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ABSTRACT

Clustered event data are frequently encountered in observational studies. In this

dissertation, I am focusing on correlated event outcomes clustered by subjects (mul-

tivariate events), facilities, and both hierarchically.

The main approaches to analyzing correlated event data include frailty models

with random effects and marginal models with robust variance estimation. Difficulties

for the existing methods include a) computational demands and speed in the presence

of numerous clusters (e.g., recurrent events); b) lacking rigorous diagnostic tools to

prespecify the distribution of the random effects; c) analyzing a multi-state model

that follows a semi-Markov renewal process. The growing need for flexible, compu-

tationally fast, and accurate estimating approaches to analyzing clustered event data

motivates my methodological exploration in the following chapters.

In Chapter II, I propose a log-normal correlated frailty model to analyze recur-

rent event incidence rates and duration jointly. The regression parameters are esti-

mated through a penalized partial likelihood, and the variance-covariance matrix of

the frailty is estimated via a recursive estimating formula. The proposed methods

are more flexible and faster than existing approaches and have the potential to be

extended to other frequently encountered data structures (e.g., joint modeling with

longitudinal outcomes).

In Chapter III, I propose a class of semiparametric frailty models that leave the dis-

tribution of frailties unspecified. Parameter estimation proceeds through estimating

equations derived from first- and second-moment conditions. Estimation techniques

xviii



have been developed for three different models, including a shared frailty model for a

single event; a correlated frailty model for multiple events; and a hierarchically struc-

tured nested failure time model. Extensive simulation studies demonstrate that the

proposed approach can accurately estimate the regression parameters, baseline event

rates, and variance components. Moreover, the computation time is fast, permitting

application to very large data sets.

In Chapter IV, I develop a class of multi-state rate models to study the associa-

tion of exposure to lead, a major endocrine disruptive agent, with behavioral changes

captured by accelerometer measurements from wearable device ActiGraph GT3X.

Categorized from personal activity counts over time by validated cutoffs, activity

states are defined and analyzed through their in-state transitions using the proposed

multi-state rate models in which the baseline rates are estimated nonparametrically.

The proposed models combine the advantage of regular event rate models with the

concept of competing risks, allowing to incorporate a daily renewal property and share

baselines in the activity transition rates across different days. The regression param-

eters are specified in the event rate functions, leading to a semiparametric modeling

framework. Statistical inference is based on a robust sandwich variance estimator

that accounts for correlations between different event types and their recurrences. I

found that the evaluated exposure to lead is associated with an increased transition

from low activity to vigorous activity.

Chapter V is a special project of modeling the COVID-19 surveillance data in

China, in which I develop two extended susceptible-infected-recovered (SIR) state-

space models under a Bayesian state-space model framework. I propose to include

a time-varying transmission rate or a time-dependent quarantine process in the clas-

sical SIR model to assess the effectiveness of macro-control measures issued by the

government to mitigate the pandemic. The proposed compartment models enable to

predict both short-term and long-term prevalence of the COVID-19 infection with

xix



quantification of prediction uncertainty. I provide and maintain an open-source R

package on GitHub (lilywang1988/eSIR) for the developed analytics.
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CHAPTER I

Introduction

Survival outcomes are frequently encountered in health studies and clinical trials.

Event data are very commonly clustered in observational studies, i.e., event times

from the same cluster are correlated for some observed or unobserved reasons. Ex-

amples include the natural genetic similarity of people from the same family; patients

treated in same hospital experiencing similar responses due to having been subject

to similar treatment practices, and, a series of multivariate events from the same

subject. Recurrent events are homogeneous, ordered, multivariate failure time data,

which are naturally clustered within subjects. Many methods exist for modeling re-

current event data, commonly with regard to either total times (time since the origin)

or gap (inter-event) times.

Andersen and Gill (1982) introduced the Cox (Cox , 1972, 1975) type model for

recurrent event intensities based on the event increments given their past histories

(filtration) and leaving the transition of the changing at-risk set unspecified. Their

intensity model for multivariate events follows E(dN∗(t)|Ft−) = λ0(t) exp(β′Z(t))dt,

where dN∗(t) denotes the instantaneous increment N∗(t) − N∗(t−) within a transient

time interval [t − dt, t] with dt → 0. Suppose that C denotes the censoring time and

Y (t) = I(t ≤ C) denotes the at-risk process, which implies that after C the subject

is no longer at risk. As follows, the observed event process is N(t) =
∫ t
0

Y (s)dN∗(s)
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or dN(t) B Y (t)dN∗(t) with its increment at time t to be dN(t) = N(t) − N(t−). Let

Ft be the filtration, which is usually a σ-field generated by the event and at-risk

processes as well as the covariate, i.e. Ft B {N(s),Y (s+), Z(s+) : 0 ≤ s ≤ t}. The Cox-

type models also implicitly assume that E(dN∗(t)|Ft−) = E(dN∗(t)|Z(t)), or given Z(t),

the intensity formula is independent of other historical events and covariates from

Ft− . If Z(t) is time-invariant with Z(t) = Z , the Cox-type counting process can be

reduced to a non-stationary Poisson process, i.e., the event increments from exclusive

intervals are independent given Z (Lin et al., 2000). Based on the powerful martingale

theory, Andersen and Gill (1982) developed a series of large sample properties for the

multivariate event intensity estimation via the partial likelihoods (Cox , 1975). Note

that the event intensity here is in correspondence to the event hazard under the

framework of modeling univariate event data (e.g., deaths). Subsequently, Pepe and

Cai (1993), Lawless and Nadeau (1995) and Lin et al. (2000) suggested a proportional

rate model E(dN∗(t)|Z(t)) = λ0(t) exp(β′Z(t)), which is equivalent to marginalizing

the transitory intensities over its event history. Instead of using martingale theory,

empirical process theory was employed to establish large sample properties.

There are a series of inspiring contributions on intensity models. Prentice et al.

(1981) exploited a class of conditional models which allow the baseline intensities and

regression parameters to vary between ordered events, E(dN∗(t) | Ft−) = E(dN∗(t)|N∗(t−) =

k − 1, Z(t)) = λ0k(t) exp(β′kZ(t)), which can be estimated with a stratified Cox model.

Prentice et al. (1981) also proposed a model for gap times as a special case of semi-

Markov process. Wei et al. (1989) avoided dealing with the dependence between

events by fitting separate marginal models E(dN∗k (t)|Fk(t−)) = λ0k(t) exp(β′kZ(t)),

solely conditional on the kth event history Fk(t−). Note that, in this marginal model,

subjects are at risk for event k even before event k − 1 occurs. A drawback of using

such total event times in the presence of recurrent event data is the “carry-over ef-

fect”, i.e., the prior event times can influence the future event times since they are
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cumulative.

To overcome such carry-over effect, practitioners sometimes prefer using gap times.

There are mainly two statistical problems that hinder the use of gap times for multi-

variate event analysis: 1) the marginal distribution of gap times other than the first

one are always not identifiable because their observations are dependent on the fact

that they are uncensored, or T∗k ≤ C (here again superscript T∗ indicates true event

times subject to right censoring C and its subscript k denotes the event order), and 2)

induced dependent censoring (Wang , 1999; Huang , 2002; Schaubel and Cai , 2004b).

To be specific, with the gaps times denoted by T̃∗k B T∗k − T∗
(k−1)

, the observation of

T̃∗k is always conditional on the fact that T∗
(k−1)

has been observed. Moreover, we have

dependent censoring for gap times after the first event, i.e., T̃∗k 6⊥ C −
∑(k−1)

j=1 T̃∗j . Both

problems can be solved when the gap times are independent of each other, which is

mostly an untenable assumption.

A variety of approaches for gap-time data analysis have been established. They

mainly follow the subsequent several strategies, including 1) using conditional dis-

tribution of the current gap time given prior events, 2) introducing random effects

to account for unobserved associations between events via shared or correlated ran-

dom effects, 3) modeling survival functions of gap times using Copula with some

association parameters, 4) marginal models with robust inference to account for de-

pendent gap times. In addition, one can directly estimate the gap time distributions

marginally through some nonparametric methods which have been extensively stud-

ied in a rich literature (Visser , 1996; Wang and Wells , 1998; Wang , 1999; Wang

and Chang , 1999; Lin et al., 1999; Huang , 2000, 2002; Schaubel and Cai , 2004a; Lee

et al., 2016). However, the nonparametric approaches do not provide regression effect

estimation. Schaubel and Cai (2004b) proposed a semiparametric relative-risk model

and Huang (2002) proposed AFT-type gap time models for regression parameter es-

timations. Among all the options, only frailty models and Copula methods are trying
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to estimate not only the effects from covariates, but also the associations between

events. Moreover, many estimation methods for frailty models, e.g., expectations-

maximization (EM) (Dempster et al., 1977) and numerical approximations (Lange,

2010), predict the subject-specific random effects, which can be quite useful when

predicting subject-specific hazards or survival functions.

Almost all the recurrent events methods mentioned above treated the duration of

the event status as a point process. Taking recurrent hospitalizations as an exam-

ple, the inpatient periods are usually counted into the waiting time before the next

admission, which may cause bias in the estimation of the readmission process; or

the inpatient episodes are ignored, which could decrease the estimating efficiency by

neglecting related information in the data. Moreover, both event processes might be

interesting to researchers. Bivariate events and the extension to multivariate events

using log-normal frailty models have been studied by Xue and Brookmeyer (1996),

but the slow EM algorithm limits their use in practice. To analyze alternating gap

times, Huang and Wang (2005) specified a non-parametric framework; Yan and Fine

(2008) implemented a combination of marginal mean models and temporal regression

models; and Lee et al. (2018) developed AFT based estimating approaches. However,

none of these three methods explicitly assess the associations within and between the

two event processes.

In Chapter II, I propose an alternative approach based on a penalized survival

model to analyze alternating recurrent events. The penalty term is naturally inherent

from the correlated frailty model, where the association between the two alternating

states can be explained by the covariates and a pair of correlated random effects. Note

that most existing frailty models assume independent random effects and control the

association direction by regulating their multipliers. See the hierarchical models given

by Ripatti and Palmgren (2000) and Dharmarajan et al. (2018) for details. However,

the direction of the correlation between two event types is often unknown and of-
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ten difficult to anticipate. For instance, a longer care in the hospital may lead to a

longer waiting time before readmission, or associate with a sicker status and hence

predict a sooner readmission. Extending Ripatti and Palmgren (2000) and Therneau

et al. (2003), I derive a Laplace approximation based estimation method permitting

complete variance-covariance estimation for the correlated random effects. The re-

gression parameters are estimated from a penalized partial likelihood. In addition,

based on the approximate marginal likelihood, I develop a likelihood ratio test (LRT)

to evaluate the existence of dependence between two event intensities. Our method

provides accurate parameter estimation and relatively fast computation time. The

proposed method can also be extended to accommodate more complicated models

with an arbitrary number of event types and jointly with longitudinal observations.

Frailty models have a general limitation that the distribution of random effects

needs to be prespecified, and its mis-specification may result in a biased estimation

(Wienke, 2010). Moreover, the distributional assumption on the frailties cannot be

verified in practice. To circumvent this issue, one can treat the frailties as nuisance

parameters (Wang et al., 2001), at the expense of some loss in estimation efficiency

relative to parametric frailty methods (Ye et al., 2007). Alternatively, according to

Laird (1978), Heckman and Singer (1982) and Heckman and Singer (1984), the dis-

tributions of random effects can be estimated via nonparametric maximum likelihood

estimators (NPMLE), which has been extensively discussed in Chapter IV of Xu

(2011). In Chapter III, I develop a novel estimating equation framework for a fam-

ily of semiparametric models of recurrent events, extending the work of Wang et al.

(2001). The proposed estimating approach allows consistent estimation of the regres-

sion parameters, the nonparametric baseline and the variance of the random effects.

Moreover, the proposed framework can accommodate multiple types of events follow-

ing correlated frailty models, and hierarchically structured event data with nested

frailty models.
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Both Chapters II-III utilize frailty models. In chapter IV, I propose a type of

marginal multistate rate models to analyze the time-varying transitions of physical

activity states among the children in a cohort from Mexico City. We transform

the tri-axial accelerometer data into time-varying categorical states and analyze the

nature of daily changing pattern of the transition rates between states. The proposed

multistate rate models are analyzing “competing rates” jointly, in the spirit of both

event rate models and the competing risk methods. Our proposed multistate rate

models demonstrate that Pb exposure is positively associated with activity transitions

to vigorous states among the boys, while transitions to moderate activity states among

the girls. The proposed models enjoy the adaptability to a finer stratification, and the

flexibility to shared covariate effects. Moreover, the proposed models can be easily

implemented in a well-established R package Survival (Therneau, 2015).

When I was preparing my dissertation, the novel coronavirus (COVID-19) pan-

demic attacked hundreds of countries around the world and caused hundreds of thou-

sands of deaths. I added this chapter to foster the development of convenient com-

putational tools for public-health practitioners to make public decisions conveniently

based on reasonable forecasting models. The proposed epidemiological models are

built upon a hierarchical structure; with two observed time series of daily propor-

tions of the infected and removed cases (dead and recovered). The two observational

layers are generated from the underlying infection dynamics governed by a Markov

Susceptible-Infectious-Removed (SIR) infectious disease process under a Bayesian

framework. The latent SIR model based on the three ordinary differential equa-

tions are solved via the fourth-order Runge-Kutta approximation. The regular SIR

model has been extended by including either a time-dependent modifier of the trans-

mission rate, or a time-varying quarantine compartment whose prevalence follows a

Dirac delta function. To deal with the accuracy in face of the strong discontinuity

of the latter extension, I propose a two-step computation procedure. The proposed
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compartment models are established in an open-source R package on GitHub (lily-

wang1988/eSIR).
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CHAPTER II

Penalized Survival Models for the Analysis of

Alternating Recurrent Event Data

2.1 Introduction

Recurrent event data are commonly encountered in clinical experiments and ob-

servational studies. Examples for recurrent events include repeated hospitalizations,

recurrent opportunistic infections for HIV-infected patients, and recurrent tumors for

cancer patients. Various methods have been developed to analyze multivariate fail-

ure times by formulating models based on either intensity functions or rate functions

(Prentice et al., 1981; Andersen and Gill , 1982; Pepe and Cai , 1993; Lawless and

Nadeau, 1995; Lin et al., 2000). Despite the utility of these approaches, an important

limitation is that each of these methods treats the recurrent event sequence as a point

process and hence assumes (at least implicitly) that event durations are negligible. In

cases where event duration is variable and not negligible, information and accuracy

are sacrificed if the event duration is not considered. Taking recurrent hospitalizations

as an example, the inpatient periods were counted into the awaiting time before the

next admission, which may cause bias in the estimation of the readmission process; or

the inpatient episodes are ignored, which could decrease the efficiency by neglecting

some associated information in the data. Moreover, both event processes might be in-
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teresting to researchers. Other examples include recurrent infections among patients

who have HIV or who have experienced hematopoietic cell transplantations, whereby

the durations of infections could be of various lengths.

A natural way to accommodate recurrent events with non-negligible duration is

to cast the data structure as an alternating gap time sequence. Very few methods

have been proposed along these lines. A non-parametric approach was developed by

Huang and Wang (2005) to estimate the joint distribution of two alternating events

and the marginal distribution of the first recurrent event; however, this method does

not provide inference on covariate effects. Recently, Lee et al. (2018) developed an

estimating equation approach for accelerated failure time (AFT) model for an alter-

nating recurrent event data. In their proposed estimating procedure, the distribution

of the possibly-correlated random variables for two processes was left unspecified.

Like Huang and Wang (2005), Lee et al. (2018) does not provide information on the

correlations within or between the two recurrent event sequences.

Alternatively, correlated frailty models can be developed to accommodate the al-

ternating recurrent event setting by adapting bivariate frailty models for clustered

multivariate failure time data (Yashin et al., 1995; Xue and Brookmeyer , 1996). The

marginal likelihood (integrating out the unobserved frailties) can be obtained through

the expectation-maximization (EM) algorithm, Gaussian-Hermite quadrature or a

Laplace approximation (Vaida and Xu, 2000; Ripatti et al., 2002; Huang and Liu,

2007; Liu and Huang , 2008). Ripatti and Palmgren (2000) developed a Laplace ap-

proximation based approach to estimate a penalized partial-likelihood (PPL) for a

multivariate frailty model, which was shown to converge much faster than EM (Th-

erneau et al., 2003).

In this report, we propose a novel PPL estimating approach for alternating re-

current event data using correlated log-normal frailties. This is equivalent to model-

ing two recurrent event processes jointly, incorporating a bivariate random intercept
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(with correlated elements) to represent between- and within-process correlations. In

contrast to Ripatti and Palmgren (2000), our estimating equation for the variance

components is obtained by differentiating the approximate marginal likelihood with

respect to its inverse variance matrix, other than to its scalar elements. Possibly due

to the difficulty to estimate the each parameter of a non-diagonal variance matrix sep-

arately, Ripatti and Palmgren (2000) only provided estimators and simulation results

for independent frailties, under an assumption that the two sub-clusters (right and left

hips) were positively correlated. A similar strategy was employed by Dharmarajan

et al. (2018) to model clustered competing risk data, assuming that the competing

risks are negatively correlated. Although suitable for many practical settings, the

requirement that the sign of the correlation be pre-specified limits the implementa-

tion of such approaches to alternating recurrent event data. In particular, it may be

very difficult to accurately pre-specify the sign of a correlation that, depending on

the application at hand, could be either positive or negative.

Our objective in this report is to develop methods for analyzing alternating re-

current event data that are flexible, informative, computationally efficient and im-

plementable in very large data sets. In contrast to previous works, our proposed

method estimates the frailty covariance matrix as a whole, with no need to restrict

the correlation parameter in any fashion. In addition, a likelihood ratio test (LRT) is

proposed to assess whether or not the two alternating recurrent event sequences are

mutually independent.

The remainder of this report is organized as follows. We introduce our model in

the setting of alternating recurrent events in Section 2.2. In Section 2.3, our method

is described by deriving an approximate marginal likelihood (Subsection 2.3.1) based

on the model in Section 2.2, developing a new PPL estimation approach (Subsec-

tion 2.3.2), and proposing a LRT based on a marginal PPL (Subsection 2.3.3). Sim-

ulations to evaluate the proposed methods on finite sample sizes are summarized in
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Section 2.4. We apply the proposed method to an analysis of end-stage renal disease

patients from the Dialysis Outcomes and Practice Patterns Study (DOPPS) in Sec-

tion 2.5. A more comprehensive introduction of Laplace approximation and the bias

correction for our proposed model can be found in Section 2.6. An exploratory exten-

sion of the current estimating approach to general clustered survival outcomes with

an arbitrary K event types is introduced in Section 2.7 with preliminary simulation

results. Concluding remarks are provided in Section 2.8.

2.2 Model Specification

A total of n independent subjects are followed over time and experience two al-

ternating states indexed by k, i.e., k = 1 indicates the first event and k = 2 indicates

the second event. For subject i, let random vectors T ∗i = {(T
∗
i j1,T

∗
i j2), j = 1, · · · } indi-

cate the total event times (i.e., measured from the start of follow-up) for both event

types; j indicates the order of recurrent event pairs, i.e., 0 < T∗i11 < T∗i12 < T∗i21 <

T∗i22 < · · · . The gap times between recurrent events for subject i are denoted by

T̃ ∗i = {(T̃
∗
i j1, T̃

∗
i j2), j = 1, · · · }, where T̃∗i j1 = T∗i j1 − T∗i( j−1)2

and T̃∗i j2 = T∗i j2 − T∗i j1.

The covariate vector is denoted by Zi(t), with any time-dependent elements re-

stricted to be external covariates (Kalbfleisch and Prentice, 2002). Moreover, we set

the covariates for gap time T̃i j k to Zi j k , such that all elements (even if time-dependent)

are set to their values at their respective gap time origins; i.e., Zi j1 = Zi j(Ti, j−1,2) and

Zi j2 = Zi j(Ti j1). Note that the covariates comprising the two recurrent event types,

Zi j1 and Zi j2, can be different. If no time-varying external covariates are considered,

we only use their baseline measurements.

The alternating recurrent event process is right-censored by Ci. Let mi be the

number of observed complete event pairs from subject i. It is possible to have more

than mi event pairs, but due to the censoring, there are only mi complete pairs being

observed; it is still possible to observe event time T∗i(mi+1)1
, but T∗i(mi+1)2

is always

11
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Figure 2.1: Alternating recurrent events under right censoring. T̃i11 is the observed
awaiting time to the first hospitalization of subject i. T̃i12 is the length of stay
before discharge. T̃i21, the observed time to the second hospitalization, is censored.
Therefore, we only observe 1 complete event pair (mi = 1).

censored. Correspondingly, we denote the observed covariate history by Zi = {Zi j k, j =

1, · · · ,mi + 1, k = 1, 2}, and assume that Ci is independent of T ∗i given Zi.

As depicted in Figure 2.1, the two alternating recurrent events can be a series of

alternating admission and discharge from a hospital. Let T̃i j1 denote the gap time

between the previous discharge (or time 0 for j = 1) and admission, and let T̃i j2 denote

the length of stay, i.e., time between hospital admission and discharge.

The event indicators and total observation times are defined as δi j k = I(T∗i j k < Ci)

and Ti j k = T∗i j k ∧ Ci, where I(·) is an indicator function and a ∧ b = min(a, b). Note

that it is always true that for j = 1, . . . ,mi, we have δi j k = 1 and Ti j k = T∗i j k , while

δi(mi+1)2 = 0 and Ti(mi+1)2 = Ci. Event gap times T̃∗i j k are subject to censoring C̃i j k ,

where C̃i j1 = Ci − Ti( j−1)2 and C̃i j2 = Ci − Ti j1. Note that T̃∗i0k = 0 and T̃i0k = 0 for

k = 1, 2. Consequently, the observed gap times are T̃i j k = T̃∗i j k ∧ C̃i j k . For each event

gap, we introduce an at-risk indicator Yi j k(t) = I(t ≤ T̃i j k).

The assumed hazard model for T̃i j k is given by

λi j k(t | Zi, γi) = λ0k(t) exp(β′kZi j k + γik), (2.1)

where γi = (γi1, γi2)
′ are independent draws from a mean-zero bivariate normal dis-

12



tribution, BVN(02,D2×2). The shared baseline hazards in (2.1) implies that the al-

ternating event process follows a renewal property so that the baselines are shared

within each event type. We assume that the γ1, γ2, . . . are mutually independent,

and that each γi is independent of Zi. Moreover, for ( j, k) , (p, q), T̃∗i j k and T̃∗ipq are

independent given {γi, Zi j k, Zipq}. Consequently, the T̃∗i j k are subject to censoring via

C̃i j k which is conditionally independent given γi and Zi.

We stack γi from the n subjects into a vector γ = (γ′1, γ
′
2, · · · , γ

′
n)
′, which then

follows a mean-zero multivariate normal distribution MVN(02n,Σ2n×2n). Note that

Σ = D ⊗ In×n is a block-diagonal matrix, where ⊗ is a Kronecker product and

In×n is an n by n identity matrix. We also include frailty design vectors Rik =

(0(1), . . . , 1(2i−2+k), . . . , 0(2n)) to indicate γik in the (2i−2+ k)th entry of γ is present. We

only account for random intercepts here, though it is possible for the models to be ex-

tended such that various covariates have random effects. The proposed event-specific

intensity in (2.1) will become

λi j k(t | Zi, Rik, γ) = λ0k(t) exp(β′kZi j k + γ
′Rik). (2.2)

The likelihood for subject i conditional on γ and Zi is given by

Li(β1, β2, λ01(·), λ02(·) | γ, Zi)

=
mi+1∏
j=1

2∏
k=1

[
λ0k(T̃i j k) exp(ηi j k)

]δi jk
exp

{
−Λ0k(T̃i j k) exp(ηi j k)

}
,

(2.3)

where the cumulative intensity of event process k is Λ0k(t) =
∫ t
0
λ0k(s)ds, and ηi j k =

β′kZi j k + γ
′Rik . It follows from (2.3) that the marginal likelihood is

Lm = L(β1, β2, λ01(·), λ02(·))

=

∫
γ

n∏
i=1

Li(β1, β2, λ01(·), λ02(·) | γ, Zi) exp(−1
2γ
′Σ−1γ)

��Σ��− 1
2 dγ.

(2.4)

13



Note that the marginal likelihood in (2.4) is not in a closed form. A PPL-based

estimation procedure is developed for the proposed model.

2.3 Parameter Estimation

2.3.1 Approximate Likelihood

We derive an approximate marginal likelihood for the log-likelihood from (2.3).

The joint likelihood function for the observations from n subjects and their frailties

can be represented as

L(β1, β2, λ01(·), λ02(·), γ) =
��Σ��− 1

2 exp(−K (γ)), (2.5)

where we define K (γ) is

K (γ) = 1
2γ
′Σ−1γ+

n∑
i=1

mi+1∑
j=1

2∑
k=1
Λ0k(T̃i j k) exp(ηi j k) − δi j k

{
ηi j k + log(λ0k(T̃i j k))

}
.

Through a Taylor expansion, K (γ) is approximated by

K (γ) ≈ K̂ (γ) = K (γ̃) +
1

2
(γ − γ̃)′K2(γ̃)(γ − γ̃),

where γ̃ is the solution of K1(γ) = 0, with

K1(γ) =
∂K (γ)

∂γ
= Σ−1γ +

n∑
i=1

mi+1∑
j=1

2∑
k=1

{
Λ0k(ti j k) exp(ηi j k) − δi j k

}
Rik . (2.6)

The corresponding second derivative is given by

K2(γ) =
∂2K (γ)

∂γ∂γ′
= Σ−1 +

n∑
i=1

mi+1∑
j=1

2∑
k=1

Λ0k(ti j k) exp(ηi j k)R
⊗2
ik , (2.7)

14



where we define a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′. Note that K2(γ) in (2.7) is a

block-diagonal matrix.

Through a Laplace approximation, we plug K̂ (γ) into (2.5) and integrate it to

obtain an approximate marginal log-likelihood,

lm = log(Lm) ≈ −
1

2
log

��Σ�� − K (γ̃) −
1

2
log |K2(γ̃)|. (2.8)

The function K (γ) can be decomposed as follows,

K (γ) = −PPLL − h(λ01(·), λ02(·), β1, β2, γ), (2.9)

where PPLL represents the penalized partial log-likelihood (Subsection 2.3.2) and

h(·) is defined in Appendix 1. In practice, inference on the regression parameters is

often simplified by solely focusing on the PPLL term. Ripatti and Palmgren (2000)

adopted a similar simplification, and demonstrated in their simulation studies that

the information loss due to neglecting h(·) was negligible.

2.3.2 Penalized Partial Likelihood Estimation

To estimate the regression coefficients and variance components, we need two iter-

ating steps, the inner loops and the outer loops. In the inner loop, a Newton-Raphson

algorithm is conducted based on PPLL, treating both γ and βk as parameters, and

treating D̂ as known from the previous outer loop. The outer loop is grounded

in an approximate marginal likelihood, fixing θ̂ from the recent inner loop, where

θ = (β′1, β
′
2, γ
′)′. We outline the proposed algorithm below.
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2.3.2.1 Inner Loop

Given the variance matrix Σ̂ (or D̂), the PPLL is expressd as

PPLL = −1
2γ
′Σ̂
−1
γ

+
n∑

i=1

mi+1∑
j=1

2∑
k=1

δi j k

{
ηi j k − log(

n∑
l=1

ml+1∑
p=1

Ylpk(ti j k) exp(ηlpk))

}
.

(2.10)

For notation simplicity, let

S(d)Zk
(t) = n−1

n∑
i=1

mi+1∑
j=1

Yi j k(t) exp(ηi j k)Z
⊗d
i jk,

S(d)Rk
(t) = n−1

n∑
i=1

mi+1∑
j=1

Yi j k(t) exp(ηi j k)R
⊗d
ik ,

SZRk
(t) = n−1

n∑
i=1

mi+1∑
j=1

Yi j k(t) exp(ηi j k)Zi j kR
′
ik,

(2.11)

where d ∈ {0, 1, 2}.

Let Z k(t) = S(1)Zk
(t)/S(0)Zk

(t), Rk(t) = S(1)Rk
(t)/S(0)Rk

(t), VZk
(t) = S(2)Zk

(t)/S(0)Zk
(t), VRk

(t) =

S(2)Rk
(t)/S(0)Rk

(t) and VZRk
(t) = SZRk

(t)/S(0)Zk
(t) = SZRk

(t)/S(0)Rk
(t). Taking first and second

partial derivatives of PPLL with respect to βk and γ, we obtain corresponding score

functions

∂PPLL
∂βk

=

n∑
i=1

mi+1∑
j=1

δi j k

{
Zi j k − Z k(T̃i j k)

}
(2.12)

∂PPLL
∂γ

=

n∑
i=1

mi+1∑
j=1

2∑
k=1

δi j k

{
Rik − Rk(T̃i j k)

}
− Σ̂

−1
γ, (2.13)
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and information matrices

−
∂2PPLL
∂βk∂βk

′ =

n∑
i=1

mi+1∑
j=1

δi j k

{
VZk
(T̃i j k) − Z k(T̃i j k)

⊗2
}

(2.14)

−
∂2PPLL
∂γ∂γ′

=

n∑
i=1

mi+1∑
j=1

2∑
k=1

δi j k

{
VRk
(T̃i j k) − Rk(T̃i j k)

⊗2
}
+ Σ̂

−1
(2.15)

−
∂2PPLL
∂βk∂γ′

=

n∑
i=1

mi+1∑
j=1

δi j k

{
VZRk
(T̃i j k) − Z k(T̃i j k)Rk(T̃i j k)

′
}
. (2.16)

If we substitute Λ0k(t) in (2.6) with their corresponding Breslow estimators, K1(γ)

will be equivalent to ∂PPLL/∂γ. Unlike K2(γ) in (2.7), KPPL2(γ) B [∂
2PPLL/∂γ∂γ′]

is not block diagonal. It is trivial to prove that ∂2PPLL/∂β1∂β2
′ equals 0.

Let PLL be the partial log-likelihood without a penalty term. The Hessian matrix

H(θ) is given by

H(θ) = I (θ) +


0 0 0

0 0 0

0 0 Σ̂
−1


, (2.17)

where we have

I (θ) = −
∂2PLL

∂θ∂θ′
= −


∂2PLL
∂β1∂β1

′ 0 ∂2PLL
∂β1∂γ′

0′ ∂2PLL
∂β2∂β2

′
∂2PLL
∂β2∂γ′

∂2PLL
∂γ∂β1

′
∂2PLL
∂γ∂β2

′
∂2PLL
∂γ∂γ′


.

There are two options for the asymptotic covariance estimate of θ̂, H(θ̂)−1I (θ̂)H(θ̂)−1

(Gray , 1992) and H(θ̂)−1 (Verweij and Van Houwelingen, 1994). In the inner loop,

the variances for θ̂ are underestimated since Σ̂ is fixed. Since H(θ)−1 has been demon-

strated in related contexts to be more conservative in Wald tests (Therneau et al.,

2003), H(θ)−1 is employed here with the intention of increasing coverage probabil-

ity. Note that when the sample size is large, one can sparsen the Hessian matrix by

reducing the off-2 × 2-block-diagonal part of KPPL2(γ) to be 0 before calculating the
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inverse.

2.3.2.2 Outer Loop

Fixing θ̂ from the previous inner loop, D can be estimated in the outer loop

through an approximate marginal profile log-likelihood by dropping irrelevant terms

from (2.8) (e.g., not including D), such that

lm ≈ −1
2 log |Σ | − 1

2 log |K2(γ̂)| − K (γ̂)

∝ −1
2 log |Σ | − 1

2 log |K2(γ̂)| −
1
2 γ̂
′Σ−1γ̂.

(2.18)

We now derive an estimator for the entire variance-covariance matrix of the frail-

ties. Given the baselines fixed, K2(γ̂) is a block-diagonal matrix with each block

defined as K2(γ̂)ii , thus the marginal likelihood from (2.18) can be re-arranged as a

function of D−1,

n
2 log |D−1 | − 1

2

n∑
i=1

log |K2(γ̂)ii | −
1
2

n∑
i=1
γ̂′iD

−1γ̂i, (2.19)

where we have

K2(γ̂)ii = D−1 + Mi(θ̂),

Mi(θ̂) = diag

[
mi+1∑
j=1

Λ01(T̃ij1) exp(η̂ij1),
mi+1∑
j=1

Λ02(T̃ij2) exp(η̂ij2)

]
,

and when the diag(·) function maps a vector to a diagonal matrix. Taking the first

derivative of approximate marginal likelihood with respect to D−1, we obtain the

estimating equation

n
2D −

1
2

n∑
i=1

K2(γ̂)
−1
ii −

1
2

n∑
i=1
γ̂iγ̂
′
i = 0, (2.20)

and its solution

D =
1

n

n∑
i=1

[
K2(γ̂)

−1
ii + γ̂iγ̂

′
i

]
. (2.21)
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Let D̂t denote the variance-covariance matrix estimate from the tth outer loop. The

(t + 1)th estimator can thus be expressed as

D̂t+1 =
1

n

n∑
i=1

[
(D̂−1

t + Mi(θ̂))
−1 + γ̂iγ̂

′
i

]
. (2.22)

The variance-covariance estimator (2.22) is analogous to the recursive estimat-

ing formula for logistic regression models derived through a Laplace approximation

(Demidenko (2004); Ch 7.7.2). The convergence of this type recursive estimator is

verified by the Fixed Point Theorem (Zamfirescu, 1972). We suggest initializing D

with a diagonal matrix; e.g., identity matrices were employed in our simulations.

Standard errors for the variance components, if of interest, could be obtained by

bootstrapping.

We found that directly replacing Λ0k(t) with its corresponding Breslow estimator

tends to result in overestimation of the diagonal entries for D. Moreover, the baseline

calculation could be intensive, especially when the sample size is large. Both K2(γ)

and KPPL2(γ) are summations involving a Σ−1, and their numerical difference can be

captured by the second derivative of h(·) with respect to γ. Ripatti and Palmgren

(2000) suggested to replace the K2(γ) with KPPL2(γ) for a more accurate estimation

on the variance components, and to avoid computing the baselines for each updating

step. In a similar vein, we substitute the 2× 2 matrices located on the block-diagonal

of [KPPL2(γ̂)]
−1, which is denoted as [KPPL2(γ̂)

−1]blki , for K2(γ̂)
−1
ii in (2.21). Subse-

quently,we have a new estimator

D̂# =
1

n

n∑
i=1

{[
KPPL2(γ̂)

−1
]

blki
+ γ̂iγ̂

′
i

}
, (2.23)

which is shown to be positive-definite in Appendix A.1.
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2.3.3 Likelihood Ratio Test

In order to test whether the frailties from the two alternating processes are in-

dependent to each other, we also propose a likelihood ratio test (LRT) based on an

approximate marginal penalized partial log-likelihood (MPPL).

