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ABSTRACT

Most imaging systems for terrestrial nuclear imaging are static in that the design

of the system and the data acquisition protocol are defined prior to the experiment.

Often, these systems are designed for general use and not optimized for any specific

task. The core concept of adaptive imaging is to modify the imaging system during

a measurement based on collected data. This enables scenario specific adaptation

of the imaging system which leads to better performance for a given task. This

dissertation presents the first adaptive, cylindrical, time-encoded imaging (c-TEI)

system and evaluates its performance on tasks relevant to nuclear non-proliferation

and international safeguards.

We explore two methods of adaptation of a c-TEI system, adaptive detector

movements and adaptive mask movements, and apply these methods to three tasks,

improving angular resolution, detecting a weak source in the vicinity of a strong

source, and reconstructing complex source scenes. The results indicate that adaptive

imaging significantly improves performance in each case.

For the MATADOR imager, we find that adaptive detector movements improve

the angular resolution of a point source by 20% and improve the angular resolution

of two point sources by up to 50%. For the problem of detecting a weak source in

the vicinity of a strong source, we find that adaptive mask movements achieve the

same detection performance as a similar, non-adaptive system in 20%-40% less time,

xxi



depending on the relative position of the weak source. Additionally, we developed an

adaptive detection algorithm that doubles the probability of detection of the weak

source at a 5% false-alarm rate.

Finally, we applied adaptive imaging concepts to reconstruct complex arrangements

of special nuclear material at Idaho National Laboratory. We find that combining data

from multiple detector positions improves image uniformity of extended sources by

38% and reduces the background noise by 50%. We also demonstrate 2D (azimuthal

and radial) imaging in a crowded source scene. These promising experimental results

highlight the potential for adaptive imaging using a c-TEI system and motivate

further research toward specific, real-world applications.
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CHAPTER I

Introduction

In the world of nuclear non-proliferation and international safeguards, passive

radiation imaging is a valuable tool that can provide richer information to the end

user compared to non-imaging, detection systems. For example, directing authorities

to search for undeclared sources in a specific location can help reduce inspection times

and increase confidence in the inspection results [1–3]. In a treaty verification setting,

radiation imaging can be used to count the number of warheads on a missile [4, 5]

or to monitor radioactive sources in storage [6–9]. In the nuclear power industry,

imaging systems are used to monitor power plants for contamination and recently

they have also been used during the decommissioning of reactors and in emergency

response scenarios such as the Fukashima Daiichi disaster [10–12]. For all of these

applications, users need simple, robust, and cost-effective imaging solutions that can

be used in the field. Cylindrical, time-encoded imaging (c-TEI) may be ideal for

these types of applications. In this dissertation, we design and build a 1D, dual-

particle, c-TEI system for use in nuclear non-proliferation scenarios and explore the

benefit of adaptive imaging in c-TEI systems when considering the important tasks of

reconstructing high resolution images, detecting sources, and reconstructing complex

source scenes.
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1.1 Radiation Imaging

For all nuclear non-proliferation applications that require gamma-ray or neutron

imaging, there are two general categories of imaging systems: scatter-based imaging

systems and occlusion-based imaging systems.

As the name implies, scatter-based imaging systems, also called scatter cameras,

rely on the physics of scatter to localize sources. For gamma rays, scatter cameras rely

on Compton scattering and for fast neutrons, they rely on elastic scattering [13–16].

In either case, there is a direct relationship between the energy deposited in the

detector during the scatter and the deflection angle of the particle. Thus, if one can

measure the energy deposited and the post-scatter energy and direction of the particle,

the incident direction of the particle can be restricted to a cone of possibilities (or in

some cases, an arc [17]). By collecting many such cones, scatter cameras can localize

the source(s) in the field-of-view (FOV). Fig. 1.1 is a depiction of a neutron scatter

camera.

Figure 1.1: Depiction of a neutron scatter camera. Using the deposited energy, time,
and position of interaction from two interactions, the incident direction of the particle
is constrained to a cone. Reproduced from [18].

Although semiconductor-based gamma-ray scatter cameras are widely used in
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the field and are commercially available [19, 20], the neutron equivalent is still under

development. Scatter cameras must record the position and energy deposited for

multiple interactions that may occur less than a nanosecond apart. This leads to

complex detector arrays with expensive readout systems and high channel count.

Moreover, since they require multiple interactions from the same particle, their

efficiency may be low.

On the other hand, occlusion-based imaging systems utilize an intervening material,

often called a mask, to constrain the potential incident directions of a particle. A

mask consists of open and closed elements where particles can pass through open

elements but are attenuated by closed elements. Thus, as particles travel from the

source to the detector, the particle flux is changed or modulated by the mask. The

detector system records this modulated pattern and then that information along

with knowledge of the mask pattern and orientation is used to create an image of

the source scene. There are two ways to modulate the particle flux: spatially [21–25]

or temporally [26–37]. We will refer to these methods respectively as spatial coded

aperture (SCA) and time-encoded imaging (TEI).

As a concrete example, consider the pinhole camera in Fig. 1.2 which is an example

of a SCA system with one open element. The only particles that can be detected

by the detector array are the ones that travel through the pinhole. Thus, one can

easily reconstruct the source scene by using the spatial distribution of counts on the

detector array and the position of the pinhole.
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Figure 1.2: The basic pinhole camera. The detector array can only detect particles
that travel through the pinhole. Original reference unknown.

Since SCA systems need to record the spatial distribution of particles, they require

an array of detectors which invariably leads to expensive readout systems and high

channel count. In contrast, TEI systems only require one detector and a moving

mask to create an image1. Instead of spatially modulating the particle flux, in TEI,

a moving mask temporally modulates the particle flux. Thus, the detector system

does not need to be position-sensitive but instead needs to be time-sensitive as in the

detector system must be capable of recording time dependent count rates. For most

commercially available detector systems, this is an easy task.

1.2 Cylindrical, Time-Encoded Imaging

There are many types of TEI systems, but the focus of this work is on cylindrical,

time-encoded imaging (c-TEI)2. In a c-TEI system, a detector is placed in the interior

region of a cylindrical, rotating, coded mask. As the mask rotates, the count rate

from the source changes based on if there is an open element or a closed element

along the line-of-sight between the detector and the source. Fig. 1.3 is a simple 1D

example of a c-TEI system with one open element, similar to the pinhole camera in

Fig. 1.2.

1One can build a TEI system where the mask is stationary and the detector is moving, or where
the mask and detector are stationary and the source is moving, although these is less common.

2For a review of TEI from a historical perspective, see [38].
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Figure 1.3: c-TEI version of a 1D pinhole camera.

Compared to scatter cameras or SCA systems, c-TEI systems have some key

characteristics that may make them advantageous for nuclear non-proliferation appli-

cations; they are summarized in Table 1.1. Critically, the minimal requirements placed

on the detector system mean that c-TEI systems are simple, robust, and cost-effective.

Since only one detector is necessary, the detector system is easy to inspect and data

can be collected using commercially available readout systems. Additionally, the

imaging performance of c-TEI systems is only dependent on geometric factors such

as the size of the detector and mask elements. In both scatter cameras and SCA

systems, imaging performance is dependent on both geometric factors and detector

performance. In scatter cameras, the angular resolution is dependent on the distance

between interactions and on the position and energy resolution of the detector system.

This makes optimization and characterization of scatter cameras a complex process.

For SCA systems, each detector element must have the same sensitivity as the rest to

achieve high signal-to-noise ratio (SNR) images. This means each detector element
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must be carefully calibrated and gain matched to the other elements3.

Table 1.1: Key characteristics of scatter cameras, SCA systems, and c-TEI systems.

Characteristics Scatter Camera SCA c-TEI

Directionality Scatter-based Spatial encoding
Temporal
encoding

Mask N/A Stationary Moving
Detector

Requirements
Position, energy,

and timing (∼ns)
Position Timing (∼ms)

Channel Count High High Low
Resolution4 Strongly Weakly Weakly
Sensitivity5 Low High Moderate

Field of View 4π, non-uniform limited, uniform > 2π, uniform

In large part due to these advantages, there is growing interest in c-TEI systems.

The resurgence of c-TEI started in 2010 when Marleau et al.’s proof-of-concept 1D

c-TEI system showed promising results for fast neutron imaging [44]. That initial

work lead to the development of a 2D, fast-neutron, c-TEI system composed of a single

organic scintillator and a thick HDPE mask with a random coding pattern [37]. Since

there is only one detector, random coding patterns might perform better than coding

patterns based on cyclic difference sets since not every mask element is sampled6 [45].

If one wants to use coding patterns based on cyclic difference sets, they can follow

Liang et al.’s approach where they used a vertical array of detectors instead of a

single detector to sample the entire coding pattern [46]. Additionally, Liang et al.

utilized a self-supporting coding pattern which makes for simpler mask construction.

3Mask/antimask methods may also be used [39–43].
4This row is read as: ”When considering angular resolution, in a (·) system, geometric factors

and detector performance are (·) coupled.”
5Sensitivity is the detection efficiency of the system. Since scatter cameras require multiple

scatters from the same particle, its sensitivity is lower than SCA or c-TEI systems. Additionally,
SCA systems typically utilize many detectors and thus have greater sensitivity. If a SCA and a
c-TEI system used similar detector volumes, they would have similar sensitivities.

6Imagine the set of integers from 0 to n (0, 1, 2, . . . , n) - we call this set a group. A cyclic
difference set is a subset of the group (a1 = 0, a2, . . . aI) such that there are exactly λ ways any
non-zero element of the group can be represented by a modular difference of two elements of the
subset (ai − aj mod n). Cyclic difference sets form the basis of many coded aperture patterns.

6



One of the disadvantages of using a coding patterns based on cyclic difference

sets is that the entire coding pattern must be sampled to reconstruct artifact-free

images. In some cases, this can lead to long measurement times. As an alternative,

Boardman et al. built a c-TEI system that reconstructs images using compressed

sensing7 [47]. Their system consists of two nested masks that rotate independently

and create quasi-random mask patterns. Preliminary results indicate that using

compressed sensing can reduce measurement times by 90%.

Although several c-TEI systems have been built, there exists relatively little work

on which analytical models to use when designing a c-TEI system. Thus, in Chap. III,

we discuss the design spaces where the conventional small detector assumption may

be valid and where a more robust model, the large detector model, would be necessary

to generate accurate responses. Additionally, Chap. III introduces the offset detector

model for use when the detector is not at the center of the mask. For simplicity,

all of the system response models used throughout the dissertation are presented in

Chap. III.

Using the large detector model, Chap. IV evaluates different c-TEI designs and

explores the tradeoffs between size, weight, angular resolution, and contrast-to-noise

ratio (CNR). With these tradeoffs in mind, we design and construct a 1D, dual-particle

c-TEI system called MATADOR8 for use in nuclear non-proliferation scenarios. We

hope that Chap. IV can provide a starting point for future researchers who are

designing c-TEI systems, and in some cases, provide a design that meets their design

criteria.

7In compressed sensing, one assumes that the reconstructed image has a sparse representation in
some basis. By enforcing a sparsity constraint, compressed sensing methods can reconstruct images
using significantly fewer measurements than their non-regularized counterparts, provided that the
measurements are incoherent.

8MATADOR stands for mobile adaptive time-encoded asymmetric dual-particle one-dimensional
rotating imager.
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Next, Chap. V uses experimental data collected with the MATADOR system to

verify the system response models introduced in Chap. III. We predominantly focus

on verifying the offset detector model as it is the most general model considered here.

The simplicity of c-TEI systems enables the unique opportunity to implement

adaptive imaging. In adaptive imaging, an imaging system or data acquisition

protocol is modified during the measurement based on collected data. Due to this

scenario specific adaptation, the system collects higher quality data which translates

to producing higher quality images in the same measurement time or accomplishing

a specified task in less time than the conventional (non-adaptive) alternative. As a

real-world example, consider how optical cameras adaptively change the lens’ focus to

create sharper images. There are two ways a c-TEI system can be adapted: through

adaptive detector movements and through adaptive mask movements. Implementing

adaptive imaging on a c-TEI system and exploring the potential benefits are the core

contributions of this dissertation.

1.3 Adaptive Imaging

Perhaps the oldest implementation of adaptive imaging is in astronomical imaging.

Earth-based telescopes commonly suffer from turbulent atmospheric conditions that

distort the light from stars or other bodies of interest resulting in blurry images9. In

1953, Babcock et al. suggested using wavefront sensors and adaptive optics such as

deformable mirrors to detect the wavefront distortions and then correct the distortions

on-the-fly to recover the original image [48]. Since the 1990s, the use of adaptive

optics in astronomy has exploded and these methods have pushed the resolution of

earth-based telescopes to the diffraction limit [49].

9This is why stars twinkle.
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Adaptive imaging is also an active area of research for medical imaging systems

such as ultrasound [50], CT [51], MRI [52], PET [53], and SPECT [54]. In particular,

there has been growing interest in adaptive SPECT systems. Poopalasingam et al.

are building an adaptive cardiac SPECT system where the slit-slat collimator can

be modified to obtain higher resolution images of the heart without disturbing the

patient [55]. Their adaptive scheme has two steps: first, a scout image with high

sensitivity is collected to roughly localize the radiotracer followed by a high resolution

collection with a smaller FOV focused on the heart. In this way, the cardiac SPECT

system can be optimized for each patient and provide higher quality diagnostic data.

Additionally, Chaix et al. are building a small animal adaptive SPECT system where

the pinhole and mask-to-object distance can be adaptively controlled [56]. This gives

the researchers control over magnification, resolution, and FOV.

In emergency response, adaptive imaging concepts aid in the search, localization,

and mapping of potentially dangerous radioactive sources. Data from simple counting

detectors can be utilized to plan sensor movement for tasks such as source search [57] or

dose contour mapping [58,59]. Route planning using imaging systems on autonomous

drones has also been considered [60]. Kreucher et al. are investigating methods to

coordinate multiple sensors where many parallel decisions are made for a group of

sensors as opposed to a single decision [61]. In these large area search scenarios,

leveraging collected data to inform where to collect new data is an indispensable

technique which can reduce search times by orders of magnitude [62].

Comparatively, the use of adaptive imaging concepts in terrestrial nuclear imaging

systems is relatively limited. Willcox et al. investigated the value of adaptively

orienting a rotating modulation collimator to position a source in the highest resolution

region of the FOV [63]. Their results show clear angular resolution benefits when
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imaging a single point source. Fitzgerald et al. built a liquid SCA system where the

mask pattern is created by automated plungers filled with liquid metal [64]. They

found that reconstructions made using sequences of random masks have greater SNR

than those made using conventional mask patterns. Fitzgerald et al. clearly show the

potential for adaptive imaging in SCA although they did not incorporate collected

data when choosing the next mask pattern.

Across these fields, the general goal has been the same: to leverage collected data

and modify the data acquisition system to collect more valuable data. Most of these

applications utilize some version of the flowchart shown in Fig. 1.4.

Initialize
imaging system

Collect data

Termination
condition

met?

Final processing

Output results

TerminateIntermediate
processing

Planning
algorithm

Modify imag-
ing system

Yes

No

Figure 1.4: Adaptive imaging flowchart.

Given that the user has no prior information, the first step is to collect some prelim-

inary data. That raw data is then processed and sent to a planning algorithm which
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predicts the performance of the system for some or all of the possible adaptations10.

Based on a predefined task, the planner then decides which system configuration

or sequence of configurations will lead to the best performance. The decision is

translated to the imaging system which adapts accordingly and collects more data.

This process is repeated until the user intervenes or a termination condition, such

as elapsed time or the completion of a predefined goal, ends the process. One can

also envision the adaptive imaging process from a Bayesian point of view where the

system is initialized based on some prior information and before each planning step,

the algorithm updates the prior using the collected data.

In a c-TEI system, adaptive imaging concepts can be applied in two ways: adaptive

detector movements and adaptive mask movements. In the MATADOR system, the

detector is hanging from of an x-y linear actuator system such that the detector can

move to any position inside the mask rather than being fixing at the center. As

shown in Fig. 1.5, if one moves the detector from the center of the mask (D0) to an

offset position (D1), along one axis, called the imaging axis, the mask-to-detector

distance increases. This increase in distance means that the angular width of a mask

element is smaller (θ1 < θ0) and thus the angular resolution of the system is improved

along the imaging axis. Chap. VI presents an upper bound on the achievable gain

in angular resolution from adaptive detector movements and verifies those results

experimentally.

10For some tasks or algorithms, the raw data may be sent directly to the planning algorithm.
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Figure 1.5: Schematic showing adaptive detector movements in a c-TEI system. If
one moves the detector from the center of the mask (D0) to an offset position (D1),
along one axis, called the imaging axis, the mask-to-detector distance increases and
thus the angular resolution along the imaging axis improves.

Data collection in a c-TEI system can also be controlled through adaptive mask

movements. The time spent at each mask rotation angle does not need to be constant

and data collected at some mask orientations may be more valuable than other

orientations. Chap. VII utilizes this concept to achieve greater detection performance

for a weak source in the vicinity of a strong source. We also develop an adaptive

detection algorithm to capture some of the predicted gain and experimentally show

the benefit of adaptive mask movements.

Chap. VIII contains results from a measurement campaign at the Zero Power

Physics Reactor (ZPPR) at Idaho National Laboratory (INL). This measurement

campaign gave us the unique opportunity to measure special nuclear material in

complex arrangements and apply adaptive imaging concepts to real-world scenarios.

Chap. VIII shows how combining data from multiple detector positions leads to better
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uniformity and lower background noise when reconstructing complex source scenes.

But first, Chap. II provides the foundations for c-TEI. The focus is on providing

both the background to understand the research and broader context to critique the

work.
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CHAPTER II

Foundation for Cylindrical, Time-Encoded

Imaging

This chapter provides an overview of cylindrical, time-encoded imaging (c-TEI)

and introduces the tools used throughout the dissertation. The purpose is to provide

both the background to understand the research and broader context to critique the

work.

Sec. 2.1 covers how gamma rays and fast neutrons are detected in the MATADOR

system starting from the signal generation process to pulse processing. We also

discuss detector specific characterization, performance, and capabilities in terms of

energy calibration, timing resolution, and pulse shape discrimination (PSD). The

goal is to provide a detailed understanding of the pulse processing methods used in

this dissertation as they are essential to generating high-quality images.

Sec. 2.2 provides a more detailed foundation for coded aperture imaging. Although

much of the theory has its roots in spatial coded aperture (SCA), under a set of ideal

coded aperture assumptions, the fundamentals also apply to c-TEI.

Next, Sec. 2.3 reviews the image reconstruction methods commonly used in the

field. The section has two parts: analytical image reconstruction and statistical image

reconstruction. For analytical image reconstruction techniques, we focus on simple
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back-projection and filtered back-projection and for statistical image reconstruction

techniques, we focus on maximum likelihood expectation maximization.

In Sec. 2.4, we introduce some specific analysis tools and concepts that are used

throughout the dissertation including the Cramér-Rao lower bound, source detection

using the generalized likelihood ratio test, and bootstrapping experimental data in a

c-TEI system.

Finally, in Sec. 2.5, we distill and review some key takeaways from the chapter.

2.1 Particle Detection

There are a myriad of ways to detect neutrons [65–69] or gamma rays [70,71], but

few detectors exist that can detect both particles without some concessions. One of

the simplest options is to use a PSD capable scintillator, such as stilbene, to detect

both fast neutrons and gamma rays using the same detector. Recent developments in

stilbene production have greatly improved its availability, cost, and properties [72].

Stilbene has excellent PSD and gamma-ray rejection rates [73] making it a good

choice as a fast neutron detector. Unfortunately, stilbene, like all organic scintillators,

has low density and low Z, and thus has poor efficiency, practically no full-energy

deposition peak, and poor energy resolution for gamma rays. To compensate for

these downsides, we will also be using an inorganic scintillator, Cs2LiLa(Br,Cl)6

(CLLBC) [74] to collect higher quality gamma-ray data.

Both stilbene and CLLBC are coupled to photomultiplier tubes (PMTs) to amplify

the signal. PMTs convert the light emitted by the scintillator into electrons, and

then use a series of dynodes to amplify the signal [71, 75]. After the PMT, the signal

can be easily detected and recorded with commercially available readout devices such

as an oscilloscope or a digitizer.
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Sec. 2.1.1 provides an overview of the signal generation and collection process

in scintillators coupled to PMTs, and Sec. 2.1.2 and 2.1.3 provide more detail for

both stilbene and CLLBC respectively. Finally, Sec. 2.1.4 is an overview of pulse

processing in the MATADOR system.

2.1.1 Signal Generation and Collection

Scintillation is a complex process - an interested reader may refer to foundational

work by Birks [76] as a starting point. For our purposes, signal generation in a

scintillator starts with the displacement of an electron by a gamma ray or the

displacement of a nucleus by a neutron. In both cases, the particle is left with excess

kinetic energy, and as it travels through the material, it displaces many other particles,

primarily electrons, along its path. In organic scintillators such as stilbene, these

electrons excite various molecular states, some of which emit visible light when they

de-excite. In doped inorganic scintillators such as CLLBC, scintillation light is created

when electron-hole pairs recombine at activation sites.

The emission rate from scintillators is not an instantaneous process. Each de-

excitation pathway is governed by exponential decay:

I(t) = I0e
−t/τ (2.1)

where t is time, τ is the decay constant, I0 is the initial emission intensity, and I(t)

is the emission intensity as a function of time t. Many crystals have more than one

pathway and thus the resulting pulse is often a summation of exponential functions.

As depicted in Fig. 2.1, the emitted photons scatter, reflect, and stream through the

crystal. Of those that reach the photocathode, ∼35% are converted into electrons [75].

At this point, the electrical signal from the photocathode is relatively small and so a

strong electric field pulls the electrons towards a series of dynodes which amplifies
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the signal by a factor of 106 − 107. For every electron that impinges on a dynode,

2-3 secondary electrons are emitted; standard PMTs often have 10-12 dynodes in

series. The amplified signal is then transmitted to a digitizer where the analog signal

is converted into a digital signal. All of the experiments presented in this dissertation

used a CAEN DT5730 digitizer [77] which has 8 channels, 14 bits of precision, and

samples the waveform every 2 ns.

Figure 2.1: A schematic depicting the signal generation and collection process for a
scintillator. Reproduced from [78].
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2.1.2 Stilbene

Stilbene, also known as trans-stilbene or (E)-stilbene, is an organic scintillator

with the chemical formula C14H12. The high H content makes it sensitive to fast

neutrons and its PSD properties enable excellent gamma-ray rejection. We use a 2”

stilbene crystal coupled to a R6231-100 PMT.

Scintillation Process

After an interaction with ionizing radiation, energetic electrons excite molecular

states in stilbene, some of which produce light when they de-excite. In stilbene, the de-

excitation of the π-molecular orbitals in the two benzene rings cause scintillation [76].

Fig. 2.2 is a Jablonski diagram showing emission from singlet and triplet states -

a Jablonski diagram shows the electronic states of a molecule and the transitions

between them [76]. When a singlet π-orbital is excited, it will jump to either an

excited singlet state or an excited triplet state. The jump to the triplet state is less

likely because of the spin transition, consequently fewer triplet states are created

during an interaction. Excited singlet states may decay back down to the ground

state through a process known as fluorescence (timescale: ns) or transition to a triplet

state through a process called intersystem crossing. Similarly, triplet states may decay

back down to the ground state through a process known as phosphorescence, but the

decay is much slower on average due to the spin transition, on the order of µs-ms.
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Figure 2.2: Jablonski diagram showing singlet and triplet excited states and some
scintillation pathways. Original reference unknown.

If there is a high density of excited π-orbitals, then two excited states can interact

with each other instead of independently de-exciting [79]. In singlet ionization

quenching (SIQ), two excited singlet states interact to produce a ground singlet state

and a singlet state at a higher excitation level:

S1 + S1 → S∗n + S0 (2.2)

where S stands for singlet and the subscripts indicate the excited state [79]. This

process is referred to as quenching since the amount of scintillation produced is

reduced.

In the triplet-triplet annihilation (TTA) process shown in Eq. 2.3, two triplet

states interact and create a ground singlet state and an excited singlet state:

T1 + T1 → S1 + S0 (2.3)

where T stands for triplet. The amount of light produced through this process is also

reduced. On average, both SIQ and TTA are slower than fluorescence.

The interplay between the creation, intersystem crossing, quenching, and anni-

hilation of excited π-orbitals is what enables PSD. As discussed in [76,79], the rate
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of SIQ and TTA is dependent on the density of singlet and triplet excited states.

Energy deposition per unit length,
dE

dx
, and consequently the density of excited states

is dependent on the recoiling particle, its ionization, and kinetic energy. Thus, the

proportion of SIQ and TTA is different for gamma rays and fast neutrons since

gamma rays will liberate electrons and fast neutrons liberate nuclei. Since SIQ and

TTA are slower than fluorescence, the pulse created from a neutron interaction has

more light later in the pulse than a gamma-ray event. We exploit this difference

to classify pulses as gamma-ray or fast neutron induced as described in Sec. 2.1.2.

Before we discuss PSD, we must first cover energy calibration (Sec. 2.1.2) and timing

(Sec. 2.1.2) which are used in PSD.

Energy Calibration

In the context of organic scintillators where photopeaks are extremely rare, energy

calibration is often done using the Compton edge. Fig. 2.3 shows a pulse integral

spectrum1 of Cs-137 measured by the stilbene detector. We define the Compton edge

at 85% of the peak value [80].

1We use a pulse integral spectrum instead of a pulse height spectrum since the total energy
deposited in the interaction is spread out over the pulse. No shaper is used to accumulate the pulse
before digitizing.
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Figure 2.3: Pulse integral spectrum of Cs-137 on the stilbene detector. The red
dashed line is the Compton edge defined at 85% of the peak value.

Fig. 2.4 shows a light output calibration curve for the stilbene detector. A linear

calibration curve for gamma rays is appropriate, and thus light output in units of

keVee is equivalent to energy deposited in units of keV for gamma rays, but for

neutron interactions, the curve is expected to be non-linear. In this dissertation, we

do not need fast-neutron energy calibrations since we never use the absolute energy

of the neutron in image reconstruction.

Figure 2.4: Stilbene calibration curve using the 662 keV line from Cs-137 and the 511
keV line from Na-22.
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Timing Resolution and Dead Time

Although c-TEI depends on timing information to reconstruct images, the resolu-

tion needed is on the order of ms, whereas stilbene can have timing resolution better

than 0.5 ns [81]. We use a constant fraction discrimination method with a threshold

of 0.5 (arbitrarily selected) to find the start time of pulses [71]. Since stilbene is

a fast scintillator, collecting overlapping pulses in the same acquisition window is

generally not a concern until the count rate is above tens of thousands of counts

per second. Throughout the experiments in this dissertation, the count rate in the

stilbene detector never exceeded 5000 C/s. Given a window of 400ns, the probability

of an overlapping pulse is 0.2%2.

Pulse Shape Discrimination

The time-dependent difference in light emission between fast neutron and gamma-

ray interactions can be used to classify pulses as neutron or gamma-ray induced.

Below, we first introduce the tail-to-total charge comparison method to calculate

the PSD parameter and then we detail how one can use that information is used to

classify pulses.

For reference, Fig. 2.5 and 2.6 show expected pulses from fast neutrons and gamma

rays for the same pulse height. Fast neutron pulses emit more of the light later in

the pulse, often referred to as the tail, relative to the total light emitted.

2Given a detection has triggered data acquisition, the probability of there being more than
one pulse in that acquisition window is one minus the probability of there being no pulses in the
acquisition window. This analysis assumes each disintegration from the source only emits one
particle.
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Figure 2.5: Expected pulse from a gamma-ray and neutron interaction. Dashed lines
represent 68% of the data.

Figure 2.6: Expected pulse from a gamma-ray and neutron interaction. Dashed lines
represent 68% of the data. Note the log scale.

There are many different PSD methods [82–87], we use tail-to-total charge com-

parison method. Eq. 2.4 defines the PSD parameter, s,

s =

∑N
i=itail,start

p[i]∑N
i=itotal,start

p[i]
(2.4)

where itail,start is the start time of the tail integral, itotal,start is the start time of the

total integral, N is the total number of samples, and p[i] is the pulse value at the

ith sample. For simplicity, we use the same end times for both the tail and the total

regions thus only the tail start time must be optimized for effective PSD. Fig. 2.7
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shows a PSD plot for a Cf-252 source shielded by 5.08 cm of lead. The pulses with

higher PSD parameters correspond to neutrons and the others to gamma rays.

Figure 2.7: PSD plot of a Cf-252 source shielded by 5.08 cm of lead measured with
stilbene. The total start time is 20 ns before the start time of the pulse and the tail
start time is 30 ns after the start time. The tail and total end time was set at 350 ns
after the start time.

Note that in Fig. 2.7, PSD is easier for higher energy pulses. Thus, it is best to

optimize the tail start time to give good discrimination for low energy pulses. Fig. 2.8

shows a vertical slice of Fig. 2.7 at 40-45 keVee.

Figure 2.8: 40-45 keVee vertical slice from Fig. 2.7. Double Gaussian fits (Eq. 2.5)
are shown in red.

At low pulse energies, the gamma-ray and neutron distributions overlap. We use

a double Gaussian to fit Fig. 2.8 and then use the fitted parameters to calculate a
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figure-of-merit (FOM) to quantify the level of overlap between the two distributions.

