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5.1 Basis rotation circuit and compilation. a) To the left of the circuit diagram
are the initial orbitals for the H12 chain with atom spacings of 1.3Å, obtained
by diagonalizing the Hamiltonian ignoring electron-electron interactions. The
circuit diagram depicts the basis rotation ansatz for a linear chain of twelve
hydrogen atoms. Each grey box with a rotation angle θ represents a Givens
rotation gate. b) Compilation of the Givens rotation gate to

√
iSWAP gates and

single-qubit gates that can be realized directly in hardware. The H12 circuit
involves 72

√
iSWAP gates and 108 single-qubit Z rotation gates with a total

of 36 variational parameters. c) Depiction of a twelve qubit line on a subgrid
of the entire 54-qubit Sycamore device. All circuits only require gates between
pairs of qubits which are adjacent in a linear topology. . . . . . . . . . . . . . 58
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igated combined with variational relaxation (red triangles). For all hydrogen
systems the raw data at 0.5 Å bond length is off the top of the plot. The yel-
low, green, and blue points were calculated using the optimal basis rotation
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For all points we calculated a fidelity witness as described in Appendix J.
The error bars for all points were computed by estimating the covariance be-
tween simultaneously measured sets of 1-RDM elements and resampling those
elements under a multivariate Gaussian model. Energies from each sample
were tabulated and the standard deviation is used as the error bar. The “+PS”
means applying post-selection to the raw data, “+Purification” means applying
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mization traces for three H6 geometries (bond distances of 0.5 Å, 1.3 Å, and
2.1 Å). All optimization runs used between 18 and 30 iterations. The lowest
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sampling those elements under a multivariate Gaussian model. Energies from
each sample were tabulated and the standard deviation is used as the error bar.
No purification was applied for the computation of the error bars. If purifi-
cation is applied the error bars become smaller than the markers. Each basis
rotation for diazene contains 50
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Abstract

Noisy intermediate-scale quantum (NISQ) computers are coming online. The lack

of error-correction in these devices prevents them from realizing the full potential

of fault-tolerant quantum computation, a technology that is known to have signifi-

cant practical applications, but which is years, if not decades, away. A major open

question is whether NISQ devices will have practical applications.

In this thesis, we explore and implement proposals for using NISQ devices to

achieve practical applications. In particular, we develop and execute variational

quantum algorithms for solving problems in combinatorial optimization and quan-

tum chemistry. We also execute a prototype of a protocol for generating certified

random numbers. We perform our experiments on a superconducting qubit pro-

cessor developed at Google. While we do not perform any quantum computations

that are beyond the capabilities of classical computers, we address many imple-

mentation challenges that must be overcome to succeed in such an endeavor, in-

cluding optimization, efficient compilation, and error mitigation. In addressing

these challenges, we push the limits of what can currently be done with NISQ

technology, going beyond previous quantum computing demonstrations in terms

of the scale of our experiments and the types of problems we tackle. While our

experiments demonstrate progress in the utilization of quantum computers, the

limits that we reached underscore the fundamental challenges in scaling up to-

wards the classically intractable regime. Nevertheless, our results are a promising

indication that NISQ devices may indeed deliver practical applications.
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CHAPTER 1

Introduction

1.1 Quantum computing in the NISQ era

1.1.1 The promise of quantum computing

Many computational problems of great interest are difficult to solve using classical digital
computers. One example of such a problem is the simulation of quantum mechanical sys-
tems such as molecules or arrangements of atoms on a lattice. The essential difficulty seems
to be the fact that storing the full representation of a quantum state on a classical computer
requires resources that scale exponentially in the size of the physical system being simu-
lated. As a result, the properties of even moderately-sized molecules with a few dozens
of atoms cannot be computed to high precision. This difficulty led Feynman to speculate
in the early 1980s that simulating quantum systems could be performed efficiently using a
quantum computer [1].

Despite the enormous scientific and industrial importance of the simulation of quantum
systems, the developing theory of quantum computing remained largely a curiosity until
1994, when Shor discovered an efficient quantum algorithm for integer factorization [2].
An explosion of interest in the field ensued, leading to much progress since. In particular,
Feynman’s original vision of using quantum computers for quantum simulation was fleshed
out, and today this is one of the most anticipated applications of quantum computers [3, 4,
5].

1.1.2 Quantum computing in the present and near future

The project of building a general-purpose quantum computer capable of realizing signifi-
cant practical applications is still in its infancy. Quantum computers are far more suscep-
tible to noise than classical computers, so some form of error-correction is likely required
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to scale them up. While quantum error-correction is known to be possible, it incurs a sig-
nificant overhead in the number of qubits required [6]. A fault-tolerant quantum computer
capable of executing general quantum computations will probably not be built for years,
if not decades. Nevertheless, the goal of building a quantum computer is actively being
pursued by many institutions, corporate as well as academic, and significant hardware ad-
vances have been made. In particular, noisy intermediate-scale quantum (NISQ) computers
are now coming online [7].

NISQ computers have 50 to a few hundred qubits and two-qubit gate error rates above
0.1% or so. The presence of errors severely limits the size of the quantum circuits that can
be reliably executed using these devices; we can expect to execute perhaps a few thousand
gates before the noise overwhelms any signal. Despite this limitation, these devices will be
able to perform computations that are beyond the reach of classical computers [8]. A major
open question is whether NISQ devices will be able to perform useful computations be-
yond the reach of classical computers, and more generally, whether they will have practical
applications. It is unlikely that a computational advantage of NISQ devices over classical
computers will be proven mathematically. Rather, we will discover the answer to this ques-
tion by experimentation. As these devices become available, we will try things out and see
what happens.

1.1.3 Challenges of NISQ computing

Any attempt to use NISQ computers for practical applications will have to overcome many
challenges. Due to the extremely limited number of gates that can be reliably executed,
circuits will need to be compiled very efficiently, taking into consideration the details of
the specific hardware platform such as the available native gates and restrictions on qubit
connectivity. For example, near-term superconducting qubit processors have qubits that
are laid out on a planar grid, and two-qubit gates can be performed only between neigh-
boring qubits. Because NISQ computers suffer from noise, they will not be able to execute
moderately-sized circuits with high fidelity. Therefore, for applications that require high
fidelity, some form of error mitigation will be required.

In addition to the quantum computing challenges presented by NISQ computers, there
are also classical computing challenges. One of the leading candidates for NISQ applica-
tions is a class of hybrid quantum-classical algorithms in which a classical optimization
algorithm is used to optimize a quantum objective function. The choice of this classical
optimization algorithm can have a significant impact on performance.

In this thesis, we explore and implement proposals for using NISQ devices to achieve
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practical applications. While we do not perform any quantum computations that are be-
yond the capabilities of classical computers, we address many implementation challenges
that must be overcome to succeed in such an endeavor, including the challenges of efficient
compilation, error mitigation, and optimization mentioned above. In addressing these chal-
lenges, we push the limits of what can currently be done with NISQ technology, going be-
yond previous quantum computing demonstrations in terms of the scale of our experiments
and the types of problems we tackle. While our experiments demonstrate progress in the
utilization of quantum computers, the limits that we reached underscore the fundamental
challenges in scaling up towards the classically intractable regime. For most applications,
reaching the classically intractable regime will require further innovations.

1.2 Overview of results

1.2.1 Using models to improve optimizers for variational quantum al-
gorithms

One of the most promising potential applications of NISQ computers is in approximately
solving difficult optimization problems in computer science, quantum chemistry, and other
fields. Variational quantum algorithms are the major paradigm in which this application
has been studied [9, 10]. In this paradigm, one devises a quantum circuit that depends on a
number of parameters. For a fixed setting of the parameters, the quantum computer is used
to execute the circuit, and some observables are measured. A classical optimization algo-
rithm is used to suggest new parameters to try, with the goal being to minimize some cost
function of the measured observables. The offloading of significant computational effort
onto a classical computer and the fact that even small quantum circuits can generate highly
entangled states that cannot be feasibly simulated make this paradigm especially suited to
NISQ devices. The choice of classical optimization algorithm can have a significant impact
on performance.

In Chapter 2, we introduce two methods for the classical optimization subroutine of
variational quantum algorithms. The methods are surrogate model-based algorithms de-
signed to improve reuse of collected data. They do so by utilizing a least-squares quadratic
fit of sampled function values within a moving trusted region to estimate the gradient or
a policy gradient. To make fair comparisons between optimization methods, we develop
experimentally relevant cost models designed to balance efficiency in testing and accuracy
with respect to cloud quantum computing systems. Our results underscore the need to both
use relevant cost models and optimize hyperparameters of existing optimization methods
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for competitive performance. We find that the methods we introduce perform well overall
and have several practical advantages in realistic experimental settings.

1.2.2 Quantum approximate optimization on a superconducting qubit
processor

In Chapter 3, we report the results of an experiment in which we executed the Quantum Ap-
proximate Optimization Algorithm (QAOA) [9] on a superconducting qubit processor. The
QAOA is a variational quantum algorithm used to solve problems in combinatorial opti-
mization. Like past QAOA experiments, we study performance for problems defined on the
connectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-
Kirkpatrick model and 3-regular MaxCut, both high dimensional graph problems requiring
significant compilation. Our experiments on these abstract problems that do not directly fit
on our hardware are the largest such experiments to date.

Experimental scans of the QAOA energy landscape show good agreement with theory
across even the largest instances studied (23 qubits) and we are able to perform variational
optimization successfully using the optimizer introduced in Chapter 2. For problems de-
fined on the planar graph of our hardware we obtain an approximation ratio that is indepen-
dent of problem size and observe, for the first time, that performance increases with circuit
depth. For problems requiring compilation, performance decreases with problem size but
still provides an advantage over random guessing for circuits involving several thousand
gates. This behavior highlights the challenge of using near-term quantum computers to
optimize problems on graphs differing from hardware connectivity. As these graphs are
more representative of real world instances, our results advocate for more emphasis on
such problems in the developing tradition of using the QAOA as a holistic benchmark of
quantum processors.

1.2.3 Preparing Slater determinants and fermionic Gaussian states

In Chapter 4, we describe an efficient algorithm for performing an essential primitive in
quantum simulation, the preparation of Slater determinants. Our algorithm improves on
prior art, and we generalize the construction to also give an algorithm for the preparation
of fermionic Gaussian states. Our algorithms use only nearest-neighbor interactions on a
linear array, making them well-adapted to the connectivity restrictions on current super-
conducting qubit architectures.
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1.2.4 Hartree-Fock on a superconducting qubit processor

The Hartree-Fock method is a variational method for approximately solving the electronic
structure problem. Importantly, it can be performed efficiently on a classical computer. It
is central to classical and quantum electronic structure calculations and often serves as a
starting point for more sophisticated methods.

In Chapter 5, we report the results of an experiment in which we implement the Hartree-
Fock method as a variational quantum algorithm to simulate quantum chemistry with up to
12 qubits. The circuits we use are adapted from those given in Chapter 4 for the preparation
of Slater determinants. We simulate linear chains of up to 12 hydrogen atoms, and also
model the isomerization mechanism of diazene. We demonstrate error-mitigation strategies
which dramatically improve results. For the hydrogen chains of lengths 6 and 8, we achieve
chemical accuracy of 1.5 milli-Hartrees in computing the Hartree-Fock energy for various
bond lengths, and for the larger systems, we still obtain qualitative agreement in the shape
of the bond dissociation curves. In our simulation of diazene, we are able to resolve the
energy difference between two competing isomerization mechanisms. Our experiments
constitute the largest demonstration of solving quantum chemistry problems on quantum
computers to date. However, even with our error-mitigation techniques, we were unable
to scale to larger systems due to the stringent fidelity requirements needed to accurately
compute molecular energies. This difficulty underscores a fundamental challenge in scaling
towards the classically intractable regime for this application.

1.2.5 Generating certified random numbers on a superconducting
qubit processor

In Chapter 6, we report our implementation of a prototype of a protocol for generating
certified random numbers on NISQ devices. Certified random number generation produces
random numbers whose randomness, or unpredictability, can be certified to a skeptical
client. They have several applications, including the generation of cryptographic keys and
the implementation of lotteries. Because the laws of classical physics are deterministic,
certified randomness can only be generated using quantum processes.

The certified randomness protocol we implement is based on an unpublished proposal
by Scott Aaronson. Unlike previous proposals for certified randomness [11], the valid-
ity of our protocol depends on a computational hardness assumption regarding the task
of sampling from the output distributions of quantum circuits such as those used in the
demonstration of quantum supremacy [8]. In our implementation, we focused on the exer-
cise of the software infrastructure needed to run this protocol as a service accessed through
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the Internet. In particular, we used fully automatic calibration of our quantum processor,
a procedure that suffers from some temporary limitations which prevent us from achieving
experimental parameters that would provide true certification of randomness. Nevertheless,
our results demonstrate a proof of concept.

1.3 Outline of thesis

In Chapter 2, we introduce two model-based optimizers for variational quantum algorithms
and give the results of numerical benchmarks comparing them with alternative optimizers.
In Chapter 3, we report the results of an experimental implementation of the QAOA on a
superconducting processor, including the results of variational optimization using the op-
timizer introduced in Chapter 2. In Chapter 4, we give efficient algorithms for preparing
Slater determinants and fermionic Gaussian states on a quantum computer. In Chapter 5,
we report the results of an experimental implementation of a variational quantum algorithm
that realizes the Hartree-Fock method for simulating quantum chemistry on a superconduct-
ing processor, using circuits adapted from the algorithms given in Chapter 4. In Chapter 6,
we report the implementation of a prototype of a protocol for generating certified random
numbers on a superconducting processor.

1.3.1 Works appearing

The work in Chapter 2 is contained in [12] and has been submitted for publication. The
work in Chapter 3 is contained in [13] and has been submitted for publication. The work
in Chapter 4 is contained in [14]. The work in Chapter 5 is contained in [15] and has been
accepted for publication in Science. The work in Chapter 6 is ongoing at the time of writing
and will be found in [16].

The works [13], [15], and [16] were large collaborations that involved performing ex-
periments on quantum computing hardware. For all of these works, the author of this thesis
wrote significant parts of the software used to execute the experiment, including, but not
limited to, the optimizer used in [13]. For the works [13] and [16], the author also partic-
ipated in the design of the experiments and collected and analyzed significant portions of
the experimental data. In [12], the author appears as first author, but benefited greatly from
discussions with collaborators. In [14], the author appears as second author, and Chapter 4
only presents a portion of that work to which the author made major contributions.

Other works to which the author has contributed as a graduate student, but which have
not been included in this thesis, can be found in [8, 17, 18, 19].
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CHAPTER 2

Using Models to Improve Optimizers for
Variational Quantum Algorithms

2.1 Introduction

With recent developments in quantum hardware, including the ability to perform select
tasks faster than classical supercomputers [8], the push towards practical applications on
these devices has intensified. Variational quantum algorithms are among the top candidates
for early applications on noisy intermediate-scale quantum (NISQ) computers [20, 10, 7].
These algorithms can be used to approximate ground energies of Hamiltonians or find
approximate solutions to discrete optimization problems. A main component of these al-
gorithms is the minimization of some function of a parameterized quantum state, where
that function is measured using the quantum computer. Commonly, the function is the ex-
pectation value of a Hamiltonian, determined by the problem of interest. The presence of
sampling error and gate errors makes the function stochastic, and the stochasticity due to
sampling error is fundamental to measuring the values on a quantum device. The output
of this stochastic function is fed to a classical optimizer, and it is those optimizers and
constraints presented by real devices that we will focus on here.

As the classical optimizers are at the core of variational quantum algorithms, their per-
formance can determine the resources required to solve a problem. Non-linear optimization
of continuous functions of the type that exist in variational quantum algorithms are com-
monplace in fields like machine learning, but quantum systems offer unique trade-offs that
must be considered to improve efficiency. Given the current focus on these algorithms
and the core role played by the optimizer, there have been a number of works evaluat-
ing the performance of optimizers for different problems and contexts. For example, at
least two experimental implementations of variational algorithms [20, 21] used the Nelder-
Mead simplex algorithm [22] to optimize the objective function. Other experimental im-
plementations [23, 24, 25, 26, 27] used algorithms including Simultaneous Perturbation
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Stochastic Approximation (SPSA) [28], Bayesian optimization [29], particle swarm opti-
mization [30], dividing rectangles [31], and gradient descent. In addition, there have been
a number of numerical investigations of optimization in the context of variational quantum
algorithms. Several of these studies introduce novel heuristics and test them numerically
on example problems [32, 33, 34, 35, 36, 37]. Other work [38, 39, 40, 41, 42, 43] has
compared the performance of methods including Nelder-Mead, limited-memory Broyden-
Fletcher-Goldfarb-Shanno, [44], Constrained Optimization By Linear Approximation [45],
Powell’s method [46], SPSA, RBFOpt [47], Stable Noisy Optimization by Branch and Fit
[48], Bound Optimization by Quadratic Approximation [49], Mesh Adaptive Direct Search
[50], implicit filtering [51], and policy-gradient-based reinforcement learning [52].

There is a considerable body of work in evaluating optimizers for use in variational al-
gorithms, but not all of these works use cost metrics relevant to quantum experiments. For
example, it is common to evaluate a suite of optimizers based on the number of optimizer
iterations required for convergence to a local optima, using noiseless function evaluations.
However, the inherent quantum nature of the sampling procedure implies that the first itera-
tion could have taken an unbounded amount of experimental time in such a setup (noiseless
evaluation), and hence conclusions based on such studies may not be applicable to experi-
ments. A meaningful comparison of these methods must treat the stochastic nature of the
objective function and related costs in terms of experimental time to solution to properly
compare methods. While some past works do account for the effect of stochastic noise
[36, 37], in this work we additionally incorporate other experimental parameters into our
cost models. In developing our models, we focus on the case of superconducting quantum
computers accessed through the Internet, though our models can be easily modified for
other architectures. We account for parameters such as the sampling rate of the quantum
processor and the latency induced by communicating over the Internet. The proper choice
of optimizer ultimately depends on the details of the experiment constraints.

In consideration of constraints we did not find satisfied in other methods, we intro-
duce two surrogate model-based optimization algorithms we call Model Gradient Descent
(MGD) and Model Policy Gradient (MPG) and numerically compare their performance
against commonly used methods. In particular, we target the tendency for local methods to
under-utilize the existing history of function evaluations. We have successfully used MGD
in an experimental implementation of the Quantum Approximate Optimization Algorithm
[9] on a superconducting qubit processor; this experiment will be described in Chapter
3. We perform systematic tuning of optimizer hyperparameters before comparison for all
methods, and measure performance using estimates of actual wall clock time needed in a
realistic experimental setting. An important, though unsurprising, implication of our re-
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sults is that hyperparameter tuning under the correct cost models is crucial for performance
in practice. Our results also highlight the importance of different cost model features and
how constraints influence the optimal choice of optimizer. Stochastic optimizers that in-
corporate randomness found to be generally more robust and efficient.

2.2 Background

A ubiquitous problem in physics and chemistry is to find the lowest eigenvalue and eigen-
vector of a Hamiltonian H describing a physical system. The Hamiltonian is a Hermitian
matrix that determines how the system evolves in time via the Schrödinger equation, and
its eigenvalues are often referred to as energies. Typically the Hamiltonian can be written
as a sum of terms that each act on only part of the system,

H =
m∑
j=1

Hj. (2.1)

For example, each Hj could be a tensor product of a few Pauli operators with the identity.
The problem of finding the lowest eigenvalue and eigenvector of H is called the ground
state problem. Often it is sufficient to calculate just the eigenvalue, and the formalization
of this problem as a decision problem is QMA-complete [53]. Nevertheless, practical in-
stances of the problem may admit approximate solution. Note that the ground state problem
can also encode combinatorial optimization problems that do not have an obvious physical
interpretation.

The lowest eigenvalue of H is called the ground state energy, and it can be expressed
as

E0 = min
|ψ〉
〈ψ|H|ψ〉 (2.2)

where the minimization is over all normalized quantum states. The variational method
in quantum mechanics is a method of finding an approximation to E0. It starts with a
parameterization |θ〉 of a set of quantum states, where θ is a list of real numbers that is
allowed to vary, yielding different states. A parameterization of a set of quantum states is
called an ansatz. The variational method works by minimizing the energy over the ansatz:

E0 ≈ min
θ
〈θ|H|θ〉. (2.3)

The actually calculated value will be somewhat greater than the true ground state energy
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E0.
In a variational quantum algorithm, the ansatz state |θ〉 is prepared on a quantum com-

puter, and the expectation value 〈θ|H|θ〉 or its derivatives are estimated with measure-
ments. A classical optimization algorithm is used to suggest new parameters, and this
process is iterated with the goal of finding parameters that minimize the expectation value.

Variational quantum algorithms are a promising candidate for execution on NISQ com-
puters because they make frugal use of quantum resources. In particular, the ansatz state
|θ〉 can be chosen so that it can be implemented with the small number of gates that will be
feasible to execute on NISQ computers. One goal in the NISQ era will be to prepare ansatz
states that cannot be simulated on a classical computer. While we do not know whether the
preparation of such states will yield a computational advantage over classical algorithms,
we will try it and see how it performs.

2.3 Problems studied and cost models

2.3.1 Problems studied

As the performance of an optimizer can be intimately tied to the problem studied, it is
important to look at a range of problems in evaluating their relative performance. As two
of the most common areas studied in variational quantum algorithms are combinatorial
optimization and ground state preparation of fermionic systems, we select these for our
sample problems. Here we aim to clarify the details of the systems, circuit ansatze, and
initial parameters modeled in our numerical tests.

While multi-modality of cost functions is an important consideration in variational
quantum algorithms, it turns out that even optimization within a single convex basin can be
challenging enough to warrant independent investigation due to constraints imposed by the
quantum device. To this end, we assume throughout that we have knowledge of an initial
guess which is in the convex vicinity of an optimum and our goal is simply to converge
to that local optimum. Several strategies have been proposed for choosing such an initial
guess in contexts including optimization and chemistry [33, 54, 39, 32].

2.3.1.1 Max-Cut on 3-regular graphs

The maximum cut problem (Max-Cut) is widely studied and known to be NP-hard. The
problem is specified by an undirected graph on n vertices and the goal is to label each
vertex with either 0 or 1 in order to maximize the number of edges whose vertices have
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different labels. This cost function is represented by the Hamiltonian

C =
∑
〈i,j〉

1

2
(I − ZiZj), (2.4)

where Zj is the standard Pauli Z operator applied to qubit j which is node j on the graph,
and 〈i, j〉 ranges over the edges of the graph. The goal is to find a computational basis state
that maximizes the Hamiltonian.

We use the Quantum Approximate Optimization Algorithm (QAOA) [9] ansatz used
to approximately solve the Max-Cut problem on random 3-regular graphs. The QAOA
ansatz depends on the number of rounds, p > 0, and is parameterized by 2p real numbers
γ = (γ1, . . . , γp) and β = (β1, . . . , βp). The ansatz is

|γ,β〉 = UB(βp)UC(γp) · · ·UB(β1)UC(γ1)|+〉⊗n, (2.5)

where

UC(γ) = e−iγC , UB(β) = e−iβB, B =
n∑
i=1

Xi, (2.6)

and |+〉⊗n is the uniform superposition of all 2n computational basis states.
For our numerics, we focus on a randomly chosen instance to minimize the number

of uncontrolled variables. Moreover, for QAOA focusing on a single instance is justified
because the optimization landscape has been shown to concentrate for different randomly
chosen instances [54]. To obtain an initial guess for this problem, we classically computed
a locally optimal parameter vector and then perturbed it with a uniformly random vector
of length 0.1. At p = 1 the optimal parameter vector had a length of 0.462, and at p = 5,
1.285.

In our numerics we report the approximation ratio

〈γ,β|C|γ,β〉
Cmax

(2.7)

where Cmax = maxz〈z|C|z〉. The goal is to maximize this value, which falls in the range
[0, 1].
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2.3.1.2 Sherrington-Kirpatrick model

Another model we consider is the Sherrington-Kirkpatrick (SK) model [55], which is a
canonical example of a frustrated spin glass. The Hamiltonian is given by

H =
∑
i<j

JijZiZj (2.8)

where Jij is selected uniformly at random from {−1, 1}. We use the QAOA ansatz to
approximate the solution of this problem, by minimizing the expected cost.

Again, for our numerics we focus on a single randomly generated instance, where gen-
erality of performance is supported by concentration results in QAOA. As an initial guess
for this problem, we classically computed a locally optimal parameter vector and then per-
turbed it with a uniformly random vector of length 0.1. At p = 1 the optimal parameter
vector had a length of 0.452, and at p = 5, 1.044.

For comparison between problems, we normalize energy values E to new values E ′ by
the formula

E ′ =
E − Emax

Emin − Emax
(2.9)

where Emin and Emax are the lowest and highest eigenvalues of the Hamiltonian, respec-
tively. Thus we are in fact maximizing this normalized energy value, which falls in the
range [0, 1].

2.3.1.3 Hubbard model

We study the task of approximating the ground state energy of the 2-dimensional Hubbard
model [56], a widely studied model that has resisted exact solution for decades in large size
limits. It is believed to be relevant to understanding high-temperature superconductivity
[57]. The Hamiltonian of the Hubbard model is

H = −t
∑
〈i,j〉,σ

(a†i,σaj,σ + a†j,σai,σ)

+ U
∑
i

a†i,↑ai,↑a
†
i,↓ai,↓ (2.10)

= T + V (2.11)

= Th + Tv + V (2.12)
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where the ai,σ are fermionic annihilation operators, 〈i, j〉 ranges over edges in the lattice,
σ ∈ {↑, ↓} is a spin degree of freedom, and we have split the sum into the hopping term T

and interaction term V . T is further decomposed into sub-terms Th and Tv corresponding
to horizontal and vertical edges, respectively. We set t = 1 and U = 4 for our numerical
experiments, which corresponds to a regime of modest correlation ill-suited for mean-field
methods.

We use a “Hamiltonian variational” ansatz similar to the one in ref. [32]. It is inspired
by the idea of state preparation via adiabatic evolution. Similar to QAOA, our ansatz has
a basic circuit repeated p times, but for flexibility it is varied non-uniformly with respect
to hopping. The basic circuit has three parameters which we call θh, θv, and θU , and it
approximates a unitary of the form

exp[−i(θhTh + θvTv + θUV )] (2.13)

The approximation is achieved using a second-order Trotter step based on the fermionic
swap network [58], in which a swap network is used to apply the terms of the Hamiltonian
and then the same network is applied but in reverse order. This is similar to the ansatz used
in ref. [32] but corresponds to a different ordering of terms. In total there are 3p parameters.