MPPL = −n
2 log |D | + 1

2

n∑
i=1
|
[
KPPL2(γ̂)

−1
]

blki
| + PPLL(γ̂) (2.24)

The procedure includes contrasting the estimated MPPL in (2.24) under the null

and alternative hypotheses respectively. Under the null, we restrict D to be diagonal;

while under the alternative, we do not. Notice that, under the null, the two recurrent

processes can either be fitted separately, or be fitted together while restricting the off-

diagonal entries of D# to be 0 in each outer step. Let D̂#
0 be the variance estimator

under the independence assumption,

D̂#
0 = extdiag

[
1

n

N∑
i=1

{[
KPPL2(γ̂0)

−1
]

blki
+ γ̂0iγ̂0

′
i

}]
, (2.25)

where extdiag(·) is a function to extract diagonal part of the matrix, distinct from

diag(·) defined previously. Correspondingly, if the parameters subscripted with 1 are

from the unrestricted alternative, and those subscripted with 0 are from the null, the

test statistic is then given by

LRT = 2
[
MPPL

(
θ̂1, Σ̂

#
1

)
−MPPL

(
θ̂0, Σ̂

#
0

)]
. (2.26)

One would reject the null hypothesis of independence if LRT> χ2
(1)α

, where α is the

prespecified type 1 error and χ2
(1)

is chi-square with degree of freedom 1.
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2.3.4 Comparison

To the best of our knowledge, there is no literature that derived a direct estimator

for the entire variance-covariance matrix within a hierarchical survival model. Recall

that in hierarchical frailty model discussed by Ripatti and Palmgren (2000), the au-

thors incorporated three independent frailties to ensure a positive correlation between

two events in their model. Dharmarajan et al. (2018) built a correlated frailty model

of competing risks with a negative correlation by flipping a sign for one of its random

effects. They both predefined the correlation directions between two events, which

can be summarized as

λi j1(t | Z1, γ
∗
i ) = λ01(t) exp(β′1Zi j1 + γ

∗
i1 + γ

∗
i0)

λi j2(t | Z2, γ
∗
i ) = λ02(t) exp(β′2Zi j2 + γ

∗
i2 ± γ

∗
i0),

(2.27)

where γ∗i = [γ
∗
i0, γ

∗
i1, γ

∗
i2]
′ are independent and identically distributed draws from a

normal distribution N(0,D∗) and D∗ = diag[φ0, φ1, φ2], and the plus-minus sign ±

controls the the correlation sign between two events. Note that we use a superscript

∗ to distinguish the analogs in (Ripatti and Palmgren, 2000) from ours. By introduc-

ing in a 3 by n design matrices R∗ik , we can rewrite (2.27) into its analog of (2.2),

substituted with R∗ik for Rik , and γ∗ for γ.

In the outer loop, the estimating equations for φd with d = 0, 1, 2 are

−1
2

{
tr

(
Σ∗−1 ∂Σ∗

∂φd

)
+ tr

(
K∗2 (γ̂

∗)−1 ∂Σ∗−1

∂φd

)
− γ̂∗

′
Σ−1 ∂Σ∗

∂φd
Σ∗−1γ̂∗

}
= 0. (2.28)

Ripatti and Palmgren (2000) also suggested using the second derivative of the penal-

ized partial log likelihood K∗PPL2(γ) = ∂
2PPLL/∂γ∗∂γ∗′ in place of K∗2(γ) = ∂

2K (γ∗)/∂γ∗∂γ∗′

to achieve a better estimating performance. Note that these estimating equations

(2.28) are corresponding to scalar entries of D matrix other than its whole in our

method (2.20). In practice, due to the difficulty to obtain ∂Σ∗−1/∂φd and that
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its Newton-Raphson estimating procedure in the outer loop cannot ensure it to be

positive-definite (though re-parametrization of the variance-covariance matrix can be

another option), practitioners assume the independent frailty model with the sign of

the covariance of D pre-specified as in (2.27) for convenience. Under such assumption

as in models (2.27), the estimators for variance-covariance components are

φ̂d =
[γ̂∗d]′[γ̂∗d]+tr[{K∗PPL2(γ̂

∗)−1}d]
n d ∈ {0, 1, 2}, (2.29)

where we define γ̂∗d = [γ̂∗1d, . . . , γ̂
∗
nd]
′, and {K∗PPL2(γ̂

∗)−1}d is the dth sub-matrix of

K∗PPL2(γ̂
∗)−1 corresponding to γ̂∗d. In other words, tr[{K∗PPL2(γ̂

∗)−1}d] is summing up

every dth elements on the diagonal of K∗PPL(γ̂
∗)−1. Note that K∗2(γ

∗) is diagonal while

K∗PPL(γ
∗) is not, thus taking the trace tr[{K∗PPL2(γ̂

∗)−1}d] is comparable to taking the

sum of the diagonal blocks in our method (2.23). Consequently, the entire variance

matrix estimator D̂∗ can be assembled as

D̂∗ =


φ̂1 + φ̂0 ±φ̂0

±φ̂0 φ̂2 + φ̂0

 . (2.30)

Note that the difference between the two parameterizations, (2.27) and (2.1),

mainly affects the outer loop procedure. Since the regression parameters have their

score functions generally untouched in the inner loop, we would expect that there

should not exist much difference between our proposed method and Ripatti and Palm-

gren (2000) in terms of regression parameter estimation. In Section 2.4 we also con-

firmed that the changes in regression parameter estimates were negligible.

In addition, our method largely speeds up the calculation and reduces the memory

cost for several reasons. Firstly in the inner loop, our method estimates 2n + p of

parameters (p is the number of fixed effects in both events), while the model in (2.27)

needs 3n + p. The information matrix is also reduced by 5/9. Once we implement
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PPL for more types of events (e.g. three event processes), this dimension reduction

will be even larger. Secondly, sparsening the matrix for large sized data can also

dramatically reduce the computation burden. Moreover, we let the matrices from

the inner loop be computed in through Rcpp, and improve the computing algorithms

for score functions and information matrices to expedite the computation procedure

significantly.

2.4 Simulation Studies

Simulations under different settings were carried out to evaluate the proposed

method in reasonable sample sizes. To begin, the γi = (γi1, γi2)
′ were drawn indepen-

dently from a mean-zero bivariate normal distribution with various specifications for

D. Given γ, event times were generated in alternating turns, added up and recorded

until the censoring time Ci = 10. The covariates were drawn from independent stan-

dard normal distributions. The intensity function with respect to the j th occurrence

of the event type k is given by λ0k exp(β′kZi j k + γik). We denote the (a, b)th entry of

the variance matrix D by D[a, b]. When D[1, 2] = 0, the two alternating sequences

are independent. We generated 500 samples and set the convergence tolerance to be

10−6 for each replicate.

Table 2.1 provides results for samples with different sizes and baseline intensities,

λ0k = 1.5 (k = 1, 2). The median number of uncensored complete recurrent event pairs

was ≈4. We varied sample sizes from n = 100 to n = 1, 000. Estimated regression

parameters were approximately unbiased, with asymptotic standard error (ASE) gen-

erally close to the empirical standard deviation (ESD). The results are similar across

different sample sizes, implying that the estimation is not affected much by sample

size if the cluster sizes or recurrent event numbers are fixed. By comparing their

results, we noticed that the negatively correlated setting would experience less bias in

their D matrix estimation than the positively correlated setting. For data with more
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recurrent events (greater mi), the bias in estimating the D matrix decreased dramati-

cally (Appendix A.2). Note that, the ASEs for regression parameters were calculated

from the inverse Hessian matrix, but the ASEs for the entries of D were obtained via

bootstrapping, for which we tried different bootstrapping sample sizes with B = 50,

B = 100 and B = 200. We notice that using B = 50 provides sufficiently accurate esti-

mates for the standard errors while takes relatively less computation time. For large

n, we turned to m-out-of-n bootstrapping: resampling m observations out of n sub-

jects with replacement (Bickel et al., 1997; Bickel and Sakov , 2008). By comparing

different
√

nESE of all the estimated parameters with n = 50, 100, 200, . . . , 1, 000, we

noticed that when n = 200, it started to provide stable size adjusted standard errors

(
√

nESE ). Thus we set m = 200 for datasets with n > 200, and the estimated ASEs

from m-bootstraps were adjusted by the size difference by multiplying
√

m/n. The

resulting coverage probabilities (CP) were fairly acceptable for both the regression

parameters and the variance components.
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The dimension of the Hessian matrix is (2n+p)×(2n+p), where n is the sample size,

and p is the total regression parameters we are estimating from two event processes.

Increasing the sample size would largely inflate the dimension of the matrix and

consequently the computational burden. It was found that frailty part of the Hessian

matrix (2.17) is quite sparse, thus we set its off-block-diagonal part to be 0 in order to

improve the computation speed and reduce the memory usage without causing much

information loss. The trivial information loss for datasets with finite sample sizes

is substantiated by comparing the estimating results in Table 2.2 with those from

Table 2.1.
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Figure 2.2: For event type 1, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value of their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 1, and the red
line denotes the nominal value 0.95.

We also tested our method on more complicated model with a large number of

regression parameters. We generated datasets with 200 subjects (n = 200), and

there were 30 regression parameters for each event type, thus in total, there were

60 regression parameters (p = 60). The regression parameters for each event type is

an arithmetic sequence with constant increments from −1 to +1. We denote βk[c]

as the cth fixed effect for event type k, k = 1, 2. We set the variance matrix to be

D[1, 1] = D[2, 2] = 0.25 and D[1, 2] = −0.125, and let λ0k = 1.5. The median complete

event number is m̃i = 1 with 33% of the subjects censored (with 0 complete event

pairs). The regression parameter estimates are generally quite accurate when plotted

against their corresponding true values in Figures 2.2 and 2.3. The CPs are slightly

lower than their nominal value 95%, especially when the regression effects are large,

e.g. the lowest one is CP = 0.878 from β2[1] = −1. The variance matrix estimation

is quite close to its estimates in Tables 2.1 and 2.2.

Moreover, in order to test whether our proposed method works well for the DOPPS
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Figure 2.3: For event type 2, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 2, and the red
line denotes the nominal value 0.95.

data, we generated datasets similar to the DOPPS data: high censoring rate and large

dimension of covariates. We mimic the DOPPS data by simulating n = 6, 000 patients,

with about 75−80% censoring proportion (mi = 0), 30 regression parameters for each

event type (p = 60), and around 8, 000 event pairs; this is in comparison with the

DOPPS dataset with 78.7% censored, and 29 regression parameters for each event

(p = 58), and 9, 065 event pairs. We let 95% of the samples with censoring time

C = 0.4, and the other 5% with censoring time C = 10, the baselines intensities are

λ0k = 1.5. The frailty is following a bivariate normal distribution γ ∼ BV N(02,D)

where D[1, 1] = D[2, 2] = 0.25 and D[1, 2] = ±0.125. The gap times were generated

from exponential distribution with intensity λ0k exp(β′Zi j k)γik , where the covariates

were simulated from a standard normal distribution. For each event type, there are

30 regression as an arithmetic sequence with constant increments ranging from −1

to +1. Eventually, there are around 9000 rows of records (pairs of admission and

discharge). All the experiments were repeated 500 times.
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Figure 2.4: For event type 1, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value of their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 1, and the red
line denotes the nominal value 0.95.

2.4.0.1 D[1, 2] = 0.125

On average the censoring rate was 74.1% (range: 72.3-75.5%) and the total number

of records (event pairs) was 8156 (range: 8002-8324). The average estimated random

effect variance-covariance matrix is quite accurate with bias of the estimates for D[1, 1]

to be -0.007 (ESE: 0.035), D[2, 2] to be -0.008 (ESE: 0.046), and D[1, 2] to be -

0.005 (ESE: 0.025). The estimation of the regression parameters can be found in the

Figures 2.4 and 2.5

2.4.0.2 D[1, 2] = −0.125

On average the censoring rate was 74.5% (range: 72.7-76.2%) and the total number

of records (event pairs) was 8092 (range: 7928-8246). The average estimated random

effect variance-covariance matrix is quite accurate with bias of the estimates for D[1, 1]

to be -0.008 (ESE: 0.036), D[2, 2] to be -0.005 (ESE: 0.051), and D[1, 2] to be -0.001

(ESE: 0.026).

We carried out simulations to compare the computational speed and estimation

performance of the proposed method with the R package coxme (Therneau, 2018) un-
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Figure 2.5: For event type 2, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 2, and the red
line denotes the nominal value 0.95.
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Figure 2.6: For event type 1, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value of their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 1, and the red
line denotes the nominal value 0.95.
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Figure 2.7: For event type 2, we have 30 parameters ranging from -1 to +1. The
sub-figure on the left has shown that entries of β1 were plotted against the average
value their estimates, which is quite close to the red reference line y = x; On the
right, we show the CPs for all the regression parameters form event 2, and the red
line denotes the nominal value 0.95.

der different settings. Though we have inhibited Hessian matrix sparsening in coxme

and adjusted our codes to check the parameter convergence similarly, it is impossible

for us to make it an entirely fair comparison: coxme can fit models with random ef-

fects (interaction terms with covariates), correct approximation bias in its likelihoods

calculation, and conduct a comprehensive quality control on the input data. There-

fore, the computation time (in seconds) is listed in Table 2.3 to demonstrate that the

improved flexibility from the proposed method does not adversely affect the compu-

tation efficiency. For each sample, there were n individuals generated, each with a

median of m̃i complete event pairs. The regression parameters were estimated compa-

rably well with both methods, and coxme has less bias than the proposed method in

the variance matrix estimation, wherein additional information about the correlation

sign of the two events needs to be provided.

The proposed likelihood ratio test was tested under different sizes, event frequen-

cies, and covariance matrices. We fixed the regression parameters to be β1 = 1

and β2 = −1 for simplicity. We focuses on a big family of variance matrices whose

variance components D[1, 1] = D[2, 2] = 0.5 and the covariance component varies:

D[1, 2] = ±0.25 or ±0.125 as representatives of strong (|ρ| = 0.5) or weak correlated
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Table 2.3: Simulation results: Comparing the proposed method and coxme() with
respect to computational speed via average run time based on 500 replicates

True Proposed method coxme

Value Bias ESE Bias ESE

n = 50, m̃i = 9 time cost: 6.37s 77.2s
β1 1 -0.006 0.061 -0.006 0.061
β2 -1 -0.003 0.069 0.002 0.069
D[1, 1] 0.25 -0.011 0.076 -0.010 0.077
D[2, 2] 0.25 -0.000 0.081 0.001 0.081
D[1, 2] -0.125 -0.006 0.057 -0.002 0.057
n = 50, m̃i = 17 time cost: 5.31s 136s
β1 1 -0.002 0.046 -0.001 0.046
β2 -1 -0.001 0.044 -0.001 0.044
D[1, 1] 0.25 -0.000 0.069 0.002 0.070
D[2, 2] 0.25 -0.001 0.067 0.001 0.068
D[1, 2] -0.125 -0.004 0.052 -0.002 0.053
n = 100, m̃i = 10 time cost: 69.3s 745s
β1[1] -1 -0.004 0.040 -0.004 0.040
β1[2] -0.5 -0.003 0.032 -0.003 0.032
β1[3] 0 -0.001 0.031 -0.001 0.031
β1[4] 0.5 -0.000 0.034 -0.000 0.034
β1[5] 1 0.005 0.042 0.005 0.042
β2[1] -1 -0.001 0.041 -0.001 0.041
β2[2] -0.5 -0.004 0.034 -0.004 0.031
β2[3] 0 0.000 0.031 0.000 0.034
β2[4] 0.5 0.002 0.034 0.002 0.034
β2[5] 1 0.001 0.041 0.001 0.041
D[1, 1] 0.25 -0.004 0.051 -0.001 0.053
D[2, 2] 0.25 -0.008 0.051 -0.003 0.053
D[1, 2] 0.125 -0.007 0.038 0.001 0.039
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Table 2.4: Power and type I error of the proposed likelihood ratio test, with λ01 = λ02.

N m̃i T1E Power

D[1, 2] 0 0.25 -0.25 0.125 -0.125

50 ≈ 4 0.066 0.656 0.646 0.236 0.174
100 ≈ 4 0.038 0.902 0.918 0.394 0.366
100 ≈ 9 0.042 0.976 0.982 0.516 0.482
100 ≈ 17 0.056 0.994 0.992 0.612 0.542
100 ≈ 34 0.054 1 1 0.648 0.686

(|ρ| = 0.25) event pairs for power calculations, and D[1, 2] = 0 for type 1 error (T1E)

evaluations. The proposed LRT test starts to performs well when the sample size

and the event frequencies are not too small. In addition, if the magnitude of the

correlation coefficient (ρ) is low, the proposed LRT is less likely to correctly detect

the existence of a non-zero covariance. According to our simulations, T1Es are well

controled (α = 0.05) in all cases.

2.5 Application

The Dialysis Outcomes and Practice Patterns Study (DOPPS) is a well-known

prospective, longitudinal, international study of hemodialysis patients. This study

aims to improve the understanding of dialysis practices that are associated with better

outcomes for end-stage renal disease patients. Details regarding the DOPPS study

can be found in several reports (Young et al., 2000; Pisoni et al., 2004; Robinson et al.,

2012). Mortality, hospital admission and inpatient stay are important indicators of

quality of life, and morbidity-related outcomes have arguably been under-utilized in

the DOPPS and other studies of ESRD patients.

We applied our proposed methods to jointly analyze the time-to-readmission and

time-to-discharge (from admission) alternating gap time sequence. Our objective

was to determine the important predictors for each recurrent event process, and to

quantify the correlation between the two processes. Our study population (n = 6, 032)
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included DOPPS Phase-5 adult patients (age ≥ 18) who entered the DOPPS within

3 months of initiating hemodialysis. Each member of the study cohort was followed

for a maximum of 3 years, with the database closing on 12/31/2015. The study

population included patients from 11 different countries, including Belgium, Canada,

China, Gulf Coast Consortium, Germany, Italy, Japan, Spain, Sweden, the United

Kingdom and the United States. The median age among DOPPS patients was 67,

with 39.5% being female.

Our primary goal was to compare the hospital admission and the discharge event

rates among dialysis patients by country. In particular, Belgium, Canada, China, Gulf

Coast Consortium, Germany, Italy, Japan, Spain, Sweden, U.K., Asian-American and

African-American are compared to the U.S. Caucasians (reference). Adjustment co-

variates included age, sex, height, vascular access (arteriovenous (AV) graft, central

venous catheter, with AV fistula as the reference), and the following comorbid con-

dition indicators: coronary artery disease (CAD), cancer, cerebral vascular disease

(CVD), congestive heart failure symptoms (CHF), chronic obstructive pulmonary

disease (COPD), peripheral vascular disease (PVD), stroke, diabetes, hypertension,

neurological disorder, psychological disorder, and cellulitis. Table 2.5 lists results

based on our model (2.2). DOPPS patients from Belgium (e0.386 = 1.47), Germany

(e0.98 = 2.66), Italy (e0.360 = 1.43), Japan (e0.842 = 2.32), Sweden (e0.507 = 1.66)

and U.K. (e0.534 = 1.71) had significantly higher covariate-adjusted hospital admis-

sion rates than U.S. Caucasians. In contrast, the hospital admission rates for pa-

tients in China (e−0.621 = 0.537) was approximately half that of U.S. Caucasians.

With respect to length of hospital stay, patients from Canada (e−0.807 = 0.446),

China (e−1.198 = 0.302), Germany (e−0.433 = 0.649), Italy (e−0.667 = 0.513), Japan

(e−0.624 = 0.526), Spain (e−0.456 = 0.634) and the U.K. (e−0.470 = 0.625) had lower

discharge rates (implying longer hospital stay) than U.S. Caucasians. We did not

observe significant differences in the U.S. among races for either hospital admission
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Table 2.5: Application of the proposed method to DOPPS data: Estimated regression
parameters (bolded when p < 0.05).

Admission Discharge

Estimate ŜE P-value Estimate ŜE P-value

Age (per 5 years) -0.026 0.010 0.007 -0.050 0.010 <0.001
Height (per 5 cm) -0.028 0.017 0.103 -0.005 0.018 0.804
Female 0.019 0.069 0.782 -0.065 0.073 0.373
Vascular access

Arteriovenous graft 0.524 0.156 0.001 -0.034 0.149 0.822
Central venous catheter 0.783 0.059 <0.001 0.033 0.060 0.583

Comorbid conditions
CAD 0.447 0.069 <0.001 -0.130 0.068 0.056
Cancer 0.214 0.082 0.009 -0.208 0.082 0.011
CVD 0.177 0.076 0.020 -0.070 0.075 0.345
Stroke 0.190 0.090 0.034 -0.004 0.088 0.968
CHF 0.078 0.068 0.251 0.028 0.070 0.692
Diabetes 0.053 0.056 0.347 -0.072 0.060 0.228
Hypertension 0.017 0.068 0.802 0.111 0.076 0.143
COPD 0.264 0.090 0.003 -0.075 0.087 0.387
Neurological disorder 0.373 0.101 <0.001 -0.341 0.096 <0.001
Psychological disorder 0.293 0.090 0.001 -0.076 0.088 0.389
PVD 0.111 0.078 0.156 0.124 0.079 0.115
Cellulitis 0.169 0.131 0.198 -0.454 0.126 <0.001

Countries
Belgium 0.386 0.127 0.002 -0.041 0.125 0.741
Canada 0.234 0.125 0.060 -0.807 0.124 <0.001
China -0.621 0.231 0.007 -1.198 0.253 <0.001
Gulf -0.069 0.131 0.596 -0.054 0.138 0.693
Germany 0.980 0.100 <0.001 -0.433 0.097 <0.001
Italy 0.360 0.127 0.005 -0.667 0.130 <0.001
Japan 0.842 0.100 <0.001 -0.624 0.107 <0.001
Spain -0.138 0.127 0.274 -0.456 0.135 0.001
Sweden 0.507 0.130 <0.001 -0.115 0.132 0.382
UK 0.534 0.135 <0.001 -0.470 0.140 0.001
USA: Asian -0.148 0.305 0.628 -0.214 0.354 0.546
USA: African-American -0.035 0.089 0.693 -0.020 0.102 0.848
USA: Caucasian 0 - - 0 - -
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or discharge rates.

Comorbid conditions were generally positively associated with hospital admission

and negatively associated with hospital discharge. Common significant predictors for

both episodes include cancer and neurological disorder. CAD, CVD, stroke, COPD

and psychological disorder were associated with significantly increased hospital ad-

mission rates, while cellulitis was significantly associated with increased discharge

rates. Note that CAD (p-value= 0.056) was marginally significantly associated with

discharges. The impact of age was found to be negatively associated with both the

admission and discharge, though the difference for every 5-year increment was small

(3-5%). Every 5 cm increment in height was associated with a 3% decrease in the

hospitalization risk. In comparison to AV fistula (the most commonly adopted vas-

cular access approach) AV graft and central venous catheter increased the hospital

admission rate by 1.69 and 2.19 times, respectively. Note that each of the regres-

sion parameters should be interpreted as a conditional effect, given the unobserved

frailties.

The estimated variance for time to admission (0.819) was larger than the the

length of stay (0.375). The estimated covariance −0.139 implied that the two events

were negatively correlated with a correlation coefficient ρ̂ = −0.251. The LRT for the

dependence between two event processes was 5.41 with a p-value of 0.02. These results

indicate that those who had more frequent admission to a hospital would (through

a lower discharge rate) tend to have a longer inpatient stay, and the association is

significant.

Note that only 21.3% of patients experienced more than one hospitalization. The

average length of stay in hospital was 8.8 days (range= 1 ∼ 331; median= 5). We

tested the validity to implement the proposed estimating method on huge data sets

with a small proportion of subjects that experienced multiple recurrences. The pro-

posed methods appear to work well in data structures resembling DOPPS with respect
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to event rates and the variance-covariance matrix (data not shown). The convergence

tolerance for parameter estimation is 10−6.

2.6 Laplace Approximation

2.6.1 Introduction

Laplace approximation is widely used to compute both posterior distribution or

moments under the Bayesian framework, and marginal likelihood of mixed mod-

els. This method is mainly proposed to solve likelihood integration problems using

second-order Taylor expansion(Solomon and Cox , 1992; Liu and Pierce, 1993). The

penalized survival model we proposed for the alternating recurrent events is an imple-

mentation example of this approximation method. This approximation method was

found to work satisfactorily when there are frequent observations within groups, or

when the dimension of integral is relatively small in comparison with the total num-

ber of observations. The estimation based on the marginal likelihood using Laplace

approximation will be biased when the dimension of integral is high or the sample

size is small, or when the shape of the integrand function departures from that of the

Gaussian distribution. The ways to correct the bias has been studied extensively but

not exclusively in the literature (Shun and McCullagh, 1995; Breslow and Lin, 1995;

Lin and Breslow , 1996; Ruli et al., 2016). In this section, we are investigating deeply

on the inherent bias of Laplace approximation, comparing different types of Laplace

approximation, and derive a correction term for our approximate marginal likelihood.

2.6.2 Different Laplace Approximation Methods

There are various ways to solve intractable integrals using Laplace approximation.

I will summarize 3 major approaches (Shun and McCullagh, 1995; Solomon and Cox ,

1992; Liu and Pierce, 1993) in this subsection and how their biases are corrected.
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All the methods were re-summarized according to the very important works done by

Breslow and Lin (1995), Lin and Breslow (1996) and Shun and McCullagh (1995).

2.6.2.1 Liu & Pierce Method

This is the method we employed in our proposed approach. Assume that we

only consider a shared frailty model here. Let li be the log-likelihood of individual

i = 1, . . . , n and n is the total observations. Each individual has a random effect

bi ∼ N(0, θ) and is independent to the others from other samples. There are multiple

observations from each subject, thus we have li =
∑ni

j=1 li j and the log joint likelihood

li − 1/(2θ)b2
i − log(θ)/2. Through a Taylor expansion of bi around b̂i, which solves

l(1)i (bi) − bi/θ = 0, and let l̂(k)i = lk
i |bi=b̂i

, its marginal likelihood can be approximated

by

lmi = −
1

2
log(θ) + log

∫
exp

{
li −

b2
i

2θ

}
dbi

≈ −
1

2
log(1 − θ l̂(2)i ) + l̂i −

b̂2
i

2θ
+ log

∫ (
1

θ
− l̂(2)i

) 1
2

exp

{
−

1

2

(
1

θ
− l̂(2)i

)
(bi − b̂i)

2

}
{
1 +

1

6
l̂3
i (bi − b̂i)

3 +
1

24
l̂(4)i (bi − b̂i)

4

}
dbi

≈ −
1

2
log(1 − θ l̂(2)i ) + l̂i −

b̂2
i

2θ︸                            ︷︷                            ︸
LP1i

+

︷                       ︸︸                       ︷
1

8

θ2 l̂(4)i(
1 − θ l̂(2)i

)2

Correction

︸                                                               ︷︷                                                               ︸
LPi2

(2.31)

Note that LP1 =
∑n

i LP1i is the usual approximate marginal likelihood, and LP2 =∑n
i LP2i is the corrected version and the correction term which accounts for the bias.

39



The correction term can be re-written into

1

8

θ2 l̂(4)i(
1 − θ l̂(2)i

)2
=

1

8

l̂(4)i(
1/θ − l̂(2)i

)2
=

1

8ni

θ2 l̂(4)i /ni(
1/ni − θ l̂(2)i /ni

)2
.

When θ is small, the correction term approaches 0, while when θ is large, the bias can

also be non-negligible. If the cluster size ni becomes large, the bias or the correction

term can become trivial, while when ni is small, and especially when θ is large, we will

need to take the bias into consideration. In general , it is found that the correction

term will improve the estimation of the variance component (θ) while the fixed effect

parameters seem not change much (Breslow and Lin, 1995). In the next subsection,

I will derive the correction or bias term for our correlated frailty model.

2.6.2.2 Solomon & Cox Method

Solomon and Cox (1992) approximated lmi in a similar way by expanding the

integrand about the true mean (0) of the random effect. Let l(k)i0 = l(k)i |bi=0, the

approximate integral should become

lmi = −
1

2
log(θ) + log

∫
exp

{
li −

b2
i

2θ

}
dbi

≈ li0 −
1

2
log(1 − θl(2)i0 ) +

θl(1)2i0

2(1 − θl(2)i0 )
+ log

∫ (
1

θ
− l̂(2)i

) 1
2

exp

[
−

1

2

{
1

θ
− l(2)i0 (bi −

li0θ

2(1 − θl(2)i0 )
)2

}] {
1 +

1

6
l(3)i0 b3

i +
1

24
l(4)i0 b4

i

}
dbi

≈ li0 −
1

2
log(1 − θl(2)i0 ) +

θl(1)2i0

2(1 − θl(2)i0 )︸                                        ︷︷                                        ︸
SC1i

+

correction︷                   ︸︸                   ︷
θ2

2

(
l(1)i0 l(3)i0 +

1

4
l(4)i0

)
︸                                                                      ︷︷                                                                      ︸

SC2i

.

(2.32)
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2.6.2.3 Shun & McCullagh Method

Shun and McCullagh (1995) studied the bias and its correction from the Laplace

approximation of high dimensional integrals. For this class of Laplace approximation,

an one-to-one transformation is conducted for the integrand before a Taylor expansion

on its Jacobian. In order to demonstrate the high dimensional integrals, we rewrite the

likelihood by a g function as g(b) = −n−1 ∑n
i=1{li−b2

i /(2θ)}, and the random vector b =

[b1, b2, . . . , bn]. The mapping b 7→ u(b) is sought to ensure g(b)−g(b̂) = 1/2u′g(2)(b̂)u,

where b̂ achieves the minimum of g(b). The Jacobian of the transformation J(b) is

1 + O(u) in the neighborhood of u = 0. The approximate marginal likelihood is

based on the Taylor expansion of J(u) around the origin, and J (k)(u)/k! is the kth

coefficient for the Taylor expansion of J(u), we obtain the approximate likelihood

with its correction term as

lm = log

∫
Rn

exp{−ng(b)}db

= −ng(b̂) + log

∫
Rn

exp
{
−

n
2
u′g(2)(b̂)u

}
J(u)du

≈ −ng(b̂) −
1

2
log

���ng(2)(b̂)��� + J (2)(u)

2ng(2)(b̂)︸     ︷︷     ︸
correction

(2.33)

2.6.3 Bias Correction in Our Model

Now we return to our model with two correlated random intercepts for each sub-

ject. Let γi ∼ N(0,D), and γi = [γi1, γi2]
′. Following LP type Laplace approximation

(Liu and Pierce, 1993) and we can obtain its second-order estimator LP2 with its

correction term. For simplicity, let l(u,v)i = ∂(u+v)li/∂γu
i1∂γ

v
i2, and the combination
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Cu
k = k!/{u!(k − u)!}.

lmi = −
1

2
log |D | + log

∫
exp
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1

2
γ′iD

−1γi

}
dγi

≈ −
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2
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1

2
log
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��� + l̂i −
1

2
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LPi1

+

log
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1

2
(γi − γ̂i)

′{D−1 − l̂(2)i }(γi − γ̂i)

}
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1
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}]
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correction

.

(2.34)

The correction term in (2.34) is to calculate the third and forth moments for a

Gaussian distribution with mean γ̂i and variance [D−1 − l̂(2)i ]
−1 =

[ d11 d12
d12 d22

]
. The

conditional distribution of γi1 given γi2 is univariate Gaussian with mean γ̂i1 +

d12d−1
22 (γi2 − γ̂i2) and variance d11 − d12d−1

22 d12. Thus E{(γi1 − γ̂i1)(γi2 − γ̂i2)
2} =

d12d−1
22 E{(γi2 − γ̂i2)

3} = 0. Thus (2.34) can be simplified to

LPi2 =LPi1 + log

∫ ���D−1 − l̂(2)i

��� 12 exp
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−

1

2
(γi − γ̂i)
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}
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1

24
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Cu
4 l̂(u,4−u)

i (γi1 − γ̂i1)
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4−u
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dγi

= LPi1 +
1

8

{
l̂(4,0)i d4

11 + l̂(0,4)i d4
22 + 4̂l(3,1)i d12d3

11 + 4̂l(1,3)i d12d3
22+

2̂l(2,2)i (d2
11 + d4

12d−2
22 − 2d11d2

12d−1
22 + 3d2

12d2
22)

}
︸                                                                  ︷︷                                                                  ︸

correction

(2.35)
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2.7 An Extension: More than Alternating Recurrent Events

The estimating approach we proposed in this chapter can be smoothly imple-

mented to multiple event types. For example, in multitype event data, the multiple

types of recurrent events could represent different levels of severity, different physi-

ological processes, and different type of health problems (Cook and Lawless , 2007).

Another example would be clustered different types of failure time data from the

same hospital, or competing risks from patients in the same facility. We only con-

sider clustering from facilities here, without individual-level heterogeneity in models

for this type of example. Our proposed correlated frailty model 2.2 can easily be

extended to accommodate multiple types of events by including correlated frailties.

Like many other Laplace approximation based methods, the proposed approach tends

to give less estimation bias, especially in terms of the variance components, for data

with larger clusters. Simulations and theoretical proofs can be found in Section 2.6

and Appendix A.2. We revise the model for alternating recurrent events in (2.2) to

accommodate competing risks and clustered multiple failure times with any K > 1:

λi j k(t | Zi, Rik, γ) = λ0k(t) exp(β′kZi j k + γ
′Rik), (2.36)

where i = 1, . . . , I and I is the number of clusters (facilities); j = 1, . . . , Ji and Ji is

the number of individuals in cluster i; k = 1, . . . ,K and K is the number of event

types we are considering. Through a similar estimating procedure in Section 2.3, the

estimator should be

D̂#
K×K =

1

n

n∑
i=1

{[
KPPL2(γ̂)

−1
]

blki
+ γ̂iγ̂

′
i

}
, (2.37)

whose dimension is K × K. It can also be shown to be positive-definite following

Appendix A.1.

43



2.7.1 Simulation Results

We generate I = 50 facilities and each facility has a median of m̃i events. We

assumed a similar simulation setting as we did for alternating recurrent events by

letting λ0k = 1.5, but there are K = 3 event types. βk is the regression parameters for

event type k, and βk[c] is its effect for the cth covariate. We let the stacked frailty

vector from facility γi ∼ MVN (03,D(3× 3)) where its entries can be located by a pair

of indices [a,b], where a indicates row and b indicates the column. We let symmetric

variance matrix D satisfy D[1, 1] = D[2, 2] = D[3, 3] = 0.5 and D[1, 2] = D[1, 3] =

−D[2, 3] = 0.25. Our simulation results are recorded in Table 2.6.
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2.8 Discussion

In this chapter, we propose a correlated bivariate frailty model for alternating

recurrent event (gap time) processes. The regression parameter estimation proceeds

through penalized partial likelihood. We also derived a variance-covariance estimator

of the bivariate frailty in a recursive estimating formula. Through simulations, the

methods were demonstrated to work well for both regression parameters and vari-

ance components. The proposed methods were applied to simultaneously analyze

hospitalization admissions and discharges among end-stage renal disease patients.

The proposed estimating approach does not require the sign of the correlation

between the two recurrent processes when building the model. In the context of our

motivating example, it is possible that the longer length-of-stay tends to accompany

hospitalization for a more severe episode which, in turn, can be associated with shorter

time to readmission. On the other hand, longer hospital stay probably may indicate

better care and, as such, be associated with longer time to readmission. Our method

would end up with a more flexible estimation on the variance components without

assuming whether the admission and discharge events are positively or negatively

correlated. Moreover, the proposed LRT would provide information whether a joint

model with two procedures is necessary or not. This is important in practice, since

fitting two separate frailty models requires less computation than fitting a joint frailty

model.

To be able to analyze large data sets, part of our program is written using Rcp-

pArmadillo (Eddelbuettel and Sanderson, 2014). Besides, the proposed computing

algorithm yields very reasonable computation times. When the sample size is large,

we recommend using the “sparse” Hessian matrix option to reduce the memory cost.

Moreover, we spent a section studying Laplace approximation. We compared

different types of Laplace approximation, evaluated the approximation bias and pro-

posed a correction term for the approximate marginal likelihood of our model.
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Last but not least, the methods in this report is open to extended to other settings,

e.g. clustered survival outcomes and competing risks. Technically, the method can

accommodate more than two event types. Our preliminary simulation results also

have demonstrated its potential for a wider use in facility-level clustered event data.

Furthermore, although the frailties we consider primarily in this chapter represent

subject-specific intercepts, one could also include frailties corresponding to one of

more covariates.
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CHAPTER III

An Estimating Equation Framework for a Flexible

Class of Semiparametric Frailty Models

3.1 Introduction

Recurrent event data are commonly encountered in both experimental and obser-

vational studies. Examples of recurrent events include repeated hospital admissions,

recurrent infections, tumor incidences. Frequently used methods to analyze recur-

rent event data include extended Cox models (intensity functions) (Prentice et al.,

1981; Andersen and Gill , 1982) and rate functions (Pepe and Cai , 1993; Lawless

and Nadeau, 1995; Lin et al., 2000). Recurrent events are almost always clustered

within-individual, and there may exist some additional hierarchical grouping or other

complex correlations; e.g., individuals treated in the same facility or hospital. As

another example, subjects may be at risk for different types of events simultaneously.