The double Gaussian fit is defined as

fγ+n(s) = fγ(s) + fn(s)

fγ(s) =
Aγ

σγ
√

2π
exp

−(s− µγ)2

2σ2
γ



fn(s) =
An

σn
√

2π
exp

−(s− µn)2

2σ2
n


(2.5)

where fγ+n(s) is the double Gaussian distribution, the subscript γ stands for gamma

ray, the subscript n stands for fast neutron, A is the amplitude, µ is the mean, and σ

is the standard deviation. We define the FOM for PSD as

FOMPSD =
µn − µγ

(FWHMn + FWHMγ) /2
(2.6)

where FOMPSD is PSD figure-of-merit.

FOMPSD should be optimized to provide the largest value and therefore the least

overlap. For this stilbene detector, the tail start time was set to 30 ns after the start

time of the pulse and the total start time was set to 20 ns before the start time. The

tail and total end time was set at 350 ns after the start time.

To classify pulses as fast neutron or gamma-ray induced, we use a Bayesian

method [88]. The method has two stages. In stage one, high statistics data are used

to characterize the distribution of fast neutron and gamma-ray PSD parameter values

(s) as a function of energy. In stage two, those distributions are leveraged to estimate

the probability of the pulse being a neutron or a gamma ray on a per pulse basis.

The first stage is summarized below:

1. Collect pulses from a dual-particle source such as Cf-252.
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2. Create a PSD plot similar to Fig. 2.7.

3. For each energy slice of the PSD plot, fit a double Gaussian to the joint neutron

and gamma-ray distribution, similar to Fig. 2.8.

4. Save these Gaussian fits.

To estimate the posterior probability of each pulse being induced by a neutron or

a gamma ray, the following two equations are used:

P (γ|s) =
fγ(s)Rγ/n

fγ(s)Rγ/n + fn(s)

P (n|s) =
fn(s)Rγ/n

fn(s)Rγ/n + fn(s)

(2.7)

where P (n|s) is the posterior probability of a pulse being caused by a fast neutron

given the PSD parameter is s, fn(s) is the neutron Gaussian fit from stage one

evaluated at s and Rγ/n is the ratio of gamma-ray to neutrons for this light output

bin. Since Rγ/n is not known a priori, it must be iteratively estimated using the

measurement as follows:

Nγ =
∑
s∈Ei

P (γ|s)

Nn =
∑
s∈Ei

P (n|s)

Rγ/n =
Nγ

Nn

(2.8)

Rγ/n is initialized as 1 and Eq. 2.7 and 2.8 are evaluated iteratively. Once the

relative change of Rγ/n from one iteration to the next falls below 1%, the process is

terminated. Fig. 2.9 shows a cleaned PSD plot (see Sec. 2.1.4) with only 99.9999%

probable neutron or gamma-ray pulses.
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Figure 2.9: Cleaned PSD plot of a lead shielded Cf-252 source from stilbene. Only
99.9999% probable neutrons or gamma rays shown.

Anisotropy

Stilbene’s performance in terms of light output, PSD, and timing are dependent

on the trajectory of the charged particle with respect to the crystal planes. Recent

measurements by Schuster et al. [89] and Weldon et al. [90] show that the light output

can vary by up to 30%3.

With respect to a stationary c-TEI system imaging a stationary source, the

anisotropic response of stilbene would have practically no impact on the performance

of the imaging system in terms of angular resolution, but the anisotropic response

does result in a nonuniform sensitivity.

Nonetheless, all of the work here assumes that the anisotropy of stilbene is

negligible.

2.1.3 CLLBC

Cs2LiLa(Br,Cl)6 (CLLBC) is an inorganic scintillator from the elpasolite family

which has attracted attention due to its high light output, good energy resolution as

a scintillator, and multi-particle detection capability [74,92,93]. CLLBC can detect

3This anisotropic response has also been used to create an imaging system [91].
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gamma-rays and both thermal and fast neutrons via 6Li(n, α)3T and 35Cl(n, p)35S

reactions respectively. Unlike stilbene, CLLBC is slow and high energy pulses will

last multiple µs.

We use a 1 inch CLLBC crystal coupled to a R14095-100 SEL PMT.

Energy Calibration

Fig. 2.10 shows a typical pulse integral spectrum of Cs-137 on the CLLBC detector

and Fig. 2.11 shows the energy calibration. We use the integral of the pulse rather

than its amplitude to measure energy since the pulse is not shaped. At 662 keV, the

energy resolution is 3.7%. as opposed to the 3.3% reported by the manufacturer4.

This difference may be the result of our shorter collection time and the lack of pulse

shaping with a shaping amplifier.

Figure 2.10: Pulse integral spectrum of Cs-137 on the CLLBC detector.

4CLLBC can achieve energy resolution down to 2.9% [74], but for this crystal the manufacturer
reported 3.3%.
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Figure 2.11: CLLBC linear calibration curve.

Timing Resolution and Dead Time

The timing resolution of CLLBC is much better than necessary for c-TEI. Even

though CLLBC pulses are much longer than stilbene pulses, overlapping pulses are

still not a concern unless the count rate is well above thousands of counts per second.

Throughout the experiments in this dissertation, the count rate in the CLLBC detector

never exceeded 2500 C/s. Given a window of 3200ns, the probability of an overlapping

pulse is 0.8%5.

Pulse Shape Discrimination

Discrimination between neutron and gamma-ray interactions is also possible in

CLLBC. The 6Li(n, α)3T reaction deposits 4.78 MeV in the crystal resulting in a

∼3.1 MeVee pulse. By pulse height alone, one can implement effective PSD, but the

shape of the pulse also changes. Similar to Sec. 2.1.2, we use the tail-to-total method

to create a PSD plot and separate thermal neutron interactions. The tail start time

was set to 300 ns after the start of the pulse and the total start time was set to 20

5Given a detection has triggered data acquisition, the probability of there being more than
one pulse in that acquisition window is one minus the probability of there being no pulses in the
acquisition window. This analysis assumes each disintegration from the source only emits one
particle.
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ns before the start of the pulse. The tail and total end time was 3000 ns after the

start time of the pulse. A Bayesian method was not implemented to classify CLLBC

pulses. Fig. 2.12 and 2.13 show expected neutron pulses and gamma-ray pulses of the

same magnitude and Fig. 2.14 is the PSD plot from a Cf-252 source shielded by 5.08

cm of lead. The island of counts at ∼3 MeV are thermal neutrons. The pulses with

greater light output but a similar PSD parameter may be fast neutrons although we

have not confirmed this for CLLBC [94].

Figure 2.12: Expected pulse from a gamma-ray and neutron interaction. Dashed
lines represent 68% of the data.

Figure 2.13: Expected pulse from a gamma-ray and neutron interaction. Dashed
lines represent 68% of the data.
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Figure 2.14: PSD plot of a Cf0-252 source shielded by 5.08 cm of lead. The island of
counts at ∼3 MeV are thermal neutrons undergoing 6Li(n, α)3T reaction.

2.1.4 Overview of Pulse Processing

The steps below outline the pulse processing procedure:

1. Baseline correction: For each pulse, the baseline is estimated using the first 32

samples. Then the pulse is baseline corrected and inverted.

2. Find start time: The start time for each pulse is found using the constant

fraction discrimination technique with the cutoff set at 0.5 of the pulse height.

3. Units conversion: Using the calibrations in Fig. 2.4 and Fig. 2.11 for stilbene

and CLLBC respectively, the pulse is converted from V·ns to keVee.

4. Find PSD parameter: The PSD parameter value is calculated for each pulse using

the tail-to-total charge comparison method (refer to Sec. 2.1.2 and Sec. 2.1.3).

For stilbene, the total start time is 20 ns before the pulse start time, the tail

start time is 30 ns after the pulse start time, and the tail and total end time is

350 ns after the start of the pulse. For CLLBC, the total start time is 20 ns

before the start time, the tail start time is 300 ns after the start time, and the

tail and total end time is 3000 ns after the start time.
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5. Classify pulses: For stilbene, we use the Bayesian method described in Sec. 2.1.2

to give each pulse a probability of being a fast neutron or a gamma-ray. Pulses

with >99.9999% probability of being a neutron are classified as such, and the

same for gamma-rays. For CLLBC, any pulses above 2.9 MeV with a PSD

parameter below 0.42 are classified as thermal neutrons.

Pulses are cleaned at various times in the procedure detailed above. To summarize,

we remove any pulses that have

• a maximum above the dynamic range of the digitizer,

• a maximum below zero,

• an integral below zero,

• a baseline that is 6 sigma outside of the mean baseline,

• a start time that is 6 sigma outside of the mean start time,

• a PSD parameter value below 0 or greater than 1, or

• a PSD parameter value that is 3 sigma outside of the mean for either neutrons

and gamma-rays at that energy.

2.2 Coded Aperture Imaging

Occlusion-based imaging methods block incoming radiation from parts of the field-

of-view (FOV) and record the resulting distribution of counts using some detector

system. If the object used to block the incoming radiation, commonly called a

mask, is appropriately designed, the radiation shadow it creates will be different

for each possible source position. Thus, we can locate a source by utilizing the
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recorded distribution of counts and the expected distribution of counts. The simplest

occlusion-based system is the pinhole camera shown in Fig. 2.15.

Figure 2.15: The basic pinhole camera. The detector array can only detect particles
that travel through the pinhole.

In an ideal pinhole camera, the mask is entirely opaque to radiation and any

particles that reach the detector must travel through a small pinhole such that if

the detector observes a detection, the particle must have come from a restricted

region in the source space. Traditionally, the pinhole camera is made using a position-

sensitive detector, but one can also use a non-position-sensitive detector and a moving

pinhole to create an image. For example, Fig. 2.16 shows a c-TEI version of a 1D

pinhole camera. The count rate in the detector increases when the pinhole is on the

line-of-sight between the detector and the source.

Figure 2.16: c-TEI version of the 1D pinhole. Original reference unknown.
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In both case, because the pinhole has finite size, the object is blurred, as shown

in Fig. 2.17. Making the pinhole smaller reduces the blur but also reduces the flux of

particles. Thus, there is a trade-off between angular resolution and sensitivity.

Figure 2.17: Diagram showing the blur resulting from the large pinhole. [41]

One way to recover some of the lost sensitivity is to introduce multiple pinholes

in the mask. This will lead to an overlapping pattern in the detection space which

destroys the approximate one-to-one relationship of a pinhole camera and reduces

the selectivity6 of the imaging system. In exchange, multiple pinholes increase the

number of counts observed, thereby improving the signal-to-noise ratio (SNR). A

mask with multiple pinholes is known as a coded aperture.

For a SCA system, a stationary mask spatially encodes the source distribution onto

a position-sensitive detector whereas in c-TEI, a moving mask temporally encodes the

source distribution onto a detector which may be non-position sensitive. As discussed

in [38], under a set of ideal coded aperture assumptions, the two are methods are

equivalent.

6Selectivity is the ability to distinguish and accurately reconstruct many sources in the field of
view [30]
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2.2.1 Ideal Coded Aperture

Fig. 2.18 is a classic schematic of image reconstruction with a SCA system.

Figure 2.18: A graphical depiction of the coded aperture image reconstruction
process.7 Reproduced from [95]

To enable imaging, the mask must be designed such that each source pixel in the

image space creates a unique shadow on the detector. For example, consider the mask

in Fig. 2.19. Each open mask element is 90◦ apart and thus the observed responses of

any sources that are 90◦ apart, or a multiple thereof, are the same. Thus, the mask in

Fig. 2.19 would be a poor choice for imaging applications that require the full FOV.

Figure 2.19: Example of a poor mask design.

One can verify that a mask is good for imaging by ensuring that the periodic

7Note that each projection of the object onto the recorded image should be flipped over both
axes in Fig. 2.18.
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auto-correlation of the mask is the Kronecker delta function (δ) riding on a baseline.

There are a number of different mask patterns that meet or approximately meet this

requirement. In general, one can use cyclic difference sets8 to make such patterns;

in this dissertation, we use uniformly redundant arrays (URAs) [45]. URAs are

convenient as they have flat sidelobes (i.e. autocorrelation is approximately a delta

function), have 50% open fraction, and are easy to construct [95]. Refer to [41,45] for

a deeper discussion on coded aperture families.

In coded aperture, the observed response in the detector space can be described as

linear shift-invariant (LSI). Linear means that the response for any source distribution

can be modelled as the superposition of point responses and shift-invariant (SI) means

the point response does not change from one source pixel to the next besides a phase

shift in the response. We use convolutions to describe a LSI system:

y = x~mb (2.9)

where y is the expected observation vector, x is the source distribution, and mb is

the binary mask. The symbol ~ is the periodic convolution defined as:

c[n] = a[n] ~ b[n] =
N∑

n′=1

b[n′]a[n− n′] (2.10)

Herein, Eq. 2.9 is referred to as the “ideal coded aperture model”. The ideal coded

aperture model is accurate for both SCA and c-TEI if the following assumptions are

true:

8Imagine the set of integers from 0 to n (0, 1, 2, . . . , n) - we call this set a group. A cyclic
difference set is a subset of the group (a1 = 0, a2, . . . aI) such that there are exactly λ ways any
non-zero element of the group can be represented by a modular difference of two elements of the
subset (ai − aj mod n).
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Table 2.1: Assumptions for the ideal coded aperture model.

Ideal Coded Aperture

System The system is LSI.

Sampling All sources are at the center of their respective pixels.

The mask pattern is sampled only once per element.

Source All sources are in the far field such that magnification is negligi-
ble. A near field coded aperture model can be found in [42].

All sources are in the fully-coded FOV.

For c-TEI, all sources have long half-lives relative to the mea-
surement time.

Mask The mask is infinitely thin.

The mask is perfectly opaque and absorbing - scatter from the
mask is negligible.

For SCA, the mask is mosaicked.

Detector For SCA, the detector system is spatially uniform.

For c-TEI, the detector performance is temporally constant.

The detector is only absorbing meaning that particles can not
scatter to other detector elements.

Background There is no background.

Environment Scatter from the environment is negligible.

In Eq. 2.9, the periodic convolution is used instead of a linear convolution because

for a SCA, the mask is often mosaicked9 allowing it to capture the entire mask

pattern without using a larger detector array as shown in Fig. 2.20. In c-TEI, we use

9By mosaicked, we mean that the pattern is repeated in both dimensions.
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cylindrical coordinates so the convolution is periodic.

Figure 2.20: A comparison between a non-mosaicked and mosaicked mask for SCA.
Note that the detector is smaller in the mosaicked case at the expense of a larger
mask. Reproduced from [96].

In ideal coded aperture, reconstruction of x is done using an inverse filter, also

known as the decoding array g:.

x̂g = y ⊗ g

= (x~mb)⊗ g

= x~ (mb ⊗ g)

= x~ p

(2.11)

where x̂g is the estimated source using the decoding array (g), p is the shift-invariant

point spread function (PSF), and ⊗ is the periodic correlation operator. Thus, the

reconstructed image x̂g is a convolution of the true image with the PSF. If one is

using a URA pattern, the PSF is a delta function and thus the image is reconstructed

exactly. If the PSF is not a delta function, then x̂g will be a superposition of each

non-zero source pixel blurred by the PSF. For a URA, the inverse filter is very closely

related to the mask itself [95].

In practice, the assumptions required for the ideal coded aperture model are not
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true and alternative models are required10. As we relax assumptions, models for SCA

and c-TEI begin to differ, although there are still many similarities. In Chap. III, we

will introduce three other system response models and discuss the conditions under

which they should be used.

Unfortunately, for the models in Chap. III, there rarely exist decoding arrays, such

as g, that will reconstruct the image exactly (PSF is not a delta function). Instead,

we will have to use alternative methods to reconstruct the image. The reconstruction

methods commonly used in the field are discussed in the following section.

2.3 Image Reconstruction

Once we have selected an imaging model, we can use the model to reconstruct an

image. Many imaging models can be described as

y = Ax (2.12)

where A is the system response. The process of taking the source image, x, and

generating the expected observations, y, is commonly called forward projection.

Although not the only definition, in this dissertation, each element A[i, j] is

proportional to the probability of detecting an event in observation bin i given there

was an emission from source bin j. Notice that Eq. 2.12 allows for shift-variant PSF.

If the response of each column was merely a circularly shifted version of the first

column, SI, then Ax could be written as a~ x where a is the first column of A.

Ideally, one can find x via the inverse filter, such as the decoding array (g) from

Eq. 2.11, or inverting A, but more often than not, A is not invertible. Even if it is

invertible, A−1 is often ill-posed meaning that small changes in y can lead to large

10For more on coded aperture and other occlusion based imaging methods, see [5,21–25,28,32,36–
38,42–45,63,64,96–109].
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changes in x. Fig. 2.21 shows a graphical depiction of ill-posedness.

Figure 2.21: Graphical depiction of ill-posedness. Looking at “stability”, small
changes in the output space result in large differences in the input space. This
makes parameter estimation more challenging particularly in the presence of noise.
Reproduced from [110].

There are many different methods to reconstruct x without A−1. In Sec. 2.3.1

and 2.3.2, we discuss two commonly used analytical reconstruction methods: simple

back-projection and filtered back-projection. Intrinsically, these methods do not

consider the statistical nature of the measurements and thus in low count scenarios,

the reconstructions are often noisy and biased. This motivates Sec. 2.3.3 where we

discuss statistical image reconstruction and specifically focus on maximum likelihood

expectation maximization which is widely used in both medical imaging and nuclear

engineering.11 In the sections below, we will show sample images reconstructed using

each method. We use the offset detector model (Sec. 3.3) as the system response and

experimental data from a Cf-252 source at (90 cm, 178◦). Data was collected using

the MATADOR system with the detector at the center of the mask.

2.3.1 Simple Back Projection

Simple back-projection (SBP) is one of the simplest and fastest methods to

11Note that statistical image reconstruction or iterative methods in general are much slower than
analytical methods.
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reconstruct an image but it often suffers from a low contrast-to-noise ratio (CNR)

and a blurred reconstruction. For the noiseless case:

x̂SBP = ATy = ATAx = Px. (2.13)

where x̂SBP is the SBP estimate of x and P is the PSF in matrix form. If there

are sensitivity differences in the system response12, one may want to normalize the

system response by the sensitivity for each source and then find the SBP image - we

refer to this as the sensitivity-normalized SBP.

One can think of SBP as taking the measured counts in an observation bin i,

scaling by the probability of detecting those counts if they were emitted from source

bin j, and accumulating over all measurement bins. ATy is usually referred to as

back-projection. Fig. 2.23 is a SBP image of the experimental data shown in Fig. 2.22.

Figure 2.22: Experimental data from a neutron point source at (90 cm, 178◦).

12For example, if one is creating a system response with source bins at different radial distances
from the detector, then there will be large sensitivity differences in the system response due to
the inverse square law. In the definition of A used in this dissertation, each column of A is not
normalized thus there are large sensitivity differences.
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Figure 2.23: SBP reconstruction of Fig. 2.22. The image is background subtracted
and normalized by the sum. Background is defined as the average intensity of image
pixels that are at least 30◦ away from the max image pixel.

2.3.2 Filtered Back Projection

In SBP, the reconstructed image is the true source blurred by P . Filtered back-

projection (FBP), attempts to remove the blur by inverting P . For the noiseless case:

x̂FBP = P−1x̂SBP =
(
ATA

)−1
ATy =

(
ATA

)−1
ATAx = P−1Px = x (2.14)

where x̂FBP is the FBP estimate of x. Thus, FBP can exactly recover x if there is no

noise. One might recognize Eq. 2.14 as the ordinary least squares (OLS) solution to

the problem:

x̂OLS = arg min
x

‖y − Ax‖22 (2.15)

While Eq. 2.14 is applicable for any system described by Eq. 2.12, if the system

is SI, one can use Fourier transforms to evaluate x̂FBP. Understanding FBP in

the Fourier space can provide some insight into why reconstructions suffer from

high-frequency noise.

Convolution in Cartesian space is equivalent to multiplication in the Fourier

domain. In Eq. 2.16 and 2.17, we describe SBP and FBP using this property for the
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noiseless case and in Eq. 2.18 we consider the effect of additive noise. Starting with

SBP:

x̂SBP = Px = p~ x = F−1 (P�X) (2.16)

where p is the first column of P , the non-italicized capital letters are in frequency

space, and � is the element-wise multiplication operator. Next, for FBP:

x̂FBP =P−1x̂SBP = pinv ~ x̂SBP = F−1
(
Pinv � X̂SBP

)
=

F−1 (Pinv �P�X) = F−1

 1

P
�P�X

 = F−1 (X) = x

(2.17)

where the divisions are element-wise. Thus, we can see that the inverse filter, pinv,

is simply the inverse Fourier transform of the element-wise reciprocal of the PSF

(F−1 (1/P)).

If A is ill-posed and the measurements are noisy, FBP often results in images

dominated by high-frequency noise. Assume the system is LSI and that the SBP

image is corrupted by additive noise, then the FBP image is

x̂FBP = pinv ~ (x̂SBP + n) = F−1

 1

P
�
(
X̂SBP + N

) = F−1

X +
N

P

 (2.18)

In frequency space, P often has very small values at high frequencies while white

Gaussian noise, for example, has a constant response in frequency space. Thus when

we divide (element-wise) N by P, the high frequency components of the noise are

greatly amplified. If we were to apply FBP to the experimental data in Fig. 2.22,

the reconstruction would be entirely dominated by noise and no source would be

discernible.

One way to combat this problem is through the use of the Wiener filter which

is the linear minimum mean squared error (LMMSE) estimator. As opposed to the
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FBP or OLS estimator which attempt to find a set of parameters that minimize the

least squared error for a given sample of data, the Wiener filter attempts to find the

parameters that minimize the expected squared error considering the probabilistic

nature of the signal and noise. For use with the Wiener filter, we define SNRWiener

as

SNRWiener =
E
[
‖X‖2

]
E
[
‖N‖2

] (2.19)

where E
[
‖X‖2

]
and E

[
‖N‖2

]
are the expected power spectral densities of the true

signal, x, and the noise, n, respectively. The Wiener filter is defined as

HW =
B∗

‖B‖2 +
1

SNRWiener

(2.20)

where HW is the Wiener filter, B is the blurring filter13, and ∗ is the complex conjugate

operator. Thus, the Wiener filtered image is

x̂Wiener = F−1
(
HW ·

(
X̂SBP + N

))
(2.21)

where x̂Wiener is the Wiener filtered estimate of x.

As shown in Eq. 2.20, the Wiener filter prevents small values of ‖B‖2 from

amplifying the noise by the addition of a 1/SNRWiener term, often called a regularizer.

One can apply the Wiener filter in the image space or the measurement space - for

SCA or c-TEI the noise properties in the measurement space are better known thus

we apply the Wiener filter directly to the noisy measurements. While the Wiener

filter significantly improves images, it can only be applied to LSI systems.

Fig. 2.24 is a comparison between SBP and Wiener filter reconstruction of the

noisy observation in Fig. 2.22. Notice that the Wiener filtered image has a narrower

13If one is applying the Wiener filter in the image space, then B = P whereas if one is applying
the Wiener filter in the measurement space, B = A = F (a), where a is the LSI system response.
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peak but greater noise amplification. These two observations are inherently tied

together. A narrow reconstruction requires high frequency components, but at high

frequencies, the relative power spectral density of the noise with respect to the filter

is larger than at low frequencies. Thus, noise is amplified.14

Figure 2.24: Reconstructions from SBP and the Wiener filter applied in the observation
space. Normalized by sum. For the Wiener filter, the noise is assumed to be Gaussian
with σ2 = max(y).

The Wiener filter assumes that the signal is corrupted by additive noise and that

the noise is independent from the signal. Although this assumption is not true for

c-TEI systems or radiation imaging systems in general, the Wiener filter is often

used in practice because it is fast, simple to implement, and can generate higher

resolution images when compared to SBP. Below, we will consider other statistical

reconstruction methods that take into account the Poissonian nature of c-TEI systems.

These methods tend to produce images with greater SNR and angular resolution.

2.3.3 Statistical Image Reconstruction

This section provides an overview of statistical image reconstruction methods

starting with Bayes’ theorem and then describes maximum likelihood expectation

14This discussion on high-frequency noise in FBP will help us understand why maximum likelihood
expectation maximization suffers from high frequency noise at high iterations.
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maximization which is the reconstruction method used throughout the dissertation.

Bayes’ theorem [111,112] describes the probability of an image given some measured

data (y):

p(x | y) =
p(y | x)p(x)

p(y)
(2.22)

where p(x | y) is the posterior distribution of x given y, p(y | x) is the likelihood of

y given x, p(x) is the prior distribution of x, and p(y) is the marginal distribution

y. p(y) is constant as a function of x so it is typically ignored when estimating x.

Conceptually, one starts with knowledge or prior information on how x is dis-

tributed and then updates that prior through Eq. 2.22 after making a measurement.

In this way, the posterior takes into account both the user’s prior knowledge on x

through p(x) and the probability of x generating the measured data through p(y | x).

In practice, there are a number of challenges to overcome:

1. x usually has many parameters thus p(x | y) must be compressed through some

metric, or in another sense, one still needs to estimate x from p(x | y).

2. Analytical solutions to Eq. 2.22 often do not exist, thus one must use numerical

methods.

3. The user must make decisions on p(x) which, if incorrect, can significantly bias

the resulting distribution.

Two estimators are most often used to estimate x from p(x | y). One is the

posterior mean (Eq. 2.23) which finds the average x and consequently minimizes the

mean squared error:

x̂E[x|y] =

∫
xp(x | y)dx (2.23)
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Solving Eq. 2.23 requires the evaluation of a multidimensional integral which

can be very time consuming when x is large. One option is to use Markov chain

Monte Carlo [113] to sample the the posterior distribution and estimate x̂E[x|y].

Stochastic origin ensembles is an implementation that has been used for scatter

cameras [114,115].

The second estimator is the maximum a posteriori estimator (MAP) which finds

the image with the greatest posterior probability:

x̂MAP = arg max
x

p(x | y)

= arg max
x

`(y | x) + `(x)

= arg max
x

`(y | x)− βR(x)

(2.24)

where `(x) = ln(p(x)). In the literature, `(y | x) is often called the data-fit term,

R(x) (which replaces ln(p(x))) is called the regularizer, and β is a hyperparameter

that controls the relative weight of the regularizer.

If one does not have any prior information for x, one can set β = 0 or pick a

uniform prior, R(x) = k. In this case, the MAP solution collapses into the maximum

likelihood (ML) solution. The ML solution only considers how well the forward

projection of the image matches the measurements given some statistical model for y.

In a sense, the ML solution allows the data to dictate the solution without applying

additional constraints on x besides those imposed by `(y | x).

To understand the value and risk of regularization, consider the example in

Fig. 2.25. Since the system response is usually ill-posed, there are many potential

images that fit the measurements well and thus the ML solution for noisy measure-

ments of a scene may differ. Regularization can help reduce the difference between

the two reconstructions. For example, notice in Fig. 2.25, that measurements 2 and 3
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are only slightly different but their ML reconstructions lead to D and E which are

very different in the image domain. On the other hand, if some prior knowledge is

incorporated in the reconstruction, 2 and 3 reconstruct to F and G which are more

similar reconstructions and are closer to the true image (T2).

In some cases, A may be under-determined in which case the solution is not

unique. In this case, regularization can help constrain the set of solutions to those

which are physically possible or to solutions that the user deems more likely to occur.

For example, notice in Fig. 2.25 how measurement 1 can be created by both image A

or B. In the ML case, there is no way to tell if 1 was caused by A or B, but in the

regularized case, the reconstruction uniquely maps to C.

Figure 2.25: A graphical depiction of regularization. The solid lines represent the ML
(non-regularized) reconstruction and the dotted lines represent a MAP (regularized)
reconstruction.

There is a large and rapidly growing body of work on regularization and algorithms

to efficiently reach the MAP solution. See [116,117] for an overview and [118–120]

for some implementations. For example, in source search problems, regularizers

that enforce sparsity in the image are often appropriate since many tasks involve

reconstructing point-like sources [121]. Sparsity-based regularizers place a higher
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weight on x that only have a few non-zero elements and thus force the image to be

sparse.

Although regularization is a powerful technique, it has some downsides. For

example, if one is using a sparsity-based regularizer and the true image has many

sources or an extended source, then the regularized reconstructed image may not

reflect reality. Moreover, the optimal weighting of β is scenario and imaging-system

specific which adds another layer of complexity [122,123]. Thus in this dissertation,

we do not use regularization and instead focus on ML. Nonetheless, it is important

to understand regularization as an alternative to ML as it is often used in nuclear

engineering and medical imaging.

For Poisson distributed data, the log-likelihood function is as follows

p(y | x) =
I∏
i=1

yyii e
−yi

yi!

`(y | x) =
I∑
i=1

(yi ln (yi)− yi − ln (yi!))

`(y | x) =
I∑
i=1

(yi ln (Ax)− Ax− ln (yi!))

(2.25)

where y is the expected measurement, y is the experimental measurement, and the

ML solution is

x̂ML = arg min
x

− `(y | x)

= arg min
x

I∑
i=1

(−yi ln (Ax) + Ax+ ln (yi!))

= arg min
x

I∑
i=1

(−yi ln (Ax) + Ax)

(2.26)

where the problem is usually cast as a minimization problem15.

15We take the logarithm of p(y | x) so that the product of probabilities simplifies to a summation
and the optimization problem becomes convex.
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Usually, there is no closed analytical solution for x̂ML and instead one must use

an iterative algorithm. For small scale problems (<10 unknowns), we will use the

fmincon function in Matlab to reach the ML solution. For large scale problems, we

use maximum likelihood expectation maximization (MLEM) algorithm.