We study the model at half-filling. Our numerics are performed on the 2 × 2 system,
which under standard encodings corresponds to an 8 qubit system. For our initial state we
use a ground state of the hopping term that is precisely described in Appendix A. This state
is easy to prepare on a quantum computer and is expected to be adiabatically connected to
the ground state ofH for modest values of t/U . For our initial guess, we set the parameters
so that the ansatz circuit consists of a sequence of second-order Trotter steps approximating
the dynamics of the time-dependent Hamiltonian H(t) = T +(t/A)V for t ∈ [0, A], where
A = 0.1 · Up. This choice is motivated by the idea of state preparation via adiabatic
evolution.

As with the Sherrington-Kirkpatrick model, we normalize energy values E to new val-
ues E ′ by the formula

E ′ =
E − Emax

Emin − Emax
(2.14)

where Emin and Emax are the lowest and highest eigenvalues of the Hamiltonian, respec-
tively. Thus we are in fact maximizing this normalized energy value, which falls in the
range [0, 1].
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2.3.2 Cost models

An essential element of developing and improving optimizers for variational algorithms is
an accurate cost model that respects the quantum nature of the problem and imperfections
of the device. Studies that restrict evaluation of optimizers to abstract “number of itera-
tions” using perfect function queries can yield faulty conclusions and hide the implication
that a single function evaluation to that precision could have taken years or more. A core
challenge is the stochastic nature of the function evaluation and shot limited precision in
the estimates. Moreover, imperfections in the device and implementation can complicate
matters. Unfortunately, without a quantum device, precise simulation of the impact of noise
can be prohibitively expensive, and so a balance must be struck between accuracy and cost
effectiveness of the simulations to maximize applicability. Here we detail how we construct
our models to strike this balance.

We restrict our interest to minimizing the expected energy of a Hamiltonian H with
efficient Pauli expansions H =

∑
j αjPj (in the case of the Hubbard model (2.10), the

Jordan-Wigner Transformation [59] is applied to obtain the Pauli expansion), so the objec-
tive function is

f(θ) = 〈θ|H|θ〉, (2.15)

where |θ〉 represents the ansatz state with parameters θ. Most of the optimizers that we
present results for use queries to the objective function without any additional kinds of
queries, but we also present results for stochastic gradient descent, which queries the gra-
dient.

2.3.2.1 Objective function queries

The exact estimator used to query the objective function on the quantum device can take
a wide variety of forms depending on factors in the device and the problem of interest.
At a glance, however, a query to the objective function is often answered by measuring
the expectation values of the terms Pj and using the coefficients αj to form an estimate of
f(θ). When simulated in the most accurate way, the measurement of each individual term
implies a variance on the estimate which is state-dependent, and functions like a Bernoulli
random variable. Moreover, the variance of that measurement can be influenced by parallel
measurements being performed, even when they commute [10]. Trade-offs in the influ-
ences of these factors have inspired recent research in developing more efficient estimators
with a given number of samples [60, 61, 62, 63, 64]. However, perfect emulation of these
proposals can be prohibitively expensive, even in classical simulation of small systems, and
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hence it is desirable to develop models of the process that strike a good balance between
accuracy and simulation cost so that the full variational process can be simulated on a range
of systems.

In the cases of Max-Cut and the Sherrington-Kirkpatrick model, the Hamiltonian is
diagonal and all of its terms can be measured simultaneously in one shot. In our numer-
ical experiments, we simulated these measurements directly. However, for non-diagonal
Hamiltonians such as the Hubbard model, we take a different strategy.

As there are many terms in the sum, which are typically evaluated by repeated and
independent measurement, a Gaussian random function query turns out to be a good and
extremely cost effective model. That is, in our simulations a query to the objective function
is modeled as

f(θ) = 〈θ|H|θ〉+N (0, λ2/M) (2.16)

〈θ|H|θ〉 is evaluated exactly, N (µ, σ2) is a normal random variable with mean µ and vari-
ance σ2, and M is the number of repeated experiment repetitions. Here, the variance is
estimated using a known lower bound for common measurement strategies, previously de-
rived for the general case

λ2 = (
∑
j

|αj|)2 (2.17)

which empirically we have observed to be loose when compared with exact models, but
qualitatively matches the behavior and overestimates the number of measurements by a
factor of 2 in many cases. We note that a wealth of other strategies have been developed to
shrink the effective variance for a fixed number of queries M [60, 61, 62, 63, 64], but we
do not consider them in detail here. The dependence of the variance of the estimate on the
number of samples represents a key trade-off we consider in many algorithms here, as some
optimizers can tolerate heavier amounts of noise than others, and hence we take the number
of shots at each iterate to be an important hyperparameter. In our numerical experiments
on the Hubbard model, we simulated queries by computing the exact expectation value
and then artificially adding noise drawn from a normal distribution, using this bound to
determine the variance of the distribution for a specified number of measurement shots.

2.3.2.2 Gradient queries

For optimizers that use analytic gradient queries, we assume that queries to the gradient
of the objective function are answered by applying the “parameter-shift rule” [65, 66, 67].
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This is a method of obtaining an unbiased estimator of the gradient without using ancilla
qubits, and applies to ansatze of the form

|θ〉 = exp(−iθpAp) · · · exp(−iθ1A1)|ψ〉 (2.18)

where for our purposes eachAj is a Hermitian sum of commuting Pauli matrices. The tech-
nique exploits the fact that if Aj has two eigenvalues±r, then ∂f

∂θj
(θ) = r(f(θ+)− f(θ−))

where θ+ is θ but with the j-th coordinate equal to θj + π
4r

and θ− is θ but with the
j-th coordinate equal to θj − π

4r
. If some parameters are constrained to be the same,

then the derivative is obtained by summing the results of this expression for each param-
eter; the number of objective function queries needed is then two times the number of
those parameters. If Aj =

∑
k Pk for commuting Pauli operators Pk, then we decompose

exp(−iθjAj) =
∏

k exp(−iθjPk) and then apply the previous rule. Thus, the cost of eval-
uating the partial derivative is proportional to the number of terms in the sum, in a loose
way. In practice, this sum is evaluated stochastically with a probability depending on the
weight of the term in the sum [68].

2.3.2.3 Wall clock time

Ultimately, one is interested in minimizing the amount of time it takes to run a complete
experiment to some fixed precision. The models we develop here are meant to capture
this in a cost efficient way, without using a wildly inaccurate proxy like mere “number
of optimizer iterations”. To this end, we not only consider the sampling noise, but also
constraints like latency concerns inherent to real experiments.

To estimate the running time of an experiment we develop a model based on super-
conducting qubits [69, 70]. We also assume the user is executing the experiment through
a cloud computing service, potentially introducing network latency. We consider three
scenarios regarding network latency: zero latency, corresponding to the optimizer running
completely on the server side; circuit batching, in which the user is allowed to send mul-
tiple circuits to the service in one batch; and finally no circuit batching, where the user is
only allowed to send one circuit at a time.

The total running time of an experiment is equal to the number of queries made times
the amount of time it takes to satisfy a single query. The time needed to satisfy a single
query can be split into the time Tsample used in sampling circuits on the quantum processor,
the time Tswitch representing the overhead in switching between different circuits, and Tcloud

representing the latency in communicating over the Internet. We have Tsample = M/swhere
M is the number of measurements made to satisfy the query and s is the sampling rate of
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the processor; Tswitch = r × c where r is the overhead in readying the quantum processor
to execute a circuit and c is the number of different circuits executed; and Tcloud = `× c/b
where ` is the network round-trip time for communicating with the cloud server and b is the
number of circuits sent to the server in a single round of communication. We use the values
s = 105 Hz and r = 0.1 s. This sampling rate has not yet been achieved experimentally
but is plausible assuming an order of magnitude or two improvement in current capabilities
is possible; a recent experiment achieved a sampling rate of about 5 × 103 Hz [8]. When
including network latency, we set ` = 4.0 s; this value is based on our own experience
executing experiments through an internal cloud interface. The value of b depends on the
details of the algorithm. We ignore as negligible the time taken by the classical optimization
algorithm to select parameters for querying, as the optimizers here use relatively simple
classical updates.

2.4 Optimization strategies

2.4.1 Choice of optimizers

A wide range of optimizers now exist for continuous, non-linear optimizations, with differ-
ent strengths and weaknesses. One key element for consideration is the stochastic nature of
our objective function and its relation to the number of measurements made for each func-
tion evaluation. Some optimizers were designed with noiseless (up to reasonable precision
limits) function evaluations in mind, and are relatively unstable with respect to even small
amounts of noise. While one could insist on a number of measurements that renders the
function evaluations essentially exact, this incurs a huge overhead per iteration. We group
algorithms into two categories, distinguished by whether they have inherent hyperparame-
ters that allow them to adjust their resilience to noise. If an algorithm in practice requires
that the input be given to a fixed precision in order to be stable, we term it deterministic.
If it has a hyperparameter that naturally allows it to accept more or less noise, we call it
stochastic.

The difference between the two classes can be subtle, and depend on the details of im-
plementation. For example, a gradient descent implementation that makes use of an exact
line search can accidentally rule out good regions of space from small wobbles in a query
value, and is hence deterministic. However, if that sample implementation substitutes a
fixed step with a learning rate, it is not only more robust to noise, but that learning rate can
be adjusted to match noise levels in the objective queries. Hence we term that a stochastic
optimizer. Considering the costs of each with external hyperparameters (e.g. number of
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measurements) and internal hyperparameters (e.g. learning rate) tuned for optimal perfor-
mance will show us these trade-offs.

Overall, we investigated six different optimizers. Four of these have been studied in past
work, and the last two are surrogate model-based optimizers that we introduce here. Surro-
gate model-based optimizers construct a model of the objective function using previously
evaluated points and use the model to determine what points to evaluate next. They are
popular choices for the optimization of objective functions that are expensive to evaluate
or noisy (or both) [71, 72].

Listed briefly, the optimizers we study here are:

• Deterministic algorithms:

– The Nelder-Mead simplex method [22]. This method has been used in previous
theoretical [38, 39] and experimental [20, 21] works on variational algorithms.
We used the implementation from SciPy [73].

– Bounded Optimization By Quadratic Approximation (BOBYQA) [49]. This is
a surrogate model based algorithm that uses an interpolating quadratic model
to approximate the objective function, and has been studied in a previous work
on variational algorithms [42]. We used the implementation from the Python
package Py-BOBYQA [72].

• Stochastic algorithms:

– Simultaneous Perturbation Stochastic Approximation (SPSA) [28]. This
method has also been used in previous theoretical [40] and experimental [23]
works on variational algorithms. We used our own implementation.

– Stochastic gradient descent using analytic gradient measurements obtained via
the “parameter-shift rule” [65, 66, 67].

– Model Gradient Descent (MGD). This is a surrogate model-based algorithm we
introduce here that uses a least-squares quadratic model to estimate the gradient
of the objective function. We give pseudocode in Appendix B.

– Model Policy Gradient (MPG). Building on the vanilla policy gradient
method [41], this method additionally introduces a least-squares quadratic
model to reduce variance in the estimation of the policy gradient. We give
pseudocode in Appendix B.
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2.4.2 Model Gradient Descent and Model Policy Gradient

In this section we describe and motivate the design choices of our new algorithms, Model
Gradient Descent and Model Policy Gradient, which are described in pseudocode in Al-
gorithm B.1 and B.2. These are surrogate model-based methods which use least-squares
regression to fit quadratic models of the objective function. A key expense in variational
quantum algorithms is the evaluation of the function at different points, which is costly
due to the underlying variance. Hence, it would be beneficial to reuse the history of point
evaluations, rather than to discard them at each iteration. For local optimizations where
iterates proceed gradually, it seems intuitive that this should be possible. Eventually, if
one collected enough points in a small enough region, it should be possible to construct a
surrogate model that is more accurate than raw function evaluations at a fixed number of
measurements.

As a combination of this motivation and simplicity, we use a least-squares fit to a
quadratic function. However, it is also clear that if the region of sampled points is too
large, the function may not be well approximated by a quadratic, hence we use a trusted
region of sample points, which may be new or reused from previous iterates.

In each iteration, the algorithms sample a number of points randomly from the vicinity
of the current iterate. They fit quadratic models to these points and other previously evalu-
ated points within the vicinity. Finally, MGD uses the gradient of this quadratic model as an
approximation to the true gradient and performs gradient descent; MPG queries the model
to evaluate a large batch of data points and performs policy gradient optimization. The
reason we did not use standard trust-region solution techniques after building the quadratic
model is that we found empirically that the quadratic model we built upon stochastic func-
tion evaluations had slightly negative Hessian eigenvalues, which dictates in a standard trust
region solution method that the solution is on the exterior of the trust region. This constant
jumping to the exterior of the trust region represented a sort of fundamental inefficiency
under stochastic functions. In contrast, the gradient or policy gradient of the model, while
stochastic, represented a reliable estimator that in conjunction with techniques like a fixed
learning rate, combined the increased accuracy of additional samples with the robustness
of a stochastic gradient descent.

To enhance the performance and stability of the methods, we introduced several hyper-
parameters to our algorithms. In particular, as algorithms approach an optimum, decreasing
the radius of the neighborhood from which points are sampled is expected to give a more
accurate estimate of the function value and its gradient. Thus, we introduce a hyperpa-
rameter ξ for MGD which controls the rate at which the radius decreases. As for MPG,
we introduce the fixed sample radius ratio δr with respect to the maximal sample radius of

19



0 10 20 30 40 50
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d 
en

er
gy

Optimized
Unoptimized

Figure 2.1: Optimization progress of SPSA in simulated experiments on a Sherrington-
Kirkpatrick model Hamiltonian using two different hyperparameter settings: the ones used
by default in the implementation from the software package Qiskit (Unoptimized), and
ones that were found by searching for good settings (Optimized). The solid line represents
the mean energy over 50 runs with different PRNG seeds, and the shaded region represents
a width of one standard deviation of the mean. The dotted lines are 10 example trajectories.
The dotted gray line corresponds to the ansatz optimum. SPSA fails to converge with the
unoptimized hyperparameters.

the policy. The selected sample radius adaptively shrinks along with the maximal sample
radius as the policy gradually becomes more confident. It may also be advantageous to
decrease the learning rate of both algorithms. Thus, we introduce hyperparameters α and
A which control the rate of this decrease. The details of how these parameters enter can be
found in the pseudocode of the algorithms.

2.4.3 Hyperparameter selection

Each optimizer we considered here has a number of hyperparameters, and empirically we
noted that the choice of these hyperparameters had a great impact on performance. Strik-
ingly, some optimizers that failed completely with out of the box settings became com-
petitive choices with even slight adjustments. Recalling that many of the optimizers we
consider are inherently deterministic, one important hyperparameter external to all meth-
ods is the number of measurement shots per energy evaluation.

We tuned hyperparameters by grid search, and separately for each problem class and
ansatz depth considered. For each combination of hyperparameters considered in the
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search, we performed an optimization run using the wall clock time model that includes
network latency and circuit batching. The optimal hyperparameters were those that mini-
mized time to convergence with a precision target of 10−3. To avoid effects of overfitting,
we restricted consideration to single realizations, where other runs are not further optimized
within a problem class. Note that the details of hyperparameter selection has a significant
effect on the performance of the algorithms. For example, choosing a more lenient pre-
cision requirement while still minimizing time to solution leads to different performance
characteristics on other problems. See Appendix C for more details, including descriptions
of the hyperparameters.

As a simple demonstration of the importance of hyperparameter selection, we con-
sidered the performance on a simple test case with two different hyperparameter set-
tings. Figure 2.1 shows the optimization progress of SPSA in simulated experiments on
a Sherrington-Kirkpatrick model Hamiltonian with n = 8 and p = 1, using two different
hyperparameter settings: the ones used by default in the implementation from the soft-
ware package Qiskit [74], and ones that we optimized for minimal time to solution with
a fixed precision cutoff. Depicted is the normalized energy versus wall clock time, using
the wall clock time model that includes network latency and circuit batching. With tuned
hyperparameters, SPSA converges to the solution rapidly, and without tuning it quite obvi-
ously does not. The erratic trajectory when using the unoptimized default parameters can
be attributed to the fact that the initial learning rate of the algorithm is set to a value over
100 times larger than the optimized value. Hence, while SPSA is a powerful stochastic
method capable of dealing with variable function noise, this flexibility must be actively
used to make a proper comparison. Not taking advantage of this capability has led previous
studies to conclude that SPSA is not effective for these problems. This demonstrates the
importance of optimizing hyperparameters in making a fair comparison between optimiza-
tion algorithms, and throughout this study we make an effort to tune all methods under
consideration.

2.5 Results

To increase the applicability of our results to experiment, we consider both ideal and faulty
operation of a quantum device. In the first case, in order to isolate challenges pertaining
only to sampling noise, we assume an ideally functioning quantum computer, so that the
only source of stochasticity in the objective function is finite sampling effects. In the other
case, we modeled the effect of gate rotation error as follows: each time the optimizer
queries the point θ, the objective function is evaluated at the point θ+ε instead, where each
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Figure 2.2: Wall clock time for optimization to achieve precision 1e-3 for the Sherrington-
Kirkpatrick model at p = 1. Times are averaged over 50 experiments with different PRNG
seeds. The black lines at the tips of the bars represent a width of one standard deviation.
The best choice of optimizer can depend on the wall clock time model, with MGD, MPG,
and SGD benefiting greatly from the ability to request execution of a batch of circuits.

component of ε is chosen from the normal distribution with mean 0 and standard deviation
ε (for some gate error level ε). Since this model does not straightforwardly translate to the
calculation of gradients for SGD, we did not perform simulations of gate error with SGD.

Each simulation we perform is characterized by four attributes: the problem (3-regular
Max-Cut, Sherrington-Kirkpatrick, or Hubbard), the ansatz depth p, the choice of opti-
mizer, and gate error level ε (possibly 0). For each set of attributes considered, we per-
formed 50 statistically independent simulations. For each numerical simulation we per-
formed, we estimate the wall-clock time of actually performing the experiment on a quan-
tum computer accessed through a cloud service using the various cost models described in
Section 2.3.2, and set a limit to the total amount of time allowed. We are interested in how
quickly a given optimization algorithm converges to the optimal energy to within a target
precision. By “optimal energy” we mean the energy of the ansatz state at the nearest local
optimum as determined from a classical optimization of the noiseless objective function.

2.5.1 The case of p = 1 and no gate errors

First, we present the results of simulations with p = 1 and no gate errors. Figure 2.2 shows
the wall clock time for different optimizers to achieve precision 10−3 for the Sherrington-
Kirkpatrick model at n = 8 and p = 1. We define this time to be the earliest time at

22



which the current and all future evaluated points have an approximation ratio or normalized
energy close to the optimal value to within 10−3. We show the results for the three different
wall-clock models described in Section 2.3.2: no network latency, network latency present
but with circuit batching, and network latency present with no circuit batching. Note that
Nelder-Mead converged in only 44 out of 50 runs; the other algorithms converged in all of
them.

These results show that the proper choice of optimizer depends on the situation. SPSA
performed the best under the wall clock time model with no latency, but was outperformed
by MGD, SGD, and BOBYQA under the model that included latency and circuit batch-
ing. Under the model that included latency but did not have circuit batching, BOBYQA
performed the best.

The importance of the wall clock time model, and in particular the effect of network
latency, is evident. In the presence of network latency, MPG, MGD and SGD benefit
much more from circuit batching than the other algorithms do. Both algorithms work by
obtaining an estimate of the objective function gradient in each iteration. Circuit batching
provides a benefit because multiple different circuits are needed to estimate the gradient,
and these circuits can be sent over the network in one batch, reducing total network latency
costs. SPSA also estimates the gradient, but it only uses 2 different circuits for that purpose.
In contrast, the hyperparameters of MGD and MPG were chosen so that they both used 10,
while SGD used 72. Indeed, the plot shows SGD benefiting from batching to a greater
degree than MGD and MPG.

As an illustration of the ability of the various optimizers to tolerate different amounts
of variance in the objective function, we note that the optimal hyperparameters dictates
that SGD uses 1,000 measurement shots per evaluations, MGD and SPSA use 5,000, MPG
uses 20,000, Nelder-Mead uses 25,000, and BOBYQA uses 125,000. This makes clear
our distinction between deterministic and stochastic optimizers. While one can find exter-
nal hyperparameter settings that allow Nelder-Mead and BOBYQA to succeed, the lack
of internal hyperparameters for noise tolerance means the number of measurements grows
wildly. In contrast, stochastic methods like MPG, MGD and SPSA can find balanced set-
tings using far fewer measurements per point while remaining stable. In larger systems
beyond the scope of simulation, it may not be easy to a priori determine the required mea-
surements to make a deterministic method stable, and hence the flexibility of naturally
stochastic methods is likely to be preferred. For all cases, however, some amount of hyper-
parameter tuning is a necessity for good performance.
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Figure 2.3: Success probability and time to solution for varying levels of required precision
at p = 5. Top: The probability of converging (out of 50 trials) to the optimal value of the
ansatz at the given precision. Bottom: The average wall clock time the optimizer took
to reach the given precision. Error bars represent 1 standard deviation. Time to solution
is only reported if the probability of convergence was at least 75% (dotted horizontal gray
line). We see that Nelder-Mead and BOBYQA are the least likely to converge and often the
slowest to converge when they do succeed. Meanwhile, MGD and MPG have the highest
probability of converging as well as usually the fastest convergence times.

2.5.2 The case of p = 5 and no gate errors

At p = 5 there are a greater number of parameters to optimize. For the QAOA problems
there are now 10 parameters, and for the Hubbard model there are 15. Here we fixed the
wall clock time model to the one that includes network latency and circuit batching, and
plot the performance of the optimizers as a function of the desired level of precision of
convergence to the ansatz optimum. We present the results in Figure 2.3. The optimizers
did not always converge within the time limit we allowed (1,500 seconds for the QAOA
problems and 24 hours for the Hubbard model). The top row depicts the probability of
convergence to the desired precision, out of 50 runs. The bottom row depicts the average
wall clock time for convergence, with data plotted only if the probability of convergence
was at least 75%.

These simulations show that not only were Nelder-Mead and BOBYQA the least likely
to converge; they were also often the slowest to converge when they did succeed. Mean-
while, MGD, MPG, and SPSA converged even at high levels of precision, with MGD and
MPG consistently converging the most quickly in this regime. This is again a symptom of
the fragility of using deterministic optimizers in a stochastic setting. Outside the regime of
precise tuning, methods like Nelder-Mead and BOBYQA become unstable, whereas even
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Figure 2.4: Probability of convergence as a function of gate error level under a model of
rotation error for the 3-regular graph model. Shown is the probability, over 50 trials with
different PRNG seeds, of converging to within a precision of 5e-3, as a function of gate
error level. Error bars represent one standard deviation. In this scenario, Nelder-Mead is
the least resilient to this noise, while MPG is the most, and MGD follows.

outside the regime of tuning, methods like MGD, MPG, and SPSA are able to succeed.
Note that the plots would look different if we had tuned the hyperparameters with a

different strategy. For example, we tuned the hyperparameters to minimize the time to
convergence to a precision of 10−3. If we had instead used a less precise cutoff, such
as 10−2, then we would expect the optimizers to converge faster to less precise cutoffs, but
perhaps more slowly or less robustly to higher precision cutoffs at smaller ones. At a glance
in these figures, one can see remnants of the hyperparameter selection cutoff. In Appendix
C we highlight this effect with an example.

2.5.3 The impact of rotation errors at p = 5

Finally, to understand the impact of gate error in addition to simple sampling noise, at
p = 5 we consider gate rotation errors as well. As described above, the model of gate
rotation error that we used does not simply translate to SGD, so we do not include results
for it. Again, we fixed the wall clock time model to the one that includes network latency
and circuit batching. In running the optimization algorithms, we used the hyperparameters
that were optimized for the case of no gate errors.

Figure 2.4 shows the probability of convergence to a precision of 5 × 10−3 for the
various optimizers as a function of the gate error level ε, for the 3-regular graph model.
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The results show that in this scenario, Nelder-Mead is the least resilient to this type of
noise, while MPG and MGD are the most. SPSA also showed good noise resilience in
other scenarios; see Section D in the appendix for data for the other models.

Note that for a given gate error level, algorithmic improvements can increase the success
probability with respect to the ideal solution only up to a certain point. That is, beyond
a certain level of noise, the device cannot produce a more precise solution, and hence
this is not a failing of the optimizer but rather represents a device limitation. We do not
differentiate between these circumstances in the presented data, but merely note that it is a
consideration when defining probability of success.

2.6 Conclusion

Variational quantum algorithms are a promising candidate for execution on near-term quan-
tum computers, and a number of experimental demonstrations of these algorithms have al-
ready been performed. These algorithms rely on a classical optimization subroutine, and
hence the efficiency of these algorithms can be limited by the performance of these opti-
mizers. Here, we saw that to accurately assess the performance of these optimizers, it is
crucial to develop a good cost model, and tune available hyperparameters to operational
specifications.

Given the unique considerations of quantum systems, we developed two new surrogate
model-based optimizers, MGD and MPG, to fill some of the gaps of previous methods.
We numerically compared their performance with other popular alternatives, and found it
advantageous in several realistic settings. We also probed how the cost model and presence
of errors can significantly impact the choice of optimizer in a practical setting.

Now that quantum computers are coming online, accessing superconducting qubits
through a cloud interface is an important scenario to consider. The latency of communicat-
ing over the Internet can cause large increases in running times, but this can be mitigated
by circuit batching, though the cost savings depends on the optimizer.

We also observed that inherently stochastic optimizers, such as MPG, MGD and SPSA,
were more robust to variations in problems or setting once properly tuned. This extended to
situations where finite gate or circuit noise was present. In contrast, while it was sometimes
possible to make deterministic optimizers competitive through careful tuning, these tunings
were fragile with respect to small variations in the problem or the introduction of noise.
Overall, MPG and MGD’s tolerance of noise, ability to take advantage of circuit batching,
and good overall performance make them good candidates for actual experiments, but the
best optimizer can depend on the processor’s wall-clock model, level of noise, number of
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parameters, or the specific circuit ansatz.
In this work, we have shown how practical considerations can significantly affect the

calculus of choosing an optimizer for running variational algorithms. Future work will
develop more accurate noise and cost models, and further development of optimizers can
take these unique considerations into account.

Code Availability

Implementations of Model Gradient Descent and Model Policy Gradient are available at
https://github.com/quantumlib/ReCirq.
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CHAPTER 3

Quantum Approximate Optimization on a
Superconducting Qubit Processor

3.1 Introduction

The Google Sycamore superconducting qubit platform has been used to demonstrate com-
putational capabilities surpassing those of classical supercomputers for certain sampling
tasks [8]. However, it remains to be seen whether such processors will be able to achieve
a similar computational advantage for problems of practical interest. Along with quantum
chemistry [75, 76], machine learning [77], and simulation of physical systems [3], discrete
optimization has been widely anticipated as a promising area of application for quantum
computers.