It is usually the case that heterogeneity and dependence within subjects (and/or

clusters of subjects) exists; this results, in part, from the observed covariates not

fully capturing the set of factors predicting the event process. As a remedy, random

effects or frailties have been extensively adopted into the modeling of such processes

in order to account for such heterogeneity. For simple heterogeneity within subjects,

one may incorporate a shared frailty and assume the independence within-subject
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conditional on the frailty. For dependence between various event types, one may

introduce correlated frailties and assume that, conditional on the frailties, the events

are independent. If hierarchical structures are present, multiple levels of frailties can

also be included under the assumption that conditional independence is also satisfied

within each subcluster given the frailties.

Fully parametric models (typically a continuous distribution) are usually assumed

for the frailties. Popular options have mostly been restricted to the gamma, log-

normal, and positive-stable distributions, largely motivated by computational conve-

nience. Different choices of the frailty distribution may lead to discrepant inferential

conclusions, since usually the regression parameter estimation procedure is at least

somewhat dependent on the variance component estimation. Since the frailties are

unobserved, it is not possible to verify (or even assess empirically) the assumed frailty

distribution. Correspondingly, among the common choices for the frailty distribution,

none has emerged as being most likely to hold. Most of the time, this decision is based

on the practitioner’s preference considering computational and interpretational conve-

nience. For example, gamma distributed frailties are much more compatible with the

EM algorithm than other distributions. Log-normal frailties align well with various

numerical techniques (e.g., Laplace approximations) and confer easier interpretation.

Moreover, there is a scarcity of reliable diagnostic approaches to check the validity of

the chosen frailty distribution.

Non-parametric frailties, or discretely distributed frailties, have been proposed as

a flexible alternative for modeling correlated time-to-event data (Guo and Rodriguez ,

1992; Li et al., 1998; Caroni et al., 2010; Gasperoni et al., 2018). These methods,

which can be viewed as a finite mixture of parametric survival models (Laird , 1978;

Heckman and Singer , 1982, 1984), basically assume that each cluster has an unob-

served frailty. They are quite similar to assigning a fixed effect for each cluster with

a multiplicative indicator to show which effect is present. The nonparametric frailty
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methods liberate the frailties from assuming any known type of distributions. How-

ever, the computational burden grows dramatically when many clusters are present.

Ma (1999) and Ma et al. (2003) developed an iterative two-step approach of calculat-

ing orthodox best linear unbiased predictors (BLUP) for frailties without distribution

restrictions, and estimating the baseline, regression parameters, and variance com-

ponents. As was discussed by Moreno (2008), this proposal estimates the baseline

nonparametrically, and BLUPs are updated at each iteration, which would easily

cause an explosion of computational burden when the sample size is large. Indeed,

most existing non-parametric methods, including those developed under the Bayesian

framework (Walker and Mallick , 1997), suffer from intensive computation when the

sample size or number of clusters increases. This is especially true for recurrent event

data, wherein each subject typically represents a cluster.

To alleviate the intensive computational burden in Xue and Brookmeyer (1996) for

multivariate event outcomes, Xue (1998) developed an estimating-equation approach

for bivariate correlated frailty models without imposing distributional assumptions

on the frailties; the procedure required the baseline hazards to be fully parametric.

Wang et al. (2001) also proposed an approach treating the frailties nonparametri-

cally and as nuissance parameters. The method of Wang et al. (2001) assumes a

subject-specific non-stationery Poisson process and a shape function (the conditional

density) which is invariant across subjects. In contrast to Xue (1998), Wang et al.

(2001) developed procedures which estimate the shape of the baseline hazards non-

parametrically; the methods did not provide any estimation approach for the variance

components. The method of Wang et al. (2001) was extended to accommodate joint

models with terminal events (Huang and Wang , 2004) and longitudinal observations

(Sun et al., 2007).

The majority of the aforementioned methods were developed under specific hi-

erarchical data structures (e.g., subject-level clustered; hierarchically clustered; and
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correlated multivariate failure times), without setting a universal framework to ac-

commodate the various types of clustering. In this report, we propose a general frame-

work for analyzing recurrent events through semiparametric frailty models. Models

assumed under the proposed methods feature both baseline rates and frailty distri-

bution that are left unspecified. The frailty models we consider in this report include

shared frailty models, correlated frailty models, and nested frailty models; collec-

tively, this covers a considerable proportion of the correlated failure times settings

frequently encountered in practice. The proposed approaches provide consistent esti-

mation of baseline, regression parameters, and variance components, with a relatively

fast computational speed and an asymptotic normality property.

The remainder of this chapter is organized as follows. We introduce the notations

and different models in Section 3.2. Their estimating approaches are developed in

Section 3.3. Simulations to evaluate the proposed methods in finite sample sizes can

be found in Section 3.5. Asymptotic properties are summarized in Section 3.4. We

apply the proposed approaches to an analysis on end-stage renal disease patients of

the Dialysis Outcomes and Practice Patterns Study (DOPPS) in Section 3.6. Some

concluding remarks are provided in Section 3.7.

3.2 Notation and Class of Models

Suppose we focus on the occurrence of events within the time interval [0, τ]. In

most practical applications, N∗(t) would be the number of recurrent events occurring

up to t, for t ∈ [0, τ]. N∗(t) is naturally clustered by subject; i.e., recurrent events from

the same subject are often positively associated. We propose three general classes of

frailty models. We assume that N∗(t) follows a nonstationery Poisson process given the

frailties, γ, and covariates, Z . The Poisson process assumption is important here since

it endows the equality between the event rate and intensity. Let N∗(t) be subject to

right censoring, with censoring time C∗ assumed independent of N∗(t), conditional on
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the Z and γ. Let the observed censoring time be C = min(τ,C∗), then Y (t) = I(t ≤ C)

denotes the at-risk process, and thus the observed event process N(t) =
∫ t
0

Y (s)dN∗(s)

with dN∗(t) = N∗(t) − N∗(t−). The number of uncensored event is then denoted by

N(t) = N∗(t ∧ C). Moreover, as is typical of frailty modeling, we assume that the

frailties are independent of the explanatory covariates for identifiability.

In the subsections that follow, we describe three types of data structures that can

be accommodated by the proposed methods.

3.2.1 Model A: Shared Frailty Model

Let γ be a frailty (nonegative, latent) variable, shared among all the events from

the same subject. The distribution of γ is left unspecified, with the only moment

restrictions being E(γ) = 1 and E(γ4) < ∞. As aforementioned, the frailty γ is

independent of Z and given (Z, γ), N∗(t) follows a nonstationary Poisson process

with event rate

E(dN∗(t)|Z, γ) = λ0(t)γeβ
′Z, (3.1)

where the baseline rate λ0(t) is assumed to be a continuous function. We assume that

the observed data represent n replicates of independent and identically distributed

random draws indexed by i, {Ni(t),Ci, Zi, γi; t ∈ [0,Ci]}. Note that the event process

can also be described with event times 0 ≤ ti,1 ≤ ti,2 ≤ · · · ≤ ti,mi ≤ Ci, where

Mi = Ni(Ci) is the number of observed events for subject i.

3.2.2 Model B: Correlated Frailty Model

It is not uncommon to see multivariate event outcomes, or different types of events

from one subject in clinical studies. For instance, hospitalizations may result from

different causes (e.g., infection, comorbidity, etc). The multiple hospitalizations can
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be viewed as multivariate recurrent events; associations can be captured through a

multivariate frailty variate with correlated elements. For simplicity, we focus on the

bivariate case; we let N∗1 (t) and N∗2 (t) denote the counting processes recurrent events

of type 1 and type 2 respectively. We let γ = [γ1, γ2]
′ be the correlated frailty vector.

Their variances Var(γ1) and Var(γ2) account for the clustering dependence within

the two event types from the same subject, and covariance Cov(γ1, γ2) accounts for

the association between the two events. We denote the correlation (after conditioning

on the covariates) between the two events by ρ = cor(γ1, γ2) ∈ (−1, 1). The model is

given by

E(dN∗j (t)|Z, γ j) = λ0 j(t)γ je
β′jZ, j = 1, 2. (3.2)

The notation is analogous to that from model (3.1), except for the additional index j

to distinguish event types. Note that the covariate vector Z need not be identical for

different event models, which can be easily controlled via setting part of β j to be zero.

Given the both frailties (γ1 and γ2) and covariates, the paired N∗j (t) are assumed to

follow independent Poisson processes within each subject. The independent identi-

cally distributed draws are realized in observations {N1i(t), N2i(t),Ci, Zi, γi; t ∈ [0,Ci]},

i = 1, . . . , n.

3.2.3 Model C: Nested Frailty Model

In many settings, one level of clustering (subject-level) may not be sufficient to

capture the correlation structure of the data. For instance, different patients can be

treated in the same hospital, in which case they are subject to two different sources of

heterogeneity: one from the hospital (level 1) and the other from within-subject (level

2). To fully describe the clustering structure, one could introduce two frailties; one

for the hospital (denoted by εk) where k = 1, . . . ,K; and the second for the patient
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(denoted by γki), where i = 1, . . . , Ik , i.e., Ik subjects nested under the cluster or

hospital k. For identifiability, the two levels of frailties are assumed to be mutually

independent; i.e., εk ⊥ γki. The nested model (Model C) is thus formulated as follows,

E(dN∗ki(t)|Zki, εk, γki) = λ0(t)εkγkieβ
′Zki, (3.3)

for k = 1, . . . ,K and i = 1, . . . , Ik . One can view subjects from the shared first level of

clustering (e.g., hospitals) as iid draws (Nki(t),Cki, εk, γki, Zki), indexed by i = 1, . . . , Ik

and k = 1, . . . ,K. Moreover, the number of subjects in each hospital or Ik is assume to

be independent of (Nki(t),Cki, εk, γki, Zki). The number of subjects is given by
∑K

k=1 Ik .

Note that this model can be extended to accommodate more than two levels, but the

estimation accuracy will greatly decline as the complexity of the hierarchical data

structure increases.

3.3 Estimation

3.3.1 Baseline Shape

One can describe the shape of baseline rate through the function f (t) = λ0(t)/Λ0(τ),

where Λ0(τ) =
∫ τ

0
λ0(s)ds is the cumulative baseline rate at the ending time τ; this

quantity has been termed the baseline “size” (Wang and Huang , 2014). In the ab-

sence of time-varying covariates/frailties, the shape function f () is invariant across

subjects. For example, in shared frailty model (Model A), we have

f (t) =
λ(t |z, γ)
Λ(τ |z, γ)

=
λ0(t) exp(β′z)γ

Λ0(τ) exp(β′z)γ
=
λ0(t)
Λ0(τ)

, t ∈ [0, τ]. (3.4)

Note that both Model B and Model C satisfy (3.4), since the covariate and frailty

components cancel out. Note that there are different baseline rates for correlated

frailty models (Model B), and thus their shape functions need to be defined separately
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for each event type.

The cumulative shape function is defined as F(t) =
∫ t
0

f (s)ds = Λ0(t)/Λ0(τ). Esti-

mation of the baseline shape is based on a nonparametric maximization of a condi-

tional likelihood,

Lc =

n∏
i=1

p(ti,1, ti,2, · · · , ti,mi | zi, ci, γi,mi)

=

n∏
i=1

mi!
mi∏
j=1

f (ti j)

F(ci)
,

(3.5)

which is free of regression parameters, covariates, and frailties. According to Wang

et al. (1986), the nonparametric maximum likelihood estimator (NPMLE) of F(t) has

the following product-limit representation,

F̂(t) =
∏
s(l)>t

(
1 −

d(l)
R(l)

)
, (3.6)

where {s(l)} are the ordered and distinct values of the event times {ti j}, {d(l)} is the

number of observed events at s(l), and {R(l)} is the total number of events with event

time and observation censoring time satisfying {ti j ≤ s(l) ≤ ci}. The quantity in (3.6)

is the analog of the Kaplan-Meier estimator, if treating the ending time τ to be the

origin then estimating backwards in time.

3.3.2 Regression Parameters and the Baseline Size

Estimation of the regression parameters β and the size parameter Λ(τ) follows the

first moment condition of the Poisson process (Wang et al., 2001; Huang and Wang ,

2004). The observed event counts can also be expressed in M = N(C) satisfying the

moment condition

E(MF(C)−1 | z) = E{E(N(C)F(C)−1 | z, γ,C) | z} = exp(β′z)Λ0(τ). (3.7)
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Note that (3.7) does not depend on the distribution of C, since E(N(C)F(C)−1 |

z, γ,C) = exp(β′z)Λ0(τ)γ which is free of C. Based on the independence property

E(γ | z) = E(γ) = 1 and the NPMLE in (3.5), we obtain the unbiased estimating

equation for θ = [log(Λ0(τ)), β
′]′ as follows,

n∑
i=1

z̄i(mi F̂−1(ci) − eθ
′ z̄i ) = 0, (3.8)

where z̄i = [1, z
′
i]
′. The nested Model C also satisfies (3.7) and can be estimated

through (3.8), as the two layers of frailties are assumed to be independent of each

other and covariates; note that the frailties can be rescaled here to have unit mean.

Correlated Model B has multiple event types and consequently different batches of

regression parameters and baseline sizes. Each event process Nj(t) would satisfy the

moment condition in (3.7), such that parameters θ j can be estimated through separate

estimating equations analogous to (3.8). This also implies that, unlike many other

existing frailty methods (Klein, 1992; Nielsen et al., 1992; Xue and Brookmeyer , 1996;

Ripatti and Palmgren, 2000), the estimation of the regression parameters (and the

baseline size) treats the variance components as nuisance parameters, which greatly

reduces the computational burden.

3.3.3 Variance Components

We propose to estimate the variance components through a second moment con-

dition derived from the fact the variance of a Poisson process is identical to its mean.

This equality suggests the following moment condition for Model A,

E((M2 − M)F−2(C) | z) =E[E{(M2 − M)F−2(C) | C, γ}|z]

=Λ0(τ)
2e2β′zE(γ2).

(3.9)
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Given the baseline shape, size, and regression parameters having already been esti-

mated following Subsections 3.3.1 and 3.3.2, the corresponding estimating equation

for the variance component is

n∑
i=1

{
(m2

i − mi)F̂−2(ci) − Λ̂0(τ)
2 exp(2β̂′zi)E(γ2)

}
= 0. (3.10)

Note that estimating equation (3.10) can produce a similar batch of estimating equa-

tions for all the parameters θ by treating all the parameters in 3.3.2 unknown and

taking the first-order derivative. To that end, if the estimating equation in (3.8) is

also considered, we will end up with a larger number of estimating equations than

the number of entries in θ. In order to find optimal solutions, we evaluated both

generalized method of moments (GMM) and empirical likelihood (EL), which have

been extensively studied (Hansen, 1982; Hansen et al., 1996; Smith, 1997). After

carrying out a lengthy series of simulations (Appendix B.2), we found that including

the second moment restriction for the parameter estimation tend to largely increase

instability, that is, both GMM and EL produced biased estimators, although the

estimating standard errors were slightly reduced in comparison with the estimating

equation (EE) method ( solely using (3.10) for variance components). It appears that

the only case that GMM can beat the proposed EE method is when the sample size

is sufficiently large (e.g. n=10,000). Possible reasons include that the high correla-

tion between the two moment conditions makes the improvement from the additional

second moment condition negligible, and that the relatively large variation of the

second moment condition causes a large instability of general estimation procedure.

Therefore, in the rest of this chapter, we avoid using the second moment condition

for regression parameter estimation.

For correlated frailty Model B, the variances Var(γ j) can be estimated through

estimating equations analogous to (3.10) by adding an index to distinguish the dif-
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ferent event types in Model B (3.2). The covariance between the two event types can

be estimated based on the following moment condition,

E((M1M2F−1
1 (C1)F−1

2 (C1) | z) =E[E{M1M2F−1
1 (C1)F−1

2 (C2) | z,C1,C2, γ1, γ2} | z]

= exp(β′1z + β
′
2z)Λ01(τ)Λ02(τ)E(γ1γ2).

(3.11)

Note that Mj = Nj(Cj) denotes the observed counts by the censoring time Cj . Suppose

m1i and m2i denote the observed number of the two recurrent event types from subject

i, the estimating equation for the covariance E(γ1γ2) hence can be obtained as

n∑
i=1

{
(m1im2i)F̂−1

1 (c1i)F̂−1
2 (c2i) − Λ̂10(τ)Λ̂20(τ) exp(β̂′1zi + β̂

′
2zi)E(γ1γ2)

}
= 0. (3.12)

The second moments for nested Model C with the two levels of clustering frailties

cannot be identified via

E((M2 − M)F−2(C) | z) = Λ0(τ)
2e2β′zE(γ2)E(ε2). (3.13)

We have E(M | z, c, ε) = Λ0(c) exp(β′z)ε , and the revised “borrow-strength” estima-

tors of Model A in Huang and Wang (2004)

ε̂k =

∑Ik
i=1 mki F̂(cki)

−1

Λ̂0(τ)
∑Ik

i=1 eβ̂′zki
. (3.14)

Thus the estimating equations for the variance components, based on the borrow-

strength concept, are given by

K∑
k=1

Ik∑
i=1

{
(m2

ki − mki)F̂−2(cki) − exp(2β̂′zki)Λ̂0(τ)
2E(ε2γ2)

}
= 0

K∑
k=1

Ik∑
i=1

{
(m2

ki − mki)F̂−2(cki) − exp(2β̂′zki)Λ̂0(τ)
2ε̂2

k E(γ2)

}
= 0.

(3.15)
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Note that, in the context of clustered subjects, only facilities with more than one event

observed will be counted, with accuracy improving substantially when the cluster

sizes (Ik) are large. We denote the resulting estimators as Ê(ε2γ2) and Ê(γ2), and

Ê(ε2) = Ê(ε2γ2)/Ê(γ2). We will show in Section 3.4 that the proposed estimators are

consistent for K →∞.

Alternatively, we propose a “U-statistic” method without predicting the frailty

values. Suppose that, within cluster k, with Ik ≥ 2, the expectation holds that

E(Mki Mk j F−1(Cki)F−1(Ck j) | zki, zk j) = E(ε2)Λ0(τ)
2 exp(β′(zki + zk j)) for any i , j.

The U-statistic estimating equation for E(ε2) is given by

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

{
mkimk j F̂−1(cki)F̂−1(ck j) − exp(β̂′(zki + zk j))Λ̂0(τ)

2E(ε2)

}
,

(3.16)

where C2,Ik is the set of all possible combinations of two subjects selected from facility

k. The second moment estimator of ε is represented by Ẽ(ε2), with a tilde to distin-

guish it from the borrow-strength one, which instead is denoted as Ê(ε2). The second

moment estimator of γ is given by the ratio Ẽ(γ2) = Ê(ε2γ2)/Ẽ(ε2). According to

Section 3.4, the U-statistic method does not require large facility sizes to establish

its consistency, hence it still produces accurate results when many small facilities are

present.

3.3.4 Estimation Procedure

Unlike most Expectation–maximization (EM) or BLUP-type estimating approaches

that require two iterative steps of parameter estimation and random effect prediction

(Klein, 1992; Nielsen et al., 1992; Xue and Brookmeyer , 1996; Ma, 1999; Ripatti and

Palmgren, 2000; Ma et al., 2003) and Chapter II, the procedure of the proposed

estimating method can be described via an assembly line using marginal moment
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conditions as depicted in the flowchart (Figure 3.1): 1) the baseline shape function

F(t) is nonparametrically estimated following (3.6), and this is the only step that all

the ordered event and censoring times are utilized; 2) the estimated baseline shape

function is input to the estimating equations (3.8) for the regression parameters β

and the baseline size Λ0(τ), only event counts and the first moment condition of the

nonstationery Poisson process are considered here; 3) the final step is to estimate the

variance components using the second moment conditions following (3.10)-(3.16).

We also propose to obtain the standard error for the parameter estimation via

bootstrapping. For shared and correlated frailty models, since each subjects are inde-

pendent of each other, one may conduct a nonparametric random draw of the same

number of subjects with replacement and estimate the parameters repeatedly to ob-

tain the estimated standard error. According to our experience, letting the number

of replicates be B = 100 would provide reliable results. For nested frailty Model C,

simple random draws on independent facilities may result in an apparent underes-

timation of the standard errors for the variance components, thus adding another

round of random-draw within facilities tend to provide better coverage probabilities,

which was also called “two-step bootstrap” (Xiao and Abrahamowicz , 2010).

3.4 Asymptotic Properties

To establish the asymptotic properties, we assume the following regularity condi-

tions:

(A1) Λ0(τ) > 0.

(A2) P(C ≥ τ, γ > 0) > 0; and P(C ≥ τ, γ > 0, ε > 0) > 0 for Model C.

(A3) Elements of Z are uniformly bounded.

(A4) E(γ4) < ∞; for Model C, E(ε4) < ∞.
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Figure 3.1: Flow chart of the proposed estimating procedure.

(A5) G(t) = E[γ exp(β′Z)I(C ≥ t)] is a continuous function for t ∈ [0, τ]; and Gc(t) =

E[εγ exp(β′Z)I(C ≥ t)] for Model C.

For Model A, we established the asymptotic properties of regression parameters

and baseline rates following Wang et al. (2001). Let G(t) = E[γ exp(β′Z)I(C ≥ t)].

Then we use G(t) to define R(t) = G(t)Λ0(t) and Q(t) =
∫ t
0

G(u)dΛ0(u). The product-

limit type estimator (3.6) for the shape function F̂(t) has an iid representation in

√
n(F̂(t) − F(t)) = (F(t)/

√
n)

∑n
i=1 bi(t) + op(1) for t ∈ [τ0, τ], where τ0 > inf{t : Λ0(t) >

0}; and for i = 1, . . . , n,

bi(t) =
mi∑
l=1


τ∫

t

I(til ≤ u ≤ ci)dQ(u)
R(u)2

−
I(t < til ≤ τ)

R(til)

 .
The regression parameters β and the baseline size Λ0(τ) can be estimated through

solving the estimating equation in (3.8). Hence the
√

n(θ̂−θ) = n−1/2 ∑n
i=1 ψ

−1ei+op(1),
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where ψ = E [−∂ei/∂θ] and

ei = −

∫
x̄1mbi(c)

F(c)
dV(z,m, c) + w1i z̄i

(
mi

F(ci)
− exp(θ′ z̄i)

)
.

For convenience, we use [ψ−1ei]1 and [ψ−1ei]−1 to denote the first entry and the re-

maining entries (beyond the first entry) of ψ−1ei respectively. Thus we have the follow-

ing iid representation,
√

n(β̂− β) = n−1/2 ∑n
i=1[ψ

−1ei]−1+ op(1), implying weak conver-

gence to a mean-0 normal distribution with variance-covariance matrix E([ψ−1ei]−1[ψ
−1ei]

′
−1).

Moreover, the baseline size also has an iid representation, given by
√

n(Λ̂0(τ)−Λ0(τ)) =

n−1/2Λ0(τ)
∑n

i=1[ψ
−1ei]1 + op(1). Thus, for Λ̂0(t) = Λ̂0(τ)F̂(t) we have

√
n(Λ̂0(t) − Λ0(t)) = (n−1/2F(t)Λ0(τ)

n∑
i=1

(
[ψ−1ei]1 + bi

)
+ op(1).

Following the proofs in Appendix B.5, we obtain the iid representation for the

second moment of the frailty,
√

n(Ê(γ2) − E(γ2)) = n−1/2 ∑n
i=1 si + op(1), where si are

defined as

si =

{
gi

Λ2
0(τ)E {exp(2β′Z)}

− 2E(γ2)[ψ−1ei]1 −
2E(γ2)hi

E[exp(2β′Z)]

}
,

with gi and hi both have zero mean.

Theorem III.1. Model A under the regularity conditions, as n → ∞, has an iid

representation of the shape function
√

n(F̂(t) − F(t)) = (F(t)/
√

n)
∑n

i=1 bi(t) + op(1) for

t ∈ [τ0, τ]; the baseline size
√

n(Λ̂0(τ)−Λ0(τ)) converges weakly to a mean-0 normal dis-

tribution with variance Λ2
0(τ)E([ψ

−1ei]
2
1); the baseline rate

√
n(Λ̂0(t)−Λ0(t)) converges

weakly to a mean-0 normal distribution with variance F2(t)Λ2
0(τ)E[{[ψ

−1ei]1 + bi}
2];

the regression parameters
√

n(β̂ − β) converges weakly towards a mean-0 normal dis-

tribution with variance-covariance matrix E([ψ−1ei]−1[ψ
−1ei]

′
−1); the second moment

estimator
√

n(Ê(γ2) − E(γ2)) converges weakly to a mean-0 normal distribution with
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variance E(s2
i ), so is the variance estimator.

Due to the fact that the estimating equations are marginally given for each event

type, the asymptotic properties for Model B can be obtained similarly following the

proofs for Theorem III.1 in Appendix B. We define G1(t) and G2(t) functions for

two different event types separately. The estimates for the regression parameters,

baseline sizes, and baseline rates have comparable iid representations to the ones for

Model A, and the corresponding iid values like b ji, e ji, ψ j = E[−∂e ji/∂θ j] for event

type j ∈ {1, 2} can be found in the Appendix B. The correlation between event types,

i.e. ρ, is an additional type of value under estimation in Model B. It has been proved

in the Appendix B.5 that
√

n(ρ̂ − ρ) =
∑n

i=1 ri + op(1), where

ri =
qi√

Var(γ1)Var(γ2))
−

s1i

2Var(γ1)
3
2Var(γ2)

1
2

−
s2i

2Var(γ1)
1
2Var(γ2)

3
2

.

Note that s1i and s2i construct the iid representations for
√

n(Ê(γ2
1) − E(γ2

1)) =

n−1/2 ∑n
i=1 s1i + op(1) and

√
n(Ê(γ2

2) − E(γ2
2)) = 1/

√
n
∑n

i=1 s2i + op(1). The detailed

formulation of qi can be found in Appendix B.5, which together with s1i and s2i, has

mean zero.

Theorem III.2. Model B under the regularity conditions, with n→∞, has all the iid

representation and asymptotic properties given in Theorem III.1 by adding an index

j ∈ {1, 2} to distinguish the values for the different event types. Specifically, we have

an iid representation for the shape functions of each event type
√

n(F̂j(t) − Fj(t)) =

Fj(t)/
√

n
∑n

i=1 b ji(t) + op(1); the baseline sizes
√

n(Λ̂0 j(τ) − Λ0 j(τ)) converge weakly to

a mean-0 normal distribution with variance Λ2
0 j(τ)E([ψ

−1
j ei j]

2
1); the baseline rates

√
n(Λ̂0 j(t) − Λ0 j(t)) converge weakly to a mean-0 normal distribution with variance

F2
j (t)Λ

2
0 j(τ)E[{[ψ

−1
j e ji]1 + b ji}

2]; the regression parameters
√

n(β̂ j − β j) converges

weakly to a mean-0 normal distribution with variance-covariance matrix E([ψ−1
j e ji]−1[ψ

−1
j e ji]

′
−1);

the second moment estimator
√

n(Ê(γ2
j ) − E(γ2

j )) converges weakly to a mean-0 nor-
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mal distribution with variance E(s2
ji), so as the variance estimator; the correction

coefficient
√

n(ρ̂− ρ) also converges weakly towards a mean-0 normal distribution with

variance E(r2
i ).

Model C has K independent clusters (facilities), and conditional independence

holds within each facility. We treat the number of subjects Ik within facility k as a

random variable satisfying Ik ⊥ (Nki(t),Cki, εk, γki, Zki). Using subscript c to distin-

guish those estimators from the other two models, we define the new time-dependent

function

Gc(t) = E

{
I1∑

i=1

ε1γ1i exp(β′Z)I(C1i ≥ t)

}
= ν

τ∫
0

εγ exp(β′z)I(c ≥ t)dW(c, ε, γ, z),

where ν = E(I1) = E(Ik). Then we define Rc(t) = Gc(t)Λ0(t) and Qc(t) =
∫ t
0

Gc(u)dΛ0(u).

In Appendix B.3, we derive the iid representation for the shape function
√

K(F̂(t) −

F(t)) = F(t)
√

K

∑K
i=1 bck(t) + op(1) as K →∞, where we have bck(t) as

bck(t) =
Ik∑

i=1

mki∑
l=1


τ∫

t

I(tkil ≤ u ≤ ci)dQc(u)
R2

c (u)
−

I(t < tkil ≤ τ)

Rc(tkil)

 .
The iid representation of the parameters is

√
K(θ̂ − θ) = 1/

√
K

∑K
k=1 ψ

−1
c eck , where

ψc = E
[
−
∂eck
∂θ

]
, and eck is given by

eck = −ν

∫
m z̄bck(c)

F(c)
dV(z,m, c) +

Ik∑
i=1

z̄ki

(
mki

F(cki)
− exp(θ′ z̄ki)

)
.

The consistency of borrow-strength estimators (3.14) is provided in Appendix B.5.

It follows that when the cluster sizes Ik are large, ε̂k converges in probability to

εk , and thus the estimation equation (3.15) provides consistent estimators for E(γ2)

and E(ε2) when K → ∞. Both the consistency and asymptotic normality for U-

statistic estimators have been established following Appendix B.5, where we have
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1/
√

K
(
Ê(ε2γ2) − E(ε2γ2)

)
= 1/
√

K
∑K

k=1 sck + op(1) and

sck =

{
gck

νΛ2
0(τ)E {exp(2β′Z)}

− 2E(ε2γ2)[ψ−1
c eck]1 −

E(ε2γ2)hck

νE[exp(2β′Z)]

}
.

Note that gck and hck are analogues of gi and hi in Model A. Moreover, the iid repre-

sentation for the U-statistic estimator of E(ε2) is
√

K(Ẽ(ε2) − E(ε2)) = 1√
K

∑n
i=1 wk +

op(1) where wk is given by

wk =
uk

ωΛ2
0(τ)E {exp(β′Z)}2

− 2E(γ2)[ψ−1
c eck]1 −

E(γ2)vk

ωE{exp(β′Z)}2
.

Note that both uk and vk have mean zero, and their definitions can be found in

Appendix B.5. Following the delta method, we have
√

K
(
Ẽ(γ2) − E(γ2)

)
=

∑K
k=1 yk +

op(1), where

yk =
1

E(ε2)
sck −

E(γ2)

E(ε2)
wk .

Theorem III.3. As K →∞ and under the regularity conditions, Model C has an iid

representation of the shape function
√

K(F̂(t)−F(t)) = (F(t)/
√

K)
∑K

k=1 bck(t)+op(1) for

t ∈ [τ0, τ]; the baseline size
√

K(Λ̂0(τ) − Λ0(τ)) converges weakly to a mean-0 normal

distribution with variance Λ2
0(τ)E([ψ

−1
c eck]

2
1); the baseline rate

√
K(Λ̂0(t)−Λ0(t)) con-

verges weakly to a mean-0 normal distribution with variance F2(t)Λ2
0(τ)E[{[ψ

−1
c ek]1+

bck}
2]; the regression parameters

√
K(β̂ − β) converges weakly towards a mean-0

normal distribution with variance-covariance matrix E([ψ−1
c eck]−1[ψ

−1
c eck]

′
−1); when

Ik are large, the borrow-strength estimators are consistent, i.e. Ê(ε2) →p E(ε2)

and Ê(γ2) →p E(γ2); the U-statistic estimators do not require large facility sizes

and still ensure the asymptotic normality as K → ∞, i.e.
√

K(Ẽ(ε2) − E(ε2)) and
√

K(Ẽ(γ2) − E(γ2)) converge weakly towards mean-0 normal distributions with vari-

ance E(w2
k ) and E(y2

k ) respectively, so are the variance estimators.
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3.5 Simulation Studies

Simulations under different scenarios for the three frailty models have been carried

out to evaluate the finite-sample properties of the proposed estimating approaches.

We first checked the estimation of Model A. The shared frailty is set to follow ei-

ther a gamma or a log-normal distribution with unit mean and variance equal to 0.5

or 1, representing moderate to strong within-subject association. For each simula-

tion, we generated 1000 data sets of n = 1000 independent subjects with event rate

λ0 exp(β′z)γ. Note that the two entries of the bivariate covariate vector z follow two

distributions: a mean-0 normal distribution N(0,0.25) and a Bernoulli distribution

with probability 0.5. Their regression parameters are β = [0.5,−0.3]′. Let the base-

line rate be λ0 = 0.1, and the stopping time of the study be τ = 10. Hence, the

baseline size is Λ0(τ) = 1 and the cumulative baseline shape follows a linear func-

tion F(t) = Λ0(t)/Λ(τ) = 0.1t. We consider the censoring time to follow a uniform

distribution C ∼ U(2, 10), with about 60% of subjects censored. Note that the “cen-

sored” subjects we define here are those without any observed events. Asymptotic

standard errors (ASE) were obtained via nonparametric bootstrap with B = 100, and

the average computation time (user time) is around 8 seconds. For all simulations,

we set the convergence tolerance for parameter estimation to be 10−8. According

to Table 3.1, the estimation of regression parameters (β), baseline size (Λ(τ)) and

the frailty variance Var(γ) is quite quite accurate. Coverage probabilities (CP) are

generally close to the nominal 95%, except for the variance component Var(γ), for

which the ASE tends to slightly underestimate the empirical standard error (ESE),

especially for the log-normal frailty settings. Underestimation of the ASEs for cluster-

level parameters using nonparametric bootstrap has been reported widely in literature

(Massonnet et al., 2006; Xiao and Abrahamowicz , 2010). By comparing the cases with

Var(γ) = 0.5 and Var(γ) = 1, we also notice that increasing the dependence within

subjects, decreases the CP.
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Table 3.1: Model A: the estimating results for the regression parameters, baseline
sizes, and the variance components for the shared frailty.

True Model A: Gamma Model A: Log-normal

Value Bias ESE ASE CP Bias ESE ASE CP

β[1] 0.5 0.001 0.103 0.106 0.952 -0.004 0.112 0.107 0.939
β[2] -0.3 0.005 0.109 0.107 0.947 0.006 0.109 0.107 0.936
Var(γ) 0.5 -0.008 0.152 0.150 0.929 -0.003 0.173 0.163 0.910
Λ0(τ) 1 0.007 0.113 0.107 0.949 0.006 0.112 0.105 0.935

β[1] 0.5 -0.007 0.116 0.117 0.947 -0.006 0.118 0.116 0.943
β[2] -0.3 0.003 0.119 0.117 0.935 -0.002 0.117 0.117 0.946
Var(γ) 1 -0.009 0.215 0.203 0.914 -0.019 0.294 0.247 0.881
Λ0(τ) 1 0.011 0.117 0.110 0.947 0.004 0.107 0.110 0.944

We also tested the estimating approach for the correlated frailty model, Model B.

In consistence to the simulations of Model A, we sampled 1000 datasets, each of

which had n = 1000 subjects. Bivariate covariates were included following the same

distributions as those of Model A. Regression parameters for the two event types

were set to be β1 = [0.5,−0.3]′ and β2 = [−0.5, 0.3]′. The two baseline rate are

λ01 = λ02 = 0.2; the stopping time is τ = 10, such that the baseline sizes for two event

types are Λ01(τ) = Λ02(τ) = 2. We generated bivariate frailties γ = [γ1, γ2]
′ following

either a bivariate gamma simulated by R package lcmix (Dvorkin, 2012), or a log-

normal distribution simulated by R package compositions (van den Boogaart et al.,

2018). Their variances are Var(γ1) and Var(γ2), and their correlation coefficient

is ρ. We simulated the event times following event rates λ0 j exp(β′j zi)γ j , j = 1, 2.

Censoring times follow Cj ∼ U(2, 10). Over 40% of the subjects have at least one of

the two events censored. We obtained the ASE through nonparametric bootstraping.

The average computation time for each iteration is about 35 seconds. According to

Table 3.2, the estimation of the regression parameters, baseline sizes and variance

components is quite accurate. Similar to the results of Model A in Table 3.1, the

ASE for the variance estimators tends to be underestimated and thus reduces the
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CP; and this underestimation seems to be severer for log-normal distributed frailties,

and/or when the variance components are more predominant.