Maximum Likelihood Expectation Maximization

Maximum likelihood expectation maximization (MLEM) 16 is an iterative algo-

rithm that finds the ML solution for a Poisson distributed process [132–134]. It is

commonly used in both nuclear engineering and medical imaging because it is straight

forward to implement, monotonically approaches the ML solution, and the resulting

solution is non-negative. Unfortunately there are some disadvantages to using MLEM

such as slow convergence and poor image quality at high iterations. Consequently,

MLEM is often not run to convergence which results in reconstructions that are

biased by the initial guess. Below we discuss each of these topics.

The MLEM update equation is

x̂n+1[j] =
x̂n[j]

s[j]

I∑
i=1

A[i, j]
yi∑J

j=1A[i, j]xn[j]
(2.27)

where n indicates the nth iteration and s[j] =
∑I

i=1A[i, j] is known as the sensitivity

of the system to a source at pixel j. It is important to note that A[i, j] is proportional

to the probability of detecting an event in observation bin i given there was an

emission from source bin j.

Notice that the MLEM algorithm updates each element of x̂n independently.

Thus, Eq. 2.27 can be recast in matrix form:

x̂n+1 =
x̂n

s
� AT

y

Ax̂n
(2.28)

16There are many methods to derive the MLEM algorithm. The majorize-minimize based
derivations seem to be the most clear. See [124–126] or [127–131].
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where � is element wise multiplication, the divisions are element wise, and s is the

sensitivity vector where s[j] =
∑I

i=1A[i, j] for the jth source bin.

Since the ML solution does not depend on the choice of x̂0, any non-negative

initialization will work if MLEM is run to convergence. In practice, as the number

of iterations increases, the image quality degrades as shown in Fig. 2.26. Thus, the

user must decide how many iterations to run and how to choose x̂0. Recall from the

discussion in Sec. 2.20 that high frequency noise amplification is directly linked to

higher resolution reconstructions17. As the number of iterations increases, the energy

in the high frequency components increases. This leads to narrower reconstructions

and noise amplification in the image.

Figure 2.26: MLEM reconstructions for 50 and 10,000 iterations of Fig. 2.22.

There are a number of ways to combat this problem including heuristic stop-

ping rules [135,136], statistical stopping rules [137,138], cross validation [139–141],

sieves [142–144]; our preferred solution is to under-iterate as it is fastest and simplest.

A rigorous stopping rule was not used but in general, MLEM is terminated when the

normalized root mean squared error (NRMSE) of the observation vector relative to

17One can also think of this high frequency noise as a result of overfitting to noisy observations
with an ill-posed system response. Model mismatch may also play a role.
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the forward projection is nearly constant. NRMSE is defined as

NRMSE =

√√√√√ ‖y − y‖22
‖y‖22

(2.29)

where y is the forward projection of the assumed image. In this context, y would be

the forward projection of the MLEM reconstruction at the current iteration. Fig. 2.27

shows the NRMSE as function of MLEM iteration. The star is the point where we

determined the NRMSE was nearly constant.

Figure 2.27: NRMSE of the observation vector as a function of MLEM iteration.
Reconstruction of data in Fig. 2.22.

Generally speaking, there are some disadvantages with early termination:

1. Under-iterated images are biased by x̂0.

2. Different system responses converge at different rates thus holding the number

of iterations constant and comparing between MLEM reconstructions of two

different systems is not a direct comparison.

3. Different parts of the image converge at different rates [145].

4. High frequency components in the image converge slower than low frequency

components [146].
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5. Convergence rates are source scene dependent thus termination criteria rarely

work for all source scenes, count rates, and source-to-background ratio (S:B)

ratios [147,148].

6. Quantification is less accurate for under-iterated images.

Since the images in this dissertation are under-iterated, the solution will be biased

by the initialization of x̂. All MLEM images in this dissertation are initialized as

x̂0 =
1

s

(2.30)

where s is the sensitivity vector where s[j] =
∑I

i=1A[i, j] for the jth source bin.

Thus, each element of x̂ contributes the same number counts in the forward

projection at the first iteration18.

In spite of these challenges, under-iterated MLEM is widely used for image recon-

struction because of its simplicity and performance relative to SBP. The alternative

of running MLEM until convergence is not reasonable due to the computation time

required, and, as we discussed earlier, regularization based methods have their own

set of challenges including parameter optimization and complexity depending on the

selected method. Thus, we will be using under-iterated MLEM reconstructions to

evaluate the performance of MATADOR.

Below is an MLEM reconstruction after 50 iterations. Notice how both the Wiener

filter and the MLEM reconstructions for the point sources are much narrower than the

SBP reconstruction. Additionally, the noise suppression in the MLEM reconstruction

is much better than the Wiener filter.

18One may also use a constant image or the SBP image is used as x̂0.
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Figure 2.28: Reconstructions from SBP, Wiener filter, and MLEM terminated at
50 iterations, normalized by sum. For the Wiener filter, the noise is assumed to be
Gaussian with σ2 = max(y). For MLEM, the NRMSE of the observation vector is
shown in Fig. 2.29.

2.4 Applied Analysis Methods and Metrics

The following sections describe analysis tools that are used throughout the disser-

tation.

2.4.1 Cramér-Rao Lower Bound

Cramér-Rao lower bound (CRLB) is the lower bound on the variance for all

unbiased estimators of a deterministic parameter [149]. For example, say we are

interested in estimating the background count rate. In this case, one may use some

unbiased estimator such as the mean counts measured in a time interval. The variance

in this estimator must be greater than or equal to the CRLB. In the context of source

localization, the CRLB is the lowest variance on the source position when using any

unbiased estimator. Before we introduce the CRLB, we first introduce some relevant

variables and notation.

Let θ be a vector of the parameters of interest. For example, if there is only one

point source in the field, then there are four parameters of interest that must be
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estimated: source intensity (α), source azimuthal position (φ), source radial position

(r), and unmodulated intensity (b)19. Thus, θ = [α φ r b]T 20. Additionally, let the

gradient, ∇θf (θ), and the Hessian matrix, ∇θ∇T
θ f (θ), be

∇θf (θ) =

 ∂f∂θ1 · · ·
∂f

∂θN



∇θ∇T
θ f (θ) =



∂2f

∂θ21

∂2f

∂θ1∂θ2
· · ·

∂2f

∂θ1∂θN

∂2f

∂θ2∂θ1

∂2f

∂θ22

∂2f

∂θ2∂θN
...

. . .
...

∂2f

∂θN∂θ1

∂2f

∂θN∂θ2
· · ·

∂2f

∂θ2N



(2.31)

where
∂f

∂θi
is the partial derivative of f with respect to θi.

Given these definitions, we introduce the Fisher information matrix (FIM):

I(θ) = −E
[
(∇θ ln (p(y | θ))) (∇θ ln (p(y | θ)))T

]
(2.32)

where I(θ) is the FIM and the expectation is over y. Through integration by parts,

Eq. 2.32 can be rewritten as

I(θ) = −E
[
∇θ∇T

θ ln (p(y | θ))
]

(2.33)

Finally, the CRLB is found by inverting the FIM:

CRLB(θ) = I(θ)−1 (2.34)

19Unmodulated intensity consists of natural background and source scatter from the mask,
environment, and detector.

20To be clear, in the general image reconstruction problem, we are attempting to estimate the
intensity of each source pixel in x. For example, in the 1D reconstruction problem in this dissertation,
there are 100s of source pixels or unknowns to estimate. For such inverse problems, we use methods
such as SBP, FBP, or MLEM. When using the CRLB, we are usually trying to find a bound on a
few parameters and thus θ contains many fewer elements.
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where θ are the known or estimated values of the parameters of interest.

To gain some insight into the FIM and the CRLB, consider the two 1D Gaussian

log-likelihood functions in Fig. 2.29. Since the blue log-likelihood function is sharper

than the red one, it is easier to estimate the parameter value that maximizes the

likelihood, µ̂ML, for the blue curve. From Eq. 2.33, the CRLB of θ̂ML is dependent

on the second derivative of the log-likelihood - we can think of the second derivative

as a measure of sharpness or curvature. The greater the second derivative, the easier

it is to estimate the parameters of interest.

Figure 2.29: Log-likelihood functions of two Gaussian distributions with known
variances.

Note that the maximum likelihood estimator is asymptotically unbiased and

asymptotically efficient meaning that as the number of counts goes to infinity, the

ML estimate of the parameters reaches the true values (θ̂ML → θ) and the covariance

of the parameter vector reaches the CRLB (cov(θ̂ML)→ I(θ)−1). If θ is unknown,

we will use θ̂ML in Eq. 2.33.

We use the CRLB and the FIM for both Chap. VI and VII. In Chap. VI, we

use the CRLB has a proxy for the angular resolution of an imaging system and in

Chap. VII, we use the FIM to predict which potential system configurations of the
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MATADOR system will lead to good detection performance.

2.4.2 Source Detection

This section provides a brief overview of source detection. For background, we

first discuss the likelihood ratio test (LRT) and then discuss the generalized likelihood

ratio test (GLRT). We use the GLRT extensively in Chap. VII.

The detection problem is often addressed using hypothesis testing where the user

defines a set of hypotheses before collecting data and then utilizes a test statistic

and corresponding thresholds for detection. In the binary case, the two hypotheses

are referred to as the null (HN) and the alternative hypothesis (HA). Ideally, one

would know the probability density functions (PDFs) for the measurements under

each hypothesis and would use that information to design the test, but often this

information is not known. For simple21 hypothesis tests where the PDFs are entirely

known, the LRT maximizes the probability of detection for a given probability of false

alarm. The LRT is simply the likelihood of the measurements under the alternative

hypothesis divided by the likelihood of the measurements under the null hypothesis.

Here is an example:

HN : θ = θN

HA : θ = θA

(2.35)

where θN and θA are the known parameters under the null and alternative hypotheses

respectively.

The LRT is

ΛLRT =
p(y|HA)

p(y|HN)

HA

≷
HN

γcrit (2.36)

21Here, simple refers to the fact that the PDFs under each hypothesis are known, as opposed
to composite hypothesis testing where some unknown parameters must be estimated. In a simple
hypothesis test, both the probability distribution and the underlying parameters are exactly known.
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where ΛLRT is the test statistic under the LRT and γcrit is the threshold for detection.

If ΛLRT is less than γcrit, then the test fails to reject the null hypothesis and if ΛLRT

is greater than γcrit, then the test rejects the null hypothesis.

Let T be the test statistic, such as ΛLRT. Then, as depicted in Fig. 2.30, we define

the probability of detection (PD) as

PD =

∫ ∞
γcrit

f(T (y),HA)dT (2.37)

where f(T (y),HA) is the distribution of the test statistic under the alternative

hypothesis. We define the probability of false alarm (PFA) as

PFA =

∫ ∞
γcrit

f(T (y),HN)dT (2.38)

where f(T (y),HN) is the distribution of the test statistic under the null hypothesis.

Figure 2.30: Graphical description of probability of detection and probability of false
alarm.

The critical value to decide between the null or alternative hypothesis is found by

fixing the false-alarm rate at a user defined significance level, αFA, and then solving

Eq. 2.38 for γcrit. It is common to use 0.05 as the significance level - this controls the

probability of false alarm below 5%.
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More often than not, the underlying PDFs of the null and alternative hypotheses

are not known exactly due to unknown parameters. In general, there is no optimal

test for this scenario but often the GLRT is used. The GLRT is similar to the LRT

except the maximum likelihood estimates of the unknown parameters are used instead

of the known or assumed values. The composite hypothesis is

HN : θ ∈ ΘN

HA : θ ∈ ΘA

(2.39)

where ΘN and ΘA are parameter spaces under the null and alternative hypotheses

respectively. θ may consist of parameters that are relevant to the test and nuisance

parameters that are not relevant to the test but are still unknown and thus must be

estimated. Let θ = [θTr θ
T
n ]T where θr (size: r × 1) are the parameters relevant to

the test and θn (size: n× 1) are the nuisance parameters.

The corresponding GLRT is

ΛGLRT =
p(y | θ̂MLE,HA

)

p(y | θ̂MLE,HN
)

HA

≷
HN

γcrit (2.40)

where θ̂MLE,HN/A
is the maximum likelihood estimate (MLE) of the unknown parame-

ters under the specified hypothesis.

The GLRT has some useful asymptotic properties if:

1. The parameter space of the null hypothesis is a subset of the parameter space

of the alternative hypothesis: ΘN ∈ ΘA

2. The optimization of θ under the alternative hypothesis is unrestricted.

3. Nuisance parameters are the same under both the null and alternative hypothe-

ses.
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4. The number of counts must be large such that θ̂MLE reaches the CRLB.

If the above conditions are met, then

Λ′GLRT = 2 ln(ΛGLRT) ∼


χ2
r(0), HN

χ2
r(λ), HA

(2.41)

where χ2
r(λ) is the non-central chi-squared distribution with r degrees of freedom and

non-centrality parameter λ (see Appendix 6C of [149] for more details). For the null

hypothesis, λ = 0, thus χ2
r(0) is simply a chi-squared distribution with r degrees of

freedom. For the alternative hypothesis, λ is

λ = (θr,A − θr,N)T [Iθrθr (θr,A,θn)−

Iθrθn (θr,A,θn) I−1θnθn (θr,A,θn) Iθnθr (θr,A,θn) ] (θr,A − θr,N)

(2.42)

where θr,A and θr,N are the true values of the test-relevant parameters under the

alternative and null hypotheses and θn are the true values of the nuisance parameters.

The matrices Iθrθr , Iθrθn , Iθnθn , and Iθnθr are partitions of the FIM:

I (θr,A,θn) =

Iθrθr (θr,A,θn) Iθrθn (θr,A,θn)

Iθnθr (θr,A,θn) Iθnθn (θr,A,θn)


2.4.3 Bootstrapping

Bootstrapping is a method to find the uncertainty of an estimate using experimen-

tal data [150]. Assuming one has a representative sample from the population and

the sample data are independent and identically distributed, bootstrapping treats

the sample as the population. As shown in Fig. 2.31, if many samples from the

population are not available, one can create replicates from the experimental data by
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sampling with replacement and processing those replicates to get a distribution of

sample estimates.

Figure 2.31: Concept behind of bootstrapping. Adapted from [151].

For c-TEI data, we use a block-based bootstrapping approach. Imagine a stream

of pulses being detected by the detector as the mask continuously rotates. In Fig. 2.32,

the start of each pulse is indicated by a dot. From this list mode data, we can create

the observation vector y by binning the data into NO bins. We refer to this as coarse

binning22. For example, a full mask revolution collected over 90 seconds with one bin

per degree has a coarse bin width of 0.25s.

To create a replicate of the observation vector, we will create a new stream of

data for each coarse bin. We do this by binning the list mode data from each coarse

bin into a fine bin structure, in our case 10µs bins, and then randomly pulling NFS

samples with replacement. The number of fine bin samples, NFS, can be controlled

to reduce the expected counts. Fig. 2.32 is a graphical depiction of this process.

22Typically, NO = 360.

61



Figure 2.32: Bootstrapping using list mode data in a TEI system. The block dots
represent the start times of pulses. Within each coarse bin, the fine bins are sampled
with replacement to create each replicate.

When experimental data is not available, we will create replicates by assuming

the samples come from a Poisson distribution with an estimated mean. For example,

we will assume that the expected counts for a specific mask rotation angle is the ML

forward projection and then pull Poisson random samples from that distribution.

2.5 Key Takeaways

Here are some key takeaways from each section.

Particle detection:

• Gamma ray and neutron interactions have different pulse shapes in stilbene and

CLLBC. This effect can be exploited to classify pulses as gamma-ray induced

or neutron induced.

• We use a Bayesian method to classify pulses as gamma-ray induced or fast-

neutron induced in the stilbene detector. Throughout the dissertation, pulses

are only classified as gamma rays or fast neutrons if they are 99.9999% probable

in their respective groups.

Coded aperture imaging:
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• Unique source localization is dependent on the mask design. We use URAs.

• The ideal coded aperture model requires many assumptions that cannot be met

in the real-world. As we relax those assumptions, the point spread function is

no longer a delta function and we need other methods to reconstruct images.

Image reconstruction:

• The system response, A[i, j], is proportional to the probability of detecting an

event in observation bin i given the particle was emitted in source bin j.

• The system response is often ill-posed. This means creating high resolution

images results in noise amplification.

• We use under-iterated MLEM to reconstruct images. The image is initialized

proportional to the inverse sensitivity of the system response. MLEM is user

terminated when the NRMSE between the experimental data and the forward

projection is nearly constant.

Applied analysis methods and metrics:

• The CRLB is the lower bound on the variance for all unbiased estimators of a

deterministic parameter.

• The FIM depends on the second derivative of the log-likelihood function with

respect to the parameters of interest.

• The MLE is asymptotically unbiased and asymptotically efficient.

• Under some conditions, Λ′GLRT is distributed as a non-central chi-squared

distribution.
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• The asymptotic detection performance using the GLRT of a system is a function

of the FIM.

• We use a block-based bootstrapping approach. For each observation bin, we

sample with replacement from a fine-binned set of data.
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CHAPTER III

System Response Models

A critical component for high-quality image reconstruction is an accurate model

for the observed data. Eq. 2.9 described the ideal coded aperture model which is the

basis of both spatial coded aperture (SCA) and cylindrical, time-encoded imaging

(c-TEI). Unfortunately, in most real-world scenarios, the assumptions required for

the ideal coded aperture model are not true. This chapter describes three system

response models for c-TEI systems with more realistic assumptions or conditions

under which they should be used1.

Sec. 3.1 describes the small detector model which is a simple extension of the

ideal coded aperture model. In particular, the small detector model relaxes the

no-background and no-scatter assumptions, models exponential attenuation through

the mask, and allows each mask element to be sampled more than once.

A key limiting assumption of the small detector model is the requirement that

the detector be small relative to the mask radius. For some c-TEI systems, such as

handheld systems, this assumption may not true. Thus, Sec. 3.2 introduces the large

detector model which addresses this limitation by splitting the detector into many

elements and finding the expected response for each piece. We use this model in

1Parts of this chapter are adapted from [152].
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Chap. IV to design the MATADOR system.

Both the small and large detector models are only applicable for c-TEI systems

where the detector is at the center of the mask. To address this limitation, Sec. 3.3

describes a slightly modified version of the large detector model that can be applied

to off-center detectors - we refer to this model as the offset detector model. Chaps. VI

- VIII use the offset detector model to investigate the potential of adaptive detector

movements and adaptive mask movements.

All three of these models assume that scatter from the mask and environment

is constant as a function of mask rotation angle. As we will see when verifying

these models against experimental data (Chap. V), this assumption may not be

true. Although in our experience, this model mismatch does not significantly impact

imaging performance with respect to angular resolution, for applications that are

sensitive to the log-likelihood, such as source detection, the model mismatch leads to

inaccurate results. Thus, in Sec. 3.4, we use experimental data to create a system

response which is only used in Chap. VII for source detection.

For convenience, all system responses used in this dissertation are collected and

presented in this chapter.

3.1 Small Detector Model

For many real-world c-TEI systems, the ideal coded aperture model is not accurate

enough to match measured data. For example, the gamma rays and fast neutrons

relevant to nuclear non-proliferation are highly penetrating, thus the mask is not

perfectly opaque. Additionally, the ideal aperture model only allows the mask to be

sampled once per mask element. This restriction leads to worse imaging performance

in terms of both angular resolution and signal-to-noise ratio (SNR) [97]. Fortunately,
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many of the ideal coded aperture assumptions can be relaxed while retaining the

linear shift-invariant (LSI) properties of the model.

The critical assumption in the small detector model is that the detector is small

relative to the mask radius. We start with the extreme case where the detector is

a point at the center of the mask. In this case, from the perspective of the point

detector, the mask is translating horizontally in front of any source. Thus, we can

treat the mask as flat instead of cylindrical as shown in Fig. 3.1. If the detector

is finite but small relative to the mask radius, then the small detector model is

approximately accurate. This follows from the small angle approximation where

sin(θ) ≈ θ for small θ. In Sec. 3.2.1, we will map out when this assumption is viable

for thick masks and larger detectors.

Figure 3.1: From the perspective of a point detector, the mask is translating horizon-
tally in front of any source. Thus, for a c-TEI system, if the detector is small relative
to the mask, then we can treat the mask as flat instead of cylindrical. The shaded
grey mask elements represent closed elements.

Since a c-TEI system with the detector at the center is LSI, we only consider the

case of a point source at +∞ on the x-axis. Thus, all source particles are travelling
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in the -x direction.

To describe the expected measurement vector, we must first define two other

variables: the mask transmission vector and the detector response. Since high energy

gamma-rays and fast neutrons are highly penetrating, we must account for the

attenuation of the mask as shown in Eq. 3.1.

m = exp (−λM tM � (1−mb(ym))) (3.1)

where mb(ym) is a function that returns the value of the binary mask at mask position

vector ym (1 is an open element and 0 is a closed element in mb(·)), tM is the thickness

of the mask, and λM is the attenuation coefficient of the mask. λM is a function

of the particle type and energy; for brevity we omit those subscripts. The mask

transmission vector can be evaluated at any mask position thus the mask may be

sampled more than once per element.

The detector response for a cylindrical detector can be modeled as:

d(y) = 1− exp

(
−λD · 2

√
r2D − y2

)
(3.2)

where λD is the detector attenuation coefficient and rD is the radius of the detector.

The mean detector attenuation coefficients for gamma-rays and fast neutrons were

found via MCNPX-PoliMi simulations for each energy group. The energy deposited

from each collision was converted to light output using the Voltz approximation [153].

Fig. 3.2 shows the detection probability, d(y), of 1-2 MeV neutrons on a 5.08 cm

stilbene detector as a function of position alongside the fit of Eq. 3.2 to find λD.
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Figure 3.2: Detector response of a 5.08 cm cylindrical stilbene crystal from 1-2 MeV
neutrons as a function of incident position found via MCNPX-PoliMi simulations.
The simulated data was fit with Eq. 3.2 to find λD.

Finally, the expected measurement vector is

y = (x~m~ d+ b)� t (3.3)

wherem is the mask transmission vector (Eq. 3.1), d is the detector response (Eq. 3.2),

t is the measurement time per bin, and b is the unmodulated intensity from natural

background and source scatter from the mask, environment, and detector. Herein,

we refer to Eq. 3.3 as the “small detector model”. Table 3.1 shows the corresponding

assumptions.

Table 3.1: Assumptions for the small detector model.

Small Detector

System The system is LSI.

Sampling All sources are at the center of their respective pixels.

The mask pattern may be sampled multiple times per mask
element.

Continued on next page
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Table 3.1 – Continued from previous page

Small Detector Model

Source All sources are in the far field such that magnification is negligi-
ble. A near field coded aperture model can be found in [42].

All sources are in the fully coded field-of-view.

All sources have long half-lives relative to the measurement
time.

Mask Scatter from the mask is a constant additive factor for all mask
rotation angles.

Detector Detector performance is temporally constant.

Scatter from the detector is a constant additive factor for all
mask rotation angles.

The detector is small relative to the mask radius such that the
small angle approximation is accurate.

Background Background is a constant additive factor for all mask rotation
angles.

Environment Scatter from the environment is a constant additive factor for
all mask rotation angles.

For some c-TEI systems, such as handheld systems, the small detector assumption

may not true. The large detector model address this limitation by splitting the

detector into many elements and finding the expected response for each piece.

3.2 Large Detector Model

First, we introduce the large detector model and then compare its response to the

small detector model in Sec. 3.2.1. The goal is to provide guidelines as to when the

small detector model is accurate enough to use and when one should use the large
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detector model instead.

When the detector is large relative to the mask radius, the edge of the detector

observes a significantly different mask transmission vector than the center of the

detector, and the prediction from the small detector model degrades. To predict

an accurate observation vector, the large detector model segments the monolithic

detector into smaller detector elements and calculates the mask transmission vector

for each detector element. Then, it scales the response from each segment by the

probability of detection and sums over all segments.

Because a c-TEI system with the detector at the center is LSI, we assume that

the source is located at +∞ on the x-axis. Thus, all source particles are travelling

in the -x direction. The mask rotation angle is zero and, as usual, θ is defined

counter-clockwise from the x-axis.

Consider the difference between Ray 0 and Ray 1 in Fig. 3.3. Although both Ray

0 and Ray 1 are travelling along the same direction, because Ray 1 is not travelling

to the center of the mask, it must travel through a different mask thickness than Ray

0. The mask thickness that a ray offset by y from the mask center must traverse is

t′M(y) = xo − xi =
√
r2o − y2 −

√
r2i − y2

=
√
r2i + 2ritM + t2M − y2 −

√
r2i − y2

(3.4)

where the subscript o stands for outer, the subscript i stands for inner, xo is the x

coordinate of the position at which the offset ray intersects the outer radius of the

mask, ro, and tM is the radial thickness of the mask.
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Figure 3.3: Detailed schematic of a c-TEI system. The detector is centered at (0,0)
and the mask rotates counter-clockwise around the detector. The shaded grey mask
elements represent closed elements. The parallel rays are potential paths for a far-field
source at +∞ on the x-axis.

Besides traversing different mask thicknesses, offset rays may also pass through

multiple mask elements, such as Ray 2 in Fig. 3.3. Ray 2 enters the mask at (xo, yo)→

(ro, θo) which is a closed mask element and leaves the mask at (xi, yi)→ (ri, θi) which

is an open mask element. We address this problem by segmenting the thick mask

into many thin mask slices and assuming that any ray that enters a mask slice at

a particular mask element will also exit that mask slice at the same mask element.

Then, the mask thickness traversed by each ray becomes a summation:

t′M(y) =

NM−1∑
m=0

(√
r2i,m + 2ri,mtm + t2m − y2 −

√
r2i,m − y2

)
·mb(θm(y)) (3.5)

where the thick mask is segmented into NM slices, tm is the thickness of the mth
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mask slice, and mb(θm(y)) is the binary mask pattern evaluated at the angular offset

the ray will enter the mask slice. For a source at +∞ on the x-axis, θm(y) can be

calculated as:

θm(y) = sin−1
(
y

rm

)
(3.6)

Eq. 3.5 can be simplified by assuming that the mask slices are thin such that they

are essentially planes from the perspective of the ray. Also, instead of treating mb(θ)

as a function that must be evaluated for each mask rotation angle and angular offset,

we can treat it as a vector that must be circularly shifted by the angular offset for

each slice:

t′M(y) =

NM−1∑
m=0

tm circ(1−mb, θm(y))

cos(θm(y))
(3.7)

Finally, the observed response vector can be calculated as

y = (a~ x+ b)� t (3.8)

where

a =

ND−1∑
i=0

d(y[i]) · exp (−λMt′M (y[i])) (3.9)

and t is the measurement time per bin, d(y[i]) is the detector response evaluated at

position y[i] for the ith detector element, and λM is the mask attenuation coefficient,

and b is the unmodulated intensity from natural background and source scatter from

the mask, environment, and detector. Eq. 3.8 can be applied to irregular or multiple

masks and expanded to include particle and energy dependence. Herein, Eq. 3.8 is

referred to as the “large detector model”.

3.2.1 Small and Large Detector Model Predictions

Fig. 3.4 maps out the normalized root mean squared error (NRMSE) between

the small and large detector model as a function of detector diameter, outer mask
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radius, and mask thickness for a high-density polyethylene (HDPE) mask arranged in

a URA-35 pattern [95]. For most system designs with rD � rM , the small detector

model is sufficient to predict the system response accurately2, however when the mask

is quite close to the detector, as may be the case in a handheld system, the large

detector model is more accurate.

(a) Fixed mass thickness of 6 cm. (b) Fixed outer mask radius of 26 cm.

Figure 3.4: NRMSE contours between the small detector and large detector model
predictions for Cf-252 neutrons in units of percent. The HDPE mask pattern is in a
URA-35.

Fig. 3.5 shows the system response from the small and large detector models for

the hypothetical handheld system described in Table 3.2.

Table 3.2: Handheld c-TEI system design parameters

Detector Diameter 5.08 cm stilbene crystal
Mask pattern URA-35

Inner mask radius 4.0 cm
HDPE thickness 6.0 cm

Pixel pitch 10.28◦

The small detector model overpredicts the overall count rate by 12.7% and has a

NRMSE of 14.5%. Using the small detector model for such a system would likely

result in lower contrast, increased noise, and artifacts in the reconstructed image.

2Within a NRMSE of 1%.
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Figure 3.5: System response from a handheld c-TEI system to Cf-252 neutrons. The
small detector model overpredicts the overall count rate by 12.7% and has a NRMSE
of 14.5%.

3.3 Offset Detector Model

The small and large detector models can only be used when the detector is at the

center of the mask. When the detector is not at the center of the mask, the system

is no longer shift-invariant (SI) and we must use a different model. In this case, we

will use the offset detector model which is a simple extension from the large detector

model. Note that for any scenario that calls for the small or large detector model,

one can instead use the offset detector model, but we do not recommend this due

to the increased computational burden. Below, we briefly outline the offset detector

model without going into detail since the model is based on ray-tracing.

Both the small and the large detector model assume that the imaging system is

SI meaning that the response from a source at 0◦ is the same as the response from a

source at 90◦ after a 90◦ phase shift. Thus, they both use convolutions in the imaging

model, but when the detector is not at the center, the imaging system is no longer

SI. Fig. 3.6 is a schematic showing how the expected response changes as a function

of source and detector position. With respect to D0, notice how the open element
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is fully open for the source at S0 and S1. In contrast, with respect to D1, the open

mask element is significantly distorted by the nearby closed elements for a source at

S1 compared to a source at S0.

