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ABSTRACT

This thesis contains three projects that propose novel methods for studying mechanisms
that explain statistical relationships. The ultimate goal of each of these methods is to help
researchers describe how or why complex relationships between observed variables exist.

The first project proposes and studies a method for recovering mediation structure in
high dimensions. We take a dimension reduction approach that generalizes the “product
of coefficients” concept for univariate mediation analysis through the optimization of a
loss function. We devise an efficient algorithm for optimizing the product-of-coefficients
inspired loss function. Through extensive simulation studies, we show that the method
is capable of consistently identifying mediation structure. Finally, two case studies are
presented that demonstrate how the method can be used to conduct multivariate mediation
analysis.

The second project uses tools from conditional inference to improve the calibration of
tests of univariate mediation hypotheses. The key insight of the project is that the non-
Euclidean geometry of the null parameter space causes the test statistic’s sampling distri-
bution to depend on a nuisance parameter. After identifying a statistic that is both sufficient
for the nuisance parameter and approximately ancillary for the parameter of interest, we de-
rive the test statistic’s limiting conditional sampling distribution. We additionally develop a
non-standard bootstrap procedure for calibration in finite samples. We demonstrate through
simulation studies that improved evidence calibration leads to substantial power increases
over existing methods. This project suggests that conditional inference might be a useful
tool in evidence calibration for other non-standard or otherwise challenging problems.

In the last project, we present a methodological contribution to a pharmaceutical science
study of in vivo ibuprofen pharmacokinetics. We demonstrate how model misspecification
in a first-principles analysis can be addressed by augmenting the model to include a term
corresponding to an omitted source of variation. In previously used first-principles models,
gastric emptying, which is pulsatile and stochastic, is modeled as first-order diffusion for
simplicity. However, analyses suggest that the actual gastric emptying process is expected
to be a unimodal smooth function, with phase and amplitude varying by subject. Therefore,
we adopt a flexible approach in which a highly idealized parametric version of gastric
emptying is combined with a Gaussian process to capture deviations from the idealized

xi



form. These functions are characterized by their distributions, which allows us to learn
their common and unique features across subjects despite that these features are not directly
observed. Through simulation studies, we show that the proposed approach is able to
identify certain features of latent function distributions.
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CHAPTER 1

Introduction

This thesis develops new methods for conducting mechanistic analyses. Most analyses

carried out by statisticians and researchers assess whether a statistical relationship exists

between two variables. A scientist may have several hypotheses that explain why a given

statistical relationship exists. A mechanistic analysis allows the researcher to assess the

evidence for or against their hypotheses. To do so, the researcher describes the system or

phenomenon of interest through one or more processes or mechanisms and uses data to

estimate the parameters of the mechanistic model. The researcher then assesses whether

the parameter estimates are consistent with their mechanistic hypothesis. The power of

mechanistic analyses are their ability to answer the question “why does y depend on x?”

We present two case studies in this thesis in order to highlight mechanistic analyses’

strengths. The first example comes from the field of cognitive science. It is well-known that

an individual’s genes are predictive of their cognitive abilities or intelligence [1]. Of course,

genes do not directly influence an individual’s performance on cognitive tests, but rather

influence how an individual’s brain functions. A mechanistic analysis of cognitive ability

identifies patterns of brain activity that are associated with both an individual’s genes, and

then show that these patterns of brain activity predict better performance on cognitive tests.

This mechanistic analysis is an example of mediation analysis. In this case study, one

says that brain activity is a potential mediator of the genetic-intelligence pathway. In Chap-

ter 2, we introduce a new methodology that efficiently identifies low-dimensional mediation
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structure among higher-dimensional variables. We then apply the proposed method to data

from a neuroimaging study to identify patterns of brain activity that mediate the association

between an individual’s genes and intelligence. In Chapter 3 we propose a test of univariate

mediation hypotheses. A careful study of the testing problem leads to insights that allow

us to design better calibrated tests. The improved calibration of the procedure will lead to

the discovery of more mechanisms.

Our second example involves a case study from the pharmaceutical sciences. Before a

generic drug product can be brought to market, it must be shown to behave equivalently to

the reference drug product. The U.S. Food and Drug Administration (FDA) has created and

implemented regulatory tests in order to establish bioequivalence of two drugs products.

Unfortunately, many of these tests can be underpowered, meaning that they fail to show

that two equivalent products meet the regulatory definition of bioequivalence.

Pharmaceutical scientists believe that the tests’ low power is due to substantial between-

trial variation in the in vivo environment. A research team at the University of Michigan

conducted an intubation study to measure in vivo factors that affect drug concentrations

in healthy human subjects [2]. In Chapter 4 we present a mechanistic case study which

uses a compartmental model to describe in vivo drug concentrations. We introduce a new

method capable of identifying mechanisms that cause variation in vivo drug concentrations.

Results from our analysis suggest that a biologically plausible mechanism explains much

of the observed heterogeneity in plasma drug concentrations.

These case studies underscore the importance of mechanistic analysis. Mechanistic

analysis answers the important questions how and why one variable has an association with

another. Two challenging statistical tasks in a mechanistic analysis are creating statistical

models capable of describing mechanistic relationships and describing one’s confidence

that a mechanism is real. The methods proposed in Chapters 2, 3 and 4 address one or both

of these tasks.

2



The remainder of Chapter 1 contains an introduction to mediation analysis. We include

this section here because it provides background necessary for both Chapters 2 and 3.

1.1 Mediation Analysis Background

Chapters 2 and 3 introduce two new methods for identifying and testing for mediation

relationship. In this section we provide an introduction to mediation analysis that will

help the reader understand the analytic questions that pertain to both projects. A separate,

project-specific introduction and literature review will begin each chapter.

Mediation analysis is a tool that helps one better understand statistical relationships

that are established through exposure-outcome data analyses [3]. When the exposure is

randomly assigned to observational units, one hopes to establish that the outcome causal

depends on the exposure or treatment. Establishing that an association or causal relation-

ship exists does not directly explain how the exposure is associated with the outcome. Me-

diation analysis is the the formal analysis of potential mediating variables, which represent

mechanisms that explain statistical exposure-outcome associations.

To establish that a variable is a mediator, one assesses whether part of the exposure’s

association with the outcome “flows” through the mediating variable. This formally re-

quires establishing that part of the exposure-outcome association is attributable to the me-

diator. Mediation analysis decomposes the “total effect” of the exposure on the outcome

into two components. The first part is called the “indirect effect” and refers to changes

in outcome that are associated with the exposure through the exposure’s association with

the mediator. The second part of the decomposition, the “direct” effect, is the remaining

exposure-outcome association after accounting for the mediator’s role. When the indirect

effect is estimated to be statistically different than 0, the variable is declared to mediate the

exposure-outcome association.

Figure 1.1 shows the typical mediation setting as a path diagram. The variables X , M ,

3



and Y play the roles of an exposure, mediator, and outcome, respectively. The diagram

makes it easier to visualize the direct and indirect effects. The indirect effect is the portion

of the X − Y association that flows through M (the X → M → Y pathway in Figure

1.1). The direct effect reflects the portion of the X → Y relationship that is explained by

mechanisms unrelated to M (the direct X → Y pathway in Figure 1.1). In many common

settings, in order to establish thatM is a mediator of theX−Y association, one must show

that both of the blue arcs in Figure 1.1 exist.

YX

M

Figure 1.1: A typical mediation analysis setting in which the effect of a treatment X may
be partially mediated through M .

1.2 Mediation literature review

Mediation analysis’ origin lies in the work of the geneticist Sewell Wright, who intro-

duced the technique of path analysis in the 1910s and 1920s [4, 5]. Wright developed path

analysis in order to study heritability of traits in guinea pigs [4], although he was aware

that the methodology is more broadly applicable. Path analysis represents functional re-

lationships between variables through a diagram. Nodes represented variables and paths

between nodes represented dependencies between variables. A modern reader would rec-

ognize Wright’s diagrams as dependency graphs, although his work predated modern graph

theory.

Wright realized that given a conceptual model of how variables co-relate and the neces-

sary data to estimate partial correlations, one could estimate the relationship between any

two variables in a path diagram [5]. Furthermore, the correlation between two variables

4



could be divided into unique contributions from each path connecting the two variables.

Mediation analysis borrows this decomposition from path analysis when it divides the total

effect of an exposure on an outcome into the indirect and direct effect.

Formal tests of mediation hypotheses were first introduced in the structural equation

modeling (SEM) literature. The first such test was proposed by Michael Sobel, who derived

a normal approximation to the sampling distribution of the indirect effect [6, 7]. He derived

the approximation in the linear structural equations model (LSEM) setting [8, 9, 10, 11].

Let X,M, and Y ∈ R play the roles of a treatment or exposure, a potential mediator,

and outcome measure, respectively. Additionally, assume that the conditional mean of the

hypothesized mediatorM is linear inX , while the conditional mean of Y is linear in bothX

and M . The following system of equations describes these relationships and assumptions:

X ∼ F

M = γ1 + αX + εm

Y = γ2 + γ3X + βM + εy,

(1.1)

with E[εm, εy] = [0, 0], Cov(εm, εy) diagonal, and F is a valid probability distribution.

For the LSEM, the indirect effect of X on Y is given by αβ. The Sobel test uses the

delta method to approximate the sampling distribution of αβ as a normal random variable.

UnderH0, αβ = 0, and so α̂β̂ ∼ N (0, σ2
αβ), where σ2

αβ = α̂2σ2
β+β2σ2

α [6]. The covariance

between α̂β̂ is assumed to be small and is ignored when calculating the standard error of

α̂β̂. An α̃-level test of the null hypotheses compares Z = |α̂β̂|/σαβ to the 1− α̃/2 quantile

of the standard normal distribution, rejecting H0 whenever Z is larger than the critical

value.

Another procedure for assessing whether M is a mediator in an LSEM was proposed in

a paper that sought to clarify the difference between moderation and mediation [12]. The

method was named after the paper’s authors, and called the “Baron and Kenny” approach.

This approach has become one of the most common ways of testing mediating hypotheses
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after its introduction [8, 13]. They consider the following linear model in addition to those

in 1.1:

Y = φ1 + φ2X + ε3.

To decide if M is a mediator, according to the Baron and Kenny approach, one must test:

1. H0 : φ2 = 0 to assess whether X and Y are significantly associated.

2. H0 : α = 0 to assess whether X and M are associated.

3. H0 : β = 0 to assess whether Y and M are associated, controlling for X .

In order to declare that M is a mediator at the α̃ level, The “Baron and Kenny” approach

require that each null hypothesis is rejected at the α̃ level.

A number of authors have pointed out the shortcomings of both the “Baron and Kenny”

approach and the Sobel test [8, 13]. First, the inferential properties of the “Baron and

Kenny” method are not well understood. In particular, the significance level of the “Baron

and Kenny” approach is not obvious since it tests multiple hypotheses sequentially. Addi-

tionally,M can in fact be a mediating variable even if φ2 = 0, which occurs when γ3 = αβ.

Thus, regardless of the procedure’s level, it can make incorrect inferences due to a funda-

mental flaw.

The performance of the Sobel test relies on the quality of the normal approximation to

the sampling distribution of α̂β̂. In two common scenarios, when the sample size n is small

or either α or β is close to 0, the normal approximation can be quite bad. The Sobel test,

like the “Baron and Kenny” approach, has been observed to be conservative under either of

these scenarios.

Subsequently, many authors have proposed new methods for testing mediation hypothe-

ses, which are reviewed in [14]. These methods are primarily resampling-based, which

allows for better approximation of the sampling distribution of α̂β̂ in finite samples. The

simplest of these approaches uses a non-parametric bootstrap to estimate the sampling dis-

tribution of α̂β̂ [13]. One version of this approach takes non-parametric bootstrap samples
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of the original dataset, and uses each bootstrap sample to estimate the indirect effect αβ.

After taking nb bootstrap samples, one uses {(α̂β̂)j}nbj=1 to create a (1 − α̃)% confidence

interval for αβ. [14] suggests creating a percentile-based bootstrap confidence interval. If

0 lies outside of the interval, then M is declared to be a mediating variable of the X − Y

association. Throughout this paper, we will refer to this testing approach as the confidence

interval-based approach.

The approach outlined in [13] became popular because its authors released SPSS and

SAS macros that implemented its testing procedure. This made the method accessible to

many scientists who otherwise would not have been able to implement the bootstrap-based

estimation and testing routines.

Another re-sampling based method uses the counterfactual framework of causal infer-

ence to define mediation effects in terms of potential outcomes [15]. Using this framework

permits the conditional distributions of M given X and Y given X and M to be non-linear,

greatly increasing the applicability of the method. For a full description of the method, see

[15]. Appendix A provides a review of studying mediating relationships in the counterfac-

tual outcomes framework.

The method introduced in [15] is a quasi-Bayesian approach. Given statistical models

for M and Y , one estimates the parameters θ = (θ1, θ2) of two statistical models and

their sampling variance-covariance matrix. Next, one takes draws θ̂j = (θ̂j1, θ̂
j
2) from the

sampling distribution of θ̂ = (θ̂1, θ̂2). Using the first statistical model and θ̂j1, the analyst

takes parametric bootstrap samples of the mediator M with X fixed. This is followed by

taking additional parametric bootstrap samples of the outcome Y using its statistical model

and θ̂j2 with X fixed and M from the first parametric bootstrap. After repeating this process

many times, one can estimate and create a (1 − α̃)% confidence interval for the indirect

effect by contrasting the correct potential outcomes (see [15] for details),

In Chapters 2 and 3 we make two methodological contributions to the mediation anal-
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ysis literature. Chapter 2 introduces a new dimension reduction approach to studying me-

diating structure with vector-valued variables. Our approach is conceptually related to the

classical method of canonical correlation analysis and is a principled, efficient method for

uncovering low-dimensional mediation structure. Chapter 3 introduces a novel method for

quantifying the certainty that a mediation effect is real, improving upon the approaches

described in Section 1.2. Our approach uses conditional inference to better approximate

the test statistic’s sampling distribution. By doing so, our test of the indirect effect is better

calibrated and therefore capable of discovering more true mediators.
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CHAPTER 2

A Projection Pursuit Approach to Identify

Low-Dimensional Mediation Structure from

Higher Dimensional Data

2.1 Problem Definition

Recently, multivariate mediation methods have become a popular focus of mediation anal-

ysis research. These methods are necessary because researchers often have multiple mech-

anisms they would like to assess. In these settings, the researcher would like to consider

all potential mediators simultaneously, and screen each variable’s role in the X → Y as-

sociation conditional on the other mediators. Existing multivariate mediation methods are

model-based approaches, and are applicable when M is vector-valued and X and Y are

scalars.

Existing multivariate mediation methods do not yet address the general multivariate

mediation setting in which (X,M, Y ) are each vector-valued. In this chapter, we present a

novel approach for identifying low-dimensional mediation structure when (X, Y,M) are all

potentially vector-valued variables. Our methodology reduces data based on an optimiza-

tion goal. This is similar to the classical method canonical correlation analysis (CCA), and

like CCA our results can be viewed in the context of various population models.

The optimization problem is based on maximizing an objective function motivated by
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the classical “product-of-coefficients” estimate of the indirect effect. We will refer to the

problem’s objective function as the “mediation directions objective function.” Like other

projection pursuit methods, our choice of objective function is not derived from a statistical

model. However, we believe that its choice is principled and intuitive, and will show that it

is capable of identifying meaningful mediation structure.

The mediation directions objective function defines a non-convex optimization prob-

lem. Unlike CCA, our approach does not lead to a classically tractable optimization prob-

lem. We provide algorithms to find local optima of the objective function, and through

simulation show that a local greedy descent algorithm using multiple initializations obtains

good solutions. We will show that for several population models, the method quickly and

consistently identifies the low-dimensional mediation structure.

Unlike existing methods, our approach is moment-based rather than likelihood-based.

