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Abstract 
 

 
Water is one of the most important substances on Earth and links carbon and energy cycles 

within the climate system. Global precipitation is predicted to increase as the atmosphere continues 

to warm, but the rate, timing, and magnitude of local and regional terrestrial hydrologic change 

are still uncertain. This dissertation presents new understanding of ecosystem and regional scale 

water cycling from observations of stable oxygen and hydrogen isotope ratios in water. These 

ratios, referred to as stable water isotopes, are useful hydrologic tracers because they integrate and 

record information about processes such as evaporation, transpiration, condensation, 

crystallization, and hydrologic mixing that drive the water cycle. Understanding stable water 

isotope variation helps trace these processes and offers insight into how the hydrologic system 

may respond in warmer conditions.  

This dissertation presents new stable water isotope data to study water cycling in deciduous 

forests (Chapters 2 and 3) and in the central Andes in South America (Chapter 4). Chapter 5 

presents and explains variation in the triple oxygen isotope system, which until recently had not 

been applied to hydrologic problems and can add important information about water cycling. 

These chapters include new observations of high temporal resolution water vapor isotopes and a 

global dataset of precipitation and surface water isotope variability that is built on citizen science 

and crowdsourced sample collection. Results and implications from this dissertation help constrain 

local and regional scale uncertainties in the terrestrial hydrologic cycle. 

Chapters 2 and 3 focus on ecosystem scale forest hydrology and use water vapor isotopes 

to quantify the role of plants in local and regional water cycles. Chapter 2 presents a comparison 

of water vapor isotopes in two adjacent deciduous forest sites in northern lower Michigan and 

shows that structural disturbances in forest canopies can affect boundary layer mixing and increase 

ecosystem-atmosphere gas exchange. Chapter 3 presents a new technique to measure the isotopic 

composition of transpired water vapor from trees and quantitatively partition land-atmosphere 

water fluxes. This method is developed and applied to study forest hydrology and can also be used 
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in non-forested ecosystems to explain the diurnal variation of water vapor isotopes and estimate 

land-atmosphere water fluxes from vegetation other than trees. 

Chapters 4 and 5 increase the spatial and temporal scales of inquiry and focus on the 

isotopic composition of precipitation and surface water. Chapter 4 presents a three-year record of 

bimonthly precipitation isotope data from a network of 19 stations in southern Peru. This chapter 

shows that precipitation on the western flank of the central Andes is sourced from the Pacific 

Ocean and that precipitation patterns on the Altiplano and Eastern Cordillera are related to local 

topography, synoptic-scale convection, and moisture recycling as airmasses move across the 

Amazon Basin. Chapter 5 presents an introduction to meteoric water triple oxygen isotopes and 

explains the hydrologic processes in tropical, temperate, and polar regions that drive variation in 

this isotope system. This chapter serves as a practical guide and point of reference for researchers 

who might want to use triple oxygen isotope data in hydrologic and paleohydrologic studies. 

Together, these chapters demonstrate the utility of stable water isotopes to trace terrestrial water 

cycling and help better understand how forest and mountain hydrology may change in the coming 

decades.   
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Chapter 1 Introduction 
 

1.1 Overview and motivation 

The water cycle plays a critical role in nearly every part of the Earth system and is linked 

to climate conditions through carbon and energy budgets. As the atmosphere continues to warm in 

the coming decades, climate models predict that global mean precipitation will increase with a 

wet-get-wetter and dry-get-drier spatial pattern (Allan et al., 2010; Donat et al., 2016; Held and 

Soden, 2006; Trenberth, 2011). This pattern is already beginning to emerge over the oceans (Jia et 

al., 2019), but the details of local and regional hydrologic change over land are still highly 

uncertain (Byrne and O’Gorman, 2015; Myhre et al., 2017). Understanding the processes that drive 

terrestrial hydrologic cycling is critical to predict how the hydrologic system will respond in 

warmer conditions and to support the human and ecological communities that depend on the water 

cycle. This dissertation focuses largely on water cycling in deciduous forests and the central Andes 

in South America because these environments are currently undergoing hydrologic change but are 

hampered by a lack of observations, uncertainties about the rate of change, and disagreement 

among predictions of future hydrologic conditions (Espinoza et al., 2020; McDowell et al., 2020; 

Pabón-Caicedo et al., 2020).  

Forests cover nearly one third of the global land area and account for approximately 50% 

of the land-atmosphere water flux through evaporation (from the soil and from intercepted or 

condensed water on leaves) and transpiration, the process through which water evaporates from 

plants (Schlesinger and Jasechko, 2014; Xiao et al., 2018). However, studying these fluxes can be 

challenging because hydrologic exchange between soil, plants, and the atmosphere is complex and 

boundary layer mixing within forests is rarely straightforward. This dissertation addresses two 

aspects of forest hydrology in particular: structural disturbances that alter land-atmosphere water 

exchange and new techniques to measure transpiration. Forests are susceptible to structural 

disturbances from wildfire, drought, windthrow, ecological succession, pest invasion, and human 

land use, but the biogeochemical effects forest of disturbance are not completely understood 

(Brodribb et al., 2020; McDowell et al., 2020). Transpiration is driven by the vapor pressure 
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gradient between a leaf and the atmosphere, and is dependent on the size and conductance of 

stomata, the availability of incoming solar radiation, and the hydraulic architecture (e.g., the 

properties that prevent xylem cavitation or embolism) of plants. However, these factors vary 

spatially, temporally, and between species, which makes transpiration among the most complex 

terrestrial hydrologic fluxes. A better understanding of forest hydrology and the processes through 

which water is exchanged between ecosystems and the atmosphere will inform climate and land 

surface models and improve predictions of local and regional hydrologic change.  

Mountains plays a vital role in terrestrial surface water budgets and are very sensitive to 

climate conditions. In the central Andes, tropical glaciers and other high elevation water sources 

sustain vast ecological diversity and supply water for human use across one of the largest 

hydrologic gradients in the world (the Amazon Rainforest to the Atacama Desert). Recent climate 

model simulations and ground-based observations show that air temperatures in the central Andes 

are rising (Pabón-Caicedo et al., 2020), especially at high elevations (e.g., Palazzi et al., 2019; 

Pepin et al., 2015; Rangwala and Miller, 2012), and satellite imagery shows that central Andean 

glaciers have lost more than 50% of their land cover over the past five decades (ANA, 2014; 

CONAM 2001; INAIGEM, 2018). However, neither models nor observations paint a consistent 

pattern of precipitation change in the central Andes. For example, some observations in southern 

Peru find that precipitation is increasing (e.g., de los Milagros Skansi et al., 2013) while others 

report that precipitation is decreasing (e.g., Silva et al., 2008). Part of this disagreement arises from 

sparse precipitation networks across complex high topography and coarse spatial resolution in 

climate models that cannot capture local and regional topography or important small-scale 

hydrologic features. Additional hydrologic observations and a more complete understanding of the 

processes that control precipitation in the central Andes will help manage regional freshwater 

resources and will inform hydrologic and climate adaptation plans in a region that supports more 

than 30 million people.   

This dissertation presents new observations and applications of stable water isotopes to 

better understand forest and mountain hydrology. Stable water isotopes are powerful hydrologic 

tracers because they integrate information about evaporation, transpiration, condensation, 

crystallization, and mixing as water moves through the environment. The first half of this 

dissertation shows that forest canopy structure affects the exchange of water between ecosystems 

and the atmosphere (Chapter 2) and demonstrates that water isotopes can help quantify evaporation 
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and transpiration fluxes (Chapter 3). The second half identifies the processes that drive 

precipitation in the central Andes (Chapter 4) and explains a new oxygen isotope system to trace 

evaporation, moisture recycling, and hydrologic mixing (Chapter 5). Results from this dissertation 

help constrain local and regional terrestrial hydrologic uncertainty, serve as a baseline from which 

to assess environmental change, and inform hydrologic and climate models that predict future 

conditions.   

1.2 Stable water isotopes: fundamentals, definitions, and utility 

Water molecules are made up of two hydrogen atoms and one oxygen atom. In each of 

these molecules, every oxygen atom has eight protons and every hydrogen atom has one proton. 

Most stable oxygen atoms also have eight neutrons (99.76% of oxygen atoms, termed 16O), 

although some have nine (0.04%, 17O) or ten (0.2%, 18O) neutrons. Most stable hydrogen atoms 

have zero neutrons (99.98%, 1H), while some have one neutron (0.02%, 2H or D, for deuterium). 

Atoms with the same number of protons but a differing number of neutrons, described here for 

oxygen and hydrogen but found in elements throughout the periodic table, are called isotopes.  

Based on natural stable isotope abundances, more water molecules contain lighter isotopes 

(1H216O, 99.73% of all water molecules) and fewer water molecules contain a heavy isotope 

(1H218O (0.2%), 1H217O (0.04%), or 1H2H16O (0.03%)) (Coplen et al., 2002).1 Mass differences 

among these molecules result in slightly different physical properties (e.g., bond energy and 

molecular diffusivity) and an unequal, mass-dependent partitioning during phase changes. During 

phase changes, the more (less) condensed phase preferentially gains or retains more molecules 

with a heavy (light) isotope. Quantification of the ratio of heavy-to-light water molecules provides 

a method to trace the processes through which water moves in the environment. This unequal 

partitioning is called fractionation and is expressed with delta (d) notation, 

 

d = 1000# $%&'()*

$%+&,-&.-
− 10,        Eq. 1.1 

 

where R is the ratio of heavy-to-light isotopes in a sample or international standard. Typically, the 

standard is Vienna Standard Mean Ocean Water (VSMOW) (Coplen, 1996). In this dissertation, 

                                                
1 Water molecules with multiple heavy isotopes are exceedingly rare and have few practical applications in isotope 
hydrology research. 
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the terms ‘water isotopes’ or ‘stable water isotopes’ refer to ratios of stable oxygen and hydrogen 

isotopes in water. 

Water isotopes fractionate during every phase change. When two phases are in isotopic 

equilibrium, i.e., the rate of isotopic exchange between phases is identical, fractionation is 

temperature dependent (Horita and Wesolowski, 1994; Majoube, 1971). When the two phases 

cannot reach isotopic equilibrium, an additional kinetic fractionation occurs because heavier 

molecules diffuse slower than lighter molecules (Cappa, 2003; Luz et al., 2009; Merlivat, 1978). 

With a few notable exceptions (e.g., Gonfiantini et al., 2020), equilibrium and kinetic 

fractionations are generally well understood in theoretical (Craig and Gordon, 1965), experimental 

(e.g., Gonfiantini et al., 2018), and observational (e.g., Noone, 2012) work, and water isotopes 

have been applied to a wide range of hydrologic and paleoclimate questions for more than six 

decades (e.g., Brady et al., 2019; Gat, 1996; Petit et al., 1999; Salati et al., 1979).  

Until the early 2000s, modern isotope hydrology research focused primarily on continental-

scale precipitation patterns and hemispheric-scale moisture transport. These early studies were 

mostly limited to monthly precipitation samples, but determined important global relationships 

among water isotopes (e.g., Craig, 1961; Rozanski et al., 1993) and established water isotopes as 

faithful hydrologic tracers (e.g, Dansgaard, 1964; Gat et al., 1994; Joussaume et al., 1984; Kendall 

and Coplen, 2001; Salati et al., 1979). In recent decades, the development of laser absorption 

spectrometers (O’Keefe and Deacon, 1998; Scherer et al., 1997), satellite-based hydrogen isotope 

sensors (Frankenberg et al., 2009; Worden et al., 2007), high precision triple oxygen isotope 

analyses (Barkan and Luz, 2005), and isotope-enabled general circulation models (Brady et al., 

2019; Hoffmann et al., 1998; Joussaume et al., 1984) have greatly expanded the scope of isotope 

hydrology research. With these approaches, researchers can now trace water cycling across a wide 

range of temporal (seconds to many years) and spatial (a few millimeters to global) scales to gain 

new understanding of local and regional hydrologic processes. 

This dissertation presents new water isotope data from a laser absorption spectrometer and 

measurements of hydrologic triple oxygen isotopes. Using laser-based water isotope analyzers, 

researchers have measured the isotopic composition of water vapor and liquid water to identify 

moisture sources (e.g., Brooks et al., 2010; Galewsky and Samuels-Crow, 2015), trace atmospheric 

circulation and moisture transport (e.g., Noone et al., 2013; Vuille and Werner, 2005), and quantify 

land-atmosphere water fluxes (e.g., Jasechko et al., 2013; Welp et al., 2012). The field of 
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hydrologic triple oxygen isotopes is still emerging, but these measurements can help constrain 

evaporation (e.g., Landais et al., 2006; Li et al., 2017) and identify hydrologic mixing in the 

atmosphere and on land (e.g., Landais et al., 2010; Li et al., 2015; Risi et al., 2013). However, 

many aspects laser-based isotope hydrology and triple oxygen isotope variation remain 

unexplored. In particular, there are relatively few water vapor isotope observations, a 

disproportionate focus on precipitation isotope variability in North America and Europe, and only 

a handful of published hydrologic triple oxygen isotope studies. This dissertation addresses each 

of these gaps and presents new observations of water vapor, precipitation, surface water, and 

groundwater isotopes to better understand the processes and fluxes that drive the water cycle.  

1.3 Dissertation chapter summaries 

The main body of this dissertation (Chapters 2-5) is a compilation of four studies that use 

water isotopes to explore hydrologic cycling across a variety of spatial (ecosystem to regional) and 

temporal (a few minutes to interannual) scales. The overall motivation and goal of these chapters 

is to present new observations of water isotope variation and understanding about forest and 

mountain hydrology. Results and conclusions from these chapters help constrain local and regional 

terrestrial hydrologic uncertainty and can inform predictions of future hydrologic change.  

Chapters 2 and 3 begin at the ecosystem-scale and focus on forest hydrology. These 

chapters use water vapor isotopes to quantitatively assess how water is exchanged between the 

land and the atmosphere at the University of Michigan Biological Station (UMBS) in northern 

lower Michigan. These chapters present high temporal resolution (a few minutes) water vapor 

isotope data made with a field-deployable, laser-based water isotope analyzer to link local water 

cycles with plant biology (e.g., stomatal aperture) and meteorologic conditions. Such high 

temporal resolution measurements offer new insights into land-atmosphere water fluxes because 

previous water vapor isotope monitoring techniques were laborious and produced at most a few 

measurements per day (e.g., Helliker et al., 2002; Lai et al., 2006). Together, these chapters are 

part of a growing field of ecohydrologic research that uses near-continuous water vapor isotope 

data to quantify and trace water exchange between terrestrial ecosystems and the atmosphere. 

Chapter 2 (published in Journal of Geophysical Research: Biogeosciences, Aron et al., 

2019), presents a comparison of vertical profiles of water vapor isotopes in two closely located 

forest sites at UMBS to examine the effects of structural disturbance on forest water cycling. At 
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one site, all canopy-dominant early successional species were stem girdled (complete removal of 

a ~20 cm strip of bark around the trunk of a tree) to induce mortality and accelerate senescence. 

This disturbance mimics structural and species-level changes during rapid ecological succession 

and some forest management techniques (e.g., forest thinning or selective logging). We find that 

structural canopy disturbance can have a substantial impact on local and regional water cycling 

because intact, closed canopies can act as a diffusive boundary layer that modulates the exchange 

of energy and moisture between the land and the atmosphere. Structural disturbances that create 

or widen canopy gaps increase surface-atmosphere water vapor mixing and may reduce moisture 

retention in forests. 

Chapter 3 (published in Ecohydrology, Aron et al., 2020b) developed from unconstrained 

or unexplained elements of Chapter 2. In particular, Chapter 2 only looks at the bulk isotopic 

composition of atmospheric water vapor at UMBS, which includes background vapor (mixed in 

from the atmosphere above the forest) and vapor added by evapotranspiration (ET). Chapter 3 

presents a new technique to measure the isotopic composition of transpired vapor and 

quantitatively separate background, evaporation, and transpiration fluxes. This type of flux 

partitioning provides insights into the role that vegetation plays in terrestrial water recycling and 

links species-specific hydrologic traits with local meteorologic conditions. We find that 

evaporation and transpiration fluxes vary in unison over the course of a day and propose that 

isotopic ET partitioning can help quantify water fluxes from ecosystems (e.g., wetlands, tundra, 

grasslands) and vegetation types (e.g., young trees, shrubs, grasses) that play an important role in 

ecosystem-atmosphere water exchange but are hydrologically challenging to measure, model, and 

predict.  

Chapters 4 and 5 increase the spatial and temporal scales of inquiry and focus on the 

isotopic composition of precipitation and surface waters. These chapters explore the regional and 

continental scale hydrologic processes that drive precipitation in the central Andes (Chapter 4) and 

the global variability of meteoric water triple oxygen isotopes (Chapter 5). These chapters rely 

heavily on citizen science and crowdsourced efforts to collect water samples, and refine 

longstanding assumptions about hydrology in the central Andes and the isotopic variability of 

meteoric water. While most hydrologic oxygen isotope studies (including Chapters 2 and 3) focus 

only on ratios of 18O/16O, Chapters 4 and 5 include triple oxygen isotope (16O, 17O, 18O) data. These 

data add a degree of freedom (17O/16O) to oxygen isotope records and help constrain kinetic 
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fractionation (e.g., evaporation and moisture recycling) in modern waters (e.g., Li et al., 2017; Luz 

and Barkan, 2010) and geologic materials (e.g., Passey et al., 2014) that is impossible to do with 
18O/16O alone. Chapter 4 introduces hydrologic triple oxygen isotope data and demonstrates their 

utility in one regional study; Chapter 5 expands this work and explains global meteoric water triple 

oxygen isotope variations. These chapters present substantial new datasets and show how the 

isotopic composition of precipitation and surface waters can be useful in a variety of hydrologic 

and paleoclimate applications.  

Chapter 4 focuses on the regional to continental scale hydrologic processes that control 

precipitation in the central Andes. This chapter presents a three-year record of bimonthly 

precipitation isotope data from 19 stations in southern Peru that extend from the western Peruvian 

Amazon to near the Pacific coast. This chapter includes the first precipitation isotope data from 

the Peruvian Altiplano and Western Cordillera, and we find clear evidence of Pacific-sourced 

moisture in western regions of southern Peru. This moisture source is generally unaccounted for, 

but may play a critical role managing freshwater resources in the western central Andes where 

precipitation is infrequent but agriculture and major population centers (Lima and Arequipa) have 

high water demands. On the Altiplano and Eastern Cordillera, precipitation isotopes record a signal 

of evapotranspiration as moisture is transported across the Amazon Basin and seasonal variations 

in convection and airmass mixing that drive precipitation in the central Andes. These results 

highlight the utility of precipitation isotopes to understand hydrologic processes and provide new 

isotopic observations from a data-sparse region. 

Chapter 5 (in review in Chemical Geology, Aron et al., 2020a) is an invited review that 

explains the global variability of meteoric water triple oxygen isotopes. This chapter is intended 

as an introduction to what is known about meteoric water triple oxygen isotopes and serves as a 

practical guide for researchers who might want to use these data in hydrologic and paleoclimate 

studies. This chapter shows that meteoric water triple oxygen isotope variations are well 

characterized and are explained by well-known equilibrium and kinetic fractionation effects. These 

small variations are statistically significant and can help trace modern water cycling or answer an 

array of questions about paleohydrology or paleoclimate. This chapter includes a new, near-global 

dataset of surface water triple oxygen isotope data that greatly expands the geographical 

distribution of observations. Building upon a decade of work, this chapter presents region-specific 

triple oxygen isotope meteoric water lines that will be used as a point of reference in future studies.  
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This dissertation ends with Chapter 6, a summary of the most important findings and 

implications of this work. This concluding chapter includes directions of future work, a number of 

important but yet unanswered questions, and a brief description of the samples and data collected 

during my graduate studies that are not included in this dissertation. I believe these data may help 

answer some of the remaining questions and look forward to continuing to work on these problems. 
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Chapter 2 Stable Water Isotopes Reveal Effects of Intermediate Disturbance and Canopy 
Structure on Forest Water Cycling2 

 

Co-authors: Christopher J. Poulsen, Richard P. Fiorella, and Ashley M. Matheny 

2.1 Abstract  

Forests play an integral role in the terrestrial water cycle and link exchanges of water 

between the land surface and the atmosphere. To examine the effects of an intermediate 

disturbance on forest water cycling, we compared vertical profiles of stable water vapor isotopes 

in two closely located forest sites in northern lower Michigan. At one site, all canopy-dominant 

early successional species were stem-girdled to induce mortality and accelerate senescence. At 

both sites, we measured the isotopic composition of atmospheric water vapor at six heights during 

three seasons (spring, summer, and fall), and paired vertical isotope profiles with local 

meteorology and sap flux. Disturbance had a substantial impact on local water cycling. The 

undisturbed canopy was moister, retained more transpired vapor, and at times was poorly mixed 

with the free atmosphere above the canopy. Differences between the disturbed and undisturbed 

sites were most pronounced in the summer when transpiration was high. Differences in forest 

structure at the two sites also led to more isotopically stratified vapor within the undisturbed 

canopy. Our findings suggest that intermediate disturbance may increase mixing between the 

surface layer and above-canopy atmosphere and alter ecosystem-atmosphere gas exchange.  

2.2 Introduction 

 Forests cover one-third of Earth’s surface and play important roles regulating carbon 

storage, freshwater, and climate (FAO, 2015). As part of the terrestrial water cycle, forests promote 

rainfall, cool surface temperatures, transport water across vast landscapes, and regulate water 

                                                
2 Published as: Aron, P.G., Poulsen, C.J., Fiorella, R.P., Matheny, A.M., (2019) Stable Water Isotope Reveal Effects 
of Intermediate Disturbance and Canopy Structure on Forest Water Cycling, Journal of Geophysical Research: 
Biogeosciences, 124, doi: 10.1029/2019JG005118. Data associated with this chapter are accessible from the Yale 
University Stable Water Vapor Isotopes Database (SWVID) (https://vapor-isotope.yale.edu/). 
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supplies (Ellison et al., 2017). Globally, vegetation recycles a tremendous amount of water to the 

atmosphere via transpiration; forests account for approximately 50% of this flux (Schlesinger & 

Jasechko, 2014; Xiao, Wei, & Wen, 2018). However, as the frequency of environmental 

disturbances from natural and anthropogenic forces accelerate, forest hydrological cycles may 

change (Ellison et al., 2017; Pan et al., 2011). Accordingly, changes in forest cover may affect 

rainfall and water availability, water transport, and local and global temperatures (Debortoli et al., 

2017; Ellison et al., 2017; Hesslerová, Pokorný, Brom, & Rejšková-Procházková, 2013; Jasechko 

et al., 2013). Understanding the links between forest structure and water cycling is necessary to 

better predict future temperature and precipitation patterns and to manage freshwater resources.   

Forest disturbances range from complete stand-clearing events to subtle changes that target 

select species or affect the canopy irregularly. Intermediate disturbances, which do not trigger 

complete stand replacement, occur naturally though pest infestations (Herms & McCullough, 

2014; Logan, Régnière, & Powell, 2003), ecological succession (Gough et al., 2013; Hardiman, 

Bohrer, Gough, & Curtis, 2013), or extreme weather events such as fire, ice storms, strong winds, 

or drought (Anderegg et al., 2018; He & Mladenoff, 1999; Mcdowell et al., 2008; Mitchell, 2013; 

Trugman, Medvigy, Anderegg, & Pacala, 2018). Intermediate disturbances can also be 

anthropogenically driven by selective logging (Asase, Asiatokor, & Ofori-Frimpong, 2014; Asner, 

Keller, Pereira, Zweede, & Silva, 2004), prescribed fire management (Parsons & DeBenedetti, 

1979; Stephens et al., 2009), arson or accidental human fire ignition (Ganteaume et al., 2013), or 

human land use (Schulte, Mladenoff, Crow, Merrick, & Cleland, 2007). Each of these mechanisms 

alters forest canopy function through changes in the vertical distribution of solar radiation 

(Hardiman et al., 2013), soil moisture (He et al., 2013), evapotranspiration partitioning (Matheny 

et al., 2014), air temperature, humidity, wind speed, and turbulent mixing (Maurer, Hardiman, 

Vogel, & Bohrer, 2013), and thus affect the microclimate and water cycle within the canopy 

(Baldocchi, Wilson, & Gu, 2002; Chen et al., 1999).  

Forest structure and water cycling are linked through exchanges of mass and energy. 

Photosynthesis, transpiration, respiration, and stomatal conductance depend on temperature, 

relative humidity, and light. The physical arrangement of trees in a forest creates drag and 

turbulence (Maurer et al., 2013), intercepts and scatters light (Atkins, Fahey, Hardiman, & Gough, 

2018; Hardiman et al., 2018), and modulates heat received by soil and leaves (Baldocchi & 

Meyers, 1998). In turn, energy evaporates water, either from the soil or through transpiration, and 



 17 

generates sensible heat. Although forests are susceptible to an array of intermediate disturbances, 

potential changes of mass and energy exchanges following changes to canopy structure are not 

completely understood. Here, we use stable water isotopes to study water cycling at two forest 

sites, one disturbed and one undisturbed, and examine the effects of an intermediate disturbance 

on canopy moisture and forest water cycling.     

Stable water isotopes are tracers of hydrologic processes and may be used to better 

understand ecosystem-atmosphere water exchange. Phase changes of water preferentially partition 

heavy isotopologues into the liquid or solid phase while light isotopologues remain in the higher 

energy vapor phase (Gat, 1996). At equilibrium, this fractionation is temperature dependent 

(Horita & Wesolowski, 1994). When the two phases are not in equilibrium, an additional kinetic 

fractionation arises due to differences in the diffusivities among isotopologues. The difference in 

diffusivity between H218O/H216O is larger than that for HDO/1H2O, which results in a stronger 

kinetic effect on oxygen isotopes than hydrogen isotopes (Cappa, 2003; Luz, Barkan, Yam, & 

Shemesh, 2009; Merlivat, 1978). The degree of kinetic fractionation is often quantified using 

deuterium excess (d = δD – 8*δ18O (Dansgaard, 1964)), which is a measure of deviation from the 

global meteoric water line (GMWL, δD = 8*δ18O + 10‰ (Craig, 1961)).    

Advances in laser-based, high-resolution, near-continuous water isotope analyzers have 

revolutionized water vapor isotope monitoring and greatly broadened the scales of hydrologic 

spatiotemporal variability that can be studied. At the boundary layer and surface level, isotope 

ratios of water vapor have been measured to investigate moisture sources (Delattre, Vallet-

Coulomb, & Sonzogni, 2015; Fiorella, Poulsen, & Matheny, 2018; Galewsky & Samuels-Crow, 

2015; Noone et al., 2013; Steen-Larsen et al., 2015), quantify entrainment and evapotranspiration 

(ET) (He & Smith, 1999; Huang & Wen, 2014; Lai & Ehleringer, 2011; Simonin et al., 2014; Welp 

et al., 2012), and partition the ET flux (Aemisegger et al., 2014; Good et al., 2014; Xiao et al., 

2018). Together, this work demonstrates the utility of water vapor isotope measurements as a tool 

to study water fluxes between ecosystems and the atmosphere. The high temporal resolution of 

vapor isotope measurements from laser-based analyzers captures rapid, sub-diurnal (minutes to 

hours) changes in water cycling and links surface hydrology with biotic cycles and atmospheric 

conditions.  

Isotope ratios of water vapor can expand our current understanding of forest hydrology 

because the fluxes and processes that act to dry or moisten canopies – entrainment, evaporation, 
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and transpiration – have distinct isotopic signatures. During clear conditions, entrainment tends to 

dry canopy air with vapor that is isotopically more depleted than air within the canopy (Welp et 

al., 2012). Evaporation moistens canopy air with vapor that is relatively depleted in heavy isotopes 

and has a high d due to the high degree of kinetic fractionation associated with the phase change 

from soil water to water vapor (Barnes & Allison, 1984). The isotopic signature of transpiration is 

more complicated and depends on timescale, vegetation type, and microclimates within the 

canopy. Over timescales greater than leaf-water turnover times, the isotopic composition of 

transpired vapor must equal that of source water taken up at the roots since plants generally do not 

fractionate soil water during root uptake (Ehleringer & Dawson, 1992). However, on shorter 

timescales, the isotopic composition of transpired vapor may deviate from source water (Cernusak, 

Pate, & Farquhar, 2002; Harwood, Gillon, Griffiths, & Broadmeadow, 1998; Simonin et al., 2013; 

Welp et al., 2008).  

 In this study, we measured vertical profiles of water vapor isotopes in two closely located 

forest sites in northern Michigan. The control site is representative of forests in the northern Great 

Lakes region; at the experimental site, an intermediate disturbance was prescribed to test the effects 

of this disturbance on forest processes. Our objectives were to: 1) quantify the temporal variation 

of vapor d18O and dD at the two sites, 2) use the isotopic composition of water vapor to compare 

water cycling at disturbed and undisturbed sites, and 3) identify patterns and controls on canopy 

moisture. The sites in this study are hydrologically and meteorologically well studied (e.g. He et 

al., 2013; Matheny et al., 2014; Maurer et al., 2013). Therefore, an additional goal is to explore 

how vapor isotope profiles and flux tower measurements complement each other or provide similar 

information about water cycling. This goal may inform future vapor isotope studies that are not 

collocated with flux towers or sap flux networks. The addition of isotope measurements at these 

field sites improves our understanding of forest hydrologic responses to intermediate disturbance 

and expands the use of water vapor isotopes to study land-atmosphere interactions.  

2.3 Materials and methods 

2.3.1 Site description  

 This study was conducted at two field sites at the University of Michigan Biological Station 

(UMBS) in northern lower Michigan, USA. Mean annual temperature at UMBS is 6.8°C and the 

site receives an average 805 mm of precipitation annually (Matheny et al., 2014). Soils are well 
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drained Haplorthods of the Rubicon, Blue Lake, or Cheboygan series and consist of 92.2% sand, 

6.5% silt, and 0.6% clay (Nave et al., 2011). Water isotope measurements were conducted at two 

adjacent UMBS sites (~1.2 km apart) with collocated eddy covariance towers. Both flux towers 

are affiliated with the AmeriFlux network (http://ameriflux.lbl.gov/).  

  The forest surrounding the control site (45°35'35'' N, 84°41'48'' W, AmeriFlux database 

site-ID US-UMB), hereafter referred to as the undisturbed site, is dominated by early successional 

bigtooth aspen (Populus grandidentata) and paper birch (Betula papyrifera), but is transitioning 

to a mixed composition of mid-successional red oak (Quercus rubra), red maple (Acer rubrum), 

white pine (Piuns strobus), American beech (Fagus grandifolia), and sugar maple (Acer 

saccharum). The tight arrangement of trees and closed, broadleaf canopy cover at this site is 

representative of many forests in the northern Great Lakes region. This site has remained 

undisturbed since the region was extensively logged in the early twentieth century. The tower at 

the disturbed site (45°33'45'' N, 84°41'51'' W, AmeriFlux database site-ID US-UMd) is located 

within the Forest Accelerated Succession ExperimenT (FASET) plot, hereafter referred to as the 

disturbed site. In 2008, all aspen and birch in a 39 ha stand around the disturbed site’s tower were 

stem girdled to induce mortality of early successional species and evaluate the effects of ecologic 

succession. Additional information about the FASET experiment and site details are available in 

Gough et al. (2013).  

  Prior to the disturbance, forest composition, structure, and meteorological conditions were 

similar at the undisturbed and disturbed sites. Persistent differences in forest structure and water 

cycling (He et al., 2013; Matheny et al., 2014) have developed since the disturbance as a result of 

a younger, more open, structurally complex canopy at the disturbed site (Hardiman et al., 2013; 

Maurer et al., 2013). As a result of the girdling treatment, the disturbed canopy has more deep gaps 

and clumped vegetation than the undisturbed canopy.  

2.3.2 Water vapor isotope measurements  

 We deployed cavity ring-down spectrometers (CRDS) in temperature-controlled sheds 

near both eddy covariance towers. At the undisturbed site, a Picarro L2120-i was installed on April 

16, 2016. A Picarro L2130-i was installed at the disturbed site on April 25, 2016. Both analyzers 

were removed on October 1, 2016. Two liquid internal laboratory standards (-8.33‰ and 

-55.86‰ (heavy standard) and -23.81‰ and -181.35‰ (light standard) for d18O and dD, 
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respectively) were measured approximately every 12 hours to monitor for drift and calibrate 

isotope data to the VSMOW–SLAP scale (Bailey, Noone, Berkelhammer, Steen-Larsen, & Sato, 

2015). Standards were introduced as a continuous stream using a Standard Delivery Module 

(SDM) and high precision vaporizer (A0110) maintained at 140°C and ambient pressure. A 

Drierite (26800) column was used to dry ambient air for standards analysis. Laboratory standards 

were measured at water vapor concentrations between 10,000 and 30,000 ppmv.  

 We used version 1.2 of the University of Utah vapor processing scripts (Fiorella, Bares, 

Lin, Ehleringer, & Bowen, 2018) to calibrate ~1 Hz isotope data and determine instrument 

precision. We found that isotope values varied with humidity. As a result, we varied the SDM 

delivery rate of liquid standards and measured isotopic compositions from 2,000 to 30,000 ppm to 

develop equations and correct for this apparent humidity bias. We measured both internal 

standards at each injection rate for 20 minutes, but only analyzed measurements from the last 10 

minutes of each humidity level to avoid memory effects between different standards or injection 

rates. Within a humidity range (here 15,000-25,000 ppm) where the response between cavity 

humidity and isotopic composition was minimal, we calculated the deviation of measured isotopic 

compositions from the true isotopic composition. We then developed and applied correction 

equations, determined by a linear regression of the deviation between measured and true isotopic 

compositions against the inverse of cavity humidity within the 15,000-25,000 ppm range, to 

correct isotope data for the dependence on cavity humidity. Additional details on this cavity 

humidity correction are provided in the supplementary information. Instrument precision also 

depended on cavity humidity. We present the 1σ uncertainty at 5,000 ppmv, the lowest measured 

vapor mixing ratio during our sampling campaign, and 15,000 ppmv, near the average mixing ratio 

across all three sampling periods. For d, we assume oxygen and hydrogen errors are independent. 

At the undisturbed site, 1σ uncertainty ranged from 0.43‰ for d18O, 1.51‰ for dD, and 3.73‰ 

for d at 5,000 ppmv to 0.24‰, 0.74‰, and 2.02‰ (for oxygen, hydrogen, and d, respectively) at 

15,000 ppm. At the disturbed site, 1σ uncertainty ranged from 0.20‰, 0.68‰, and 1.73‰ at 5,000 

ppmv to 0.11‰, 0.35‰, and 0.94‰ (oxygen, hydrogen, and d, respectively) at 15,000 ppm.  

  Each eddy covariance tower was equipped with a vapor sampling manifold that included 

intake lines at five heights within the canopy and one above the canopy. Within-canopy vapor was 

sampled at 2, 5, 10, 15, and 20 m above the forest floor. Above-canopy vapor was sampled at 32 

m (disturbed site) and 34 m (undisturbed site). The above-canopy sampling port was collocated 
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with meteorological and flux measurements from the towers. A diaphragm pump operated at ~5 

L/min on each sampling manifold to ensure continual airflow and minimize memory effects 

between samples. Sampling lines were constructed with Bev-A-Line tubing to prevent 

fractionation (Simonin et al., 2013), encased in insulation, and wrapped with a warm wire to 

prevent condensation.  

 Each CRDS was setup to control a multi-position valve (VICI/Valco EMT2SD6MWE) to 

switch between sampling heights. Each port was measured for 5 minutes; we omit the first 2 

minutes of each measurement to account for memory effects from switching positions and used 

the mean of the last 3 minutes of each measurement for analysis (Aemisegger et al., 2012). We 

measured 48 vertical profiles of vapor isotopes each day. Within each profile, the 3-minute average 

of isotopic measurements from each sampling port is assumed to represent the isotopic 

composition at that height for the full 30-minute profile. 

 We focus on three time periods during the 2016 growing season: May 10-31 (spring, DOY 

131-151), June 7-30 (summer, DOY 159-182), and September 21-30 (fall, DOY 265-274). For 

convenience we refer to the three time periods as spring, summer, and fall, respectively. We do 

not include winter measurements because we expect canopy structure to have little effect on water 

fluxes when trees are bare and dormant. Missing records are due to equipment malfunction and 

electrical problems at the field sites. In August 2016, the analyzer from the disturbed site was 

temporarily moved to a different location for another study.  

2.3.3 Meteorological, sap flux, and eddy covariance measurements 

 Temperature and relative humidity (HMP45g, Vaisala, Helsinki, Finland) were measured 

at 2 m and above the canopy at 32 or 34 m (disturbed and undisturbed sites, respectively) at each 

site. The 2 m meteorological towers were located approximately 60 m from each flux tower. 

Temperature and relative humidity sensors were removed from the disturbed site in the late 

summer. Replacement equipment was installed 1 m above the forest floor near the disturbed site 

flux tower, but only recorded temperature. Surface pressure (PTB101B, Vaisala, Helsinki Finland) 

was measured at ground level at the undisturbed site. Sap flux, which was measured as a proxy for 

transpiration, was continuously measured in 60 trees at each site with Granier-style (Granier, 1987) 

thermal dissipation probes. Additional details about sap flux measurements at UMBS are available 

in Matheny et al. (2014). Eddy covariance CO2 and H2O fluxes were measured above the canopies 

at 32 and 34 m. The latent heat flux was measured at high resolution (10 Hz) using the eddy 
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covariance approach: water vapor and CO2 concentrations were measured using closed-path 

infrared gas analyzers (LI7000, LI-COR Biosciences, Lincoln, NE, USA); wind velocity and 

temperature were measured with a 3-D ultrasonic anemometer (CSAT3, Campbell Scientific, 

Logan, UT, USA). Details about eddy flux data processing are available in Gough et al. (2013) 

and Matheny et al. (2014). Above-canopy variables and 1 m temperature measurements were 

reported as 30-minute averages. Sap flux and 2 m meteorological measurements were collected 

every minute and averaged to 30-minute time steps to facilitate analysis with isotopic 

measurements. Daily precipitation amount was measured approximately 4 miles east of UMBS at 

the Pellston Regional Airport and accessed from the NOAA Climate Data Online archive (Network 

ID USW00014841).  

2.4 Results  

2.4.1 Seasonal variability   

 All d18O and dD vapor values are plotted in Figure 2.1. Isotopic compositions cluster 

around the GMWL during all three seasons with a consistent, slightly shallower slope than the 

global meteoric water line. In general, isotopic trends were similar for oxygen and hydrogen; 

therefore, we show and discuss only d18O throughout this section. 

 
Figure 2.1 δ18O (‰) and δD (‰) of water vapor measured during all three sampling periods at a) 
the undisturbed site (green) and b) the disturbed site (blue). Color intensity increases for each 
seasonal period from spring (pale) to fall (dark). For reference, the GMWL is plotted as a black 
line.    
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Figure 2.2 Timeseries of moving 24-hour average of summer isotopic compositions, 
meteorological data, and sap flux at the undisturbed (left) and disturbed (right) sites. a,i) vapor 
δ18O (‰); b,j) d (‰); c,k) specific humidity (q, g/kg); d,l) temperature (°C); e,m) vapor pressure 
deficit (VPD, kPa); f,n) wind speed (m/s); g,o) sap flux (W/m2); h,p) daily precipitation amount 
(mm). Isotopes and specific humidity are shown for all 6 heights from low (red) to high (blue). 
Meteorology is shown at 2 m (red) and above-canopy (blue).  
 

 
 On timescales longer than a day, isotopic and meteorologic trends were similar at the 

disturbed and undisturbed sites (Figures 2.2 and S2.11-S2.12). Seasonal comparisons between the 

two sites were generally consistent across the spring, summer, and fall measurement periods, so 
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we focus primarily on summer conditions and include additional information about spring and fall 

conditions in the supplementary information. Vapor d18O varied between -14 and -26‰ at both 

sites and was typically greater at the surface and lower in the upper canopy (10-20 m) (Figures 2.2 

and S2.11-S2.12 a and i). On average, vapor d18O, specific humidity (q), temperature, and vapor 

pressure deficit (VPD) were highest in the summer and lower in the spring and fall (Figures 2.2 

and S2.11-S2.12 a,c,d,e and i,k,l,m). Sap flux increased through the spring sampling period, was 

at a maximum in the summer, and was at a minimum in the fall (Figures 2.2 and S2.11-S2.12 g 

and o). The seasonal magnitudes of sap flux are consistent with leaf area index (LAI) trends as 

canopies at both sites leafed out during the spring sampling period, were at their maximum extent 

during the summer, and were in decline in the fall. Wind speed did not vary on seasonal timescales, 

but rather, associated with the passing of synoptic scale weather systems, meandered on a 2-4 day 

timescale with very few excursions beyond a small range (1-5 m/s) (Figures 2.2 and S2.11-S2.12 

f and n). 

Despite the general coherence between isotopes, meteorology, and ecohydrology on 

seasonal timescales at UMBS, differences emerged between the disturbed and undisturbed sites 

(Figure 2.3, Table 2.1). During the spring and summer, vapor at the disturbed site was generally 

more depleted in heavy isotopes than at the undisturbed site (Figures 2.3a and 2.3i). This difference 

was more pronounced in the summer (1-2‰ difference) than in the spring (~0.4‰). Within the 

canopies, mean spring and summer d was ~0.3‰ greater at the undisturbed site (Figures 2.3b and 

2.3j). Although the magnitude of between-site d differences was greater in the summer than in the 

spring, this difference is not statistically significant. In the fall, the disturbed site was generally 

more depleted in heavy isotopes than the undisturbed site (Figure 2.3q) and d was 4-8‰ greater at 

the undisturbed site (Figure 2.3r). In all three seasons the disturbed site was drier than the 

undisturbed site (Figures 2.3c, 2.3k, and 2.3s). Above the canopy, air temperature was ~0.4 °C 

warmer at the undisturbed site (Figures 2.3d, 2.3l, and 2.3t) while VPD was nearly identical (< 

0.04 kPa difference, Figures 2.3e, 2.3m, and 2.3u). Near the surface (2 m), air temperature was 

~0.6 °C cooler (Figures 2.3d, 2.3l, and 2.3t) and VPD ~0.15 kPa lower at the undisturbed site 

(Figures 2.3e, 2.3m, and 2.3u). Mean wind speed was ~1 m/s greater at the undisturbed site than 

the disturbed site (Figures 2.3f, 2.3n, and 2.3v), and sap flux was almost always greater at the 

undisturbed site than the disturbed site (Figures 2.3g, 2.3o, and 2.3w). Mean seasonal differences 
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of isotopes, meteorology, and sap flux are presented in Table 2.1 with significant differences (p < 

0.05) between the disturbed and undisturbed sites highlighted.  

 

 
Figure 2.3 Differences (Δ, undisturbed – disturbed) between the undisturbed and disturbed sites 
in the spring (a-h), summer (i-p), and fall (q-x). a,i,q) vapor δ18O (‰); b,j,r) d (‰); c,k,s) specific 
humidity (q, g/kg); d,l,t) temperature (°C); e,m,u) vapor pressure deficit (VPD, kPa); f,n,v) wind 
speed (m/s); g,o,w) sap flux (W/m2). Panels h, p, and x show total daily precipitation amount (mm). 
Differences of isotopes and specific humidity are shown for all 6 heights from low (red) to high 
(blue). Where measured, meteorological differences are shown at 2 m (red) and above-canopy 
(blue). 
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Table 2.1 Isotopic, meteorologic, and sap flux differences between the undisturbed and disturbed 
sites. Statistical significance (p < 0.05) is indicated by bolded values. 

           SPRING 
 2 m 5 m 10 m 15 m 20 m 32/34 m 

δ18O (‰) 0.33 0.46 0.36 0.51 0.60 0.45 
d (‰) 0.60 0.16 0.34 0.17 0.45 2.47 

q (g/kg) 1.26 1.31 1.28 1.35 1.40 2.38 
Temperature (°C) -0.68     0.42 

VPD (kPa) -0.14     0.04 
Wind Speed (m/s)      0.77 
Sap Flux (W/m2)      9.76 

            SUMMER 
 2 m 5 m 10 m 15 m 20 m 32/34 m 

δ18O (‰) 1.48 1.34 1.29 1.19 0.84 2.00 
d (‰) -0.13 -0.05 -0.23 0.68 1.19 -2.10 

q (g/kg) 3.71 3.56 3.43 3.45 3.01 4.34 
Temperature (°C) -0.74     0.40 

VPD (kPa) -0.17     0.01 
Wind Speed (m/s)      0.83 
Sap Flux (W/m2)      29.36 

            FALL 
 2 m 5 m 10 m 15 m 20 m 32/34 m 

δ18O (‰) -0.52 -0.20 0.12 -0.32 -0.44 -0.61 
d (‰) 5.75 5.18 4.29 6.31 5.54 8.62 

q (g/kg) 2.17 2.08 2.14 2.13 1.78 2.08 
Temperature (°C) 0.06     0.42 

VPD (kPa)      -0.04 
Wind Speed (m/s)      1.11 
Sap Flux (W/m2)      9.25 

 
The two sites also exhibited isotopic differences with height. While d18O was generally 

greater near the surface than in the upper canopy, vertical gradients of d18O within the canopies 

were larger at the undisturbed site than at the disturbed site (Figure 2.4). Summer and fall d18O 

gradients within the undisturbed canopy (2 – 20 m) were pronounced at night (0.70‰ and 0.95‰ 

in the summer and fall, respectively) but dissipated through the day (Figure 2.4 a-d). The disturbed 

site did not exhibit the same stratified nighttime isotopic compositions and was relatively well 

mixed with vertical gradients generally less than 0.25‰ (Figure 2.4 e-h). Within each season, q 

ratios exhibited little variation at any of the sampling heights (Figure S2.13). 
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Figure 2.4 Mean profiles of water vapor δ18O (‰) from the undisturbed (green) and disturbed 
(blue) sites during the spring, summer, and fall. Shown here are profiles from four time slices: 
nighttime (00:00 to 03:00, a and e), sunrise (06:00 to 09:00, b and f), midafternoon (14:00 to 17:00, 
c and g), and sunset (18:00 to 21:00, d and h). Grey shading indicates heights above the canopy. 
Error bars show standard error. 

 

2.4.2 Synoptic variability    

 Passing weather systems drove relatively large shifts of isotopes, meteorology, and sap 

flux within a few days. We focus on a summer storm (DOY 166-171) and examine how isotopes, 

sap flux, and eddy covariance data reveal information about the hydrologic fluxes associated with 

this event. 0.69 mm of rain fell on DOY 167. We include one day of pre-storm conditions (DOY 

166) and define the end of the storm as the day during which VPD at the undisturbed site was at a 

maximum following the rainfall event. We calculated the isotopic composition of the ET flux 

(d18OET) at 20 m with a Keeling mixing model (Keeling, 1958; Yakir & Sternberg, 2000), and 

followed the methods described by Williams et al. (2004) to partition the transpiration component 

of ET (defined here as T/ET) from sap flux and eddy covariance measurements.  
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Figure 2.5 a) δ18OET and b) T/ET at the disturbed (blue) and undisturbed (green) sites during the 
summer storm (DOY 166-171). Rain fell during the day on DOY 167. 

 

 Prior to the storm, conditions at the disturbed and undisturbed site were similar but reflect 

the consistent seasonal differences at the two sites: sap flux was greater, d18O higher, and air 

moister at the undisturbed site than at the disturbed site (Figure 2.5). Transpiration accounted for 

a greater proportion of the ET flux at the undisturbed site (~70%) than the disturbed site (~50%) 

(Figure 2.5b). Rain fell from 10:00 to 17:00 on DOY 167. During the event, sap flux and VPD 

decreased to nearly zero while q and d18O increased (Figure 2.6). Immediately after the storm 

(DOY 168) increases in VPD, sap flux, and T/ET drove d18OET and d18O of ambient vapor to 

higher values. By DOY 169 and 170, sap flux and VPD returned to pre-storm values and were 

similar at the disturbed and undisturbed sites (Figure 2.5 c-d and g-h). At the same time, isotopic 

differences emerged at the two sites (Figure 2.5a Figures 2.6 a-b and e-f).  
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Figure 2.6 Time series of moving 24-hour average of summer storm (DOY 166-171). Rain fell on 
DOY 167.  a,e) vapor δ18O (‰); b,f) specific humidity (q, g/kg); c,g) vapor pressure deficit (VPD, 
kPa); d,h) sap flux (W/m2) at the undisturbed (left) and disturbed (right) sites. Isotopes and specific 
humidity are shown for all 6 heights from low (red) to high (blue). Meteorology is shown at 2 m 
(red) and above-canopy (blue). 

 

2.4.3 Diurnal cycles 

 Vapor d18O and d generated clear diurnal cycles at both the disturbed and undisturbed sites 

(Figure 2.7). Diurnal cycles emerged in the spring, were most pronounced during the summer, and 

decreased in amplitude in the fall. Generally, d18O increased slightly just after sunrise to an early-

morning peak, decreased through the day to a late afternoon minimum, and increased in the early 

evening before sunset (Figure 2.7, top row). Nighttime d18O values exhibited little variation. The 

diurnal d cycle was apparent in all three seasons and at both sites (Figure 2.7, second row). d was 

relatively constant at night, decreased briefly just after sunrise, increased in the morning to a mid-

day maximum, and decreased rapidly in the late afternoon. In all three seasons, the timing of the 
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diurnal d cycle was consistent between sites but the amplitude and rate of change differed. q 

exhibited very little diurnal variation (Figure 2.7, third row). 