Beginning with a focus on quantum annealing [78] and adiabatic quantum computing
[79], the possibility of quantum enhanced optimization has driven much interest in quantum
technologies over the years. This is because faster optimization could prove transforma-
tive for diverse areas such as logistics, finance, machine learning, and more. Such discrete
optimization problems can be expressed as the minimization of a quadratic function of bi-
nary variables [80, 81], and one can visualize these cost functions as graphs with binary
variables as nodes and (weighted) edges connecting bits whose (weighted) products sum
to the total cost function value. For most industrially-relevant problems, these graphs are
non-planar and many ancilla would be required to embed them in (quasi-)planar graphs
matching the qubit connectivity of most hardware platforms [82]. This limits the appli-
cability of scalable architectures for quantum annealing [83] and corresponds to increased
circuit complexity in digital quantum algorithms for optimization such as QAOA.

The quantum approximate optimization algorithm (QAOA) is the most studied gate
model approach for optimization using near-term devices [9]. While the prospects for
achieving quantum advantage with QAOA remain unclear, QAOA prescribes a simple
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Hardware Grid Three-Regular MaxCut Sherrington-Kirkpatrick Model d.a. b. c.

Figure 3.1: We studied three families of optimization problems: a. Hardware Grid prob-
lems with a graph matching the hardware connectivity of the 23 qubits used in this ex-
periment. b. MaxCut on random 3-regular graphs, with the largest instance depicted (22
qubits). c. The fully-connected Sherrington-Kirkpatrick (SK) model shown at the largest
size (17 qubits). d. QAOA uses p applications of problem and driver unitaries to approxi-
mate solutions to optimization problems. The parameters γ and β are shared among qubits
in a layer but different for each of the p layers.

paradigm for optimization which makes it amenable to both analytical results and imple-
mentation on current processors [84, 85, 86, 87, 88, 89, 90, 91, 92]. For these reasons,
QAOA has also become popular as a system-level benchmark of quantum hardware. This
work builds on prior experimental demonstrations of QAOA on superconducting qubits
[24, 93, 94, 95], ion traps [27], and photonics systems [96].

We are able to experimentally resolve, for the first time, increased performance with
greater QAOA depth and apply QAOA to cost functions on graphs that deviate significantly
from our hardware connectivity. Owing to the low error rates of the Sycamore platform,
the trade-off between the theoretical increase in quality of solutions with increasing QAOA
depth and additional noise is apparent for hardware-native problems. We also apply the al-
gorithm to non-native graph problems with their necessary compilation overhead and study
the scaling of solution quality and problem size. Our results reveal that the performance
of QAOA is qualitatively different when applied to hardware native graphs versus more
complex graphs, highlighting the challenge of scaling QAOA to problems of industrial
importance.

For this study, we used a “Sycamore” quantum processor which consists of a two-
dimensional array of 54 transmon qubits [8]. Each qubit is tunably coupled to four nearest
neighbors in a rectangular lattice. In this case, all device calibration was fully automated
and data was collected using a cloud interface to the platform programmed using Cirq [97].
Our experiment was restricted to 23 physical qubits of the larger Sycamore device, arranged
in a topology depicted in Figure 3.1a.
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3.2 The QAOA

The quantum approximate optimization algorithm (QAOA) is a quantum algorithm for find-
ing approximate solutions to combinatorial optimization problems. It was introduced in [9].
In this section, we describe the algorithm.

A combinatorial optimization problem is specified by n binary variables {zj}nj=1 and
m clauses {Cα}mα=1. An assignment of each variable to either 0 or 1 produces a bitstring
z = (z1, . . . , zn). A clause is a function that takes a bitstring and outputs either 0 or 1.
If Cα(z) = 1 then we say that z satisfies the clause Cα; otherwise, it does not satisfy the
clause. The goal of the problem is to find a bitstring z that satisfies as many clauses as
possible. That is, we want to maximize the cost function

C(z) =
m∑
α=1

Cα(z). (3.1)

Each clause Cα can be identified with a quantum operator that is diagonal in the computa-
tional basis, with diagonal elements given by 〈z|Cα|z〉 = Cα(z). Here, we abuse notation
and use Cα to refer to both the clause and the associated quantum operator. We can then
associate the cost function with a quantum operator which we also refer to by C, given by

C =
∑
α

Cα. (3.2)

This operator is also diagonal in the computational basis and has diagonal elements given
by 〈z|C|z〉 = C(z).

Because the quantum operator Cα is diagonal in the computational basis, it can be
expanded as a sum of terms containing Pauli Z operators. This can be viewed as the Fourier
expansion of the boolean function Cα [98]. As an example, consider the MaxCut problem.
In this problem, we are given a graph with n vertices and would like to partition the vertices
into two groups in order to maximize the number of cut edges, where we say an edge is cut
if its vertices belong to different groups. If we assign a variable to each vertex and interpret
the binary values 0 and 1 as representing the two groups, then each edge 〈jk〉 is associated
with a clause given by

C〈jk〉 =
I − ZjZk

2
. (3.3)
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where Zj is the Pauli Z operator acting on the j-th qubit. This works because

〈z|C〈jk〉|z〉 =

0 if zj = zk

1 if zj 6= zk
. (3.4)

In general, the quantum operator Cα will only act on bits that are involved in the corre-
sponding clause.

In the QAOA, we define an operator that depends on a parameter γ,

UC(γ) = e−iγC =
m∏
α=1

e−iγCα . (3.5)

We call this the “problem unitary” because it depends on the cost function specified by the
problem. This operator maps computational basis states as |z〉 7→ e−iγC(z)|z〉. We also
define a unitary that depends on an angle β,

UB(β) = e−iβB =
∏
j

e−iβXj , B =
∑
j

Xj (3.6)

This unitary is a product of X rotations and does not depend on the problem. The initial
state is the uniform superposition of all computational basis states:

|s〉 =
1√
2

∑
z

|z〉. (3.7)

To implement the QAOA, we pick a positive integer p and choose parameters γ =

(γ1, . . . , γp) and β = (β1, . . . , βp). These parameters determine a quantum state

|γ,β〉 = UB(βp)UC(γp) · · ·UB(β1)UC(γ1)|s〉, (3.8)

The QAOA works by preparing the state |γ,β〉 and measuring it to obtain a bitstring. With
a good choice of the parameters γ and β, we hope that the measured bitstring will provide a
good approximate solution to the problem. In practice, we treat the QAOA as a variational
quantum algorithm in which the goal is to find parameters γ and β in order to maximize
the expected value of the cost function

〈C〉 = 〈γ,β|C|γ,β〉. (3.9)

It can be shown that as p goes to infinity, the maximum possible expectation value tends
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towards the solution of the problem. That is,

lim
p→∞

max
γ,β
〈γ,β|C|γ,β〉 = max

z
C(z). (3.10)

The QAOA works at a finite value of p, though, and the main question of theoretical interest
is whether it can provide good approximate solutions as measured by the approximation
ratio

〈γ,β|C|γ,β〉
maxz C(z)

. (3.11)

The QAOA has been proven to achieve nontrivial approximation ratios for some problems,
and it is an open question whether there is a problem for which the QAOA achieves a higher
approximation ratio than the best known classical algorithm [9, 84, 99, 92].

3.3 Compilation and problem families

In this work, we consider problems given by cost Hamiltonians of the form

C =
∑
j<k

wjkZjZk (3.12)

wherewjk ∈ {0,±1}. Note that this can represent the cost function of the MaxCut problem
up to a constant shift and rescaling factor. The cost Hamiltonian (3.12) can be associated
with a graph on n vertices where there is an edge between vertices j and k if wjk 6= 0.
We will study three families of problem graphs depicted in Figure 3.1. We choose the
convention that the goal is to minimize the expected value of the cost function, but for
comparison among problem instances, we divide by Cmin = minzC(z), which is negative
for all problems we study, so we are in fact maximizing 〈C〉/Cmin.

We approach compilation as two distinct steps: routing and gate synthesis. The need
for routing arises when simulating UC for a cost function C defined on a graph that is not
a subgraph of our planar hardware connectivity. To simulate such UC we perform layers
of swap gates (forming a swap network) which permute qubits such that all edges in the
problem graph correspond to an edge in the hardware graph at least once, at which point
the corresponding cost function terms can be implemented. An example of such a swap
network is depicted in Figure 3.2a.

The final compilation step, gate synthesis, involves decomposing arbitrary 1- and 2-
qubit interactions into physical gates supported by the device (see, e.g. Figure 3.2b). The
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Figure 3.2: a. The linear swap network can route a 17-qubit SK model problem unitary to
n layers of nearest-neighbor two qubit interactions. b. The e−iγwZZ · SWAP interaction is a
composite phasing and SWAP operation which can be synthesized from three applications
of our hardware native entangling SYC and γw-dependent single-qubit rotations (yellow
boxes). c. The definition of the SYC gate.
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physical gates used in this experiment are arbitrary single-qubit rotations and a two-qubit
entangling gate native to the Sycamore hardware which we refer to as the SYC gate and
define in Figure 3.2c. Through multiple applications of this gate and single-qubit rotations,
we are able to realize arbitrary entangling gates. Compilation details can be found in Ap-
pendix E. The average two-qubit gate fidelity on this device was 99.4% as measured by
cross entropy benchmarking [8] and average readout fidelity was 95.9% per qubit. We now
discuss compilation for the three families of optimization problems studied in this work.

Hardware Grid Problems. Swap networks are not required when the problem graph
matches the connectivity of our hardware; this is the main reason for studying such prob-
lems despite results showing that problems on such graphs are efficient to solve on average
[81, 100]. We generated random instances of hardware grid problems by sampling wij to
be ±1 for edges in the device topology (and zero otherwise). Gates are scheduled so that
the degree-four interaction graph can be implemented in four rounds of two-qubit gates
by cycling through the interactions to the left, right, top and bottom of each interior qubit.
Each two-qubit ZZ interaction can be synthesized with two layers of hardware-native SYC

gates interleaved with γ-dependent single-qubit rotations. In total, each application of the
problem unitary is effected with eight total layers of SYC gates.

Sherrington-Kirkpatrick (SK) Model. A canonical example of a frustrated spin glass
is the Sherrington-Kirkpatrick model [55]. It is defined on the complete graph with wij
randomly chosen to be ±1. For large n, optimal parameters are independent of the in-
stance [92]. The SK model is the most challenging model to implement owing to its fully-
connected interaction graph. Optimal routing can be performed using the linear swap net-
works discussed in Ref. [101] and depicted in Figure 3.2. This requires n layers of the
composite e−iγwZZ · SWAP interaction, each of which can be synthesized from three SYC

gates with interleaved γ-dependent single-qubit rotations. Thus, one application of the
problem unitary can be effected in 3n layers of SYC gates.

MaxCut on 3-Regular Graphs. MaxCut is a widely studied problem, and there is
a polynomial-time algorithm due to Goemans and Williamson [102] which guarantees a
certain approximation ratio for all graphs, and it is an open question whether QAOA can
efficiently achieve this or beat it [103]. Unlike the previous two problem families, all edge
weights are set to 1, and we sample random 3-regular graphs to generate various instances.
The connectivity of the problem Hamiltonian’s graph differs for each instance. While one
could use the fully-connected swap network to route these circuits, this is wasteful. Instead,
we used the routing functionality from the t|ket〉 compiler to heuristically insert SWAP

operations which move logical assignments to be adjacent [104]. These compiled circuits
are of roughly equal depth to those from a fully-connected swap network, but the number
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of two qubit operations is roughly quadratically reduced.

3.4 Comparisons with prior work

Reference Date Problem topology ∆(G) n p Optimization
[24] 2017-12 Hardware 3 19 1 Yes
[96] 2018-08 Hardware 1 2 1 No
[27] 2019-06 Hardware1 (system 1) n 12, 20 1 Yes

Hardware1 (system 2) n 20–40 1–2(2) No
[93] 2019-07 Hardware 3 8 1 No
[94] 2019-12 Ring 2 4 1 No

Fully-connected n No
[95] 2019-12 Hardware 1 2 1, 2 Yes
This work Hardware 4 2–23 1–5 Yes

3-regular 3 4–22 1–3 Yes
Fully-connected n 3–17 1–3 Yes

Table 3.1: An overview of experimental demonstrations of QAOA. Although each work
generally frames the algorithm in terms of a combinatorial optimization problem (2SAT,
Exact Cover, etc.), we classify problems based on their topology, maximum degree of the
problem graph ∆(G), the number of qubits n and the depth of the algorithm p. These
attributes give a rough view of the difficulty of a particular instance. We indicate whether
variational optimization of parameters was demonstrated. 1In superconducting processors,
“Hardware” topologies are 2-local planar lattices. In ion trap processors, hardware-native
topologies are long range couplings of the form Jij ≈ J0/|i− j|α. 2p = 2 only for n = 20.

Prior work has included experimental demonstration of the QAOA. The referenced
works often include additional results, but we focus specifically on the sections dealing
with experimental implementation of the algorithm.

[24] demonstrated a Bayesian optimization of p = 1 parameters on a 19-bit hardware-
native Ising graph using a Rigetti superconducting qubit processor. The authors compared
the cumulative probability of finding the lowest energy bitstring over the course of the
optimization to binomial coin flips and showed performance from the device exceeding
random guessing. The problem topology involved a roughly hexagonal tessellation. The
problems were related to a restricted form of two-class clustering.

[96] demonstrated a n = 2, p = 1 QAOA landscape on their photonic quantum proces-
sor. They presented three instances of the two-bit problem, which was framed as Max2Xor.
The color scale for the landscapes was re-scaled for experimental values. They demon-
strated a high probability of obtaining the correct bitstrings.
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[27] demonstrated application of the QAOA with two ion trap quantum processors,
called “system 1” and “system 2”. The problems were of the form Jij ≈ J0/|i − j|α
with α close to unity. This corresponds to an antiferromagnetic 1D chain. This problem
is fully connected, but is spiritually similar to the hardware native planar graphs studied
in superconducting architectures in the sense that the cost function cannot be programmed
and is easily solvable at any system size. A landscape is shown for n = 20 from system
1. Optimization traces are shown for n = 12 and n = 20 on system 1. On system 2,
performance was demonstrated at optimal parameters for n = {20, 25, 30, 35, 40}. Addi-
tionally, a partial p = 2 grid search was performed on system 2. Nine discrete choices for
(γ1, β1, β2) were selected and then a scan over γ2 was reported for each choice. Finally, on
system 2, performance was compared between p = 1 and p = 2 at n = 20, giving a ratio
of (93.8± 0.4)% versus (93.9± 0.3)%, respectively.

[93] demonstrated an application of the QAOA via IBM’s Quantum Experience cloud
service on the 16Q Melbourne device. The 8-bit problem studied was framed as 2SAT and
had a topology matching the device with maximum node degree of 3. A landscape with
re-scaled color map was compared to the theoretical landscape.

[94] implemented QAOA on two types of problems; each with two compilation strate-
gies. The 4-bit problems had a ring topology and a fully-connected topology. While a
4-qubit ring would fit on the Rigetti superconducting device, they implemented both prob-
lems using only linear connectivity with the introduction of SWAPs. In one compilation
strategy, they used CZ as the gate-synthesis target. In the other, they used both CZ and
iSWAP. The color bars were re-scaled for the experimental data.

[95] ran 2-bit QAOA instances on their superconducting architecture at p = 1 and
p = 2. They show four p = 1 landscapes and demonstrate optimization for n = 2, p = 2.
They observed that increasing circuit depth to p = 2 increases the probability of observing
the correct bitstring.

3.5 Energy landscapes and optimization

QAOA is a variational quantum algorithm where circuit parameters (γ,β) are optimized
using a classical optimizer, but function evaluations are executed on a quantum processor
[86, 105, 106]. First, one repeatedly constructs the state |γ,β〉 with fixed parameters and
samples bitstrings to estimate 〈C〉 ≡ 〈γ,β|C|γ,β〉. On our superconducting qubit plat-
form we can sample roughly five thousand bitstrings per second. A classical “outer-loop”
optimizer can then suggest new parameters to decrease the observed expectation value.
Note that we normalize by the cost function’s true minimum, so we are in fact maximiz-

36



H
a
rd

w
a
re

 g
ri

d
Experiment

3
-r

e
g
u
la

r 
g
ra

p
h

8
2
8

3
8

S
K

 m
o
d
e
l

8

0

8

Noiseless simulation

0.4

0.2

0.0

0.2

0.4

C
Cmin

8

0

8

0.4

0.2

0.0

0.2

0.4

C
Cmin

8
2
8

3
8

8

0

8

0.2

0.0

0.2

C
Cmin

Figure 3.3: Comparison of simulated (left) and experimental (right) p = 1 landscapes,
with a clear correspondence of landscape features. An overlaid optimization trace (red,
initialized from square marker) demonstrates the ability of a classical optimizer to find
optimal parameters. The blue star in each noiseless plot indicates the theoretical local
optimum. Problem sizes are n = 23, n = 14, and n = 11 for Hardware Grid, 3-regular
MaxCut, and SK model, respectively.
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ing 〈C〉/Cmin (Cmin is negative and hence, minimizing 〈C〉 corresponds to maximizing
〈C〉/Cmin).

For p = 1, we can visualize the cost function landscape as a function of the parameters
(γ,β) = (γ1, β1) in a three-dimensional plot (where we drop the subscripts and label the
axes γ and β). The presence of features like hills and valleys in the landscape gives confi-
dence that a classical optimization can be effective. Comparison of simulated and empirical
p = 1 landscapes is a common qualitative diagnostic for the performance of experiments
[96, 27, 93, 94, 95]. For classical optimization to be successful the quantum computer must
provide accurate estimates of 〈C〉. Otherwise, noise can overwhelm any signal making it
difficult for a classical optimizer to improve the parameter estimates. Issues such as deco-
herence, crosstalk, and systematic errors manifest as differences (e.g., damping or warping)
from the ideal landscape.

Figure 3.3 contains simulated theoretical and experimental landscapes for selected in-
stances of the three problem families evaluated on a grid of β ∈ [−π/4, π/4] and γ ∈
[0, π/2] parameters with a resolution of 50 points along each linear axis. Each expectation
value was estimated using 50,000 circuit repetitions with efficient post-processing to com-
pensate for readout bias (see Appendix F). The hardware grid problem shows clear features
at the maximum size of our study, n = 23. For the other two problems performance de-
grades with increasing n and so we show data at n = 14 for the 3-regular graph problem
and n = 11 for the SK model. We highlight the correspondence between experimental
and theoretical landscapes for problems of large size and complexity. Prior experimental
demonstrations have presented landscapes for a maximum of n = 20 on a hardware-native
interaction graph [27] and a maximum of n = 4 for fully-connected problems like the SK
model [94].

In Figure 3.3, we also overlay a trace of the classical optimizer’s path through parameter
space as a red line. We used the optimizer Model Gradient Descent (MGD) described in
Chapter 2. In this example, we initialized the parameter optimization from an intentionally
bad parameter setting and observed that MGD was able to enter the vicinity of the optimum
in 10 iterations or fewer, with each iteration consisting of six energy evaluations of 25,000
shots each.

3.6 Hardware performance of QAOA

As the name implies, noisy intermediate-scale quantum (NISQ) processors are noisy de-
vices with high error rates and a variety of error channels. Thus, NISQ circuits are expected
to degrade in performance as the number of gates is increased. Here, we study the perfor-
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mance of QAOA as implemented on our quantum processor at different n and p using an
application-specific metric: the normalized observed cost function 〈C〉/Cmin. A value of
1 is perfect and 0 corresponds to the performance we would expect from random guess-
ing. In order to distinguish the effects of noise from the robustness provided by using a
classical outer-loop optimizer, here we report results obtained from running circuits at the
theoretically optimal (β,γ) values.
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Figure 3.4: QAOA performance as a function of problem size, n. Each size is the aver-
age over ten random instances (std. deviation given by error bars). While Hardware Grid
problems show n-independent noise, we observe that experimental SK model and MaxCut
solutions approach those found by random guessing as n is increased.

In Figure 3.4, we observe that 〈C〉/Cmin achieved for the hardware graph seems to
saturate to a value that is independent of of n. This occurs despite the fact that circuit
fidelity is decreasing with increasing n. In fact, this is theoretically anticipated behavior
that can be understood by moving to the Heisenberg operator formalism and considering
an observable ZiZj . The expectation value for this operator is conjugated by the circuit
unitary involving p applications of the instance graph. This gives an expression for the
expectation value of ZiZj which only involves qubits that are at most p edges away from
i and j. Thus for fixed p, the error for a given term is asymptotically unaffected as we
grow n. Recall that C is a sum of these terms, so the total error scales linearly with n; but
Cmin ∝ n so 〈C〉/Cmin is constant with respect to n. Note that non-local error channels or
crosstalk could potentially remove this property.

Compiled problems—namely SK model and 3-regular MaxCut problems—result in
deeper circuits extensive in the number of qubits. As the depth grows, there is a higher
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Figure 3.5: QAOA performance as a function of depth, p. In ideal simulation, increasing
p increases the quality of solutions. For experimental Hardware Grid results, we observe
increased performance for p > 1 both as measured by the mean over all instances (lines)
and statistics of which p maximizes performance on a per-instance basis (histogram). At
larger p, errors overwhelm the theoretical performance increase.

chance of an error occurring. The high degree of the SK model graph and the high effective
degree of the MaxCut circuits after compilation means that these errors quickly propagate
among all qubits and the quality of solutions can be approximately modeled as the result
of a depolarizing channel, with further analysis in Appendix G. Even on these challenging
problems, we observe performance exceeding random guessing for problem sizes up to 17
bits, even with circuits of depth p = 3. Note finally that despite circuits with significantly
fewer gates (although similar depth), performance on the MaxCut instances tracks perfor-
mance on the SK model instances rather closely, further substantiating the circuit depth as
a useful proxy for the performance of QAOA.

In a noiseless case, the quality of a QAOA solution can be improved by increasing the
depth parameter p. However, the additional depth also increases the probability of error.
We study this interplay between noise and algorithmic power in Figure 3.5. Previously,
improved performance with p > 1 had only been experimentally demonstrated for an n = 2

problem [95]. For larger problems (n = 20), performance for p = 2 was shown to be
within error bars of the p = 1 performance [27]. Figure 3.5 shows the p-dependence
averaged across all 130 instances where n > 10. The mean finds its maximum at p = 3,
although there are variations among the instances comparable in scale to the experimental
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p-dependence. The relatively flat dependence of performance on depth suggests that the
experimental noise seems to nearly balance the increase in theoretical performance for
this problem family. For a more meaningful aggregation of the many random instances
across problem sizes, we consider each instance individually and identify which value of
the hyperparameter p maximizes performance for that particular instance. A histogram
of these per-instance maximal values is inset in Figure 3.5, showing that performance is
maximized at p = 3 for over half of instances larger than ten qubits. Note finally that our
full dataset (see Appendix H) includes per-instance data at all settings of p.

3.7 Conclusion

Discrete optimization is an enticing application for near-term devices owing to both the
potential value of solutions as well as the viability of heuristic low-depth algorithms such
as the QAOA. While no existing quantum processors can outperform classical optimization
heuristics, the application of popular methods such as the QAOA to prototypical problems
can be used as a benchmark for comparing various hardware platforms.

Previous demonstrations of the QAOA have primarily optimized problems tailored to
the hardware architecture at minimal depth. Using the Google “Sycamore” platform, we
explored these types of problems, which we termed Hardware Grid problems, and demon-
strated robust performance at large numbers of qubits. We showed that the locations of
maxima and minima in the p = 1 diagnostic landscape match those from the theoretically
computed surface, and that variational optimization can still find the optimum with noisy
quantum objective function evaluation. We also applied the QAOA to various problem sizes
using pre-computed parameters from noiseless simulation, and observed an n-independent
noise effect on the approximation ratios for Hardware Grid problems. This is consistent
with our theoretical understanding that the noise-induced degradation of each term in the
objective function remains constant in the shallow-depth regime where correlations remain
local. Furthermore, we report the first clear cases of performance maximization at p = 3

for the QAOA owing to the low error rate of our hardware.
Most real world instances of combinatorial optimization problems cannot be mapped

to hardware-native topologies without significant additional resources. Instead, problems
must be compiled by routing qubits with swap networks. This additional overhead can
have a significant impact on the algorithm’s performance. We studied random instances of
the fully-connected SK model. Although we report non-negligible performance for large
(n = 17), deep (p = 3), and complex (fully-connected) problems, we see that performance
degrades with problem size for such instances.
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The promise of quantum enhanced optimization will continue to motivate the develop-
ment of new quantum technology and algorithms. Nevertheless, for quantum optimization
to compete with classical methods for real-world problems, it is necessary to push beyond
contrived problems at low circuit depth. Our work demonstrates important progress in the
implementation and performance of quantum optimization algorithms on a real device, and
underscores the challenges in applying these algorithms beyond those natively realized by
hardware interaction graphs.

Code and Data Availability

The code used in this experiment is available at https://github.com/quantumlib/
ReCirq. The experimental data for this experiment is available at http://dx.doi.
org/10.6084/m9.figshare.12597590.v2.
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CHAPTER 4

Preparing Slater Determinants and Fermionic
Gaussian States

4.1 Introduction

An important scientific challenge is to determine the properties of a material specified by
its atomic configuration or crystal structure. For instance, is the material hard or soft? Does
it conduct or insulate? Does it superconduct? Is it good at converting solar radiation into
more useful forms of energy? One way to perform this task is to synthesize the material
in a laboratory, but this is often a very costly process. An alternative is to simulate the
material on a computer. The properties of a material are determined by the behavior of
the electrons within it, so the challenge is to compute the properties of a system of many
interacting electrons. Materials scientists and chemists have been tackling this challenge for
decades, and advances in computational methods and computing power have revolutionized
their fields [107]. Nevertheless, the simulation of quantum systems remains a challenging
problem for classical computers. The essential difficulty seems to be the fact that storing
the full representation of a quantum system requires resources that scale exponentially in
the size of the system. While many classical approximation methods exist, methods that
guarantee calculations up to “chemical accuracy,” about 1.5 milliHartrees, are feasible only
for very small system sizes [107]. Quantum computers hold the promise of performing
calculations for system sizes and accuracies inaccessible with a classical computer [5], and
experimental proofs-of-concept have already been demonstrated [76, 23].

