECI, the gas-phase MECI were also found. The structures are overlaid to show how the crystal 

affects the geometry and the energies are shown in the color matching the conformer (e.g. dark blue 

for gas phase). The crystalline cc-transoid MECI differ from the gas phase, in that they are higher in 

energy than their respective S1 minimum by 6.6 and 13.1 kcal mol-1 for cc-transoid-L and  cc-transoid-R, 

respectively51.  The increase in energy of conical intersections from gas-phase to crystal can be 

explained by restrictions on intramolecular rotation (RIR)52,53. As can be seen in Figure 4-4, the gas-

phase cc-transoid MECI are able to significantly deviate from planarity (α=43° and 51°) whereas the 

crystalline phenyls require less than half the amount of out-of-plane rotation, consistent with RIR. 

Rotating out of plane is energetically favorable in the gas phase because it helps the phenyl maintain 

conjugation with the rotating interior hydrogen (H4 or H5). In contrast, α is prevented from changing 

due to steric repulsion in the crystal form. 

 
Table 4-2 Single double-bond isomerization MECI values 

MECI  S0 S1 θ φ α* 

cc-transoid-L 
gas-phase -1.8 -1.7 -83.6 -130.9 42.8 

crystal-phase 6.6 6.7 -86.6 -137.7 
20.6 

cc-transoid-R 
gas-phase -1.8 -1.7 85.3 131.4 50.6 

crystal-phase 13.1 13.1 83.6 137 23.7 

s-transoid 
gas-phase -1.4 -1.3 -69.6 -166.1 40.3 

crystal-phase 3.0 3.2 -29.5 -174.4 3.8 

s-central 
gas-phase -7.0 -6.9 115.6 -173.1 120.8 

crystal-phase -0.6 -0.6 38.0 166.8 29.1 
*  α is defined as the angle between the planes of the phenyl and the S1-minimum. 
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The MECI geometries imply the existence of specific photoproducts. Herein the gas-phase cc-

transoid are assumed to lead to OBF and HT-2 (Figure 4-5) because they contain a combination of 

double-bond rotation (θ)  and adjacent single-bond rotation (ϕ)  coordinates (Figure 4-4)24. In the 

OBF mechanism the phenyl completes the ~180° twist about the carbon-carbon double bond. For 

example, OBF characteristics can be seen in the angle α as the phenyl group flips over C3-C4 in Figure 

4-4. In the HT mechanism single-bond rotation about the central double bond allows the CH group 

(e.g. C4-H4) to complete the twist about the double bond without flipping the phenyl; α decreases as 

the hydrogen finishes the hula-twist. Interestingly, the perpendicular geometry α begins at ~90°, 

therefore only half the necessary phenyl rotation is required for OBF, which may facilitate OBF in the 

gas-phase.  

Figure 4-4. Geometries of gas-phase (dark blue) and crystalline transoid conical intersections (see Figure 4-3 for color scheme) involved 
in single double bond isomerization. The important coordinates are labeled one-bond flip coordinate (θ), single-bond rotation coordinate 
(ϕ) and phenyl out-of-plane angle (α). α is defined as the angle between the planes of the phenyls of the MECI and S1 minimum. The 
energies and values for the different parameters are shown in the color matching the conformer (e.g. dark blue for gas phase). The S0 and 
S1 energies, in kcal mol-1 are relative to the respective S1 minimum geometry.  
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The expected photoproducts in the crystal-phase, however, are much different. The cc-transoid 

MECI distortions imply that completion of the OBF and HT are no longer allowed24. OBF is clearly 

suppressed in the crystal state via restrictions on out-of-plane rotation due to the constrained cavity. 

Furthermore, although α is small, rotation about the central single bond (ϕ) is also suppressed in the 

crystal lattice, and this is evident in the MECI with ϕ about 7° larger; a smaller ϕ means greater 

rotation.  This is interesting because it shows that although HT is more volume conserving than OBF 

it still requires that the phenyls “slide” via the single-bond rotation coordinate ϕ, which is prohibited 

in the crystal phase.  

Another class of CI important for single double-bond isomerization occur via carbon 

pyramidalization at the first carbon of the diene chain. Two CI22 with pyramidalization at the first 

carbon can be found in the gas-phase for cc-DPB. The two differ in the dihedral phenyl-diene single 

bond, and can be described as s-central and s-transoid where the s-trans and s-central naming refers to the 

phenyl-diene single bond (Figure 4-4 bottom row and Table 4-2)22. These CI are assumed to lead to 

HT-1 and OBF photoproducts (Figure 4-5). The difference in photoproducts is the orientation of the 

resulting phenyl: in OBF the phenyl ring flips 180° about the phenyl-diene carbon-carbon single bond, 

whereas HT-1 preserves the relative phenyl position.   

Figure 4-5. Single double-bond isomerization mechanisms. Operative only in the gas phase due to steric blockage in the crystal. 
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Crystal phase planar analogues of s-transoid and s-central were found starting from the parallel 

phenyl geometries (C) and perpendicular phenyl geometries (B), respectively. In comparison to cc-

transoid, an even greater difference between gas phase and crystal phase exists for this pair of conical 

intersections. In the crystal phase, the dominant motion rotates the hydrogen out of plane D(C1-C2-

C3-H3) = -113.4° and the phenyls remain in plane (e.g. α=4°). This is unusual because rotation of 

hydrogen out of plane has only been found in the gas-phase as a high-energy seam saddle point23,41,54. 

In order for this conical intersection to become responsible for the HT in the condensed phase, the 

steric surroundings must in some way cause this conical intersection to become lower energy. This 

has previously been hypothesized23,41,54, but was not tested until now due to the lack of capacity to 

simulate the reaction mechanism in the condensed phase, and therefore highlights the importance of 

explicitly modeling the steric environments: the nature of the potential energy surface topology 

including the seam space can change dramatically in the condensed phase. Incidentally, SE-GSM was 

particularly beneficial here because the gas-phase and crystal phase structures were found from the 

same input reaction coordinates. In contrast, the optimization of these structures via traditional 

techniques where the gas-phase structure is used as a guess for the reacting system of the crystal would 

have posed a significant challenge because the gas-phase structures do not fit within the crystal cavity.  

Regardless, the crystalline s-transoid and s-central CI analogues are non-productive in the crystal phase 

as well due to restrictions on side-to-side rotations.   

4.4.3 Bicycle Pedal Rotation 

The CI responsible for bicycle pedal isomerization in the crystal phase is now identified and 

analyzed. As demonstrated above, the cc-transoid-L and cc-transoid-R MECI each resemble one half-

rotation of a bicycle pedal. Putting these motions together in a concerted manner completes the cycle. 

As can be seen in Figure 4-6a, the bicycle-pedal CI be described as trans,trans-s-transoid, or tt-transoid for 

short. As above, the gas-phase tt-transoid is more non-planar than the crystalline form, and this extra 

flexibility allows gas-phase tt-transoid to reach a lower energy than the crystal phase.  
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Excited-state reaction paths were found 

connecting the S1-minimum and the tt-transoid 

CI. In the crystal state, the reaction path is a 

single, smooth elementary step consisting of 

~180 degree rotation of the central diene, 

followed by pyramidalization (Figure 4-6b). In 

contrast, in the gas-phase the reaction path 

from the S1-minimum to tt-transoid undergoes 

significant out of plane distortion as the phenyls 

attempt to maintain conjugation with the 

central rotating diene (see Supporting 

Information). No exact transition state 

geometry could be optimized, probably due to 

the unstable (high energy) nature of the reaction 

path. Taken together with the steepness of the 

potential energy surface towards the cc-transoid 

CI in the gas-phase (Figure 4-4), this indicates 

that the BP pathway is not operable in the gas 

phase. The crystal BP mechanism is also much 

different than the solution-phase cc-DPB→tt-

DPB mechanism which proceeds through a cis-

phenylallylbenzyl excited state intermediate17. 

The cis-phenylallylbenzyl intermediate for 

example, would require side-to-side motion of 

the phenyl, which is not allowed in the crystal. 

Therefore, the crystal state is unique in its 

operation: the steric environment opens the 

bicycle pedal isomerization reaction valley by 

restricting out-of-plane motion allowing 

smooth rotation of the diene.  

Figure 4-6. Relevant geometries for the bicycle pedal isomerization 
a) comparison of gas and crystal phase tt-transoid MECI, b) excited-
state transition state connecting S1 minimum and transoid MECI c) 
seam saddle point connecting cc-transoid-R and tt-transoid MECI. 
The S0 and S1 energies, in kcal mol-1 are relative to the S1 minimum 
geometry of C. 

a) 

b) 

c) 
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Close inspection of the transition state geometry reveals additional important details. First, as 

can be seen in Figure 4-6b, the pedal rotates neatly through the phenyl-diene gaps of the adjacent B 

and A’’ molecules.  The adjacent phenyls prevent out-of-plane rotation by locking the pedals into gear. 

Thus, the BP isomerization resembles the mechanical operation of real bicycles in more than one way: 

the concerted rotation, and the mechanical rigidity in being locked into this rotation pathway. 

Secondly, the transition state geometry has no pyramidalization (D(C1-C2-C3-H2)=175.9°) which 

indicated to us that the isomerization might proceed directly to tt-DPB on the excited-state (an 

adiabatic pathway). Indeed, an excited-state reaction pathway was found that connects the S1-

minimum and tt-DPB S1-minimum with an identical transition state geometry as Figure 4-6b, although 

they were computed independently. Therefore, this shows that the transition state bifurcates to lead 

to the tt-DPB S1-minimum and tt-transoid MECI. At the S1-minima, the excited-molecule can decay 

non-radiatively at the tt-transoid which involves pyramidalization, or decay radiatively through 

fluorescence. 