Diurnal temperature generally peaked in the mid-afternoon and was at a minimum just 

before sunrise (Figure 2.7, fourth row); relative humidity exhibited the opposite diurnal cycle with 

the greatest values just before sunrise and the lowest values in the mid-afternoon (Figure 2.7, fifth 

row). Like temperature, diurnal vapor pressure deficit (VPD) increased in the morning and 

decreased in the afternoon (Figure 2.7, sixth row). In the spring and summer, diurnal wind speed 

exhibited a distinct cycle with maximum values in the mid-afternoon and minimum values around 

sunrise. There was no clear diurnal cycle of wind speed in the fall at either site (Figure 2.7, seventh 

row). At both sites, sap flux began at sunrise, reached a maximum in the early afternoon, and was 

nearly zero by sunset (Figure 2.7, eighth row). The shape of the diurnal sap flux cycle was 

consistent throughout all three seasons, but the maximum summer diurnal sap flux was 

approximately two times greater than sap flux in the spring or fall periods (Figure 2.7, eighth row). 

  Isotopic, meteorologic, and sap flux differences also emerged at the disturbed and 

undisturbed sites on diurnal timescales. In the summer and fall, the early morning d18O peak was 

more pronounced at the undisturbed site than at the disturbed site (Figure 2.7 q,ag and y,ao). In 

addition, although the magnitude of diurnal d cycles was similar at the two sites (~12, 20, and 8 

‰ in the spring, summer, and fall, respectively), daytime patterns differed (Figure 2.7, second 

row). In all three seasons, d increased rapidly in the undisturbed canopy in the early morning and 

maintained a high plateau through the day. In contrast, at the disturbed site, d increased gradually 

through the early morning and mid-afternoon and peaked in the late afternoon. Vertical gradients 

of meteorological conditions between the surface and 32/34 m were greater at the undisturbed site 

than the disturbed site (Figure 2.7, fourth and fifth rows). Similarly, diurnal wind speed and sap 

flux were greater at the undisturbed site than the disturbed site (Figure 2.7, rows seven and eight, 

respectively).   
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Figure 2.7 Diurnal isotopic, meteorologic, and sap flux cycles at all sampling heights in the spring 
(a-p), summer (q-af), and fall (ag-av). Diurnal cycles were calculated by removing the background 
isotopic composition at 15 m. In each season, diurnal cycles at the undisturbed site are shown on 
the left (a-h, q-x, and ag-an) and diurnal cycles from the disturbed site are to the right (i-p, y-af, 
and ao-av). δ18O (‰), (a,i,q,y,ag,ao); d (‰), (b,j,r,z,ah,ap); q (g/kg), (c,k,s,aa,ai,aq); temperature 
(°C), (d,l,t,ab,aj,ar); relative humidity (%), (e,m,u,ac,ak,as); vapor pressure deficit (VPD, kPa), 
(f,n,v,ad,al,at); wind speed (m/s), (g,o,w,ae,am,au); and sap flux (W/m2), (h,p,x,af,an,av) are 
shown for both sites and all three seasons. Heights of isotope measurements vary along a spectrum 
from low (red) to high (blue) height. Meteorological variables were measured near the surface 
(red) and above the canopy (blue). 
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2.5 Discussion 

2.5.1 Seasonal variability   

Observed seasonal isotopic shifts reflect changes in large-scale circulation and seasonal 

wind patterns, which we expect to be similar at the disturbed and undisturbed sites (Gat, Bowser, 

& Kendall, 1994). In northern Michigan, air advected from the north is drier and has experienced 

colder temperatures along its trajectory than air from the south (Rasmusson, 1968). As a result, at 

UMBS the boundary layer was cooler, drier, and more depleted in heavy isotopes in the spring and 

fall than was observed in the summer. Sap flux trends point to seasonal variability of transpiration 

at UMBS (Figures 2.2 and S2.11-S2.12 g and o). Sap flux increased through the spring as the 

canopies leafed out and hydrologic cycling intensified during the beginning of the growing season, 

was greatest during the summer when the canopies were fully developed, and was low in the fall 

when transpiration was in decline at the end of the growing season. 

Seasonal d18O differences between the disturbed and undisturbed site may be explained by 

canopy structure, the magnitude of local water fluxes, and different species-specific 

ecohydrological strategies that have previously been observed at UMBS (Matheny et al., 2014, 

2016; Thomsen et al., 2013). The 2008 girdling treatment altered the spatial arrangement of 

vegetation and increased gaps between trees at the disturbed site. As a result, light reaches deeper 

(Hardiman et al., 2013), the evaporation flux is greater (Matheny et al., 2014), and canopy 

roughness is more variable (Maurer et al., 2013) at the disturbed site than at the undisturbed site. 

On seasonal timescales, mass balance dictates that the isotopic composition of transpired vapor 

must equal that of source water. On this relatively long timescale, we expect that the isotopic 

composition of transpired vapor was enriched in heavy isotopes relative to background vapor and 

that the greater transpiration flux at the undisturbed site pushed d18O within the canopy to higher 

values than at the disturbed site. Due to the fractionation associated with the evaporation of soil 

water that preferentially partitions lighter isotopologues into the vapor phase, more evaporation at 

the disturbed site depressed vapor d18O relative to the undisturbed site. Maurer et al. (2013) 

demonstrated that the structural rearrangement at the disturbed site altered the surface roughness 

parameters and increased surface drag, turbulent eddies, and vertical mixing. Although analysis of 

surface roughness did not continue past 2011, the lower observed d18O at the disturbed site 

suggests that between-site differences in vertical mixing persist at UMBS.  
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Species-specific hydrologic strategies may also have contributed to observed isotopic 

differences. Aspen transpire a majority of the water at the undisturbed site; absent this species at 

the disturbed site, oak and pine account for a much larger proportion of sap flux (Matheny et al., 

2014). At UMBS, oak have a relatively deep rooting depth and access a deeper soil water pool that 

is more depleted in heavy isotopes than near-surface soil water (Matheny et al., 2016). Therefore, 

more transpiration from oak at the disturbed site may have contributed more isotopically negative 

vapor into the disturbed canopy than the undisturbed canopy. Differences in stomatal regulation 

may also control vapor isotopes because oak at UMBS are anisohydric while maple and aspen are 

isohydric (Matheny et al., 2016; Thomsen et al., 2013). While these species-specific hydrologic 

strategies may affect vapor isotopes, the trees at the two sites generally share much of the same 

physiology. Therefore, we focus on structural differences between the disturbed and undisturbed 

sites because the differences between the sites are greater.  

2.5.2 Synoptic variability    

Isotope, sap flux, and eddy covariance data from the DOY 166-171 storm reveal synoptic 

scale differences in water cycling between the disturbed and undisturbed sites. Following the 

rainfall event, precipitation moved quickly through the porous sandy UMBS soil, was rapidly taken 

up by trees, and transpired to the atmosphere (He et al., 2013; Matheny et al., 2014; Nave et al., 

2011). At the undisturbed site where transpiration dominates the ET flux (Figure 2.5b and Matheny 

et al., 2014), T/ET, vapor d18O, and d18OET increased after the storm. Due to increased light 

penetration and a more open canopy structure, evaporation played a larger role in the ET flux at 

the disturbed site. Accordingly, T/ET remained nearly unchanged immediately after the storm. At 

both sites soil evaporation contributed more to the ET flux a few days after the storm and likely 

drove T/ET, d18O, and d18OET to lower values. d18OET was most similar at the two sites during 

(DOY 167) and immediately after (DOY 168) the storm when evaporation of intercepted 

precipitation, which was likely the same at the two sites, contributed to d18OET (Figure 2.5a). 

Following DOY 168 and likely the complete evaporation of intercepted water, differences in 

vegetation, canopy structure, and the relative magnitudes of evaporation and transpiration fluxes 

caused d18OET to diverge at the two sites.  

Measurements of additional water pools would greatly improve an isotopic understanding 

of synoptic scale water cycling and are suggested for future studies. We assume that rainwater had 
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a lower d and higher d18O than background vapor (Gat, 1996), but without an exact value of the 

isotopic composition of precipitation it is difficult to diagnose the shift in vapor d18O due to 

transpiration after a rain storm. Similarly, without knowledge of the isotopic composition of soil 

water, it is difficult to estimate the decrease in vapor isotopes from evaporation. Additionally, 

isotopic measurements of xylem water would clarify questions of rooting depth and the timescales 

over which trees access recent precipitation. Matheny et al. (2014 and 2016) have previously 

reported on the rapid ET response to rain at UMBS. Following a storm, isotopic measurements of 

precipitation, soil, and xylem water would enable a similar assessment of forest water cycling. 

Future synoptic-scale vapor isotope studies, especially those without sap flux or eddy covariance 

data, should consider these additional measurements imperative to fully understand vapor isotope 

data and forest water cycling.  

2.5.3 Vertical variability    

Vertical isotope gradients within the canopies demonstrate the effects of entrainment and 

local ET at the disturbed and undisturbed sites (Figure 2.4). Local above-canopy temperature, 

relative humidity, and wind speed were similar at the two sites (Figures 2.3 and Figure 2.7), 

therefore we attribute differences in vertical gradients to forest structure. To this end, we compared 

isotope gradients at four time slices through the day (Figure 2.4): in the middle of the night (a and 

e) and mid-afternoon (c and g) when local meteorological and atmospheric conditions were 

relatively stable and in the early morning (b and f) and late afternoon (d and h) when conditions 

changed rapidly. When transpiration was low at night, atmospheric mixing shifted vapor d (d18O) 

to higher (lower) values. In all three seasons, vertical isotope gradients were larger at the 

undisturbed site than the disturbed site and more pronounced at night when water fluxes were 

relatively low. With higher water fluxes and more turbulence through the day, entrained and 

transpired vapor was mixed through the canopies so that by sunset vertical isotopic gradients 

dissolved away (Figures 2.4d and 2.4h). This pattern was most pronounced during the summer 

sampling period and more distinguishable within the thick, spatially homogenous, undisturbed 

canopy that is prone to stratification than within the open, disturbed canopy that has many gaps 

that promote mixing.  

Differences in forest structure at the two sites also contributed to gradients of diurnal 

temperature, relative humidity, and VPD between the surface (2 m) and above the canopies (Figure 
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2.7). In general, these gradients were greater at the undisturbed site than at the disturbed site. At 

the undisturbed site, nighttime conditions near the surface were generally moister than at 34 m due 

to the thick canopy that slowed the advection of moisture from within the canopy to the free 

atmosphere above. In contrast, during the day at the disturbed site, the surface was slightly warmer 

and drier than conditions above the canopy. There, open gaps among the trees allowed more solar 

radiation to reach the forest floor and promoted vertical mixing (Hardiman et al., 2013).  

2.5.4 Diurnal isotope variations 

 Diurnal water vapor isotope cycles have been widely reported and generally appear to be 

independent of continentality or vegetation type. Diurnal cycles of d18O and d at UMBS are similar 

to those observed in coastal New Haven (Lee, Kim, & Smith, 2007; Lee, Smith, & Williams, 

2006), above a wheat field (Zhang, Sun, Wang, Yu, & Wen, 2011) and arid oasis cropland (Huang 

& Wen, 2014) in North China, in a coniferous forest in the Pacific Northwest (Lai & Ehleringer, 

2011), above a Mediterranean coastal wetland (Delattre et al., 2015), in an evergreen forest in 

Northern California (Simonin et al., 2014), and in an isotope enabled large-eddy simulation of the 

atmospheric boundary layer (Lee, Huang, & Patton, 2012). Welp et al. (2012) reported on water 

vapor d from six sites in the United States and China, including a broadleaf deciduous forest site 

in Borden, Ontario near UMBS. While local water fluxes affect the magnitude of diurnal isotope 

cycles, characteristic patterns of diurnal d18O and d variation emerged in all of these locations. 

Taken together, these cycles reflect competing influences of boundary layer entrainment and local 

ET on near surface water vapor.  

Generally, entrainment and evaporation mix vapor with high d and low d18O into a forest 

canopy. q helps differentiate these two processes as evaporation moistens canopy air and 

entrainment dries canopy air. On short (sub-hourly) timescales, the isotopic composition of 

transpired vapor depends on leaf and xylem water storage and local meteorological conditions. On 

diurnal timescales, relative humidity changes cause vapor d to increase in the morning and 

decrease in the evening (Simonin et al., 2014). As morning relative humidity decreases and 

evaporation increases, the degree of kinetic fractionation increases and acts to increase vapor d. 

This kinetic effect is driven by the diffusivity difference between isotopologues during evaporation 

(Cappa, 2003; Merlivat, 1978). Environmental conditions are the opposite in the evening and, 

following the same logic that explains equilibrium and kinetic fractionation factors in the morning, 
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tend to decrease vapor d late in the day as relative humidity increases. As a result of daytime 

transpiration, leaf water undergoes an isotopic enrichment and is expected to have a low d by the 

late afternoon. During the late afternoon and evening when relative humidity is high and 

transpiration likely occurs closer to equilibrium, stored leaf water with low d may also decrease 

vapor d.  

A few features of the diurnal d18O and d cycles are consistent between sites, seasons, and 

heights and reflect the dominant hydrologic processes in the UMBS canopies. In the early morning, 

transpiration drove a small increase of d18O and decrease of d (Figure 2.7). These isotopic shifts 

began just after sunrise and coincided with a VPD increase and the initiation of diurnal sap flux. 

In the mid-morning d increased rapidly as sap flux increased, temperature increased, and relative 

humidity decreased. As temperature and relative humidity changed in the late afternoon and 

evening, d decreased as expected. At night, when sap flux and VPD were at minima, entrainment 

was low and d was generally consistent, the isotopic composition of canopy vapor was 

predominantly governed by equilibrium fractionation. We did not observe characteristic isotope 

patterns of dew formation at either site, perhaps due to the relatively thick canopy and high LAI 

(3 m2 m-2) of the UMBS forest. Unlike some open-canopy forests (e.g. a ponderosa pine forest in 

central Colorado (Berkelhammer et al., 2013)), at UMBS dew formation did not impart a distinct 

signature on the isotopic composition of near surface water vapor.  

At UMBS, transpiration dominates ET at the undisturbed site; evaporation accounts for a 

larger fraction of ET at the disturbed site (Matheny et al., 2014). In addition, due to differences in 

canopy structure, we expect that more entrained vapor was mixed into the disturbed canopy than 

into the undisturbed canopy (Maurer et al., 2013). At the undisturbed site, the early increase of 

summer q and d suggest that transpiration supplied most of the morning vapor within that canopy. 

The morning q increase was absent at the disturbed site because there was less transpiration at that 

site and more entrainment of dry air from above the canopy. By mid-day, higher wind speeds and 

warmer surface temperatures increased mechanical turbulence and buoyant convection and 

entrained vapor was mixed into both canopies. Entrainment tended to depress d18O of vapor within 

the disturbed canopy. It is likely that evaporation also decreased d18O at the disturbed site, but it 

is difficult to disentangle evaporation and entrainment because the variations of q were so small.  

We further examined the controls on diurnal isotopic compositions with a d18O-dD plot of 

diurnal summer water vapor measurements (Figure 2.8). In this dual isotope space, diurnal vapor 
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isotopic measurements produce a hysteretic loop that readily demonstrates when equilibrium and 

kinetic fractionation dominated in the UMBS canopies and highlights hydrologic differences at 

the disturbed and undisturbed sites. In the early morning, transpiration briefly drove d18O and dD 

higher and likely shifted vapor isotopes toward the isotopic composition of xylem water. This 

feature of the d18O-dD hysteric loop is more pronounced at the undisturbed site where the 

transpiration flux was greater and the thicker canopy initially retained transpired vapor and slowed 

the intrusion of entrained vapor. d increased through the morning at both sites, but the kinetic effect 

was stronger (compare the slope between ~9 am and just before noon) at the disturbed site, which 

is consistent with a greater contribution of evaporated vapor. At noon, d18O values were ~ -19‰ 

at the two sites. Through the afternoon, entrainment and ET pushed isotopic compositions to lower 

values, although this effect was greater at the disturbed site (-2‰) than at the undisturbed site 

(-1‰) likely due to differences in canopy structure. In the late afternoon and evening, transpiration 

dragged isotopic compositions up to similar nighttime values (~ -19‰). The evening shift from 

decreasing isotope values to increasing isotope values occurred approximately three hours later at 

the undisturbed site than at the disturbed site (compare the direction of the hysteric loop after 6 

pm). The thick, closed undisturbed canopy was slow to change and retained daytime characteristics 

well into the evening. Alternatively, the open, disturbed canopy responded rapidly to changing 

atmospheric and meteorological conditions. 
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Figure 2.8 15 m interpolated diurnal summer δ18O and δD from the undisturbed (top) and disturbed 
(bottom) sites. Each diurnal δ18O and δD value was interpolated to a five-minute time step to 
demonstrate the hysteretic loop of water vapor δ18O and δD throughout the day. Color indicates 
time and varies from midnight (navy) to morning, afternoon, and night (yellow, green, and blue, 
respectively). White, grey, and black circles indicate 6 am, 12 pm, and 6 pm, respectively. The red 
circle indicates midnight. Arrows indicate hydrologic processes that drive the isotopic composition 
of water vapor within the canopies and point in the direction that each process pushes isotope 
values. The global meteoric water line (GMWL) is included for reference. 

 

2.5.5 Summertime surface-atmosphere vapor mixing 

 Finally, we focus on summertime meteorological and isotopic differences within and above 

the disturbed and undisturbed canopies and examine the implications of intermediate disturbance 

on forest hydrology. We concentrate on the summer period because differences in canopy structure 
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at the two sites were most pronounced during this time. At the disturbed site, summer temperature, 

VPD, and vapor isotopic compositions were nearly identical within and above the canopy (Figure 

2.2 i-m). Alternatively, when vertical temperature and relative humidity gradients emerged at the 

undisturbed site, for example during DOY 161-163, 166-173, and 175-179, isotopic gradients 

emerged as well (Figure 2.2a-f). In particular, above-canopy d deviated from within-canopy d 

during these times (Figure 2.2c). The timing of summer vertical meteorological and isotope 

gradients suggests that, at times, air above the undisturbed canopy was incompletely mixed with 

air within the canopy. During the summer, air at the disturbed site generally remained well mixed 

from the surface to at least 32 m.  

Diurnal summer isotopes and meteorology at the undisturbed site also point to a decoupling 

between water vapor within the canopy and vapor above the canopy. Above the undisturbed 

canopy, d and q exhibited similar diurnal patterns and were strongly correlated (Pearson’s r > 0.8, 

Figures 2.7r and 2.7s). The coherence between diurnal d and q was unique to the 34 m observations 

at the undisturbed site, and points to a measurable influence of canopy structure on forest water 

cycling. The correlation between d and q was low (r < 0.5) at all other sampling locations. In 

addition, the disturbance muted diurnal vertical meteorological gradients (Figure 2.7), and 

suggests that forest structure affects mixing within the canopy. Broadly, this suggests that the 

assumption of well-coupled canopy-atmosphere interactions (e.g. Ewers & Oren, 2000) may be 

violated in the case of thick, homogeneous forest canopies.  

2.5.6 Implications of intermediate disturbance on forest hydrology  

Since its initiation in 2008, the FASET disturbance has proven to be a fruitful experiment 

to examine and better understand forest biogeochemical responses to intermediate disturbances 

such as forest thinning management or rapid ecological succession. Following the treatment, 

carbon, nitrogen, and water cycles changed rapidly in the disturbed plot. Carbon (Gough et al., 

2013) and nitrogen (Nave et al., 2011) cycles returned to pre-treatment levels within a few years; 

changes to boundary layer turbulence (Maurer et al., 2013), forest structure (Hardiman et al., 2013) 

and the water cycle (He et al., 2013; Matheny et al., 2014) have persisted. Here we use water vapor 

isotopes to demonstrate that intermediate disturbances that open canopy gaps can alter vapor 

mixing within and above a forest canopy. Our results also show that forest canopy structure 

modulates the timescale over which moisture is returned to the atmosphere, as closed canopies can 

act like a diffusive boundary layer and return energy and moisture to the atmosphere more slowly 
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than open canopies. Greater vapor mixing between the surface layer and the above-canopy layer 

may increase moisture transport as surface layer moisture is mixed into the drier above-canopy air 

and advected away, and therefore may influence the timing and amount of downstream moisture. 

At the local scale, increased surface-atmosphere water vapor mixing may reduce forest moisture 

retention and further influence forest composition (Fotis et al., 2018). Many of these inferences 

can be made from eddy covariance, sap flux, or vapor isotope measurements. However, only 

isotopes offer insights into the particular processes, both during the day and at night, that generate 

water fluxes.  

Importantly, forest intermediate disturbances do not proceed in isolation. Instead, over the 

next few decades, many forests will experience higher atmospheric CO2 and warmer temperatures. 

It is therefore prudent to consider disturbance alongside the broad suite of pressures that may affect 

forests. Independent of atmospheric CO2, changes in vertical mixing modulated by canopy 

structure can increase VPD and impact stomatal regulation, transpiration, and photosynthesis 

(Novick et al., 2016). Under higher atmospheric CO2, decreased stomatal conductance may 

increase intrinsic water-use efficiency (Frank et al., 2015). Under higher CO2 conditions, many 

climate models suggest that transpiration will decrease or remain stable (Lemordant, Gentine, 

Swann, Cook, & Scheff, 2018; Skinner, Poulsen, Chadwick, Diffenbaugh, & Fiorella, 2017). 

Although many changes to forest water cycles, including stomatal behavior, forest moisture 

gradients, and soil wetness, are yet unknown, higher water-use efficiency and increased canopy 

openness may reinforce each other to further dry forest environments. If the transpiration rate 

remains stable as canopies transition from closed to open, more canopy moisture may be lost to 

the atmosphere, which may increase the flux of water from forests to downstream regions.  

2.6 Conclusions 

We compared meteorology, sap flux, and vertical profiles of water vapor stable isotopes in 

two closely located forest sites in northern Michigan to assess the effects of intermediate 

disturbance and canopy structure on local hydrologic cycling. Records from both the disturbed and 

undisturbed sites reflect seasonality and are imprinted with storm events. On diurnal timescales, 

we found that differences in water vapor isotope cycles reflect differences in canopy structure, the 

relative influence of entrainment and ET, and the hydrologic mixing both within the canopy and 

between the surface layer and the atmosphere. These differences were most pronounced during the 

summer when the canopies were fully developed and transpiration was high. Vertical water vapor 
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isotope measurements revealed stratified canopy vapor at night at the undisturbed site and 

relatively well mixed canopy air at the disturbed site. Generally, meteorological, sap flux, and 

isotopic measurements complement each other: eddy covariance gives the net water flux and 

isotopes reveal the hydrologic processes that generate that flux. This work helps expand our 

understanding of water vapor isotopes in forests and improves predictions of water fluxes between 

the land and atmosphere and associated changes to regional climate and water cycles.   
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2.8 Supplementary information 

Introduction  

The isotopic composition of water vapor measured on laser-based cavity ringdown 

spectrometers is dependent on cavity humidity. Here we describe the correction we applied to 

correct for this apparent bias. Figures S2.1 and S2.3 show the humidity-dependent isotopic offset 

for oxygen; Figures S2.2 and S2.4 show the humidity-dependent isotopic offset for hydrogen. 

These offsets were used to correct measured isotopic compositions for the cavity humidity bias.  

We used the 95% confidence interval of the regression relationships to generate uncertainty 

of our isotopic measurements. We focus on cavity humidity as the dominant source of 

measurement uncertainty. We do not independently consider uncertainty from measurements of 

liquid standards because they add no additional uncertainty (the R2 of the two-point calibration 

was close to 1). Standards are subject to the same humidity bias as samples, but we extended the 

humidity correction to standards and samples so we expect no additional uncertainty to arise. We 

show the estimated 1-sigma (1𝜎) uncertainty as a function of cavity humidity for d18O (Figures 

S2.5 and S2.8), dD (Figures S2.6 and S2.9), and d (Figures S2.7 and S2.10). For d, we assume 

d18O and dD errors are independent.  

Cavity humidity correction  

The isotopic composition of water vapor measured on laser-based cavity ringdown 

spectrometers is dependent on cavity humidity (Aemisegger et al., 2012; Fiorella, Bares, Lin, 

Ehleringer, & Bowen, 2018). Therefore, as part of the calibration to the VSMOW-SLAP scale, it 

is necessary to correct these data for humidity dependence. To do so, we follow the methods 

described in Fiorella et al. (2018). For each analyzer, we varied the rate of standard liquid injection 

from the Picarro Standard Delivery Module (SDM) and measured the isotopic composition as 

cavity humidity ranged from 2,000 to 30,000 ppm. We then calculated the isotopic bias as the 

deviation between measured and true isotope values when cavity humidity was between 15,000 

and 25,000 ppm. We chose these values because the response between cavity humidity and 

isotopic composition was minimal in this range and because this range overlaps with the range in 

which standards were measured during the field deployment. Humidity correction data were not 

uniformly distributed across the 2,000-30,000 ppm range, so we sorted the values into 500 ppm 
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bins to ensure that all humidity values were weighted equally. We then used a Deming regression 

to describe the relationship between isotopic composition and 1/[H2O] ([H2O] in ppm). Here we 

present the best fit and 95% confidence interval offset equations below:   

 

Picarro L2130-i (disturbed site) 

 ∆18Ooffset = 0.185 – 4270.00/[H2O] (best fit) 

 ∆18Ooffset = 0.311 – 2908.93/[H2O] (upper 95% CI) 

 ∆18Ooffset = 0.059 – 5631.07/[H2O] (lower 95% CI) 

 

 ∆Doffset = 0.090 – 1121.81/[H2O] (best fit) 

 ∆Doffset = 0.462 – 3849.46/[H2O] (upper 95% CI) 

 ∆Doffset = -0.283 – 6093.08/[H2O] (lower 95% CI) 

 

Picarro L2120-i (undisturbed site) 

 ∆18Ooffset = 0.503 – 7513.12/[H2O] (best fit) 

 ∆18Ooffset = 0.782 – 4640.83/[H2O] (upper 95% CI) 

 ∆18Ooffset = 0.022 – 10385.42/[H2O] (lower 95% CI) 

 

 ∆Doffset = 2.733 – 51785.75/[H2O] (best fit) 

 ∆Doffset = 3.443 – 40247.47/[H2O] (upper 95% CI) 

 ∆Doffset = 2.026 – 63324.02/[H2O] (lower 95% CI). 

 

We corrected for the humidity bias by subtracting the humidity-dependent offset from the 

measured isotopic composition:  

 dXhumidity_corrected = dXmeasured – ∆Xoffset*(humidity). 

The magnitude of humidity-dependent offset was related to 1/[H2O] for both oxygen (Figures S2.1 

and S2.3) and hydrogen (Figures S2.2 and S2.4).  
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Figure S2.1 L2130-i (disturbed site) ∆18Ooffset with 95% confidence intervals for each humidity 
bin. 
 

 
Figure S2.2 L2130-i (disturbed site) ∆Doffset with 95% confidence intervals for each humidity bin. 
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Figure S2.3 L2120-i (undisturbed site) ∆18Ooffset with 95% confidence intervals for each humidity 
bin. 
 

 
Figure S2.4 L2120-i (undisturbed site) ∆Doffset with 95% confidence intervals for each humidity 
bin.  
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Figure S2.5 L2130-i (disturbed site) 1-sigma uncertainty of d18O as a function of cavity humidity. 

  

 

 
Figure S2.6 L2130-i (disturbed site) 1-sigma uncertainty of dD as a function of cavity humidity. 
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Figure S2.7 L2130-i (disturbed site) 1-sigma uncertainty of d as a function of cavity humidity.  
 

 

 
Figure S2.8 L2120-i (undisturbed site) 1-sigma uncertainty of d18O as a function of cavity 
humidity.  
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Figure S2.9 L2120-i (undisturbed site) 1-sigma uncertainty of dD as a function of cavity humidity. 

 

 
Figure S2.10 L2120-i (undisturbed site) 1-sigma uncertainty of d as a function of cavity humidity. 
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Figure S2.11 Time series of moving 24-hour average of spring isotopic compositions, 
meteorological data, and sap flux at the undisturbed (left) and disturbed (right) sites. a,i) vapor 
δ18O (‰); b,j) d (‰); c,k) specific humidity (q, g/kg); d,l) temperature (°C); e,m) vapor pressure 
deficit (VPD, kPa); f,n) wind speed (m/s); g,o) sap flux (W/m2); h,p) daily precipitation amount 
(mm). Isotopes and vapor mixing ratios are shown for all 6 heights from low (red) to high (blue). 
Meteorology is shown at 2m (red) and above-canopy (blue). 
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Figure S2.12 Time series of moving 24-hour average of fall isotopic compositions, meteorological 
data, and sap flux at the undisturbed (left) and disturbed (right) sites. a,i) vapor δ18O (‰); b,j) d 
(‰); c,k) specific humidity (q, g/kg); d,l) temperature (°C); e,m) vapor pressure deficit (VPD, 
kPa); f,n) wind speed (m/s); g,o) sap flux (W/m2); h,p) daily precipitation amount (mm). Isotopes 
and vapor mixing ratios are shown for all 6 heights from low (red) to high (blue). Meteorology is 
shown at 2m (red) and above-canopy (blue).  
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Figure S2.13 Mean profiles of specific humidity (q) from the undisturbed (green) and disturbed 
(blue) sites during the spring, summer, and fall. Shown here are profiles from four time slices: a 
and e) nighttime (00:00 to 03:00; b and f) sunrise (06:00 to 09:00), c and g) midafternoon (14:00 
to 17:00); d and h) sunset (18:00 to 21:00). Grey shading indicates heights above the canopy. Error 
bars show standard error. 

 
References 
 
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., & Wernli, H. (2012). 

Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial 
laser-based spectrometers: an instrument characterisation study. Atmospheric Measurement 
Techniques, 5, 1491–1511. https://doi.org/10.5194/amt-5-1491-2012 

 
Fiorella, R. P., Bares, R., Lin, J. C., Ehleringer, J. R., & Bowen, G. J. (2018). Detection and 

variability of combustion-derived vapor in an urban basin. Atmospheric Chemistry and 
Physics, 18(12), 8529–8547. https://doi.org/10.5194/acp-18-8529-2018 

 
 
 
 
 
 
 

2
5

10
15
20

35

9 12 15
 

H
ei

gh
t (

m
)

a)

2
5

10
15
20

35

9 12 15
 

 

b)

2
5

10
15
20

35

9 12 15
 

 

c)

2
5

10
15
20

35

9 12 15
 

 

d)

2
5

10
15
20

35

9 12 15
 

H
ei

gh
t (

m
)

e)

2
5

10
15
20

35

9 12 15
 

 
f)

2
5

10
15
20

35

9 12 15
 

 

g)

2
5

10
15
20

35

9 12 15
 

 

h)

2
5

10
15
20

35

9 12 15
 

H
ei

gh
t (

m
)

a)

2
5

10
15
20

35

9 12 15
 

 

b)

2
5

10
15
20

35

9 12 15
 

 

c)

2
5

10
15
20

35

9 12 15
 

 

d)

2
5

10
15
20

35

9 12 15
 

H
ei

gh
t (

m
)

e)

2
5

10
15
20

35

9 12 15
 

 

f)

2
5

10
15
20

35

9 12 15
 

 

g)

2
5

10
15
20

35

9 12 15
 

 

h)

summer

Undisturbed Site

Disturbed Site

spring

fall

spring
summer
fall

q
(g/kg)

q
(g/kg)

q
(g/kg)

q
(g/kg)



 59 

Chapter 3 An Isotopic Approach to Partition Evapotranspiration in a Mixed Deciduous 
Forest3 

 
 
Co-authors: Christopher J. Poulsen, Richard P. Fiorella, Ashely M. Matheny, and Timothy J. 
Veverica  
 

3.1 Abstract 

Transpiration (T) is perhaps the largest fluxes of water from the land surface to the 

atmosphere and is susceptible to changes in climate, land use, and vegetation structure. However, 

predictions of future transpiration fluxes vary widely and are poorly constrained. Stable water 

isotopes can help expand our understanding of land-atmosphere water fluxes, but are limited by a 

lack of observations and a poor understanding of how the isotopic composition of transpired vapor 

(dT) varies. Here, we present isotopic data of water vapor, terrestrial water, and plant water from a 

deciduous forest to understand how vegetation affects water budgets and land-atmosphere water 

fluxes. We measured sub-diurnal variations of d18OT from three tree species, and use water 

isotopes to partition T from ET to quantify the role of vegetation in the local water cycle. We find 

that d18OT deviated from isotopic steady-state during the day but find no species-specific patterns. 

The ratio of T to ET varied from 53% to 61%, and was generally invariant during the day, 

indicating that diurnal evaporation and transpiration fluxes respond to similar atmospheric and 

micrometeorological conditions at this site. Finally, we compared the isotope-inferred ratio of T 

to ET with results from another ET partitioning approach that uses eddy covariance and sap flux 

data. We find broad mid-day agreement between these two partitioning techniques, in particular 

the absence of a diurnal cycle, which should encourage future ecohydrological isotope studies. 

                                                
3 Published as: Aron, P.G., Poulsen, C.J., Fiorella, R.P., Matheny, A.M., Veverica, T.J. (2020) An Isotopic Approach 
to Partition Evapotranspiration in a Mixed Decidous Forest, Ecohydrology, doi: 10.1002/eco.229. Data associated 
with this study are available from Mfield, the University of Michigan Research and Data Hub 
(https://mfield.umich.edu/).   
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Isotope-inferred estimates of transpiration can inform land surface models and improve our 

understanding of land-atmosphere water fluxes. 

3.2 Introduction 

 Evapotranspiration (ET) connects the water and carbon cycles and plays an important role 

maintaining terrestrial energy balance (Dunn & Mackay, 1995; Ellison et al., 2017; Swann et al., 

2012; Worden et al., 2007). Despite its broad significance, estimates of terrestrial water fluxes 

from reanalysis, upscaled observations, and land surface models (LSMs) differ by up to 50% and 

predicting future land-atmosphere water fluxes remains a challenge (Mao et al., 2015; Mueller et 

al., 2013; Vinukollu et al., 2011). Central to this uncertainty are yet unresolved responses of plants 

to climate and land use change (Frank et al., 2015; Jackson et al., 2001; Massmann et al., 2019; 

Schlesinger & Jasechko, 2014). In a higher CO2 world, some predict changes to leaf area index 

(LAI), stomatal conductance, soil moisture, and terrestrial runoff will intensify the water cycle 

(Brutsaert, 2017; Ohmura & Wild, 2002; Zeng et al., 2018; Zhang et al., 2016); others anticipate 

these vegetation-induced changes will decrease water cycling (Gedney et al., 2006; Labat et al., 

2004). Consequently, a growing body of ecohydrological research is aimed at studying terrestrial 

water fluxes to better understand what drives water exchange between the land and the atmosphere, 

how terrestrial hydrology may change in the future, and how plants regulate freshwater resources.  

 ET is comprised of ecosystem evaporation (E, including surface evaporation and 

evaporation of canopy-intercepted water) and plant transpiration (T). The ratio of T to ET, 

hereafter referred to as FT, provides insight into the role that vegetation plays in terrestrial water 

recycling and links plant hydrology with climate and meteorological conditions (Stoy et al., 2019). 

A complete understanding of this ratio is an important step towards predicting how plants will 

respond to land use and climate changes and how hydrologic balance may change in the future. To 

date, there is no consensus about the values of global, regional, and ecosystem FT (Anderegg et 

al., 2019; Bowen et al., 2019; Stoy et al., 2019). In particular, estimates of T and FT from LSMs 

and remote sensing algorithms, which rely on ecosystem-scale information, do not currently agree 

with ground-based observations of T and FT that can vary on spatial scales of less than a kilometer 

(Good et al., 2015; Talsma et al., 2018; Wei et al., 2017). Most LSMs and remote sensing data 

cannot capture sub-grid cell variations of lateral water flow (Chang et al., 2018; Ji et al., 2017; 

Maxwell & Condon, 2016), plant water stress (Fang et al., 2017; Matheny, Bohrer, Stoy, et al., 
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2014), and micrometeorological forcing (Badgley et al., 2015) that are necessary to accurately 

model FT. Further complicating our understanding of land-atmosphere water exchange, some 

ground-based observations of ET may not actually capture conditions at the transpiring or 

evaporating surfaces. For example, near-surface gradients of water vapor concentrations and vapor 

pressure deficits can make it difficult to relate ET measurements, most of which are made using 

eddy covariance above canopies, to leaf and soil fluxes within canopies (Aron et al., 2019; Jarvis 

& McNaughton, 1986; Kauwe et al., 2017). Therefore, additional leaf- and soil-level flux 

measurements are needed to improve estimates of FT and predictions of terrestrial water fluxes. 

 Stable water isotopes can improve our understanding of water fluxes from the land to the 

atmosphere because the component processes, evaporation and transpiration, have distinct isotopic 

signatures (Yakir & Sternberg, 2000). Evaporation causes a large fractionation that enriches vapor 

in the lighter isotope. Because plants generally do not fractionate water during uptake and a vast 

amount of water passes through plants without fractionating, transpiration generally adds vapor 

with a higher proportion of heavy isotopes to the atmosphere (Ehleringer & Dawson, 1992). Using 

these fingerprints, many researchers have use water isotopes to measure FT and learn about land-

atmosphere water exchange (Xiao et al., 2018 and references therein). 

Isotopic ET partitioning requires knowledge of the isotope ratios associated with 

evapotranspiration (dET), evaporation (dE), and transpiration (dT). Until recently, isotope-inferred 

estimates of evapotranspiration were limited to a low temporal resolution (day-to-annual 

timescales). As a result, the isotopic composition of transpired vapor was not measured and instead 

was assumed to be in isotopic steady-state (equal to that of source water) (Haese et al., 2013). 

However, observations from high-resolution laser absorption spectrometers now enable estimates 

of dT and show that transpiration can deviate from isotopic steady-state when periods of stable 

environmental conditions are too short to allow dT to reach the isotopic composition of source 

water (Dubbert et al., 2013, 2017; Dubbert, Cuntz, et al., 2014; Dubbert, Piayda, et al., 2014; 

Simonin et al., 2013). These dT observations may improve estimates of land-atmosphere water 

fluxes and our understanding of the role plants play in the water cycle. However, thus far studies 

of dT have focused only on a small subset of species and environments, and it is still quite 

challenging to model short term (sub-diurnal) variations of dT (Dubbert, Cuntz, et al., 2014) or 

incorporate non-steady-state transpiration into isotope-enabled land surface models (Wong et al., 

2017). Additional observations of dT from a wide variety of species and environments can inform 
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estimates of FT and may help reconcile FT differences between observations and LSMs or remote 

sensing.  

Forests play a critical role in land-atmosphere water exchange, but very few studies have 

directly used water isotopes to partition forest ET (Lai, Ehleringer, Bond, & Paw, 2006; Lee, Kim, 

& Smith, 2007; Moreira et al., 1997). Instead, most isotopic ET partitioning studies are based in 

croplands or grasslands where water management is easy to control and canopy cover is low, 

uniform, and continuous (e.g., Aouade et al., 2016; Lu et al., 2017; Wu et al., 2017). To address 

this gap, we measured the isotopic composition of transpired vapor from three tree species, 

bigtooth aspen (Populus grandidentata), red oak (Quercus rubra), and red maple (Acer rubrum), 

in a mixed deciduous forest in northern lower Michigan. We then use dT measurements to estimate 

forest FT. Our objectives are to: 1) quantify the temporal and species-specific variability of dT, 2) 

use water isotopes to estimate forest FT, and 3) evaluate whether measurements of non-steady-

state dT improve isotopic ET partitioning. Finally, we compare our results from the isotopic ET 

partitioning with results from another partitioning technique that uses eddy covariance and sap 

flux data. Taken together, these objectives examine whether water isotopes provide accurate 

quantitative estimates of forest ET fluxes. If so, isotope-inferred FT and dT may inform isotope-

enabled LSMs and improve predictions of land-atmosphere water exchange. Broadly, this work 

builds upon a growing field of high-resolution isotope ecohydrology studies that seek to 

understand the role of vegetation in local, regional, and global water budgets.   

3.3 ET partitioning  

3.3.1 Theoretical isotopic ET flux partitioning  

 The isotopic two-source model is commonly used to partition evapotranspiration (ET) 

because evaporation (E) and transpiration (T) fluxes have distinct isotopic compositions. In this 

framework, ET is defined as   

 

 ET = E + T.           Eq. 3.1  

 

Following isotopic mass balance and using delta (d) notation, Eq. 3.1 can be expressed as  
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 dETET = dEE + dTT          Eq. 3.2 

 

where dET, dE, and dT are the isotopic compositions of evapotranspiration, evaporation, and 

transpiration, respectively. A list of all symbols and abbreviations used in this study is presented 

in Table 3.1. Throughout this manuscript, we use d notation in per mil (‰), where R is the ratio 

of the heavy isotope to the light isotope (d = (Rsample / Rstandard – 1)*1000) and the standard is Vienna 

Standard Mean Ocean Water (VSMOW) (Coplen, 1996; Gat, 1996). Combining Eq. 3.1 and Eq. 

3.2 yields FT, the ratio of T to ET:  

 

 F6 = 	
6
96
= 	 d:;	<	d:	

d;	<	d:
.         Eq. 3.3 

 

This linear, two-source mixing model has been used in a number of previous studies to partition 

water fluxes of evapotranspiration (e.g., Wang and Yakir, 2000; Xiao et al., 2018; Yakir and 

Sternberg, 2000).  

 We determined dET with a Keeling mixing model (Keeling, 1958; Yakir and Sternberg, 

2000), where dET is estimated as the y-intercept of a linear regression between the isotopic 

composition of atmospheric water vapor (da) and the reciprocal of the water vapor concentration.  

 The isotopic composition of transpired vapor (dT) is calculated from leaf chamber 

measurements following Wang et al. (2012). Using this approach, dT is defined as  

 

 d6 = 	
=>d>	–	=@d@	
=><	=@

           Eq. 3.4 

 

where q is the water vapor concentration, m refers to measurements when the chamber was closed 

around a leaf, and a refers to measurements when the chamber was open to ambient vapor (Wang 

et al., 2012).  

 The isotopic composition of soil evaporation (dE) is estimated using the Craig and Gordon 

(1965) model:  

 

 d9 = 	
ABCDEdF	<	Gd@	<	HBC	<(J<G)HL	

(J<G)	M	JNDO(J<G)HL	
        Eq. 3.5 
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using meteorological measurements and isotopic values of soil water (ds) and atmospheric vapor 

(da). Here aeq (> 1) is the temperature dependent equilibrium fractionation factor (Majoube, 1971), 

eeq is calculated as (1 – 1/aeq)  ´ 103, ek is the kinetic fractionation term, and h is the relative 

humidity at the temperature of the evaporating surface.  

 

Table 3.1 Description of symbols and subscripts used in this chapter.  
Symbol Description Subscript Description 
aeq equilibrium fractionation factor a Atmospheric vapor 
ak kinetic fractionation factor E Evaporation 
d Delta notation, stable isotope value 

(‰) 
ET Evapotranspiration 

d18O Oxygen isotope value (‰) g Groundwater 
d2H Hydrogen isotope value (‰) l Leaf 

d or d-excess Deuterium-excess  lake Lake 
E Evaporation m Closed leaf chamber 

vapor 
ET Evapotranspiration p Precipitation 
FT Transpiration/Evapotranspiration s Soil 
h Relative humidity T Transpiration 
q Specific humidity x Xylem 
R Isotope ratio (e.g., 18O/16O)   
T Transpiration   

 

3.3.2 ET partitioning from sap flux and eddy covariance data 

 ET partitioning from sap flux and eddy covariance measurements follows the approach 

described by Williams et al. (2004). In this technique, the latent heat-derived ET is separated into 

biotic (T) and abiotic (E) components using eddy covariance estimates of latent energy and direct 

measurements of sap flux. To partition ET, we assumed that transpiration accounted for nearly all 

of the ET flux on the driest days during the growing season and derived a scaling equation to 

estimate the ratio of T to ET on days when evaporation was not negligible (Kool et al., 2014). 

Additional details on this scaling are provided in the supplementary information.  
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3.4 Methods 

3.4.1 Site description  

 This study was conducted at the 46 m AmeriFlux-affiliated eddy covariance tower site at 

the University of Michigan Biological Station (UMBS) in northern lower Michigan (45.59°N, 

84.70°W, AmeriFlux database site-ID US-UMB). The forest at this site has been dominated by 

bigtooth aspen (Populus grandidentata) and paper birch (Betula papyrifera), but is currently 

transitioning to a mixed composition dominated by red oak (Quercus rubra), red maple (Acer 

rubrum), white pine (Pinus strobus), American beech (Fagus grandifolia), and sugar maple (Acer 

saccharum). As a result of heavy logging in the early 20th century, the forest has a relatively 

uniform age and canopy structure. Mean canopy height is ~ 22 m and mean peak LAI is 3.9 m2/m2. 

The site receives 766 mm of precipitation annually and the mean annual temperature is 5.5°C 

(Matheny et al., 2017). Soils at the UMBS site are well drained Haplorthods of the Rubicon, Blue 

Lake, or Cheboygan series and consist of ~ 95% sand and ~ 5% silt (Nave et al., 2011). Additional 

site details are available in Matheny et al. (2017) and Gough et al. (2013).  

3.4.2 Isotope measurements  

3.4.2.1 Surface waters 

We collected a variety of surface waters and shallow groundwaters during the 2017 

growing season to characterize the isotopic composition of potential source waters for trees and to 

examine seasonal hydrologic variability near our study site. We collected event-scale precipitation 

at the tower site in a plastic bucket lined with mineral oil to prevent evaporation (Friedman et al., 

1992; Scholl et al., 1996). We used a needle point syringe to extract precipitation and avoid 

transferring any oil to the collection vial. The sampling bucket was cleaned, dried, and given a 

fresh layer of oil between samples. From April to October, we collected monthly samples from the 

edge of a nearby lake and from the mouth of a groundwater spring. The groundwater spring 

originates from a seep at the bottom of the lake (Hendricks et al., 2016). We collected shallow 

(within 3 m of the surface) groundwater in April, June, and November from 15 wells near the 

mouth of the spring. All liquid water samples were collected in HDPE vials (Wheaton Industries, 

986716) and analyzed within a few weeks of collection, so we do not expect any fractionation 



 66 

between the plastic HDPE collection containers and the sampled water (Spangenberg, 2012). We 

used a Picarro L2130-i cavity ringdown spectrometer (CRDS) with an A0211 high-precision 

vaporizer and attached autosampler to measure d18O and d2H of liquid water samples. We used 

Picarro ChemCorrect software to monitor samples for organic contamination. For liquid samples, 

precision was better than 0.1‰ and 0.3‰ for d18O and d2H, respectively. 

3.4.2.2 Vapor 

 To analyze water vapor isotopes, we deployed two cavity ringdown spectrometers, a 

Picarro L2120-i and a Picarro L2130-i, in a temperature-controlled shed located next to the 46 m 

eddy covariance tower. We used a Picarro Standard Delivery Module (SDM, A0101) to deliver 

liquid laboratory standards to monitor for drift and calibrate isotope data to the VSMOW–SLAP 

scale (Bailey et al., 2015). Each SDM was setup with a Drierite (26800) column and a Picarro high 

precision vaporizer (A0211) maintained at 140°C and ambient pressure. We analyzed standards at 

night in order to minimize interference with data collection during the day when transpiration was 

higher. 

Cavity ringdown spectrometers are known to exhibit an isotope-ratio bias due to changes 

in cavity humidity (Aemisegger et al., 2012). To correct for this bias, we used version 1.2 of the 

University of Utah vapor processing scripts to derive cavity-humidity correction equations and 

instrument precision (Fiorella et al., 2018). We present the 1σ uncertainty at 10,000 ppmv, the 

lowest measured vapor mixing ratio, and 25,000 ppmv, near the highest measured mixing ratio. 

For d-excess (d = d2H - 8*δ18O (Dansgaard, 1964)), we assume oxygen and hydrogen errors are 

independent. 1σ uncertainty on the L2120-i ranged from 0.28‰ for d18O, 0.93‰ for d2H, and 

2.45‰ for d at 10,000 ppmv to 0.20‰, 0.59‰, and 1.68‰ (for oxygen, hydrogen, and d, 

respectively) at 25,000 ppm. On the L2130-i, 1σ uncertainty ranged from 0.13‰ for d18O, 0.43‰ 

for d2H, and 1.14‰ for d at 10,000 ppmv to 0.09‰, 0.29‰, and 0.78‰ (for oxygen, hydrogen, 

and d, respectively) at 25,000 ppm. Additional information about the cavity humidity correction 

equations is available in the supplementary information. 

 We installed a vapor sampling manifold on the eddy covariance tower and selected three 

similarly-sized nearby trees – a bigtooth aspen, a red oak, and a red maple – for transpiration 

measurements. We chose these species because together they account for more than 70% of the 

LAI and a majority of the sap flux at the site (Figure 3.1). Leaves and branches from the aspen and 
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oak were accessible from a platform on the eddy covariance tower 15 m above the ground. No 

maple branches were accessible directly from the eddy covariance tower, so we built a small 5 m 

tower a few meters from the base of the eddy covariance tower to reach a maple tree. The 

uppermost extent of all three sampled trees reached the upper canopy and was exposed to full 

sunlight.  

 

 
Figure 3.1 a) Mean diurnal sap flux (W/m2) and b) leaf area index (LAI) by species during the 
2017 growing season (May to October). 