The mediation directions objective function was not derived from a particular statistical

model’s likelihood function, and the optimization variables do not necessarily correspond

to parameters of a statistical model. Optimizing the mediation directions objective function

is a one-step procedure. A few existing methods [16, 17] jointly estimate both the mediation

parameters and the low-dimensional structure jointly, while others [18, 19] use two-step

estimation schemes. Similar to other projection pursuit techniques, one might consider

analyzing the projected exposures, mediators, and outcomes using univariate mediation

methods. From this prospective, our approach becomes a two-step procedure as well.

The greatest strength of our methodology arises when two or more of X,M, and Y

are vector-valued. In such a setting, it is easy to imagine that the dominant associations

between variables might not contain any mediation structure. We will later show through

simulation that our method is still capable of identifying the present mediation structure. It

is not immediately clear to us how a likelihood-based method would approach this prob-

lem. It would likely require specifying a complex, multilayer, factor-style model. A priori

specification of the mediation structure in a multi-factor model would be difficult. In-
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stead, such an approach would necessitate penalized estimation or post hoc analysis of

the fitted model. For multivariate (X,M, Y ) with non-dominant mediation structure, we

believe our optimization-based methodology is a more attractive approach to identifying

low-dimensional mediation structure.

2.1.1 A review of existing multivariate mediation analysis methods

Existing multivariate mediation methods are regression-based and address situations where

X and Y are scalar-valued and M is vector-valued. Several authors have recently proposed

projection- or factor-based methods for identifying low-dimensional mediation structure

when both X and Y are scalar-valued. We present both of these approaches next, and

conclude the section by contrasting our method with existing methods.

Regression-based approaches generalize the univariate mediation model by introduc-

ing additional mediating variables. Let Mi for i = 1, . . . , p denote p potential mediating

variables, and let X, Y ∈ R denote a scalar exposure and outcome, respectively. Each Mi

is independently modeled as a linear function of X and other covariates, omitted here for

clarity of presentation. Y is modeled as linear function of X , each Mi, and other control

covariates, again omitted. This gives us the following system of linear models:

M1 = θ1 + α1X + ε1

...

Mp = θp + αpX + εp

Y = β0 + γX +

p∑
i=1

βiMi + ε̃.

(2.1)

The standard triangle diagram used to describe mediation relationship is modified to add

the additional m− 1 candidate mediators (Figure 2.1). In this type of analysis, conditional

relationships between the mediators are not estimated. An indirect effect for each candidate

mediator Mi is given by the product τi = αiβi for i = 1, . . . , p. The indirect effects in
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this setting can be thought of as conditional indirect effects, as each βi is the conditional

association of a one-unit change inMi controlling forX , all other candidate mediators, and

any other covariates.

YX

M1

M2

Mp

......

...

γ

α1 β1

α2 β2

αp βp

Figure 2.1: A path diagram for a typical multiple mediator model with scalar-valuedX and
Y .

The vector of candidate mediators can be high-dimensional, which is often the case in

medical imaging or genetic applications. In such a setting, penalized regression is used

to estimate a sparse set of variables that explain the X → Y association. One author

proposed using the non-convex maximum concavity penalty (MCP) to identify a sparse set

of mediating variables when M is high-dimensional [20]. The MCP estimator provides

estimates of standard errors for each non-zero regression coefficient, which are used to

calculated corrected p-values to test whether Mi is a mediating variable [20].

Other authors [19, 18, 16, 17] have proposed methods that identify a projection of the

mediating variables. Let w ∈ Rp denote a vector, so the projected variate is M̃ = MTw.

The vector w is estimated so that M̃ fits “optimally” into the linear structural equations

model 1.1. Although the details vary, the papers [17, 16] approach the problem of esti-

mating w via maximum likelihood estimation. A likelihood function `(·|X,M, Y ) for the

parameters of the LSEM Model 1.1 and w is defined. The likelihood function is then iter-
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atively optimized by either an alternating least squares algorithm [16], or an EM algorithm

[17]. These approaches seek to maximize ` jointly in terms of the LSEM parameters and w.

The paper [17] includes a sparsity-inducing penalty on the components of w, which further

distinguishes it from [16].

In contrast, [19] proposed using principal components analysis (PCA) to transform

the p mediating variables into a smaller set of say k variates M̃j for j = 1, . . . , k. The

transformation via PCA takes place after residualizing each Mi against X . Then, given

X , the variables M̃j and M̃j′ are independent for j 6= j′. Since the M̃j are independent

conditional on X , to estimate the indirect effect of X on Y through M̃j , one fits k separate

univariate mediation models using Model 1.1. One can also induce sparsity in the principal

components, which means that only a few Mj have non-zero loadings on each component

[18]. In addition to the joint estimation scheme described above, [17] proposed a two-stage

estimator analogous to the approaches of [19, 18].

The remainder of this chapter is organized as follows. In Section 2.2 we introduce the

mediation directions objective function and motivate its connection to univariate mediation

analysis. In Section 2.3 we describe several computational algorithms for optimizing the

mediation directions objective. In Sections 2.4 and 2.5 we introduce several multivariate

statistical models with low-dimensional mediation structure and then show that we can

consistently identify this structure through simulation. Finally, we conclude the chapter in

Section 2.6.1 by using our methodology in two case studies.

2.2 The multivariate mediation objective function

Our objective function is inspired by the data reduction strategy of CCA and the product-of-

coefficients estimate of traditional scalar-valued mediation analysis. Let X ∈ Rk denote a

collection of treatment or exposure variables and Y ∈ Rm denote outcome measures. CCA

finds the vectors β ∈ Rk of X and θ ∈ Rm of Y such that Cor(βTX, θTY ) is maximized.
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Our focus is on a third variable M ∈ R` that might mediate the X − Y relationship. Let

η ∈ R` and suppose that we aim to maximize

τ(β, η, θ) = Cor(βTX, ηTM)× Cor(ηTM, θTY | X). (2.2)

The criterion 2.2 is analogous to the traditional product of coefficients for standardized

scalar X , M , and Y . Alternatively, one could formulate the optimization goal using the

marginal correlation of ηTM and θTY :

τm(β, η, θ) = Cor(βTX, ηTM)× Cor(ηTM, θTY ), (2.3)

where the subscriptm denotes that the marginal correlation between ηTM and θTY is used

rather than the conditional correlation. We recommend working with objective function 2.2

rather than 2.3 due to its closer connection to traditional univariate mediation analysis.

To operationalize 2.2, one can create the partial cross-correlation matrix of (M,Y ) by

residualizing M and Y with respect to X . Let PX be the projection matrix onto the column

space of X and form the matrices of residuals M̃ = M − PXM and Ỹ = Y − PXY . The

partial cross-correlation matrix is then calculated using M̃ and Ỹ .

Suppose that we have β∗, η∗ and θ∗ that maximize objective 2.2. These coefficients

reduce the data in order to maximize the mediated effect described previously. Interpreta-

tions of the coefficients must be made in the context of the optimization goal that produced

them, similar to the way one interprets CCA’s canonical directions and PCA’s loadings. In

the multivariate mediation setting this means that the coefficients give the optimal linear

combination of M that correlates with linear combinations of both X and Y given X .

We now introduce notation that allows us to precisely state our optimization goal. Let

X , M , and Y all have mean 0. Define the following cross-covariance and covariance
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matrices,

Σ̃XM = E[XMT ], Σ̃MY = E[MY T |X],

Σ̃X = E[XXT ], Σ̃1
M = E[MMT ], Σ̃2

M = E[MMT |X], and Σ̃Y = E[Y Y T |X].

and assume that the second moments exist and are finite. Our optimization problem can be

stated as follows:

maximize
β∈Rk,η∈Rl,θ∈Rm

τ(β, η, θ) = Cor(βTX, ηTM)× Cor(ηTM, θTY |X)

= βTCor(X,M)η × ηTCor(M,Y |X)θ

=
βT Σ̃XMη · ηT Σ̃MY θ√

βT Σ̃Xβ · ηT Σ̃1
Mη · ηT Σ̃2

Mη · θT Σ̃Y θ
.

(2.4)

For I ∈ {X,M, Y }, denote the square root Σ̃
1/2
I of Σ̃I , where Σ̃I = Σ̃

1/2
I Σ̃

T/2
I . Define the

transformations

a = Σ̃
T/2
X β, b =

(
Σ̃1
M

)T/2
η, and c = Σ̃

T/2
Y θ. (2.5)

These transformations allow us to perform a standard whitening of the variance-covariance

matrices of X , M and Y . After transformation, we have an equivalent optimization prob-

lem in the optimization variables a, b and c:

maximize
a∈Rk,b∈Rl,c∈Rm

τ(a, b, c) =
(Σ̃
−T/2
X a)T Σ̃XM(Σ̃

−T/2
M b) · (Σ̃−T/2M b)T Σ̃MY (Σ̃−TY c)√

aTa · bT b · bT
((

Σ̃1
M

)−1/2

Σ̃2
M

(
Σ̃1
M

)−T/2)
b · cT c

=
aTΣXMb · bTΣMY c√
aTa · bT b · bTΣMb · cT c

=
aTΣXMb√
aTa · bT b

× bTΣMY c√
bTΣMb · cT c ,

(2.6)
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where:

ΣXM = Σ̃
−1/2
X Σ̃TM Σ̃

−T/2
M , ΣMY = Σ̃

−1/2
M Σ̃MY Σ̃

−T/2
Y , and

ΣM =
(

Σ̃1
M

)−1/2

Σ̃2
M

(
Σ̃1
M

)−T/2
.

This representation of the optimization objective allows us to describe populations for

which the objective function is equal to zero for any β, η, and θ. This occurs when:

1. ΣXM = 0 ∈ Rk×`, or

2. ΣMY = 0 ∈ R`×m.

This form of the optimization problem also represents a fully reduced version of the

problem. For any (X,M, Y ) with full-rank variance-covariance matrices, the optimization

problem 2.4 can be transformed into an equivalent problem 2.6. The reduced problem has

three inputs ΣXM , ΣMY , and ΣM rather than the six in objective 2.4. Having solved the

optimization problem 2.6, one can use the inverse transformations defined by 2.5 to find

the solution in the original coordinates.

The connection between our objective function and CCA is clear in Equation 2.6. The

objective function appears to be comprised of two CCA objective functions. However, the

vector b appears in each term, which connects the two CCA subproblems. The coupling

however is critical from a conceptual perspective. In order to qualify as a mediating pro-

jection of M , this projection must be simultaneously correlated with projections of X and

Y . For the remainder of this proposal, we will use the terms “coefficients”, “projections”,

and “mediation directions” interchangeably.
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2.3 Computational aspects of estimating mediation direc-

tions

2.3.1 Characteristics of the multivariate mediation objective

The square of our objective function τ is a rational function, as both the numerator and

denominator can be expressed in polynomial form. The two bilinear forms in the numerator

of τ can be expressed as a polynomial in the variables a ∈ Rk and b ∈ R` and c ∈ Rm:

aTΣXMb =
k∑
i=1

∑̀
j=1

aibjΣXM(i, j) and bTΣMY c =
∑̀
j=1

m∑
h=1

bjchΣMY (j, h). (2.7)

The squared objective τ 2 is:

τ(a, b, c)2 =

(∑k
i=1

∑`
j=1 aibjΣXM,ij

)2 (∑`
j=1

∑m
h=1 bjchΣMY,jh

)2

∑k
i=1 a

2
i ·
∑l

j=1 b
2
j ·
∑`

i=1

∑`
j=1 bibjΣM(i, j) ·

∑m
h=1 c

2
h

. (2.8)

From 2.8, it is clear that τ(a, b, c)2 is a rational function. The polynomials in both numer-

ator and denominator are homogeneous of degree 8. If we consider τ 2 restricted to each

argument independently, then the polynomials are homogeneous of degree 2, 4, and 2 for

a, b, and c, respectively. This is important, as it implies that the scaling of our optimization

variables is irrelevant, thus without loss of generality they can be regarded as unit vectors.

Finally, it is easy to check that our function τ 2 is not jointly convex in a, b, and c.

Additionally, restrictions of τ 2 to any of its arguments are not convex functions since the

Hessians of the restrictions of τ 2 are indefinite matrices. Figures 2.2a and 2.2b show that τ

is neither convex jointly in all of its optimization variables, nor when restricted to β, η, or

θ.
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(a) This figure plots the objective function value for
convex combinations of two local optima. As one
moves from t = 0 to t = 1, the function argument
moves from one local optimum to the other. It is
clear that the function is non-convex in this convex
combination.

(b) The objective function τ is non-convex when re-
stricted to η. Here we take convex combinations of
the first and second mediation directions of M and
again find that the objective function is non-convex.

Figure 2.2: The mediation directions objective function is a non-convex function.

2.3.2 Algorithms for estimating the mediation directions

Let n denote the number of independent, jointly observed samples of (X,M, Y ). With

a slight abuse of notation, these samples are organized into matrices X ∈ Rn×k, M ∈

Rn×`, and Y ∈ Rn×m, where the ith observational unit’s data is in the ith row of each

matrix. We replace the population moments in optimization problem 2.6 with their sample

counterparts, denoted with a hat.

The scale-invariance property of the objective allows us to solve an equivalent con-

strained optimization problem 2.9 instead of the unconstrained problem 2.6. Through the

course of development, we have found that algorithms designed to maximize the quotient

perform better than algorithms that solve constrained versions of problem 2.6. In practice,

we will always rescale our mediation directions to have unit length after optimization is

complete. Below we give the sample version of the population optimization objective 2.6

and its constrained form.
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maximize
a∈Rk,b∈Rl,c∈Rm

aT Σ̂XMb√
aTa · bT b

× bT Σ̂MY c√
bT Σ̂Mb · cT c

(2.9)

maximize
a∈Rk,b∈Rl,c∈Rm

aT Σ̂XMb× bT Σ̂MY c

subject to ‖a‖2 ≤ 1, ‖b‖ ≤ 1, ‖ΣT/2
M b‖ ≤ 1, ‖c‖ ≤ 1

(2.10)

Note that we assume that the transformations given in Equation 2.5 have been performed.

Not surprisingly due to the high order polynomial nature of the objective function, to

date we have not found a simple and exact method for optimizing it. Figure 2.2 shows by

example that the objective function is not convex. We propose several principled optimiza-

tion methods, based on heuristics and relaxations, that are known to successfully optimize

non-convex functions. Through simulations in Section 2.5, we show that these methods are

capable of uncovering the correct structure under certain data-generating models. In the

presentation below we begin with the more heuristic optimizers and then discuss several

algorithms that rely on relaxations in order to approximately optimize 2.6 or 2.10.

Optimization Algorithm 1: Variation optimized mediators

As a first cut, it is reasonable to ask whether the directions of maximal variation in X , M ,

and Y also contain mediation structure. This heuristic optimizer uses the dominant loading

vectors of the PCA transformations of X , M and Y to estimate β, η, and θ. They can also

be used as starting values for other algorithms and provide a benchmark against which the

optimal mediation directions are evaluated.

Optimization Algorithm 2: Correlation optimized mediators

This algorithm is based on the observation that the mediation objective function takes the

form of two linked CCA problems. The algorithm decouples the two terms by introducing

separate variables η1 and η2 to replace the shared variable η. The solutions to the separate

CCA problems return the primary directions of covariation between X and M (β̂CCA and

η̂1) and betweenM and Y (η̂2 and θ̂CCA) and we use these directions to estimate the leading
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mediation directions. Specifically, our estimates of the mediation directions are:

β̂ = β̂CCA, θ̂ = θ̂CCA, and η̂ =
tη̂1 + (1− t)η̂2

‖tη̂1 + (1− t)η̂2‖2

, (2.11)

optimizing over all convex-combination of η1 and η2 to produce a common η that re-couples

the two CCA problems.

Once again, we do not expect that these values will be optimal in a global setting.

However, they may perform well statistically and may be used as starting values or as a

basis of comparison for other estimates. In practice, this algorithm provides insight about

the difficulty of the optimization problem. If β̂, η̂ and θ̂ perform well from an optimization

perspective, it tells us that the two CCA problems share similar structure.