 MECI, however, are not enough to fully describe the photochemistry because non-radiative 

decay can occur at any point along the high-dimensional seam-space. In particular, regions of the seam 

are often found parallel to the adiabatic reaction coordinate and can contribute via motion orthogonal 

to the reaction coordinate55. Therefore, to explore the potential energy surface more widely for other 

possible bicycle pedal mechanisms, a minimum energy seam pathway was found connecting cc-transoid 

and tt-transoid. This seam runs roughly parallel to the adiabatic pathway and the seam saddle point 

occurs near the excited-state transition state (Figure 4-6c). Non-radiative decay through CI points 

before the seam saddle point are considered to return to cc-DPB, whereas all CI points at or after the 

saddle point lead to tt-DPB. With this seam established a complete picture of the relevant BP potential 

energy surface is now known and a summary of the important pathways, productive and non-

productive, is given in Figure 4-7.  
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The results of Figure 4-7 allow us to examine the feasibility of the proposed 

photoisomerization pathways. Starting from photoexcited cc-DPB conformer C, the transition state 

energy leading to the bicycle pedal CI (24.4 kcal mol-1) is below the vertical excitation energy (36.3 kcal 

mol-1) suggesting that enough energy is available to overcome the barrier (at least at short timeframes 

following excitation). However, a significant region of the seam runs roughly parallel to the adiabatic 

coordinate and can contribute to non-productive decay back to reactants (i.e. an aborted OBF or HT). 

The productive formation of tt-DPB would only start around the seam-saddle point connecting cc-

transoid and tt-transoid which is much higher in energy. Nevertheless, despite the seemingly poor 

energetics the mechanism appears the most probable. For example, if the phenyls are held stationary 

the motion would have to be confined to the diene portion of the molecule. The phenyl-diene gaps 

also enable unimpeded passage for hydrogen rotation. Therefore, at present the large barrier is 

considered an artifact of the lack of quantitative energies provided by CASSCF in computing these 

electronic states, or long-range relaxation of the crystal is necessary which is not captured in the four-

layer model. Future studies will test the accuracy of this relatively simple level of theory against higher-

accuracy methods.   

Figure 4-7. Summary of major excited-state reaction channels of conformer C, including productive and non-productive routes. 



75  

4.4.4 Conformation Comparison 

Now that the mechanism for cis-

trans photoisomerization in cc-DPB have 

been outlined, the various conformers 

within the unit cell are compared to one 

another. Besides categorization into parallel 

and perpendicular units, the steric 

environment surrounding the central 

double bond of each conformer is different 

and could result in different isomerization 

efficiencies. If the conformations have 

different isomerization efficiencies, this 

could manifest as periods of fast and slow 

conversion because certain conformers will 

isomerize at lower photon fluxes35. 

Isomerization in the clockwise direction 

versus the counter-clockwise direction can 

also lead to differences in isomerization 

efficiencies, depending on conformer.  

As we have seen, the primary 

motion during the BP isomerization is the 

rotation of the central diene, the 

hydrogens of which rotate between the 

phenyl-diene gap of neighboring units. 

The steric interaction of the hydrogen 

pedal and the neighboring monomer is 

therefore of concern. To familiarize 

oneself with the different steric 

environments, consider the counter-clockwise rotations of A and B as an example. The diene of unit 

A and B are oriented similarly, however the steric interactions upon isomerization are different. The 

top pedal (hydrogen) of A slips between the gap of the phenyl and diene of D’ and the bottom pedal 

Table 4-3. Intermolecular interactions during the bicycle 
pedal isomerization for each unit in the clockwise and anti-
clockwise direction. See Figure 4-3 for the point-of-
reference used to make this table. 

    Neighbor 

Unit 
Bicycle- 
Pedal 

Direction 

Top 
Pedal* 

Bottom 
Pedal* 

A 
clockwise B B' 
counter-
clockwise D' B 

B 
clockwise A' A 
counter-
clockwise A D 

C 
clockwise B A'' 
counter-
clockwise A'' B 

D 
clockwise C' C 
counter-
clockwise C C' 

*Top and bottom pedal refer to central hydrogen of 
diene with point-of-view in Figure 4-3.   

Figure 4-8. Comparison of bicycle pedal reaction paths to MECI for all 
conformers. The average vertical excess energy is over conformers A-D 
which have different microenvironments and energies.  

Avg. excess 

vertical energy = 

34.8 kcal/mol 
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becomes perpendicular with the phenyl of C and rests near B.  On the other hand, the bottom pedal 

of B slips between the phenyl diene gap of D and the top pedal sterically clashes with A. Similar 

analysis has been performed for all conformers in both rotation directions, and is present in Table 

4-3.  

With all the expected interactions tabulated, excited-state reaction pathways between the S1-

minimum of each conformer and the appropriate tt-transoid-CI were found for clockwise and counter-

clockwise rotations (Figure 4-8).  A range of about 6 kcal/mol is observed between all conformer: 

conformer B has the lowest energy barrier of 18.6 kcal/mol in the clockwise direction, and conformer 

C has the largest barrier of 24.5 kcal/mol. Clockwise BP rotation of conformer B causes the top pedal 

to pass first through the phenyl-diene gap of A’ and then of D. The bottom pedal of conformer B 

skirts past A and does not pass directly through a phenyl-diene gap. In contrast when B rotates in the 

counter-clockwise direction, the bottom pedal rotates through D and as it approaches A’ it relaxes 

before going through the gap. The top pedal of conformation C also does not pass through the phenyl 

diene gap of B during clockwise rotation. Overall, however, without quantitative confidence in the 

underlying model (see above) these differences cannot be rigorously analyzed. For all MECI, and RP 

diagrams and figures, consult the Supporting Information.  

Nevertheless, to answer the question of whether the different conformations are responsible 

for different rates (fast and then slow), the answer is most likely “no”. All conformers can rotate 

without major impediment and the major steric interaction provided by the crystal lattice is to restrict 

out-of-plane rotations of the phenyl, which is present in all conformers. Furthermore, additional 

experiments have observed that the related compound cis,trans-1,4-di-o-tolyl-1,3-butadiene (cc-DTB) 

has no conformational anisotropy11 yet also displays stepwise isomerization kinetics.  As a result, it is 

reasonable to conclude that conformational differences are not responsible for the observed stepwise 

reaction rate, but instead the effect is due to more complex changes as the crystal reorganizes.  
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4.6 Conclusions 

 The present computational investigation of cc-DPB provided substantial insight into the 

diverse OBF, HT, and BP mechanisms in the gas-phase and crystal states. The out-of-plane angle α 

and the side-to-side rotation angle ϕ were found to be useful parameters to explain why OBF and HT 

were prohibited in the crystal phase. Interestingly, the crystal phase can fundamentally change the 

seam topology, as seen in how the HT-1 conical intersection in the crystal phase resembles gas-phase 

seam saddle points. The dramatic influence of the steric environment is also evident in the BP 

isomerization, where the phenyls are locked in place and the diene must rotate in a smooth volume-

conserving manner. The specific way the monomers clasp together is also important for ensuring an 

unimpeded passageway for the rotating diene. In contrast, cc-DPB is not able to isomerize via the BP 

in the gas phase because it lacks a rigid structure that is essential for ensuring a smooth rotation, 

without relaxation into non-BP geometries.  

BP isomerization paths for unit-cell conformers revealed that all conformers isomerize in a 

similar fashion. This indicates that the fast and slow reaction kinetics observed in experiment are not 

likely to be a result of the different microenvironments in the unit cell, at least in the early stages of 

isomerization before the crystal reorganizes.  

The growing string method was instrumental in locating the reaction pathways, conical 

intersections, and seam spaces throughout this study. In particular, the qualitative differences in 

isomerization pathways between the gas phase and solid state were straightforwardly delineated by 

GSM, allowing these mechanisms to be brought to light without undue reliance on prior chemical 

intuition. However, quantitative accuracy in describing the bicycle pedal has not yet been achieved. 

Therefore, in addition to providing relevant details of the BP mechanism we hope that this study can 

further motivate computational analysis of photochemical reactions in the solid state.  

 

4.7 Data availability 

MM parameters, molecular orbital diagrams, and reaction path profiles are provided in the Supporting 

Information.  
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 Experimental and Theoretical Characterization of Ultrafast 

Water-Soluble Photochromic Photoacids 

This experimental work done in this chapter was performed in collaboration with Drs. Ted Wiley, 

Nicholas Miller, and Professor Roseanne Sension. 

 

5.1 Introduction 

The photochromic properties of spiropyran have long been utilized for light activated molecular 

devices1,2. Irradiation of spiropyran (SP) causes reversible ring opening to form merocyanine (MC). 

Likewise, merocyanine can reversibly ring close to form spiropyran. These two species are chemically 

and spectroscopically distinct3,4. As a result, spiropyran has inspired technology ranging from optical 

data storage5,6,  photoswitchable coatings and membranes7–10, and light controlled fuel cells11, to DNA 

photoswitches12,13. More recently, water-soluble merocyanine/spiropyran (MC/SP) photochromic 

photoacids have been developed14–16. Their utility for studies of proton transfer processes in biological 

assays has garnered interest14. The ability of the MC/SP photoacids to catalyze esterification 

reactions16, ring-opening polymerizations17, and reversible self-assembly18–20,  to drive a molecular 

shuttle21, and to modulate the volume of pH sensitive polymers16 was demonstrated in earlier work.  

Two  classes of merocyanine/spiropyran (MC/SP) photochromic switches (Figure 5-1) have been 

developed that experience a large drop in pKa after photoexcitation14–16,22,23. The photochemical 

mechanism of 2-[(E)-2-(2-hydroxyphenyl)ethenyl]-3,3-dimethyl-1-(3-sulfopropyl)-3H-indol-1-ium 

hereafter referred to as “phenylhydroxy-MCH” has been proposed to proceed through a trans-to-cis 

photoisomerization mechanism (Figure 5-1c) following excitation in the visible absorption band16.  

The photochemical mechanism of 2-[(E)-2-(1H-indazol-7-yl)ethenyl]-3-(3-sulfopropyl)-1,3-

benzothiazol-3-ium hereafter referred to as “indazole-MCH” has been proposed to proceed through 

similar trans-to-cis photoisomerization mechanism (Figure 5-1d) with tautomerization preceding loss 

of a proton and formation of spiropyran14.  However, these mechanisms have not yet been investigated 

on an ultrafast timescale or compared with theoretical simulations. As a result, the early sequences in 
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deprotonation and the formation of spiropyran are unknown, and this may limit the refinement for 

effectiveness of these photoacids in certain applications.  

