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ABSTRACT 

 

The ever-expanding wireless communications and sensing are influencing every 

aspect of human life. With the persistent demand for higher data capacity and recent 

advancements in wireless technologies, the design of current radio frequency front-end 

circuitry in communication devices calls for transformative changes. Frequency band 

proliferation is the biggest contributor to the added RF front-ends complexity in the design 

of future radios. To operate at various frequency bands, a complex combination of switches 

and filters is used in mobile devices, and the number of these frequency selective 

components in each device is expected to exceed 100 with the advent of 5th generation (5G) 

communication networks. Acoustic wave filters based on piezoelectric materials are the 

primary technologies employed in current communication systems, including mobile 

phones. Alternatively, the integration of multifunctional ferroelectric materials into 

reconfigurable frequency selective components promises reduced complexity, diminished 

size, and high performance for future radios, enabling them to support 5G wireless 

technologies and beyond.  

A promising reconfigurable bulk acoustic wave technology, employing electric-field-

induced piezoelectricity and negative piezoelectricity in ferroelectrics, is presented in this 

dissertation. Successful implementation of ferroelectric filters would eliminate the need for 

external switcheplexers in the RF front-ends and reduce the number of required filters, 

leading to a significant reduction in size, cost, and complexity. 
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Contributions of this work are categorized into three major parts. In the first part, an 

intrinsically switchable thin film bulk acoustic wave resonator (FBAR) based on 

ferroelectric BST with the highest figure of merit (i.e., 𝑄𝑚 × 𝐾𝑡
2) in the literature is 

presented. The BST FBARs are then employed to design intrinsically switchable filters 

with the lowest insertion loss to date. Such filters combine filtering and switching 

functionalities onto a single device, eliminating the need for external switches in RF front-

ends. 

The second part of this work focuses on the development of frequency and bandwidth 

reconfigurable filters based on BST FBARs. The first switchless acoustic wave filter bank 

is presented in chapter 3, demonstrating the capability of BST FBARs in simplifying future 

agile radios. Next, a novel bandwidth reconfigurable filter based on BST FBARs is 

introduced in chapter 4, where the idea is experimentally validated with multiple design 

examples. 

Finally, through rigorous mathematical analysis and experimental validation, it has 

been demonstrated that a dynamic ‘non-uniform piezoelectric coefficient’ created within a 

composite structure made up of multi-layers of ferroelectrics allows the selective excitation 

of different mechanical Eigenmodes with a constant electromechanical coupling 

coefficient. Such technology overcomes the fundamental limitations associated with the 

electromechanical coupling coefficient of harmonic resonances in bulk acoustic wave 

resonators. To create ‘non-uniform piezoelectric coefficients’ in such structures, 

ferroelectrics’ electric-field-induced piezoelectricity and negative piezoelectricity has been 

exploited. This innovative technology provides a fundamentally new approach and a 
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framework for synthesizing programmable frequency selective components, which leads 

to transformative advances in wireless systems’ front-end architecture.  

As part of the future direction, it is suggested that the multilayer structure presented in 

this section to be further studies as part of a new acoustic wave resonator design, which: 

(a) is capable of operation at a wide frequency range up to mm-wave frequencies 

designated for 5G (b). Such a structure has the potential to overcome the fundamental 

limitation of acoustic resonator’s ever-decreasing electromechanical coupling factors (Kt
2) 

as their frequency of operation increases. 
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1 CHAPTER I: 

Introduction 

 

 

 Dissertation Motivation  

Wireless communication has become an integral part of our lives, continuously 

improving the quality of everyday activities. A multitude of functionalities are offered by 

recent generations of mobile phones, resulting in significant adoption of wireless devices 

and growth in data traffic, as reported by Ericson in Fig. 1.1 [1]. To accommodate 

consumers' continuous demands for high data rates, the number of frequency bands 

allocated for communication by governments across the world has steadily been increasing. 

Furthermore, new technologies, such as carrier aggregation (CA) and multiple input, 

 

Fig. 1.1 Significant growth in data traffic over the past few years, indicating nearly 60% 

increase per year [1] 
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multiple output (MIMO), have been developed to increase the data capacity. Today’s 

mobile devices are capable of supporting numerous wireless technologies (i.e. Wi-Fi, 

Bluetooth, GPS, 3G, 4G, etc.), each having their own designated frequency bands of 

operation. Bandpass filters, multiplexers, and switchplexers in RF transceivers are essential 

for the coexistence of different wireless technologies and play a vital role in efficient 

spectrum usage. Current mobile devices contain many bandpass filters to select the 

frequency band of interest, based on the communications standard and available spectrum, 

as shown in Fig. 1.2. This figure presents a schematic of a generic RF front-end for a typical 

mobile device. Each generation of mobile devices demands a larger number of RF filters, 

and with the transition toward 5th generation (5G) communication networks and its 

corresponding frequency bands, the larger number of required filters will only add to the 

 

Fig. 1.2 A schematic of a generic RF-front end for a mobile device. 
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complexity and cost of cell phone RF front-ends.  

Currently, only acoustic (piezoelectric) filters can meet the stringent filter 

requirements in RF front-ends [2]. Although they are capable of meeting the requirements 

for the current standards, external switches are also required to select between different 

frequency bands of operation (Fig. 1.2). The addition of the switches to the RF modules 

adds to their complexity and loss. In today’s cellphones, more than 50 filters and switches 

are employed, and this number is expected to exceed 100 in the nearby future [2]. This 

poses significant challenges from the cost, size, and power consumption standpoint. A 

possible approach to address these challenges is to integrate both switching and filtering 

functionalities onto a single device by replacing the combination of switchplexers and 

conventional bulk acoustic wave (BAW) filters with intrinsically switchable filters. A 

simplified version of today’s RF front-end block diagram [3] is compared with the 

envisioned RF front-end based on switchable filters in Fig. 1.3. 

The building block of switchable filters is switchable resonators that can be turned on and 

off with an application of a DC bias voltage. Switchable resonators are realized through 

electrostatic (capacitive) [4]–[8] or electrostrictive [9]–[16] transduction mechanisms. The 

performance of electrostatic and electrostrictive based switchable resonators is compared 

in Table 1.1. High quality factors (Qs) in the magnitude of 10000 are achievable in 

electrostatically transduced resonators. However, such resonators possess large motional 

resistance, limiting their use in RF systems with 50 Ω standard impedance due to 

significant impedance mismatch. Also, the low electromechanical coupling coefficient 
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(Kt
2) of these resonators limits the maximum achievable bandwidth of the filters. On the 

other hand, electrostrictive transduction offered by ferroelectrics barium strontium titanate 

(BaxSr(1- x)TiO3 or BST) exhibit high Kt
2 and low motional resistance providing an  

 

Table 1.1 

Comparison of Switchable Resonators Based on Transduction Mechanisms [17] 

PROPERTIES 
Electrostatic 

Transduction 

Based Resonators 

Electrostrictive 

Transduction 

Based Resonators 

Quality Factor (Q) Very High (>10000) ~ 400* 

Electromechanical 

coupling (Kt
2) 

Low High* 

Motional Resistance Very High Low 

Typical Resonance 

Frequency 

Low (<2 GHz) High 

* Q and Kt
2

 are reported for regular (non-composite) BST thin film bulk acoustic resonator 

 

(a) 

 

(b) 

Fig. 1.3 (a) A simplified block diagram for today’s RF-front end architecture [3] and (b) the 

envisioned architecture based on switchable filters. 

 

ADC

ADC

MB/HB front end module

LB front end module

RF transceiver
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opportunity to design intrinsically switchable high performance filters. The next section 

highlights the importance of ferroelectric BST for the design of reconfigurable radio 

frequency acoustic wave devices. 

 Background 

1.2.1  Multifunctional Ferroelectric BST 

Ferroelectric BST is a multifunctional material, which exhibits distinctive 

characteristics depending on its operating temperature with respect to the phase transition 

temperature (i.e., Curie temperature (Tc)) as seen in Fig. 1.4 (a) [18], [19]. Below Tc, the 

BST material is in the ferroelectric phase, exhibiting a hysteresis in its polarization. 

Ferroelectric mode of operation is suitable for memory applications such as non-volatile 

memories (FeRAM) [18]–[20]. However, above Tc, the BST material operates in the 

paraelectric phase and exhibits multiple characteristics suitable for RF/microwave device 

applications, such as a large electrostriction coefficient, high relative permittivity, low loss 

tangent, and integration onto a silicon substrate. For instance, BST’s high permittivity 

(ɛr>200) and electric-field-dependent properties, as shown in Fig. 1.4 (b), has been used to 

design high-k capacitors and varactors [18]–[22]. Of special interest is the BST’s electric-

field-induced piezoelectric effect known as electrostriction, which allows BST acoustic 

wave resonators to be intrinsically switchable.  

BST has a cubic perovskite unit-cell structure in its paraelectric phase, as shown in 

Fig. 1.5. Thus the components of the piezoelectric tensor are all zero in this phase due to 

its centrosymmetric structure. However, when a DC bias voltage is applied across the 

ferroelectric material, the electric field displaces the center titanium ion in BST structure, 
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leading to a non-symmetric structure that exhibits piezoelectric effect (i.e., E-field-induced 

piezoelectricity). In conventional piezoelectric materials, the relationship between the 

electric and acoustic fields is approximately linear under the small signal domain, as shown 

in Fig. 1.6 (a). In BST, the induced strain and electrical polarization are related by the 

electrostriction equation (1.1) [23]. The electric polarization under an applied electric field 

E can be expressed by (1.2):  

 

(a) 

 

(b) 

Fig. 1.4 (a) The temperature-dependent response of ferroelectric BST in its ferroelectric phase 

(below Tc) and its paraelectric phase (above Tc). (b) A typical BST varactor in paraelectric phase 

provides a bell shape response as a function of voltage.  

 

Polarization

Electric

Field (E)

Polarization

Tc
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                                                   𝑆 = 𝛼𝑃2                                                       (1.1) 

                                                              𝑃 = 𝑃𝑠 + 𝜒𝐸                                                                    (1.2) 

where S is the strain, 𝛼 is the electrostriction coefficient, and χ is the susceptibility of the 

material. Substituting (1.2) in (1.1) [23] results in:  

  S= 𝛼𝑃𝑠
2 + (2𝛼𝑃𝑠𝜒 + 𝛼𝜒2𝐸)𝐸                           (1.3) 

In paraelectric phase BST, where spontaneous polarization is zero (Ps = 0), the 

electromechanical transduction occurs primarily through the E-field-induced piezoelectric 

effect (second term in the parentheses) that originates from BST’s large electrostriction 

coefficient. The typical quadratic strain (S)-electric field (E) curve for BST in the 

paraelectric phase is shown in Fig. 1.6 (b), where the effective piezoelectric coefficient 

around a particular DC bias point (EDC) is given by the slope of this curve [24]:   

 

                                 
𝑑𝑆

𝑑𝐸
|𝐸𝐷𝐶

= 2𝛼𝜒2𝐸𝐷𝐶                                            (1.4) 

 

Fig. 1.5 Crystalline structure of perovskite ferroelectric BST in paraelectric phase under zero 

DC bias voltage, which exhibits no piezoelectric characteristic due to a centrosymmetric unit 

cell. 
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Based on (1.4), the sign and value of the effective piezoelectric coefficient are functions of 

the polarity and magnitude of the applied DC electric field (𝐸𝐷𝐶 =
𝑉𝐷𝐶

𝑡𝐵𝑆𝑇
, where VDC is the 

voltage across the BST film and tBST is the BST film thickness). As shown in Fig. 1.6 (b), 

BST film biased to the left side of the curve, under a negative DC voltage, presents a 

‘negative piezoelectric’ coefficient to an ac field applied across the electrodes. The E-field-

induced piezoelectricity and ‘negative piezoelectricity’ can be used to control the 

electromechanical coupling in BST with a DC bias voltage, and it has been utilized in 

designing a wide range of reconfigurable BAW devices throughout this dissertation. 

1.2.2 Intrinsically Switchable BST Bulk Acoustic Wave Resonators 

High performance, compact, and low-cost BAW resonators are essential components 

of modern wireless communication systems. BAW resonators consist of a piezoelectric 

transduction layer, sandwiched between two metal electrodes. RF signals applied to the 

electrodes excite acoustic waves that propagate within the bulk of the device. The 

propagating bulk acoustic waves will, in turn, generate an electrical response. The acoustic 

 

(a) 

 

(b) 

Fig. 1.6 (a) Simplified illustration of acoustic-electric fields interactions in a typical piezoelectric 

materials and (b) the electric field induced piezoelectricity of BST as a result of its strong 

electrostriction property. Under zero DC electric field (E = 0 V/m, point A), the slope of the 

curve is zero and no acoustic wave is excited; biasing the material under DC electric field (point 

B) enables the material to couple the electric energy into acoustic waves. 
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waves are confined within the resonator due to the acoustic impedance mismatch between 

the resonator body and its surrounding environment. There are two primary methods of 

confining the bulk acoustic waves; hence BAW resonators are classified into two different 

categories. The first type of BAW resonator is the solidly mounted resonator (SMR), which 

utilizes an acoustic Bragg reflector, comprised of alternating quarter-wavelengths of high 

and low acoustic impedance materials, to confine the acoustic energy at the design 

frequency. The second type is the thin film bulk acoustic wave resonator (FBAR) that 

utilizes the mismatch between the resonator material and air, by removing the material 

surrounding the resonator to confine acoustic waves. Simplified cross-sectional views of 

SMRs and FBARs are shown in Fig. 1.7. The resonance frequency of both FBARs and 

SMRs is determined by the thickness of the layers that make up the device. Furthermore, 

both types of BAW resonators have been heavily used in the telecommunications industry, 

each with their distinct advantages.  

 

(a) 

 

 

 

(b) 

Fig. 1.7 Cross-sectional views of typical (a) solidly mounted resonators (SMRs) and (b) 

thin film bulk acoustic resonators (FBARs). 
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Bulk acoustic wave resonators (FBAR and SMR) based on ferroelectric BST possess 

several unique features, which can simplify the RF front-ends. Due to BST’s strong 

electrostriction properties, BST resonators can be switched on and off with the application 

of a DC bias voltage [9]–[18], [25]–[28]. Furthermore, due to the high permittivity of BST, 

it is possible to design much smaller resonators as compared to the resonators based on the 

traditional piezoelectric materials, therefore significantly reducing the size of RF front-end 

modules. 

The electrical behavior of ferroelectric resonators in the ON state can be represented 

by a modified Butterworth-Van Dyke (mBVD) model [29], shown in Fig. 1.8 (a). In this 

figure, the motional branch is modeled by a capacitor (Cm) in series with an inductor (Lm), 

forming the series resonator. The additional resistor (Rm) represents the mechanical loss 

factor. The electrical branch consists of a static capacitance (Ce) along with a resistance 

(Re), which represents the dielectric loss as well as the losses associated with laterally 

propagating waves. Under zero DC bias voltage, the resonator is in its OFF state, and the 

motional branch in this model (i.e., Lm, Cm, Rm) vanishes, as shown in Fig 1.8 (b). The 

 

                                                 (a)                                                    (b) 

Fig. 1.8 (a) ON state lumped element mBVD model for a 1-port switchable BST FBAR 

and (b) its OFF state capacitive model. [28] 
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lumped element circuit models are utilized to design intrinsically switchable ferroelectric 

filters to predict their ON and OFF states’ responses. 

 Dissertation Goal and Organization 

The goal of this dissertation is to design, simulate, fabricate, and characterize 

reconfigurable bulk acoustic wave filters by exploiting the electric field induced 

piezoelectricity and negative piezoelectricity in ferroelectric BST for future agile RF front-

ends. The organization of this dissertation is as follows. In the second chapter design and 

fabrication process for an optimized BST FBAR are detailed, demonstrating the maximum 

reported figure of merit (product of quality factor and electromechanical coupling 

coefficient) based on the strong electrostriction coefficient in BST. Such resonators are 

then employed to design a variety of reconfigurable devices in the following chapters.  

In chapter 3, intrinsically switchable FBAR filters based on ferroelectric BST are 

presented. A 1.5 stage π-network intrinsically switchable FBAR filter unit cell with a 3-dB 

fractional bandwidth of 3% at 2 GHz is systematically designed, simulated, and fabricated. 

The minimum insertion loss (IL) for the filter unit cell is 2.25 dB, representing the lowest 

IL reported for BST BAW filters to date, which is mainly due to its high Q×Kt
2 BST 

resonators. Two 1.5-stage filter unit cells are connected in series to form a 2.5-stage filter, 

providing more than 25 dB of out-of-band rejection and OFF-state isolation between the 

input and the output ports. 

Reconfigurable bulk acoustic wave filters provide a number of advantages for wireless 

communication systems, including compact size, cost-effectiveness, and less complexity. 

Chapter 5 focuses on an intrinsically switchable and frequency reconfigurable filter bank 

based on BST FBARs. In this chapter, a triple band switchable filter bank, consisting of 
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three 2.5 stage filters based on BST FBARs, is designed, simulated, and fabricated for the 

first time. The bandpass filters have center frequencies at 1.85, 1.96, and 2.04 GHz and are 

selectively turned on based upon the external DC bias voltage applied to each filter. 

Turning off all the filters provide an isolation of more than 27 dB between the input and 

the output ports. The presented intrinsically switchable ferroelectric filter bank potentially 

simplifies future RF front ends by integrating both switching and filtering functionalities 

onto a single device and reduces the overall circuit area. 

Chapter 4 presents on a novel design methodology of an intrinsically switchable and 

bandwidth reconfigurable FBAR filter, employing the electrostriction in ferroelectric BST. 

Two examples of BST based FBAR filters are designed and fabricated as a proof of 

concept. Under the application of a dc bias voltage, the fabricated switchable filters exhibit 

a bandpass response with a fractional BW of 3%. By changing the state of BST FBARs 

through applied DC bias voltages, the bandwidth of the filters is adjusted. Without any 

bias, the filters switch off to provide isolation between the input and output ports. BST 

based bandwidth reconfigurable filters can potentially reduce the number of required filters 

and switches in the future multi-band RF front-ends. 

In chapter 6, a new class of ferroelectric FBARs (i.e., mode-switchable FBARs) is 

introduced, and its design procedure is detailed. Such resonators operate based on a 

dynamic non-uniform effective piezoelectricity in composite multi-layer ferroelectrics 

with large electrostriction coefficients, like BST. Harmonic resonance modes (nfo) of a 

multilayer ferroelectric bulk acoustic wave resonator can be selectively excited with an 

effective electromechanical coupling coefficient (𝐾𝑒𝑓𝑓
2 ) equal to the fundament mode, 

which is contrary to the trend 𝐾𝑒𝑓𝑓
2 ∝ 1/𝑛2  exhibited by conventional piezoelectric bulk 
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acoustic wave resonators [30]. Such a device can selectively be set to resonate at its 

different resonance harmonics by generating a pattern of non-uniform piezoelectric 

coefficient proportional to the stress field of each mode with an application of a proper set 

of DC control voltages applied across the ferroelectric layers. Such a resonator allows for 

the design of a new class of band-switching filters. As an experimental validation, a mode-

switchable FBAR and a band-switching ladder-type filter based on a bilayer ferroelectric 

BST structure are designed and fabricated for the first time. The bilayer BST FBARs not 

only can be switched on or off, but also, by choosing different bias configurations, two 

resonance modes at 2 GHz and 3.6 GHz can be selectively excited having 𝐾𝑒𝑓𝑓
2  of 8% and 

7%, respectively. 