Optimization Algorithm 3: Greedy local descent

This algorithm, or class of algorithms, uses greedy local descent to optimize the additive

inverse of the mediation directions objective. We expect to find that the performance of this

class of algorithms largely depends on finding a quality starting value since the objective

function is non-convex.

One advantage of this class of algorithms is that it is quite flexible, since they at most

require finding an expression for the gradient of the objective function. Optimization strate-

gies that can be utilized in this setting include:

• Optimize either the quotient or constrained versions of τ .

• Minimize − log(τ(a, b, c)) instead of −τ(a, b, c).

• Use log-barrier functions to enforce the norm constraints or relax the constraints and

re-project to feasible region after each iteration.

• Use gradient-based or coordinate-wise, gradient-free methods.

In practice, almost any set of choices can be used together to produce slightly different

algorithms. Although our function is not convex, it is relatively easy to differentiate with
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respect to all of the optimization variables, regardless of specification.

We now describe one local descent algorithm that we have found to work well in prac-

tice. This algorithm will also be the method used in simulations in Section 2.5. The algo-

rithm optimizes the log-transformed quotient formulation 2.9 using local gradient descent.

Our optimization problem then takes the form:

minimize
a∈Rk,b∈R`,c∈Rm

L(a, b, c) := log (τ(a, b, c))

= log

(
aT Σ̂XMb√
aTa · bT b

× bT Σ̂MY c√
bT Σ̂Mb · cT c

)

= log
(
aT Σ̂XMb

)
+ log

(
bT Σ̂MY c

)
−

1

2

{
log(aTa) + log(bT b) + log(bT Σ̂Mb) + log(cT c)

}
(2.12)

The gradients of L(a, b, c) are:

∇aL =− Σ̂XMb

aT Σ̂XMb
+

a

aTa

∇bL =− Σ̂T
XMa

aT Σ̂XMb
+

Σ̂MY c

bT Σ̂MY c
+

b

bT b
+

Σ̂Mb

bT Σ̂Mb

∇cL =− Σ̂T
MY b

bT Σ̂MY c
+

c

cT c
.

(2.13)

Rather than use a coordinate-wise descent algorithm, we concatenate the three search direc-

tions together and perform a backtracking line search over all three optimization variables

at once. Our search direction is ∆ = [∇aLt,∇bLt,∇cLt]
T ∈ Rk+`+m.

Given a feasible initialization, we have found that the algorithm quickly converges to a

local optimum (See Figure 2.3). The algorithm continues until the `2-norm of the search

direction ∆ falls below a preset tolerance ε. When the problem dimension grows, we

have found that it is more difficult to find solutions with very small gradient norms, and ε

must be somewhat larger (on the order of 1e−5). Using accelerated methods also speeds

convergence when the problem dimension grows.
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Figure 2.3: The `2-norm of the mediation directions objective function gradient (‖∆‖2)
plotted against iteration number for 100 unique starting values.

Optimization Algorithm 4: Relaxation via decoupling and parameter expansion

This algorithm decouples the two CCA problems by introducing a fourth optimization vari-

able d in place of b in the second term of the quotient objective 2.6. However, we want to

find a single projection of the mediators that is highly correlated with projections of both

X and Y , so we penalize the `2 norm of the difference between b and d. The relaxed

optimization problem is then given by:

maximize
a∈Rk;b,d∈R`;c∈Rm

τ(a, b, c, d) + λ‖b− d‖2, (2.14)

where λ ≥ 0 controls the degree of relaxation. The objective function τ could take either

quotient or constrained form.

We now apply this relaxation to the prototype algorithm described in Algorithm 3. The

objective function from Algorithm 3 is augmented to include an additional optimization

variable d and an `2 penalty on the difference between b and d.

minimize
a∈Rk;b,d∈R`;c∈Rm

Lλ(a, b, c, d) = − log
(
aT Σ̂XMb · dT Σ̂MY c

)
+

λ‖b− d‖2
2 −

1

2

(
log(aTa) + log(bT b) + log(bT Σ̂Mb) + log(cT c)

)
. (2.15)
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Once again, a local gradient descent method could be used to optimize 2.15. Simple

changes to the gradient equations provided for Algorithm 3 produce gradient updates for

2.15 for fixed λ.

In practice, the primary difficulty of using this algorithm is determining how one should

increase the penalty λ so that at termination b and d converge. Ideally, the solutions to each

sub-problem are “smooth” as λ grows. One must decide how to increase λ so that the

algorithm is both efficient and recovers the desired mediation structure.

Optimization Algorithm 5: Relaxation via matrix reparameterization

This algorithm uses the circulant property of the trace to reparameterize the objective func-

tion, and then strongly relaxes in the new parameterization. The relaxed problem has much

higher dimension, but admits an exact solution using classical numerical methods. After

finding the global solution to the relaxed problem, we project it back to the original search

space. This algorithm borrows ideas from [21], who show that globally solving a heav-

ily relaxed convex problem can outperform local optimization of the original non-convex

problem.

Considering only the numerator of the quotient objective 2.6, we have

aT Σ̂XMb · bT Σ̂MY c = trace
(
aT Σ̂XMb · bT Σ̂MY c

)
= trace

(
Σ̂XMbb

T Σ̂MY ca
T
)
. (2.16)

Next we both relax and reparameterize the problem by introducing matrix-variate optimiza-

tion variables B ∈ R`×` and A ∈ Rm×k for bbT and caT , respectively. The relaxation arises

by allowing B and A to take on arbitrary values, rather than being constrained to rank one

matrices. The relaxation quadratically increases the dimension of the parameters. A key

question is whether the benefit of obtaining a relaxed problem with an exact solution is

undone by the subsequent projection back to the feasible domain. Our objective function

then becomes
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maximize
B∈R`×`, A∈Rm×k

trace
(

Σ̂XMBΣ̂MYA
)

s.t. ‖B‖F ≤ 1, ‖A‖F ≤ 1. (2.17)

Note that the overall dimension has increased from ` + k + m to `2 + km, although this

can be somewhat lessened by exploiting the symmetry constraint on B. We will see that

the structure of 2.17 allows the norm constraints to be easily accommodated.

In order to show that the objective 2.17 does indeed have a globally optimal solution,

we show that

trace
(

Σ̂XMBΣ̂MYA
)

= vec(B)
(

Σ̂T
XM ⊗ Σ̂MY

)
vec(A). (2.18)

For a cleaner presentation, let Σ = Σ̂XM and Λ = Σ̂MY . For a general matrix P , denote

the ith row and jth columns by Pi: and P:j .

Our first step is to find an expression for the diagonal elements of ΣBΛA ∈ Rk×k.

Using basic properties of matrix multiplication, we can write

[ΣBΛA]ii = ΣT
i:BΛA:i = ΣT

i:


BT

1:Λ

...

BT
`:Λ

A:i =
∑̀
j=1

Σijb
T
j ΛA:i. (2.19)

The trace is the sum of all of the diagonal elements, which gives us:

trace(ΣBΛA) =
k∑
i=1

∑̀
j=1

ΣijB
T
j:ΛA:i =

∑̀
j=1

BT
j:

k∑
i=1

ΣijΛA:i. (2.20)

We now introduce vectorized versions of A and B. Let vec(A) = [a1, a2, . . . , ak]
T ∈

Rmk and vec(B) = [bT1 , b
T
2 , . . . , b

T
` ] ∈ R`2 . We can then write

k∑
i=1

ΣijΛA:i =

[
Σ1jΛ Σ2jΛ · · · ΣkjΛ

]
vec(A) = Λ̃jvec(A). (2.21)
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Summing over all j = 1 . . . , ` and we have:

∑̀
j=1

BT
j:Λ̃jvec(A) = vec(B)


Λ̃1

...

Λ̃k

 vec(A) = vec(B)Λ̃vec(A). (2.22)

The ijth block of Λ̃ is [Λ̃]ij = σjiΛ, so Λ̃ = ΣT ⊗ Λ.

Thus, the relaxed problem 2.17 is equivalent to maximizing a bilinear form, i.e.

maximize
B∈Rl×l,A∈Rm×l

trace (ΣBΛA) s.t. ‖B‖F ≤ 1, ‖A‖F ≤ 1. ≡

maximize
B∈Rl×l,A∈Rm×l

vec(B)
(
ΣT ⊗ Λ

)
vec(A) s.t. ‖B‖F ≤ 1, ‖A‖F ≤ 1, (2.23)

which can be classically solved through the singular value decomposition (SVD) of ΣT⊗Λ.

As a minor enhancement, we may exploit the underlying symmetry of B by introducing

a matrix M̃ which sums the (i, j) and (j, i) elements of vec(B). Thus, our relaxed and

reparameterized objective is:

maximize
B∈Rl×l,A∈Rm×l

vec(B)M̃(ΣT ⊗ Λ)vec(A) s.t. ‖B‖F ≤ 1, ‖A‖F ≤ 1.. (2.24)

To obtain estimates of the mediation directions, we must project the solution of 2.24 so

that the estimates of A and B are rank one matrices and B is symmetric. It then becomes

possible to extract variable estimates for our original problem.

Our current algorithm first utilizes the leading left and right singular vectors u1 and v1

of M̃(ΣT ⊗Λ) and appropriately reshapes each to form the matrices B and A, respectively.

Next, to re-project, we calculate SVD’s of B = UBDBV
T
B and A = UADAV

T
A and finally
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estimate the mediation directions using the vectors:

b = uB,1, a = vA,1, and c = uA,1. (2.25)

In future work we will consider a related approach that augments the objective 2.24 by

penalizing the nuclear norms of A and B. The nuclear norm penalties may lead to matrices

A and B that better reflect the implicit rank one property of each optimization variable.

This may improve the statistical performance of our estimators. However, the inclusion of

the nuclear norm penalties means that 2.24 is no longer solvable using classical methods.

Discussion of the proposed algorithms

After considering many algorithms we found that the local gradient descent algorithm that

minimizes the log-quotient problem 2.9 works well in practice. Although gradient descent

converges after many iterations, the computational expense of function and gradient evalu-

ations is low.

Since the objective function is scale invariant in β, η, and θ, the constrained form of

the problem is less attractive than the quotient formulation. Each log-barrier optimization

is roughly as expensive as solving the quotient formulation of the problem. Solving a

sequence of these problems is clearly much more computationally expensive. Correctly

tuning the log-barrier problems also proved to be challenging.

Finally, relaxation-based algorithms proved to be either computationally more expen-

sive (Algorithm 4) or inconsistent (Algorithm 5). The matrix-reparameterization algorithm

is an analytically neat reformulation, but we found that it was inconsistent in η. Perhaps

by using nuclear norm penalties, discussed at the end of its description, one could produce

an algorithm that consistently identifies the best projection of M as n grows. However, we

have focused on problems of moderate dimension and the local gradient descent algorithm

works well for these problems.
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2.3.3 Finding additional mediation directions

The algorithms discussed above estimate the dominant mediation directions β1, η1 and

θ1. In practice, one may be interested in finding additional mediation directions. In this

section, we suggest two sequential methods for finding additional mediation directions that

are orthogonal to the existing mediation directions.

Residualization

The first method is the more straightforward of the two and similar to the preferred method

of [16]. Suppose that β1, η1 and θ1 are the first mediation directions. To find the secondary

mediation directions, we project X , M , and Y onto the orthogonal complement of β1,

η1, and θ1, and then reapply our optimization algorithm to the residualized matrices. In

general, if we want to find d mediating directions, we complete the following procedure.

Algorithm 2.1: Estimate multiple mediation directions via residualization
Data: Matrices X , M , and Y

Result: d triples of mediation vectors {β1, η1, θ1}, {β2, η2, θ2}, . . . , {βd, ηd, θd}

1. Let β0 = 0, η0 = 0, and θ0 = 0.

for j = 1, . . . , d do
2.1 Form matrices Bj =

[
β0 · · · βj−1

]
, Hj =

[
η0 · · · ηj−1

]
, and

Θj =
[
θ0 · · · θj−1

]
2.2 Create X̃j = (I −Bj(B

T
j Bj)

−1BT
j )X , M̃j = (I −Hj(H

T
j Hj)

−1HT
j )M , and

Ỹj = (I −Θj(Θ
−1
j Θj)

TΘT
j )Y .

2.3 Using X̃j , M̃j , and Ỹj , estimate the jth mediation directions βj , ηj and θj .

Equality constrained optimization

Our second method forces subsequent mediation directions to be orthogonal by augmenting

problems 2.12 and 2.15 with an additional equality constraint. Suppose that we have found
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d unit-length, orthogonal mediation directions. Let the rows of matrices B ∈ Rd×k, H ∈

Rd×l, and Θ ∈ Rd×m contain the first d mediation directions of X , M , and Y respectively.

Then to find the next mediation directions βd+1, ηd+1, and θd+1, we solve either problem

2.12 or 2.15 subject to:

Bβd+1 = 0, Hηd+1 = 0, and Θθd+1 = 0. (2.26)

These additional constraints are easily accommodated. We can parameterize the space

of all solutions orthogonal to our existing directions using the eigenvectors of the projection

matrices onto the complement spaces of those vectors. Specifically, we can equate the two

sets

{β : Bβ = 0} = {z : FBz = 0} (2.27)

where the columns of FB contain all of the eigenvectors of I − B(BTB)−1BT whose

corresponding eigenvalues equal 1. Note that I − B(BTB)−1BT = I − BBT since B is

an orthonormal matrix. This approach to identifying a sequence of mediation directions is

found in Algorithm 2.2.

2.3.4 Assessing the product-of-correlations estimate

The in-sample estimate of the product-of-correlations likely overestimates the population

product-of-correlations. We use a bootstrap-based approach to assess both the degree of

overfitting and whether the estimated mediation direction generalizes to independent data.

The method uses the out-of-bootstrap sample (often called the “out-of-bag” data) as a test

set with which to evaluate the generalizability of the estimated mediation directions.

In order to clearly present the analysis, let the subscripts b and t denote bootstrapped and

out-of-bag quantities, respectively. For example, Xb and Mt denote a bootstrap sample of
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Algorithm 2.2: Estimate multiple mediation directions via constrained optimization
Data: Matrices X , M , and Y

Result: d triples of mediation vectors {β1, η1, θ1}, {β2, η2, θ2}, . . . , {βd, ηd, θd}

1. Let β0 = 0, η0 = 0 and θ0 = 0.

for j = 1, . . . , d do
2.1 Form the matrices

B =

 βT0
...

βTj−1

 , H =

 ηT0
...

ηTj−1

 , and Θ =

 θT0
...

θTj−1

.

2.2 Create the matrices FB, FH , FΘ which contain a basis for the subspaces
spanned by the projection matrices I −BjB

T
j , I −HjH

T
j , I −ΘjΘ

T
j

respectively.

2.3 To find the jth mediation directions, solve the problem:

minimize
za∈Rk−j−1,zb∈Rl−j−1,zc∈Rm−j−1

τ(Faza, Fbzb, Fczc) (2.28)

using the desired algorithm.

2.4 Set aj = Faza, bj = Fbzb, and c = Fczc.

the exposures and Mt represents an out-of-bag sample of the mediators. Bootstrap datasets

will be used for estimation of the mediation directions, while the out-of-bag data will be

used to estimate the out-of-sample performance of β̂, η̂, and θ̂.
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Algorithm 2.3: Produce an out-of-sample product-of-correlations estimate

Data: Matrices X , M , and Y . The number of bootstrap samples to draw nb.

Result: A out-of-sample estimate τ̂os of the product-of-correlations.

1. Calculate the in-sample product-of-correlations τs = arg max
β∈Rk,η∈Rl,θ∈Rm

τ(β, η, θ)

using matrices X , M , and Y .

2. for j = 1, . . . , nb do
2.1 Take a sample with replacement of size n from {1, . . . , n} and denote it bj .

Define tj = {1, . . . , n} \ bj .