Figure 3.6: Schematic of a c-TEI system with an offset detector.

Fortunately, this problem is easily solved by replacing Eq. 3.6 with ray tracing and

calculating the system response for every source position instead of just one. Also,

as the detector moves, the detection efficiency will change with the inverse square

law, thus the model must be near-field. We assume that the unmodulated intensity

is constant with mask rotation angle but may change with detector position. Thus,

y = (Ax+ bD)� t (3.10)

where A is a slightly modified version of the large detector model and bD is the

unmodulated intensity from natural background and source scatter from the mask,
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environment, and detector. The subscript D is meant to emphasize that the unmod-

ulated intensity changes as a function of detector position.

We can rewrite Eq. 3.10 in the usual y = Ax form by treating the unmodulated

intensity as another source whose response is constant as a function of mask position

(but not as a function of detector position) and then scaling each column of A by t:

y = (Ax+ bD)� t

= Abx� t

= Ab,tx

(3.11)

Ab is a block matrix:

[A0]


bD[0]

...

bD[0]




0

...

0




0

...

0



[A1]


0

...

0




bD[1]

...

bD[1]




0

...

0


...

. . .

[AD]


0

...

0




0

...

0




bD[D]

...

bD[D]




where the subscripts on A represent the dth detector position and bD[d] is the

unmodulated count rate at the dth detector position. Herein, Eq. 3.11 is known as

“offset detector model”.
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In the offset detector model, for both neutrons and gamma rays, we use 24 non-

uniformly spaced energy bins to calculate the system response for a Cf-252 source

and the detection threshold is 40 keVee. The Cf-252 Watt spectrum [154] and binned

spectrum are shown in Fig. 3.7.

Figure 3.7: Cf-252 Watt spectrum and binned Watt spectrum using 24 non-uniform
bins.

3.4 Experimental System Response

All three of these models only account for particles that are travelling directly

from the source to the detector and thus do not account for particle scatter on the

mask or the environment. We will see in Chap. V that this simplification leads to

mismatch between the expected response and the experimental data. For applications

that are sensitive to the log-likelihood, such as source detection using the generalized

likelihood ratio test (GLRT), this model mismatch may lead to inaccurate results.

Thus for Chap. VII which focuses on source detection, we will use a system response

made using experimental data. The experimental system response is only for the case

where the source is 90 cm from the detector and the detector at the center of the

mask.

A 1.85 mCi Cf-252 source was placed at (90 cm, 175◦) and data was collected
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with the detector at the center for 64.5 min. Fig. 3.8 is the experimental data with

1◦ bins. To find the system response in units of counts per emission, we divide the

experimental counts by the source strength and measurement time.

Figure 3.8: Experimental data from a 1.85 mCi Cf-252 point source placed at (90 cm,
175◦). Measurement time is 64.5 min.

We assume the imaging system is LSI when the detector is in the center, and thus

we can circularly shift the experiment system response at 175◦ to find the response

at other source positions. Fig. 3.9 is the experimental system response.

Figure 3.9: Experimental system response generated from the measured data in
Fig. 3.8.
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3.5 Conclusion

Previous work on the system response models for c-TEI systems is limited,

including the design space where these models are accurate. With respect to the small

and large detector models, we explored the design space and mapped out regions

where the small detector assumption may be sufficient and regions where a more

robust model, the large detector model, would be necessary to generate accurate

responses. For example, in a handheld system, where the mask is close to the detector,

the small detector model is inaccurate as it overpredicts the overall count rate by

12.7% and the NRMSE between the small and large detector models is 14.5%. Using

the small detector model for such a system would likely result in lower contrast and

artifacts in the reconstructed image.

For use in cases where the detector is not at the center of the mask, we developed

the offset detector model. The offset detector model is a simple extension of the

large detector model where the angular offset with which a ray enters a mask slice is

calculated using ray tracing instead of Eq. 3.6. Finally, we described an experimental

system response model which may be used in applications that are sensitive to model

mismatch.

Before we verify the large and offset detector models in Chap. V, we will first

describe the design and construction of the MATADOR system. Experimental data

from the MATADOR system will be used to verify the models.
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CHAPTER IV

Design and Construction of MATADOR

Compared to spatial coded aperture (SCA), there exists little work on the factors

to consider when designing a cylindrical, time-encoded imaging (c-TEI) system. This

chapter uses the large detector model to calculate the system response of different

c-TEI designs and grapples with the tradeoffs between size, weight, angular resolution,

and contrast-to-noise ratio (CNR). Throughout the design process, we only consider

the imaging performance when the detector is at the center of the mask. Sec. 4.1

contains those results.

Sec. 4.2 describes the construction of the MATADOR system alongside updates

that were made to the system years after the initial construction. As an imaging

demonstration, Sec. 4.3 contains neutron and gamma reconstructions of a Cf-252

source1.

4.1 Design Process

MATADOR2 is a 1-D, dual particle, c-TEI system consisting of a 2” stilbene

detector inside a dual layer mask. The outer layer of the mask is made of high-density

polyethylene (HDPE) for its high mass attenuation coefficient for fast neutrons and

1Parts of this chapter are adapted from [152].
2MATADOR stands for mobile adaptive time-encoded asymmetric dual-particle one-dimensional

rotating imager.
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the inner layer of the mask is made of tungsten. While tungsten’s mass attenuation

coefficient for Cf-252 gamma rays is 6.5% less than that of lead, its mass attenuation

coefficient for Cf-252 neutrons is 23% greater, thus tungsten was the preferred choice.

The following design space was considered:

1. Mask radius: The inner mask radii simulated ranged from 4 cm to 50 cm.

2. Mask thickness: The HDPE layer was varied from 1-10 cm and the tungsten

layer was varied from 1/4 - 2 cm.

3. Mask pattern: Because of their optimality properties, the mask patterns explored

were limited to uniformly redundant arrays [95]. Uniformly redundant arrays

(URAs) with 35 and 143 elements were simulated.

4. Detector diameter: Each detector is a right circular cylinder with its height

equal to its diameter. The detector diameter was varied from 0.635 - 7.62 cm.

The requirements for the c-TEI system include:

1. Constrain the system size to 60 cm wide such that the system can pass through

doorways.

2. Achieve better than 20◦ full width at half maximum (FWHM) when recon-

structing fast neutron or gamma-ray point sources with simple back-projection

(SBP).

3. Limit the mass of the dual-particle mask to 23 kg.

The results below are found using the large detector model with 10 uniformly

spaced energy groups from 0-10 MeV and a 70 keVee light output threshold.
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4.1.1 Quantitative Metrics for Comparing c-TEI Designs

As with other coded aperture imaging systems, in c-TEI, there exists the classic

trade-off between angular resolution and sensitivity. In this chapter, we define angular

resolution as the FWHM of the point spread function (PSF) reconstructed using

SBP in units of degrees.3 More advanced reconstruction methods, such as filtered

back projection or maximum likelihood expectation maximization (MLEM), were not

implemented as they would require additional optimization that would vary from one

system design to the next.

Sensitivity is measured via the CNR. The CNR was found via resampling the

expected response from an assumed source. For these simulations, the source was

defined as a 1 mCi Cf-252 point source placed 9 m from the detector and measured

for 10 minutes with no background. Assuming the detection process is Poisson in

nature, ten thousand realizations of the expected response were generated for each

system design and then reconstructed using SBP. From these realizations, the mean

value and the standard deviation of each image pixel was calculated. The CNR is

defined using those values as:

CNR =
¯̂xmax − ¯̂xmin

σx̂max

(4.1)

where ¯̂xmax is the maximum value in the mean reconstructed image, ¯̂xmin is the

minimum value of the mean reconstructed image, and σx̂max is the standard deviation

of the maximum image pixel.

4.1.2 Choice of Detector Diameter, Mask Radius, and Coding Pattern

For a given mask pattern, the best angular resolution is possible only for a point

detector. As the detector diameter increases, the sharp mask transitions begin to

3FWHM was found via linear interpolation.
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blur and the angular resolution degrades. Fig. 4.1a depicts this effect for an infinitely

thin, opaque mask arranged in a URA-35 pattern. For a mask radius of 15 cm and a

point detector, the angular resolution is 10.28◦ which is the angular width of a mask

element. As the detector diameter increases, the angular resolution degrades at an

increasing rate (non-linear).

For a fixed mask radius, as the detector diameter increases, the CNR improves,

although not as the square root of counts. For a large mask radius of 50 cm, the CNR

approximately doubles when increasing the detector diameter from 2.54 cm to 5.08

cm. That is expected since the count rate has quadrupled and to the first order CNR

is dependent on the square root of the counts. But for cases where the detector is

large relative to the mask radius, increasing the detector diameter does not improve

the CNR in the same way. For example, at a mask radius of 15 cm, doubling the

detector diameter from 2.54 cm to 5.08 cm only results in a CNR increase of 54%.

For these large detector cases, although increasing the size of the detector leads to

more particles being detected, the resulting blur in the PSF leads to a weaker peak

signal. For an extreme example, consider how the CNR is essentially constant for a

detector diameter around 7 cm and a mask radius of 10 cm in Fig. 4.1a.

Fig. 4.1b is similar to Fig. 4.1a except the mask pattern is a URA-143 instead of

a URA-35. While the trends described for the URA-35 case apply for the URA-143

case, the values are quite different. For mask radii less than 25 cm and detector

diameters greater than 2.54 cm, the system designs using a URA-143 pattern perform

similarly to the designs using the URA-35 pattern in terms of angular resolution, but

the CNR is markedly worse. This is because the detector is much larger than a single

mask element and the detector is sampling multiple mask elements at the same time.

Because of the URA-143 lower CNRs for systems meeting the constraints described
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in Sec. 4.1, the URA-35 pattern was chosen. The detector diameter was set to 5.08

cm as there are ample system designs that meet our requirements.

(a) URA-35 (b) URA-143

Figure 4.1: The tradeoff between angular resolution [deg] (solid black) and CNR
(dashed blue) as a function of mask radius and detector diameter.

4.1.3 Mask Thickness

Transmission through the mask significantly degrades the CNR for any coded

aperture system. Weight constraints prevent completely attenuating high energy

gamma rays since multiple centimeters of tungsten would make for a heavy mask.

Fully blocking fast neutrons would require 10+ centimeters of HDPE, which would

increase the system size. Thus, there is an important trade-off between imaging

performance and physical constraints. Fig. 4.2a and 4.2b illustrate this trade-off

for gamma-ray and neutron imaging respectively. For both contour plots, the mask

pattern is fixed as a URA-35 and the detector diameter is fixed at 5.08 cm. Fig. 4.2a

shows the performance when imaging Cf-252 gamma rays with a fixed HDPE thickness

of 6 cm and variable tungsten thickness and Fig. 4.2b is the equivalent for Cf-252

neutrons with a fixed tungsten thickness of 0.5 cm and variable HDPE thickness.

Areas that are not physically possible are left blank.
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(a) For Cf-252 gamma rays where the
HDPE thickness is fixed at 6 cm.

(b) For Cf-252 neutrons where the tung-
sten thickness is fixed at 0.5 cm.

Figure 4.2: The tradeoff between angular resolution [deg] (solid black), CNR (dashed
blue), and mask mass [kg] (dotted red) for a URA-35 pattern and a 5.08 cm stilbene
detector. The grey shaded area represents the set of possible system designs con-
strained by the requirements set out in Sec. 4.1. The black asterisk represents the
final design selected.

Notice in both Fig. 4.2a and 4.2b, for a fixed outer mask radius, as the mask

thickness increases, the angular resolution degrades. This is because the average

mask radius is decreasing. At the same time, the mask is becoming more opaque

and CNR is improving. Note that the improvement in CNR from increasing the

mask thickness depends on the outer mask radius. CNR is a function the number of

particles detected, mask transmission, and angular resolution which makes it difficult

to predict.

The shaded region in Fig. 4.2a and 4.2b highlights all of the possible system

designs that meet the requirements set in Sec. 4.1. Thus the best design, that is the

design that maximizes CNR, is at the rightmost edge of the shaded region. Because

both Fig. 4.2a and 4.2b are for fixed tungsten or HDPE thicknesses, finding the

optimal design that meets all of the requirements in Sec. 4.1 involves an iterative

process.
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For research and flexibility reasons, we selected a non-optimal design for MATA-

DOR which is shown as the black asterisk in Fig. 4.2a and 4.2b and described in

Table 4.1.

Table 4.1: Final design parameters of MATADOR

Detector Diameter 5.08 cm stilbene crystal
Mask pattern URA-35

Inner mask radius 17.5 cm
Tungsten thickness 0.635 cm

Tungsten width 3.04 cm
Inner mask radius 19.7 cm

HDPE thickness 6.0 cm
Pixel pitch 10.28◦

Mask height 20 cm
Total mask weight 23 kg

Max extent 60 cm x 60 cm

Figure 4.3: Picture of MATADOR. The central detector is a 5.08 cm stilbene crystal
and the cylindrical mask consists of two layers. The outer layer is 6 cm of HDPE
and the inner is 0.635 cm of tungsten. The mask is arranged in a URA-35 pattern
and is held in place by a 3D printed frame. The mask frame is affixed to an optics
breadboard that sits atop of a 360◦ rotary table.

4.2 Construction

The outer layer of the mask is composed of HDPE annular sectors with a radial

thickness of 6 cm and an angular width of 10.28◦. The inner layer of the mask is a
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35-gon of tungsten bars; each bar is 0.635 cm thick and 3.04 cm wide. The mask

elements are held in place by a 3D printed frame which sits on a 360◦ rotary table.

4.2.1 Updates

Since [152] was published, MATADOR has been updated. Now, there are two

detectors, a 5.08 cm stilbene detector and a 2.54 cm Cs2LiLa(Br,Cl)6 (CLLBC)

detector, hanging from an x-y linear stage. To make more vertical space, the mask was

moved up using threaded standoffs. Fig. 4.4 is a picture of the updated MATADOR

system. The updates do not significantly change the imaging performance of the

system.

Figure 4.4: Updated picture of MATADOR. There are two detectors, a 5.08 cm
stilbene detector and a 2.54 cm CLLBC detector, hanging from an x-y linear stage.
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4.2.2 Electronics and Communication

The rotary table, x-linear actuator, and y-linear actuator are all driven by stepper

motors. Each motor is controlled by a M542T microstep driver which is connected

to a Arduino Uno for movement commands. The rotary table is zeroed using a

magnet and a Hall effect sensor. The motors are connected to a relay to provide a

software based power control switch and there are physical disconnect switches as a

precautionary measure.

4.2.3 Limitations

The rotary table has a gear ratio of 180:1 and the stepper motor takes 200

steps/revolution, thus it takes 36,000 steps of the stepper motor to rotate the table

once. Although theoretically the angular resolution of the rotary table is 0.01◦, the

mask’s large inertia cause some skipped steps. To mitigate this problem, the mask

is accelerated and decelerated over 10 steps which results in 3 lost steps per start

and stop. Thus even when the rotary table is fully weighted down by the mask, the

angular position uncertainty is <0.03◦ if re-zeroed after every revolution. The rotary

table can make a full rotation in 90 seconds.

Theoretically, the x-y linear stage can take steps that are 5µm each but the

accuracy of the system has only been measured up to 100µm.

4.3 Experimental Results

A 2.4 mCi Cf-252 point source was placed 3 m from the detector and imaged for 30

minutes at 12◦/min. Fig. 4.5a and 4.5b show SBP and MLEM reconstructed images

of gamma rays and neutrons respectively. The angular resolution from the SBP

reconstruction for the gamma rays and fast neutrons is 17.3◦ and 16.2◦ respectively,
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which agrees well with the large detector model prediction from Fig. 4.2a and 4.2b.

The MLEM algorithm was terminated when the normalized root mean squared error

(NRMSE) of the observation vector plateaued as shown in the figure inset. The

MLEM reconstructed image of this point source had a FWHM of 7.7◦ for both gamma

rays and fast neutron.

(a) Reconstructed image from gamma
rays. The SBP FWHM is 17.3◦ while
the MLEM FWHM is 7.7◦. The
MLEM algorithm was terminated at
75 iterations.

(b) Reconstructed image from fast
neutrons. The SBP FWHM is 16.2◦

while the MLEM FWHM is 7.7◦. The
MLEM algorithm was terminated at
50 iterations.

Figure 4.5: A 2.4 mCi Cf-252 point source was placed 3 meters from the detector.
Measurement time was 30 minutes. One degree bins were used. The MLEM algorithm
was terminated when the NRMSE of the observation vector plateaued as shown in
the insets.

After MLEM reconstructions using both the small and large detector models

on the bare Cf-252 point source data, we find that using the small detector model

degrades the angular resolution by 0.8% and increases the NRMSE of the observations

by 1.3%. Thus, for this c-TEI design, using the large detector model instead of the

small detector model does not lead to appreciable improvement in the reconstructed

images.
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4.4 Conclusion

Previous work on the design process of c-TEI systems is limited, thus this chapter

explores the tradeoffs between size, weight, angular resolution, and CNR. Based on

those simulations, we built a 1D, dual-particle, c-TEI system called MATADOR. We

also showed that when the NRMSE between the small and large detector models

is small (∼ 1.4% for MATADOR), the benefit of using the large detector model

as opposed to the small detector model is minimal. For MATADOR, the angular

resolution is only 0.8% better. Although the benefit from using the large detector

model is not appreciable for this c-TEI system, it is easy to imagine smaller mask

geometries where it would provide greater improvement on performance, such as for

a handheld system.

In the following chapters, we use the MATADOR system to verify the system

responses described in Chap. III and then explore and implement adaptive imaging

concepts.
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CHAPTER V

Verifying the System Response Models

This chapter presents experimental validation of the large and offset detector

models (Sec. 5.1 and 5.2 respectively) using data collected with the MATADOR

system1.

5.1 Verifying the Large Detector Model

To verify the large detector model, we use a shadow bar measurement. A 2.4 mCi

Cf-252 point source was placed 3m from the MATADOR system2 and imaged for

30 min at 12◦/min. Next, as shown in Fig. 5.1, a 7.62 cm × 10.16 cm × 30 cm

high-density polyethylene (HDPE) block was placed directly between the Cf-252

source and the detector such that no source neutrons would interact with the detector

without first scattering off the mask or the surrounding environment. The shadow

bar neutron count rate as a function of mask rotation angle was then subtracted from

the bare source neutron count rate, thus removing all source scatter from the mask,

source scatter from the surrounding environment, and natural background. This

yields the modulation of the source by the mask. Fig. 5.2 shows the experimental

data alongside the predictions from both the small detector and the large detector

1Parts of this chapter are adapted from [152].
2For details on the MATADOR system, see Chap. IV.
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models. Qualitatively, the experimental data and the expected response match.

Figure 5.1: Experimental set-up for two separate measurements. The 2.4 mCi Cf-252
point source is 3 meters from the detector. In the first measurement, a shadow
bar blocks all neutrons from directly interacting with the detector. In the second
measurement, a HDPE shield blocks all neutrons from directly interacting with the
detector and the mask. Not to scale.

Figure 5.2: Neutron count rate versus mask rotation angle found from subtracting the
shadow bar measurement from the bare source measurement. For this c-TEI design,
both the small and large detector models show good agreement with the measured
data.

5.1.1 Regarding the Assumption of Uniform Mask Scatter

The large detector model assumes that source scatter from the mask is constant

as a function of mask rotation angle. To test this assumption, we isolate the mask

scatter component and conduct a chi-square goodness-of-fit test. As shown in Fig. 5.1,

a 15 cm thick HDPE shield was placed between the source and the entire imaging

system such that no source particles would interact with the detector or the mask
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without first scattering off the surrounding environment. Recall that the shadow

bar measurement blocked only the direct path between the source and detector. By

subtracting the shadow bar measurement from this full shield measurement, for each

mask orientation, we can isolate the contribution from the source scatter off the

mask. A chi-square test was conducted with the null hypothesis that the source

scatter off the mask was sampled from a Skellam distribution3. Using the typical

significance level 0.05 and a sample size of 360, we failed to reject the null hypothesis,

χ2(df = 22, N = 360) = 28.4, p = 0.1644. That is to say, we failed to reject the

assumption that the scatter from the mask is uniform as a function of mask rotation

angle.

5.2 Verifying the Offset Detector Model

The offset detector model must be verified for two different tasks. First, given some

measured data, the offset detector model must be able to accurately and precisely

estimate the underlying source parameters (e.g. source position and source strength)

that generated the measured data. To do this, we collect data from a known source,

in this case a Cf-252 point source, and see how well the offset detector model can

estimate the source parameters as a function of detector position. If the imaging

model is accurate and precise, then the source position and intensity estimates will

match the expected values and the estimates will be the same for all detector positions.

To estimate the unknown parameters, we use maximum likelihood (ML) (Eq. 2.26).

Second, the offset detector model must predict the expected observation vector for

any MATADOR configuration using data from a different configuration. As we will

3The difference of two Poisson distribution is a Skellam distribution with the mean equal to the
difference of the means and variance equal to the sum of the two means.

4df stands for degrees of freedom.

94



see, the source position and source intensity estimates do not vary significantly with

detector position, but the unmodulated intensity5 does vary significantly with detector

position. Scatter from the environment and scatter from the mask are difficult to

predict since the scattered energy plays a large role in the detection efficiency for

fast neutrons. It is possible to take these effects into account using MCNP, but this

approach was avoided here because of the large computational burden - scatter from

the environment would need to be recalculated for every environment since factors

such as the vertical position of the source can drastically change the environmental

scatter contribution.

Although in the MATADOR system, the detector can move to any position inside

the mask (+/- 100 µm), for computational reasons, we only verify the offset detector

model for 145 detector positions as shown in Fig. 5.3. Detector positions are sampled

in concentric rings, each ring being 2 cm larger in radius than the previous. Within

each ring, each detector position is <2 cm away from the next nearest detector

position. Detector position indices are arbitrarily assigned from the outer most ring

starting at (12 cm, 0◦) and moving in the +θ direction. Once all detector positions

in one ring have been assigned an index, indexing moves one ring inwards. Since all

detector positions are placed 2 cm apart, the number of detector positions decreases

from the outer most ring to the center. There are 145 different detector positions

with the 145th representing the center.

5Recall that the unmodulated intensity consists of natural background and source scatter from
the mask, environment, and detector.
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Figure 5.3: Index map for detector positions.

5.2.1 Experimental Setup

A 1.85 mCi Cf-252 source was placed at (90 cm, 178◦) and data was collected at

each detector position for 90s. When the detector is at the center, data was collected

for 70.5 minutes.

The known sources of scatter from the environment are the concrete floor ∼1.25 m

from the center of the system and a concrete wall ∼2 m in the +y direction from the

system. All of the data was collected sequentially on the same day in approximately

5 hours. The source was not moved during the duration of this measurement and the

rotary table was re-zeroed every 10 revolutions and likely has an error <0.30◦.
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5.2.2 Analysis

For each detector position, there are three unknowns for the point source: the

source position (φ), the source intensity (α), and the unmodulated intensity (bd) -

we assume the radial position of the source (r) is known and fixed at 90 cm. To

find the maximum likelihood estimate (MLE), for each source position, we created a

new system response matrix that contained only the system response for that source

position and the system response for the unmodulated intensity and then found the

ML solution for that source position and recorded the negative log-likelihood. The

source position with the minimum negative log-likelihood is the ML source position

alongside the ML intensity estimates for that position. Since scatter is a key process

that is not modelled in Eq. 3.11, this process was repeated for different light output

ranges to get an idea of how scatter impacts the MLEs.

Light output ranges considered:

• > 40 keVee

• 50-150 keVee, 150-250 keVee, . . . 950-1050 keVee.

For each of the unknown parameters, we will create a plot of the MLEs as a

function of detector position. If the offset detector model is accurate and precise, the

estimates will not change as a function of detector position. In order to see if the

estimates do change as a function of detector position, we will look at the average value

for source-side and non-source-side detector positions. Since the source is at ∼180◦,

any detector position with an x-position less than 0 is considered source-side and any

detector position with an x-position greater than 0 is considered non-source-side.

Additionally:
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• The number of detections at each light output ranges was not held constant;

the measurement time was held constant.

• For this analysis, we only utilize pulses with 99.9999% probability of being a

fast neutron thus misclassification of gamma rays as fast neutrons is likely not

a factor in model mismatch. These results are for stilbene only.

• The system response map was not changed for different light output ranges.

The system response has 0.2◦ bins.

• For almost all detector positions, only 90s of data is available. When the

detector is at the center, 70.5 minutes of data is available. Most of the results

in Sec. 5.2.3 only use 90s of data when the detector is at the center of the mask.

Only Fig. 5.11 uses all of the data.

5.2.3 Results

The 1.85 mCi Cf-252 source is at (90 cm, 178◦) as shown in Fig. 5.4.

Figure 5.4: A 1.85 mCi Cf-252 source placed at (90 cm, 178◦). For reference, in
MATADOR, the outer radius of the mask is 25.7 cm and the detector radius is
5.08 cm.
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Fig. 5.5 shows the source position MLEs plotted for each detector position for

fast neutrons depositing more than 40 keVee. Although the source never moved

throughout the experiment, the source position estimates range from 178◦-181◦. Note

that most of the estimates are within 1◦. There are a finite number of counts at each

detector position, see Fig. 5.6, thus some of the variance may be due to counting

statistics.

Figure 5.5: Source position MLE for fast neutrons deposition > 40 keVee. The black
dots are all of the detector positions that were considered. Space between detector
positions has been interpolated.

Figure 5.6: Neutron counts with > 40 keVee as a function of detector position.
Since the source is in the near field, the count rate is strongly dependent on the
source-to-detector distance.

In Fig. 5.5, there appears to be a systematic difference in source position MLEs
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from detector positions that are closer to the source (source-side, x < 0) compared to

those that are further away (non-source-side, x > 0). Fig. 5.7 plots the average source

position MLE from the source-side detector positions and non-source-side detector

positions as a function of light output6. Regardless of energy deposited, there appears

to be a 0.5◦ difference between the source-side and non-source-side estimates.

Thus, we conclude that offset detector model suffers from model mismatch < 1◦.

This model mismatch is not dependent on the light output range implying that it

is not due to scatter but instead may be caused by loss of alignment of the rotary

table during measurement or imperfect manufacturing and alignment of the mask

and linear actuators. There also appears to be a bias of ∼1◦ in the source position

MLEs since the true source is at 178◦. This bias and uncertainty is small since the

angular width of a mask element is ∼10.3◦.

Figure 5.7: Average source position MLE from source-side (x < 0) and non-source-
side (x > 0) detector positions as function of light output. Error bars represent one
standard error of the mean.

Fig. 5.8 shows the source intensity MLEs plotted as a function of detector position.

A 1.85 mCi Cf-252 source emits 7.97× 106 n/s thus the offset detector model over

predicts the source intensity by 7-17% of the true emission rate. Also, in Fig. 5.8,

6The source position MLE maps for different light output ranges are in Appendix A.
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we see a clear systematic bias in the source intensity MLEs. Compared to the mean,

the estimated source intensities are up to 5% lower when the detector is closer to the

source and up to 5% greater when the detector is further away from the source. This

systematic bias may be due to scatter from the environment or the mask. Note that

scatter from the environment or mask must be modulated in a similar manner to the

point source for the source intensities to change. Also, because the detector is moving

with respect to the mask, the fully coded field-of-view (FOV) in the z direction7 is

changing which will affect the probability of environmental scatter being modulated

by the mask.

Figure 5.8: Source intensity MLE from fast neutrons depositing > 40 keVee. Space
between detector positions has been interpolated.

If scatter from the environment or mask are dominant causes for the model

mismatch, then increasing the light output range should reduce scatter related bias.

Fig. 5.9 shows the average source intensity MLEs from source-side detector positions

and non-source-side detector positions as a function of light output8. Fig. 5.10 shows

the corresponding percent difference plot.

7The z direction is defined as the cross product of the x and y axes.
8The source intensity MLE maps for different light output ranges are in Appendix A
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Figure 5.9: Average source intensity MLEs from source-side (x < 0) and non-source-
side (x > 0) detector positions as function of light output. Error bars represent one
standard error of the mean.

Figure 5.10: Percent difference between source-side (x < 0) and non-source-side
(x > 0) average source intensity MLE as function of light output. Error bars are
propagated from Fig. 5.9.

For most light output ranges, there is a consistent, systematic bias of 2-3%

between the source-side and non-source-side intensity estimates. This implies that

the difference in source intensity MLEs made with data collected closer to the source

or further away from the source is not dependent on scatter. Instead such a difference

might occur if the source was positioned a few centimeters further away from the

detector than the response map expected. Thus, we attribute the systematic bias

between the source-side and non-source-side intensity estimates to an imperfect
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experimental setup.

To see if the offset detector model can fit the observed data, we will compare

the experimental data collected when the detector is centered to the point source

ML forward projection. The two responses should match closely. As a quantitative

way to gauge the fit from the offset detector model, we will compare the measured

normalized root mean squared error (NRMSE) between the experimental data and

the ML forward projection to the expected NRMSE if the ML forward projection

was only corrupted by Poisson noise.

Fig. 5.11 shows the experimental data and the ML forward projection when the

detector is at the center9. For a light output threshold of 40 keVee, the NRMSE is

3.3% - from Poisson noise, one would expect a NRMSE of 2.6%10. This implies that

the offset detector model does not perfectly fit the experimental data. We can observe

this effect in Fig. 5.11. For example, at a mask rotation angle of ∼50◦, the large

detector model is under predicting the count rate and at ∼240◦, the large detector

model is over predicting the count rate. At both positions, the source is fully blocked

by a closed mask region. Similarly, ∼210◦ and ∼280◦ are under and over predictions

in the expected counts when the source is in a fully open region of the mask. This

mismatch may be caused by non-uniform background or non-uniform scatter from

the environment or mask.