Chapter 7 summarizes this work and presents the future direction of reconfigurable 

acoustic wave devices based on BST. Finally, journal and conference publications out of 

this work are listed. 
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2 CHAPTER II: 

 Design and Characterization of Intrinsically Switchable             

Ferroelectric BST FBARs 

 

 

 Chapter Motivation 

Intrinsically switchable FBARs and SMRs based on BST have been investigated for 

the realization of intrinsically switchable BAW filters and multi-frequency-switchable 

oscillators [9]–[17], [25]–[28]. In general, BAW filter performance is dependent on its 

constituent resonators’ performance. Important parameters of the acoustic resonators that 

affect the overall response of the BAW filters are their mechanical quality factor (Qm) and 

electromechanical coupling coefficient (𝐾𝑡
2). Mechanical quality factor represents the 

acoustic loss within a resonator, and 𝐾𝑡
2 describes the coupling strength between electric 

and acoustic energy in a resonator. A higher 𝑄𝑚 means a lower mechanical loss, allowing 

for the design of filters with a lower insertion loss (IL) and a sharp roll off. On the other 

hand, 𝐾𝑡
2  sets the limit for maximum achievable filter bandwidth (BW). Thus, high 

𝑄𝑚 × 𝐾𝑡
2 switchable BST resonators are needed to achieve a low IL, large BW, and sharp 

roll off in BST filters’ ON state. Therefore,  after selecting the materials and the technology 
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for a BAW filter design application, optimization of resonator structure is necessary. It can 

be accomplished by carefully selecting the thickness of constituting layers of the resonator, 

as discussed in this chapter. 

Also, the BST transduction layer deposition process can significantly affect its 

electrical and mechanical properties, and consequently, the device performance. 

Previously, BST FBARs, fabricated using a pulsed laser deposition (PLD) system was 

reported with 𝑄𝑚 and 𝐾𝑡
2 values as high as 233 and 7%, respectively [9]. Another 

promising method for the fabrication of ferroelectric films is RF magnetron sputtering, 

which offers high uniformity over large area wafers, scalability, compatibility with 

standard IC processing, and low investment cost. Sputter deposited BST has been used for 

the design of BST SMRs with 𝑄𝑚𝑠 as high as 350; however, the reported 𝐾𝑡
2 for such 

resonators is about 2.4%, reducing the overall resonator figure of merit [14]. This chapter 

presents the design process for BST FBARs and their fabrication process using a sputtering 

technique, providing the highest 𝑄𝑚 × 𝐾𝑡
2 to date. Important characteristics of the 

fabricated resonators, including quality factors, 𝐾𝑡
2, and temperature coefficient of 

frequencies (TCF) are measured and reported. 

Finally, another key factor in the design of the filters is the linearity of resonators, 

which should meet the stringent requirements for multiband CA operations. A practical 

approach for improving the linearity is to modify the filter circuit architecture. For 

example, in the filter structure, the resonators that experience a large voltage swing can be 

replaced with multiple cascaded larger resonators. As an example, a single BST resonator 

and two cascaded BST resonators, each with twice the area of the single resonator is 

designed, fabricated, and their linearity and acoustic performance are compared. 
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 Ferroelectric BST FBAR Design for Maximum Kt
2 

A 1-D transmission line model is used to optimally design the FBAR structure [31]. 

The resonator structure consists of a BST layer sandwiched between top and bottom 

electrodes (Pt), as shown in Fig. 2.1.  A thin SiO2 diffusion barrier layer has also been used 

beneath the bottom electrode to avoid diffusion of Si into Pt layer during the BST 

deposition process. The 1-D acoustic wave transmission line model predicts the electrical 

response of a bulk acoustic resonator as a function of the material parameters and thickness 

of the constituting layers. 

Each layer is modeled with an acoustic transmission line through its material 

properties, including acoustic impedance, acoustic velocity, and mechanical quality factor. 

First, the air at the top and bottom of the structure is included in the model as a termination 

with its acoustic characteristic impedance (Zair). Then the load impedance Zair is 

transformed to Zbot,e and Ztop,e through successive impedance transformation by (2.1). 

                                               𝑍𝑖 =
𝑍𝑜(𝑍𝐿+𝑍𝑜 tanh(𝛾𝑡𝑖))

𝑍𝑜+𝑍𝐿 tanh(𝛾𝑡𝑖)
                                        (2.1) 

  
Fig. 2.1 Simplified cross-sectional view of the designed BST FBAR. 
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where γ, t, and Zo are the acoustic propagation constant, thickness, and acoustic 

characteristic impedance of each layer, respectively, and ZL is the acoustic impedance seen 

looking into the previous layer. The propagation constant (γ) of each layer is calculated by 

(2.2). 

                                                           𝛾 = 𝛼 + 𝑗𝛽                                                (2.2) 

                                                 𝛼 =
𝛽

2𝑄𝑚
 and 𝛽 =

𝜔

𝜈
                                          (2.3) 

where α, β, Qm, ω, and ν represents the attenuation constant, phase constant, mechanical 

quality factor, angular frequency, and acoustic velocity of each layer, respectively. Finally, 

the electrical input impedance of the BST FBAR (i.e., Zin in Fig. 2.1) can be calculated as 

follows. 

              𝑍𝑖𝑛 =
1

𝑗𝜔𝐶𝑒
[1 −

𝐾2 tan(
𝜙

2
)

𝜙

2

×
((𝑧𝑡+𝑧𝑏) cos2(

𝜙

2
)+𝑗𝑠𝑖𝑛(

ϕ

2
))

(𝑧𝑡+𝑧𝑏)𝑐𝑜𝑠(𝜙)+𝑗(𝑧𝑡𝑧𝑏+1) sin(𝜙)
                   (2.4) 

                                         𝑧𝑡 =
𝑍𝑡𝑜𝑝,𝑒

𝑍𝐵𝑆𝑇
 and 𝑧𝑏 =

𝑍𝑏𝑜𝑡,𝑒

𝑍𝐵𝑆𝑇
                                                (2.5) 

where K2, φ, and Ce are the intrinsic electromechanical coupling coefficient of the BST, 

the acoustic phase across the BST layer, and the capacitance, respectively. The material 

parameters which have been used in the acoustic wave transmission line model are 

provided in Table 2.1. The intrinsic electromechanical coupling coefficient for BST (𝐾𝐵𝑆𝑇
2 ) 

thin film in ON state that has is used in this model is extracted from the measurements to 

be 10%. To calculated the 𝐾𝐵𝑆𝑇
2 , a 1-D acoustic wave transmission line model is fitted to a 

measured BST FBARs under 60 V bias voltage, that has been fabricated under similar 

conditions. 
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A BST FBAR is designed to have a fundamental resonance mode at 2 GHz through 1-

D acoustic wave TL simulations. In these simulations, the effect of a 300 nm-thick silicon 

dioxide diffusion barrier layer used underneath the bottom electrode to prevent Si diffusion 

into the Pt bottom electrode has been taken into account. The thickness of both the top and 

bottom electrodes is set to be equal in the FBAR structure. 

Table 2.1  

Acoustic Material Parameters for Different Layers in BST FBARs 

Material v (m/s) Z0 (kg/m2s) Qm 

Pt 3236 69.4106 260 

BST 6307 35.3×106 500 

SiO2 5848 12.8×106 1000 

Si 8445 19.7×106 2000 

Au 2800 63.8×106 200 

 

Using the acoustic transmission line model, Kt
2 as a function of electrode-to-BST thickness 

ratio for an FBAR structure similar to Fig 2.1 with a fundamental resonance mode at 2 GHz 

is plotted in Fig. 2.2 (a). It can be seen that Kt
2 is within 99% of its maximum value for 

electrode-to-BST thickness ratio of 0.05 to 0.1. Therefore in order to minimize the ohmic 

loss while maintaining a large Kt
2, an electrode-to-BST of 0.1 is selected. For a fixed 
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fundamental resonance frequency at 2 GHz, both BST and electrodes thicknesses are 

plotted as a function of the electrode-to-BST ratio, as shown in Fig. 2.2 (b). The final 

thickness values of BST and each electrode are then determined from Fig. 2.2 (b) to be 770 

 
(a) 

 
(b) 

Fig. 2.2 (a) Effective electromechanical coupling coefficient (Kt
2) (d) thickness values of BST 

and Pt as a function of BST to total thickness ratio for resonator fundumental mode at 2 GHz.  
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and 100 nm, respectively; thus, the total BST FBAR membrane thickness is 1.27 µm. The 

thickness of all the layers in the BST FBAR structure is summarized in Table 2.2. 

Table 2.2 

BST FBAR’s Designed Thickness Values 

Layers Pttop BST Ptbottom SiO2 

Thickness values (nm) 100 770 100 300 

 

 Fabrication Procedure for BST FBARs Using RF Magnetron 

Sputtering 

BST FBARs are fabricated on a high resistivity (100) oriented silicon substrate that 

has a thickness of 500 µm and resistivity of more than 10 KΩ × cm. The fabrication steps 

for the BST FBARs are depicted in Fig. 2.3. Fabrication starts by thermally growing a 300 

nm SiO2 on the Si wafer. The SiO2 layer beneath the bottom electrode plays an essential 

role as a diffusion barrier during the high-temperature deposition of the ferroelectric BST. 

Thermally grown SiO2 is a low loss material with a positive thermal coefficient of elasticity 

(TCE), and it is commonly used to compensate for the negative TCF of FBARs [30]. In the 

next step, a 100 nm-thick Pt bottom electrode is deposited and patterned by evaporation 

and lift-off. A 3.0 nm-thick layer of Ti is used for the adhesion of Pt bottom electrode to 

the SiO2 layer. A 770-nm of BST is then deposited by an RF magnetron sputtering system 

at 650 °C in a 45 mTorr Ar and O2 (4:1) environment. Two sputtering guns with RF power 

levels of 300 Watt are used for BST deposition. A 100 nm-thick layer of Pt is then 

deposited and patterned by evaporation and lift-off to serve as the top electrode. After 
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annealing the chip at 500 °C for 30 minutes in an O2 environment, BST is etched in buffered 

HF (BHF) to create the release holes and a via to the bottom electrode. A layer of Ti/Al/Au 

(50/1300/100 nm) is then deposited and patterned using evaporation and lift-off as a contact 

layer. BST FBARs are released by etching the Si substrate beneath the device in a 3.0 Torr 

XeF2 environment. 

Device S-parameters are measured using a Keysight network analyzer and a Cascade 

Microtech probe station with ground-signal-ground (GSG) probes of 250 µm pitch size. 

Short-open-load-through (SOLT) calibration is performed for a 50 Ω system impedance.  

 

Fig. 2.3 Fabrication steps for the BST FBARs. 
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DC-bias voltages are applied through a bias tee connected to the input probe. Finally, S-

parameters for the BST FBAR in ON (at 60 V DC) and OFF (no DC-bias applied) states 

are measured. The photograph of a fabricated BST FBAR operating at 2 GHz frequency, 

its cross-sectional view, and biasing circuitry are presented in Fig. 2.4. The size of the 

resonator active area is 68 𝜇𝑚 × 68 𝜇𝑚. 

 A BST FBAR Measurement Results 

The measurement setup for the fabricated BST FBARs is depicted in Fig. 2.5,  where 

a DC bias voltage is applied through a bias tee connected at the input port of the device. 

               

(a)                                                                    (b) 

Fig. 2.4 (a) Photograph of a fabricated BST FBAR, and (b) its cross sectional view that includes 

the biasing circuitry. 
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Fig. 2.5 Measurement setup for the fabricated BST FBAR. 
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The device S11 plotted on a Smith chart he magnitude of the input impedance for the 

fabricated BST FBAR in both ON (60 V) and OFF (0 V) states are provided in Fig. 2.6. 

By applying a DC bias voltage, a thickness mode resonance is turned on, due to BST’s 

electric-field-induced piezoelectricity. The series and the parallel resonance frequencies 

       

 (a) 

 

                                                                                      (b) 

Fig. 2.6 (a) Magnitude of input impedance, and (b) reflection coefficient on Smith chart for the 

measured 1-port switchable BST FBAR in ON (70 V) and OFF states. 
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(frequencies at which the real part of the input admittance and impedance become 

maximum) are 2.028 GHz and 2.104 GHz, respectively. The required VDC,ON of 60 V, can 

be reduced to less than 20 V by fabricating the resonators based on a BST layer with better 

crystallinity, as demonstrated in [18]. In mobile phones, dc to dc boost converters, can be 

used to create the required dc bias voltage [32]. For further analysis, mBVD model 

presented in Fig. 2.7 is developed by using the measured FBAR data. The mBVD model 

parameter values are provided in Table 2.3. The resonator parameters, including 𝐾𝑡
2, 𝑄𝑠, 𝑄𝑝 

and 𝑄𝑚 are calculated using (2.6) and (2.7) [30] to be 8.6%, 100, 183 and 360, respectively. 

The BST FBAR presented here provides the highest 𝑄𝑚 × 𝐾𝑡
2 as compared to the 

previously reported BST resonators.  

                                                  𝐾𝑡
2 =

𝜋2

4

𝑓𝑠

𝑓𝑝

(𝑓𝑝−𝑓𝑠) 

𝑓𝑝
                                                          (2.6) 

                                    𝑄𝑠 =
𝜔𝑠𝐿𝑚

𝑅𝑚+𝑅𝑠
, 𝑄𝑝 =

𝜔𝑝𝐿𝑚

𝑅𝑚+𝑅𝑒
, 𝑄𝑚 =

𝜔𝑠𝐿𝑚

𝑅𝑚
                                      (2.7) 

 

In order to calculate the BST FBAR TCF, the S-parameters are collected for a resonator at 

different temperatures ranging from  30 to 100 °C. The thermal coefficients of frequency 

for the series and parallel resonance frequencies are calculated using (2.8). The 

 

Fig. 2.7 mBVD model for a 1-port switchable BST FBAR.  
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temperature-dependent properties of the resonators are measured by varying the device 

temperature from 25 °C to 110 °C on a heating stage and recording the S11 around the 

device resonance frequency. TCF for the series and the parallel resonances of the fabricated 

BST FBAR are −65 ppm/K and −68 ppm/K over the measured temperature range, which 

is partially compensated by adding the SiO2 layer. It is possible to fully compensate for the 

TCF of BST with a thicker SiO2 layer. 

                                                                 𝛼𝑇 =
1

𝑓(𝑇)

𝜕𝑓

𝜕𝑇
                                                          (2.8) 

Table 2.3 

mBVD Model Parameters 

Parameter Value Parameter Value 

Lm (nH) 21.78 Re (Ω) 0.795 

Rm (Ω) 0.778 Rs (Ω) 2.037 

Cm (pF) 0.280 Ls (nH) 0.133 

Ce (pF) 4.107   

 

 Linearity Measurements of BST FBARs 

An important factor in the design of the acoustic wave filters is their linearity, which 

should meet the stringent requirements for multiband carrier CA operations. A practical 

approach for improving the linearity is to modify the filter circuit architecture. For 

example, in the filter structure, the resonators that experience a large voltage swing can be 

replaced with series connected larger resonators. It is expected that in a cascaded structure, 

IP3 increases by 20∙log10N dB, N being the number of cascaded resonators. In this section, 

a single BST resonator and two series connected BST resonators, each with twice the area 
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of the single resonator, are designed, fabricated, and their linearity and acoustic 

performance are compared. Ideally, for N = 2, the IP3 is expected to improve about 6 dB. 

The photograph of the fabricated BST FBAR and the two cascaded BST FBARs are 

shown in Fig. 2.8. The size of the single resonator is 38 μm × 38 µm, while the size of each 

resonator in the cascaded structure is 76 μm × 38 μm. Measured S11 for single and cascaded 

resonators, when their second ports are grounded, is plotted on the Smith chart in both ON 

(60 V) and OFF (0 V) states, as shown in Fig. 2.9. The mBVD model for each ON state 

resonator is extracted and provided in Table 2.4. Based on these parameters, the quality 

factor and electromechanical coupling coefficient for both structures are calculated by (2.6) 

and (2.7) and listed in Table 2.4.  

Through IP3 measurements, the linearity of the BST FBAR is investigated. Two tones 

with Δf = 10 MHz having the same power, around the resonance frequency of each 

resonator, is injected to the input port. The output signal is fed into a spectrum analyzer, as 

shown in Fig. 2.10. The signal powers at the fundamental frequencies, along with their 

third order intermodulation products, are recorded. The measured input third-order 

intercept point (IIP3) for a single resonator is 39 dBm, while the cascaded structure 

            

(a)                                                   (b) 

Fig. 2.8 Photographs of (a) the single and (b) cascaded BST FBARs. 
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presented an IIP3 of 43 dBm. The variation between the 4 dB IP3 improvement and the 

expected 6 dB value can be attributed to the nonzero series ohmic resistance of the 

resonator lead and routing. 

The measurement results provided in Table 2.5 demonstrate that by cascading BST 

FBARs in series, a greater linearity can be achieved with comparable acoustic performance 

to the single resonator. As expected, by replacing each BST resonator with multiple series-

connected larger resonators, the voltage swing across individual resonators is smaller, 

 

(a)                                                                         (b) 

 

Fig. 2.9 The measured S11 plotted on Smith chart for (a) a single BST FBAR and (b) a cascaded 

doubled size resonator in their ON and OFF states. Their lumped element mBVD model is also 

plotted in a dashed blue line on the same figure. 

Table 2.4 

Lumped Element mBVD Model Parameters for Measured Resonators 

BST 
Resonator 

Lm (nH) Cm (pF) Ce (pF) Rm (Ω) Re (Ω) Rs (Ω) 

Single BST 
FBAR 

76.75 0.84 1.94 2.78 2.96 1.66 

Cascaded 
BST FBAR 

68.29 0.92 1.93 2.55 2.95 1.70 

 

OFF OFF
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which results in better linearity [30]. As seen in Fig. 2.9, the effect of lateral spurious modes 

on the cascaded BST FBARs is also less severe due to the larger size of the resonators. 

Finally, it should be noted that the size of the BST FBARs is considerably smaller 

compared to conventional piezoelectric FBARs, even with the cascaded structure. 

Table 2.5 

Measured Specifications of the Single and Cascaded BST FBARs 

BST Resonator 
fs (GHZ) fp (GHz) Qm Kt

2 (%) IIP3 (dBm) 

Single BST FBAR 1.982 2.024 343 5.0 39 

Cascaded BST FBAR 1.998 2.046 336 5.6 43 

 Chapter Conclusion 

A procedure for optimizing the FOM (i.e., high  𝑄𝑚 × 𝐾𝑡
2) of BST FBARs is 

presented. A high  𝑄𝑚 × 𝐾𝑡
2 BST FBAR, which is intended for designing low insertion loss 

switchable BAW filters, has been designed and fabricated. 𝐾𝑡
2 and 𝑄𝑚 of the fabricated 

BST FBAR in ON state are 8.6% and 360, respectively. TCF for the series and the parallel 

resonance frequencies of the BST FBAR is also measured to be -65 and -68 ppm/K, 

respectively. A single BST FBAR and two cascaded BST FBARs are designed and 

fabricated to compare their linearity and performance. Through IP3 measurements, it has 

 

Fig. 2.10 Two tone measurement setup for intermodulation distortion of the BST FBARs. 
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been shown that the cascaded structure effectively improves the linearity of the BST 

FBARs, while providing an acoustic performance similar to a single BST FBAR. The BST 

FBARs developed in this chapter are the building blocks for designing a variety of 

reconfigurable BST FBAR filters presented in the following chapters. 
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3 CHAPTER III: 

Intrinsically Switchable Ferroelectric Filters 

 

 

 Chapter Motivation 

The rapidly multiplying number of frequency bands in mobile devices, as a response 

to consumers’ continuous desire for higher data rates, has resulted in complex wireless 

communication systems. Today’s mobile devices are required to support many wireless 

technologies (i.e., Wi-Fi, Bluetooth, GPS, 3G, 4G, etc.), each having their designated 

frequency bands. These devices contain a significant number of RF switches and band-

select filters, allowing appropriate band selection based on the frequency and mode of 

operation [33]. The introduction of 5th generation (5G) communication networks will only 

continue to increase the number of filters and switches inside cellphones, due to the 

allocation of new frequency bands and expansion of the existing ones. The design and 

implementation of switch matrixes (switchplexers) and filters for future cellular phones 

pose significant challenges, as they increase circuit size, complexity, and cost. In order to 
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reduce the complexity of switchplexers and filters in future radios, design approaches based 

on employing new materials for filter applications are being investigated. 