 

 We built two transparent flow-through sampling chambers following the description in 

Wang et al. (2012) to make dT measurements at 5 and 15 m. Each chamber was approximately 20 

cm long, 15 cm wide, and 5 cm tall. This size accommodated large (up to ~15 cm) oak leaves but 

was kept small to minimize lag or memory effects between switching samples. Just before a closed-

chamber transpiration measurement, we manually inserted a live leaf (still attached to the tree) into 

the chamber and sealed the chamber. Each chamber had two small (~2 cm) openings to pull in 

ambient vapor during closed-chamber measurements. The chamber hung from the tree for the 

duration of each transpiration measurement period. Occasionally we had to reorient the chamber 

to prevent the leaf from touching the side of the chamber because any contact points between the 

leaf and the chamber promoted condensation. Every closed-chamber measurement was made on a 

different leaf. At the end of the transpiration measurement period, we opened the chamber, 

removed the leaf, and measured ambient vapor from the open chamber.  

Sampling lines extended from the chambers to the Picarro analyzer. The 5 m chamber had 

two sampling lines, one to measure vapor when the chamber was closed around a leaf and another 

to measure vapor when the chamber was open. The 15 m chamber had three sampling lines, one 

for closed oak measurements, one for closed aspen measurements, and one for open chamber 
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measurements. A final ambient-only sampling line extended above the canopy and was collocated 

adjacent to 34 m meteorological and flux measurements from the eddy covariance tower. All 

sampling lines were constructed from non-fractionating Bev-A-Line tubing (Simonin et al., 2013), 

encased in insulation, and wrapped with a warm wire to prevent condensation. The whole sampling 

manifold was held below ambient pressure by a diaphragm pump that operated at ~5 L/min to 

maintain constant airflow and minimize memory effects between samples. 

 Each Picarro analyzer controlled a multi-position valve (VICI/Valco EMT2SD6MWE) to 

switch between sampling locations. We measured each ambient vapor for 5 minutes and transpired 

(closed chamber) vapor for 10 minutes. We define a cycle of isotopic measurements as a loop 

through each port on the multi-position valve, and assume that the average isotopic composition 

at each sampling location represents the isotopic composition at that location for the full cycle of 

measurements. 

 Initially we planned to use the L2120-i to analyze ambient vapor and the L2130-i to analyze 

transpired vapor. This setup was designed to measure the highest possible temporal resolution of 

dT. However, the L2130-i analyzer malfunctioned after the June sampling campaign, which forced 

us to reconfigure our approach and use the L2120-i to measure all six locations in August and 

October. We measured vapor isotopes during three periods in 2017: June 19 (DOY 170); August 

14 (DOY 226), August 15 (DOY 227), and August 16 (DOY 228); and October 6 (DOY 279) and 

October 9 (DOY 282). These days were selected to study transpiration during periods when water 

fluxes were high (June and August) and low (October). Missing days in October (DOY 280 and 

281) are due to technical issues with the Picarro analyzers, poor weather, and other logistical 

difficulties at the field site.  

3.4.2.3 Terrestrial and biological waters  

 We used a soil auger to collect soil from the top 10 cm around noon on June 19, August 

16, and October 6. Xylem samples were collected mid-day at breast height using an increment 

borer on August 16, October 6, and October 9. To avoid disrupting the hydraulics of the trees that 

were monitored for transpiration, we collected xylem samples from trees near the eddy covariance 

tower. We collected leaves from the transpiration-monitored trees because leaves from other trees 

were out of reach and the removal of a few leaves from a fully leafed-out tree was not expected to 

significantly affect plant hydraulics. Leaf samples were collected around 8am, 11am, 2pm, and 
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5pm on August 15, August 16, October 6, and October 9. To collocate measurements of leaf water 

and transpired vapor, we collected maple leaves at 5 m and oak and aspen leaves at 15 m. Soil, 

xylem, and leaf samples were stored in a refrigerator after collection.  

 Waters from soil, xylem, and leaf matrices were extracted on a cryogenic vacuum 

distillation line following the methods of West et al. (2006). The midrib was not removed from 

leaves prior to the distillation. Distilled soil waters were analyzed for oxygen and hydrogen 

isotopes on a Picarro L2130-i as described earlier. Due to complications arising from the presence 

of organic compounds (West et al., 2010), leaf and xylem waters were analyzed for d18O and d2H 

using a Thermo Scientific Delta V gas isotope ratio mass spectrometer (TC/EA-IRMS hereafter) 

that does not suffer from organic contamination. The TC/EA-IRMS was interfaced with a Thermo 

Scientific FlashIRMS elemental analyzer running in pyrolysis mode. A 0.5 uL aliquot of distilled 

water was injected into a glassy carbon furnace maintained at 1450°C. The product gases were 

separated chromatographically on a Restek Molesieve 5A column (60/80 mesh, 2m x 2 mm ID 

isothermal at 50°C) and were introduced to the IRMS by means of a continuous flow open-split 

interface (Conflo IV) optimized to each gas for linearity and sensitivity. Each gas was normalized 

to an injection of internal reference gas, and each batch of samples was then normalized to 

VSMOW by means of complementary analysis of known standards under these same 

conditions. Precision of TC/EA-IRMS analyses was better than 0.4‰ for d18O and 2.4‰ for d2H. 

3.4.3 Sap flux 

 Sap flux is considered a proxy for transpiration (Granier & Loustau, 1994; Phillps & Oren, 

1998). We used a network of custom-built Granier (1987) style thermal dissipation probes in 60 

trees to continuously monitor sap flux at our field site. For this project, we installed six additional 

sap flux probes in the maple and oak trees that were used to measure transpiration to ensure they 

were hydrologically similar to others at the site. Sap flux measurements were made every minute 

and reported as 30-minute averages. Additional details about the sap flux sensors and network are 

available in Matheny et al. (2014b) and Matheny et al. (2017).   

3.4.4 Meteorological and eddy covariance measurements 

 Temperature and relative humidity (HMP45g, Vaisala, Helsinki, Finland) were measured 

at 3, 15, and 34 m from the eddy covariance tower. 3 m measurements were reported every minute; 
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15 and 34 m measurements were reported as 30-minute averages. To facilitate comparison with 

other meteorological and eddy covariance data, 3 m temperature and relative humidity were 

averaged to common 30-minute timesteps. Daily precipitation amount was measured 

approximately 6 km east of our field site at the Pellston Regional Airport. These data are available 

from the National Oceanic and Atmospheric Administration Climate Data Online archive 

(Network ID USW00014841).  

 Eddy covariance CO2 and H2O fluxes were measured above the canopy at 34 m. The latent 

heat flux was measured at high resolution (10 Hz) using the eddy covariance approach: water vapor 

and CO2 concentrations were measured using a closed-path infrared gas analyzer (LI7000, LI-

COR Biosciences, Lincoln, NE, USA); wind velocity and temperature were measured with a 3-D 

ultrasonic anemometer (CSAT3, Campbell Scientific, Logan, UT, USA). The latent heat flux was 

corrected by the Webb-Pearman-Leuning correction to account for density fluctuations in water 

vapor fluxes (Webb et al., 1980). A complete description of the eddy covariance data processing 

is available in Gough et al. (2013). All eddy covariance variables were reported as 30-minute 

averages. Spikes in the eddy covariance data were identified using a median filter (Starkenburg et 

al., 2016) and removed. 

3.4.5 Data processing: dT calculations and ET partitioning 

 All isotopic, meteorologic, and eddy covariance data were processed to a common time-

step to facilitate analysis. The common time of dT measurements was rounded to the nearest half 

hour of the closed-chamber measurements. Following Eq. 3.4, d18OT was calculated from isotope 

and humidity measurements when the chamber was open (measuring ambient vapor) and closed 

(measuring transpired vapor). The Picarro simultaneously measures isotopic compositions and 

specific humidity; no additional parameters or measurements are needed to calculated dT (Wang 

et al., 2012). We omit the first 2 minutes of each measurement period to minimize memory effects 

from switching sampling ports and used the average of measurements from minutes 3-5 for the 

d18OT calculation (Aemisegger et al., 2012). Although the closed-chamber measurements 

continued for 10 minutes, we chose not to use transpired vapor measurements from minutes 5-10 

because we observed that condensation occasionally built up in the chambers after 5 minutes. 

Air within the canopy is usually poorly mixed (Aron et al., 2019), so we used above-canopy 

measurements for the Keeling regression to derive ecosystem-scale dET. In contrast, dT 
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measurements are separated by species (e.g., dT,maple, dT,aspen, and dT,oak). At UMBS, maple, aspen, 

and oak account for ~ 22%, 26%, and 26%, respectively, of the total LAI (Figure 3.1b).  To ensure 

we did not overpredict the transpiration flux from these three species, we scaled  dT,maple, dT,aspen, 

and dT,oak values by the percentage of total LAI accounted for by each species. This approach can 

produce species-specific values of FT, although that is not our focus in this study because similar 

measurements are already done at UMBS from sap flux data (Figure 3.1a). Instead, in this study, 

we combine transpiration fluxes from maple, oak, and aspen trees to approximate an ecosystem-

wide flux. We refer to FT calculated from the scaled dT measurements as non-steady-state FT.  

To test the effects of assumed steady-state transpiration on isotope-inferred FT, we compare 

non-steady-state FT with FT estimated with two steady-state dT assumptions: a source water 

assumption that uses the Craig and Gordon (1965) leaf water model and defines dT as xylem water 

(dx) and a precipitation assumption that sets dT as dp. A summary of the various techniques and 

assumptions we use to estimate FT is presented in Table 3.2. ds and dx can vary spatially across a 

landscape (Brooks et al., 2010; McDonnell, 2014) and mostly likely reflect a mixture of water 

from past precipitation events and other incoming surface and groundwater flows (Barbour, 2007). 

Preferential flow paths through the porous (> 90% sand) UMBS soil may also bias the isotopic 

composition of available soil water (Brooks et al., 2010). Neither the source water nor the 

precipitation assumptions consider these environmental complexities, and a detailed assessment 

of soil hydrology is beyond the scope of this study. Instead, the steady-state assumptions used in 

this study are our best attempt to capture a representative transpiration flux from the forest. 
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Table 3.2 Summary of FT methods, species, assumptions, and results. 

Method Species Assumptions FT Explanation  FT 

dT measurements  
(non-steady-state) 

Aspen, maple, oak  Direct leaf-level 
measurements of dT 

37 ± 2% 

Source water 
assumption 

(steady-state dT) 

Aspen, maple, oak dx = dT dT scaled to LAI of 
aspen, maple, oak 

36 ± 2% 

Aspen, maple, oak 
ecohydrologic 

Aspen, maple, oak  Sap flux scaled to LAI 
of aspen, maple, oak 

43 ± 9% 
(40 ± 7% 
midday) 

Precipitation 
assumption 

(steady-state dT) 

Aspen, beech, birch, 
maple, oak, pine 

dp = dT dT scaled to LAI of all 
non-oak species + 

dx,oak scaled to the LAI 
of oak* 

53 ± 3%, 

Plot-level 
ecohydrologic 

Aspen, beech, birch, 
maple, oak, pine 

 Total plot level sap 
flux 

65 ± 12%  
(61 ± 8% 
midday) 

* Matheny et al. (2017) demonstrated that oak at our study site have a deeper rooting structure 
and can access soil water that is more depleted in heavy isotopes than other tree species at the 
site. As a result, FT from the precipitation assumption is calculated from the sum of dp scaled to 
the LAI of all non-oak species plus dx,oak scaled to the LAI of oak.  
 

3.5 Results  

3.5.1 Seasonal and synoptic scale variability  

 Seasonal variations of local meteorology, sap flux, and latent heat flux are shown in Figure 

3.2. Temperature, specific humidity, sap flux, and latent heat flux increased through the spring, 

reached a maximum in the summer, and decreased in the fall. Soil moisture was greatest in the 

spring when the soil was moist from winter snowmelt and decreased through the growing season 

as water percolated through the soil or returned to the atmosphere via evapotranspiration (Figure 

3.2f). Soil moisture increased rapidly after precipitation events, but due to the high sand content, 

limited storage potential, and increased ET fluxes after rain, decreased quickly after each storm 

pulse (Figure 3.2f). Sap flux and latent heat were positively correlated (Pearson’s r > 0.75) 

throughout the growing season and moderately well correlated with above-canopy VPD (r > 0.53) 

(Figures 3.2d and 3.2e). Imprinted on this seasonal variation, meteorological, eddy covariance, 

and sap flux measurements varied on 3-4 day timescales as weather systems passed through the 
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study region (Figure 3.2). Daily precipitation totals varied from 0 to 1.18 cm (Figure 3.2f). In 

general, on rainy days, temperature, sap flux, and latent heat were lower and specific humidity was 

higher.  

 
Figure 3.2 Above-canopy mean daily (a) temperature, (b) vapor pressure deficit, (c) specific 
humidity, (d) sap flux, (e) latent heat flux, and (f) total daily precipitation and mean daily soil 
moisture through the growing season. The vertical blue lines indicate days on which we measured 
transpiration isotopes. 
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 Monthly variability of terrestrial (rain, lake, soil, and ground) and plant (xylem and leaf) 

waters δ18O and d2H are shown in Figure 3.3. Precipitation, surface water, and shallow 

groundwater cluster around the global meteoric water line (GMWL, d2H = 8*δ18O + 10‰ (Craig, 

1961)). The local meteoric water line (LMWL, d2H = 7.9*δ18O + 13.6‰) at UMBS has a slope 

close to the that of the GMWL and an intercept that reflects the high degree of moisture recycling 

downwind of Lake Michigan (Bowen et al., 2012; Putman et al., 2019). The isotopic compositions 

of soil (ds), xylem (dx), and leaf (dl) waters generally fall below the GMWL along lines with 

shallow slopes (~2.5‰‰-1) and very low intercepts (~‒37‰), indicative of evaporative 

enrichment.  

 
Figure 3.3 d18O and d2H of various waters pools at or near the study site. Leaf (diamonds) and 
xylem (squares) isotopes are color coded by species (maple is grey, aspen is blue, and oak is 
yellow). Lake, rain, ground, and soil water are differentiated by symbology but are all colored 
black. The black line is the global meteoric water line. 

 

 Timeseries of meteoric water isotopes through the 2017 growing season are shown in 

Figure 3.4. Event-scale d18Op generally varied between ‒4 to ‒12‰ (‒10 to ‒80‰ for d2H), 

although a large (~1.2 cm) storm in late June had a particularly low isotopic composition (‒17.1 

and ‒120.6‰ for oxygen and hydrogen, respectively, Figure 3.4a). Precipitation d-excess (~13‰) 

was relatively consistent from May to October, with the exception of three mid-summer storms 

that had low d-excess (< 6.1‰, Figure 3.4b). d18O of the lake and groundwater spring, which flows 

from a seep at the bottom of the lake, increased 1.2‰ and 0.3‰, respectively, through the growing 

season (Figure 3.4a). Together, these trends indicate that some lake water evaporated during the 

growing season. d18O and d2H of groundwater was almost always less than that of surface water. 
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The groundwater spring (d18O ‒9.1‰ to ‒8.5‰) was therefore likely a mixture of lake water (d18O 

‒8.1‰ to ‒6.9‰) and shallow groundwater (d18O ‒12.2‰ to ‒8.1‰). The seasonal trends in d18O 

and d-excess of the spring suggest that the contribution of groundwater to the spring decreased 

through the growing season.  

 

 

Figure 3.4 Timeseries of a) d18O and b) d-excess of precipitation (green diamond), lake (purple 
triangle), groundwater well (gray circle), and groundwater spring (blue square) from April to 
November 2017. 

 

3.5.2 Diurnal isotope variability 

 Soil and xylem waters were evaporatively enriched relative to precipitation on all the days 

we measured these pools (Figure 3.5). In August, d18Op of the rain event just before the 

measurement period (‒9.1 ‰) was less than that of d18Ox for maple, aspen, and oak (‒4.2, ‒6.7, ‒

7.8‰, respectively) (Figures 3.5a and 3.5b). Similarly, on October 6, d18Op (‒5.5‰) was lower 

than d18Ox (‒4.8, ‒4.3, and ‒3.9‰, maple, aspen, and oak, respectively, Figure 3.5c); on October 

9 d18Op (‒4.7‰) was lower than or nearly equal to d18Ox (‒4.9, ‒3.4, and ‒3.3‰, maple, aspen, 

and oak, respectively, Figure 3.5d). Precipitation d-excess in August, October 6, and October 9 

was higher (14.5, 17.6, and 25.2‰, respectively) than d-excess of xylem water, suggesting that 

the difference between d18Ox and d18Op is likely related to evaporative enrichment prior to uptake 

(Figures 3.5e-3.5h). d18Os was never equal to d18Op, which suggests that soil water experienced 

fractionation by post-depositional processes (likely evaporation), was a mixture of water from 

multiple previous rain events, and/or was fed by other nearby sources (Figures 3.5a-3.5d). Near 
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surface soil water d-excess was lower than that of precipitation, indicating that soil water was also 

evaporatively enriched relative to the most recent precipitation (Figures 3.5e-3.5h). 

 

 

Figure 3.5 Diurnal d18O (a-d) and d-excess (e-h) of leaf water (circles), xylem (dashed lines), 
precipitation (solid black line), and soil water (black dotted dashed line). Color differentiates 
species: maple is grey, aspen is blue, and oak is yellow. The solid colored lines are expected steady 
state d18Ol and d-excessl estimated from the Craig and Gordon (1965) using values of the kinetic 
fractionation factor from Merlivat (1978). Values of dx on August 15 are assumed to be the same 
as those measured on August 16. 

 

 Observed d18Ol of all three species exhibited a pronounced (> 10‰) daily pattern with the 

most evaporative enrichment (highest d18Ol values) in the afternoon when temperature was at a 

maximum, relative humidity was at a minimum, and sap flux was high (Figures 3.5a-3.5d). As 

expected, d-excess of leaf water exhibited the opposite diurnal pattern with the greatest values in 

the morning and the lowest values in the mid-afternoon (Figures 3.5e-3.5h). Observed d18Ol are 

generally lower than estimated steady-state d18Ol, which may result from a discrepancy between 

observed d18Ol, which includes midrib and vein water, and modeled d18Ol, which estimates water 

at the evaporation sites. Alternatively, the offset between observed and estimated d18Ol may 

suggest that, even at midday when the transpiration flux was high (Figure 3.1a) and leaf-water 

turnover time was quickest, leaves were not at isotopic steady-state (Figures 3.5a-3.5d).  

 Although the diurnal pattern of leaf water isotopes was consistent between maple, oak, and 

aspen, the magnitude of diurnal dl change and values of d18Ol and d18Ox varied between species. 

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)
-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ
18

O
 (

‰
)

a)                August 15

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ
18

O
 (

‰
)

b)                August 16

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ
18

O
 (

‰
)

c)                October 6

-15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ
18

O
 (

‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (
‰

)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (
‰

)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (
‰

)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (
‰

)

h)

oak dl

aspen dl

maple dl

dp
oak dx

aspen dx

maple dx

ds

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

a)                August 15

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

b)                August 16

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

c)                October 6

-10

-5

0

5

10

8 11 14 17 20
Hour (local time)

δ18
O

 (‰
)

d)                October 9

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

e)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

f)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

g)

-100

-60

-20

20

8 11 14 17 20
Hour (local time)

d-
ex

ce
ss

 (‰
)

h)



 77 

For example, in August morning (8am) d18Ox and d18Ol of oak were lower than d18Ox and d18Ol of 

either maple or aspen (Figure 3.5a). Additionally, minimum morning d18Ol varied on consecutive 

sampling days, with lower d18Ol,maple and d18Ol,aspen on August 16 than August 15 (Figures 3.5a and 

3.5b). In contrast, October d18Ox,maple, d18Ox,oak, and d18Ox,aspen were within 1‰ of each other (~‒

4‰), but d18Ol,maple was ~5‰ lower than d18Ol,oak and d18Ol,aspen (Figures 3.5c and 3.5d).   

 d18OT varied between ‒15 and 6‰ and frequently deviated from d18Ox, d18Os, or d18Op, 

indicating that transpiration was not at isotopic steady state on sub-diurnal timescales (Figure 3.6). 

In general, d18OT was lower in the morning when relative humidity was high and increased through 

the day as transpiration increased. d18OT was always greater than d18Oa (‒23.6 to ‒16.7‰, Figure 

3.6) and therefore pushed the isotopic composition of atmospheric water vapor to higher values. 

No consistent species-specific d18OT trend emerged, and d18OT,aspen, d18OT,oak, and 18OT,maple varied 

considerably day-to-day and on sub-diurnal timescales (Figure 3.6). d18OE varied between ‒38.3 

and ‒31.2‰ and pushed d18Oa to lower values (Figure 3.6). 

 

 

Figure 3.6 Diurnal dT (circles), da (squares), and dE (triangles) on six days of measurements. For 
dT, maple is grey, aspen is blue, and oak is yellow. For da, 5 m is purple, 15 m is red, and 34 m is 
pink. Horizontal lines indicate dp (solid black) of recent precipitation, ds (dotted dash black), and 
dx (dashed, maple is yellow, aspen is blue, and oak is gray). 
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3.5.3 Diurnal ET partitioning 

 A summary of ET partitioning results is presented in Table 3.2. Using Eq. 3.3 and the 

measured values of d18OT, transpiration from maple, oak, and aspen accounted for 37 ± 2% of the 

ET flux. This value, referred to as non-steady-state FT, did not exhibit a consistent diurnal cycle 

(Figure 3.7). We compare non-steady-state FT with FT calculated from two steady-state isotope 

assumptions: that dT is equal to xylem water (source water assumption) and that dT is equal to dp 

of the most recent storm event (precipitation assumption). The precipitation assumption, which 

assumes that the only available source water is recent precipitation, allows us to estimate a 

transpiration flux from all species in the forest, including ones from which we did not measure dx. 

The precipitation assumption is our best attempt to quantitively estimate a plot-level transpiration 

flux; it does not address the timescale over which plants access available soil water or the 

complexities of preferential flow paths through soils, both of which affect dx and dT (Allen et al., 

2018; Brooks et al., 2010; Evaristo et al., 2015).   

 

 
Figure 3.7 Isotopic (filled circles) and ecohydrologic (open diamonds) FT on six days of 
measurements. FT estimated with non-steady-state measurements (black), the source water 
assumption (red), and sap flux scaled to include only medium maple, large oak, and large aspen 
(yellow) only capture the transpiration flux from a subset of trees. FT from the precipitation 
assumption (blue) and plot level sap flux (green) capture the transpiration flux from all species and 
size classes in the forest.           
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 FT estimated from the source water assumption (36 ± 2%, Figure 3.7) is nearly identical to 

non-steady-state FT. The precipitation assumption produces a higher estimate of FT (53 ± 3%, 

Figure 3.7). The offset between these FT values arises because the precipitation assumption 

includes a water flux from all tree species at the site while the source water assumption only 

includes only the species from which we measured dx (maple, oak, and aspen) and accounts for 

~70% of the site LAI. Correcting for this LAI discrepancy (scaling FT results from the precipitation 

assumption to include only 70% of the trees) and assuming that each species produces a similar 

amount of transpiration per unit leaf (Jarvis & McNaughton, 1986), we find that the source water 

assumption (36%) and the precipitation assumption (37%) produce nearly identical estimates of 

FT. Agreement between the two steady-state dT assumptions suggests that at this site either 

technique is a precise approach to measuring forest FT. The plot-level FT results (53 ± 3%) agree 

with other estimates of forest FT (Berkelhammer et al., 2016; Matheny, Bohrer, Vogel, et al., 2014; 

Sun et al., 2014; Tsujimura et al., 2007; Zhou et al., 2016). Like non-steady-state FT, FT calculated 

using the either source water or precipitation assumptions exhibits no diurnal variation (Figure 

3.7).  

 Finally, we compare isotopic ET partitioning results with FT estimated using eddy 

covariance and sap flux data (Figure 3.7). The sap flux network at this site is extensive and, coupled 

with eddy covariance data, provides a wide range of information about forest water fluxes 

including an estimate of FT. For simplicity, we refer to FT calculated using eddy covariance and 

sap flux data as the ecohydrologic ET partitioning technique. Plot-level ecohydrologic FT was 65 

± 12%; ecohydrologic FT scaled to include only the transpiration flux from maple, oak, and aspen 

was 43 ± 9% (Figure 3.7). Agreement between the isotopic and ecohydrologic partitioning 

techniques was stronger midday (10am to 4pm, 61 ± 8% plot-level FT; 40 ± 7% FT for maple, oak, 

and aspen) when water fluxes were high and weaker in the morning and evening when water fluxes 

were lower. When FT from the isotopic and ecohydrologic ET partitioning techniques diverged, 

the ecohydrologic partitioning technique tended to estimate higher FT than the isotopic technique 

(Figure 3.7). Neither partitioning approach revealed a consistent or pronounced daytime FT cycle. 
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3.6 Discussion  

3.6.1 Isotope data as an indicator of local hydrology 

3.6.1.1 Observations of non-steady-state dT 

 It has long been recognized that on timescales longer than the plant-water turnover time 

the isotopic composition of vapor that is transpired from a leaf must equal the water that enters the 

leaf from the source (Dongmann et al., 1974). Accordingly, most isotope models assume that 

transpiration is a non-fractionating process, at least on longer timescales (Farquhar & Cernusak, 

2005; Flanagan et al., 1991; Haese et al., 2013; Wang & Yakir, 1995). However, on short 

timescales (sub-diurnal to a few days) recent observations have revealed that dT deviates from 

steady-state conditions because environmental conditions change quicker than the turnover of 

plant water (Dubbert et al., 2017; Dubbert, Piayda, et al., 2014; Harwood, Gillon, Griffiths, & 

Broadmeadow, 1998; Simonin et al., 2013; Wang & Yakir, 1995; Yakir, Berry, Giles, & Osmond, 

1994). dT varies with abiotic and biotic conditions including stomatal conductance, temperature, 

humidity, and da (Simonin et al., 2013). At the leaf level, dT is also controlled by the transpiration 

rate, stomatal density, and leaf water content (Buckley, 2019; Dubbert et al., 2017). The Craig and 

Gordon (1965) model predicts that temperature and humidity are correlated with dT (Dongmann 

et al., 1974; Farquhar et al., 1993; Farquhar & Cernusak, 2005; Farquhar & Lloyd, 1993; Farris & 

Strain, 1978; Flanagan et al., 1991), which Simonin et al. (2013) confirmed in a leaf-cuvette study 

and we find to be true in naturally varying conditions (Figure 3.6).  

 We measured dT from three broadleaf deciduous trees but did not find consistent species-

specific dT patterns (Figure 3.6). In contrast, in a controlled greenhouse, Dubbert et al. (2017) 

measured dT from a variety of herbs, shrubs, and trees and linked dT variations to species-specific 

differences in the transpiration rate, stomatal aperture, stomatal density, and leaf water content. At 

our field site, oak have an extensive rooting structure and can access a deeper, isotopically more 

depleted soil water pool than maple, which are shallow rooting (Matheny et al., 2017), although 

these uptake dynamics may be site-specific (Lanning et al., 2020). We therefore expected that the 

isotopic composition of xylem, leaf, and transpired water from oaks would be less than that from 

maples and aspen, but this was only true of xylem and leaf water in August when soil moisture 

was low. Rain storms on October 4 and October 7 moistened the soil and provided near-surface 
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moisture for the maple, oak, and aspen trees to transpire. When the soil was drier during the August 

sampling period, the oak favored a more abundant, deeper, isotopically more negative water source 

(Matheny et al., 2017). Taken together, these results suggest that when broadleaf deciduous trees 

are not water stressed species-specific effects on local isotope signals are difficult to identify and 

distinguish. In contrast, when these trees are water stressed, species-specific differences may be 

evident in water isotope signals.  

3.6.1.2 Surface, terrestrial, and biologic water isotope variability 

The isotopic composition of precipitation at UMBS reflects the dominant fractionation 

processes in northern Michigan, Rayleigh distillation and ‘lake-effect’ precipitation (Bowen et al., 

2012). Previous estimates suggest that up to 32% of precipitation in this region is derived from 

evaporation over Lake Michigan (Bowen et al., 2012; Gat et al., 1994; Machavaram and 

Krishnamurthy, 1995). This high degree of moisture recycling explains the high (~13‰) observed 

precipitation d-excess. The seasonal increase (decrease) of d18Olake (d-excesslake) indicates that 

evaporation of local surface water likely also added vapor with a high d-excess to the atmosphere 

(Figure 3.4). 

 The dome-shaped pattern of diurnal dl has been observed in many studies and is related to 

the changes in vapor pressure deficit and transpiration rate (Cernusak et al., 2016 and references 

therein). Among the broadleaf deciduous trees in this study, the shape and magnitude of the diurnal 

d18Ol pattern was independent of species type and are broadly consistent with common isotopic 

leaf water models (Farquhar & Cernusak, 2005). The initial, morning isotopic composition of d18Ol 

did, however, vary between the three species and is particularly notable on August 16 (d18Ol,oak, 

Figure 3.5b and 3.5e) and October 6 (d18Ol,maple, Figure 3.5c and 3.5f). These differences may be 

related to rooting strategy when the soils are dry (Matheny et al., 2017) or may arise due to the 

high sand content and low moisture retention of soils that can cause high spatial variability of ds 

or dx at the site (He et al., 2013; Nave et al., 2011).    

3.6.2 ET partitioning  

ET partitioning distinguishes the evaporation and transpiration components of the ET flux 

and helps provide a quantitative understanding of ecological processes within the water cycle 

(Jasechko et al., 2013; Kool et al., 2014). Isotopic ET partitioning is predicated on E and T fluxes 
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of distinct isotopic compositions and accurate estimates of dET, dE, and dT. Currently, there is no 

consensus on the best approach to measure the isotopic composition of the ET flux, and researchers 

use either Keeling mixing models or the flux-gradient technique (Good et al., 2012). The flux-

gradient method works best over smooth, homogenous surfaces such as lakes and grasses (Xiao et 

al., 2017); we chose the Keeling approach to avoid complications of canopy turbulence that may 

limit the flux-gradient method (Good et al., 2012; Yakir & Wang, 1996). Other ET partitioning 

studies (e.g., Berkelhammer et al., 2016; Sun et al., 2014; Tsujimura et al., 2007) have also 

successfully used the Keeling method to calculate dET in forested environments, which further 

justifies our approach to estimating dET.  

 We used the Craig and Gordon (1965) model (Eq. 3.5) to calculate dE. Here the challenging 

factors are an accurate and representative value for the isotopic composition of soil water at the 

evaporation front and the soil kinetic fractionation factor (Wang et al., 2013; Xiao et al., 2018). 

We collected soil from the top 10 cm and used ds from a single location to estimate the evaporative 

flux over the entire tower footprint. This approach does not capture the spatial heterogeneity of ds 

(Gazis & Feng, 2004; Hsieh et al., 1998), but is a common approach in most ET partitioning studies 

(e.g., Aouade et al., 2016; Dubbert et al., 2014; Yepez et al., 2005; Zhang et al., 2011). The closed, 

thick canopy cover at our field site (Aron et al., 2019) likely reduces spatial variation in ds. The 

kinetic fractionation factor in soil evaporation studies has long been a point of debate and varies 

with soil tortuosity, soil moisture, and atmospheric conditions (Quade et al., 2018; Xiao et al., 

2018). In our study, diurnal soil water content was relatively consistent (varied by less the 0.5 % 

(m3 m-3) per day) so we elected to use the constant value for εQ provided by Quade et al. (2018).  

 Most isotope-based ET studies assume transpiration is in isotopic-steady state and estimate 

that dT is equal to dx or ds (e.g., Aouade et al., 2016; Wang and Yakir, 2000; Yepez et al., 2003; 

Zhang et al., 2011). Instead, in this study we measured dT using a leaf chamber to 1) observe any 

non-steady-state transpiration isotope patterns and 2) evaluate whether direct dT measurements 

affect isotopic ET partitioning. The technical and methodological advancements for this type of 

measurement have only recently been developed (e.g., Wang et al., 2012) and to date only a 

handful of studies have used a leaf chamber to measure dT and partition FT (Dubbert, Cuntz, et al., 

2014; Good et al., 2014; Lu et al., 2017; Wang et al., 2010, 2013; Wu et al., 2017). However, 
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nearly all of this work has been done in agricultural fields or grasslands, and still relatively little 

is known about dT (Lanning et al., 2020) and isotope-inferred FT in forests.  

The daytime, plot-level values of FT reported in this study (53% from the precipitation 

assumption; 61% from the ecohydrologic technique, Figure 3.7) agree well with other estimates 

of forest FT. Berkelhammer et al. (2016) and Tsujimura et al. (2007) used water isotopes to 

calculate forest FT values of 49-62% and 60-73%, respectively. Non-isotope ET partitioning 

techniques reveal similar FT and range from 52% (Zhou et al., 2016) to ~70-80% (Matheny, 

Bohrer, Vogel, et al., 2014; Sulman et al., 2016) in deciduous broadleaf forest sites. At our field 

site, Matheny et al. (2014b) and Aron et al. (2019) demonstrated that ET partitioning is sensitive 

to forest structure and LAI, with a greater transpiration flux from closed forest canopies and a 

greater evaporation flux from open forest canopies. The positive relationship between LAI and FT 

is also observed in a variety of non-forest environments (Scott & Biederman, 2017; Wang, Good, 

& Caylor, 2014; Wei et al., 2017), although it is poorly parameterized in most LSMs, with 

estimates of FT that are typically lower than expected (Bowen et al., 2019).   

In this study, mid-day FT did not exhibit a consistent cycle regardless of species, steady-

state assumption, or partitioning technique (Figure 3.7). Because LAI sets FT, Wang et al. (2014) 

proposed that FT should be relatively consistent throughout the growing season. Although FT can 

vary with passing weather systems and precipitation (e.g., Aron et al., 2019; Wen et al., 2016), 

periods of water stress (Good et al., 2014; Matheny et al., 2017), and the removal of biomass (e.g., 

harvesting or cutting grass) (Wang, Yamanaka, Li, & Wei, 2015), Berkelhammer et al. (2016) 

demonstrated that forest FT was generally invariant on seasonal timescales. We come to the same 

conclusions on sub-diurnal timescales (Figure 3.7), although this observation may be dependent 

on vegetation type, aridity, and soil moisture. For example, in arid sites with very low soil 

moisture, diurnal increases in the transpiration flux may not be accompanied by a concurrent 

evaporation flux and FT may increase mid-day (Zhou et al., 2018). However, the absence of a 

diurnal FT cycle at our broadleaf deciduous forest site suggests that similar ecological processes 

and environmental conditions drive the component ET fluxes in this environment as both 

evaporation and transpiration fluxes are controlled by external environmental factors including 

vapor pressure deficit, incoming solar radiation, temperature, humidity, wind speed, water 

availability, and ambient CO2 concentration as well as a number of internal soil or plant factors 
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(e.g., tortuosity, available surface area, water potential) (Ball, 1988; Cernusak et al., 2016; 

Penman, 1948; Sperry et al., 2002; Tyree & Zimmerman, 2002).  

  Finally, we compare FT from the isotopic and ecohydrologic partitioning techniques. 

Isotopic and ecohydrologic derived FT were similar during the day when ET was high, but results 

from the two techniques diverged in the early morning and late afternoon when water fluxes were 

lower. The timing of diurnal sap flux is usually well correlated with incoming solar radiation, 

temperature, and vapor pressure deficit (Ling et al., 2008). It is therefore possible that the high 

ecohydrologic FT in the morning and evening reflects differences in the initiation and termination 

of early morning and late afternoon diurnal evaporation and transpiration fluxes. However, both 

steady-state isotopic FT estimates remained invariant during these times (field logistics and low 

water fluxes prohibited direct dT measurements in the early morning and evening), suggesting that 

the high morning and afternoon ecohydrologic FT may be an artefact of sap flux or eddy covariance 

measurements. To this point, sap flux measurements are known to be biased and prone to errors 

when water fluxes are low (Ewers & Oren, 2000; Granier, 1987). High ecohydrologic FT may also 

be explained by the refilling of dehydrated xylem tissues that does not necessarily result in the 

release of water to the atmosphere at that time. The mid-day agreement between isotopic non-

steady-state, isotopic steady-state, and ecohydrologic partitioning techniques highlights the 

precision of these different approaches. Despite a multitude of assumptions and simplifications, 

these techniques capture the same water fluxes that are driven by incoming solar radiation, water 

availability, and plant hydraulics. Additional ET partitioning techniques such as solar-induced 

fluorescence (SIF) (Lu et al., 2018; Shan et al., 2019) may soon be available at this site and may 

yield new insights into the divergent partitioning results in the early morning and late afternoon.   

3.6.3 Caveats and experimental considerations 

 Forests play a critical role in the water cycle and imprint a distinct signature on the isotopic 

composition of local and regional water cycles. However, measuring forest water fluxes is difficult 

because forests are heterogeneous, turbulent environments. Accordingly, studies of forest dT (e.g., 

Lanning et al., 2020) and isotopic ET partitioning have lagged behind similar studies in 

greenhouses or homogenous environments such as croplands and grasslands (e.g., Dubbert et al., 

2017; Good et al., 2014). While our experimental approach mitigates this gap, this study was 

affected by field logistics. For example, we were only able to reach three trees for transpiration 
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measurements. As a result, FT from dT measurements, the source water assumption, and sap flux 

scaled to include only the transpiration flux from maples, oaks, and aspen are biased low.  

Limitations of the experimental setup are also an important consideration. First, direct dT 

calculations require that a leaf be manually inserted and removed from a sampling chamber, which 

limits the number of measurements. We likely missed water fluxes before and after our 

measurement periods. Second, the different measurement heights (5 m for maple, 15 m for aspen 

and oak) may complicate species-specific observations of dT. Although vertical light-induced 

differences in stomatal conductance and leaf temperature can balance each other (Bögelein et al., 

2017), even small differences in measurement location and microclimate within the canopy can 

strongly affect transpiration and dT (Baldocchi et al., 2002; Chen et al., 1999; Jarvis & 

McNaughton, 1986). Third, scaling isotopic ET partitioning from local measurements to a plot or 

regional scale remains a challenge given soil heterogeneity, diversity of plant ecophysiology, and 

a variety of vegetative and canopy structures. Sap flux measurements suffer from similar scaling 

challenges (Schaeffer et al., 2000), however our field site has an unusually robust sap flux network 

that has been successfully statistically-scaled to plot-level water fluxes (Matheny, Bohrer, Vogel, 

et al., 2014). Scaling individual soil and tree isotope measurements to the plot-level remains 

difficult (Sutanto et al., 2014). 

3.6.4 Implications and directions of future work 

Moving forward, we show that continuous analysis of da and routine measurements of dx 

or dp can efficiently record FT. Researchers should make measurements for the source water (dx) 

or precipitation (dp) approaches based on site-specific characteristics such as species distribution, 

expected ds heterogeneity, and the frequency of precipitation events. Neither approach requires 

laborious leaf chamber measurements and both are founded on a steady-state assumption about dT 

that is valid for mid-day (Figure 3.7) and seasonal (e.g., Wei et al., 2015) isotopic ET partitioning. 

In contrast, assumptions of steady-state dT may not suffice for questions related to isotope and 

water cycles on sub-diurnal timescales (e.g., Aron et al., 2019; Simonin et al., 2013; Welp et al., 

2012). On this relatively short timescale, non-steady-state dT measurements inform how 

transpiration forces the isotopic composition of atmospheric water vapor and may help validate 

the Craig and Gordon (1965) model that is commonly used to estimate dT and dE (e.g., Dubbert et 

al., 2013; Dubbert et al., 2014; Good et al., 2012; Hu et al., 2014). Additionally, studies that 
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measure and model dT can partition species-specific FT to learn about species-specific hydrology 

and responses to environmental conditions. Observation of dT may also improve the 

parameterization of kinetic isotope effects during evaporation and transpiration, which remains a 

major challenge in isotope ecohydrology research (Quade et al., 2018).  

Overall, continued efforts to accurately measure and understand local transpiration are 

critical to expand our knowledge of continental water recycling and understand the role that plants 

play in regulating water budgets. This study examines forest ET fluxes; additional observations 

from environments such as wetlands and tundra are still needed to assess how hydrologic processes 

are represented in land surface models and to monitor how water and energy fluxes respond to 

climate and land use change. Currently, almost all LSMs underestimate FT. Recent and ongoing 

efforts to incorporate water isotopes into land surface models (e.g., Wong et al., 2017) may 

improve our understanding of land-atmosphere water fluxes, but these models must be validated 

with measurements of local dT and FT.  

3.7 Conclusions  

 We present direct, species-specific measurements of d18OT from three broadleaf deciduous 

trees and estimate the contribution of transpiration to the ET flux in a mixed deciduous forest. The 

methodology to make dT measurements in a field setting is new, and these are among the first dT 

results obtained from a forest environment. d18OT deviated from isotopic steady-state on sub-

diurnal timescales but did not exhibit a clear species-specific pattern. Using water isotopes, we 

found that the FT was invariant during the day, which indicates similar atmospheric and 

micrometeorologic conditions control evaporation and transpiration fluxes at this site. We find 

strong mid-day agreement between isotopic steady-state, isotopic non-steady-state, and 

ecohydrologic (eddy covariance and sap flux) estimates of FT, which suggests that assumptions of 

steady-state dT may suffice for other forest ET partitioning studies. Agreement between the 

isotopic and ecohydrologic partitioning techniques, in particular the absence of a diurnal cycle 

using either approach, should encourage use of the isotopic ET partitioning method in 

environments where it is impossible or logistically impractical to install sap flux sensors. 

Transpiration and evapotranspiration remain challenging fluxes to measure, model, and predict, 

but water isotopes can help improve our understanding of these important hydrological processes. 

Future work on non-steady-state dT will improve the utility water vapor isotopes as a tool to study 
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land-atmosphere water exchange while steady-state assumptions of dT and isotopic ET partitioning 

can provide insight into the role of plants in terrestrial water cycling.  
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3.9 Supplementary information 

Humidity correction  

 The isotopic composition (d18O and d2H) of water vapor varies with CRDS cavity humidity 

(Aemisegger et al., 2012; Fiorella et al., 2018). To correct for this bias, we used version 1.2 of the 

University of Utah vapor processing scripts to derive cavity-humidity correction equations and 

instrument precision (Fiorella et al., 2018). A full description of cavity-humidity correction is 

available in Aron et al. (2019). Briefly, we used the Picarro Standard Delivery Module (SDM) to 

deliver liquid standards over a humidity range from 2,000 to 30,000 ppm. From this, we used a 

Deming regression to develop humidity-correction equations. Here we present the best fit and 95% 

confidence interval offset equations below:   

Picarro L2130-i  

 ∆18Ooffset = 0.185 – 4270.00/[H2O] (best fit) 

 ∆18Ooffset = 0.311 – 2908.93/[H2O] (upper 95% CI) 

 ∆18Ooffset = 0.059 – 5631.07/[H2O] (lower 95% CI) 

 

 ∆Doffset = 0.090 – 1121.81/[H2O] (best fit) 

 ∆Doffset = 0.462 – 3849.46/[H2O] (upper 95% CI) 

 ∆Doffset = -0.283 – 6093.08/[H2O] (lower 95% CI) 

Picarro L2120-i 

 ∆18Ooffset = 0.503 – 7513.12/[H2O] (best fit) 

 ∆18Ooffset = 0.782 – 4640.83/[H2O] (upper 95% CI) 

 ∆18Ooffset = 0.022 – 10385.42/[H2O] (lower 95% CI) 

 

 ∆Doffset = 2.733 – 51785.75/[H2O] (best fit) 

 ∆Doffset = 3.443 – 40247.47/[H2O] (upper 95% CI) 

 ∆Doffset = 2.026 – 63324.02/[H2O] (lower 95% CI). 

 

We corrected for the humidity bias by subtracting the humidity-dependent offset from the 

measured isotopic composition:  

 dXhumidity_corrected = dXmeasured – ∆Xoffset*(humidity). 
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Sap flux and eddy covariance ET scaling 

 ET partitioning from sap flux and eddy covariance follows the approach described by 

Williams et al. (2004). This technique assumes that transpiration accounts for all of the ET flux on 

days when soil moisture is low. From the ‘dry day’ relationship between sap flux and latent heat, 

we developed a scaling equation to estimate the ratio of T to ET on days when soil moisture was 

higher and evaporation contributed to the ET flux.  

 

 

 

 
Figure S3.1 DOY 203 and 268 (noted with green vertical bars) were among the driest days during 
the growing season. We developed our scaling equation based on the sap flux and latent heat on 
these days. 

 

 The scaling equation is:  

 Scaled transpiration = 0.47*(latent heat) + 21.76.  

Using this approach, FT is defined as the ratio between scaled transpiration and latent heat.  
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Chapter 4 Spatiotemporal Variability of Stable Water Isotopes in Central Andean 
Precipitation 
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J. Yanites, Elizabeth J. Cassel 
 

4.1 Abstract 

 The isotopic composition of precipitation (dp) and sedimentary materials are valuable 

tracers of water cycling and have been widely used to understand climate change in the Andes. 

However, understanding the spatiotemporal variability of dp in the central Andes (southern Peru 

and Bolivia) is hindered by a lack of multi-year observations and poor spatial distribution of 

precipitation isotope records, particularly across the Peruvian Altiplano and Western Cordillera. 

In this study we present a three-year record of bimonthly (twice per month) d18Op and d2Hp from 

19 stations in southern Peru that span a transect from the western Peruvian Amazon to near the 

Pacific coast. We observe a strong negative relationship between d18Op and elevation. Seasonal 

d18Op variation along the Eastern Cordillera and Altiplano is related to upstream rainout and local 

convection. Atmospheric back trajectories and d18Op from the flank of the Western Cordillera 

show that precipitation is sourced from the Pacific Ocean. This finding has important implications 

for regional freshwater management and reconstructions of central Andean paleoaltimetry. To 

complement d18Op and further explore regional isotopic variability, we report bimonthly d-excessp 

values and triple oxygen isotope data, expressed as ∆¢17Op, from a subset of the precipitation 

samples. We show that d-excessp and ∆¢17Op complement d18Op and add hydrologic information 

about airmass mixing and relative humidity at remote moisture sources. This chapter highlights 

the hydrologic insights that are gained from a combination of d18Op, d-excessp, and ∆¢17Op data 

and helps identify the processes that drive water cycling in the central Andes.  
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4.2 Introduction  

Stable water isotopes and geologic materials that preserve the isotopic composition of 

paleowater (e.g., ice cores, sedimentary carbonates, and volcanic glass) are valuable tracers of 

water cycling and climate change. In the central Andes, the isotopic composition of precipitation 

(d18Op, d17Op, d2Hp) can be a useful tracer of modern hydrology (Masiokas et al., 2020; Pabón-

Caicedo et al., 2020) and past climate conditions (e.g., Hardy et al., 2003). However, there are 

relatively few observations of modern d18Op and d2Hp and no observations of d17Op from the 

central Andes (Valdivielso et al., 2020). Additional observations of central Andean precipitation 

isotopes will improve our understanding of regional water budgets and help manage water-

intensive demands (e.g., agriculture, the generation of hydroelectric power, dense population 

centers in dry western regions) in a region that is vulnerable to shifts in the intensity, duration, and 

frequency of precipitation (Sarmiento and Kooperman, 2019). 

The large-scale variability of central Andean d18Op and d2Hp is primarily attributed to 

Rayleigh distillation, and precipitation isotopes are inversely related to the fraction of water vapor 

removed from a parcel via condensation (Dansgaard, 1964; Fiorella et al., 2015b; Gat, 1996; 

Gonfiantini et al., 2001; Jeffery et al., 2012; Rozanski et al., 1993; Sturm et al., 2007; Vimeux et 

al., 2005). However, central Andean d18Op and d2Hp values are also quite variable across space 

and time (e.g., Fiorella et al., 2015b), and cannot be explained by Rayleigh distillation alone. In 

addition to Rayleigh distillation, the isotopic composition of precipitation in the central Andes may 

be related to moisture recycling (Ampuero et al., 2020; Salati et al., 1979) and the intensity of 

convective precipitation above the Amazon Basin (Fiorella et al., 2015b; Guy et al., 2019; 

Valdivielso et al., 2020; Vimeux et al., 2005, 2011; Vuille et al., 2012; Vuille and Werner, 2005), 

local topography that funnels moisture up valleys (Giovannettone and Barros, 2009), and 

interactions between Atlantic and Pacific moisture sources on the Altiplano (Aravena et al., 1999). 

Still, previous observations of d18Op and d2Hp are not broadly distributed across the central Andes 

and there are aspects of precipitation isotope variability that remain uncertain (Valdivielso et al., 

2020).  

Most previous studies have considered either d18Op or d2Hp and focused primarily on 

hydrologic processes associated with equilibrium fractionation (e.g., Gonfiantini et al., 2001). 

While informative, this approach ignores isotopic variability from kinetic fractionation and does 



 106 

not consider moisture source conditions (e.g., Pfahl and Sodemann, 2014), evapotranspiration 

(Aemisegger et al., 2014; Salati et al., 1979), or tropospheric moisture transport (Samuels-Crow et 

al., 2014b) that affect central Andean water cycling. In this study, we look beyond a single isotope 

system (d18Op or d2Hp) to gain new understanding of central Andean precipitation isotope 

variability.  

Traditionally, kinetic isotope effects in waters are quantified with deuterium excess (d-

excess), which separates fractionation from equilibrium and kinetic processes (Dansgaard, 1964). 

However, d-excess is sensitive to temperature and is impractical in paleoclimate applications 

because very few geologic materials have both oxygen- and hydrogen-bearing minerals. Recently, 

triple oxygen isotopes (d17O and d18O) have emerged as another metric to quantify kinetic 

fractionation in waters (e.g., Landais et al., 2010; Li et al., 2017; Schoenemann et al., 2014) and 

geologic materials (e.g., Levin et al., 2014; Pack and Herwartz, 2014; Passey et al., 2014; Rumble 

et al., 2007). The triple oxygen isotope system is largely insensitive to temperature (Barkan and 

Luz, 2005), but is understudied in the central Andes with only a few available observations from 

surface water (Aron et al., 2020; Surma et al., 2018) or structurally bonded gypsum water 

(Herwartz et al., 2017). Additional observations of precipitation d-excess and triple oxygen 

isotopes can help answer questions about evaporation, transpiration, and atmospheric moisture 

transport that affect water cycling in the central Andes.  