One of the advantages of performing a simulation on a quantum computer over a labo-
ratory experiment with real materials is the possibility of preparing the computer precisely
in a known initial state. While arbitrary states cannot be prepared efficiently, many useful
classes of states can be. In this work, we give quantum algorithms to prepare arbitrary
eigenstates of quadratic Hamiltonians, also known as fermionic Gaussian states, a useful
class of initial states for electronic structure simulations. For the special case of preparing
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Slater determinants, our algorithm improves on the algorithm given in [108] by exploiting a
unitary symmetry. Our algorithms use only nearest-neighbor interactions on a linear array,
a restriction motivated by current superconducting architectures.

4.2 Background

4.2.1 Second quantization and the canonical anticommutation rela-
tions

Second quantization is a mathematical formalism used to describe systems of fermions.
The idea is that there are a number of modes which can be occupied by a fermion or not.
A system of N fermionic modes is described by a set of fermionic annihilation operators

{ap}Np=1 satisfying the canonical anticommutation relations

apaq + aqap = 0, (4.1)

apa
†
q + a†qap = δpq. (4.2)

The adjoint a†p of an annihilation operator ap is called a creation operator, and we refer to
creation and annihilation operators as fermionic ladder operators.

We will always work in a finite-dimensional vector space, and in this setting, the anti-
commutation relations (4.1) and (4.2) have the following consequences [109]:

• The operators {a†pap}Np=1 commute with each other and have eigenvalues 0 and 1.
These are called the occupation number operators.

• There is a normalized vector |vac〉, called the vacuum state, which is a mutual 0-
eigenvector of all the {a†pap}.

• If |ψ〉 is a 0-eigenvector of a†pap, then a†p|ψ〉 is a 1-eigenvector of a†pap. This explains
why we say that a†p creates a fermion in mode p.

• If |ψ〉 is a 1-eigenvector of a†pap, then ap|ψ〉 is a 0-eigenvector of a†pap. This explains
why we say that ap annihilates a fermion in mode p.

• a2p = 0 for all p. One cannot create or annihilate a fermion in the same mode twice.

• The set of 2N vectors(
a†1

)i1
· · ·
(
a†N

)iN |vac〉, i1, . . . , iN ∈ {0, 1} (4.3)
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are orthonormal. Without loss of generality, we assume that they form a basis for the
entire vector space.

• The annihilation operators {ap} act on this basis as follows:

〈vac|
[
ajNN · · · aj11

]
ap

[(
a†1

)i1
· · ·
(
a†N

)iN]|vac〉 = δjp,0δip,1
∏
q<p

δjq ,iq(−1)iq . (4.4)

See [109] for a derivation and discussion of these consequences.

4.2.2 Mapping fermions to qubits

To simulate a system of fermions on a quantum computer, we must choose a concrete set
of qubit operators which satisfy the canonical anticommutation relations (4.1) and (4.2),
i.e., we need to map the fermionic operators to qubit operators. There are several ways of
achieving this; in this work we mainly use the Jordan-Wigner Transformation (JWT):

ap 7→
1

2
(Xp + iYp)Z1 . . . Zp−1 = (|0〉〈1|)pZ1 . . . Zp−1, (4.5)

where X , Y , and Z are the Pauli matrices. Under the JWT, computational basis states
correspond exactly to the basis (4.3):(

a†1

)i1
· · ·
(
a†N

)iN |vac〉 7→ |i1, . . . , iN〉 . (4.6)

4.3 Algorithms for state preparation

The first step in performing a quantum simulation is initializing the computer in a known
state. In this section, we give algorithms to prepare important classes of starting states.
These algorithms can be used, for instance, to prepare the ground state of the BCS mean-
field Hamiltonian used in [108] to study superconductivity in the Fermi-Hubbard model.

4.3.1 Preparing Slater determinants

A Slater determinant is a state of the form

|ΨS〉 = b†1 · · · b†Nf |vac〉, b†p =
N∑
q=1

Qpqa
†
q, (4.7)
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where Q is an Nf ×N matrix with orthonormal rows. The {bp} are a new set of fermionic
annihilation operators that also satisfy the anticommutation relations (4.1) and (4.2).

The standard algorithm for preparing Slater determinants was described in [110] and
improved upon in [108] using elementary operations called Givens rotations. Here, we
present an algorithm that reduces the number of Givens rotations required by exploiting a
symmetry in the definition of a Slater determinant.

We can prepare a Slater determinant by first preparing a computational basis vector
(4.6) and then applying the basis transformation U :

|ΨS〉 = Ua†1 · · · a†Nf |vac〉, Ua†pU † = b†p for p = 1, . . . , Nf . (4.8)

The unitary U can be decomposed as a sequence of elementary operations called Givens
rotations [108]:

U = G1 · · · GNG (4.9)

A Givens rotation Gpq(θ, ϕ) has the following effect:Ga†pG†
Ga†qG†

 = G(θ, ϕ)

a†p
a†q

 , (4.10)

where

G(θ, ϕ) =

(
cos θ −eiϕ sin θ

sin θ eiϕ cos θ

)
. (4.11)

The operation Gpq(θ, ϕ) can be written in terms of fermionic operators (independent of the
fermion-to-qubit mapping) as

Gpq(θ, ϕ) = exp
[
iϕa†qaq

]
exp
[
θ(a†paq − a†qap)

]
(4.12)

Under the JWT, it can be implemented with the circuit in Fig. 4.1

G(θ, ϕ) =

eiθY e−iϕZ/2

Figure 4.1: Quantum circuit for a Givens rotation on neighboring qubits: the part in the
dotted box represents a rotation between the two states |01〉 and |10〉.
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The decomposition (4.9) corresponds to a decomposition

U = GNG · · ·G1, (4.13)

where U is a unitary matrix that satisfies

QU † = (I 0), (4.14)

and the Gk are N ×N matrices which act as (4.11) on two rows. The matrix on the right-
hand side of (4.14) corresponds to a Slater determinant in the computational basis, and the
Givens rotations actd on it to turn it intoQ. We choose theGk to always act on neighboring
rows so that the corresponding gates act on neighboring qubits. The order of the matrices
in (4.13) is reversed from that in (4.9) because the matrices G act on vectors of creation
operators, while the operators G act directly on the original creation operators as in (4.10).

Now, we explain how to reduce the number NG of rotations required by exploiting a
symmetry; namely, the Slater determinant (4.7) remains unchanged up to a global phase
under the transformation Q 7→ V Q for any Nf ×Nf unitary V :Nf∏

p=1

Nf∑
q=1

Vpqb
†
q

|vac〉 = det(V )|ΨS〉. (4.15)

We can use V to zero out the elements of Q in its upper right corner; the resulting matrix
can be decomposed with fewer Givens rotations.

Here is an example with N = 6 and Nf = 3:

Q →

∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 →
∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗



→

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗

 = V Q , (4.16)

where ∗ represents an arbitrary matrix element, and the red-colored elements are zeroed
out by rotating two neighboring rows together. This procedure does not change the Slater
determinant and does not require any physical operation. The decomposition (4.13) can
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then be found by zeroing out elements of V Q with rotations of adjacent columns:

V Q →

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗

 →
∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗

→
λ1 0 0 0 0 0

0 ∗ ∗ 0 0 0

0 ∗ ∗ ∗ ∗ 0



→

λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 ∗ ∗ 0 0

→
λ1 0 0 0 0 0

0 λ2 0 0 0 0

0 0 λ3 0 0 0

 → V QU † , (4.17)

where the λj’s are phase factors, i.e., |λj| = 1. They correspond to a global phase in the
quantum state, and hence it is not necessary to bring them to 1. The blue-colored elements
become phase factors or zero due to the orthonormality of the rows. Givens rotations on
non-overlapping pairs of columns can be performed in parallel. The total number of Givens
rotations needed is

NG = NNf −Nf (Nf − 1)/2−Nf (Nf + 1)/2 = Nf (N −Nf ), (4.18)

and the circuit depth is N − 1. In the worst case, Nf = N/2, we require N2/4 rotations,
which for large N is about a 1/3 reduction in the number of rotations we would need if we
did not exploit the unitary symmetry.

In summary, we have described a method to prepare a Slater determinant (4.7) using
two-qubit gates that act only on neighboring qubits. Our method can be broken into three
steps:

1. Zero out the upper right matrix elements of Q using the freedom Q 7→ V Q.

2. Diagonalize V Q using a sequence of Givens rotations as column transformations.

3. Find the quantum gates that correspond to the Givens rotations in Step 2 using the
circuit in Fig. 4.1.

4.3.2 Preparing fermionic Gaussian states

Slater determinants can be viewed as special cases of a more general class of states, namely,
eigenstates of quadratic Hamiltonians, also known as fermionic Gaussian states. In this
section, we introduce quadratic Hamiltonians and explain how to prepare their eigenstates
on a quantum computer.
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4.3.2.1 Quadratic Hamiltonians

A quadratic Hamiltonian is a Hermitian operator containing only terms which are quadratic
in the fermionic ladder operators:

H =
N∑

p,q=1

Mpqa
†
paq +

1

2

N∑
p,q=1

(∆pqa
†
pa
†
q −∆∗pqapaq), (4.19)

where M and ∆ are N × N matrices. Since H is Hermitian, we must have M = M † and
∆ = −∆T . Any quadratic Hamiltonian may be rewritten in the following form:

H =
N∑
p=1

εpb
†
pbp + constant, (4.20)

where the εp are real numbers and the constant represents a shift in eigenvalues, i.e., it
is a real or complex multiple of the identity operator (in this case, real). The {bp} are a
new set of fermionic annihilation operators that satisfy the anticommutation relations (4.1)
and (4.2). Since the fermionic number operators {b†pbp} have eigenvalues 0 and 1, we can
deduce the eigenvalues of H from the form (4.20). Up to the additive constant, they are
sums of subsets of {εp}Np=1. The Hamiltonian H is diagonal in the basis determined by the
{bp}.

If ∆ = 0 in (4.19), then H conserves particle number. In this case, we can find the {bp}
by diagonalizing the Hermitian matrix M . That is, we compute the matrix U such that

UMTU † = diag(ε1, . . . , εN), (4.21)

and then we have 
b†1
...
b†N

 = U


a†1
...
a†N

 . (4.22)

Then, any Nf rows of U can be taken to be the matrix Q in (4.7), which determines a Slater
determinant.

In the general case ∆ 6= 0, H does not conserve particle number. In this case the new
creation operators {b†p} will need to be linear combinations of both the original creation
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operators and the original annihilation operators:

b†1
...
b†N
b1
...
bN


= W



a†1
...
a†N
a1
...
aN


, (4.23)

where W is a 2N × 2N matrix. In order for the {bp} to satisfy the anticommutation
relations, W must be unitary. Furthermore, W must have the block form

W =

(
W ∗

1 W ∗
2

W2 W1

)
, (4.24)

where the fact that the {bp} satisfy the relations (4.1) and (4.2) imply that the N × N

submatrices W1 and W2 satisfy

W1W
T
2 +W2W

T
1 = 0, (4.25)

W1W
†
1 +W2W

†
2 = I. (4.26)

We can always choose W so that 0 ≤ ε1 ≤ · · · ≤ εN .

4.3.2.2 Calculating W

In this section, we show how to calculate the matrix W in (4.23), which puts the Hamilto-
nian (4.19) into the diagonal form (4.20). First, we rewrite the Hamiltonian (4.19) in matrix
form:

H =
1

2

(
a†1 · · · a†N a1 · · · aN

) ∆ M

−M∗ −∆∗





a†1
...
a†N
a1
...
aN


+ constant, (4.27)
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where the extra constant comes from the different ordering of the operators, i.e., the fact
that

apa
†
p = I − a†pap, (4.28)

from (4.2). Now, we introduce the Majorana fermion operators:

fp =
1√
2

(
a†p + ap

)
, fp+N =

i√
2

(
a†p − ap

)
, (4.29)

which satisfy the anticommutation relations

{fp, fq} = δpq, for p, q = 1, . . . , 2N. (4.30)

We can write the transformation (4.29) in matrix form:


f1
...
f2N

 = Ω



a†1
...
a†N
a1
...
aN


, Ω =

1√
2

(
I I

iI −iI

)
. (4.31)

In terms of the Majorana operators, the Hamiltonian (4.27) takes the form

H =
i

2
fTAf + constant, (4.32)

where f = (f1 · · · f2N)T , and A is the 2N × 2N real antisymmetric matrix given by

A = −iΩ∗
 ∆ M

−M∗ −∆∗

Ω†. (4.33)

Since A is real and antisymmetric, it can be brought by an orthogonal matrix R into the
following canonical form, which is equivalent to the Schur form up to a permutation of
rows and columns:

RART =

(
0 E
−E 0

)
, E = diag(ε1, . . . , εN). (4.34)
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This procedure corresponds to a transformation of the Majorana operators:

f ′ = Rf , (4.35)

where the f ′p are a new set of Majorana operators which also satisfy the anticommutation re-
lations (4.30). The corresponding transformation of the creation and annihilation operators
is given by the matrix W that we are trying to calculate, which is related to R by

W = Ω†RΩ. (4.36)

In summary, W can be calculated in four steps:

1. Write the quadratic Hamiltonian (4.19) into the matrix form (4.27).

2. Find the real antisymmetric matrix A using (4.33).

3. Calculate the orthogonal matrix R which brings A into the canonical form (4.34).

4. Calculate the matrix W using (4.36).

4.3.2.3 Preparing eigenstates

We can prepare eigenstates of the Hamiltonian (4.20) using the basis transformation W
such that

WapW† = bp, p = 1, . . . , N, (4.37)

where the {bp} are defined in (4.23). Since we choose W so that the {εp} are all nonnega-
tive, the ground state of H is

|Ψ0〉 =W|vac〉 (4.38)

and the eigenstates of H take the form(
b†1

)i1
· · ·
(
b†N

)iN |Ψ0〉, (4.39)

where ip ∈ {0, 1} for p = 1, . . . , N . Therefore, we can prepare an eigenstate of H by
applyingW to a computational basis state (4.6).

Up to an overall phase, the unitaryW is uniquely determined by the matrixW in (4.24);
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actually, due to redundancy in W we only need its lower half,

WL = (W2 W1). (4.40)

WL describes how to write the new annihilation operators as linear combinations of the
original ladder operators; W2 gives the coefficients corresponding to creation operators
while W1 gives the coefficients corresponding to annihilation operators.

We show that using elementary operations on WL, the unitaryW can be decomposed
as

W = BG1BG2G3B · · · GNGB · V = U · V , (4.41)

where the Gj are Givens rotations, V is a product of Givens rotations, and B = aN + a†N is
the particle-hole transformation on the last fermionic mode:

BaNB† = a†N , (4.42)

BapB† = ap for p = 1, . . . , N − 1. (4.43)

Under the JWT, B is implemented easily by applying the PauliX operator on the last qubit,
since ladder operators corresponding to modes other than the last one do not act on the last
qubit. Now, a Givens rotation takes the form

G =


cos θ −eiϕ sin θ 0 0

sin θ eiϕ cos θ 0 0

0 0 cos θ −e−iϕ sin θ

0 0 sin θ e−iϕ cos θ

 , (4.44)

because if we perform a rotation on creation operators, we need to perform the conjugated
rotation on annihilation operators. The matrix representation of the particle-hole transfor-
mation is

B = B† =

I − eNeTN eNe
T
N

eNe
T
N I − eNeTN

 , (4.45)

where eN = (0, . . . , 0, 1)T is a vector of length N . Multiplying a matrix on the right by B†

corresponds to swapping the N -th and (2N )-th columns.
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Our goal now is to find a decomposition of a unitary U ,

U = BGNG · · ·BG3G2BG1B (4.46)

such that

VWLU
† = (0 I), (4.47)

where V is an arbitrary N ×N unitary matrix. The matrix on the right-hand side of (4.47)
represents the original annihilation operators, and the matrices V and U act on it to turn it
into WL. We explain how to do this using an example where N = 4. First, we take V to be
a product of Givens rotations to zero out some matrix elements on the left side of WL:

VWL =


0 0 0 ∗ ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 , (4.48)

where the blue zero in the upper right corner is automatically zeroed out due to condition
(4.25). Then, we can use Givens rotations on neighboring columns as well as the transfor-
mation B to swap the N -th and last columns:

VWL →



0 0 0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


→



0 0 0 0 ∗ ∗ ∗ 0

0 0 0 ∗ ∗ ∗ ∗ 0

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


→



0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



→



0 0 0 0 λ1 0 0 0

0 0 0 0 0 ∗ ∗ 0

0 0 0 ∗ 0 ∗ ∗ 0

0 ∗ ∗ ∗ 0 ∗ ∗ ∗


→



0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ ∗


→



0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 λ3 0

0 0 0 λ4 0 0 0 0



→



0 0 0 0 λ1 0 0 0

0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 λ3 0

0 0 0 0 0 0 0 λ4


→ VWLU

† .

(4.49)

The red-colored matrix elements in the fourth column are always zeroed out by the particle-
hole transformationB, and the other red-colored matrix elements on the left side are zeroed
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out by the Givens rotations G. The red-colored elements on the right side become nonzero
due to the particle-hole transformationB, and the blue-colored matrix elements are brought
to zeros or phase factors automatically by the condition (4.25) or (4.26). The phase factors
are brought to ones in the last step by single-qubit rotations. The total numbers of Givens
rotations and particle-hole transformations in this step are

NG = N(N − 1)/2, NB = N, (4.50)

and the circuit depth is 2N − 1.
We can rearrange (4.47) so that V acts as column transformations that can be imple-

mented using the circuit in Fig. 4.1:

WL = V †(0 I)U = (0 I)

(
V T 0

0 V †

)
U. (4.51)

The matrix diag
(
V T , V †

)
can be decomposed as Givens rotations and can be implemented

with a circuit of depth N − 1 as described in Section 4.3.1.
In summary, we have described a method to prepare an arbitrary eigenstate of a

quadratic Hamiltonian (4.19) using two-qubit gates that act only on neighboring qubits.
Our method can be achieved in four steps:

1. Calculate the matrix W using the procedure described in Section 4.3.2.2.

2. Zero out the upper-left matrix elements of WL with Givens rotations using the trans-
formation WL → VWL.

3. Zero out the remaining matrix elements on the left side of VWL using the se-
quence (4.49),

4. Find the quantum gates corresponding to the sequences in Steps 2 and 3.

4.4 Conclusion

The simulation of electronic structure is one of the most anticipated applications of quan-
tum computers. Improved simulation methods would allow us to design better materials,
and we expect that quantum computers will simulate systems far out of the reach of clas-
sical computers. The first step of many quantum simulation algorithms is to initialize the
computer in a precisely known quantum state. Here, we gave algorithms to prepare useful
classes of starting states for electronic structure simulations, namely, Slater determinants
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and fermionic Gaussian states. Our algorithms work for a linearly-connected architecture
using only nearest-neighbor interactions. We implemented these algorithms in the free
software package OpenFermion.

Code Availability

The algorithms described in this chapter are implemented in the free software package
OpenFermion [17].
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CHAPTER 5

Hartree-Fock on a Superconducting Qubit
Processor

5.1 Introduction

The Hartree-Fock method is a variational method for approximately solving the electronic
structure problem. Importantly, it can be performed efficiently on a classical computer. It
is central to classical and quantum electronic structure calculations and often serves as a
starting point for more sophisticated methods.

Here, we implemented the Hartree-Fock method as a variational quantum eigensolver
(VQE) [20] on a quantum computer. We executed this VQE on Google’s Sycamore proces-
sor [8] for linear hydrogen chains of length 6, 8, 10, and 12, and two pathways for diazene
bond isomerization. Our largest simulations used a dozen qubits – twice as many as the
largest prior quantum simulations of chemistry [23] – and required only nearest-neighbor
coupling (depicted in Figure 5.1). Prior simulations of chemistry on superconducting qubit
devices and trapped ion systems demonstrated the possibility of error mitigation through
VQE [76, 23, 21, 111, 25, 112, 113], albeit on a small scale. We demonstrated that, within
the model, achieving chemical accuracy through VQE is possible for larger problems when
combined with effective error mitigation strategies. Furthermore, we argue that the circuit
ansatz we used is especially appealing as a benchmark for chemistry.

The hydrogen chains are a common benchmark in electronic structure [114, 115, 116]
and the diazene bond isomerization provides a system where the required accuracy is more
representative of typical electronic structure problems and has been used as a benchmark
for coupled cluster methods [117]. For the diazene isomerization our goal was to resolve the
energetic difference between the transition states of two competing mechanisms, requiring
accuracy of about 40 milliHartree. This objective differs from prior quantum simulations
of chemistry which have focused on bond dissociation curves [76, 23, 21, 111].
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Figure 5.1: Basis rotation circuit and compilation. a) To the left of the circuit diagram are
the initial orbitals for the H12 chain with atom spacings of 1.3Å, obtained by diagonalizing
the Hamiltonian ignoring electron-electron interactions. The circuit diagram depicts the
basis rotation ansatz for a linear chain of twelve hydrogen atoms. Each grey box with a
rotation angle θ represents a Givens rotation gate. b) Compilation of the Givens rotation
gate to

√
iSWAP gates and single-qubit gates that can be realized directly in hardware. The

H12 circuit involves 72
√
iSWAP gates and 108 single-qubit Z rotation gates with a total

of 36 variational parameters. c) Depiction of a twelve qubit line on a subgrid of the entire
54-qubit Sycamore device. All circuits only require gates between pairs of qubits which
are adjacent in a linear topology.

One motivation for this work was to calibrate and validate the performance of the
Sycamore processor in realizing an important algorithmic primitive for quantum chem-
istry and lattice model simulations. Our experiment was also appealing for benchmarking
purposes since the circuits we explored generated highly entangled states but with special
structure that enabled the efficient measurement of fidelity and the determination of system-
atic errors. Further motivation was to implement the largest variational quantum simulation
of chemistry so that it is possible to better quantify the current gap between the capabil-
ities of NISQ devices and real applications. Even though the Hartree-Fock ansatz can be
efficiently simulated classically, the circuits in our experiment are more complex than prior
experimental quantum simulations of chemistry. Finally, the structure of the Hartree-Fock
state enabled us to sample the energy and gradients of the variational ansatz with fewer
measurements than would typically be required, allowing us to focus on other aspects of
quantum simulating chemistry at scale, such as the effectiveness of various types of error
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mitigation. Thus, our choice to focus on Hartree-Fock for this experiment embraces the
notion that we should work towards valuable quantum simulations of chemistry by first
scaling up important components of the exact solution (e.g., error-mitigation strategies and
basis rotations) in a fashion that enables us to completely understand and perfect those
primitives.

5.2 Background

This section provides background knowledge in quantum chemistry. It draws heavily from
Chapter 2 of [118].

5.2.1 The electronic structure problem

The central problem in electronic structure is to solve the non-relativistic time-independent
Schrödinger equation

H|Ψ〉 = E|Ψ〉 (5.1)

where H is the Hamiltonian for a system of nuclei and electrons. Since nuclei are much
heavier than electrons, it is a good approximation to assume that they are fixed. This is
called the Born-Oppenheimer approximation, and it is central to quantum chemistry. In the
Born-Oppenheimer approximation, the Hamiltonian takes the form

H = −
∑
i

1

2
∇2
i −

∑
i,A

ZA
|ri −RA|

+
∑
i<j

1

|ri − rj|
, (5.2)

where ri is the position of the i-th electron, RA is the position of the A-th nucleus, ZA is
the charge of the A-th nucleus, and the Laplacian operator∇2

i involves differentiation with
respect to the coordinates ri. A solution to the Schrödinger equation is an eigenvector |Ψ〉
of the linear operator H with eigenvalue E. This eigenvector is a wavefunction

|Ψ〉 = |Ψ({ri})〉 (5.3)

that depends on the electronic coordinates. The eigenvector with lowest energy is called
the ground state.
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5.2.2 The Pauli exclusion principle

While the Hamiltonian (5.2) depends only on the spatial coordinates {ri}, the complete
description of an electron must also include its spin. This is an additional degree of freedom
that is discrete and takes the values ±1

2
. We denote the spin of the i-th electron by ωi, and

denote the collection of the three spatial coordinates and one spin coordinate by xi:

xi = (ri, ωi). (5.4)

Thus, the full wavefunction for a system of electrons depends on the coordinates xi:

|Ψ〉 = |Ψ({xi})〉. (5.5)

The Pauli exclusion principle states that the wavefunction for a system of electrons must
be antisymmetric with respect to the exchange of the coordinates of two electrons:

Ψ(x1, . . . ,xi, . . . ,xj, . . . ,xη) = −Ψ(x1, . . . ,xj, . . . ,xi, . . . ,xη) (5.6)

This is an independent postulate of quantum mechanics.

5.2.3 Spatial orbitals and spin orbitals

The electronic wavefunction is usually written in terms of Slater determinants. To define
Slater determinants, we need to first define orbitals.

An orbital is a wavefunction for a single electron. A spatial orbital ψp(r) describes the
spatial distribution of an electron. Spatial orbitals usually form an orthonormal set:∫

ψ∗p(r)ψq(r)dr = δpq. (5.7)

If a set of spatial orbitals {ψp} were complete, then any arbitrary function could be ex-
panded as a linear combination of them. In general, the set would have to be infinite in
order to be complete. In practice, we choose a finite set and work within the space spanned
by that set.

A spin orbital χ(x) describes both the spatial distribution and the spin of an electron.
The spin of an electron can be completely described using the two orthonormal spin func-
tions α(ω) and β(ω), representing spin up and spin down. A spin orbital is constructed by
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multiplying a spatial orbital by one of the spin functions:

χ(x) = ψ(r)α(ω) or χ(x) = ψ(r)β(ω). (5.8)

If the spatial orbitals are orthonormal, then so are the spin orbitals.

5.2.4 Slater determinants

A spin orbital is a wavefunction for a single electron. Wavefunctions for multiple electrons
are constructed from spin orbitals by multiplying them and taking appropriate linear com-
binations to ensure that the result is antisymmetric. For the case of two electrons in two
spin-orbitals χp and χq, the appropriate linear combination is

Ψ(x1,x2) =
1√
2

(χp(x1)χq(x2)− χq(x1)χp(x2)). (5.9)

This function is antisymmetric with respect to the exchange of x1 and x2, so it is a proper
wavefunction for two electrons. This wavefunction can be rewritten as a determinant

Ψ(x1,x2) =
1√
2

∣∣∣∣∣χp(x1) χq(x1)

χp(x2) χq(x2)

∣∣∣∣∣ . (5.10)

The generalization for a system of η electrons is

Ψ(x1,x2, . . . ,xη) =
1√
η!

∣∣∣∣∣∣∣∣∣∣
χp(x1) χq(x1) · · · χr(x1)

χp(x2) χq(x2) · · · χr(x2)
...