Filter banks employing intrinsically switchable acoustic resonators based on 

multifunctional ferroelectric materials, such as barium titanate (BTO), strontium titanate 

(STO), and BST are considered to address the aforementioned challenges [12], [17], [34]–

[36]. Previous work on ladder-type ferroelectric filters includes a demonstration of a BTO 

FBAR filter [12], a BST SMR filter [35], and a BST-on-Si FBAR filter [36]. These studies 

demonstrate the capability of ferroelectric materials in the design of intrinsically switchable 

filters. 

This chapter presents a detailed design and fabrication process for multiple types of 

intrinsically switchable BST filters: (1) in the first section, a 1.5 stage intrinsically 

switchable ladder-type filter unit cell, based on BST FBARs, with an improved figure of 

merit (FOM = Kt
2 × Q) [37] is demonstrated. Subsequently, two filter unit cells are 

connected in series to implement a 2.5 stage filter, enhancing the out-of-band rejection in 

the ON state and isolation between the input and the output ports in the OFF state. The 

BST FBAR filters presented here exhibit the lowest reported IL for intrinsically switchable 

BAW filters to date. (2) The majority of the on-chip RF solutions rely on differential RF 

signals due to their robustness against the common mode noise and reduced sensitivity to 

supply voltage fluctuations [38]. Thus, single ended to balanced or balanced to balanced 

filters are of interest in system integration with ICs. An intrinsically switchable balanced 

lattice-ladder BST FBAR filter is designed and fabricated for the first time. Due to the high 

BST relative permittivity, the size of ladder-type BST filters is considerably smaller 

compared to conventional piezoelectric BAW filters. With acoustically coupled BST 
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filters, the device footprint can be even further reduced. (3) Furthermore, a realization of 

ferroelectric BST stacked crystal filters (SCFs) based on the acoustic coupling of two BST 

transducers, forming a single resonator, is presented. BST SCFs not only provide a sharp 

filter response and a high out-of-band rejection at a reduced circuit area but also offer a 

high input to output OFF state isolation level as a result of its small feed-through 

capacitance. Miniaturized BST filters can significantly simplify RF front-end modules with 

their inherent switchability. 

 Intrinsically Switchable Ladder-type BST Filters 

3.2.1 BST FBAR Filter Design 

The basic building block of an intrinsically switchable ladder-type filter is a BST 

resonator (FBAR or SMR). As discussed in the previous chapter, the electrical behavior of 

intrinsically switchable BST resonators in their ON state is represented by the mBVD 

Rm

Lm

Cm

Ce

Re

Rs

OFFON

Ce,off

Rs,off

BST FBAR

 
                                                       (a)                                                       (b) 

FBARseries

(Ce,se)

FBARshunt

(Ce,sh)

Port 1 Port 2

FBARshunt

(Ce,sh)

 
(c) 

Fig. 3.1 Lumped element circuit model for the BST FBAR in (a) ON and (b) OFF states, and (c) 

the schematic representation of a 1.5 stage π- network switchable BST FBAR filter unit cell.  
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model [29], [30], shown in Fig. 3.1 (a). In the OFF state, the BST devices simply behave 

like a capacitor (Ce,off in Fig. 3.1 (b)). Such circuit models are utilized in designing BST 

band-pass filters and for predicting their ON and OFF response. In this section, a ladder-

type BST filter is designed and fabricated in a systematic approach based on the BST 

FBARs presented in the previous chapter.  

A 1.5-stage filter unit cell with a fractional bandwidth (FBW) of  
𝐾𝑡

2

2
% at the filter 

center frequency (fc = ωc/2π) of 2 GHz is designed for a system impedance (Zo) of 50 Ω. 

The filter unit cell is implemented based on a π-network configuration, shown in Fig. 

3.1(c), by following the image parameter method described in [39]. First, the electrical 

capacitances of the series (Ce,se) and the shunt (Ce,sh) BST FBARs in their ON state are 

determined in order to meet the required design constraints. Then, the structure of the 

FBARs is designed based on the filter specifications.  

The series and shunt FBARs’ electrical capacitances are calculated using (3.1) and 

(3.2) to be Ce,se = 0.81 pF and Ce,sh = 1.49 pF, respectively: 

                                    
2

1 ( 1) 2
( ) (1 1 ) 2, 2

M
C FBWe se

Z M FBW Mc o

−
=  + + −                                      

(3.1) 

                                    
2

1 ( 1) 2
( ) (1 1 ) 2, 22

M
C FBWe sh Z M FBW Mc o

−
=  + + − ,                                   (3.2) 

where M is: 

                                                       
2

16 2
4 (1 1 )

2

KtM


=  + − .                                                      (3.3) 
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In the next step, BST FBARs are designed to meet the filter specifications. The BST 

FBAR structure, shown in Fig. 3.2, consists of platinum electrodes, a thin layer of 

ferroelectric BST (Ba0.5Sr0.5TiO3), and a layer of SiO2 beneath the bottom electrode. In 

order to design the thicknesses of each layer for operation at 2 GHz, a 1-D transmission 

line simulation is performed, as described in the previous chapter. In this simulation, the 

thickness of SiO2 diffusion barrier layer is assumed 300 nm, resulting in BST and Pt 

electrode thickness values of dBST = 770 nm and dPt = 100 nm, respectively. The resonator 

is expected to provide a Kt
2 of 6% and FOM of more than 20 based on previous 

measurements of resonators with similar structure and size. The FOM value here is 

expected to be smaller than the resonator presented in the previous chapter, due to 

pronounced fringing field effects associated with the smaller size resonators utilized in the 

filter structure [40].  
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Next, the anti-resonance frequency of the shunt FBARs (fa,shunt) is set to be identical 

to the resonance frequency of the series FBARs (fr,series) in order to obtain typical band-

pass characteristics of a ladder-type filter configuration, where fc = fa,shunt = fr,series = 2 GHz. 

Therefore, shunt FBARs are mass-loaded with a thin layer of Pt to reduce their resonance 

frequency, which is calculated using (3.4). The thickness of the required extra Pt layer 

(dPt,mass) is determined with the 1-D transmission line model to be 14 nm. 

                                                     
2

16,
(1 1 ), 22

f Ka shunt tfr shunt


= + −                                              

(3.4) 

Subsequently, the series and the shunt FBAR areas (AFBAR) are calculated by (3.5) to 

provide the required electrical capacitances:  

                                                           

,

C de BSTAFBAR
o eff ON 

=                                                           (3.5) 

 
Fig. 3.2 Simplified cross-sectional view of the designed BST FBAR. 

Table 3.1 

Series and Shunt BST FBARs’ Designed Physical Parameters 

FBAR 
AFBAR 

(µm)2 

dBST 

(nm) 

dSiO2 

(nm) 

dPt 

(nm) 

dPt,mass 

(nm) 

Series 563 770 300 100 0 

Shunt 1037 770 300 100 14 
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where ε0 is the permittivity of the free space and εeff,ON is the relative permittivity of BST 

when the FBAR is turned on (εeff,ON ~ 125 at 60 V DC). All the calculated physical 

parameters for the BST FBARs are summarized in Table 3.1. 

3.2.2 BST Filter Implementation and Simulation 

The schematic of the filter unit cell is shown in Fig. 3.3. The series FBAR is replaced 

by two FBARs, each with twice the original area, to simplify the DC-biasing network. This 

is also expected to enhance the linearity and power handling of the filter [30], [41]. In this 

configuration, control of all the FBARs is handled through applying DC-bias voltages at 

the input and output ports. In Fig. 3.3, Rbias represents a high resistivity DC-biasing line 

connected to the ground.  

The complete resonators’ parameters used in filter simulations are provided in Table 

3.2. The mBVD model parameters for the series and the shunt FBARs are calculated based 

on these parameters using (3.6)-(3.8). In order to simulate the OFF state isolation response 

of the BST FBAR filter, the mBVD model for the resonators is replaced with their OFF 

state capacitive model shown in Fig. 3.1(b). OFF state capacitances (Ce,off,se and Ce,off,sh 

under zero DC bias voltage) are estimated to be twice the ON state capacitances (Ce,se and 

Ce,sh at Vdc=60 V) based on the measurement results for the 1-port BST FBARs. In the 

filter simulations, the resonator series resistance (Rs) and BST loss tangent are determined 
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to be 1.5 Ω and 0.02, respectively, both obtained based on l-port BST FBARs 

measurements.  

                                    

2

1
faC Cm e
fr

= −

  
  
   

                                                     (3.6) 

                                        
1

2
(2 )

Lm
C fm r

=                                                         (3.7) 

                                                                
2 f Lr mRm

Qm


=                                                              (3.8) 

Advanced Design System (ADS) software is used to simulate the 1.5 stage BST FBAR 

filter unit cell. Its simulated transmission and reflection responses in ON and OFF states 

Rbias

FBARseries

(2Ce,se)

Vdc Vdc

ac ac

FBARshunt

(Ce,sh)

FBARseries

(2Ce,se)

FBARshunt

(Ce,sh)

 

Fig. 3.3 Schematic of the 1.5 stage BST FBAR filter unit cell. The filter is turned on by applying DC-bias 

voltages through the input and output ports with two bias tees in the RF path. 

 

Table 3.2 

Series and Shunt BST FBARs’ Parameters Used for the Filter Simulations 

FBAR fr  (GHz) fa  (GHz) Kt
2 (%) Qm 

Series 2.00 2.05 6 350 

Shunt 1.95 2.00 6 350 
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are provided in Fig. 3.4. The filter minimum IL and FBW are 1.5 dB and 3%, respectively, 

at the filter center frequency of 2 GHz, and it provides more than 13 dB of isolation between 

the input and output ports in its OFF state.  

A 2.5 stage filter, shown in Fig. 3.5, is implemented by cascading two 1.5 stage BST 

FBAR filter unit cells. An additional high resistivity line is added for biasing the center  

 
(a) 

 
(b) 

Fig. 3.4 (a) Transmission and (b) reflection responses for the simulated 1.5 stage BST FBAR 

filter. 
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node (A). As shown in Fig. 3.5, all the BST FBARs can be turned on only by applying DC-

bias voltages through the input and the output ports. Simulation results for transmission 

and reflection of the 2.5 stage BST FBAR filter in both states are plotted in Fig. 3.6. Based 

on the simulation results, the filter provides an out-of-band rejection and isolation greater 

than 25 dB. The minimum insertion loss and the filter FBW are expected to be 3 dB and 

2.6% at 2 GHz, respectively. 

3.2.3 Filter Fabrication Process and Measurement Setup 

Intrinsically switchable ladder-type BST FBAR filters are fabricated using a process 

described in chapter 2. Additional steps include the deposition of a 50 nm of NiChrome to 

form the DC biasing network and 14 nm-thick Pt, used for mass loading of the shunt 

resonators. Both layers are deposited and patterned by evaporation and lift-off. The 

thickness values for each layer in the BST FBARs’ structure are measured using a Dektak 

stylus profilometer and listed in Table 3.3. The measured thicknesses are close to the values 

designed in the previous section. 
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Fig. 3.5 Schematic of the 2.5 stage BST FBAR filter. 
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Device S-parameters are measured using a Keysight network analyzer and a Cascade 

Microtech probe station with ground-signal-ground (GSG) probes of 250 µm pitch size. 

Short-open-load-through (SOLT) calibration is done for a system impedance of 50 Ω. DC-

bias voltages are applied through the bias tees connected to each probe. Finally, S-

parameters for the BST FBAR and filters in ON (at 60 V DC) and OFF (no DC-bias 

applied) states are measured. 

 
                                                                               (a) 

 
   (b) 

Fig. 3.6 Simulation results for (a) transmission and (b) reflection of the 2.5 stage BST FBAR filter. 

The out-of-band rejection and isolation level are more than 25 dB. 
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Table 3.3 

Measured Thickness Values for the Deposited Films 

Layers 1.5 stage 2.5 stage 

Top Pt (nm) 94 94 

BST (nm) 750 710 

Bottom Pt (nm) 95 95 

SiO2 (nm) 280 280 

3.2.4 Measurement Results and Discussion 

The photograph of a fabricated BST FBAR is shown in Fig. 3.7(a). The size of the 

resonator’s active area is 38 µm × 38 µm. As shown in the figure, two small window 

openings are used to release the BST FBAR membrane by XeF2 gas. The measured S11 of 

the fabricated BST FBAR in both ON (60 V) and OFF (0 V) states are provided in Fig. 

          

                              (a)                                                                             (b) 

Fig. 3.7 (a) Photograph of a fabricated BST FBAR and (b) its measured S11 plotted on Smith chart 

in its ON (60 V) and OFF states (0 V). The S11 for the lumped element mBVD model of the 

resonator is also plotted with a dashed line. 
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3.7(b). In its OFF state, the resonator behaves like a capacitor, where its S11 is shown by a 

solid black line in the figure. Applying a DC bias voltage across the resonator electrodes 

induces piezoelectricity in the BST layer, thereby turning ON the resonator. The measured 

device resonance and anti-resonance frequencies are 2.11 GHz and 2.17 GHz, respectively. 

The extracted lumped element mBVD model parameters for the measured BST FBAR are 

provided in Table 3.4. The S11 of the mBVD model is also plotted in Fig. 3.7(b) by a dashed 

line, showing the accuracy of the model.  Based on this model, 𝐾𝑡
2, Qm, Qr, and Qa are 

calculated using (2.6) and (2.7)  to be 6.6%, 340, 166, and 140, respectively. The figure of 

merit (𝑄𝑚×𝐾𝑡
2) for this resonator is calculated to be 22. The resonator parameters are 

summarized in Table 3.5. 

Photographs of the fabricated 1.5 and 2.5-stage BST FBAR filters are shown in Fig. 

3.8. The 1.5-stage filter unit cell consists of two series and two shunt FBARs, while the 

 

Table 3.4 

mBVD Model Parameters 

Parameter Value Parameter Value 

Lm (nH) 51.3 Re (Ω) 3 

Rm (Ω) 2 Rs (Ω) 2.1 

Cm (pF) 0.11 Ls (nH) 0.07 

Ce (pF) 1.84   

 

Table 3.5 

BST FBARs’ Measured Characteristics 

Parameter fr  (GHz) fa  (GHz) Kt
2 (%) Qm Qm×Kt

2 

Value 2.11 2.17 6.6 340 22 
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2.5-stage filter is made of four series and three shunt FBARs. The BST filter unit cell 

footprint size is 80 µm × 110 µm, which is comparably smaller than the size of 

conventional FBAR filters. 

Measurement results for the fabricated 1.5-stage BST filter are presented in Fig. 3.9. 

In its ON state, a band-pass response with a 3-dB bandwidth of 58 MHz (FBW = 2.8%) at 

the center frequency of fc = 2.08 GHz is observed. The minimum IL for this filter is 2.25 

dB, and the return loss is larger than 20 dB within the bandwidth. The out-of-band rejection 

is 11.5 dB in its ON state. When the DC bias voltage is removed, the filter is turned off, 

providing more than 13 dB of isolation between the input and the output ports. The 

response of the simulated filter based on the measured BST, Pt, and oxide thickness values 

from Table 3.3 is also provided for comparison in Fig. 3.9.  

Measurement results for the 2.5-stage BST FBAR filter are shown in Fig. 3.10. The 

minimum out-of-band rejection is more than 25 dB when the filter is in its ON state,  

           

 (a)                                                        (b) 

Fig. 3.8 Photographs of (a) the 1.5 stage and (b) 2.5 stage π-network BST FBAR filters. 
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                                                                             (a) 

 

     (b) 

Fig. 3.9 (a) Transmission and (b) reflection responses for the measured (solid line) and simulated 

(dashed line) 1.5 stage BST FBAR filter unit cell in its ON and OFF states. 
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                                                                               (a) 

 

  (b) 

Fig. 3.10 (a) Transmission and (b) reflection responses for the measured (solid line) and simulated 

(dashed line) 2.5 stage BST FBAR filter in its ON and OFF states. Minimum rejection level and 

isolation are more than 25 dB. 
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providing an improvement of 12 dB as compared to 1.5 stage filter. Turning off the filter 

leads to isolation of more than 28 dB between the input and the output ports. The filter 

exhibits a minimum insertion loss of 4.3 dB and 3-dB bandwidth of 55 MHz at 2.2 GHz 

(FBW=2.5%) in its ON state. 

The linearity of the 2.5 stage BST FBAR filter is investigated through IP3 

measurements. Two tones of the same power (Δf = 10 MHz) within the filter passband are 

transmitted through the filter in its ON state, and the output signal is fed into a spectrum 

analyzer, similar to the measurement setup of Fig. 2.9. Finally, the signal power at the 

fundamental frequencies, along with the third-order intermodulation products, is recorded. 

The measured input third-order intercept point (IIP3) for the filter is 47 dBm, which is 

shown in Fig. 3.11. For comparison, IIP3 of several AlN filters are reported in [42], [43]. 

The BST filter linearity can be further enhanced by replacing each BST FBAR with 

multiple series-connected larger BST FBARs, as shown in the previous chapter.  

Measurement results for the 1.5 and 2.5-stage BST FBAR filters, provided in Fig. 3.9 

and 3.10, are in good agreement with the simulation results. The small discrepancy in the 

filter center frequency can be attributed to the thickness variation of the deposited films. 

The difference in the minimum insertion loss is speculated to be due to several factors: the 

loss of the interconnects between the resonators, lower biasing-line resistance than 

expected, and the spurious lateral modes in the rectangular shape FBARs. The measured 

filters’ specifications are summarized in Table 3.6. The presented 1.5 and 2.5-stage 

switchable FBAR filters demonstrated in this work have the lowest minimum insertion loss 

in comparison with previously reported switchable ferroelectric BAW filters. The 
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intrinsically switchable filters are the building blocks for multi-band switchless filter 

banks.  

 Intrinsically Switchable Balanced Filters 

3.3.1 Balanced BST FBAR Filter Design and Simulation 

RF front-end configuration in today’s mobile devices has become extremely complex; 

hence the cellphone manufacturers have tried to address this by using integrated RF front-

end modules that contain acoustic wave filters and amplifiers. The majority of the on-chip 

RF solutions rely on differential RF signals due to their robustness against the common 

mode noise and reduced sensitivity to supply voltage fluctuations. [38] Thus, single-ended 

 
Fig. 3.11 Measured IP3 data for a 2.5 stage BST FBAR filter. 

Table 3.6 

Measured Filters’ Specifications for the Fabricated 1.5 and 2.5 Stage FBAR Filters 

BAW Filter Minimum IL (dB) BW (MHz) Isolation (dB) Rejection (dB) 

1.5-stage 2.25 58 14 11.5 

2.5-stage 4.3 50 >28 >25 
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to balanced or balanced to balanced filters are of interest in system integration with ICs. 