Here, we combine a new three-year record of precipitation isotopes from southern Peru 

with other recent and contemporaneous central Andean d18Op and d2Hp records to explain the 

spatiotemporal variability of precipitation isotopes in this region. We combine the new 

precipitation isotope dataset with atmospheric back trajectories to identify moisture sources in the 

central Andes. We describe new ways that precipitation isotopes can monitor terrestrial water 

cycling and show that triple oxygen isotopes and d-excess add complementary information to 

d18Op. Together, this chapter demonstrates that a suite of isotope data (d18O, d-excess, and ∆¢17O) 

helps constrain atmospheric moisture transport, surface evaporation, plant transpiration, and 

precipitation processes in the central Andes.   
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4.3 Background 

4.3.1 Central Andes topography, precipitation, and atmospheric circulation  

The Andes are a vast, topographically complex area with strong gradients in elevation, 

temperature, and precipitation. In southern Peru and Bolivia, the Andes are split into the Eastern 

and Western Cordilleras, both of which reach over 6 km in height. The Altiplano lies between the 

Cordilleras and has lower elevation (~ 4 km) and lower relief. Due to this high elevation and 

immense size, the Andes block low- and mid-troposphere zonal flow and exert first-order control 

on local to continental circulation, climate, and weather (Garreaud et al., 2003, 2009; Insel et al., 

2010). 

Dramatic precipitation gradients in the central Andes extend from the Amazon Rainforest, 

one of the wettest places on Earth, to the Atacama Desert, one of the driest (Figure 4.1). Moisture 

transport from the Amazon Basin and orographic uplift along the flank of the Eastern Cordillera 

generate tremendous amounts of precipitation (up to 6,000 mm/yr, mean annual precipitation 

(MAP)) (Chavez and Takahashi, 2017; Garreaud, 2009). In contrast, regions along the flank of the 

Western Cordillera are exceptionally dry (< 20 mm/yr) due to upwelling of cold waters from the 

coastal Humboldt current, large-scale subsidence, and orographic blocking (Garreaud et al., 2010, 

2002; Rodwell and Hoskins, 2001; Takahashi and Battisti, 2007; Vuille et al., 2000). On the 

Altiplano, MAP is generally higher in southern Peru (greater than ~400 mm/yr) and lower in 

Bolivia (less than ~400 mm/yr) (Garreaud et al., 2003).  

Seasonal rainfall patterns in the central Andes are closely tied to northward (austral winter) 

and southward (austral summer) shifts in the Intertropical Convergence Zone (ITCZ) that produce 

wet summers and dry winters (Figure 4.1). In the austral winter (June to September), upper-level 

(~200 hPa) circulation is dominated by a dry subtropical westerly jet that suppresses low-level  

(~850 hPa) moisture from reaching the Altiplano (Garreaud et al., 2003) (Figures 4.1b and 4.1d). 

In the austral summer (December to March), the subtropical westerly jet weakens and shifts 

southward. Intense summertime condensational heating over the Amazon Basin generates an 

upper-level (~200 hPa) high pressure circulation feature known as the Bolivian High (Figure 4.1c; 

Lenters and Cook, 1997), and easterly winds transport moisture across the Amazon Basin toward 

the central Andes. Orographic blocking deflects near-surface moisture flow and forms the South 

American Low Level Jet (SALLJ, Figure 4.1a), a low-level (~850 hPa) northerly/northwesterly 
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barrier jet that transports large amounts of moisture from the tropics to the subtropics and plays a 

critical role in South American hydrology (Campetella and Vera, 2002; Gandu and Geisler, 1991; 

Vera et al., 2006; Virji, 1981). Together, these circulation patterns trigger the development of a 

summer rainy season along the eastern central Andean flank and Altiplano (Falvey and Garreaud, 

2005; Garreaud, 2009; Garreaud et al., 2003; Vuille, 1999).  

 
Figure 4.1 Mean 1989-2019 seasonal climatologies of the central Andes generated from ERA5 
reanalysis data (Hersbach et al., 2020). Panels a) and b) show 850 hPa winds (vectors, m/s) and 
total daily precipitation (mm/day); c) and d) show 200 hPa winds (vectors, m/s) and total column 
rainwater (kg/m2). Wind and moisture patterns are separated into summer (December, January, 
February, March (DJFM), panels a) and c)) and winter (June, July, August, September (JJAS), 
panels b) and d)) conditions to highlight seasonal climate variation in the central Andes.   

 

Western Cordillera precipitation also occurs in the austral summer but is not directly tied 

to circulation features over the Amazon or Altiplano. Infrequent, small (generally < 10 mm) storms 

develop on the Western Cordillera in January and February when the southeast Pacific anticyclone 
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weakens and the ITCZ shifts southward (Aceituno, 1988). These dynamics are most commonly 

associated with El Niño Southern Oscillation (ENSO) (Bjerknes, 1969) and co-occur with extreme 

precipitation events along the subtropical coastal western Andes (Quinn and Neal, 1987; Takahashi 

and Martínez, 2019), but also generate a brief annual rainy season along the Western Cordillera. 

Generally, Western Cordillera precipitation only occurs above ~1000 meters above sea level 

(masl) (Garreaud et al., 2002; Rutllant et al., 2003; Vuille et al., 2000). Below 1000 masl, an 

inversion layer restricts inland moisture transport and precipitation is very rare (Garreaud et al., 

2002; Lavado Casimiro et al., 2012).  

4.3.2 Stable water isotope systematics  

 Stable water isotopes fractionate due to mass differences between 17O and 18O versus 16O 

and 2H versus 1H. The different proportions of these isotopes in water record information about 

hydrologic processes because phase changes of water preferentially partition heavier 

isotopologues into more condensed phases and lighter isotopologues into less condensed phases. 

At equilibrium, this fractionation is temperature dependent (Horita and Wesolowski, 1994; 

Majoube, 1971). When two phases cannot reach equilibrium, an additional kinetic fractionation 

occurs due to differences in diffusivities between isotopologues (Cappa, 2003; Luz et al., 2009; 

Merlivat, 1978).  

 Mass dependent isotope fractionation follows a power law relationship that relates the 

fractionation factors (a) of coexisting phases (A and B) by a defined fractionation exponent (q) 

(Matsuhisa et al., 1978; Young et al., 2002):  

 

 *aA-B = (*aA-B)q         Eq. 4.1 

  

where * denotes a heavy mass number. The value of the fractionation exponent (q) is derived from 

mass law theory (Criss, 1999; Matsuhisa et al., 1978; Young et al., 2002) and defines the 

relationship between isotope ratios during equilibrium (qeq) and kinetic (qdiff) processes. For 

example, the equilibrium power law relationship that relates 2H/1H and 18O/16O is 2Haeq = (18Oaeq)q; 

for triple oxygen isotopes, this relationship is 17Oaeq = (18Oaeq)q. The kinetic q value is abbreviated 

as qdiff because kinetic fractionation results from the diffusion of water vapor through the air.  
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In nature, however, isotopic compositions rarely result from a single fractionating process. 

Following convention from the water isotope literature, we use l notation to differentiate empirical 

isotope relationships from defined q values. The most familiar l value in isotope hydrology is the 

slope of the oxygen-hydrogen Global Meteoric Water Line (GMWL) (Craig, 1961). This value 

(8‰‰-1) integrates equilibrium (qeq » 8) and kinetic (~2.5 < qdiff < 8; Gonfiantini et al., 2018) 

fractionation processes and defines a reference slope between meteoric water d18O and d2H values. 

Here, and throughout this chapter, d is defined as (Rsample/Rstandard – 1)*1000, where R is the ratio 

of heavy-to-light isotopes and the international standard is Vienna Standard Mean Ocean Water 

(VSMOW) (Coplen, 1996). Similarly, d18O and d17O are related by an established reference 

meteoric water line. Although recent work suggests a value of ~0.526 for the triple oxygen 

reference slope in tropical and temperate regions (Aron et al., 2020; Sharp et al., 2018), we 

continue to use the canonical value of 0.528 (Luz and Barkan, 2010; Meijer and Li, 1998) for the 

triple oxygen reference slope to maintain consistency with previous work and to distinguish 

fractionation from non-Rayleigh processes. This l value integrates triple oxygen isotope 

fractionation associated with equilibrium (qeq = 0.529; Barkan and Luz, 2005) and kinetic (qdiff = 

0.518; Barkan and Luz, 2007) processes.  

Because reference l values in the d18O–d2H and d18O–d17O systems are very similar to 

their respective qeq values, deviations from meteoric water lines are typically attributed to kinetic 

fractionation (Cappa, 2003; Craig, 1961; Gat, 1996; Young et al., 2002). Deviations from the 

d18O–d2H reference relationship are quantified with d-excess (Dansgaard, 1964):  

 

 d-excess = d2H – 8*d18O.        Eq. 4.2 

 

Deviations from the triple oxygen isotope reference relationship are quantified with ∆¢17O (Barkan 

and Luz, 2007):  

 

 ∆¢17O = d¢17O – 0.528*d¢18O.        Eq. 4.3 

  

Mass dependent triple oxygen isotope deviations are typically quite small and are expressed in 

units of per meg (1 per meg = 0.001‰). The triple oxygen isotope reference relationship requires 
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d¢ notation (d¢ = ln(d + 1); Hulston and Thode, 1965; Martin, 2002) to linearize the power law 

relationship (Eq. 4.1) between d17O and d18O. Most hydrologic studies do not linearize d scales 

when calculating d-excess, although an alternate logarithmic definition of d-excess does exist and 

may be useful at high latitudes or when isotope variation is large (Dütsch et al., 2017; 

Schoenemann et al., 2014; Uemura et al., 2012).  

 Both d-excess and ∆¢17O are primarily sensitive to kinetic fractionation and relative 

humidity during evaporation (Barkan and Luz, 2007; Pfahl and Sodemann, 2014; Uemura et al., 

2008). As such, d-excess and ∆¢17O covary during kinetic fractionations (e.g., Aron et al., 2020; 

Li et al., 2017) and are relatively insensitive to Rayleigh distillation (Gat, 1996; Luz and Barkan, 

2010). However, d-excess and ∆¢17O respond differently to temperature effects and processes that 

involve hydrologic mixing. First, d-excess is more sensitive to temperature than ∆¢17O (Barkan 

and Luz, 2005; Cao and Liu, 2011) because the d18O–d2H qeq value varies with temperature 

(Majoube, 1971), whereas the d18O–d17O qeq value is relatively insensitive to temperature (Barkan 

and Luz, 2005). This difference in temperature sensitivity can help distinguish isotopic variability 

driven by changes in temperature or relative humidity above moisture sources (e.g., Landais et al., 

2012b, 2012a; Uechi and Uemura, 2019; Winkler et al., 2012). Second, hydrologic mixing causes 

a non-linear response in ∆¢17O because ∆¢17O is defined from logarithmic d¢ values (Aron et al., 

2020; Luz and Barkan, 2010; Matsuhisa et al., 1978). For example, mixing two airmasses with 

different initial d18O values decreases the ∆¢17O of the mixed airmass, whereas d-excess responds 

linearly to mixing because it is defined from d values. Different d-excess and ∆¢17O mixing 

responses have been observed in tropical and mid-latitude meteoric waters (Landais et al., 2010; 

Li et al., 2015; Risi et al., 2013).  

 In the central Andes, the dominant hydrologic processes that affect the isotopic 

composition of precipitation are Rayleigh distillation, convection, and atmospheric mixing (e.g., 

Fiorella et al., 2015b; Insel et al., 2013; Vuille and Werner, 2005). However, identifying these 

processes with d18Op or d2Hp alone is not always straightforward. Here we combine d18Op, d-

excessp, and ∆¢17Op from southern Peru to explore the spatiotemporal variability of precipitation 

isotopes and the isotope effects of non-Rayleigh fractionation in the central Andes.   
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4.4 Methods  

4.4.1 Precipitation network and sample collection  

 We present data from a network of 19 stations in southern Peru that extends from the 

western Peruvian Amazon (~13˚S) to near the Pacific coast (~17˚S) (Figure 4.2). Each station is 

managed by a local Peruvian observer and collocated alongside existing SENAMHI (Servicio 

Nacional de Meteorología e Hidrología del Perú, the National Meteorology and Hydrology Service 

of Peru) meteorological stations. SENAMHI stations record daily precipitation amount; some also 

record mid-day relative humidity and maximum and minimum or morning and afternoon 

temperature. We installed temperature and relative humidity sensors (Onset HOBO, U23 Pro v2) 

at stations that only record precipitation. We use the University of Delaware 0.5˚ monthly gridded 

climate data (1960-1990 average) to get the mean annual temperature (MAT) and MAP from each 

site (Legates and Willmott, 1990a, 1990b). Ten stations (San Gaban, Ollachea, Macusani, Ayaviri, 

Ichuña, Carumas, Majes, Ayo, Orcopampa, and Santo Tomas) were installed in May and June 

2016 and 8 stations (Pampahuta, Ubinas, Quinistaquillas, Moquegua, Arequipa, Cotahuasi, and 

Puyca) were added in November 2017. The final station (Calca) was installed in July 2018. This 

chapter includes samples collected through May 2019. Samples collected since May 2019 are not 

included due to COVID-19 travel and laboratory restrictions. We expect that sample collection 

will continue until it is feasible to visit the stations.  
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Figure 4.2 Topography and spatial distribution of precipitation collection stations in southern 
Peru. 

 

 Traditionally, precipitation is collected for isotopic analysis using mineral oil, which floats 

above collected water and prevents evaporation (e.g., Friedman et al., 1992; Scholl et al., 1996). 

However, it can be challenging to separate sample water from the oil, especially when sample 

volume is very low, and careful laboratory protocols are necessary to avoid contaminating isotopic 

analyzers with mineral oil. Recently, Gröning et al. (2012) proposed an alternative oil-free 

precipitation collection method that prevents evaporation and simplifies sample collection. 

Initially, we built and deployed oil-free collectors following the description in Gröning et 

al. (2012). We used 3-9¢¢ funnels to increase the volume of collected precipitation and collected 

samples in 1.5 L HDPE bottles (McMaster Carr, 4280T37). Each collection bottle was connected 

to a long (> 5 m) open-ended Bev-a-line vent tube (1/8¢¢ ID) to minimize pressure fluctuations on 

the sample. On the 1st and 15th of every month, local station observers poured the collected sample 
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water into 20 ml HDPE storage vials (Wheaton, 986716), capped the storage vials with PolyCone 

caps, and cleaned and dried the collection bottle. Following collection, samples were stored in a 

cool, dark environment. We used plastic collection and storage vials because they do not break as 

easily as glass vials. We collected bimonthly samples because the high (> 20 mm/day) precipitation 

rates along the eastern flank occasionally exceeded the volume of water we were able to collect in 

a month.  

After the first year of collection, we introduced mineral oil to the collection bottles as 

another measure to prevent evaporation. With the addition of oil, observers used a syringe to 

extract water from the bottom of the collection bottles and transferred sample water to 20 ml 

storage vials. Between samples, the collection bottles were cleaned, dried, and given a new layer 

of oil. All other collection procedures (frequency of collection, volume of water collected, etc.) 

remained constant through the study period. We switched from oil-free to oil-based collections 

because our stations are in very remote locations, we have no communication with the local 

observers during the year, and windy conditions at the sites can knock the collector equipment out 

of alignment, potentially exposing sample water to the atmosphere. Although the oil-based 

collection involves additional steps to transfer water and prepare the samples for isotopic analysis, 

we concluded that this technique was more reliable in remote locations and with non-expert 

observers.  

We visited every site annually to gather the precipitation samples, clean and repair the 

collection equipment, download temperature and relative humidity data, and interview observers 

about local weather conditions. In the lab, we transferred sample water into 16 ml glass vials (The 

Lab Depot, 316018-2170) for secure long-term storage. At most, water samples included in this 

chapter were stored in HDPE vials for one year, so we do not expect any fractionation with the 

plastic collection or storage containers (Spangenberg, 2012).  

4.4.2 Isotopic analysis 

We measured the d18O and d2H values of every precipitation sample using a Picarro L2130-

i with a high-precision vaporizer (A0211) and attached autosampler. We used the Picarro 

ChemCorrect software to monitor samples for organic contamination and normalized measured 

d18O and d2H values to the VSMOW-SLAP scale with four in-house liquid standards that were 

calibrated with USGS reference waters (USGS45, 46, 49, and 50). Reproducibility of d18O and 
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d2H values was determined from repeat analyses of deionized water and calculated using the 

Picarro L2130-i Drift and Precision Test worksheet. Analytical precision was determined to be 

better than 0.1‰ and 0.3‰ for d18O and d2H, respectively. 

We measured the d18O and d17O values of 32 precipitation samples with a dual inlet Nu 

Perspective isotope ratio mass spectrometer (IRMS) at the University of Michigan using the 

cobalt(III) fluoride (CoF3) method developed by Baker et al. (2002) and refined by Luz and Barkan 

(2005). Our methods have been described previously (Aron et al. 2020; Li et al., 2017, 2015; 

Passey et al., 2014), although triple oxygen isotope data from Li et al. (2015, 2017) and Passey et 

al. (2014) were acquired on a different mass spectrometer (Thermo 253) and fluorination line 

previously at Johns Hopkins University.  

For d18O and d17O analysis, we inject ~2 µL of water through a septum port into a 360-370 

˚C CoF3 nickel reactor to convert liquid water to O2 gas and gaseous hydrofluoric acid (HF):  

 

2H2O(l) + 4CoF3(s) à O2(g) + 4HF(g) + 4CoF2(s).     Eq. 4.4 

 

Following this reaction, HF and O2 are carried downstream of the reactor in helium gas. HF is 

trapped and removed in a nickel trap immersed in liquid nitrogen (-196 ˚C). The O2 gas is further 

purified by passing through a custom-built stainless-steel column (~1 m, 1/8¢¢ OD) packed with a 

5 Å molecular sieve (Strem Chemicals, CAS#69912-79-4) and immersed in a methanol and dry 

ice slush (-80 ˚C). After purification, the O2 gas collects in a liquid nitrogen trap that is packed 

with a 5 Å molecular sieve. This O2 collection process takes approximately 15 minutes. After the 

O2 is collected, helium gas is pumped away (14 minutes), liquid nitrogen is replaced by a methanol 

and dry ice slush, and the O2 is transferred to a -180 ˚C cold finger packed with a 5 Å molecular 

sieve (12 minutes) that is part of the dual inlet system of the Nu mass spectrometer. After the O2 

transfer is complete, the cold finger is heated (9 minutes) to 90 ˚C to release O2 from the molecular 

sieve, and the sample is introduced to the mass spectrometer.  

The O2 gas is analyzed in dual inlet mode for m/z 32, 33, and 34. To minimize analytical 

error, each analysis consists of 40 cycles during which the ratio of sample to reference gas 

(99.999% compressed oxygen, with approximate values of d17OVSMOW = 10.3‰, d18OVSMOW = 

20.3‰) is determined. Each cycle consists of 50 seconds of integration time on the sample gas or 

reference gas and 20 seconds of idle time between integrations. Resistances on the m/z 32, 33, and 
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34 Faraday cups are 2 ´ 108, 3 ´ 1011, and 1 ´ 1011 W, respectively. In total, sample preparation 

takes just over an hour and analysis in the mass spectrometer takes approximately two hours. 

Typically, samples are analyzed twice.  

 Raw d18O and d17O values are normalized to the VSMOW-SLAP scale following the 

approach established by Schoenemann et al. (2013) using values of 0.0000‰ for d18OVSMOW and 

d17OVSMOW (Gonfiantini, 1978), -55.5000‰ for d18OSLAP, and -29.6986‰ for d17OSLAP. This 

normalization approach corrects for pressure-baseline offsets (Yeung et al., 2018) and results in 

excellent inter-lab ∆¢17O reproducibility (Aron et al., 2020; Berman et al., 2013; Kaiser, 2009; 

Schoenemann et al., 2013).  

In our lab, triple oxygen isotope data are generated in analytical sessions that last 

approximately 3-4 weeks. An analytical session ends when all the CoF3 in the reactor is consumed. 

We analyze VSMOW2 and SLAP2 at the beginning, middle, and end of each session because 

isotopic measurements and instrument nonlinearities can evolve through time and this approach 

enables us to apply normalizations over a full session. The d18O and d17O values of VSMOW2 and 

SLAP2 are indistinguishable from the d18O and d17O values of VSMOW and SLAP (Lin et al., 

2010). In addition, we regularly analyze USGS reference waters (USGS45, 46, 47, 48, 49, 50) to 

determine external precision of our system, to monitor isotopic drift, and to ensure analytical 

accuracy. In this study, the pooled standard deviation of replicate USGS analyses is 0.1‰ for d17O, 

0.2‰ for d18O, and 7 per meg for ∆¢17O. The precision of ∆¢17O is better than that of d17O and d18O 

because any isotopic fractionation that occurs during sample preparation is related by a d¢18O–

d¢17O slope that is nearly equivalent to the slope of the reference line (0.528) and has little effect 

on ∆¢17O (Barkan and Luz, 2007; Landais et al., 2006; Schoenemann et al., 2013).  

4.4.3 Data caveats  

 Based on individual sample and station d18O and d2H values, we identified 119 

precipitation samples that fail our quality control checks. This includes 12 samples with negative 

d-excess that are likely affected by evaporation and 107 samples that were likely collected from 

tap or surface water sources. The probable tap or surface water samples were identified from site-

specific timeseries with less than 1‰ of seasonal d18Op variation (seasonal d18Op variation is at 

least 5‰ at most sites). This screening identified samples from Ollachea (27 samples, all collected 
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after 2017), Carumas (14 samples, all collected after 2017), Orcopampa (20 samples, all collected 

samples), Ichuña (24 samples, all collected samples), and Puyca (22 samples, all collected 

samples). We include these data in Table S4.1, but excluded them from our analysis.  

Data are also missing or incomplete from four other sites. First, it did not rain enough to 

collect samples from Ayo so we do not report isotope data from this site. Second, in 2018-2019, 

the observer at Macusani collected samples correctly, but did not record collection dates so we 

exclude these data. Third, sample collection lasted only one year (2017-2018) in Cusco. Fourth, 

the observer in Majes was not available during our 2019 site visit, so we do not report 2018-2019 

isotope data from this site. 

4.4.4 Atmospheric back trajectories  

 We calculated atmospheric back trajectories to constrain moisture source regions across 

southern Peru using the Hybrid coordinate Single Parcel Lagrangian Integrated Trajectory model 

(HYSPLIT; Draxler and Hess, 1998) and 0.5˚ meteorological data from the Global Data 

Assimilation System (GDAS). Sets of 10-day back trajectories were calculated from 7 sites: San 

Gaban, the lowest elevation eastern flank site; Ayaviri and Santo Tomas, central Altiplano sites; 

Cotahuasi and Ubinas, high elevation western flank sites; and Majes and Moquegua, low elevation 

western flank sites. We chose these sites to compare the dominant eastern (Atlantic) and western 

(Pacific) moisture sources across the study region. Trajectories were initiated 4 times each day (0, 

6, 12, 18 UTC) from 1000 m above ground level.  

 We identified four source regions that contribute moisture to the central Andes: 1) Atlantic, 

2) eastern South America, which includes the South American continent east of the Western 

Cordillera, 3) western South America, which includes the South American continent west of the 

Western Cordillera, and 4) Pacific (Figure S4.1). We then used the Lagrangian tracer developed 

by Sodemann et al. (2008) to determine moisture footprints for each site. This tracer links 

precipitation to remote evaporation sources by tracking changes in air parcel specific humidity and 

identifies moisture source regions through increases in planetary boundary layer specific humidity 

along the trajectory. HYSPLIT-extracted boundary layer heights were doubled, as prior work with 

this tracer has suggested that using unscaled boundary layer heights may underestimate moisture 

contributions from shallow convection (Aemisegger et al., 2014; Fiorella et al., 2018; Sodemann 

et al., 2008). Mass contributions from each region were summed for each month and divided by 
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the total moisture footprint mass from all four regions to calculate the fraction of total moisture 

advected to the site originating in these four regions.  

4.5 Results  

4.5.1 Climate variability  

Precipitation, temperature, and relative humidity variations are most pronounced between 

the wet (December, January, February, March; DJFM) and dry (June, July, August, September; 

JJAS) seasons, and are smaller on bimonthly and interannual timescales (Figure 4.3). Bimonthly 

precipitation ranged from 0 mm (many sites) to 857 mm (San Gaban, January 1, 2019) (Figure 

4.3a). Bimonthly precipitation was always highest at San Gaban, the lowest elevation site along 

the eastern flank, decreased up the eastern flank, was relatively consistent across the Altiplano, 

and decreased at lower elevations down the western flank. A few low elevation sites on the western 

flank received almost no rainfall. For example, Majes (1498 masl) received a total of 10 mm of 

rain during the three years of sample collection; Ayo (1956 masl) received no precipitation during 

the study period.  

More than half the total annual rainfall occurred from December to March at every site 

(Figure 4.3a). Seasonal variations in precipitation amount are most pronounced along the western 

flank where DJFM precipitation accounted for 92% of the annual total. On the Altiplano, 

precipitation fell primarily during DJFM (72%) and only occasionally occurred during JJAS (6%). 

Eastern flank precipitation was highest in DJFM (52%), but not uncommon in JJAS (18%).  

Temperature and relative humidity were higher in the wet season and lower in the dry 

season (Figures 4.3b and 4.3c). Average temperature ranged from 1.0˚C (Macusani, 4345 masl, 

June 15, 2016) to 24.4˚C (San Gaban, 657 masl, December 15, 2017) and was strongly negatively 

correlated with elevation (Pearson’s r = -0.97). Average relative humidity (RH) ranged from 

16.8% (Carumas, 2976 masl, August 15, 2017) to 95.6% (San Gaban, January 15, 2019) (Figure 

4.3c). Relative humidity decreased from the eastern flank towards the Pacific coast and was 

uncorrelated with elevation (r = -0.12). In general, seasonal temperature variations were larger at 

stations on the eastern flank and Altiplano (~5-8˚C) and smaller at stations on the western flank (~ 

3-4˚C). In contrast, seasonal variations in relative humidity were generally larger on the western 

flank (~20-80%) than on the eastern flank (~10-40%).  
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Figure 4.3 Timeseries of bimonthly a) precipitation, b) temperature, and c) relative humidity (RH) 
across in southern Peru from June 2016 through May 2019. The gray vertical bars indicate the 
austral summer rainy season (DJFM). The timeseries are colored according to site location.   

4.5.2 Isotopic variation  

 Precipitation isotope data fall on or near the oxygen-hydrogen (Figure 4.4a, Table S4.1) 

and triple oxygen (Figure 4.4b, Table S4.2) global meteoric water lines. To expand this dataset 

beyond precipitation, we include d18O, d17O, and d2H data from 10 surface water samples collected 

from the same region in southern Peru as the precipitation samples (Aron et al., 2020). River water 

(n = 8) d18O and d2H values generally plot along the GMWL (Figure 4.4a), although the range of 

river d18O (-19.0 to -8.1‰) and d2H (-141.6 to -44.3‰) was smaller than the range of d18Op 

(-29.3 to 2.0‰) and d2Hp (-216.1 to 35.2‰). Lake water (n = 2) d18O (-10.4 and -5.2) and d2H 

(-95.7 and -73.1) compositions fall below the GMWL, indicative of evaporation.  
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Figure 4.4 Bimonthly precipitation (filled circles), river (open diamonds), and lake (open squares) 
a) d18O versus d2H and b) d¢18O versus d¢17O. Isotope data overlie the d18O-d2H (Craig, 1961) and 
d¢18O-d¢17O (Luz and Barkan, 2010) global meteoric water lines, respectively. Panel 4.4b contains 
a subset of 32 precipitation samples from panel 4.4a. Precipitation samples are colored according 
to site location. 

The slope connecting precipitation, river, and lake d¢18O and d¢17O values (0.5276 ± 

0.0003) is similar to the triple oxygen isotope reference slope (0.528; Luz and Barkan, 2010), and 

d¢18O and d¢17O are very well correlated (r > 0.9999, Figure 4.4b). Correlations between d¢18O and 

d¢17O are stronger than correlations between d18O and d2H because 17O/16O and 18O/16O 

fractionations are governed by the same mass law equation (Young et al., 2002) whereas 2H/1H 

and 18O/16O fractionations are subject to different governing equations (e.g., Horita & Wesolowski, 

1994; Majoube, 1971). Because triple oxygen isotope values of precipitation, river, and lake water 

are indistinguishable from the reference d¢18O-d¢17O relationship (Figure 4.4b), these mass-

dependent fractionations are better viewed as d¢18O versus ∆¢17O (Figure 4.5a). This isotope space 

is a more amenable way to visualize isotopic compositions that vary on different orders of 

magnitude (1‰ is equal to 1000 per meg).  

Values of ∆¢17O ranged from -7 to 55 per meg (Figure 4.5a). Average ∆¢17Op was 34 ± 13 

per meg and varied from 1 to 55 per meg. River water ∆¢17O ranged from 20 to 54 per meg. Lake 

∆¢17O values were lower (-7 and -5 per meg) than any other water type. For the full triple oxygen 

isotope dataset, ∆¢17O is positively correlated with d-excess (r = 0.68, Figure 4.5b) and weakly 
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correlated with d¢18O (r = -0.18, Figure 4.5a). The slope of the linear regression between ∆¢17O 

and d-excess, 0.8 (± 0.1) per meg ‰-1, is consistent with theoretical steady state predictions 

(Barkan and Luz, 2007; Li et al., 2015), but slightly lower than observations from Landais et al. 

(2010) who reported slopes between 1.6 and 2.0 per meg ‰-1 in tropical monsoon precipitation in 

north central Africa. 

 
Figure 4.5 Scatterplots of a) d¢18O vs. ∆¢17O, b) d-excess vs. ∆¢17O, and c) d18O vs. d-excess of 
precipitation (filled circles), river (open diamond), and lake (open square) water. Precipitation 
samples were selected from 7 sites and are colored by site location. Error bars on ∆¢17O are the 
standard deviation of multiple replicate analyses.  
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4.5.3 Temporal isotopic variation  

 Precipitation d18Op and d-excessp values varied on bimonthly to interannual timescales 

(Figure 4.6). At every site, d18Op values were lower during the wet season and higher during the 

dry season (Figures 4.6a and 4.6b). On the eastern flank and the Altiplano, the lowest d18Op values 

typically occurred near the end of the rainy season in February and March (Figure 4.6a). On the 

western flank, the lowest d18Op values occurred slightly earlier, typically in January and February 

(Figure 4.6b). d-excessp ranged from 0.2 to 41.8‰ and was generally lower (average 13.4‰) in 

DJFM and higher (average 18.0‰) in JJAS (Figures 4.6c and 4.6d). Seasonal d18Op and d-excessp 

variations cannot be assessed on the western flank because precipitation at these sites only fell 

during the wet season (Figure 4.3a). Interannual precipitation isotope variability is typically 

associated with ENSO (e.g., Cai et al., 2020; Vuille and Werner, 2005), but our study period 

overlapped with weak ENSO events (National Weather Service, Climate Prediction Center) and 

we do not observe consistent interannual precipitation isotope variation.  

 

 
Figure 4.6 Timeseries of a) and b) bimonthly d18Op (‰) and c) and d) d-excessp (‰) from June 
2016 through May 2019. The gray vertical bars indicate the austral summer rainy season (DJFM). 
For clarity and to explain seasonal isotope variations, the data are separated into eastern and 
western sites and colored by site location. Eastern sites receive dry season precipitation; western 
sites typically do not. Missing data indicate rain did not fall during the collection period or the 
observer did not collect a sample. 
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 In addition to the seasonal and interannual isotope variability, d18Op and d-excessp values 

also varied on shorter bimonthly to monthly timescales (Figure 4.6). Sequential bimonthly d18Op 

values generally varied only a few per mil, but occasionally differed by more than 10‰ (for 

example, Macusani in October 2017). Sequential d-excessp values were less variable, although a 

few samples from Altiplano sites had exceptionally high (> 25‰) d-excessp. Such high d-excessp 

values are uncommon in most meteoric waters (Bowen et al., 2019; Gat, 1996), but are 

occasionally observed in central Andean dry season precipitation (Fiorella et al., 2015b; Guy et 

al., 2019; Vimeux et al., 2011).  

 We focus on temporal ∆¢17Op variation from San Gaban, Macusani, and Ayaviri because 

the triple oxygen isotope data from these sites span the wet and dry seasons. On the Altiplano 

(Macusani and Ayaviri), ∆¢17Op, d-excessp, and d18Op values were higher in the dry season and 

lower in the wet season (Figure 4.7). At San Gaban, however, ∆¢17Op exhibited no seasonal 

variation (Figure 4.7a), as 31 ± 4 per meg (average dry season ∆¢17Op ± standard deviation) and 34 

± 2 per meg (average wet season ∆¢17Op ± standard deviation) are indistinguishable given analytical 

∆¢17O precision.  

 

 
Figure 4.7 Box and whisker plots of a) ∆¢17O (per meg), b) d-excess (‰), and c) d18O (‰) from 
Ayaviri, Macusani, and San Gaban. Isotope values are separated to highlight seasonal differences 
between the wet (blue) and dry (red) seasons. For each population, the bolded line is the median 
∆¢17O value, the upper and lower hinge correspond to the 1st and 3rd quartiles, respectively, and the 
whiskers correspond to no more than 1.5 times the interquartile range (IQR, the variation between 
the 1st and 3rd quartiles). The individually plotted points fall outside the IQR. 
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4.5.4 Spatial isotopic variation  

 Across all sites, the average annual amount-weighted d18Op was strongly negatively 

correlated with elevation (r = –0.84, Figure 4.8a) and latitude (r = –0.70, Figure 4.8c) and nearly 

uncorrelated with MAP (r = –0.20, Figure 4.8b). The average annual amount-weighted d18Op value 

was high at San Gaban (–7.7‰, 657 masl, 13.45˚S), decreased up the eastern flank to a minimum 

at Macusani (–18.8‰, 4345 masl, 14.07˚S), and was relatively consistent across the Altiplano, 

ranging from –18.8‰ (Macusani) to –15.9‰ (Santo Tomas, 3658 masl, 14.45˚S) (Figure 4.9b). 

On the western flank, average annual amount-weighted d18Op values increased from Ubinas (–

11.7‰, 3380 masl, 16.38˚S) to Quinistaquillas (–0.1‰, 1590 masl, 16.75˚S) (Figure 4.9b). The 

d18Op lapse rate on the eastern flank was –3.0 ± 0.2‰/km for the full study period, but ranged from 

–2.8 ± 0.1‰/km in 2017 to –3.0‰/km in 2018. On the western flank, the d18Op lapse rate was –

4.4 ± 1.1‰/km and ranged from –5.3 ± 1.4‰/km in 2019 to –4.1 ± 1.4‰/km in 2018. Site-to-site 

correlations of bimonthly d18Op vary across the network and were generally stronger (r values 

greater than 0.5) between sites on the eastern flank and eastern Altiplano than between sites on the 

western flank or western Altiplano (Table 4.1). 

 Average annual amount-weighted d-excessp values ranged from 22.1‰ (Carumas, 2976 

masl) to 5.0‰ (Quinistaquillas, 1590 masl) (Figure 4.9c) and were poorly correlated with elevation 

(r = 0.37), latitude (r = 0.21), or MAP (r = 0.13). It is unlikely that the very high d-excessp value 

from Carumas (22.1‰) is representative of an average d-excessp value. This value was calculated 

from 9 precipitation samples collected during the 2017 rainy season when relative humidity was 

uncharacteristically high (~90%). Unfortunately, the observer at Carumas did not collect samples 

properly in 2018 and 2019, so we cannot compare interannual precipitation isotope variability at 

this site. Excluding this value, average annual amount-weighted d-excessp was highest at Macusani 

(17.3‰) and decreased from north to south across the Altiplano (Figure 4.9c). Amount-weighted 

mean d-excessp values were lower at sites on the western flank (5.0 to 13.3‰) than at sites on the 

Altiplano or eastern flank (12.4 to 17.3‰) (Figure 4.9c).  

 The 32 precipitation samples selected for triple oxygen isotope analysis are from 7 sites 

(San Gaban, Ollachea, Macusani, Ayaviri, Santo Tomas, Carumas, and Majes). We observe 

relatively little ∆¢17Op temporal variation at each site, but consistent spatial patterns across southern 

Peru. In general, ∆¢17Op was higher on the Altiplano (29 to 55 per meg) and lower on the dry 
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western flank (1 to 35 per meg). Excluding the precipitation samples with very high (> 25‰) d-

excess, ∆¢17Op was weakly correlated with elevation (r = 0.43, Figure 4.8d) and latitude (r = 0.47, 

Figure 4.8f) and uncorrelated with MAP (r = 0.19, Figure 4.8e). Surface water ∆¢17O was highest 

in rivers along the eastern flank (50 to 54 per meg) and lowest (–7 and –5 per meg) in lake samples 

(Figure 4.8d). On the Altiplano, surface water ∆¢17O values were uncorrelated with elevation (r = 

0.04) and moderately positively correlated with latitude (r = 0.56).  

 

 
Figure 4.8 Scatterplots of central Andean amount weighted mean d18Op and ∆¢17O variation with 
elevation (a and d), MAP (mean annual precipitation, b and e), and latitude (c and f). In panels a), 
b), and c), color differentiates d18Op from the six available studies. In panels d), e), and f), shape 
differentiates the available studies and color differentiates water type. In every panel, the solid 
black line is the best fit linear regression through from all water types and studies. The dotted line 
(panels a), b), and c)) is the best fit linear regression through d18Op data from this study. The dashed 
line (panels d), e), and f)) is the best fit linear regression through ∆¢17Op data from samples in this 
study with d-excessp within one standard deviation of the site-specific amount weighted mean d-
excessp. We exclude samples with d-excessp beyond one standard deviation of the amount 
weighted mean from the dashed linear regression because these samples are likely not 
representative of average isotopic compositions. 
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Figure 4.9 Elevation profile along the A-B-C transect a) and spatiotemporal variability of average 
annual amount-weighted b) d18Op and c) d-excessp in southern Peru. In b) and c), the filled yellow 
and blue circles represent the multiyear average. Blue sites fall on or near the elevation profile; an 
elevation profile through the yellow sites is not shown, but the dominant topographical features 
through this region are the same as those along the A-B-C transect. The open symbols show 
amount-weighted d18Op and d-excessp values in 2017 (square), 2018 (diamond), and 2019 
(triangle). Throughout the region, d-excessp is relatively invariant and d18Op is inversely related to 
elevation, indicating Rayleigh distillation along both flanks and distinct moisture sources from the 
Atlantic and Pacific. 

Table 4.1 Correlation coefficient (Pearson r) matrix between bimonthly d18Op timeseries. Missing 
(NA) correlations occur when samples were not collected concurrently. Bolded values indicate a 
statistically significant (p < 0.05) relationship. 

 OLL MAC AYV CUZ SNT PAM COT UBN CAR MOQ AQP QUI MAJ 
SGN 0.02 0.65 0.67 -0.04 0.60 0.29 0.22 0.09 0.18 0.48 0.44 -0.22 0.15 
OLL  0.36 -0.07 NA 0.20 NA NA NA -0.30 NA NA NA -0.22 
MAC   0.68 0.47 0.63 -0.08 0.09 NA 0.30 0.91 0.32 NA -0.47 
AYV    0.88 0.62 0.61 0.49 0.26 0.40 0.18 0.60 0.71 -0.43 
CUZ     NA 0.36 0.38 NA NA NA NA NA NA 
SNT      0.24 0.37 0.17 0.80 -0.70 0.40 NA 0.10 
PAM       0.54 0.51 NA -0.23 0.25 0.19 -0.95 
COT        0.27 NA -0.29 0.91 0.96 0.73 
UBN         NA -0.25 0.73 NA NA 
CAR          NA NA NA -0.80 
MOQ           -0.07 NA NA 
AQP            0.97 NA 
QUI             NA 
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4.5.5 Atmospheric back trajectories 

 Moisture trajectories varied across the region and switched from an eastern-dominated 

moisture source on the eastern flank to a western-dominated moisture source on the western flank 

(Figure 4.10). At San Gaban, the low elevation eastern flank site, moisture was sourced entirely 

from the east (Atlantic Ocean and Amazon Basin) and varied little throughout the study period 

(Figure 4.10a). Eastern-sourced moisture dominated (> 70%) at Santo Tomas and Ayaviri (central 

Altiplano, Figures 4.10b and 4.10c), but these sites also received some western sourced moisture. 

The contribution of western moisture to Santo Tomas and Ayaviri was typically higher in the 

spring and summer (~20%) and lower in the winter and fall (~5-10%). High on the western flank, 

Cotahuasi and Ubinas received moisture from a combination of eastern and western sources 

(Figures 4.10d and 4.10e). Western sourced moisture accounted for more than 50% of the moisture 

flux during the spring and summer and ~20-30% in the winter and fall at these sites (Figures 4.10d 

and 4.10e). Western sourced moisture dominated (> 90%) at low elevation on the western flank 

(Majes and Moquegua, Figures 4.10f and 4.10g). Moisture fluxes from oceanic sources (open 

symbols in Figure 4.10) were generally smaller than those from terrestrial regions on the eastern 

flank, Altiplano, and high western flank (closed symbols in Figure 4.10). The direct Atlantic 

moisture flux was very small (< 10%) because the moisture tracer identified increases in specific 

humidity from evapotranspiration over the Amazon Basin as a moisture source region.  
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Figure 4.10 Timeseries of moisture fluxes from four regions at a) San Gaban, b) Santo Tomas, c) 
Ayaviri, d) Cotahuasi, e) Ubinas, f) Majes, and g) Moquegua. The points represent the ratio of 
moisture advected from each source region relative to the total moisture flux. Filled symbols 
indicate land-based source regions; open symbols indicate oceanic source regions. Eastern 
(Atlantic (open) and eastern South America (filled)) source regions are plotted as circles; western 
(Pacific (open) and western South America (filled)) source regions are plotted as squares. The gray 
vertical bars indicate the DJF rainy season in 2017, 2018, and 2019.   
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4.6 Discussion  

4.6.1 Controls on central Andean d18Op 

The most pronounced temporal d18Op variation is a seasonal pattern with higher d18Op 

values in the dry season and lower d18Op values in the wet season (Figures 4.6a and 4.6b). This 

seasonal pattern is observed throughout the central Andes (Aravena et al., 1999; Fiorella et al., 

2015b; Fritz et al., 1981; Gonfiantini et al., 2001; Guy et al., 2019) and results from a number of 

fractionating processes. First, a strengthening of the SALLJ increases upstream precipitation, 

which preferentially removes heavy isotopes and results in lighter isotopic compositions in vapor 

advected to the central Andes during the wet season (Fiorella et al., 2015b; Guy et al., 2019; 

Vimeux et al., 2005, 2011). Second, deep convection can entrain isotopically light vapor from the 

upper and middle troposphere and decrease d18Op values collected at the surface (Blossey et al., 

2010; Galewsky et al., 2016; Lee and Fung, 2010; Moore et al., 2014; Risi et al., 2008; Samuels-

Crow et al., 2014a; Worden et al., 2007). Although small, localized convective cells can entrain 

near-surface vapor with relatively high isotopic compositions and increase d18Op values (Aggarwal 

et al., 2016; Kurita, 2013; Tharammal et al., 2017), the high elevation Altiplano and intense 

daytime heating across the Amazon Basin destabilize the atmosphere and lead to the development 

of deep convective cells (Garreaud et al., 2003, 2009; Vuille et al., 1998) that can decrease d18Op 

values in this region. Convective precipitation is more common on the Altiplano during the rainy 

season when the moisture flux onto the Altiplano is greater (Garreaud, 2009). Third, water droplets 

likely undergo very little sub-cloud evaporation during the wet season when the air column is 

nearly saturated and relative humidity is high (Figure 4.3c). With little sub-cloud evaporation, the 

d18O value of rain droplets does not increase during descent. Generally, these processes are 

consistent on interannual timescales and across the central Andes (Figure 4.11a). 
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Figure 4.11 Timeseries of monthly a) d18Op, b) d-excessp, and c) precipitation from this study 
(circles), Fiorella et al., 2015 (triangles), and Guy et al., 2019 (squares). The vertical gray bars 
mark the DJFM rainy season. Because elevation is the dominant control on d18Op, data are colored 
by site-specific elevation. The thin black line connects the timeseries of amount weighted (small 
open black circles) and median (small open black squares) values. The difference between amount 
weighted and median values is small, except for precipitation data at San Gaban, the low elevation 
site on the eastern flank in southern Peru. Although this site receives almost an order of magnitude 
more rain than any other site in these records, d18Op and d-excessp values are similar and follow a 
consistent seasonal pattern with higher d18Op and d-excessp values in the dry season and lower 
values in the wet season.   

 

Spatial variability of bimonthly d18Op values is likely driven by a combination of synoptic 

and local scale controls. Site-to-site correlations of bimonthly d18Op values are stronger on the 

eastern flank and eastern Altiplano (Table 4.1) because so much moisture is transported up the 

eastern flank by synoptic-scale air flow. Site-to-site correlations are weaker on the western 

Altiplano and western flank (Table 4.1) because precipitation is more sporadic and variable. 

Occasionally, concurrent bimonthly d18Op values from neighboring sites on the Altiplano differed 

by up to 15‰ (Figures 4.6a and 4.6b), so we also cannot rule out effects of local-scale controls 

from small-scale convergence and convection (Kumar et al., 2019; Romatschke and Houze, 2010), 

local topography such as ridges and valleys that funnel moisture (Giovannettone and Barros, 

2009), or the addition of water vapor from evaporation of local lakes or other surface water 

(Delclaux et al., 2007; Pillco Zolá et al., 2019) on d18Op across the study region. 
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To identify the environmental controls on amount-weighted central Andean d18Op values, 

we performed a stepwise multiple linear regression with elevation, latitude, longitude, and MAP 

as possible predictor variables (Bowen and Wilkinson, 2002; Lechler and Niemi, 2011). We 

excluded temperature because it is very strongly correlated with elevation (r = –0.97) across our 

study region. The stepwise multiple linear regression iteratively tests and removes predictor 

variables to determine the best fit regression model with the fewest input parameters. Each model 

iteration was assessed with the Akaike information criterion (AIC), and the iterative process 

stopped when the lowest AIC score was reached. Low AIC scores balance goodness of model fit 

with model parsimony.  

The regression model of southern Peru d18Op data with the lowest AIC score includes 

elevation and latitude as predictor variables (Table S4.3). A similar stepwise multiple linear 

regression analysis of d18Op data from central (Gonfiantini et al., 2001) and southern (Fiorella et 

al., 2015b) Bolivia retains models with elevation and MAP (Gonfiantini et al., 2001) and elevation 

(Fiorella et al., 2015b) as predictor variables. We compare our results from southern Peru against 

these two datasets because d18Op and elevation are strongly correlated in the central Andes (Figure 

4.8a) and d18Op observations from these studies span over 4000 m in elevation (d18Op and d2Hp in 

Aravena et al. (1999), Fritz et al. (1981), and Guy et al. (2019) only span approximately 2000 m 

each). Together, these results reveal that elevation is a dominant control on d18Op throughout the 

central Andes, but that there is less consistency among other predictor variables. Here we focus on 

latitude because it is retained in the best fit model of the southern Peru d18Op data and because 

focusing on this latitude–d18Op relationship leads to new insights about hydrology in the central 

Andes.  

Latitude is not directly associated with a water isotope fractionation, but is well correlated 

with average annual amount-weighted d18Op values from southern Peru (Figure 4.8c) and is a 

statistically significant predictor variable of d18Op in our dataset (Table S4.3). A similar 

relationship between d18Op and latitude is not observed in other central Andean precipitation 

isotope studies (Figure 4.8c), and there is no clear mechanism that predicts a relationship between 

precipitation isotopes and latitude in this region. Instead, the relationship between d18Op and 

latitude in southern Peru results from rainout of distinct eastern- and western-derived moisture on 

the flanks of the Eastern and Western Cordilleras, respectively (Figure 4.10). As these airmasses 
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ascend, they cool adiabatically and preferentially lose heavy isotopologues during condensation 

(Figure 4.8a). The inverse elevation–d18Op relationship on the eastern flank is well established 

(Fiorella et al., 2015b; Gonfiantini et al., 2001) and is related to Rayleigh distillation of Atlantic 

and Amazonian sourced moisture during orographic precipitation. The inverse relationship 

between elevation and d18Op observed on the western flank (Figures 4.6b and 4.8a) suggests that 

Western Cordillera precipitation isotopes reflect Rayleigh distillation of Pacific sourced moisture. 

Atmospheric back trajectories affirm this interpretation (Figure 4.10). Independently, neither 

precipitation isotopes nor moisture trajectories could verify the influence of western-sourced 

moisture. Here, the combination of these techniques shows that not only is western-sourced vapor 

transported towards the central Andes (inferred from moisture trajectories), but also that this water 

makes it to the ground as precipitation (inferred from high d18Op values). High western flank d18Op 

values could alternatively be explained by post-condensation evaporation, either as raindrops fell 

or before precipitation samples were transferred from the collection buckets, but annual average 

amount-weighted d-excessp values at western flank sites are ~10‰ (Figures 4.6d and 4.9c) and 

indicate very little evaporative effect on d18Op values. 