In this study, transient absorption spectroscopy and quantum mechanical computations are 

applied to the study of the two photochromic photoacids in buffered water and DMSO solvent. The 

investigation of these photoacids reveals the early time dynamics of these photoacids including how 

the trans-acid isomerizes to the cis-form, and the timescales for deprotonation and ring-closing. 

Furthermore, although not definitive evidence, the TA spectra are best fit by considering a one-bond 

flip mechanism, which suggests that the hula-twist is not a dominant pathway in solution phase. Lastly, 

the decrease in pKa upon isomerization is investigated to benchmark quantum chemical methods for 

their accuracy. Overall, these results provide a detailed picture of the operation of reversible 

photoacids which are useful for the refinements and development of photoacid applications.  

Figure 5-1 (a) Phenylhydroxy-MCH absorption spectrum in aqueous solution buffered at pH 5.5 (red, solid) and in DMSO (red, dash). 
Phenylhydroxy SP in aqueous solution buffered at pH 5.5 (blue, solid) and in DMSO (blue, dash). (b) Indazole-MCH absorption spectrum 
in aqueous solution buffered at pH 7.4 (red, solid) and in DMSO (red, dash). Indazole SP in aqueous solution buffered at pH 7.4 (blue, solid) 
and in DMSO (blue, dash). (c) Proposed scheme of photoswitching by trans-phenylhydroxy-merocyanine (MCH) to phenylhydroxy-
spiropyran (SP).16 (d) Proposed scheme of photoswitching by trans-indazole-merocyanine (MCH) to indazole-spiropyran (SP).14 

Spectroscopic results in this figure courtesy of Dr. Ted Wiley. 
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5.2 Methods 

DFT calculations were performed using the Q-CHEM suite of packages.24  Geometry 

optimizations of all e.g. conformations (SP, TTC, TTT, CTC, CTT, CCC, TCT, CCT, and TCC, see 

below) and their conjugate base were performed with the B3LYP/6-31+G** and wB97xD/6-31+G** 

level of theory and solvation effects were included with the integral equation formalism polarizable 

continuum model (IEF-PCM)25–27. The propyl sulfonate group of the photoacids was truncated to a 

methyl group to facilitate geometry optimization. The IEF-PCM calculations used the default Bondi 

radii.  The existence of the stationary points was checked by inspection of the Hessian matrix 

eigenvalues. All minimum energy geometries have zero imaginary frequencies unless otherwise noted; 

see supporting information Table D-1 through Table D-5. Enthalpy and entropy components were 

computed at the same level of theory using the rigid-rotor harmonic oscillator approximation. The 

entropy component was adjusted by increasing the low vibrational frequencies (<50 cm-1) to 50 cm-1. 

Single-point corrections were performed at higher levels of theory including B3LYP/G3LARGE, 

wB97xD/G3LARGE, DLPNO-CCSD(T)/cc-pvtz28, and RI-MP2/cc-pvtz. The DLPNO-CCSD(T) 

calculations were performed with ORCA29 and use the SMD solvation model if specified. All Gibbs 

Free energy were calculated at 292.15 K (19 °C). Vertical excitations were calculated at the optimized 

geometries using TDDFT within the Tamm-Damcoff approximation and the B3LYP/6-3+1G** level 

of theory30. Non-equilibrium solvation of the excited states was taken into account using the linear 

response (LR) approach31. Transition states were calculated using the growing string method32. 

 

5.3 Results 

5.3.1 Simulations of ground state trans-photoacids. 

Six trans conformations of the ground state phenylhydroxy-MCH and eight trans conformations 

of indazole-MCH result from rotation of the two functional groups around the single bonds on either 

side of the central carbon-carbon double bond (Figure 5-2). The conformers are given names to 

specify the cis/trans relationship between the functional groups and the central double bond and are 

labeled TTT, CTT, TTC, or CTC. The conformations can exist in two helicities with slightly different 

energies; M and P for rotation about the two single bonds connecting the central double bond, or in 

a “flat” rotation, which has less than 10-degree rotation. For example, in Figure 5-2, the trans-acid 

conformations are helical with respect the single-bond connecting indoline and the central double 
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bond but are flat with respect to the single-bond connecting phenylhydroxy and the central double 

bond. 

The ground state free energies of these conformations were calculated using DFT with a polarized 

continuum model for water and DMSO (see Figure 5-2). The results are summarized in Table 5-1 

(with more details in the supporting information). The equilibrium solution is predicted to be a 

complex mixture of conformations, dominated by TTT and TTC. The CTC and CTT conformations 

Figure 5-2  Calculated stable conformations of (a) trans-phenylhydroxy-MCH and (b) trans-imidazole-MCH.  Structures in the lower 
panels are aligned to look along the indazole ring of trans-phenylhydroxy-MCH or the benzothiazole ring of trans-imidazole-MCH and 
highlight the helicity of some conformations. The labels M (counterclockwise) and P (clockwise) refers to the rotation around the 
single bonds connecting to the central double bond. The label F means the rotation is less than 10 degrees.  
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account for as much as 13% of the populations for trans-phenylhydroxy-MCH, and less than 5% for 

trans-indazole-MCH.  

The UV visible transitions of the stable conformers were calculated using TD-DFT methods 

(Figure 5-3). The stick spectra were convoluted with a Gaussian lineshape of 0.42 eV full width at half 

maximum (FWHM) for comparison with experimental data. The simulated spectra of trans-

phenylhydroxy-MCH and trans-indazole-MCH with the different conformations weighted by the 

Table 5-1 Relative populations for conformations of trans-phenylhydroxy-MCH and trans-indazole-MCH calculated with 
wb97xD/6-31++g** and  B3lYP/6-31++g** in water and DMSO solvent.  

Conformer B3LYP (H2O) B3LYP(DMSO) wB97xD (H2O) wB97xD(DMSO) 
trans-phenylhydroxy-MCH 
(FF) TTT 63.7% 63.3% 78.2% 81.9% 
(FF) TTC 23.0% 23.4% 9.5% 8.6% 
(MF) CTT 3.8% 3.8% 1.1% 1.1% 
(PF) CTT 5.8% 5.8% 4.8% 7.0% 
(PF) CTC 2.2% 2.2% 1.0% 1.0% 
(MF) CTC 1.5% 1.5% 5.3% 0.4% 
trans-indazole-MCH 
(FF) TTT 28.8% 31.1% 23.0% 23.0% 
(FM) TTT 31.3% 29.9% 39.7% 39.5% 
(MP) TTC 25.0% 19.7% 19.8% 20.0% 
(FM) TTC 14.2% 18.6% 12.6% 12.8% 
(PF) CTT 0.2% 0.2% 1.8% 1.7% 
(MF) CTT 0.2% 0.2% 0.9% 0.9% 
(PP) CTC 0.1% 0.1% 1.0% 1.0% 
(MM) CTC 0.1% 0.1% 1.1% 1.1% 

Figure 5-3 Simulated and experimental absorption spectra the photoacids. (a) Spectra of trans-phenylhydroxy-MCH in pH 5.5 aqueous 
solution (solid lines) and in anhydrous DMSO (dashed lines).  The separate calculated contributions for the conformers are also plotted 
for water weighted by population. The spectra of the helical conformations of CTC and CTT are essentially identical and the sum is 
plotted in the figure. (b) Spectra of trans-indazole-MCH in pH 7.4 aqueous solution (solid lines) and in anhydrous DMSO (dashed 
lines).  The spectra have been blue-shifted 500 cm-1 in water and 200 cm-1 in DMSO to match the peak of the major transition. The 
separate calculated contributions for the significant conformers are also plotted for water weighted by population. The spectra of the 
helical conformations of TTT and TTC are nearly identical and the sum is plotted in the figure. Experimental spectra courtesy of Dr. 
Ted Wiley. 
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populations are in good agreement with the experimental spectra (Figure 5-3), however in the latter a 

blue-shift was required to match the observed transition energies. 

5.3.2 Photoisomerization Pathways  

The excited state isomerization of the trans-photoacids could follow several different pathways 

identified as one-bond twist around the central double bond or hula twist around the carbon atom on 

either side of the central double bond (Figure 5-4). Given an initial distribution of trans conformations, 

these pathways will result in different distributions of cis-acids. Single-bond rotation and cyclization 

reaction paths for the cis-conjugate base isomers were found with the B3LYP/6-31+G* level of 

theory and are given in Figure 5-4. A single-elementary pathway was found connecting TCT-

phenylhydroxy-MC- and SP-phenylhydroxy, and a single-bond rotation pathway followed by ring-

closing pathway was found CCT- to SP-phenylhydroxy. The calculated values for ring cyclization from 

CCC to SP are in close agreement with values found before33. A similar picture exists for indazole-

MCH (Figure D-1), but cis-indazole-MCH has been hypothesized to tautomerize prior to ring-closing.  

Figure 5-4  Conformations and reaction pathways for phenylhydroxy-photoacids. R is the sulfonate tail, replaced by CH3. Single-bond 
rotation and cyclization pathways were calculated using the B3LYP/6-31++G** IEF-PCM (H2O) level of theory. A similar picture exists 
for indazole-MCH except for the inclusion of the cis-indazole tautomer which is higher energy, see Figure D-1.  
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TD-DFT calculations were performed on the possible protonated and deprotonated cis-

isomers to compare to the UV-visible spectra (Figure 5-5).  The TD-DFT vertical transition energy 

and oscillator strengths were broadened in the same way as the trans-conformers (see above) to obtain 

the absorption spectra. The cis-isomer transitions are weaker than the corresponding trans-conformers 

which has a peak intensity ca. 1.1 for trans-phenylhydroxy-MCH and 1.3 to 1.4 trans-indazole-MCH 

on the same scale (Figure 5-3). 