Balanced filters based on bulk acoustic wave (BAW) resonators either use ladder or lattice 

networks, as shown in Fig.3.12 (a) and (b). Single-stage lattice-type filters can achieve an 

excellent stopband attenuation, while their roll-off is not as steep as a ladder-type filter. By 

combining a lattice stage with a balanced ladder stage (lattice-ladder structure, as shown 

in Fig. 3. 12 (c)), one can achieve a high out-of-band and near-in rejection simultaneously 

[30]. In this section, an intrinsically switchable balanced lattice-ladder BST FBAR filter is 

designed and fabricated for the first time. 

A balanced ladder-type, as well as a lattice-type BST FBAR filter, are designed for a 

50 Ω system impedance at 2 GHz with a fractional bandwidth of 3%. The electrical 

capacitance of both filters are designed through the image parameter method by using (3.9) 

and (3.10), given the electromechanical coupling coefficient (𝐾𝑡
2) of resonators, the system 

impedance (Z0), the filter center frequency (𝑓𝑐), and the fractional bandwidth of the filter 

(Δ). 

 
              (a)                                                         (b) 

 
(c) 

Fig. 3.12 Balanced filter schematics: (a) ladder-type, (b) lattice-type, and (c) ladder-lattice 

structure. 
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                             𝐶𝑒,𝑠 = (
2

𝜔𝑐𝑍0√𝑀
) × √

(𝑀−1)2

∆2𝑀
(1 + √1 + ∆2) − 2                             (3-9) 

                              𝐶𝑒,𝑠ℎ = (
1

2𝜔𝑐𝑍0√𝑀
) ÷ √

(𝑀−1)2

∆2𝑀
(1 + √1 + ∆2) − 2                      (3-10) 

Where M is given by: 

                                              𝑀 = 4 ÷ (1 + √1 −
16𝐾𝑡

2

𝜋2 )

2

                                             (3-11) 

The above formulas can be derived following the method described in [39]. The calculated 

capacitance of the series (Ce,s) and shunt (Ce,sh) BST FBARs are 1.6 pF and 1.5 pF, 

respectively. In these calculations the BST FBAR nominal 𝐾𝑡
2 is assumed to be 6% similar 

to the previous section. The BST FBARs are constructed of a thin layer of ferroelectric 

BST (Ba0.5Sr0.5TiO3) sandwiched between platinum electrodes, and a layer of SiO2 beneath 

the bottom electrode, as shown in Fig. 3.2. The thickness of BST, Pt electrodes, and oxide 

layers is designed through 1-D transmission line simulations to be dBST = 770 nm. dPt = 

100, and dSiO2 = 300 nm, as described in the previous chapter. Subsequently, the series and 

the shunt FBAR areas (AFBAR) are calculated by (3.5) to provide the required electrical 

capacitances.  

The 1.5-stage ladder-type and 2–pole lattice-type filters are connected in series to form 

a balanced ladder-lattice filter. In order to bias all the resonators in the filter, some of the 

resonators are replaced with two cascaded series resonators having twice the capacitance 

of a single resonator. The schematic of the ladder-lattice filter with its biasing circuitry is 

shown in Fig. 3.13. The mBVD model parameters, as discussed in chapter 2, for the series 

and the shunt FBARs are employed to simulate the filters, using ADS software. The 

simulated transmission and reflection responses of each section, including the 1.5-stage 

ladder and 2-pole lattice filters, as well as the entire ladder-lattice BST FBAR filter, are 
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provided in Fig. 3.14 (a), (b), and (c), respectively. The OFF-state isolation response of the 

filters is also plotted on the same figures. The resonators in Fig. 3.13 are replaced with their 

equivalent capacitance under zero bias voltage to model their OFF-state response. 

Based on the simulation results, the first section of the filter, a 1.5-stage ladder, 

provides a 10 dB out-of-band-rejection with transmission zeros close to the filter center 

frequency. While the second section, i.e., the 2-pole lattice, provides an out-of-band-

rejection and isolation of greater than 30 dB. Consequently, the combined lattice-ladder 

filter exhibits a high out-of-band-rejection of more than 40 dB with a steep roll-off. The 

filter minimum insertion loss and FBW are expected to be 3.5 dB and 2.6% at 2 GHz, 

respectively. The device exhibits a large isolation of more than 40 dB between the input 

and the output ports in its OFF state when no DC bias voltage is applied to the resonators. 

3.3.2 Experimental Results for Balanced BST FBAR Filters 

The intrinsically switchable ladder-lattice BST FBAR filter is fabricated following the 

steps described in chapter 2. Each section of the filter is also fabricated separately to further 

investigate its performance. Photographs of the fabricated filters are shown in the inset of  

 

Fig. 3.13 Schematic of the BST FBAR ladder-lattice balanced filter along with its biasing 

circuitry. 
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                                                                                   (a) 

 
                                                                                   (b) 

 
           (c) 

Fig. 3.14 S-parameters of the simulated (a) ladder, (b) lattice, (c) ladder-lattice filters in ON state. 

Their OFF-state transmission response is also provided in a dotted black line. 
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Fig. 3.15. Due to the BST’s large relative permittivity, the size of the ladder-lattice BST 

FBAR filter active area is only 270 µm × 140 µm. The filters S-parameters are measured 

using a four-port Keysight vector network analyzer and a Cascade Microtech probe station 

with ground-signal-ground-signal-ground (GSGSG) probes of 150 µm pitch size. Short-

open-load-through (SOLT) calibration is conducted for a system impedance of 50 Ω. DC-

bias voltages are applied through bias tees connected to all four ports. Finally, S-parameters 

for the BST FBAR filters in their ON (at 70 V DC) and OFF (no DC-bias applied) states 

are measured. In order to convert single-ended measurement data into the differential, 

mixed-mode S-parameters are then calculated. The transmission (Sdd21) and reflection 

(Sdd11) responses of all three filters are plotted in the ON state, as shown in Fig. 3.15. The 

OFF state transmission response is also provided in the same figures.  

As expected, the balanced ladder structure provides a steep near in rejection, as shown 

in Fig 3.15 (a), while the lattice structure provides a high out of band rejection as well as a 

high OFF state isolation level between the two ports (Fig 3.15 (b)). The combined ladder-

lattice BST FBAR filter, however, exhibits a high out-of-band rejection of more than 35 

dB across the measured frequency band as well as a sharp roll-off. Most importantly, such 

a filter provides a high OFF state isolation level of more than 40 dB that reduces the number 

of required filtering stages. The minimum insertion loss and 3-dB fractional bandwidth of 

the ladder-lattice BST FBAR filter are measured to be 6.2 dB and 3%, respectively. In 

general, the measurement results for the balanced BST FBAR filters, provided in Fig. 3.15, 

are in good agreement with the simulation results. The discrepancy in minimum insertion 

loss is attributed to the loss of the interconnects between the resonators (more specifically, 

the resonators in the lattice structure) and lower biasing-line resistance than expected in  
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                                                                                         (a) 

 
                                                                                       (b) 

 
           (c) 

Fig. 3.15 Measured transmission and reflection response of the BST FBAR (a) ladder, (b) lattice, 

and (c) ladder-lattice filters, respectively. The OFF state isolation response is also provided for the 

three filters in a black dotted line. 
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ladder structure. This work represents the first demonstration of the intrinsically switchable 

balanced ferroelectric BAW filters. 

 Intrinsically Switchable Ferroelectric Stacked Crystal Filters 

3.4.1 BST SCF Structure and Design 

Stacked crystal filters are composed of multiple transduction and metal layers, as 

shown in Fig. 3.16 [30], [44]–[46]. The single-pole SCF of Fig. 3.16 is formed from two 

transducers vertically stacked on top of each other, creating one thickness mode resonator. 

Under an RF excitation, the signal applied between the top electrode and ground 

electromechanically excites the input transducer, which then couples acoustic energy to the 

bottom transducer. 

By employing ferroelectric BST and its voltage-dependent piezoelectricity as a 

transduction layer in this structure, the SCF can also be turned on and off with a DC bias 

voltage applied across the electrodes. The resonator of Fig. 3.16 supports a fundamental 

mode of resonance, where there is a half-wavelength standing wave across the entire 

structure (mode 1), along with other higher-order modes. For the most efficient 

transduction, largest electromechanical coupling coefficient, and widest bandwidth, 

 

Fig. 3.16 A single pole ferroelectric stacked crystal filter configuration. 
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however, the SCF in this work is designed to operate in mode 2, where there is a half 

wavelength standing acoustic wave across each transducer [45]. 

The simplified lumped element model for the BST SCF in the ON and OFF states are 

shown in Fig. 3.17. Unlike a standard FBAR, the lumped element model for an SCF filter 

does not have a parallel resonance, as the SCF does not have an electrical capacitance 

directly in shunt to the motional branch. Hence, the response of the SCF is determined 

solely by the acoustic branch and its associated series loss. Without any DC bias, the 

resonator is off, and the model simplifies by excluding the motional branch, as shown in 

Fig. 3.17 (b). The parasitic capacitance Cf represents the stray capacitance between the 

input and output ports, which should be as low as possible. Due to the low stray capacitance 

between the input and output ports in this structure, a BST SCF is capable of providing 

high isolation between the ports in its OFF state. 

It has been shown that when the reactance of the electrical capacitance (1/(ωCe)) is 

equivalent to the device input and output impedances at the designed frequency, the SCF 

exhibits its minimum insertion loss and maximum bandwidth [45]. Accordingly, a mode 2 

BST SCF is designed for a 50 Ω system impedance at 3.6 GHz. The thickness of each layer 

 

     (a)                                         (b) 

Fig. 3.17 Lumped element model for a single pole stacked crystal filter in its (a) ON and (b) 

OFF states. 
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of the structure is designed with the 1-D acoustic wave transmission line model [17], [47]. 

In this model, the thickness of the Pt electrodes is set to 100 nm, and a 100 nm-thick SiO2 

diffusion barrier layer is also used underneath the bottom electrode. The finalized thickness 

of all the layers in the BST SCF design is summarized in Table 3.7. The calculated Ce value 

for a 50 Ω system is 0.88 pF, and the remainder of the lumped element model component 

values are established through (3.6)-(3.8), as shown in Table 3.8. Mechanical and electrical 

quality factors are set as Qm = 300, and Qe = 50, from [37]. Finally, through full-wave 

simulation of the total structure in HFSS, the expected value of the stray capacitance 

between the coupled ports is also obtained. 

Table 3.7 

The thickness of the Layers in The BST SCF Structure 

Device Thickness (nm) 

Pt: top electrode 100 

BST: top transducer 370 

Pt: middle electrode 100 

BST: bottom transducer 370 

Pt: bottom electrode 100 

SiO2: diffusion barrier layer 100 

                               

Table 3.8 

BST SCF Lumped Element Model Parameters 

Parameter Value Parameter Value 

Lm (nH) 28.4 Re (Ω) 1 

Rm (Ω) 2.1 Rs (Ω) 2 

Cm (fF) 70.7 Cf  (fF) 19 

Ce (pF) 0.88   
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The BST based SCF with parameters listed in Table 3.8 is simulated in the ADS, and 

simulation results for the transmission and reflection responses in both the ON and OFF 

states are displayed in Fig. 3.18. As shown in the figure, the filter is expected to provide a 

minimum insertion loss (IL) and 3-dB bandwidth (BW) of 1.3 dB and 148 MHz, 

respectively, while also providing an isolation level greater than 30 dB in the OFF state. 

3.4.2 Experimental Results for BST based SCF 

The BST based SCF is fabricated following a process similar to [48], and a photograph 

of the fabricated device, as well as a simplified cross-sectional view, is provided in Fig. 

3.19. The active area of the fabricated BST SCF occupies only 19 μm × 19 μm, due to the 

large permittivity of BST and the vertical structure of stacked crystal filters. DC bias 

voltages are applied through bias tees connected at the input and the output ports of the 

filter. The measured transmission and reflection responses of the filter in its ON and OFF 

states are displayed in Fig 3.20.  

 

Fig. 3.18 Simulated S-parameters of the single pole intrinsically switchable BST SCF. 
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As expected, the BST SCF provides a high out-of-band rejection and OFF state 

isolation between the input and the output ports with a small form factor. The IL and 3-dB 

BW of the filter are measured to be 3 dB and 158 MHz, respectively, at a center frequency 

of 3.6 GHz (4.3 % FBW). Compared with the simulation results, the minimum insertion 

loss of the BST SCF increased by 1.7 dB. This is attributed to the larger than expected 

mechanical and electrical losses. For reference, the mechanical quality factor of the 

resonator is measured to be 180 versus the simulated value of 300. The series resistance is 

             

                                         (a)                                                                (b) 

Fig. 3.19 (a) A photograph of the fabricated single pole BST SCF and (b) corresponding cross-

sectional view of the design. 

 
Fig. 3.20 Measured S-parameters of the intrinsically switchable BST SCF. The inset shows the 

response of filter over a wider range of frequency, which includes mode 1 and 2. In this paper, 

the device is optimized for the mode 2 operation. 
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measured to be 7 Ω rather than the expected value of 2 Ω, which is speculated to be due to 

the large step at the top electrode lead area. This can be reduced by optimizing the device 

layout to cover the step with a thicker metal layer or using a sputter deposited top electrode 

for better step coverage. Furthermore, misalignment during the lithography process for the 

platinum electrodes created unwanted active regions with slightly thinner thicknesses, 

leading to excitation of spurious resonances that cause additional losses. The IL and the 

BW of the BST SCF can be further extended through inductor tuning or introducing an 

additional coupling layer between the two resonators, as described in [30].  

The work described herein is the first demonstration of an intrinsically switchable 

stacked crystal filter. Taking advantage of the stacked crystal filter’s characteristics, a 

hybrid structure combining both a BST SCF with a standard ladder-type filter can also be 

implemented to improve the overall filter response. The near-in selectivity of the filter 

improves with a ladder-type filter, while also maintaining the high out-of-band rejection 

and OFF state isolation of BST SCF. 

 Chapter Conclusion 

A variety of intrinsically switchable acoustic wave filters based on BST have been 

developed and presented in this chapter. Reduced loss intrinsically switchable FBAR filters 

based on ferroelectric BST have been designed and fabricated in a systematic approach, 

using the BST FBARs with a relatively high Qm×Kt
2. Minimum IL of 2.25 dB for a 1.5 

stage ladder-type BST filter unit cell with 58 MHz bandwidth at 2.08 GHz has been 

achieved. Two 1.5-stage filter unit cells are cascaded to implement a 2.5-stage switchable 

FBAR filter. Minimum rejection level and isolation of more than 25 dB have been 
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obtained. The IIP3 for the filter has also been measured to be 47 dBm. These switchable 

filters will be used to design multi-frequency switchless filter banks.  

Furthermore, for differential circuit applications, an intrinsically switchable ladder-

lattice balanced filter based on BST FBARs is demonstrated. A ladder-type filter and a 2-

pole lattice-type filter work together to form a band-pass filter at 2 GHz with high out-of-

band and near-in rejection level with a small form factor. In the OFF-state, the device 

presents a high isolation level between the two ports. The fabricated device demonstrates 

the potential of ferroelectric based reconfigurable compact, balanced filters for simplifying 

the future RF front ends. 

Finally, to further miniaturize the filter structures and reduce the insertion loss for a 

given out of band rejection, an intrinsically switchable ferroelectric BST based stack crystal 

filter is designed and fabricated for the first time. The filter provides switchability through 

DC bias control, with increased isolation exceeding 30 dB. The 3-dB fractional BW and 

out-of-band rejection of the 1 pole BST SCF filter is 4.3% and >25 dB. The footprint of 

the BST SCF is less than 400 µm2. The minimum insertion loss of the measured SCF is 

also 3 dB at a center frequency of 3.6 GHz. This filter is the smallest acoustic wave filter 

in the literature. 
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4 CHAPTER IV: 

Switchless Ferroelectric FBAR Filter Banks 

 

 

 Chapter Motivation 

To accommodate for demands for higher data rates, new frequency bands are being 

allocated for communications by governments across the world [49]. The incremental 

addition of new frequency bands with the limited space designated for RF circuits and the 

technologies, such as LTE-Carrier Aggregation (CA) and Multiple-Input Multiple-Output 

(MIMO), compels RF designers to investigate new and more practical methods of multi-

band operation [50]. 

The integration of frequency-agile resonators and filters onto the RF front-end offers 

a potential solution to address these aforementioned challenges. Frequency-agile devices 

are capable of altering their frequency response. For filters, the adjustment of the passband 

characteristics allows a single component to operate in multiple communication channels 

that would have required multiple standard filters and switches. The resulting reduction of 

the overall occupied hardware area significantly reduces both the complexity and cost of 

RF front-end. 
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To realize frequency-agile resonators and filters, a promising technology incorporates 

ferroelectric barium strontium titanate (Ba(x)Sr(1-x)TiO3) as the transduction layer into the 

design of acoustic wave devices, such as thin film bulk acoustic resonators (FBARs) [15]–

[17], [25]–[28], [36], [51]–[54] and solidly mounted resonators (SMRs) [10], [11], [13], 

[14], [18], [20], [34], [35]. Preliminary results on intrinsically switchable filters comprised 

of BST FBARs have been demonstrated in previous chapters. In this chapter multiple BST 

FBAR filters operating at different frequencies are integrated into a switchless filter bank 

structure [55]. The filter bank presented here is implemented based on three 2.5 stage BST 

FBAR filters in series with BST varactors that are fabricated on the same silicon wafer. 

This chapter also presents a detailed design procedure, simulations, and fabrication process 

for intrinsically switchable BST filter banks. Furthermore, the multi-band operation of the 

ferroelectric filter bank is presented, providing the opportunity for aggregating different 

combinations of frequency bands. 

 Design and Simulation of a Switchless BST FBAR Filter Bank 

An intrinsically switchable filter bank structure consists of several ferroelectric filters, 

covering the desired frequency band, as shown in Fig. 4.1. The transfer function of the 

filter bank is controlled through a DC bias network designed around the filters. 

Ferroelectric filter bank implementation involves the design of standalone filters and the 

DC biasing control, which is elaborated upon in the following parts.  
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4.2.1 Standalone BST Filter Design 

The ferroelectric filter bank here is designed to operate at three frequency bands 

centered at 1.8, 1.9, and 2 GHz. Each filter comprises of multiple BST FBARs connected 

in a 2.5 stage ladder-type configuration, as shown in Fig. 4.2 (a). The electrical behavior 

of an individual ON state BST FBAR in this structure is represented by the lumped element 

mBVD model provided in Fig. 4.2 (b). In the OFF state, the resonators are simply modeled 

by a capacitor, as shown in the same figure.  

The filters provide 2.5% fractional bandwidth (FBW) at the desired center frequencies 

(1.8, 1.9, and 2 GHz) for a 50 Ω system impedance (Z0), through the image parameter 

method described in the previous chapter. The calculated capacitance values for the three 

frequency bands are provided in Table 4.1. 

The resonators that make up the filters are then designed using a 1-D acoustic wave 

transmission line model in order to achieve the desired specifications, following the 

procedure is provided in chapter 2. The structure of the BST FBARs is shown in Fig. 4.3, 

 
Fig. 4.1 Block diagram of a three channel intrinsically switchable filter bank. 

 

DC Bias Control
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consisting of platinum electrodes, a thin layer of ferroelectric BST (Ba0.5Sr0.5TiO3), and a 

layer of SiO2 beneath the bottom electrode. The thickness of each layer is selected to 

provide a resonance frequency at 2 GHz. The calculated BST and SiO2 thicknesses are dBST 

= 770 nm and dSiO2 = 300 nm, respectively. Also, referring to chapter 3, Qm and Kt
2 BST 

FBARs are expected to be 350 and 6%, respectively.  