Finally, MAP is uncorrelated (r = –0.06) with average annual amount-weighted d18Op 

(Figure 4.8b) throughout the central Andes. These correlations do not improve substantially 

between bimonthly (r = 0.13, our data) or monthly (r = –0.08, all available monthly data) data. 

Although the “amount effect”, an observed inverse relationship between local monthly 

precipitation amount and monthly d18Op values is used to explain variations in the isotopic 

composition of tropical precipitation (Dansgaard, 1964), we do not observe a relationship between 

d18Op values and local precipitation amount in the central Andes (Figure 4.8b). The amount effect 

has been used to explain d18O variation in the Amazon Basin (e.g., Brienen et al., 2012; van 

Breukelen et al., 2008; Wang et al., 2017) and some central Andean ice cores (e.g., Hurley et al., 

2015), but local precipitation rates are frequently poor predictors of tropical precipitation isotopes 

(e.g., Vimeux et al., 2005) because factors such as upstream rainout, evapotranspiration, moisture 

convergence, and cloud type affect isotopic composition of precipitation but are not necessarily 

correlated with local precipitation amount (Konecky et al., 2019).  
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4.6.2 ENSO and central Andean d18Op 

 The climate in the central Andes is modulated by global circulation phenomena and 

regional atmospheric teleconnections, including the Madden-Julian Oscillation (MJO, Madden 

and Julian, 1994), El Niño Southern Oscillation (ENSO, Cai et al., 2020), Pacific Decadal 

Oscillation (PDO, Mantua et al., 1997), Arctic (AO) and Antarctic (AAO) Modes (Thompson and 

Wallace, 2000), and North Atlantic Oscillation (NAO, Garreaud et al., 2009; Paegle et al., 2000). 

Of these, ENSO is the dominant control on interannual climate variability in South America and 

accounts for approximately two thirds of the interannual precipitation and temperature fluctuations 

(Garreaud et al. 2009).  

 In the central Andes, negative phase ENSO (El Niño) conditions generally lead to above 

average rainfall along the west coast and below average rainfall in the Amazon and Altiplano (Cai 

et al., 2020; Diaz et al., 1998; Garreaud et al., 2009; Montini et al., 2019; Silva and Ambrizzi, 

2006; Viale et al., 2018). ENSO driven d18O variability has been observed in central Andean 

precipitation (Fiorella et al., 2015b; Guy et al., 2019; Vuille and Werner, 2005), climate model 

simulations (Insel et al., 2013; Vuille, 2003; Vuille et al., 2003), and ice cores (Bradley et al., 2003; 

Hardy et al., 2003; Hoffmann, 2003; Hoffmann et al., 2003; Thompson et al., 2017, 1984). In 

general, ENSO causes higher d18Op values in regions with lower rainfall and lower d18Op values 

in regions with more rainfall, although the relationship between ENSO and d18Op is complex and 

variable (Thompson et al., 2017; Vimeux et al., 2009).  

 Our study period followed a very strong El Niño in 2015-2016 and occurred during weak 

La Niña (2016-2017 and 2017-2018) and weak El Niño (2018-2019) conditions (National Weather 

Service, Climate Prediction Center). In this study, we observe no clear relationship between d18Op 

and ENSO (Figures 4.6a and 4.6b). Average annual amount-weighted d18Op varied up to 4‰ at 

each site (Figure 4.9b), but was not consistently lower in 2016-2017 and 2017-2018 nor higher in 

2018-2019. The longer precipitation isotope record (Figure 4.11) includes strong La Niña (2010-

2011) and El Niño (2015-2016) events that do have lower and higher d18Op values, respectively 

(Figure 4.11a). However, the interannual variability of d18Op is inconsistent with weaker ENSO 

events from 2008-2019, indicating that the relationship between ENSO and central Andean d18Op 

is complex and does not follow a simple high precipitation/more negative d18Op (La Niña) or low 

precipitation/less negative d18Op (El Niño) pattern. Broadly, the absence of a clear relationship 
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between ENSO and d18Op is further evidence that the amount effect does not fully account for 

d18Op variability in the central Andes.  

4.6.3 Additional hydrologic information from d-excess and ∆¢17O 

 To this point, interpretations of precipitation isotopes have mainly focused on d18Op and 

isotopic variability that results from large-scale circulations patterns, rainout, and convection. 

However, processes such as evaporation, moisture recycling, and airmass mixing also affect 

central Andean water cycling and isotope variability. In this section, we focus on d-excess and 

∆¢17O, which are sensitive to relative humidity and hydrologic mixing, and show how these data 

complement d18O.  

High (> 10‰) d-excessp values are common in the central Andes due to moisture recycling 

and evapotranspiration (ET) from the Amazon Basin (Ampuero et al., 2020; Lettau et al., 1979; 

Salati et al., 1979). In this study, we observe high d-excessp values and two primary types of d-

excessp variation: 1) a consistent 5-10‰ seasonal cycle with higher d-excessp values in the dry 

season and lower d-excessp values in the wet season and 2) infrequent high (> 25‰) dry season d-

excessp values at Altiplano stations (Figures 4.6c, 4.6d, and 4.11c).  

Seasonal variations in d-excessp are most prominent at San Gaban (Figure 4.6c), the lowest 

elevation site on the eastern flank, where the precipitation isotope record is continuous and 

moisture is sourced entirely from the tropical Atlantic and Amazon Basin (Figure 4.10a). Though 

muted, a similar seasonal d-excessp cycle is also observed in central Bolivia (Figure 4.11b). The 

seasonal d-excessp cycle may be related to changes in near-surface relative humidity above the 

tropical Atlantic (Dai, 2006; Pfahl and Sodemann, 2014) and land-atmosphere water fluxes as 

moisture is transported across the Amazon Basin (Ampuero et al., 2020; Gallaire et al., 2000; 

Gonfiantini et al., 2001; Roche et al., 1999; Salati et al., 1979). When relative humidity above the 

tropical Atlantic is lower (e.g., during JJAS), the kinetic fractionation associated with evaporation 

and the diffusion of water vapor through the air is larger and the d-excess of evaporated vapor is 

higher. When relative humidity above the tropical Atlantic is higher (e.g., during DJFM), water 

vapor undergoes a smaller kinetic fractionation and the d-excess of evaporated vapor is lower. 

Assuming isotopic equilibrium during condensation, downstream precipitation of these airmasses 

will retain vapor d-excess signals and have higher d-excessp in the winter and lower d-excessp in 

the summer. Similar logic could also explain seasonal ∆¢17Op variation.  
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In addition to seasonal variations in remote relative humidity, ET fluxes from the Amazon 

Basin may amplify the observed d-excessp and ∆¢17Op cycles. Although complex heterogeneity of 

vegetation and soil moisture (Marengo, 2005) makes separating evaporation and transpiration 

fluxes in the Amazon a challenge (Eltahir and Bras, 1994; Lawrence et al., 2007; Xu et al., 2019), 

an increase in the bare ground evaporation flux from the Amazon during the dry season would 

theoretically increase the d-excess and ∆¢17O of local vapor and downstream precipitation. 

However, additional work is needed on Amazon and Andean vapor and precipitation isotope 

variability to understand the magnitude of this effect (Pattnayak et al., 2019) and to decouple the 

kinetic isotope effects of ET and moisture source conditions. Higher western South America spring 

and summer moisture flux ratios (Figures 4.10b-g) may point to seasonal ET fluxes on the Western 

Cordillera as well, although additional work is needed in this region to observe and understand the 

role of plants in terrestrial water cycling in the very dry western central Andes.  

Generally, the ∆¢17O values reported here are similar to the range of meteoric water ∆¢17O 

values from previous studies in the central Andes (Aron et al., 2020; Herwartz et al., 2017; Surma 

et al., 2018) and other tropical precipitation (Landais et al., 2010). Central Andean surface water 

d-excess and ∆¢17O covary (r = 0.92, Figure 4.5b) and are sensitive to well-established kinetic 

fractionations. For example, low d-excess (–12.6 and –31.8‰) and ∆¢17O (–5 and –7 per meg) 

from lake water on the Altiplano are indicative of evaporation; high d-excess (20.3 and 20.5‰) 

and ∆¢17O (54 and 50 per meg) from eastern flank streams are associated with upstream moisture 

recycling (Salati et al., 1979).  

Temporal variations of ∆¢17Op, and the relationship with d-excessp, are more complicated. 

On the Altiplano (Macusani and Ayaviri), ∆¢17Op is generally well correlated with d-excessp, with 

higher ∆¢17Op values in the dry season and lower ∆¢17Op values in the wet season (Figures 4.7a and 

4.7b). However, at San Gaban, where the seasonal d-excessp variation is very pronounced (Figure 

4.6c), ∆¢17Op values are nearly invariant (Figure 4.7a). In this case, the difference between wet and 

dry season d-excessp at San Gaban is ~4.6‰ (Figure 4.7c). Using the observed slope between d-

excessp and ∆¢17Op in this study (0.8 per meg ‰-1) or the maximum possible steady-state d-excess–

∆¢17O slope (2 per meg ‰-1) (Barkan and Luz, 2007), this 4.6‰ d-excess variation translates to an 

expected ~4 to 10 per meg ∆¢17O variation. This range is similar to or smaller than the analytical 

∆¢17O precision in this study (7 per meg) and the long-term ∆¢17O precision (~10 per meg) reported 
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by our lab (Aron et al., 2020; Li et al., 2017, 2015; Passey and Ji, 2019) and other triple oxygen 

isotope labs (e.g., Berman et al., 2013; Schauer et al., 2016). This suggests that seasonal ∆¢17Op 

variation may exist, but is too small to be observed in this dataset. The relationship between ∆¢17Op 

and d-excessp may also be affected by moisture transport. For example, airmass mixing at Majes 

(a low elevation, western flank site) may explain why ∆¢17Op is low (~3 per meg) but d-excessp 

high (~16‰) in March 2017 (Figure 4.5b). 

Finally, we focus on the samples with very high d-excessp (> 25‰) and ∆¢17Op (> 40 per 

meg) (Figures 4.5a and 4.5b). Such high d-excessp values are uncommon in tropical precipitation, 

but are occasionally observed elsewhere in the central Andes (Fiorella et al., 2015b; Guy et al., 

2019; Vimeux et al., 2011) and other high elevation regions (Liotta et al., 2006). These high d-

excessp values are thought to reflect kinetic fractionation during ice crystal formation (Jouzel and 

Merlivat, 1984) and precipitation at very low temperatures (Samuels-Crow et al., 2014b) or deep 

convection (Bony et al., 2008; Galewsky et al., 2016) that is common on the Altiplano (Garreaud 

et al., 2003). Similarly high ∆¢17Op values are observed in winter or cold season dominated 

precipitation in the western and central US (Li et al., 2015; Tian et al., 2018). Such high ∆¢17Op 

values may result from condensation at cold (< 0 ˚C) temperatures (Aron et al., 2020; Luz and 

Barkan, 2010), which likely occurs during deep convection. However, the vertical profile of ∆¢17O 

through the atmosphere is largely unknown (Risi et al., 2013), and more work is needed to explain 

seasonal ∆¢17Op variation. High winter ∆¢17Op values are likely related to small temperature 

dependent variations between d18O and d17O, but this is an ongoing area of research.   

Despite the analytical limitations and spatiotemporal uncertainties of ∆¢17Op variation, most 

of the triple oxygen isotope data from the central Andes agree with theoretical expectations and 

observations of global hydrologic triple oxygen isotope variability (Aron et al., 2020; Luz and 

Barkan, 2010). Clearly, additional work is still needed to observe and understand the hydrologic 

processes and environmental conditions that cause ∆¢17O to vary, but these results show that the 

triple oxygen isotope system is a useful tracer of modern hydrologic processes and is an appealing 

metric of paleohydrologic conditions. 

4.6.4 Implications for paleoaltimetry and paleoclimate  

 Observations of modern precipitation isotopes help evaluate isotope-enabled climate 

models (e.g., Brady et al., 2019; Insel et al., 2013; Vuille et al., 2003) and inform interpretations 
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of proxy-based isotope records (e.g., Apaéstegui et al., 2018; Canavan et al., 2014; Cassel et al., 

2014; Polissar et al., 2009; Quade et al., 2015; Thompson et al., 2000). In the central Andes, these 

models and proxies are used to answer an array of questions about paleoclimate (e.g., Baker et al., 

2001; Bershaw et al., 2010; Mulch et al., 2010; Vimeux et al., 2009), paleoaltimetry (e.g., Garzione 

et al., 2008; Kar et al., 2016; Leier et al., 2013), paleohydrology (e.g., Jordan et al., 2019; Poulsen 

et al., 2010; Rech et al., 2019), and paleocirculation (e.g., Carrapa et al., 2019; Feng and Poulsen, 

2014; Insel et al., 2010; Rohrmann et al., 2016). In particular, the timing and geodynamical 

processes of Andean uplift remain a topic of ongoing work (e.g., Barnes and Ehlers, 2009; Ehlers 

and Poulsen, 2009; Garzione et al., 2008; Saylor and Horton, 2014; Sundell et al., 2019), and many 

attempts to reconstruct Andean elevations have relied on the stable isotope ratios from geologic 

materials (Garzione et al., 2017; Rowley and Garzione, 2007). 

Isotopic lapse rates are a critical, but challenging, component of paleoaltimetry studies. 

Generally, the eastern flank d18Op lapse rates observed in the central Andes are similar to the 

empirically derived global average windward d18O lapse rate (–2.8‰/km, Poage and Chamberlain, 

2001; Quade et al., 2007a) and thermodynamic models of the isotope-elevation relationship 

(Rowley, 2007; Rowley et al., 2001). The eastern flank d18Op lapse rate in southern Peru (–3.0 ± 

0.2‰/km, Figure 4.8a, this study) is slightly steeper than d18Op lapse rates in northern (–2.0 ± 

0.3‰/km, Gonfiantini et al., 2001) and southern (–1.9 ± 0.3‰/km, Fiorella et al., 2015) Bolivia, 

although all three are within one per mil of the global average. The differences among these d18Op 

lapse rates may be related to relationships between local topography and moisture transport or 

vertical atmospheric temperature profiles. Western flank d18Op lapse rates are less consistent with 

the global average and range from –4.4 ± 1.1‰/km in southern Peru (Figure 4.9b) to ~–10‰/km 

in northern Chile (Aravena et al., 1999; Fritz et al., 1981). Stream water from the flank of the 

Western Cordillera in southern Peru also record a d18O lapse rate ~–10‰/km (Bershaw et al., 

2016). Such steep isotopic lapse rates are inconsistent with Rayleigh distillation (Rowley, 2007), 

and likely result from the mixing of low elevation Pacific sourced moisture (high d18O) with high 

elevation Atlantic sourced moisture (low d18O) (Aravena et al., 1999). In southern Peru, the 

western flank d18O lapse rate is steeper from stream water than from precipitation because high 

elevation streams drain melted snow and ice (low d18O (typically < –15‰), Bershaw et al., 2016) 

whereas precipitation originates from western moisture sources and d18O values tend to be higher 
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(Figure 4.6b). These results highlight the substantial variability in d18O lapse rates throughout the 

central Andes and the importance of precipitation isotope data in paleoaltimetry studies. Moving 

forward, paleoaltimetry estimates should carefully consider isotopic lapse rates on a case-by-case 

basis (e.g., Sundell et al., 2019) because these elevation-isotope relationships are not constant 

across the region. 

Another challenge in interpreting central Andean isotope data is the potential for 

evaporative enrichment. Low d-excess values make evaporative effects relatively easy to detect in 

waters (e.g., Fiorella et al., 2015a). Traditionally there has not been an equivalent metric to identify 

evaporative effects in the geologic record because very few geologic materials have both oxygen- 

and hydrogen-containing minerals. Triple oxygen isotopes can fill this gap because oxygen-

bearing materials contain all three stable oxygen isotopes and ∆¢17O is sensitive to kinetic 

fractionation (Barkan and Luz, 2007). Like d-excess, ∆¢17O is lower in evaporated materials 

(Figure 4.5b) and is relatively insensitive to changes in elevation (Figure 4.8d). Here we show that 

∆¢17O in waters faithfully records information about regional climate and hydrology in the central 

Andes. This suggest that triple oxygen isotope data from oxygen-bearing geologic minerals can 

help determine paleoaridity or paleohumidity (Gázquez et al., 2018; Surma et al., 2018), 

reconstruct the isotopic composition of paleo-precipitation (Passey and Ji, 2019), and differentiate 

evaporative isotope effects from those that reflect uplift or mountain building (Rech et al., 2019).  

Finally, we note the potential influence of Pacific-sourced water vapor on central Andean 

paleoaltimetry. A Pacific moisture source has been inferred from precipitation isotope records in 

some regions of northern Chile and the Atacama Desert (Aravena et al., 1999; Herrera et al., 2018; 

Valdivielso et al., 2020), but is generally disregarded in Western Cordilleran water budgets 

(Garreaud, 1999; Garreaud et al., 2010) and in reconstructions of central Andean paleoaltimetry 

(e.g., Garzione et al., 2006). Results from this study suggest that Pacific-sourced moisture plays 

an important role in the dry western central Andes and may affect the isotopic composition of 

geologic materials in that region.  

4.7 Conclusion  

 Precipitation isotopes in the central Andes record atmospheric circulation (e.g., airmass 

mixing and convection), land-atmosphere water fluxes, and information about moisture sources. 

In this study, we combined a new three-year record of bimonthly d18Op and d2Hp from southern 
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Peru with recent and contemporaneous d18Op and d-excessp from the central Andes (Fiorella et al., 

2015b; Guy et al., 2019) to improve our understanding of spatiotemporal precipitation isotope 

variability in this region. First, we find consistent seasonal d18Op and d-excessp cycles with higher 

values in the dry season and lower values in the wet season. Seasonal d18Op is related to upstream 

precipitation (e.g., Fiorella et al., 2015b; Guy et al., 2019; Vimeux et al., 2005) and deep 

convection (e.g., Galewsky et al., 2016; Moore et al., 2014); seasonal d-excessp likely reflects 

variations in relative humidity at remote moisture sources (Dai, 2006; Pfahl and Sodemann, 2014) 

and possibly a seasonal shift in the partitioning of Amazonian evapotranspiration fluxes (Ampuero 

et al., 2020; Pattnayak et al., 2019). Second, using atmospheric back trajectories and d18Op we 

identify a clear Pacific moisture source in the dry western central Andes. Monitoring and 

quantifying Pacific-sourced vapor may play an important role in managing freshwater resources 

in coastal Peru because this region receives very little precipitation but is home to major 

metropolitan centers (e.g., Lima and Arequipa). Third, we show that d-excess and ∆¢17O covary 

and record information about moisture recycling, evaporation, local convection, and cold-

temperature condensation in the central Andes. This suggests that triple oxygen isotopes may help 

disentangle isotope records from evaporative enrichment (Quade et al., 2007b; Rech et al., 2019) 

from those that reflect uplift and mountain building processes. Together, these results highlight 

the utility of precipitation isotopes to trace and quantify water cycling and hydrologic change in 

the central Andes. 
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4.9 Supplementary information  

 

Figure S4.1 Moisture source regions in the central Andes. 
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Table S4.1 Bimonthly meteorologic data (temperature, relative humidity, and precipitation) and 
precipitation isotopes (d18Op and d2Hp) from 19 stations in southern Peru. d18Op and d2Hp in orange 
are likely tap or surface water. d18Op and d2Hp in blue have negative d-excessp values. 
Meteorologic data are missing when no data was recorded by a SENAMHI observer or the 
meteorologic sensors were broken. Isotopic data are missing when rain did not fall during a 
collection period or the observer did not collect a sample.  

San Gaban (13.451806˚S, 70.409139˚W, 657 masl) 
Year Month Day Temperature 

(°C) 
Relative 

Humidity 
(%) 

 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15 21.6 86.0 217.0 -6.3 -36.9 
2016 7 1 20.6 88.1 117.8 -0.8 11.3 
2016 7 15 22.1 87.2 272.3 -2.1 -2.5 
2016 8 1 21.2 84.6 41.9 0.0 15.6 
2016 8 15 22.5 84.7 118.2 -0.1 16.5 
2016 9 1 21.6 86.5 83.2 -0.3 17.3 
2016 9 15 20.8 84.6 90.3 -0.7 13.5 
2016 10 1 23.0 84.0 169.4 -1.6 4.3 
2016 10 15 23.1 85.3 125.7 -4.1 -17.1 
2016 11 1 23.5 84.1 183.7 -2.3 -3.8 
2016 11 15 23.4 85.3 78.4 -2.9 -6.9 
2016 12 1 23.0 86.8 162.7 -3.3 -7.8 
2016 12 15 23.0 89.4 247.6 -7.0 -42.5 
2017 1 1 23.4 87.9 381.5 -7.0 -39.6 
2017 1 15 23.3 88.3 401.3 -15.3 -111.9 
2017 2 1 24.1 85.8 217.4 -8.9 -58.2 
2017 2 15 23.2 90.1 422.6 -7.4 -44.5 
2017 3 1 22.5 90.3 509.0 -13.6 -94.9 
2017 3 15 23.6 88.5 476.1 -11.7 -80.9 
2017 4 1 23.0 88.8 252.7 -15.0 -107.6 
2017 4 15 23.2 90.0 374.5 -10.3 -70.1 
2017 5 1 22.6 88.9 287.0 -13.0 -91.1 
2017 5 15 23.0 90.9 168.1 -10.1 -65.9 
2017 6 1 22.4 94.4 307.5 -12.7 -88.3 
2017 6 15 21.8 94.0 181.8 -5.4 -26.7 
2017 7 1 21.4 95.4 195.4 -2.3 0.7 
2017 7 15 21.7 90.9 57.0 -0.3 18.8 
2017 8 1 21.0 90.2 158.9 -0.7 16.4 
2017 8 15 22.8 90.1 408.1 -2.4 1.6 
2017 9 1 23.2 89.4 344.0 -3.9 -8.8 
2017 9 15 23.3 89.1 271.4 -0.9 15.0 
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2017 10 1 22.7 90.2 130.0 0.1 24.0 
2017 10 15 24.0 86.9 94.0 -2.7 -3.3 
2017 11 1 23.4 91.8 261.1 -5.2 -24.0 
2017 11 15 24.3 90.3 186.2 -8.3 -51.6 
2017 12 1 24.1 91.7 470.1 -9.3 -58.8 
2017 12 15 24.4 90.6 286.5 -7.8 -46.9 
2018 1 1 23.4 93.9 461.1 -5.2 -30.6 
2018 1 15 22.9 93.9 533.2 -10.0 -64.3 
2018 2 1 23.4 92.1 390.6 -10.9 -74.2 
2018 2 15 23.5 92.6 358.1 -5.8 -31.6 
2018 3 1 23.6 91.4 362.2 -8.5 -50.0 
2018 3 15 23.9 92.3 540.4 -8.7 -52.8 
2018 4 1 22.9 93.9 372.7 -7.2 -42.5 
2018 4 15 23.1 93.1 290.1 -9.4 -60.2 
2018 5 1 23.2 91.2 147.7 -8.2 -50.2 
2018 5 15 22.9 93.1 163.4 -6.4 -35.5 
2018 6 1 21.8 92.0 179.4 -6.0 -33.1 
2018 6 15 19.6 95.4 114.9 -8.0 -48.4 
2018 7 1 20.7 93.5 252.6 -2.0 1.0 
2018 7 15 21.1 91.5 39.6 -0.1 16.0 
2018 8 1 21.1 91.0 100.0 -2.2 -3.6 
2018 8 15 21.2 92.3 132.5 -3.8 -11.2 
2018 9 1 21.6 90.7 200.3 -1.1 10.5 
2018 9 15 22.6 85.6 32.8 2.0 35.2 
2018 10 1 23.6 89.6 163.2 -1.7 6.5 
2018 10 15 23.7 91.9 438.5 -5.2 -25.1 
2018 11 1 23.9 91.4 219.7 -8.9 -58.3 
2018 11 15 23.6 92.8 325.7 -7.3 -44.8 
2018 12 1 23.1 96.0 367.9 -9.9 -66.9 
2018 12 15 23.6 92.6 286.1 -6.4 -37.3 
2019 1 1 23.0 94.9 856.7 -12.0 -83.9 
2019 1 15 22.7 96.6 419.9 -6.2 -35.8 
2019 2 1 23.9 92.1 384.4 -10.7 -74.6 
2019 2 15 23.8 93.0 331.9 -10.1 -73.5 
2019 3 1 23.0 94.2 467.5 -9.2 -62.7 
2019 3 15 23.9 92.7 264.7 -9.6 -66.1 
2019 4 1 23.7 93.4 487.9 -10.4 -72.9 
2019 4 15 23.5 91.0 352.0 -9.3 -61.8 
2019 5 1 23.8 93.7 293.5 -11.8 -84.9 
2019 5 15 22.7 93.9 568.5 -9.0 -60.0 
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Ollachea (13.794306˚S, 70.469927˚W, 2850 masl) 
Year Month Day Temperature 

(°C) 
Relative 

Humidity 
(%) 

 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15 11.3 71.4 0.0   
2016 7 1 10.8 76.0 4.4   
2016 7 15 12.0 72.9 47.6   
2016 8 1 11.6 63.5 2.7   
2016 8 15 11.6 77.0 7.5   
2016 9 1 12.3 74.8 2.5 -19.8 -143.8 
2016 9 15 12.3 75.4 4.5 -11.6 -82.8 
2016 10 1 13.0 79.3 20.2 -11.5 -80.9 
2016 10 15 12.8 87.4 41.0 -19.8 -144.1 
2016 11 1 13.2 85.1 43.5 -11.6 -82.2 
2016 11 15 14.0 82.2 3.2   
2016 12 1 13.3 85.2 33.0 -13.8 -98.7 
2016 12 15 13.0 88.8 55.2 -13.7 -98.8 
2017 1 1 13.4 88.4 71.7 -19.7 -144.0 
2017 1 15 13.2 90.4 143.7 -13.7 -99.2 
2017 2 1 13.2 89.7 86.0 -13.7 -97.8 
2017 2 15 13.7 90.0 54.8 -19.7 -144.3 
2017 3 1 12.5 93.0 176.3 -13.8 -99.2 
2017 3 15 13.4 91.2 96.5 -14.6 -99.3 
2017 4 1 12.9 92.2 97.7 -16.3 -114.9 
2017 4 15 13.3 91.0 32.0 -15.6 -113.8 
2017 5 1 12.9 88.6 19.7   
2017 5 15 13.1 88.5 18.0   
2017 6 1 12.6 90.0 21.0   
2017 6 15 12.2 86.5 7.7   
2017 7 1 11.5 84.5 8.2   
2017 7 15 10.6 80.9 4.8 -15.5 -112.5 
2017 8 1 10.8 76.1 9.6 -15.4 -112.5 
2017 8 15 12.1 75.7 0.0   
2017 9 1 12.6 79.6 17.2   
2017 9 15 12.9 82.6 61.5 -15.5 -112.9 
2017 10 1 12.5 84.6 24.1   
2017 10 15 13.3 77.6 20.2   
2017 11 1 13.5 85.8 33.1 -15.5 -113.0 
2017 11 15 14.0 87.6 52.9 -15.6 -113.0 
2017 12 1 14.2 82.4 42.9 -15.5 -112.6 
2017 12 15 13.8 88.6 69.1 -15.5 -112.5 
2018 1 1 13.4 93.0 98.6 -15.5 -112.5 
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2018 1 15 12.7 93.1 78.4 -15.6 -112.7 
2018 2 1 13.2 90.5 109.2 -15.6 -112.8 
2018 2 15 13.3 94.1 167.3   
2018 3 1 13.1 92.8 103.7   
2018 3 15 13.9 91.2 139.7 -15.6 -112.7 
2018 4 1 13.1 93.7 108.6   
2018 4 15 12.9 88.3 27.2 -15.7 -112.9 
2018 5 1 12.5 90.1 37.3   
2018 5 15 12.4 86.8 2.3   
2018 6 1 11.2 79.6 0.0   
2018 6 15 11.2 82.8 64.7   
2018 7 1 11.0 78.5 4.2   
2018 7 15 11.1 75.3 3.2 -11.6 -82.7 
2018 8 1 11.3 75.4 43.2   
2018 8 10  NA NA NA  -11.7 -83.4 
2018 8 15 11.2 86.2 17.2   
2018 9 1 11.5 84.2 17.4 -11.7 -83.4 
2018 9 15 12.6 68.1 1.6 -11.7 -83.2 
2018 10 1 13.8 77.2 16.4   
2018 10 15 13.8 86.0 80.2 -11.7 -83.5 
2018 11 1 13.5 90.7 86.0   
2018 11 15 13.8 89.9 86.3 -11.7 -83.5 
2018 12 1 14.3 91.5 63.6 -9.4 -64.4 
2018 12 15 14.2 84.8 50.8 -9.4 -64.0 
2019 1 1 13.6 91.7 165.8 -9.4 -63.8 
2019 1 15 13.7 92.8 59.7 -9.3 -64.5 
2019 2 1 14.1 91.2 162.8 -9.3 -64.3 
2019 2 15 13.8 93.4 136.0 -9.4 -63.7 
2019 3 1 13.5 93.2 106.6 -9.3 -64.0 
2019 3 15 14.5 89.7 57.9 -9.4 -63.7 
2019 4 1 13.9 93.2 149.3 -15.4 -112.4 
2019 4 15 13.6 86.3 52.8   
2019 5 1 14.2 88.9 15.9   
2019 5 15 13.4 88.6 60.4   
2019 5 21  NA NA NA  -9.8 -63.8 

 
Macusani (14.07˚S, 70.43908˚W, 4345 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15 1.0 54.3 0.0   
2016 7 1 1.8 61.5 0.0   
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2016 7 15 2.1 66.6 24.0 -21.1 -150.9 
2016 8 1 1.7 48.7 0.0   
2016 8 15 2.8 59.5 0.0   
2016 9 1 3.1 61.6 1.0   
2016 9 15 3.7 60.6 0.0 -8.4 -28.8 
2016 10 1 4.4 70.4 22.0 -9.5 -34.0 
2016 10 15 5.3 72.7 22.5 -13.4 -87.2 
2016 11 1 5.2 75.6 55.0 -8.9 -47.1 
2016 11 15 5.9 67.7 3.5   
2016 12 1 5.7 71.3 49.0   
2016 12 15 5.7 76.8 26.0 -12.9 -81.2 
2017 1 1 6.0 76.9 39.5 -21.0 -145.5 
2017 1 15 5.7 80.5 80.0 -20.9 -146.9 
2017 2 1 5.8 76.9 33.5 -14.0 -93.5 
2017 2 15 6.0 77.5 25.5 -14.3 -97.4 
2017 3 1 5.9 77.2 73.0 -21.3 -147.1 
2017 3 15 8.7 70.2 47.0 -24.2 -174.1 
2017 4 1 8.6 69.8 39.5 -27.8 -210.9 
2017 4 15 9.0 69.4 44.0 -23.0 -164.9 
2017 5 1 9.4 67.9 33.5 -18.8 -137.5 
2017 5 15 7.9 71.9 11.0 -11.9 -85.9 
2017 6 1 4.4 81.7 11.0 -15.2 -106.5 
2017 6 15 3.5 76.3 0.0   
2017 7 1 3.0 66.9 2.5   
2017 7 15 2.0 67.2 0.5   
2017 8 1 2.2 57.9 0.5   
2017 8 15 3.3 56.1 0.0   
2017 9 1 3.7 69.1 3.0 -16.9 -121.2 
2017 9 15 4.3 74.1 12.6 -15.2 -109.3 
2017 10 1 5.0 74.4 16.5 -7.6 -40.8 
2017 10 15 4.2 68.9 38.2 -7.8 -40.6 
2017 11 1 5.3 76.2 14.0 -21.1 -156.0 
2017 11 15 5.8 79.3 36.5 -21.0 -156.9 
2017 12 1 6.0 74.6 25.0 -21.1 -157.5 
2017 12 15 6.4 78.3 37.5 -18.2 -131.2 
2018 1 1 6.1 83.6 63.8 -18.2 -131.1 
2018 1 15 5.2 87.3 64.0 -19.2 -139.0 
2018 2 1 5.1 85.4 69.5 -19.2 -138.8 
2018 2 15 6.0 88.7 61.1 -17.8 -128.4 
2018 3 1 5.2 86.4 60.0 -22.2 -161.4 
2018 3 15 6.2 84.4 83.5 -22.6 -165.6 
2018 4 1 5.2 86.9 84.0 -21.3 -156.8 
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2018 4 15 5.1 80.9 3.5   
2018 5 1 4.8 81.0 5.2   
2018 5 15 4.0 75.5 7.5   
2018 6 1 2.5 68.6 0.0   
2018 6 15 2.0 80.2 31.0   
2018 7 1 1.9 69.0 0.0   
2018 7 15 1.3 64.0 4.0   
2018 8 1 1.6 71.8 33.0   
2018 8 15 2.6 79.7 8.0   
2018 9 1 3.1 74.0 9.5   
2018 9 15 3.5 63.1 0.0   
2018 10 1 4.4 72.5 27.0   
2018 10 15 5.1 80.4 36.0   
2018 11 1 5.7 83.8 55.5   
2018 11 15 6.2 81.2 52.3   
2018 12 1 6.6 81.7 38.5   
2018 12 15 6.3 71.4 2.5   
2019 1 1 5.7 84.3 74.5   
2019 1 15 5.7 86.6 82.9   
2019 2 1 5.9 86.3 69.5   
2019 2 15 5.9 88.1 56.0   
2019 3 1 6.3 86.4 59.5   
2019 3 15 6.3 83.7 41.5   
2019 4 1 6.0 86.7 70.0   
2019 4 15 5.8 79.2 26.0   
2019 5 1 5.9 82.6 14.5   
2019 5 15   31.0   

 
Ayaviri (14.87172˚S, 70.59325˚W, 3906 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15     0.0   
2016 7 1 5.5 38.5 0.3   
2016 7 15 5.7 46.1 9.1   
2016 8 1 6.2 34.1 0.0   
2016 8 15 7.7 38.3 0.1   
2016 9 1 7.9 39.8 6.5   
2016 9 15 8.6 31.3 0.0   
2016 10 1 9.6 48.7 13.2   
2016 10 15 9.6 52.2 19.1 -8.7 -46.9 
2016 11 1 9.7 57.8 30.8 -8.3 -45.4 
2016 11 15 10.5 44.2 20.3 -3.4 2.6 
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2016 12 1 10.3 47.8 23.5 -4.5 -2.2 
2016 12 15 10.3 59.3 30.7 -15.3 -104.9 
2017 1 1 10.9 58.4 25.2 -16.9 -112.6 
2017 1 15 9.9 67.6 20.5 -17.6 -120.3 
2017 2 1 10.0 62.9 13.8 -13.6 -91.1 
2017 2 15 13.0 55.5 15.1 -9.8 -62.7 
2017 3 1 10.8 67.0 49.0 -24.5 -178.0 
2017 3 15 12.2 65.2 52.4 -26.0 -192.5 
2017 4 1 13.0 64.2 72.3 -26.6 -192.7 
2017 4 15 13.3 63.4 15.4 -19.7 -145.3 
2017 5 1 12.1 64.7 21.7 -18.9 -140.6 
2017 5 15 12.2 59.2 1.4 -16.2 -120.3 
2017 6 1 7.8 65.1 30.0 -13.7 -100.8 
2017 6 15 6.7 48.0 0.0   
2017 7 1 6.2 43.4 9.2   
2017 7 15 5.6 43.0 0.2   
2017 8 1 6.7 31.6 0.0   
2017 8 15 7.5 28.3 0.0   
2017 9 1 8.3 34.1 0.0   
2017 9 15 8.8 57.7 14.8 -7.0 -37.0 
2017 10 1 9.8 51.2 14.0 -5.9 -25.4 
2017 10 15 9.3 44.9 31.5 -11.0 -66.7 
2017 11 1 10.5 49.7 4.8 -12.8 -89.3 
2017 11 15 10.2 60.3 35.5 -13.4 -89.2 
2017 12 1 11.1 49.8 28.3 -4.1 -16.8 
2017 12 15 10.6 55.2 28.2 -10.7 -74.4 
2018 1 1 9.7 71.6 68.1 -15.8 -110.3 
2018 1 15 9.1 73.8 62.9 -16.1 -110.3 
2018 2 1 9.5 71.7 42.9 -19.7 -143.9 
2018 2 15 9.8 77.0 42.7 -16.8 -121.5 
2018 3 1 9.1 75.2 88.5 -20.7 -149.0 
2018 3 15 9.5 78.6 102.2 -18.3 -130.3 
2018 4 1 9.2 71.8 23.0 -19.7 -144.8 
2018 4 15 8.3 60.3 0.4 -11.8 -87.4 
2018 5 1 8.1 62.6 28.3 -17.5 -123.1 
2018 5 15 7.7 54.2 0.9   
2018 6 1 6.0 40.2 0.0   
2018 6 15 6.0 64.0 22.0 -11.3 -76.1 
2018 7 1 6.1 49.1 0.0   
2018 7 15 6.0 45.4 1.0 -14.2 -101.3 
2018 8 1 5.7 54.8 20.7 -14.4 -101.7 
2018 8 15 6.3 57.6 14.0 -9.7 -61.8 
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2018 9 1 7.9 42.5 1.2 -4.7 -20.7 
2018 9 15 9.0 38.1 0.1   
2018 10 1 9.3 42.0 9.1 -3.3 8.9 
2018 10 15 9.5 63.0 22.9 -8.8 -51.8 
2018 11 1 9.7 67.2 19.1 -11.7 -76.6 
2018 11 15 10.9 58.9 14.0 -8.5 -56.6 
2018 12 1 11.0 52.0 20.4 -11.4 -81.1 
2018 12 15 11.2 39.8 0.5   
2019 1 1 10.1 67.5 28.4 -15.6 -111.8 
2019 1 15 10.4 67.0 66.5 -19.3 -138.8 
2019 2 1 10.3 70.0 70.2 -17.2 -128.3 
2019 2 15 9.3 79.5 82.2 -22.1 -162.9 
2019 3 1 10.1 72.6 45.6 -22.5 -168.4 
2019 3 15 10.1 72.0 63.6 -18.2 -131.4 
2019 4 1 9.8 75.4 40.7 -19.3 -142.3 
2019 4 15 9.5 64.7 14.2 -20.8 -152.0 
2019 5 1 9.2 70.9 16.7 -16.0 -118.1 
2019 5 15 8.5 66.9 11.0 -12.1 -85.9 

 
Ichuña (16.14075˚S, 70.53725˚W, 3792 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15         
2016 7 1       -5.7 -27.0 
2016 7 15       -5.6 -24.8 
2016 8 1         
2016 8 15         
2016 9 1       -5.6 -24.8 
2016 9 15         
2016 10 1       -5.3 -23.1 
2016 10 15       -5.2 -22.2 
2016 11 1       -5.2 -22.0 
2016 11 15       -5.2 -21.6 
2016 12 1       -5.1 -22.7 
2016 12 15       -5.2 -22.2 
2017 1 1       -2.4 0.4 
2017 1 15       -2.8 -1.1 
2017 2 1       -19.9 -143.5 
2017 2 15       -20.0 -145.4 
2017 3 1       -20.1 -145.9 
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2017 3 15       -20.0 -145.8 
2017 4 1       -20.1 -145.7 
2017 4 15       -20.0 -145.9 
2017 5 1         
2017 5 15 8.6 29.6     
2017 6 1 8.1 49.5     
2017 6 15 7.9 32.6     
2017 7 1 8.0 27.2     
2017 7 15 7.3 24.3     
2017 8 1 8.6 20.2     
2017 8 15 8.5 17.0     
2017 9 1 8.9 18.5     
2017 9 15 9.6 42.2     
2017 10 1 11.1 29.1     
2017 10 15 10.7 34.9     
2017 11 1 11.8 29.1     
2017 11 15 12.5 32.1     
2017 12 1 12.5 34.1   -15.7 -111.0 
2017 12 15 13.3 32.3   -15.7 -111.4 
2018 1 1 11.0 61.3   -15.7 -111.4 
2018 1 15 10.9 62.5   -15.7 -111.3 
2018 2 1 10.9 65.0   -15.7 -111.2 
2018 2 15 11.0 71.6   -15.8 -111.6 
2018 3 1 10.8 66.8   -15.7 -111.4 
2018 3 15 10.8 70.2   -15.7 -111.3 
2018 4 1 10.6 63.5   -12.7 -89.1 
2018 4 15 11.0 46.2   -12.7 -89.0 
2018 4 23 10.5 56.4   -12.6 -88.9 
2018 5 1 9.5 41.3   -15.5 -111.3 
2018 5 15 7.8 23.1     
2018 6 1 6.5 62.5   -15.7 -112.9 
2018 6 15 7.6 40.3     
2018 7 1 8.2 34.2     
2018 7 15 7.4 49.8   -15.1 -111.9 
2018 8 1 8.2 30.1     
2018 8 15 8.8 23.4     
2018 9 1 10.4 21.4     
2018 9 15 9.8 25.1     
2018 10 1 10.8 47.1     
2018 10 15 11.9 40.5     
2018 11 1 13.1 32.0     
2018 11 15 12.9 26.7   -14.1 -105.6 
2018 12 1 13.4 30.3   -14.4 -106.3 
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2018 12 15 12.0 54.6   -14.5 -105.9 
2019 1 1 12.0 57.7   -14.8 -110.2 
2019 1 15 11.4 68.0   -15.0 -110.0 
2019 2 1 10.0 77.2   -21.7 -166.7 
2019 2 15 11.7 66.8   -12.8 -95.8 
2019 3 1 11.4 66.1   -13.2 -95.8 
2019 3 15 11.9 56.5   -13.5 -94.8 
2019 4 1 10.8 48.8     
2019 4 15 10.8 56.0   -18.2 -147.9 
2019 5 1 10.9 56.4     
2019 5 15 10.1 45.8     

 
Carumas (16.81117˚S, 70.695063˚W, 2976 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15     0.0   
2016 7 1 12.9 27.0 2.2   
2016 7 15 12.5 34.8 2.9   
2016 8 1 13.2 24.5 0.0   
2016 8 15 13.0 26.7 0.0   
2016 9 1 13.2 27.4 0.0   
2016 9 15 13.1 28.5 0.0   
2016 10 1 14.5 31.3 0.0   
2016 10 15 13.5 30.1 0.0   
2016 11 1 13.9 34.5 0.0   
2016 11 15 13.9 33.3 0.0   
2016 12 1 13.3 34.5 0.0   
2016 12 15 13.1 50.0 0.0   
2017 1 1 13.0 69.9 19.5 -10.9 -70.4 
2017 1 15 11.5 91.3 109.4 -7.7 -42.4 
2017 1 30     135.3 -8.8 -50.9 
2017 2 1 11.8 91.3 2.9 -6.6 -29.7 
2017 2 15 12.1 80.0 4.0 -1.5 -6.2 
2017 2 28     107.6 -4.5 -9.0 
2017 3 1 10.2 93.7 1.0 -11.4 -69.2 
2017 3 15 11.9 89.4 70.5 -6.7 -29.9 
2017 3 30     46.2 -5.4 -17.7 
2017 4 1 11.8 87.7 46.4   
2017 4 15 13.3 65.9 0.2   
2017 5 1 12.9 55.3 0.0   
2017 5 15 12.9 43.7 0.0   
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2017 6 1 12.5 36.4 1.2   
2017 6 15 11.9 28.1 0.0 -10.0 -62.7 
2017 7 1 12.2 24.6 0.0   
2017 7 15 12.6 21.0 0.0   
2017 8 1 12.8 18.5 0.0   
2017 8 15 12.8 16.8 0.0   
2017 9 1 12.8 17.9 0.0   
2017 9 15 13.6 29.6 0.0   
2017 10 1 14.0 28.3 0.0   
2017 10 15 13.8 29.3 0.0   
2017 11 1 14.2 27.0 0.0   
2017 11 15 13.7 34.3 0.0   
2017 12 1 13.4 39.5 0.0   
2017 12 15 13.3 47.5 0.0   
2018 1 1 12.2 68.2 28.8 -9.0 -54.5 
2018 1 15 11.6 75.2 15.6 -9.0 -54.4 
2018 2 1 12.9 75.7 33.8 -9.0 -54.3 
2018 2 15 12.7 81.2 26.2 4.1 -9.0 
2018 3 1 11.3   27.9 -8.8 -53.4 
2018 3 15 13.3   12.0 4.1 -8.9 
2018 4 1 12.1   25.3 4.1 -8.6 
2018 4 15 12.2   0.0   
2018 5 1 13.2 59.6 2.4   
2018 5 15 12.9 36.6 0.0   
2018 6 1 12.4 19.7 0.0   
2018 6 15 11.3 42.2 0.7   
2018 7 1 12.2 29.8 0.0   
2018 7 15 12.3 26.3 1.3   
2018 8 1 11.4 37.9 6.0   
2018 8 15 12.7 21.8 0.0   
2018 9 1 13.4 18.9 0.0   
2018 9 15 13.7 21.0 0.0   
2018 10 1 14.1 18.4 0.0   
2018 10 15 13.5 34.7 0.0   
2018 11 1 13.8 31.1 0.0   
2018 11 15 14.0 35.2 0.0   
2018 12 1 13.9 33.1 0.0   
2018 12 15 14.8 34.0 0.0   
2019 1 1 13.9 52.6 9.4   
2019 1 15 13.0 67.7 7.6 -13.2 -96.5 
2019 2 1 13.2 81.1 92.6 -13.2 -97.8 
2019 2 15 13.0 85.4 154.8 -13.3 -98.1 
2019 3 1 12.4 85.1 10.5 -13.3 -98.2 
2019 3 15 13.2 76.8 71.3 -13.3 -98.3 
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2019 4 1 13.5 63.6 6.0 -13.3 -98.3 
2019 4 15 13.1 51.6 0.0 -13.3 -98.3 
2019 5 1 14.0 49.5 0.0   
2019 5 15 18.8 36.3 0.0   

 
Orcopampa (15.265889˚S, 72.342778˚W, 3779 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15     0.0   
2016 7 1 7.6 36.4 0.0   
2016 7 15 7.2 43.0 3.3   
2016 8 1 8.2 29.9 0.0   
2016 8 15 8.5 33.0 0.0   
2016 9 1 8.8 34.7 1.0   
2016 9 15 9.4 30.7 0.0   
2016 10 1 10.7 35.3 0.0   
2016 10 15 9.8 33.5 0.6   
2016 11 1 9.8 44.2 17.0   
2016 11 15 9.7 42.7 0.5   
2016 12 1 10.4 37.1 0.9   
2016 12 15 10.6 51.4 8.0 -23.1 -171.7 
2017 1 1 10.8 63.3 58.6 -23.1 -171.3 
2017 1 15 9.7 76.9 170.6 -23.5 -172.9 
2017 2 1 10.0 76.0 102.2   
2017 2 15 10.6 64.6 6.9   
2017 3 1 9.0 76.0 78.1   
2017 3 15 9.5 76.4 124.9   
2017 4 1 9.6 76.0 91.9 -23.6 -172.5 
2017 4 1 9.8 67.5 11.3   
2017 5 1 8.8 66.1 9.6   
2017 5 15 8.5 50.3 0.7   
2017 6 1 7.8 55.4 9.1   
2017 6 15 7.2 41.2 0.0   
2017 7 1 6.7 38.4 2.9   
2017 7 15 7.4 38.4 0.0   
2017 8 1 7.3 27.9 0.0   
2017 8 15 7.6 25.2 0.0   
2017 9 1 8.1 27.3 0.0   
2017 9 15 8.6 49.8 4.1 -19.6 -147.4 
2017 10 1 9.9 37.1 3.0   
2017 10 15 9.4 40.3 9.4 -19.5 -147.9 
2017 11 1 9.8 38.0 2.1   
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2017 11 15 10.0 39.9 7.6   
2017 12 1 10.6 43.6 1.1 -19.6 -148.3 
2017 12 15 10.7 42.2 4.3 -19.5 -147.9 
2018 1 1 9.3 72.7 79.3 -19.7 -148.6 
2018 1 15 9.3 71.2 23.3 -19.7 -148.7 
2018 2 1 9.3 74.1 94.8 -19.7 -148.6 
2018 2 15 10.4 70.6 67.9 -19.6 -148.5 
2018 3 1 9.7 73.1 29.4 -23.2 -171.2 
2018 3 15 9.6 76.1 56.6 -23.2 -171.5 
2018 4 1 9.6 71.7 24.3 -23.2 -171.4 
2018 4 15 9.5 64.5 15.1   
2018 5 1 9.6 61.6 11.6   
2018 5 15 8.1 52.2 4.3   
2018 6 1 6.9 32.4 0.0   
2018 6 15 6.4 60.6 10.4   
2018 7 1 6.3 45.9 0.0   
2018 7 15 7.3 42.6 2.0   
2018 8 1 6.6 51.7 9.7   
2018 8 15 7.7 36.1 3.7   
2018 9 1 8.3 33.5 0.0   
2018 9 15 9.2 28.4 0.0   
2018 10 1 9.7 24.3 0.0   
2018 10 15 9.4 50.5 14.0 -7.1 -49.0 
2018 11 1 10.2 43.2 5.1 -7.1 -49.7 
2018 11 15 11.1 38.7 3.3   
2018 12 1 10.6 32.4 0.0   
2018 12 15 11.6 39.6 0.9 -7.0 -49.3 
2019 1 1 11.0 59.5 22.1 -7.1 -49.6 
2019 1 15 10.6 60.5 21.2 -7.2 -50.0 
2019 2 1 10.5 75.3 82.0 -7.2 -49.9 
2019 2 15 10.1 76.4 31.1 -7.2 -50.0 
2019 3 1 9.8 77.3 55.7 -7.2 -49.9 
2019 3 15 10.8 73.1 34.0 -7.2 -49.9 
2019 4 1 10.1 69.9 30.7   
2019 4 15 9.1 61.3 0.9   
2019 5 1 9.7 66.2 2.9   
2019 5 15 9.2 57.0 0.8   
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Majes (16.343056˚S, 72.1525˚W, 1498 masl) 
Year Month Day Temperature 