2.2 Estimate β̂j , η̂j and θ̂j by optimizing 2.33 using data Zbj = (Xbj ,Mbj , Ybj).

2.3 Calculate τ̂ jos = Ĉor(β̂Tj Xtj , η̂
T
j Mtj)× Ĉor(η̂TMtj , θ̂

T
j Ytj |β̂Tj Xtj).

end

3. Use τ̂os = {τ̂ jos, . . . , τ̂nbos } to estimate out-of-sample product-of-correlations.

The mean and standard deviation or a 1− α% confidence interval can be computed

from τ̂os and compared to τs to assess whether the method is finding generalizable

mediation directions.

2.4 Multivariate mediation population models

This section introduce two models which will: a) allow us to more clearly define our con-

ceptualization of multivariate mediation, b) clearly contrast our approach to studying me-

diation with traditional mediation analysis methods, and c) provide generative models for

simulations studies.

2.4.1 A single-layer multivariate mediation model

We begin by describing a simple model where X , M , and Y each predominantly vary

in a one-dimensional subspace of their domain and are contaminated with white noise.
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Figure 2.4: A graphical representation of the single-layer mediation model.

This implies that the mediation structure is contained in the projections of X , M , and Y

onto their dominant axes. In this setting, we expect that we should be able to recover the

underlying latent mediation directions (β, η, and θ) since the cross-covariance matrices will

converge to rank one matrices as the number of observed samples n grows.

Figure 2.4 shows the proposed model in graphical form. Latent and observed random

variables are represented with circular and rectangular nodes, respectively. In the center of

the figure, the three latent variables Zx, Zm, and Zy give rise the observations X ∈ Rk,

M ∈ R`, and Y ∈ Rm. X , M , and Y are often called “indicators” of Zx, Zm, and Zy

respectively. We assume that a linear relationship exists between the latent variables and

their indicators. For example, Xj = βjZx + εxj for j ∈ 1 . . . , k.

The parameters α = (α1, α2, α3)T govern the associations between Z = (Zx, Zm, Zy)
T

and therefore control whether mediation structure exists. We will describe the necessary

conditions for the indirect effect to be equal to 0 at the population level after describing

how one can generate data for this model. Model 1 gives a generative description of the

graphical model pictured in Figure 2.4.
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Model 1. Let β ∈ Rk, η ∈ Rl and θ ∈ Rm be the fixed mediation directions. Let the

random vector Z = [Zx, Zm, Zy]
T ∈ R3 have mean 0 and covariance E(ZZT ) = Σ.

We observe X , M , and Y where

X = Zxβ + ε1, M = Zmη + ε2, Y = Zyθ + ε3,

where ε1, ε2 and ε3 also have mean 0 and covariance E
(
ενε

T
ν

)
= σ2

νI for ν = {x,m, y}.

For this model, one might expect that the covariances between elements of Z control

whether the population product-of-correlations is non-zero. However, due to the model’s

factor structure, this is not quite the case. For the remainder of this sections, we will assume

that the additive errors εx, εm, and εy are all independent. Let

Cov(Z) =


τ 2
x τxm τxy

τxm τ 2
m τmy

τxy τmy τ 2
y

 . (2.29)

Under the independence assumption, we have the following expressions for the cross-

covariance terms:

Cov(X,M) = ΣXM = τxmβη
T

Cov(M,Y |X) = ΣMY = η

(
τmy −

τxmτxy
σ2
x

(
1− τ 2

x

σ2
x + τ 2

x

))
θT .

(2.30)

The second equality is derived using standard conditioning formulas of the multivariate

Gaussian distribution.

In Section 2.2, we discussed conditions under which the indirect mediation effect is

0. Condition 1, Cov(X,M) = 0, holds when τxm = 0, meaning that Zx and Zm are

independent of one another. Lastly, Condition 2, Cov(M,Y |X) = 0, holds when
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τmy =
τxmτxy
σ2
x

(
1− τ 2

x

σ2
x + τ 2

x

)
. (2.31)

The condition “M is independent of Y given X” is not sufficient for Equation 2.31. How-

ever, given τxm, τxy, σ2
x, and τ 2

x , it does allow one to choose a τmy such that Cov(M,Y |X) =

0. These conditions will play an important role in the simulation studies presented in Sec-

tion 2.5.

2.4.2 A general multivariate mediation model with common cross-

covariance bases

Although the single-layer mediation model is a useful tool for understanding our concep-

tion of multivariate mediation, data are likely to exhibit more complex structure, necessi-

tating a richer class of models. We relax the single-layer structure of Model 1 by allowing

the number of latent directions generating X , M , and Y to increase. However, under this

model, the right singular vectors of E
[
XMT

]
and the left singular vectors E

[
MY T

]
are

the same, up to a reordering of the vectors. A fully general model will allow the bases

describing covariation of M with X and Y to be independent.

One can think of each “layer” of the general model as being represented by an inde-

pendent single-layer model described in Model 1. Combining across layers produces the

observed data (X,M, Y ). A generative procedure for this model is described next.

Model 2. Let β(j) ∈ Rk for j = 1, . . . , p1, η(j) ∈ Rl for j = 1, . . . , p2, and θ(j) ∈ Rm for

j = 1 . . . , p3 be the fixed, mediation directions.

We then generate the random vectors Z(j) = [Z
(j)
x , Z

(j)
m , Z

(j)
y ]T ∈ R3 with E(Z) = 0 and

Cov(Z(j)) = Σj

for j = 1, . . . ,max{p1, p2, p3}. We use the convention that when j > pk (k = 1, 2, 3), then
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Z
(j)
k = 0 (with a slight abuse of notation).

Then the treatment, mediating and response variables X , M , and Y are defined:

X =

p1∑
j=1

Z(j)
x β(j) + ε

(j)
1 , M =

p2∑
j=1

Z(j)
m η(j) + ε

(j)
2 , and Y =

p3∑
j=1

Z(j)
y θ(j) + ε

(j)
3 ,

where E(ε
(j)
i ) = 0 and Cov(ε

(j)
i ) = Ψ

(j)
i .

Without loss of generality, assume for all j < i,

diag(Σi) ≥ diag(Σj) (2.32)

component-wise. This allows us to define dominant mediating directions, which will be

useful when two or more mediating directions exist. If observed data are generated accord-

ing to Model 2, then we would hope to not only estimate the leading mediation directions,

but also the additional directions (β2, η2, θ2), . . . , (βd, ηd, θd). We will assess whether this

is possible using Algorithm 2.2.

2.5 Simulation studies

2.5.1 Single layer consistency simulation studies

In this simulation study, we establish that the proposed method is capable of consistently

identifying mediation structure when the data-generating model belongs to the class de-

scribed in Section 2.4.2. We show that the method is capable of identifying mediation

structure at lower levels or layers when the primary directions of variation in X , M , and Y

do not contain mediation structure.

To this end, we consider six different data-generating populations with three layers

(d = 3). Graphical models for the latent variables are displayed in Figure 2.5 for each of
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Figure 2.5: This figure shows graphical models of the relationship between latent variables at the
first two levels of a general mediation model. A directed edge is present when the downstream
variable depends on the upstream variable. To have a non-zero indirect effect, an edge must exist
between both Zm and Zx and Zm and Zy within a single layer. In Setting 1, the mediation structure
exists at Layer 1. For all other settings, the dominant mediation structure exists at Layer 2.
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the six settings. We omit the graphical model for the third layer, as it is constant between

settings and does not contain mediation structure. As described in Section 2.4.2, the layers

are ordered so that the marginal variance of Zj ∈ R3 are greater than the marginal variance

of Zj′ ∈ R3 whenever j < j′. We set diag(Var(Z1)) = 25, diag(Var(Z2)) = 9, and

diag(Var(Z3)) = 1 for each simulation study.

In the first data-generating setting, the mediation structure exists in the first layer. For

the remaining five data-generating populations, the mediation structure will exist at layer

2. The covariance structure of the layer 1 latent variables will change between these 5 data-

generating populations, but will never contain mediation structure. Mediation structure

exists at a given layer when an edge exists between Zx and Zm and between Zm and Zy.

The latent factors β := {β1, β2, β3}, η := {η1, η2, η3}, and θ := {θ1, θ2, θ3} are gener-

ated so that each has unit length and is orthogonal to all other vectors in its set. For example

(ηj)Tηj
′
= 0 whenever j 6= j′ and (ηj)Tηj

′
= 1 when j = j′.

We choose to generate vectors in this manner as the orthogonality between layers causes

the principle mediation directions to be vectors in the sets β, η and θ. When orthogonality

does not hold, one can still find the population mediation directions by calculating the pop-

ulation variance-covariance matrix Σ of (X,M, Y ). Using this matrix, one can use one of

the algorithms described in Section 2.3 to find the population mediation directions. After

identifying the population mediation directions, one again finds that the method consis-

tently identifies these directions as n grows.

Finally, in order to assess the consistency of the method, we consider five problem

dimensions and six different sample sizes. In this simulation, |X| = |M | = |Y | = p with

p ∈ {3, 5, 7, 10, 15}. The samples sizes considered are

n ∈ {100, 250, 500, 5000, 10000, 100000}.

For each data-generating population, problem dimension p, and sample size n, we con-
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Figure 2.6: Single-layer simulation results for Setting 1

duct 1000 Monte Carlo trials. For each trial, we record the angle between the population

mediation directions and the estimates.

Figure 2.6 (which consists of 6 separate plots) show results for all settings. The x-axes

and y-axes represent the sample size n and average angle between our estimates and the

population targets. Both are displayed on the log-scale. Panels within each figure display

results for the vectors β, η, and θ. Finally, we use different colors to distinguish between

different vector lengths.

The results of the simulation study are overwhelmingly positive. For all problem dimen-

sions, our estimates converge to their targets as n grows. For each setting-vector-sample

size combination, regressing the log error on the log sample size gives a slope estimate of

roughly−1
2
. This suggests that the algorithm has the expected root-n convergence rate. The

convergence rates’ constant terms (the intercept terms in the log-log regressions) depend

on the data-generating population, vector β, η, and θ, and vector length.

This simulation study demonstrates that our proposed method is capable of identifying

37



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.6: Single-layer simulation results for Setting 2
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Figure 2.6: Single-layer simulation results for Setting 3
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Figure 2.6: Single-layer simulation results for Setting 4
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Figure 2.6: Single-layer simulation results for Setting 5
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Figure 2.6: Single-layer simulation results for Setting 6

meaningful multivariate mediation structure, even when the mediation structure is obscured

by higher variance, non-mediation structure. Our method has the expected statistical con-

vergence rate and appears to have similar convergence rates between data-generating popu-

lations. Furthermore, the average error is not estimated to drastically differ between Setting

1 and Settings 2 through 5 after controlling for vector and problem size.

2.5.2 Multiple layer consistency simulation studies

Having established the proposed method’s capacity to identify the population mediation

structure, we now explore whether it can identify multiple mediation layers using the Al-

gorithm 2.2. This simulation study uses a design similar to the first simulation study, and

considers four different data-generating populations.

Each data-generating population contains four layers of factor structure for each vari-

ableX ,M , and Y . Two of the four layers contain mediation structure among projections of

X , M , and Y . At the non-mediation levels, we allow other association structures between
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Figure 2.7: This figure shows graphical model of the latent variable associations for the
second simulation study. Each data-generating population (Settings 1 through 4) has four
layers of structure. Associations between variables are represented by arcs. Note that we
omit the node labels in this figure in order to make the presentation cleaner. The orientation
of the nodes is identical to past figures including Figures 2.4 and 2.5.

projections of X , M , and Y . In Setting 1, the mediation structure is contained in layers 1

and 2. For Settings 2 through 4, the mediation structure occurs at levels 3 and 4. The larger

product-of-correlations always occurs at the higher-variance layer. For example, for Set-

ting 1, the layer 1 product-of-correlations is larger than the layer 2 product-of-correlations.

Graphical models of the latent variables for each data-generating population and layer are

shown in Figure 2.7.

Factor generation for this simulation study is identical to the simulation study in Section

2.5.1. The marginal standard deviations of the latent variables are 3.0, 2.5, 2.0, and 1.0 for
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layers 1, 2, 3, and 4. Again, the “first” layer is the one with the greatest marginal variance.

For this simulation study, we consider three vector lengths: p ∈ {5, 10, 15} and

n ∈ {250, 500, 1000, 2500, 5000, 10000, 100000}.

For each data-generating population, vector length and sample size, we generate 1000 syn-

thetic data sets. For each data set, we estimate the first two mediation directions and record

the angle between the estimates and their population targets. We expect that as n grows,

the angle between an estimate and its target should decrease for both the first and second

mediation layers.

Figure 2.8 (split into 4 separate plots) shows the convergence results for each of the four

settings. We plot the angle between an estimate and its target on the y-axis and the sample

size n on the x-axis (both on the log-scale). Each plot is split into three panels, which give

results for vectors β, η and θ, respectively. Line color denotes the value of p, and line type

denotes which the mediation layer (solid and dashed for the dominant and non-dominant

layers, respectively).

Overall, the results of the simulation study are promising and suggest that the proposed

method is able to correctly identify multiply layers of mediation structure. The first plot

in Figure 2.5.2 gives representative results. Similar to results from Section 2.5.1, we have

root-n convergence of estimates to their targets. The convergence rate constants depend on

p, the vector, data-generating population and layer.

Convergence occurs more quickly when β, η, and θ when p is small. Estimates of

θ appear to converge more slowly than estimates of β and η. Interestingly, estimates of

the first-layer mediation directions (β1, η1, θ1) converge more quickly than estimates of

the second-layer mediation directions (β2, η2, θ2) for each data-generating population. The

second-layer mediation directions still have root-n convergence rates to their targets in each

setting.
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Figure 2.8: Multi-layer simulation results for Setting 1
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Figure 2.8: Multi-layer simulation results for Setting 2
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Figure 2.8: Multi-layer simulation results for Setting 3
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Figure 2.8: Multi-layer simulation results for Setting 4
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Simulation results for Setting 2 are different than results for the other data-generating

populations. First layer estimates converge to their targets as expected, but estimates of β2

and η2 do not appear to have the expected root-n scaling. It is unclear why this occurs. One

possible explanation is that in this setting we infrequently converged to a sub-optimal local

optimum. To test this explanation, we re-ran the simulation with multiple initializations.

However, using multiple initializations did not produces estimates with the expected root-n

convergence. Strangely, the vector θ still has the expected root-n convergence.

At the time of writing, we have not identified a satisfactory explanation of the observed

non-root-n convergence and we plan to continue studying this example. However, we do

not believe that the result undermines the primary findings of the simulation study. First,

the method is capable of identifying multiple layers of mediation structure, even when that

structure is obscured by higher-variance factor structures without mediation information.

Second, the precision of additional mediation direction estimates is lower for a fixed sample

size n. Inexact estimation of the primary mediation directions leads subsequent estimates

to converge more slowly.

2.5.3 A comparison of algorithms

We briefly present simulation study results that led us to use a greedy local method rather

than Algorithm 5 (relaxation via matrix reparameterization algorithm) from Section 2.3.

We will refer to this algorithm as the “matrix relaxation algorithm” for the remainder of

this section. The data-generating populations were identical to Settings 1 and 2 from the

single-layer simulations in Section 2.5.1. The mediation structure is the dominant factor

structure in Setting 1. In Setting 2, the mediation structure occurs in the second layer and

the factor structure in the first layer does not induce associations between X , M , and Y .

Each simulation study uses 1000 Monte Carlo repetitions for each sample size. Results are

found in Figure 2.9.

Results for Settings 1 and 2 are nearly identical. In both cases, we see that the conver-
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(a) Simulation results for Setting 1 (b) Simulation results for Setting 2

Figure 2.9: A comparison of algorithms designed to solve the optimization problem 2.6.
Both figures above plot the angle between the an estimated vector and its target against
sample size (log-scale). Results are averaged over 1000 Monte Carlo trials. The left and
right hand panels show results for Setting 1 and 2 respectively. Color and line type are used
to differentiate between algorithms.

gence rates for the vectors β and η are nearly identical between the local greedy and matrix

relaxation algorithms. However, the matrix relaxation algorithm is inconsistent for η for

both data-generating populations. Its estimate converges to a vector that is not equal to the

population mediation direction η.