 
(a) 

 
(b) 

Fig. 4.2 (a) Schematic of the 2.5 stage BST FBAR filter and (b) lumped element models for 

describing the electrical behavior of a BST FBAR in its ON and OFF states. In the ON state, the 

mBVD model is used. 

Table 4.1  

Electrical Capacitances of the BST FBARs in Multi-band Filter 

Channel # 1st: 

1.8 GHz 

2nd: 

1.9 GHz 

3rd: 

2 GHz 

Series FBAR Capacitance (pF) 1.40 1.32 1.26 

Shunt FBAR Capacitance (pF) 4.23 4.01 3.81 
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In order to downshift the operating frequency of the filters centered at 1.8 and 1.9 

GHz, extra Pt layers with thicknesses calculated using 1-D transmission line simulations 

are added to their corresponding BST FBARs’ structure. Next, the anti-resonance 

frequency of the shunt FBARs is set to the resonance frequency of the series FBARs, in 

order to obtain the typical band-pass response of ladder-type filters (fc = fa,shunt = fr,series). 

Therefore, the new resonance frequency of the shunt FBARs is calculated with (3.4), where 

Pt mass loading layers are used to downshift their resonance frequencies. Finally, the series 

and shunt FBAR areas (A) for all the three filters are calculated by (3.5) to provide the 

required capacitances of Table 4.1. All the designed physical parameters for the 

intrinsically switchable BST filter bank are provided in Table 4.2. As an example, the 

transmission response of the standalone BST FBAR filter for 2 GHz center frequency in 

its ON and OFF states are plotted in Fig. 4.4. When switched on, the device provides an 

insertion loss (IL) of 4 dB in the passband with a FBW of 2.5%. In its OFF state, the 

isolation between the input and the output ports is more than 30 dB. The lumped element 

mBVD model is used to simulate the filter response, where the lumped element values for 

each BST FBAR in the ON state are calculated using the equations provided in chapter 2. 

 

Fig. 4.3 Simplified cross-sectional view of the designed BST FBAR. 
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4.2.2 Triple Band BST Filter Bank Implementation  

The intrinsically switchable triple-band filter bank is implemented by arranging the 

filters in parallel. In order to account for the adjacent channels’ capacitive loading and 

improve the matching, two metal-insulator-metal (MIM) BST varactors are added in series 

with each 2.5 stage filter. Two inductors are also used at the input and output ports of the 

filter bank to further improve the matching, as shown in Fig. 4.5. The series BST varactors, 

biased at their lowest capacitance, provide high isolation for the filter path in its switched 

OFF mode. Conversely, when one of the filters is switched on, their relevant varactors’ 

bias voltage is removed, providing the highest capacitance value, hence minimally 

affecting the filter’s response. The performance of the filter bank can be further enhanced 

by selecting BST varactors with large tunability ratios (α). BST varactor tunability is  

Table 4.2  

Series and Shunt BST FBARs’ Designed Physical Parameters 

Channel # 1st: 1.8 GHz 2nd: 1.9 GHz 3rd: 2 GHz 

FBAR series shunt series shunt series shunt 

A      (µm)2 974 2944 918 2791 877 2651 

dBST   (nm) 770 770 770 770 770 770 

dSiO2  (nm) 300 300 300 300 300 300 

dPt     (nm) 100 100 100 100 100 100 

dmass1  (nm) 63 63 30 30 0 0 

dmass2  (nm) 0 23 0 17 0 17 

 

 

 

Channel # 1st: 1.8 GHz 2nd: 1.9 GHz 3rd: 2 GHz 

FBAR series shunt series shunt series shunt 

A      (µm)2 974 2944 918 2791 877 2651 

dBST   (nm) 770 770 770 770 770 770 

dSiO2  (nm) 300 300 300 300 300 300 

dPt     (nm) 100 100 100 100 100 100 

dmass1  (nm) 63 63 30 30 0 0 

dmass2  (nm) 0 23 0 17 0 17 

 

 

 

Channel # 1st: 1.8 GHz 2nd: 1.9 GHz 3rd: 2 GHz 
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typically within the 2:1 to 5:1 range [22]; however, tunability higher than 10:1 has also 

been demonstrated [21]. It should be noted that the implementation of the BST varactors 

in the filter bank does not increase the number of required processing steps, and the entire 

filter bank is fabricated on a single silicon substrate. 

 

 
(a) 

 
    (b) 

Fig. 4.4 Simulation results for (a) transmission and (b) reflection of a 2.5 stage BST FBAR filter. 

The out-of-band rejection and isolation levels are more than 30 dB. 
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In order to simplify the DC biasing network, the center series FBAR is replaced with 

two cascaded larger FBARs. Nodes with similar DC bias voltages are also connected 

together through high resistivity biasing lines in order to reduce the number of DC biasing 

control voltages required for each filter, as shown in Fig. 4.6 (a). To turn on one of the 

filters (filter number i, where i = 1, 2, or 3 in Fig. 4.5) in the filter bank, all corresponding 

resonators of the selected filter are switched on, while the bias voltage applied to varactors 

along that path is set to zero. This is achieved by setting VDC,i1 = 0 V and VDC,i2 = VON, as 

seen in Fig. 4.6 (a). Conversely, to turn off a filter, the four middle resonators are switched 

off, and the relevant series varactors are tuned to their lowest capacitance. This can be done 

by setting VDC,i1 = VON and VDC,i2 = 0 V, as shown in Fig. 4.6 (b). To further reduce the 

capacitive loading effect due to the adjacent off channels, the first series resonators within 

the OFF state filters remain on (shown in Fig. 4.6 (b)). 

 

 
Fig. 4.5 Schematic of the designed multi-band 2.5 stage BST FBAR filter. The simplified DC 

biasing network is represented by dashed lines. 
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The transmission response of a single filter path corresponding to Fig. 4.6 in its ON 

and OFF states is shown in Fig. 4.7 (a). The OFF state isolation for a single filter path is 

improved by more than 15 dB after adding the varactors to reduce the loading effect on the 

ON state filter. The simulated frequency response of the implemented reconfigurable 

triple-band filter is provided in Fig. 4.7 (b), where the S21 of the three bandpass filters, as 

well as the OFF state response (when all the filters are turned off), are shown. In these 

simulations, BST varactors with zero bias capacitance of 2.3 pF (Qvar = 100) and tunability 

of 3:1 are used. To improve the matching, two shunt inductors (L=4 nH, QL=40) are used 

at the input and the output ports of the multi-band filter bank. DC biasing resistances should  

 
                                                        (a) 

 
                                                        (b) 

Fig. 4.6 Schematic of a filter path in the filter bank structure in its (a) ON and (b) OFF states. 

Implemented DC biasing network is represented in red (non-zero DC bias voltage: VON) and gray 

(0 V) dashed lines. 
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be large enough to avoid degradation of the filter IL in its ON state. On the other hand, a 

very high Rbias can reduce the switching speed of the filter. Accordingly, Rbias is designed 

to provide 2000 Ω having a negligible effect on IL. In this case, for a resonator with the 

electrical capacitance of 1 pF (a typical value for BST FBARs in the filter structure), the 

RC time constant is 2 nsec, allowing a switching speed that is comparable to solid-state RF 

 
(a) 

 
(b) 

Fig. 4.7 Simulation results for (a) a single filter path shown in Fig. 6, in its ON and OFF states, 

and (b) the implemented triple-band filter bank with three varying ON states. The OFF state 

response of the filter bank is also provided in a dashed line. 
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switches. The switching speed of ferroelectric materials associated with polarization and 

depolarization is expected to be in the order of several Pico seconds according to [56], 

where they have demonstrated BST tuning at THz frequencies; based on this study, BST 

FBARs are expected to achieve switching speeds required for communication systems. A 

preliminary measurements demonstrating switching speed of less than 100 nsec for BST 

resonators has been reported in [57], which was restricted by the limited time constant of 

the biasing circuitry and measurement setup. 

 Fabrication Procedure for Switchless BST FBAR Filter Banks 

The reconfigurable multi-band BST FBAR filter is fabricated using a process 

described in chapter 2. Fabrication starts by thermally growing a 300 nm SiO2 layer on a 

high resistivity (100) oriented silicon wafer with a thickness of 500 µm. In the next step, a 

100 nm thick Pt bottom electrode is deposited and patterned by evaporation and lift-off. A 

3.0 nm-thick layer of Ti is used for the adhesion of Pt bottom electrode to the SiO2 layer. 

A 770-nm of BST is then deposited by an RF magnetron sputtering system at 650°C in a 

45 mTorr Ar and O2 (4:1) environment. Two sputtering guns with RF power levels of 300 

Watts are used for BST deposition. A 100 nm thick layer of Pt is then deposited and 

patterned with evaporation and lift-off to serve as the top electrode. After annealing the 

chip at 500 °C for 30 minutes in an O2 environment, BST is etched in buffered HF (BHF) 

to create the release holes and a via to the bottom electrode. Additional steps include the 

deposition of a thin layer of NiChrome to form the DC biasing network and deposition of 

several thin layers of Pt, used for mass loading of the resonators.  A layer of Ti/Al/Ti/Au 

(50/1300/50/100 nm) is then deposited and patterned using evaporation and lift-off as a 

contact layer. Filters are released by etching the Si substrate beneath the device in 3 Torr 
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XeF2 environment. A photograph of the fabricated reconfigurable triple-band BST FBAR 

filter is shown in Fig. 4.8, where the size of the filter bank’s active area (excluding the 

inductors) is 480 µm × 250 µm.  

 Switchless Filter Bank Measurement Results and Discussion 

The S-parameters of the fabricated devices are measured using a vector network 

analyzer with 250 µm-pitch ground-signal-ground (GSG) probes. Short-open-load-thru 

(SOLT) calibration is performed from 0.2 to 5 GHz for a 50 Ω system impedance, and DC 

bias voltages are applied to the filters through a Cascade Microtech multi-contact DCQ 

probe. The DC bias controlling configuration for all states of the filter bank is listed in 

Table 4.3. 

In order to verify the characteristics of the BST FBARs used in the filters, BST FBARs 

on the same wafer are first measured, exhibiting Qm and Kt
2 of 340 and 6%, respectively, 

with a resonance frequency at 2 GHz. A standalone 2.5 stage ladder-type BST filter (similar 

 

Fig. 4.8 Photograph of a fabricated multi-band 2.5 stage BST FBAR filter bank. The size of the 

active area for the filter bank is 0.12 (mm)2. 
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to Fig. 4.2) is also measured, providing an IL of 5 dB, as shown in Fig. 4.9. The measured 

transmission and reflection responses for a fabricated triple-band 2.5 stage filter, utilizing 

BST FBARs, are depicted in Fig. 4.10. In the case where all the filters are switched off, the 

signal transmission is less than -27 dB over the frequency range of 1.5 to 2.5 GHz. Turning 

on each of the three individual filters provides band-pass responses with the center 

frequencies of 1.85, 1.96, and 2.04 GHz, respectively. The measured specifications for the 

triple band filter are summarized in Table 4.4. The fabricated ferroelectric multi-band filter 

bank can transition between different frequency bands of operation only by reconfiguring 

the applied DC bias voltages. For carrier aggregation applications, multiple bands can also 

be turned on simultaneously, where the DC bias voltage across the resonators and varactors 

are adjusted accordingly. As an example, the measured transmission response of the 

fabricated filter bank is shown in Fig. 4.10 (c), when both channels 1 and 3 are turned on 

simultaneously. 

The measurement results are in close agreement with the simulated results for the 

switchless triple-band filter bank. The discrepancies between the center frequency of the  

Table 4.3 

 DC Biasing Configuration for Different Channel Responses of the Filter Bank 

Channel  1.8 GHz 1.9 GHz 2.0 GHz 

VDC,11 (V) 0 60 0 

VDC,12 (V) 60 0 60 

VDC,21 (V) 60 0 60 

VDC,22 (V) 0 60 0 

VDC,31 (V) 60 60 60 

VDC,32 (V) 0 0 0 
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simulation and measurement results can be attributed to errors in the deposition of the mass 

loading layers and BST thickness variation throughout the wafer. The larger insertion loss 

of the measured filter bank, compared to the standalone filter of Fig. 4.9, is mostly 

attributed to the series varactors’ losses having a quality factor of 30 and tunability of 2:1. 

This is due to the fact that the BST deposition conditions are not optimized for varactor  

 

(a) 

 

(b) 

Fig. 4.9 Measurement results for (a) the transmission and (b) reflection of the standalone 2.5 stage 

BST FBAR filter of Fig. 2. 
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(a) 

 
(b) 

 
(c) 

 Fig. 4.10 (a) Transmission and (b) reflection responses of the measured 2.5 stage triple-band filter 

bank when the filters are turned on individually. (c) The transmission response of the filter bank 

when channel 1 and 3 are turned on simultaneously is also provided. 
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fabrication. The effect of the added loss from the varactors is also noticeable on the return 

loss of the filter bank over the operating frequency band, as shown in Fig. 4.10 (b). Small 

ripples in the passband of the filters are speculated to be due to the spurious lateral modes, 

which can be eliminated by carefully designing a ring structure around the perimeter of the 

resonators [28], [58] or smoothened out by apodizing the resonators [59]. The loading 

effect of the adjacent channels can be further reduced by creating out of band transmission 

zeros, similar to the approach for multiplexer design [60]. In should be noted that, in 

comparison to previous work on reconfigurable filters [61], [62], a significant advantage 

of the presented filter in this work is its compact size of less than 0.12 mm2, due to the high 

permittivity of BST and the switchless nature of ferroelectric filter banks.  

 

 Chapter Conclusion 

Frequency agile resonators and filters are essential for the future of multi-band, multi-

standard radios. For the first time, a frequency reconfigurable triple-band 2.5 stage filter 

Table 4.4 

Measured Specifications for the BST Multiband Filter 

Channel # 1st: 

1.8 GHz 

2nd: 

1.9 GHz 

3rd: 

2 GHz 

Center Frequency (GHz) 1.85 1.96 2.04 

Minimum Insertion Loss (dB) 8.4 7.4 8.7 

Out-of-band Rejection Level (dB)  >27 >27 >27 

Return Loss (dB) >15 >15 >13 

Fractional 3-dB BW (%) 2.7 2.4 2.5 

OFF state Transmission (dB) <-27 <-27 <-27 
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comprised of BST FBARs is demonstrated, providing the capability to switch on and off 

three frequency bands individually or together without using any switches along the RF 

signal path. Using the inherent electrostriction property of ferroelectric BST, intrinsically 

switchable filters are fabricated and integrated into a filter bank with a reduced circuit area. 

The demonstrated intrinsically switchable filter bank consists of three BST based FBAR 

filters, which can be switched on or off by applying DC bias voltages to the filters. Future 

work will focus on the improvement of the BST FBAR filter banks’ performance by 

optimizing its configuration for minimizing the reactive loading effect of the OFF state 

filters without using the varactors. A possible way is to employ the approaches developed 

for the synthesis of multiplexers with the manifold configuration, as described in [63], [64]. 
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5 CHAPTER V: 

Bandwidth Reconfigurable BST FBAR Filters 

 

 

To address current limitations on mobile devices’ hardware space, the investigation 

into frequency-agile filters continues to increase, as it promises greater functionality, 

reduced size, and high performance in future wireless communication systems. Frequency 

agility in filters typically provides either center frequency or bandwidth tuning [65]. 

Examples of center frequency shifting by using switchable filter banks are provided in the 

previous chapter. In this chapter, a novel approach to reconfigure a filter’s bandwidth is 

presented. The adjustment of the filter’s passband response provides a method to 

implement multi-band operation in wireless devices and reduces the number of filters 

required for intra-band carrier aggregation in mobile communications. Furthermore, 

bandwidth reconfigurable filters would address the inconsistency of frequency standards 

between regions across the world. For example, the majority of Asia and the Pacific use 

the frequency band from 470 MHz to 698 MHz for digital broadcasting, while Japan and 

Korea use up to 710 MHz [66]. A single bandwidth reconfigurable filter simplifies the RF 

front-end by replacing the original set of conventional filters and provides operation in both 

regions. 
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A common approach in designing frequency reconfigurable filters utilizes components 

such as varactors or switches. In [66], Matsutani et al. reported frequency agility in a 

surface acoustic wave (SAW) duplexer with switches for operation in the UHF spectrum 

for Band 28. Another example is presented in [67], where a RF SAW filter was developed 

with a bandwidth variation from 3.25 MHz to 6.25 MHz. However, frequency agile filters 

often require either a complex fabrication process or external off-chip components. In this 

chapter, a bandwidth reconfigurable filter based on intrinsically switchable ferroelectric 

BST FBARs has been introduced [68]. The presented BST based filters provide frequency 

reconfigurability without additional fabrication process or external off-chip components. 

Furthermore, the inherent high permittivity of BST leads to a large reduction in the circuit 

real estate. 

 Bandwidth Reconfigurable BST FBAR Filter’s Principle of 

Operation  

5.1.1 Multi-state BST Resonators 

The electrical behavior of a typical thin film ferroelectric BST resonator in its OFF 

and ON states, when a DC bias voltage is applied across the resonator electrodes, is 

represented by their corresponding lumped element models shown in Fig. 5.1 (a). In this 

section, two BST FBARs are connected in series and shunt configurations to realize multi-

state acoustic resonators, as shown in Fig. 5.1 (b) and (c), respectively. The BST resonators 

in these schematics have the same electrical and mechanical characteristics. The 

relationship between the resonance, fr, and anti-resonance frequency, fa, of each resonator 

is described by (5.1).  

                                                              / 1r af f = +                                                                   
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(5.1) 

where γ is approximately proportional to the FBARs’ Kt
2 [30]: 

                                                                    2 28 tK                                                                     (5.2) 

The behavior of series and shunt connected BST FBARs in their ON and OFF states 

is described here. The series-connected BST resonators of Fig. 5.1 (b) provide a resonance 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 5.1 (a) The circuit model for an individual BST FBAR (ON: mBVD, OFF: capacitor) and 

equivalent circuit schematic for the (b) series and (c) shunt connected BST resonators at different 

states [28]. 
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and anti-resonance frequency similar to a standalone resonator when both resonators are 

turned on, as shown in Fig. 5.2 (a). When one of the resonators is turned off, their 

equivalent electrical impedance is represented by a resonator in series with a capacitor 

αCe2; where, α is the BST FBARs’ off to on capacitance ratio. In this state, the anti-

resonance frequency remains unchanged, but the resonance frequency increases, as shown 

in Fig. 5.2 (a). One can show that the new resonance frequency, 𝑓𝑟
′, is given by (5.3).  

 
(a) 

 
(b) 

Fig. 5.2 Magnitude of the input impedance for the (a) series and (b) shunt configurations. The red 

dashed line denotes when one of the resonators is switched off, and the black dotted line represents 

the multi-state resonator’s OFF response (both FBARs are switched off). 
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2 1' 1 / (1 )r r e ef f C C = + +                                                (5.3) 

Similarly, the response of the shunt connected BST resonators in Fig. 5.1 (c), when both 

resonators are turned on, is represented in Fig. 5.2 (b) by a solid line. However, when one 

resonator is turned off, the resonance frequency remains constant while the anti-resonance 

frequency (𝑓𝑎
′) decreases, as shown in Fig. 5.2 (b). It can be shown that 𝑓𝑎

′ can be calculated 

by (5.4). In the OFF state, when both resonators are turned off for either configuration, the 

overall impedance resembles a simple capacitor, shown by the dotted line. 