(°C) 
Relative 

Humidity 
(%) 

 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15 16.9 40.3 0.0   
2016 7 1 16.2 49.9 0.0   
2016 7 15 17.9 48.9 0.0   
2016 8 1     0.0   
2016 8 15     0.0   
2016 9 1     0.0   
2016 9 15     0.0   
2016 10 1     0.0   
2016 10 15     0.0   
2016 11 1 17.9 50.0 0.0   
2016 11 15 18.0 45.9 0.0   
2016 12 1 17.7 52.2 0.0   
2016 12 15 18.3 58.1 0.0   
2017 1 1 18.1 63.1 0.0   
2017 1 15 18.9 72.4   -4.7 -14.6 
2017 2 1 18.6 77.2 0.1 -7.5 -44.0 
2017 2 15 19.0 71.9 0.0   
2017 3 1 18.8 65.7   -1.1 5.7 
2017 3 15 18.9 70.8   -3.6 -11.2 
2017 4 1 18.5 73.2 0.0   
2017 4 15 17.7 68.9 0.0   
2017 5 1 17.6 66.7 0.0   
2017 5 15 16.4 65.7 0.0   
2017 6 1 16.3 64.4 0.0   
2017 6 15 15.8 50.2 0.0   
2017 7 1 15.9 52.7 0.0   
2017 7 15 16.6 40.6 0.0   
2017 8 1 16.8 38.9 0.0   
2017 8 15 15.4 40.3 0.0   
2017 9 1 16.5 37.4 0.0   
2017 9 15 16.3 49.4 0.0   
2017 10 1 18.0 37.9 0.0   
2017 10 15 17.3 45.3 0.0   
2017 11 1 18.0 39.8 0.0   
2017 11 15 17.9 43.2 0.0   
2017 12 1 16.3 52.1 0.0   
2017 12 15 18.3 53.0 0.0   
2018 1 1 17.9 66.4 0.2 -1.2 -20.3 
2018 1 15 18.0 62.0 0.0   
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2018 2 1 18.2 67.8   -4.9 -32.9 
2018 2 15 18.0 73.2 0.1 -2.8 -6.6 
2018 3 1 17.8 73.5 0.0   
2018 3 15 19.1 62.4 0.0   
2018 4 1 18.6 67.6 0.0   
2018 4 15 17.4 66.5 0.0   
2018 5 1 15.7 59.9 0.4   
2018 5 15 16.9 59.2 0.0   
2018 6 1 16.7 46.3 0.0   
2018 6 15 18.5 37.8 0.0   
2018 7 1 16.9 41.2 0.0   
2018 7 15 17.4 37.2 0.0   
2018 8 1 17.9 40.5 0.0   
2018 8 15 17.4 34.2 0.0   
2018 9 1 17.4 32.8 0.0   
2018 9 15 17.1 35.9 0.0   
2018 10 1 17.9 35.2 0.0   
2018 10 15 18.1 44.3 0.0   
2018 11 1 18.0 43.3 0.0   
2018 11 15 18.1 48.7 0.0   
2018 12 1 17.9 45.3 0.0   
2018 12 15 18.3 54.1 0.0   
2019 1 1 19.0 59.8 0.1   
2019 1 15 18.0 73.9 0.0   
2019 2 1 19.3 73.3 0.0   
2019 2 15 19.3 83.9 8.7   
2019 3 1 19.8 68.8 0.0   
2019 3 15 20.0 69.3 0.0   
2019 4 1 18.8 61.7 0.1   
2019 4 15 17.7 63.6 0.0   
2019 5 1 18.1 64.4 0.0   
2019 5 15 18.2 52.4 0.6   

 
Santo Tomas (14.450333˚S, 72.095917˚W, 3658 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15 9.9 31.7 0.0   
2016 7 1 8.5 36.8 5.8   
2016 7 15 8.7 43.1 8.8 -13.9 -99.2 
2016 8 1 9.9 29.8 0.0 -14.2 -98.7 
2016 8 15 9.9 37.9 0.0   
2016 9 1 10.3 37.2 7.6 -6.3 -18.4 
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2016 9 15 11.7 27.5 0.0 -6.4 -20.3 
2016 10 1 11.3 46.0 7.2 -2.2 17.6 
2016 10 15 11.0 47.1 28.0 -9.7 -49.9 
2016 11 2 11.2 49.3 34.0 -5.5 -18.6 
2016 11 15 12.2 39.5 2.0   
2016 12 1 11.7 43.6 27.0   
2016 12 15 10.8 63.8 33.0 -10.3 -63.5 
2017 1 1 11.7 63.9 59.2 -19.6 -142.7 
2017 1 15 10.4 75.3 99.6 -19.0 -143.8 
2017 2 1 10.6 71.3 115.2 -21.0 -155.8 
2017 2 15 11.3 65.2 21.0 -15.7 -109.0 
2017 3 1 9.9 75.2 91.6 -24.9 -187.6 
2017 3 15 10.4 76.4 150.8   
2017 4 1 10.5 71.9 86.2   
2017 4 15 10.8 70.8 7.2   
2017 5 1 10.1 68.3 26.6   
2017 5 15 10.4 57.5 4.6 -16.1 -118.8 
2017 6 1 9.0 64.1 16.0 -12.1 -88.4 
2017 6 15 9.0 48.3 0.0   
2017 7 1 9.3 41.3 n.d. -11.8 -85.0 
2017 7 15 8.8 42.6 7.0 -11.8 -84.6 
2017 8 1 9.6 33.6 0.0   
2017 8 15 10.2 27.9 n.d. -2.8 -1.2 
2017 9 1 10.6 33.8 n.d. -2.6 0.4 
2017 9 15 10.8 53.2 23.6   
2017 10 1 11.4 49.2 32.0   
2017 10 15 11.0 45.6 37.0 -2.7 -0.1 
2017 11 1 10.9 52.4 24.2 -10.9 -71.6 
2017 11 15 11.2 55.3 43.6 -10.8 -71.0 
2017 12 1 12.4 48.6 6.6   
2017 12 15 12.1 49.6 10.4 -9.4 -57.8 
2018 1 1 10.3 73.9 153.4 -14.3 -103.4 
2018 1 15 10.2 73.8 81.6 -23.4 -175.9 
2018 2 1 10.3 71.1 69.8   
2018 2 15 10.8 74.9 98.0   
2018 3 1 10.3 75.0 83.6 -18.0 -131.1 
2018 3 15 11.6 78.8 93.4   
2018 4 1 10.6 71.6 39.0 -29.3 -216.1 
2018 4 15 10.6 62.7 8.2 -17.7 -130.5 
2018 5 1 10.4 64.4 26.8 -12.8 -86.1 
2018 5 15 8.2 54.2 5.4 -12.7 -87.0 
2018 6 1 9.0 36.9 0.0   
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2018 6 15 7.8 63.4 11.8 -15.6 -114.5 
2018 7 1 8.1 46.1 0.0   
2018 7 15 8.4 44.6 2.8 -4.4 -23.0 
2018 8 1 8.1 53.4 21.2   
2018 8 15 7.9 56.1 28.2   
2018 9 1 9.4 44.6 7.9   
2018 9 15 11.2 36.8 2.2   
2018 10 1 10.8 37.4 2.4 -6.7 -39.2 
2018 10 15 11.0 56.3 32.6 -11.7 -81.7 
2018 11 1 10.9 65.0 16.8   
2018 11 15 12.0 58.1 68.8   
2018 12 1 12.4 48.1 5.6 -9.4 -59.5 
2018 12 15 12.3 43.0 6.0   
2019 1 1 10.9 68.8 35.6 -9.9 -71.9 
2019 1 15 11.5 66.9 48.0   
2019 2 1 10.7 77.5 111.0   
2019 2 15 10.3 81.2 97.8   
2019 3 1 10.6 80.3 104.0   
2019 3 15 10.8 79.5 91.0   
2019 4 1 10.7 80.5 72.4 -13.0 -89.7 
2019 4 15 10.9 66.4 10.2   
2019 5 1 10.3 74.0 17.6   
2019 5 12       -17.8 -131.2 
2019 5 15 10.3 66.3 8.4   

 
Ayo (15.679167˚S, 72.270278˚W, 1956 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2016 6 15     0.0   
2016 7 1 16.9 34.7 0.0   
2016 7 15 17.2 37.6 0.0   
2016 8 1 16.5 27.4 0.0   
2016 8 15 17.0 29.6 0.0   
2016 9 1 17.1 30.4 0.0   
2016 9 15 17.0 33.6 0.0   
2016 10 1 17.0 34.7 0.0   
2016 10 15 17.1 34.8 0.0   
2016 11 1 18.0 40.9 0.0   
2016 11 15 19.9 37.1 0.0   
2016 12 1 21.9 37.9 0.0   
2016 12 15 22.4 49.8 0.0   
2017 1 1 22.0 60.5 0.0   
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2017 1 15 21.1 71.6 0.0   
2017 2 1 21.0 73.0 0.0   
2017 2 15 20.5 67.1 0.0   
2017 3 1 20.8 73.5 0.0   
2017 3 15 20.1 76.4 0.0   
2017 4 1 20.2 74.1 0.0   
2017 4 15 21.4 70.0 0.0   
2017 5 1 21.9 62.4 0.0   
2017 5 15 22.4 59.6 0.0   
2017 6 1 18.0 42.9 0.0   
2017 6 15 16.7 33.1 0.0   
2017 7 1 17.2 29.4 0.0   
2017 7 15 17.4 26.0 0.0   
2017 8 1 16.9 20.1 0.0   
2017 8 15 16.9 23.5 0.0   
2017 9 1 17.1 23.3 0.0   
2017 9 15 17.7 34.1 0.0   
2017 10 1 17.6 31.0 0.0   
2017 10 15 17.7 35.7 0.0   
2017 11 1 17.6 32.9 0.0   
2017 11 15 17.8 36.2 0.0   
2017 12 1 17.5 46.4 0.0   
2017 12 15 18.2 49.7 0.0   
2018 1 1 18.2 63.3 0.0   
2018 1 15 18.1 59.2 0.0   
2018 2 1 18.4 71.5 0.0   
2018 2 15 18.6 68.6 0.0   
2018 3 1 18.6 67.4 0.0   
2018 3 15 18.8 62.2 0.0   
2018 4 1 18.5 67.3 0.0   
2018 4 15 17.8 64.7 0.0   
2018 5 1 18.2 60.4 0.0   
2018 5 15 17.5 49.3 0.0   
2018 6 1 16.9 28.1 0.0   
2018 6 15 17.8 37.8 0.0   
2018 7 1 17.4 28.6 0.0   
2018 7 15 17.0 29.7 0.0   
2018 8 1 17.0 37.3 0.0   
2018 8 15 17.2 26.2 0.0   
2018 9 1 17.8 22.6 0.0   
2018 9 15 16.8 30.0 0.0   
2018 10 1 17.1 25.9 0.0   
2018 10 15 17.9 34.7 0.0   
2018 11 1 17.9 35.0 0.0   
2018 11 15 17.8 42.2 0.0   
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2018 12 1 17.3 39.3 0.0   
2018 12 15 17.7 44.1 0.0   
2019 1 1 18.7 55.4 0.0   
2019 1 15 18.5 63.0 0.0   
2019 2 1 18.9 74.3 0.0   
2019 2 15 19.1 79.6 0.0   
2019 3 1 18.9 70.3 0.0   
2019 3 15 19.1 65.5 0.0   
2019 4 1 18.9 56.4 0.0   
2019 4 15 17.8 59.1 0.0   
2019 5 1 18.4 54.6 0.0   
2019 5 15 17.3 65.2 0.0   

 
Puyca (15.0605˚S, 72.692306˚W, 3661 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 11.9 58.7 22.2   
2017 12 1 12.5 57.2 13.1   
2017 12 15 11.8 64.7 10.6 -11.0 -76.7 
2018 1 1 11.3 69.8 65.4 -10.9 -75.5 
2018 1 15 11.8 73.8 29.8 -11.0 -75.8 
2018 2 1 11.5 74.0 72.2 -13.1 -103.5 
2018 2 15 11.7 78.9 76.3 -13.0 -103.7 
2018 3 1 12.4 75.9 24.2 -13.0 -103.9 
2018 3 15 11.6 83.7 85.2 -13.1 -104.0 
2018 4 1 11.3 81.5 89.9   
2018 4 15 10.3 69.1 n.d.   
2018 5 1 11.1 52.4  -7.7 -50.2 
2018 5 15 10.5 63.6 3.2 -12.4 -84.3 
2018 6 1 10.7 71.2 0.0 -12.4 -84.8 
2018 6 15 9.2 73.5 26.2   
2018 7 1 9.9 62.1 0.0   
2018 7 15 9.7 62.3 0.0   
2018 8 1 9.8 65.6 26.8   
2018 8 15 9.9 69.3 8.8   
2018 9 1 10.3 61.4 5.4   
2018 9 15 11.7 66.0 0.0   
2018 10 1 11.6 62.5 0.0 -14.2 -103.6 
2018 10 15 11.4 70.4 7.0 -14.2 -103.8 
2018 11 1 11.7 64.5 0.0 -14.2 -103.7 
2018 11 15 11.4 66.0 8.2   
2018 12 1 11.8 67.5 0.0   
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2018 12 15 10.9 70.0 6.2   
2019 1 1 11.6 73.7 27.6 -14.2 -103.9 
2019 1 15 11.6 80.7 28.6 -14.1 -103.8 
2019 2 1 11.9 82.1 145.5 -14.3 -104.2 
2019 2 15 11.2 81.0 103.4 -14.3 -104.2 
2019 3 1 10.9 79.6 107.5 -14.3 -104.8 
2019 3 15 11.7 79.6 102.3 -14.3 -104.5 
2019 4 1 11.5 78.7 60.8 -14.3 -100.4 
2019 4 15 11.4 74.8 10.2 -14.2 -99.9 
2019 5 1 11.5 75.7 15.6   
2019 5 15 11.5 70.3 0.6 -9.8 -69.7 

 
Cotahuasi (15.211336˚S, 72.893308˚W, 2683 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 17.0 31.3 1.7 -9.2 -72.2 
2017 12 1 17.2 39.1 1.4 -3.6 -35.2 
2017 12 15 17.4 40.2 0.1 2.6 20.6 
2018 1 1 16.0 61.9 30.9 -5.5 -31.5 
2018 1 15 16.4 54.4 5.2 -3.9 -18.8 
2018 2 1 16.3 67.5 49.7 -13.4 -96.4 
2018 2 15 17.2 65.1 24.8 -15.0 -111.6 
2018 3 1 16.0 68.3 16.2 -4.5 -27.3 
2018 3 15 16.8 66.2 35.9 -12.5 -88.7 
2018 4 1 16.2 65.2 36.0 -8.5 -57.8 
2018 4 15 15.8 64.6 17.5 -10.4 -72.4 
2018 5 1 16.8 55.6 11.0 -8.5 -61.3 
2018 5 15 16.5 42.0 0.0   
2018 6 1 16.2 25.7 0.0   
2018 6 15 14.5 46.8 3.8 -5.7 -48.0 
2018 7 1 15.7 30.4 0.0   
2018 7 15 15.7 31.5 0.0   
2018 8 1 14.7 38.3 6.1 -0.5 -3.8 
2018 8 15 16.2 28.1 0.0   
2018 9 1 17.1 23.4 0.0   
2018 9 15 17.1 24.1 0.0   
2018 10 1 17.9 20.2 0.0   
2018 10 15 16.6 34.2 6.2 0.7 -23.2 
2018 11 1 17.3 29.5 0.0   
2018 11 15 17.4 35.6 0.0   
2018 12 1 17.6 27.7 0.0   
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2018 12 15 18.3 31.4 0.0   
2019 1 1 18.0 46.3 2.0 -0.4 -10.6 
2019 1 15 17.7 56.2 6.4 -4.0 -21.5 
2019 2 1 17.2 71.4 67.8 -8.3 -54.9 
2019 2 15 16.3 74.6 70.3 -14.3 -107.6 
2019 3 1 16.4 74.1 48.8 -9.5 -63.7 
2019 3 15 17.2 71.5 46.7 -8.3 -54.8 
2019 4 1 16.9 60.6 9.7 -8.4 -66.0 
2019 4 15 16.9 54.3 2.2 -3.9 -28.8 
2019 5 1 17.2 55.6 3.1 -3.8 -28.1 
2019 5 15 16.2 42.7 1.9 -4.0 -34.6 

 
Arequipa (16.458194˚S, 71.575806˚W, 2200 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 16.4 38.7 0.0   
2017 12 1 15.8 45.5 0.0   
2017 12 15 16.1 48.1 0.0   
2017 12 31 16.8 60.5 8.9 -2.1 -7.7 
2018 1 16 16.0 56.6 4.9 -0.8 13.0 
2018 2 1 17.3 66.9 10.1 -8.2 -54.1 
2018 2 15 16.8 72.4 0.4   
2018 3 1 15.9 73.6 11.7 -3.8 -13.4 
2018 3 15 17.5 63.0 0.0   
2018 4 1 16.4 64.9 4.2 -7.7 -53.0 
2018 4 15 15.1 65.0 0.0   
2018 5 1 16.3 61.7 0.0   
2018 5 15 15.4 55.6 0.0   
2018 6 1 14.7 41.5 0.0   
2018 6 15 15.8 45.9 0.3   
2018 7 1 15.6 41.2 0.0   
2018 7 15 15.3 40.4 0.0   
2018 8 1 15.2 44.1 0.9   
2018 8 15 15.8 36.1 0.0   
2018 9 1 15.9 32.7 0.0   
2018 9 15 14.0 35.5 0.0   
2018 10 1 15.9 33.0 0.0   
2018 10 15 16.6 33.0 0.0   
2018 11 1 15.7 38.0 0.0   
2018 11 15 15.9 42.2 0.0   
2018 12 1 15.7 41.5 0.0   
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2018 12 15 16.0 41.6 0.0   
2019 1 1 17.0 52.5 0.0   
2019 1 15 16.7 64.5 0.1 -1.8 -17.8 
2019 2 1 17.8 73.9 42.8 -5.8 -32.8 
2019 2 15 17.7 81.7 37.7 -9.4 -63.4 
2019 3 1 17.5 72.4 28.8 -5.3 -26.3 
2019 3 15 18.0 69.5 7.2 -3.9 -18.2 
2019 4 1 17.5 59.2 2.5 -4.9 -35.3 
2019 4 15 16.0 60.9 0.0   
2019 5 1 17.3 59.3 0.0   
2019 5 15 17.1 50.6 0.0   

 
Quinistaquillas (16.749293˚S, 70.878766˚W, 1590 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 
 

d2H (‰, 
VSMOW) 

 

2017 11 15 22.1 29.5 0.0   
2017 12 1 21.6 35.4 0.0   
2017 12 15 22.3 39.0 0.0   
2018 1 1 20.9 52.8 9.0 -0.5 4.1 
2018 1 15 20.8 52.1 2.5 1.2 10.2 
2018 2 1 21.3 58.7 9.2   
2018 2 15 20.9 61.8 5.2   
2018 3 1 20.4 60.8 1.8   
2018 3 15 22.1 50.7 0.0   
2018 4 1 21.3 54.6 1.8   
2018 4 15 20.1 52.0 0.0   
2018 5 1 21.1 50.0 1.2   
2018 5 15 20.1 42.0 0.0   
2018 6 1 19.5 27.2 0.0   
2018 6 15 20.2 29.7 0.0   
2018 7 1 19.5 26.2 0.0   
2018 7 15 19.3 26.1 0.0   
2018 8 1 19.6 31.7 0.3   
2018 8 15 20.8 21.8 0.0   
2018 9 1 21.4 19.5 0.0   
2018 9 15 20.8 24.8 0.0   
2018 10 1 22.1 23.5 0.0   
2018 10 15 22.0 30.4 0.0   
2018 11 1 22.1 26.6 0.0   
2018 11 15 22.1 33.8 0.0   
2018 12 1 22.1 34.4 0.0   
2018 12 15 22.4 38.7 0.0   
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2019 1 1 22.4 45.0 2.5   
2019 1 15 21.8 55.1 1.5   
2019 2 1 20.7 70.0 57.6   
2019 2 15 20.2 80.5 53.1   
2019 3 1 21.5 63.2 1.2   
2019 3 15 22.4 59.7 3.8 -1.5 -23.5 
2019 4 1 22.0 50.6 1.8   
2019 4 15 20.7 51.3 0.0   
2019 5 1 21.0 47.0 0.0   
2019 5 15 21.0 35.4 0.0   

 
Ubinas (16.372056˚S, 70.853944˚W, 3380 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 13.2 39.6 5.2   
2017 12 1 14.1 41.6 8.0   
2017 12 15 14.1 44.9 0.0   
2018 1 1 11.9 67.5 38.5   
2018 1 15 11.6 68.9 25.6   
2018 2 1 12.0 72.3 79.2   
2018 2 16 12.9 73.1 41.6 -8.0 -56.7 
2018 3 6 11.1 75.2 33.7 -8.0 -56.2 
2018 3 15 12.1 71.1 7.7   
2018 4 1 11.4 68.9 31.5   
2018 4 15 11.8 56.4 0.0   
2018 5 1 12.0 58.1 12.0   
2018 5 15 9.9 47.7 0.0   
2018 6 1 8.0 31.7 0.0   
2018 6 15 7.6 59.8 7.4   
2018 7 1 8.0 44.9 0.0   
2018 7 15 8.4 40.8 0.8   
2018 8 1 7.6 54.2 23.8   
2018 8 15 9.2 34.7 0.0   
2018 9 1 10.1 30.3 0.0   
2018 9 15 11.2 29.3 0.0   
2018 10 1 11.7 28.1 0.0   
2018 10 15 12.0 45.4 0.0   
2018 11 1 13.0 38.5 0.0   
2018 11 15 13.8 38.8 0.0   
2018 12 1 13.8 36.3 0.0   
2018 12 15 14.8 37.6 0.0   
2019 1 1 13.9 54.6 7.4 -10.2 -68.9 
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2019 1 15 13.2 63.1 13.2 -9.8 -68.6 
2019 2 1 12.5 76.3 115.1 -10.2 -73.6 
2019 2 15 12.1 79.2 154.8 -16.7 -127.5 
2019 3 1 11.9 76.8 23.6 -13.4 -91.9 
2019 3 15 12.0 74.3 70.1 -7.6 -46.6 
2019 4 1 12.4 64.0 0.9 -6.7 -45.6 
2019 4 15 11.4 54.8 0.4   
2019 5 1 11.8 55.6 4.8 -8.3 -62.8 
2019 5 15 11.2 59.8 0.6 -12.3 -108.9 

        
 

Pampahuta (15.485278˚S, 70.675778˚W, 4400 masl) 
Year Month Day Temperature 

(°C) 
Relative 

Humidity 
(%) 

 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 6.7 56.9 21.4 -14.1 -96.6 
2017 12 1 6.7 52.7 47.9 -13.6 -90.9 
2017 12 15 6.7 52.5 8.2 -9.2 -58.7 
2018 1 1 6.7 72.2 121.3 -19.0 -138.8 
2018 1 15 6.4 76.0 100.5 -12.9 -88.3 
2018 2 1 6.8 70.1 83.4 -17.7 -138.8 
2018 2 15 7.1 75.8 172.9 -18.8 -137.3 
2018 3 1 6.5 76.8 82.5 -15.5 -110.4 
2018 3 15 6.2 82.1 137.5 -18.3 -132.0 
2018 4 1 5.9 71.3 36.6 -11.1 -88.8 
2018 4 15 4.9 63.6 0.9   
2018 5 1 5.1 63.8 24.2 -16.6 -115.1 
2018 5 15 3.8 60.8 2.2 -10.8 -71.7 
2018 6 1 2.3 52.8 0.0   
2018 6 15 3.0 66.0 11.8 -16.1 -114.9 
2018 7 1 2.4 59.2 0.0   
2018 7 15 2.7 56.6 0.0   
2018 8 1 2.5 62.7 25.6 -15.1 -108.2 
2018 8 15 2.8 61.6 2.0   
2018 9 1 3.1 53.5 2.0   
2018 9 15 3.6 52.8 0.0   
2018 10 1 3.6 54.5 7.2 -7.0 -39.3 
2018 10 15 5.2 62.7 19.8 -13.2 -92.9 
2018 11 1 6.1 60.9 22.0 -11.7 -76.6 
2018 11 15 6.7 57.8 11.8 -8.8 -55.9 
2018 12 1 6.3 49.2 5.0 -6.6 -40.6 
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2018 12 15 6.6 49.0 0.6   
2019 1 1 5.9 72.0 66.2 -14.8 -98.8 
2019 1 15 6.3 68.4 83.0 -19.1 -138.9 
2019 2 1 6.4 74.6 140.6 -23.5 -170.1 
2019 2 15 5.9 78.9 123.6 -22.4 -166.1 
2019 3 1 6.4 74.7 88.2 -18.1 -132.8 
2019 3 15 6.6 73.3 42.6 -13.2 -90.4 
2019 4 1 6.3 76.8 69.4 -18.7 -132.8 
2019 4 15 5.8 66.0 10.8 -15.7 -110.7 
2019 5 1 6.1 69.5 46.6   
2019 5 15 4.9 32.0 24.6   
2019 5 21       -20.0 -144.2 

 
Moquegua (17.169167˚S, 70.931667˚W, 1450 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 19.7 73.8 0.0   
2017 12 1 19.1 75.0 0.0   
2017 12 15 19.9 74.1 0.0   
2018 1 1 19.7 75.6 0.0   
2018 1 15 19.7 73.5 0.3 -4.8 -34.7 
2018 2 1 20.4 77.4 2.6 -5.0 -35.0 
2018 2 15 20.4 79.1 1.5 -2.5 -11.9 
2018 3 1 20.2 79.0 0.0   
2018 3 15 20.4 77.5 0.0 -6.5 -46.2 
2018 4 1 20.1 80.0 0.3   
2018 4 15 19.0 81.7 0.0   
2018 4 22     0.5 -6.0 -42.4 
2018 5 1 19.6 77.5 0.5   
2018 5 15 18.5 76.7 0.0   
2018 6 1 18.2 69.6 0.0   
2018 6 15 19.5 71.0 0.4   
2018 7 1 17.8 71.3 0.0   
2018 7 15 19.0 67.9 0.0   
2018 8 1 18.6 68.3 0.0   
2018 8 15 19.0 67.5 0.0   
2018 9 1 19.1 67.8 0.0   
2018 9 15 18.7 72.8 0.0   
2018 10 1 19.4 71.4 0.0   
2018 10 15 19.5 70.3 0.0   
2018 11 1 19.3 70.4 0.0   
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2018 11 15 19.3 71.0 0.0   
2018 12 1 19.1 72.0 0.0   
2018 12 15 19.2 73.9 0.0   
2019 1 1 20.7 77.0 0.0   
2019 1 15 20.1 82.8 0.2   
2019 1 19      -3.2 -13.0 
2019 2 1 20.8 83.6 17.1 -7.6 -53.4 
2019 2 15 21.4 87.6 36.9   
2019 2 17      -3.2 -11.9 
2019 3 1 21.7 76.7 0.0 -10.1 -75.5 
2019 3 10      -10.1 -76.7 
2019 3 15 21.5 78.6 0.0   
2019 4 1 20.2 76.5 0.0 -9.1 -73.9 
2019 4 15 18.9 80.7 0.0   
2019 5 1 19.8 78.8 0.0   
2019 5 15 19.4 77.0 0.0   

 
Cuzco (13.54003˚S, 71.89643˚W, 3263 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2017 11 15 14.6 63.8 47.5   
2017 12 1 14.3 61.2 12.5 -9.2 -57.0 
2017 12 15 14.5 64.7 31.2   
2018 1 1 14.3 72.7 90.6   
2018 1 15 13.8 76.2 68.0   
2018 2 1 13.2 75.8 68.1   
2018 2 18 15.2 73.7 47.2 -15.2 -109.8 
2018 3 1 14.0 76.1 113.6 -20.2 -146.6 
2018 3 14 13.7 76.4 103.8 -21.8 -161.5 
2018 4 1 13.9 77.9 41.9 -16.8 -125.1 
2018 4 15 12.9 73.3 6.0   
2018 5 1 12.3 71.5 14.3   
2018 5 15 11.8 70.1 0.2   
2018 6 1 10.5 66.5 0.0   
2018 6 15 9.5 72.6 16.2   
2018 7 1 9.2 66.0 0.0   
2018 7 15 9.9 65.4 2.2   
2018 8 1 9.3 66.6 13.6   
2018 8 15 10.8 69.4 3.8   
2018 9 1 11.4 68.3 3.3   
2018 9 15 12.0 61.8 0.5   
2018 10 1 13.3 64.3 6.5   
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2018 10 15 12.8 69.0 37.1   
2018 11 1 13.9 72.7 44.0   
2018 11 15 14.8 71.3 24.9   
2018 12 1 15.0 67.8 55.5   
2018 12 15 13.7 58.2 4.6   
2019 1 1 13.8 74.0 95.8   
2019 1 15 14.3 72.3 72.1   
2019 2 1 14.1 75.5 55.1   
2019 2 15 14.1 77.5 27.7   
2019 3 1 14.1 78.5 87.5   
2019 3 15 14.5 76.3 79.0   
2019 4 1 13.6 80.5 92.2   
2019 4 15 13.3 77.2 25.4   
2019 5 1 12.4 78.7 13.5   

 
Calca (13.32401˚S, 71.95628˚W, 2929 masl) 

Year Month Day Temperature 
(°C) 

Relative 
Humidity 

(%) 
 

Total 
Precipitation 

(mm) 

d18O (‰, 
VSMOW) 

 

d2H (‰, 
VSMOW) 

 

2018 7 15 12.0 73.3 0.0   
2018 8 1 12.0 71.1 13.6 -12.0 -87.0 
2018 8 15 12.6 71.3 11.4   
2018 9 1 13.1 70.7 3.6   
2018 9 15 14.7 68.2 0.2   
2018 10 1 15.0 64.1 11.6   
2018 10 15 14.8 68.4 23.7   
2018 11 1 15.1 71.9 57.2   
2018 11 15 16.1 69.4 44.9   
2018 12 1 16.6 68.2 47.7   
2018 12 15 15.9 64.4 5.5   
2019 1 1 15.1 68.7 64.5 -15.8 -124.0 
2019 1 15 15.3 69.6 52.9   
2019 2 1 15.8 69.2 48.3   
2019 2 15 15.2 72.2 25.9   
2019 3 1 15.5 71.6 50.6   
2019 3 15 16.1 68.7 59.5   
2019 4 1 15.4 72.3 73.9   
2019 4 15 15.1 68.2 5.3   
2019 5 1 13.2 68.3 6.3 -20.7 -164.3 
2019 5 15 13.8 69.1 17.3   
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Table S4.2 Precipitation d17O and d18O. The VSMOW2, SLAP2, and USGS data required to 
normalize the raw d17O and d18O are included in the supplement to Chapter 5. 

San Gaban (13.451806˚S, 70.409139˚W, 657 masl) 
  Raw data 

(vs. reference O2) 
Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

7/15/16 2 -0.783 -1.536 -1.217 -2.355 
7/15/16  -0.750 -1.472 -1.175 -2.285 
9/1/16 3 0.131 0.200 -0.245 -0.511 
9/1/16  -0.014 -0.075 -0.188 -0.411 
9/1/16  -0.059 -0.157 -0.235 -0.495 
9/15/16 2 -0.237 -0.502 -0.422 -0.859 
9/15/16  -0.184 -0.398 -0.365 -0.746 
10/1/16 3 -0.585 -1.152 -0.780 -1.526 
10/1/16  -0.677 -1.343 -0.869 -1.725 
10/1/16  -0.820 -1.605 -0.966 -1.888 
11/2/16 2 -0.961 -1.871 -1.176 -2.283 
11/2/16  -0.937 -1.827 -1.155 -2.234 

11/15/16 2 -1.286 -2.507 -1.508 -2.934 
11/15/16  -1.286 -2.497 -1.507 -2.920 
12/1/16 2 -1.450 -2.792 -1.680 -3.231 
12/1/16  -1.405 -2.717 -1.630 -3.148 
4/1/17 3 -8.328 -15.782 -8.219 -15.570 
4/1/17  -7.992 -15.159 -7.858 -14.912 
4/1/17 2 -8.154 -15.451 -8.024 -15.199 
4/15/17  -5.948 -11.300 -5.739 -10.904 
4/15/17  -5.815 -11.047 -5.593 -10.628 

 
Ollachea (13.794306˚S, 70.469927˚W, 2850 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

4/1/17 2 -8.337 -15.772 -8.187 -15.484 
4/1/17  -8.447 -16.004 -8.293 -15.708 
4/15/17 2 -8.353 -15.813 -8.188 -15.496 
4/15/17  -8.580 -16.250 -8.413 -15.931 
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Macusani (14.07˚S, 70.43908˚W, 4345 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

9/15/16 3 -2.548 -4.912 -2.840 -5.470 
9/15/16  -2.616 -5.027 -2.912 -5.590 
9/15/16  -2.595 -4.989 -2.876 -5.525 
10/1/16 2 -2.579 -4.973 -2.871 -5.531 
10/1/16  -2.671 -5.139 -2.968 -5.704 

10/15/16 2 -6.656 -12.672 -7.148 -13.601 
10/15/16  -6.726 -12.779 -7.221 -13.711 
11/1/16 4 -4.157 -7.938 -4.535 -8.655 
11/1/16  -4.182 -7.996 -4.560 -8.714 
11/1/16  -4.084 -7.825 -4.427 -8.477 
11/1/16  -4.121 -7.910 -4.495 -8.621 
4/1/17 2 -14.777 -27.904 -14.801 -27.932 
4/1/17  -14.786 -27.902 -14.802 -27.916 
4/15/17 2 -12.148 -22.970 -12.071 -22.814 
4/15/17  -12.054 -22.799 -11.966 -22.623 

 
Ayaviri (14.87172˚S, 70.59325˚W, 3906 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

10/15/16 2 -4.272 -8.173 -4.624 -8.841 
10/15/16  -4.453 -8.507 -4.814 -9.192 
11/1/16 4 -3.961 -7.604 -4.321 -8.289 
11/1/16  -4.080 -7.795 -4.446 -8.489 
11/1/16  -4.176 -7.970 -4.535 -8.652 
11/1/16  -4.120 -7.864 -4.475 -8.536 

11/15/16 2 -1.562 -3.014 -1.770 -3.413 
11/15/16  -1.614 -3.114 -1.824 -3.517 
12/1/16 2 -2.061 -3.987 -2.297 -4.438 
12/1/16  -2.009 -3.892 -2.240 -4.336 
4/1/17 2 -14.026 -26.480 -13.987 -26.403 
4/1/17  -14.012 -26.435 -13.971 -26.342 
4/15/17 2 -10.618 -20.084 -10.460 -19.778 
4/15/17  -10.368 -19.615 -10.193 -19.279 
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Santo Tomas (14.450333˚S, 72.095917˚W, 3658 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

10/1/16 2 -0.292 -0.604 -0.394 -0.804 
10/1/16  -0.234 -0.495 -0.337 -0.687 

10/15/16 2 -4.132 -7.885 -4.461 -8.509 
10/15/16  -4.113 -7.820 -4.439 -8.437 
11/1/16 2 -2.613 -5.030 -2.848 -5.481 
11/1/16  -2.686 -5.161 -2.924 -5.618 

 
Majes (16.343056˚S, 72.1525˚W, 1498 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

3/1/17 1 -0.305 -0.541 -0.100 -0.191 
3/15/17 4 -2.219 -4.156 -2.097 -3.961 
3/15/17  -2.387 -4.488 -2.272 -4.306 
3/15/17  -2.322 -4.382 -2.204 -4.194 
3/15/17  -2.108 -3.974 -1.981 -3.769 
2/1/18 2 -2.763 -5.233 -2.664 -5.081 
2/1/18  -2.775 -5.253 -2.677 -5.101 
2/15/18 1 -1.302 -2.480 -1.140 -2.212 

 
Carumas (16.81117˚S, 70.695063˚W, 2976 masl) 

  Raw data 
(vs. reference O2) 

Normalized Data                             
(VSMOW-SLAP) 

Collection Date n (number 
of analyses) 

d17O d18O d17O d18O 

3/1/17 1 -5.726 -10.852 -5.756 -10.940 
3/15/17 2 -3.622 -6.854 -3.561 -6.773 
3/15/17  -3.506 -6.629 -3.440 -6.539 
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Table S4.3 Stepwise multiple linear regression model parameters and AIC scores. The model with 
the lowest AIC score from this study, Fiorella et al., 2015, and Gonfiantini et al., 2001 are noted 
in italics. AIC scores were calculated with the stats package in R. 

Regression model parameters AIC score 
 This study 
elevation + latitude + longitude + MAP 19.09 
elevation + latitude + longitude 17.18 
elevation + latitude 15.47 
elevation 37.57 
latitude 44.96 
Fiorella et al., 2015 
elevation + latitude + MAP + longitude  8.68 
elevation + latitude + MAP 7.36 
elevation + latitude 6.85 
elevation 6.29 
latitude 20.96 
Gonfiantini et al., 2001 
elevation + latitude + MAP + longitude 10.61 
elevation + latitude + MAP 8.61 
elevation + MAP 6.66 
elevation 8.33 
latitude 14.79 
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Chapter 5 Global Variations of Meteoric Water Triple Oxygen Isotopes4  
 
 
Co-authors: Naomi E. Levin, Emily J. Beverly, Tyler E. Huth, Benjamin H. Passey, Elise M. 
Pelletier, Christopher J. Poulsen, Ian Z. Winkelstern, Drake A. Yarian 
 

5.1 Abstract 

The past decade has seen a remarkable expansion of studies that use mass-dependent 

variations of triple oxygen isotopes (16O, 17O, 18O) in isotope hydrology and isotope geochemistry. 

Recent technological and analytical advances demonstrate that small deviations of d¢18O and d¢17O 

from a mass-dependent reference relationship are systematic and are explained by well-known 

equilibrium and kinetic fractionation processes. These measurements complement traditional 

metrics like deuterium-excess, help reconstruct past environmental conditions from geologic 

records, and constrain isotope effects of evaporation that are impossible to discern with d18O alone. 

In this review, we synthesize published meteoric (derived from precipitation) water triple oxygen 

isotope data with a new, near-global surface water dataset of d¢18O, d¢17O, d2H, ∆¢17O, and 

deuterium-excess. Here, ∆¢17O is defined as d¢17O – lref d¢18O, where d¢ notation is a logarithmic 

definition of the common d value (d¢=1000ln(d/1000 + 1) and lref is equal to 0.528. Building upon 

more than a decade of work, we present an updated triple oxygen isotope meteoric water line,  

 

  d¢17O = 0.5265*d¢18O (± 0.0002) + 0.0118 (± 0.0027‰), 

 

that captures d¢18O and d¢17O variability in tropical and temperate regions, and should be used as a 

new point of reference in future triple oxygen isotope studies. We explain the observed 

relationships between d¢18O, ∆¢17O, and deuterium-excess and provide a practical guide to interpret 

                                                
4 In review as: Aron, P.G., Levin, N.E., Beverly, E.J., Huth, T.E., Passey, B.H., Pelletier, E.M., Poulsen, C.J., 
Winkelstern, I.Z., Yarian, D.A., (2020) Global variations of meteoric water triple oxygen isotopes, Chemical 
Geology. Raw data and supplementary code are accessible at https://github.com/phoebearon/17O 
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these data in hydrologic and paleoclimate applications. We end with important considerations for 

modern hydrologic and paleoclimate ∆¢17O studies and directions of future triple oxygen isotope 

work.  

5.2 Introduction   

 Ratios of 18O to 16O are among the most common isotopic measurements in Earth science 

and play a critical role tracing biogeochemical cycles and reconstructing past climate conditions 

(Dansgaard, 1964; Joussaume et al., 1984; Zachos, 2001). Studies of 17O, the rarest stable oxygen 

isotope (Table 5.1), have lagged because 17O/16O ratios were long considered invariant, too 

difficult to measure, or redundant to 18O/16O ratios (Gat, 1996). However, recent technological and 

analytical advances show that small, mass dependent deviations between 17O/16O and 18O/16O 

contain new information about water cycling and past environmental conditions (Barkan and Luz, 

2005). This review captures the emerging field of triple oxygen isotope (16O, 17O, 18O) hydrology 

at an important moment: many laboratories are now able to make 17O measurements and large 

datasets are rapidly emerging, but triple oxygen isotope variability is not yet fully understood and 

there are important inconsistencies between studies. Therefore, this review synthesizes new and 

published meteoric (derived from precipitation) water isotope data and explains the hydrologic 

processes that drive triple oxygen isotope variations. This review is intended as an introduction to 

triple oxygen isotope hydrology and as a primer to how this emerging field may contribute to 

hydrologic and paleoclimate research. 

 

Table 5.1 The three stable oxygen isotopes. 

Isotope Symbol Protons Neutrons Mass (u) Natural Terrestrial 
Abundance (%) 

Oxygen-16 16O 8 8 15.995 99.757 
Oxygen-17 17O 8 9 16.999 0.038 
Oxygen-18 18O 8 10 17.999 0.205 

 

 Oxygen isotopes fractionate due to non-mass-dependent and mass-dependent effects (Bao 

et al., 2016; Thiemens et al., 2012). Non-mass-dependent fractionation arises from chemical 

effects, including nuclear spin, transition state chemistry, molecular symmetry, and photochemical 

reactions (Criss and Farquhar, 2008; Thiemens and Heidenreich, 1983). These effects can result 

in large variations between 17O/16O and 18O/16O and have a range of applications in atmospheric 
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chemistry, planetary science, and biological productivity that are already well reviewed (Bao et 

al., 2009; Bhattacharya et al., 2000; Blunier et al., 2012, 2002; Luz et al., 2009; Thiemens, 2006; 

Thiemens et al., 1995). In contrast, mass-dependent effects arise from differences in bond energy, 

reaction rate, and diffusivity (Matsuhisa et al., 1978; Young et al., 2002) that result in very small 

variations between 17O/16O and 18O/16O. These mass-dependent variations, which are sensitive to 

fractionation during equilibrium isotope exchange and the diffusion of water vapor through air, 

have recently gained attention as a new way to study modern hydrology and reconstruct past 

environmental conditions (e.g., Bao et al., 2016; Barkan and Luz, 2005; Luz and Barkan, 2010; 

Pack and Herwartz, 2014; Rumble et al., 2007). 

Decoupling fractionation effects from equilibrium and kinetic processes is critical to 

interpreting isotope data and identifying processes such as Rayleigh distillation and evaporation. 

In modern waters, the degree of kinetic fractionation is often quantified using deuterium-excess 

(d-excess = d2H – 8*d18O, Dansgaard, 1964; see Section 5.3.1 for the definition of d notation). 

However, d-excess varies with both temperature and relative humidity, so interpretations of d-

excess data are not always straightforward (Gat, 1996). Mass-dependent variations between 
17O/16O and 18O/16O are also sensitive to kinetic fractionation as water vapor diffuses through 

unsaturated air (Barkan and Luz, 2007), but are relatively insensitive to temperature (Barkan and 

Luz, 2005). Therefore, triple oxygen isotopes and d-excess provide complementary information to 

trace evapotranspiration, moisture transport, or precipitation processes (e.g., Galewsky et al., 

2016) and identify temperature and relative humidity condition at moisture sources (Landais et al., 

2008, 2012a, 2012b; Uemura et al., 2010; Winkler et al., 2012).  

Translating these principles to the past and differentiating equilibrium and kinetic 

fractionation effects in paleoclimate records is challenging because most geologic archives (e.g., 

carbonates, sulfates, phosphates, etc.) do not have both oxygen- and hydrogen-containing 

minerals. Much like d-excess (Figure 5.1), triple oxygen isotopes therefore add a degree of 

freedom (17O/16O) to paleoclimate records and can clarify some processes and fractionations that 

cannot be unresolved with traditional oxygen isotope ratios (18O/16O) alone (e.g., Rech et al., 

2019). Functionally, triple oxygen isotope ratios preserved in minerals add new information about 

aridity and paleo-humidity (Alexandre et al., 2019; Gázquez et al., 2018; Passey and Ji, 2019; 

Surma et al., 2018), enable reconstructions of the isotopic composition of ancient waters (e.g., 

Gehler et al., 2011; Herwartz et al., 2015; Liljestrand et al., 2020; Passey and Ji, 2019) and 
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constrain effects of diagenesis and formation conditions of sedimentary records (Levin et al., 

2014).  

However, in order to use triple oxygen isotopes to study hydrology and paleoclimate, it is 

important to fully understand their variations in modern systems. Modern global variations of triple 

oxygen isotopes were first described in 2010 from a near-global set of meteoric waters (Luz and 

Barkan, 2010). Subsequent observations (Figure 5.2, Table 5.2) show that there is far more 

variability than initially realized (Figures 5.3a and 5.3b) and that triple oxygen isotope ratios do 

not neatly fit a global meteoric water line (Sharp et al., 2018). Therefore, this review re-evaluates 

global variations of meteoric water d¢18O, d¢17O, d2H, ∆¢17O, and d-excess. We synthesize 

published and new meteoric water data to explain hydrologic processes and fractionation that drive 

variation in ∆¢17O and d-excess (Section 5.5), evaluate the d¢18O–d¢17O relationship (Section 5.6), 

review important analytical considerations for ∆¢17O measurements (Section 5.7), and present 

directions of future hydrologic triple oxygen isotope work (Section 5.9).  

 

 
Figure 5.1 Schematic showing the similarities between (A) d-excess and (B) ∆¢17O. Note that 
∆¢17O is defined from d¢18O and d¢17O. See Equation 5.4 for the definition of d¢ notation. 
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Figure 5.2 Geographical distribution of published meteoric water triple oxygen isotope data, 
colored by sample type. Plant water includes water extracted from stems and leaves. Surface and 
subsurface includes surface water, soil water, groundwater, cave water, and tap water. New surface 
water data reported in this review are outlined in gold; published studies are listed in Table 5.2. 
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Figure 5.3 Scatterplots of meteoric water isotope data. Color indicates sample type. New surface 
water data reported in this study are outlined in gold. The top row includes plots of the data as 
d¢18O versus ∆¢17O from (A) Luz and Barkan (2010), (B) all published sources (Table 5.2), and (C) 
precipitation, surface, and subsurface waters within a normal meteoric range (–30 to 10‰). The 
dashed box in (B) outlines the limits of the zoomed in data in (C). The bottom row shows plots 
with (D) d18O versus d-excess and (E) d-excess versus ∆¢17O from all the available published 
meteoric water triple oxygen isotope data (Table 5.2). There are more points in (B) than (D) or (E) 
because not all studies include d2H data. 
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Table 5.2 Summary of published hydrologic triple oxygen water isotope studies. 

Water Type Timeframe Location Analysis 
Method 

Reference 

Plant Water 
Leaf April 2015  Europe and Israel IRMS Landais et al., 

2006 
Stem and leaf Summer 2012 Central Kenya IRMS Li et al., 2017 
Meteoric Water 
various Various, 2002-

2010 
global IRMS Luz and Barkan, 

2010 
Precipitation Seasonal, short 

convective cell 
Niger IRMS Landais et al., 

2010 
Surface water Spring 2011 Iran IRMS Surma et al., 

2015 
Tap 2008-2011 Continental United 

States 
IRMS Li et al., 2015 

Precipitation, 
cave drip 

March 2012-
July 2014 

Switzerland Picarro Affolter et al., 
2015 

Surface water March 2014 Atacama Desert, 
Chile 

IRMS Surma et al., 
2018 

Precipitation Event scale, 
2014-2018 

Central United States LGR Tian et al., 2018 

Precipitation Event scale, 
2012-2016 

Namibia LGR Kaseke et al., 
2018 

Tap Monthly,  
December 2014 
to November 
2015 

China LGR Tian et al., 2019 

Precipitation Weekly, January 
2011to 
December 2012 

Japan Picarro Uechi and 
Uemura, 2019 

Surface water June 2014 Western United 
States 

IRMS Passey and Ji, 
2019 

Surface water Various, 2016-
2019 

global IRMS this study  

Polar Precipitation 
Snow and ice Last 150,000 

years 
Vostok, Antarctica IRMS Landais et al., 

2008 
Snow 2000 Vostok, Antarctica IRMS Landais et al., 

2012a 
Snow and water 
vapor 

2003-2005 Greenland IRMS Landais et al., 
2012b 

Ice Glacial-
interglacial 
cycles 

East Antarctica IRMS Winkler et al., 
2012 
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Ice LGM to 
Holocene 

WAIS Divide, 
Antarctica 

IRMS Schoenemann et 
al., 2016 

Snow December 2009-
January 2010 

Coast to Dome A 
transect, East 
Antarctica 

IRMS Pang et al., 2015 

Snow January 2010 East Antarctica IRMS Pang et al., 2019 
Modeling 
Vapor Glacial-

interglacial 
cycles 

Vostok, Antarctica Single 
column 
model 

Risi et al., 2010 

Precipitation Modern and 
LGM 

global LMDZ 
(atmospheric 

transport 
GCM) 

Risi et al., 2013 

Precipitation Modern 
seasonal cycle 

Antarctica Intermediate 
complexity 

model 

Schoenemann et 
al., 2016 

Analysis method abbreviations: isotope ratio mass spectrometer (IRMS), Los Gatos Research 
(LGR), Laboratory of Dynamic Meteorology (LMDZ), general circulation model (GCM). 
 