We expect that by modifying Algorithm 5 to include nuclear norm penalties, one could

create a matrix relaxation algorithm that is consistent for η in addition to β and θ. This

variety of algorithm could prove to be very useful as the dimensions of X , M , and Y

increase. However, the local greedy algorithm has proven to be sufficient for the moderate

problem sizes that we have considered.

2.5.4 Estimating the population mediated effect

The purpose of this section and its simulation study is to better understand the how es-

timated mediation directions generalize to other samples from the same data-generating

population. In moderate dimensional problems, we expect that our method likely over-
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fits the observed data and overestimates the product-of-correlations. Most previous work

on multivariate mediation analysis has attempted to perform inference on the product-of-

coefficients using bootstrap methods.

More rigorous approaches to assessing the multivariate product-of-correlations assess

either the out-of-sample generalizability of the estimated directions or the stability of the es-

timated vectors. The latter reduces to creating a confidence envelope on the p-dimensional

unit sphere. We are uncertain as to how one should create such an envelope, so we instead

offer one measure that assesses the stability of the estimated directions. Our approach

appears at the end of Section 2.3.

At a high level, the approach uses a nonparametric bootstrapped data set to estimate the

mediation directions β̂, η̂, and θ̂. The so-called “out-of-bag” observations, those observa-

tions which do not appear in the bootstrap dataset, are used to produce an out-of-sample

estimate of the product-of-correlations. Let τ be the population product-of-correlations,

and let τ̂s, and τ̂os denote an in-sample and out-of-sample estimates of τ , respectively.

For this simulation study, we considered six different data-generating populations which

are described in Table 2.1. They provide a mixture of different mediation structures and

problem sizes. For each population, we consider six sample sizes

n ∈ {100, 250, 500, 1000, 2000, 5000}.

For a fixed population and sample size n, we generate 100 synthetic datasets. For each

Table 2.1: Data-generating populations for simulation study assessing overfitting

Setting Problem size (k, `,m)) Description of mediation structure
1 (10, 10, 10) Dominant mediation structure in lower level
2 (10, 10, 10) Dominant mediation structure in first level
3 (1, 10, 1) Only mediation structure in first level
4 (1, 75, 1) Only mediation structure in first level
5 (1, 10, 1) No mediation structure
6 (1, 75, 1) No mediation structure
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Figure 2.10: In-sample and out-of-sample bias of the product-of-correlations estimates
plotted against sample size for the 6 simulation settings described in Table 2.1. Each panel
plots the estimated bias against sample size using line color to distinguish between in-
sample and out-of-sample estimates of the product-of-correlations.

synthetic data set, we estimate τ using both the in-sample estimate τs and the mean of

nb = 250 out-of-sample estimates: τos = 1
nb

∑nb
i=1 τ

i
os. Using the 100 estimates of the

in-sample and out-of-sample product-of-correlations, we calculated in the in-sample and

out-of-sample bias

τ̂s − τ =
1

100

100∑
j=1

(
τ̂ js − τ

)
and τ̂os − τ =

1

100

100∑
j=1

(
τ̂ jos − τ

)
,

respectively. Figure 2.10 shows the estimated in-sample and out-of-sample bias for all

simulation settings.

Across all simulation settings, as n increases both the in- and out-of-sample estimates

converge to the true population value of τ . For all settings, when n is small, the out-of-

sample estimates are upward biased, meaning that the method overestimates the true popu-

lation product-of-correlations. In Settings 1 through 4, drastic overestimates of the product-

of-correlations leads to mediation direction estimates that generalize poorly out-of-sample.

In these regimes, the out-of-sample estimates τ̂os underestimate the population product-
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of-correlations. The exception to this rule occurs when the true product-of-correlations is

equal to 0. In Settings 5 and 6 where this is the case, τ̂os ≈ 0 for all n.

We draw two conclusions from this simulation study. First, when sample sizes are

small, the method substantially overestimates the true product-of-correlations. This can

occur even when the population product-of-correlations is equal to 0 (see Setting 6, sample

size = 100 in Figure 2.10). Second, in regimes where the method drastically overestimates

the product-of-correlations, the out-of-sample estimate τ̂os is a downward biased estimator

of τ . This gives us a useful diagnostic procedure to assess whether we are dramatically

overfitting the observed data. If the difference between in- and out-of-sample estimates of

τ is large, then we’re likely overfitting. Future work might address how to regularize the

objective function so that estimators are more generalizable.

2.6 Case studies

2.6.1 Illustration via media perception study

We use data from a study called Financial Crisis: A Longitudinal Study of Public Response

[22], which was funded by the National Science Foundation. The goal of the study was to

understand how public perception of risk changed during and after the 2008 financial crisis.

A panel of 800 respondents was given surveys at eight time points (September, 29 2008,

October 8, 2008, November 5, 2008, December 6, 2008, March 21, 2009, June 30, 2009,

October 6, 2009, and August 9, 2011). At least 600 panelists participated in each survey

administration and 325 individuals completed all of the eight surveys. To illustrate our

methodology, we consider only two of these time points (September and December 2008)

and therefore do not make use of the longitudinal nature of the data.

The panelists were asked about a variety of topics, but for this illustration we will

focus on the connections between media consumption, attitudes about the economy, and

perception of the future. In the media studies literature, media consumption is thought to
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influence perceived risk in addition to attitudes about the topics directly receiving coverage.

In the fall of 2008, the media covered the economy and financial crisis closely, so it is

reasonable to expect that people who consumed more media might have more negative

attitudes about the economy and a perception of greater future economic risk. It is also

possible that people who have more negative attitudes about the economy, regardless of the

cause, will also have a greater perception of future economic risk.

Six media variables measured the amount of time a panelist spent consuming a certain

type of media (e.g. T.V., radio, and internet). The financial attitudes variables each measure

the degree to which the panelist felt an emotion toward the economy. Since the country was

in the midst of the largest economic downturn since the Great Depression, each of the six

attitude questions asked about a negative emotion. Finally, the risk perception variables

tried to capture how a panelist felt about his or her economic future. For example, panelists

were asked whether the crisis would limit their future or cause them to postpone making

a large purchase. Again, we used six variables to capture their risk perception. The study

surveys used Likert-type scales to collect responses about the variables described in the

proceeding paragraph. Self explanatory variable names appear in Tables 2.2 and 2.3.

If one applied traditional scalar-valued mediation analysis techniques to these data, one

would be forced to either (a) perform several scalar-valued mediation analyses on the vari-

ables of greatest interest, (b) somehow summarize the data into single measures of media

consumption, economic attitudes and risk perceptions, or (c) use PCA or factor analysis

to produce new variables. In any case, the data must be first processed or ad hoc choices

must be made in order to perform mediation analysis. Applying our multivariate mediation

method allows one to forgo making these choices and attempts to find the strongest possible

mediating relationship among the variables.
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Perception of
future

Media consump-
tion

Attitudes about
financial crisis

Figure 2.11: A path diagram representing a potential mediating relationship in a risk per-
ception study.

(a) The local greedy optimizer converged to dif-
ferent local optima depending on starting values.

(b) Algorithm 2 achieves a similar mediation cor-
relation. This suggests that the two CCA prob-
lems are closely linked.

Results

We use Algorithm 5 and Algorithm 3 to estimate the mediation directions, and obtained

similar results from both estimators. We observe that the local optimizer occasionally con-

verged to suboptimal local maximums for different initializations (see Figure 2.12a). Oth-

erwise, both algorithms find similar optima and their estimates of the mediation correlation

τ were approximately identical. In Tables 2.2 and 2.3 we report the estimates given by the

matrix-variate relaxation (Algorithm 5).

Estimates appear to be fairly similar between time points. The large coefficients in each

mediation direction have the same sign, suggesting a coherent effect. The variables with

large factor loadings are listed below:
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Table 2.2: September 2008 coefficients (N=739)

Media Consumption Financial Attitudes Perception of future

Variable Coefficients Variable Coefficients Variable Coefficients

Hrs Internet 0.17 Angry -0.06 Adjust to Economy 0.27
Hrs Newspaper 0.08 Anxious 0.01 Change Investments 0.21
Hrs Radio 0.14 Fearful -0.59 Limit Future -0.87
Hrs Talk -0.33 Sad -0.39 Take no Action 0.15
Hrs TV -0.80 Stressed -0.62 Postpone Purchases -0.31
Numb. of people
talked to abt. crisis -0.45 Worried -0.34 Control Future -0.01

Table 2.3: December 2008 Coefficientss (N=610)

Media Consumption Financial Attitudes Perception of future

Variable Coefficients Variable Coefficients Variable Coefficients

Hrs Internet 0.39 Angry -0.13 Adjust to Economy 0.34
Hrs Newspaper -0.17 Anxious -0.13 Change Investments 0.34
Hrs Radio 0.17 Fearful -0.03 Limit Future -0.78
Hrs Talk -0.15 Sad -0.21 Take no Action 0.12
Hrs TV -0.66 Stressed -0.36 Postpone purchases -0.38
Numb. of people
talked to abt. crisis -0.58 Worried -0.89 Control future -0.09
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- Media: the number of hours spent discussing the crisis and watching TV, and number

of people one talked to about the crisis,

- Attitudes: fearful, sad, stressed and worried, and

- Lifestyle: limit future opportunities, postpone large purchases.

This suggests that people who watched more TV and talked more to others, were

slightly more likely to have negative attitudes about the economy and believed that the

crisis would impact their future. Interestingly, this component appeared to be negatively

associated with likelihood of changing investments and beliefs about ability to adjust to the

crisis. The amount of time spent on the internet and reading the newspaper did not appear

to contribute substantially to the mediation pathway. For September, our estimate of the

mediation correlation τ was 0.25.

In the December analysis, the vector loadings were largely unchanged. The variable

“internet” received a larger positive weight. This suggests that in 2008, people who used

the internet might not have been doing so to monitor financial news. The number of hours

spent talking to people appeared to have grown less important by December as well. Co-

efficients among the attitude variables have shifted to place a greater emphasis on “worry”

and a lower weighting on “stress.” The coefficients of variables measuring the respondents’

attitudes about their future did not change to a great degree. In December, the estimate of

the mediation correlation decreased to 0.17.

Estimate diagnostics

Even though it appears that we have found interpretable directions of mediation that de-

scribe how the variables covary, we additionally want to see whether these directions de-

scribe variation within subsets of variables. We apply a common diagnostic tool used in

conjunction with CCA to verify that our mediation directions do describe substantial vari-

ation in X , M , and Y . When we compare the mediation directions β, η, and θ returned by
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Algorithm 5, we find that they are 35%, 63%, and 74% as variable as the optimal projec-

tions ofX ,M , and Y found through PCA ofX ,M , and Y . In these cases, it’s clear that the

mediation directions that we uncovered are not the primary directions of variation. They

do however describe non-trivial amounts of variation in the data. In Figure 2.12b we plot

estimates of the mediation correlation for different convex combinations η̂1 and η̂2 (see Al-

gorithm 2). The correlation-optimized mediators achieve a similar mediation correlation as

the matrix-variate and greedy descent algorithms. The performance of Algorithm 2 was not

due to the fact that the canonical directions were close to each other (1.2 radians apart), but

because both canonical directions performed well alone (mediation correlation estimates

of 0.24 for each vector). The principal directions of variation do not appear to describe

mediation structure (Algorithm 1) with mediation correlation τ = 0.13. For these data, the

mediation structure appears to be very closely tied to the joint correlation structure, but not

the within-variable covariance structure.

2.6.2 Mediation of genetic factors and cognitive ability via brain ac-

tivity measured by neuroimaging

Our second real data example assesses whether brain activity patterns mediate the associa-

tion between an individual’s genes and their performance on a battery of cognitive tests. At

a high level, one expects that the impact of an individual’s genes on their cognitive ability

is due to how one’s genes’ affect functional brain patterns. Here we use novel data and

our proposed method to study the gene-brain activity-intelligence pathway. We aim to find

clear patterns of brain activity that are both associated with an individual’s genetics and

their cognitive capabilities.

The data for this analysis were collected as part of the Adolescent Brain Cognitive

Development (ABCD) study [23]. The ABCD Study is a long-term, longitudinal observa-

tional study which collects and makes available the data necessary to better understand the

complex process of cognitive development during adolescence. Study participants were
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recruited at ages 9 and 10. Recruited individuals will be followed into early adulthood

with biannual follow-ups, which will produce a rich, complex dataset with which to study

cognitive development. In addition to assessing an individual’s cognitive ability, the study

collects family and environmental variables, genetic data and medical measures, including

functional magnetic resonance imaging (fMRI). This analysis makes uses of the genetic,

fMRI and aptitude test data.

Data description

At baseline, the ABCD study protocol requires the collection of participant DNA, func-

tional brain connectivity, and neurocognition data, in addition to many other measures.

Each participant’s blood sample was used to perform full genome sequencing. Using

the full genome sequence, the primary study team collapsed the genetic data into a uni-

variate polygenic risk score (PGRS). The PGRS was trained to be predictive of cognitive

ability [1]. The PGRS weights were estimated on independent data.

A brain imaging study assessed each ABCD study participant’s structural and func-

tional brain connectivity patterns. The task-based assessment used three tasks which assess

a wide range of cognitive abilities, including impulse control, emotional regulation, and

reward processing. The primary research team performed a factor analysis to reduce voxel-

level task-based fMRI data to 75 brain features. These 75 brain features will be used in our

mediation analysis.

Finally, participants took a battery of 11 cognitive tests meant to measure different

aspects of neurocognition at baseline [24]. Again, the primary study team performed a

factor analysis on the results of the 11 tests in order to produce a univariate summary of

cognitive performance for each individual. This measure will be referred to as G, which

stands for “general intelligence.”

Analysis plan
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Our analysis use the PGRS, 75 brain features, and cognition score G to assess whether

patterns of brain connectivity during tasked-based tests mediate the PGRS - intelligence

pathway. Our analysis assumes the following structure between variables:

Cognitive abilityPolygenic risk
scores

75 Brain features

Figure 2.12: A path diagram representing a potential mediating relationship for the ABCD
data analysis.

The analysis is limited to subjects with European ancestry, since the PGRS does not

generalize beyond this subset. Two analytic datasets were considered. The first includes

all 2530 subjects, while the latter excludes 61 subjects who had outlier brain-feature data.

The choice of dataset does not change the key results of the analysis. We will use the terms

“full” and “restricted“ to refer to the datasets with 2530 and 2469 subjects, respectively,

and present results for each dataset.

Both an unadjusted and adjusted analysis were performed. The adjusted analysis con-

trolled for a subject’s household income, parental education, age, gender and parental mar-

ital status. Once again, our findings did not meaningfully vary between the adjusted and

unadjusted analysis. Here we present only the unadjusted analysis results.

Results

Let Xi ∈ R, Mi ∈ R75, and Gi ∈ R denote subject i’s the PGRS, 75 brain features, and

cognition score for i = 1, . . . , n, with n ∈ {2530, 2469}. We will denote a single subject’s

data by Zi = (Xi,Mi, Yi)
T ∈ R77. Because X and G are both scalar valued, we aim to

identify a single linear projection ηTM that captures patterns of brain activity that mediate

the genetic-cognition pathway. The mediation directions objective function is maximized

in order to estimate η:
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Table 2.4: Estimated correlation coefficients and correlation coefficient products resulting
from the optimization of the mediation directions objective.

Dataset ρ̂1 ρ̂2 τ̂

Full 0.176 0.356 0.063
Restricted 0.178 0.353 0.063

maximize
η∈R75

τ(η) = ρ1 × ρ2 :=
Σxmη√

σ2
x × ηTΣmη

×
ηTΣmg|x√

ηTΣm|xη × σ2
g|x

, (2.33)

where

• Σxm ∈ R1×75 denotes the cross-covariance matrix between the PGRS and the brain

features.