                                                     1 2' 1 / (1 )
1

a a e ef f C C





= − +
+

                                            (5.4) 

5.1.2 Intrinsically Switchable, Bandwidth Reconfigurable BST FBAR Filters 

A ladder-type filter composed of the multi-state BST resonators provides a bandpass 

response with adjustable transmission zeros. A general schematic of a ladder-type filter 

unit-cell based on these multi-state resonators is shown in Fig. 5.3. For clarity purposes, dc 

bias lines are not presented. The anti-resonance frequency of the resonators in the shunt 

branch is set to match the resonance frequency of the series branch. Under this condition, 

the resulting filter provides typical bandpass characteristics, where fc = fa,shunt = fr,series, and 

transmission zeros are located at fr,shunt and fa,series.  

 
Fig. 5.3 The schematic of the intrinsically switchable and BW reconfigurable BST FBAR filter unit 

cell.  
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When all the BST FBARs switched on, the filter response is represented in Fig. 5.4 

with a solid line. If BST FBAR 1 and 3 are switched off, the frequency of the lower 

transmission zero increases (red dashed line in Fig. 5.4 (a)). In the same manner, the upper 

transmission zero is controlled by turning off the BST FBAR 5 (green dotted line in Fig. 

5.4(a)). For a greater bandwidth tuning and simultaneous adjustment of both transmission 

zeros, BST FBARs 1, 3, and 5 are all turned off at once, as shown by the dotted line in Fig. 

 
(a) 

 
(b) 

Fig. 5.4 (a) Simulated S21 response for the filter with all resonators on (solid line) and when 

transmission zeros are shifted individually. (b) Simulated S21 response for the filter with all 

resonators on (solid line) compared with the response of the filter when both transmission zeros 

(dotted) are simultaneously shifted, along with its OFF state response (dashed).  
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5.4 (b). The amount of frequency variation of the lower and upper transmission zeros is set 

by the capacitance ratio of the two resonators in shunt and series branches, respectively. 

The OFF state of the filter occurs when all BST FBARs are switched off in order to isolate 

the input and output ports (dashed line in Fig. 5.4(b)).  

Further bandwidth reconfigurability can be attained by cascading either additional 

series resonators in the shunt branch or parallel resonators in the series branch of the 

acoustic filter, as shown in the design examples. 

 Bandwidth Reconfigurable BST FBAR Filter Demonstration 

Two BW reconfigurable and intrinsically switchable ferroelectric filters are designed, 

fabricated, and measured as proof of concept. Design examples include reconfigurable 

filters with two and three BW states, based on a varying lower cutoff frequency. 

5.2.1 Design of a BST FBAR Filter with Two BW States 

Schematic of a 1.5 stage FBAR filter with multi-state resonators of section 4.1 (Fig. 

4.1 (b)) in its shunt branches is presented in Fig. 5.5. In the first step, a 1.5 stage filter is 

designed using the image parameter method, described in [39], for a system impedance of 

50 Ω. In this design Ce,se and Ce,sh are calculated to provide 3% fractional bandwidth (FBW) 

using the formulas in [39] (Ce,se = 0.8 pF, and Ce,sh = 1.5 pF). The Kt
2 and Qm of the 

resonators, following the process described in [37], are expected to be 6% and 300. The 

original shunt FBARs are replaced with two series-connected larger FBARs with an 

equivalent electrical capacitance to the original (Ce1 = Ce2 = 2Ce,sh), providing a secondary 
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state with a FBW of 2.2%. The center BST FBAR of the structure with an electric 

capacitance of Ce,se is also replaced by two FBARs with twice the original capacitance 

(2Ce,se) to simplify the DC biasing network.  

The filter’s simulated transmission response for all three states is plotted in Fig. 5.6.  

 
Fig. 5.5 The schematic of the intrinsically switchable FBAR filter unit cell for lower cutoff 

frequency tuning. The ON state response of the filter is adjusted by alternating the DC bias across 

the resonators highlighted in red dashed box.  
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Fig. 5.6 Transmission response for the simulated reconfigurable FBAR filter with two BW states.  
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The filter transitions between two different BW states by turning on or off the resonators 

denoted in a red dashed box. Also, with zero DC bias across all resonators, the filter unit 

cell provides more than 12 dB of isolation between the ports (state 3). The small variation 

in the minimum insertion loss between the two ON states of the filter is due to the change 

in the impedance of the device.  

5.2.2 Design of a Ferroelectric FBAR Filter with Three BW States 

The idea is extended to the design of a reconfigurable filter with three BW states. The 

schematic of the designed filter is shown in Fig. 5.7. In this schematic, each shunt branch 

of the filter includes three series-connected BST FBARs. Similar to the design outlined in 

part A, each of the FBARs in the filter’s shunt branch is individually switched on or off 

based on the desired state of operation, where the filter now contains an intermediate state 

for more versatility in frequency tuning. All three BST FBARs in the shunt branches have 

 
Fig. 5.7 The schematic of the BW reconfigurable FBAR filter for lower cutoff frequency tuning. 

The ON state response of the filter is adjusted by alternating the dc bias across the shunt resonators 

indicated in red and green, where the OFF state resonators are replaced with their equivalent OFF 

state capacitances (αCe2 and αCe3).  
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the same size with an overall equivalent capacitance of Ce,sh. Thus, the filter offers a 

passband response with three different lower cutoff frequencies and FBW of 2%, 2.5%, 

and 3 % based on the number of ON state resonators on the shunt branches.  

By turning off the set of BST FBARs inside the red dotted box, the filter moves from 

an initial state with a passband response of 60 MHz to an intermediate state with a BW of 

50 MHz, as shown in Fig. 5.8. The device transitions to the third state with a BW of 40 

MHz by switching off another pair of the BST FBARs (highlighted in a green dashed box). 

Finally, when all bias voltages are set to 0 V, the device isolates the input and the output 

ports.  

 Fabrication and Measurement of the Bandwidth Reconfigurable 

Filters 

BST filters are fabricated by following a procedure described in chapter 2, and 

characterized using a vector network analyzer and a Cascade Microtech probe station with 

250 µm-pitch ground-signal-ground (GSG) probes. Bias voltages are applied through 

 
Fig. 5.8 Transmission response for the simulated reconfigurable BST FBAR filter with three BW 

states. 
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external DC probes and bias tees connected to the ports in order to record measurements 

of the resonators and filters during each of their respective states. Individual BST FBAR 

measurements show Qm and Kt
2 of 340 and 6%, respectively, which are in line with the 

values used in the simulation. By increasing the DC voltage applied across the BST FBAR 

electrodes from 0 V, an electric signal at the design frequency excites a thickness mode 

resonance. The effective Kt
2 of the resonator increases as a function of the applied DC bias. 

In order to achieve the required Kt
2 for the resonator of Fig. 5.9, one can increase the bias 

voltage to VON = 70 V; however, the required DC bias voltage for maximum Kt
2 in BST 

resonators can be reduced to less than 20 V by optimizing the resonator stack up for a 

thinner BST film [11], [15]. The BST thin film relative permittivity and loss tangent in ON 

state are measured at 2 GHz to be 220 and 0.02 using the method described in [69]. On 

wafer short-open-load-thru (SOLT) calibration is performed from 0.2 to 5 GHz for a 50 Ω 

system impedance. The effect of bias tees is de-embedded through the calibration as they 

are located between GSG probes and VNA port.  

The magnitude of the impedance for a measured series-connected multi-state resonator 

(Fig. 5.1 (a)) along with its photograph are provided in Fig. 5.9. By switching one of the 

resonators from its ON to OFF state, the device resonance frequency switches from 1899 

MHz to 1912 MHz. These resonators are then integrated onto 1.5 stage reconfigurable 

filters with two and three BW states with varying lower cutoff frequencies. Photographs of 

the fabricated filters are provided in Fig. 5.10 with an active area of 120 µm × 220 µm and 

200 µm × 230 µm for the filters with two and three BW states, respectively. 
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5.3.1 BST FBAR Filter with Two Bandwidth States 

Biasing conditions to transition between the two BW states of the filter are provided 

in Table 5.1. In state one, which is characterized with the widest bandwidth, DC bias 

voltages (Vdc3 = VON, Vdc1 = Vdc2 = 0 V) are applied to switch on all the resonators, leading 

to a bandpass response with 3% fractional bandwidth, as shown in Fig. 5.11. In order to 

switch to the second state, VON is now applied through bias tees (i.e., Vdc1 = Vdc2 = VON), 

 
(a) 

 
(b) 

Fig. 5.9 Photograph of a two series connected resonators and its impedance (a) magnitude in dB 

and (b) phase when: both are on (blue), only one is on (red), and both are off (black dotted line). 
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and Vdc3 is set to 0 V. At this state, the filter fractional BW reduces from 3% to 2.2%. The 

resulting filter comprises of shunt branches with a resonator in series with a capacitor, 

which causes the lower frequency band edge to shift from 1908 MHz (state 1) to 1953 MHz 

(state 2).  For the case where zero dc bias voltage is applied to all three nodes, the BST thin 

film no longer exhibits piezoelectricity, and the 1.5 stage filter switches off, providing 

isolation greater than 12 dB between the input and output ports. The measured 

characteristics of the filter are summarized in Table 5.2.  

There is a small discrepancy in the frequency of transmission zeros of the measured 

filter as compared to the simulation results, which can be attributed to the variation of 

thicknesses for the deposited layers. The minimum insertion loss of the measured filter is  

Table 5.1 

DC Bias Voltage Values for the Filter with Two BW States 

Filter State Vdc1 (V) Vdc2 (V) Vdc3 (V) 

OFF State 0 0 0 

ON State 1: FBW = 3% 0 0 VON 

ON State 2: FBW = 2% VON VON 0 

 

                           
(a)                                                                 (b) 

Fig. 5.10 Photographs of the fabricated BST FBAR filters with (a) two and (b) three BW state.  
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(a) 

 
(b) 

Fig. 5.11 (a) Reflection and (b) transmission responses for the measured BW reconfigurable BST 

FBAR filter unit cell in state 1 and state 2. OFF (state 3) response of the filter is also plotted in 

black dotted line. 

Table 5.2 

Measured Filter Specifications for the Reconfigurable BST Filter with Two BW States 

Device State 1 State 2 

Fractional 3-dB BW (%) 3.0 2.2 

Minimum Insertion Loss (dB) 3.2 3.7 

Out-of-band Rejection Level (dB)  >14 >12 

Return Loss (dB) >13 >12 

OFF state Isolation (dB) >12 >12 
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slightly increased due to the conductor loss of the interconnecting lines in between the 

resonators. Despite the variation, the overall measured frequency shift of the lower 

transmission zero of the filter remains consistent with simulation results.  

5.3.2 BST FBAR Filter with Three Bandwidth Reconfigurable States 

The second fabricated filter example contains three states of bandwidth 

reconfigurability. Table 5.3 lists the biasing conditions of the reconfigurable filter with 

three BW states, which also requires an additional DC probe to transition between all the 

three states. 

The measurement results for the filter in three different configurations, as well as the 

OFF state response of the filter, as shown in Fig. 5.12, demonstrate good agreement with 

the simulated results. The results for each filter state are separately measured based on the 

biasing setup described in Table 5.3. The filter specification in three different BW states 

and the OFF state is summarized in Table 5.4. The measured filter unit-cell can provide 

three different fractional BW values of 3%, 2.5%, and 2% under different biasing 

conditions. It also provides more than 13 dB isolation between the ports in its OFF state.  

Table 5.3 

DC Bias Voltage Values for the Filter with Three BW States 

Filter State Vdc1 (V) Vdc2 (V) Vdc3 (V) Vdc4 (V) 

OFF State 0 0 0 0 

ON State 1: FBW = 3% VON VON VON 0 

ON State 2: FBW = 2.5% 0 0 0 VON 

ON State 3: FBW = 2% VON VON 0 0 
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The out-of-band rejection and OFF state isolation level of the filter can be increased by 

using a higher-order filter. As mentioned in the previous section, small discrepancies in the 

3 dB cutoff frequencies between simulated and measured results are attributed to BST and 

mass loading layer thickness variation during the fabrication process. For both filters, the 

measured results show some fluctuation in the insertion loss across the passband. This 

occurs due to spurious resonance modes, which can be alleviated through the apodization 

 
(a) 

 
(b) 

Fig. 5.12 (a) Reflection and (b) transmission response for the measured bandwidth reconfigurable 

FBAR filter unit cell across all of its states. 
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[30] of the BST resonators, hence improving the filter response. In order to improve the 

BST filter performance and reduce the filter IL, BST resonators’ Q need to be enhanced.  

Based on theoretical calculations for a single crystal SrTiO3, it is expected that BST 

resonators achieve quality factors higher than 1000 at sub 6 GHz [20]. Improved Q factors 

can be achieved through optimization of BST ferroelectric deposition conditions, such as 

the deposition temperature, partial pressure, and annealing process, which has been shown 

to significantly affect the film quality and composition [11], [70]. Also, the design features 

need to be optimized in terms of resonator shape, lateral boundaries, and optimization of 

acoustic dispersion.  

 Chapter Conclusion 

The design and fabrication of intrinsically switchable and bandwidth reconfigurable 

FBAR filters based on ferroelectric BST are presented in this chapter. Key advantages of 

the presented ferroelectric filters include achieving bandwidth reconfigurability without 

employing external tunable components, such as varactors and switches. BST also 

Table 5.4 

Measured Filter Specifications for the Reconfigurable BST Filter with Three BW States 

Device State 1 State 2 State 3 

Fractional 3-dB BW (%) 3.0 2.5 2 

Minimum Insertion Loss (dB) 2.5 2.8 3.5 

Out-of-band Rejection Level (dB)  >13 >14 >17 

Return Loss (dB) >15 >15 >10 

OFF state Isolation (dB) >13 >13 >13 
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possesses high relative permittivity compared to conventional piezoelectric materials, 

which significantly decreases the overall circuit area for these devices. Using multi-state 

resonators, lower cutoff frequency adjustment of the filter is demonstrated. For further 

reconfigurability, multi-state resonators can be employed in both the series and shunt 

branch of a ladder-type bandpass filter to adjust both transmission zeros. Such bandwidth 

reconfigurable filters would address the inconsistency of frequency standards between 

regions across the world, and reduce the number of required filters for intra band career 

aggregation. 
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6 CHAPTER VI: 

Mode-Switchable Ferroelectric FBARs Exploiting Negative 

Piezoelectricity in Multilayer Ferroelectrics 

 

 

 Chapter Motivation 

With each generation of communication networks, now transitioning to 5G, the 

complexity and cost of radio frequency (RF) front-end in mobile devices have been rapidly 

increasing. Frequency band proliferation is the biggest contributor to the added RF front-

ends complexity in the design of future radios. To operate at various frequency bands, a 

complex combination of switches and acoustic wave filters are needed in current mobile 

devices. The number of filters in mobile phones is expected to exceed 100 with the advent 

of 5G networks [2], [71], further exasperating the design complexity of radios in current 

mobile devices. Alternative techniques, including reconfigurable and agile frequency 

selective components, are being considered to reduce the complexity and cost of RF front-

end circuitry. 

Agile frequency-selective components can simplify the design of future radios with 

their reconfigurable response. Multiple reconfigurable filters based on intrinsically 
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switchable BST resonators have been demonstrated in previous chapters. For instance, 

reconfigurable bulk acoustic wave filters with an adjustable center frequency and 

bandwidth, using BST FBARs, have been described in chapters 3 and 4, respectively. In 

this chapter, a mode switchable BST FBAR and a multi-band FBAR filter based on electric 

field induced positive and negative piezoelectric coefficients in multilayer thin film BST 

capable of extending the operating frequency of conventional BAW devices are presented. 

Ferroelectric BST, incorporated into a structure with multiple transduction layers, 

allows for the design of a new class of reconfigurable bulk acoustic wave devices. A 

multilayer ferroelectric structure can form a mode-switchable bulk acoustic wave 

resonator, selectively switching between its different Eigen frequencies. The first 

experimental demonstration of a mode-switchable FBAR based on a bilayer ferroelectric 

BST is presented in this chapter [48], [72]. As presented here theoretical calculations show 

that the higher-order even and odd resonance modes of multi-layer ferroelectric FBARs 

can individually be turned on by controlling the sign and magnitude of the effective 

piezoelectric coefficient independently in each layer of the ferroelectric FBAR. What is 

more significant is that the individual higher-order modes exhibit effective 

electromechanical coupling coefficients (𝐾𝑒𝑓𝑓
2 ) equal to the 𝐾𝑒𝑓𝑓

2  of the fundamental mode, 

which is contrary to the trend 𝐾𝑒𝑓𝑓
2 ∝ 1/𝑛2  exhibited by conventional piezoelectric bulk 

acoustic wave resonators. The mode-switching capability and the mode insensetive 𝐾𝑒𝑓𝑓
2  

of higher-order mode FBARs allow for the design of high microwave frequency band-

switching filters with large fractional bandwidths. Such filters not only can eliminate the 

need for external switches but also reduce the number of required filters in RF front-ends. 
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As an experimental validation of this idea, a dual-band-switching filter based on bilayer 

BST FBARs is implemented for the first time. 

 Mode-switchable Multilayer Ferroelectric FBARs 

Ferroelectric BST has a centrosymmetric cubic perovskite unit-cell in its paraelectric 

phase (above phase transition temperature Tc), and the components of its piezoelectric 

tensor are all zero. However, a DC electric field, applied to BST shifts the center titanium 

ion along the field direction, which breaks centrosymmetry and induces piezoelectricity in 

BST (i.e., electric-field-induced piezoelectricity), as shown in Fig 6.1 (a)-(b). In order to 

further explain ferroelectric BST’s acoustic properties and its applications, a simplified 

form of the constitutive equations are adopted. The induced strain (S) and electrical 

polarization (P) in BST are related by the electrostriction equation (6.1). The electric 

polarization under an applied electric field E can be expressed by (6.2) [23]. 

                                                                𝑆 = 𝛼𝑃2                                                                   (6.1) 

                                                               𝑃 = 𝑃𝑠 + 𝜒𝐸                                              (6.2) 

where α is the electrostriction coefficient, Ps is spontaneous polarization, and χ is the 

susceptibility of the material. Substituting (6.2) in (6.1) results in: 

                                               𝑆 = 𝛼𝑃𝑠
2 + (2𝛼𝑃𝑠𝜒 + 𝛼𝜒2𝐸)𝐸                                                (6.3) 

In paraelectric phase BST, where the spontaneous polarization is zero (Ps = 0), the 

electromechanical transduction occurs primarily through the E-field-induced piezoelectric 

effect (second term in the parentheses) that originates from BST’s large electrostriction 

coefficient. The typical quadratic strain (S)-electric field (E) curve for BST in the 
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paraelectric phase is shown in Fig. 6.1 (c), where its effective piezoelectric coefficient is 

determined by the slope of the curve at a particular DC bias point (EDC):  

                              𝑑𝑒𝑓𝑓 =
𝑑𝑆

𝑑𝐸
|𝐸𝐷𝐶

= 2𝛼𝜒2𝐸𝐷𝐶                                                 (6.4) 

Based on (6.4), the sign and value of the effective piezoelectric coefficient are functions of 

the polarity and magnitude of the applied DC electric field (𝐸𝐷𝐶 =
𝑉𝐷𝐶

𝑡𝐵𝑆𝑇
, where VDC is the 

voltage across the BST film and tBST is the BST film thickness). As shown in Fig. 6.1 (c), 

BST thin film not only provides E-field induced piezoelectricity but also exhibits an E-

field-induced ‘negative’ piezoelectricity, when biased to the left side of the curve, under a 

 
(a)                                                  (b) 

 
(c) 

Fig. 6.1 (a) BST’s centrosymmetric crystal unit-cell under no DC bias electric field. (b) After 

applying EDCo bias, the center Ti ion shifts and induces piezoelectricity. (c) Typical strain (S)-

normalized electric field (E) curve for BST; the slope of the S-E curve at each bias point represents 

the effective piezoelectric coefficient in the material. 
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negative DC bias voltage. 