 

 

 

 

 

 

 

 

 

 

 



 198 

5.3 Isotope terminology and fractionation 

 A summary of common symbols, explanations, and values in hydrologic triple oxygen 

isotope studies is provided in Table 5.3. 

 
Table 5.3 Common symbols, explanations, and values for triple oxygen isotopes. 

Symbol Value Explanation Reference 
qeq 0.529 Liquid-vapor equilibrium 

fractionation exponent  
Barkan and 
Luz, 2005 

qdiff 0.518 water vapor diffusion fractionation 
exponent  

Barkan and 
Luz, 2007 

18aeq Variable (temperature 
dependent) 

18O/16Ol-v equilibrium fractionation 
factor  

Majoube, 
1971 

17aeq 17aeq = (18aeq)qeq 17O/16Ol-v equilibrium fractionation 
factor 

Equation 5.2 

18adiff 1 (pure turbulent transport) 
to 1.0285 (pure molecular 

diffusion transport) 

18O/16Ol-v diffusive transport 
fractionation factor  

Merlivat, 
1978 

17adiff 17adiff = (18adiff)qdiff 17O/16Ol-v diffusive transport 
fractionation factor  

Equation 5.2 

lref 0.528 slope of the d¢18O–d¢17O reference 
line commonly used in hydrologic 

studies 

Luz and 
Barkan, 2010 

d d = 1000(Rsample/Rstandard – 1) “delta” McKinney et 
al., 1950 

d¢ d¢ = 1000ln(d/1000 + 1) “delta prime”  Miller, 2002 
∆¢17O ∆¢17O = d¢17O – lref d¢18O “cap 17O” Barkan and 

Luz, 2007 
 

5.3.1 Isotope notation  

Isotope partitioning between two substances (A and B) is expressed as an isotopic 

fractionation factor, a:  

 

 aA-B = RA/RB           Eq. 5.1  

 

where R is the ratio of the rare to common isotope (e.g., 2H/1H, 18O/16O, or 17O/16O). During a 

single mass-dependent fractionating process, a values of coexisting phases (e.g., liquid and vapor), 

materials (e.g., water and mineral), or components related by simple processes (e.g., diffused gas 



 199 

and residual gas) are related by a power law relationship and can be derived from mass law theory 

(Matsuhisa et al., 1978; Young et al., 2002):   

 
*aA-B = (*aA-B)q          Eq. 5.2  

 

where q, the fractionation exponent, is a constant that defines the relationship between a values 

and * denotes a heavy mass number (e.g., 17 or 18 for oxygen, 2 for hydrogen).  

Triple oxygen isotope fractionation exponents are well characterized for equilibrium (qeq) 

and kinetic (qdiff) processes. Liquid-vapor qeq is predicted by mass law theory (Young et al., 2002, 

qeq = 0.529) and has been verified empirically (Barkan and Luz, 2005, qeq = 0.529 ± 0.001); the 

kinetic fractionation exponent for diffusion of water vapor through air is derived from the kinetic 

theory of gases and the ideal gas law (Marrero and Mason, 1972, qdiff = 0.5184) and has also been 

confirmed experimentally (Barkan and Luz, 2007, qdiff = 0.5185 ± 0.0003). The small, but 

statistically significant, difference between the values of qeq and qdiff means that triple oxygen 

isotopes can differentiate equilibrium and kinetic fractionation.  

In nature, isotopic compositions rarely reflect fractionation from a single process, but 

instead integrate multiple fractionating processes and several q values. Here, we use l notation to 

represent relationships that integrate multiple fractionating processes from those that result from a 

single fractionating process (q). The most familiar l value in isotope hydrology is the slope (~ 8) 

of the oxygen-hydrogen global meteoric water line, d2H = 8*d18O + 10 (Craig, 1961), where d 

notation is defined as 

 

d = 1000# $%&'()*

$%+&,-&.-
− 10.         Eq. 5.3 

 

 Linear meteoric water isotope relationships are ubiquitous in isotope hydrology because 

they provide a useful reference frame from which to assess isotopic variability and quantify non-

equilibrium fractionation (Gat, 1996). However, these relationships are not truly linear because 

mass-dependent fractionation follows a power law function (Equation 5.2). This non-linearity is 

rarely observed in natural waters (e.g., Craig, 1961; Dansgaard, 1964; Rozanski et al., 1993) 

because the range of isotope values on Earth is relatively small and the scatter of data points around 
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an apparent linear relationship is too great to resolve the slight curvature (Figures 5.4a and 5.4c). 

However, over a sufficiently large isotopic range, curvature appears between d values (Figures 

5.4b and 5.4d). This curvature is concave when the slope between isotopic compositions is greater 

than 1 (Figure 5.4b) and convex when the slope between isotopic compositions is less than 1 

(Figure 5.4d). Logarithmic d¢ (“delta prime”) notation linearizes the exponential relationship 

between isotopic compositions (Figures 5.4b and 5.4d; Hulston and Thode, 1965; Martin, 2002): 

   

d¢ = 1000	𝑙𝑛 # d
JNNN

+ 10.         Eq. 5.4 

 

This notation is used in all triple oxygen isotope studies and some studies of d-excess (e.g., Dütsch 

et al., 2017).  
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Figure 5.4 Scatterplots of meteoric water isotope values. Published data (Table 5.2) are colored 
by sample type; new data reported in this review are outlined in gold. Over the natural range of 
(A) d18O versus d2H and (C) d¢18O versus d¢17O, meteoric water isotope relationships are nearly 
linear. The same data are shown in (B) and (D), respectively, but are overlaid with calculated d18O, 
d17O, or d2H (dashed black line) and calculated d¢18O, d¢17O, or d¢2H (solid black line) over larger 
isotopic ranges. There are fewer points in (A) than (C) because some triple oxygen isotope studies 
do not include d2H data. The curvature between d-d relationships is concave when the slope 
between isotope values is greater than 1 (B, d18O–d2H) and convex when the slope between isotope 
values is less than 1 (D, d18O–d17O). 
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5.3.2 Definition of ∆¢17O 

Variations in the relationship between d¢18O and d¢17O are orders of magnitude smaller than 

variations of d¢18O and d¢17O values, so the most practical way to view and interpret triple oxygen 

isotope compositions is as a deviation from a reference line (Barkan and Luz, 2007): 

 

∆¢17O = d¢17O – lref d¢18O.         Eq. 5.5 

 

In this definition, lref is the slope of a mass-dependent reference line and d¢ notation ensures that 

isotopic deviations are calculated from a d¢18O–d¢17O relationship that is exactly linear. Without d¢ 

notation, ∆17O varies non-linearly as a function of d18O (Figure 5.5). d-excess also varies non-

linearly when it is defined with d notation, but a logarithmic definition of d-excess is typically 

considered only at high latitudes or when d18O variation is large (Dütsch et al., 2017; Schoenemann 

et al., 2014; Uemura et al., 2012). For triple oxygen isotopes, d¢ notation is important because the 

non-linear calculation artifact is the same order of magnitude as analytical precision and 

environmentally-induced variability (Figure 5.5). The slope of the d¢18O–d¢17O reference line is 

discussed in Section 5.6, but hydrologic studies typically use a value of 0.528 for lref. Unless 

otherwise noted, all ∆¢17O values in this review are calculated from a reference frame with lref 

equal to 0.528. Values of ∆¢17O are typically very small and are expressed in units of per meg 

(1,000 per meg = 1‰).   

We use the “capital delta” (∆) notation to define ∆¢17O as the deviation from a reference 

line (Equation 5.5) and to maintain symbolic consistency among different isotope systems (e.g., 

∆34S and ∆25Mg; Criss and Farquhar, 2008; Young and Galy, 2004). Some triple oxygen isotope 

studies choose to use 17O-excess rather than ∆¢17O (e.g., Barkan and Luz, 2007; Landais et al., 

2008; Li et al., 2015; Luz and Barkan, 2010) to highlight the relative excess of 17O in meteoric 

waters as compared to ocean water. This notation emphasizes similarities between the triple 

oxygen isotope system and d-excess (Figure 5.1), but we choose to use ∆ʹ notation to clearly define 

∆¢17O values as the deviation from a reference line. We specifically use ∆ʹ (not ∆) to indicate that 

this parameter is calculated using d¢ values (not d values).    
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Figure 5.5 Comparison of ∆¢17O (solid black line) versus ∆17O (dashed black line) across a 
common range of meteoric water d¢18O compositions. The grey bar shows typical ∆¢17O analytical 
precision (± 10 per meg). Note that ∆¢17O is calculated with d¢ values while ∆17O is calculated with 
d values. Without d¢ notation, ∆17O varies non-linearly as a function of d¢18O, and introduces a bias 
in ∆17O that is greater than analytical precision and a similar magnitude to environmentally driven 
variability. d¢ notation linearizes the definition of ∆¢17O and removes the non-linear calculation 
artifact. 

5.4 Motivation from a decade of ∆¢17O observations 

Meteoric water isotope patterns are best observed from amount-weighted precipitation 

(Dansgaard, 1964; Rozanski et al., 1993) or flowing surface waters (Kendall and Coplen, 2001) 

because these waters integrate fractionating processes in the hydrosphere, atmosphere, and 

biosphere. Efforts to understand patterns in d18O and d2H have culminated in the global meteoric 

water line (Craig, 1961), d18O and d2H isoscapes (e.g., Bowen, 2010), and well-tuned isotope-

enabled general circulation models (Brady et al., 2019; Joussaume et al., 1984). These products 

are a point of reference for nearly every hydrologic and paleoclimate study of d18O and d2H (e.g., 

Jasechko, 2019; Noone et al., 2013; Poulsen et al., 2010; Rowley and Garzione, 2007).  

 Comprehensive global and continent scale water isotope studies such as those by Craig 

(1961), Dansgaard (1964), Rozanski et al. (1993), and Kendall and Coplen (2001) do not yet exist 

for triple oxygen isotopes. Global variability of meteoric water ∆¢17O and d¢18O was first described 

in 2010 from a dataset comprised of two international standards, SLAP (Standard Light Antarctic 

Precipitation), GISP (Greenland Ice Sheet Precipitation) (Barkan and Luz, 2005), 29 Antarctic 
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snow samples (Landais et al., 2008), and 52 meteoric waters (Luz and Barkan, 2010). From this 

compilation, Luz and Barkan (2010) defined a global meteoric water line, established lref  as the 

slope of this line, and set the expectation that ∆¢17O values of meteoric water should be relatively 

invariant over a ~70‰ range in d¢18O (Figure 5.3a). However, subsequent observations show that 

meteoric water ∆¢17O is far more variable than initially recognized (compare Figures 5.3a and 

5.3b). These additional meteoric water d¢17O and d¢18O data fit multiple regression lines, suggesting 

that the defined global meteoric water line may not represent all meteoric waters (Miller, 2018; 

Sharp et al., 2018). Before we can use ∆¢17O to study hydrology and reconstruct past environmental 

conditions, it is critical that we understand the environmental processes that drive its variability.  

We use this review paper to provide both a synopsis of what we know about ∆¢17O variation 

in meteoric water and as a guide for how practitioners might use triple oxygen isotope data in 

hydrologic and paleoclimate studies. As part of this review, we report a new, near-global surface 

water dataset that spans 6 continents and 17 Köppen climate classes and expands the available 

observations of meteoric water triple oxygen isotope variation. In the following sections we 1) 

explore the trends in meteoric water isotope data and the hydrologic processes that drive ∆¢17O 

variation, 2) evaluate the global d¢18O–d¢17O relationship, and 3) present an updated triple oxygen 

isotope meteoric water relationship that better fits the available data. For the first objective, we use 

a comprehensive definition of meteoric water (plant water, precipitation, surface and subsurface, 

snow and ice, and ocean water) to explain triple oxygen isotope variation in as many parts of the 

hydrosphere as possible; for the second and third objectives, we use a much more limited definition 

of meteoric water (precipitation and surface water only). 

5.5 Global variations of ∆¢17O in meteoric waters 

Throughout this review we present triple oxygen isotope variability in d¢18O–∆¢17O isotope 

space. This space highlight mass-dependent deviations from the reference relationship (Figure 

5.3a-c; Farquhar and Thiemens, 2000; McKeegan and Leshin, 2001) and is a helpful way to 

simultaneously visualize isotopic compositions of d¢18O (‰) and ∆¢17O (per meg, where 1 per meg 

= 0.001‰). The more familiar d-d isotope space is a poor way to visualize d¢18O–d¢17O variation 

because values of qeq and qdiff are orders of magnitude smaller than variations of d¢18O and d¢17O 
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so d¢18O–d¢17O compilations always appear linear (Figure 5.4c). The d¢18O versus ∆¢17O isotope 

space is analogous to d18O versus d-excess (Figure 5.1) in the d18O–d2H system. 

5.5.1 Why do most meteoric waters have positive ∆¢17O values? 

 Mass-dependent triple oxygen isotope variations are explained by well-understood 

fractionation models (Criss, 1999). These models are commonly associated with d18O, d2H, and d-

excess, but also apply to d¢18O, d¢17O, and ∆¢17O. For example, positive meteoric water ∆¢17O and 

d-excess values are largely explained by the Craig and Gordon (1965) model of evaporation. This 

variation is shown schematically in Figure 5.6 and step-wise in Figures 5.7 and 5.8. Here, we focus 

primarily on d¢17O, d¢18O, and ∆¢17O, and include d18O, d2H, and d-excess to highlight similarities 

between the triple oxygen (d¢18O–d¢17O) and oxygen-hydrogen (d18O–d2H) isotope systems.  

First, beginning from the ocean (Figure 5.7, row 1), equilibrium isotope exchange occurs 

between water vapor and liquid water in a saturated layer near the evaporating surface (Figures 

5.6 and 5.7, row 2). Because the value of qeq (0.529) is greater than that of lref (0.528), d¢18O and 

d¢17O of the initial vapor fall below the reference line and equilibrium vapor ∆¢17O is slightly 

negative (–9 per meg and –11 per meg at 5˚C and 25˚C, respectively, Figures 5.6 and 5.7, panel 

2b). Equilibrium vapor ∆¢17O values vary little within a typical temperature range (~0-30˚C) 

because the value of qeq is relatively insensitive to temperature (Barkan and Luz, 2005) and similar 

to the value of lref. 

Second, as vapor diffuses through to the unsaturated atmosphere, ∆¢17O values of 

atmospheric vapor increases because the value of qdiff (0.518) is less than the value of lref (Figures 

5.6 and 5.7, panel 3b). The magnitude of this kinetic effect is negatively correlated with turbulence 

above the saturated layer and sensitive to the relative humidity above the site of evaporation 

(Barkan and Luz, 2007; Criss, 1999; Merlivat, 1978; Uemura et al., 2010b). Under high relative 

humidity conditions, vapor ∆¢17O remains close to zero. Under low relative humidity conditions, 

vapor ∆¢17O values are higher (Figures 5.6 and 5.7, panel 3b).  

Third, equilibrium condensation proceeds along a slope (qeq = 0.529) that is greater than 

the value of lref. This fractionation increases the ∆¢17O value of the more condensed phase 

(precipitation) and decreases the ∆¢17O value of the less condensed phase (remaining vapor) 

(Figures 5.6 and 5.7, panel 4b). Precipitation and vapor ∆¢17O values are slightly sensitive to 
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temperature during condensation because equilibrium fractionations are larger at lower 

temperatures than at higher temperatures (Figures 5.6; 5.7, panel 5.4b; and 5.8e) (Horita and 

Wesolowski, 1994; Majoube, 1971). The increase in precipitation ∆¢17O associated with 

equilibrium condensation is typically smaller than the effect from diffusion because the value of 

lref is closer to the value of qeq than the value of qdiff. We include code in Supplement 5.1 to further 

explore the isotopic effects of evaporation and condensation.  

Following initial condensation, a number of hydrologic processes add additional variability 

to meteoric water ∆¢17O values. The next sections explore the trends in meteoric water ∆¢17O 

variability and the hydrologic processes that explain ∆¢17O observations.  

 

 

 

 

 

 

 



 207 

 
Figure 5.6 Generalized pathway of d¢18O and d¢17O fractionation in the water cycle. In this d¢18O 
versus d¢17O isotope space, ∆¢17O is defined as the deviation from the reference line. The white 
background indicates isotope space with positive ∆¢17O values; the gray background indicates 
isotope space with negative ∆¢17O values. Waters at different points in the hydrologic cycle are 
differentiated with symbols and numbered 1-5 to show stepwise variation associated with 
evaporation and condensation. Beginning from the ocean (SMOW, 1), water evaporates into a 
saturated equilibrium layer (2), diffuses through the unsaturated atmosphere (3), condenses (4), 
and evaporates (5). Vapor is noted with open symbols; liquid is noted in filled symbols. Red 
(warmer) and blue (colder) outlines indicate the effects of temperature dependent fractionations. 
For clarity, values of  lref, qeq (solid line), and qdiff (dotted line) are included. Additional details 
and a step-by-step description of d¢18O and d¢17O fractionations are explained in Figure 5.7. The 
symbols do not indicate end points, but instead show points along a trajectory (marked with 
arrows) along which isotopic compositions can continue. 
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Figure 5.7 Step-wise variation of d¢17O, d¢18O, d2H, ∆¢17O, and d-excess as water evaporates and 
condenses in a closed system. Isotopic variation is shown between d¢18O and d¢17O (column A), 
d¢18O and ∆¢17O (column B), d18O and d-excess (column D), d18O and d2H (column D). The solid 
black lines in columns (A) and (D) show the triple oxygen and oxygen-hydrogen reference 
relationship, respectively. In each column, water begins in the ocean (row 1), evaporates into a 
saturated layer (row 2), diffuses through an unsaturated atmosphere (row 3), condenses to meteoric 
water (row 4), and evaporates (row 5). In row 4, we assume the isotopic composition of 
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precipitation is equal to that of surface water. The isotopic composition of evaporated vapor and 
residual liquid was calculated assuming pan evaporation at 16˚C and 10% evaporation. In all 
panels, vapor is shown with open symbols and liquid is shown with filled symbols. In columns B 
and C, black arrows show the isotopic variation associated with each row; gray arrows are included 
to show the ‘trajectory’ of isotope variability. For clarity, arrows are replaced by numbers in 
columns A and D. Fractionation associated with equilibrium evaporation (row 2), atmospheric 
vapor diffusion (row 3), and condensation (row 4) are shown under different temperature and 
humidity scenarios with color and bolded symbols. When multiple scenarios are included, the star 
(*) notes which scenario is used in subsequent calculations (rows). We focus primarily on 
variations of triple oxygen isotopes and d-excess, and include variations between d18O and d2H 
(column D) for reference. 
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Figure 5.8 Isotope variations of d18O (A, D, G,), ∆¢17O (B, E, H), and d-excess (C, F, I) during 
evaporation from the ocean (A, B, C), Rayleigh distillation (D, E, F), and condensation (G, H, I) 
under different temperature scenarios. Fractionation under each temperature scenario is 
independent and does not represent a ‘trajectory’ from ocean water to precipitation. The final (RH 
= 0.4) 25˚C water vapor from the top row (A, B, C) is the starting vapor in the middle row (D, E, 
F). The final (f = 0.4) 0˚C vapor in the middle row is in isotopic equilibrium with the liquid in the 
bottom row. 

5.5.2 Broad trends in meteoric water ∆¢17O variability  

 Average meteoric water ∆¢17O is 20 to 30 per meg, but ∆¢17O values range from less than 

–250 per meg to greater than 100 per meg (Figure 5.3b). Generally, more evaporated waters have 

lower ∆¢17O values and less evaporated waters have higher ∆¢17O values (Figure 5.9). Among the 

water types separated by color in Figure 5.9, seawater is quite under-studied with only 38 published 
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∆¢17O values (Luz and Barkan, 2010). Most ocean samples have slightly higher d18O (–0.4 to 2.4‰, 

average of 0.4‰) and lower ∆¢17O (–15 to 4 per meg, average of –5 per meg) values than SMOW 

(d18OSMOW = 0‰, d17OSMOW = 0‰, ∆¢17OSMOW = 0 per meg) (Luz and Barkan, 2010), but still very 

little is known about how ∆¢17O varies in the ocean. 

 
Figure 5.9 Box and whisker plot of water ∆¢17O distribution. Water types are listed individually, 
but are colored according to broader categories to give a sense of variation within groups. The 
numbers in parentheses indicate the total number of published observations for each water type. 
The new surface water data reported in this review are included. In each box, the bolded line is the 
median ∆¢17O value, the upper and lower hinge correspond to the 1st and 3rd quartiles, respectively, 
and the whisker correspond to no more than 1.5 times the interquartile range (IQR, the variation 
between the 1st and 3rd quartiles). The individually plotted points fall outside the IQR. In general, 
more evaporated waters have lower ∆¢17O values and less evaporated waters have higher ∆¢17O 
values. 

 

For all the available meteoric water data, ∆¢17O is positively correlated with d-excess 

(Pearson’s r = 0.58, Figure 5.3e) and uncorrelated with d¢18O (r = –0.16, Figure 5.3b). However, 

these correlations vary substantially among water types (Table 5.4), and are always stronger for 

waters that have undergone substantial kinetic fractionation. For example, highly evaporated 

waters such as plant water and lakes have a strong positive correlation between ∆¢17O and d-excess 

(r = 0.95 and 0.58, respectively, Table 5.4) and a strong negative correlation between ∆¢17O and 
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d¢18O (r = –0.93 and –0.78, respectively, Table 5.4). Less evaporated waters such as precipitation 

and rivers have weaker correlations between ∆¢17O and d-excess (r = 0.28 and 0.16, respectively, 

Table 5.4) or d¢18O (r = –0.21 and –0.11, respectively, Table 5.4). Evaporated waters have such a 

strong correlation among d¢18O, ∆¢17O, and d-excess because both d-excess and ∆¢17O are sensitive 

to relative humidity and vary as a function of kinetic fractionation. The slope between d-excess 

and ∆¢17O is ~ 0.7 to 2.0 per meg ‰-1 (e.g., Landais et al., 2010; Li et al., 2015), but the exact 

value varies as a function of relative humidity and fractionation factors (Barkan and Luz, 2007).  

 
Table 5.4 Pearson correlation coefficient between ∆¢17O and d-excess or d18O. 

Water Type ∆¢17O–d-excess Correlation ∆¢17O–d18O Correlation 
All Data 0.58 −0.16 

Plant Water 0.95 −0.93 
Lake 0.58 −0.78 
Rain 0.28 −0.21 
River 0.16 −0.11 
Ocean  NA* 0.02 

Snow or Ice −0.35 0.37 
*There is no reported correlation between ∆¢17O and d-excess for ocean water because no studies 
report d18O, d17O, and d2H of ocean water.  
 

Most meteoric waters occupy a crowded region in d¢18O–∆¢17O isotope space, and many of 

the broad patterns that differentiate plant water and snow or ice disappear among samples with 

d18O between –30 and 10‰ (Figure 5.3c). However, the observed ∆¢17O variability of these 

meteoric waters is more than 80 per meg, significantly greater than the precision of well-tuned 

triple oxygen isotope measurements, and systematic trends exist within this cloud of isotope data 

that are related to spatiotemporal variability and hydrologic processes. In the next sections, we 

explore ∆¢17O patterns and the hydrologic processes that drive ∆¢17O variation.  

5.5.3 ∆¢17O spatial variability  

 Spatial patterns of meteoric water d18O are well established and vary with latitude, 

elevation, and proximity to moisture sources (Bowen, 2010; Brady et al., 2019; Dansgaard, 1964; 

Kendall and Coplen, 2001; Rozanski et al., 1993). Spatial patterns are not as clear for ∆¢17O. Global 

(Luz and Barkan, 2010; this study) and continental (Li et al., 2015; Tian et al., 2019) scale datasets 

of meteoric water ∆¢17O variability provide initial insights, but most hydrologic ∆¢17O observations 
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tend to be clustered in small regions (Figure 5.2) and do not systematically span latitudinal or 

elevational gradients. Isotope-enabled climate models can fill some of these gaps (Risi et al., 

2013), but there are still relatively few ∆¢17O observations to evaluate model performance.  

In general, ∆¢17O is lower in meteoric waters in arid regions due to sub-cloud and surface 

evaporation and is higher in regions where annual precipitation is dominated by cold-season rain 

or regions that receive a high degree of recycled moisture. ∆¢17O appears invariant with changes 

in mean annual precipitation, mean annual temperature, and elevation (Li et al., 2015; 

Schoenemann et al., 2014; Tian et al., 2019; Uechi and Uemura, 2019). Latitudinal ∆¢17O gradients 

are observed in the United States (Li et al., 2015) but not in China (Tian et al., 2019), and additional 

work is needed to fully understand these patterns.  

Spatial correlations between ∆¢17O and d-excess are complex and varied (Risi et al., 2013), 

but the existing data are limited. In a few regions, for example downwind of the Great Lakes in 

North America where moisture is highly recycled (Bowen et al., 2012), spatial patterns of ∆¢17O 

and d-excess covary (Li et al., 2015). However, the continental-scale spatial patterns of ∆¢17O and 

d-excess differ across the United States (Li et al., 2015) and China (Tian et al., 2019), suggesting 

that different processes may dominate the isotopic composition of ∆¢17O and d-excess across large 

spatial scales.  

5.5.4 Temporal precipitation ∆¢17O variability  

 Temporal precipitation ∆¢17O variability is also uncertain because the frequency of 

precipitation sampling is inconsistent and relatively few studies have focused on temporal ∆¢17O 

variability (Table 5.2). Still, a temporal pattern of mid-latitude precipitation ∆¢17O is emerging, 

with lower values in the summer and higher values in the winter (Affolter et al., 2015; Li et al., 

2015; Tian et al., 2018; Uechi and Uemura, 2019). A detailed explanation of this variability 

remains unclear, but is generally attributed to a seasonal switch between stronger kinetic 

fractionation effects in the summer and stronger equilibrium fractionation effects in the winter. 

Temperature during equilibrium condensation may explain some of the observed variability, but 

additional research is needed to clarify this. Future precipitation ∆¢17O observations should focus 

on amount-weighted monthly samples to better characterize average isotopic compositions and 
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minimize the influence of small-scale weather features (Dansgaard, 1964; Gat, 1996; Rozanski et 

al., 1993).  

5.5.5 Triple oxygen isotope interpretation guide  

 From a mechanistic point of view, ∆¢17O variability arises from 1) changes in q values (qeq 

versus qdiff), 2) differences between the values of lref and qeq or qdiff, or 3) non-linear isotope 

responses that result from the logarithmic d¢ notation (Table 5.5). Following evaporation from the 

ocean and initial condensation (Section 5.5.1; Craig and Gordon, 1965), multiple hydrologic 

processes affect ∆¢17O values (Table 5.5, Figures 5.6-5.8). Isotope responses to these processes can 

combine, compound, or negate each other, which can make interpreting ∆¢17O data a challenge. 

This section describes triple oxygen isotope variability associated with individual hydrologic 

processes and is intended to guide and aid interpretations of ∆¢17O data.  

 
Table 5.5 Processes and explanations of ∆¢17O variation. 

Process ∆¢17O Response Magnitude of ∆¢17O Response Explanation 
Evaporation 
from the ocean 

increase Typically ~ 20-30 per meg. Higher 
values with low humidity and/or low 

turbulence at the evaporating site. 

qeq vs. qdiff  
and  

qdiff less than lref 
Condensation increase ~ 10 per meg. Higher ∆¢17O 

expected in colder conditions. 
qeq greater than lref 

Recycling increase Typically < 20 per meg qdiff less than lref 
Stratospheric 
intrusions 

increase ?  
Depends on stratospheric and 

tropospheric ∆¢17O values 

Addition of 
stratospheric water 

vapor 
Post-
condensation 
evaporation 

decrease Potentially > 200 per meg in plant 
water, typically no more than ~ 50-

60 per meg in surface water 

qdiff less than lref 

Mixing decrease 0 to >100 per meg. Depends on the 
mixing fraction and initial d18O and 

∆¢17O of the mixing waters  

Non-linear 
response 

Supersaturation decrease ~ 10 to 30 per meg qdiff less than lref 
Rayleigh 
distillation 

temperature 
dependent 

< 10 per meg. Larger effect at lower 
temperatures.  

lRayleigh ≈ lref 

Convection ? ? ? 
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5.5.5.1 Processes that cause ∆¢17O to decrease  

5.5.5.1.1 Evaporation 

Evaporation leaves the residual water body with higher d17O and d18O compositions (Gat, 

1996; Gonfiantini et al., 2018) and a lower ∆¢17O value because the value of qdiff is less than the 

value of lref (Figures 5.6 and 5.7). We observe these effects in plant and surface waters, which can 

have very high d18O and d17O values and very low ∆¢17O values (Figure 5.3b; Cernusak et al., 

2016; Landais et al., 2006; Li et al., 2017). This response is independent of initial d18O, such that 

low ∆¢17O values do not require high d18O and vice versa (Figure 5.10). 

 

 
Figure 5.10 Schematic of d¢18O versus ∆¢17O based on steady-state isotope mass balance models 
during evaporation. During evaporation, the ∆¢17O response is independent of initial d¢18O 
composition. 

 

Evaporation occurs in the hydrosphere under steady-state (constant water levels) or non-

steady-state (progressive water loss) conditions. The isotopic composition of residual water in both 

of these scenarios is predicted by well-established models (Criss, 1999; Gázquez et al., 2018; 

Passey and Ji, 2019; Surma et al., 2018). First, steady-state evaporation occurs in simple flow-

through or closed-basin systems where the volume of inflowing water is equal to the volume of 
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water loss via evaporation, outflow, and/or groundwater seepage. In this scenario, the isotopic 

composition of the residual evaporated liquid water is:  

 

RW = 
V*WV-XYY(J<Z)$[Z\]$^

\]M	V*WV-XYY(J<Z)(J<\])
        Eq. 5.6 

 

where aeq is the temperature dependent equilibrium fractionation factor (Barkan and Luz, 2005; 

Horita and Wesolowski, 1994; Majoube, 1971), adiff is the kinetic fractionation factor, h is the 

relative humidity normalized to the temperature of the evaporating surface, XE is the volumetric 

ratio of water lost to evaporation relative to inflowing water, and RI, RA, and RW are the isotope 

ratios of inflowing water, atmospheric water vapor, and residual evaporated water, respectively. 

Importantly, this model assumes that the isotopic composition of the evaporating body is well 

mixed and that inflowing water is isotopically uniform and unevaporated, which is not always the 

case (e.g., Surma et al., 2018, 2015). Second, non-steady-state evaporation occurs in isolated water 

bodies that evaporate to dryness. The isotopic composition of the water body during this ‘pan’ 

evaporation is (Criss, 1999; Passey and Ji, 2019; Surma et al., 2018):  

 

 RW = ƒu (RWi – RWss) + RWss         Eq. 5.7 

 

where ƒ is the fraction of water remaining, RW is the isotope ratio of the evaporating body, RWi is 

the isotope ratio of the initial water, RWss is the predicted final steady-state isotope ratio, and the 

exponent u relates equilibrium and kinetic fractionation factors by the relative humidity (h), where 

u is: 

 

u = 
J<V*WV-XYY(J<Z)
V*WV-XYY(J<Z)

         Eq. 5.8  

 

and RWss is:   

 

RWss = V*WZ$^
J<	V*WV-XYY(J<Z)

.         Eq. 5.9 
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These models predict isotope variation in both the triple oxygen and oxygen-hydrogen 

systems. In general, residual waters have lower ∆¢17O and d-excess values when the effects of 

kinetic fractionation are greatest, i.e., when relative humidity is low and/or when values of adiff or 

XE are high. Additional work is needed to clarify the role of turbulence at the evaporating site and 

to constrain the values of adiff and XE (Passey and Ji, 2019).  

5.5.5.1.2 Mixing 

 Due to the logarithmic d¢ notation used in the definition of ∆¢17O, mixing liquid or vapor 

water bodies with different d18O compositions causes ∆¢17O to decrease (Figure 5.11c; Luz and 

Barkan, 2010; Matsuhisa et al., 1978). This phenomenon is most pronounced when ∆¢17O of the 

mixing water bodies are identical and d18O are very different. The d18O and d-excess responses to 

mixing are a linear function of the fraction of each mixed water (Figures 5.11a and 5.11b) because 

d18O and d-excess are defined with d notation (not logarithmic d¢ notation). Isotopic effects of 

mixing are not limited to natural hydrologic processes, but can also affect analytical systems as 

gases move through prep lines and isotope analyzers (see Section 5.7.2.5 for additional details). 

We provide code in Supplement 5.2 to explore the isotope effects of mixing in natural and 

analytical settings.  

 

 
Figure 5.11 Variations of (A) d18O, (B) d-excess, and (C) ∆¢17O compositions when mixing 
VSMOW (water 1) and SLAP (water 2). d18O and d-excess vary linearly with mixing. ∆¢17O 
responds non-linearly to mixing because it is defined with d¢ notation. 
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5.5.5.1.3 Supersaturation  

 Kinetic effects during condensation under very cold (< ~ –20˚C) supersaturated conditions 

cause low ∆¢17O values in snow and ice (Angert et al., 2004; Jouzel and Merlivat, 1984; Landais 

et al., 2012a, 2012b, 2008; Pang et al., 2019, 2015; Risi et al., 2010; Schoenemann et al., 2014; 

Schoenemann and Steig, 2016; Winkler et al., 2012) and a pattern of downward tailing ∆¢17O at 

very low (d18O < –30‰) isotopic compositions in compilations of meteoric water data (Figure 

5.3b). Supersaturation is common in high latitude and polar regions and develops when the 

saturation vapor pressure of a condensing surface is less than the vapor pressure surrounding a 

water droplet or ice crystal (Schoenemann et al., 2014). Under these conditions, a strong vapor 

pressure gradient develops between water vapor and the condensing surface. Water vapor must 

diffuse across this gradient to condense, a process that causes kinetic fractionation and lowers 

∆¢17O values of the condensate. Although equilibrium effects during condensation (Section 5.5.1) 

and moisture recycling in Antarctica (Pang et al., 2019) generally increase ∆¢17O, low ∆¢17O values 

observed in polar regions (Figure 5.3b) suggest that strong kinetic effects dominate under very 

cold supersaturated conditions (Angert et al., 2004; Jouzel and Merlivat, 1984; Landais et al., 

2012a).  

Snow and ice ∆¢17O and d-excess exhibit opposite trends at very low d18O values (Figures 

5.3b and 5.3d), reflecting the distinctions in how qeq changes with temperature in each system. 

With decreasing temperatures, qeq values increase in the d18O–d2H system (Horita and 

Wesolowski, 1994; Majoube, 1971), but decrease for d¢18O–d¢17O (Table 5.6, Figures 5.7 and 5.8). 

Such variations in qeq result in relatively small changes in ∆¢17O and d-excess relative to other 

hydrologic processes (Table 5.5), but can have a larger effect under cold supersaturated conditions.  

 

Table 5.6 Temperature dependence of equilibrium fractionation factors and lRayleigh.  
Temperature (C) 18aeq 17aeq lRayleigh 

Explanation Majoube 1971 (18aeq)0.529 (17aeq – 1)/ (18aeq – 1) 
40 1.00823 1.00435 0.5280 
25 1.00937 1.00495 0.5278 
0 1.01172 1.00618 0.5275 

-25 1.01483 1.00782 0.5272 
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5.5.5.2 Processes that cause ∆¢17O to increase 

5.5.5.2.1 Moisture recycling 

 Moisture recycling increases ∆¢17O in evaporated vapor and subsequent precipitation 

because the value of qdiff is less than the value of lref (Figures 5.6 and 5.7). Maintaining isotopic 

and mass balance and following the logic that describes fractionation of residual water during 

evaporation (Section 5.5.5.1.1), evaporated vapor has lower d¢18O, lower d¢17O, and higher ∆¢17O 

than the initial water body from which it evaporated. Condensation of this recycled moisture 

further increases ∆¢17O (Figures 5.6 and 5.7).  

 As with evaporation, d-excess and ∆¢17O values of vapor and precipitation increase with 

the degree of moisture recycling (Aemisegger et al., 2014; Salati et al., 1979; Tian et al., 2019) 

and are positively correlated when moisture recycling causes isotope fractionation (Figures 5.3e 

and 5.7, panels 5b and 5c).  

5.5.5.2.2 Stratospheric intrusions 

 Stratospheric water vapor undergoes non-mass-dependent fractionation and has extremely 

high (greater than 1,000 per meg) ∆¢17O values (Miller, 2018; Winkler et al., 2012). This vapor 

may contribute to near polar surface water fluxes during the Antarctic winter when the tropopause 

is low (Franz et al., 2005; Roscoe et al., 2004), but is generally considered negligible in most 

hydrologic triple oxygen isotope studies and is not evident in compilations of global meteoric 

water data (Figure 5.3) (e.g., Landais et al., 2008; Luz and Barkan, 2010).  

5.5.5.3 Processes with little effect on ∆¢17O 

5.5.5.3.1 Rayleigh distillation  

Rayleigh distillation explains many of the spatial patterns observed in d18O, d17O, and d2H 

of meteoric water (Gat, 1996; Risi et al., 2013), but has little effect on ∆¢17O (Figure 5.12). 

Generally, ∆¢17O is considered insensitive to Rayleigh distillation because the d¢18O–d¢17O slope 

during Rayleigh distillation, here termed lRayleigh, is nearly identical to the value of lref (0.528) 

(Figure 5.12b, Luz and Barkan, 2010). In other words, d¢18O and d¢17O vary along a line that is 

nearly parallel to lref, so ∆¢17O remains essentially invariant.  
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The value of lRayleigh is, however, slightly sensitive temperature (0.5278 at 25 ˚C, 0.5272 

at –25 ˚C; Table 5.6) and can increase (decrease) the ∆¢17O value of vapor (condensate) by a few 

per meg when lRayleigh is less than lref (Figure 5.8).  The temperature sensitivity of lRayleigh arises 

from the equilibrium fractionation factors (a values) for 18O and 17O (Majoube, 1971): 

 

 lRayleigh = 	(	
E_a*W	<	J)
	(	E`a*W	<	J)

                  Eq. 5.10 

 

(Barkan and Luz, 2005; Luz and Barkan, 2010). Values of lRayleigh are slightly higher at warmer 

temperatures and slightly lower at cooler temperatures, but never deviate far from 0.528 (Table 

5.6). As a result, variability of ∆¢17O attributed to Rayleigh distillation is generally smaller than 

typical analytical precision (± 10 per meg), but can combine with other processes such as 

equilibrium condensation as a small factor in meteoric water ∆¢17O variability. At very warm 

temperatures (> 35˚C), lRayleigh is almost identical to lref, and ∆¢17O is indeed invariant during 

Rayleigh distillation (Table 5.6, Figure 5.8).  

 

 
Figure 5.12 Variation of liquid d¢18O and ∆¢17O during Rayleigh distillation in (A) a schematic 
and (B) d¢18O–d¢17O isotope space. Water starts in the ocean (1), evaporates, and condenses, 
leaving airmasses with (2) 80%, (3) 60%, and (4) 40% of the initial airmass remaining. In the 
schematic (A), f is the percentage of the initial airmass that remains after rainout. The isotopic 
composition of precipitation (steps 2-4) was calculated at 25˚C and is assumed to be in isotopic 
equilibrium with the vapor (middle row) shown in Figure 5.8. Because lRayleigh is approximately 
equal to lref, ∆¢17O is relatively insensitive to Rayleigh distillation.    
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5.5.5.4 Temperature effects on ∆¢17O and d-excess 

The different temperature sensitivities of ∆¢17O and d-excess are most noticeable at low 

temperatures (low d18O values, compare Figures 5.3b and 5.3d) and pronounced because ∆¢17O is 

defined with d¢ values while d-excess is defined with d values. Theoretical calculations and 

laboratory experiments show that ∆¢17O is less sensitive to temperature than d-excess (Figures 5.7 

and 5.8) because the triple oxygen liquid-vapor qeq value is independent of temperature (Figure 

5.13b; Barkan and Luz, 2005; Cao and Liu, 2011), whereas the oxygen-hydrogen liquid-vapor qeq 

value varies slightly with temperature (Figure 5.13a; Horita and Wesolowski, 1994; Majoube, 

1971). These qeq temperature sensitivities arise from differences in the temperature dependent 

equilibrium liquid-vapor fractionation factors (al-v) for oxygen and hydrogen because  

 

ql-v = ab	(	
^a)Dc)

ab	(	da)Dc)
                   Eq. 5.11 

 

where A is the 2H/1H or 17O/16O fractionation factor and B is the 18O/16O fractionation factor. The 

triple oxygen ql-v value is nearly invariant (0.529, Figure 5.13b) because 17O/16O and 18O/16O are 

subject to the same temperature effects; the oxygen-hydrogen ql-v value (~ 8, Figure 5.13a) varies 

with temperature because 2H/1H fractionation is governed by a different temperature dependent 

relationship than 18O/16O fractionation (Horita and Wesolowski, 1994; Majoube, 1971).  

 The different temperature sensitivities of ∆¢17O and d-excess provide complementary 

information to decouple the isotope effects of temperature and relative humidity on meteoric 

waters. For example, a combination of ∆¢17O and d-excess data can provide complementary 

information about the relative humidity and temperature and moisture source conditions (Landais 

et al., 2012a, 2012b, 2008; Uemura et al., 2010; Winkler et al., 2012).  
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Figure 5.13 Temperature dependence of the slopes in A) d18O–d2H and (B) d¢18O–d¢17O isotope 
systems. Relevant isotope relationships are associated with equilibrium fractionation (qeq, solid 
black line), the diffusion of water vapor through the air (qdiff, dashed black line), and the meteoric 
water reference relationship (solid gray line). The reference slopes are well-established (Craig, 
1961 and Luz and Barkan, 2010, respectively) and do not vary with temperature. Similarly, qdiff 
values are independent of temperature (Barkan and Luz, 2007). The qdiff value associated with the 
d18O–d2H relationship is still uncertain, but is generally between ~ 2.5 and 8 (Gonfiantini et al., 
2018). Finally, the triple oxygen (d¢18O–d¢17O) qeq value is insensitive to temperature (Barkan and 
Luz, 2005) but the value of qeq varies slightly with temperature in the oxygen-hydrogen (d18O–
d2H) system. These different qeq temperature sensitivities result in a slight temperature dependence 
in d-excess but little temperature-dependent variation in ∆¢17O. 

 

5.5.5.5 Convective activity 

 Convection is occasionally cited to explain low- and mid-latitude meteoric water ∆¢17O  

variability (e.g., Landais et al., 2010; Li et al., 2015; Risi et al., 2013), but the mechanisms 

connecting convective activity to ∆¢17O are unclear. During convection, water vapor is subject to 

complex atmospheric dynamics, including vertical mixing, transport and moisture convergence, 

equilibrium isotopic exchange, and diffusive fractionation from sub-cloud evaporation (Galewsky 

et al., 2016). These effects are relatively well understood for d18O and d2H (e.g., Risi et al., 2008; 

Vimeux et al., 2011), but have not yet been explored for ∆¢17O.  
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5.6 Global variations of d¢17O and d¢18O in meteoric waters  

5.6.1 Triple oxygen isotope reference slope  

 Up to this point in this discussion, ∆¢17O variability has been presented in a framework 

where lref is equal to 0.528. This is the standard approach in hydrologic triple oxygen isotope 

studies because lRayleigh is also ~0.528 (Table 5.6) and Rayleigh processes dominate isotopic 

fractionation in the hydrosphere. However, a value of 0.528 as a reference slope is somewhat 

arbitrary. Here we explain the history of using 0.528 for lref and explore how the assigned value 

of lref affects ∆¢17O. 

 Observed d¢18O–d¢17O slopes for water integrate multiple equilibrium (qeq) and kinetic 

(qdiff) fractionation processes. The value of lref was initially defined from a set of meteoric water 

d¢17O and d¢18O measurements made with electrolysis and continuous flow IRMS that fit a line 

with an observed slope (lobs) of 0.528 (Meijer and Li, 1998, lobs = 0.5281 ± 0.0015). The value of 

this slope was later confirmed with a different set of water samples and higher precision dual inlet 

IRMS measurements (Luz and Barkan, 2010 lobs = 0.528 ± 0.0001) and defined as lref. The 

observed slope is closer to 0.529 (qeq) than to 0.518 (qdiff) and it is nearly identical to lRayleigh, 

indicating that most meteoric waters in these initial studies were more strongly affected by 

equilibrium fractionation (e.g., Rayleigh distillation) than by kinetic fractionation. However, 

recent work indicates that many waters outside polar regions fit a regression line with a slightly 

shallower slope than 0.528 (Miller, 2018; Sharp et al., 2018), suggesting that the commonly used 

value for lref, 0.528, may not fit the triple oxygen isotope global meteoric water line.  

5.6.2 Meteoric water lines 

Meteoric water lines establish the most fundamental relationships in isotope hydrology and 

provide a point of reference from which to interpret isotope data (e.g., Brooks et al., 2010; Craig, 

1961; Jasechko, 2019). Here we use the well-established d18O–d2H meteoric water relationship 

(Craig, 1961) as a model to re-evaluate and update the meteoric water triple oxygen isotope 

relationship.  

The d18O–d2H global meteoric water line was initially built from ~400 precipitation, river, 

and lakes samples (Craig, 1961). Later, the meteoric water d18O–d2H relationship was re-evaluated 
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using amount-weighted and arithmetic mean monthly precipitation from a near-global distribution 

of IAEA/WMO sites (Dansgaard, 1964; Rozanski et al., 1993) and rivers from the United States 

(Kendall and Coplen, 2001). The re-evaluated global meteoric water lines have slightly higher 

slopes and intercepts, but are statistically indistinguishable from the original line defined by Craig 

(1961). Agreement among these lines indicates that the d18O–d2H global meteoric water line is 

well characterized and represents global variation in d18O and d2H (Gat, 1996).  

The triple oxygen global meteoric water line was first defined as (Luz and Barkan, 2010):  

 

 d¢17O = 0.528 (± 0.0001) * d¢18O + 0.033 (± 0.003)              Eq. 5.12 

 

from GISP and SLAP (Barkan and Luz, 2005), 29 Vostok snow samples (Landais et al., 2008), 

and a set of 52 meteoric waters (precipitation, surface water, cave water, and snow) (Luz and 

Barkan, 2010). The basic features of this line, an empirically determined slope and positive y-

intercept, are similar to the oxygen-hydrogen global meteoric water line. However, the initial 

d¢18O–d¢17O global meteoric water line was constructed with a large proportion of high latitude 

precipitation and samples (lakes, snow, and evaporated snow) with isotopic compositions that are 

not representative of average freshwater from temperate and tropical regions (Miller, 2018; Sharp 

et al., 2018). Here, we re-evaluate the triple oxygen isotope global meteoric water line by 

expanding the dataset to include more samples from temperate and tropical regions.  

Following the  approaches used to build d18O–d2H meteoric water relationships, the triple 

oxygen global meteoric water line should be built from a regression line through d¢17O and d¢18O 

from integrated monthly precipitation (Dansgaard, 1964; Rozanski et al., 1993) and/or flowing 

surface waters (rivers) (Kendall and Coplen, 2001). Precipitation data are slightly preferable 

because they are generally unevaporated, but sample collection requires substantial effort and 

currently no monthly precipitation d17O data are available (Table 5.2). For now, river water is an 

adequate substitute because it often represents the isotopic composition of amount weighted 

seasonal precipitation (e.g., Kendall and Coplen, 2001). However, the isotopic composition of 

river water can be affected by post-precipitation processes such as evaporation or isotopic 

exchange with atmospheric vapor, so ultimately it will be important to re-evaluate the triple oxygen 

isotope meteoric water line with integrated monthly precipitation data. This evaluation is 
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especially important for d¢17O and d¢18O because one of the main applications of triple oxygen 

isotopes is to constrain evaporation.  

The available triple oxygen isotope data (Table 5.2) from which to define an updated 

meteoric water line include 1 river from northwestern Switzerland (Affolter et al., 2015), 9 rivers 

from the western United States (Passey and Ji, 2019), 14 rivers from the Sistan Basin in eastern 

Iran (Surma et al., 2015), and 17 rivers from locations throughout Asia and Europe (Luz and 

Barkan, 2010). We do not include precipitation data that were collected on daily or event 

timescales (Affolter et al., 2015; Kaseke et al., 2018; Landais et al., 2010; Luz and Barkan, 2010; 

Surma et al., 2018; Tian et al., 2018; Uechi and Uemura, 2019), but expand the dataset to include 

new triple oxygen isotope data from 84 rivers (Section 5.8 and Supplement 5.6). With these new 

results, the available river data span a 30‰ range (-20 to +10‰) in d¢18O and reflect common 

isotope variability in temperate and tropical regions (Bowen et al., 2019; Sharp et al., 2018). The 

best-fit line between d¢18O and d¢17O from the compiled river data is:  

 

 d¢17O = 0.5264*d¢18O (± 0.0002) + 0.0080 (± 0.0025‰).             Eq. 5.13 

        

Excluding rivers from very arid environments that may be affected by evaporation (Passey and Ji, 

2019; Surma et al., 2015), the best-fit line is: 

 

 d¢17O = 0.5265*d¢18O (± 0.0002) + 0.0118 (± 0.0027‰).             Eq. 5.14 

 

Equation 5.14 is indistinguishable from the best-fit line from a recent compilation of meteoric 

waters with d¢18O greater than -20‰ that reflect temperate and tropical conditions (d¢17O = 

0.52654*d¢18O (± 0.00036) + 0.014 (± 0.003); Sharp et al. 2018). The similarity of these best-fit 

lines suggests that the triple oxygen meteoric water line from non-polar regions has a slope 

~0.5265. Combining all the available water data collected poleward of 60˚N and 60˚S, the best-fit 

d¢18O–d¢17O line is:  

 

 d¢17O = 0.5285*d¢18O (± 0.00005) + 0.0450 (± 0.0024‰).             Eq. 5.15 
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We include all sample types in Equation 5.15 because most high latitude triple oxygen isotope data 

are from Antarctica where there are very few flowing surface waters and almost no liquid 

precipitation. Differences between Equations 5.14 and 5.15 and the clear curvature in d¢18O–∆¢17O 

plots of the global compilation (Fig 3b) demonstrate that triple oxygen isotopes do not fit a single, 

global meteoric water line. Instead, we suggest that d¢17O and d¢18O data should be considered 

relative to meteoric water lines from temperate and tropical (Equation 5.14) and polar (Equation 

5.15) regions separately. 