Phenylhydroxy-SP has no visible absorption bands, and the 3.5 ns TA spectra collected in 

citrate buffer has a prominent positive absorption peak from 475 – 600 nm (Figure D-2). The only 

structures with significant absorption intensity in the range of 475 – 600 nm are deprotonated cis 

conformations. Thus, the intermediate photoproduct observed following excitation of trans-

phenylhydroxy-MCH at pH 5.5 is likely the TCT-phenylhydroxy-MC− conformation. The weaker red 

photoproduct absorption observed following excitation of trans-indazole-MCH is also assigned to the 

cis conjugate base (Figure D-6).  

Figure 5-5 Calculated absorption spectra for the four primary conformations of the cis photoacids. Left: cis-phenylhydroxy-MCH and 
the conjugate base cis-phenylhydroxy-MC−.  The TCC conjugate base is unstable and optimizes to spiropyran. The absolute intensity 
scale is arbitrary, but identical to the scale used in Figure 5-3.  
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5.4 Discussion  

5.4.1 Primary Photolysis Products.  

The results of the transient absorption 

experiments (supporting information) revealed 

that photoproduct with red-shifted absorption 

is formed on an ultrafast timescale and this 

formation is solvent-dependent. Starting with 

pH 5.5, if the initial population is a mixture of 

the trans-phenylhydroxy-MCH conformations 

with the calculated weights from the wB97xD 

level of theory (Table 5-1), a good estimate of 

the photoproduct difference spectrum is 

obtained for the one-bond flip mechanism 

followed by deprotonation (Figure 5-6 top). 

Similar agreement is also obtained with the 

B3LYP populations and hula-twist at CB (Figure 

D-7). However, agreement with hula twist at CA 

is not as good because the anticipated 

percentage of the visible absorbing TCT-MC− 

and CCT-MC− conformations is much smaller. 

Consequently, the most likely conformer 

following isomerization is TCT-MCH. The 

TCC-MCH constitutes only 10-20% of the population, assuming equal isomerization quantum yields 

for all the conformers.  

TCT-MC- however, is not directly reactive to SP and is meta-stable. The rotational barrier for 

isomerization of TCT-MC− → TCC-MC− is 9.0 kcal/mol or 3100 cm-1
 (Figure 5-4). Using simple 

transition state theory with , a torsional frequency ca. 100 cm-1 to 1000 cm-1 provides 

an estimated lifetime of ca. 1 to 10 µs, significantly longer than the 3.4 ns range of the present time-

resolved measurements, but still consistent with rapid formation of SP in steady state measurements. 

The small amount of TCC-MC- that forms directly is expected to go directly to SP (Figure 5-4) within 

/E RT
TSTk e−∆= ν

Figure 5-6 Comparison of the measured (black, gray lines) and 
simulated product difference spectra for trans to cis isomerization of 
the phenylhydroxy-MCH photoacid in both water and DMSO. In 
water the product spectra come from two independent 
measurements, in DMSO they represent the two long-lived spectral 
components. The blue lines represent the simulated difference 
spectrum for the formation of cis-phenylhydroxy-MC- via a one bond 
twist mechanism. The red lines represent the simulated difference 
spectra for the formation of cis-phenylhydroxy-MCH via a one bond 
twist mechanism. The dashed pink line in DMSO assumes 20% 
deprotonation. Spectroscopic results in this figure courtesy of Dr. 
Ted Wiley. 
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3.4 ns, but within spectral range investigated here (260-700 nm) it is not possible to differentiate SP 

from the cis-conjugate bases owing to the overlapping absorption spectra (Figure 5-5).  

A similar analysis can be performed 

for DMSO (Figure 5-6 bottom). In contrast to 

pH 5.5, the 3.5 ns TA spectra collected in 

DMSO has only a weak visible absorption 

spectrum at 530 nm (see also Figure D-3). 

Therefore, the dominant product following 

excitation at 404 nm is a mixture of cis-

phenylhydroxy-MCH conformers. The small 

amplitude 1.8 ns dynamics observed in DMSO 

is assigned to the relaxation of conformers 

approaching a quasi-equilibrium distribution 

persisting for much longer than 3.5 ns (Figure 

D-4). Evidently, the pKa of trans-

phenylhydroxy-MCH is higher in DMSO than 

in water, which is consistent with the behavior 

of acids in aprotic environments. However, 

the weak visible absorption suggests that some 

cis conformers, perhaps as high as 20%, are 

deprotonated (Figure 5-6). Like the analysis 

for water a better agreement of one-bond flip isomerization than hula-twist at CB is obtained (Figure 

D-8). 

Lastly, an analysis can be performed for the indazole-based photoacids (Figure 5-7). At first 

glance it appears that the situation is different for the indazole-MCH. However, comparison with the 

simulated difference spectra suggest that the primary photochemical pathways in the buffered water 

solution are internal conversion to the ground state trans- and cis-acid combined with rapid formation 

of the cis-conjugate base.  The visible product absorption is weaker than for phenylhydroxy-MCH, but 

the relative intensities of the absorption and bleach are consistent with the calculations. This could 

also be due to the formation of the cis-indazole tautomer, although the calculated energies make this 

Figure 5-7 Comparison of the measured (black, gray lines) and 
simulated product difference spectra for trans to cis isomerization of 
the indazole-MCH photoacid in both water and DMSO. The blue 
lines represent the simulated difference spectrum for the formation of 
cis-indazole-MC− via a one bond twist mechanism. The red lines 
represent the simulated difference spectra for the formation of 
cis-phenylhydroxy-MCH via a one bond flip mechanism. 
Spectroscopic results in this figure courtesy of Dr. Ted Wiley.  
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unlikely (~0.5 kcal/mol higher in energy). Furthermore, like phenylhydroxy-MCH, the formation of 

the cis-conjugate base is suppressed for indazole-MCH in anhydrous DMSO.  

5.4.2 pKa calculations 

Finally, it is relevant to consider why the photoacids become acidic and whether the quantum 

chemical calculations can reliably predict the change in acidity. All of the evidence strongly shows that 

the cis-acid is more acidic than the trans-acid. In principle the cis-acid could ring-close directly to 

spiropyran with elimination of the phenol proton, and therefore the reactivity of the cis-acid would 

explain the drop in pH upon isomerization. However, the transient absorption spectra best agree with 

the formation of the cis-conjugate base prior to the formation of spiropyran.  Furthermore, the results 

rule out other novel mechanisms like excited-state proton transfer in either the trans or cis forms; the 

trans-conjugate base does not isomerize when exposed to light (Figure D-5),  and the evolution 

associated difference spectra (EADs, Figure D-4) showed that all the intermediates are excited-state 

species prior to photoisomerization. Therefore, the evaluation of pKa is an excellent opportunity to 

benchmark quantum chemical pKa calculations. 

The difference in pKa between cis and trans isomers (ΔpKa) is calculated by  

Δ𝑝𝑝𝐾𝐾𝑎𝑎 =
ΔΔ𝐺𝐺

2.303𝑅𝑅𝑇𝑇
 

Where  

ΔΔ𝐺𝐺 =  𝛥𝛥𝐺𝐺𝑀𝑀𝑖𝑖𝑠𝑠 − 𝛥𝛥𝐺𝐺𝑅𝑅𝑇𝑇𝑎𝑎𝑛𝑛𝑠𝑠 

And 𝛥𝛥𝐺𝐺𝑀𝑀𝑖𝑖𝑠𝑠 and 𝛥𝛥𝐺𝐺𝑅𝑅𝑇𝑇𝑎𝑎𝑛𝑛𝑠𝑠 are the Gibb’s free energy differences between the deprotonated and 

protonated phenol moiety of the trans and cis acid, respectively. Before evaluating the performance of 

the different computational methods, it is important to consider how the photoacid should behave. 

Previous results have found that charge separation explains the upshift in pKa upon the isomerization 

of a model photoactive yellow protein chromophores34. The phenoxide and thiomethyl groups of the 

PYP chromophore experience a repulsive negative-negative charge interaction. Consequently, when 

isomerizing from trans-to-cis the groups become closer together and this destabilizes the cis-
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deprotonated form with respect to the cis-protonated form more than the trans-deprotonated form 

with respect to the trans-protonated form. In other words, Δ𝐺𝐺𝑀𝑀𝑖𝑖𝑠𝑠 becomes greater than Δ𝐺𝐺𝑅𝑅𝑇𝑇𝑎𝑎𝑛𝑛𝑠𝑠 

resulting in a positive ΔΔ𝐺𝐺 and an increase in pKa. In contrast, the photoacids experience an attractive 

negative-positive interaction in the deprotonated form between the negative phenoxide and positive 

nitrogen. Consequently, the cis conjugate bases should be more stabilized with respect to the cis-acids 

(𝛥𝛥𝐺𝐺𝑀𝑀𝑖𝑖𝑠𝑠 smaller) than the trans-conjugate bases are with respect to the trans acids (𝛥𝛥𝐺𝐺𝑅𝑅𝑇𝑇𝑎𝑎𝑛𝑛𝑠𝑠 larger) and 

should result in an negative ΔΔ𝐺𝐺, and decrease in pKa. 