Table 3.2: Model B: the estimating results for the regression parameters, baseline
sizes, and the variance components for the correlated frailties.

True Model B: Gamma Model B: Log-normal

Value Bias ESE ASE CP Bias ESE ASE CP

β1[1] 0.5 0.001 0.093 0.090 0.938 0.000 0.089 0.089 0.952
β1[2] -0.3 0.003 0.088 0.089 0.951 -0.002 0.091 0.090 0.946
β2[1] -0.5 0.001 0.080 0.081 0.951 -0.004 0.085 0.081 0.936
β2[2] 0.3 0.001 0.081 0.081 0.943 -0.001 0.082 0.080 0.943
Var(γ1) 0.5 -0.015 0.116 0.110 0.909 -0.014 0.135 0.121 0.886
Var(γ2) 0.5 -0.008 0.097 0.090 0.914 -0.006 0.116 0.103 0.909
ρ 0.5 -0.010 0.143 0.151 0.948 -0.028 0.145 0.161 0.940
Λ01(τ) 2 0.014 0.188 0.172 0.942 0.023 0.172 0.172 0.944
Λ02(τ) 2 0.003 0.149 0.155 0.944 0.007 0.154 0.157 0.957

β1[1] 0.5 -0.001 0.102 0.101 0.949 -0.001 0.106 0.101 0.941
β1[2] -0.3 0.002 0.103 0.101 0.945 -0.002 0.099 0.101 0.950
β2[1] -0.5 0.001 0.096 0.094 0.942 0.000 0.094 0.093 0.953
β2[2] 0.3 0.002 0.094 0.093 0.952 -0.006 0.092 0.093 0.944
Var(γ1) 1 -0.023 0.162 0.156 0.918 -0.020 0.264 0.204 0.854
Var(γ2) 1 -0.013 0.143 0.134 0.904 -0.014 0.246 0.184 0.859
ρ 0.5 -0.041 0.094 0.092 0.908 -0.069 0.105 0.104 0.861
Λ01(τ) 2 0.014 0.204 0.182 0.941 0.015 0.186 0.181 0.949
Λ02(τ) 2 0.009 0.179 0.172 0.948 0.011 0.170 0.171 0.946

To evaluate the estimating approach for Model C on nested data structures, we

considered three different pairs of the number of facilities (K) and the facility sizes

(Ik): K = 50 and Ik = 40 (Pair 1), K = 100 and Ik = 40 (Pair 2), or K = 100 and Ik = 10

(Pair 3). Bivariate covariates zi for subject i were similarly drawn to those in the sim-

ulations of Model A and Model B, and their regression parameters are β = [0.5,−0.3]′.

Event times follow a Poisson process with rate λ0 exp(β′zki)εkγki, where λ0 = 0.1. The

two levels of frailties, εk and γki, are random draws following either two independent

gamma or log-normal distributions, with unit means and xsvariances given in Ta-

ble 3.3. Censoring times follow a uniform distribution C ∼ U(8, 10) with stopping
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time τ = 10. Over 50% of the subjects are censored without any observed events.

The average computation time for the three setting pairs (Pair 1-3) is 25, 120 and 8

seconds respectively. According to the results in Table 3.3, the regression parameters

and the baseline sizes are quite accurate as expected. Let Varb denote the variance es-

timates using the borrow-strength method, with Varu denoting those derived through

U-statistics. The performance of the variance component estimators varies accord-

ing to the combination of K and Ik . In general, the borrow-strength method tends to

work well when Ik is relatively large. For example, the estimation bias for the variance

estimates of the two frailties can reach 50% of the true values when Ik = 10, but only

10% when Ik = 40. Since we obtain Ê(ε2) by taking the ratio of the product estima-

tor Ê(ε2γ2) and Ê(γ2), the slightly underestimated Ê(γ2) will cause an overestimated

Ê(ε2). When Ik is small, this bias can decrease the CP considerably for the variance

estimates (Pair 3). Conversely, the U-statistic method is more robust to the size of Ik ,

and its performance improves when K increases (Pair 1 vs. Pair 2). Consistent with

Model A and Model B, the estimation performance of the variance components is

in general better for the gamma distributed frailties than the log-normal distributed

frailties, as the ASEs are more severely underestimated for log-normal frailties. Note

that the regression parameters and baseline rate are not affected by which particular

methods are used for the variance components. The underestimation of ASE can be

compensated to some degree by adding another layer of bootstrap within facilities

to obtain higher CP; corresponding results are parenthesized in Table 3.3. We in-

crease the degree of heterogeneity, especially in the facility level, and summarize the

estimating results in Table 3.4. In the presence of more predominant heterogeneity,

CP decline dramatically, especially among the variance component estimates. The

estimating bias of the facility-level variance decreases dramatically for the borrow-

strength estimator, but increases for the U-statistic estimator, in terms of the relative

magnitude (with respect to Var(ε)). The estimating bias of the subject-level variance
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seems to be quite comparable to those with less hierarchical dependence.

To assess the accuracy of NPMLE for the baseline shape estimation, we tested

a linear shape function (F(t) = 0.1t) and a cubic baseline shape function (F(t) =

(t − 5)3/250+ 0.5) following the simulations of Model C with their baselines modified

accordingly. Four different seeds have been tried. Their plots with the estimated

curves (dashed lines) and 95% confident intervals (dotted lines) are presented in

Figures 3.2-3.3, superimposed by the true shape function curves (solid lines). All the

plots demonstrate that the NPMLE estimates the shape functions quite accurately.

Figure 3.2: Linear baseline shape (F(t) = 0.1t) generated with different seeds (1-4).
Note that the solid line is the true cumulative baseline shape, the dashed line is
the estimated cumulative baseline shape, and two dotted lines are 95% confidence
intervals obtained via bootstrapping.
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Table 3.3: Model C with moderate heterogeneity: the estimating results for the
regression parameters, baseline sizes, and the variance components for the nested
frailties.

True Model C: Gamma Model C: Log-normal

Value Bias ESE ASE CP Bias ESE ASE CP

Pair 1: K = 50 Ik = 40
β[1] 0.5 -0.001 0.066 0.062 0.933 0.000 0.065 0.062 0.931
β[2] -0.3 0.001 0.063 0.062 0.940 0.001 0.064 0.061 0.937
Varb(ε) 0.3 0.035 0.076 0.068 0.932 0.032 0.105 0.077 0.889

(0.081) (0.972) (0.089) (0.947)
Varu(ε) 0.3 -0.007 0.075 0.067 0.864 -0.010 0.104 0.077 0.806

(0.079) (0.935) (0.088) (0.876)
Varb(γ) 0.3 -0.044 0.054 0.051 0.793 -0.047 0.062 0.056 0.776

(0.069) (0.920) (0.076) (0.904)
Varu(γ) 0.3 -0.003 0.058 0.055 0.923 -0.006 0.066 0.059 0.920

(0.073) (0.981) (0.081) (0.977)
Λ0(τ) 1 0.002 0.094 0.090 0.930 0.002 0.090 0.089 0.940

Pair 2: K = 100 Ik = 40
β[1] 0.5 0.001 0.046 0.045 0.929 -0.002 0.045 0.044 0.939
β[2] -0.3 -0.001 0.046 0.044 0.941 0.002 0.045 0.044 0.942
Varb(ε) 0.3 0.037 0.056 0.051 0.918 0.034 0.076 0.060 0.934

(0.059) (0.954) (0.069) (0.961)
Varu(ε) 0.3 -0.004 0.056 0.050 0.888 -0.007 0.075 0.060 0.834

(0.058) (0.927) (0.068) (0.894)
Varb(γ) 0.3 -0.041 0.039 0.037 0.739 -0.042 0.046 0.041 0.733

(0.050) (0.877) (0.055) (0.870)
Varu(γ) 0.3 0.000 0.042 0.040 0.926 -0.001 0.049 0.044 0.918

(0.053) (0.984) (0.058) (0.980)
Λ0(τ) 1 0.002 0.065 0.064 0.946 -0.001 0.062 0.063 0.951

Pair 3: K = 100 Ik = 10
β[1] 0.5 0.002 0.092 0.088 0.933 -0.002 0.089 0.089 0.943
β[2] -0.3 -0.003 0.090 0.088 0.944 -0.004 0.091 0.088 0.938
Varb(ε) 0.3 0.156 0.079 0.072 0.414 0.155 0.102 0.081 0.551

(0.107) (0.862) (0.118) (0.905)
Varu(ε) 0.3 -0.008 0.076 0.070 0.890 -0.009 0.099 0.079 0.849

(0.104) (0.981) (0.116) (0.968)
Varb(γ) 0.3 -0.156 0.067 0.062 0.321 -0.155 0.074 0.067 0.349

(0.073) (0.429) (0.076) (0.419)
Varu(γ) 0.3 -0.009 0.087 0.081 0.911 -0.007 0.094 0.087 0.903

(0.091) (0.930) (0.094) (0.917)
Λ0(τ) 1 0.006 0.081 0.085 0.955 0.006 0.092 0.086 0.934
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Table 3.4: Model C with high heterogeneity: the estimating results for the regression
parameters, baseline sizes, and the variance components for the nested frailties.

True Model C: Gamma Model C: Log-normal

Value Bias ESE ASE CP Bias ESE ASE CP

Pair 1: K = 50 Ik = 40
β[1] 0.5 -0.004 0.084 0.079 0.922 0.003 0.085 0.077 0.928
β[2] -0.3 0.002 0.079 0.078 0.942 0.002 0.081 0.076 0.929
Varb(ε) 1 0.008 0.290 0.229 0.874 -0.042 0.549 0.254 0.687

(0.254) (0.904) (0.288) (0.737)
Varu(ε) 1 -0.052 0.281 0.224 0.820 -0.102 0.518 0.249 0.622

(0.248) (0.852) (0.282) (0.679)
Varb(γ) 0.5 -0.045 0.085 0.070 0.787 -0.048 0.122 0.088 0.752

(0.094) (0.900) (0.112) (0.851)
Varu(γ) 0.5 0.000 0.090 0.075 0.908 -0.002 0.130 0.094 0.850

(0.100) (0.970) (0.119) (0.944)
Λ0(τ) 1 -0.001 0.154 0.148 0.919 0.008 0.163 0.145 0.904

Pair 2: K = 100 Ik = 40
β[1] 0.5 -0.001 0.060 0.058 0.923 -0.001 0.059 0.056 0.938
β[2] -0.3 -0.002 0.060 0.056 0.930 -0.004 0.059 0.055 0.935
Varb(ε) 1 0.047 0.216 0.180 0.911 0.005 0.411 0.234 0.751

(0.200) (0.931) (0.253) (0.783)
Varu(ε) 1 -0.011 0.212 0.176 0.866 -0.052 0.406 0.231 0.703

(0.196) (0.894) (0.248) (0.714)
Varb(γ) 0.5 -0.045 0.060 0.053 0.755 -0.056 0.081 0.065 0.694

(0.070) (0.900) (0.090) (0.831)
Varu(γ) 0.5 -0.003 0.064 0.056 0.911 -0.013 0.087 0.069 0.852

(0.074) (0.984) (0.097) (0.951)
Λ0(τ) 1 0.005 0.110 0.108 0.934 0.005 0.112 0.105 0.935

Pair 3: K = 100 Ik = 10
β[1] 0.5 -0.001 0.117 0.114 0.937 -0.003 0.119 0.111 0.928
β[2] -0.3 -0.004 0.120 0.114 0.924 -0.006 0.119 0.111 0.940
Varb(ε) 1 0.208 0.277 0.222 0.927 0.170 0.525 0.271 0.866

(0.286) (0.978) (0.348) (0.956)
Varu(ε) 1 -0.022 0.267 0.209 0.841 -0.064 0.473 0.255 0.671

(0.276) (0.936) (0.336) (0.802)
Varb(γ) 0.5 -0.171 0.102 0.084 0.406 -0.169 0.148 0.101 0.440

(0.096) (0.481) (0.112) (0.518)
Varu(γ) 0.5 -0.013 0.135 0.111 0.880 -0.002 0.207 0.134 0.845

(0.123) (0.923) (0.143) (0.884)
Λ0(τ) 1 0.005 0.133 0.126 0.916 0.004 0.132 0.123 0.916
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Figure 3.3: Cubic baseline shape (F(t) = (t − 5)3/250 + 0.5) generated with differ-
ent seeds (1-4). Note that the solid line is the true cumulative baseline shape, the
dashed line is the estimated cumulative baseline shape, and two dotted lines are 95%
confidence intervals obtained via bootstrapping.
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3.6 Application

The Dialysis Outcomes and Practice Patterns Study (DOPPS) is a longitudinal

prospective study of hemodialysis patients across different countries. The ultimate

goal of the DOPPS is to improve the understanding of dialysis practices that are

associated with better event outcomes for end-stage renal disease patients (Young

et al., 2000; Pisoni et al., 2004; Robinson et al., 2012). Our objective in this analysis

was to determine the important predictors of recurrent hospitalizations. The study

sample used for analysis consists of n = 6, 031 patients from 495 facilities (size ranges

from 1 to 74) across 11 different countries: Belgium, Canada, China, Gulf Coast

Consortium, Germany, Italy, Japan, Spain, Sweden, the United Kingdom and the

United States. We focus on DOPPS Phase-5 adult patients (age ≥ 18) who entered

the DOPPS within three months of initiating hemodialysis. With only one subject

deleted for its very short censoring (Ci = 1), all other subjects of the study cohort

have been followed for a maximum of three years by the end of the observation period,

12/31/2015.

The median age among DOPPS patients is 67, with 39.5% being female. We

also want to compare the hospital admission rate among dialysis patients by different

countries, i.e. Belgium, Canada, China, Gulf Coast Consortium, Germany, Italy,

Japan, Spain, Sweden, U.K., Asian-American and African-American are compared

to the U.S. Caucasians (reference). Adjustment covariates included age, sex, height,

vascular access (arteriovenous (AV) graft, central venous catheter, with AV fistula

as the reference), and the comorbid condition indicators like coronary artery disease

(CAD), cancer, cerebral vascular disease (CVD), congestive heart failure symptoms

(CHF), chronic obstructive pulmonary disease (COPD), peripheral vascular disease

(PVD), stroke, diabetes, hypertension, neurological disorder, psychological disorder,

and cellulitis.

We analyzed the DOPPS data with Model A treating each subject as a cluster and
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Model C with facility-level clustering to be added. Model B is equivalent to fitting

Model A twice for two event types and adding a covariance to the final estimation.

Note that, these different models provide identical regression parameter estimates,

since their variance components are treated as nuisance parameters when using the

first moment condition in the first part of the estimation. The variance components,

however, are estimated differently according to the design of the model, and the prod-

uct of the two levels of variance components estimates Ê(ε2γ2) in Model C is identical

to Ê(γ2) in Model A. Since the bootstrap in Model A is simply resampling subjects,

while in Model C is resampling independent facilities, the ASE of the regression pa-

rameters are also different between the two models. Note that an additional round of

resampling within subjects among Model C would also compensate (to some extent)

the underestimation of the ASE for the variance components.

We considered two different event outcomes, the first is the time to hospital admis-

sion and the second is the days hospitalized. Note that the former is only considering

the frequency of hospitalizations, while the latter is considering both the frequency

and the length of stay. We summarized all the estimation results of Model A and C for

both outcomes in Table 3.5 and Table 3.6. Note that the parenthesized ASE and CP

in Table 3.6 were computed with additional bootstrapping in facilities. The conver-

gence tolerance for parameter estimation was 10−8. Note that among these analyses,

we set B = 500 to enjoy a better estimation of the distribution of the parameter

estimates via bootstrapping.

Model A assumes independence between subjects. DOPPS patients from Germany

(e0.870 = 2.39), Japan (e0.614 = 1.85), and U.K. (e0.429 = 1.54) had significantly higher

(p-value< 0.05) covariate-adjusted hospital admission rates than U.S. Caucasians; in

contrast, the hospital admission rates for patients in China (e−1.122 = 0.326), Gulf

(e−0.389 = 0.678), and Spain (e−0.379 = 0.684) were significantly lower than U.S.

Caucasians. Comorbid conditions were generally positively associated with hospi-
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Table 3.5: Application of the proposed method to DOPPS data using Model A:
estimates are highlighted in bold when p < 0.05.

Admission Hospitalization days

Estimate ŜE P-value Estimate ŜE P-value

Age (per 5 years) -0.046 0.016 0.004 0.026 0.016 0.104
Height (per 5 cm) -0.029 0.023 0.208 0.038 0.029 0.185
Female 0.015 0.098 0.880 0.036 0.120 0.765
Vascular access

Arteriovenous graft 0.527 0.209 0.012 -0.110 0.257 0.669
Central venous catheter 0.797 0.096 <0.001 0.430 0.106 <0.001

Comorbid conditions
CAD 0.515 0.111 <0.001 0.325 0.113 0.004
Cancer 0.204 0.100 0.040 0.029 0.117 0.804
CVD 0.284 0.108 0.008 0.027 0.151 0.859
Stroke 0.165 0.106 0.118 0.110 0.181 0.545
CHF 0.003 0.093 0.977 0.162 0.121 0.181
Diabetes -0.018 0.078 0.816 -0.096 0.107 0.371
Hypertension -0.031 0.102 0.759 -0.471 0.104 <0.001
COPD 0.273 0.100 0.006 0.102 0.160 0.524
Neurological disorder 0.384 0.113 0.001 0.669 0.169 <0.001
Psychological disorder 0.349 0.116 0.003 0.231 0.171 0.178
PVD 0.132 0.099 0.183 -0.305 0.117 0.009
Cellulitis 0.213 0.140 0.129 0.433 0.169 0.010

Countries
Belgium 0.111 0.196 0.570 -0.122 0.314 0.697
Canada 0.189 0.159 0.236 0.193 0.179 0.281
China -1.122 0.266 <0.001 -1.268 0.192 <0.001
Gulf -0.389 0.175 0.026 -0.693 0.194 <0.001
Germany 0.870 0.126 <0.001 0.414 0.183 0.024
Italy 0.244 0.162 0.133 0.226 0.225 0.315
Japan 0.614 0.134 <0.001 0.970 0.152 <0.001
Spain -0.379 0.171 0.027 -0.207 0.199 0.297
Sweden 0.204 0.182 0.262 -0.531 0.173 0.002
UK 0.429 0.160 0.007 0.275 0.221 0.214
USA: Asian -0.472 0.472 0.318 0.065 0.408 0.874
USA: African-American -0.111 0.137 0.419 0.058 0.169 0.729
USA: Caucasian 0 - - 0 - -
Λ0(τ) 0.482 0.067 <0.001 67.384 51.494 0.191
Var(γ2) 1.384 0.220 <0.001 2.116 0.483 <0.001
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Table 3.6: Application of the proposed method to DOPPS data using Model C:
estimates are highlighted in bold when p < 0.05.

Admission Hospitalization days

Estimate ŜE P-value Estimate ŜE P-value

Age (per 5 years) -0.046 0.017 0.009 0.026 0.019 0.183
Height (per 5 cm) -0.029 0.022 0.189 0.038 0.029 0.185
Female 0.015 0.102 0.885 0.036 0.105 0.731
Vascular access

Arteriovenous graft 0.527 0.207 0.011 -0.110 0.258 0.670
Central venous catheter 0.797 0.136 <0.001 0.430 0.145 0.003

Comorbid conditions
CAD 0.515 0.112 <0.001 0.325 0.107 0.002
Cancer 0.204 0.107 0.055 0.029 0.117 0.804
CVD 0.284 0.109 0.009 0.027 0.143 0.851
Stroke 0.165 0.102 0.108 0.110 0.190 0.564
CHF 0.003 0.087 0.975 0.162 0.120 0.178
Diabetes -0.018 0.076 0.812 -0.096 0.132 0.468
Hypertension -0.031 0.118 0.791 -0.471 0.133 <0.001
COPD 0.273 0.109 0.012 0.102 0.147 0.490
Neurological disorder 0.384 0.114 0.001 0.669 0.190 <0.001
Psychological disorder 0.349 0.116 0.003 0.231 0.187 0.219
PVD 0.132 0.091 0.148 -0.305 0.117 0.009
Cellulitis 0.213 0.157 0.174 0.433 0.154 0.005

Countries
Belgium 0.111 0.264 0.673 -0.122 0.425 0.774
Canada 0.189 0.194 0.331 0.193 0.277 0.486
China -1.122 0.365 0.002 -1.268 0.212 <0.001
Gulf -0.389 0.226 0.085 -0.693 0.233 0.003
Germany 0.870 0.178 <0.001 0.414 0.208 0.046
Italy 0.244 0.272 0.370 0.226 0.239 0.344
Japan 0.614 0.241 0.011 0.970 0.254 <0.001
Spain -0.379 0.278 0.173 -0.207 0.273 0.448
Sweden 0.204 0.208 0.326 -0.531 0.219 0.015
UK 0.429 0.260 0.099 0.275 0.463 0.553
USA: Asian -0.472 0.608 0.437 0.065 0.401 0.872
USA: African-American -0.111 0.185 0.550 0.058 0.152 0.700
USA: Caucasian 0 - - 0 - -
Λ0(τ) 0.482 0.093 <0.001 67.384 17.516 <0.001
Varb(ε

2) 0.875 0.142 <0.001 1.247 0.426 0.003
(0.232) (< 0.001) (0.692) (0.071)

Varu(ε
2) 0.482 0.117 <0.001 1.004 0.238 <0.001

(0.180) (0.007) (0.393) (0.011)
Varb(γ

2) 0.271 0.125 0.030 0.387 0.383 0.313
(0.153) (0.076) (0.389) (0.320)

Varu(γ
2) 0.609 0.183 0.001 0.555 0.398 0.163

(0.195) (0.002) (0.405) (0.171)
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tal admissions. Common significant positive predictors include CAD, cancer, CVD,

COPD, neurological disorder, psychological disorder were associated. The impact of

age was found to be negatively associated with hospital admissions, though the dif-

ference for every 5-year increment was small (−4.5%). In comparison to AV fistula

(the most commonly adopted vascular access approach) AV graft and central venous

catheter increased the hospital admission rate by 1.69 and 2.22 times, respectively.

The baseline size is 0.482, implying an average event counts for Z = 0 (without any

comorbidity, male, average age and height, AV fistula, U.S. Caucasians) at the end

of the study τ = 1487 (days). The baseline shape was plotted in Figure 3.4. The esti-

mated variance of the shared frailty within each subject was 1.384 (p-value< 0.001).

Figure 3.4: Hospitalizations and days in hospital: estimated baseline shape functions
F̂(t) and their 95% bootstrap confidence intervals.

The significant predictors of hospitalization admission rates using Model C were

quite similar to those using Model A. Note that in Model C, though the mean es-

timates in both models were identical, the ASE in Model C were in general larger

than those using Model A. There we observed fewer significant predictors: Cancer,

Gulf, Spain were no longer significant in Model C. Moreover, the variance compo-

nent was decomposed into the facility level and the subject level, which were both

significant. We presented both the borrow-strength and U-statistic methods. Note
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that over 80% were small sized facilities (Ik < 20), thus we would expected that the

variance estimates using the U-statistic method were more accurate. Inference results

based on bootstrapping with correction (in parenthesis) and without both indicated

the significance of the two levels of heterogeneity based on the U-statistic method.

Hospitalization days were treated as another outcome for analysis. Because we

coded each day in hospital as an event, this outcome would count for both the event

frequency and the length of stay. Possibly due to its composite information, the

significant predictors were quite different from those of the hospitalization admis-

sion rates. Assumed to be independent subjects in Model A, DOPPS patients from

Germany (e0.414 = 1.51) and Japan (e0.970 = 2.64) had significantly higher hospital-

ization days than U.S. Caucasians; in contrast, patients in China (e−1.268 = 0.28),

Gulf (e−0.693 = 0.50), and Sweden (e−0.531 = 0.59) were significantly lower than U.S.

Caucasians.

Comorbid conditions CAD, neurological disorder and cellulitis were positively as-

sociated with the hospitalization days, while hypertension and PVD were negatively

associated. Moreover, in comparison to AV fistula, only central venous catheter sig-

nificantly increased the hospitalization days by 1.54 times. Due to the very large ASE,

the baseline size is not significant in Model A. The estimated variance of the shared

frailty within each subject was 2.116 (p-value< 0.001). Model C shared the identical

significant predictors. Possibly due to the more stable bootstrapping on facilities than

subjects, however, our ASE for the baseline size in Model C was much smaller. In

addition, according to Table 3.6, clustering effect from facilities was more significant

than that within a subject in presence of all the covariates, which further implies that

the facility clustering effect cannot be neglected in DOPPS hospitalization days. The

estimated baseline shape using Model C can also be found in Figure 3.4.
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3.7 Discussion

In this report, we propose three different frailty models, including a shared frailty

model, a correlated frailty model and a nested frailty model to accommodate a variety

of clustered event data. A nonstationary Poisson process is assumed and there is no

distributional restriction put on the random effects. Though not necessarily required,

dependent censoring can be circumvented neatly under the assumption of conditional

independence between censoring and event processes of interest given the observed

covariates and random effects.

The general estimating framework summarized in Figure 3.1 establishes fast and

accurate estimation on regression effects, baseline rate shape function and sizes, and

the variance components, accompanied by proved asymptotic properties. In com-

parison with the regular frailty models with random effects of known distributions,

the proposed approach has a slightly lower estimating efficiency (Ye et al., 2007).

However, the marginal and sequential estimating procedure endows our estimation

with a much faster computational speed via avoiding intensive iterations between

the estimation steps for the regression parameters and variance components. Their

standard errors are conveniently obtained through bootstrapping. Currently, all the

codes were written in R (R Core Team, 2018a), implying a considerable potential for

improvement in computational speed by transferring (part of) the codes to C++ (e.g.

Rcpp). Therefore, the proposed models and their estimating framework can adapt

well to relatively large data sets with a lot subjects or clusters present.

Unlike the other estimating equation methods (Lin et al., 2000; Xue, 1998; Kalbfleisch

et al., 2013), as discussed by Wang et al. (2001) for shared frailty models, the proposed

framework does not accommodate time-varying covariates. Time-varying covariates

are interesting but will destroy the invariant feature of the shape function, and thus its

nonparametric estimation. Alternatively, for those who are still interested in estimat-

ing the variance components, one may assume parametrically distributed baselines
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(Xue, 1998) or frailties (Kalbfleisch et al., 2013) to incorporate time-varying covari-

ates, which need to be external to the event process (Kalbfleisch and Prentice, 2002)
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CHAPTER IV

Multistate Rate Models to Assess the Impact of

Exposure to Lead on Children Behaviors Using

Accelerometer Data

4.1 Introduction

Exposures to environmental toxicants and their detrimental effects on childhood

development have been widely studied in a vast epidemiological literature in the past

several decades. For example, prenatal and/or postnatal exposure to lead and other

environmental toxic agents have been found significantly associated with attention

deficit hyperactivity disorder (ADHD). ADHD is the most common neurodevelop-

mental disorder in children and adolescents, with an estimated prevalence around 5%

(Polanczyk et al., 2007). There have been a large number of studies to assess the as-

sociation between lead exposure and ADHD in different countries around the world;

(Bellinger et al. (1987); Needleman et al. (1990); Cummins and Goldman (1992);

Braun et al. (2006); Wang et al. (2008); Boucher et al. (2012); Hong et al. (2015)).

As was pointed out by Thapar et al. (2013), although there exists a significant associ-

ation between lead exposure and ADHD, such effect is intertwined with other factors

such as genetic and familial risks as well as unobserved confounders, implying a lack

of evidence of causality for this association.
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The Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT)

Project has established a longitudinal cohort since the mid-1990s with an international

multi-institutional partnership. One main objective of this project is twofold: (i) to

understand whether exposures to prenatal and postnatal lead would elevate risks

on the neurodevelopment among children, and (ii) whether a supplementation of

maternal calcium would help suppress the detrimental effects from the lead exposures.

In addition, many biomarkers, including genetic and epigenetic polymorphisms for

metabolism, and other environmental toxicants like phthalates, metals, pesticides and

fluoride, have been also included in the ELEMENT data (Perng et al., 2019). For

example, recently researchers utilized the ELEMENT data to examine the effects of

prenatal exposure to fluoride on ADHD symptoms (Bashash et al., 2017, 2018). Both

self-reported ADHD diagnoses and/or measured Conners’ Continuous Performance

Test (CPT) (Conners et al., 2000) are recorded as part of the ELEMENT cohorts.

Note that ADHD is often diagnosed by two domains of traits: 1) difficulties to sustain

attention and 2) fidgeting and persistent pattern of motor activity (Thapar et al.,

2012; Thapar and Cooper , 2016).

In this chapter, we focus on physical activity among children and adolescents

in the ELEMENT cohorts, which is measured by wrist-worn ActiGraph GT3X+, a

wearable accelerometer device that provides objective measurements of movements

and high-resolution activity profiles. With a high resolution of sampling, physical

movement signals are recorded and processed to be activity counts for analysis. Ac-

tivity counts are useful to the evaluate the intensity of physical movements in a time

window or epoch ( e.g., one minute). For GT3X+ device, tri-axial measurements of

body movements at the default frequency of 30Hz (30 measurements per second) are

captured in three dimensions, which are commonly aggregated by vector magnitudes

of VM =
√

axis2
1 + axis2

2 + axis2
3 for each epoch. Furthermore, other interpretable ac-

tivity metrics, e.g. energy expenditure (MET) and activity index (AI), have been
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proposed to enhance signal detection, enable fair comparisons, and reduce the dimen-

sion of raw data for more efficient data processing procedures (Welk , 2005; Colley

et al., 2011; Harrington et al., 2011; Van Hees et al., 2013; Hildebrand et al., 2014;

Bai et al., 2014, 2016). Several studies have been conducted to map physical activ-

ity counts to different activity intensity categories using accelerometer measurements

(Freedson et al., 1998; Puyau et al., 2002; Freedson et al., 2005; Troiano et al., 2008;

Sasaki et al., 2011; Evenson et al., 2015; Chandler et al., 2016). In addition to meth-

ods to derive multiple measures and metrics, Zhang et al. (2019) present an overview

of various models to analyze the accelerometer measurements, including longitudinal

data analysis approaches like mixed-effects models (Fitzmaurice et al., 2012; Li et al.,

2017) and functional data analysis methods (Li et al., 2014; Goldsmith et al., 2015,

2016). Moreover, to address excessive zero measurements in accelerometer data, Bai

et al. (2018) proposed a two-stage model with a model fitting step and a smoothing

step, while Li et al. (2018) fitted three categories of activity jointly under ordinal

transitions.

Almost all the aforementioned statistical models that have been employed for

the analysis of accelerometer data are grounded upon certain modeling assumptions.

Some existing models require heavy computational burden due to the use of multiple

steps to obtain parameter estimations in order to handle very noisy observations.

In this chapter we first convert the physical activity counts into ordinal categorical

variables (Chandler et al., 2016) and then focus on analyzing the time-dependent

frequencies of activity-state transitions. The categorical variables define four physical

activity statuses ranging from being sedentary, slightly active, moderately active to

vigorously active. We propose to use a family of multistate rate models in that the

moments-based modeling of the time-to-event rates (Lin et al., 2000) is reformulated

by crude hazards under the framework of competing risks. Similar to the classical

relative risk models (Cox , 1972), a multistate rate model consists of a non-parametric
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baseline rate and a proportional multiplier of covariate effects. This formulation

allows us to examine the association between lead exposure and physical activity

profiles among the children in ELEMENT cohorts. Moreover, the baseline rates

can be stratified by activity transition types and/or other categorical variable and

are assumed to renew every day, implying a semi-Markov renewal property that the

average daily changing patterns of different transition rates occur repeatedly. This

renewal property imposes a difficulty to obtain proper filtration to form the partial

likelihoods since each subject can contribute multiple times to the at-risk set of a

stratum (e.g., a transition type). The proposed multistate rate models, however, avoid

using partial likelihoods and are fully founded upon moment conditions. The proposed

model is also quite flexible so that we can model proportional effects of covariates to be

shared among some strata. In addition, fitting the proposed multistate rate models is

computationally easy due to the available R package survival (Therneau, 2015). With

the software, the regression parameters can be estimated consistently, as well as the

the inference for correlated transitions corrected by using robust sandwich variance

estimators.

The rest of the chapter is organized as follows. The accelerometer data are summa-

rized in Section 4.2. The proposed multistate models are discussed in Section 4.3. The

analysis results using the proposed multistate rate models are listed in Section 4.4.

Some concluding remarks are included in Section 4.5.

4.2 Accelerometer Data

The ELEMENT project consists of three birth cohorts (cohort 1 in 1994-1997,

cohort 2 in 1997-2000, cohort 3 in 2001-2005) of over 2000 children from Mexico City

whose mothers were initially recruited from clinics. The accelerometer data sets used

in this paper were collected as part of an ELEMENT follow-up study conducted be-

tween 2015 and 2018 from 554 children (Perng et al., 2019). Among the total 554
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children, 519 of them have complete 7-day (10080-minute) accelerometer measure-

ments without interruptions. We choose an epoch of one minute to aggregate activity

counts, from which VMs are calculated. MVs are the primary evaluation that we use

to analyze children physical behaviors.

We proposed to label children physical activity states by classifying their one-

minute VMs according to Chandler et al. (2016) rules, where the original 5-second

cutoff values are transformed to one-minute cutoff values. The resulting cutoff values

of activity counts are 3660, 9804, and 23628 per minute, which divide the individual

physical activity into four categories: sedentary, slightly, moderately, to vigorously

active. They are recorded in ordinal variables coded as 0,1,2 and 3, respectively in

our data analyses below. To visualize the daily changing patterns, Figure 4.1 displays

daily time series VMs and the transformed activity states from two subjects (#252

and #320) over a period of 7 days. The x-axes denote clock-time, and 7 daily time

series are stacked (semitransparent colors), that are superimposed by the daily mean

(black) and median curves (red) curves. Note that both curves of median and mean

physical activity categories are derived from the median and mean VMs, respectively.

The gray lines in the left panels of Figure 4.1 denote the Chandler’s cutoff values

for the VM classification. Figure 4.1 shows that these two children experience daily

changing patterns over 7 days, suggesting a certain daily renewal mechanism. More

details of the renewal property and the proposed event rate models will be discussed

in Section 4.3.

The frequency distributions of individual states and their average daily transi-

tion counts among the 554 subjects are summarized in Figure 4.2, where notation

j → k denotes a transition from state j to state k, j, k = 0, 1, 2, 3 and j , k. We

noticed that children predominantly stayed in sedentary status with very low physi-

cal activities, such as sleeping or being seated. The highest frequency of transitions

occurred between sedentary state and slightly active state (0 ↔ 1), and the second
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most frequent one occurred between slightly active state and moderately active state

(1↔ 2), where j ↔ k denotes both directions of transitions between two states j and

k, namely j → k and k → j, where j, k = 0, 1, 2, 3 and j , k. The transitions from and

to vigorously active state ( j ↔ 3 for j ∈ {0, 1, 2}) were generally rare. For the ease of

visualization, we colored the two types of transitions, increased-activity transitions

( j → k, k > j) and decreased-activity transitions ( j → k, k < j) differently in salmon

versus cyan in Figure 4.2. Since the occurrence of vigorous active state was relatively

rare, it would be of interest to look at the conditional proportions which motivate

the multistate models conditional on risk subgroups. The conditional proportions of

individual states (y-axis) given their previous states (x-axis) are shown in Figure 4.3.

It is evident that the ELEMENT children were likely to stay in low-level activities

(sedentary and slightly active), while tended to move to a lower activity state if they

were in a high-level activity state (moderately active or vigorously active).

In order to study potential impact of lead exposure on the physical activity be-

havior, we considered the blood lead concentration (Pb in ug/dL) that was measured

at their previous follow-up visits, and included adjusting covariates like age, gender

and children’s Z-score body mass index for age (Zbfa). Due to the missingness (see

Figure 4.4), we end up with a dataset of 333 children (170 boys and 163 girls) with no

missing values in all variables in the analysis in Section 4.4. The state and transition

plots for these non-missing subjects in Appendix C, in correspondence to Figures 4.2-

4.3, display little changes after deleting the missing observations, which implies that

the missing data mechanism is at random. The summary statistics of continuous

explanatory variables are given in Table 4.1. Age and Pb exposure are both centered

prior to their use in model fittings, and the boys are always the reference group in

the analysis.