• Σmg|x ∈ R75×1 denotes the conditional cross-covariance matrix between the brain

features and cognition measures.

• σ2
x and σ2

g|x ∈ R are the variances of the PGRS and the cognition score given the

PGRS.

• Σm,Σm|x ∈ R75×75 are the covariance and conditional covariance matrices of brain

features, the latter given the PGRS.

The mediated effect

Solving the optimization problem 2.33 produces the following estimates of τ , ρ1 and ρ2

given in Table 2.4. The estimated correlation between the PGRS and the cognition scores

is ρtot = Ĉor(X, Y ) = 0.171. The in-sample estimate of the proportion of the total effect

of the PGRS on the cognition score mediated by η̂TM is

ρ/ρtot = 0.063/0.171× 100 ≈ 37%.
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Figure 2.13: A comparison of η-loadings between the full and reduce analytic datasets. The
figure shows that the estimated loadings do not appear to strongly depend on the inclusion
or exclusion of high-influence subjects.
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Figure 2.14: A comparison of η-loadings between the full and reduce analytic datasets
ordered by brain feature. The estimated loadings ares similar between the full and reduced
datasets, with only a few values in either η̂ greater than 0.2 in magnitude.
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Figure 2.15: The empirical distribution of the η-loadings. The quantiles of the magnitude
of η-loadings against probability points. The observed distribution of η-loadings is right
skewed, with approximately 25% of loadings having magnitude greater than 0.1, and 5%
having magnitude greater than 0.20.

Figures 2.13 and 2.14 show the estimated η-loadings using the full and reduced datasets.

The magnitude of the loading estimates between analyses are similar. This suggests that the

individuals with outlying brain feature scores do not influence the analysis substantially.

Figure 2.15 shows the estimated inverse-CDF function of the distribution of η-loadings

(the η-loading quantiles are plotted against their corresponding probability points). The

figure shows that the observed distribution of loadings is right skewed, which means that

the mediated direction is primarily driven by brain activity differences in a small number

of brain features. Because the brain features are identified only up to a change in sign, we

are unable to interpret the signs of the loadings without the help of the primary research

team’s visualization tools.

The estimated mediation direction has found a direction in the data with moderate vari-

ation after projection. Figure 2.16 shows the estimated inverse-CDF function of the eigen-

values of Cov(M ). The red, dashed line plots the observed variance of η̂TM , showing

59



0.0 0.2 0.4 0.6 0.8 1.0
Probability point

0

500

1000

1500

2000

2500

Ei
ge

nv
al

ue
s o

f C
ov

(M
)

Eigenvalue distribution of Cov(M)
Variance of TM

Figure 2.16: The empirical distribution of the eigenvalues of Cov(M ). The empirical quan-
tiles of the eigenvalues of Cov(M ) are plotted against probability points. The variance of
the brain feature projection η̂TM is plotted as the horizontal red line as a point of reference.

that the variance of the estimated mediation variable falls at roughly the 90th percentile of

the eigenvalue distribution. The ratio of Var(ηTM) to the largest eigenvalue of Cov(M )

is approximately 1/10. Importantly, the identified mediating direction describes non-trivial

variation in the data. If the projection found a direction of M with little observed variance,

the identified direction would be less believable.

Assessing overfitting

Table 2.5 compares using in- and out-of-sample estimates of the correlation coeffi-

cients and their product. The interval after the mean estimate is a 95% confidence interval

based on 10,000 bootstrapped datasets. Most importantly, the 95% confidence interval

for τ created using out-of-sample data does not include 0, suggesting that the identified

brain activity patterns do indeed mediate the genetic-intelligence pathway. The out-of-

sample estimate of the proportion of the total effect mediated by the variable η̂TM is

0.023/0.171 = 0.13.
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The results of our simulation studies in Section 2.5.4 suggest that the out-of-sample es-

timate of the product-of-correlations is likely too small. We saw that in regimes where the

in-sample estimates overfit the observed data, the out-of-sample estimate of τ was down-

ward biased. Here we have a large relative difference between the in- and out-of-sample

estimates of τ , which suggests that our estimate is downward biased. Additionally, the

marginal distributions of the brain features are heavy tailed relative to a Gaussian distribu-

tion. This remained true after removing individuals who were clearly outliers. Because the

method uses the data’s second moments, the observations that fall in the tails have “high-

leverage.” They have greater influence on the estimated η direction during the in-sample

portion of Algorithm 2.3. This causes the estimated η to generalize poorly out-of-sample.

Scientific findings

The results of this analysis suggest that the PGRS - general intelligence pathway is me-

diated by contrasting activation patterns in large-scale brain networks. Figure 2.18 shows

a heat map of the estimated mediation direction loadings mapped onto the brain cortex.

Increased activity in regions colored orange was positively associated with larger PGRS

and greater general intelligence. Conversely, PGRS and general intelligence scores were

inversely associated with activation in regions colored blue.

Interestingly, these activation patterns have interpretations in terms of large-scale brain

activation networks. Orange and blue regions predominantly belong to the fronto-parietal

network (FPN) and default mode network (DMN), respectively. It has been well docu-

mented in the literature that increased activity in the FPN and decreased activity in the

Table 2.5: In-sample and out-of-sample estimates and confidence intervals of the correla-
tion coefficients.

ρ1 ρ2 τ

In-sample 0.22 (0.18, 0.25) 0.36 (0.33, 0.39) 0.079 (0.06, 0.09)
Out-of-sample 0.08 (0.03, 0.13) 0.28 (0.22, 0.34) 0.023 (0.009, 0.037)
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Figure 2.17: Histograms of the bootstrapped estimates of ρ1, ρ2 and ρ for the in-sample
(training) and out-of-sample (testing) datasets.

DMN during cognitively challenging tasks are associated with greater general intelligence.

Our analysis connects this well-studied association to genetic factors that are predictive of

intelligence. Taken together, it seems that the contrasting activation patterns of the FPN

and DMN partially explain the PGRS - general intelligence association.

However, these findings should not be overstated. In particular, both the in- and out-

of-sample correlations between the PGRS and the one-dimensional brain feature are small.

This should not surprising, since the PGRS was created to predict general intelligence not

variation in large-scale brain network activation. Our findings suggest both that (a) another

mechanism explains the remainder of the genetic - general intelligence association, and (b)

other genetic or environmental factors explain variation in FPN and DMN activation that
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Figure 2.18: A brain heat map of activity patterns that appear to mediate the PGRS-
intelligence association.

leads to greater general intelligence.

2.7 Discussion

In this chapter we proposed and studied the first fully optimization-based approach to

identifying multivariate mediation structure. Existing multivariate mediation methods are

model-based and must estimate parameters unrelated to the mediation structure. For prob-

lems of moderate dimension, specifying a full joint model is difficult to do. A major

strength of our approach is that it is capable of identifying the most prominent mediation

structure without specifying a full model fir the data. However, compared to model-based

approaches, the proposed optimization-based approach estimates the mediation directions

less efficiently.

The proposed method’s limitations are in its lack of generalizability. One such exten-

sion would be modifying the objective function so that it regularizes the mediation direc-

tions. The fMRI case study data exhibited two scenarios in which regularization would

likely improve estimates: when the data are either (a) high-dimensional or (b) have heavy

tails. One would hope that regularized optimization would improve the out-of-sample gen-
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eralizability of the estimated directions. We currently are unsure of how one might regu-

larize this objective function due to its scale-invariability.

Regularization would also open up “p > n” applications where our objective function

is currently undefined. In these settings, the variance-covariance matrices in the denomina-

tor of the objective function are not positive definite. Depending on the structure and what

is known about the data-generating mechanism, one might consider using model-based

regularization, or use penalized covariance estimators to estimate these inputs. These ap-

proaches could be used in combination with an approach that also regularizes the mediation

directions.

Another useful extension of this methodology would modify the objective function to

work with non-second-moment-based estimates of dependencies between X , M , and Y .

Mediation analyses are frequently used by social scientists who collect Likert-scaled data

via surveys. Analysts generally treat these data as continuous (as we did in the economic

data case study) but alternative measures of dependence between variables might improve

estimates of mediation structure. One potential solution would use copulas to estimate the

dependence between discrete or ordinal variables.

We believe that the proposed method should be viewed as a part of a complete analysis.

Because the mediation directions objective function links X to Y through M , the method

can fail to identify projections ofX and Y that are highly correlated. This could potentially

be an issue if the variables inM are not the mechanisms that explain the exposure-outcome

associations. Without additional multivariate data analyses, such as canonical correlation

analysis and factor analysis, one would have a less-than-complete picture of the associa-

tions between the variables. Additional analyses also act as a check to make sure that the

estimated mediation directions are directions in the data with reasonable variance.
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CHAPTER 3

Conditional Methods for Non-Regular Inference

Problems with Applications to Testing Mediation

Hypotheses

3.1 Introduction

The primary aim of most univariate mediation analyses is to characterize the role of the

hypothesized mediator in the exposure-outcome association. The first step in this process

is assessing whether the indirect effect is non-zero. For the linear structural equation model

introduced in Section 1.1, this reduces to testing H0 : αβ = 0 versus HA : αβ 6= 0. Tests

of the null hypothesis have been shown to be conservative over a subspace of the null-

parameter space [8, 13]. To the best of our knowledge, no proposed procedure for testing

the indirect mediation effect is properly calibrated over the entire full parameter space.

This chapter proposes a procedure with improved calibration for assessing evidence

against the null hypothesis αβ = 0. In order to achieve better test calibration, we first

identify the fundamental challenge with testing in this setting. We combine the insight

gained from this perspective with ideas from conditional inference to produce a new test.

The proposed procedure is broadly applicable, as it uses likelihood ratios to summarize

the evidence against the null hypothesis, and can be used when the mediator and outcome

models belong to the class of generalized linear models. We show through simulation that
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the procedure improves calibration relative to existing methods. Against certain alternative

hypotheses where αβ 6= 0, the proposed procedure also has greater power than existing

methods.

3.1.1 Motivation for a conditional test of the indirect effect

In a review of Ronald A. Fisher’s work [25], David Hinkley stated that the point of con-

ditional inference is to “condition the sampling distribution of a test statistic to only the

relevant subsets of the general experimental subspace.” If one adopts this point of view,

then the calibration of a sampling distribution should account for the population that gen-

erated the observed sample. To motivate our use of conditioning for a test of the indirect

effect, we show that data from different regions of the experimental subspace have different

log-likelihood ratio sampling distributions.

Although most tests of the indirect effect create a (1 − α̃)% confidence interval for

the parameter αβ, we choose to use likelihood ratios to assess the evidence that M is a

mediator. Additionally, the likelihood ratio approach provides the perspective necessary to

understand why tests of the indirect effect are conservative. We will include details of the

log-likelihood ratio test in Section 3.3. For now, we generate likelihood ratio test statistics

for three different populations in which the indirect effect is 0.

Figure 3.1 is a quantile-quantile plot (QQ-plot) that compares the quantiles of the log-

likelihood ratio test statistic to the χ2
1 asymptotic reference distribution for 3 data generating

populations. Only Population 3’s test statistic quantiles (blue line) are well approximated

by the χ2
1 reference distribution. Population 1 and 2’s test statistic quantiles (red and green

lines) are smaller than the reference distribution’s. Figure 3.1 shows that inference using the

χ2
1 reference distribution will not be well calibrated for all null data-generating populations.

The summary of conditional inference found in [25] and Fisher’s first description of

conditional inference [26] suggest that we attempt to tailor the reference distribution to the

log-likelihood ratio’s sampling distribution. To do so, Fisher suggested that we should use
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Figure 3.1: QQ-plots comparing three data-generating populations’ log-likelihood ratios to
the χ2

1-distribution. Line color distinguishing between populations.

additional “ancillary” information in the data to locate our data in the full experimental

design space. The following three insights allowed us to make our inferences about the

indirect mediation effect more relevant to the observed data:

1. A nuisance parameter causes the log-likelihood ratio’s sampling distribution to vary

over the null parameter space.

2. There exists a sufficient statistic for the nuisance parameter which is approximately

ancillary for the parameter that determines if H0 is true.

3. By conditioning on the approximately ancillary statistic, we are able to tailor our

inference to the relevant region of the experimental space.

We again defer giving a proper definition of the approximately ancillary statistic A to

Section 3.3. To demonstrate A’s impact on the sampling distribution, for each simulated

dataset used to create the QQ-plot in Figure 3.1, we calculate both the log-likelihood ratio

and its corresponding ancillary statistic. We then sort (λ,A) pairs into four groups, using

the quartiles of A within each population as the cut points for the groups. Figure 3.2
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Figure 3.2: QQ-plots of the log-likelihood ratios quantiles against χ2
1 quantiles stratified by

ancillary statistic A. Results are split into panels for each data-generating population (by
panel) and by quartile of A by color.

compares the quantiles of the log-likelihood ratios to the χ2
1 reference distribution after

stratifying by quartile ofA for each population. Figure 3.2 shows that the distribution of the

log-likelihood ratio depends strongly on A for Populations 1 and 2. The QQ-plots for the

log-likelihood ratios vary strongly between quartiles of A. Thus, if A indeed contains little

information about the truth of H0, we will be able to make our inferences more relevant to

the observed data by conditioning on A.

Finally, we show that by conditioning on A, the sampling distribution of the log-

likelihood ratio is more similar between populations. Figure 3.3 shows 2 QQ-plots compar-

ing quantiles of Population 1 and 2 log-likelihood ratios. After approximately conditioning

onA, the sampling distribution of λ is more similar between Populations 1 and 2. This find-

ing will be useful when we design our procedure for learning the conditional distribution

of λ given A.

The remainder of this chapter is organized as follows. In Section 3.2 we review exist-

ing approaches to testing mediation hypotheses, conditional inference, and likelihood ratio
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Figure 3.3: Marginal and conditional QQ-plots of the log-likelihood ratios for Populations
1 and 2. The green line shows the relationship between log-likelihood ratios marginal over
A, while the red line restricts the QQ-plot to all (λ,A) pairs such that A ≈ 1.25. Since the
red line falls closer to the black, dashed 1-1 line than the green, the conditional sampling
distributions are more similar than the marginal sampling distributions.

testing at singularities. We then introduce our conditional procedure in Section 3.3. In Sec-

tion 3.4 we derive and characterized the limiting distribution of the log-likelihood ratio’s

conditional sampling distribution. We then present extensive simulation studies in Section

3.5, which demonstrate that the proposed method does in fact improve test calibration. We

close with a discussion of the method in Section 3.6.

3.2 Relevant background

3.2.1 Conditional inference

Conditional inference is an inferential approach that attempts to tailor inferences to the

characteristics of the observed data. Conditional inference is not a strictly frequentist ap-

proach to inference. David Hinkley writes in [25] that “inasmuch as inference proceeds by

relating a given experimental outcome to a series of hypothetical repetitions which gener-

ates frequency distributions for statistics, that series of repetitions should be as relevant as

possible to the data at hand.” A simple example makes it clear what one means by “relevant
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to the data at hand.”

Suppose one is interested in estimating the probability p that a machine produces a de-

fective product. The experimenter will either observe 25 or 100 products from the machine

with equal probability. On the day of the test, it is determined that the experimenter ob-

serves 100 products. The experimenter is now left to decide how to calibrate the precision

of his or her estimate.

A strict frequentist calculation of the standard error would marginalize over the random

variable that determines whether 25 or 100 products are assessed for defects. Most indi-

viduals would choose instead to condition on the fact that they observed 100 products and

ignore the sampling behavior of p̂ when 25 products are observed. This choice is logical

because it makes our inference more relevant for the data that were eventually produced by

the study.

R.A. Fisher first formally described conditional inference in [27, 26]. For Fisher, con-

ditional inference is closely related to identifying an ancillary statistic for the parameter of

interest. At a high level, Fisher described ancillary statistics as quantities that contain little

or no information about the parameters of interest.