In Figure 5-8, ΔpKa at varying levels of theory for the cis-conformers of phenylhydroxy-MCH are 

presented. TCC-MC- goes directly to SP which results in a negative ΔpKa, but because this does not 

result in the formation of cis-conjugate base it is not considered further.  These results show that for 

all levels of theory ΔΔ𝐺𝐺 is positive or only slightly negative which cannot explain the observed 

experimental decrease in pKa upon photoexcitation. While it is generally known that pKa calculations 

can be difficult to calculate with quantitative precision, the results are overwhelmingly in the wrong 

direction. For example,  previous computations on the basicity of a azo-stilbene photoswitch showed 

deficiencies with DFT35. Furthermore, calculations with implicit solvent models are known to lack 

accuracy for specific strong interactions like hydrogen-bonding, and therefore the inclusion of explicit 

solvent at hydrogen-bonding sites are known to improve the accuracy of pKa calculations36,37. The 

 

 

 

Figure 5-8  Calculated change in pKa going from trans- to cis-phenylhydroxy by means of a one-bond flip for the different conformers 
at varying levels of theory: a) DLPNO-CCSD(T) SMD//B3LYP-PCM/6-31++G**, b) DLPNO-CCSD(T) SMD +2H2O//B3LYP 
PCM+2H2O/6-31++G**, c) B3LYP/G3LARGE//B3LYP/6-31+G**, d) B3LYP PCM/G3LARGE//B3LYP PCM/6-31++G**,  
e) B3LYP PCM +2H2O/G3LARGE//B3LYP PCM+2H2O/6-31++G**, f)  B3LP PCM(UFF) +2H2O/G3LARGE//B3LYP 
PCM(UFF)+2H2O/6-31++G**, g) wB97X-D PCM/G3LARGE//wB97X-D PCM/6-31++G**, h) wB97X-D PCM 
+2H2O/G3LARGE//wB97X-D PCM+2H2O/6-31++G**,   i) RI-MP2 SMD+2H2O/cc-pvtz//B3LYP PCM+2H2O/6-31++G**. 
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specific type of implicit solvent model has also been shown to be important, for example the difference 

between UFF and Bondi solvent radii was important for the prediction of reduction potentials in 

water38. However, the positive ΔpKa result is consistent at all levels of theory including highly 

correlated methods, the different solvation models and solvents, and with explicit solvent interactions. 

Note that this is not a result of truncation of the alkyl sulfonate. The alkyl sulfonate can slightly shield 

the positive charge on the nitrogen on the indoline moiety16, so if the electrostatic interaction is the 

dominant force leading to photoacidity the truncation of the sulfonate group is expected to increase 

the acidity.  

The results in Figure 5-8, can therefore be interpreted in one of two ways: (1) the cis-acid is not 

more acidic than the trans-acid and some other species must be responsible for the visible absorption 

within 3.5 ns, or (2) the cis-acid is more acidic than the trans-acid but the computations lack the 

necessary accuracy to predict the photoacidity.  Given no physical evidence to the contrary, these 

results must be interpreted in the second way. This, however, does imply that the quantum chemical 

models lack the necessary precision or interaction which is necessary for properly describing the acidity 

of phenylhydroxy and indazole based photoacids.  Therefore, the results presented here represent a 

striking example of how pKa calculations can be difficult to calculate and future research must be 

given to investigate this apparent discrepancy.  

 

5.5 Conclusions 

When the trans-phenylhydroxy-MCH is dissolved in water, photoexcitation of the molecule 

produces a species with red-shifted absorption with respect to the trans-phenylhydroxy-MCH on a 

~10 ps timescale. This product persists for times much longer than 3.5 ns before the formation of 

phenylhydroxy-SP. The intermediate is assigned to a TCT-, CCC- and CCT-phenylhydroxy-MC− 

based on TD-DFT calculations. Any formation of TCC- will result in rapid formation of the ring-

closed spiropyran product. Single-bond rotation from TCT- to TCC- occurs on a timescale longer 

than the 3.5 ns consistent with a rotation and/or cyclization barrier.  In DMSO solvent a significantly 

smaller amount of cis-phenylhydroxy-MC- photoproduct is formed within 50 ps, persisting for >> 3.5 

ns, which is consistent with a suppressed acidity in aprotic environments. The picture is similar for 

indazole-MCH; cis-indazole-MC- is formed an ultrafast timescale. 



94  

Lastly, pKa calculations were performed with 9 different combinations of quantum chemical 

methods including correlated methods, solvation models, and explicit solvation. These calculations all 

consistently show that the difference in pKa is in the wrong direction from expectation. Given no 

physical evidence to the contrary this suggests that common computational methods for the evaluation 

of pKa are not sufficient to describe photoacidity in phenylhydroxy- and indazole-based photoacids 

and more work is still necessary to properly evaluate these properties.  

Overall, the transient absorption results combined with computational results lend insight into the 

early time details of the operation of merocyanine/spiropyran photoacids, and we hope that the results 

provided here can provide insight into future computational and experimental research of reversible 

photoacids.  
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 Future Works and Conclusions 

 
Light irradiation gives access to “forbidden” chemistries that can be applied to synthesize novel 

compounds including strained rings, and materials with switchable mechanical properties. The 

development of these technologies requires an in-depth understanding of the reaction mechanisms 

which can be provided through computational chemistry.  However, most computational 

photochemistry relies on tedious manual steps that are difficult to automate and require prior chemical 

knowledge or intuition, which limits their predictive and exploratory capabilities. Furthermore, 

photochemistry is particularly sensitive to the external steric and electrostatic environment. The 

treatment of these problems are the main areas where this thesis has contributed.  

The initial Chapters of this thesis focused on the development of growing string methods for 

photochemistry and condensed phases, and the latter chapters applies GSM to challenging cases. 

Chapter 2’s investigation developed excited state growing string methods that allow conical 

intersections to be found from stable equilibrium geometries given chemically intuitive reaction 

directions that can be easily generated and tested. Furthermore, this protocol can be automated by 

generating combinations of driving coordinates within a set of reactive atoms and can be used to map 

the seam of conical intersections. These methods have been tested on photoisomerization and 

photocycloaddition and in both cases have made important discoveries that would have been difficult 

to make otherwise. Chapter 3’s investigation extends the capabilities of the growing string methods to 

large multi-molecular systems and was shown to capture the highly correlated motions in a crystalline 

gyroscope. Chapter 4’s investigation applies the techniques developed in Chapter 2 and 3 to the 

isomerization of crystalline cis,cis-diphenylbutadiene, and the results are complementary to the results 

of Chapter 2 on stilbene. Finally, chapter 5 provides a close look at the photoisomerization of 

reversible photoacids with a combined experimental and theoretical analysisHowever, much work is 

still needed to obtain quantitative accuracy. Starting with Chapter 2, the investigations revealed an 

interesting seam of conical intersections that affects the [4+2] photocycloaddition (Figure 2-13). 

Formally, the [4+2] photocycloaddition is forbidden by WoodwardHoffmann rules, but this only 
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applies to concerted reactions, which it is not. However, further verifying this feature requires going 

beyond the strategy outlined in Chapter 2. Although a good approximation for many 

photochemistries, the true decay point in a CI mediated transformation is not the minimum energy 

conical intersection (MECI), as evident in Figure 2-13. Therefore, what is needed is ab initio molecular 

dynamics (MD) that can appropriately model the dynamics through the extended seam of conical 

intersections. Nevertheless, if there is a transition state separating the excited-state minimum and the 

seam of conical intersections then the MD can be started at the transition state in the direction of the 

conical intersection. This strategy eliminates the slow and uninteresting dynamics of climbing up the 

transition state valley, and captures a more realistic process of decay through the seam of conical 

intersections. Furthermore, the MD can be used to estimate the quantum yields which is not possible 

in the approach outlined in Chapter 2.  

In Chapters 3 and 4, GSM was applied to crystals. Crystals are a special class of condensed 

phases where the concept of a MEP still holds. However, when moving to the liquid phase the 

minimum energy geometry of the system does not correspond to a physical solution anymore. First, 

the potential energy surface for the solution phase is incredibly rugged so there are many local minima, 

e.g. a single hydrogen bond is ~3 kcal/mol. Second, optimizing the geometry of the system removes 

all the vibrational and translational energy, i.e. it freezes the solution, which is not desirable. 

Nevertheless, what can be done is to assume that the movement of the reacting system is not 

correlated with the environment. Therefore, the solution environment can be fixed at a geometry 

which corresponds to the proper pressure and density, and the reaction path calculated for only the 

reacting system (for example, see reference 27 of Chapter 3). This method could be performed within 

the framework of Chapter 3, but it is a difficult job to obtain good statistics because there is a lot of 

variability in the environment. Furthermore, the contribution of entropy would need to be acounted 

for somehow. Ideally, a growing string method that could calculate the free-energy directly in the 

solution phase would be preferred. Some work on this has already been done by Professor Vanden 

Eijnden on the finite-temperature string methods. Incorporating these techniques within the 

extensible framework of the Python Growing String Method would therefore be worthwhile.  

 Chapter 4, has an apparently opposite problem – it is most likely too constrained. In Chapter 

4, the QM/MM methods only currently allow for finite molecular models. Consequently, we used a 

four-layer cluster model to constrain the outer layers to the crystalline geometry. However, the bicycle 

pedal isomerization may require long-range lattice relaxation, like what was observed for the the 



99  

crystalline gyroscope of Chapter 3. Future work should test other kinds of constraints that can 

maintain the crystal packing but enable the crystal to relax with the motion of the reacting system.  

The computational results of Chapter 5 provided excellent interpretation of all the observations 

in the transient absorption spectroscopy but failed to accurately account for the change in pKa of the 

photoacids upon isomerization.  This demonstrates in another way how computation can provide 

useful information for some features but fail in others.   

In conclusion, this thesis presents a compelling story of how long-standing problems in 

photochemistry can be understood by new methods in computational photochemistry. We have 

identified further reason why the [4+2] photocycloaddition is forbidden,  identified an elusive hula-

twist conical intersection for stilbene, identified a photoproduct which has been missing for over 40 

years,  revealed the fine details of the mechanics of the bicycle pedal photoisomerization, and have 

identified the early time details of merocyanine based photoacids. However, like all good research the 

results reveal additional questions and possibilities. It is my hope, therefore, that the work of this thesis 

can be further expanded and contribute to future research and chemistry that can benefit the world.  
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 Supporting information for Chapter 2 

A.1 Seam Minimum Energy Paths 

A.1.1    Ethylene 

 

 

 

A.1.2 Stilbene 

 
 

A.2 Butadiene Dimerization 

Figure A-1 DE-GSM seam from 1a to 1b using 11 
nodes. 

Figure A-2 DE-GSM seam from 1a to 1b 
using 9 nodes. 

Figure A-3 DE-GSM seam from 1a to 1a’ (tilt 
isomer). 