9Note that all 70.5 minutes of data was used to make Fig. 5.11 instead of 90s.
10The expected NRMSE was found by creating 1,000 Poisson replicates the ML forward projection

of the experimental data, finding the ML forward projection for each replicate, and then calculating
the NRMSE for each replicate and averaging.
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Figure 5.11: Measured counts and point source ML forward projection from the large
detector model as a function of mask rotation angle. Notice that the large detector
model may under or over predict the expected count rate.

If this model mismatch is caused by scatter, then the experimental NRMSE should

match the expected as the light output threshold increases. As shown in Fig. 5.12,

as the light output range increases, the NRMSE approaches the expected NRMSE,

implying that the mismatch is related to scatter from the environment or the mask.

In Sec. 5.1.1, we verified the assumption that scatter from the mask is constant for

all mask rotation angles when the detector is at the center of the mask. Thus, either

the chi-squared goodness-of-fit test in Sec. 5.1.1 did not have the power to detect the

non-uniform scatter from the mask or scatter from the environment was not uniform

for this experiment. This can happen if there is a source of scatter in the environment

such as a concrete pillar or a wall. At this point, we cannot attribute the non-uniform

scatter to any specific cause.
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Figure 5.12: NRMSE between the measured data and the point source ML forward
projection from the large detector model as a function of light output range. As the
light output range increases, the model mismatch decreases.

Based on Fig. 5.12, one method to reduce the model mismatch is to raise the

detection threshold to ∼600 keVee. Unfortunately, this solution is not reasonable

since the majority of pulses have low light output. Raising the detection threshold

to 600 keVee would reduce the count rate by 90% relative to the count rate for a

threshold of 40 keVee. For general image reconstruction applications, we find that this

model mismatch does not cause significant artifacts in the image. For applications

that are sensitive to model mismatch, one may need a more accurate system response

such as one made from experimental data (see Sec. 3.4).

For the second task of predicting, the source position and source intensity estimates

from one detector position can be readily used to predict the response at any other

detector position evidenced by the low variability in these estimates with detector

position. But, the unmodulated intensity is not constant with detector position which

poses a challenge.

As shown in Fig. 5.13, unmodulated intensity has a strong dependence on source-

to-detector distance. Although room return does not fall with the inverse square law,

since scatter off the floor is a large component in room return, it is not surprising
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to see a strong dependence on source-to-detector distance. We can roughly account

for this effect through the source-to-background ratio (S:B) as shown in Fig. 5.14.

Here, S:B is defined as the expected count rate from a fully open region of the mask11

divided by the unmodulated intensity. In this case, the S:B ratio is mostly constant

as a function of detector position - the values range from ± 5% from the average.

Figure 5.13: Unmodulated intensity MLEs as a function of detector position.

Figure 5.14: S:B ratio as a function of detector position.

Thus, for the prediction task, we will assume that the S:B ratio is constant at

2.2:1 for all detector and source positions. Note that scatter from the environment

is highly dependent on many experiment specific factors including distance to the

11By fully open, we mean that no part of the detector is blocked by the mask.
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source and height of the source relative to the ground. Thus, assuming the S:B ratio

is the same for all experiments will have limited validity.

Overall, based on these findings, we can conclude that the offset detector model

can be used to generate precise estimates of source position and source intensity

from data collected from the MATADOR imaging system. For this well-controlled

scenario, the source position uncertainty is < 1◦ and the source intensity uncertainty

is < 5%. In terms of accuracy, the source position estimates were within 1◦ of the

true source location and the source intensity estimates were within 10%. Finally, the

offset detector model can also be used to predict the expected observation vector for

any detector position since the S:B ratio is mostly constant at 2.2:1 for all detector

positions.

5.3 Conclusion

We used experimental data collected with the MATADOR system to verify the

large and offset detector models. Based on the shadowbar results, the large detector

model fits the measured data well. Additionally, we failed to reject the assumption

that scatter from the mask is constant as a function of mask rotation angle when the

detector is at the center of the MATADOR system.

With respect to the offset detector model, we find that it can be used to generate

precise estimates of source position and source intensity for the MATADOR system.

The source position uncertainty is < 1◦ and the source intensity uncertainty is < 5%.

In terms of accuracy, the source position estimates were within 1◦ of the true source

location and the source intensity estimates were within 10%. Additionally, we find

that although the unmodulated intensity changes as the detector moves inside the
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mask, the S:B12, is relatively constant. This enables one to use the source position,

source intensity, and unmodualted intensity estimates from one system configuration

to predict the response expected in a different system configuration. The ability to

predict the expected response is essential to adaptive imaging.

12S:B is defined as the count rate from a fully open region of the mask divided by the unmodulated
intensity
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CHAPTER VI

Improving Angular Resolution Using Adaptive

Detector Movements

High resolution imaging is an important task in nuclear non-proliferation. For

example, one may need high resolution to separate multiple sources that are close

together such as warheads on an inter-continental ballistic missile. From a technical

perspective, often the angular resolution of a system is used as a metric to compare

different imaging systems. Thus, this chapter investigates the benefit of adaptive

imaging on improving angular resolution in a cylindrical, time-encoded imaging

(c-TEI) system. For simplicity, we focus on achieving greater angular resolution

with only adaptive detector movements and no adaptive mask movements. For each

detector position, a full mask rotation of data was collected at a constant rotation

speed. Also, we treat the radial position of a source, rj , as an known - all sources are

at 90 cm and only the system response for sources at 90 cm is used.

The goal for this chapter is to set an upper bound on the achievable gain in angular

resolution using adaptive detector movements. We assume that the number and

positions of all sources are known before hand, thus there is no added uncertainty from

source detection or parameter estimation processes. In this sense, we are considering

clairvoyant detector movements. We consider the following source scenarios:
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1. One point source

2. Two point sources

A Equal intensity sources that are close together

B Different intensity sources at various separations

For each case, we find the detector position that achieves the best angular resolution

and compare that to the detector-centered, conventional c-TEI case. We also consider

what benefit collecting data at multiple detector positions may have. Most of the

analysis is done using simulations, but we will use experimental data to spot check

the results. Only fast neutron results are shown.

Sec. 6.1 develops some first-order intuition for this problem to help understand

results later in the Chapter. As a proxy for angular resolution, we use the square root

of the Cramér-Rao lower bound (CRLB) of the source position, which is discussed

in more detail in Sec. 6.2. Sec. 6.3 provides an overview of the simulations. Sec. 6.4

includes results for a point source and Sec. 6.5 includes results for two point sources.

6.1 First-Order Intuition

In spatial coded aperture (SCA) systems, to the first order, the angular resolution

is proportional to the angular width of a mask element - we use the same intuition

here. As shown in Fig. 6.1, when one moves the detector from the center of the

mask (D0) to an offset position (D1), along one axis, called the imaging axis, the

mask-to-detector distance increases. This increase in mask-to-detector distance means

that the angular width of a mask element decreases (θ1 < θ0) and thus the angular

resolution of the system is better along the imaging axis. The imaging axis is an

extension of vector pointing from the center of the detector to the center of the mask.
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Figure 6.1: Schematic showing an example of adaptive imaging. If one moves the
detector from the center of the mask (D0) to an offset position (D1), along one axis,
called the imaging axis, the mask-to-detector distance increases and thus the angular
resolution along the imaging axis improves.

While moving the detector can provide better angular resolution along the imaging

axis, along other directions, the angular resolution may be worse if the mask-to-

detector distance has decreased or the open-to-closed mask element transitions are

obscured and blurred by the thick mask elements. To help understand this concept,

imagine another axis, called the source axis, that is an extension of the vector from

the center of the mask to the source as shown in Fig. 6.2. When the imaging axis and

the source axis are closely aligned, the system will achieve better angular resolution,

but when the imaging axis and the source axis are not aligned, the system will have

worse angular resolution. This is clear when looking at the sensitivity-normalized

point spread functions (PSFs) shown in Fig. 6.3. Since the detector is at (12,0) cm,

sources near 180◦ will be reconstructed with higher resolution than those near 0◦.

Fig. 6.4 is a plot of some horizontal slices of Fig. 6.3. Notice that as the source axis
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and the imaging axis move further apart, the PSF broadens and the sidelobes change.

Figure 6.2: Schematic showing both the imaging axis and the source axis. The
imaging axis points from the center of the detector to the center of the mask. The
source axis points from the center of the mask to the source.

Figure 6.3: Sensitivity-normalized PSFs for a detector at D(12,0) cm. The PSF
changes with true source position because the system is not LSI. Sources are 90 cm
from the center of the mask.
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Figure 6.4: Sensitivity-normalized PSF for sources at 180◦, 90◦, and 0◦. The detector
is at D(12,0) cm thus 180◦ has the best resolution since it is directly in line with the
imaging axis. Notice that the PSF broadens as the sources move off axis from the
imaging axis and the sidelobes change.

We can confirm this intuition with some experimental reconstructions. Fig. 6.5

is a plot of fast-neutron maximum likelihood expectation maximization (MLEM)

reconstructions of a 1.85 mCi Cf-252 point source at (90 cm,178◦). Reconstructions

were made using data from detectors at (12,0) cm, (0,12) cm, and (-12,0) cm - the

detector at (12,0) cm has the best angular resolution since the source axis and imaging

axis closely aligned. As the source axis and the imaging axis move apart, the angular

resolution for the source is worse.

Figure 6.5: MLEM reconstructions using data from detectors at (12,0) cm, (0,12) cm,
and (-12,0) cm. The source is at (90 cm,178◦).
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Thus, we expect that maximizing the detector-to-mask distance along the source

axis will lead to higher angular resolution reconstructions. Although this intuition is

helpful in understanding angular resolution in c-TEI systems, it is only applicable

when there is one source in the field-of-view (FOV). When there are multiple sources

spread out in the FOV with different intensities, using our intuition to guide detector

movements may not achieve the best results. Instead, we use a definition of angular

resolution based on the CRLB which incorporates the effect of other sources and

counting statistics into the calculation for angular resolution.

6.2 Cramér-Rao Lower Bound

First, this section introduces a definition for angular resolution based on the CRLB

and then calculates the Fisher information matrix (FIM) and the CRLB for the offset

detector model. To gain some insight into this measure of angular resolution, we

consider a simple case where there is one source in the field and no background.

As discussed in Sec. 2.4.1, the CRLB is the lower bound on the variance for all

unbiased estimators of a deterministic parameter [149]. As a measure for angular

resolution, both the CRLB of the source position and the CRLB of the distance

between two sources have been used [155, 156]. Here, we define angular resolution for

a source as the square root of the CRLB of the source position:

σφj(θ, A) =
√

CRLB(θ, A)[Iφj , Iφj ] (6.1)

where σφj is the angular resolution, θ are the parameters of interest, and [Iφj , Iφj ] are

the indexes of the jth source position φj. To simplify notation, we will simply use

[φj, φj] instead of [Iφj , Iφj ]. For the clairvoyant analysis in this chapter, we assume

that θ is known. Recall that the CRLB is found by inverting the FIM - see Sec. 2.4.1.

114



To find the CRLB matrix for the offset detector model, assume there are S sources

in the field of view and the imaging system has collected data at D detector positions.

For each source, there are two unknown parameters θj = [αj φj]
T where

• θj is the parameter vector for the jth source,

• αj is the intensity of the jth source, and

• φj is the azimuthal position of the jth source.

Let

• θS =
[
θT1 · · ·θTj

]T
be a vertically concatenated parameter vector,

• α = [α1 · · ·αj]T be the vector of source intensities, and

• φ = [φ1 · · ·φj]T be the vector of azimuthal source source positions.

Since data was collected at D detector positions, let bD be a vector of unmodulated

intensities and θ =
[
θTS b

T
D

]T
. Thus, there are (2S +D) unknowns. For clarity, we

redefine the offset detector model using summations instead of matrix notation:

yi =

(
S∑
j=1

(αjA [i, j′(φj)]) + bD[i]

)
t[i] (6.2)

where i is the measurement index that spans all mask rotation angles and detector

positions measured, and j′ is a function that transforms the source position into

index space. We use the overline symbol, (·), to differentiate between expected

measurement and noisy measurement. Thus, yi is the expected measurement for the

ith measurement.

Recall from Sec. 2.4.1 that the FIM is

I(θ) = −E
[
∇θ∇T

θ `(y | θ)
]

(6.3)
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and the log-likelihood (`(y | θ)) is

`(y | θ) =

NO∑
i=1

(yi ln (yi)− yi − ln (yi!)) (6.4)

where NO is the number of observations. Plugging Eq. 6.4 into Eq. 6.3, we find1

I(θ) =

NO∑
i=1

(
∇θ yi∇T

θ yi
yi

)
(6.5)

where ∇θ yi is a vector of the partial derivatives of yi with respect to each unknown

parameter. For the jth source:

∂yi

∂αj
= A[i, j′(φj)]t[i]

∂yi

∂φj
= αjt[i]

∂A[i, j′(φj)]

∂φj

∂yi

∂bd
= t[i]

(6.6)

We use a numerical approach to find the derivative of the system response matrix

with respect to the jth source position:

∂A[i, j′(φj)]

∂φj
=
A[i, j′(φj + ∆φ)]− A[i, j′(φj −∆φ)]

2∆φ
.

(6.7)

For the MATADOR system, we find that ∆φ can be as large as 1◦ without any

loss of accuracy in calculating
∂A[i, j′(φj)]

∂φj
.

Thus, plugging in Eq. 6.7 and 6.6 into Eq. 6.5, we can find the FIM - the diagonal

1For more details, see Appendix B
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elements are

I(θ)[αj, αj] =

NO∑
i=1

(A [i, j′(φj)])
2 t[i]∑S

j=1 (αjA [i, j′(φj)]) + b[i]

I(θ)[φj, φj] =

NO∑
i=1

αj ∂A[i, j′(φj)]

∂φj


2

t[i]

∑S
j=1 (αjA [i, j′(φj)]) + b[i]

I(θ)[bd, bd] =

NO∑
i=1

t[i]∑S
j=1 (αjA [i, j′(φj)]) + b[i]

(6.8)

We can use Eq. 6.8 to gain some insight into σφj . Assume that there is no

background, S = 1, and the covariance between α1 and φ1 is small such that the

CRLB (I(θ)−1) can be approximated as the reciprocal of the diagonal elements.

In this case, σφ1 is minimized (thus best angular resolution) when I(θ)[φ1, φ1] is

maximized:

I(θ)[φ1, φ1] =

NO∑
i=1

yi


∂A[i, j′(φj)]

∂φj
A[i, j′(φj)]



2

. (6.9)

From Eq. 6.9, notice that the angular resolution improves both as the number

of counts increases and as the relative difference of the system response between

the estimated source position and its neighbors increases. This aligns with prior

intuition: greater counts result in less measurement uncertainty and the greater the

measurement difference between neighboring source pixels, the easier it is to estimate

the source position.

As noted in Sec. 6.1, as the imaging axis and the source axis move apart, the

angular resolution of the system degrades. Fig. 6.6 is the angular resolution predicted
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by the CRLB as a function of source position for both the conventional, detector-

centered case and for the detector at D(12,0) cm in the MATADOR system. There is

only one source in the FOV (S = 1) and the S:B ratio is 2.2:1; θ = [α1 φ1 b1]
T .

Figure 6.6: Relative change in angular resolution as a function of source position for
the detector centered and detector at (12,0) cm. If the source axis is within ±50◦ of
the imaging axis, the angular resolution improves, otherwise the performance for that
source is worse than the conventional, detector-centered case.

When the source axis is within ±50◦ of the imaging axis, angular resolution of

the offset detector is better than that of the centered detector, but if the source axis

and imaging axis are more than ±50◦ apart, then the angular resolution is worse.

Note that the source is in the near-field thus the number of counts is not constant.

Using the CRLB as a proxy for the angular resolution accounts for

• the covariances between unknowns such as the effect on estimating the position

of a source given there is another source close by,

• the system response, thus any physics that are modelled in the system response

are reflected in the CRLB, and

• the measured counts

but does not account for
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• model mismatch between the imaging model and the experimental data and

• incorrect assumptions.

6.3 Overview of Simulations

We use a clairvoyant analysis to set an upper bound on the achievable gain in

angular resolution from adaptive detector movements. By clairvoyant,we mean that

the number and positions of all sources are known before hand so that there is no

added uncertainty from the parameter estimation process. This section provides an

overview of the simulations and the task-dependent objection function (ψ) that will

be used to decide which detector position or positions provide the best performance.

All sources will be 90 cm from the center of the mask and the S:B ratio is assumed

to be 2.2:1 for all detector positions. If there is one point source in the FOV, ψ is

defined as

ψ(θ, A) =

1−
σφ(θ, A)

σφ(θ, AD(0,0))

 (6.10)

where ψ is dependent on the parameters of interest (θ) and the system response (A).

σφ is the angular resolution found using Eq. 6.1 and AD(0,0) is the system response

for the conventional, detector-centered c-TEI system. We refer to Eq. 6.10 as the

angular resolution gain. Since we are only considering adaptive detector movements,

the optimization problem is

Amax = arg max
A∈A

ψ(θ, A) (6.11)

where A contains the system responses from each candidate detector position. Al-

though in the MATADOR system, the detector can move to any position inside the

mask (+/- 100 µm), for computational reasons, A only contains the system responses
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from 145 detector positions which are shown in Fig. 6.72. Thus for the analysis in

this chapter, the optimal detector position must be one of the 145 detector positions

in Fig. 6.7.

Figure 6.7: Index map for detector positions.

If there are multiple sources of interest, ψ is defined as

ψ(θ, A) =

1−
U (σφ(θ, A))

U
(
σφ(θ, AD(0,0))

)
 (6.12)

2Recall that detector positions were sampled in concentric rings, each ring being 2 cm larger
in radius than the previous. Within each ring, each detector position is < 2 cm away from the
next nearest detector position. Detector indices are assigned from the outer most ring starting
at (12 cm, 0◦) and moving in the +θ direction. Once all detector positions in one ring have been
assigned an index, indexing moves one ring inwards. Since all detector positions are placed 2 cm
apart, the number of detector positions decreases from the outer most ring to the center. There are
145 different detector positions with the 145th representing the center.
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where U (σφ(θ, A)) is simply the quadrature-sum of the angular resolution for each

source of interest:

U (σφ(θ, A)) =

√√√√ S∑
j=1

σ2
φj

(θ, A) (6.13)

We will refer to Eq. 6.12 as the quadrature-sum angular resolution gain.

Sometimes we may want to find Amax that maximizes the angular resolution of

a specific source when there are multiple sources in the FOV. In this case, we use

Eq. 6.10 over Eq. 6.12. We refer to this as the individual angular resolution gain as

opposed to the quadrature-sum angular resolution gain.

Finally, we also investigate the potential benefit of collecting data at two detector

positions instead of just one. In this case, we must optimize over all combinations of

detector positions and the relative time spent at each position. Let A2 be the set of

system responses from 2 detector positions. Since Eq. 6.8 is order independent, there

are
(
145+2−1

2

)
= 10, 585 position combinations. Let T be the set that contains the

time spent measuring at the first detector position relative to the total measurement

time. We will constrain T to only vary from 10% to 90% every 10%. For the two

detector optimization problem, we define A as

A = [AD1 · τ ;AD2 · (1− τ)] (6.14)

where A ∈ A2, τ ∈ T, AD1 is the system response at the first detector position, AD2

is the system response at the second detector position, and the semicolon indicates

vertical concatenation. Thus, the two detector optimization problem is

Amax, τmax = arg max
A∈A2,τ∈T

ψ(θ, A) (6.15)

Together, Amax and τmax describe the system response that maximizes ψ. All

optimizations are done via brute force.
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6.4 One Point Source Results

We start with the simplest case of one point source in the field. The source is

positioned at 0◦ as shown in Fig. 6.8.

Figure 6.8: Point source at (90 cm, 0◦).

6.4.1 Best Detector Position

Fig. 6.9 shows the gain in angular resolution (Eq. 6.10) as a function of detector

position - we call this a gain map. The black dots are all of the detector positions that

were considered and the red dot represents the detector position with the greatest

gain. The contour lines have the same values as the tick marks in the color bar. The

space between detectors positions has been interpolated.
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Figure 6.9: Gain in angular resolution as a function of detector position for a point
source at (90 cm, 0◦). The black dots are all of the detector positions that were
considered and the red dot represents the detector position with the greatest gain.
The contour lines have the same values as the tick marks in the color bar. Space
between detector positions has been interpolated.

As one would expect, the gain is greatest at (−12, 0) cm which is the detector

position that maximizes the detector-to-mask distance along the source axis. For a

single point source, the CRLB predicts that adaptive detector movements can provide

20% better angular resolution compared to the conventional case, but if the detector

position is incorrectly chosen, the loss in angular resolution can be up to 80%.

Experimental Validation

We experimentally validate the results using both MLEM reconstructions and ML

estimation of the source position. For both analyses, we use data from a 1.85 mCi

Cf-252 source at (90 cm, 178◦) measured for 90 s. For the conventional case, we use

data collected when the detector is at the center of the mask and for the adaptive

case, we use data collected when the detector is at (−12, 0) cm.

Fig. 6.10 shows the MLEM reconstruction from both the conventional and adaptive

data collections. Relative to the conventional reconstruction, the full width at half

maximum (FWHM) of the adaptive reconstruction is 25.1% smaller.
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Figure 6.10: MLEM reconstructions for both the conventional, detector-centered case
and the adaptive case. The source is at (90 cm, 178◦) and the adaptive case uses data
collected at (−12, 0) cm - the optimal clairvoyant detector position from Eq. 6.11.

Another method to validate the CRLB predictions is by comparing the distribu-

tions of source position maximum likelihood estimates (MLEs) (φ̂ML) from both the

conventional and adaptive cases. Using the experimental data described above, we

created 10,000 replicates of data as if the source was 1% the original source strength

and estimated φ̂ML for each replicate. Histograms of φ̂ML from both the conventional

and adaptive case are shown in Fig. 6.11. Based on Gaussian fits, the histogram from

the adaptive case is 17.7% narrower than the conventional case which is in line with

the CRLB prediction.
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Figure 6.11: Normalized and shifted histograms of φ̂ML created from 10,000 replicates
of experimental data. The source is at (90 cm, 178◦) and the adaptive case uses data
collected at (−12, 0) cm - the optimal clairvoyant detector position from Eq. 6.11.
The dashed lines represent a Gaussian fit and the dots are points on the histogram.

These experimental validations provide us with confidence that the predictions

made by the CRLB are experimentally achievable. Adaptive detector movements can

improve angular resolution by approximately 20% for a fast neutron point sources in

the MATADOR system.

6.4.2 Multiple Detector Positions

It may be possible to achieve better angular resolution by combining data from

multiple detector positions instead of just one. We explore this idea by comparing

the CRLB predictions from Amax in Eq. 6.11 and 6.15.

In Fig. 6.9, we plotted the gain in angular resolution as a function of detector

position in (x, y) coordinates. In this section, we plot angular resolution gain as a

function of detector position in index space3. Recall from Fig. 6.7 that each candidate

detector position was assigned an index.

Since there are multiple detector positions under consideration, we optimize over

3One would need 6 dimensions to show objective function for all variables: 4 for the (x, y)
coordinates of both detectors, the fifth for the relative measurement time, and the sixth for angular
resolution gain. That seems challenging.
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the time spent at the first detector position relative to the total measurement time (τ ,

see Eq. 6.15). Fig. 6.12 shows the gain as a function of the first and second detector

positions - τ was optimized and only the gain from the optimal is shown. The red dot

represents the pair of detectors that lead to the greatest gain in angular resolution.

The conventional case is the top right corner at index (145, 145). Any point along

the diagonal from the bottom left to the top right is equivalent to collecting data at

one detector position for the total time. If one were to extract the diagonal elements

and plot them by their x, y detector positions, one would get Fig. 6.9.

Figure 6.12: Angular resolution gain for two detector positions for a point source
at (90 cm, 0◦). The relative time between the detector positions has been coarsely
optimized.

Recall from Fig. 6.9 that for a point source at (90 cm, 0◦), the best detector

position is (−12, 0) cm. (−12, 0) cm corresponds to index 21 in Fig. 6.7. As shown in

Fig. 6.12, the best two detector positions to collect at are indices (21, 21) - collecting

data at the best detector position twice. Thus, there is no added benefit to collecting

data at two detector positions. This is reasonable because the covariances between α1,

φ1, and b1 are relatively small for a point source and thus achieving the best angular

resolution is mostly focused on maximizing the fisher information for the source

position (for a simple example, see Eq. 6.9). Thus, spending valuable measurement
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time at a detector position that does not maximize the fisher information leads to

worse angular resolution.

Since there is no benefit in terms of angular resolution to collecting data at two

detector positions compared to one, we conclude that collecting data at multiple

detector positions is not valuable for point sources with respect to improving angular

resolution4.

6.5 Two Point Source Results

This section investigates the gain in angular resolution using adaptive detector

movements when there are multiple sources in the FOV. We consider the performance

of each source individually using Eq. 6.10 and collectively using Eq. 6.12. Note

that even when we use Eq. 6.10, the CRLB calculation still includes the unknown

parameters from both sources. We refer to the two sources as S1 and S2.

Sec. 6.5.1 summarizes the CRLB prediction for two equal intensity point sources

that are close together and shows experimental results validating those predictions.

Sec. 6.5.2 considers the performance improvement as a function of source separation

and as a function of relative source intensity. Finally, Sec. 6.5.3 explores if collecting

data at multiple detector positions provides significant benefit over collecting data at

one detector position.

6.5.1 Best Detector Position for Equal Intensity Sources Close Together

There are two equal intensity sources in the field at (90 cm, 5◦) and (90 cm, 355◦)

as shown in Fig. 6.13. Fig. 6.14 shows the quadrature-sum gain (Eq. 6.12) as a

function of detector position.

4Note that in this analysis, the radial position of the source was not treated as an unknown.
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Figure 6.13: Two equal intensity point sources at (90 cm, 5◦) and (90 cm, 355◦).

Figure 6.14: Quadrature-sum gain map for two equal intensity point sources at
(90 cm, 5◦) and (90 cm, 355◦). The black dots are all of the detector positions that
were considered and the red dot represents the detector position with the greatest
gain. The contour lines have the same values as the tick marks in the color bar. Space
between detector positions has been interpolated.

In line with intuition, the angular resolution gain increases as the mask-to-detector

distance along the source axis increases. There are two main observations here:

1. The maximum gain is ∼50% which is significantly larger than the ∼20% gain

in the single point source case.

2. The gain map is not symmetric with respect to the x-axis (y = 0).
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Observation 1: the maximum gain is ∼50% which is significantly larger than in

the ∼20% gain in the point source case. This is because the loss in angular resolution

of a source (S1) by the addition of another source (S2) is highly dependent on both

the relative positions of the sources and the angular resolution of the imaging system.

Fig. 6.15 shows the percent change in angular resolution of S1 when S2 is introduced

into the FOV as a function of the position of S2. Fig. 6.16 is a magnified version of

Fig. 6.15 at low source separations.

Figure 6.15: Percent change in angular resolution of a source when a second source is
introduced in the FOV. The blue curve is for the detector centered case and the red
for a detector at (−12, 0) cm. The graph is relative to the single source case. The
two sources are of equal strength. The source in consideration is at (90 cm, 0◦).

Figure 6.16: Magnified version of Fig. 6.15.
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Focusing on the detector-centered case (blue line) in Fig. 6.15 and 6.16, if S2 is

introduced close to S1, within 20◦, the angular resolution of S1 degrades by many

factors. This is because the observed responses for the two sources are quite similar

which leads to a high degree of covariance between φ1 and φ2. Even when the

sources are far apart, S2 degrades the angular resolution of S1 by 40-50%5. At large

separations, the resolution loss is not constant but depends on the exact location of the

second source. Part of this variation is because mask elements are 360◦/35 ≈ 10.28◦

wide so when the detector is centered, any sources that are an integer multiple of

10.28◦ apart are more likely to experience mask element transitions at the same mask

rotation angle.6 These correlations make source localization more difficult. From the

perspective of Eq. 6.8, for some source separations, ∂A/∂φ for φ1 and φ2 are more

closely correlated which results in larger values in the off-diagonal elements related

to φ1 and φ2 in the FIM.

For the offset detector case in Fig. 6.15 and 6.16, for small source separations, the

angular resolution loss is smaller. This is because the intrinsic resolution of the system

is greater. Since the PSF is shift-variant and the detection efficiency is changing

as the second source moves, the offset detector performs worse than the centered

detector when the source separation is large. Notice that the curves in Fig. 6.15 are

not reflected at 180◦ - the angular resolution loss is different if a source is introduced

+20◦ or −20◦ from the source of interest.

Observation 2: the gain map is not symmetric with respect to the x-axis (y = 0).

The effect is more obvious when the two sources are closer together - see Fig. 6.17

where the two sources at 6◦ apart. In Fig. 6.17, the best detector position is not

the position that maximizes the detector-to-mask distance along the source axis,

5If α2 << α1, then there would be no degradation in angular resolution of the first source.
6The response is also blurred by the large detector and the thick mask elements.
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(−12, 0) cm, but instead the best position is (−11.85, 1.88) cm which is slightly off

from the centerline between the two sources. This effect is caused by the lack of

symmetry in Fig. 6.15. In any case, the difference in gain between (−11.85, 1.88) cm

and (−12, 0) cm is negligible but points to the interconnected nature of estimating a

parameter in the presence of other unknowns.