“Ancillary” is a difficult concept to define precisely, in part because it has two meanings

in the conditional inference context. In [28] Kalbfleisch clearly defined and delineated the

differences between experimental and mathematical ancillaries.

The example given previously in which one of two studies was randomly selected and

conducted is an example of an experimental ancillary. An experimental ancillary is any

quantity whose distribution is independent of the phenomenon under study. In our example,

whether the experimenter observed n = 25 or n = 100 products is independent of the

defect rate p. Often by the time an analysis begins, one will not think of an experimental

ancillary as random. This means that there is less uncertainty as to how inference should

proceed when dealing with experimental ancillaries.

Fisher focused his development of conditional inference around mathematical ancillar-
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ies. They are a result of the statistical model chosen for the data. Unlike experimental

ancillaries, a mathematical ancillary may be formed from quantities that contain informa-

tion about the quantity of interest. For example, consider X1, X2
iid∼ N (µ, 1). The quantity

A = X1 −X2 is ancillary for µ since the distribution of A is free of µ. However, both X1

and X2 clearly contain information relevant to estimating µ.

Fisher described mathematical ancillaries as the “configurations” of the sample [26]. He

believed that by accounting for the configuration of a particular sample, one could produce

an inference more relevant to the observed data. Suppose that X ∼ Fθ where θ = (µ, ψ)

and let (T,A) be a sufficient statistic for θ. If the likelihood of θ given X factors over T

and A:

f(T,A; θ) = f(T |A;µ)f(A;ψ),

then we say that A is ancillary for µ, since the likelihood for µ does not depend on A. If

one wishes to perform inference on µ, then ψ is often called a nuisance parameter since ψ

is not the focus of the inference but must be accounted for when performing inference on µ.

Fisher argued that inference for µ should be carried out using the conditional distribution

T |A rather than the marginal distribution of T .

Conditional inference examples

Fisher’s exact test is the most widely known example of conditional inference and

was one of the examples he chose to motivate the conditional approach to inference [26].

Fisher’s exact test is most commonly used to analyze 2x2 contingency table, and assesses

dependence between the two categorical variables. The dependence is often estimated us-

ing an odds ratio. A typical 2x2 contingency table is given in Table 3.1 of two variables X

and Y taking values X1 and X2 and Y1 and Y2, respectively.

The test is described as “exact” because when the row and column totals of a 2x2 table

(a+c, b+d, a+b, c+d) with independent rows and columns are fixed, then one can model

the cell counts using a hypergeometric distribution. Fisher argued that when the row and
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X1 X2 Row total
Y1 a b a+ b
Y2 c d c+ d

Column total a+ c b+ d a+ b+ c+ d

Table 3.1: An example of a 2x2 contingency table.

column totals are random, these quantities contain little information for the parameter of

interest, or are nearly ancillary [26]. With random margins, the cell counts can be modeled

as a multinomial random variable and the conditional distribution of the cell counts given

the observed table margins remains hypergeometric. Fisher argued that ease of inference

with a closed form sampling distribution outweighed the fact that the table margins are not

exactly ancillary for the odds ratio.

Since its introduction, statisticians have disagreed about whether using Fisher’s exact

test is appropriate. The prevailing consensus is that conditioning is reasonable even when

the table margins are not fixed. This is in large part due to two findings. First, a number of

examples have shown that approximate, unconditional p-values can often exhibit undesired

properties [29]. Second, it has been shown that the margins contain very little information

about the odds ratio. In fact, [30] showed that the margins are nearly ancillary, and therefore

conditioning has little negative impact on the inferential performance of Fisher’s exact test.

A second example uses conditioning to estimate logistic regression models for stratified

or matched data. Conditional logistic regression [31] was developed to study disease risk

in case-control study designs. Let Yj ∈ {0, 1} record whether individual j has a disease,

often called a case. In a case-control study design, each case is matched with d controls

who do not have the disease. Together, a case and its assigned controls make up a single

stratum. Conditional logistic regression is capable of accommodating both multiple cases

and controls per stratum.

Cases are generally matched to the controls who have similar levels of variables be-

lieved to be relevant to the risk of developing the disease (e.g. age or sex). The primary

goal of the analysis is to study how risk varies with other covariates x ∈ Rp. Suppose we
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have k cases, each matched with d controls. Within group or stratum i, the first individual

0 is the case and individuals 1, . . . , d are the controls. Within group i, the probability of

having the disease is modeled by

P (Yij = 1|X = xij) =
(
1 + exp(αi + βTxij)

)−1
,

where αi is captures the baseline risk of having the disease in stratum i. The baseline risk

αi is assumed to depend on the variables used to stratify and create case-control groupings,

and therefore will vary across strata.

In this application, the parameters αi act as nuisance parameters, since the investigators

are not directly interested in estimating each stratum’s baseline risk, but wish to establish

how the covariates x relate to risk of disease. When there are many strata, estimates of

stratum-level effects are in fact inconsistent [32]. Because the number of cases in each

stratum was determined before the analysis began, the number of cases within a stratum can

be treated as ancillary. Suppose that in stratum i a single case occurred. After conditioning

on the fact that only one case exists in the stratum, stratum i’s the conditional likelihood is

free of αi:

P

(
Yi,0 = 1, Yi,1 = · · · = Yi,d = 0|Xi,0, . . . , Xi,d,

d∑
j=1

Yi,j = 1

)

=

(
1 + exp(αi + βTXi,0)

)−1∑d
j=0 (1 + exp(αi + βTXi,j))

−1∏
j′ 6=j (1 + exp(αi + βTXi,j′))

−1

=
1

1 +
∑d

j=1 (1 + exp (βT (Xi,j −Xi,0))−1
. (3.1)

The last line of 3.1 gives an expression for stratum i’s contribution to the likelihood

function of β. Summing across all strata gives the full conditional likelihood of β. The

conditional likelihood is free of αi for all i, which allows for maximum conditional like-

lihood estimation of the β-vector without estimating the baseline risk of developing the
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disease within each stratum.

These applications highlight two strengths of conditional procedures. First, they may

be reasonably robust if a statistic is nearly ancillary and, second, conditioning can allow

inference to proceed without estimation of nuisance parameters. Our use of conditional in-

ference is different from these two examples in one important way. In these examples, after

conditioning on an approximately ancillary statistic for each example, either an closed form

for the sampling distribution exists or nuisance parameters do not need to be estimated. In

other words, inference is made simpler by conditioning.

Inference for the conditional indirect effect is not simplified by conditioning, but rather

requires numeric methods to estimate the conditional distribution of the log-likelihood ra-

tio test statistic. Unconditionally, one can use an asymptotic χ2
1 approximation (although it

might not be a good approximation) to the sampling distribution. Rather than gaining sim-

plicity by conditioning, a conditional test of the indirect mediation effect is more relevant

for the observed data. The unconditional χ2
1 approximation may be appropriate for some

samples but not others, whereas the conditional approach will be better calibrated for all

samples. In fact, we believe that one of this chapter’s contributions is showing that con-

ditional inference can be a useful tool even when conditioning does not lead to simplified

inference.

3.2.2 Likelihood ratio tests at singularities

Tests of the indirect effect are poorly calibrated in finite samples due to a singularity in the

null parameter space. It suffices for our purposes to define a singularity to be a point in a

subspace with locally non-Euclidean geometry. In other words, the subspace is not smooth

at the singularity in the sense that a tangent surface to the subspace does not exist at the

singularity.
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For our application, a singularity exists at the origin. Let

Θ0 = {(α, β) ∈ R2 | αβ = 0}

denote the null-parameter space of the hypothesisH0 restricted to θ = (α, β). The set Θ0 is

equal to the coordinate axes of the real plane. At the origin, which we will denote θ̃0 of the

real plane, a tangent surface to Θ0 does not exist since the null parameter space intersects

itself at θ̃0.

Before we derive the limiting distribution of a likelihood ratio test at θ̃0, let us consider

the general situation of conducting a likelihood ratio test at a singularity. This problem has

been studied by [33] and more recently [34]. Suppose that we are interested in testing a

hypothesis about a parameter θ ∈ Θ. Suppose that H0 : θ ∈ Θ0, with Θ0 ⊂ Θ and at the

true parameter value θ0 ∈ Θ0, the space Θ0 is non-Euclidean. As a result, a tangent plane

to Θ0 at θ0 does not exist and so the standard χ2 asymptotics of the log-likelihood ratio test

need not hold. Chernoff showed that in such settings, the distribution of the log-likelihood

ratio test statistic converges to the distribution of the squared distance of the projection of

a normal random variable onto the tangent cone to Θ0 at θ0 [33]. For a formal definition of

the tangent cone, see [34]. This distribution is often not a χ2 distribution. In such a setting,

using the standard χ2 reference distribution will lead to incorrectly calibrated inference.

Returning to the test of the indirect mediation effect, the only non-Euclidean location

in Θ0 is θ̃0. The tangent cone to θ̃0 is equal to the full null-parameter space Θ0. The

log-likelihood ratio test statistic at θ̃0 is equal in distribution to the squared distance of

the projection of a bivariate normal random variable Z onto Θ0. The projection is ac-

complished by setting the smaller component of Z to 0. Thus, λ ∼ min(Z2
1 , Z

2
2). Since

Z1, Z2
iid∼ N (0, 1), Z2

1 , Z
2
2
iid∼ χ2

1. Let G be the distribution function of the minimum of

two independent χ2
1 random variables. When the data-generating parameter is θ̃0, then the

asymptotic distribution of the log-likelihood ratio test statistic will be equal to G. At all
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other θ0 ∈ Θ0, the asymptotic sampling distribution will be the standard χ2
1 distribution.

Thus, the asymptotic sampling distribution of the likelihood ratio test statistic depends on

θ0 ∈ Θ0.

This insight is difficult to operationalize into an improved inferential procedure. This is

due to the discontinuity in θ0 between asymptotic sampling distributions. For all sequences

{θj0}∞j=1 ∈ Θ0 \ {θ̃0} such that θ0 → θ̃0, the likelihood ratio converges to its expected

χ2
1 sampling distribution. However, at the limit of the sequence, the asymptotic sampling

distribution is equal to the minimum of two independent χ2
1 random variables. For a fixed

sample size n, the distribution of the likelihood ratio varies smoothly with θ0 ∈ Θ0. A

procedure that improves test calibration must be capable of approximately learning the

sampling distribution. We achieve this by utilizing ideas from conditional inference.

3.3 A conditional test of the indirect mediation effect

3.3.1 The indirect mediation effect

Suppose that X,M, Y ∈ R and that the dependence structure between (X,M, Y ) is given

by the graphical model in Figure 1.1. LetM ∼ FM |X and Y ∼ GY |X,M , where F andG are

distribution functions that depend onX and (X,M), respectively. Additionally assume that

X ∼ H for some distribution function H . These can be quite general models, but in order

to define the indirect effect E[Y |X,M ] must exist. For this joint model for (X,M, Y ), we

use the definition of the indirect mediation effect found in [35, 15].

Definition 3.3.1. The indirect mediation effect of changing the exposure X from x to x′ on

Y is:

τ(x′, x) =

∫
E[Y |X = x,M = m]

{
dFM |X=x′(m)− dFM |X=x(m)

}
,

where FM |X=x is the conditional distribution function of M given X = x.
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In order to evaluate the hypothesis test H0 : αβ = 0 using a likelihood ratio, we must

be able to perform constrained maximum likelihood estimation such that the indirect effect

is equal to zero. Using Definition 3.3.1, we can describe sufficient conditions under which

the indirect effect is equal to zero and M is not a mediator.

First, if Y and M are conditionally independent given X , then E[Y |X = x,M = m]

does not depend on m. In this case, the indirect effect is equal to:

τ(x′, x) =

∫
E[Y |X = x,M = m]

{
dFM |X=x′(m)− dFM |X=x(m)

}
= E[Y |X = x]

∫ {
dFM |X=x′(m)− dFM |X=x(m)

}
= E[Y |X = x](1− 1)

= 0.

Second, consider the case where X and M are independent, which implies that the

conditional distribution of M given X is equal to the marginal distribution of M : FM |X =

FM . Under this assumption, it is easy to see that the indirect effect is again equal to zero:

τ(x′, x) =

∫
E[Y |X = x,M = m]

{
dFM |X=x′(m)− dFM |X=x(m)

}
=

∫
E[Y |X = x,M = m]dFM |X=x′(m)−

∫
E[Y |X = x,M = m]dFM |X=x(m)

=

∫
E[Y |X = x,M = m]dFM(m)−

∫
E[Y |X = x,M = m]dFM(m)

= 0.

Thus, the indirect effect is equal to zero if either (a) M and X are marginally indepen-

dent or (b) M and Y are conditionally independent given X . Optimization over Θ0 will

require that either condition (a) or (b) is met. Note also that these conditions are sufficient
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for the indirect effect to be equal to zero for all x and x′.

Because these conditions are not specific to any one statistical model, they are broadly

applicable and easily operationalized. Without the conditions, for each joint statistical

model defined in terms of the distribution functions {H,F,G}, one would use Definition

3.3.1 to calculate the indirect effect either in closed form or evaluated numerically. Then,

one would maximize the joint-likelihood subject to the constraint that the indirect effect is

equal to zero. Assessing marginal and conditional independence is often much easier than

performing constrained optimization.

3.3.2 Generalized linear model-based mediation models

We now describe the class of mediation models that we study in this chapter. Both the con-

ditional models for M and Y will belong to the class of generalized linear model (GLM).

The method should apply to other statistical models that are equipped with both a likelihood

function and describe independence relationships through the nullity of a single parame-

ter. GLMs meet both of these requirements and are frequently used in practice, making

their selection natural. We will refer to these models as “GLM mediation models” for the

remainder of the chapter.

Definition 3.3.2. Let X,M and Y play the roles of a univariate exposure, potential media-

tor, and outcome variables, respectively. Let Z ∈ Rp be a vector of additional covariates.

Suppose that M ∼ Fm and Y ∼ Fy, where Fm and Fy are both distribution functions

of an exponential family. Define ηm = γ1 +αX+ZTλ1 and ηy = γ2 +γ3X+βM+ZTλ2,

and let

E[M |X] = g−1
m (ηm) and E[Y |X,M ] = g−1

y (ηy),

and assume that the conditional variance ofM and Y are each a function of their respective

conditional mean and an additional scale parameter.
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Let φ = (γ1, α, λm, σm) and ψ = (γ2, γ3, β, λy, σy), where σm and σy are the GLM

scale parameters. Let θ = (φ, ψ) be the full parameter vector. The joint probability density

or mass function over M and Y given X factorizes as f(m, y|x) = fm(y|x,m)fy(m|x),

where fm and fy are the probability distribution or mass functions of Fm and Fy, respec-

tively. The log-likelihood function of the GLM mediation model is:

`(θ;M,Y |X) = `m(φ;M |X) + `y(ψ;Y |M,X).

Under the GLM mediation model, X and M are marginally independent if α = 0 and

M and Y are conditionally independent given X if β = 0. We saw above that if either of

these two independence conditions are met, then the indirect effect defined in Definition

3.3.1 is equal to 0. As a result, testing whether M is a mediator in the GLM mediation

model requires testing H0 : αβ = 0.

3.3.3 GLM mediation model parameter estimation

Our likelihood-based approach to testing the indirect effect depends on likelihood ratios,

which requires parameter estimation over both the null and alternative parameter spaces.

Calculation of the log-likelihood of the alternative model is trivial, as no constraint is placed

on the parameters. Define θ = (φ, ψ), where φ and ψ are the parameters of the M and Y

GLMs, respectively. We have shown that the likelihood for θ separates over φ and ψ.

Because the likelihood separates over φ and ψ and either α = 0 or β = 0 over the null

parameter space, the constrained maximum likelihood estimator must select between two

possible null models.

First, we formally define Θ0 = {θ ∈ Θ | αβ = 0}. Then θ̂ ∈ Θ0 if and only if α̂ = 0

or β̂ = 0. This gives rise to two null models: one in which α̂ = 0 and the other in which

β̂ = 0. Because the likelihood factorizes over φ and ψ, whenever one parameter is equals

0, its counterpart is equal to its unconstrained maximum likelihood estimator.