There exist some differences between boys and girls in terms of their distributions

in the explanatory variables (Table 4.1) and activity state transitions (Figure 4.5).
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Figure 4.1: Daily time series of vector magnitudes (left) and transformed states (right)
over a week were stacked, respectively. Different semi-transparent colors indicate dif-
ferent days, red and black colors represent median and mean curves. Note that the
median and mean physical activity categories were derived from the median and mean
VMs. For the left panels, gray dashed lines denote the three cut-off values. The ac-
tivity states under investigation include sedentary (0), slightly active (1), moderately
active (2), and vigorously active (3).
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Figure 4.2: Marginal proportions of individual activity states (left) and the distri-
bution of average daily transitions counts for each subject (right). Note that in the
right panel, the salmon boxes denote transitions with increased activities (labeled by
“+”), while the cyan boxes denote transitions with decreased activities (labeled by
“-”). The activity states include sedentary (0), slightly active (1), moderately active
(2), and vigorously active (3) statuses.
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Figure 4.3: The left penal shows the conditional proportions of transitions while
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Their x-axes correspond to previous states and the y-axes represent the transition
proportions. The activity states include sedentary (0), slightly active (1), moderately
active (2), and vigorously active (3). The transition directions include increased
(“+”), decreased(“-”), and remained (“stay”).
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As given in Table 4.1, the girls have a narrower range of Pb ([1 ug/dL, 13 ug/dL])

than that of the boys ([1 ug/dL, 41 ug/dL]), and their standard deviations are 4 and

2.3 respectively. Moreover, Zbfa is slightly higher among girls than boys with their

means (and ranges) to be 0.66 ([-2.13, 3.45]) and 0.42 ([-2.90, 3.21]). Age is similarly

distributed for both gender groups. Figures 4.5 shows gender-stratified transition

proportions (the top panel) and their average event counts (the bottom panel). It is

interesting to notice that the boys tended to have higher proportions and frequencies

for transitions from or to vigorous activity state (i.e., j ↔ 3 for j ∈ {0, 1, 2}), as well

as for the transitions between sedentary state and moderately active state (0↔ 2). In

contrast, transitions between low activity states tended less frequently to occur among

the boys than the girls. This implies that the girls tended to more often experience

low-level activities than the boys. Note that the frequencies in the bottom panel are

in a logarithmic scale thus the true differences between values on the plot should be

more substantial than what has been shown in the plot. The summary counts of each

transition stratified by gender to produce Figure 4.5 are listed in Appendix Table C.1.

Table 4.1: The summary statistics of explanatory variables for the 333 children.

Boys (n = 170) Girls (n = 163)

Variable Mean SD Range Mean SD Mean SD

Age 13.59 1.77 [10.77, 17.46] 13.73 1.74 13.45 1.80
Pb (ug/dL) 3.23 3.28 [1, 41] 3.40 4.0 3.05 2.3
Zbfa 0.53 1.24 [-2.90, 3.45] 0.42 1.32 0.66 1.15

4.3 Multistate Rate Models

When the modeling of multiple event types is of interest in data analysis, a multi-

state model is designed to fit observed transition times. Given a transition from state

j to k (where j , k), or j → k, let N∗i( j→k)(t) denote the cumulative counts of transi-

tions j → k for subject i by time t if the subject is always at risk for this transition.
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Figure 4.4: Distribution of missing entries for each explanatory variable of interest.
Each black line denotes a missing entry for a subject (row). The percentages of
missingness are also provided.

In this study of physical activity, there are four states including sedentary (0), slightly

active (1), moderately active (2), and vigorously active (3) states, respectively. For

j < k transition, j → k denotes a movement from an activity state to a higher activity

state, or vice versa. It is worth pointing out that a subject cannot be at risk for every

transition at a given time, which is obviously conditional on his/her present state.

This is because a subject is at risk for a specific transition j → k only when his or her

instantaneously preceding state is j and before the ending time T . Let a time-varying

categorical variable Si(t) ∈ {0, 1, 2, 3} denote the activity states of subject i at time

t. It is natural to introduce an at-risk process Yi( j→k)(t) = I(t ∈ [0,T], Si(t−) = j) to

indicate whether subject i is at risk for transition from state j to k at time t. Note t−

denotes the time instantaneously before t. Let dN∗· (t) = N∗· (t) − N∗· (t
−) be an instant

increment of a counting process N∗· (t) at time t. Since the accelerometer data have

been aggregated in minutes and followed up for 7 days, we have all the time points
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t = 0, 1, . . . , 10080 (minutes) and t− = max(t − 1, 0). With the at-risk process taken

into consideration, the counting process of observed j → k transitions on subject i is

Ni( j→k)(t) =
∫ t
0

Yi( j→k)(s)dN∗i( j→k)(s) or equivalently dNi( j→k)(t) = Yi( j→k)(t)dN∗i( j→k)(t),

with dN·(t) = N·(t) − N·(t−).

As an extension of the relative risk models (Cox , 1972) for univariate event times,

multistate models have been studied extensively in a vast literature of survival anal-

ysis, e.g. Andersen and Gill (1982), Andersen et al. (1992), Kalbfleisch and Prentice

(2002), Therneau and Grambsch (2000). Similar to the classical Cox model, multi-

state models are formulated with a nonparametric baseline hazard or intensity func-

tion, and a multiplicative relative risk term that accounts for the contributions from

explanatory variables of interest. The property of proportional hazard is satisfied

in the absence of time-varying covariate effects β(t). The multistate or Cox model

can conveniently incorporate time-dependent external covariates Z(t) (Kalbfleisch and

Prentice, 2002). The formulation of partial likelihood (Cox , 1975) requires the event

history or filtration, defined by a σ−field Ft− = σ{Ni( j→k)(u−),Yi( j→k)(u), Zi(u) : 0 ≤

u ≤ t, i ∈ 1, . . . , n, j , k and j, k ∈ {0, 1, 2, 3}} for a total of n subjects and time t > 0

(Kalbfleisch and Prentice, 2002; Fleming and Harrington, 2011). The sequence of fil-

trations is used to establish the conditional independence between events, both within

and between event types for each subject, which is the essence in the construction

of the partial likelihood. A regular multistate model for a given type of inter-state

transition is given by

E
(
dNi( j→k)(t)|Ft−

)
= Yi( j→k)(t)λ j→k (t, Zi(t)) , j , k, j, k ∈ {0, 1, 2, 3} (4.1)

where E
(
dN∗i( j→k)(t)|Ft−

)
= λ j→k (t, Zi(t)) denotes the population intensity of transi-

tion from state j to k for subject i at time t. Moreover, the population intensity may
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be specified by a relative risk model:

λ j→k (t, Zi(t)) = λ0( j→k)(t) exp(β′j→kZi(t)), (4.2)

where β j→k is a p-element vector of effects from covariates Z(t). For example, if the

elements of Z(t) include gender, age, lead exposure and Zdfa, then complexity of β j→k

is 4. When the covariates are all time-invariant, namely Zi(t) ≡ Zi, model (4.1) for

Ni( j→k)(t) reduces to a nonstationary Poisson process (Lin et al., 2000).

In the cohort of 554 children, 333 of them have complete covariate data and wore

the ActiGraph device with no interruption for a week. To account for the human

biological circadian rhythms, we consider stratifying the baseline intensities by day

(a 24-hour or 1440-minute cycle). Specifically, suppose that we first set the baseline

function to refresh at the beginning of each day, i.e. 00 : 01 : 00 am for clock-time

Hour : Minute : Second, and then introduce a function D(t) to map a follow-up time

t to day d ∈ {1, . . . , 7} by t ∈ [t0d, t0(d+1)), where t0d is the starting time for day d and

t0(d+1) − t0(d) = 24 hours is the circadian cycle length. In addition, we use another

function B(t) to map time t to the daily clock-time B(t) = t − t0d(t). Consequently, an

alternative the relative risk model equivalent to (4.2) that accounts for the circadian

cycle may be specified given D(t) = d and B(t) = ν as follows:

λd( j→k) (ν, Zid(ν)) = λ0d( j→k)(ν) exp(β′d( j→k)Zid(ν)), (4.3)

where Zid(ν) is the Zi(t) at day d and clock-time ν for subject i. Note that the

baseline hazard and regression parameters in model (4.3) are specific to the stratum

of an inter-state transition type and the follow-up day. Within the circadian cycle

length τ = 1440 minutes (24 hours), similar to above Zid(ν), we use a clock-time map

to define the corresponding circadian event processes N∗id( j→k)(v) = N∗i( j→k)(t), the

transition-specific at-risk process Yid( j→k)(v) = Yi( j→k)(t) and the observed circadian
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transition counts Nid( j→k)(v) = Ni( j→k)(t) for 0 ≤ t ≤ τ. Model (4.3) can be analyzed

using the regular partial-likelihood due to the fact that each subject contributes

to at most one at-risk time interval within each transition-day stratum to give an

appropriate filtration according to Kalbfleisch and Prentice (2002), Chapters 8-9. In

other words, the at-risk states in day d + 1 will not affect the at-risk sets of day d.

It is commonly seen that the covariate effects are consistent across different days,

validating the use of shared regression parameters, or βd( j→k) = β j→k in model (4.3),

the it is reduced to:

λd( j→k) (ν, Zid(ν)) = λ0d( j→k)(ν) exp(β′j→kZid(ν)). (4.4)

Moreover, reducing the number of parameters of estimation can improve the esti-

mation efficiency. Note that model (4.2) and model (4.4) are basically equivalent,

namely E(dNi( j→k)(t)|Ft−) = E(dNid( j→k)(ν)|Ft−) = Yid( j→k)(ν)λd( j→k)(ν, Zid(ν)) and

λ0( j→k)(t) = λ0d( j→k)(ν) with identical β j→k estimates under the circadian mapping

functions B(t) = ν and D(t) = d.

As has been discussed in Section 4.2, the subjects experience some daily renewal

patterns, which makes it tempting to further simplify the model in (4.4) by resetting

the baseline at the beginning of each day or the circadian cycle. For example, as

pointed out in Kalbfleisch and Prentice (2002) and Cook and Lawless (2007), the

recurrent event modeling based on sojourns or gap times reset time zero instanta-

neously after observing an event. However, most gap time models typically require

additional (conditional) independence assumptions under, for example, frailty mod-

els. Technically we may modify model (4.4) to have a shared baseline hazard within

a transition stratum of the following form:

λd( j→k) (ν, Zid(ν)) = λ0( j→k)(ν) exp
(
β′j→kZid(ν)

)
. (4.5)
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However, the relevant estimation and inference become nontrivial because in (4.5),

it is difficult to obtain a proper filtration to formulate the regular partial likelihood.

This is due to the fact that each subject may be at risk for a state transition, e.g.,

j → k, at the same daily clock time (e.g., ν) in different days, and thus contribute to

the same at-risk set multiple times. Therefore, in the presence of such shared baseline

hazards, no appropriate sequence of filtrations can be defined, and consequently the

parameter estimation based on the corresponding partial likelihoods is intractable.

To circumvent the difficulty of obtaining the partial likelihoods for parameter

estimation, we propose to obtain the estimating equations via a suitable moment

assumption

E
(
dNid( j→k)(ν)|Zid(ν),Yid( j→k)(ν)

)
= Yid( j→k)(ν)µd( j→k) (ν, Zid(ν)) , (4.6)

in which, µd,( j→k) (ν, Zid(ν)) = E
(
dN∗id( j→k)(ν) | Zid(ν),Yid( j→k)(ν) = 1

)
denotes an event

rate, rather than the aforementioned event intensity λd,( j→k) (ν, Zid(ν)) generated from

a filtration. We further assume a semiparametric relative-risk structure for the rate

model:

µd( j→k) (ν, Zid(ν)) = µ0( j→k)(ν) exp
(
β̃′j→kZid(ν)

)
. (4.7)

Note taht distinct from those of intensity models (4.5) and (4.4), β̃ j→k denotes the

covariate effects of the rate model. Similar to classical relative-risk models, the rate

model (4.7) also consists of a nonparametric baseline rate and the relative risk part

with regression parameter β̃ j→k . According to Lin et al. (2000), an advantage of the

rate model is that we are able to obtain some martingale-like residuals, denoted by

Mid( j→k)(ν) =
∫ ν

0
dMid( j→k)(s)ds, that are based on the moment conditions given in

(4.6) and their increments:

dMid( j→k)(ν) = dNid( j→k)(ν) − Yid( j→k)(ν)µ0d( j→k) (ν, Zid(ν)) .
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Though Mid( j→k)(ν) is not a martingale here, it still provides a consistent estimation

since the the moment condition E(dMid( j→k)(ν)) ≡ 0 is satisfied according to (4.6).

Based on this assumption, we then follow the similar arguments from Lin et al.

(2000) to obtain two estimating equations for the baseline rates and the regression

parameters β̃ j→k respectively:

n∑
i

7∑
d=1

τ∫
0

dMid( j→k)(ν) = 0, and (4.8)

n∑
i

7∑
d=1

τ∫
0

{
Zid(ν) − Z̄ j→k(β̃ j→k, ν)

}
dMid( j→k)(ν) = 0, (4.9)

where Z̄ j→k(β̃ j→k, ν) = S(1)j→k(β̃ j→k, ν)/S
(0)
j→k(β̃ j→k, ν). Note that the utility functions

are defined as

S(m)j→k(β̃ j→k, ν) = n−1
n∑

i=1

7∑
d=1

Yid( j→k)(ν)Zid(ν)
⊗m exp

(
β̃′j→kZid(ν)

)
for (m = 0, 1, 2), where for a vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aa′.

In addition, the occurrence of transition j → k may censor occurrences of other

at-risk transitions, e.g. j → l where l , k and l , j. Therefore, the proposed

multistate rate model is indeed to analyze the “crude” rate given the risk process

Yid( j→k)(ν) or equivalently Yi( j→k)(t) for D(t) = d and B(t) = ν, in an analogue to the

concept of crude hazard, under the framework of competing risks, as opposed to the

“net” rate (or hazard) that is not identifiable here without additional assumptions

of independence between different types of transitions. Note that Lin et al. (2000)

assumed random censoring given the covariates, which is different from the proposed

crude rate model (4.6) here conditional on the at-risk process

Estimates of regression parameters Âβ j→k are obtained by the roots of equation

(4.9) which are numerically found by Newton-Raphson algorithm. Since all parame-
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ters β̃ j→k as well as baseline rates in (4.7) differ by transition strata, it is technically

equivalent to fitting separate rate models for each transition . Besides, according to

the first moment condition (4.8), estimation of the baseline rates follows an Aalen-

Breslow-form:

µ̂0( j→k)(ν) =

∑n
i=1

∑7
d=1 dNid( j→k)(ν)

nS(0)( Âβ j→k, ν)
. ν ∈ [0, τ) (4.10)

As discussed in Section 4.2, accelerometer time series data have been aggregated on

the basis of one-minute epoch, thus there might be multiple observations of the same

transition type at a clock time ν. We plan to apply existing strategies in in literature

to deal with any tied transitions (refer to Chapter 3.3 by Therneau and Grambsch

(2000)). In the implementation, we employed the default setting with the Efron

method in the R function coxph from package the survival (Therneau, 2015).

Following some regularity conditions and the framework of empirical process the-

ory, we can establish large sample properties for the estimation and inference proposed

in the multistate rate model (4.7). Due to the interplay between and within different

types of transitions from each subject, we apply the robust sandwich variance estima-

tor (Lin et al., 2000). This robust standard error calculation is also called the grouped

jackknife that relates to influence diagnostics (Therneau and Grambsch, 2000).

Model (4.7) may be further tailored to account for other confounding factors. For

example, we could consider a finer stratification by adding additional variable like

gender (indexed by g). Then, model (4.7) becomes

µdg( j→k) (ν, Zid(ν)) = Yid( j→k)(ν)µ0g( j→k)(ν) exp(β̃′g( j→k)Zid(ν)), (4.11)

where µdg( j→k) and β̃g( j→k) represent the shared baseline rate and the regression

parameters respectively for transition j → k among subjects with gender g ∈ {1, 2}.

In particular, we use g = 1 to denote boys and g = 2 to denote girls. In addition,

both models (4.7) and (4.11) may be reduced to more parsimonious forms by removing
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some unimportant covariates and/or allowing some of the regression parameters to be

shared across different strata. In the data analysis in Section 4.4, we will start from

complicated stratified models with different regression parameters and then explore

parsimonious model constructs to gain estimation efficiency.

4.4 Data Analysis

The accelerometer data and explanatory variables are summarized in Section 4.2

from a group of 333 children in the ELEMENT 2015 cohort study with no missing

data. We now apply the multistate rate models in Section 4.3 to analyze the physical

activity behaviors of these children.

4.4.1 Stratified by State Transition

We begin to apply the multistate rate model (4.7) stratified by transition types

with stratum-specific regression parameters. We consider only baseline covariates in

the analysis to form Z(ν) = Z , including centered age, centered blood lead (Pb),

and age-adjusted BMI (Zbfa). Tables 4.2-4.3 list the estimated effects Âβ and their

robust standard errors obtained from the R package. In particular, Table 4.2 presents

the results for the increased-activity transitions ( j → k for j < k) and Table 4.3

presents those for the decreased-activity transitions ( j → k for j > k). In the

multistate rate model (4.7), the exponential term exp( Âβ′Z) is a proportional multiplier

of the baseline rate µ0( j→k)(ν), representing a relative rate ratio contributed by the

explanatory variables, among which the effect of Pb is of clinical interest. According

to these results, we make following conclusions that are itemized below.

• As shown in Table 4.2, there exist significant positive effects of Pb on the

increased-activity transition rates 0→ 3 and 2→ 3, judged by the correspond-

ing p-values less than the significant level 0.05, which are also highlighted in
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bold in Table 4.2.

• Age tends to be negatively associated with increased-activity transitions ( j → k

with j < k) except for two transitions 0 → 3 and 2 → 3, possibly due to their

small event numbers. For decreased-activities transitions, age tends to increase

the transition rates significantly in four cases except for the transitions 3 → 2

and 3→ 1.

• The girls tended experience more frequent transitions in the cases of 0 → 1,

2 → 1 and 3 → 1, while less transitions in the cases of 1 → 3 and 2 ↔ 3

(both 2 → 3 and 3 → 2). The girls were less vigorously active than boys,

evidently by the fact that the girls tended to have less transitions from states

of low activities to the vigorous state (state 3), while to experience more low-

level increased-activity transitions. Moreover, the physical activity of the girls

exhibited a higher frequency of dropping from the vigorous activity state to the

lower activity states (3→ 1 and 3→ 2) than boys.

• The age-adjusted BMI variable Zbfa is a significant positive predictor for the

low-activity transition 0 → 1 (between the sedentary and moderately active

states), but a significant negative predictor for transitions to the vigorously

active state (1→ 3 and 2→ 3).

• The nonparametrically estimated baseline rates are plotted in Figure 4.6 with

the x-axes following daily clock hours. We notice that the time-varying pattern

of the event rates at the low-level activity transitions of both directions 0↔ 1

align well with the human routine daily activity pattern; the transition rates stay

low during the sleeping period and elevate during the daytime. The estimated

baseline event rates for the other transitions look more noisy due to the lack of

regular recorded for these transitions.
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• Concordance index or C-index (Harrell et al., 1982) is also reported in the

analysis. A C-index is useful to evaluate the model predictability (see Tables 4.2-

4.3). The aggregated C-indices for the model of increased-activity transitions

and that of decreased-activity transitions are 0.537 and 0.512, respectively.

• The martingale-like residuals for both the increased-activity and decreased-

activity transition models are plotted in Figure 4.7. In an agreement with the

fact that the multistate rate models for the increased-activity transitions have

a higher pooled C-index than the models for the decreased-activity transitions,

the residuals for the former are also distributed in a more balanced fashion than

the latter.
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Figure 4.6: Estimated baseline event rates of increased-activity transitions (left) and
decreased-activity transitions (right). The x-axes are labeled by daily clock time of
0 − 24 hours.

4.4.2 Stratified by State Transition and Gender

Next, we consider a finer stratification in model (4.11) by allowing the baseline

event rate and regression parameters to be gender-transition specific. This gender

stratification incorporates not only a gender-specific baseline rate for each transi-

tion type, but also the interaction effects between gender and explanatory variables
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Table 4.2: Results of the multistate rate model stratified by type of increased-activity
transitions for all children. Significant Pb effects are highlighted in bold.

Stratum C-index Variable Estimation Robust SE Z-score P-value

(0→ 1) 0.536 age -0.058 0.009 -6.735 < 0.001
female 0.087 0.028 3.117 0.002
Zbfa 0.029 0.011 2.634 0.008
Pb -0.002 0.004 -0.676 0.499

(0→ 2) 0.563 age -0.127 0.020 -6.509 < 0.001
female -0.085 0.068 -1.257 0.209
Zbfa 0.005 0.025 0.211 0.833
Pb 0.006 0.009 0.615 0.539

(0→ 3) 0.583 age -0.155 0.100 -1.538 0.124
female -0.274 0.308 -0.890 0.374
Zbfa -0.128 0.104 -1.231 0.218
Pb 0.033 0.016 2.081 0.037

(1→ 2) 0.540 age -0.069 0.015 -4.505 < 0.001
female -0.077 0.049 -1.569 0.117
Zbfa -0.008 0.018 -0.470 0.638
Pb 0.001 0.006 0.157 0.875

(1→ 3) 0.642 age -0.175 0.062 -2.826 0.005
female -0.764 0.179 -4.258 < 0.001
Zbfa -0.172 0.059 -2.900 0.004
Pb -0.001 0.021 -0.054 0.957

(2→ 3) 0.617 age -0.024 0.055 -0.435 0.664
female -0.683 0.181 -3.781 < 0.001
Zbfa -0.142 0.054 -2.644 0.008
Pb 0.040 0.015 2.644 0.008
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Table 4.3: Results of the multistate rate model stratified by types of decreased-activity
transitions for all children. Significant Pb effects are highlighted in bold.

Stratum C-index Variable Estimation Robust SE Z-score P-value

(1→ 0) 0.511 age 0.019 0.008 2.492 0.013
female -0.008 0.027 -0.279 0.781
Zbfa -0.001 0.010 -0.062 0.951
Pb -0.004 0.007 -0.575 0.565

(2→ 0) 0.533 age 0.056 0.025 2.253 0.024
female 0.118 0.086 1.383 0.167
Zbfa 0.014 0.033 0.405 0.686
Pb 0.005 0.008 0.682 0.496

(3→ 0) 0.584 age 0.261 0.131 1.994 0.046
female -0.143 0.476 -0.301 0.763
Zbfa -0.032 0.226 -0.140 0.888
Pb -0.036 0.081 -0.440 0.660

(2→ 1) 0.570 age 0.056 0.024 2.305 0.021
female 0.283 0.078 3.616 < 0.001
Zbfa 0.053 0.029 1.803 0.071
Pb 0.003 0.008 0.359 0.720

(3→ 1) 0.587 age -0.056 0.054 -1.044 0.296
female 0.629 0.173 3.640 < 0.001
Zbfa 0.005 0.067 0.079 0.937
Pb -0.016 0.013 -1.268 0.205

(3→ 2) 0.556 age -0.040 0.019 -2.113 0.035
female -0.221 0.078 -2.816 0.005
Zbfa -0.003 0.029 -0.114 0.909
Pb 0.003 0.006 0.531 0.596
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Figure 4.7: Summed residuals within subjects for the increased-activity transition
models (left) and the decreased-activity transition models (right)

of interest, which can be time-varying. Thus, Z will exclude the gender variable.

The estimation results, including C-index for each transition stratum, are listed in

Table 4.4 for boys and Table 4.5 for girls. Their estimated baseline rates and the

resulting martingale-like residuals are plotted in Figures 4.8-4.11.

• In contrast to the non-significant effect of Pb on the transition 0 → 1 in Ta-

ble 4.2, the modeling strategy with the stratification of gender detects a signif-

icant positive effect of Pb for girls experiencing this transition, while a signifi-

cant negative effect of Pb for boys. Cancellation of the two opposite Pb effects

is responsible for the non-significance of Pb in the previous analysis without

stratifying by gender. Pb is once again found to be positively associated with

vigorous activity transitions like 2 → 3 among boys, but not among girls; and

the previously significant positive association of Pb in the 0→ 3 transition dis-

appears. Pb is found now a significant positive predictor for decreased-activity

transitions 3→ 0 and 3→ 2 among girls.

• Results of the variables like age and Zbfa are quite consistent in both gen-

der strata and in comparison with the model without a gender stratification

(Table 4.2).
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• Age is negatively associated with most increased-activity transitions except for

vigorous elevations like 0 → 3 and 2 → 3 for boys, and all vigorous activity

transitions ( j → 3 for j ∈ {0, 1, 2}) among girls. Age is still a significant positive

predictor of all decreased-activity transitions among boys except for transitions

of 3 → 1 and 3 → 2, while stays non-significant for all decreased-activity

transitions among girls.

• Zbfa is significantly positively associated with low-level transition 0→ 1 among

boys and significantly negatively associated with the high-level transition 1→ 3

for both genders.

• The gender-transition specific C-index for each stratum can be found in Ta-

bles 4.4 and 4.5. For the increased-activity transitions, the aggregated C-index

pooled over all the strata of the increased-activity transitions among the boys

is 0.544, higher than that of girls, which is 0.526; and for the decreased-activity

transitions, the aggregated C-index is still higher among boys (0.517) than girls

(0.513). Both findings imply a better prediction of the models for the boys

than the girls. Note that the C-index values of the decreased-activity transi-

tion models for both genders are slightly higher than the one obtained from the

model without stratifying by gender (0.511). The C-index for 3 → 1 among

boys is lower than 0.5, implying a worse prediction performance than a random

guess. These models can hardly achieve C-indices 0.7 or above with such few

explanatory variables used in the analyses.

• Figures 4.8 and 4.9 show the estimated baseline rates for both directions of

transitions 0 ↔ 1 for both genders, which are quite similar to each other and

are comparable to those from the models without gender stratification.
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Table 4.4: Results of the multistate rate model stratified by types of activity transi-
tions among boys. Significant Pb effects are highlighted in bold.

Stratum C-index Variable Estimation Robust SE Z-score P-value

(0→ 1) 0.542 age -0.075 0.013 -6.005 < 0.001
Zbfa 0.031 0.015 2.103 0.035
Pb -0.008 0.003 -2.315 0.021

(0→ 2) 0.584 age -0.176 0.027 -6.544 < 0.001
Zbfa -0.003 0.034 -0.080 0.937
Pb 0.002 0.010 0.173 0.862

(0→ 3) 0.621 age -0.243 0.130 -1.872 0.061
Zbfa -0.140 0.128 -1.094 0.274
Pb 0.026 0.023 1.128 0.259

(1→ 2) 0.551 age -0.100 0.022 -4.487 < 0.001
Zbfa -0.021 0.024 -0.854 0.393
Pb 0.002 0.005 0.341 0.733

(1→ 3) 0.602 age -0.194 0.065 -2.973 0.003
Zbfa -0.161 0.072 -2.248 0.025
Pb -0.002 0.025 -0.077 0.939

(2→ 3) 0.565 age 0.004 0.063 0.057 0.954
Zbfa -0.137 0.063 -2.163 0.031
Pb 0.038 0.015 2.503 0.012

(1→ 0) 0.516 age 0.026 0.012 2.152 0.031
Zbfa -0.012 0.013 -0.924 0.355
Pb -0.002 0.009 -0.163 0.871

(2→ 0) 0.529 age 0.078 0.030 2.591 0.010
Zbfa 0.034 0.047 0.722 0.470
Pb 0.004 0.008 0.555 0.579

(3→ 0) 0.667 age 0.465 0.166 2.802 0.005
Zbfa -0.155 0.295 -0.526 0.599
Pb -0.217 0.180 -1.206 0.228

(2→ 1) 0.556 age 0.078 0.023 3.355 0.001
Zbfa 0.104 0.035 2.931 0.003
Pb 0.001 0.007 0.092 0.927

(3→ 1) 0.486 age 0.038 0.058 0.648 0.517
Zbfa -0.024 0.080 -0.296 0.767
Pb -0.032 0.017 -1.922 0.055

(3→ 2) 0.563 age -0.036 0.023 -1.550 0.121
Zbfa 0.020 0.039 0.512 0.609
Pb 0.001 0.006 0.176 0.860
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Table 4.5: Results of the multistate rate model stratified by types of activity transi-
tions among girls. Significant Pb effects are highlighted in bold.

Stratum C-index Variable Estimation Robust SE Z-score P-value

(0→ 1) 0.525 age -0.042 0.011 -3.738 < 0.001
Zbfa 0.021 0.016 1.314 0.189
Pb 0.014 0.007 2.087 0.037

(0→ 2) 0.541 age -0.076 0.026 -2.883 0.004
Zbfa 0.011 0.037 0.295 0.768
Pb 0.026 0.018 1.478 0.139

(0→ 3) 0.611 age -0.052 0.138 -0.376 0.707
Zbfa -0.136 0.167 -0.815 0.415
Pb 0.116 0.081 1.436 0.151

(1→ 2) 0.525 age -0.041 0.021 -1.969 0.049
Zbfa 0.010 0.026 0.384 0.701
Pb 0.000 0.012 0.017 0.987

(1→ 3) 0.591 age -0.142 0.122 -1.165 0.244
Zbfa -0.207 0.094 -2.194 0.028
Pb 0.014 0.044 0.313 0.754

(2→ 3) 0.582 age -0.090 0.106 -0.848 0.396
Zbfa -0.162 0.092 -1.754 0.080
Pb 0.049 0.045 1.089 0.276

(1→ 0) 0.513 age 0.015 0.010 1.478 0.139
Zbfa 0.018 0.016 1.070 0.284
Pb -0.011 0.007 -1.654 0.098

(2→ 0) 0.518 age 0.035 0.039 0.900 0.368
Zbfa -0.027 0.044 -0.616 0.538
Pb 0.009 0.021 0.411 0.681

(3→ 0) 0.636 age 0.208 0.232 0.899 0.369
Zbfa 1.298 0.707 1.835 0.067
Pb 0.617 0.284 2.172 0.030

(2→ 1) 0.528 age 0.033 0.039 0.841 0.400
Zbfa -0.027 0.045 -0.606 0.544
Pb 0.014 0.018 0.811 0.417

(3→ 1) 0.576 age -0.135 0.089 -1.516 0.130
Zbfa -0.186 0.141 -1.317 0.188
Pb -0.023 0.058 -0.401 0.688

(3→ 2) 0.614 age -0.076 0.041 -1.849 0.064
Zbfa -0.101 0.055 -1.845 0.065
Pb 0.051 0.024 2.114 0.035
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Figure 4.8: The estimated baseline event rates the increased-activity transitions (left)
and decreased-activity transitions (right) among the boys. The x-axes are labeled by
daily clock time of 0 − 24 hours.
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Figure 4.9: The estimated baseline event rates for the increased-activity transitions
(left) and the decreased-activity transitions (right) among the girls. The x-axes are
labeled by daily clock time of 0 − 24 hours.
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Figure 4.10: Summed residuals within subjects for the increased-activity transition
models (left) and the decreased-activity transition models (right) among boys.
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Figure 4.11: Summed residuals within subjects for the increased-activity transition
models (left) and the decreased-activity transition models (right) among girls.
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4.4.3 Parsimonious Models

We further simplify model (4.11) by allowing some regression parameters to be

shared among some strata. We apply the Wald test with the robust sandwich vari-

ance matrices to test for the hypothesized parsimony in the framework of estimating

functions. Once again, our proposed multistate models are purely based on moment

conditions. The proposed models (4.7) and (4.11), as well as their extensions with

shared regression effects, are formulated by the event rates rather than the event

intensities. To assess the effects of Pb in these models, we do not consider any par-

simonious specification of Pb related parameters. With some trials and errors based

based on the Walt tests, we obtain the simplified models that share common regression

parameters across different gender-transition strata and their estimates are summa-

rized in Tables 4.6-4.9, where the reference groups are set as 0 → 1 and 1 → 0 for

the increased-activity transition models and the decreased-activity transition models,

respectively. Note that we did not enumerate all possible models, therefore, there

may be other parsimonious models providing a comparable or even better prediction

performance. In Table 4.6 for example, the models of increased-activity transitions

among boys share a common effect of age in all transition strata except for 0 → 2

and 0→ 3. Effects of Zbfa are specified to be common for three groups of transitions,

including transitions 1→ 3 and 2→ 3, transition 1→ 2, and the rest, respectively.

We find that direction and significance of the Pb effects in all parsimonious models

are almost unchanged. The C-index values are 0.544 and 0.516 for the increased-

activity and the decreased-activity transitions among boys, and are 0.526 and 0.513

for those among girls. There is little reduction in the prediction accuracy with the

parsimonious models in (4.11) with no shared effects. Models with shared effects

lead to better interpretability and accuracy for cases that some transitions display

quite comparable behaviors. The statistical power is also expected to improve for the

estimation of some shared effects, especially among small strata with fewer transition
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counts, since their estimation can be improved largely by pooling over the events

(transitions) from other strata. In a high agreement to the aforementioned findings,

the plots of the estimated baseline rates and martingale residual in Figures 4.12-4.15

obtained from the parsimonious models resemble largely Figures 4.8-4.11. Therefore,

we conclude that the stratified parsimonious models produce comparable estimation

with better parameter interpretations and higher statistical efficiency.

Table 4.6: Results of the multistate rate model with shared effects among boys for
the increased-activity transitions. Significant Pb (interaction) effects are highlighted
in bold. Age is shared in all transitions except for 0 → 2 and 1 → 3 transitions;
Zbfa has a separate effect for 1 → 2 transition, a shared effect among 1 → 3 and
2→ 3, and a common effect among the rest. Covariates Age, Zbfa and Pb have their
(shared) effects for the transition 0→ 1 as the reference.

Variable Estimation Robust SE Z-score P-value

Age -0.078 0.011 -6.829 < 0.001
Age*I(0→ 2) -0.094 0.023 -4.172 < 0.001
Age*I(1→ 3) -0.115 0.064 -1.794 0.073
Zbfa 0.030 0.015 2.014 0.044
Zbfa*I(1→ 2) -0.048 0.026 -1.841 0.066
Zbfa*I(1→ 3 or 2→ 3) -0.178 0.060 -2.943 0.003
Pb -0.007 0.003 -2.275 0.023
Pb*I(0→ 2) 0.010 0.010 1.028 0.304
Pb*I(0→ 3) 0.031 0.024 1.288 0.198
Pb*I(1→ 2) 0.008 0.006 1.394 0.163
Pb*I(1→ 3) 0.006 0.025 0.239 0.811
Pb*I(2 → 3) 0.050 0.015 3.281 0.001

4.5 Conclusions

In this chapter, we proposed a family of stratified multistate event rate models

to analyze the temperal transitions of physical activity states of the 333 children

with complete variables in the ELEMENT cohort from Mexico City. The central

goal of scientific interest here is to examine the association between lead exposure

and physical activity transitions related to the children’s behavior patterns. The
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Table 4.7: Results of the multistate rate model with shared effects among boys for
decreased-activity transitions. Significant Pb (interaction) effects are highlighted in
bold. Age has a shared effect among all transitions except for the 2→ 0 and 2→ 1
transitions, with a shared effect that is different from the reference, or another distinct
effect for the 3→ 0 transition; Zbfa has a common effect shared among all transitions
except for 2→ 1. Covariates Age, Zbfa and Pb, all have their (shared) effects for the
transition 1→ 0 as the reference.