 However, complete and proper establishment of triple oxygen isotope meteoric water lines 

will require additional data. Equations 5.14 and 5.15 are built from only 102 and 506 samples 

respectively, far fewer than the tens of thousands of d18O and d2H observations that went into the 

oxygen-hydrogen global meteoric water line (Craig, 1961; Dansgaard, 1964; Kendall and Coplen, 

2001; Rozanski et al., 1993). Future hydrologic triple oxygen isotope studies should focus on 

surface waters and monthly precipitation collections and should evaluate these meteoric water 

lines as more data become available.  

5.6.3 How does changing the value of lref affect ∆¢17O? 

 Although d¢17O and d¢18O data from our compilation of global waters do not fit a single 

line, it is critical that all ∆¢17O values are reported from the same reference frame (using the same 

value of lref). Different values of lref can complicate data comparisons (e.g., Luz and Barkan, 

2010; Pack and Herwartz, 2014), especially when comparing different materials (e.g., water and 

mineral). Therefore, we recommend the use of 0.528 for lref in all triple oxygen isotope studies, 

as recommended by others (e.g., Sharp et al., 2018). This value maintains consistency with 

previous work (Table 5.2) and has mechanistic significance because it is similar to the value of 

lRayleigh (Table 5.6).  

However, it is very important to consider the value of lref, especially because the triple 

oxygen isotope regression slope in in temperate and tropical regions (Equation 5.14) differs from 

the slope in polar regions (Equation 5.15). When a single value of lref is used (as is recommended), 

differences between empirical d¢18O–d¢17O slopes can produce latitudinal ∆¢17O variation that 

results from a calculation artifact, not hydrologic processes. Here, we refer to observed d¢18O–

d¢17O slopes as lobs and explore the ∆¢17O variation artifacts that result when lref and lobs differ.   
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When lobs is equal to lref (e.g., Rayleigh distillation), d¢18O and d¢17O fractionate along a 

line parallel to lref and ∆¢17O remains constant (Figures 5.3a, 5.12, and 5.14a). More commonly, 

however, lobs deviates from lref (Table 5.7) and results in systematic ∆¢17O bias (Figure 5.14). 

Figure 5.14b shows the residual between ∆¢17O values calculated with lref equal to 0.528 

(∆¢17O0.528) and ∆¢17O values calculated with lobs, where lobs is not equal to 0.528. Positive 

residuals indicate that ∆¢17O0.528 values are biased low and negative residuals indicate ∆¢17O0.528 

values are biased high (Figures 5.14c and 5.14d). The ∆¢17O residual increases as d¢18O (or d¢17O) 

deviate from 0‰. Datasets with lobs greater than lref are only observed in polar regions so no 

isotope data are observed in the upper right-hand quadrant in Figure 5.14b. Similarly, no very low 

d¢18O (< ~ −30‰) data are observed in the upper left-hand quadrant in Figure 5.14b because 

datasets with lobs less than lref are generally from mid-latitude and tropical regions and tend not 

to have very low d¢18O values. We recommend that authors report ∆¢17O values with lref equal to 

0.528 and also recalculate ∆¢17O values with other values of lref to further explore explanations for 

observed isotope variability (e.g., Uechi and Uemura, 2019).  

Differences between lobs and lref need not always be a complication, however. In fact, 

values of lobs contain important information about water cycling and hydrologic processes. In 

general, lobs values are lower (closer to qdiff) when kinetic processes dominate isotopic 

compositions and higher (closer to qeq) when equilibrium fractionation controls isotopic 

compositions (Table 5.7). Accordingly, low lobs values (< ~0.525) are typically associated with 

evaporated waters (e.g., lplant, Table 5.7). Very high lobs values (greater than 0.530) have been 

observed in ice among samples from the Vostok ice core (Landais et al., 2012a, 2008), and are 

likely related to a combination of humidity and wind speed conditions at the moisture source and 

other kinetic effects during condensation under very cold supersaturated conditions (Landais et al., 

2008; Miller, 2018).  
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Figure 5.14 Schematic (A) and observations (B-D) showing the effect of reference slopes on ∆¢17O 
values. In each panel, lref is equal to 0.528 and lobs is a theoretical (A) or observed (B-D) slope. 
Color (red and blue) distinguish datasets with different lobs. Data in red (lobs = 0.526) are from the 
surface water dataset newly compiled in this paper; data in blue (lobs = 0.530) are replotted from 
Landais et al. (2012b). In (B), the residual ∆¢17O is the difference between ∆¢17O0.528 and ∆¢17Olobs 
and is a linear function of d¢18O. Plots (C) and (D) show the effects on choice of lref on ∆¢17O 
values. In these plots, ∆¢17O is calculated with lref equal to 0.528 (filled black circles) and ∆¢17O 
calculated with (C) lref equal to 0.526 (open red circles) or (D) lref equal to 0.530 (open blue 
circles). Note that every panel has different axes. 
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Table 5.7 Observed l (lobs) by water type. See Table 5.2 for references. 

Sample subset lobs ± standard error 
All data 0.5276 ± 0.00006 
Luz and Barkan (2010) 0.5282 ± 0.0003 
Plant water  0.5188 ± 0.0003 
Precipitation 0.5255 ± 0.0003 
Ocean 0.528 ± 0.001 
Snow and ice 0.5285 ± 0.00006 
Surface and subsurface 0.5259 ± 0.0001  

5.7 Analytical methods and considerations 

5.7.1 Analytical methods 

 Triple oxygen isotope ratios are measured with dual inlet isotope ratio mass spectrometry 

or laser absorption spectrometry (Table 5.8). With careful analysis, both methods can achieve high 

quality 17O/16O measurements and similar (~10 per meg) precision for the ∆¢17O parameter. 

Typically, triple oxygen isotope data are measured in analytical sessions and data corrections 

(VSMOW-SLAP normalization, drift, etc.) are applied over a full session (Thompson, 2012; 

Werner and Brand, 2001). For IRMS systems, an analytical session is defined for each reactor 

(~200 analyses) and lasts approximately 2-4 weeks of near-constant analysis; for laser-based 

systems, an analytical session is typically defined as a batch or tray of samples or a ‘calibration 

window’ as in Schauer et al. (2016) that can span a few days to a few months.  

Table 5.8 Water triple oxygen isotope analysis methods.   

 IRMS Picarro Los Gatos Research 
(LGR) 

Analysis method Dual-inlet isotope 
ratio mass 

spectrometry (IRMS) 

Cavity ring-down 
spectroscopy (CRDS, 

laser-based) 

Cavity-enhanced 
laser absorption 

spectroscopy 
Instrument  Various (Delta Plus, 

MAT 253, Nu 
Perspective) 

L2140-i Triple Water Isotope 
Analyzer (TWIA) 

Sample preparation CoF3 reaction H2O(l) à H2O(g) H2O(l) à H2O(g) 
Analyte O2 gas Water vapor Water vapor 
Analysis time 2 to 3 hours 1.5 to 3 hours < 1 hour to 7+ hours 
∆¢17O precision ~ 10 per meg < 8 per meg ~ 10 per meg 
Lab footprint 10s m2 1-2 m2 1-2 m2 
Method development Barkan and Luz, 

2005 
Steig et al., 2014; 

Schauer et al., 2016 
Berman et al., 2013 
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5.7.1.1 Dual inlet isotope ratio mass spectrometry  

 The IRMS cobalt(III) fluoride method was first described by Baker et al. (2002) and was 

later modified by Barkan and Luz (2005) to improve the precision of d17O and d18O measurements. 

In this process, water is fluorinated to convert liquid water to oxygen gas:  

 

 2H2O(l) + 4CoF3(s) à O2(g) + 4HF(g) + 4CoF2(s).              Eq. 5.16 

    

Following fluorination, O2 gas passes through a series of traps and molecular sieves to remove 

reaction byproducts and capture the purified sample. Triple oxygen isotope ratios are measured on 

O2 gas using Thermo-Finnigan Delta Plus (e.g., Luz and Barkan, 2010), Thermo-Finnigan 253 

(e.g., Schoenemann et al., 2014), or Nu Perspective (this study) mass spectrometers. In total, a 

measurement takes ~3 hours and samples are typically analyzed twice. Our methods and IRMS 

workflow are described in Section 5.8.  

5.7.1.2 Laser absorption spectrometry 

 Because the fluorination and IRMS methods are complex and require significant laboratory 

infrastructure (Section 5.8), there is interest in using cavity ring-down spectroscopy (Picarro Inc.) 

or cavity-enhanced laser absorption (Los Gatos Research, LGR) to measure triple oxygen isotope 

ratios. These laser absorption spectrometers can achieve similar ∆¢17O precision as IRMS 

techniques, have a smaller laboratory footprint, are cheaper and more portable than mass 

spectrometers, and simultaneously measure d18O, d17O, and d2H (Berman et al., 2013; Schauer et 

al., 2016; Steig et al., 2014). Laser absorption spectrometry may also be faster than the IRMS 

method because laser-based analyzers do not require complex sample conversion (liquid water to 

gaseous O2) and the absorption analysis only takes a few minutes. However, high-quality laser 

absorption isotope data require many injections of the same sample, which can cumulatively take 

longer than a single IRMS analysis (Berman et al., 2013), and additional work is needed to directly 

compare d18O, d17O, and ∆¢17O data from laser-based and IRMS systems. An example of the 

workflow required to achieve ~10 per meg ∆¢17O precision on a Picarro water isotope analyzer is 

described in Schauer et al. (2016). 



 231 

5.7.2 Analytical recommendations and best practices  

5.7.2.1 VSMOW-SLAP normalization 

We recommend that triple oxygen isotope compositions be normalized to the VSMOW-

SLAP scale following the approach described by Schoenemann et al. (2013). We provide code 

(Supplement 5.3) and an example data file (Supplement 5.4) to show how to do this normalization. 

This normalization technique improves the accuracy of isotope measurements, simplifies inter-lab 

data comparisons (Brand and Coplen, 2001; Coplen, 1988; Gonfiantini, 1978; Meijer et al., 2000; 

Paul et al., 2007; Schoenemann et al., 2013), and corrects for analytical inconsistencies such as 

pressure-baseline offsets (Yeung et al., 2018). 

At a minimum, VSMOW and SLAP should be measured the beginning and end of every 

analytical session. Ideally, VSMOW and SLAP should also be analyzed within each session 

because instrument nonlinearities can evolve through time. Necessary isotopic compositions of 

VSMOW, VSMOW2, SLAP, and SLAP2 are reported in Table 5.9. We recommend that d17OSLAP 

(–29.6968‰) be calculated directly from the defined values of d18OSLAP (–55.5‰), ∆¢17OSLAP 

(0.00‰), and λref (0.528) (Gonfiantini, 1978; Schoenemann et al., 2013) because this approach 

results in excellent inter-lab ∆¢17O reproducibility and mathematically is the same approach that 

most labs already use to correct d18O data (Berman et al., 2013; Kaiser, 2009; Schoenemann et al., 

2013).  
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Table 5.9 Isotopic composition of common standards and reference waters. 

 d18O (‰) d17O (‰) d2H (‰) ∆¢17O (per meg) 
VSMOW a, 
VSMOW2b 

0 0 0 0 

SLAPa, 
SLAP2b 

–55.5 –29.6968c –428.0 0 

GISP −24.78 ± 0.09e –13.16 ± 0.05c 

–13.12 ± 0.05d 

–13.5 ± 0.3f 

−189.7 ± 1.0e 22 ± 11c 

23 ± 10d 

24 ± 12f 

USGS 45 –2.238 ± 0.011e –1.19 ± 0.3d 

–1.1 ± 0.3f 
–10.3 ± 0.4e 12 ± 1d 

13 ± 7f 

USGS 46 –29.80 ±0.03 e –15.85 ± 0.02d 

–15.7 ± 0.2 f 
–235.8 ± 0.7e 20 ± 2d 

19 ± 11f 
USGS 47 –19.80 ± 0.02e –10.47 ± 0.02d 

–10.4 ± 0.4f 
–150.2 ± 0.5e 40 ± 1d 

32 ± 9f 
USGS 48 –2.224 ± 0.012e –1.15 ± 0.01d 

–1.1 ± 0.2f  
–2.0 ± 0.4e 26 ± 3d 

31 ± 6f 
USGS 49 –50.55 ± 0.04e –27.8 ± 0.5f –394.7 ± 0.4e 13 ± 8f 
USGS 50 4.95 ± 0.02e 2.7 ± 0.2f 32.8 ± 0.4e –10 ± 7f 

Notes:  
All isotopic data are normalized to the VSMOW-SLAP scale. 
a) Gonfiantini, 1978; Barkan and Luz, 2005 
b) Lin et al., 2010  
c) Schoenemann et al., 2013  
d) Berman et al., 2013 (isotopic data are weighted by the inverse of precision; uncertainties are the 
averages of three experimental methods weighted by the number of measurements)  
e) USGS Reports of Stable Isotopic Composition Reference Materials (uncertainty is the 95% 
confidence interval) 
f) this study (uncertainty is one unweighted standard deviation). The ∆¢17O of USGS47 reported 
in this study is substantially lower than the value from Berman et al. (2013). Our measured d18O 
and d17O values are nearly identical to the accepted (USGS) or previously published (Berman et 
al., 2013) values, and we do not have a compelling analytical explanation for this one low ∆¢17O 
value. 

5.7.2.2 Secondary reference standards  

We recommend regular analysis of commercially available secondary water standards 

(e.g., GISP and USGS reference waters, Table 5.9) to ensure proper calibration to the VSMOW-

SLAP scale, confirm the accuracy of isotope ratio measurements, and monitor analytical drift. The 

d18O and d2H values of GISP and USGS reference water are readily available (Araguas-Araguas 

and Rozanski, 1995; Brand et al., 2014; Gonfiantini, 1984); presently, values of d17O and ∆¢17O 

are only reported by individual laboratories.  
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In our experience, ~5-10% of samples within an analytical session should be secondary 

reference waters. This proportion is necessary for a meaningful assessment of the accuracy and 

precision of data, although more USGS and/or GISP analyses may be necessary when unknown 

sample waters span a large (> 10‰) range in d18O or d-excess. Secondary reference analyses 

should be distributed evenly throughout every analytical session to monitor instrument drift.  

Finally, the isotopic composition of standards and reference waters should bracket the 

expected isotopic composition of unknowns. This is typically not an issue for d18O, d17O, and d2H 

because USGS reference waters span the common range of natural waters (Figures 5.4a and 5.4c, 

Table 5.9). However, the range of ∆¢17O and d-excess of standards and reference waters (Table 

5.9) is much smaller than observed ∆¢17O (Figure 5.3b) and d-excess (Figure 5.3e) variability. 

Therefore, we recommend that laboratories develop additional reference waters to expand isotopic 

ranges. New reference waters can be developed from evaporated snow (low d18O, ∆¢17O, and d-

excess) or creative collections of combustion water (e.g., condensate from a home furnace) that 

have very low (< –350 per meg) ∆¢17O values that inherit oxygen from atmospheric O2 (∆¢17O ~ = 

–400 to –500 per meg) (Barkan and Luz, 2011; Wostbrock et al., 2020; Yeung et al., 2012; Young 

et al., 2014).  

5.7.2.3 Analytical sanity checks 

We recommend laboratories perform evaporation experiments and develop mixing curves 

to monitor analytical performance. Laboratory-controlled evaporation and mixing experiments can 

result in substantial isotopic variation (far above analytical precision) and are well-predicted by 

simple isotope models (Equations 5.6 and 5.7). These quality checks are relatively simple and 

should be included as part of regular analytical maintenance and upkeep. Templates to develop 

mixing curves and evaporation experiments are provided in Supplements 5.2 and 5.5, respectively.  

5.7.2.4 How to calculate and report ∆¢17O precision  

Typically, reported precision for ∆¢17O is approximately 10 per meg, orders of magnitude 

better than analytical errors in d17O and d18O (~0.1 to 1‰). One major source of analytical error 

in both IRMS and laser absorption spectrometers is physical fractionation of water vapor during 

sample handling (i.e., injection, sample conversion, and transport of the vapor to optical cavities 

or through O2 prep lines). However, this fractionation is presumably mass-dependent such that the 
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errors for d17O and d18O are correlated and vary along a line with a slope close to 0.528, resulting 

in very  precise ∆¢17O measurements (Barkan and Luz, 2007; Landais et al., 2006; Schoenemann 

et al., 2013). In other words, if d17O and d18O vary during sample handing, they do so along a line 

that is parallel to lref and ∆¢17O errors are largely independent of the precision for d17O and d18O. 

Errors on analyses made by laser absorption spectrometers do not cancel in exactly the same way 

in because the H217O and H218O absorption measurements do not necessarily covary. Instead, laser 

absorption spectrometers achieve low ∆¢17O error from incredibly precise d17O and d18O 

measurements. Using simple error propagation, the precision of d17O and d18O measurements must 

be better than 0.007‰ (assuming d17O and d18O errors are uncorrelated) in order to achieve 10 per 

meg precision on ∆¢17O. Achieving such high precision can be challenging and frequently requires 

many (> 20) repeat analyses (e.g., Berman et al., 2013). If errors on d17O and d18O are not 

independently precise enough to get 10 per meg precision on ∆¢17O, authors must show that errors 

in d17O and d18O values are correlated.  

Currently, there is no universal way to calculate and report analytical triple oxygen isotope 

error. We recommend that authors calculate d18O, d17O, and ∆¢17O precision from secondary 

reference standards and report the pooled standard deviation to express to external reproducibility 

of replicate measurements. The pooled standard deviation (sp) is:  

 

 sp = e∑ (bX<J)gX
hi

XjE
∑ (bX<J)i
XjE

                  Eq. 5.17 

 

where si is the standard deviation and ni is the number of replicate measurements of the i-th sample 

and k is the total number of samples. In addition, we recommend that authors also report one 

standard deviation for replicate analyses of unknowns. It is important to report both measures of 

uncertainty because the pooled standard deviation represents the performance of the analytical 

system while the standard deviation of individual analyses represents error on each unknown.  

5.7.2.5 Memory effects 

 Regardless of analytical method (IRMS or laser absorption spectroscopy), we recommend 

analyzing samples in order of increasing or decreasing d18O and using preparatory injections to 

minimize memory effects. As needed, USGS reference waters can help bridge large d18O gaps 
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between sequential samples. In Picarro and LGR analyzers, the isotopic compositions of water 

from preparatory injections are analyzed but the data are typically ignored (e.g., Bailey et al., 2013; 

Berman et al., 2013; Schauer et al., 2016; Steig et al., 2014; Tian et al., 2018). In IRMS systems, 

memory effects are concentrated in the CoF3 reactor (Barkan and Luz, 2005) and can be cleared 

with preparatory injections. Product gases (O2 and HF) from these injections should be pumped 

away without purification or analysis.  

In our reactors at the University of Michigan, we use one preparatory injection when 

sequential d18O values are within 5‰, and two preparatory injections when sequential d18O values 

differ by more than 5‰. In our experience, typically no more than two preparatory injections are 

necessary to clear IRMS memory effects, but we encourage each lab to independently determine 

best practices to minimize memory effects from individual reactors.  

5.7.2.6 Reporting recommendations 

 First and foremost, triple oxygen isotope data must be reported to three decimal places to 

facilitate data comparisons and enable ∆¢17O to be recalculated in various reference frames. Data 

can be reported as individual d17O and individual d18O, both to three decimal places, or as average 

d18O and average ∆¢17O, both to three decimal places. It is insufficient to provide average d18O and 

average d17O even when both are reported to three decimal places. Typically, these data are 

reported in supplementary files, but this is left to the discretion of each author. Supplements 5.6, 

5.7, and 5.8 are included as templates to report unknown, standard, and reference water data.  

Following precedent (Barkan and Luz, 2007; Luz and Barkan, 2010), we recommend that 

all triple oxygen isotope studies use a value of 0.528 for lref and clearly report the value of lref 

used. A value of 0.528 for lref maintains consistency with earlier triple oxygen isotope studies 

(Table 5.2), clearly distinguishes equilibrium (qeq = 0.529) and kinetic (qdiff = 0.518) fractionation 

effects (Figure 5.13), and removes most ∆¢17O effects from Rayleigh distillation.  

Finally, we recommend that triple oxygen water isotope studies include both ∆¢17O and d-

excess data when possible. Combining ∆¢17O and d-excess can reveal information about hydrologic 

cycling (Section 5.5) and the parameters (e.g., a, d, and l values) that drive isotope fractionation. 

Adding d2H measurements is straightforward for studies that use laser absorption spectrometers 

and is a worthwhile additional measurement for those that use IRMS techniques.   
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5.7.2.7 Sample selection 

We recommend using existing d18O and d-excess data to select samples for triple oxygen 

isotope analysis. For example, at the University of Michigan, we use a Picarro water isotope 

analyzer to measure d18O and d2H, and then systematically select a subset of samples for IRMS 

d17O and d18O analysis. Additional details on this process and our analytical methods are in Section 

5.8.1. Initial d18O data should also be used to determine the requisite number of preparatory 

injections and arrange analytical order to minimize memory effects for triple oxygen isotope 

analysis.  

Sample selection should also consider the expected range of ∆¢17O variation and be sure to 

select samples that are likely to result in statistically significant ∆¢17O variation (i.e., greater than 

~10 per meg). For example, assuming non-steady-state evaporation, the maximum possible slope 

between d-excess and ∆¢17O is ~2 per meg ‰-1 (e.g., Barkan and Luz, 2007; Li et al., 2015). 

Therefore, statistically significant ∆¢17O variation is most probable in datasets that have >5‰ range 

in d-excess. Datasets with only a few per mil variability in d18O and/or d-excess typically result in 

∆¢17O variation within analytical precision. We encourage researchers to explore the expected 

∆¢17O variability on a case-by-case basis with code provided in Supplement 5.1.   

5.8 New surface water data  

 As part of this review, we report a new, near-global dataset of surface water triple oxygen 

isotope data (Figures 5.2–5.4). Here, we explain our sample collection, analytical methods, and a 

brief summary of our results.  

5.8.1 Sample collection and isotope analysis  

 We organized a crowdsource effort to collect over 1,600 water samples from around the 

world for isotope analysis. Water was collected in 2 dram glass vials (Ace Glass 8779-20) or 20 

ml HDPE plastic vials (Wheaton 986716). Samples collected in plastic vials were transferred into 

glass vials within a few months of collection so we do not expect any fractionation with the sample 

containers (Spangenberg, 2012). Vials were capped with PolyCone caps to prevent leaks or 

evaporation, filtered (0.45 µm, VWR 28145-493), and then stored in a dark environment before 

isotope analysis.  
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 We used a Picarro L2130-i cavity ringdown spectrometer with a high-precision vaporizer 

(A0211) and attached autosampler to measure the d18O and d2H values of every freshwater sample 

collected (over 1500 samples). The L2130-i does not measure d17O. Each sample was analyzed 

nine times; we use the average of the last four analyses. We used the Picarro ChemCorrect software 

to monitor samples for organic contamination and normalized measured d18O and d2H to the 

VSMOW-SLAP scale with USGS reference waters (USGS45, 46, 49, and 50) and four in-house 

liquid standards. Isotopic drift and precision were monitored using the Picarro L2130-i Drift and 

Precision Test worksheet, which is available for download from the Picarro community support 

forum (https://www.picarro.com/support/community). Precision of repeat analyses of deionized 

water was better than 0.1‰ and 0.3‰ for d18O and d2H, respectively. 

 Using the Picarro data, we selected 104 surface waters (rivers and lakes) from the 

crowdsourced dataset for triple oxygen isotope analysis. Samples were selected from 14 regions 

across 6 continents. To ensure a representative range of isotopic compositions, we selected samples 

that span 30‰ in d18O and 50‰ in d-excess.  

Triple oxygen isotopes were analyzed with a dual inlet Nu Perspective isotope ratio mass 

spectrometer at the University of Michigan. We convert liquid water to O2 gas with cobalt(III) 

fluoride and a custom-built fluorination line based on the method outlined by Baker et al. (2002) 

and refined by Luz and Barkan (2005). Our analytical methods have been described previously (Li 

et al., 2017, 2015; Passey et al., 2014), although these measurements were made with a different 

mass spectrometer (Thermo 253) and fluorination line previously at Johns Hopkins University. 

Our methods have changed only slightly since the laboratory was relocated to the University of 

Michigan.  

Briefly, we inject ~2 µL of water through a septum port into a 360-370 ˚C CoF3 nickel 

reactor to convert liquid water to O2 gas and gaseous hydrofluoric acid (HF) (Equation 5.16). 

Helium gas carries O2 gas through a nickel trap immersed in liquid nitrogen (-196 ˚C) to remove 

HF. We further purify the O2 gas by passing it through a custom-built stainless steel column (~ 1 

m, 1/8¢¢ OD) that is packed with a 5 Å molecular sieve (Strem Chemicals, CAS#69912-79-4) and 

immersed in a methanol/dry ice slush (-80 ˚C). After purification, we collect the O2 gas in a -196 

˚C trap that is packed with a 5 Å molecular sieve. This process takes ~ 15 minutes. After the O2 is 

collected, helium gas is pumped away (14 minutes), liquid nitrogen is replaced by a -80 ˚C 
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methanol/dry ice slush, and the O2 is transferred to a -180 ˚C cold finger (12 minutes) that is part 

of the dual inlet system of the Nu mass spectrometer. The cold finger has a few pellets of 5 Å 

molecular sieve to ensure the O2 gas remains in the cold finger. Finally, the cold finger is heated 

(9 minutes) to 90 ˚C to release O2 from the molecular sieve, and the sample is introduced to the 

mass spectrometer. In total, sample preparation takes just over an hour.  

The O2 gas is analyzed in dual inlet mode for m/z 32, 33, and 34. To minimize analytical 

error, each analysis consists of 40 cycles during which the ratio of sample to reference gas 

(99.999% compressed oxygen, with approximate values of d17OVSMOW = 10.3‰, d18OVSMOW = 

20.3‰) is determined. Each cycle consists of 50 seconds of integration time on the sample gas or 

reference gas and 20 seconds of idle time between integrations. Resistances on the m/z 32, 33, and 

34 Faraday cups are 2 ´ 108, 3 ´ 1011, and 1 ´ 1011 W, respectively. Analysis in the mass 

spectrometer takes approximately two hours. 

 We normalize triple oxygen isotope data to the VSMOW-SLAP scale following the 

approach described by Schoenemann et al. (2013). We analyze VSMOW2 and SLAP2 in at least 

triplicate at the beginning, end, and middle of every reactor. The d18O and d17O values of 

VSMOW2 and SLAP2 are indistinguishable from those of VSMOW and SLAP (Lin et al., 2010). 

In addition, we routinely analyze six USGS reference waters (USGS45, 46, 47, 48, 49, 50) to 

determine long-term, external precision of our system, to monitor isotopic drift, and to ensure 

analytical accuracy. In our lab, the pooled standard deviation of replicate triple oxygen isotope 

analyses of USGS reference waters is 0.3‰ for d17O, 0.5‰ for d18O, and 8 per meg for ∆¢17O.   

5.8.2 Results  

New triple oxygen isotope data are reported in Supplements 5.6-5.8 and plotted in Figures 

5.2–5.4. For the full dataset, d18O ranges from -20.3 to 9.6‰, d-excess ranges from -31.8 to 

21.1‰, and ∆¢17O ranges from -45 to 54 per meg. Most isotope compositions cluster between -14 

to -5‰, 3 to 13‰, and 14 to 33 per meg (d18O, d-excess, and ∆¢17O, respectively), but have high 

standard deviations (6.1‰, 11.1‰, and 18 per meg, respectively) and are poorly described by 

average values. In this dataset, ∆¢17O values are moderately to strongly positively correlated with 

d-excess (r = 0.73) and are moderately to strongly negatively correlated with d¢18O (r = -0.64). 

Both ∆¢17O and d-excess are very weakly correlated or uncorrelated with latitude, longitude, 

elevation, mean annual temperature, mean annual precipitation, and mean annual relative humidity 
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(all r < ± 0.3).  In general, rivers have lower d18O, higher d-excess, and higher ∆¢17O than lakes, 

although some rivers and lakes in arid regions are isotopically similar (Supplement 5.6). The slope 

(l) of the d¢18O–d¢17O regression line through this dataset is 0.5260 ± 0.0002. Climate data (mean 

annual precipitation, temperature, and relative humidity) from the sampling locations of the new 

surface waters were extracted from the CRU 2.0 dataset (New et al., 2002) and are reported in 

Supplement 5.6. 

5.9 Applications and directions of future work   

5.9.1 Modern applications 

 Studies of ∆¢17O variation in the hydrosphere have two primary applications: as a 

complement to d-excess and as an analog to the geologic record. In modern hydrologic studies, 

∆¢17O and d-excess can provide complementary information about moisture transport and moisture 

source conditions because ∆¢17O is less sensitive to temperature than d-excess (Figure 5.13). For 

example, a combination of ∆¢17O and d-excess can decouple equilibrium and kinetic fractionation 

effects and reconstruct both temperature and relative humidity at a moisture source (e.g., Landais 

et al., 2012; Uechi and Uemura, 2019). 

It is also important that we understand modern meteoric water ∆¢17O variability in order to 

expand its use in hydrologic applications and to interpret ∆¢17O data in the geologic record. 

Currently, a number of important questions about the co-variability of d18O, ∆¢17O, and d-excess 

in modern meteoric waters remain, and should be the focus of future work. First, future hydrologic 

∆¢17O studies should focus on rivers and/or amount-weighted monthly precipitation to evaluate the 

slopes and intercepts of d¢18O–d¢17O regression lines across latitudinal gradients and a range of 

climate conditions. Second, a mechanistic explanation of the seasonal precipitation ∆¢17O variation 

(higher ∆¢17O in the winter, lower ∆¢17O in the summer) is still unknown. This cycle has been 

observed in multiple regions but is not fully explained (Affolter et al., 2015; Li et al., 2015; Tian 

et al., 2018; Uechi and Uemura, 2019). Third, follow-up work is necessary in lake systems to 

constrain the parameters in isotopic evaporation models (Equations 5.6 and 5.7). To date, most 

lake water triple oxygen isotope studies have focused on ∆¢17O in hyperarid climates where lakes 

are very evaporated (e.g., western US (Passey and Ji, 2019), Atacama Desert, and Sistant Basin in 

eastern Iran (Surma et al., 2018, 2015, respectively)), but additional lake water ∆¢17O observations 
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from less evaporated temperate and tropical regions would be helpful. Fourth, we encourage triple 

oxygen isotope data-model comparisons. Many state of the art isotope-enabled general circulation 

models now include d17O (e.g., Brady et al., 2019), but modeling kinetic fractionation effects is 

still a challenge and modeled ∆¢17O estimates must be evaluated with modern observations (Risi 

et al., 2013; Schoenemann and Steig, 2016; Wong et al., 2017).  

Finally, future modern triple oxygen isotope studies should expand to include water types 

that have not yet been studied or are still poorly understood. These include, but are not limited to, 

water vapor; soil water, which frequently undergoes extensive fractionation in the upper soil layers 

(Barnes and Allison, 1984); groundwater, which can integrate information about seasonal 

recharge, local and regional water tables, and paleoclimate conditions (Jasechko, 2019); and 

seawater. Generally it is assumed that the isotopic composition of seawater is invariant and similar 

to that of SMOW (Luz and Barkan, 2010; Zakharov et al., 2019), but this idea is largely untested 

for triple oxygen isotopes.  

5.9.2 Paleoclimate and geologic applications 

 The most appealing application of triple oxygen isotopes in the geologic record is the 

ability to track aridity and constrain the isotopic effects of evaporation. This has long been a 

challenge in isotope geochemistry because very few minerals contain both oxygen and hydrogen, 

and there is no d-excess equivalent in geologic materials. Now, the addition of ∆¢17O to d18O 

records can help identify effects of evaporation and aridity (Alexandre et al., 2019; Gázquez et al., 

2018; Passey et al., 2014; Surma et al., 2018), add constraints on diagenesis and formation 

conditions of sedimentary records (Levin et al., 2014), and reconstruct the isotopic composition of 

ancient meteoric and ocean waters (e.g., Gehler et al., 2011; Herwartz et al., 2015; Liljestrand et 

al., 2020; Passey and Ji, 2019). For example, ∆¢17O and ‘clumped isotopes’ (∆47) in lake carbonates 

can be used to reconstruct the isotopic composition of unevaporated paleo-water (Passey and Ji, 

2019). Similarly, ∆¢17O from gypsum hydration water offers new insights into changes in relative 

humidity across glacial-interglacial cycles that are impossible to discern with records of d18O alone 

(Gázquez et al., 2018). 

 To date, ∆¢17O has been measured in carbonates, sulfates, phosphates, nitrates, silicates, 

and oxides to answer an array of paleoclimate questions (Bao et al., 2016). Additional work is still 

needed to calibrate solid ∆¢17O standards (Barkan et al., 2019; Wostbrock et al., 2020), define 
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fractionation factors (Bergel et al., 2020; Cao and Liu, 2011; Guo and Zhou, 2019; Sharp et al., 

2016; Voarintsoa et al., 2020), and refine analytical methods (Affek and Barkan, 2018; Fosu et al., 

2020; Sakai et al., 2017), but the potential of triple oxygen isotopes to separate equilibrium and 

kinetic fractionation effects in paleoclimate applications is immense. Additional work to 

understand the modern variation in ∆¢17O in waters will also help expand triple oxygen isotopes as 

tool for paleoclimate reconstructions. 

5.10 Summary 

Measurements of small, mass-dependent triple oxygen isotope variations have come a long 

way in less than two decades. Deviations from a d¢18O–d¢17O mass-dependent reference line 

(expressed as ∆¢17O) that were once considered unimportant and too difficult to measure are now 

well characterized; these variations are statistically significant and explained by well-known 

equilibrium and kinetic fractionation effects. Values of ∆¢17O complement d-excess, can be used 

to reconstruct relative humidity at moisture sources and the isotopic composition of paleo-waters, 

and help discern isotopic effects of evaporation that are impossible to quantify with d18O alone.  

In this review, we synthesize meteoric water isotope data to explain global variations of 

d¢18O, d¢17O, d2H, ∆¢17O, and d-excess. We explain the hydrologic processes that cause meteoric 

water ∆¢17O to vary, evaluate the established triple oxygen isotope global meteoric water line (Luz 

and Barkan, 2010), and present updated meteoric water lines (Equations 5.14 and 5.15) for polar 

or tropical and temperate regions. Although the slope of the meteoric water line for tropical and 

temperate waters deviates from 0.528, we recommend the continued use of 0.528 as lref for all 

triple oxygen isotope studies. This value maintains consistency with earlier work, simplifies data 

comparisons, and is mechanistically useful because it is nearly identical to lRayleigh. In addition, we 

recommend that all triple oxygen isotope studies normalize values of d18O and d17O to the 

VSMOW-SLAP scale, and encourage authors to include raw d18O and d17O data, reported to three 

decimal places, as supplementary material with every study. These analytical and reporting 

practices will streamline data comparisons and promote new understanding of triple oxygen 

isotope variability.  

Currently only a handful of labs are able to make high quality ∆¢17O measurements, but 

small, portable laser absorption spectrometers are becoming popular and new datasets are rapidly 

emerging. Future triple oxygen isotope measurements should focus on surface waters and amount-
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weighted monthly precipitation to continue to evaluate meteoric water lines. In addition, future 

isotope hydrology research should explore ∆¢17O variability in water vapor, ocean water, 

groundwater, and lakes to further trace modern water cycling and better reconstruct 

paleohydrological conditions. Taken together, modern meteoric water ∆¢17O variability serves as 

a baseline from which to answer an array of previously unquantifiable paleoclimate questions and 

offers new insights into modern water cycling.   
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Chapter 6 Conclusion 
 

 This dissertation is a compilation of four chapters that use oxygen and hydrogen isotopes 

to trace how water is exchanged between the land and the atmosphere. Each of these chapters 

provides new insights and understanding about terrestrial hydrologic cycling that we did not or 

could not know without water isotopes. This concluding chapter highlights the most important 

findings and implications from my dissertation. I end with research questions that have emerged 

from this dissertation and available datasets that may guide future work.  

6.1 Dissertation summary and key findings  

Ratios of stable oxygen and hydrogen isotopes are among the most common isotopic 

measurements in Earth science and have been a cornerstone of climate and hydrologic research for 

over six decades. Initially, most isotope hydrologists associated the spatial variability of water 

isotopes with Rayleigh distillation and used water isotopes to trace rainout and condensation. 

However, recent technological and analytical developments (e.g., laser absorption spectrometers 

and high precision triple oxygen isotope measurements, both of which I use throughout my 

dissertation) have led to a proliferation of new datasets that probe questions about water cycling 

across a wide range of spatial and temporal scales. Together, these studies paint a nuanced picture 

of water cycling that is much more complex than a simple Rayleigh distillation model.   

Hydrologic and climate research over the last two decades has coalesced into three primary 

applications of isotope hydrology. Each of these applications goes well beyond Rayleigh 

distillation and demonstrates the power of isotopes to study water cycling across space and time. 

First, water isotopes record information about remote oceanic moisture sources (e.g., Steen-Larsen 

et al., 2015) and water sources in surface and groundwater (e.g., Evaristo et al., 2015). For 

example, water isotopes can trace preferential moisture pathways in soil (e.g., Allen et al., 2019) 

to identify which sources of water are accessible to plants (e.g., Brooks et al., 2010). Second, water 

isotopes can separate or reveal hydrologic processes that may not be discernable with other 

methods. This is particularly important in ecohydrologic research because water isotopes can 
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distinguish evaporation and transpiration fluxes (Yakir and Sternberg, 2000) whereas traditional 

techniques such as eddy covariance only measure the bulk latent heat or evapotranspiration flux. 

Third, water isotope data integrates a record of hydrologic processes as water moves through the 

environment. For example, the isotopic composition of precipitation in the Amazon Basin reveals 

information about evaporative conditions above oceanic moisture sources, moisture recycling over 

land, and local condensation (Salati et al., 1979). This dissertation explores all three of these 

applications.  

This dissertation leverages a comprehensive observational network I built and explores 

new applications and insights from stable water isotopes to trace spatial and temporal variability 

in the hydrologic cycle. Chapters 2 and 3 focus on forest ecohydrology and use water isotopes to 

quantify the role of trees in local and regional water budgets. Chapters 4 and 5 use the isotopic 

composition of precipitation and surface water to refine longstanding assumptions about isotope 

hydrology. All four of these chapters highlight processes other than Rayleigh distillation that drive 

water cycling.  

The most important novel findings from this dissertation are that structural disturbances in 

forest canopies can alter land-atmosphere mixing and gas exchange between ecosystems and the 

atmosphere (Chapter 2) and that precipitation on the dry flank of the Western Cordillera in the 

central Andes is sourced from the Pacific Ocean (Chapter 4). Neither of these findings would have 

been possible without stable water isotopes. In Chapter 2, water isotopes offer insights into the 

evaporation, transpiration, and boundary layer mixing that drive land-atmosphere water exchange. 

This work helps ecohydrologists understand the biogeochemical response of forests following 

vegetation thinning management or rapid natural ecological succession. In Chapter 4, atmospheric 

moisture trajectories show that Pacific-sourced moisture is transported up the dry western flank; 

precipitation isotopes show that this water actually makes it to the land, which is important because 

raindrops can conceivably evaporate entirely as they fall through such dry air. This finding can 

help manage freshwater resources in a dry climate and has important implications for 

reconstructions of paleoaltimetry and paleoclimate in the central Andes. 

The most important contributions from this dissertation are that stable water isotopes can 

help quantify the role of plants in land-atmosphere water exchange (Chapters 2 and 3) and the 

addition of substantial new datasets that constrain water cycling in the central Andes (Chapter 4) 

and hydrologic triple oxygen isotope variability (Chapter 5). Chapters 3 and 5 focus primarily on 
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method development and isotope systematics, respectively, and pave the way for future work on a 

variety of hydrologic and paleoclimate questions.     

The conclusions and implications from this dissertation improve our understanding of the 

hydrologic processes that drive water cycling between the land and the atmosphere from ecosystem 

to global scales. Taken together, the chapters in this dissertation have a wide range of applications 

in hydrology, ecology, geology, and climate modeling and demonstrate the immense potential of 

stable water isotopes to better understand the water cycle.    

6.2 Remaining questions  

 This work has also motivated a number of research questions. The questions listed below 

are among the most important unanswered questions that have emerged or are highlighted from 

my dissertation. I intend to work on the first three questions during my postdoctoral work. 

1) Why is precipitation ∆¢17O higher in the winter and lower in the summer? Seasonal 

∆¢17Op variation is observed in many datasets (including Chapter 4), but a convincing 

explanation of this pattern remains unclear. In the hydrologic triple oxygen isotope 

literature, higher winter ∆¢17Op values are often explained by more equilibrium 

fractionation, and lower summer ∆¢17Op values are explained by more kinetic fractionation 

(e.g., Tian et al., 2018). However, this qualitative reasoning is not very satisfying and offers 

very little in terms of the processes or environmental controls that drive ∆¢17Op. Likely, 

seasonal ∆¢17Op variation is due to small, possibly temperature dependent, deviations 

between observed d¢18O–d¢17O slopes and the slope of the triple oxygen isotope reference 

relationship, but this is an active area of research.  

2) Do the laser-based d17O analyzers work well? In other words: I just got my start-up 

funds! Should I buy the new d17O-enabled Picarro? Interest in hydrologic ∆¢17O data is 

rapidly emerging, but the analytical steps to make these measurements have traditionally 

been quite complex. Recently, Picarro and LGR, another company that makes laser-based 

water isotope analyzers, developed technology that may simplify ∆¢17O measurements by 

using laser absorption spectroscopy to simultaneously analyze liquid or water vapor d18O, 

d17O, and d2H. These analyzers are appealing because they have a small footprint and are 

field-portable, cost about a quarter of the price of an isotope ratio mass spectrometer 

(IRMS), operate automatically (with an autosampler), and can achieve similar ∆¢17O 
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precision (~10 per meg) as traditional IRMS measurements. However, such high precision 

from Picarro and LGR data frequently requires optimistic statistics, and there has not yet 

been a rigorous comparison of Picarro, LGR, and IRMS ∆¢17O data. We are well positioned 

to do this comparison at the University of Michigan because we have both an IRMS 

(Levin/Passey Lab) and Picarro (Poulsen Lab) to measure d18O and d17O. A more robust 

assessment of laser-based ∆¢17O data will inform the suite or types of questions that these 

analyzers can help answer.  

3) What are the values of XE and adiff? The isotopic composition of water during 

evaporation is very sensitive to XE, the volumetric ratio of water lost to evaporation relative 

to inflowing water, and adiff, the kinetic fractionation factor (Criss, 1999; Gázquez et al., 

2018; Passey and Ji, 2019; Surma et al., 2018). However, the values of XE and adiff are not 

well known. Theoretically, XE can range from 0 (no evaporative loss) to 1 (all water loss 

is due to evaporation); adiff can range from 1 (pure turbulent transport and no isotopic 

fractionation) to 1.0285 (pure molecular transport and lots of isotopic fractionation as vapor 

diffuses through the air; Merlivat, 1978). Typically, XE is assumed to be ~ 0.5 (e.g., Passey 

and Ji, 2019) and adiff is ~ 1.014 (e.g., Gat, 1996; Jasechko et al., 2013; Surma et al., 2018), 

but these values vary widely and can have a substantial impact on isotopic interpretations 

(e.g., Horita et al. 2008). I have done some initial analysis that suggests the typical values 

of XE and adiff are likely too high, and that the fractionation associated with evaporation 

may be overestimated in some instances (Aron et al. 2019). Still, additional work is needed 

to further constrain the values of XE and adiff. 

4) What contributes to the overall poor simulated d-excess in isotope-enabled climate 

models? Isotope-enabled climate models simulate isotopic ratios in the atmosphere, ocean, 

ice, and land. Generally, observed and simulated d18O data agree very well, and isotope-

enabled climate models are used for a number of modern and paleoclimate applications 

(Brady et al., 2019). However, the agreement between simulated and observed d-excess is 

quite poor, which means that modeled d-excess is rarely used in hydrologic or paleoclimate 

studies (Nusbaumer et al., 2017; Wong et al., 2017). As shown in every chapter of this 

dissertation, d-excess offers important and valuable insights into hydrologic processes and 

environmental conditions that are impossible to discern with d18O alone. Therefore, 
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additional work to improve the simulated d-excess in climate models would be a fruitful 

and worthwhile area of future study.  

5) Are there better ways to quantify ecosystem-atmosphere water exchange and 

quantify evaporation and transpiration fluxes? Chapters 2 and 3 present new insight 

into ecosystem-atmosphere water exchange from water isotopes. However, scaling this 

type of work from the plot or ecosystem level to regional and global scales is not always 

straightforward because soil water is isotopically heterogeneous and the hydraulics of 

vegetation vary among species and environments. Therefore, it is important to evaluate 

new analytical techniques and combine multiple types of data to address ecohydrologic 

research questions. In the coming years, solar induced fluorescence (Shan et al., 2019), the 

carbonyl sulfide flux (Whelan et al., 2018), and terrestrial LiDAR (light detection and 

ranging; e.g., Atkins et al., 2018) data will provide a wealth of new data on vegetation 

structure and gas exchange between ecosystems and the atmosphere. Combining insights 

from water isotopes and some of these new data streams will improve our mechanistic 

understanding of land-atmosphere water interaction.  

6) What processes drive the isotopic composition of precipitation across the entire 

Andean orogen? Water isotope studies in the Andes typically focus on observed 

variability at a single site (e.g., Ampuero et al., 2020), valley (e.g., Gonfiantini et al., 2001), 

or region (Chapter 2). To date, there has not yet been a comprehensive assessment of 

precipitation (or surface water) isotopes across the entire orogen. While the Andes and 

Amazon are by no means a data-rich region (Putman and Bowen, 2019), there are plenty 

of observations to explore continental-scale isotope patterns and compare regional or 

latitudinal hydrology. Compiled South American precipitation isotope data will also be a 

useful dataset to evaluate the performance of isotope-enabled climate models and a new 

technique to ‘tag’ source regions that can help identify and trace atmospheric moisture 

transport (e.g., Tabor et al., 2018).  

6.3 Suggestions and data for future work 

 Throughout the course of my graduate studies I have compiled a number of datasets that 

did not make it into this dissertation. Here I briefly describe these datasets and explain how they 

can help address some of the remaining questions outlined above.  
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1) Crowdsourced water samples. This dataset includes d18O and d2H vales of over 1,600 

water samples. These samples were collected from 49 countries and 6 continents through 

a crowdsourced effort and include precipitation, surface water, ground water, tap water, 

melted snow and ice, and ocean water. Isotopic data from 104 of these samples are included 

in Chapter 5, but the full dataset remains relatively unexplored. The dataset includes 

weekly timeseries from the Huron River in Ann Arbor and weekly precipitation samples 

collected in Ann Arbor and at UMBS in northern lower Michigan. These timeseries may 

be useful in explaining the high winter/low summer ∆¢17Op pattern. These samples are 

properly stored (to prevent evaporation) should anyone want to do additional isotopic 

analyses in the future. 

2) Central Andes surface waters. This dataset includes d18O and d2H data from 557 surface 

water samples collected in southern Peru. These samples were collected from 2016-2019 

from the same region as the precipitation network in Chapter 4. Combined with published 

water isotope data from South America, this dataset can help explain the environmental 

controls on isotopic variability across the Andean orogen. In addition, this dataset can 

inform isotope-based interpretations of paleoelevation and paleoclimate in the Andes, 

which remains an area of ongoing work.  

3) University of Michigan Biological Station (UMBS) water vapor. This dataset includes 

very high resolution (~0.1-1 Hz) water vapor d18O and d2H data from two UMBS forest 

sites during the 2015 and 2016 growing seasons. In Chapter 2, I analyzed the diurnal vapor 

isotope variability from the 2016 dataset, but did not focus in depth on synoptic, seasonal, 

or interannual vapor isotope signals. UMBS is located downwind of Lake Michigan, so 

this vapor isotope data has pronounced and distinct d-excess signatures that may be a 

helpful benchmark to evaluate regional isotope modeling or improve simulated d-excess in 

isotope-enabled climate models.  

 

Finally, I want to end with an acknowledgement of the opportunistic and collaborative sample 

collection that buoyed my PhD. Nearly every sample I analyzed and discussed in Chapters 4 and 

5 was collected through citizen science projects and crowdsourced efforts. These projects gave me 

an opportunity to work with non-scientists on rigorous research projects and constantly reminded 

me of the power of collaboration. None of the work in Chapter 4 would have been possible without 
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the Peruvian station managers who watch over the precipitation collection equipment and have 

been collecting rain samples for more than four years. I never could have collected all the 

crowdsource samples (Chapter 5) on my own. At a time of much skepticism about science and 

climate change in this country, this type of engagement helps to demystify the scientific process, 

promote communication, and generate interest in environmental science. Beyond these particular 

projects, this collaborative effort among a diverse group of individuals shows the power of working 

together towards a common goal.  
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