... . . . ...
χp(xη) χq(xη) · · · χr(xη)

∣∣∣∣∣∣∣∣∣∣
. (5.11)

This wavefunction is antisymmetric and is called a Slater determinant. Since the form of the
determinant is determined by its diagonal elements, it is common to introduce a shorthand
notation for it, which includes the normalization factor:

Ψ(x1,x2, . . . ,xη) = |χp(x1)χq(x2) · · ·χr(xη)〉. (5.12)

If we assume that the coordinate labels are in the order x1, . . .xη, then this can be further
shortened to

Ψ(x1,x2 . . . ,xη) = |χpχq · · ·χr〉. (5.13)

61



This wavefunction has η electrons occupying the η spin-orbitals χp, χq, . . . , χr.

5.2.5 Second quantization

Let {χp}Np=1 be a set of spin-orbitals. We can identify each Slater determinant constructed
from these spin-orbitals with an occupation-number vector |k〉,

|k〉 = |k1, k2, . . . , kN〉, kp =

1 if χp is occupied

0 if χp is unoccupied
. (5.14)

By χp being occupied we mean that it appears in the Slater determinant (5.13). The oc-
cupation number vectors form an orthonormal basis for a 2N -dimensional abstract Hilbert
space called Fock space. The state with no occupied orbitals has no electrons and is called
the vacuum state:

|vac〉 = |0〉. (5.15)

Second quantization is a formalism in which all operators and states are expressed in
terms of creation and annihilation operators. The annihilation operators {ap}Np=1 are defined
by the relations

ap|k1, . . . , kp−1, 1, kp+1, . . . , kN〉 = (−1)
∑p−1
s=0 ks|k1, . . . , kp−1, 0, kp+1, . . . , kN〉, (5.16)

ap|k1, . . . , kp−1, 0, kp+1, . . . , kN〉 = 0. (5.17)

The creation operators {a†p} are the Hermitian conjugates. The creation and annihilation
operators satisfy the anticommutation relations

apaq + aqap = 0, (5.18)

apa
†
q + a†qap = δpq. (5.19)

Additional properties were given in Section 4.2. The occupation-number vectors can be
obtained by applying the creation operators to the vacuum state:

|k〉 =
(
a†1

)k1
· · ·
(
a†N

)kN |vac〉. (5.20)

In equations (5.11-5.13) the Slater determinant is written in terms of the spin orbitals
{χp}Np=1. We obtain new sets of Slater determinants by considering different sets of spin or-
bitals. A new set of spin orbitals {χ̃p}Np=1 is formed by performing a unitary transformation
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on the original set of orbitals,

χ̃p =
N∑
q=1

Qpqχq, (5.21)

where Q is a unitary matrix. In Fock space, this corresponds to a transformation of the
creation operators a†p into a new set of creation operators b†p,

b†p =
N∑
q=1

Qpqa
†
q. (5.22)

The new Slater determinants correspond to vectors of the form(
b†1

)k1
· · ·
(
b†N

)kN |vac〉. (5.23)

This explains the definition of Slater determinants given in Section 4.3.1.
In second quantization, the electronic Hamiltonian takes the form

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa
†
qaras (5.24)

where

hpq =

∫
χ?p(x)

(
−1

2
∇2 −

∑
A

ZA
|r−RA|

)
χq(x)dx (5.25)

gpqrs =

∫∫
χ∗p(x1)χ

∗
q(x2)χs(x1)χr(x2)

|r1 − r2|
dx1dx2. (5.26)

These expressions for the coefficients hpq and gpqrs are determined by the requirement
that the matrix elements of the second-quantized Hamiltonian (5.24) between occupation
number vectors be equal to the matrix elements of the original Hamiltonian (5.2) between
the corresponding Slater determinants.

5.2.6 The Hartree-Fock method

The Hartree-Fock method approximates the ground state energy of the electronic Hamito-
nian as the lowest energy among all Slater determinants. In second quantization, a Slater
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determinant |ΨS〉 has the form (5.23), so it can be written as

|ΨS〉 = b†1 · · · b†η|vac〉, b†p =
N∑
q=1

Qpqa
†
q, (5.27)

where Q is a unitary matrix and N is the total number of spin orbitals. This state can be
obtained by starting with an occupation number vector and changing basis:

|ΨS〉 = Ua†1 · · · a†η|vac〉, Ua†pU † = b†p for p = 1, . . . , η. (5.28)

A result due to Thouless [119] shows that the basis transformation U takes the form U(Q),
where we define

U(eκ) = exp

(
N∑

p,q=1

κpqa
†
paq

)
. (5.29)

The Hartree-Fock method works by treating the entries of κ as variational parameters
to obtain a parameterization of the space of Slater determinants given by

|κ〉 = U(eκ)a†1 · · · a†η|vac〉. (5.30)

The Hartree-Fock state |ψHF〉 is the lowest energy Slater determinant, so it can be expressed
as

|ψHF〉 = |κ?〉, κ? = argminκ〈κ|H|κ〉. (5.31)

The Hartree-Fock method can be performed efficiently on a classical computer using an
iterative method.

An important property of the basis change unitary (5.29) is that consecutive basis
changes can be concatenated into a single basis change. Specifically, for antihermitian
matrices α and β,we have

U(eα)U(eβ) = U(eαeβ). (5.32)
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5.3 Methods

5.3.1 Representation

We represented the electronic Hamiltonian in second quantization. For our initial orbitals,
we used what are commonly referred to as “core orbitals,” depicted for H12 on the left side
of Figure 5.1a. The Slater determinants formed from these orbitals are eigenfunctions of
the electronic Hamiltonian omitting the electron-electron interaction term, the last term in
(5.2). These orbitals are easy to compute because omitting the electron-electron interaction
term results in a quadratic Hamiltonian in second quantization.

We modeled hydrogen chains of length N with N qubits. Our simulations required N
qubits to simulate 2N spin-orbitals due to the constraint that the spin-up orbitals have the
same spatial wavefunction as the spin-down orbitals. For diazene we required 10 qubits af-
ter pre-processing. An initial guess for the Hartree-Fock state, from which we can optimize
the orbitals, was obtained by filling the lowest energy η orbitals, where η is the number of
electrons.

5.3.2 Circuit ansatz

The Hartree-Fock ansatz is given by (5.30). Under the Jordan-Wigner Transformation (see
Section 4.2.2), the occupation number vector a†1 · · · a†η|vac〉 corresponds to a computation
basis vector. We implement the unitary U(eκ) using the decomposition into Givens rota-
tions described in Section 4.3.1. The Givens rotation gates were implemented by decompo-
sition into two

√
iSWAP gates and three Rz gates. In Figure 5.1, we depict the basis change

circuit for the H12 chain, which has a diamond-shaped structure.

5.3.3 Energy measurement

The average energy of any molecular system can be evaluated with knowledge of the one-
particle reduced density matrix (1-RDM), 〈a†paq〉, and the two-particle reduced density ma-
trix (2-RDM), 〈a†pa†qaras〉. In general, it is not possible to exactly reconstruct the 2-RDM
from knowledge of just the 1-RDM. However, for single-Slater determinants (as in our
Hartree-Fock experiment), the 2-RDM is completely determined by the 1-RDM [120]:

〈a†pa†qaras〉 = 〈a†pas〉〈a†qar〉 − 〈a†qas〉〈a†par〉. (5.33)

Thus, in our experiment we only needed to sample the 1-RDM to estimate the energy. As
the 2-RDM has quadratically more elements than the 1-RDM, this approach is a significant
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simplification. In Appendix I we describe the protocol we used to measure the 1-RDM
using N + 1 distinct circuits. For each circuit, we performed 250,000 measurements.

5.3.4 Error mitigation

The unitary (5.29) conserves particle number, which in the qubit picture corresponds to
Hamming weight. Since our initial state has a well-defined Hamming weight equal to N/2,
the ansatz state |κ〉 should also the same well-defined Hamming weight. The measurement
protocol described in Appendix I allows the Hamming weight to be measured simulta-
neously with the 1-RDM elements. As our first error mitigation strategy, we discarded
bitstrings that did not have the correct Hamming weight.

In addition to post-selection on Hamming weight, we performed another error mitiga-
tion technique, pure-state projection using a method known as McWeeny purification [120].
This procedure uses the fact that the 1-RDM for any single-Slater determinant wavefunc-
tion |ψκ〉 is idempotent, that is, it has eigenvalues that are either 0 or 1 [121]. Due to errors,
the measured 1-RDM will not be exactly idempotent. McWeeney purification is an iterative
procedure that projects the measured (noisy) 1-RDM onto the set of idempotent matrices.
Letting Dn denote the matrix in the n-th iteration, the procedure is defined by

Dn+1 = 3D2
n − 2D3

n. (5.34)

Each iteration brings the eigenvalues closer to 0 and 1, and the procedure converges
quadratically.

5.3.5 Optimization

As discussed in Chapter 2, the choice of algorithm for optimizing the variational param-
eters in VQE can have a great effect on overall performance. In this work, we used a
second-order method of Newton-Raphson type similar to previous methods discussed in
the literature for orbital optimization [122, 123]. The special structure of Slater determi-
nants enabled the gradient and Hessian to be easily measured, thus making this method
especially suitable.

In each iteration of the optimizer, the update to our current quantum state |ψ〉 takes the
form

|ψ〉 → U(eR)|ψ〉 = eR̂|ψ〉, R̂ =
N∑

p,q=1

Rpqa
†
paq. (5.35)
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The energy of the updated state is a function of the variables Rpq:

E = 〈ψ|e−R̂HeR̂|ψ〉 = 〈ψ|
(
H + [H, R̂] +

1

2
[[H, R̂], R̂] + · · ·

)
|ψ〉. (5.36)

At a local minimum, we would have

∂E

∂Rpq

= 0. (5.37)

The update vector r containing the values of Rpq to use is calculated by solving the aug-
mented Hessian matrix equation(

0 g†

g B

)(
1

r

)
= ε

(
1

r

)
, (5.38)

where

gpq =
∂E

∂Rpq

∣∣∣∣
R=0

(5.39)

Bpq,rs =
∂2E

∂Rpq∂Rrs

∣∣∣∣
R=0

. (5.40)

The resulting update vector is a solution to the Newton-Raphson equation with a level shift,

g + (B− ε)r = 0. (5.41)

From (5.36) we see that

gpq = 〈ψ|[H, a†paq]|ψ〉, (5.42)

Bpq,rs = 〈ψ|[[H, a†paq], a†ras]|ψ〉. (5.43)

These quantities can be computed directly from the 1-RDM. To see this, recall from Section
5.3.3 that any two-body term of the form 〈a†pa†qaras〉 can be computed from the 1-RDM.
Therefore, the only terms in [H, a†paq] that could potentially present a problem are three-
body terms of the form

[a†pa
†
qaras, a

†
iaj] = a†pa

†
qarasa

†
iaj − a†iaja†pa†qaras. (5.44)

However, this is really a two-body term in disguise, because the term on left can be made
into the term on the right by pulling a†i and aj through the other operators, with two-body
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terms potentially materializing according to the fermionic anticommutation relations. The
result is that the three-body terms cancel out (or are annihilated) and only two-body terms
remain. The same reasoning shows that the double commutator is also actually a two-body
operator.

Once the update vector r is computed, the quantum state is updated according to (5.35).
Note that since consecutive basis change circuits can be concatenated according to (5.32),
the circuit depth stays constant.

5.4 Results

As a benchmark, we studied symmetrically stretched hydrogen chains of length 6, 8, 10,
and 12 atoms. The results are shown in Figure 5.2. The initial parameters were set to
the parameters obtained by solving the Hartree-Fock equations on a classical computer.
The data from the quantum computer is plotted along with classical Hartree-Fock results,
showing successively improving agreement as we added post-selection, then purification,
and finally variational relaxation. The 6- and 8-qubit data achieved chemical accuracy after
VQE, and even the 12-qubit data followed the expected energy closely. The error data in
Figure 5.2b and the other inserts show a consistent decrease in error by a factor of about
100 when using these protocols. Figure 5.2c details the significant decrease in error using
a modest number of VQE iterations.

A fidelity witness can be efficiently computed from the experimental data [124]; see
Appendix J. This value is a lower bound to the true fidelity, and thus potentially loose when
the fidelity is small. However, Figure 5.2b demonstrates that this value generally tracks
the measured errors. Table 5.1 shows how fidelity increased as we added various forms
of error mitigation, starting on the left column where the optimal angles were computed
classically. Uncertainties in the last digit, indicated in the parenthesis, were calculated by
the procedure described in Appendix I.5. The first column of Table 5.1 is an estimate of
the fidelity based on multiplying the fidelity for all the gates and readout assuming 99.5%
fidelity for single qubit gates, 99% fidelity for two-qubit gates, and 97% fidelity for readout.
We see that this estimate qualitatively follows the “raw” fidelity witness estimates except
when the witness value is very small. For all hydrogen systems studied, we observed drastic
fidelity improvements with combined error mitigation.

Diazene isomerization. We simulated two isomerization pathways for diazene, mark-
ing the first time that a chemical reaction mechanism has been modelled using a quantum
computer. It is known that Hartree-Fock theory reverses the order of the transition states;
however, here we focused on the accuracy of the computation with respect to the simu-
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system estimate raw +ps +pure +VQE
H6 0.571 0.674(2) 0.906(2) 0.9969(1) 0.99910(9)
H8 0.412 0.464(2) 0.827(2) 0.9879(3) 0.99911(8)
H10 0.277 0.316(2) 0.784(3) 0.9704(5) 0.9834(4)
H12 0.174 0.010(2) 0.654(3) 0.9424(9) 0.9913(3)

Table 5.1: Average fidelity lower bounds for hydrogen chain calculations. We report
values of the fidelity witness, averaged across H-H separations of {0.5, 0.9, 1.3, 1.7, 2.1,
2.5} Å, starting from circuits with the theoretically optimal variational parameters (κ).
“estimate” corresponds to an estimate of the fidelity derived by multiplying gate errors
assuming 0.5 percent single-qubit gate error, 1 percent two-qubit gate error and 3 percent
readout error. “Raw” corresponds to fidelities from constructing the 1-RDM without any
error mitigation. “+ps” corresponds to fidelities from constructing the 1-RDM with post-
selection on particle number. “+pure” corresponds to fidelities from constructing the 1-
RDM with post-selection and applying purification as post-processing. Finally, “+VQE”
corresponds to fidelities from using all previously mentioned error mitigation techniques in
conjunction with variational relaxation. Note that for small values (such as the “raw” value
for H12) we expect the fidelity lower-bound is more likely to be loose.

lated model. Correctly identifying this pathway requires resolving the energy gap of 40
milliHartree between the two transition states. The pathways correspond to the motion of
the hydrogen in the process of converting cis-diazene to trans-diazene. One mechanism
is in-plane rotation of a hydrogen and the other is an out-of-plane rotation corresponding
to rotation of the HNNH dihedral angle. Figure 5.3 contains VQE optimized data simu-
lating nine points along the reaction coordinates for in-plane and out-of-plane rotation of
hydrogen. For all points along the reaction coordinate the initial parameter setting was
the solution to the Hartree-Fock equations. VQE produced 1-RDMs with average fidelity
greater than 0.98 after error-mitigation. Once again, we see that our full error mitigation
procedure significantly improves the accuracy of our calculation. Our VQE calculations
on diazene predicted the correct ordering of the transition states within the chemical model
with an energy gap of 41± 6 milliHartree; the true gap is 40.2 milliHartree.

5.5 Conclusion

In this work we took a step towards answering the question of whether NISQ computers
can offer quantum advantage for chemical simulation by studying VQE performance on
basis rotation circuits that are widely used in quantum algorithms for fermionic simulation.
The considered ansatz afforded ways to minimize the resource requirements for VQE and
study device performance for circuits that are similar to those needed for full Hamiltonian
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simulation. These basis rotation circuits also made an attractive benchmark due to their
prevalence, optimal known compilation, the ability to extract fidelity and fidelity witness
values and the fact that they parameterize a continuous family of analytically solvable cir-
cuits demonstrating a high degree of entanglement. The circuits also serve as a natural
progression towards more correlated ansatze such as a generalized swap network [58] or a
non-particle conserving circuit ansatz followed by particle number projection.

We demonstrated the performance of two error mitigation techniques on basis rota-
tion circuit fidelity. The first is post-selection on total occupation number when measuring
all elements of the 1-RDM. This step was accomplished by permuting the basis rotation
circuit such that all measurements involved estimating nearest-neighbor observables and
measuring each pair of observables such that the total occupation number is preserved.
The second is the application of McWeeny purification as a post-processing step. The en-
ergy improvements from projecting back to the pure-state N -representable manifold was
evidence that generalized pure-state N -representability conditions would be instrumental
in making NISQ chemistry computations feasible. This fact underscores the importance
of developing procedures for applying pure-state N -representability conditions in a more
general context. The post-selection and RDM measurement techniques can be generalized
to measuring all 1-RDM and 2-RDM elements when considering a less restrictive circuit
ansatz by permuting the labels of the fermionic modes. For ansatzes such as the generalized
swap network [58], the circuit structure would not change, only the rotation angles. Thus,
the measurement schemes presented here are applicable in the more general case. Further-
more, it is important to understand the performance of these error mitigation techniques
when combined with alternatives such as noise extrapolation [125].

Finally, we were able to show further evidence that variational relaxation effectively
mitigates coherent errors arising in implementation of physical gates. The performance of
our problem specific optimization strategy motivates the study of iterative wavefunction
constructions [126] in a more general setting. The combination of these error mitigation
techniques with VQE unambiguously resolved a chemical mechanism within the model
chemistry using a quantum computation. It is still an open question whether NISQ devices
will be able to simulate challenging quantum chemistry systems and it is likely that major
innovations would be required. However, we find the accuracy of these experiments and the
effectiveness of these error-mitigation procedures to be an encouraging signal of progress
in that direction.
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Figure 5.2: Static and VQE performance on hydrogen chains. Binding curve simula-
tions for H6, H8, H10, and H12 with various forms of error mitigation. Subfigures (a, d,
e, f) compare Sycamore’s raw performance (yellow diamonds) with post-selection (green
squares), purification (blue circles), and error mitigated combined with variational relax-
ation (red triangles). For all hydrogen systems the raw data at 0.5 Å bond length is off the
top of the plot. The yellow, green, and blue points were calculated using the optimal ba-
sis rotation angles computed from a classical simulation; thus, the variational optimization
shown here is only used to correct systematic errors in the circuit realization. Subfigure
(b) contains the absolute error and infidelity for the H6 system. For all points we cal-
culated a fidelity witness as described in Appendix J. The error bars for all points were
computed by estimating the covariance between simultaneously measured sets of 1-RDM
elements and resampling those elements under a multivariate Gaussian model. Energies
from each sample were tabulated and the standard deviation is used as the error bar. The
“+PS” means applying post-selection to the raw data, “+Purification” means applying post-
selection and McWeeny purification, and “+VQE” means post-selection, McWeeny purifi-
cation, and variational relaxation. Subfigure (c) contains optimization traces for three H6

geometries (bond distances of 0.5 Å, 1.3 Å, and 2.1 Å). All optimization runs used between
18 and 30 iterations. The lowest energy solution from the optimization trace was reported.
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Figure 5.3: VQE performance on distinguishing the mechanism of diazene isomeriza-
tion. Hartree-Fock curves for diazene isomerization between cis and trans configurations.
TS1 and TS2 are the transition states for the in-plane and out-of-plane rotation of the
hydrogen, respectively. The yellow arrows on TS1 and TS2 indicate the corresponding
reaction coordinate. The solid curve is the energy obtained from optimizing a 10-qubit
problem generated by freezing the core orbitals generated from two self-consistent-field
cycles. The transparent lines of the same color are the full 12 qubit system indicating that
freezing the lowest two levels does not change the characteristics of the model chemistry.
Nine points along the reaction paths are simulated on Sycamore using VQE. We allowed
the optimizer 30 iterations for all points except the fifth and sixth points from the left of
the in-plane rotation curve, for which we allowed 60 iterations. The error bars for all
points were computed by estimating the covariance between simultaneously measured sets
of 1-RDM elements and resampling those elements under a multivariate Gaussian model.
Energies from each sample were tabulated and the standard deviation is used as the error
bar. No purification was applied for the computation of the error bars. If purification is
applied the error bars become smaller than the markers. Each basis rotation for diazene
contains 50

√
iSWAP gates and 80 Rz gates.
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CHAPTER 6

Generating Certified Random Numbers on a
Superconducting Qubit Processor

6.1 Introduction

Randomness is a valuable resource with many applications, including randomized algo-
rithms, statistical sampling, sortition, and the generation of cryptographic keys. For most
purposes requiring random numbers, it suffices to generate them using a standard pseudo-
random number generator like the GNU/Linux special device file /dev/urandom. How-
ever, for some applications, such as the generation of cryptographic keys and the imple-
mentation of lotteries, true randomness is desirable. In classical physics, there is no such
thing as true randomness: The outcome of any experiment can, in principle, be determined
from the initial conditions. On the other hand, quantum physical systems exhibit true ran-
domness. For example, the following quantum circuit, if executed correctly, produces an
unbiased coin flip:

|0〉 H

So an operator of a quantum device can plausibly claim the ability to generate truly random
numbers. However, this leaves open the question of whether a skeptical client can certify

that the claimed output of a random quantum process was actually produced through that
process. This issue of certification has been widely studied in the general setting of device-
independent random number generation. In this setting, the user of a quantum device pur-
porting to produce random numbers makes no assumptions about the inner workings of the
device, but is able to gain confidence in the randomness of its output by performing only
classical communication and computation. The first protocol for this task was proposed
by Colbeck in 2006 [11]. It was followed up by papers that provided security proofs of
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steadily increasing degrees of security and efficiency [127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137]. In the past few years, such protocols have been realized in experi-
ment [138, 139, 140, 141, 142]. These protocols are more properly termed randomness
expansion, since they require a small initial random seed.

The protocols for device-independent random number generation require the client to
interact with two separate quantum devices in order to produce Bell inequality violations
[143]. The client must be able to verify through precise distance and timing measurements
that the devices could not have communicated in order to produce the violations. Such veri-
fication is impossible if the client is receiving the random numbers through communication
with a distant server through the Internet. This constitutes a major practical limitation of
these protocols. However, it is still possible to devise protocols that work in this situation,
if one is willing to accept computational hardness assumptions and impose computational
limits on the server. The first such protocol was proposed by Brakerski et al[144], based
on the quantum hardness of the learning with errors (LWE) problem [145]. This protocol
requires the server to compute a lattice-based one-way function in superposition, as well as
to store a quantum state in memory while exchanging messages with the client, two feats
that are not possible with NISQ devices accessed through the Internet. An alternative pro-
tocol has been given by Scott Aaronson [146], based on the hardness of sampling from the
output distribution of random quantum circuits. This proposal suffers from the major draw-
back that the verification procedure requires significant classical computational resources
on the part of the client. However, it is amenable to implementation on NISQ devices, and
therefore may be one of the first applications of quantum computers.

In this work, we take a first step towards the experimental implementation of a pro-
tocol for generating certified random numbers on a quantum computer accessed through
the Internet. We mostly follow the proposal of [146]. We execute a prototype of the pro-
tocol on a Sycamore superconducting quantum processor [8]. In our implementation, we
focused on exercising the software infrastructure needed to run this protocol through the
Internet; in particular, we used automatic calibration of the quantum processor, a procedure
with temporary limitations that prevented us from achieving experimental parameters that
would allow true certification of randomness. In particular, we used only 23 qubits.

The protocol that we use works as follows. The client generates challenge circuits
which it sends to the server, who is operating a quantum computer. The server responds to
each challenge by sending a requested number of bitstrings within a given short time limit
T . When the server is honest, it produces the bitstrings by sampling from the circuit using
the quantum computer, so the bitstrings contain entropy due to the inherent randomness of
quantum measurements. The client performs statistical tests on the returned bitstrings in
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order to verify that the server must have produced them honestly. Finally, the client passes
the raw bitstrings through a randomness extractor to obtain random bits of higher quality,
in the sense of being closer to the uniform distribution.

One of the statistical tests performed by the client involves simulating the circuits to
compute the probabilities of the bitstrings in the circuit output states; this is the reason
that the verification is expensive, since simulating quantum circuits takes time exponential
in the number of qubits. Indeed, the circuits must be difficult enough to simulate that an
adversary cannot plausibly cheat the protocol by performing classical simulations instead
of quantum sampling. The expense of verification is the major point in which the protocol
can potentially be improved upon.

6.2 Preliminaries

6.2.1 Random quantum circuit sampling

A quantum circuit C on n qubits determines an ideal probability distribution pC(s) over
the 2n possible bitstrings of length n, with the probability of a bitstring s being equal to
the magnitude squared of the amplitude of the bitstring in the output state of the circuit.
We call pC the output distribution of the circuit. Sampling from the output distribution of
a random circuit drawn from appropriate ensembles is believed to be a difficult task for
classical computers [146, 147, 148]. For deep enough quantum circuits, the running time
of a classical algorithm for this task is exponential in the number of qubits. By contrast,
the task is easy to perform on an ideal quantum computer. Currently existing quantum
computers lack error-correction, so they can sample from the output distribution only with
an imperfect circuit fidelity F < 1. Sampling with imperfect fidelity is still difficult for
classical computers.

In this work, we use a family of circuits similar to the one used in the demonstration of
quantum supremacy [8]. Each circuit consists of a number of “cycles,” where each cycle
consists of two layers of gates: a layer of single-qubit gates followed by a layer of two-
qubit gates. The single-qubit gates are chosen randomly from the set {

√
X,
√
Y ,
√
W},

where X and Y are the Pauli matrices and W = (X + Y )/
√

2, subject to the constraint
that no qubit is acted upon by the same single-qubit gate in consecutive cycles. In the layer
of two-qubit gates, the pattern of qubit interactions is specially chosen to be difficult to
simulate [8]. The two-qubit gate we use is native to the Sycamore hardware and has the
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matrix 
1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 e−i
π
6

 . (6.1)

At the end of the circuit, an additional layer of single-qubit gates is appended, subject to
the same constraint regarding consecutive cycles described above.