Figure A-4 DE-GSM seam from 3a to 
3b. 

Figure A-5 SE-GSM seam. 

Figure A-6 DE-GSM seam from 3a to 
3c. 
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A.2.1 MECI 

  

Figure A-7 MECI discovered by ZStruct SE-GSM search 
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A.2.2 Reaction paths 

 

 

 

 

 

 

 

 

 

 

Figure A-8 4b to a-1 

Figure A-9 4e to a-1 

Figure A-10 4d to a-1 partial string 

Figure A-11 4a to a-2 

Figure A-12 4a to a-3 

Figure A-13 4b to c-1 

Figure A-14 4c to c-1 

Figure A-15 4a to c-2 
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All reaction paths to b and e conical intersections involved multiple adiabatic barriers or had too 
large of reaction barriers and are not reported here. 

  
 

Figure A-16 4a to c-3 

Figure A-17 4c to c-3 

Figure A-18  4c to c-4 

Figure A-19 5a to d-1 

Figure A-20 4d to d-2 

Figure A-21 4e to d-2 

Figure A-22 4e to d-3 

Figure A-23 4e to d-4 



104  

 Supporting information for Chapter 3 
Table B-1 Atoms types and charges for gyroscope 

 

1 C1 3.557 4.855 5.943 ca 1 GYR -0.2296 
2 H1 3.913 4.199 5.171 ha 1 GYR 0.176897 
3 C2 3.81 6.225 5.859 ca 1 GYR 0.294909 
4 C3 3.343 7.064 6.868 ca 1 GYR -0.2296 
5 H3 3.54 8.118 6.807 ha 1 GYR 0.176897 
6 C4 4.526 6.779 4.738 c1 1 GYR -0.29293 
7 C5 5.09 7.274 3.81 c1 1 GYR 0.114065 
8 C6 5.761 7.905 2.645 c3 1 GYR -0.48985 
9 C7 5.692 9.439 2.781 ca 1 GYR 0.327529 

10 C8 4.652 10.062 3.461 ca 1 GYR -0.24276 
11 H8 3.901 9.472 3.948 ha 1 GYR 0.15614 
12 C9 4.567 11.451 3.509 ca 1 GYR -0.11439 
13 H9 3.756 11.915 4.04 ha 1 GYR 0.131347 
14 C10 5.512 12.224 2.865 ca 1 GYR -0.16537 
15 H10 5.442 13.297 2.896 ha 1 GYR 0.136894 
16 C11 6.554 11.618 2.197 ca 1 GYR -0.11439 
17 H11 7.301 12.213 1.703 ha 1 GYR 0.131347 
18 C12 6.647 10.231 2.16 ca 1 GYR -0.24276 
19 H12 7.466 9.78 1.636 ha 1 GYR 0.15614 
20 C13 5.02 7.429 1.369 ca 1 GYR 0.327529 
21 C14 4.579 8.306 0.393 ca 1 GYR -0.24276 
22 H14 4.728 9.361 0.498 ha 1 GYR 0.15614 
23 C15 3.931 7.833 -0.749 ca 1 GYR -0.11439 
24 H15 3.599 8.533 -1.494 ha 1 GYR 0.131347 
25 C16 3.711 6.485 -0.913 ca 1 GYR -0.16537 
26 H16 3.206 6.121 -1.79 ha 1 GYR 0.136894 
27 C17 4.139 5.601 0.058 ca 1 GYR -0.11439 
28 H17 3.97 4.545 -0.059 ha 1 GYR 0.131347 
29 C18 4.792 6.068 1.188 ca 1 GYR -0.24276 
30 H18 5.122 5.369 1.934 ha 1 GYR 0.15614 
31 C19 7.241 7.455 2.636 ca 1 GYR 0.327529 
32 C20 7.887 7.051 1.478 ca 1 GYR -0.24276 
33 H20 7.35 6.991 0.552 ha 1 GYR 0.15614 
34 C21 9.237 6.722 1.492 ca 1 GYR -0.11439 
35 H21 9.716 6.411 0.581 ha 1 GYR 0.131347 
36 C22 9.956 6.798 2.667 ca 1 GYR -0.16537 
37 H22 11.001 6.544 2.681 ha 1 GYR 0.136894 
38 C23 9.323 7.198 3.828 ca 1 GYR -0.11439 
39 H23 9.874 7.258 4.75 ha 1 GYR 0.131347 
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40 C24 7.979 7.526 3.816 ca 1 GYR -0.24276 
41 H24 7.502 7.84 4.726 ha 1 GYR 0.15614 
42 C25 2.624 6.559 7.935 ca 1 GYR -0.2296 
43 H25 2.268 7.215 8.707 ha 1 GYR 0.176897 
44 C26 2.371 5.189 8.02 ca 1 GYR 0.294909 
45 C27 2.838 4.35 7.01 ca 1 GYR -0.2296 
46 H27 2.64 3.296 7.07 ha 1 GYR 0.176897 
47 C28 1.655 4.636 9.141 c1 1 GYR -0.29293 
48 C29 1.091 4.14 10.068 c1 1 GYR 0.114065 
49 C30 0.42 3.51 11.234 c3 1 GYR -0.48985 
50 C31 0.489 1.975 11.097 ca 1 GYR 0.327529 
51 C32 1.529 1.352 10.418 ca 1 GYR -0.24276 
52 H32 2.281 1.942 9.931 ha 1 GYR 0.15614 
53 C33 1.614 -0.037 10.369 ca 1 GYR -0.11439 
54 H33 2.426 -0.501 9.838 ha 1 GYR 0.131347 
55 C34 0.669 -0.81 11.013 ca 1 GYR -0.16537 
56 H34 0.738 -1.883 10.982 ha 1 GYR 0.136894 
57 C35 -0.373 -0.204 11.681 ca 1 GYR -0.11439 
58 H35 -1.12 -0.799 12.175 ha 1 GYR 0.131347 
59 C36 -0.467 1.183 11.719 ca 1 GYR -0.24276 
60 H36 -1.286 1.634 12.243 ha 1 GYR 0.15614 
61 C37 1.161 3.985 12.51 ca 1 GYR 0.327529 
62 C38 1.602 3.108 13.486 ca 1 GYR -0.24276 
63 H38 1.453 2.053 13.381 ha 1 GYR 0.15614 
64 C39 2.25 3.581 14.628 ca 1 GYR -0.11439 
65 H39 2.582 2.881 15.374 ha 1 GYR 0.131347 
66 C40 2.47 4.929 14.791 ca 1 GYR -0.16537 
67 H40 2.975 5.293 15.668 ha 1 GYR 0.136894 
68 C41 2.041 5.814 13.821 ca 1 GYR -0.11439 
69 H41 2.209 6.87 13.938 ha 1 GYR 0.131347 
70 C42 1.389 5.346 12.69 ca 1 GYR -0.24276 
71 H42 1.059 6.045 11.944 ha 1 GYR 0.15614 
72 C43 -1.06 3.959 11.242 ca 1 GYR 0.327529 
73 C44 -1.706 4.363 12.4 ca 1 GYR -0.24276 
74 H44 -1.169 4.423 13.326 ha 1 GYR 0.15614 
75 C45 -3.056 4.693 12.386 ca 1 GYR -0.11439 
76 H45 -3.534 5.005 13.297 ha 1 GYR 0.131347 
77 C46 -3.775 4.616 11.212 ca 1 GYR -0.16537 
78 H46 -4.82 4.87 11.198 ha 1 GYR 0.136894 
79 C47 -3.142 4.216 10.051 ca 1 GYR -0.11439 
80 H47 -3.694 4.155 9.13 ha 1 GYR 0.131347 
81 C48 -1.799 3.888 10.063 ca 1 GYR -0.24276 
82 H48 -1.322 3.574 9.153 ha 1 GYR 0.15614 
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 Supporting information for Chapter 4 

 

Figure C-1 AMBER Molecular atom types (reference 1) and charges calculated with RESP which are used in all quantum-
mechanics molecular mechanics (QM/MM) and molecular mechanics (MM) calculations in the main text. 

HOMO-1 

 
HOMO 

 

LUMO 

 
Figure C-3 Orbitals in the active space for CAS(4,3)SCF calculations. 
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Figure C-4 Reaction path for A counter clockwise BP rotation. 

Figure C-5 Reaction path for B counter-clockwise BP rotation. 

Figure C-6 Reaction path for B clockwise BP rotation. 
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Figure C-7 Reaction path for D anti-clockwise rotation. 

Figure C-8 Reaction path for C clockwise BP rotation. 

Figure C-9 Seam path connecting cc-transoid-R to tt-transoid MECI. 
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Figure C-10 Gas-phase reaction path to the tt-transoid MECI. This reaction path is not fully optimized, due to oscillations 
between nodes 4 and 6. 
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 Supporting information for Chapter 5 
 

The experimental work done in support of Chapter 5 was only achievable through the expertise of Drs. Ted 

Wiley, Nicholas Miller, and Professor Roseanne Sension, and are provided here to support the computational 

results. 

 

 

Figure D-1 Conformations and reaction pathways for indazole-photoacids. R is the sulfonate tail 
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Figure D-4 Evolution associated difference spectra (EADS) representing the time dependent evolution of the spectrum of the 
excited state population following excitation of  left) trans-phenylhydroxy-MCH at 404 nm in aqueous solution buffered at pH 
5.5 (top panel) and in DMSO (bottom panel), right) trans-indazole-MCH at 404 nm in aqueous solution buffered at pH 7.4 (top 
panel) and in DMSO (bottom panel) 

Phenylhydroxy- 

 

Phenylhydroxy- 

Indazole- 

 

Indazole- 

Figure D-2 (a) TA spectra of phenylhydroxy-MCH in pH 
5.5 at 0.5 ps (green), 0.7 ps (blue), 0.9 ps (purple), 1.1 ps 
(yellow), 1.5 ps (red), and scaled UV-vis of 
phenylhydroxy-MCH (grey dash). (b) TA spectra of 
phenylhydroxy-MCH at 1.5 ps (red), 3.0 ps (yellow), 8.0 ps 
(purple), 20 ps (blue) and 50 ps (green), scaled UV-vis of 
phenylhydroxy-MCH (grey dash). 