Variable Estimation Robust SE Z-score P-value

Age 0.026 0.012 2.155 0.031
Age*I(2→ 0 or 2→ 1) 0.052 0.026 2.015 0.044
Age*I(3→ 0) 0.427 0.175 2.446 0.014
Zbfa -0.011 0.013 -0.856 0.392
Zbfa*I(2→ 1) 0.115 0.039 2.954 0.003
Pb -0.001 0.009 -0.157 0.875
Pb*I(2→ 0) 0.004 0.012 0.327 0.744
Pb*I(3→ 0) -0.216 0.185 -1.168 0.243
Pb*I(2→ 1) 0.002 0.015 0.148 0.882
Pb*I(3→ 1) -0.029 0.017 -1.765 0.078
Pb*I(3→ 2) -0.004 0.011 -0.314 0.754

Table 4.8: Results of the multistate rate model with shared effects among girls for
the increased-activity transitions. Significant Pb (interaction) effects are highlighted
in bold. Age is shared in all transitions except for the transition 0 → 2 and the
transition 1→ 3, wherein each has a distinct effect; Zbfa has a common effect for all
transitions except for the 1→ 3 and 2→ 3 transitions. Covariates Age, Zbfa and Pb
have their (shared) effects for the transition 0→ 1 as the reference.

Variable Estimation Robust SE Z-score P-value

Age -0.042 0.010 -4.016 < 0.001
Age*I(0→ 2) -0.034 0.020 -1.699 0.089
Age*I(1→ 3) -0.097 0.120 -0.811 0.417
Zbfa 0.019 0.015 1.269 0.204
Zbfa*I(1→ 3 or 2→ 3) -0.186 0.088 -2.113 0.035
Pb 0.014 0.007 2.107 0.035
Pb*I(0→ 2) 0.012 0.015 0.788 0.431
Pb*I(0→ 3) 0.094 0.082 1.144 0.253
Pb*I(1→ 2) -0.014 0.011 -1.217 0.224
Pb*I(1→ 3) -0.002 0.042 -0.038 0.970
Pb*I(2→ 3) 0.030 0.042 0.727 0.467
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Table 4.9: Results of the multistate rate model with shared effects among girls for
decreased-activity transitions. Significant Pb (interaction) effects are highlighted in
bold. Age has a shared effect except for the transition 3→ 2; Zbfa has distinct effect
values for transitions, 3→ 0, 3→ 1 and 2→ 1, respectively, and a shared effect for
the rest. Covariates Age, Zbfa and Pb, all have their (shared) effects for the transition
1→ 0 as the reference.

Variable Estimation Robust SE Z-score P-value

Age 0.018 0.011 1.717 0.086
Age*I(3→ 2) -0.094 0.043 -2.210 0.027
Zbfa 0.010 0.015 0.679 0.497
Zbfa*I(3→ 0) 0.982 0.487 2.016 0.044
Zbfa*I(3→ 1) -0.149 0.151 -0.988 0.323
Zbfa*I(3→ 2) -0.112 0.059 -1.905 0.057
Pb -0.011 0.007 -1.630 0.103
Pb*I(2→ 0) 0.020 0.018 1.119 0.263
Pb*I(3 → 0) 0.518 0.195 2.660 0.008
Pb*I(2→ 1) 0.025 0.016 1.616 0.106
Pb*I(3→ 1) -0.024 0.055 -0.443 0.658
Pb*I(3 → 2) 0.062 0.026 2.396 0.017
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Figure 4.12: Estimated baseline event rates for the increased-activity transitions (left)
and the decreased-activity transitions (right) among boys with shared regression pa-
rameters across different transitions (see Tables 4.6 and 4.7). The x-axes are labeled
by daily clock time of 0 − 24 hours.
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Figure 4.13: Estimated baseline event rates for the increased-activity transitions (left)
and the decreased-activity transitions (right) among girls with shared regression pa-
rameters across different transitions (see Tables 4.8 and 4.9). The x-axes are labeled
by daily clock time of 0 − 24 hours.
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Figure 4.14: Summed residuals within subjects for the increased-activity transitions
(left) and the decreased-activity transitions (right) among boys with shared regression
parameters across different transitions (see Tables 4.6 and 4.7).
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Figure 4.15: Summed residuals within subjects for the increased-activity transitions
(left) and the decreased-activity transitions (right) among girls with shared regression
parameters across different transitions (see Tables 4.8 and 4.9)

physical activity states were categorized into four types ranging from sedentary to

vigorously active using the cut-offs defined by Chandler et al. (2016) for the minute-

epoch vector magnitudes. We modeled the activity transitions along the line of time-

dependent multivariate event data analysis, in that, the proposed family of multistate

rate models (4.7) inherits the technical framework of the rate models (Lin et al., 2000)

and the conceptual framework of competing risks (Kalbfleisch and Prentice, 2002).

Comparing the analysis results obtained by the multistate rate models, respec-

tively, with or without gender stratification, we have shown different patterns of

transition rate curves for girls and boys. In particular, for the increased-activity tran-

sitions, the girls tended to experience higher frequent transitions in the a low-activity

category 0 → 1 than the boys, and lower frequent vigorous-activity transitions like

1 → 3 and 2 → 3. Moreover, the girls are more likely to drop steeply from the

vigorously active state to lower activity states (3 → 1 and 3 → 2) than boys. By

adding the gender to achieve a finer stratification, lead exposure Pb was found pos-

itively associated with transition 0 → 1 among the girls, but negatively associated
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with this transition among the boys, as opposed to the non-significant association de-

tected under no gender stratification. Also, Pb is positively associated with the 2→ 3

transition among boys not girls, and an elevated level of blood Pb tended to increase

the rates of decreased-activity transitions from the vigorous active state to lower ones

(e.g., 3→ 0 and 3→ 2). In addition, allowing to share some similar stratum-specific

regression parameters can improve the estimation efficiency. The parsimonious mod-

els may be derived by conducting the Wald test using the robust asymptotic variance

estimates. The simplified models were found to exhibit comparable performances to

the models with no shared effects, but for better interpretations.

Due to the missingness in the explanatory variables, in particular to the Pb con-

centration, only 333 out of 545 subjects were finally included for the data analysis.

The mechanism of missingness seems to be at random since their marginal and condi-

tional transition distribution plots are quite similar for the original data set (n = 545,

Figures 4.2 and 4.3) and the complete data set (n = 333, Appendix Figures C.1 and

C.2). A possible remedy to overcome the missing data issue is to invoke the imputa-

tion method, which can be done in the future analysis (Little, 1995; Catellier et al.,

2005). Another issue is the validity of the physical activity states that are determined

by the validated cutoff values from one study. It is know that misclassification of the

activity states may lead to biased conclusions (Staudenmayer et al., 2012). More

extensive physical activity measures on different populations with various normalized

metrics that are comparable between devices and platforms (Bai et al., 2014, 2016)

would largely improve the classification accuracy. It is hoped that the proposed event

rate models can fit in a more general framework of multistate event data analysis

beyond accelerometer data.
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CHAPTER V

An Epidemiological Forecast Model and Software

Assessing Interventions on the COVID-19

Epidemic

5.1 Introduction

The outbreak of the coronavirus disease 2019 or COVID-19, originated in Wuhan,

the capital city of Hubei province. From there, it spread quickly through Hubei

and then to China and globally to more than 200 countries, causing over 10 million

confirmed cases and about 500,000 deaths cumulatively, according to the WHO data

available in June, 2020. Back to February 25, 2020, in China this large-scale epidemic

had caused a total of 78,195 confirmed infections, 2,718 deaths. Since the outbreak

of the epidemic, many clinical papers (Jung et al., 2020; Chen et al., 2020; Xiang

et al., 2020; Xu et al., 2020; Imai et al., 2020; Gralinski and Menachery , 2020; Luk

et al., 2019; Fan et al., 2019; Hui et al., 2020; Holshue et al., 2020; Guan et al., 2020;

Rothe et al., 2020; Huang et al., 2020; Zhu et al., 2020; Wang et al., 2020a) have been

published to uncover limited but important knowledge of COVID-19, including that

(i) COVID-19 is an infectious disease caused by SARS-CoV-2, a virus closely related

to the SARS coronavirus (SARS-CoV) (Luk et al., 2019; Fan et al., 2019; Subissi

et al., 2014; World Health Organization, 2020a); (ii) it can spread from person to
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person, primarily via droplet transmission (Hui et al., 2020; Holshue et al., 2020);

(iii) it has a relatively high person-to-person transmission rate, especially via close

contact; (iv) the median incubation time is approximately 5-6 days (Lauer et al.,

2020; Backer et al., 2020), which can be as long as 24 days (Guan et al., 2020); and

(v) asymptomatic person carrying SARS-CoV-2 is contagious (Rothe et al., 2020).

This epidemic has been concerning not only in China but also in the rest of the world

given the fast growing number of infected cases in South Korea, Japan, Italy, US,

India, etc.

Quarantine or medical isolation is a key non-pharmaceutical intervention approach

to stop the spreading of infectious diseases such as SARS (World Health Organiza-

tion, 2020b; Smith, 2006; World Health Organization, 2003) and plague (Dennis et al.,

1999). The basic idea of quarantine and isolation is to separate infected cases from the

susceptible population and vice versa. Since mid-January 2020, the Chinese govern-

ment has implemented all kinds of very strict in-home isolation protocols nationwide,

which have been elevated day by day through various government enforced quaran-

tine and societally organized inspections to control the spread of COVID-19 in Hubei

and other regions in China. In the meantime, the Chinese government has quickly

increased the capacity of hospitals or as such that took symptomatic patients to be

quarantined and treated by medical doctors and nurses.

The question of the most importance, which draws most attention, concerns when

the spread of COVID-19 will end. This question has to be answered by a prediction

model using the daily most-updated data from the China CDC. Moreover, the com-

plexity of the impact of human interventions on the spread of COVID-19, including

but not limited to in-home quarantine, hospitalization, community enforcement of

wearing masks, minimizing outdoor activities, and changed diagnostic criteria by the

government makes it difficult for a prediction model to take such features into account

in order to provide meaningful analyses and hopefully reasonable predictions. Cur-
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rently ost existing prediction models do not have the capacity to incorporate changing

interventions in reality, and with no such critical component of time-varying interven-

tion in the model, predicted turning points would be untrustworthy. Our new model

and analytic toolbox aims to fill in this significant gap.

We develop an R package eSIR (Wang et al., 2020b) for R (R Core Team, 2018b),

that helps accomplish the following specific aims:

AIM 1: Incorporate time-varying quarantine protocols in the model of COVID-19 in-

fection dynamics via an extension of the classical epidemiological SIR model.

This dynamic infection system necessitates the forecast of the future trend of

COVID-19 spread.

AIM 2: Provide an R software package to health workers who can conveniently perform

their own analyses using their substantive knowledge and perhaps better quality

data from provinces in China or from other countries.

We hope to provide a data analytic toolbox to people who may have better domain-

specific knowledge and experience as well as high quality data to carry out indepen-

dent predictions.

Our informatics toolbox is built upon a state-space model (Zhu et al., 2012;

Jørgensen et al., 1999; Song , 2000; Jøsrgensen and Song , 2007) shown in Figure 5.1

with an extended Markov SIR model (Kermack and McKendrick , 1927), which has the

following key features: (i) Our model is specified with the temporally varying preva-

lence of susceptible, infected and removed (recovered and death) compartments, not

directly on time series of respective counts; (ii) estimation and inference are carried

out and implemented using Markov Chain Monte Carlo (MCMC); (iii) it outputs

various sample draws from the posteriors of the model parameters (e.g. transmission

and removal rates) and the underlying prevalence of susceptible, infected and removed

compartments, as well as their credible intervals. The latter is of extreme importance
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to quantify prediction uncertainty. In addition, this toolbox provides predicted turn-

ing points, including (i) the date when daily increased number of infections begins to

decrease or the time at which the second order derivative of the prevalence of infected

compartment is zero (i.e. the turning point of infection acceleration to deceleration);

and (ii) the date when daily number of removed cases is larger than that of infected

cases, or the time at which the first derivative of the prevalence of infected compart-

ment is zero (i.e. the turning point of zero infection speed). As a byproduct, the

method also provides a predicted time when the COVID-19 epidemic ends.

This paper is organized as follows. Section 5.2 presents our new epidemiological

forecast model incorporating time-varying quarantine protocols. Section 5.3 concerns

the algorithmic implementation via Markov Chain Monte Carlo and a deliverable R

software. Section 5.4 is devoted to the analysis of COVID-19 data within and outside

Hubei. Section 5.5 gives some concluding remarks, and some technical details are

included in the appendices.

5.2 State-space SIR Epidemiological Model

5.2.1 Basic Model of Coronavirus Infection

We begin with a basic epidemiological model in the framework of state-space SIR

models with no consideration of quarantine protocols. This framework was proposed

by Osthus et al. (2017) with only one-dimensional time series of infected proportions.

Refer to Chapter 9-12 of Song (2007) for an introduction to state-space models. Here

we consider two time series of proportions of infected and removed cases, denoted

by Y I
t and Y R

t at time t, respectively, where the compartment of removed R is a

sum of the proportions of recovered cases and deaths at time t. We assume that

the 2-dimensional time series of (Y I
t ,Y

R
t )
> follows a state-space model with the beta
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distributions at time t:

Y I
t |θt, λ

I ∼ Beta(λIθ I
t , λ

I(1 − θ I
t )), (5.1)

Y R
t |θt, λ

R ∼ Beta(λRθ I
t , λ

R(1 − θ I
t )), (5.2)

where θ I
t and θR

t are the respective prevalence of infection and removal at time t,

and λI and λR are the parameters controlling the respective variances of the observed

proportions (noting that the superscripts here indicate labels rather than exponents).
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Figure 5.1: A conceptual framework of the proposed epidemiological state-space SIR
model.

As shown in Figure 5.1, these observed time series are emitted from the underlying

latent dynamics of COVID-19 infection characterized by the latent Markov process

θt . It is easy to see that the expected proportions in both Equations (5.1) and (5.2)

are equal to the prevalence of infection and removal at time t, namely E(Y I
t |θt) = θ

I
t

and E(Y R
t |θt) = θ

R
t . See Appendix D.2. Moreover, the latent population prevalence

θt = (θ
S
t , θ

I
t , θ

R
t )
> is a three-dimensional Markov process, in which θS

t is the probability

of a person being susceptible or at risk at time t, θ I
t is the probability of a person

being infected at time t, and θR
t is the probability of a person being removed from the

infectious system (either recovered or dead) at time t. Obviously, θS
t + θ

I
t + θ

R
t = 1.
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We assume that this 3-dimensional probability process θt is governed by the following

Markov model:

θt |θt−1, τ ∼ Dirichlet(κ f (θt−1, β, γ)), (5.3)

where parameter κ scales the variance of the Dirichlet distribution and function f (·)

is a 3-dimensional vector that determines the mean of the Dirichlet distribution. We

have all the relevant parameters be τ = (β, γ, κ, θ0, λ
I, λR)>, where β and γ denote the

transmission and removal rates of the SIR model given in (5.4), and θ0 = (θ
S
0, θ

I
0, θ

R
0 )

are initial prevalence of the three compartments. The function f is the engine of the

infection dynamics which operates according to SIR model of the form:

dθS
t

dt
= −βθS

t θ
I
t ,

dθ I
t

dt
= βθS

t θ
I
t − γθ

I
t , and

dθR
t

dt
= γθ I

t . (5.4)

The ratio between the transmission and removal rates is the basic reproduction num-

ber R0 = β/γ which measures contagiousness or transmissibility of infectious agents.

It provides the average secondary cases generated from one infected case when the

whole population is susceptible (Fraser et al., 2009; Delamater et al., 2019). Note

that the explicit solution to the above system (5.4) of ordinary differential equations is

unavailable. Following Osthus et al. (2017), we invoke the fourth-order Runge–Kutta

(RK4) approximation, resulting in an approximate of f (θt−1, β, γ) as follows:

f (θt−1, β, γ) =

©«
θS

t−1 + 1/6[kS1
t−1 + 2kS2

t−1 + 2kS3
t−1 + kS4

t−1]

θ I
t−1 + 1/6[k I1

t−1 + 2k I2
t−1 + 2k I3

t−1 + k I4
t−1]

θR
t−1 + 1/6[kR1

t−1 + 2kR2
t−1 + 2kR3

t−1 + kR4
t−1]

ª®®®®®¬
,

where all these kt terms are given in Appendix D.1. The set of model parameters τ

will be estimated using the MCMC method (Carlin et al., 1992).
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5.2.2 Epidemiological Model with Time-varying Transmission Rate

The basic epidemiological model with both constant transmission and removal

rates in the SIR model (5.4) does not reflect the reality in China, where various

levels of quarantines have been enforced. Many forms of human interventions that

are altering the transmission rate over time include (i) individual-level protective

measures such as wearing masks and safety glasses, using hygiene, and taking in-home

isolation, and (ii) community-level quarantines such as hospitalization for infected

cases, city blockade, traffic control and restricted social activities, and so on. In

addition, the virus itself may mutate to evolve, which may increase the potential rate

of false negative in the disease diagnosis. Thus, the transmission rate β indeed varies

over time, which should be accounted in the modeling.

A

Susceptible Infection Removed

𝜋(𝑡)

Susceptible Infection Removed

Quarantine

𝜙(𝑡)

B

Figure 5.2: Extended SIR models with a time-varying transmission rate modifier π(t)
(Panel A) or a time-varying quarantine rate φ(t) (Panel B).

One extension to the above basic epidemiological model is to allow a time-varying

probability that a susceptible person meets an infected person or vice versa. Suppose

at a time t, qS(t) ∈ [0, 1] is the chance of an at-risk person being in-home isolation,

and qI(t) ∈ [0, 1] is the chance of an infected person being in-hospital quarantine.
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Thus, the chance of disease transmission when an at-risk person meets an infected

person is modified as:

β{1 − qS(t)}θS
t {1 − qI(t)}θ I

t := βπ(t)θS
t θ

I
t ,

with π(t) := {1 − qS(t)}{1 − qI(t)}. In effect, this π(t) modifies the chance of a sus-

ceptible person meeting with an infected person or vice versa, which is termed as a

transmission modifier due to quarantine in this paper. Obviously, with no quarantine

in place, π(t) ≡ 1 for all time. See Figure 5.2 Panel A. This results in a new SIR

model with a time-varying transmission rate modifier:

dθS
t

dt
= −βπ(t)θS

t θ
I
t ,

dθ I
t

dt
= βπ(t)θS

t θ
I
t − γθ

I
t , and

dθR
t

dt
= γθ I

t , (5.5)

where the product term βπ(t) defines an effective transmission rate reflective to the

currently enforced quarantine measures of all levels in China. Note that the above

extended SIR model assumes primarily that both population-level chance of being

susceptible and population-level chance of being infected remain the same, but the

chance of a susceptible person meeting with an infected person is reduced via π(t).

The transmission rate modifier π(t) needs to be specified according to actual quar-

antine protocols in a given region. A possible choice of π(t)may be a step function that

reflects government-initiated macro isolation measures in Wuhan, Hubei province:

π(t) =



π01, if t ≤ Jan 23, no concrete quarantine protocols;

π02, if t ∈ (Jan 23,Feb 4], city blockade;

π03, if t ∈ (Feb 4,Feb 8], enhanced quarantine;

π04, if t > Feb 8, opening of new hospitals.

When π0 = (π01, π02, π03, π04) are chosen with different values, as shown in Figure 5.3

Panels A-C, we obtain different types of transmission rate modifiers aligned with
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different quarantine protocols.

Alternatively, the modifier π(t) may be specified as a continuous function that

reflects steadily increased community-level awareness and responsibility of voluntary

quarantine and preventive measures, which may be regarded as a kind of micro isola-

tion measure initiated by individuals or local self-organized inspections. For example,

as shown in Figure 5.3 Panels D-F, we may choose the following exponential functions:

π(t) = exp(−λ0t) or π(t) = exp{−(λ0t)ν}, λ0 > 0, ν > 0.

Technically, the RK’s approximate of f function in Appendix D.1 may be easily

obtained by replacing β by βπ(t) in the specification of the latent prevalence model

(5.3), and moreover in all quantities and steps in the MCMC implementation. See

the detailed in Section 5.3.

5.2.3 Epidemiological Model with Quarantine Compartment

An alternative way to incorporate quarantine measures into the basic epidemio-

logical model (5.4) is to add a new quarantine compartment that collects quarantined

individuals who would have no chance of meeting any infected individuals in the in-

fection system, as shown in Figure 5.2 Panel B. This model allows to characterize

time-varying proportions of susceptible cases due largely to the government-enforced

stringent in-home isolation outside of Hubei province. The basic SIR model in equa-

tion (5.4) is then extended by adding a quarantine compartment with a time-varying

rate of quarantine φ(t), which is the chance of a susceptible person being willing to

take in-home isolation at time t. The extended SIR takes the following 4-dimensional
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latent process (θS
t , θ

Q
t , θ

I
t , θ

R
t )
>:

dθQ
t

dt
= φ(t)θS

t ,
dθS

t

dt
= −βθS

t θ
I
t − φ(t)θS

t ,

dθ I
t

dt
= βθS

t θ
I
t − γθ

I
t ,

dθR
t

dt
= γθ I

t , (5.6)

where θS
t + θ

Q
t + θ

I
t + θ

R
t = 1.

We suppose that the quarantine rate φ(t) is a Dirac delta function with jumps at

times when major macro quarantine measures are enforced. For example, we may

specify the φ(t) function as follows:

φ(t) =



φ01, if t = Jan 23, city blockade;

φ02, if t = Feb 4, enhanced quarantine;

φ03, if t = Feb 8, opening of new hospitals;

0, otherwise.

Here we show several examples of multi-point instantaneous quarantine rates in Fig-

ure 5.3 Panels G-H with jump sizes equal to φ0 = (φ01, φ02, φ03) that occur respectively

at dates of (Jan 23, Feb 4, Feb 8). In particular, we plot three scenarios, e.g., no

intervention (φ0 = (0, 0, 0)), multiple moderate jumps (φ0 = (0.1, 0.4, 0.3)), and only

one large jump (φ0 = (0, 0.9, 0)). Note that at each jump, the respective proportion of

the susceptible population would move to the quarantine compartment. For example,

with φ0 = (0.1, 0.4, 0.3), the quarantine compartment will be enlarged accumulatively

over three time points as 0.1 θS
t1 + 0.4θS

t2 + 0.3θS
t3 .

The f (θt−1, β, γ) function determined by the above extended SIR model (5.6) can

be solved by applying the fourth-order Runge-Kutta approximation, and the result-

ing solution is given in Appendix D.1. To deal with the Dirac delta function φ(t),

we develop a two-step approximation for model (5.6). In brief, we first solve a con-

tinuous function without change points via the differential equations in (5.5), and
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then we directly move a mass of φ(t)θS
t out of the susceptible compartment to the

quarantine compartment. From our experience, this approach largely improves the

approximation accuracy in the presence of discontinuities.

5.3 Implementation: Markov Chain Monte Carlo Algorithm

5.3.1 MCMC Algorithm

We implemented the MCMC algorithm to collect draws from the posterior distri-

butions, and further obtain posterior estimates and credible intervals of the unknown

parameters in the above models specified in Section 5.2. Because of the hierarchical

structure in the state-space model considered in this paper, the posterior distribu-

tions can be obtained straightforwardly. The R package rjags (Plummer , 2019) can

be directly applied to draw samples from the posterior distributions, so we omit the

technical details. The latent Markov processes θt are sampled and forecasted by the

MCMC sampler, particularly for the prevalence of infection and the probability of

removal, θ I
t and θR

t , which enables us to determine the turning points of interest and

the reproduction number R0.

The first turning point of interest is the time when the daily number of new

infected cases stops increasing. Mathematically, this corresponds to the time t at

which Üθ I
t = 0 or the gradient of Ûθ I

t is zero. As illustrated by Panel A in Figure 5.4,

the peak of Ûθ I
t , denoted by the vertical green line, is the first turning point of interest.

The second turning point is the time when the cumulative infected cases reaches its

maximum, meaning Ûθ I
t = 0. In principle, the second turning point occurs only after

the first one, as shown in Panel B in Figure 5.4.

The basic reproduction number R0 of an infectious disease is estimated by the

ratio R0 = β/γ, where β and γ are both estimated from their posterior distributions.

Because our models consider the quarantine compartment, R0 might change according
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to the forms of quarantine protocols. We adopt a standard MCMC algorithm to draw

samples of the latent process. Let t0 be the current time up to which we have observed

data (Y I
0:t0
,Y R

0:t0
). To perform M draws of Y I

t ,Y
R

t for t ∈ [t0+1,T], we proceed as follows:

for each m = 1, . . . , M,

(1) draw θ(m)t from the posterior [θt |θ
(m)
t−1, τ

(m)] of the prevalence process, at t =

t0 + 1, . . . ,T ;

(2) draw (Y I(m)
t ,Y R(m)

t ) from [Y I
t |θ
(m)
t , τ(m)] and [Y R

t |θ
(m)
t , τ(m)] according to the ob-

served process, at t = t0 + 1, . . . ,T , respectively;

The prior distributions are specified with some of the hyper-parameters being set

according to the SARS data from Hong Kong (Mkhatshwa and Mummert , 2010).

They are,

θ0 ∼ Dirichlet(1 − Y I
1 − Y R

1 ,Y
I

1 ,Y
R

1 )

R0 ∼ LogN(1.099, 0.096) with E(R0) = 3.15, SD(R0) = 1;

γ ∼ LogN(−2.955, 0.910) with E(γ) = 0.0821, SD(γ) = 0.1, β = R0γ;

κ ∼ Gamma(2, 0.0001), λI ∼ Gamma(2, 0.0001), λR ∼ Gamma(2, 0.0001).

Note that LogN and Gamma stand for log-normal and gamma distributions respec-

tively, and E and SD represent mean and standard deviation here. In the default

setting the variances of the above prior distributions are set at relatively large values

to reflect the fact that limited prior knowledge of these epidemiological model param-

eters is available. When more information becomes accessible during the course of

the epidemic, smaller prior variance values may be used, leading to tighter credible

intervals for the model parameters and turning points.
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5.3.2 R Software Package

We deliver an R software package that is able to output the MCMC estimation,

inference and prediction under the epidemiological model with two proposed extended

SIR models that incorporate time-varying quarantine protocols. These new models

have been discussed in detail in Sections 5.2.2 and 5.2.3. Our R package, named

eSIR, uses daily-updated time series of infected and removed proportions as input

data. The R package is available at GitHub lilywang1988/eSIR, and its user manual

is appended as the supplementary material of this paper. The quarantine functions

are predefined and will be treated as known functions of protocols/policies in the

estimation and prediction steps. We let the transmission rate modifier π(t) be either

a step function or an exponential function, and let the quarantine rate φ(t) follow

a Dirac delta function with pre-specified points of jump and sizes of jumps. The

package provides various plots for users to visualize the MCMC results, including

the estimated prevalence of infection and the estimated probability of removal, and

predicted turning points of interest. Various summary statistics are listed in the

output, including posterior mean estimates of the transmission and removal rates,

estimate of the reproduction number, and forecasts of turning points and their 95%

credible intervals. Moreover, the package gives multiple options to users who can save

the entire MCMC results, including the output tables and summary plots, Gelman-

Rubin convergence statistic, traceplots for MCMC quality control, and full MCMC

draws for user’s own summary analyses. Some illustrations on the use of this software

package are given in Section 5.4 with sample codes in Appendix D.3. In addition, we

developed an online R Shiny App that can automatically update the results whenever

the China CDC updates the daily COVID-19 data (Kleinsasser et al., 2020).
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5.4 Analysis of the COVID-19 Data

We applied our proposed models, algorithms and R package eSIR to analyze the

COVID-19 data collected from the public website DXY.cn (2020). The earliest public

records for the provincial data are available since Jan 20, 2020. According to an

existing R package on GitHub GuangchuangYu/nCov2019 (Yu, 2020), the total counts

of confirmed infections and deaths are dated back on Jan 13, 2020. We assumed that

before Jan 17 all the reported cases and deaths were from Hubei. We imputed by

the linear interpolation the missing cases on Jan 18-19. Therefore, the data used in

our analyses starts from Jan 13. The data used in analyses for the other provinces

starts on Jan 23, which is the earliest time with non-zero values in the removed

compartment. Note that there exist some minor discrepancies between different data

sources. This section aims to provide a demonstration of our software to analyze the

current public COVID-19 data, through which users may understand the proposed

methods. We will also elaborate ways to export and interpret the MCMC results.

The R package may be applied to analyze infectious data from other countries.

First, we show the analysis of the Hubei COVID-19 data after introducing in a

time-verying transmission rate modifier π(t) using our R function txt.eSIR in the

package eSIR. The corresponding results are shown in Figure 5.5: Columns B-C repre-

sent estimation and forecasting results of a transmission rate following an exponential

rate modifier with rate λ0 = 0.05 (Panel B of Figure 5.3) and a step function with

π0 = c(1, 0.9, 0.5, 0.1) at change points [Jan 23, Feb 4, Feb 8] (Panel C of Figure 5.3),

as opposed to a basic model of π(t) ≡ 1 in Column A. Running R codes were given

as Examples 1-3 in Appendix D.3. The forecast plots for infection and removal com-

partments are presented in Row 1 and Row 3 respectively, with all the black dots

left to the blue vertical line denoting observed proportions by the last observational

date. That is, the blue vertical marks time t0 as defined in Section 5.3. The green

and purple vertical lines denote the first and second turning points, respectively.

130



The salmon color area denotes the 95% credible interval of the predicted proportions

[Y I
(t0+1):T |Y

I
1:t0
,Y R

1:t0
] and [Y R

(t0+1):T |Y
I

1:t0
,Y R

1:t0
] after t0, respectively, while the cyan color

area represents either the 95% credible intervals of the prevalence [θ I
1:t0
|Y I

1:t0
,Y R

1:t0
] or

that of the probability of removal [θR
1:t0
|Y I

1:t0
,Y R

1:t0
] prior to time t0. The gray and red

curves are the posterior mean and median curves. The black curve in the removal

compartment plots from Row 3 denotes the estimated proportion of deaths computed

based on a pre-specified ratio (death_in_R). Row 2 provide a series of important

dynamic features of the infection via a spaghetti plot, in which 20 randomly selected

MCMC draws of the first-order derivative of the posterior prevalence of infection,

namely Ûθ I
t . The black curve is the posterior mean of the derivative, and the verti-

cal lines mark times of turning points corresponding respectively to those shown in

Row 1 and Row 3. Moreover, the 95% credible intervals of these turning points are

also highlighted by semi-transparent rectangles in Panel B and summarized in Web

Table 1. In Subfigures A-C we displayed the results for time-dependent transmission

rate modifiers. One can see that π(t) plays an important roles in shortening the key

turning points of the epidemic, and its effect on both estimation and prediction of the

COVID-19 infection dynamics has been clearly demonstrated. Note that there exists

an abrupt jump on Feb 12, which is believed to be mainly caused by the under-testing

and under-reporting before that date. This kind of under-reporting data issue can

be calibrated using an algorithm, which assumes an exponential increase at the early

stage of the epidemic, as proposed in Section 4.1 of Wang et al. (2020c).

Next, we analyzed the data from the rest of the Chinese population (i.e. the

provinces outside Hubei) starting on Jan 23. We included two change points for the

step function π(t) at [Feb 4, Feb 8] with π0 = (0.8, 0.1). The exponential function

remained the same. It is noted that the spread of COVID-19 outside Hubei has

been so far much less severe. Possible reasons for such low proportions of infection

and deaths include (i) discontinuing the traffic connections between Hubei and the
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other provinces, (ii) more timely caution and preventative measures taken, and (iii) a

comparatively less dense distribution of infection with respect to the huge population

size. When Panel A1 in Figure 5.6 is zoomed in, some of the observed proportions

(black dots) are deviated from the posterior mean or median of the fitted prevalence

albeit they all fall in the 95% credible intervals, as shown by Panels B1 and C1

in Figure 5.6. Since the latent process follows the SIR differential equations, there

may be a lack of fit for the SIR model to accommodate a very large and complex

population of 1.3 billion people, in which most of the subjects are not at risk. The

proposed models should work much better for individual provinces.

The other epidemiological model with an added quarantine compartment as an

absorbing state was fitted via our R function qh.eSIR in the package eSIR. We applied

the proposed model in analyses of the data within and outside Hubei following Dirac

delta functions with jumps of φ0 = [0.1, 0.9, 0.5] at change points [Jan 23, Feb 4, Feb

8] and φ0 = [0.9, 0, 5] at change points [Feb 4, Feb 8] respectively. Their results were

summarized in Column D of Figures 5.5 and 5.6. Their running codes were given

as Examples 4-5 in Appendix D.3. Our analyses once again clearly indicated that

stringent quarantine protocols can largely reduce the spread of COVID-19 both within

Hubei and outside Hubei. Yet, it is known that too strict quarantine can backfire;

people may lose their trust and patience in their committed system, and consequently

may try to reduce compliance or even avoid quarantine. We also present the posterior

mean probability of staying quarantine compartment in Figure 5.7 within Hubei and

outside Hubei. Note that Jan 23 was not set as a change point for the cases outside

Hubei, leading only to two jumps. It is evident that by Feb 8, more than 90% of the

Chinese population have taken in-home isolation or as such, reflective to a very strict

quarantine protocol enforced in the entire country.

The reproduction numbers estimated from different models using data within and

outside Hubei together with their 95% credible intervals are summarized in Table 5.1.

132



It is worth pointing out that the estimates of the basic reproduction numbers obtained

from the epidemiological models with time-varying transmission or quarantine rates

appear larger than those obtained from the basic model with no quarantine. This

is not surprising as our new models explicitly incorporate interventions, so that the

estimated R0 is an adjusted number with the influence of interventions be removed. In

contrast, the basic model with no use of the quarantine modifier implicitly integrates

the effect of interventions into the transmission rate β, and consequently the estimated

R0 is reduced due to the contribution from interventions. Our analyses suggest that

reproduction numbers R0 of COVID-19 without public health interventions would be

around 4-6 within Hubei and around 3-3.5 outside Hubei with relatively big credible

intervals. As pointed out above, the size of credible interval may be reduced with

more accessible data of COVID-19, which permits users to specify smaller variances

in the prior distributions given in section 5.3.1.

Table 5.1: The posterior mean and credible intervals of the reproduction number R0

obtained from different quarantine models and datasets.

Within Hubei Outside Hubei

Model Mean 95%CI Mean 95%CI

No quarantine 2.98 [1.90, 4.44] 2.56 [1.50, 4.22]
Exponential 6.34 [2.82, 10.80] 3.16 [1.80, 5.06]
Step-function 4.61 [2.12, 8.16] 2.90 [1.65, 4.76]
Quar. Compart. 4.14 [1.96, 8.08] 3.37 [1.77,5.73]

As pointed out by quite a few reviewers and users of this toolbox that the es-

timated reproduction numbers R0 is dependent on the prespecified intervention as-

sumptions, e.g. the function π(t). The form of π(t) can be specified mainly in two

ways. One is to let π(t) be a parametric function (e.g., exponential decaying function)

and estimate it via regular MCMC, and the other is to estimate the π(t) function non-

parametrically prior to being passed into the proposed Bayesian state-space model.

For the latter, usually the proportion of cumulative infected cases is very small so
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that St/N ≈ 1, hence one can repeatedly fit the a linear model to estimate the time-

dependent function π(t) according to Sun et al. (2020). The nonparametric estimate

of π(t) is given by Figure 5.9, and the dashed curve after the last observation date de-

notes the predicted trend of π(t) based on the previously estimated curve (solid line).

The estimated transmission rate (posterior mean) is β̂0 = 0.123 (95% CI: [0.0422,

0.256]), the removal rate is γ̂ = 0.0257 (95% CI: [0.0144, 0.0389]), and thus the basic

reproduction number is R0 = 4.71 (95% CI: [2.20, 8.60]).

Since the turning points in China have been observed by Feb 23, there is an increas-

ing concern about whether and when there would be a second outbreak. We conducted

another set of analyses on Hubei calibrated data to forecast the epidemic trends when

strict intervention may not last long. We focused on different degrees of relaxation

on the intervention. In particular, we added Feb 24 to the step function π(t) so that

it has change points [Jan 23, Feb 4, Feb 8, Feb 24] with π0 = (1, 0.9, 0.5, 0.1, π05).