Figure 6.17: Quadrature-sum gain map for two equal intensity point sources at
(90 cm, 3◦) and (90 cm, 357◦). The black dots are all of the detector positions that
were considered and the red dot represents the detector position with the greatest
gain. The contour lines have the same values as the tick marks in the color bar. Space
between detector positions has been interpolated.

Experimental Validation

Similar to the one point source case, we experimentally validate these results with

MLEM images and MLEs of the source positions. A 1.85 mCi source was placed

at both (90 cm, 175◦) and (90 cm, 185◦) and data was collected for 90 s with the

detector at the center and the detector at the position that provided the greatest

quadrature-sum angular resolution gain - (−12, 0) cm. In the conventional case, the

two sources cannot be separated in the MLEM image while in the adaptive case, the

two sources are clearly separated.
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Figure 6.18: MLEM reconstruction for the conventional, detector-centered case. The
sources are at (90 cm, 175◦) and (90 cm, 185◦).

Figure 6.19: MLEM reconstruction for the adaptive case. The sources are at
(90 textcm, 175◦) and (90 cm, 185◦). The detector is at (11.85,−1.88) cm.

For the same experimental setup, we created 1,000 replicates as if the sources

were 1% of their original strengths and found the ML source positions for both

sources. Below is the distribution of MLEs for both the conventional and adaptive

case. Using the quadrature-sum of the standard deviations of the Gaussian fits, the

gain is calculated as 41.6%, in line with the CRLB prediction.
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Figure 6.20: Histograms of MLE of the source position from both the conventional,
detector-centered case and the adaptive case. The source is at (90 cm, 175◦) and
(90 cm, 185◦) and the adaptive case uses data collected at (−12, 0) cm. The dashed
lines represent Gaussian fits and the dots are points on the histogram.

These validations provide confidence that the angular resolution gain predicted

by the CRLB can be experimentally realized and that the gain is significant.

6.5.2 Best Detector Position for any Two Point Sources

When two equal intensity point sources are close together, adaptive detector

movements can significantly improve angular resolution - up to 50% better. How does

the performance change as a function of the azimuthal separation between sources or

their relative intensities? To answer this question, we varied the source separation

from 2◦ to 180◦ every 2◦ and varied the relative strength of the second source from

10% to 90% every 10%. For each case, we calculated the quadrature-sum angular

resolution gain for each detector position and recorded the maximum quadrature-sum

gain; Fig. 6.21 shows the corresponding plot as a function of source separation and

relative source strength.

133



Figure 6.21: Maximum quadrature-sum gain for two point sources as a function of
source separation and relative strength.

We make four observations from Fig. 6.21:

1. As the source separation increases, the quadrature-sum angular resolution gain

decreases.

2. As the relative difference in soure intensity increases, the quadrature-sum

angular resolution gain increases.

3. As a function of source separation, the quadrature-sum angular resolution gain

is not smooth.

4. When sources are less than 20◦ apart, regardless of the relative source strengths,

the quadrature-sum angular resolution gain is large.

Below, we discuss each observation. To aid in this process, we will use Fig. 6.22

and 6.23 which show individual and quadrature-sum gain maps for two sources that

are close together and far apart for two relative intensities.
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(a) For source at 5◦. Equal intensity
sources.

(b) For source at 5◦. 9:1 intensity sources.

(c) For source at 355◦. Equal intensity
sources.

(d) For source at 355◦. 9:1 intensity
sources.

(e) quadrature-sum. Equal intensity
sources.

(f) quadrature-sum. 9:1 intensity sources.

Figure 6.22: Gain maps for two point sources at (90 cm, 5◦) and (90 cm, 355◦). Left
column is equal intensity, the right is 9:1 intensity.
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(a) For source at 72◦. Equal intensity
sources.

(b) For source at 72◦. 9:1 intensity
sources.

(c) For source at 288◦. Equal intensity
sources.

(d) For source at 288◦. 9:1 intensity
sources.

(e) quadrature-sum. Equal intensity
sources.

(f) quadrature-sum. 9:1 intensity sources.

Figure 6.23: Gain maps for two point sources at (90 cm, 72◦) and (90 cm, 288◦). Left
column is equal intensity, the right is 9:1 intensity.
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Observation 1: As the source separation increases, the quadrature-sum angular

resolution gain decreases. Consider the equal intensity case (5:5) in Fig. 6.21. Once

the sources are separated by 80◦, the gain falls to below 10%. This is because the

detector positions that provide high angular resolution gain for one source result

in poor gain for the other. Recall from Fig. 6.6 that offsetting the detector only

provides better angular resolution within -50◦ or +50◦ of the imaging axis. Sources

outside that range are reconstructed with worse resolution as compared to keeping

the detector in the center. This effect is also true for sources with large intensity

differences. In addition, the sources in these simulations are 90 cm from the system,

thus if the sources have large separations, moving away from a weak source means

acquiring more counts, and more Poisson noise, from the strong source.

Since Fig. 6.21 uses the quadrature-sum gain, the angular resolution of both sources

is important. Fig. 6.23a and 6.23c are the gain maps for each source individually for

two equal intensity sources. For the source at (90 cm, 72◦), the best detector position

is (−7.05,−9.71) cm which provides 14% gain. The same detector position would

result in a -68% gain, a loss, for the other source. Thus, it is better to move to a

compromise position, (−2, 0)cm, that provides a small amount of gain overall.

Observation 2: As the relative difference in soure intensity increases, the quadrature-

sum angular resolution gain increases. If there is a large intensity difference between

two sources, the quadrature-sum gain will be dominated by the gain of the weaker

source. This is because the lower count rate from the weak source makes it harder to

estimate its position. Thus, maximizing the quadrature-sum gain means achieving

better resolution for the weak source at the expense of the strong source. In the

extreme case, the detector will move to the detector position that maximizes the

individual angular resolution gain for the weak source without compromising for the
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performance with respect to the strong source. For example, the detector position

that maximizes the quadrature-sum angular resolution gain in Fig. 6.23f results in

-12% individual gain for the strong source (Fig. 6.23b).

Observation 3: As a function of source separation, the quadrature-sum angular

resolution gain is not smooth. This point was addressed in more detail in Sec. 6.5.1.

Essentially, when sources are separated by integer multiples of the width of a mask

element, mask transitions occur at the same mask rotation angle for both sources.

This makes localization more difficult. This effect is muddled by the large detector

response and thick mask elements.

Observation 4: When sources are less than 20◦ apart, regardless of the relative

source strengths, the quadrature-sum angular resolution gain is large. For equal-

intensity sources, the gain is large because the detector positions that achieve high

gain for one source also lead to high gain for the second source. The same effect

occurs when the relative difference in intensity is large. In contrast, as explained in

the discussion on Observation 1, when the sources are far apart, the detector position

that leads to high gain for one source will lead to poor gain for the second source.

6.5.3 Multiple Detector Positions

Naturally, one would be interested in knowing the gain when combining data

from multiple detector positions instead of just one detector position. For example,

perhaps collecting data at the individual best positions for both sources is better

than collecting data at the quadrature-sum, compromise position. Similar to the

one point source case, we answer this question though brute force. We calculate the

quadrature-sum angular resolution gain for every pair of detector positions. Since

there are two detector positions, we vary the relative time spent at the first detector

138



position from 10% to 90% every 10%. Fig. 6.25 plots of the maximum quadrature-sum

angular resolution gain from two detector positions as a function of source separation

and relative source strength. The plot for the one detector position is repeated for

reference in Fig. 6.24. Fig. 6.26 shows the difference in gain between the two.

Figure 6.24: Quadrature-sum gain for two point sources as a function of source
separation and relative strength. One detector position.

Figure 6.25: Quadrature-sum gain for two point sources as a function of source
separation and relative strength. Two detector positions.
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Figure 6.26: Absolute difference in gain between two detector positions and one as a
function of source separation and relative strength.

Looking at Fig. 6.26, there is no benefit from collecting data at multiple detector

positions for many of the scenarios considered here. In select cases, there is some

benefit, but it is small and not worth the cost of moving the detector. We attribute

these results to the observation that collecting higher quality data for one source

often means collecting much lower quality data for the other source, thus it is almost

always better to spend the entire measurement time at a compromise position.

6.6 Conclusions

We find that adaptive detector movements can provide significant angular resolu-

tion gain in the following cases:

1. Up to 20% better angular resolution for point sources,

2. Up to 50% better angular resolution for two point sources that are close together

regardless of relative source strength,

3. Between 10%-30% better angular resolution if sources are far apart with large

intensity differences.
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The benefit from adaptive detector movements is minimal in the following cases:

1. <10% better angular resolution for equal intensity sources that are more than

80◦ apart.

2. <10% better angular resolution for sources that are more than 160◦ apart

regardless of relative source strength.

We also find that collecting and combining data from multiple detector positions

does not provide appreciable benefit above collecting data at one detector position

for point sources or two point sources. This finding holds true for a range of different

source separations and relative intensities.

These results have been experimentally spot checked by ML estimation of the

source position and MLEM reconstructions. For one point source, the variance

of the MLE of the source position reduced by ∼17.7% as predicted by the CRLB

simulations and the FWHM of the MLEM reconstruction is ∼25.1% smaller. For

two equal intensity point sources separated by 10◦, the simulations predicted ∼50%

quadrature-sum angular resolution gain and the experimental ML estimates showed

∼42% gain. The MLEM images for two equal intensity sources also showed significant

resolution improvement. In the conventional case, two equal intensity sources that

are 10◦ apart cannot be separated while in the adaptive case, the two sources are

clearly resolved.

The results from this clairvoyant analysis clearly show the potential of adaptive

detector movements in improving angular resolution. Thus far we have assumed that

the unknown parameters are known, but this is unlikely to be the case in real-world

scenarios. In order to make an adaptive imaging algorithm that generates higher

resolution images when the unknown parameters are not know apriori, we must
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address the detection problem of determining the number of sources in the field. As

a starting point, in the next chapter, we explore how adaptive mask movements can

improve detection of a weak source in the vicinity of a strong source.
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CHAPTER VII

Improving Detection Using Adaptive Mask

Movements

Searching for undeclared sources is an important task for nuclear non-proliferation

and international safeguards. Although most source search tasks are focused on

finding one point source in the presence of natural background, this chapter focuses

on searching for a weak source in the presence of a strong source. This is a challenging

scenario as the noise from the strong source obscures the signal from the weak source.

We show that adaptive imaging can be used to improve the detection performance

of a cylindrical, time-encoded imaging (c-TEI) system by reducing the particle flux

from the strong source while modulating the weak source. In this way, the signal and

noise from the strong source is reduced and detection performance with respect to

the weak source improves.

This chapter uses adaptive mask movements instead of adaptive detector move-

ments. For the conventional and adaptive data collections, the detector is always in

the center but in the adaptive case, the measurement time is not uniformly spread

out over the entire revolution. As we will see, some regions of the mask are better at

detection than other regions of the mask. Thus, this chapter focuses on how to which

regions of the mask to measure at. Additionally, we develop an adaptive detection
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algorithm that improves detection performance.

Sec. 7.1 and 7.2 cover some necessary setup for the adaptive detection problem.

Sec. 7.3 contains results for the clairvoyant case where we know the positions of the

sources. Next, Sec. 7.4 presents an adaptive detection algorithm when the source

positions are not known and applies the algorithm to experimental data. Finally,

Sec. 7.5 discusses the performance differences between using the experimental system

response and the offset detector model.

7.1 Overview of the Weak Source, Strong Source Problem

In the weak source, strong source problem, there are two sources in the field-

of-view (FOV): a strong source which is easy to detect and a weak source that is

difficult to detect. The weak source may be difficult to detect because of high natural

background or because noise from the strong source is obscuring the weak source. As

we will shortly discuss, for the experimental data we are using, fast-neutron natural

background is essentially negligible thus in this work the weak source is only difficult

to detect because of the presence of a strong source.

For the simulations used in the clairvoyant analysis in Sec. 7.3, the strong source is

a ∼21µCi (∼9×104 n/s) Cf-252 point source at (90 cm, 178◦) and the weak source is a

∼2.1µCi (∼9×103 n/s) Cf-252 point source at (90 cm, 88◦)1. The total measurement

time is 900s and we use the offset detector model to create the observation vector (y)

with a S:B ratio is 2.2:1. Note that there is no additional natural background. Based

on these parameters, in the conventional case, the expected number of counts from

the strong source is 5,000 counts and the expected counts from the weak source is

1Both the strong and weak source at always at 90cm, and the strong source is always at 178◦.
Usually, the weak source is at 88◦, but in a few cases it is not. We will be very clear to note the
location of the weak source when it is not at 88◦.
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500 counts.

For the experiments, we use data collected from a 1.85 mCi Cf-252 point source

at (90 cm, 178◦). Data was collected for a total of 47, 90s revolutions. We randomly

divided 46 of the 47 revolutions into 2 groups. To make experimental data for

the strong source, we bootstrap (see Sec. 2.4.3) the data from group 1 and for

the weak source, we bootstrap the data from group 2. The count rates from the

experimental sources have been artificially reduced to match the expected counts

from the clairvoyant analysis. Since the 1.85 mCi Cf-252 source in the experiment is

quite strong, the natural fast neutron background is negligible. Calculation of the

likelihood ratio in the generalized likelihood ratio test (GLRT) for experimental data

is done using the experimental system response instead of the offset detector model.

As discussed in Sec. 5.2, environmental scatter causes model mismatch between the

experimental data and the offset detector model. Since the GLRT is sensitive to

such model mismatch, the offset detector model cannot be reliably used for detection.

Sec. 7.5 discusses this in more detail.

7.1.1 Hypotheses

For the weak source, strong source problem, we use the following hypotheses:

HN : α2 = 0;

HA : α2 6= 0;

(7.1)

We use the GLRT as the hypothesis test. Recall from Sec. 2.4.2 that under

some conditions, the likelihood ratio from the GLRT is distributed as a non-central

chi-squared distribution:

Λ′GLRT = 2ln(ΛGLRT) ∼


χ2
r(0), HN

χ2
r(λ), HA

(7.2)
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where χ2
r(λ) is the non-central chi-squared distribution with r degrees of freedom and

non-centrality parameter λ (see Appendix 6C of [149] for more details). For the null

hypothesis, λ = 0, thus χ2
r(0) is simply a chi-squared distribution with r degrees of

freedom. For the alternative hypothesis, λ is

λ = (θr,A − θr,N)T [Iθrθr (θr,A,θn)−

Iθrθn (θr,A,θn) I−1θnθn (θr,A,θn) Iθnθr (θr,A,θn) ] (θr,A − θr,N)

(7.3)

where θr,A and θr,N are the true values of the test-relevant parameters under the

alternative and null hypotheses and θn are the true values of the nuisance parameters.

In the hypotheses from 7.1, there is only one test relevant parameter, θr = [α2],

and four nuisance parameters, θn = [α1 φ1 φ2 b]
T . Thus, there is only one degree of

freedom (r = 1).

The Λ′GLRT for a Poisson process is2

Λ′GLRT = 2

NO∑
i=1

yi ln
 yi,A

yi,N


− NO∑

i=1

(
yi,A − yi,N

) HA

≷
HN

ηcrit (7.4)

where θ̂ML,N/A is the maximum likelihood estimate (MLE) of θ under the null or

alternative hypothesis, yHN/A
is the associated forward projection, and ηcrit is the

critical threshold between the null and alternative hypothesis. ηcrit is usually set

based on a desired false alarm rate (Eq. 2.38).

7.1.2 Metrics to Assess Detection

To assess and compare the performance of different system configurations, we use

receiver operator characteristic (ROC) curves and some metrics derived from it. As

shown in Fig. 7.1, a ROC curve plots the probability of detection as a function of

2See Appendix C.
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the probability of false alarm. Notice in Fig. 7.1 that ROC curve 2 has a greater

probability of detection for any probability of false alarm thus system configuration 2

is better at detection than system configuration 1.

Figure 7.1: ROC curves plot the probability of detection as a function of probability
of false alarm. ROC curve 1 is from a hypothetical system configuration 1 and ROC
curve 2 is from a hypothetical system configuration 2.

To create an ROC curve, one needs to know the distribution of the test statistic

(T ) under the null and alternative hypothesis. Since we are using the GLRT, we refer

to these distributions as f(Λ′GLRT,HN ) and f(Λ′GLRT,HA) respectively. One can find

f(Λ′GLRT,HN) and f(Λ′GLRT,HA) through simulations or experiments. Additionally,

one can also use Eq. 7.2 and 7.3 to find the asymptotic GLRT ROC curve. Given

f(Λ′GLRT,HN ) and f(Λ′GLRT,HA), one can create an ROC curve by evaluating Eq. 2.37

and 2.38 for a range of ηcrit values.

To compare two ROC curves, we use the following metrics:

1. AUROC: area under the ROC curve
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2. PD,5% = PD(PFA = 0.05): the probability of detection when the probability of

false alarm is 5%

3. τ2→1: the relative change in time for ROC curve 2 to match ROC curve 1.

Given an experimental ROC curve, calculating the AUROC and PD,5% is straight

forward. For the AUROC, we use a trapezoidal sum and for PD,5%, we interpolate

the ROC curve. On the other hand, experimentally calculating τ2→1 by changing the

measurement time is computationally expensive. Thus, we only use τ2→1 to assess the

asymptotic GLRT ROC curves and not experimental ROC curves. In the asymptotic

case, f(Λ′GLRT,HN ) is constant for all system configurations3, thus τ2→1 is equivalent

to the relative change in time for f2(Λ
′
GLRT,HA) to match f1(Λ

′
GLRT,HA)4. Since

the non-centrality parameter, λ scales linearly with total measurement time (see

Appendix D), τ2→1 is

τ2→1 =
λ1

λ2
− 1 (7.5)

where λ1 is the non-centrality parameter of system configuration 1 and λ2 is the

non-centrality parameter of system configuration 2. If λ2 is greater than λ1, τ2→1 is

negative meaning system 2 can achieve similar performance to system 1 in less time.

As an example, Tab. 7.1 summarizes the relevant metrics for the hypothetical

ROC curves in Fig. 7.1. ROC curve 2 has a greater AUROC and PD,5% relative

to ROC curve 1, and τ2→1 is negative indicating that system configuration 2 can

achieve the same performance as system configuration 1 in less time. In fact, system

configuration 2 is significantly better than system configuration 1 given that it can

achieve the same performance in 30% less time. Note that although the difference

3f(Λ′GLRT,HN ) is only dependent on the degrees of freedom which is a property of the hypothesis
test, not the imaging system.

4The subscripts 1 and 2 indicate which system configuration these distributions are from.
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between AUROCs from system configuration 2 and system configuration 1 may seem

small, the impact in terms of measurement time may still be large.

Table 7.1: Detection metrics for the ROC curves in Fig 7.1

ROC Curve 1 ROC Curve 2
AUROC 0.941 0.975
PD,5% 0.755 0.885
τ1→2 42.2% -
τ2→1 - -29.7%

Although τ2→1 is a relevant metric for real-world applications, for the low count

experiments considered here, the GLRT has not converged to its asymptotic distribu-

tion thus we cannot use Eq. 7.5 to calculate τ2→1 for experimental ROC curves. We

only use AUROC and PD,5% to assess the performance of experimental ROC curves.

Fig. 7.2 shows experimental f(Λ′GLRT,HA) and f(Λ′GLRT,HN) for the weak source

using a conventional c-TEI setup. Notice how the experimental distributions have

not converged onto the asymptotic distributions.

(a) Weak source not present (HN ). (b) Weak source present (HA).

Figure 7.2: Asymptotic and experimental likelihood ratios. At low counts, the
experimental distribution has not converged to the asymptotic GLRT predictions.
These plots are for a the conventional c-TEI setup.
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7.2 Overview of the Adaptive Detection Problem

Inherently, the adaptive detection problem is an optimization problem: which

system configurations provide the greatest detection performance. To address this

problem, we need to define an objective function, ψ, that predicts the detection

performance for a system response and define the set of system responses that we

will optimize over. For simplicity we use brute force for optimization.

7.2.1 Objective Function for Weak Source Detection

To predict the detection performance of a system, we use the asymptotic GLRT.

Under the low count experiments considered here, the experimental f(Λ′GLRT,HA) has

not converged to its asymptotic distribution (see Fig. 7.2). Thus, we make the following

simplifying assumption: we assume that the system configurations that maximize

experimental detection performance at high counts are the same system configurations

that maximize experimental detection performance at low counts. Since at high counts

the experimental f(Λ′GLRT,HA) converges to the asymptotic f(Λ′GLRT,HA) and the

asymptotic f(Λ′GLRT,HA) is only dependent on the non-centrality parameter, we

define ψ as

ψ = λ(θN ,θA, A, T ) (7.6)

where λ is the non-centrality parameter, θN/A are the true parameters under the null

and alternative hypotheses, A is a candidate system response, and T is the allotted

time for the measurement. If θN/A are not know, we use θMLE,N/A. For simplicity, the

measurement time is spread out evenly over all of the measurements. For example, if

there are NO observations in A, then the measurement time per bin is T
NO

.
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7.2.2 Domain of System Response

In the adaptive case, the most general data collection would be to rotate the mask

to any measurement bin and collect data for any amount of time. Although this is

the most flexible approach and would lead to the greatest detection performance,

it is not reasonable since the set of potential system responses is enormous. For

example, if there are 30 unique measurements (NO = 30) and the system response

uses 1◦ bins for mask rotation, there are
(
360
30

)
≈ 5× 1043 potential system responses

to optimize over. To simplify the problem, instead of searching for NO observations

that maximize detection, we search for c regions of the mask (or patches of the mask)

that maximize detection.

As shown in Fig. 7.3, we split a full mask revolution into patches where the width

of each patch is Pw and the distance between the start of each patch, known as the

stride, is Ps. If the stride is smaller than the width, then the patches are overlapping.

For example, one might create patches with Pw = 25 and Ps = 20. In this case, there

are 18 overlapping patches. The first patch always starts at a mask rotation angle of

0◦.

Figure 7.3: A full mask rotation is split into patches with a stride of Ps and a width
of Pw.
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Thus, the adaptive detection optimization problem has been simplified from

finding NO mask rotation angles into finding c patches that maximize detection:

Amax = arg max
A∈Ac

ψ(θN ,θA, A, T ) (7.7)

where Amax is the system configuration that maximizes detection and Ac is the set

of system responses with c patches in each candidate system response. Also, let

ψmax = ψ(θN ,θA, Amax, T ).

The number of system configurations in Ac is dependent on Ps and c. Since ψ is

not order dependent, the number of candidate system configurations is

Nsys =

(⌊
360
Ps

⌋
+ c− 1

c

)
(7.8)

where Nsys is the number of candidate system configurations in Ac and b·c is the floor

operator.

For an example, consider Fig. 7.4 which plots ψ as a function of patch center where

Ac is created with c = 1, Pw = 75, and Ps = 1. Notice that detection performance is

maximized when the patch is centered at 158◦ - i.e. mask rotation angles from 121◦

to 195◦ (inclusive).

Figure 7.4: ψ as a function of patch center for c = 1, Pw = 75, and Ps = 1.
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To get a sense as to why mask rotation angles from 121◦ to 195◦ offer better

detection than other mask regions, see the expected measurements in Fig. 7.5. From

121◦ to 195◦, there are two instances where the weak source is modulated by the

mask while the strong source is fully blocked by closed mask elements. The lower

signal and consequently lower noise from the strong source make it easier to detect

the modulation of the weak source. Moreover, there are multiple instances where the

strong source is modulated by the mask while the expected count rate from the weak

source is constant. The lack of overlapping mask transitions makes estimation of the

unknown parameters easier.

Figure 7.5: Expected counts vs mask rotation angle.

In contrast, the patch centered at 255◦ is a poor choice to detect the weak source.

As shown in Fig. 7.5, during the mask rotation angles from 218◦ to 292◦, both the

weak and the strong source are modulated at the same time which makes the weak

source more difficult to detect. The weak source modulation at 285◦ is during an

open element for the strong source and thus suffers from greater noise from the strong

source than if a closed mask element was blocking the strong source. Thus, detection

performance is worse.

Now that we have an objective function and a method to create a set of candidate
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system responses, we can explore the potential of adaptive mask movements for

improving detection performance.

7.3 Clairvoyant Analysis Results

This section uses a clairvoyant analysis to explore the potential benefit adaptive

mask movements can provide in terms of weak source detection. Sec. 7.3.1 investigates

the effect of patch width, patch stride, and number of patches on detection performance.

The goal is to find a combination of Pw, Ps, and c that leads to reasonable improvement

in detection performance while enabling real-time optimization of Eq. 7.7. Once

we have selected those parameters, we spot check the clairvoyant predictions with

experimental results. Next, Sec. 7.3.2 investigates the detection performance as a

function of weak source position relative to the strong source.

7.3.1 Detection Performance for Different Patches

The number of patches, patch width, and patch stride has a dramatic effect on

detection performance. Fig. 7.6 - 7.8 show ψmax and τA→C for different combinations of

Pw, Ps, and c. One can interpret τA→C as the relative change in time for the adaptive

ROC curve to match the conventional ROC curve. For example, if τA→C = −20%

then the adaptive case can achieve the same performance as the conventional case in

20% less time. When the patch width is 360◦, the detection performance is the same

as the conventional case.
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(a) Maximized objective function (ψmax). (b) Relative change in time (τA→C).

Figure 7.6: ψmax and τA→C as a function of patch width and patch stride. c = 1.

(a) Maximized objective function (ψmax). (b) Relative change in time (τA→C).

Figure 7.7: ψmax and τA→C as a function of patch width and patch stride. c = 2.

(a) Maximized objective function (ψmax). (b) Relative change in time (τA→C).

Figure 7.8: ψmax and τA→C as a function of patch width and stride. Due to the large
computation cost, only some of the patch widths were evaluated for c = 3.
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We make 5 observations from Fig. 7.6 - 7.8:

1. In general, reducing the patch width improves detection performance when the

patch width is large.

2. If the number of patches is small and the patch width is small, detection

performance is poor. In some cases, adaptive mask movements perform much

worse than the conventional system.

3. Decreasing the patch stride improves detection regardless of patch widths or

number of patches.

4. There are diminishing returns when decreasing the patch stride.

5. There are diminishing returns when increasing the number of patches.

Observation 1: In general, reducing the patch width improves detection perfor-

mance when the patch width is large. As the patch width reduces, measurement

time is reallocated to regions of the mask that are better at detection. Although this

effect is overall true, locally a small reduction in patch width may result in worse

performance.

Observation 2: If the number of patches is small and the patch width is small,

detection performance is poor. In some cases, adaptive mask movements perform

much worse than the conventional system. This is directly a consequence of not

having enough information to make precise estimates of the unknown parameters.

Imagine an extreme case where Pw = 2 and c = 1. In this case, regardless of which

patch maximizes ψ, there is very little difference in the two measurements and thus

noise will prevent effective detection.
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Observation 3: Decreasing the patch stride improves detection for all patch widths

or number of patches. A small patch stride means Eq. 7.7 has been optimized among

many patches where as if the the patch stride is large, Ac may not contain the system

response that is best for detection.

Observation 4: There are diminishing returns when decreasing the the patch stride.

Notice in both Fig. 7.6 - 7.8 that Ps = 5 often has the same detection performance as

Ps = 1. The performance difference between Ps = 1 and Ps = 5 is highly dependent

on the patch width and the number of patches. For example, if the patch width is

large, then a small change in the patch stride will not change the optimal patch(es)

significantly, in which case decreasing the stride has little benefit. Considering the

increased computational cost of Ps = 1 vs Ps = 5, Ps = 5 may be a good compromise

for real-time optimization of Eq. 7.7. For example, for Ps = 5 and c = 2, there are

2628 patch combinations whereas for Ps = 1 and c = 2 there are 64980 - a 25 fold

increase in computational cost for a marginal improvement in detection for most

patch widths.

Observation 5: There are diminishing returns when increasing the number of

patches. For a comparison of detection performance with respect to the number of

patches, see Fig. 7.9.
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(a) Maximized objective function (ψmax). (b) Relative change in time (τA→C).

Figure 7.9: ψmax and τA→C as a function of the number of patches and patch width.
Ps = 1. Due to the large computation cost, only some of the patch widths were
evaluated for c = 3.

When increasing the number of patches from c = 1 to c = 2, for many patch

widths, detection performance improves. Especially for small patch widths, optimizing

Eq. 7.7 using c = 2 leads to significantly better detection performance compared to

c = 1. This is because valuable measurements are not always close together in mask

rotation space and allowing measurements from different parts of mask gives more

flexibility when when optimizing Eq. 7.7.

As the number of patches increases from c = 2 to c = 3, for most patch widths,

detection performance does not change significantly. In fact, for patch widths around

20◦, increasing c from 2 to 3 degrades performance! This is because optimization of

Eq. 7.7 is constrained - the measurement time must be uniformly distributed to all

measurements.

Let P1,c=2 and P2,c=2 be the two patches that maximize detection when Pw = 20

and c = 2, and let P1,c=3, P2,c=3, and P3,c=3 be the three patches that maximize

detection when Pw = 20 and c = 3. We find that often two of the patches from the

c = 3 case are sampling the same mask rotation angles as one of the patches in the
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c = 2 case. For example, P1,c=3, P2,c=3 are sampling the same mask rotation angles as

P1,c=2 and P3,c=3 is sampling the same mask rotation angles as P2,c=2. Thus increasing

c from 2 to 3 does not add unique measurements but instead changes the relative

time spent at each patch. Since the measurement time is arbitrarily constrained

to be be uniformly spread out to all patches, the relative time spent at each mask

rotation angle may not be optimal. Thus there can be small reductions in detection

performance when increasing c.