This unique property of BST (i.e., E-field induced piezoelectric and negative 

piezoelectric effect) can be leveraged to control the pattern of effective piezoelectric 

coefficient in bulk acoustic wave resonators containing multi-layers of BST. An example 

of such structure is shown in Fig 6.2 (a), where the control of piezoelectricity in individual 

BST layers allows for the generation of different patterns of non-uniform piezoelectric 

coefficients, leading to selective excitation of different resonance modes with a constant 

electromechanical coupling coefficient. In such a mode-switchable FBAR, each resonance 

mode can be selected through a set of DC bias voltages applied across the BST layers to 

generate the appropriate pattern of the piezoelectric coefficients for that particular mode. 

The multilayer device in Fig. 6.2(a) contains N BST layers, each having a thickness of 

t (total membrane thickness is Nt). In order to simplify the explanation of the behavior of 

such resonator, it is assumed that electrodes’ thickness is infinitesimal, and only the 

longitudinal thickness modes are excited. At a certain bias point, the general piezoelectric 

constitutive equations that relate the electrical and mechanical fields together are (6.5) and 

(6.6). 

                                      𝑇 = 𝑐𝑆 − 𝑒𝐸                              (6.5) 

      𝐷 = 𝑒𝑆 + 𝜖𝐸         (6.6) 

where 𝑆 =
𝜕𝑢

𝜕𝑧
  (u is the particle displacement), T is stress, E is the small-signal electric 

field, D is electric displacement, c is elasticity, 𝜖 is the material permittivity, e is equal to 

𝑐
𝑑𝑠

𝑑𝐸
|𝐸𝐷𝐶

, and ρ is material density. Calculating E from (6.5) and substituting into (6.6) 

leads to the wave equation of (6.7). 
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𝜕2𝑢

𝜕𝑧2 +
𝜖𝜌

(𝑐𝜖+𝑒2)
𝜔2𝑢 = 0                                                   (6.7) 

The solution of (6.7) for the particle displacement field in the bulk of the device can be 

shown to be in the form of (6.8). 

                            𝑢(𝑧) = a. sin(𝑘𝑓𝑧) + 𝑏. cos (𝑘𝑓𝑧)       (6.8) 

where kf is the acoustic propagation constant (wavenumber) in the ferroelectric: 

   
(a)   

 
  (b) 

Fig. 6.2 Multi-layer ferroelectric resonator (a) structure and (b) magnitude of the impedance for 

different states of the device. Piezoelectricity in each BST layer is a function of the magnitude and 

polarity of the applied DC bias voltage. 
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                                                                𝑘𝑓 =
𝜔

√
𝑐

𝜌
(1+

𝑒2

𝑐𝜖
)

                                                            (6.9) 

Assuming stress-free boundaries (
𝜕𝑢

𝜕𝑧
|

𝑧=±
𝑁𝑡

2

= 0), the particle displacement field is 

simplified to (6.10) for odd and even modes, with resonance conditions given in (6.11). 

                                𝑢𝑛(𝑧) = 𝑢𝑜𝑢̃𝑛(𝑧) = {
𝑢𝑜 sin(𝑘𝑓,𝑛𝑧) , 𝑛 = 1, 3, 5, …

𝑢𝑜 cos(𝑘𝑓,𝑛𝑧) , 𝑛 = 2, 4, 6, …
                          (6.10) 

                                                       𝑘𝑓,𝑛
𝑁𝑡

2
 = 𝑛.

𝜋

2
                         (6.11) 

The effective electromechanical coupling coefficient for each of these modes in an acoustic 

wave resonator is defined by Berlincourt formula (6.12) [30], [58]. 

                                                               𝐾𝑒𝑓𝑓
2 =

𝑈𝑚
2

𝑈𝑒𝑈𝑑
                                                 (6.12) 

Where Um is mutual energy, Ue is elastic energy, and Ud is electrical energy stored in the 

dielectric material calculated by: 

                   𝑈𝑚 =  
1

2
∫ 𝑑𝑒𝑓𝑓(𝑇𝐸)𝑑𝑉

𝑉
, 𝑈𝑒 =  

1

2
∫ 𝑠𝑇2𝑑𝑉

𝑉
, 𝑈𝑑 =  

1

2
∫ 𝜖𝐸2𝑑𝑉

𝑉
              (6.13) 

and s is compliance, V is the volume of the resonator, 𝑑𝑒𝑓𝑓 is the effective piezoelectric 

coefficient throughout the bulk of the resonator defined by: 

                                                              𝑑𝑒𝑓𝑓(𝑧) = 𝑑𝑜𝑑̃ (𝑧)                                          (6.14) 

where 𝑑̃ (𝑧) is the normalized pattern function for piezoelectric coefficient versus z, the 

axis normal the membrane. By substituting (6.10) and (6.13) into (6.12), and simplifying 

the results one can show that the 𝐾𝑒𝑓𝑓
2  for the nth harmonic mode is equal to (6.15). 
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                      𝐾𝑒𝑓𝑓
2 =

(∫ ∫ 𝑑𝑒𝑓𝑓(𝑧)𝐸𝑇(𝑧)𝑑𝑧

𝑁𝑡
2

−
𝑁𝑡
2

𝐴
)

2

∫ 𝜖𝐸2𝑑𝑉
𝑉 ∫ 𝑠𝑇2(𝑧)𝑑𝑉

𝑉

=
𝜋2𝐾𝑒𝑓𝑓𝑜

2

16(
𝑁𝑡

2
)

2 (∫ 𝑑̃ (𝑧)𝑢̃𝑛
′ (𝑧)𝑑𝑧

𝑁𝑡

2

−
𝑁𝑡

2

)

2

           (6.15) 

where 𝐾𝑒𝑓𝑓𝑜
2  is the electromechanical coupling coefficient of the fundamental mode for a 

conventional piezoelectric membrane resonator (i.e., 𝑑̃ (𝑧) = 1): 

                                                                 𝐾𝑒𝑓𝑓𝑜
2 =

8

𝜋2

𝑑𝑜
2

𝑠𝜖
                                                  (6.16) 

Since all the longitudinal thickness modes un and their derivatives are orthogonal to each 

other: 

                                                       ∫ 𝑢𝑛
′ 𝑢𝑚

′𝑁𝑡/2

−𝑁𝑡/2
𝑑𝑧 = {

1, 𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

                                         (6.17) 

a single resonance mode n (1 < n < N) can be turned on by creating an appropriate pattern 

of non-uniform piezoelectric coefficient proportional to stress field of that mode (e.g., for 

nth harmonic mode: 𝑑̃𝑛(𝑧) = 𝑢̃𝑛
′ (𝑧)). Under this condition, only a single mode n (e.g., 

mode number n = 1, 2, 3, …) is excited with a constant electromechanical coupling 

coefficient equal to (6.18). 

                                                                𝐾𝑒𝑓𝑓,𝑛
2 =

𝜋2

16
𝐾𝑒𝑓𝑓𝑜

2                                                     (6.18) 

This is in contrast to single-layer piezoelectric resonators (i.e., 𝑑̃ (𝑧) = 1), where all odd 

harmonic modes simultaneously coexist with rapidly decreasing effective 

electromechanical coupling coefficients that are inversely proportional to the square of 

mode numbers (i.e. 𝐾𝑒𝑓𝑓,𝑛 =
1

𝑛2 𝐾𝑒𝑓𝑓𝑜
2 , n = 1, 3, 5, …) [30].  

As an example, in a 6-layer ferroelectric FBAR, the required pattern of the non-

uniform piezoelectric coefficient to excite only 2nd harmonic mode (represented by dashed 

lines) is shown in Fig. 6.3. In reality, however, the piezoelectricity in each layer is a 

constant value; thus, one needs to find the step function pattern close to the ideal sinusoidal 
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mode shape, as shown in a red solid line in Fig. 6.3. This can be achieved by solving a set 

of N equations (6.19), (step function version of (6.15)), to find an optimized 𝑑̃𝑛(𝑧) = [𝑑̃n,1, 

𝑑̃n,2, … , 𝑑̃n,N] that maximizes the 𝐾𝑒𝑓𝑓,𝑖=𝑛
2  and minimizes 𝐾𝑒𝑓𝑓,𝑖≠𝑛

2 , where 𝑑̃n,i is the 

normalized effective piezoelectric coefficient in each layer. 

  

𝐾𝑒𝑓𝑓,𝑛
2 =

 𝐾𝑒𝑓𝑓𝑜
2

4𝑛2
(∑ 𝑑̃𝑛,𝑖 [sin (𝑘𝑓,𝑛 ((−𝑁 + 2𝑖)

𝑡

2
 ))

𝑁

𝑖=1

− sin (𝑘𝑓,𝑛 ((−𝑁 + 2𝑖 − 2)
𝑡

2
 ))] )

2

, 𝑛 = 1, 3, 5, … 

                                                                                                                                (6.19 - a) 

  
 

Fig. 6.3 Ideal non-uniform pattern of effective piezoelectric coefficient (represented by the dashed 

lines) for the selective excitation of a single mode (mode 2) in a 6-layer ferroelectric bulk acoustic 

wave resonator. The stepwise solidline function is the actual realization of such pattern. The 

piezoelectric coefficient in the last three layers is negative. 
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𝐾𝑒𝑓𝑓,𝑛
2 =

 𝐾𝑒𝑓𝑓𝑜
2

4𝑛2
(∑ 𝑑̃𝑛,𝑖 [cos (𝑘𝑛 ((−𝑁 + 2𝑖)

𝑡

2
 ))

𝑁

𝑖=1

− cos (𝑘𝑛((−𝑁 + 2𝑖 − 2)
𝑡

2
 )] )

2

, 𝑛 = 2, 4, 6, … 

                                                                                                                              (6.19 - b)  

Accordingly, a set of DC bias voltages can be applied to the BST layers to realize the  

optimum 𝑑̃𝑛(𝑧) = [𝑑̃n,1, 𝑑̃n,2, … , 𝑑̃n,N] for each mode. Thus, the mode-switchable FBARs 

based on multi-layers of ferroelectric BST can selectively resonate at the desired harmonic 

modes as shown in Fig. 6.2 (b), allowing for the design of a new class of band-switchable 

devices, like filters and oscillators. These mode-switchable resonators not only eliminate 

the need for external switches but also reduce the number of required frequency selective 

components in RF modules. 

A one-dimensional physical model based on the Mason model arranged in a 

configuration shown in Fig. 6.4, can be used to analyze and optimize the performance of 

the mode-switchable resonators. This model allows to design the thickness of different 

layers and predict the device parameters such as its impedance. The harmonic resonance 

frequencies of the structure and their 𝐾𝑒𝑓𝑓
2  can be estimated for different patterns of non-

 

Fig. 6.4 Mason equivalent circuit model for a switched-mode ferroelectric FBAR containing N 

ferroelectric layers. 
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uniform piezoelectric coefficients. In this model, Zair is the acoustic impedance of the air, 

Ze and Zf are the acoustic impedance of the electrodes and the ferroelectric layers; also, the 

acoustic to electrical domain transformation ratio (Ti), for each BST layer is related to the 

effective piezoelectric coefficient in that layer through equation (6.20). 

                                                              𝑇𝑖 =
𝑐𝑑𝑒𝑓𝑓𝐶𝑒,𝑖

𝜖
                                                       (6.20) 

In the model of Fig. 6.4, Ce,i is the electrical capacitance of each BST layer, and the rest of 

the parameters are calculated by (6.21)-(6.24). 

                                                         𝑍𝑏𝑒,𝑖 = 𝑗𝑍𝑒𝐴 × 𝑡𝑎𝑛(𝑘𝑒 × 𝑡𝑒,𝑖)                                    (6.21) 

                                𝑍𝑎𝑒,𝑖 =
−𝑗𝑍𝑒𝐴

sin (𝑘𝑒×2𝑡𝑒,𝑖)
                                       (6.22) 

                              𝑍𝑏𝑓,𝑖 = 𝑗𝑍𝑓𝐴 × 𝑡𝑎𝑛(𝑘𝑓 × 𝑡𝑓,𝑖)                           (6.23) 

                              𝑍𝑎𝑓,𝑖 =
−𝑗𝑍𝑓𝐴

sin (𝑘𝑓×2𝑡𝑓,𝑖)
                                      (6.24) 

Where A is the resonator area, ke and kf are the wavenumbers (2𝜋𝑓/acoustic velocity (𝜈)) 

in electrodes and the ferroelectric layers, and te,i and tf,i are the thickness of ith electrode and 

ferroelectric layer.  

The electrical response of a mode-switchable resonator can also be represented by an 

mBVD model [29] with multiple switchable motional branches, as shown in Fig. 6.5. This 

model helps to further study and predict the performance of filters as a function of the 

resonators’ overall electromechanical coupling coefficient and quality factors, and 

eventually design reconfigurable filters based on mode-switchable resonators. In this 

model, Ce,n and Re,n account for the effective electrical capacitance and loss of the multi-

layer structure calculated by (6.25) and (6.26). The capacitance (𝐶𝑒,𝑖) and quality factor 

(𝑄𝑒,𝑖) in each layer is a function of the tunability of the deposited ferroelectric material and  
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the applied voltage across that layer. The motional branch for mode n includes Rm,n, Lm,n, 

and Cm,n that can be calculated with (6.27) - (6.29). 

                                                           
1

𝐶𝑒,𝑛
= ∑

1

𝐶𝑒,𝑖(𝑉𝐷𝐶,𝑖)

𝑁
𝑖=1                                                  (6.25) 

                                 𝑅𝑒,𝑛 = ∑
1

𝐶𝑒,𝑖(𝑉𝐷𝐶,𝑖)𝑄𝑒,𝑖

𝑁
𝑖=1                                              (6.26) 

                               𝐶𝑚,𝑛 = 𝐶𝑒,𝑛 [(
𝑓𝑎,𝑛

𝑓𝑟,𝑛
)

2

− 1]                                              (6.27) 

                                  𝐿𝑚,𝑛 =
1

𝐶𝑚,𝑛(2𝜋𝑓𝑟,𝑛)
2                                                      (6.28) 

                                   𝑅𝑚,𝑛 =
2𝜋𝑓𝑟,𝑛𝐿𝑚,𝑛

𝑄𝑚,𝑛
                                                          (6.29) 

 

In these equations, the resonance (fr) and anti-resonance frequency (fa) and accordingly the 

effective electromechanical coupling coefficient of each harmonic mode are employed 

from the Mason model calculations, where the effect of the electrodes with finite thickness 

 

Fig. 6.5 The lumped element model for multi-layer BST resonator in (a) ON (e.g. only mode n is 

excited) and (b) OFF states. 
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value are considered.  

A mode-switchable FBAR based on bilayer ferroelectric BST is designed and 

fabricated to validate the theoretical analysis. The resonators are then used to implement a 

reconfigurable band-switching ferroelectric FBAR filter.  

 Design and Simulation of a Mode-Switchable FBAR and a Band-

switching Filter 

A mode-switchable FBAR based on a bilayer ferroelectric thin film BST membrane 

structure, shown in Fig. 6.6, is intrinsically switchable and can resonate at its even or odd 

 

 
(a)                                                       (b) 

                                     
(c) 

Fig. 6.6 Bilayer BST resonator particle displacement distribution for (a) mode 1 with DC bias of 

𝑉𝐷𝐶 ×  [1, 1] and (b) mode 2 with DC bias of 𝑉𝐷𝐶 ×  [1, −1] , and (c) their corresponding impedance 

response. 
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harmonic modes selectively. When DC bias voltage with a similar polarity and magnitude 

applied across both BST layers, the sign and magnitude of the induced effective 

piezoelectric coefficient in BST films are similar; the entire structure forms a simple FBAR 

operating at its fundamental mode (fo) with a half-wavelength acoustic standing wave 

across the resonator (mode 1), as shown in Fig. 6.6 (a). However, when the two DC bias 

voltages with opposite polarities are applied to the bilayer BST FBAR, the effective 

piezoelectric coefficients in BST films are opposite in sign, according to (6.4), and two 

BST films vibrate in antiphase direction; only the second mode is excited as shown in Fig. 

6.6 (b). Therefore, by alternating between negative and positive polarities of DC bias 

voltages applied to only one of the BST films, the device can resonate at even or odd 

harmonic modes. Based on (6.15), both mode 1 and 2 are expected to provide the same 

𝐾𝑒𝑓𝑓
2 . The typical electrical impedance response of a bilayer stacked BST FBAR operating 

at modes 1 and 2, as well as its OFF state, is displayed in Fig 6.6 (c).  

A bilayer BST FBAR is designed to have its first and second harmonic modes at 2 

GHz and 3.6 GHz, respectively. The cross-sectional view of the device is shown in Fig. 

6.7. The device contains two BST layers sandwiched between three Pt electrodes. An extra 

100-nm-thick SiO2 is grown beneath the bottom electrode as a diffusion barrier layer. The 

 

Fig. 6.7 The bilayer BST resonator structure and the finalized thickness values for each layer. 

Air

100 nm

370 nm

370 nm

Air
100 nm

100 nm

100 nm

BST

BST

Pt 

SiO2



110 
 

thickness of the Pt electrodes is set to 100 nm, and the thickness of the BST layers is 

determined based on the Mason model of the device to meet the design frequency. The 

electrical and acoustic parameters of the materials used to develop the Mason model are 

provided in [15]. The finalized thickness of all the layers is shown in Fig 6.7. Based on 

these simulations, the electromechanical coupling coefficient (Keff) for mode 1 and mode 2 

are expected to be 8% and 7 %, respectively. The small variation in the 𝐾𝑒𝑓𝑓
2  of the two 

modes is due to the finite thickness of the electrodes and the addition of the oxide layer.  

The mode-switchable BST FBAR is then employed to design a 1.5-stage ladder-type 

network filter. The schematic of the designed filter is provided in Fig. 6.8 (a). The device 

is expected to provide a reconfigurable transfer function with three transmission states: 

band-pass response at 2 GHz and 3.6 GHz, along with OFF state isolation. The filter is 

simulated based on the model provided in Fig. 6.5, and its transmission response in all three 

states is provided in Fig. 6.8 (b). In this model, the Ce values for the shunt and series 

resonators are set as 3, and 3.2 pF with the rest of the lumped components in mBVD model 

are determined by (6.26) – (6.29).  

 Fabrication Process  

The fabrication procedure for the bilayer BST resonator structure is depicted in Fig. 

6.9. Devices are fabricated on high resistivity silicon wafers. The process starts by 

thermally growing a 100 nm diffusion barrier oxide layer on the silicon wafers. After that, 

the bottom electrodes are deposited and patterned by evaporation and lift-off. Next, the 

first ferroelectric BST transduction layer is sputter deposited at 650 oC in a 45 mTorr Ar 

and O2 environment (with a 4 to 1 partial pressure ratio). The ferroelectric BST thin film 

here has a composition ratio of x = 0.5, which corresponds to a Curie temperature of -20°C 
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and a paraelectric phase at room temperature. The middle electrode and the second BST 

layer are then deposited with a process similar to the first set of layers. A 100 nm-thick Pt 

layer is deposited and patterned with evaporation and lift-off to form the top electrodes. 

Afterward, the BST films and SiO2 layers are selectively etched in buffered hydrofluoric 

acid (BHF) to form the releasing windows and the vias to the middle and bottom electrodes. 