Note that in our fitted data, Feb 23 is the last observational date. We considered

π05 equal to 0.1, 0.3 and 0.5 to describe “strictly continuing”, “slightly loosening” or

“moderately loosening” the control actions that has made the transmission rate 0.1β

since Feb 8. Our results in Figure 5.5 and Web Table 2 indicate that, on average,

increasing the transmission rate from 0.1β to 0.5β would end up with a second out-

break with a maximum prevalence 7.5% and totally 16.7% of the population affected

by July 20, increasing from 0.1β to 0.3β would end up with a gradual increase in

prevalence to 0.6% and about 1.4% of the population being affected. If we continue

keeping the transmission rate to be 0.1β, however, the epidemic will eventually vanish

in the population with no second outbreak and in total about 0.1% of the population

being affected. All these three scenarios are much better than the one without any

intervention (Panel A1 in Figure 5.5).
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Figure 5.3: The functional forms of the transmission rate modifiers π(t) and the
quarantine rate φ(t): 1) Panels A-C depict step functions with π0 = (π01, π02, π03, π04)

equal to (1, 1, 1, 1), (1, 0.9, 0.8, 0.5) and (1, 0.9, 0.5, 0.1) at change points (Jan 23, Feb
4, Feb 8), Panels D-F depict exponential functions under difference micro quarantine
measures over time with λ0 = 0.01, λ0 = 0.05 and λ0 = 0.1, and 3) Panels G-I depict
multi-point instantaneous quarantine rates with φ0 = (0, 0, 0, 0), φ0 = (0.1, 0.4, 0.3)
and φ0 = (0, 0.9, 0) at change points of (Jan 23, Feb 4, Feb 8).
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Figure 5.5: Prediction plots of θ I
t and Y I

t (Row 1), Ûθ I
t (Row 2), θR

t and Y R
t (Row 3)

for Hubei Province. Subfigures in Column A display the results of basic SIR model
with π(t) ≡ 1 or φ(t) ≡ 0, Subfigures in Column B display results of a continuous
transmission modifier π(t) = exp(−0.05t), subfigures in Column C display results of
a step-function transmission rate modifier with π0 = (1, 0.9, 0.5, 0.1) at change points
[Jan 23, Feb 4, Feb 8], and subfigures in Column D display results of a Dirac delta
function quarantine process with φ0 = [0.1, 0.9, 0.5] at change points [Jan 23, Feb 4,
Feb 8].
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Figure 5.6: Prediction plots of θ I
t and Y I

t (Row 1), Ûθ I
t (Row 2), θR

t and Y R
t (Row 3)

for the Chinese population outside Hubei Province. Subfigures in Column A display
the results of basic SIR model with π(t) ≡ 1 or φ(t) ≡ 0, Subfigures in Column B
display results of a continuous transmission modifier π(t) = exp(−0.05t), subfigures
in Column C display results of a step-function transmission rate modifier with π0 =

(1, 0.9, 0.5, 0.1) at change points [Jan 23, Feb 4, Feb 8], and subfigures in Column D
display results of a Dirac delta function quarantine process with φ0 = [0.1, 0.9, 0.5] at
change points [Jan 23, Feb 4, Feb 8].
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Figure 5.7: The estimated probability of staying in quarantine within and outside
Hubei.
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Figure 5.8: The estimated transmission rate modifiers π̂(t). The dashed line is the
predicted trend, and the solid line is the estimated curve based on the observed data.
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Figure 5.9: Predicted mean prevalence of infection with or without loosening the strict
intervention in Hubei. The red semitransparent area denotes the scenario of moderate
relaxation of the strict human intervention (π05 = 0.5), the blue area denotes the slight
relaxation of intervention (π05 = 0.3), and the purple area denotes the scenario that
stringent control is continued (π05 = 0.1). All their corresponding arrows mark the
dates of their maximum mean prevalence.
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Table 5.3: The summary table for the second outbreak forecast in Hubei with or with-
out relaxation of the human intervention. We used step function π(t) as transmission
rate modifier with π0 = (1, 0.9, 0.5, 0.1, π05) at change points [Jan 23, Feb 4, Feb 8,
Feb 24]. We considered π05 equal 0.1, 0.3 and 0.5 for “strictly continuing”, “slightly
loosening” and “moderately loosening” the previous control actions, and recorded
their maximum prevalence of infection and cumulative infection proportions as well
as their 95% credible intervals. The last forecast date is July 20.

Maximum Prevalence (%) Cumulative infection (%)

π05 Date Mean 95%CI Mean 95%CI

0.1 Feb 19 0.08 [0.07, 0.10] 0.13 [0, 0.43]
0.3 July 20 0.55 [0, 3.82] 1.44 [0.02, 8.23]
0.5 July 20 7.47 [0.01, 30.12] 16.67 [0.18, 78.68]

5.5 Concluding Remarks

We develop an epidemiological forecast model with an R software package to assess

effects of interventions on the COVID-19 epidemic within Hubei and outside Hubei in

China. Since our proposed model utilizes the strength of the SIR’s dynamic system

to capture the primary mechanism of the COVID-19 infectious disease, we are able to

generate potential predictions of future episodes of the disease spread patterns over

a prespecified window from the last date of data availability. Some turning points of

interest are obtained from these forecasting curves as part of the deliverable informa-

tion, including the predicted time when daily proportion of infected cases becomes

smaller than the previous ones and the predicted time when daily proportion of re-

moved cases (i.e. both recovered and dead) becomes larger than that of infected cases,

as well as the time when the epidemic ends. Our informatics toolbox provides quan-

tification of uncertainty on the prediction, rather than only point prediction values,

which are valuable to see the best versus the worst. The key novel contribution is the

incorporation of time-varying quarantine protocols to expand the basic epidemiolog-

ical model to accommodate changing transmission rates over time in the population.

The toolbox can be used by practitioners who have better knowledge of quarantine
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and better quality data to perform their own analyses. Practitioners can use the

toolbox to evaluate different types of quarantine strategies in practice. All summary

statistics obtained from the toolbox are of great importance for public health workers

and government policy makers to take proper actions on stop spreading of emerging

epidemics, such as the COVID-19 epidemic examined here.

We choose the MCMC algorithm to implement the statistical estimation and pre-

diction because of the consideration on the prediction uncertainty. Given the consid-

erable complexity in the COVID-19 virus spread dynamics and potentially inaccurate

information of quarantine measures as well as likely under-reported proportions of in-

fected and recovered cases and deaths, it is of critical importance to quantify and

report uncertainty in the forecast. Note that the publicly reported data of recovery

and death of COVID-19 are mostly collected from hospitals where accessibility to

such information is warranted. In contrast, it is very difficult, if not impossible, to

collect the data of infected individuals with light symptoms who had in-home isolation

and recovered, in spite of serious efforts made by the government for a door-to-door

inspection to identify suspected cases.

This toolbox is indeed so general that it may be applicable to analyze and evaluate

the COVID-19 epidemic in other countries, as well as the future outbreak of other

types of infectious diseases. As noted in the paper, our proposed method does need

some existing data of similar infectious disease to set up hyper-parameters in the

prior distributions of the model parameters to begin the MCMC. For this, we used

the epidemic parameters of the SARS outbreak in Hong Kong given some similarity

of COVID-19 to SARS. From this perspective, what we learned from this COVID-19

epidemic in this paper is extremely valuable to form initial conditions in the analysis

of any future outbreak of similar infectious disease. In addition, understanding forms

and strengths of quarantines for the controlling of disease spread is an inevitable path

to making effective preventive policies, which is the key analytic capacity that our
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toolbox offers.

The proposed approach is extremely useful for policy decision makers to conduct

interventions forecast. Our analyses have shown that implementing strict intervention

can well control the spread of COVID-19 in China. Moreover, continuing relatively

strict intervention can help avoid a second outbreak. Though a slight to moderate

relaxation on the intervention will lead to increased infection among the population,

an interval of stringent control will still largely delay the progression of pandemic

and reduce the maximum prevalence, or “flatten” the infection curves. A flattened

infection curve means more preparation time and fewer infectious cases at each critical

moment, hence more lives can be saved.

The proposed method has several limitations. First, it ignores the compartment of

exposure; it is known that incubation period is relevant to disease transmission, which

is particularly true for the COVID-19 as asymptomatic individuals are infectious.

Second, the number of removed cases may be inaccurate due to the fact that many

of deaths occurring outside of hospitals may not be diagnosed for the COVID-19

infection. Third, it assumes that the recovered cases are automatically immune to

the coronavirus, which has not been clinically validated yet.

This analysis also has several limitations. Firstly, this analysis used an underlying

SIR model structure, which is fairly simple—there are a number of additional pro-

cesses that are known to be involved in the natural history of COVID-19 and could

potentially be incorporated into the model. For example, the incubation period is

known to be approximately a median of 5 days (Lauer et al., 2020), which could

be incorporated into the model. Similarly, age structure, potential superspreading

events, asymptomatic infections and variation in transmissibility across individuals,

and more complex contact patterns (e.g. accounting for spatial structure when ex-

amining larger-scale dynamics such as across the whole country) could all play a

potentially important role in the epidemic dynamics, altering the predictions of the
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model. Further, the model does not explicitly account for the underreporting fraction

or how it may change over time, which can affect predictions and forecasts (Gamado

et al., 2017, 2014; Eisenberg et al., 2015). Future work to account for more complex

dynamics and incorporate these features into the package will be useful, both for

model comparison and for extending the model to new contexts and diseases.

A second important future direction for this work is the validation of the predic-

tions made by the model using subsequent data, such as cross-validating the model

using data across different countries given that the COVID-19 has become a global

pandemic. To fully evaluate the usefulness of this approach, it will be important to

compare the model predictions to the actual trajectory of the epidemic—either for

COVID-19 or for other epidemics, e.g. as a hindcasting exercise. This is an important

next step for this approach to be used as a forecasting tool in public health practice.

Additionally, the proposed epidemiological models can be further extended to

accommodate more data reported by the China CDC, which are worth future ex-

ploration. Two types of data that may be used in the future extension are the daily

number of suspected cases and the daily number of hospitalized cases. We did not use

such data due to the concern of data accuracy. For example, the number of suspected

cases is largely dependent on the diagnostic protocols, which have been revised a few

times since the outbreak of the disease, and the sensitivity of the viral test. Given

such concerns, our strategy in the proposed model was to only use necessary data for

analysis, and over the course of improved data quality in the near future, our toolbox

may be extended to enjoy greater statistical power and more accurate predictions.
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CHAPTER VI

Summary and Future Work

Clustered events and multiple events from the same subject are examples of mul-

tivariate failure time data commonly seen in clinical researches. In Chapters II-IV, I

studied and explored three different frameworks or methods to analyze various types

of associated event data. In Figure 6.1, I summarize four types of frailty/mixed mod-

els and their corresponding clustering structures: shared frailty models for a single

level of clustering; correlated frailty models for multiple event types; nested frailty;

and crossed frailty models for multi-level clustering.
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Figure 6.1: Different types of frailty models for various clustering structures.
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In Chapter II, I developed methodology applicable to correlated frailty models for

two alternating correlated recurrent events. The estimating procedure is a two-step

iteration wherein the estimated regression parameters and predicted random effects

are obtained via a penalized partial likelihood and the covariance matrix for the

correlated frailties from an approximate marginal likelihood. The proposed method

can readily accommodate more than two event types without knowing the association

directions among the different event types. Moreover, a likelihood ratio test based on

the approximate marginal likelihood can evaluate the existence of dependence between

the different event types. In the future, I plan to add longitudinal outcomes to jointly

model them with other recurrent events of interest, obtaining their covariate effects,

dependence structures simultaneously, and thus subject-specific risks. In addition,

for small clusters, the possible numerical biases caused by Laplace approximation can

also be corrected, as discussed in Section 2.6.

In Chapter III, I developed an estimating equation framework for a flexible class

of frailty models based on the moment conditions endowed by a nonstationary Pois-

son process. The proposed approach can estimate the regression parameters, baseline

rates, and the variance components without pre-specifying the distribution of the

frailties. The estimation framework can accommodate multiple types of frailty mod-

els with a variety of clustering structures, as shown in Figure 1, including the shared

frailty model, the correlation frailty model, and the nested frailty model. The pro-

posed framework not only provides unbiased estimation but also requires minimum

computational cost. As a possible future extension, I will consider a more compli-

cated scenario that patients are treated at different hospitals and by different doctors

by developing a crossed frailty model (Figure 6.1) under the proposed framework.

Note that, unlike other nonparametric frailty methods that allow the frailty to follow

a discrete distribution or estimate the distribution via kernels or smoothing splines,

the proposed framework does not attempt to describe the distribution of the frailty.
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Instead, the variance components are obtained through moment-based techniques.

In the future, the unbiased estimation of the second moment of the frailties can be

further exploited to develop useful diagnostic tools for distribution selection before

fitting a parametric frailty model which, on the other hand, tends to provide more

efficient estimation.

The objective of Chapter IV is to investigate the association between lead expo-

sure and physical activity performance among children in the ELEMENT study. To

incorporate a daily renewal property in the multistate model, I propose a class of

multistate rate models with shared baseline rates that are stratified by event type.

In particular, within the ELEMENT project, physical activities are transformed into

categorical states, and their transitions are treated as multiple events. The proposed

multistate rate models borrow the concept of both competing risks and event rate

models. The estimation of the baseline rates and regression parameters are grounded

upon moment conditions rather than the partial likelihoods. Robust sandwich vari-

ance estimators are required to provide valid statistical inference. The model-fitting

results reveal that lead exposure is significantly associated with physical activity per-

formance, with unequal effects for boys and girls. It would be of scientific interest

to investigate whether attention deficit hyperactivity disorder mediates these effects.

Moreover, it would be worthwhile to derive the consistency and asymptotic normality

for the proposed multistate rate models.

Chapter V is a special project addressing the global outbreak of the COVID-19

pandemic. In this project, I develop a toolbox for public health practitioners to

conduct intervention forecasts for COVID-9 and other epidemics with two extended

epidemiological SIR models: one with a time-varying transmission rate and the other

with a time-changing quarantine process. Currently, I do not model the exposure

compartment; thus, the latency period is not taken into account. Moreover, the cur-

rent extended models require pre-defining the time-varying functions. In addition,
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the quarantine process only occurs to the susceptible compartment by unidirection-

ally moving a proportion of subjects out of that compartment. Future improvements

would be adding the quarantine process not only to the susceptible compartment

but also the infected compartment, allowing bidirectional changes of the quarantine

compartment, estimating the time-varying functions, and adding the exposure com-

partment. I will also continue maintaining the open-source R package developed as

part of this project.
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APPENDIX A

Penalized Survival Models for the Analysis of

Alternating Recurrent Event Data

A.1 D̂# is Positive-definite

Fixing D, a partial log-likelihood (PLL) is assumed to be concave with respect

to γ, or in other words, −(∂2PLL)/(∂γ∂γ′) is positive-definite. Variance matrix Σ

and thus its inverse Σ−1 are positive-definite. KPPL2(γ) = −(∂
2PPLL)/(∂γ∂γ′), sum

of −(∂2PLL)/(∂γ∂γ′) and Σ−1, is positive-definite; so is its inverse KPPL2(γ)
−1. In

line of the Remark blow,
[
KPPL2(γ̂)

−1
]

blki
are positive-definite. As follows, the sum of

quadratic terms γ̂iγ̂
′
i and

[
KPPL2(γ̂)

−1
]

blki
would produce a positive-definite estimator

D̂#. The remark is claimed and proved as below.

Remark. If KPPL2(γ̂)
−1 is positive-definite, then

[
KPPL2(γ̂)

−1
]

blki
are positive-definite.

Proof. Let Ii = [0(1), . . . , 1(i), . . . , 0(n)]
′
2×2n, where 1i is a 2×2 identity matrix located at

the ith horizontal block or occupying columns 2i−1 and 2i, leaving other components to

be 0. Thus we have
[
K ′′PPL(γ̂)

−1
]

blki
= I ′i KPPL2(γ̂)

−1Ii. Since KPPL2(γ̂)
−1 is positive-

definite, for ∀x , 0, we shall have x′
[
KPPL2(γ̂)

−1
]

blki
x = x∗TKPPL2(γ̂)

−1x∗ > 0 ,

where x∗ = [01, . . . , x, . . . , 0n]
′ , 0. �
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A.2 Appendix Table 1

Table A.1: Estimating regression coefficients and variance components for varying
cluster sizes, based on 500 replicates, with n = 100 and λ01 = λ02.

True Strong D True Weak D

Value Bias ESD ASE CP Value Mean ESD ASE CP

λ0k 6 m̃i = 16 m̃i = 18
β1 1 -0.001 0.029 0.028 0.948 1 -0.002 0.030 0.030 0.940
β2 -1 -0.001 0.028 0.029 0.944 -1 0.001 0.030 0.030 0.944
D[1, 1] 0.7 -0.031 0.105 0.107 0.900 0.25 -0.006 0.046 0.043 0.894
D[2, 2] 1.2 -0.047 0.193 0.179 0.874 0.25 -0.001 0.044 0.044 0.926
D[1, 2] 0.2 -0.038 0.101 0.099 0.916 0.125 -0.006 0.033 0.033 0.938
λ0k 15 m̃i = 40 m̃i = 45
β1 1 -0.001 0.018 0.018 0.952 1 -0.001 0.019 0.019 0.954
β2 -1 -0.000 0.018 0.018 0.958 -1 -0.000 0.018 0.019 0.964
D[1, 1] 0.7 -0.014 0.104 0.102 0.908 0.25 -0.005 0.041 0.038 0.902
D[2, 2] 1.2 -0.016 0.163 0.171 0.920 0.25 -0.005 0.040 0.038 0.930
D[1, 2] 0.2 -0.018 0.099 0.095 0.932 0.125 -0.005 0.031 0.029 0.922

m̃i: median of mi.
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APPENDIX B

An Estimating Equation Framework for a Flexible

Class of Semiparametric Frailty Models

B.1 Proof: Second Moment of a Non-stationary Poisson Pro-

cess

For an arbitary non-stationary Poisson process N(t) whose event rate satisfies

E(dN(t)) = λ(t)dt = dΛ(t) and consequently E(N(t)) = Λ(t), one can show that

E(dN(t)) =dΛ(t) ' dΛ(t) + [dΛ(t)]2

=E([dN(t)]2) = E([N(t) − N(t−)]2) = E(N(t)2 + N(t−)2 − 2N(t)N(t−))

=E(N(t)2) + E(N(t−)2) − 2E(N(t)N(t−))

=E(N(t)2) + E(N(t−)2) − 2E(dN(t)N(t−) + N(t−)2)

=E(N(t)2) − E(N(t−)2) − 2E(dN(t))E(N(t−)) by independent increments

=E(d[N(t)2]) − 2dΛ(t)Λ(t−) = E(d[N(t)2]) − 2dΛ(t)Λ(t)

=E(d[N(t)2]) − d[Λ(t)2],
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and consequently

E(N(t)) = E([N(t)2]) − [Λ(t)2] = Var(N(t)).

B.2 Other Estimating Methods for Model A

B.2.1 Estimation via Generalized Method of Moments

In this subsection, we intend to derive the influence functions based on the two

moment conditions. For the first moment given in (3.7), the influence functions for

subject i are

g1(zi, β1) = w1i z̄1i(miF−1(ci) − eβ
′
1 z̄1i ), (B.1)

where the most efficient weight function is w1i = eβ̂
′
1 z̄1i/Ê[(MiF−1(Ci) − eβ

′
1 Z̄1i )2],

though for convenience, we usually set them to be w1i = 1. The shape distribution

function F(t) is unobserved so we replace it with F̂(t). The estimator β̂1 solves

1

n

n∑
i=1

g1(zi, β1) = 0, (B.2)

which can be solved by Newton-Raphson. The first derivative of (B.2) with respect to

β1 is −1/n
∑n

i=1 w1i exp(β′1 z̄1i) z̄1i z̄
′
1i. The final estimate β̂1 = (β̂0, β̂

′)′, where Λ̂0(τ) =

exp(β̂0) and β̂ is the estimated effects from the covariates. As follows, we have

the estimates for the baseline (not just the shape distribution F̂(t)) from Λ̂0(t) =

Λ̂0(τ)F̂(t).

Based on the second moment condition (3.9), we obtain the second batch of in-

fluence functions

g2(zi, β2) = w2i z̄2i((m2
i − mi)F−2(ci) − eβ

′
2 z̄2i ), (B.3)
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where βσ = 2 ln(Λ0(τ)) + ln(E(γ2)) and z̄2i = [2z
′
i, 1]
′.

1

n

n∑
i=1

g1(zi, β1) = 0, (B.4)

which can be solved by Newton-Raphson. The first derivative of (B.4) with respect to

β1 is −1/n
∑n

i=1 w1i exp(β′1 z̄1i) z̄1i z̄
′
1i. The final estimate β̂1 = (β̂0, β̂

′)′, where Λ̂0(τ) =

exp(β̂0) and β̂ is the estimated effects from the covariates.

Let the regression parameter β have p elements, such that the total number of

parameters θ = (β0, β
′, βσ)

′ under estimation is p + 2. Note that if we stack the two

influence functions together, g(zi; θ) = [g1(zi; β1)
′, g2(zi; β2)

′]′, we can formulate a

combined group of equations

gn(θ) =
1

n

n∑
i=1

g(zi; θ) = 0. (B.5)

Note that gn(θ) has dimension 2p + 2, which is larger than the dimension of the

parameters we are estimating. Generally, B.5 cannot be solved exactly.

One may utilize GMM for the parameter estimation (Hansen, 1982; Hansen et al.,

1996). The objective function for the GMM can be defined as

θ̂ = arg min
θ

gn(θ)
′Wngn(θ), (B.6)

where Wn is a positive semi-definite matrix with a well-defined limit. The optimal

weight matrix is the inverse of the variance matrix of
√

ngn(θ), or its consistent esti-

mator

Wn =
[
ngn(θ̂)gn(θ̂)

′
]−1

. (B.7)

Since we do not know F(t), we replace it with its consistent estimator F̂(t). The

influence functions are then specified as ĝn(θ̂) =
∑n

i=1 ĝ(zi; θ). Similar to the estimator

from Subsection 3.1, we plug in F̂(t) from (3.6), such that the objective function
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becomes

θ̂ = arg min
θ

ĝn(θ)
′Wn ĝn(θ). (B.8)

B.2.2 Estimation via Empirical Likelihood

We also develop a method based on empirical likelihood (EL)(Smith, 1997). As

noted in Newey and Smith (2004) and Anatolyev (2005), the second order bias of an

EL estimator is generally smaller than the bias of the corresponding GMM estima-

tor. In contrast to GMM, the bias does not increase with the number of moment

conditions. Moreover, efficiency improves when the number of conditions increases.

With these benefits, we are proposing to obtain the estimates of θ through empiri-

cal likelihood. The estimator is defined as the solution to the following constrained

minimization problem:

θ̂ = arg max
pi,θ

n∏
i=1

pi, (B.9)

subject to

pi > 0,
n∑

i=1

pi = 1, and
n∑

i=1

g(zi; θ)pi = 0 (B.10)

B.2.3 Simulation Results

The three proposed methods, EE, GMM and EL-based estimations (the latter two

were implemented in the R package gmm (Chaussé, 2010)). Each simulation exper-

iment sample size is 500, with 1000 replicates. Bivariate covariates were generated

from a Bernoulli(0.5) and a Normal(0, 1), denoted as Zi = (Z1i, Z2i)
′, with regression

coefficients β = (0.5,−0.3). The distributions for frailties we considered here include

Gamma (γi ∼ Gamma(1, 1)) and log-normal (γi ∼ LogNorm(− log(2)/2, log(2))), with

unit mean and variance. For each subject, events were generated following exponen-

tial distribution with event rate λi(t) = 0.25 exp(β′zi)γi. Let the ending time of the

study is τ = 10 and the censoring time Ci ∼ Uni f orm(2, 10), such that about 40% of

the subjects were censored ending up with 0 events observed. Note that we did not
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Table B.1: Gamma frailty: n=500

True EE GMM EL

Value Mean ESE Mean ESE Mean ESE

Λ0(τ) 2.5 2.512 0.276 2.475 0.278 2.502 0.272
β[1] 0.5 0.494 0.117 0.490 0.122 0.493 0.123
β[2] -0.3 -0.298 0.059 -0.281 0.061 -0.287 0.065
Var(γ) 1 0.978 0.169 0.910 0.144 0.948 0.147
time(s) - 0.069 - 0.163 - 1.88 -

Table B.2: Log-normal frailty: n=500

True EE GMM EL

Value Mean ESE Mean ESE Mean ESE

Λ0(τ) 2.5 2.512 0.287 2.458 0.283 2.491 0.286
β[1] 0.5 0.500 0.118 0.493 0.114 0.498 0.117
β[2] -0.3 -0.295 0.060 -0.282 0.057 -0.286 0.066
Var(γ) 1 0.969 0.279 0.807 0.193 0.876 0.194
time(s) - 0.056 - 0.142 1.719 -

include bootstrap for standard error estimation in Tables B.1 and B.2.

In both Gamma and lognormal cases, the proposed EE estimation method worked

best: most accurate and fast. We also did extra experiments with n = 10, 000, the

estimation results using GMM were quite accurate and efficient, but appeared no

obvious advantages in comparison with EE (data not shown here). In sum, we gave

up the idea of using GMM or EL to improve the estimating efficiency. It seems that,

when the two moment conditions are highly correlated, adding the second moment

condition does not help much, but instead, causes a lot of instability.

B.3 Derivation for the IID Representation of
√

n(F̂(t) − F(t))

We derive the iid representation of
√

n(F̂(t)−F(t)) for shared frailty model (Model

A) and the correlated frailty model (Model B) following the similar proofs of Wang

et al. (2001) in its appendix, then we derive the iid representation of
√

n(F̂(t) − F(t))
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of the nested frailty model (Model C).

Let G(t) = E[γ exp(β′Z)I(C ≥ t)] =∈ ττγ exp(β′z)I(c ≥ t)dW(c, γ, z). Then we

use G(t) to define R(t) = G(t)Λ0(t) and Q(t) =∈ τtG(u)dΛ0(u). Since F(τ) = 1 by its

definition, the equality holds that

− ln F(t) = ln F(τ) − ln F(t) =

τ∫
t

dF(u)
F(u)

=

τ∫
t

dQ(u)
R(u)

.

It can be easily shown that their unbiased estimators are R̂(t) = 1/n
∑n

i=1

∑mi

j=1 I(ti j ≤

u ≤ ci) and Q̂(t) = 1/n
∑n

i=1

∑mi

j=1 I(ti j ≤ u), satisfying E(R̂(t)) = R(t) and E(Q̂(t)) =

Q(t).

According to the definition of F̂(t) in (3.6),

F̂(t) =
∏
S(l)>t

(
1 −

d(l)
N(l)

)
=

∏
t<u≤τ

(
1 −

dQ̂(u)

R̂(u)

)

Equivalently, we have

− ln F̂(t) = −

τ∫
t

ln

(
1 −

dQ̂(u)

R̂(u)

)
Note that if the assumptions A1-2 are satisfied, we have R(u) > 0 for ∀u ∈ [τ0, τ],

where τ0 > inf{t : Λ0(t) > 0}. As n → ∞, both R̂(t) and Q̂(t) converge almost surely

to R(t) and Q(t) in u ∈ [τ0, τ]. Through approximation method for the product-limit

estimators and because of the inequality 0 ≤ − ln(1 − v) − v ≤ v2(1 − v) for v ∈ [0, 1),

one can show that for ∀t ∈ [τ0, τ], we have

−

τ∫
t

ln

(
1 −

dQ̂(u)

R̂(u)

)
−

τ∫
t

dQ̂(u)

R̂(u)
= − ln F̂(t) −

τ∫
t

dQ̂(u)

R̂(u)

a.s.
→ 0.

As follows, through a continuous mapping, because Q̂(u) = Q(u) + Op(n−
1
2 ) and
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R̂(u) = R(u) +Op(n−
1
2 ), then at each t ∈ [τ0, τ], we have

F̂(t) = exp
©«−

τ∫
t

dQ̂(u)

R̂(u)
ª®¬ + op(n−

1
2 )

= exp
©«−

τ∫
t

dQ(u)
R(u)

ª®¬ +Op(n−
1
2 )

= F(t) +Op(n−
1
2 ).

(B.11)

Thus F̂(t) is a consistent estimator for F(t), while for its iid representation, we will

need to figure out the Op(n−
1
2 ) part in the above equations (B.11).

− ln F̂(t) =

τ∫
t

dQ̂(u)

R̂(u)
=

τ∫
t

dQ̂(u)
R(u)

+

τ∫
t

dQ̂(u)

(
1

R̂(u)
−

1

R(u)

)

=

τ∫
t

dQ(u)
R(u)

+

τ∫
t

dQ̂(u) − dQ(u)
R(u)

+

τ∫
t

dQ̂(u)
R(u) − R̂(u)

R̂(u)R(u)

= − ln F(t) +

τ∫
t

dQ̂(u) − dQ(u)
R(u)

+

τ∫
t

dQ(u)
R(u) − R̂(u)

R(u)2

+

τ∫
t

[dQ̂(u) − dQ(u)]
R(u) − R̂(u)

R(u)2
+

τ∫
t

dQ̂(u)
R(u) − R̂(u)

R(u)

(
1

R̂(u)
−

1

R(u)

)

= − ln F(t) +

τ∫
t

dQ̂(u) − dQ(u)
R(u)

+

τ∫
t

dQ(u)
R(u) − R̂(u)

R(u)2
+ op(n−

1
2 )

= − ln F(t) +

τ∫
t

dQ̂(u)
R(u)

−

τ∫
t

dQ(u)R̂(u)
R(u)2

+ op(n−
1
2 )

(B.12)
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Hereafter, we have

ln F̂(t) − ln F(t) =

τ∫
t

dQ(u)R̂(u)
R(u)2

−

τ∫
t

dQ̂(u)
R(u)

+ op(n−
1
2 )

=
1

n

n∑
i=1

bi(t) + op(n−
1
2 ),

(B.13)

where

bi(t) =
mi∑
l=1


τ∫

t

I(til ≤ u ≤ ci)dQ(u)
R(u)2

−
I(t < til ≤ τ)

R(til)

 . (B.14)

It is natural to see that

E{bi(t)} = E

{
1

n

n∑
i=1

bi(t)

}
= E


τ∫

t

dQ(u)R̂(u)
R(u)2

−

τ∫
t

dQ̂(u)
R(u)

 = 0. (B.15)

Hence we have the iid representation for
√

n(ln F̂(t) − ln F(t))

√
n(ln F̂(t) − ln F(t)) =

1
√

n

n∑
i=1

bi(t) + op(1). (B.16)

By delta method, we obtain the iid representation of
√

n(F̂(t) − F(t)) is

√
n(F̂(t) − F(t)) =

F(t)
√

n

n∑
i=1

bi(t) + op(1). (B.17)

For the correlated frailty model (Model B), we introduce in additional subscript

j ∈ {1, 2} for the two different event types. Let G j(t) = E[γ j exp(β′jZ)I(Cj ≥ t)],

and thus we have Rj(t) = G j(t)Λ0 j(t) and Q j(t) =∈ τtG j(u)dΛ0 j(u). Note that for the

shape function of each event type, we can show following almost identical steps in

(B.12)-(B.17) that

√
n(F̂j(t) − Fj(t)) =

Fj(t)
√

n

n∑
i=1

b ji(t) + op(1),
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where b ji(t) is given by

b ji(t) =
mji∑
l=1


τ∫

t

I(t jil ≤ u ≤ c ji)dQ j(u)
Rj(u)2

−
I(t < t jil ≤ τ)

Rj(t jil)

 .
For the nested frailty model (Model C),

√
K(F̂(t)−F(t)) can be written into the sim-

ilar form of (B.17). Because of the independence between Ik and (Nki(t), cki, εk, γki, zki),

the G function will become

Gc(t) =E

{
I1∑

i=1

ε1γ1i exp(β′Z)I(C1i ≥ t)

}
= E(I1)E {ε1γ11 exp(β′Z)I(C11 ≥ t)}

=ν

τ∫
0

εγ exp(β′z)I(c ≥ t)dW(c, ε, γ, z),

(B.18)

where we denote ν = E(I1) = E(Ik).

Then we define Rc(t) = Gc(t)Λ0(t) and Qc(t) =∈ τtGc(u)dΛ0(u), and their unbiased

estimators are R̂c(t) = 1/K
∑K

k=1

∑Ik
i=1

∑mki

j=1 I(tki j ≤ u ≤ ci) and Q̂c(t) = 1/K
∑K

k=1

∑Ik
i=1

∑mki

j=1 I(tki j ≤

u), satisfying E(R̂c(t)) = Rc(t) and E(Q̂c(t)) = Qc(t). Thus, we end up with the iid

representation of
√

K(F̂(t) − F(t)) for Model C:

√
K(F̂(t) − F(t)) =

F(t)
√

K

K∑
i=1

bck(t) + op(1), (B.19)

where

bck(t) =
Ik∑

i=1

mki∑
l=1


τ∫

t

I(tkil ≤ u ≤ ci)dQc(u)
R2

c (u)
−

I(t < tkil ≤ τ)

Rc(tkil)

 . (B.20)
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B.4 Asymptotic Properties for θ̂

Taking the shared frailty model (Model A) as an example, which can be extended

to correlated frailty model (Model B) and nested frailty model (Model C) analogously.

√
n

[
1

n

n∑
i=1

z̄i

(
mi

F̂(ci)
− exp(θ′ z̄i)

)]
=
√

n

{
1

n

n∑
i=1

z̄i

(
mi

F̂(ci)
−

mi

F(ci)

)
+

1

n

n∑
i=1

z̄i

(
mi

F(ci)
− exp(θ′ z̄i)

)}
=
√

n

{∫ (
m z̄[F(c) − F̂(c)]

F(c)2

)
dV(z,m, c)

+
1

n

n∑
i=1

z̄i

(
mi

F(ci)
− exp(θ′ z̄i)

)}
+ op(1)

=
1
√

n

n∑
i=1

{
−

∫
z̄mbi(c)

F(c)
dV(z,m, c) + z̄i

(
mi

F(ci)
− exp(θ′ z̄i)

)}
+ op(1)

=
1
√

n

n∑
i=1

ei + op(1),

(B.21)

where ei = −
∫

x̄1mbi(c)
F(c) dV(z,m, c) + w1i z̄i

(
mi

F(ci)
− exp(θ′ z̄i)

)
, and V(z,m, c) is the joint

probability measure for (z,m, c). Since E(bi(t)) = 0 and E( mi

F(ci)
− exp(θ′ z̄i) = 0, we

have E(ei) = 0

Let θ be the unique true value in a compact parameter space, through some

standard procedures for Z-estimation, we have θ̂ →p θ, and the following equation

through a Taylor expansion:

0 =
1
√

n

n∑
i=1

ei +

(
1

n

n∑
i=1

∂ei

∂θ

)
√

n(θ̂ − θ)

⇒
√

n(θ̂ − θ) =

(
−

1

n

n∑
i=1

∂ei

∂θ

)−1
1
√

n

n∑
i=1

ei + op(1) = E
[
−
∂ei

∂θ

]−1
1
√

n

n∑
i=1

ei + op(1)

(B.22)
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Let ψ = E
[
−
∂ei
∂θ

]
and Σ = E(eie

′
i), thus we obtain

√
n(θ̂ − θ) =

ψ−1

√
n

n∑
i=1

ei + op(1), (B.23)

which converges weakly to the multivariate normal distribution with mean 0 and

variance covariance matrix ψ−1Σ(ψ′)−1

For Model C, we similar derivations that

√
K

[
1

K

K∑
k=1

Ik∑
i=1

z̄ki

(
mki

F̂(cki)
− exp(θ′ z̄ki)

)]
=
√

K

{
1

K

K∑
k=1

Ik∑
i=1

z̄i

(
mki

F̂(cki)
−

mki

F(cki)

)
+

1

K

K∑
k=1

Ik∑
i=1

z̄ki

(
mki

F(cki)
− exp(θ′ z̄ki)

)}
=
√

K

{
ν

∫ (
m z̄[F(c) − F̂(c)]

F(c)2

)
dV(z,m, c)

+
1

K

Ik∑
i=1

z̄ki

(
mki

F(cki)
− exp(θ′ z̄ki)

)}
+ op(1)

=
1
√

K

K∑
k=1

{
−ν

∫
m z̄bck(c)

F(c)
dV(z,m, c) +

Ik∑
i=1

z̄ki

(
mki

F(cki)
− exp(θ′ z̄ki)

)}
+ op(1)

=
1
√

K

K∑
k=1

eck + op(1),

(B.24)

where eck = −ν
∫ m z̄bck (c)

F(c) dV(z,m, c) +
∑Ik

i=1 z̄ki

(
mki

F(cki)
− exp(θ′ z̄ki)

)
. Recall that ν =

E(Ik) and is supposed to be independent of (Z, M,C) based on the assumptions.
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B.5 Proof of Asymptotic Properties for the variance compo-

nents

We first derive the iid representation for each components and then combine them

together using delta method.