In terms of computational cost, Ps = 5, c = 2 is 25 times less expensive than

Ps = 5, c = 3 and Ps = 1, c = 2 is 125 times less expensive than Ps = 1, c = 3.

Given the significant increase in computational cost and the relatively small, if any,

improvement in detection, we use c = 2 instead of c = 3.

These results indicate that adaptive mask movements significantly improve detec-

tion performance in the weak source, strong source problem. Given the diminishing

gains with respect to patch stride and number of patches, we believe that Ps = 5 and

c = 2 is a good compromise between detection performance and computational cost

for real-time optimization of Eq. 7.7. For Pw, we selected 30◦.

Experimental Results

Fig. 7.10 shows the experimental ROC curves from the adaptive and conventional

cases (see Sec. 7.1 for more details on the experimental setup). For the adaptive case,

Ac was generated with c = 2, Pw = 30, and Ps = 5 and Amax was found using the true

values of θ. Note that when evaluating the performance of Amax (calculating ΛGLRT,

we used θ̂ML instead of the true values. Table 7.2 contains the relevant detection

metrics.
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Figure 7.10: Experimental ROC curves from the adaptive and conventional cases.
For the adaptive case, Ac was generated with c = 2, Pw = 30, and Ps = 5.

Table 7.2: Detection metrics for the ROC curves in Fig 7.10

Conventional Adaptive
AUROC 0.87 0.98
PD,5% 0.56 0.89

From Fig. 7.10 and Tab. 7.2, we see that utilizing adaptive mask movements

leads to a considerable improvement in detection. It is important to note that since

data was only collected for a fraction of mask rotation angles, the source cannot

be uniquely localized. Fig. 7.11 is a histogram of maximum likelihood (ML) source

position estimates (φ̂ML) of the weak source. In reality, the weak source is at 88◦,

but often φ̂ML is estimated at other locations. In contrast, the conventional data

collection almost always estimates the weak source in the correct location, but it is

less powerful at detection. Thus, adaptive mask movements improve detection at the

expense of unique localization. It is up to the user to decide what is more valuable.
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Figure 7.11: Experimental ML source positions for the weak source for the adaptive
and conventional cases. The true position of the weak source is 88◦. c = 2, Pw = 30,
and Ps = 5.

7.3.2 Performance for Different Weak Source Positions

Thus far, we have only considered the case where the weak source is -90◦ from the

strong source, but the relative position of the weak source with respect to the strong

source can have an effect on detection performance. Fig. 7.12 plots ψmax and τA→C

for the adaptive (c = 2, Pw = 30, Ps = 1) and the conventional cases as a function of

the position of the weak source relative to the strong source.

(a) Maximized objective function (ψmax). (b) Relative change in time (τA→C).

Figure 7.12: ψmax and τA→C as a function of weak source position. For the adaptive
case, Ac was generated with c = 2, Pw = 20, Ps = 1. The conventional case represents
data from a full revolution. The point at a relative position of 0◦ is omitted.
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As one might expect, detection performance is not constant as a function of weak

source position for either the conventional or adaptive cases. For some weak source

positions such as when the weak source is +90◦ from the strong source, adaptive

imaging can reduce measurement times by ∼40%. In contrast, if the weak source is

-120◦ from the strong source, then measurement time is reduced by ∼20%. In any

case, regardless of the true position of the weak source, adaptive mask movements

can reduce measurement times by 20-40%. In the difficult case when the two sources

are close together, the reduction in time is up to 45%.

7.4 Adaptive Detection Algorithm

The results from the clairvoyant analysis indicate that adaptive mask movements

can significantly improve detection in the weak source, strong source problem. In

this section, we present an adaptive detection algorithm that can achieve some of the

gain predicted by the clairvoyant analysis. Thus far, when optimizing Eq. 7.7, we

assumed the positions and intensities of the sources were known. In this section, all

parameters are unknown and must be estimated from the measurements.

We separate the full measurement time into 10 cycles of equal measurement time.

In each cycle, we determine the number of sources in the field, estimate the unknown

parameters, and find the next set of system configurations at which to measure. For

the first adaptive cycle when we have no information as to where the weak or strong

source may be, we will collect a full revolution of data - i.e. conventional c-TEI

imaging.

We redefine the optimization problem as

Ak+1 = arg max
Ak+1∈Ac

ψ(θ̂ML,N , θ̂ML,A, A
0−k, t0−k, Ak+1, T k+1) (7.9)

where Ak+1 is the system response that maximizes detection ability for the k + 1
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adaptive cycle, θ̂ML,N/A are the MLE of the unknown parameters under the null and

alternative hypotheses, A0−k are the system responses where data has already been

collected, t0−k is the associated measurement time per bin, and T k+1 is the total

measurement time allotted for the k + 1 adaptive cycle. Given that there are 10

cycles, the measurement time per cycle is 90s. A is created using c = 2, Pw = 30◦,

Ps = 5◦. All optimizations are done by a brute force search.

Sec. 7.4.1 presents a multiple source detection algorithm and Sec. 7.4.2 presents

results from the adaptive detection algorithm. Below is an overview of the adaptive

detection algorithm.

Algorithm 1: Adaptive Detection Algorithm

1 Let A0 be a full revolution and T 0 = 90s

2 for k = 0 k < 10; k = k + 1 do

3 Collect data at Ak

4 Determine number of sources using Alg. 2

5 Estimate θ̂ML,N and θ̂ML,A

6 Solve for Ak+1 in Eq. 7.9. Let T k+1 = 90s, c = 2, Pw = 30◦, Ps = 5◦

7 Prepare imaging system for the k + 1 adaptive cycle

8 end

7.4.1 Multiple Source Detection

To detect multiple sources, we will be using a sequential binary testing strategy.

We start with the null hypothesis as no sources present (HN = H0) and the alternative

hypothesis as one source present (HA = H1)
5. If the test rejects the null hypothesis,

then the algorithm continues to the next binary test where the null hypothesis is

one source present (HN = H1) and the alternative is two sources present (HA = H2).

This process is continued until either the test fails to reject the null hypothesis or

until the algorithm declares the maximum number of sources allowed by the user.

5The numbered subscripts on H indicate the number of sources under that hypothesis.
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Each binary hypothesis test will be a modified GLRT. The parameter space for

optimization increases exponentially with the the number of sources and thus the

computational time necessary to optimize over the entire parameter space is not

reasonable for real-time use. To alleviate some of the computational burden, we

restrict the search space. Let h be the current hypothesis test where HN = Hh−1 and

HA = Hh. We assume

φ̂A,h = [φ̂
T

N,h φ̂h]
T

θ̂N,h = θ̂A,h−1

(7.10)

where h is the current test for h sources and goes from 1 to the maximum number

of sources allowed by the user (NS), φ̂A,h are the estimated source positions under

the alternative hypothesis for test h, φ̂N,h are the estimated source positions under

the null hypothesis for test h, φ̂h is the estimated source position for the hth source,

θ̂N,h is the null hypothesis parameter vector for test h, and θ̂A,h−1 is the alternative

hypothesis parameter vector for test h− 1.

In this way, for each modified GLRT, we only need to optimize the source position

for one source (φ̂h). The other unknown parameters such as source intensities and

unmodulated intensity are re-optimized for each hypothesis. It is much faster to find

α̂ML and b̂d,ML than φ̂ML.

Since we are testing multiple hypotheses with the same data, it is important to

control not just the false alarm rate for each hypothesis test, but also the family wise

error rate (FWER) considering all of the tests. We use the Bonferroni method to

control the FWER where the desired FWER, αFWER, is divided by the total number

of tests to find the significance level for each test [157,158].

α′FA =
αFWER

NS

(7.11)
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where α′FA is the new significance level for each hypothesis test in the sequence.

To control the probability of false alarm below α′FA, for each hypothesis test,

we must find the distribution of the likelihood ratio under the null hypothesis

(f(Λ′modGLRT,HN )). Since we are using a modified GLRT with low counts, we cannot

assume that f(Λ′modGLRT,HN) is distributed as a chi-squared distribution under the

null hypothesis. Other simplifications such as approximating the Poisson distribution

as a Gaussian distribution are also not justified because of the low counts. Instead,

we use a Monte Carlo approach.

For each test, we forward project θ̂N,h to find the expected measurement under

the null hypothesis (yHN
) and then generate Nr Poisson replicates of yHN

. For each

replicate, we calculate the modified GLRT and histogram the Λ′modGLRT values to

find f(Λ′modGLRT,HN). Then, the corresponding critical threshold, Λ′modGLRT,crit, is

found by controlling the false alarm rate to the requisite level (Eq. 2.38). Alg. 2 is a

165



summary the multiple source detection algorithm.

Algorithm 2: Multiple Source Detection Algorithm

1 Solve θ̂N,0 = arg max
θ∈H0

p(y; θ)

2 for h = 1,HN = Hh−1,HA = Hh; h ≤ NS; h = h+ 1 do

3 Solve θ̂A,h = arg max
θ∈HA

p(y;θ)

4 Find Λ′modGLRT,cand

5 Forward project θ̂N,h to find yHN

6 Assuming Poisson statistics, create Nr replicates of yHN

7 for r = 0; r < Nr; r = r + 1 do

8 Find θ̂N,h,r = arg max
θ∈HN

p(yHN ,r
;θ)

9 Find θ̂A,h,r = arg max
θ∈HA

p(yHN ,r
;θ)

10 Calculate the likelihoods to find Λ′modGLRT,r

11 end

12 Histogram Λ′modGLRT,r for all r to find f(Λ′modGLRT,HN)

13 Find Λ′modGLRT,crit using Eq. 2.38

14 if Λ′modGLRT,cand > Λ′modGLRT,crit then

15 θ̂N,h+1 = θ̂A,h

16 else

17 break

18 end

19 end

where Λ′modGLRT,cand is the modified GLRT likelihood ratio of the experimental data

(i.e. the candidate likelihood ratio), θ̂N/A,h,r is the MLE parameter vector for Poisson

replicate r, and Λ′modGLRT,r is the corresponding modified GLRT likelihood ratio.

Note that the parameter space for optimizing θ̂N,h and θ̂A,h is constrained according

to Eq. 7.10 and the parameter space is unbounded meaning source and background

intensity estimates can be negative.

For the weak source, strong source problem, NS = 2 and we set Nr = 20. We will

test four αFWER values to see which works best: 2, 1.5, 1, or 0.5. These correspond

to an false alarm rate per test (α′FA) of 1, 0.75, 0.5, or 0.25 respectively. Changing
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the αFWER controls how aggressive or conservative the multiple source detection

algorithm is when detecting sources. The number of sources declared by the multiple

source detection algorithm affects the optimal system response (Amax) for the next

adaptive cycle.

For example, assuming the weak source exists but we do not have enough infor-

mation to make a precise estimate of its position, setting αFWER to a large value may

result in non-optimal system configurations for the next adaptive cycle on account

of the poor estimation of the weak source position. This may make it tougher to

find the weak source if measurement time is spent collecting data at mask rotation

angles that are poor at detection. On the other hand, a large αFWER value also

leads to the greatest probability of detection of the weak source by the multiple

source detection algorithm and thus the largest potential benefit from adaptive mask

movements. The sooner the weak source is detected, the more time can be spent at

system configurations optimized for the weak source.

7.4.2 Results

Fig. 7.13 shows the experimental ROC curves using the adaptive detection algo-

rithm (see Sec. 7.1) for more details on the experimental setup) and Table 7.3 are the

corresponding detection metrics. Ac is created with c = 2, Pw = 30◦, Ps = 5◦. Each

ROC curve is made with 1,000 replicates of experimental data. For each replicate, we

used the same full-revolution, conventional data to initialize the adaptive detection

algorithm for all values of α′FA.

167



Figure 7.13: Experimental ROC curves using the adaptive detection algorithm
outlined in Alg. 1 for different per test false alarm rates in Alg. 2.6 The weak source
is at 88◦.

Table 7.3: Detection metrics for the ROC curves in Fig 7.13

AUROC PD,5%
Conventional 0.82 0.42
α′FA = 0.25 0.88 0.63
α′FA = 0.50 0.91 0.73
α′FA = 0.75 0.92 0.73
α′FA = 1.00 0.95 0.80
Clairvoyant 0.99 0.95

As α′FA is allowed to increase, the benefit from adaptive imaging increases as well.

The higher the α′FA, the higher the the probability of detection for the weak source

by the multiple source detection algorithm. Thus, more measurement time can be

spent collecting data at mask rotation angles that provide greater detection ability.

The adaptive detection algorithm with α′FA = 1.00 has double the detection ability

6To be clear, α′FA refers to the per test false alarm rate set in the multiple source detection
algorithm whereas the x-axis refers to the probability of false alarm using the adaptive detection
algorithm.
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for the weak source when the false alarm rate from the adaptive detection algorithm

is 5%. This is significant improvement over the conventional system.

As another example, Fig. 7.14 shows experimental ROC curves using the adaptive

detection algorithm for a weak source at 56◦ (-122◦ from the strong source). Table 7.4

are the corresponding detection metrics.

Figure 7.14: Experimental ROC curves using the adaptive detection algorithm
outlined in Alg. 1 for different per test false alarm rates in Alg. 2. The weak source
is at 56◦.

Table 7.4: Detection metrics for the ROC curves in Fig 7.14

AUROC PD,5%
Conventional 0.81 0.39
α′FA = 0.25 0.84 0.53
α′FA = 0.50 0.87 0.58
α′FA = 0.75 0.88 0.57
α′FA = 1.00 0.89 0.57
Clairvoyant 0.95 0.78

The adaptive detection algorithm with α′FA = 1.00 has 50% greater probability of

detection for the weak source when the false alarm rate from the adaptive detection
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algorithm is 5%. Again, adaptive mask movements provide a significant improvement

in detection.

7.5 Experimental vs Offset Detector System Response

Throughout this chapter, we used an experimental system response when estimat-

ing parameters instead of the offset detector model. As discussed in Sec. 5.2, because

of environmental scatter, there is model mismatch between the experimental data

and the offset detector model. Since the GLRT is sensitive to such model mismatch,

the offset detector model cannot reliably be used for detection. Fig. 7.15 and 7.16

show simulated and experimental ROC curves made using the offset detector model

and the experimental system response respectively. Due to model mismatch, the

experimental results using the offset detector model do not match the simulated

results. Moreover, this performance degradation seems to impact the adaptive case

more than the conventional. On the other hand, the simulated and experimental

results match when using the experimental system response. Because the experiments

do not match the simulated results when using the offset detector model, we opted to

use an experimental system response instead.
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Figure 7.15: ROC curve using the offset detector model. Ac is created with c = 2,
Pw = 30◦, Ps = 5◦.

Figure 7.16: ROC curve using the experimental system response. Ac is created with
c = 2, Pw = 30◦, Ps = 5◦.
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7.6 Conclusions

We have shown through a clairvoyant analysis and through experiments that

adaptive mask movements significantly improve the detection of a weak source in the

vicinity of a strong source. Depending on the position of the weak source relative

to the strong source, adaptive imaging can achieve the same performance as the

conventional setup in 20% - 40% less time. Although detection performance improves,

since the adaptive setup only collects measurements at a few mask rotation angles,

the system cannot uniquely identify the location of the weak source.

We also present an adaptive detection algorithm that achieves some of the gain

predicted by the clairvoyant analysis. In particular, we experimentally showed that

the probability of detection for a false alarm rate of 5% doubles under the adaptive

detection algorithm relative to the conventional when the weak source is -90◦ from

the strong source.

There is an important caveat to note. When reconstructing experimental data,

we used an experimental system response instead of the offset detector model. The

experimental system response was generated from a very similar experiment as

the one used in this chapter and thus has similar environmental scatter. To make

adaptive detection applicable in the real-world, one needs to find a way to reduce the

model mismatch between the offset detector model (or some other computationally

inexpensive model) and experimental data. In any case, the results presented here

demonstrate the potential for adaptive mask movements when considering the weak

source, strong source problem.
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CHAPTER VIII

Demonstrations using Special Nuclear Material

This chapter presents reconstructions from three experiments conducted at the

Zero Power Physics Reactor (ZPPR) facility at Idaho National Laboratory (INL).

The goal of these experiments is to demonstrate the benefit of combining data from

multiple detector positions when reconstructing complex source scenes with special

nuclear material.

We refer to these experiments as:

• Sec. 8.1: Line Source

• Sec. 8.2: Split Line Source

• Sec. 8.3: Multiple Sources

All of the experiments will use one or both of the following items:

1. High burn-up Pu-240 plates. Each plate is 0.32× 5.08× 7.62 cm and contains

∼23.9 g of Pu-240 [159].

2. Mixed oxide (MOX) fuel pins (MOX pin ID 129). Each fuel pin is 15.24 cm in

length by 0.95 cm in diameter. The pins contain ∼3.6 g of Pu-240 [160].
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Although both fast-neutron and gamma-ray data was collected using the stilbene

detector and the Cs2LiLa(Br,Cl)6 (CLLBC) detector, this chapter only presents

the gamma-ray reconstructions from the CLLBC detector. The fast-neutron recon-

structions are in Appendix E. The gamma-ray reconstructions only use pulses that

deposited between 275-425 keV. To reduce the thermal neutron flux, a 0.58 mm, 90%

enriched, cadmium sheet was wrapped around the CLLBC detector.

All conventional, cylindrical, time-encoded imaging (c-TEI) reconstructions are

made using full revolutions of data with the detector at the center for the entire

measurement time. All adaptive, c-TEI reconstructions are made using full revolutions

of data with the 10% of the time spent with the detector at the center and the

remaining 90% of time spent at other detector positions. The measurement time for

the conventional and adaptive cases is the same.

For each experiment, data was collected at 145 detector positions. In post-

processing, we select the detector positions to use in the reconstruction. In most

cases, we do not have enough data at one off-center detector position to adequately

reconstruct the images, thus we must combine data from multiple detector positions.

For these demonstrations, we use our intuition to decide which detector positions to

use for the adaptive reconstructions. Where applicable, we will explain our thought

process.

8.1 Line Source

The line source is composed of 6 stacks of 3 Pu-240 plates. To make each stack,

the Pu-240 were placed one on top of the other with the 5.08 × 7.62 cm planes in

contact. The 5.08 × 0.96 cm plane of each stack is in contact with the stacks next

to it. Thus, the line source is 45.72 × 5.08 × 0.96 cm. From the perspective of
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MATADOR, the line source is 28.5◦ wide.1 Fig. 8.1 is a picture of the setup. The

line source is centered at (90cm,180◦).

Figure 8.1: Picture of a line source measurement at the ZPPR facility at INL.

All of the reconstructions are made using maximum likelihood expectation max-

imization (MLEM) and the offset detector model. MLEM is terminated when the

normalized root mean squared error (NRMSE) between the observation vector and

the forward projection plateau (see Sec. 2.27). Additionally, we also show MLEM

reconstructions at 1,000 iterations. Often, extended sources reconstruct as a group of

point sources instead of a smooth, uniform extended source. This effect worsens as

the number of iterations increases. We refer to the MLEM reconstruction that was

terminated based on the NRMSE as the low-iteration MLEM reconstruction and we

refer to the MLEM reconstruction made with 1,000 iterations as the high-iteration

MLEM reconstruction.

We assess the reconstructions in terms of the full width at half maximum (FWHM)

1In reality, the Pu metal in the Pu-240 plates is smaller than the outer dimensions of the cladding
so the true width of the source is smaller than 28.5◦.
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of the line source, uniformity of the source, and noise in the background region. For

the FWHM calculation, we define the half maximum as half of the mean intensity

from 173◦ to 187◦ (inclusive). Source uniformity is defined as the standard deviation

of the reconstructed intensity from 173◦ to 187◦ and noise in the background region

is defined as the standard deviation of the image from 0◦ to 120◦ and 240◦ to 360◦.

Smaller values of source uniformity and noise in the background region are preferable.

For the adaptive case, we use data from 13 off-center detector positions - the

chosen detector positions are shown in red in Fig. 8.2. We chose detector positions

that provide the best angular resolution for the center of the line source. The line

source reconstructions use 21.7 minutes (1300 s) of data.

Figure 8.2: The red dots represent the detector positions that were used for the
adaptive c-TEI reconstructions. 90s of data was used from all off-center detector
positions and 130s of data from the center.

Since the adaptive case will utilize data from multiple detector positions, and

thus have more unique measurements as opposed to better statistics, we expect

the adaptive reconstructions to have better uniformity both for the source and the

background. Additionally, given the better angular resolution of the system in the

adaptive case, we expect the width estimates to be more accurate.
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8.1.1 Gamma-Ray Reconstructions

Fig. 8.3 shows the gamma-ray spectrum from the line source experiment collected

with the CLLBC detector. The dashed blue lines extending from 275 - 425 keV

highlight the gamma-rays used in these reconstructions. Note that the peaks at ∼360

keV and ∼400 keV are not photopeaks but rather are the accumulation of many

prominent emission lines from Pu-239 and Am-241.

(a) Full energy range. (b) Magnified.

Figure 8.3: Gamma-ray energy spectrum collected using the CLLBC detector. Only
pulses with energies between 275 and 425 keV are used in these reconstructions.

Fig. 8.4a is the low-iteration, gamma-ray reconstruction using the conventional,

detector-centered setup and Fig. 8.4b is the adaptive case. The metrics are summarized

in Table 8.1. Both the conventional and adaptive reconstructions show an extended

source as expected. The FWHM from the adaptive reconstruction is closer to the

truth but both estimates are smaller than expected. In terms of uniformity and

background noise, the adaptive reconstruction is more uniform (uniformity metric is

37.5% smaller) and has 50% less noise in the background.
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(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure 8.4: Low-iteration, gamma-ray reconstruction of the line source.

Table 8.1: Line source FWHM, uniformity, and noise for low-iteration, gamma-ray
reconstructions.

Conventional Adaptive
FWHM 25.8 26.5

Uniformity (10−3) 2.4 1.5
Noise (10−4) 2.2 1.1

Fig. 8.5a and 8.5b are reconstructions using the same data as Fig. 8.4a and 8.4b

but MLEM was run for 1,000 iterations. The metrics are summarized in Table 8.2.

Both the conventional and adaptive reconstructions show extended sources as ex-

pected. Compared to the low-iteration reconstructions, the FWHMs from both

the conventional and adaptive high-iteration reconstructions are closer to the truth.

The adaptive reconstruction only underestimates the width by 1.5◦. Additionally,

the adaptive reconstruction is significantly more uniform and has less noise in the

background.
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(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure 8.5: High-iteration, gamma-ray reconstruction of the line source.

Table 8.2: Line source FWHM, uniformity, and noise for high-iteration, gamma-ray
reconstructions.

Conventional Adaptive
FWHM 26.4 27.0

Uniformity (10−3) 4.9 2.3
Noise (10−4) 5.7 2.2

Based on the gamma-ray reconstructions, it is clear that combining data from

multiple detector positions improves reconstructions for a line source. The line source

intensity is 37.5% more uniform and the background noise is reduced by half for the

low-interation reconstructions.

8.2 Split Line Source

The split line source is essentially the line source cut in half and separated by

20 cm. It is composed of two lines sources each made up of 3 stacks of 3 Pu-240

plates. To make each stack, the Pu-240 plates were placed one on top of the other

with the 5.08 × 7.62 cm planes in contact. The 5.08 × 0.96 cm plane of each stack

is in contact with the stacks next to it. From the perspective of MATADOR, each

half of the split line source is 13.7◦ wide and the inside edges of the two halves are
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separated by 12.7◦. Fig. 8.6 is a picture of the setup. The split line source is centered

at (90cm,180◦).

Figure 8.6: Picture of the split line source measurement at the ZPPR facility at INL.

Similar to the line source reconstructions, we use the offset detector model and

show low-iteration MLEM reconstructions (terminated by the user based on the

NRMSE) and high-iteration MLEM reconstructions (1,000 iterations).

Since there are two sources in the field-of-view (FOV), we refer to the line source

at ∼168◦ and the line source at ∼194◦ as S1 and S2 respectively. We assess the

reconstructions of each source in terms of the FWHM of the reconstruction, uniformity

of the source, and noise in the background region. For the FWHM calculation, we

define the half maximum for S1 as half the mean source intensity from 165◦ to 173◦

and for S2 as half the mean source intensity from 190◦ to 198◦. Source uniformity is

defined as the standard deviation of the reconstructed intensity over the ranges listed

above. Noise in the background region is defined as the standard deviation of the

image from 0◦ to 120◦ and 240◦ to 360◦.
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For the adaptive case, we use the same 13 off-center detector positions that were

used for the line source. Fig. 8.7 shows the chosen detector positions in red. The

measurement time is the same as well: 21.7 minutes (1300s).

Figure 8.7: The red dots represent the detector positions that were used for the
adaptive c-TEI reconstructions. 90s of data was used from all off-center detector
positions and 130s of data from the center.

8.2.1 Gamma-Ray Reconstructions

Fig. 8.8a is the low-iteration, gamma-ray reconstruction using the conventional,

detector-centered setup and Fig. 8.8b is the adaptive case. The metrics are summarized

in Table 8.3.

Both the conventional and the adaptive reconstructions show two extended objects

that are well separated. The FWHMs of S1 and S2 from both reconstructions are

the same. For both S1 and S2, the adaptive reconstruction is more uniform than

the conventional by ∼25%. The background noise is 37.5% lower for the adaptive

reconstruction relative to the conventional.
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(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure 8.8: Low-iteration, gamma-ray reconstruction of the split line source.

Table 8.3: Split line source FWHM, uniformity, and noise for low-iteration, gamma-ray
reconstructions.

Conventional Adaptive
S1 FWHM 12.5 12.5
S2 FWHM 12.2 12.1

S1 Uniformity (10−3) 2.5 1.9
S2 Uniformity (10−3) 4.0 2.9

Noise (10−4) 2.4 1.5

Fig. 8.9a and 8.9b are reconstructions using the same data as Fig. 8.8a and 8.8b

but MLEM was run for 1,000 iterations. The relevant metrics are summarized in

Table 8.4.

In both reconstructions, it is clear that there are two extended sources present.

For S1, the uniformity of the conventional reconstruction is better whereas for S2 the

uniformity of the adaptive reconstruction is better. With respect to the noise in the

background, the adaptive reconstruction has 50% less noise.
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(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure 8.9: High-iteration, gamma-ray reconstruction of the split line source.

Table 8.4: Split line source FWHM, uniformity, and noise for high-iteration, gamma-
ray reconstructions.

Conventional Adaptive
S1 FWHM 13.3 13.1
S2 FWHM 13.6 13.2

S1 Uniformity (10−3) 3.0 5.8
S2 Uniformity (10−3) 3.6 2.7

Noise (10−4) 5.4 2.7

For gamma-ray reconstructions, utilizing data from multiple detector positions

results in better source uniformity and lower background noise. Based on the low-

iteration, gamma-ray reconstructions, the uniformity of the adaptive reconstructions

is ∼25% better and the background noise is 37.5% lower.

8.3 Multiple Source

The multiple source experiments consists of multiple sources spread out in the

FOV. A picture of the setup is in Fig. 8.10 and Fig. 8.11 shows the setup in r − θ

space.
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Figure 8.10: Picture of a multiple source measurement at the ZPPR facility at INL.

Figure 8.11: Experimental setup of the multiple source measurement.

There are five objects of interest in the multiple source setup:

1. MOX fuel canister: at (90cm, 180◦), there are 32 MOX fuel pins arranged in

a lattice [161]. The fuel pins are inside of a 0.4 cm thick steel container. The

MOX fuel canister is significantly hotter than any other object in the FOV.
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2. Pu-240 stack #1: at (150cm, 160◦), there are 5 Pu-240 plates stacked one on

top of the other. The 5.08 × 7.62 cm planes are in contact and the 0.32 cm

edge is facing MATADOR. This object is shielded by 0.32 cm of tin and 0.64

cm of copper.

3. Pu-240 stack #2: at (150cm, 200◦), there are 5 Pu-240 plates stacked one on

top of the other. The 5.08 × 7.62 cm planes are in contact and the 0.32 cm

edge is facing MATADOR. This object is shielded by 0.32 cm of tin and 0.64

cm of copper.

4. Line source: centered at (120cm, 270◦), there are 4 Pu-240 plates placed in a

line. The 7.62 × 0.32 cm long sides are in contact and the 5.08 cm edge of each

plate is facing MATADOR. From the perspective of MATADOR, the source is

9.7◦ wide. This object is shielded by 0.32 cm of tin and 0.64 cm of copper.

5. Two source: centered at (80cm, 90◦), there are 2 stacks of 2 Pu-240 plates

placed 10.2 cm apart. Within each stack, each plate is standing on its 7.62 ×

0.32 cm edge and the 7.62 × 5.08 cm planes are in contact. The stacks are

sandwiched between 20.32 × 10.16 × 5.08 cm lead bricks. From the perspective

of MATADOR, the two stacks of Pu-240 plates appear as two point sources

separated by 8◦. This object is shielded by 1.27 cm of copper.

This experimental setup contains

• multiple sources,

• sources with widely different intensities,

• sources with different emission spectra,
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• sources at different radial distances from the system,

• extended sources, and

• sources that are close together,

thus it is an interesting but challenging source scene to image.

These reconstructions will demonstrate two concepts: collecting data with the

detector at multiple positions in the mask

1. enables depth estimation, and

2. provides greater angular resolution even in complex scenarios.