6.2.2 Cross-entropy benchmarking (XEB)

For a random quantum circuit drawn from an appropriate ensemble, such as the one de-
scribed above, the distribution of the ideal output probabilities is well-approximated by an
exponential, or Porter-Thomas, distribution with probability density function given by

f(x) = e−x, (6.2)

where x = Dp is the ideal bitstring probability p = pC(s) scaled by the Hilbert space
dimension D = 2n. When a bitstring s is sampled with circuit fidelity F , the probability
density of x = Dp is well approximated by

f(x|F ) = [Fx+ (1− F )]e−x . (6.3)

Furthermore, if we assume these approximations are exact, then we have [8]

F = D · 〈pC(s)〉 − 1, (6.4)

where 〈pC(s)〉 denotes the expected value of the ideal probabilities pC(s) for bitstring s
sampled with fidelity F . Therefore, the experimental value of F can be estimated from a
set of sampled bitstrings s1, . . . , sk by computing the linear cross-entropy fidelity

FXEB = D · 1

k

k∑
j=1

pC(sj)− 1 . (6.5)

If multiple circuits C1, . . . , CR are sampled, with si,j corresponding to the j-th bitstring
sampled from the i-th circuit, then we can calculate the linear cross-entropy fidelity using
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all the bitstrings as

FXEB = D · 1

Rk

R∑
i=1

k∑
j=1

pCi(si,j)− 1 . (6.6)

6.2.3 Randomness extractors

Randomness extractors are functions that convert bits from a weak source of randomness
into near-uniform random bits [149]. For general sources of randomness, this is only pos-
sible if the function is also given a small uniformly random input seed as a catalyst. The
amount of randomness in a random variable X is measured by its min-entropy, which is
given by −maxx log(Pr[X = x]).

Formally, a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for
every random variable X on {0, 1}n with min-entropy at least k, Ext(X, Y ) is ε-close
to uniform when the seed Y is uniformly distributed on {0, 1}d. In our protocol we will
apply a randomness extractor to the output of a quantum computer, which contains intrinsic
randomness but is not uniformly distributed.

6.3 The computational hardness assumption

The validity of our protocol for generating certified randomness depends on a computa-
tional hardness assumption regarding the following problem:

Problem 1. Given a quantum circuit C, positive integer k, and fidelity threshold F, produce

unique bitstrings s1, . . . , sk such that FXEB ≥ F , where FXEB is defined in (6.5).

This problem is easy to perform with access to a quantum computer that can execute
the given circuit with fidelity F : Simply execute and sample the circuit on the quantum
computer to obtain the requested number of bitstrings; at relevant experimental parameters
where n > 50 and k is at most a few million, the sampled bitstrings will be unique with
very high probability. By contrast, this problem is difficult for classical computers for
appropriate ensembles of circuits. The best known classical algorithms for this problem
involve simulating the circuit, which has running time that scales exponentially with the
number of qubits [150, 151].

The assumption we make is the following:

Assumption 1. For a “large enough” circuit drawn from certain ensembles, including

the one given in Section 6.2.1, solving Problem 1 with high probability in a “sufficiently
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short” amount of time is only possible by executing and sampling the circuit on a quantum

computer with fidelity at least F .

Crucially, our assumption is that the problem must be solved through sampling, an
inherently random process. The determination of what constitutes a “large enough” circuit
(in terms of qubit number or depth) or a “sufficiently short” amount of time are to be made
at the time of executing the protocol, taking into account practical considerations such as
what the best available classical simulation algorithms can achieve.

6.4 The protocol

The protocol for generating certified randomness involves interaction between a client,
who desires to generate random bits, and a server, who operates a quantum computer.
The protocol consists of three stages: sample generation, verification, and randomness
extraction. Only the sample generation stage requires interaction between the client and
the server. The verification and randomness extraction stages can be performed by the
client alone.

The protocol is parameterized by the following numbers:

• Operational parameters:

– R: The number of rounds of interaction.

– k: The number of unique bitstrings to sample per circuit.

– T : The time limit for the server to respond in each round.

• Verification parameters:

– `: The number of rounds to verify.

– F : The minimum value of the linear cross entropy fidelity required to pass the
verification test.

The sample generation stage, described as an algorithm executed by the client, is as
follows:

Algorithm 1 (Sample generation).

1. Begin with a seed of uniformly random bits y1.

2. Using y1, seed a pseudorandom number generator g.
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3. For i = 1 to R:

(a) Use g to generate a circuit Ci and send it to the server.

(b) Wait to receive unique samples 〈si,1, . . . , si,k〉 := Si.

(c) If the server takes longer than time T to respond, abort the protocol.

The verification stage is as follows:

Algorithm 2 (Verification).

1. Begin with a seed of uniformly random bits y2.

2. Using y2, select a subset L ⊆ R of size ` uniformly at random.

3. For each i ∈ L, compute the ideal bitstring probabilities pCi(si,j) for the bitstrings

si,1, . . . , si,k.

4. Using all the computed bitstring probabilities, calculate the linear cross-entropy fi-

delity FXEB. If FXEB < F , reject. Otherwise, perform other statistical tests on the

bitstrings (see below). If the tests pass, accept. Otherwise, reject.

In Step 4 of the verification, the client may perform additional statistical tests on the
bitstrings to counter adversarial strategies that can lower the cost of producing bitstrings
through classical simulation. One such strategy is to use a tensor network simulator to
partially contract the tensor network of the circuit by fixing some of the output bits, allow-
ing for the sampling of bitstrings that share those output bits at a relatively lower cost. To
counter this strategy, the client should check that the bitstrings do not form clusters of small
Hamming distance.

If the verification passes, then the client proceeds to the randomness extraction stage,
which is simple to describe, and uses a randomness extractor Ext:

Algorithm 3 (Randomness extraction).

1. Begin with a seed of uniformly random bits y3.

2. Concatenate all sample sets Si into a single bitstring S.

3. Output Ext(S, y3).

The output of the randomness extraction stage is the output of the protocol. Assuming
that the verification stage ended with acceptance, the output is certified to consist of near-
uniform random bits.
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6.5 Entropy estimation

In this section, we estimate the amount of min-entropy contained in the output of the pro-
tocol.

6.5.1 The case of an honest server

The experimental output of a noisy quantum random circuit can be described as

F |ψ〉〈ψ|+ (1− F )χ , (6.7)

where F is the experimental fidelity (probability of no error), |ψ〉 is the ideal output of the
quantum circuit, and χ is the result of errors. Measurement of this state can be interpreted
as measuring the ideal quantum state |ψ〉 with probability F , and measuring the operator χ
with probability 1− F . This is depicted in the following diagram:

Sampler

|ψ〉

χ

F

1− F

(6.8)

For the purposes of quantum randomness generation, we take an adversarial approach
with respect to the noise operator χ and consider it to be deterministic. The reason is that
we are only interested in the quantum entropy generated experimentally, and not in using
potential “noise” or “errors” in the experiment as a source of entropy. Arguably, if we
were willing to accept an entropy source based on “noise”, there are simpler setups than
the one proposed in this paper, and they would depend on specific models for the noise.
Furthermore, the potential entropy coming from the noise cannot be certified. Therefore,
we model the sampling as depicted in the next diagram:

Sampler

|ψ〉

Deterministic

F

1− F

(6.9)
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In this model, the bitstring with the highest probability is the deterministic noise with
probability 1− F . Therefore, for a sample of k bitstrings, the min-entropy is

min-entropy = − log
(
(1− F )k

)
≈ kF (6.10)

It is possible to obtain a tighter bound by ignoring the very unlikely event that all outputs
of the experiment correspond to the “noise” term. In the simplified model of (6.9), we can
chose a constant c1 such that with a given high probability there are effectively at least
kF − c1

√
kF (1− F ) samples from the ideal quantum distribution, where k is the number

of bitstrings sampled. For instance, c1 = 5 results in a probability of 1− 1.5× 10−12.
Let us now assume that the distribution of the ideal bitstring probabilities p(s) =

|〈s|ψ〉|2 follows the Porter-Thomas distribution with probability density function

f(x) = e−x, (6.11)

where x = Dp(s) is the ideal bitstring probability scaled by the Hilbert space dimension
D = 2n. In this case, the minus log probability of a sample has normal distribution with
average q(log(D)− 1 + γ), where q = kF − c1

√
kF (1− F ) and γ is the Euler constant.

The variance is qπ2/6. We can chose a constant c2 such that with a given high probability
the min-entropy is q(log(D) − 1 + γ) − c2

√
qπ2/6. Putting it all together, we obtain the

following lower bound for the min-entropy:

q(log(D)− 1 + γ)− c2
√
qπ2

6
. (6.12)

6.5.2 Adjustments to the min-entropy bound

Depending on what adversarial assumptions are made on the server, adjustments should be
made to the bound (6.12). One such adjustment arises from considering that the server can
reorder bitstrings in the sample before returning it to the client. The min-entropy above is
given by the maximum probability of a sample of q = kF − c1

√
kF (1− F ) bitstrings.

If q ∼ kF �
√
D, all these bitstrings are most likely distinct. If the server can reorder

bitstrings in the sample, then the maximum probability of a sequence of bitstrings is now
q! times higher, so the min-entropy must be corrected to

q(log(D)− 1 + γ)− c2
√
qπ2

6
− log(q!) . (6.13)
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6.6 Security and verification time

Our proposal for certifiable randomness generation presents two competing requirements:

1. The random circuit sampling task must be difficult enough for classical simulations
so that no practical adversary can simulate it in the allocated sampling time for the
random number generator server.

2. The random circuit sampling task must be tractable enough for classical simulations
so that the verification can be carried out in practice.

Algorithms for the sampling task are continually improving, and it is unlikely that a
theoretically optimal algorithm will be mathematically proven. Therefore, we must rely on
numerical benchmarking to argue for some degree of practical security for this protocol.
Furthermore, we must rely on practical assumptions on the amount of computing power
available to a potential adversary.

On the positive side, there are several techniques that allow us to tailor the computa-
tional cost of available algorithms and to trade the computational cost between different
algorithms. For a given number of qubits we can choose the circuit depth and number of
elided gates to adjust the required verification time [8]. It’s probably preferable to have a
large number of qubits to rule Schrodinger type simulations on a supercomputer with a fast
interconnect; 53 qubits is enough. It’s also preferable to use the minimum depth required
to obtain a Porter-Thomas distribution, in order to maximize the fidelity.

We can start by fixing the maximum sampling time T imposed on the server. This
depends on the sample size, sampling rate, and communication overhead. The sample size
is proportional to 1/F 2 for fidelity F . Let’s assume that we can achieve a T of 1 minute
(this would realistically be several minutes at the moment, but it will improve). We should
choose a circuit ensemble difficult enough for the adversary to take a time longer than 1
minute using a realistic number of cores ca. A reasonable choice is ca = 105 CPU cores.
The corresponding verification time using cv cores would be p(ca/cv)(1/F ), where p is
some padding factor accounting for possible unknown speedups of the adversary over the
verifier. A reasonable choice would be cv = 104 CPU cores and p = 10. We can aim for
an optimistic fidelity of F = 0.01. In this case the verification time would be 1 week using
104 CPU cores in Google Cloud. The cost of this simulation would be about $16,000 using
preemptible n1-standard VMs.

In general, the user can select the level of security of the certified random numbers
according to the price he is willing to pay for the certification simulation.
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6.7 Experimental implementation

In our implementation of the protocol, we focused on the exercise of the software infras-
tructure needed to run this protocol as a service accessed through the Internet. In particular,
we used fully automatic calibration of our quantum processor, a procedure that suffers from
some temporary limitations which prevent us from achieving experimental parameters that
would provide true certification of randomness. In particular, we were limited to accessing
23 qubits. Our experiment was performed on a Sycamore processor.

We executed the protocol withR = 50 rounds. We used circuits consisting of 14 cycles.
In each round we sampled k = 106 bitstrings. Since this is a prototype experiment on a
relatively small number of qubits, we ignored the constraint that the sampled bitstrings had
to be unique. The longest response time of the server was 404 seconds, but the average
response time was 284 seconds, giving an effective sampling rate of about 3.5 kHz. For
the linear cross entropy fidelity FXEB we obtained a value of 0.079. To lower bound the
min-entropy, we used Eq. (6.12) with c1 = c2 = 5.0, separately for each round, and added
the results, giving an estimate of at least 8.7× 107 bits of min-entropy being generated.

We implemented a randomness extractor following the construction of Raz, Reingold,
and Vadhan [152], which is in turn based on Trevisan’s construction [153]. For a fixed ε,
the distance of the output from the uniform distribution, this extractor has an input seed
size of O(log2 n).

We used the GNU/Linux special device file /dev/urandom to produce the random
seeds needed for the protocol. The PRNG used to generate the circuits was seeded with
624 bits; the PRNG was seeded once and then used to generate all the circuits. The ran-
domness extractor with ε = 0.01 used a seed of 65,536 bits; due to the slowness of the
implementation, we only applied it to the output of one of the rounds of the protocol.

Figure 6.1 shows the values ofFXEB calculated individually for the 500 protocol rounds.
The highest value achieved was 0.088. Figure 6.2 compares the distribution of bitstring
probabilities (the values pC(s)) for the bitstrings obtained in this experimental round with
bitstrings numerically sampled from the uniform distribution and from the ideal distribution
pC . The figure shows that the distribution closely matches the theoretical distribution (6.3).

6.8 Conclusion

In this work, we have implemented a prototype of a protocol for generating certified random
numbers on a near-term quantum computer. Our protocol depends on a computational
hardness assumption and its verification step is very expensive. In our protocol, the high
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Figure 6.1: Integrated histogram of linear XEB fidelities achieved in the 50 protocol rounds
executed. The circuits executed had 23 qubits and consisted of 14 cycles. The vertical line
indicates the median value.

cost of the verification step is unavoidable because there is a direct relationship between the
cost of the verification and the cost needed for an adversary to cheat the protocol. The most
important open problem we leave here is to devise a protocol that is suitable for near-term
quantum computers which does not require an expensive verification step.

In our implementation, we focused on exercising the software infrastructure needed to
run this protocol through the Internet; in particular, we used automatic calibration of the
quantum processor, a procedure with temporary limitations that prevented us from achiev-
ing experimental parameters that would allow true certification of randomness. Neverthe-
less, our results are a proof of concept that shows that certified random number generation
may be the first application of NISQ computers.
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Figure 6.2: Histogram of scaled ideal probabilities for the protocol round with the highest
fidelity. The ideal probability p of a bitstring is calculated from the final state amplitudes of
the circuit, then scaled by the Hilbert space dimension D = 2n, where n is the number of
qubits (here, n = 23). The orange histogram represents the bitstrings obtained experimen-
tally. The blue and green histograms are for bitstrings sampled uniformly at random, and
from the ideal circuit output assuming a fidelity of 1, respectively. In each case, 106 bit-
strings were sampled. The solid lines are theoretical probability distributions for the given
fidelities.
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APPENDIX A

Initial State for the Hubbard Model

In this appendix, we describe the initial state used for the numerics in Chapter 2 involving
the Hubbard model.

The 2× 2 Hubbard model has sites labeled as in Figure A.1.

0 1

2 3

Figure A.1: Labeling of sites for 2× 2 model.

For a single spin, the single-particle energies of the hopping term are {-2, 0, 0, 2}, with
corresponding creation operators

b†0 =
1

2
(a†0 + a†1 + a†2 + a†3)

b†1 =
1√
2

(a†0 − a†3)

b†2 =
1√
2

(a†1 − a†2)

b†3 =
1

2
(a†0 − a†1 − a†2 + a†3)

The ground eigenspace is degenerate, and a ground state has the form(
2∑

i,j=1

αijbi,↑bj,↓

)
b†0,↑b

†
0,↓|vac〉

Table A.1 lists the choices for the coefficients αij that give states with the correct total
spin (singlet).
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Choice α1,1 α1,2 α2,1 α2,2

1 1 0 0 0
2 0 0 0 1
3 0 1/

√
2 1/

√
2 0

4 1/
√

2 0 0 1/
√

2

5 1/
√

2 0 0 −1/
√

2

Table A.1: Coefficient choices for the 2 × 2 Hubbard model ground state that give the
correct total spin.

Of these, only choices 3 and 4 led to optimized energies that matched the true ground
energy. We used choice 3 to construct our initial state.
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APPENDIX B

Pseudocode for MGD and MPG

In this appendix, we give pseudocode for the algorithms MGD and MPG described in
Chapter 2. The pseudocode for MGD is given in Algorithm B.1, and the pseudocode for
MPG is given in Algorithm B.2.

Algorithm B.1 Model Gradient Descent
Input: Initial point x0, learning rate γ, sample radius δ, sample number k, rate decay ex-

ponent α, stability constant A, sample radius decay exponent ξ, tolerance ε, maximum
evaluations n

1: Initialize a list L
2: Let x← x0
3: Let m← 0
4: while (#function evaluations so far) + k does not exceed n do
5: Add the tuple (x, f(x)) to the list L
6: Let δ′ ← δ/(m+ 1)ξ

7: Sample k points uniformly at random from the δ′-neighborhood of x; Call the
resulting set S

8: for each x′ in S do
9: Add (x′, f(x′)) to L

10: end for
11: Initialize a list L′

12: for each tuple (x′, y′) in L do
13: if |x′ − x| < δ′ then
14: Add (x′, y′) to L′

15: end if
16: end for
17: Fit a quadratic model to the points in L′ using least squares linear regression with

polynomial features
18: Let g be the gradient of the quadratic model evaluated at x
19: Let γ′ = γ/(m+ 1 + A)α

20: if γ′ · |g| < ε then
21: return x
22: end if
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Algorithm B.1 Model Gradient Descent (continued)
23: Let x← x− γ′ · g
24: Let m← m+ 1
25: end while
26: return x

Algorithm B.2 Model Policy Gradient
Input: learning rate γ, sample radius ratio δr, sample number k, model sample numberM ,

learning rate decay exponent α, mean initializationµ0, standard deviation initialization
σ0, decay steps tdecay, warm up steps twarm, maximum evaluations n

1: Initialize a list L
2: Initialize the policy: µ← µ0,σ ← [σ0, · · · , σ0]T .
3: Let m← 0
4: while (#function evaluations so far) + k does not exceed n do
5: Greedy estimation by the current policy: x← arg maxx̃ πϕ(x̃).
6: Add the tuple (x, f(x)) to the list L
7: Sample k points according to the current policy πϕ; Call the resulting set S
8: for each x′ in S do
9: Add (x′, f(x′)) to L

10: end for
11: Estimate the maximal radius within the set S, i.e. rmax ← maxx′∈S|x′ − x|.
12: if m < twarm then . Compute the policy gradient directly
13: Compute the baseline f̄ ← 1

k

∑
x′∈S f(x′).

14: Compute the policy gradient using the sampled data points

∇ϕJ(ϕ)← 1

k

∑
x′∈S

∇ϕ log πϕ(x′) · (f(x′)− f̄).

15: else . Fit the model to compute the policy gradient
16: Initialize a list L′

17: for each tuple (x′, y′) in L do
18: if |x′ − x| < δrrmax then
19: Add (x′, y′) to L′

20: end if
21: end for
22: Fit a quadratic model F (·) to the points in L′ using least squares linear regres-

sion with polynomial features
23: Sample M points according to the current policy πϕ; Call the resulting set S ′

24: for each x′ in S ′ do
25: Evaluate with the model F (x′).
26: end for
27: Compute the baseline F̄ ← 1

M

∑
x′∈S′ F (x′).
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Algorithm B.2 Model Policy Gradient (continued)
28: Compute the policy gradient

∇ϕJ(ϕ)← 1

M

∑
x′∈S′
∇ϕ log πϕ(x′) · (F (x′)− F̄ ).

29: end if
30: Decay the learning rate γ′ ← γ · αm/tdecay

31: Update the weights ϕ← ϕ− γ′ · ∇ϕJ(ϕ)
32: Let m← m+ 1
33: end while
34: Greedy estimation by the current policy: x← arg maxx̃ πϕ(x̃).
35: return x
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APPENDIX C

Hyperparameter Selection for Optimization
Numerics

Each algorithm we studied in Chapter 2 had hyperparameters and the choice of these hyper-
parameters had a great impact on performance. We tuned hyperparameters by performing
a grid search. For each combination of hyperparameters considered in the search, we per-
formed an optimization run using the wall clock time model that includes network latency
and circuit batching. The optimal hyperparameters were those that minimized time to con-
vergence with a precision target of 10−3. Note that this choice does have an effect on the
performance of the algorithms; choosing a more lenient precision target would give dif-
ferent results. To demonstrate this effect, we optimized hyperparameters of SPSA for the
Hubbard model for a precision target of 10−2 instead of 10−3. The results are shown in Fig-
ure C.1. As expected, the algorithm optimized for 10−2 performs better at larger precision
cutoffs and worse at smaller ones.

Below, we describe the hyperparameters of these algorithms and the values that we
searched through. For each algorithm, we considered the number of measurement shots per
energy evaluation to be a hyperparameter, and for each algorithm we considered different
sets of possible values between the QAOA and Hubbard model problems. In the tables
below, there is one line for the values considered for the QAOA problems, and one line for
the values considered for the Hubbard model. We include tables of the hyperparameters
chosen by our grid search.

C.1 Nelder-Mead

The Nelder-Mead simplex method has a single additional hyperparameter which we call δ.
This hyperparameter affects the size of the initial simplex. Given an initial guess θ0, the
algorithm constructs its initial simplex (θ0,θ1, . . . ,θm), where m is the dimension of θ0,
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by defining θi to be equal to θ0 but with its i-th coordinate multiplied by 1 + δ. In Table
C.1 we show the hyperparameter values that we searched through. In Table C.2 we show
the hyperparameters that were chosen by the search.

Hyperparameter Possible values
number of shots (QAOA) 5,000, 25,000, 125,000, 625,000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
δ (determines initial simplex size) 0.001, 0.002, 0.004, 0.008, 0.016, 0.032,

0.064, 0.128, 0.256, 0.512

Table C.1: Hyperparameter selection for Nelder-Mead

Hyperparameter 3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)
number of shots 25,000 25,000 25,000 125,000 10,000,000

δ 0.128 0.064 0.064 0.256 0.256

Table C.2: Optimized hyperparameters for Nelder-Mead

C.2 Bounded Optimization By Quadratic Approximation
(BOBYQA)

The BOBYQA algorithm maintains a set of points (θ1, . . . ,θk) through which it fits an
interpolating quadratic model. In each iteration, it uses the model to predict a good point to
go next, and incorporates that point into the model by replacing another point. The model
is only assumed to be accurate within a “trust region radius” ρ of the most recently added
point.

The value of k is a hyperparameter that can take values from {m+ 1, . . . , (m+ 1)(m+

2)/2}. In an m-dimensional optimization problem, it takes (m + 1)(m + 2)/2 points to
fully determine a quadratic function. Thus, if k is smaller than this value, there is some
freedom in choosing the particular quadratic function. BOBYQA takes up this freedom
by minimizing the Frobenius norm of the difference between the Hessians of successive
quadratic models. Instead of using k directly as a hyperparameter, we defined a transformed
hyperparameter α taking values from [0, 1] and derived k from it using the formula k =

b(m+ 1) + α[(m+ 1)(m+ 2)/2− (m+ 1)]c.
BOBYQA also has a hyperparameter we call ρ0 which is the trust region radius at

the beginning of the algorithm. In Table C.3 we show the hyperparameter values that we
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searched through. In Table C.4 we show the hyperparameters that were chosen by the
search.

Hyperparameter Possible values
number of shots (QAOA) 5,000, 25,000, 125,000, 625,000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
α (determines number of points to

interpolate)
0.0, 0.2, 0.4, 0.6, 1.0

ρ0 (initial trust region radius) 0.01, 0.02, 0.04, 0.08, 0.16

Table C.3: Hyperparameter selection for BOBYQA

Hyperparameter 3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)
number of shots 25,000 25,000 125,000 25,000 10,000,000

α 0.6 0.2 1.0 0.2 0.2
ρ0 0.04 0.16 0.08 0.16 0.04

Table C.4: Optimized hyperparameters for BOBYQA

C.3 Stochastic Gradient Descent (SGD)

SGD has two additional parameters, the learning rate γ and the decay rate β. These deter-
mine the update rule that uses the current gradient gj to update the current point θj to the
next point θj+1 as follows:

θj+1 = θj − γe−βjgj.

In Table C.5 we show the hyperparameter values that we searched through. In Table C.6
we show the hyperparameters that were chosen by the search.

Hyperparameter Possible values
number of shots 1000, 5000, 10000, 20000, 40000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
γ (learning rate) 0.001, 0.002, 0.004, 0.008, 0.016, 0.032,

0.064, 0.128, 0.256
β (decay rate) 0.01, 0.02, 0.04, 0.08, 0.16, 0.32

Table C.5: Hyperparameter selection for SGD
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Hyperparameter 3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)
number of shots 1,000 1,000 1,000 1,000 10,000

γ 0.016 0.008 0.008 0.004 0.004
β 0.32 0.02 0.16 0.08 0.32

Table C.6: Optimized hyperparameters for SGD

C.4 Simultaneous Perturbation Stochastic Approxima-
tion (SPSA)

SPSA estimates the gradient gj at point θj using the expression

gj,k =
f(θj + cj∆j)− f(θ − cj∆j)

2cj
·∆−1j,k

where ∆j is chosen in each iteration to be a vector whose entries are chosen to be plus or
minus 1 with equal probability and cj = c/jγ where c and γ are hyperparameters called
the perturbation size and perturbation decay exponent, respectively. The new point θj+1 is
calculated according to the update rule

θj+1 = θj − ajgj

where aj = a/(j + A)α where a, α, and A are hyperparameters called the rate, rate decay
exponent, and stability constant, respectively.

In Table C.7 we show the hyperparameter values that we searched through. Instead of
trying every possible combination, we randomly picked 1000 combinations. In Table C.8
we show the hyperparameters that were chosen by the search.

Hyperparameter Possible values
number of shots (QAOA) 5,000, 25,000, 125,000, 625,000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
a (rate) 0.005, 0.01, 0.02, 0.04, 0.08

c (perturbation size) 0.01, 0.02, 0.04, 0.08, 0.16
α (rate decay exponent) 0.1, 0.2, 0.4, 0.8
A (stability constant) 0, 50, 100, 200, 400

γ (perturbation decay exponent) 0.01, 0.02, 0.04, 0.08, 0.16

Table C.7: Hyperparameter selection for SPSA
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Hyperparameter 3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)
number of shots 1,000 25,000 25,000 25,000 1,000,000

a 0.08 0.04 0.005 0.01 0.01
c 0.16 0.01 0.02 0.02 0.02
α 0.4 0.8 0.2 0.8 0.8
A 200 50 50 100 100
γ 0.04 0.01 0.04 0.02 0.16

Table C.8: Optimized hyperparameters for SPSA

C.5 Model Gradient Descent (MGD)

MGD and its hyperparameters are described in Algorithm B.1. In our study we re-
parameterized the hyperparameter k, the sample number, in a similar way to how we re-
parameterized the number of interpolation points in BOBYQA. Instead of using k directly
as a hyperparameter, we defined a transformed hyperparameter η being a positive real num-
ber and derived k from it using the formula k = η · (m + 1)(m + 2)/2, where m is the
dimension of the optimization problem.