Figure D-3 TA spectra of phenylhydroxy MCH in DMSO 
at early times (a) 0.8 ps (green), 1.5 ps (blue), 4.0 ps (purple), 
10 ps (red). Longer times (b) 10 ps (red), 30 ps (yellow), 60 
ps (purple), 100 ps (blue) and 2000 ps (green). Scaled UV-
vis of phenylhydroxy MCH (grey dash). 
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Figure D-5 Transient absorption data obtained following excitation of the trans-phenylhydroxy-MC− conjugate base at 530 nm. The 
data are as indicated in the legends and the black dashed lines represent the fit to the data obtained in a global analysis as described in 
the text. (a) Transient spectra at select time delays obtained with a UV continuum. (b) Kinetic traces at select wavelengths obtained 
using the UV continuum. (c) Transient spectra at select time delays obtained with a visible continuum. (b) Kinetic traces at select 
wavelengths obtained using the visible continuum. 

 

Figure D-6 TA spectra of Indazole MCH in pH 7.4 buffer (left) and in anhydrous DMSO (right) averaged around the indicated time 
delays 
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B3LYP wB97xD 
Figure D-8 Comparison of the measured (black, gray lines) and simulated product difference spectra in water. The product 
spectra come from two independent measurements. The blue lines represent the simulated difference spectrum for the 
formation of cis-phenylhydroxy-MC- via the indicated hula twist mechanism. The red lines represent the simulated difference 
spectra for the formation of cis-phenylhydroxy-MCH via the same hula twist mechanism. 

B3LYP wB97xD 
Figure D-10 Comparison of the measured (black, gray lines) and simulated product difference spectra in DMSO. The product 
spectra represent the two long-lived spectral components. The blue lines represent the simulated difference spectrum for the 
formation of cis-phenylhydroxy-MC- via the indicated hula twist mechanism. The red lines represent the simulated difference 
spectra for the formation of cis-phenylhydroxy-MCH via the same hula twist mechanism. The dashed pink line in assumes 20% 
deprotonation. 
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Table D-1 B3LYP+PCM(H2O)/6-31+G* geometry data 

Conformer Helicity 
1 

Helicity 
2 G3LARGE DLPNO-CCSD(T) H Original 

Entropy 
Corrected 
Entropy G (B3LYP) G (DLPNO-

CCSD(T)) TOR 1 TOR 2 TOR 3 Imaginary 
Freq 

TTT-MCH F F -543541.9 -542376.5 229.6 0.138 0.136 -543352.1 -542147.0 -178.6 -179.7 -178.4 0 

CTT-MCH P F -543540.5 -542375.3 229.5 0.138 0.135 -543350.4 -542145.9 21.9 178.9 -172.5 0 

CTT-MCH M F -543540.4 -542375.3 229.3 0.138 0.135 -543350.7 -542146.0 -21.3 -177.7 178 0 

TTC-MCH F F -543541.8 -542376.8 229.6 0.137 0.135 -543351.5 -542147.2 -179.2 -179.7 0.9 0 

CTC-MCH P F -543540.3 -542375.8 229.4 0.136 0.134 -543350.1 -542146.4 26.4 177.4 5.2 0 

CTC-MCH M F -543540.3 -542375.6 229.6 0.136 0.134 -543349.9 -542146.1 -23.7 -178 -2.4 0 

TCT-MCH P P -543531.4 -542372.0 229.0 0.136 0.134 -543341.6 -542143.1 121.5 -11.5 152.7 0 

TCT-MCH M M -543531.4 -542372.2 229.1 0.135 0.134 -543341.4 -542143.1 -120 11.3 -152.2 0 

CCT-MCH P M -543534.9 -542374.4 229.0 0.135 0.134 -543344.9 -542145.4 44.3 10.1 -155.9 0 

CCT-MCH M P -543534.8 -542374.2 229.1 0.135 0.134 -543344.8 -542145.1 -44.1 -10.7 156.8 0 

TCC-MCH P M -543530.6 -542372.8 229.2 0.136 0.133 -543340.3 -542143.6 122.3 -9.6 -28.2 0 

TCC-MCH M P -543530.5 -542372.8 228.8 0.136 0.134 -543340.9 -542144.0 -118.6 8.8 26.2 0 

CCC-MCH P P -543534.3 -542374.5 229.2 0.134 0.134 -543344.2 -542145.4 41.4 10 25.3 0 

CCC-MCH M M -543534.2 -542374.7 229.0 0.135 0.134 -543344.2 -542145.7 -41.4 -10.4 -25 0 

TTT-MC F F -543252.2 -542081.5 220.6 0.141 0.137 -543071.8 -541861.0 -179.1 -179.7 -179.1 0 

CTT-MC F F -543250.6 -542079.5 220.7 0.141 0.136 -543069.8 -541858.9 -4 179.5 179.6 0 

TTC-MC F F -543252.4 -542081.8 220.7 0.139 0.136 -543071.4 -541861.2 -179.6 -179.7 0.5 0 

CTC-MC P F -543250.5 -542079.6 220.7 0.139 0.135 -543069.4 -541859.0 13 178.9 3 0 

CTC-MC F F -543250.4 -542079.5 220.6 0.139 0.135 -543069.4 -541858.9 0.3 -170.9 8.5 0 

TCT-MC P P -543237.7 -542069.0 219.6 0.133 0.135 -543057.6 -541849.5 166.4 -34.4 166.7 1 

TCT-MC M M -543237.8 -542068.5 219.5 0.133 0.135 -543057.7 -541849.0 -166.9 35.2 -166.2 1 

CCT-MC P F -543242.8 -542074.4 219.7 0.132 0.130 -543061.1 -541854.7 30.3 22.8 -172.1 0 

CCT-MC M F -543242.7 -542074.3 219.6 0.133 0.136 -543062.8 -541854.8 -30.4 -22.7 172.6 1 

SP P F -543249.5 - 220.3 0.131 0.129 -543066.8 - 121 -0.7 -0.5 0 

SP M F -543249.5 - 220.4 0.132 0.129 -543067.0 - -122 1.1 0.7 0 

CCC-MC P P -543242.9 -542076.8 220.3 0.136 0.134 -543061.6 -541856.6 32.4 20.7 16.4 0 

CCC-MC M M -543242.8 -542076.8 220.2 0.137 0.134 -543061.9 -541856.6 -31.8 -20.8 -15.6 0 
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Table D-2  wB97xD +PCM(H2O)/6-31+G* geometry data 

Conformer Helicity 
1 

Helicity 
2 G3LARGE H Original 

Entropy 
Corrected 
Entropy 

G 
(wB97xD) TOR 1 TOR 2 TOR 3 Imaginary 

Freq. 

TTT-MCH F F -543356 231.8 0.136 0.135 -543164.0 176.7 178.4 172.9 0 

CTT-MCH P M -543355 232.4 0.134 0.133 -543161.6 32.8 173.4 -161.8 0 

CTT-MCH M F -543355 231.7 0.135 0.134 -543162.6 -30.6 -176.2 174.7 0 

TTC-MCH F F -543356 232.3 0.134 0.132 -543162.7 178.2 -179.1 -1.1 0 

CTC-MCH P F -543355 232.1 0.134 0.132 -543161.5 34.7 177.1 5.8 0 

CTC-MCH F M -543354 231.7 0.136 0.134 -543161.0 -0.1 -176.4 -34.6 0 

TCT-MCH P P -543352 232.4 0.131 0.130 -543157.1 106.9 -6 135.8 0 

TCT-MCH M M -543351 232.1 0.132 0.131 -543157.4 -113.9 7.5 -139.6 0 

CCT-MCH P M -543352 232.4 0.132 0.131 -543157.5 47.4 5.8 -141.3 0 

CCT-MCH M P -543354 231.8 0.133 0.131 -543160.2 -47.8 -6.6 152.5 0 

TCC-MCH P M -543351 232.4 0.132 0.131 -543156.4 122 -7.5 -32.4 0 

TCC-MCH M P -543350 231.5 0.134 0.132 -543157.3 -116.6 5.4 26.2 0 

CCC-MCH P P -543353 232.0 0.133 0.132 -543160.0 44.7 5.3 30.6 0 

CCC-MCH M M -543353 232.8 0.131 0.129 -543158.5 -45.4 -5.9 -30.1 0 

TTT-MC F F -543064 222.7 0.137 0.135 -542880.7 179.4 176.6 178.9 0 

CTT-MC F F -543062 223.0 0.136 0.134 -542878.2 -10 -178.1 178.7 0 

TTC-MC F F -543064 223.0 0.136 0.134 -542880.1 176.8 -178.3 -0.5 0 

CTC-MC P F -543062 223.6 0.134 0.132 -542877.0 14.1 176.4 0.3 0 

CTC-MC F P -543062 223.3 0.135 0.132 -542877.5 0.3 175.2 29.2 0 

0.0 

TCT-MC P P -543051 222.2 0.131 0.133 -542868.2 146.4 -21.6 159.1 1 

TCT-MC M M -543052 222.4 0.129 0.132 -542867.7 -148.1 23.1 -160.6 1 

CCT-MC P M -543055 222.4 0.129 0.132 -542871.7 39.3 16.9 -164.4 1 

CCT-MC M P -543055 221.9 0.134 0.136 -542873.3 -34.7 -17.9 165.7 1 

SP P F -543072 222.9 0.128 0.127 -542886.2 138.8 -3.6 -7.9 0 

SP M F -543073 223.0 0.128 0.126 -542886.7 -140.1 4.6 8.4 0 

CCC-MC P P -543058 223.3 0.132 0.130 -542873.2 36.7 16.6 20 0 

CCC-MC M M -543058 222.8 0.135 0.133 -542874.2 -38.9 -17 -19.9 0 
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Table D-3 wB97xD + PCM(DMSO) 6-31+G* geometry data 