To show 2D imaging ability, we focus on the MOX fuel as it is the most intense.

2D imaging is possible using the MATADOR system due to parallax as the detector

moves. To maximize the parallax effect, data should be collected from detector

positions that are far apart. Angular resolution of the imaging system also plays a

role in 2D positioning, thus we utilize data from detector positions that provide both

a large parallax and acceptable angular resolution for the MOX fuel.

To show improved angular resolution, we focus on the two source object at

(80cm, 90◦). Under the conventional c-TEI system, the two sources cannot be sepa-

rated, but when we incorporate data from different positions, the sources are separated.

Much of the allotted time is spent at detector positions that provide higher resolution

data for the two source object.

For the adaptive case, the detector positions we selected are the red dots in

Fig. 8.12. 90 seconds of data was used for the off-center detectors and 220 seconds of

data when the detector is at the center. The following reconstructions use a total of

36.7 minutes (2200 s) of data.
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Figure 8.12: The red dots represent the detector positions that were used for the
adaptive c-TEI reconstructions. 90s of data was used from all off-center detector
positions and 220s of data from the center.

8.3.1 Gamma-Ray Reconstructions

Fig. 8.13 shows the gamma-ray spectrum from the CLLBC detector. Since the

MOX fuel has less shielding than the other sources in the FOV, the lower energy

gammas are predominantly from the MOX fuel. The dashed blue lines extending

from 275-425 keV highlight the gamma rays used in these reconstructions.

(a) Full energy range. (b) Magnified.

Figure 8.13: Gamma-ray energy spectrum collected using the CLLBC detector. Only
pulses with energies between 275 and 425 keV are used in these reconstructions.

First, we show reconstructions from the conventional setup and then contrast those
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against the adaptive setup. Fig. 8.14 is the 2D reconstruction from the conventional

setup and Fig. 8.15 and 8.16 are slices from the 2D image - Fig. 8.15 is an azimuthal

slice at 182◦ and Fig. 8.16 is a radial slice at 80 cm. These reconstructions are also

shown in log scale.

(a) Linear scale (b) Logarithmic scale.

Figure 8.14: 2D reconstruction made with the conventional c-TEI.

Figure 8.15: Azimuthal slice of the 2D reconstruction at 182◦. Conventional c-TEI.
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(a) Linear scale. (b) Logarithmic scale.

Figure 8.16: Radial slice of the 2D reconstruction at 80 cm. Conventional c-TEI.

For the conventional case, we only use data when the detector is centered, thus

the system cannot effectively create 2D images. Thus, in Fig. 8.14, the sources are not

localized radially. Moreover, as shown in Fig. 8.15, source pixels that are further away

from the system are reconstructed with higher intensity. This is a direct consequence

of initializing MLEM with the inverse sensitivity of the system response. If instead

one were to initialize MLEM with a constant value, the source pixels that are closer

to the system would have higher intensity.

Fig. 8.16 shows the radial slice at 80 cm. The two source object is at 90◦, thus we

expect to see two separated sources, but the resolution of the system is not sufficient

to separate the two sources. Instead, we see a slightly broadened peak.

Fig. 8.17 is the 2D reconstruction for adaptive c-TEI and Fig. 8.18 and 8.19 are

slices from the 2D image - Fig. 8.18 is an azimuthal slice at 182◦ and Fig. 8.19 is a

radial slice at 80 cm. These reconstructions are also shown in log scale.
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(a) Linear scale (b) Logarithmic scale.

Figure 8.17: 2D reconstruction made with the adaptive setup.

Figure 8.18: Azimuthal slice of the 2D reconstruction at 182◦. Adaptive.

(a) Linear scale. (b) Logarithmic scale.

Figure 8.19: Radial slice of the 2D reconstruction at 80 cm. Adaptive.
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As shown in both Fig. 8.17 and Fig. 8.18, the addition of off-center detector

positions enables 2D imaging. The peak intensity in Fig. 8.18 is at 90 cm as expected

and the half maximum occurs at 75 cm and 125 cm. Determining the radial position

of sources is more challenging for sources that are further away from the the imaging

system since the parallax effect is smaller. Thus, Fig. 8.18 is not symmetric. We

do not have enough data to radially localize the weaker sources in the FOV using

MLEM.

In the radial slice (Fig. 8.19), at 90◦, we can see that there are two sources present.

In the conventional case, these sources could not be separated, but by collecting data

at higher resolution detector positions, the two sources can be separated. The ratio

of the saddle to the peak is ∼0.5 indicating that two sources are clearly separated.

8.4 Conclusions

To demonstrate the benefit of collecting data at multiple detector positions, we

measured special nuclear material in complex geometries including a line source, a

split line source, and a multiple source setup at the ZPPR facility at INL. When

reconstructing gamma-ray data, we find that combining data from multiple detector

positions significantly improves image quality in all three experiments. For the line

source reconstructions, the uniformity of the line source improved by 37.5% and

the noise in the background region reduced by 50%. We find similar results for the

split line source: uniformity improved by ∼25% and noise in the background region

reduced by 37.5%. Additionally, in the multiple source experiment, we showed that

collecting data at multiple detector positions enables 2D imaging and can increase

the angular resolution of the system even when there are many sources in the field.

These results indicate that adaptive imaging can be applied to real-world scenarios
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and can significantly improve image quality.
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CHAPTER IX

Summary and Future Work

This dissertation contributes to the growing research on cylindrical, time-encoded

imaging (c-TEI) systems in three ways:

1. we verified three system response models and discussed the conditions under

which each is valid and accurate,

2. utilized those models to explore the trade-offs between size, weight, angular

resolution, and the contrast-to-noise ratio for various c-TEI designs,

3. explored the benefit of adaptive imaging in a c-TEI system with respect to

generating higher resolution images, detecting sources, and reconstructing

complex objects.

Below, we review each contribution in turn and highlight key findings. In Sec. 9.2,

we discuss future research directions relating to this work.

9.1 Key Findings

Despite the growing use and interest in c-TEI systems, there is relatively little

work on system response models for c-TEI systems and the design spaces where they

are accurate. In Chap. III, we developed the large detector model and compared its
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predictions to the small detector model for a range of different c-TEI designs. We

mapped out the regions where the small detector assumption may be used without

significant deviation from the large detector model and regions where using the

small detector model would result in worse imaging performance. For example,

we found that for a handheld system where the mask is close to the detector, the

small detector model over predicts the total count rate by 12.7% and the normalized

root mean squared error (NRMSE) between the small and large detector models is

14.5%. Using the small detector model for such a system would likely result in lower

contrast-to-noise ratio (CNR) and artifacts in the reconstructed image. In contrast,

for the MATADOR system, we found that the NRMSE between the small and large

detector models is ∼1.4% and such a deviation does not lead to significantly different

reconstructions.

In Chap. IV, we used the large detector model to explore the tradeoffs between size,

weight, angular resolution, and the CNR. Based on those simulations, we designed the

MATADOR system for use in nuclear non-proliferation and safeguards applications.

Chap. IV also describes the construction and limitations of MATADOR.

In Chap V, we utilized the MATADOR system to experimentally verify the

large and offset detector model. We found that both models accurately model the

experimental data. In particular, the offset detector model can generate precise

estimates of the source position and source intensity for the MATADOR system.

Maximum likelihood estimates (MLEs) of the source position differ by less than 1◦

across different detector positions and the MLEs of the source intensity differ by

less than 5%. Additionally, although the unmodulated intensity1 impinging on the

detector changes as a function of detector position, the source-to-background ratio

1The unmodulated intensity consists of natural background and source scatter from the environ-
ment, mask, and detector.
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(S:B) ratio, defined as the count rate from a fully open region of the mask divided by

the unmodulated intensity, is relatively constant. This enables one to use the source

position, source intensity, and unmodulated intensity estimates from one system

configuration to predict the response expected in a different system configuration

thus paving the way for adaptive imaging.

Chap. VI to VIII focused on adaptive imaging with a c-TEI system. Adaptive

imaging concepts can be implemented in a c-TEI system in two ways: adaptive

detector movements and adaptive mask movements. In Chap. VI, we utilized adaptive

detector movements to generate higher resolution images. Through a clairvoyant

analysis, we investigated the impact of collecting data at any detector position

inside the mask. Our results indicate that moving the detector inside the mask can

dramatically improve the angular resolution of the system. For example, when imaging

a point source, the angular resolution improved by 20%, and when imaging two equal

intensity point sources that are 10◦ apart, the angular resolution improved by 50%.

We experimentally verified these results both through MLE of the source positions

and by comparing reconstructed images. For the point source case, the standard

deviation in the maximum likelihood (ML) source position reduced by ∼17.7% and

the full width at half maximum (FWHM) of the image reduced by ∼25.1%. For the

two-sources case, the quadrature-sum of the standard deviations of the ML source

positions reduced by ∼42%. Additionally, in the adaptive reconstructions, the two

sources were clearly separated and resolved while in the conventional reconstruction,

the sources could not be separated.

In Sec. 6.5.2, we extended this work and investigated the angular resolution

gain for two point sources at various source separations and at various relative

intensities. We found that the angular resolution gain varies significantly based on
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the source separation and the relative intensity of the sources. In general, we found

that regardless of the relative intensities of the sources, if the sources are less than

20◦ apart, the angular resolution gain is greater than 20%. Additionally, if there is

a large difference in the relative intensities of the sources, then the gain is between

10% to 30%. We also found that the angular resolution gain decreases as the sources

move further apart. This effect is more significant for equal intensity sources such

that if two equal intensity sources are more than 90◦ apart, the angular resolution

gain is less than 10%. Finally, for both the point source and two point source cases,

we investigated the benefit of collecting data at two detector positions instead of only

one detector position. We found that in most cases, there is no benefit to collecting

data at two detector positions instead of one. Note that throughout Chap. VI, the

radial position of the source is treated as a known parameter. The value of collecting

data at multiple detector positions with respect to angular resolution may change if

the radial position of the source is unknown.

In Chap. VII, we showed that adaptive mask movements can improve detection of

a weak source in the presence of a strong source. Through a clairvoyant analysis, we

found that the adaptive mask movements can achieve the same detection performance

as the conventional case in 20% - 40% less time depending on the position of the

weak source. This improvement in detection performance, however, comes at a cost.

Since only a fraction of the total rotation of the mask is sampled, the system does

not have enough information to uniquely localize the source.

Additionally, Sec. 7.4 presents an adaptive detection algorithm that captures some

of the performance predicted by the clairvoyant analysis. For the case where the weak

source is -90◦ from the strong source, we experimentally showed that the probability of

detection for a false-alarm rate of 5% doubles under the adaptive detection algorithm
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relative to the conventional. Note that unlike the clairvoyant analysis where the

true values of the unknown parameters are known, the adaptive detection algorithm

estimates all of the unknown parameters from the measured data.

Finally, in Chap. VIII, we demonstrated the benefit of collecting data at multiple

detector positions when imaging complex source geometries made with special nuclear

material. When reconstructing a line source, we found that utilizing data from

multiple detector positions improves the uniformity of the reconstruction by 38%

and reduces the noise in the background region by 50%. Similarly, for a split line

source, we found that uniformity improved by 25% and noise reduced by 38%. In

the multiple source experiment, we demonstrated 2D (azimuthal and radial) imaging

with the MATADOR system and showed higher resolution images even when there

are many sources in the field.

Overall, these results indicate that adaptive imaging can significantly improve

performance of a c-TEI system when considering tasks such as generating high

resolution images, detecting sources, and reconstructing complex source scenes.

9.2 Future Work

This dissertation is the first implementation of adaptive imaging in a c-TEI system

and accordingly there are many opportunities to improve on this work. Below we

highlight key opportunities and provide suggestions on how to proceed.

All of the analytical system responses used in this dissertation assume that scatter

from the mask and scatter from the environment are uniform as a function of mask

rotation angle. As evinced by Fig. 5.11, this assumption is not true when the detector

is at the center of the mask. Moreover, when the detector is not at the center, we

expect the scatter from the mask to be even more non-uniform. Thus, we suggest the
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development of system response models that account for scatter from the mask, and

if possible, scatter from the environment. Naturally, one solution for the non-uniform

scatter problem is to use Monte Carlo simulations to model the scatter. We attempted

this using both traditional MCNP and the adjoint method [162, 163]. We found

that the MCNP method was too computationally expensive, and although we had

reasonable success using the adjoint method, it was also not computationally feasible

for 2D or 3D reconstructions. Thus, an alternative solution is needed.

This dissertation evaluated the potential for both adaptive detector movements

to improve angular resolution and adaptive mask movements to improve source

detection. The complement - adaptive mask movements to improve angular resolution

and adaptive detector movements to improve source detection - still needs to be

investigated. We expect that adaptive mask movements will also lead to better

angular resolution since measurement time can be focused on edge detection of the

source(s). Additionally, adaptive detector movements may improve detection. Moving

the detector closer to the weak source can increase sensitivity and perhaps there exists

a detector-mask position combination that results in well-separated mask transitions

from both sources. The methods used in this dissertation should provide a starting

point for this research.

We also suggest implementing adaptive imaging for different tasks. For example,

the extended source reconstructions in Chap. VIII are preliminary, but a much more

rigorous and thorough analysis is needed. Future work could focus on evaluating

the benefit of collecting many unique measurements as opposed to higher angular

resolution measurements. Additionally as we noted in the source detection discussion

(Chap. VII), our approach to source detection meant that the source could not

be uniquely localized. Thus, there is a joint detection-selectivity problem to solve.
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Perhaps one can modify the objective function to include a measure of similarity

between all of the columns of the system response matrix.

Finally, given the promising results in this dissertation, the next step could be

real-time implementation. In this case, the planning step is by far the most expensive.

All of the adaptive imaging related optimizations in this dissertation were done

by brute force. From an exploratory standpoint, this is reasonable, but real-world,

real-time applications need a faster approach. Constraining the optimization problem,

implementing optimization algorithms, or using alternative definitions of the objective

function could be a stating point for real-time implementation of these concepts.
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APPENDIX A

Additional Figures on Verification of the Offset

Detector Model

This appendix contains additional results relating to Sec. 5.2. The source position,

source intensity, and unmodulated intensity were estimated as a function of light

output using ML. Additionally, the S:B ratio is shown as well.
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(a) Light output range: 50-150 keVee. (b) Light output range: 150-250 keVee.

(c) Light output range: 250-350 keVee. (d) Light output range: 350-450 keVee.

(e) Light output range: 450-550 keVee. (f) Light output range: 550-650 keVee.
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(g) Light output range: 650-750 keVee. (h) Light output range: 750-850 keVee.

(i) Light output range: 850-950 keVee. (j) Light output range: 950-1050 keVee.

Figure A.1: Source position MLEs as a function of light output range.
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(a) Light output range: 50-150 keVee. (b) Light output range: 150-250 keVee.

(c) Light output range: 250-350 keVee. (d) Light output range: 350-450 keVee.

(e) Light output range: 450-550 keVee. (f) Light output range: 550-650 keVee.
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(g) Light output range: 650-750 keVee. (h) Light output range: 750-850 keVee.

(i) Light output range: 850-950 keVee. (j) Light output range: 950-1050 keVee.

Figure A.2: Source intensity MLEs as a function of light output range. Note that the
color bar range extends from -15% to +15% of the median for all plots.
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(a) Light output range: 50-150 keVee. (b) Light output range: 150-250 keVee.

(c) Light output range: 250-350 keVee. (d) Light output range: 350-450 keVee.

(e) Light output range: 450-550 keVee. (f) Light output range: 550-650 keVee.
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(g) Light output range: 650-750 keVee. (h) Light output range: 750-850 keVee.

(i) Light output range: 850-950 keVee. (j) Light output range: 950-1050 keVee.

Figure A.3: Unmodulated intensity MLEs as a function of detector position. Note
that the color bar extends from -35% to +35% of the median for all plots.
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(a) Light output range: 50-150 keVee. (b) Light output range: 150-250 keVee.

(c) Light output range: 250-350 keVee. (d) Light output range: 350-450 keVee.

(e) Light output range: 450-550 keVee. (f) Light output range: 550-650 keVee.
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(g) Light output range: 650-750 keVee. (h) Light output range: 750-850 keVee.

(i) Light output range: 850-950 keVee. (j) Light output range: 950-1050 keVee.

Figure A.4: S:B ratio as a function of detector position. Note that the color bar
extends from -25% to +25% of the median for all plots.

209



APPENDIX B

Fisher Information Matrix for a Poisson

Distribution

Here, we calculate the FIM for a Poisson distributed process. We start with the

definition of the FIM:

I(θ) = −E
[
∇θ∇T

θ `(y | θ)
]

(B.1)

For a Poisson distributed process, `(y | θ) is

`(y | θ) =

NO∑
i=1

(yi ln (yi)− yi − ln (yi!)) (B.2)

Plugging Eq. B.2 into B.1, applying the chain rule for differentiation, and taking the

expectation we get

−E
[
∇θ∇T

θ `(y | θ)
]

= −E

[
∇θ∇T

θ

NO∑
i=1

(yi ln (yi)− yi − ln (yi!))

]

= −E

∇θ NO∑
i=1

yi∇T
θ yi

yi
−∇T

θ yi




= −E

 NO∑
i=1

yi∇θ∇T
θ yi

yi
−
yi∇θ yi∇T

θ yi

y2i
−∇θ∇T

θ yi




=

NO∑
i=1

∇θ yi∇T
θ yi

yi


(B.3)
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APPENDIX C

Likelihood Ratio of the GLRT for a Poisson

Distribution

Here, we show the calculations to find the generalized likelihood ratio test (GLRT)

for a Poisson distributed process.

The likelihood ratio in the GLRT is

2 ln(ΛGLRT) = 2 ln

p(y | θ̂ML,HA
)

p(y | θ̂ML,HN
)

 (C.1)

For a Poisson distributed process:

2 ln(ΛGLRT) = 2 ln


∏NO

i=1

yyii,Ae
−yi,A

yi!

∏NO

i=1

yyii,Ne
−yi,N

yi!

 (C.2)

Taking the natural log and expanding:

2 ln(ΛGLRT) = 2

NO∑
i=1

((
yi ln

(
yi,A
)
− yi,A

)
−
(
yi ln

(
yi,N

)
− yi,N

))
(C.3)

Rearranging and combining like terms:

2 ln(ΛGLRT) = 2

NO∑
i=1

yi ln
 yi,A

yi,N


− NO∑

i=1

(
yi,A − yi,N

)
(C.4)
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Thus, the GLRT is

Λ′GLRT = 2 ln(ΛGLRT) = 2

NO∑
i=1

yi ln
 yi,A

yi,N


− NO∑

i=1

(
yi,A − yi,N

) HA

≷
HN

ηcrit (C.5)
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APPENDIX D

On the Relative Change in Time Metric to

Compare ROC Curves

Here, we derive an equation for τ2→1 which is the relative change in time for

receiver operator characteristic (ROC) curve 2 to match ROC curve 1 when using the

asymptotic distribution for the likelihood ratio in the GLRT. Conceptually, τ2→1 is

τ2→1 =
T2

T1
− 1 (D.1)

where T1 is the total measurement time for system configuration 1 and T2 is the

total measurement time required for system configuration 2 to match the detection

performance of system configuration 1.

The ROC curves from the asymptotic GLRT are only dependent on the non-

centrality parameter, λ, thus we need to find the measurement time such that

λ2 = λ1 (D.2)

To aid in this process, the symbol (·)′ will indicate that the variable has been

divided by the total measurement time (T ).

We use the following model to describe the measured data

yi =

(
S∑
j=1

(αjA [i, j′(φj)]) + bD[i]

)
t[i]T (D.3)
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where T is the total measurement time and t[i] is the relative time spent at

observation bin i.
∑NO

i=1 t[i] = 1. Let

y′i =
yi

T
(D.4)

Then, the FIM is

I(θ) = −E
[
∇θ∇T

θ `(y | θ)
]

=

NO∑
i=1

(
∇θ yi∇T

θ yi
yi

)

=

NO∑
i=1

(
∇θ y′iT∇T

θ y
′
iT

y′iT

)

= T

NO∑
i=1

(
∇θ y′i∇T

θ y
′
i

y′i

)
(D.5)

Let

I ′(θ) =
I(θ)

T
(D.6)

then

I ′(θ) =

NO∑
i=1

(
∇θ y′i∇T

θ y
′
i

y′i

)
(D.7)

The non-centrality parameter is

λ = (θr,A − θr,N)T [Iθrθr (θr,A,θn)−

Iθrθn (θr,A,θn) I−1θnθn (θr,A,θn) Iθnθr (θr,A,θn) ] (θr,A − θr,N)

(D.8)

For simplicity, we drop θ in the subscripts for the partitions of the FIM:

λ = (θr,A − θr,N)T [Irr (θr,A,θn)−

Irn (θr,A,θn) I−1nn (θr,A,θn) Inr (θr,A,θn) ] (θr,A − θr,N)

(D.9)

Plugging Eq. D.7 in Eq. D.9:

λ = (θr,A − θr,N)T [ I ′rr (θr,A,θn)T−

I ′rn (θr,A,θn)T (I ′nn (θr,A,θn)T )−1I ′nr (θr,A,θn)T ] (θr,A − θr,N)

(D.10)
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Utilizing the property (cA)−1 = c−1A−1, we have

λ = (θr,A − θr,N)T [I ′rr (θr,A,θn)T−

I ′rn (θr,A,θn)TI ′−1nn (θr,A,θn)T−1I ′nr (θr,A,θn)T ] (θr,A − θr,N)

(D.11)

Next, we simplify and pull out T :

λ = T (θr,A − θr,N)T [I ′rr (θr,A,θn)−

I ′rn (θr,A,θn) I ′−1nn (θr,A,θn) I ′nr (θr,A,θn) ] (θr,A − θr,N)

(D.12)

Let

λ′ =
λ

T
(D.13)

Thus, the non-centrality parameter scales linearly with the total measurement time

and

λ2 = λ1

λ′2T2 = λ′1T1

T2

T1
=
λ′1

λ′2

(D.14)

Thus,

τ2→1 =
λ′1

λ′2
− 1 (D.15)

which is equivalent to

τ2→1 =
λ1

λ2
− 1 (D.16)
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APPENDIX E

Demonstrations using Special Nuclear Material -

Fast Neutron Reconstructions

Chap. VIII presented gamma-ray reconstructions from the three experiments con-

ducted at the ZPPR facility at INL. Here, we show the fast-neutron results. Fast-

neutron reconstructions are made using data from the 2” stilbene detector. All

fast-neutrons depositing > 40 keVee are used. For brevity, we only include the results

and some brief analysis. For a more detailed understanding of the experiments, see

Chap. VIII.

E.1 Line Source

Fig. E.1 is a PSD plot from the 2” stilbene detector from the line source experiment.

The fast neutrons are clearly separated from the gamma rays.
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Figure E.1: PSD plot from the line source experiment showing good separated between
fast-neutron and gamma-ray pulses.

Fig. E.2a is the fast-neutron reconstruction using the conventional, detector-

centered setup and the Fig. E.2b is the adaptive case. The relevant metrics are

summarized in Table E.1.

(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure E.2: Fast-neutron reconstruction of the line source. 100 MLEM iterations.

Table E.1: Line source FWHM, uniformity, and noise for fast-neutron reconstructions.

Conventional Adaptive
FWHM 26.1 27.1

Uniformity (10−3) 0.4 1.5
Noise (10−4) 3.3 2.8

Although both the conventional and adaptive reconstructions show an extended
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source, the conventional reconstruction has better uniformity of the source. Both the

noise in the background and the FWHM from the two cases are relatively similar. The

adaptive reconstruction has slightly lower noise in the background and the FWHM

estimate is closer to the true FWHM.

Fig. E.3a and E.3b are reconstructions using the same data as Fig. E.2a and E.2b

but maximum likelihood expectation maximization (MLEM) was run for 1,000 itera-

tions. The relevant metrics are summarized in Table E.2. While both reconstructions

suffer from high frequency noise, the conventional case is more uniform reconstruction.

On the other hand, the noise in the background region is lower for the adaptive case

than the conventional.

(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure E.3: Fast-neutron reconstruction of the line source after running MLEM for
many iterations. 1,000 MLEM iterations.

Table E.2: Line source FWHM, uniformity, and noise for high MLEM iteration
fast-neutron reconstructions.

Conventional Adaptive
FWHM 27.5 28.0

Uniformity (10−3) 2.5 4.2
Noise (10−4) 8.8 5.7

In the case of fast-neutron reconstructions, collecting data at multiple detector
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positions does not improve line source reconstructions. Although the noise in the

background is slightly lower in the adaptive reconstructions, the source uniformity is

worse. More work is necessary to understand why the adaptive reconstructions are

worse than the conventional.

E.2 Split Line Source

Fig. E.4a is the fast-neutron reconstruction using the conventional, detector-

centered setup and the Fig. E.4b is the adaptive case. The relevant metrics are

summarized in Table E.3.

Both reconstructions show two extended sources although in the adaptive case,

the reconstructions have more extent, particularly the source at 194◦. Note that

although the peak heights of the two line sources are quite different in the adaptive

reconstruction, the total area is similar.

The adaptive reconstruction has lower noise in the background region, but there

appears to be a slow roll off in intensity to the left and right of S1 and S2 respectively

(at 150◦ and 210◦).

(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure E.4: Fast-neutron reconstruction of the split line source. 100 MLEM iterations.
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Table E.3: Split line source FWHM, uniformity, and noise for fast-neutron reconstruc-
tions.

Conventional Adaptive
S1 FWHM 12.4 13.3
S2 FWHM 11.9 14.9

S1 Uniformity (10−3) 3.3 2.8
S2 Uniformity (10−3) 3.7 1.0

Noise (10−4) 3.1 2.6

Fig. E.5a and E.5b are reconstructions using the same data as Fig. E.4a and E.4b

but MLEM was run for 1,000 iterations. The relevant metrics are summarized in

Table E.4.

In terms of source uniformity, the line sources in the convention reconstruction

are more uniform than those in the adaptive, but the background noise is lower in

the adaptive case.

(a) Conventional, detector-centered setup. (b) Adaptive setup.

Figure E.5: Fast-neutron reconstruction of the split line source after running MLEM
for many iterations. 1,000 MLEM iterations.
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Table E.4: Split line source FWHM, uniformity, and noise for high MLEM iteration
fast-neutron reconstructions.

Conventional Adaptive
S1 FWHM 14.8 14.7
S2 FWHM 13.6 16.1

S1 Uniformity (10−3) 1.5 4.8
S2 Uniformity (10−3) 4.2 5.6

Noise (10−4) 8.7 5.3

Overall, for fast-neutron reconstructions, utilizing data from multiple detector

positions did not result in significantly better reconstructions. The adaptive case

suffers from artifacts to the left of S1 and to the right of S2. These results imply

that there is some model mismatch that is negatively affecting the adaptive case

reconstructions.

E.3 Multiple Source

Fig. E.6 is a PSD plot from the multiple source experiment. The fast neutrons

are clearly separated from the gamma-rays.

Figure E.6: PSD plot showing good separated between fast-neutron and gamma-ray
pulses. Conventional, detector-centered.

First, we show reconstructions from the conventional setup and then contrast those

against the adaptive setup. Fig. E.7 is the 2D reconstruction from the conventional
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setup and Fig. E.8 and E.9 are slices from the 2D image - Fig. E.8 is an azimuthal

slice at 182◦ and Fig. E.9 is a radial slice at 80cm. These reconstructions are also

shown in log scale.

(a) Linear scale (b) Logarithmic scale.

Figure E.7: 2D reconstruction made with the conventional c-TEI setup.

Figure E.8: Azimuthal slice of the 2D reconstruction at 182◦. Conventional c-TEI.
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(a) Linear scale. (b) Logarithmic scale.

Figure E.9: Radial slice of the 2D reconstruction at 80cm. Conventional c-TEI.

Since only data from the center detector was used, the system cannot effectively

create 2D images. Thus in Fig. E.7, the sources are not radially localized. Moreover,

as shown in Fig. E.8, source pixels that are further away from the system are

reconstructed with higher intensity. This is a direct consequence of initializing MLEM

with the inverse sensitivity of the system response. If instead one were to initialize

MLEM with a constant value, the source pixels that are closer to the system would

have higher intensity.

Fig. E.9 shows the radial slice at 80cm. The two source object is at 90◦, thus we

expect to see two separated sources, but the resolution of the system is not sufficient

to separate the two sources. Instead, we see a slightly broadened peak.

Fig. E.10 is the 2D reconstruction for adaptive c-TEI and Fig. E.11 and E.12 are

slices from the 2D image - Fig. E.11 is an azimuthal slice at 182◦ and Fig. E.12 is a

radial slice at 80cm. These reconstructions are also shown in log scale.
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(a) Linear scale (b) Logarithmic scale.

Figure E.10: 2D reconstruction made with the adaptive setup.

Figure E.11: Azimuthal slice of the 2D reconstruction at 182◦. Adaptive.

(a) Linear scale. (b) Logarithmic scale.

Figure E.12: Radial slice of the 2D reconstruction at 80cm. Adaptive.

224



Although data was collected at multiple detector positions in the mask, the MOX

fuel cannot be radially localized as evidenced by Fig. E.11. Additionally, the two

source object cannot be separated into two sources in Fig. E.12. For fast-neutron

data, adaptive detector movements have not significantly improved the reconstructed

images in terms of radial localization and angular resolution.

E.4 Conclusions

Based on these reconstructions, it appears that there is some mismatch between

the collected data and the system response although the exact reason is unknown.
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