In Table C.9 we show the hyperparameter values that we searched through. Instead of
trying every possible combination, we randomly picked 1000 combinations. In Table C.10
we show the hyperparameters that were chosen by the search.

Hyperparameter Possible values
number of shots (QAOA) 5,000, 20,000, 80,000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
γ (rate) 0.01, 0.02, 0.04, 0.08, 0.16

δ (sample radius) 0.01, 0.02, 0.04, 0.08, 0.16
η (determines sample number) 0.3, 0.6, 0.9, 1.2

α (rate decay exponent) 0.1, 0.2, 0.4, 0.8
A (stability constant) 0, 50, 100, 200, 400

ξ (sample radius decay exponent) 0.01, 0.02, 0.04, 0.08, 0.16

Table C.9: Hyperparameter selection for MGD

C.6 Model Policy Gradient (MPG)

MPG (Algorithm B.2) parameterizes a Gaussian sampling policy and optimizes in its pa-
rameter space. The learnable parameters introduced here are the mean and standard devia-
tion of the policy, i.e. ϕ = {µ,σ}, where µ and σ have the same dimension as the point
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Hyperparameter 3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)
number of shots 1,000 5,000 1,000 5,000 100,000

γ 0.08 0.01 0.16 0.16 0.01
δ 0.08 0.08 0.04 0.04 0.08
η 0.9 0.3 1.2 0.3 0.6
α 0.4 0.4 0.8 0.8 0.4
A 100 0 100 400 100
ξ 0.08 0.08 0.02 0.01 0.04

Table C.10: Optimized hyperparameters for MGD

θ. Every iteration it samples a batch of data points to estimate the direction (Eqn. C.1)
which maximizes the expected total reward (in our case, the reward is the negative ground
state energy). The drawback of the vanilla policy gradient (VPG) algorithm [41] is that it
requires a large batch size to control the variance of estimation. In order to enhance the
sample efficiency, we integrate the idea of surrogate model-based optimization with the
VPG algorithm. A quadratic model is trained by reusing the history data within some trust
region of the current estimation θ. Once we have the model, we can query it to output esti-
mations for any data point within the region. Note that the estimations of these data points
have little cost compared with the samples in the beginning. Finally, the policy gradient is
applied to improve the policy at the end of each iteration

∇ϕJ(ϕ) = E
θ∼N (µ,σ)

[∇ϕ log πϕ(θ) · f(θ)] . (C.1)

The hyperparameters of the MPG algorithm are described as follows. The optimizer is
chosen to be Adam [154], with β1, β2 being 0.9 and 0.999. The learning rate hyperparam-
eter is γ with an exponential decay schedule of rate α for every step tdecay. The hyperpa-
rameter σ0 specifies the initialization for the standard deviation of the Gaussian policy. The
hyperparameter k is the sample batch size at each iteration. The sample radius ratio δr with
respect to the maximal radius of the samples determines the trust region in which to fit the
model. The hyperparameter twarm is introduced because in the beginning, the number of
data points collected is not adequate enough to fit a good model. Thus we adopt the vanilla
policy gradient for the first several iterations before we accumulate enough data points. The
hyperparameter M is the model sample number to estimate the policy gradient. It needs to
be big enough so that the variance of the estimation is low. In our experiments, we used a
constant M = 65536. Since here we use the quadratic model and Gaussian policy, one can
also compute the policy gradient analytically, but implementing it this way would allow
plugging in different models.
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In Table C.11 we show the hyperparameter values that we searched through. Instead of
trying every possible combination, we randomly picked 1000 combinations. In Table C.12
we show the hyperparameters that were chosen by the search.

Hyperparameter Possible values
number of shots (QAOA) 1,000, 5,000, 20,000

number of shots (Hubbard) 10,000, 100,000, 1,000,000, 10,000,000
γ (learning rate) 0.001, 0.005, 0.008, 0.01, 0.02

α (learning rate decay exponent) 0.99, 0.96, 0.93, 0.90
σ0 (standard deviation initialization) exp(−4.0), exp(−5.0), exp(−6.0)

k (sample number) 10, 20, 40
δr (sample radius ratio) 1.0, 2.0, 3.0
twarm (warm up steps) 0, 5, 10

Table C.11: Hyperparameter selection for MPG

Hyper-
parameter

3-reg (p=1) 3-reg (p=5) SK (p=1) SK (p=5) Hubbard (p=5)

number of
shots

5,000 20,000 20,000 5,000 1,000,000

γ 0.02 0.005 0.02 0.005 0.01
α 0.99 0.96 0.99 0.93 0.90
σ0 exp(−4.0) exp(−4.0) exp(−4.0) exp(−4.0) exp(−5.0)
k 10 10 10 20 20
δr 3 3 2 2 3
twarm 10 5 5 0 10

Table C.12: Optimized hyperparameters for MPG
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Figure C.1: Success probability and time to solution for varying levels of required precision
at p = 5, for SPSA on the Hubbard model. Results are shown for two hyperparameter
settings, optimized for two different precision cutoffs δ: 10−3 (dark colored) and 10−2

(light colored). Top: The probability of converging (out of 50 trials) to the optimal value of
the ansatz at the given precision. Bottom: The average wall clock time the optimizer took
to reach the given precision. Error bars represent 1 standard deviation. Time to solution
is only reported if the probability of convergence was at least 75% (dotted horizontal gray
line).

98



APPENDIX D

Additional Data from Optimization Numerics

In this appendix, we give additional data from the numerical experiments of Chapter 2.
In Figure D.1 we show a version of Figure 2.2 that also includes a plot for the 3-regular

graph model. For the 3-regular graph model, BOBYQA only converged in 34 out of 50
runs, so we exclude its data (there other algorithms converged in at least 49 runs).

Figure D.2 shows a version of Figure 2.4 that also includes plots for the Sherrington-
Kirkpatrick and Hubbard models. Figure D.3 plots the final energy error of the optimizers
as a function of the amount of gate rotation error present, at p = 5. It shows that for the
QAOA problems, MGD and SPSA clearly outperform the others when the final energy
error is required to be less than about 1e-2. For the Hubbard model, the optimizers do not
differentiate as clearly.
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Figure D.1: Version of Figure 2.2 that also includes a plot for the 3-regular graph model.
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Figure D.2: Version of Figure 2.4 that also includes plots for the Sherrington-Kirkpatrick
and Hubbard models.
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Figure D.3: Final energy error as a function of gate error level (amount of gate rotation
error), for p = 5. For each gate error level and algorithm, the final error for the 50 runs
with different PRNG seeds are plotted.
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APPENDIX E

Hardware and Compilation Details for the
QAOA Experiment

In this appendix, we discuss detailed compilation of the unitaries used in the experiment of
Chapter 3 into the hardware native gateset, particularly the SYC gate defined in Figure 3.2c.

The SYC gate is similar to the gate used in [8] but with the conditional phase tuned to be
precisely π/6. A

√
iSWAP gate is simultaneously calibrated and available but has a longer

gate duration and requires additional (physical) Z rotations to match phases. The required
interactions for this study are compiled to an equivalent number of SYC and

√
iSWAP,

so SYC was used in all circuits. Single-qubit microwave pulses enact “Phased X” gates
PhX(θ, φ) (alternatively called XY rotations or the W gate) with φ = 0 corresponding to
RX(θ) and φ = π

2
corresponding to RY (θ) (up to global phase). Intermediate values of φ

control the axis of rotation in the X-Y plane of the Bloch sphere.
Arbitrary single-qubit rotations can be applied by a PhX(θ, φ) gate followed by aRZ(ϑ)

gate. As a compilation step, we merge adjacent single-qubit operations to be of this form.
Therefore, our circuit is structured as a repeating sequence of: a layer of PhX gates; a
layer of Z gates; and a layer of SYC gates. All Z rotations of the form exp [−iθZ] can
be efficiently commuted through SYC and PhX to the end of the circuit and discarded.
This leaves alternating layers of PhX and SYC gates. The overheads of compilation are
summarized in Table E.1.

Compilation of ZZ(γ). These interactions (used for Hardware Grid and MaxCut prob-
lems) can be compiled with 2 layers of SYC gates and 2+1 associated layers of single qubit
PhX gates. We report the required number of single-qubit layers as 2+1 because the initial
(or final) layer from one set of interactions can be merged into the final (initial) single qubit
gate layer of the preceding (following) set of interactions. In general, the number of single
qubit layers will be equivalent to the number of two-qubit gate layers with one additional
single-qubit layer at the beginning of the circuit and one additional single-qubit layer at the
end of the circuit. The explicit compilation of ZZ to SYC is available in Cirq and a proof
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Problem Routing Interaction Synthesis
Hardware Grid WESN e−iγZZ 2
MaxCut Greedy e−iγZZ 2
MaxCut Greedy SWAP 3
SK Model Swap Network e−iγZZ · SWAP 3

Table E.1: Compilation details for the problems studied. “Routing” gives the strategy used
for routing, “Interaction” gives the type of two-qubit gates which need to be compiled, and
“Synthesis” gives the number of hardware native 2-qubit SYC gates required to realize the
target interaction. “WESN” routing refers to planar activation of West, East, etc. links.

can be found in the supplemental material of Ref. [8]. Here we reproduce the derivation in
slightly different notation but following a similar motivation.

The SYC gate is an fSim(π/2,π/6) which can be broken down into a CPHASE(π/6),
CZ, SWAP, and two S gates according to Figure E.1. We analyze the KAK coefficients for

SYC = eiφZ⊗Z
e−iφZ

e−iφZ

S†

S†
= eiφZ⊗Z

ΓZ

ΓZ

Figure E.1: Circuit decomposition of the SYC gate: ΓZ = S†e−iφZ = e−iφZS† and φ =
−π/24, where two solid dots linked by a line represent the CZ gate and two crosses linked
by a line represent the SWAP gate.

a composite gate of two SYC gates sandwiching arbitrary single qubit rotations, depicted in
Figure E.2, to determine the space of gates accessible with two SYC gates.

SYC
G1

G2

SYC = eiφZ⊗Z
ΓZ

ΓZ

G1

G2

ΓZ

ΓZ
eiφZ⊗Z = eiφZ⊗Z

G′1

G′2
eiφZ⊗Z

Figure E.2: Single-qubit gates sandwiched by two SYC gates: The ΓZ gates map single-
qubit operations to single-qubit operations

Any two qubit gate is locally equivalent to standard KAK form [155]. The coefficients
in the KAK form is equivalent to the operator Schmidt coefficients of the 2-qubit unitary.
To find the Schmidt coefficients, we introduce the matrix representation of 2-qubit gates in
terms of Pauli operators, i.e., the jk-th matrix element equals to the corresponding coeffi-
cient of the Pauli operator Pj ⊗ Pk, where P0,1,2,3 = I,X, Y, Z,

OM =
3∑

j,k=0

MjkPj ⊗ Pk . (E.1)

The Schmidt coefficients of OM equal to the singular values of M . Any single-qubit gate
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G′1,2 can be decomposed into the Z-X-Z rotations; the Z rotations commute with the CZ

and the CPHASE, and they do not affect the Schmidt coefficients of the two-qubit operation
defined in Figure E.2. We neglect the Z rotations and simplify G′1,2 to single-qubit X
rotations

G′1 = cos θ1I + i sin θ1X , G′2 = cos θ2I + i sin θ2X . (E.2)

The Pauli matrix representation of G′1 ⊗G′2 in Eq. (E.2) is

A =


c1c2 ic1s2 0 0

is1c2 −s1s2 0 0

0 0 0 0

0 0 0 0

 , (E.3)

where c1,2 = cos θ1,2 and s1,2 = sin θ1,2. The rank of the matrix A is one, representing a
product unitary. After being conjugated by the CZ gates, i.e, O 7→ CZO CZ, the matrix A
becomes

A 7→ B =


c1c2 0 0 0

0 0 0 is1c2

0 0 −s1s2 0

0 ic1s2 0 0

 , (E.4)

where we use the relations for O 7→ CZO CZ,

X1X2 7→ Y1Y2 , X1 7→ X1Z2 , X2 7→ Z1X2 . (E.5)

The CPHASE part in the SYC gate is

eiφZ⊗Z = cosφ I ⊗ I + i sinφZ ⊗ Z , (E.6)

where φ = −π/24. An arbitrary operator O left and right multiplied by CPHASE part is
expressed as

eiφZ⊗ZOeiφZ⊗Z = (cosφ)2O +
i

2
sin(2φ)

(
Z⊗2O +OZ⊗2

)
− (sinφ)2Z⊗2OZ⊗2 . (E.7)
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Applying the operation O 7→ 1
2
(Z⊗2O +OZ⊗2) to the operator B, we have

B 7→ C =


0 0 0 0

0 s1s2 0 0

0 0 0 0

0 0 0 c1c2

 . (E.8)

Applying the operation O 7→ Z⊗2OZ⊗2 to the operator B, we have

B 7→ D =


c1c2 0 0 0

0 0 0 −is1c2
0 0 −s1s2 0

0 −ic1s2 0 0

 . (E.9)

The resulting two-qubit gate at the output of the circuit in Figure E.2 takes the form

M = (cosφ)2B + i sin(2φ)C − (sinφ)2D . (E.10)

Two singular values of M are cos(2φ)c1c2 and cos(2φ)s1s2 corresponding to the diago-
nal matrix elements M0,0 and M2,2, and the magnitudes of these two singular values are
bounded by the angle φ. Consider the two-dimensional subspace of the matrix B, C, and
D with the two known singular values removed

B 7→ B′ =

(
0 is1c2

ic1s2 0

)
, C 7→ C ′ =

(
s1s2 0

0 c1c2

)
, (E.11)

D 7→ D′ =

(
0 −is1c2

−ic1s2 0

)
(E.12)

The Pauli representation matrix in the reduced space is

M ′ = (cosφ)2B′ + i sin(2φ)C ′ − (sinφ)2D′ (E.13)

= i

(
sin(2φ)s1s2 s1c2

c1s2 sin(2φ)c1c2

)
= ic1c2

(
sin(2φ)t1t2 t1

t2 sin(2φ)

)
. (E.14)

To calculate the singular values of a 2× 2 matrix

Mα = α0I + α1X + α2Y + α3Z , (E.15)
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we used the formula

σ± =

√
η ±

√
η2 − ξ2 , (E.16)

where η = |α0|2 + |α1|2 + |α2|2 + |α3|2 and ξ = |α2
0 − α2

1 − α2
2 − α2

3|. For matrix M ′, we
have,

η =
1

2

∑
j,k

|M ′
jk|2 (E.17)

=
1

2

(
sin(2φ)2s21s

2
2 + s21c

2
2 + c21s

2
2 + sin(2φ)2c21c

2
2

)
(E.18)

=
1

2
− 1

2
cos(2φ)2

(
s21s

2
2 + c21c

2
2

)
. (E.19)

and

ξ =
1

4

∣∣∣ sin(2φ)2 (s1s2 + c1c2)
2 − (s1c2 + c1s2)

2

+ (s1c2 − c1s2)2 − sin(2φ)2 (s1s2 − c1c2)2
∣∣∣ (E.20)

= cos(2φ)2
∣∣s1s2c1c2∣∣ . (E.21)

We have solved all the four singular values of the 2-qubit unitary at the output of Figure E.1,

λ0 = | cos(2φ)c1c2|, λ1 = | cos(2φ)s1s2|,

λ2 =

√
η +

√
η2 − ξ2, λ3 =

√
η −

√
η2 − ξ2.

(E.22)

For the case s1 = 0 and c1 = 1, we have λ1 = λ3 = 0 and the other two singular values

λ0 = | cos(2φ)c2| ∈ [0, cos(2φ)] , λ2 =
√

2η =
√

1− cos(2φ)2c22 . (E.23)

Since cos(2φ) ' 0.966 > 1/
√

2, we can implement any CPHASE gate using only two SYC

gates. This is achieved by matching the Schmidt coefficients of e−iθZZ/2 to λ0 and λ2. If
| cos(θ)| > cos(2φ) then we can reset c1,2 and s1,2 appropriately to select out the other pair
of singular values.

Compilation of SWAP. A SWAP gate requires three applications of SYC and is used
for the 3-regular MaxCut problem circuits. The SWAP gate was numerically compiled by
optimizing the angles of the circuit in Figure E.3 to match the KAK interaction coefficients
for the SWAP gate.
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SYC
RXY (φ1)(θ1)

RXY (φ2)(θ2)
SYC

RXY (φ3)(θ3)

RXY (φ4)(θ4)
SYC

RXY (φ5)(θ3)

RXY (φ6)(θ4)

Figure E.3: Circuit used to match the KAK coefficients of the SWAP gate. The RXY (φ)(θ)
is a rotation of θ around an axis in the XY -plane defined by φ. This is implemented in Cirq
as a PhasedXPow gate.

After the the angles in the circuit depicted in Figure E.3 are determined to match the
KAK coefficient of the swap gate we add single qubit rotations to make the circuit fully
equivalent to SWAP.

Compilation of e−iγwZZ · SWAP. This composite interaction can be effected with three
applications of SYC and is used for SK-model circuits. The SYC gate KAK coefficients
are (π/4, π/4, π/24) which is locally equivalent to a CPHASE(π/4 − π/24) followed by a
SWAP. Therefore, to implement a ZZ(γ) followed by a swap we need to apply a single
SYC gate followed by the composite CPHASE(γ − π/24 + π/4). The total composite gate
now involves 3 SYC gates, a single Rx gate and two Rz gates.

Scheduling of Hardware Grid gates. An efficient planar graph edge-coloring can be
used to schedule as many simultaneous ZZ interactions as possible. We activate links on
the graph in the following order: 1) horizontal edges starting from even nodes; 2) horizon-
tal edges starting from odd nodes; 3) vertical edges starting from even nodes; 4) vertical
edges starting from odd nodes. Viewed as cardinal directions and choosing an even node
as the central point this corresponds to a west, east, south, north (W, E, S, N) activation
sequence.
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Figure E.4: p = 1 swap network for a 5-qubit SK-model. Physical qubits are indicated by
horizontal lines and logical node indices are indicated by red numbers. The network effects
all-to-all logical interactions with nearest-neighbor interactions in depth n.

Fully Connected Swap Network. All-to-all interactions can be implemented opti-
mally with a swap network in which pairs of linear-nearest-neighbor qubits are repeatedly
interacted and swapped. Crucially, the required interactions SWAP and e−iγZZ between all
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pairs all mutually commute so we are free to re-order all two-qubit interactions to minimize
compiled circuit depth. After n applications of layers of e−iγwZZ · SWAP interactions (al-
ternating between even and odd qubits), every qubit has been involved in a ZZ interaction
with every other qubit and logical qubit indices have been reversed. This can be viewed
as a (parallel) bubble sort algorithm initialized with a reverse-sorted list of logical qubit
indices. An example at n = 5 is shown in Figure E.4. If p is even, two applications of the
swap network return qubit indices to their original mapping. Otherwise, post-processing
can reverse the measured bitstrings.
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APPENDIX F

Correcting for Readout Error in the QAOA
Experiment

The experimentally measured expectation values plotted in Figure 3.3 were adjusted with a
procedure used to compensate for qubit readout error. This procedure reduced the average
energy error by 46% for the hardware grid problem, 19% for the 3-regular graph problem,
and 12% for the Sherrington-Kirkpatrick model.

We model readout error as a classical bit-flip error channel that changes the measure-
ment result of qubit i from 0 to 1 with probability p0,i and from 1 to 0 with probability p1,i.
Under the effect of this error channel, a measurement of a single qubit in the computational
basis is described by the following positive operator-valued measure (POVM) elements (we
drop the subscript i here for clarity):

Π̃0 = (1− p0)Π0 + p1Π1 (F.1)

Π̃1 = p0Π0 + (1− p1)Π1, (F.2)

where Π0 = |0〉〈0|, Π1 = |1〉〈1|. The uncorrected Z observable can be written as

Z̃ = Π̃0 − Π̃1 = (p1 − p0)I + (1− p1 − p0)Z. (F.3)

Solving for Z, we have

Z =
Z̃ − (p1 − p0)I

1− p1 − p0
. (F.4)

For our problems we are interested in the two-qubit observable ZiZj , so the corrected
observable is

ZiZj =
Z̃i − (p1,i − p0,i)I

1− p1,i − p0,i
· Z̃j − (p1,j − p0,j)I

1− p1,j − p0,j
. (F.5)
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This expression tells us how to adjust the measured observable to compensate for the read-
out error. In the above analysis, we can replace p0 and p1 by their average (p0 +p1)/2 if we
perform measurements in the following way: for half of the measurements, apply a layer
of X gates immediately before measuring, and then flip the measurement results. In this
case, the corrected observable is

ZiZj = Z̃iZ̃j ·
1

1− p1,i − p0,i
· 1

1− p1,j − p0,j
. (F.6)

We estimated the value of p0,i on the device by preparing and measuring the qubit in the
|0〉 state 1,000,000 times and counting how often a 1 was measured; p1,i was estimated
in the same way but by preparing the |1〉 state instead of the zero state. This estimation
was performed periodically during the data collection for Figure 3.3 to account for drift
following automated calibration.

At the time of the primary data collection for this experiment, all automated calibration
routines were performed with each qubit in isolation. Subsequently, a calibration which
optimizes qubit detunings during readout was implemented to mitigate these correlated
readout errors caused by frequency collisions. Figure F.1 shows |0〉 and |1〉 state errors for
simultaneous readout of all 23 qubits (which are used to correct 〈ZZ〉 observables) both as
they were during primary data taking for Figure 3.3 (top) and after implementing the im-
proved readout detuning calibration (bottom). During primary data collection, the median
isolated readout error was 4.4% as measured during the previous automated calibration.
The discrepancy between these figures and the calibration values shown in Figure F.1, top
can be attributed to drift since the automated system calibration in addition to the simul-
taneity effects described above.

Data presented in Figure 3.4 and Figure 3.5 was taken on a different date with median
isolated readout error as 4.1% as reported in the main text. Readout correction was not
used for these two figures.
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Figure F.1: (Top) Marginalized error probabilities p0,i and p1,i for simultaneous readout
of all qubits from a representative calibration used to correct Figure 3.3 for readout error.
(Bottom) Values for typical marginalized simultaneous readout error probabilities after the
implementation of an improved automated calibration routine. Error bars (barely visible)
represent a 95% confidence interval.
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APPENDIX G

Analysis of Noise in the QAOA Experiment

In this appendix, we provide analysis to support the modeling of errors using the depolar-
izing channel for the experiments in Chapter 3 on the Sherrington-Kirkpatrick model and
3-regular graph problems.

There are two relevant mechanisms when considering the difference in performance be-
tween problems. One is the propagation of faults through the circuit and the other is fidelity
decay due to circuit depth. A single fault on low-degree problems (Hardware Grid and
3-regular MaxCut, with degree four and three, respectively) can only propagate to terms p
edges away from the original location of the fault, irrespective of the total number of qubits.
However, if compilation results in circuits extensive in the system size, the probability of a
fault increases. For the SK-model, the degree of the problem is extensive in system size so
both the propensity for fault propagation as well as the probability of faults grows with n.
Additionally, compilation of the 3-regular problems onto the hardware topology introduces
SWAPs, which can propagate faults through nodes which would otherwise not be adjacent
in the problem graph.
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Figure G.1: An exponential model compatible with a depolarizing error channel reasonably
models the performance of compiled SK Model and 3-Regular MaxCut problems because
their circuits are extensive in system size and faults are rapidly mixed. This error model
is a poor fit for Hardware Grid problems due to the low degree of the problem graph and
simple compilation.
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To probe these two effects, we fit a global depolarizing channel to the results for the
three problems. A global depolarizing channel results in the mixed state

ρ = fc|ψ〉〈ψ|+
1− fc
d

I

where |ψ〉 is the noiseless QAOA state, I is the n-qubit identity matrix, and fc is the
total circuit fidelity. Tr(IC) = 0 because of the ZZ structure of the cost function, so
the experimental objective function is simply a scaled version of the noiseless version,
〈C〉Expt = fc〈C〉Noiseless. We perform a linear regression on fc = fn × f0 ↔ log(fc) =

n log(f) + log(f0) where log(f) and log(f0) are fittable parameters physically correspond-
ing to a per-qubit fidelity and a qubit-independent offset. For the Hardware Grid, a depolar-
izing model is inappropriate, as the limited fault propagation and fixed circuit depth yield
a largely n-independent noise signature. The exponential decay expected from a global de-
polarizing channel reasonably fits both the SK model and MaxCut results. We note that the
fit is considerably stronger for the high-degree SK model where faults are rapidly mixed.
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APPENDIX H

Additional Data from the QAOA Experiment

In this appendix, we give plots from experiments on the QAOA evaluated at optimal angles
that were not presented in Chapter 3.
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Figure H.1: Performance of QAOA at p ∈ [1, 5] and n ∈ [2, 23] over random instantiations
of couplings as described in the main text. Points have been perturbed along the x-axis to
avoid overlap. Green: Noiseless Blue: Experimental
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Figure H.2: Performance of QAOA at p ∈ [1, 3] and n ∈ [3, 17] over random SK model
instances as described in the main text. Points have been perturbed along the x-axis to
avoid overlap. Green: Noiseless Blue: Experimental

116



4 6 8 10 12 14 16 18 20 22
# Qubits

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

m
in

3-Regular MaxCut, 10 instances, p=1

4 6 8 10 12 14 16 18 20 22
# Qubits

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

m
in

3-Regular MaxCut, 10 instances, p=2

4 6 8 10 12 14 16 18 20 22
# Qubits

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

m
in

3-Regular MaxCut, 10 instances, p=3

Figure H.3: Performance of QAOA at p ∈ [1, 3] and n ∈ [4, 22] over random 3-regular
MaxCut problems as described in the main text. Points have been perturbed along the x-
axis to avoid overlap. k-regular graphs must satisfy n ≥ k+ 1 and nk must be even, hence
only even n are considered here. Green: Noiseless Blue: Experimental
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APPENDIX I

Measuring the 1-RDM in the Hartree-Fock
Experiment

In this appendix, we describe how we measured the 1-RDM for the experiment of Chapter
5 in a way that allowed for post-selection on the total particle number, using N + 1 distinct
circuits. For each circuit, we performed 250,000 measurements. The 1-RDM is an N ×N
hermitian positive semidefinite matrix with elements equal to the expectation values 〈a†iaj〉
where {i, j} index the row and column of the matrix. The matrix of expectation values is
depicted in Figure I.1. As a motivator for our measurement protocol we start by describing
circuits required to measure the diagonal elements of the 1-RDM of a six qubit system at
half filling–i.e. 〈a†iai〉.