√
n

{
1

n

n∑
i=1

(m2
i − mi)F̂(ci)

−2 − Λ2
0(τ)E[exp(2β′Z)]E(γ2)

}
=
√

n

{
1

n

n∑
i=1

(m2
i − mi)F(ci)

−2 −

∫
(m2 − m)2F(c)(F̂(c) − F(c))

F(c)4
dH(m, c)

−Λ2
0(τ)E[exp(2β′Z)]E(γ2)

}
+ op(1)

=
√

n

{
1

n

n∑
i=1

(m2
i − mi)F(ci)

−2 −

∫
(m2 − m)2bi(c)

F(c)2
dH(m, c)

−Λ2
0(τ)E[exp(2β′Z)]E(γ2)

}
+ op(1)

=
1
√

n

n∑
i=1

gi + op(1),

(B.25)

where gi = (m2
i − mi)F(ci)

−2 −
∫
(m2−m)2bi(c)

F(c)2 dH(m, c) − Λ2
0(τ)E[exp(2β′Z)]E(γ2) and

H(m, c) is the joint probability measure of (m, c). Note that we can also show that

E(gi) = 0.

Let [ψ−1ei]1 and [ψ−1ei]−1 denote the first entry and the rest entries (without the

first one) of ψ−1ei respectively. In other words, ψ−1ei = [[ψ
−1ei]1, [ψ

−1ei]
′
−1]
′. Then

we have

√
n
(
ln Λ̂0(τ) − lnΛ0(τ)

)
=

1
√

n

n∑
i=1

[ψ−1ei]1 + op(1)

⇒
√

n
(
ln Λ̂2

0(τ) − lnΛ2
0(τ)

)
=

2
√

n

n∑
i=1

[ψ−1ei]1 + op(1)

⇒
√

n
(
Λ̂

2
0(τ) − Λ

2
0(τ)

)
=

2Λ2
0(τ)
√

n

n∑
i=1

[ψ−1ei]1 + op(1)

(B.26)
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One can rewrite the regression parameters from (B.21) into

√
n(β̂ − β) =

1
√

n

n∑
i=1

[ψ−1ei]−1 + op(1), (B.27)

which also implies that β̂ = β + op(1), and thus β̂′z →p β
′z for any bounded z.

As follows, if the covariates Z are bounded in a compact subspace of Rq, one can

develop a Taylor expansion that

exp(β̂′z) = exp(β′z) + exp(β′z)(β̂′z − β′z) +Op(1/n)

= exp(β′z) + exp(β′z)z′(β̂ − β) + op(n−
1
2 )

As follows, we obtain the iid representation for the exponential covariate part is

√
n

[
1

n

n∑
i=1

exp(2β̂′zi) − E {exp(2β′Z)}

]
=
√

n

[
1

n

n∑
i=1

{
exp(2β̂′zi) − exp(2β′zi)

}
+ exp(2β′zi) − E(exp(2β′Z))

]
=
√

n

[
1

n

n∑
i=1

{
exp(2β′zi)z

′
i(β̂ − β)

}
+ exp(2β′zi) − E(exp(2β′Z))

]
+ op(1)

=
√

n

{∫
[2 exp(2β′z)z′] dU(z)(β̂ − β) +

1

n

n∑
i=1

exp(2β′zi) − E(exp(2β′Z))

}
+ op(1)

=
1
√

n

n∑
i=1

{
2E[exp(2β′Z)Z′][ψ−1ei]−1 + exp(2β′zi) − E(exp(2β′Z))

}
+ op(1)

=
1
√

n

n∑
i=1

hi + op(1),

(B.28)

where

hi = 2E[exp(2β′Z)Z′][ψ−1ei]−1 + exp(2β′zi) − E(exp(2β′Z)).

Note that since E(ei) = 0, it would be straightforward to show that E(hi) = 0.
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We combine all the previously derived iid representations and form the iid repre-

sentation for
√

n
(
Ê(γ2) − E(γ2)

)
using the delta method:

√
n
(
Ê(γ2) − E(γ2)

)
=
√

n

{ ∑n
i=1(m

2
i − mi)F̂(ci)

−2

Λ̂0(τ)2
∑n

i=1 exp(2β̂′zi)
− E(γ2)

}
=

{
1

Λ2
0(τ)E[exp(2β′Z)]

,−
E(γ2)

Λ2
0(τ)

,−
E(γ2)

E[exp(2β′Z)]

}
×

1
√

n

n∑
i=1

{
gi, 2Λ

2
0(τ)[ψ

−1ei]1, hi
}′
+ op(1)

=
1
√

n

n∑
i=1

{
gi

Λ2
0(τ)E {exp(2β′Z)}

− 2E(γ2)[ψ−1ei]1 −
E(γ2)hi

E[exp(2β′Z)]

}
=

1
√

n

n∑
i=1

si + op(1)

(B.29)

where si are

si =

{
gi

Λ2
0(τ)E {exp(2β′Z)}

− 2E(γ2)[ψ−1ei]1 −
2E(γ2)hi

E[exp(2β′Z)]

}
. (B.30)

Thus via the central limit theorem, the simple estimator converges to a mean-0 normal

distribution with variance E(s2
i ). Thus the variance Var(γ) = E(γ2) − 1 also enjoys

the identical asymptotic normality. Note here, we cannot ensure its positive value

based on the estimating equation given in (3.10).

The derivation of asymptotic distribution of the variance estimators in Model B

follow a similar vein as in Model A. In addition, the covariance E(γ1γ2) in Model B can

also be represented in an iid form for its asymptotic distribution derivation. Following

the delta method, we first derive the iid representation of
√

n
{
F̂1(t1)F̂2(t2) − F1(t1)F2(t2)

}
:

√
n
{
F̂1(t1)F̂2(t2) − F1(t1)F2(t2)

}
=

1
√

n

n∑
i=1

F1(t1)F2(t2) {b1i(t1) + b2i(t2)} + op(1),
(B.31)
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where 1/
√

n
∑n

i=1 b1i(t1) and 1/
√

n
∑n

i=1 b2i(t2) are iid representations of
√

n{F̂1(t)−F1(t)}

and
√

n{F̂2(t) − F2(t)} respectively. Thus one can easily see that

√
n
{
F̂1(t1)−1F̂2(t2)−1 − F1(t1)−1F2(t2)−1

}
= −

1
√

n

n∑
i=1

F1(t1)−1F2(t2)−1 {b1i(t1) + b2i(t2)} + op(1).
(B.32)

Therefore, the iid representation of the covariance of the two correlated frailties

in Model B can be derived as

√
n

{
1

n

n∑
i=1

(m1im2i)F̂(c1i)
−1F̂(c2i)

−1 − Λ2
0(τ)E[exp {(β1 + β2)

′Z}]E(γ1γ2)

}
=
√

n

[
1

n

n∑
i=1

(m1im2i)

{
F̂(c1i)

−1F̂(c2i)
−1 − F(c1i)

−1F(c2i)
−1

}
+{

m1im2iF(c1i)
−1F(c2i)

−1 − Λ2
0(τ)E[exp(2β′Z)]E(γ2)

}]
=
√

n
[∫

m1m2{F̂(c1i)
−1F̂(c2i)

−1 − F(c1i)
−1F(c2i)

−1}dH(m1,m2, c1, c2)+

1

n

n∑
i=1

{
m1im2i

F1(c1i)F2(c2i)
− Λ01(τ)Λ02(τ)E[exp {(β1 + β2)

′Z}]E(γ1γ2)

}]
+ op(1)

=
1
√

n

n∑
i=1

[
−

∫
m1m2

F(c1)F(c2)
{b1i(c1) + b2i(c2)} dH(m1,m2, c1, c2) +{

m1im2i

F1(c1i)F2(c2i)
− Λ01(τ)Λ02(τ)E[exp {(β1 + β2)

′Z}]E(γ1γ2)

}]
=

1
√

n

n∑
i=1

li,

(B.33)

where E(li) = 0 because E(b1i) = E(b2i) = 0.

167



Moreover, following the similar derivation in (B.28), one is able to show that

√
n

[
1

n

n∑
i=1

exp{(β̂′1 + β̂
′
2)zi} − E{exp((β′1 + β2)

′Z)}

]
=
√

n

[
1

n

n∑
i=1

exp{(β̂′1 + β̂
′
2)zi} − exp{(β′1 + β

′
2)zi}

exp{(β′1 + β
′
2)zi} − E{exp((β′1 + β2)

′Z)}
]

=
√

n
[
E {exp((β1 + β2)

′Z)Z′} (β̂1 + β̂2 − β1 − β2)+

1

n

n∑
i=1

exp{(β′1 + β
′
2)zi} − E{exp((β′1 + β2)

′Z)}

]
+ op(1)

=
1
√

n

n∑
i=1

pi + op(1),

(B.34)

where pi are defined as

pi =E {exp((β1 + β2)
′Z)Z′} ([ψ−1

1 e1i]−1 + ψ
−1
2 e2i]−1)+

+ exp{(β′1 + β
′
2)zi} − E{exp((β′1 + β2)

′Z)}.

(B.35)

Note that e1i and e2i are the iid representation of θ1 = [lnΛ01(τ), β
′
1]
′ and θ2 =

[lnΛ02(τ), β
′
2]
′, and we also have ψ1 = E

[
−
∂e1i
∂θ1

]
and ψ2 = E

[
−
∂e2i
∂θ2

]
.

With the additional two iid representations for the baseline rates for the two event

types, i.e.
√

n(Λ̂01(τ)−Λ01(τ)) = 1/
√

n
∑n

i=1Λ01(τ)[ψ
−1
1 e1i]1 and

√
n(Λ̂02(τ)−Λ02(τ)) =

1/
√

n
∑n

i=1Λ02(τ)[ψ
−1
2 e2i]1, we obtain the iid representation for the product of two

baseline estimators

√
n(Λ̂01(τ)Λ̂02(τ) − Λ01(τ)Λ02(τ))

=
1
√

n
Λ01(τ)Λ02(τ)

n∑
i=1

([ψ−1
1 e1i]1 + [ψ

−1
1 e2i]1) + op(1).

(B.36)

Follow the lines of (B.29) using the delta method, we obtain the iid representation
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of
√

n
(
Ê(γ1γ2) − E(γ1γ2)

)
to be:

√
n
(
Ê(γ1γ2) − E(γ1γ2)

)
=

1
√

n

n∑
i=1

[
li

Λ01(τ)Λ02(τ)E{exp((β1 + β2)
′Z)}

− E(γ1γ2){[ψ
−1
1 e1i]1 + [ψ

−1
2 e2i]1}

−
E(γ1γ2)pi

E{exp((β1 + β2)
′Z)}

]
+ op(1)

=

n∑
i=1

qi + op(1),

(B.37)

where qi forms the iid representation and E(qi) = 0. Thus with assumptions A1-5,

we conclude that
√

n
(
Ê(γ1γ2) − E(γ1γ2)

)
converges weakly towards a mean-0 normal

distribution with variance E(q2
i ). The covariance term cov(γ1, γ2) = E(γ1γ2) − 1 is

supposed to have the identical asymptotic normality.

Through a delta method, the asymptotic normality of the variance components

in Model A; and the covariance and correlation coefficient (ρ̂) in Model B.

√
n(ρ̂ − ρ) =

1
√

n

n∑
i=1

[
qi√

Var(γ1)Var(γ2))
−

s1i

2Var(γ1)
3
2Var(γ2)

1
2

−
s2i

2Var(γ1)
1
2Var(γ2)

3
2

]
+ op(1)

=

n∑
i=1

ri + op(1),

(B.38)

where s1i and s2i are iid representation for the variance of γ1 and γ2 in Model B follow-

ing (B.29). Henceforth,
√

n(ρ̂ − ρ) converges weakly to a mean-0 normal distribution

with variance E(r2
i ).

Now we continue to derive the consistency of the variance estimators in Model C.

The asymptotic normality of
√

K(Ê(ε2γ2) − E(ε2γ2)) can be easily derived following
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the similar derivations in (B.25)-(B.29) by treating the sum of observations in each

cluster/hospital as K iid observations and assuming that K is sufficiently large (K →

∞).

√
K(Ê(ε2γ2) − E(ε2γ2)) =

K∑
k=1

sck + op(1), (B.39)

where we define

sck =

{
gck

νΛ2
0(τ)E {exp(2β′Z)}

− 2E(ε2γ2)[ψ−1
c eck]1 −

E(ε2γ2)hck

νE[exp(2β′Z)]

}
. (B.40)

Note that eck is defined in (B.24), ψc = E
[
−
∂eck
∂θ

]
, gck and hck are defined as below

gck =

Ik∑
i=1

(m2
i −mi)F(ci)

−2−ν

∫
(m2 − m)2bck(c)

F(c)2
dH(m, c)−νΛ2

0(τ)E[exp(2β′Z)]E(ε2γ2);

(B.41)

hck =

Ik∑
i=1

exp(2β′zi) + 2νE[exp(2β′Z)Z′][ψ−1eck]−1 − νE(exp(2β′Z)). (B.42)

The iid representation in (B.39) and its convergence to a mean-0 normal distribution

suggests that Ê(ε2γ2) →p E(ε2γ2). Moreover, the iid representations for the following

equations

√
K

[
1

K

K∑
k=1

{
Ik∑

i=1

(m2
ki − mki)F̂−2(cki)

}
− νΛ2

0(τ)E{exp(2β′Z)E(ε2γ2)}

]
=

1
√

K

K∑
k=1

gck + op(1)

(B.43)

and

√
K(Λ̂2

0(τ) − Λ
2
0(τ)) =

2Λ2
0(τ)
√

K

K∑
k=1

[ψ−1
c eck]1 + op(1), (B.44)
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also imply that 1
K

∑K
k=1

{∑Ik
i=1(m

2
ki − mki)F̂−2(cki)

}
→p νΛ2

0(τ)E{exp(2β′Z)E(ε2γ2)}

and Λ̂2
0(τ) →p Λ

2
0(τ). Or equivalently, one may simply refer to the weak law of

large numbers and the continuous mapping to obtain these conclusions directly.

In order to identify the variance from the two different sources in Model C, we

plug in the borrow-strength estimator ε̂k =
∑Ik

i=1[mki/F̂(cki)]/Λ̂0(τ)/
∑Ik

i=1 eβ̂
′zki , and it

can be shown that within each facility (indexed by k), ε̂k = εk + Op(I
− 1
2

k ). Note that

this is with respect to the conditional probability measure P(· | {εk, k = 1, . . . ,K}).

The conditional convergence can also be shown to satisfy in the marginal probability

measure (not conditional on εk) using the dominant convergence theorem. When

Ik are large, it is not hard to show the convergence in the conditional probability

Ê(γ2) →p E(γ2), which also implies Ê(ε2) →p E(ε2). One can imagine that, the

accuracy of the estimation for the variance components is largely dependent on the

estimation quality of ε̂k , and thus the facility size Ik .

An alternative method is to estimate E(ε2) using a U-statistic method and thus

obtain the estimation of E(γ2) directly, instead of using the borrow-strength estimator

given in (3.14). The estimator of E(ε2) derived from (3.16) is

Ê(ε2) =

∑K
k=1 I(Ik ≥ 2)

∑
(i, j)∈C2,Ik

mkimk j F−1(Cki)F−1(Ck j)∑K
k=1 I(Ik ≥ 2)

∑
(i, j)∈C2,Ik

exp(β̂′(zki + zk j))Λ̂
2
0(τ)

. (B.45)

To obtain the iid representation of (B.45), we need first derive the iid representations
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that are similar to those in (B.43) and (B.44).

√
K


1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

mkimk j F̂−1(cki)F̂−1(ck j)

 −
ωE{exp(β′(Z1 + Z2))}Λ

2
0(τ)E(ε

2)
]

=
√

K
[
ω

∫
m1m2

{
F̂−1(c1)F̂−1(c2) − F−1(c1)F−1(c2)

}
dH(m1,m2, c1, c2)+

1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

mkimk j F−1(Cki)F−1(Ck j) − ωE{exp(β′(Z1 + Z2))}Λ
2
0(τ)E(ε

2)

 + op(1)

=
1
√

K

K∑
k=1

[
−ω

∫
m1m2

F(c1)F(c2)
{bk(c1) + bk(c2)}dH(m1,m2, c1, c2)+

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

mkimk j F−1(Cki)F−1(Ck j) − ωE{exp(β′(Z1 + Z2))}Λ
2
0(τ)E(ε

2)

 + op(1)

=
1
√

K

K∑
k=1

uk + op(1),

(B.46)

where ω = E{I(Ik ≥ 2)Ik(Ik − 1)/2}, E(uk) = 0 and it is defined to be

uk = −ω

∫
m1m2

F(c1)F(c2)
{bk(c1) + bk(c2)}dH(m1,m2, c1, c2)+

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

mkimk j F−1(Cki)F−1(Ck j) − ωE{exp(β′(Zi + Z j))}Λ
2
0(τ)E(ε

2).

We follow the similar arguments in (B.28) and (B.34), assuming that K is sufficiently

large, i.e. K → ∞. Then we can obtain the following iid representation for the
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exponential covariate part:

√
K


1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β̂′(zki + zk j))

 − ωE {exp(β′(Z1 + Z2))}


=
√

K


1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

{
exp(β̂′(zki + zk j)) − exp(β′(zki + zk j))

}
+

1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j)) − ωE {exp(β′(Z1 + Z2))}


=
√

K


1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j))(zki + zk j)

 (β̂ − β)+
1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j)) − ωE {exp(β′(Z1 + Z2))}

 + op(1)

=
√

K
[
ωE {exp(β′(Z1 + Z2))(Z1 + Z2)

′} (β̂ − β)+

1

K

K∑
k=1

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j)) − ωE {exp(β′(Z1 + Z2))}

 + op(1)

=
1
√

K

K∑
k=1

[
ωE {β′(Z1 + Z2)(Z1 + Z2)

′} [ψ−1
c eck]−1+

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j)) − ωE {exp(β′(Z1 + Z2))}

 + op(1)

=
1
√

K

K∑
k=1

vk + op(1),

(B.47)

where due to the independence between covariates from difference individuals, W(z1, z2) =

U(z1)U(z2), and

E {exp(β′(Z1 + Z2))} = E(exp(β′Z))2.
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Moreover, we can easily show that E(vk) = 0 and

vk = ωE {β′(Z1 + Z2)(Z1 + Z2)
′} [ψ−1

c eck]−1+

I(Ik ≥ 2)
∑

(i, j)∈C2,Ik

exp(β′(zki + zk j)) − ωE {exp(β′(Z1 + Z2))} .

Now combining the results in (B.44), (B.46) and (B.47), we obtain the iid rep-

resentation for the U-statistic estimator of E(ε2) via the delta method when K is

large:

√
K(Ê(ε2) − E(ε2))

=
1
√

K

K∑
k=1

{
uk

ωΛ2
0(τ)E {exp(β′Z)}2

− 2E(γ2)[ψ−1
c eck]1 −

E(γ2)vk

ωE{exp(β′Z)}2

}
+ op(1)

=
1
√

K

n∑
i=1

wk + op(1).

(B.48)

Henceforth, with the iid representation in (B.39), the iid representation for Ê(γ2) =

Ê(ε2γ2)/Ê(ε2) is given by

√
K

(
Ê(γ2) − E(γ2)

)
=

1
√

K

K∑
k=1

[
1

E(ε2)
sck −

E(γ2)

E(ε2)
wk

]
+ op(1)

=

K∑
k=1

yk + op(1),

(B.49)

where

yk =
1

E(ε2)
sck −

E(γ2)

E(ε2)
wk .

Since it is straightforward to show that E(wk) = E(yk) = 0, we conclude that the

U-statistic estimators converge weakly towards mean-0 normal distributions as given

in (3.4).
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B.6 Proof of Asymptotic Properties for θ̂ from GMM

The objective function (B.6) implies that

Qn(θ) = Gn(θ)Wngn(θ) = 0, (B.50)

where

Gn(θ) =
dgT

n (θ)

dθ
=

d ĝT
n (θ)

dθ
. (B.51)

The objective function (B.8) after plugging in the shape function estimates F̂(t) imples

that

Q̂n(θ) = Gn(θ)Wn ĝn(θ) = 0. (B.52)

Let

g(θ) = E [gn(θ)] = E [g(X ; θ)] (B.53)

G(θ) = E [Gn(θ)] =
dgT (θ)

dθ
. (B.54)

By the weak law of large numbers, we shall have gn(θ) →p g(θ) and Gn(θ) →p G(θ).

In addition, we define Q(θ) = G(θ)Wg(θ).

Let θ0 be the unique solution satisfying Q(θ0) = 0, and θ̂ be the GMM estimator

satisfying Q̂n(θ̂) = 0. Note that in Appendix B.3 we show that F̂(t) →p F(t), thus

supθ |Q̂n(θ) − Qn(θ)| →p 0.

0 ≤ sup
θ
|Q̂n(θ) − Q(θ)| ≤ sup

θ
|Q̂n(θ) − Qn(θ)| + sup

θ
|Qn(θ) − Q(θ)|

≤ sup
θ
|Q̂n(θ) − Qn(θ)| + sup

θ
|Gn(θ)Wngn(θ) − G(θ)Wngn(θ)|+

sup
θ
|G(θ)Wngn(θ) − G(θ)Wgn(θ)| + sup

θ
|G(θ)Wgn(θ) − G(θ)Wg(θ)| →p 0.

(B.55)

Thus we have θ̂ →p θ.
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Let θ̂ denote the solution for

0 = Q̂n(θ̂) = Qn(θ̂) +
[
Q̂n(θ̂) − Qn(θ̂)

]
(B.56)

For the second part of (B.56)

[
ĝn(θ̂) − gn(θ̂)

]
=

1

n

n∑
i=1


w1i x̄1imi

(
1

F̂(ci)
− 1

F(ci)

)
w2i x̄2i(m2

i − mi)

(
1

F̂2(ci)
− 1

F2(ci)

)
=

∫ 
w1 x̄1m

(
1

F̂(c)
− 1

F(c)

)
w2 x̄2(m2 − m)

(
1

F̂2(c)
− 1

F2(c)

) dV(w, x,m, y) + op(n−
1
2 )

= −

∫ 
w1 x̄1m

(
F̂(c)−F(c)

F2(c)

)
2w2 x̄2(m2 − m)

(
F̂(c)−F(c)

F3(c)

) dV(w, x,m, y) + op(n−
1
2 )

= −
1

n

n∑
i=1

∫ 
w1 x̄1m

(
bi(c)
F(c)

)
2w2 x̄2(m2 − m)

(
bi(c)
F2(c)

) dV(w, x,m, y) + op(n−
1
2 )

= −
1

n

n∑
i=1

qi + op(n−
1
2 ),

(B.57)

where

qi =

∫ 
w1 x̄1m

(
bi(c)
F(c)

)
2w2 x̄2(m2 − m)

(
bi(c)
F2(c)

) dV(w, x,m, y)

and E(qi) = 0

Thus we have[
Q̂n(θ̂) − Qn(θ̂)

]
= Gn(θ̂)Wn

[
ĝn(θ̂) − gn(θ̂)

]
= G(θ0)W

[
ĝn(θ̂) − gn(θ̂)

]
+ op(n−

1
2 )

= −G(θ0)W
1

n

n∑
i=1

qi + op(n−
1
2 )

(B.58)
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For the first part of (B.56), we conduct the normal proof for GMM

Qn(θ̂) = Qn(θ0)+[
Gn(θ

∗)WnGn(θ
∗)T +

∂Gn(θ
∗)

∂θ
Wngn(θ

∗)

]
(θ̂ − θ0),

(B.59)

where θ∗ is between θ0 and θ̂, thus θ∗ →p θ0. And since gn(θ0) →p 0, we obtain

Qn(θ̂) = Qn(θ0) +
[
G(θ0)WG(θ0)

T ]
(θ̂ − θ0) + op(n−

1
2 ) (B.60)

Combining (B.57) and (B.59), we end up with

θ̂ − θ0 =
[
G(θ0)WG(θ0)

T ]−1 1

n

n∑
i=1

{G(θ0)Wqi − G(θ0)Wg(xi; θ0)}

=
[
G(θ0)WG(θ0)

T ]−1 1

n

n∑
i=1

G(θ0)W {qi − g(xi; θ0)} .

(B.61)

Since E(qi) = E(g(xi; θ0)) = 0,
√

n
(
θ̂ − θ0

)
converges weakly to a mean-0 multivariate

normal distribution. Assume that we have p parameters for β, thus the length for θ

is p + 2. Through the delta method, we can also prove that the variance estimator

σ̂2
z = exp(θ̂[p + 2] − 2θ̂[1]) − 1 also follows some asymptotic normality.
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APPENDIX C

Multi-state Rate Models to Assess the Impact of

Exposure to Lead on Children Behaviors Using

Accelerometer Data

C.1 Additional Summary Figures and Table

Figures C.1 and C.2 represent corresponding plots in Figures 4.2 and 4.3 but use

only the complete 333 subjects with no missingness in their variables. The almost

identical plots using the two batches of data suggest a random missing data mecha-

nism.

In Table C.1, the Subject columns list the total counts of subjects that experienced

at least one of the corresponding transitions, while the Case columns provide the total

counts of respective transitions, with or without stratified by gender. Thus the the

proportion plot on the top panel of Figure 4.5 presents the ratios between the Subject

column and the sample size n for each gender, and the average counts at the bottom

give the ratios between the Case and Subject columns, representing average transition

frequencies among those who have experienced at least one time of the corresponding

transition.
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Figure C.1: Marginal proportions of individual activity states (left) and the distribu-
tion of average daily transitions counts for each subject (right) using the 333 subjects
with complete explanatory variables. Note that in the right panel, the salmon boxes
denote transitions with increased activities (labeled by “+”), while the cyan boxes
denote transitions with decreased activities (labeled by “-”). The activity states in-
clude sedentary (0), slightly active (1), moderately active (2), and vigorously active
(3) statuses.
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Table C.1: A summary table for the number of subjects with at least one corre-
sponding transitions (Subject) and the total number of transitions (Cases). Their
respective counts for each gender are also presented.

Total (n = 333) Boys (n = 170) Girls (n = 163)

Transition Subject Cases Subject Cases Subject Cases

0→ 1 333 8470 170 107257 163 111371
0→ 2 331 221025 169 3208 162 2865
0→ 3 50 227035 28 37 22 26
1→ 2 333 219753 170 19773 163 19531
1→ 3 165 258682 101 251 64 124
2→ 3 183 45449 107 979 76 349
1→ 0 333 739986 170 107457 163 111614
2→ 0 333 41116 170 3012 163 2649
3→ 0 29 1736 20 21 9 9
2→ 1 333 7010 170 20013 163 19754
3→ 1 156 1405 91 222 65 139
3→ 2 190 391 115 1024 75 351
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APPENDIX D

An Epidemiological Forecast Model and Software

Assessing Interventions on the COVID-19

Epidemic

D.1 Runga-Kutta Approximation

D.1.1 Approximation in the Basic SIR Model

The forth order Runga-Kutta(RK4) method gives an approximate of f (θt−1, β, γ)

in equation (5.4) as follows:

f (θt−1, β, γ) =

©«
θS

t−1 + 1/6[kS1
t−1 + 2kS2

t−1 + 2kS3
t−1 + kS4

t−1]

θ I
t−1 + 1/6[k I1

t−1 + 2k I2
t−1 + 2k I3

t−1 + k I4
t−1]

θR
t−1 + 1/6[kR1

t−1 + 2kR2
t−1 + 2kR3

t−1 + kR4
t−1]

ª®®®®®¬
:=

©«
α1(t−1)

α2(t−1)

α3(t−1)

ª®®®®®¬
,
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where

kS1
t = −βθ

S
t θ

I
t ,

kS2
t = −β[θ

S
t + 0.5kS1

t ][θ
I
t + 0.5k I1

t ],

kS3
t = −β[θ

S
t + 0.5kS2

t ][θ
I
t + 0.5k I2

t ],

kS4
t = −β[θ

S
t + kS3

t ][θ
I
t + k I3

t ];

k I1
t = βθ

S
t θ

I
t − γθ

I
t ,

k I2
t = β[θ

S
t + 0.5kS1

t ][θ
I
t + 0.5k I1

t ] − γ[θ
I
t + 0.5k I1

t ],

k I3
t = β[θ

S
t + 0.5kS2

t ][θ
I
t + 0.5k I2

t ] − γ[θ
I
t + 0.5k I2

t ],

k I4
t = β[θ

S
t + kS3

t ][θ
I
t + k I3

t ] − γ[θ
I
t + k I3

t ];

and

kR1
t = γθ

I
t ,

kR2
t = γ[θ

I
t + 0.5k I1

t ],

kR3
t = γ[θ

I
t + 0.5k I2

t ],

kR4
t = γ[θ

I
t + k I3

t ].
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D.1.2 Approximation in the Extended SIR Model with Quarantine Com-

partment

Using the RK4 approximation, f (θt−1, β, γ) in the extended SIR model (5.6) with

a quarantine compartment can be approximated following the two iterative steps:

1. Solve the f (θt−1, β, γ) in Appendix D.1 without considering the quarantine with

f (·)

f (θt−1, β, γ) = [α1(t−1), α2(t−1), α3(t−1)]
T.

2. Due to the quarantine, we deduct the susceptible by α∗
1(t−1)

= α1(t−1) − φ(t)θS
t−1,

and let θQ
t = θ

Q
t−1 + φ(t)θ

S
t−1 with θQ

0 = 0.

Let α∗t−1 = [α
∗
1(t−1)

, α2(t−1), α3(t−1)]
T, and it is easy to show that the sum

∑3
k=1 α

∗
k(t−1)

=

1 − θQ
t . Thus we can regenerate the next day’s θt following a Dirichlet distribution

adjusted by the prevalence of the quarantine compartment α∗t ∼ Dirichlet(κα∗t−1/(1 −

θQ
t )). The estimated prevalence values become θt = (1 − θ

Q
t )α

∗
t . We follow above

two steps and finish the complete prevalence processes. Note that the deduction of

susceptible compartments might cause θS
t ≤ 0, we will bound such prevalence value to

be consistently 0, which is equivalent to terminating transmission among susceptible

subjects.

D.2 Moment Properties of Beta and Dirichlet Distributions

For the sake of being self-contained, we list the moments of both Beta and Dirichlet

distributions. The mean and variance of Beta distribution Beta(α, β) are respectively:

Mean =
α

α + β
,Var =

αβ

(α + β)2(α + β + 1)
.
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While to Dirchlet distribution Dir(κα), we have

Mean = α,Var =
1

κ + 1

©«

α1(1 − α1) −α1α2 −α1α3 −α1α4

−α1α2 α2(1 − α2) −α2α3 −α2α4

−α1α3 −α2α3 α3(1 − α3) −α3α4

−α1α4 −α2α4 −α3α4 α4(1 − α4)

ª®®®®®®®®¬
,

where α = (α1, α2, α3, α4)
T with α1 + α2 + α3 + α4 = 1.

D.3 R Codes

First we conducted analysis of the Hubei COVID-19 data using the transmission

rate modifier with function txt.eSIR from package eSIR. Note that option dic=TRUE

enables to calculate the deviance information criterion (DIC) for model selection,

while options, save_files=TRUE and save_mcmc, allow the storage of MCMC out-

put tables, plots, summary statistics and even full MCMC draws, which may be

saved via the path of file_add, or otherwise via the current working directory. The

major results returned from the package include predicted cumulative proportions,

predicted turning points of interest, two ggplot2 (Wickham, 2016) objects of the sum-

mary plots related to both infection and removed compartments, a summary output

table containing all the posterior means, median and credible intervals of the model

parameters, and DIC if opted. The trace-plots and other useful diagnostic plots are

also provided and automatically saved if save_files=TRUE is opted. In the package,

function tvt.eSIR() works on the epidemiological model with time-varying trans-

mission rate in Section 5.2.2, and qh.eSIR() for the other epidemiological model

with a quarantine compartment in Section 5.2.3. Note that in function tvt.eSIR(),

with a choice of exponential=FALSE, a step function is run in the MCMC when both

change_time and pi0 are specified. To fit the model with a continuous transmis-
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sion rate modifier function, user may set exponential=TRUE and specify a value of

lambda0. The default is to run the basic epidemiological model with no quarantine or

π(t) ≡ 1 in Section 5.2.1. death_in_R is usually set to be the average ratio of death

and removed proportions at each observation time point, which is used to estimate

the death curve in the forecast plot of the removed compartment. Below are the R

scripts used in the analysis.

### Example 1: Step function pi(t)

### Y and R are observed proportions of infected and removed compartments

change_time <- c("01/23/2020", "02/04/2020", "02/08/2020")

pi0 <- c(1.0, 0.9, 0.5, 0.1)

res.step <- tvt.eSIR (Y, R, begin_str = "01/13/2020", death_in_R = 0.4,

T_fin = 200, pi0 = pi0, change_time = change_time, dic = TRUE,

casename = "Hubei_step", save_files = TRUE,

save_mcmc = FALSE, M = 5e2, nburnin = 2e2)

res.step$plot_infection

res.step$plot_removed

res.step$dic_val

### Example 2: continuous exponential function pi(t)

res.exp <- tvt.eSIR (Y, R, begin_str = "01/13/2020", death_in_R = 0.4,

T_fin = 200, exponential = TRUE, dic = FALSE, lambda0 = 0.05,

casename = "Hubei_exp", save_files = FALSE, save_mcmc = FALSE,

M = 5e2, nburnin = 2e2)

res.exp$plot_infection

#res.exp$plot_removed

### Example 3: the basic state-space SIR model, pi(t)=1
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res.nopi <- tvt.eSIR (Y, R, begin_str = "01/13/2020", death_in_R = 0.4,

T_fin = 200, casename = "Hubei_nopi", save_files = FALSE,

M=5e2, nburnin = 2e2)

res.nopi$plot_infection

#res.nopi$plot_removed

The other epidemiological model with an added quarantine compartment as an

absorbing state was fitted via our R function qh.eSIR in the package eSIR. The

arguments used in qh.eSIR() are almost identical to those in tvt.eSIR(). Note that

if the quarantine rate function is set at constant 0, this model will be reduced to a

basic epidemiological SIR model.

### Example 4: Dirac delta function of the quarantine process

change_time <- c("01/23/2020", "02/04/2020", "02/08/2020")

phi <- c(0.1, 0.4, 0.4)

res.q <- qh.eSIR (Y, R, begin_str = "01/13/2020",death_in_R = 0.4,

phi0 = phi0, change_time = change_time, casename = "Hubei_q",

save_files = TRUE, save_mcmc = FALSE, M = 5e2, nburnin = 2e2)

res.q$plot_infection

#res.q$plot_removed

### Example 5: basic state-space SIR model

res.noq <- qh.eSIR (Y, R, begin_str = "01/13/2020", death_in_R = 0.4,

T_fin = 200, casename = "Hubei_noq", M = 5e2, nburnin = 2e2)

res.noq$plot_infection

In the above R coding scripts, only very short MCMC chains are specified for the

consideration of running time. In practice, we set M=5e5 and nburnin=2e5 to achieve

desirable burn-ins and yield stable MCMC draws.
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