Biasing lines are realized by a 50 nm-thick NiChrome film. A 1.5 μm Al/Au layer is  

 
(a) 

 
(b) 

Fig. 6.8 (a) Schematic of the 1.5- stage ladder-type network filter based on mode-switchable BST 

FBARs and (b) its transmission response for mode 1 (2 GH), mode 2 (3.6 GHz), and OFF state. 
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deposited and patterned with evaporation and lift off to create the contact layer for probing 

the device. Finally, to release the devices’ membrane, the silicon substrate beneath them is 

dry-etched using gaseous XeF2. 

 

Fig. 6.9 The fabrication process for the mode-switching bilayer BST resonators. 
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The S-parameters of the fabricated devices are measured using a vector network 

analyzer with 250 µm-pitch ground-signal-ground (GSG) probes. On-wafer short-open-

load-thru (SOLT) probe calibration is performed from 0.2 to 5 GHz for a 50 Ω system 

impedance. 

 Experimental Results and Discussion 

Photographs of a mode-switchable BST FBAR with an active area of 38 µm × 38 µm 

and a 1.5 stage band-switching filter are shown in Fig. 6.10 (a) and (c). The filter unit-cell 

occupies only 90 μm × 110 μm. The cross-sectional view and the measurement setup for 

the resonator and the filter are provided in Fig. 6.10 (b) and (d), respectively. Bias voltages 

                            
(a)                                                          (b) 

                     
(c)                                                          (d) 

 

Fig. 6.10 (a) A photograph and (b) the cross-sectional view of a bilayer BST FBAR with its biasing 

circuit as well as a (c) band-switchable 1.5 stage filter with its bias circuit (d) are presented. 

Highlighted blue rectangles in the photographs are the resonators’ active area. 
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are applied through bias tees connected to the ports and a DC probe connected to the middle 

electrodes of the resonators through a high resistivity NiChrome line. The resonator 

switches between 2 GHz and 3.6 GHz resonance modes by alternating the DC biasing 

control voltage polarity across one of the BST films. In practice, this can be done by using 

polarity inverting circuits like differential amplifiers or Buck-Boost converters. The 

magnitude of the input impedance for a measured 1-port bilayer stacked BST FBAR under 

both resonance modes is displayed in Fig. 6.11 (a) with the OFF state response. Mode 1 

turns on by applying a 40 V DC bias voltage to each BST layer with a similar polarity 

(40 V × [1, 1]), which excites a resonance at 1.96 GHz. The device switches to mode 2 by 

changing the polarity of the bias voltage in one of the BST layers (i.e., 40 V ×  [1, −1]), 

exciting a resonance at 3.6 GHz. Furthermore, as shown in Fig. 6.11 (a), when one of the 

two resonance modes are turned on, the other mode is entirely suppressed, resulting in a 

smooth out-of-band response. The device turns off when no DC bias voltage is applied to 

the BST layers and acts as a simple capacitor, as shown in the figure. The mechanical 

quality factor and electromechanical coupling coefficient are estimated by (6.30) and (6.31) 

using the mBVD model parameters extracted from the measurements (provided in Table 

6.1). The measured Qm and Keff
2 for mode 1 are 110 and 7.9%, and for mode 2 are 120 and 

6.9%, respectively. As expected from (6.15), the Keff
2 of the second mode is comparable 

with the fundamental mode. 

                                                               𝑄𝑚 =
𝜔𝑟𝐿𝑚

𝑅𝑚
                                                    (6.30) 

                                                           𝐾𝑒𝑓𝑓
2 =

𝜋2

4

𝑓𝑟(𝑓𝑎−𝑓𝑟)

𝑓𝑎
2                                              (6.31) 
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(a) 

 
(b) 

 
c) 

Fig. 6.11 (a) The magnitude of the measured electrical impedance for mode 1, mode 2, and the OFF 

state, and the corresponding (b) transmission and (c) reflection response of 1.5 stage ladder-type 

filter. 
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Table 6.1 

The mBVD Model Parameters 

Parameter Mode 1 Mode 2 

Lm (nH) 62.9 23.2 

Rm (Ω) 8.12 4.4 

Cm (fF) 105 84 

Ce (pF) 1.60 1.64 

Re (Ω) 4.76 1.74 

Rs (Ω) 1.3 1.5 

Ls (nH) 0.15 0.15 

 

The measured transmission and reflection response of a ladder-type filter comprised 

of bilayer BST FBARs, under different biasing control voltage configurations, are provided 

in Fig. 6.11 (b) and (c), respectively. The transfer function of the filter is electrically 

controlled to select a passband centered at 2 GHz or 3.6 GHz or isolate the input and output 

ports (OFF state). The insertion loss of the measured filter is larger than predicated values, 

due to several reasons including its lower than expected mechanical quality factor, 

excitation of some spurious lateral modes, and excessive mass loading of filter’s shunt 

resonators. This is the first demonstration of a band-switching ladder-type filter; its 

performance needs to be enhanced by improving the multilayer BST resonator parameters 

(Qm and 𝐾𝑒𝑓𝑓
2 ) through optimization of the device structure and the multilayer ferroelectric 

thin film deposition. For instance, the thickness of the middle electrodes, which are used 

only for DC biasing, can be reduced to limit the acoustic loss in the conductor layers and 

confine the acoustic energy into the BST transduction layers, thereby improving the 
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resonator quality factor and its electromechanical coupling coefficient. Furthermore, the 

lateral wave spurious modes, which are more noticeable in the lower frequency band, can 

be eliminated through the design of raised frame structures, as discussed in [28], [58].  

 Conclusion 

New mode-switchable multilayer ferroelectric FBARs are presented. The 

electromechanical coupling coefficient of the longitudinal thickness modes for a multi-

layer ferroelectric resonator is calculated, demonstrating selective excitation of higher-

order modes with constant 𝐾𝑒𝑓𝑓
2  values. This is accomplished by exploiting the electric-

field-induced piezoelectricity and negative piezoelectricity in multilayer BST. Such multi-

layer technology enables the development of resonators operating at high microwave and 

millimeter-wave frequencies with large 𝐾𝑒𝑓𝑓
2  values. Mode-switchable resonators can also 

simplify the RF frontend modules by eliminating the need for external switches and 

reducing the overall number of required filters. The idea is experimentally validated 

through the fabrication and measurement of a bilayer BST resonator that selectively 

resonates at its first or second harmonic modes. A band-switching 1.5 stage ladder-type 

filter is also integrated based on such resonators for the first time. 
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7 CHAPTER VII: 

Conclusion and Future Work 

 

 

Sales of RF front-ends are expected to reach 18 billion US dollars by the end of 2020, 

and the growing number of required RF filters, as shown in Fig. 7.1, is the main driver for 

this business opportunity [71]. For multi-band operation, the RF filters are currently used 

in conjunction with switchplexers to select the desired bands and mode of operation. The 

switches within the RF modules can be eliminated by employing reconfigurable filters to 

 

Fig. 7.1 The number of frequency bands and accordingly the number of required filters in mobile 

phones is exponentially growing with each generation of communication networks. [61] 
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reduce the size, complexity, and cost of the future RF-front-ends considerably. 

Reconfigurable RF acoustic wave devices based on thin film ferroelectric BST as a 

potential solution was presented in this dissertation. Ferroelectric BST possesses several 

unique characteristics, including electric-field-induced piezoelectricity and ‘negative’ 

piezoelectricity, E-field-dependent permittivity, and high relative permittivity, which were 

employed in the design of reconfigurable RF devices. The BST devices presented herein 

demonstrate the feasibility of fabricating intrinsically switchable and mode switchable 

resonators, filters, and filter banks, aimed at simplifying the future RF front-ends by 

eliminating the need for external switches and also reducing the number of required filters. 

 Switchless BST Filter Bank 

The intrinsically switchable ferroelectric filter bank example presented in chapter 4 

demonstrates the feasibility of BST based switchable filter banks. However, optimized 

BST filter banks are yet to be designed to meet state of the art RF front-end specifications. 

Future work involves the enhancement of the BST FBAR figure of merit (Qm × Kt
2) as well 

as the development of a design methodology for the switchless filter banks. Improving the 

BST FBARs’ parameters (Qm and Kt
2) is essential for designing low loss switchable filters 

and is part of the ongoing research efforts. For example, optimization of the BST thin film 

deposition conditions, including the annealing process and the gas composition during the 

BST deposition, is currently under investigation. The structure of the BST FBARs can also 

be further improved by apodization, which smoothens out the resonators’ spurious lateral 

modes, and subsequently, small ripples in the passband and near-in rejection area. 

Moreover, it should be noted that the required DC bias voltage values for turning on the 

resonators are a function of the BST thin film thickness and its deposition condition. By 
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using a composite FBAR structure, the required DC bias voltage can be reduced to < 30 V 

[15], [20]. Optimization of the material quality can also reduce the FBARs’ required DC 

bias voltage. The performance of the filter bank can be further enhanced by optimizing the 

filter bank configuration for minimizing the reactive loading effect of the OFF state filters 

without using the varactors. A possible way is to employ the approaches developed for the 

synthesis of multiplexers with the manifold configuration, as described in [63], [64]. The 

simulation results of a switchable filter bank with a circuit topology similar to the 

conventional manifold multiplexers, as shown in Fig. 7.2, based on BST FBARs with a Kt
2 

and Qm of 8% and 800, respectively, are shown in Fig. 7.3. Based on these parameters, the 

intrinsically switchable filter bank provides a minimum insertion loss of 2 dB, out-of-band 

rejection and isolation levels more than 30 dB, and a fractional bandwidth of 4% at center 

frequencies of 1.7, 1.8, 1.9, and 2.0 GHz. The phase shifters in this simulation are 

composed of series capacitors followed by shunt inductors. All the shunt inductors can be 

combined into one inductor connected to the antenna node. 

 
Fig. 7.2 Schematic of a switchless filter bank; phase shifters are employed to reduce the 

capacitive loading effect and improve the antenna matching. 
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 Extremely High Frequency Bulk Acoustic Wave Resonators for 5G 

With the advent of the 5G, multiple mm-wave frequency bands are also designated for 

personal communications, causing the number of required filters in each mobile device to 

exceed 100. However, the classical SAW and BAW technologies cannot support mm-wave 

frequency bands. This is because current SAW or BAW resonators cannot achieve high Q 

and large Kt
2 above 6 GHz, required for designing low loss and large bandwidth (BW) 

filters. In the following, a new class of multilayer BAW resonator is described by 

expanding the idea presented in the previous chapter. Such resonators are made of 

piezoelectric materials having positive and negative piezoelectric coefficients and are 

capable of meeting the requirements of emerging mm-wave frequency communication 

standards. The calculations provided in the previous chapter indicate that BAW resonators 

containing multiple layers of materials with positive piezoelectric effect and negative 

piezoelectric effect can be designed to operate at mm-wave frequencies to achieve high 

effective Kt
2 values comparable to that of high performance acoustic resonators at much 

 
Fig. 7.3 Simulation results for a switchable filter bank consisting of four 2.5-stage filters in 

their ON state, superimposed in one figure. 
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lower frequencies. Furthermore, such new multilayer BAW resonator structures are 

expected to be mechanically robust, providing high manufacturing yields commensurate to 

low-cost commercial applications. Such resonators can be used as building blocks for 

designing RF filters with large bandwidths and low insertion losses at high microwave and 

millimeter-wave frequencies, currently not achievable by the available piezoelectric based 

technologies.  

The resonance frequency of BAW resonators is dictated by the device membrane 

thickness (Fig. 7.3 (a)). In such a structure, in order to maintain a low ohmic loss, the 

electrode to piezoelectric thickness ratio is large in very thin resonator membranes at mm-

wave frequencies. In such resonators, the acoustic energy ratio in the metal electrodes is 

increased, causing high acoustic losses and reduced Kt
2. Moreover, such thin membranes 

are not mechanically robust, suffering from low manufacturing yields. Therefore, the 

 
                                                  (a)                                        (b) 

 

Fig. 7.4 Two resonators with (a) fundamental and (b) 3rd order harmonic resonance modes at f1. In 

this figure, for simplicity, the acoustic wave velocity in metal and piezoelectric material is assumed 

to be similar (𝜈 ); but in general form they are not necessary similar. 
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conventional thickness scaling of acoustic resonators applied at lower frequencies is no 

longer practical at mm-wave frequencies. 

To address the above challenges, one can consider designing mm-wave frequency bulk 

acoustic resonators operating the higher-order harmonic resonance modes in thick 

membranes. For instance, a resonator, excited by its 3rd order harmonic frequency equal to 

the fundamental resonance frequency of the resonator shown in Fig. 7.3 (a), is shown in 

Fig 7.3 (b). In this structure, the ratio of acoustic energy inside the electrodes to the energy 

inside the piezoelectric material is reduced, which at first glance seems promising. 

However, in such bulk acoustic wave resonators, the electromechanical coupling 

coefficient of harmonic resonance modes also drops with a ratio of 1/ fn
 2 (i.e., for nth 

harmonic mode (fn = nf1) the electromechanical coupling coefficient is 𝐾𝑒𝑓𝑓,𝑛
2 =

1

𝑛2 𝐾𝑒𝑓𝑓,1
2 ) 

[30]. Hence ultimately, the lower electromechanical coupling coefficient of resonators 

described above limits their utility in filters for future radios. The drawbacks of the above 

approaches are remedied by the new resonator structure described in the following 

paragraphs. 

The structure of a resonator taking advantage of negative and positive piezoelectricity 

presented in this section is detailed in Fig. 7.4. As shown, multiple layers of alternating 

piezoelectric materials with negative and positive piezoelectric coefficients sandwiched 

between two electrodes, forming a BAW resonator. Based on the general 

electromechanical coupling coefficient equation [30], provided in (7.1), it is possible to 

excite harmonic resonance mode of such structure with an electromechanical coupling 

coefficient equal to the fundamental mode in single layer structures (i.e., 𝐾𝑒𝑓𝑓,𝑛
2 = 𝐾𝑒𝑓𝑓,1

2 , 
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contrary to the trend (𝐾𝑒𝑓𝑓,𝑛
2 =

1

𝑛2 𝐾𝑒𝑓𝑓,1
2  ) exhibited by conventional piezoelectric bulk 

acoustic wave resonators). For example, the electromechanical coupling coefficient for the 

nth harmonic mode of the resonator described herein, with n piezoelectric layers, is 

approximated to be 𝐾𝑒𝑓𝑓,𝑛
2 =

8

𝜋2

𝑑𝑜
2

𝑠𝜖
, which is equal to the one for fundamental resonance 

mode in single layer structures. (For simplicity, in the calculations, the thickness of 

electrodes is assumed to be negligible. Also, the magnitude of positive and negative 

piezoelectric coefficients for both layers is assumed to be equal to do, which can be different 

in the actual device; these approximations, however, do not affect the main conclusion 

drawn.). Such a multilayered resonator can maintain a high electromechanical coupling 

coefficient for higher order modes at mm-wave frequencies, an important achievement 

required for 5G and beyond. 

𝐾𝑒𝑓𝑓,𝑛
2 =

(∫ ∫ 𝑑𝑒𝑓𝑓(𝑧)𝐸𝑇(𝑧)𝑑𝑧

𝑡𝑡𝑜𝑡𝑎𝑙
2

−
𝑡𝑡𝑜𝑡𝑎𝑙

2
𝐴

)

2

∫ 𝜖𝐸2𝑑𝑉
𝑉 ∫ 𝑠𝑇2(𝑧)𝑑𝑉

𝑉

=   
𝑑𝑜

2

2𝑠𝜖(
𝑡𝑡𝑜𝑡𝑎𝑙

2
)

2 (∫ 𝑑̃ (𝑧)𝑢̃𝑁
′ (𝑧)𝑑𝑧

𝑡𝑡𝑜𝑡𝑎𝑙
2

−
𝑡𝑡𝑜𝑡𝑎𝑙

2

)

2

=
8

𝜋2

𝑑𝑜
2

𝑠𝜖
               (7.1) 

 

 
Fig. 7.5 Multi-layer piezoelectric/ferroelectric resonator structure.  
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where s, and 𝜖 are the average elasticity and permittivity of the piezoelectric layers. Also, 

𝑑̃ (𝑧) is the normalized piezoelectric coefficient in each layer, and 𝑢̃𝑁
′ (𝑧) is the normalized 

stress distribution throughout the bulk of the resonator. 

In the proposed structure of Fig. 7.4, two types of materials with positive and negative 

piezoelectric coefficients are utilized: positive piezoelectric coefficient layers can be made 

of conventional piezoelectric materials, like AlN, ZnO, LNO, PZT, BTO, etc., while the 

negative piezoelectric coefficient layers can be made of BST, Sc doped AlN in its 

ferroelectric phase, CuInP2S6 (CIPS), etc. [73]–[75]. For instance, the longitudinal 

displacement butterfly curve of the inverse piezoelectric effect for Al0.64Sc0.36N has broad 

linear regimes with almost equal slopes, corresponding to an effective longitudinal 

piezoelectric coefficient d33 of 15.7 Pico meter per volt (pm/V) and a negative piezoelectric 

coefficient of -16.2 pm/V, as shown in Fig. 7.5 [73]. 

The proposed resonator structure can be constructed using conventional bulk acoustic 

wave fabrication technologies and can be in the form of a thin film bulk acoustic wave 

 

Fig. 7.6 Converse piezoelectric effect: longitudinal strain response of Al0.64Sc0.36N [65]. 
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resonator (FBAR) as well as a solidly mounted resonator (SMR), as shown in Fig 7.6. In 

SMR structure, the acoustic wave reflection at the bottom of the resonator is provided 

through a Bragg reflector instead of an air interface. 

Multiphysics simulations have been performed for FBAR structures, validating the 

theoretical calculations presented here. The stress field distribution of 8 alternating layers 

of AlN/ScAlN, each having a thickness of 216 nm with 123 nm-thick Mo electrodes (total 

thickness of 2 μm), is shown in Fig. 7.7. The membrane structure resonates at 26 GHz (10th 

 

Fig. 7.8 Stress distribution in an eight-layer ScAlN/AlN resonator with Mo electrodes. 

 

 

 

 

 

                                           (a)                                                                                     (b)                                  

Fig. 7.7 Realization of the proposed multilayer resonators through (a) thin film bulk acoustic wave 

resonator (FBAR), and (b) solidly mounted resonator (SMR) technologies,. 
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harmonic mode of the structure) with an electromechanical coupling coefficient of 6% (for 

reference fundamental mode AlN resonators at sub-6 GHz frequencies exhibit similar 

electromechanical coupling coefficient values.) Thus, multilayer BAW resonators can 

achieve a large electromechanical coupling coefficient at mm-wave frequencies while 

maintaining membrane thickness values that provide substantial structural robustness. 

Such resonators allow the design of BAW filters with bandwidths required at mm-waves 

(e.g., Fig. 7.8 (a)). The expected transmission response of a ladder-type 2.5 stage filter 

based on the simulated resonator is provided in Fig. 7.8 (b). The filter achieves an 

unprecedented operation frequency of 26 GHz with a very sharp roll-off only exhibited by 

acoustic filters at low GHz frequencies.  

 

(a) 

 
(b) 

Fig. 7.9 (a) Schematic of a ladder-type filter based on the proposed resonator, and (b) the transmission 

response of a filter based on the simulated FBARs of Fig 7.7. 
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Finally, the presented multilayer mm-wave resonators are expected to have high 

quality factors. This is due to the fact that the total thickness of the transduction layer in 

such resonators is multiple wavelengths, which: 1) reduces the fraction of acoustic energy 

lost in electrodes, 2) allows minimizing the RF loss by increasing the electrodes’ thickness.  
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