Conformer Helicity 1 Helicity 2 G3LARGE H Original 
Entropy 

Corrected 
Entropy G (wB97xD) TOR 1 TOR 2 TOR 3 Imaginary 

Freq 

TTT-MCH F F -543356 231.755 0.136538 0.134862 -543164.1 176.7 178.4 172.9 0 

CTT-MCH F M -543355 232.406 0.134001 0.132582 -543161.6 2.1 161 -155.9 0 

CTT-MCH M F -543355 231.665 0.135475 0.133564 -543162.6 -30.6 -176.2 174.7 0 

TTC-MCH F F -543356 232.309 0.134093 0.132402 -543162.7 178.2 -179.1 -1.1 0 

CTC-MCH P F -543355 232.109 0.133724 0.132011 -543161.5 34.7 177.1 5.8 0 

CTC-MCH F M -543354 231.726 0.135739 0.133813 -543161.0 -0.1 -176.4 -34.6 0 

TCT-MCH P P -543352 232.355 0.131238 0.129892 -543157.1 106.9 -6 135.9 0 

TCT-MCH M M -543351 232.068 0.132433 0.131081 -543157.3 -114 7.5 -139.7 0 

CCT-MCH P M -543352 232.43 0.131966 0.130621 -543157.5 47.3 5.9 -141.3 0 

CCT-MCH M P -543354 231.851 0.132549 0.131194 -543160.2 -47.8 -6.6 152.6 0 

TCC-MCH P M -543351 232.37 0.13199 0.13064 -543156.4 122 -7.5 -32.4 0 

TCC-MCH M P -543350 231.489 0.133755 0.132392 -543157.3 -116.6 5.4 26.2 0 

CCC-MCH P P -543353 231.988 0.133289 0.131934 -543160.0 44.7 5.3 30.6 0 

CCC-MCH M M -543353 232.776 0.130573 0.129235 -543158.5 -45.4 -5.9 -30.1 0 

TTT-MC F F -543064 222.658 0.137135 0.135193 -542880.7 179.4 176.6 178.9 0 

CTT-MC F F -543062 222.985 0.136231 0.133653 -542878.2 -9.9 -178.1 178.7 0 

TTC-MC F F -543064 222.976 0.135977 0.133688 -542880.1 176.9 -178.3 -0.5 0 

CTC-MC P F -543062 223.63 0.133946 0.132321 -542877.0 14 176.5 0.3 0 

CTC-MC F P -543062 223.296 0.135195 0.132486 -542877.5 0.3 175.2 29.2 0 

0 0.0 

TCT-MC P P -543051 222.218 0.130722 0.133068 -542868.1 147.1 -22.2 159.6 1 

TCT-MC M M -543052 222.386 0.128866 0.13171 -542867.8 -149.9 24.3 -161.8 1 

CCT-MC P M -543055 222.277 0.129737 0.133003 -542871.9 38.8 17.4 -164.7 1 

CCT-MC M P -543055 222.021 0.13122 0.134308 -542872.6 -33.8 -18.5 166.2 1 

SP P F -543072 222.885 0.127891 0.12659 -542886.2 138.8 -3.6 -7.9 0 

SP M F -543070 223.036 0.127741 0.126208 -542884.2 -140.1 4.6 8.4 0 

CCC-MC P P -543058 223.267 0.132346 0.130313 -542873.2 36.6 16.7 19.9 0 

CCC-MC M M -543058 222.829 0.135639 0.133664 -542874.4 -38.8 -17.2 -19.8 0 
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Table D-4 indazole-MCH B3LYP +PCM (H2O)/6-31+G* geometry data 

Conformer Helicity 1 Helicity 2 G3LARGE H Original 
Entropy 

Corrected 
Entropy G (B3LYP) TOR 1 TOR 2 TOR 3 Imaginary 

Freq. 

ttt-MCH F F -764828 184.553 0.133301 0.129698 -764683 178.734 179.553 -178.242 0 

ttt-MCH F M -764828 183.807 0.128748 0.1314 -764682 175.75 -179.2 -174.7 1 

ctt-MCH P F -764826 184.632 0.131094 0.128805 -764679 27.7 177.4 -176.3 0 

ctt-MCH M P -764826 184.543 0.131793 0.128944 -764680 -26.7 -179.1 169.4 0 

ttc-MCH M P -764828 184.495 0.133191 0.130191 -764682 -169.8 -179 10.9 0 

ttc-MCH F M -764828 184.542 0.132929 0.12992 -764682 175.851 179.344 -11.205 0 

ctc-MCH P P -764825 184.638 0.130511 0.128264 -764679 30.3 177.8 14.8 0 

ctc-MCH M M -764825 184.57 0.131289 0.12882 -764679 -31 -177.9 -15.2 0 

tct-MCH P P -764822 184.537 0.129674 0.127962 -764675 151.7 -12.1 146.5 0 

tct-MCH M M -764822 184.553 0.129616 0.127994 -764675 -151.3 12.3 -147 0 

cct-MCH P M -764821 184.479 0.128572 0.127126 -764674 49.6 7.3 -153 0 

cct-MCH M P -764821 184.477 0.128355 0.126874 -764674 -49.9 -7.6 153.2 0 

tcc-MCH P M -764821 184.41 0.130705 0.128759 -764675 163.9 -11.7 -41.7 0 

tcc-MCH M P -764821 184.439 0.129227 0.127583 -764674 -158.5 12 40.2 0 

ccc-MCH P -764819 184.498 0.127487 0.126188 -764672 42.1 7.5 30.8 0 

ccc-MCH M M -764819 184.363 0.128551 0.127124 -764672 -42.9 -7.3 -30.9 0 

ttt-MC F F -764373 174.832 0.129579 0.130581 -764236 -178.6 -179.9 -179.2 1 

ctt-MC M F -764370 174.888 0.128234 0.129547 -764233 -21.4 -179.1 175.7 1 

ctt-MC P F -764370 174.912 0.127299 0.129338 -764233 22.7 177.4 -176.3 1 

ttt-MC F F -764376 175.466 0.134699 0.13004 -764240 178.7 179.4 -0.1 0 

ctc-MC P F -764372 174.947 0.127123 0.128849 -764235 22.9 177.6 2.8 1 

ctc-MC M F -764372 175.116 0.125961 0.128304 -764234 -19.7 -177.1 -1.5 1 
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Table D-5  Indazole wB97xD +PCM (H2O)/6-31+G* geometry data 

Conformer Helicity 1 Helicity 2 G3LARGE H Original 
Entropy 

Corrected 
Entropy G (B3LYP) TOR 1 TOR 2 TOR 3 Imaginary 

Freq. 

ttt-MCH P F -764633 186.774 0.133 0.129 -764484.2 173.4 179.9 -178.7 0 

ttt-MCH F M -764633 186.679 0.134 0.129 -764484.5 -178.8 -178.7 -169.5 0 

ctt-MCH P F -764632 186.596 0.132 0.129 -764482.7 35.3 177.7 -176.6 0 

ctt-MCH M P -764632 186.671 0.131 0.128 -764482.3 -36.0 -179.0 164.9 0 

ttc-MCH M P -764633 186.651 0.132 0.129 -764484.1 -161.8 -178.9 19.5 0 

ttc-MCH M M -764633 186.775 0.132 0.129 -764483.9 -167.5 -178.7 -18.0 0 

ctc-MCH P P -764632 186.551 0.131 0.128 -764482.4 36.9 176.9 18.0 0 

ctc-MCH M M -764632 186.616 0.130 0.128 -764482.4 -38.5 -177.3 -21.7 0 

tct-MCH P P -764630 186.787 0.128 0.127 -764480.1 128.7 -8.2 142.6 0 

tct-MCH M M -764630 186.447 0.129 0.128 -764481.1 -129.7 8.0 -142.2 0 

cct-MCH P M -764631 186.9 0.126 0.125 -764480.9 53.0 3.6 -139.9 0 

cct-MCH M P -764631 186.731 0.126 0.125 -764481.1 -52.5 -3.9 139.8 0 

tcc-MCH P M -764630 186.601 0.127 0.126 -764480.3 137.8 -6.8 -47.3 0 

tcc-MCH M P -764630 186.673 0.127 0.126 -764480.4 -139.4 7.0 48.5 0 

ccc-MCH P -764630 186.615 0.126 0.125 -764480.2 47.9 2.0 40.1 0 

ccc-MCH M M -764630 186.547 0.126 0.124 -764480.3 -48.3 -2.2 -40.5 0 

ttt-MC F F -764330 176.925 0.129 0.129 -764190.8 -174.2 -179.8 -176.3 1 

ctt-MC M F -764328 176.245 0.121 0.124 -764187.6 -30.5 -177.7 177.7 1 

ctt-MC P F -764328 177.01 0.127 0.128 -764188.3 30.2 177.2 -179.0 1 

ttt-MC F F -764332 177.453 0.134 0.129 -764192.8 179.0 179.3 0.0 0 

ctc-MC P F -764330 177.124 0.125 0.128 -764189.8 32.3 176.8 2.6 1 

ctc-MC M F -764330 176.894 0.126 0.128 -764190.2 -29.2 -176.4 -1.6 1 

tct-MC P P -764325 176.998 0.124 0.127 -764185.4 131.1 -9.7 144.1 1 

tct-MC M M -764326 176.741 0.125 0.128 -764186.1 -135.3 9.9 -144.4 1 

cct-MC P M -764327 177.084 0.123 0.127 -764186.7 51.0 5.2 -142.5 1 

cct-MC M P -764327 176.842 0.123 0.126 -764187.1 -51.0 -5.4 142.0 1 

ccc-MC P P -764328 177.344 0.127 0.125 -764187.2 48.5 6.0 25.8 0 

ccc-MC M M -764328 177.485 0.127 0.126 -764187.6 -49.0 -5.8 -26.0 0 

tcc-MC M P -764327 177.541 0.129 0.127 -764186.2 -132.9 9.8 30.5 0 

tcc-MC P M -764327 177.371 0.129 0.127 -764186.5 132.8 -9.8 -31.8 0 
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