I.1 Diagonal terms

Given a circuit U implementing the basis rotation eκ the diagonal elements of the 1-RDM
are obtained by measuring the Z expectation value on each qubit. The correspondence
between a†iai, measurement result Mi from qubit i, qubit operators is derived using the
Jordan-Wigner transform

〈a†iai〉 =
I − 〈Zi〉

2
= 〈Mi〉 (I.1)

where Zi is the Z-qubit operator on qubit labeled i. The expectation value 〈a†iai〉 is equiv-
alent to the probability of measuring a 1 bit on qubit i–i.e 〈Mi〉. Because we are measuring
in the computational basis we can post-select on the three excitations in the measurement
result. This process is depicted in Figure I.1.
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Post-select half filling

Figure I.1: Measurement circuit associated with estimating all diagonal elements of the
1-RDM simultaneously. The elements that are acquired with this circuit are highlighted in
red.

I.2 One-off-diagonal terms

The hermiticity of the 1-RDM demands that 〈a†iai+1〉 = 〈a†i+1ai〉∗. The 1-RDM has no
imaginary component because we use an initial basis built from real valued orbitals and
the basis rotation circuit implements an element of SO(N)–i.e. the basis rotation circuit
involves a unitary matrix with real values. Therefore, we only measure the real part of
all one-off-diagonal terms a†iai+1 + a†i+1ai which corresponds to 2<〈a†iai+1〉. Using the
Jordan-Wigner transform to map fermionic ladder operators to qubits

〈a†iai+1 + a†i+1ai〉 =
1

2
(〈XiXi+1〉+ 〈YiYi+1〉) = 2<〈a†iai+1〉 (I.2)

we see that we must measure XX on all pairs and Y Y on all pairs. This measurement can
be accomplished with two circuits depicted in Figure I.2.

Figure I.2: The two circuits allowing for the measurement of all one-off-diagonal elements
of the 1-RDM simultaneously. The teal circuit involves performing an Ry rotation (to
measure in the X basis) at the end of the circuit and the purple circuit contains an Rx
rotation (to measure in the Y basis). The 1-RDM elements that are acquired with these
circuits are highlighted in red. We label which pairs contribute to which expectation values
with grey dashed lines. The thinner dashes are for the even 1-RDM pairs and the thicker
dashes are for the odd 1-RDM pairs. Because Ry and Rx operations do not preserve particle
number we cannot post-select on total particle number with these measurement circuits.
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I.3 General off-diagonal terms and virtual swapping

The label of each fermionic mode is an arbitrary choice, so we are free to reorder the labels
such that measuring nearest-neighbor pairs of qubits corresponds to measuring different
off-diagonal 1-RDM elements. Every relabeling of the qubits requires us to recompile the
Givens rotation circuit. The structure of the circuit stays the same but the rotation angles are
different. In this section we describe how to recompute the Givens rotation angles based on
a new label ordering. Using the label sets {1, 3, 0, 5, 2, 4} and {3, 5, 1, 4, 0, 2} we are able
to use the two measurement circuits in Figure I.2 to measure the remaining off-diagonal
1-RDM elements.

Formally, we build the new qubit labels by virtually swapping fermionic modes at
the end of the original circuit implement eκ. We note that performing nearest-neighbor
fermionic swaps between adjacent pairs twice (even swaps and odd swaps) we obtain a new
ordering of qubits. For example, consider six fermionic modes {0, 1, 2, 3, 4, 5}. Perform-
ing a set of fermionic swaps on modes labeled {(0, 1), (2, 3), (4, 5)} followed by swaps on
{(1, 2), (3, 4)} leaves our mode ordering as {1, 3, 0, 5, 2, 4}. We can then perform X-Pauli
and Y -Pauli measurements on each qubit to recover expectation values associated with

{<(a†1a3 + a†3a1),<(a†3a0 + a†0a3),<(a†0a5 + a†5a0),<(a†5a2 + a†2a5),<(a†2a4 + a†4a2)}.
(I.3)

This procedure can be repeated once more to measure all the required two-body fermionic
correlators to construct the 1-RDM. In general, N/2 settings of fermionic swaps (including
the trivial setting with no swaps) are needed to measure all of the off-diagonal terms.

At first glance, the addition of fermionic swaps appears to incur additional overhead in
executing the circuit. However, we can exploit the fact that one-body fermionic swaps are
generated by exp(−iπFSWAP/2) where FSWAP is

FSWAP = a†paq + a†qap − a†pap − a†qaq. (I.4)

This one-body permutation can be viewed as a basis rotation which can be concatenated
with the original circuit at no extra cost due to (5.32). The swapping unitary simply shuf-
fles the columns of eκ that is used to generate the Givens rotation network. The same
effect could have been achieved by relabeling the fermionic modes which would have been
equivalent to permuting the rows and columns of eκ. This relabeling technique can be ap-
plied beyond basis rotation circuits. For example, one can relabel the fermionic modes of
a generalized swap network such that different sets of RDM elements can be measured as
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nearest-neighbor pairs. The same logic can be applied to k-RDM elements.
Each of the N/2 fermionic swap settings gives rise to two circuits needed to measure

the expectation values, so a total of N circuits are needed to measure the off-diagonal 1-
RDM elements. This, combined with the single circuit needed to measure the diagonal
elements, yields a total of N +1 circuits needed to measure the 1-RDM. This is a quadratic
improvement over the naive measurement scheme that uses Θ(N2) different measurement
settings.

I.4 Off-diagonal terms with post-selection

The circuits depicted in Figure I.2 did not allow for post-selection because the rotations to
measure in the X-basis and Y -basis do not commute with the total number operator. In
this section we design a basis rotation circuit that commutes with the total number operator
and diagonalizes the 1

2
(XX + Y Y ) Hamiltonian. The diagonal form means that after per-

forming the basis rotation we can measure in the computational basis to obtain expectation
values 1

2
〈XX + Y Y 〉.

The circuit that diagonalizes 1
2

(XX + Y Y ) is described in Figure I.3 and is denoted
UM below. Its commutation with the total number operator can be easy seen by recogniz-
ing that the T -gate (Rz(π/4)) commutes with the total number operator and so does the√
iSWAP. Applying UM to the 1

2
(XX + Y Y ) Hamiltonian

UM


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

U †M =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 (I.5)

transforms the operator into a diagonal representation. Given an ordered pair of qubits
{a, a + 1} the last matrix in (I.5) is 1

2
(Za − Za+1) in qubit representation. Finally, we can

relate the Z expectation values, the transformed XX + Y Y expectation values, fermionic
ladder operators, and binary measurements {Ma,Ma+1} via

〈Um
(
a†aaa+1 + a†a+1aa

)
U †m〉 = 〈Um

1

2
(XaXa+1 + YaYa+1)U

†
m〉

=
1

2
〈Za − Za+1〉

=
1

2
(Ma+1 −Ma) .

(I.6)
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Figure I.3: Two-mode fermionic fast Fourier transform that diagonalizes the XX + Y Y
Hamiltonian.

The measurement circuit can only be applied to non-overlapping pairs and thus we can
obtain estimates of XaXa+1 + YaYa+1 for a values corresponding to even integers or a
corresponding to odd integers. More concretely, we describe this process in Figure I.4 for a
six qubit problem. All experiments involved circuits that allowed for post-selection based
on total Hamming weight. The “raw” data indicates analysis of the resulting bitstrings
without post-selection.

Post-select half filling

Figure I.4: Two circuits measuring the one-off-diagonal of the 1-RDM such that the total
particle number can be measured simultaneously. This circuit allows us to post select on
the correct number of excitations in the measured bitstring. The top circuit measures the
even pairs and the bottom circuit measures the odd pairs. Local Z expectation values are
measured on all the qubits and used to construct the expectation value for 〈a†iai+1〉.
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I.5 Computing error bars for elements of the 1-RDM

We use two methods to estimate error bars for all quantities in our experiments. The pro-
cedures differ in how the covariance between 1-RDM terms is estimated. In the first proce-
dure, error bars are generated by estimating the covariance between terms in the 1-RDM at
the same time as the mean estimation. Mean values of off-diagonal 1-RDM terms involve
estimating the expectation values for (Za − Zb)/2. Therefore, the covariance between two
off-diagonal elements of the 1-RDM is

Cov

[
1

2
(Za − Zb) ,

1

2
(Zp − Zq)

]
=

1

4
(Cov [Za, Zp]− Cov [Za, Zq]− Cov [Zb, Zp] + Cov [Zb, Zq])

(I.7)

for all pair sets {(a, b), (p, q)} measured simultaneously. All quantities can be estimated
from the simultaneous measurement of all qubits. Therefore, for each circuit permutation
we obtain two covariance matrices of size (N/2) × (N/2) and (N/2 − 1) × (N/2 − 1),
when N is even. For the circuit with no label permutation we also obtain the covariances
for all a†iai terms.

In the second procedure for estimating covariance matrices we assume we are sampling
from a pure Gaussian state. This assumption is applicable when the fidelity is high enough
as any change to the covariance matrix would be a second order effect. For these states
the 2-RDM is exactly described by the 1-RDM and therefore all covariances between the
1-RDM elements are perfectly defined by a nonlinear function of the 1-RDM elements. For
any wavefunction ψ corresponding to the output of a basis rotation circuit the covariance
of 1-RDM elements computed from such a wavefunction are as follows:

Cov
[
a†iaj + a†jai, a

†
paq + a†qap

]
ψ

= Di
qδ
j
p −Di

qD
p
j +Di

pδ
j
q −Di

pD
q
j +Dj

qδ
i
p −Dj

qD
p
i +Dj

pδ
i
q −Dj

pD
q
i .

(I.8)

With the estimates of the covariances we are able to re-sample the 1-RDM assuming
central-limit theorem statistics. We use a multinomial distribution where the mean values
are 〈a†σ(i)aσ(i+1)〉 and the covariance matrix of the multinomial distribution is obtained by
dividing the estimates of the covariance matrix above by α× 250,000. α is a number less
than 1 reflecting the probability that a bitstring is rejected. α is estimated from prior N -
qubit experiments. Once the new 1-RDM is obtained it can be purified, used to estimate
a fidelity witness, and compute the energy. For all error bars we re-sample the 1-RDM
1000 times and compute a mean value and standard deviation from this set. All quantities
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estimated are sensitive to theN -representability of the resampled 1-RDM. We use the fixed
trace positive projection described in [156] to ensure that each resampled 1-RDM is positive
semidefinite and has the correct trace. The correction procedure is only applied when the
resampled 1-RDM has eigenvalues below zero.
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APPENDIX J

Computing a Fidelity Witness for the
Hartree-Fock Experiment

In this appendix, we describe how we obtained the fidelity witnesses used in 5. Efficient
fidelity witnesses exist for quantum circuits simulating non-interacting fermion dynamics.
The formal derivation for general non-interacting fermion wavefunctions is described in
Ref. [124]. Here we adapt this result to the special case of particle conserving dynamics
generated by one-body fermionic generators.

A fidelity witness is an observable that provides a strict lower bound to the fidelity for
all input states. The fidelity witness is efficient in the sense that for an L-qubit system only
L2 expectation values are required to evaluate the fidelity witness. Given that U is a unitary
corresponding to a basis transformation circuit and |ω〉 is the initial computational basis
state corresponding to ω = (ω1, ..., ωL) any L-bit string which satisfies nj|ω〉 = ωj|ω〉 for
j = 1, ..., L allows us to define a basis state annihilator operator

n(ω) =
L∑
j=1

[(1− ωj)nj + ωj(I− nj)] (J.1)

=
L∑
j=1

[nj − ωjnj + ωjI− ωjnj] (J.2)

=
L∑
j=1

[nj + ωjI− 2ωjnj] (J.3)

which satisfies n(ω)|ω〉 = 0. The computational basis state |ω〉 is the zero energy eigenstate
of nω and any other computational basis state is an excitation from this state. The excitation
energy is exactly the number of bits that are different from ω for each Fock basis state which
can be computed by summing the resulting bit string from the XOR operation between the
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two Fock basis states being considered. The fidelity witness

W = U (I− nω)U † (J.4)

can be evaluated with knowledge of the measured 1-RDM. To relate the fidelity witness to
the 1-RDM it is important to note the following

Tr
[
UρpU

†a†iaj

]
=
[
uDu†

]
i,j

(J.5)

where D is the matrix of expectation values 〈ρp, a†iaj〉 and u = eκ because any one-body
rotation on the state ρp can be equated to a similarity transform of the generating matrix for
that one-body transformation. This logic is similar to the logic used in [157] which moved
one-body basis rotations at the end of the circuit into the Hamiltonian as an error mitigation
technique. Using this relationship we can evaluate the fidelity witness with the following
expression

FW(ρp) = 1−
L∑
j=1

([
u†Du

]
j,j

+ ωj − 2ωj
[
u†Du

]
j,j

)
(J.6)

where D is the 1-RDM that is measured, u = eκ is the unitary rotation representing the
new Slater determinant.
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Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, A. J. Millis, N. V. Prokof’ev, U. Ray, G. E.
Scuseria, S. Sorella, E. M. Stoudenmire, Q. Sun, I. S. Tupitsyn, S. R. White,
D. Zgid, and S. Zhang, “Towards the solution of the many-electron problem in real
materials: Equation of state of the hydrogen chain with state-of-the-art many-body
methods,” Phys. Rev. X 7 (Sep, 2017) 031059.

[115] P. A. Limacher, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck, and
P. Bultinck, “A new mean-field method suitable for strongly correlated electrons:
Computationally facile antisymmetric products of nonorthogonal geminals,”
Journal of chemical theory and computation 9 no. 3, (2013) 1394–1401.

[116] J. Hachmann, W. Cardoen, and G. K.-L. Chan, “Multireference correlation in long
molecules with the quadratic scaling density matrix renormalization group,” The
Journal of chemical physics 125 no. 14, (2006) 144101.

[117] R. K. Chaudhuri, K. F. Freed, S. Chattopadhyay, and U. Sinha Mahapatra,
“Potential energy curve for isomerization of N2H2 and C2H4 using the improved
virtual orbital multireference Møller-Plesset perturbation theory,” The Journal of
Chemical Physics 128 no. 14, (2008) 144304.

[118] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry. Dover Publications,
Inc., Mineola, New York, 1996. First published by the Macmillan Publishing
Company, New York, in 1982.

138

http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
http://dx.doi.org/10.1103/PhysRevA.64.022319
http://dx.doi.org/10.1038/s41586-019-1040-7
http://dx.doi.org/10.1103/PhysRevA.100.022517
http://dx.doi.org/10.1103/PhysRevA.100.010302
http://dx.doi.org/10.1103/PhysRevA.100.010302
http://dx.doi.org/10.1103/PhysRevX.7.031059
http://dx.doi.org/10.1021/ct300902c
http://dx.doi.org/10.1063/1.2345196
http://dx.doi.org/10.1063/1.2345196
http://dx.doi.org/10.1063/1.2837662
http://dx.doi.org/10.1063/1.2837662


[119] D. J. Thouless, “Stability conditions and nuclear rotations in the Hartree-Fock
theory,” Nuclear Physics 21 (1960) 225–232.

[120] R. McWeeny, “Some recent advances in density matrix theory,” Rev. Mod. Phys. 32
(Apr, 1960) 335–369.

[121] A. J. Coleman, “Structure of fermion density matrices,” Rev. Mod. Phys. 35 (Jul,
1963) 668–686.

[122] W. Kutzelnigg, “Generalized k-particle Brillouin conditions and their use for the
construction of correlated electronic wavefunctions,” Chemical Physics Letters 64
no. 2, (1979) 383–387.

[123] Q. Sun, “Co-iterative augmented Hessian method for orbital optimization,”
arXiv:1610.08423 [physics.chem-ph].

[124] M. Gluza, M. Kliesch, J. Eisert, and L. Aolita, “Fidelity witnesses for fermionic
quantum simulations,” Phys. Rev. Lett. 120 (May, 2018) 190501.

[125] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth
quantum circuits,” Phys. Rev. Lett. 119 (Nov, 2017) 180509.

[126] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An adaptive
variational algorithm for exact molecular simulations on a quantum computer,”
Nature communications 10 no. 1, (2019) 1–9.

[127] S. Pironio, A. Acı́n, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random
numbers certified by Bell’s theorem,” Nature 464 no. 7291, (Apr, 2010) 1021–1024.

[128] U. Vazirani and T. Vidick, “Certifiable quantum dice,” Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 370
no. 1971, (2012) 3432–3448.

[129] S. Pironio and S. Massar, “Security of practical private randomness generation,”
Phys. Rev. A 87 (Jan, 2013) 012336.

[130] S. Fehr, R. Gelles, and C. Schaffner, “Security and composability of randomness
expansion from Bell inequalities,” Phys. Rev. A 87 (Jan, 2013) 012335.

[131] M. Coudron, T. Vidick, and H. Yuen, “Robust randomness amplifiers: Upper and
lower bounds,” in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, P. Raghavendra, S. Raskhodnikova,
K. Jansen, and J. D. P. Rolim, eds., pp. 468–483. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[132] M. Coudron and H. Yuen, “Infinite randomness expansion with a constant number
of devices,” in Proceedings of the Forty-Sixth Annual ACM Symposium on Theory
of Computing, STOC ’14, p. 427–436. Association for Computing Machinery, New
York, NY, USA, 2014.

139

http://dx.doi.org/10.1016/0029-5582(60)90048-1
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1103/RevModPhys.35.668
http://dx.doi.org/10.1103/RevModPhys.35.668
http://dx.doi.org/10.1016/0009-2614(79)80537-0
http://dx.doi.org/10.1016/0009-2614(79)80537-0
http://arxiv.org/abs/1610.08423
http://dx.doi.org/10.1103/PhysRevLett.120.190501
http://dx.doi.org/10.1103/PhysRevLett.119.180509
http://dx.doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1098/rsta.2011.0336
http://dx.doi.org/10.1098/rsta.2011.0336
http://dx.doi.org/10.1098/rsta.2011.0336
http://dx.doi.org/10.1103/PhysRevA.87.012336
http://dx.doi.org/10.1103/PhysRevA.87.012335
http://dx.doi.org/10.1145/2591796.2591873
http://dx.doi.org/10.1145/2591796.2591873


[133] C. A. Miller and Y. Shi, “Robust protocols for securely expanding randomness and
distributing keys using untrusted quantum devices,” J. ACM 63 no. 4, (Oct., 2016) .

[134] C. A. Miller and Y. Shi, “Universal security for randomness expansion from the
spot-checking protocol,” SIAM Journal on Computing 46 no. 4, (2017) 1304–1335.

[135] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical
device-independent quantum cryptography via entropy accumulation,” Nature
Communications 9 no. 1, (Jan, 2018) 459.

[136] R. Arnon-Friedman, R. Renner, and T. Vidick, “Simple and tight
device-independent security proofs,” SIAM Journal on Computing 48 no. 1, (2019)
181–225.

[137] Y. Zhang, H. Fu, and E. Knill, “Efficient randomness certification by quantum
probability estimation,” Phys. Rev. Research 2 (Jan, 2020) 013016.

[138] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K.
Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, “Experimentally
generated randomness certified by the impossibility of superluminal signals,”
Nature 556 no. 7700, (Apr, 2018) 223–226.

[139] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu,
C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan,
Q. Zhang, and J.-W. Pan, “Device-independent quantum random-number
generation,” Nature 562 no. 7728, (Oct, 2018) 548–551.

[140] W.-Z. Liu, M.-H. Li, S. Ragy, S.-R. Zhao, B. Bai, Y. Liu, P. J. Brown, J. Zhang,
R. Colbeck, J. Fan, Q. Zhang, and J.-W. Pan, “Device-independent randomness
expansion against quantum side information,” arXiv:1912.11159
[quant-ph].

[141] L. K. Shalm, Y. Zhang, J. C. Bienfang, C. Schlager, M. J. Stevens, M. D. Mazurek,
C. Abellán, W. Amaya, M. W. Mitchell, M. A. Alhejji, H. Fu, J. Ornstein, R. P.
Mirin, S. W. Nam, and E. Knill, “Device-independent randomness expansion with
entangled photons,” arXiv:1912.11158 [quant-ph].

[142] Y. Zhang, L. K. Shalm, J. C. Bienfang, M. J. Stevens, M. D. Mazurek, S. W. Nam,
C. Abellán, W. Amaya, M. W. Mitchell, H. Fu, C. A. Miller, A. Mink, and E. Knill,
“Experimental low-latency device-independent quantum randomness,” Phys. Rev.
Lett. 124 (Jan, 2020) 010505.

[143] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics Physique Fizika 1
(Nov, 1964) 195–200.

[144] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, “A
cryptographic test of quantumness and certifiable randomness from a single
quantum device,” in 2018 IEEE 59th Annual Symposium on Foundations of

140

http://dx.doi.org/10.1145/2885493
http://dx.doi.org/10.1137/15M1044333
http://dx.doi.org/10.1038/s41467-017-02307-4
http://dx.doi.org/10.1038/s41467-017-02307-4
http://dx.doi.org/10.1137/18M1174726
http://dx.doi.org/10.1137/18M1174726
http://dx.doi.org/10.1103/PhysRevResearch.2.013016
http://dx.doi.org/10.1038/s41586-018-0019-0
http://dx.doi.org/10.1038/s41586-018-0559-3
http://arxiv.org/abs/1912.11159
http://arxiv.org/abs/1912.11159
http://arxiv.org/abs/1912.11158
http://dx.doi.org/10.1103/PhysRevLett.124.010505
http://dx.doi.org/10.1103/PhysRevLett.124.010505
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195


Computer Science (FOCS), pp. 320–331, IEEE. 2018.
http://ieee-focs.org/FOCS-2018-Papers/pdfs/59f320.pdf.

[145] O. Regev, “The learning with errors problem (invited survey),” in 2010 IEEE 25th
Annual Conference on Computational Complexity, pp. 191–204. 2010.

[146] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum
supremacy experiments,” in Proceedings of the 32nd Computational Complexity
Conference, CCC ’17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, DEU, 2017.

[147] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J.
Bremner, J. M. Martinis, and H. Neven, “Characterizing quantum supremacy in
near-term devices,” Nature Physics 14 no. 6, (Jun, 2018) 595–600.

[148] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, “On the complexity and
verification of quantum random circuit sampling,” Nature Physics 15 no. 2, (Feb,
2019) 159–163.

[149] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends® in Theoretical
Computer Science 7 no. 1–3, (2012) 1–336.

[150] C. Huang, F. Zhang, M. Newman, J. Cai, X. Gao, Z. Tian, J. Wu, H. Xu, H. Yu,
B. Yuan, M. Szegedy, Y. Shi, and J. Chen, “Classical simulation of quantum
supremacy circuits,” arXiv:2005.06787 [quant-ph].

[151] J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,”
arXiv:2002.01935 [quant-ph].

[152] R. Raz, O. Reingold, and S. Vadhan, “Extracting all the randomness and reducing
the error in Trevisan’s extractors,” Journal of Computer and System Sciences 65
no. 1, (2002) 97 – 128.

[153] L. Trevisan, “Construction of extractors using pseudo-random generators (extended
abstract),” in Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, STOC ’99, p. 141–148. Association for Computing Machinery, New
York, NY, USA, 1999.

[154] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs.LG].

[155] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Geometric theory of nonlocal
two-qubit operations,” Phys. Rev. A 67 (Apr, 2003) 042313.

[156] N. C. Rubin, R. Babbush, and J. McClean, “Application of fermionic marginal
constraints to hybrid quantum algorithms,” New Journal of Physics 20 no. 5, (2018)
053020.

141

http://ieee-focs.org/FOCS-2018-Papers/pdfs/59f320.pdf
http://dx.doi.org/10.1038/s41567-018-0124-x
http://dx.doi.org/10.1038/s41567-018-0318-2
http://dx.doi.org/10.1038/s41567-018-0318-2
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1561/0400000010
http://arxiv.org/abs/2005.06787
http://arxiv.org/abs/2002.01935
http://dx.doi.org/https://doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/https://doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1145/301250.301289
http://dx.doi.org/10.1145/301250.301289
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1103/PhysRevA.67.042313
http://dx.doi.org/10.1088/1367-2630/aab919
http://dx.doi.org/10.1088/1367-2630/aab919


[157] T. Takeshita, N. C. Rubin, Z. Jiang, E. Lee, R. Babbush, and J. R. McClean,
“Increasing the representation accuracy of quantum simulations of chemistry
without extra quantum resources,” Phys. Rev. X 10 (Jan, 2020) 011004.

142

http://dx.doi.org/10.1103/PhysRevX.10.011004

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	Abstract
	Introduction
	Quantum computing in the NISQ era
	Overview of results
	Outline of thesis

	Using Models to Improve Optimizers for Variational Quantum Algorithms
	Introduction
	Background
	Problems studied and cost models
	Optimization strategies
	Results
	Conclusion

	Quantum Approximate Optimization on a Superconducting Qubit Processor
	Introduction
	The QAOA
	Compilation and problem families
	Comparisons with prior work
	Energy landscapes and optimization
	Hardware performance of QAOA
	Conclusion

	Preparing Slater Determinants and Fermionic Gaussian States
	Introduction
	Background
	Algorithms for state preparation
	Conclusion

	Hartree-Fock on a Superconducting Qubit Processor
	Introduction
	Background
	Methods
	Results
	Conclusion

	Generating Certified Random Numbers on a Superconducting Qubit Processor
	Introduction
	Preliminaries
	The computational hardness assumption
	The protocol
	Entropy estimation
	Security and verification time
	Experimental implementation
	Conclusion

	Appendices
	Initial State for the Hubbard Model
	Pseudocode for MGD and MPG
	Hyperparameter Selection for Optimization Numerics
	Nelder-Mead
	Bounded Optimization By Quadratic Approximation (BOBYQA)
	Stochastic Gradient Descent (SGD)
	Simultaneous Perturbation Stochastic Approximation (SPSA)
	Model Gradient Descent (MGD)
	Model Policy Gradient (MPG)

	Additional Data from Optimization Numerics
	Hardware and Compilation Details for the QAOA Experiment
	Correcting for Readout Error in the QAOA Experiment
	Analysis of Noise in the QAOA Experiment
	Additional Data from the QAOA Experiment
	Measuring the 1-RDM in the Hartree-Fock Experiment
	Diagonal terms
	One-off-diagonal terms
	General off-diagonal terms and virtual swapping
	Off-diagonal terms with post-selection
	Computing error bars for elements of the 1-RDM

	Computing a Fidelity Witness for the Hartree-Fock Experiment
	Bibliography