To maximize the GLM mediation model log-likelihood, we estimate four models: two
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each for the M and Y GLMs. For each outcome, an unconstrained and a constrained

model will be fit. We will denote the unconstrained and constrained maximum likelihood

estimators by φ̂1 and ψ̂1, and φ̂0 and ψ̂0, respectively. To reiterate, the subscripts “1” and

“0” denote unconstrained and constrained models. The four sub-models combine to make

two joint-null models: θ̂m0 = (φ̂0, ψ̂1) and θ̂y0 = (φ̂1, ψ̂0). For each null model, α̂β̂ = 0.

The two null sub-models have log-likelihood values equal to:

`0
m := `((θ̂0

m;M,Y |X) = `m(φ̂0;M |X) + `y(ψ̂1;Y |M,X)

and

`0
y := `(θ̂0

y;M,Y |X) = `m(φ̂1;M |X) + `y(ψ̂0;Y |M,X).

The null-model likelihood is then `0 = max(`0
m, `

0
y), and θ̂0 = arg max

θ0∈{θ̂0m,θ̂0y}
`(θ0). Conversely,

the alternative model likelihood is `A := `m(φ̂1;M |X) + `y(ψ̂1;Y |M,X).

The log-likelihood ratio test statistic of H0 : αβ = 0 can take one of two forms depend-

ing on whether α̂ or β̂ is equal to 0 at the constrained maximum likelihood estimate:

λ = 2(`A − `0) = 2(`A −max{`0
m, `

0
y}) =

2×


`m(φ̂1;M |X)− `m(φ̂0;M |X), θ̂0 = θ̂m0

`y(ψ̂1;Y |M,X)− `y(ψ̂0;Y |M,X), θ̂0 = θ̂y0
.

(3.2)

Depending on which parameter is null, the test statistic λ is a log-likelihood ratio testing

either H0 : α = 0 or H0 : β = 0. If we define

λm = 2
(
`m(φ̂1;M |X)− `m(φ̂0;M |X)

)
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and

λy = 2
(
`y(ψ̂1;Y |M,X)− `y(ψ̂0;Y |M,X)

)
,

then the log-likelihood ratio test statistic of the indirect mediation effect is λ = min{λm, λy}.

The test statistic of the indirect mediation effect selects the null model which incurs the

smallest penalty to the joint likelihood.

3.3.4 The impact of a nuisance parameter on the likelihood ratio sam-

pling distribution

Suppose that for a given θ ∈ Θ0, αβ = 0, but either α 6= 0 or β 6= 0. The sampling

distribution of the test statistic λ = min{λm, λy} changes as a nuisance parameter (the

non-zero element of (α, β)) varies. The dependence of the sampling distribution on the

nuisance parameter can be understood both in terms of the “either-or” characteristic of the

test statistic and the geometry of the null parameter space. Both are described, as each

helps build intuition for the proposed conditional procedure.

First, we consider the effect of taking the minimum of two likelihood ratio test statistics

by considering the common setting in which both GLM families are Gaussian. It can be

shown that λm and λy converge in distribution to non-central χ2
1 random variables with

non-centrality parameters

µm =

(√
nασx
σm

)2

and µy =

(√
nβσm
σy

)2

as n grows. These approximations will be derived in Section 3.4.1.

Without loss of generality, suppose that α = 0, so µm = 0 and µy > 0. Our aim is to

relate the tail probabilities P(λ > x) to the tail probabilities of χ2
1-distribution so that we

can assess the effect of β on the tail probabilities. In order for the χ2
1 tail probabilities to

be valid p-values, we need P(λ > x) = P(χ2
1 > x). We derive the tail probability under

the assumption that λm and λy are asymptotically independent. Although this has not been
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proven, numerous simulation studies have failed to disprove the assumption. Let px denote

the upper tail probability, P(χ2
1 > x), of the χ2

1 distribution.

Since α = 0, µm = 0. Thus, λm ∼ χ2
1 so P(λm > x) = px. The upper tail probability

is:

P(λ > x) = P(λm > x, λy > x)

= P(λm > x)P(λy > x).

= px × P(λy > x).

(3.3)

This makes it clear that P(λ > x) = px only if P(λy > x) = 1. As µy →∞, P(λy > x)→

1 for all x > 0. Therefore, χ2
1 tail probabilities will not be valid p-values when µy is small.

Using the standard reference distribution will result in a likelihood ratio test with level less

than its target level whenever P(λy > x) < 1.

For fixed n, σm and σy, µy depends only on β. Thus, in this setting β acts as a nuisance

parameter. The sampling distribution of λ depends on the value of β even though the value

of β does not affect the truth of H0 since α = 0 in the population.

A geometric interpretation of the “either-or” nature of the test statistic also helps clarify

marginal tests’ conservatism. With a slight abuse of notation, we restrict the null parameter

space to the (α, β) plane and define Θ0 = {(α, β) ∈ R2 | αβ = 0}. Next, the asymptotic

behavior of λ is described, which varies bases on the data-generating parameter θ0 ∈ Θ0.

In R2, Θ0 is equal to the coordinate axes. At the origin (α = β = 0), the null parameter

space is locally non-Euclidean (a tangent plane to the null parameter space does not exist

at the origin). This geometric feature, often called a singularity, gives rise to non-standard

asymptotics. Using results from [34, 33], one can show that if α = β = 0, then λn
d→

min{Z1, Z2} as n → ∞, where Z1, Z2
i.i.d.∼ χ2

1. For details of this derivation, see Section

3.2.2. Standard results show that when either α 6= 0 or β 6= 0 but αβ = 0, then λn
d→ χ2

1 as

n→∞. However, in finite samples, the convergence in distribution can be slow (see Figure
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3.4). The distance between the data-generating parameter θ ∈ Θ0 and the origin impacts

the sampling distribution of λ in finite samples. Again, this leads us to the conclusion that

the non-zero regression coefficient acts as a nuisance parameter.

3.3.5 A conditional test of the indirect effect

Our aim is to create a conditional procedure that mitigates the effect of the nuisance param-

eter on the likelihood ratio test’s level. Using Fisher’s language, we would like to account

for a particular dataset’s “configuration” when performing inference. Above, we showed

that the non-zero regression coefficient affects the sampling distribution of our test statistic.

A conditional approach to inference will attempt to account for this configuration.

To account for the problem configuration, we propose conditioning onA = max{λm, λy},

which will be called the “complementary likelihood ratio test statistic.” The complemen-

tary likelihood ratio test statistic is a natural choice because it measures the distance in

log-likelihood units from the unconstrained MLE to the region of the null parameter space

that the unconstrained MLE was not projected to.

The conditional distribution of λ given A will vary less as the non-zero regression co-

efficient changes. Additionally, since A > λ by definition, conditioning on A results in a

truncated distribution supported on the interval (0, A). Although the conditional distribu-

tion of λ|A will still depend on the data-generating parameter θ ∈ Θ0, given A, λ|A has

the same support for all θ ∈ Θ0.

To the best of our knowledge, the distribution of λ|A does not exist in a known ana-

lytical form in finite samples. In Section 3.4, we will derive an asymptotic approximation

to the conditional distribution of λ|A. The approximation will depend on two assumptions

that will not necessarily hold in finite samples. First, it requires that λm and λy are in-

dependent. Second, the χ2 approximation to the log of the likelihood ratio test statistics

must be reasonable. We will also propose a non-standard bootstrap approach to learning

the distribution of λ given A which does not rely on either of these assumptions.
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Figure 3.4: QQ-plots of empirical likelihood ratios’ quantiles plotted against two theoret-
ical reference sampling distributions. Results are stratified by data-generating population
(rows) and sample size (columns). For each setting, α = 0, so the likelihood ratio test
statistics (LRT) are sampled from a population in which the indirect effect is zero. When
both α = β = 0, the LRTs behave like the minimum of two independent χ2

1 random vari-
ables for all sample sizes, as theory predicts. As β increases, there’s a transition from this
reference distribution to the expected χ2

1 reference distribution. The transition occurs more
quickly for larger sample sizes.
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A bootstrap approach to learning the distribution of λ given A

To begin we offer a high-level overview of the proposed bootstrap approach that explains

the intuition underlying each part of the procedure. The method is made up of two rounds

of bootstrapping. The first round takes a non-parametric bootstrap sample of the observed

data. This captures uncertainty in the “true” null-space (α = 0 or β = 0). When the

data-generating parameter θ ∈ Θ0 is close to the (α, β)-origin, over repeated sampling, the

constrained MLE will be projected to the α = 0 and β = 0 axes.

The second round of bootstrap sampling produces samples of (λ,A) from populations

in which αβ = 0 is true. After taking a non-parametric bootstrap sample of the observed

data, the procedure fits the null GLM-mediation model to the bootstrap data. Parametric

bootstrap samples are then drawn from the fitted null model. The procedure uses the para-

metric bootstrap samples to produce (λ,A) pairs for which the no-mediation hypothesis is

true in the population.

Finally, the test of the indirect effect is evaluated by estimating the conditional distribu-

tion F̂ (λ|A) using the bootstrap samples of (λ,A). Then, using the observed values of the

likelihood ratios (λobs, Aobs), an approximate p-value can be calculated using F̂ :

p = 1− F̂−1(λobs|A = Aobs).

Before describing several approaches to estimating the conditional distribution F (λ|A),

the two-level bootstrap procedure is given in Algorithm 3.1. Suppose that the observed data

is denoted Z = {(Xi,Mi, Yi)}ni=1. We will use P to denote a GLM-mediation model.
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Algorithm 3.1: Learning the conditional distribution of λ given A.
Result: Test decision for H0 : αβ = 0 at level α

Data: Z = {(Xi,Mi, Yi)}ni=1

1. Calculate λobs and Aobs from Z.

for j = 1, . . . , nb do
2.1 Take a non-parametric bootstrap sample Zj from Z.

2.2 Let θ̂j0 be the estimated null model using Zj

for k = 1, . . . , np do

2.2.1 Take a parametric bootstrap sample Z̃jk from P(θ̂j0)

2.2.2 Using Z̃jk, estimate λjk and Ajk

end

end

3. Estimate the conditional cumulative distribution function (CDF) F (λ∗|A = a)

using {(λjk, Ajk) : j = 1, . . . , nb, k = 1, . . . , np}.

4. If λobs > F−1(1− α|A = Aobs), reject H0 at level α.

To conclude this section, we describe several methods for estimating the conditional

distribution of λ given A. To the best of our knowledge, the conditional distribution does

not have an known analytical form. Thus, we will rely on statistical models to estimate

conditional quantiles or p-values. These models will localize our estimate of the conditional

distribution to the region where A ≈ Aobs using the samples of (λ,A) produced by the

bootstrap procedure. In the next section, we will show that the conditional quantiles of λ

given A are smooth but neither linear nor monotone, making estimation nontrivial.

Proposed methods for estimating the distribution of λ given A
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1. The unconditional bootstrap p-value. If we choose not to condition on the value

of the ancillary statistic, we can use the ordinary bootstrap p-value:

pboot =
#{j : `j > λobs}

ñ
.

We will show through simulation that these p-values lead to conservative tests when

H0 is true and θ0 is close to the (α, β)-origin.

2. Plug-in p-value. It was shown earlier that P(λ > x) = P(λm > x)P(λy > x).

Without loss of generality, assume that α̂0 = 0, β̂0 6= 0, so that asymptotically

λm ∼ χ2
1 and λy ∼ χ2

1 (µy). Using θ̂0, determine the plug-in estimator µ̂y of µy, and

use it to calculate p = P(χ2
1 > λobs)P(χ2

1(µ̂y) > λobs).

3. Kernel regression. The conditional p-value P̂(λ∗ > λ|A = a) given bootstrap

samples {`j, aj}ñj=1 is defined as follows:

pcb =
#{j : `j > λobs, aj = Aobs}

ñ
.

Of course, in practice, aj 6= Aobs for any j. In order to estimate, pcb one could

introduce Gaussian kernel weights wj for j = 1, . . . , ñ where

wj =
e−h(a−aj)2∑ñ
k=1 e

−h(a−ak)2
.

These weights will have the effect of localizing the estimator. A bootstrap sample

(`j, aj) will receive greater weight when its ancillary statistic falls near Aobs.

The kernel regression p-value is defined as follows:

pcb =
ñ∑
j=1

wj × I(`j > λobs),

where I returns 1 when `j > λobs and is 0 otherwise.
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4. Quantile regression. Finally, one could estimate the conditional quantile function

of λ∗ given that A = a. Suppose that you wish to evaluate the null hypotheses using

an α level test. Let Qα(a) = F−1
λ (α | A = a) be the conditional quantile function

(P(λ < Qα(a)|A = a) = α). Using the ñ bootstrap samples, we estimate Q1−α and

the critical value λ̂1−α,aobs = Q̂1−α(aobs). We then will choose to reject the null

hypothesis when λobs > λ̂1−α,aobs .

We will see that the conditional quantile function of λ given A is non-monotone

and non-linear. As a result, we propose using quantile smoothing splines in order

to estimate the conditional quantile function. Our hope is that a regression approach

will use information efficiently from the bootstrap samples, requiring fewer bootstrap

iterations to create a properly calibrated test.

3.4 An asymptotic approximation of the conditional sam-

pling distribution

Although the sampling distribution of λ given A is unknown in finite samples, it can be

approximated by its limiting distribution. In certain settings, it may be appropriate or one

might want to calculate approximate p-values using the limiting distribution instead of the

bootstrap procedure described in the previous section.

3.4.1 The asymptotic marginal distributions of λm and λy

The asymptotic approximation of the tests’ power function requires knowing the asymp-

totic distribution of λm and λy, which we will now derive. This amounts to determining

the asymptotic distribution of a likelihood ratio test of the nullity of a single parameter for

a generalized linear model. The test statistic’s distribution will be derived in the setting of

the conditional model for Y given X and M , to make the presentation clearer.
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Let Y ∼ F , where F is an exponential family and suppose that E[Y |X,M ] = g−1(β0 +

β1X + β2M) = µ and Var[Y |X,M ] = V (µ, σ2). Let θ = (β0, β1, β2, σ
2), and define

`(θ|Y ) to be the likelihood function of F evaluated at θ. Our interest is in deriving the

distribution of the likelihood ratio test statistic testing H0 : β2 = 0. When H0 is true,

standard results show that the likelihood ratio converges to a χ2
1 random variable. When

β2 6= 0, the distribution of the likelihood ratio will converge to a non-central χ2
1 random

variable with non-centrality parameter µ. The rest of this section derives an expression

for this non-centrality parameter. The derivation uses results from Chapter 17 Section 2 of

[36].

The null parameter space Θ0 = {(a1, a2, 0, b) | a1, a2 ∈ R, b ∈ R+} is linear, meaning

that the tangent space is identical for all θ0 ∈ Θ0. The projection operator onto the tangent

plane V for all θ0 ∈ Θ0 is given by

P0 =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


.

(3.4)

The projector onto V ⊥ will be denoted Q0 = I4 − P0.

Define ∆ = (0, 0,
√
nβ2, 0)

T . The non-centrality parameter µ has the following expres-

sion:

µ = ∆TQ0

(
P0 +Q0I(θ)−1Q0

)−1
Q0∆, (3.5)

where I(θ) is the Fisher information of θ. All elements of the matrix product Q0I(θ)−1Q0

are equal to zero except the (3, 3) entry, which is equal to (after root n scaling) the asymp-

totic sampling variance of β̂2, say ν. Then, (P0 +Q0I(θ)−1Q0)
−1

= diag(1, 1, 1/ν, 1).

Pre- and post-multiplication by ∆TQ0 gives
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µ =
nβ2

2

ν
. (3.6)

Unsurprisingly, the non-centrality parameter grows with both the sample size n and the

signal-to-noise ratio β2
2/ν. In the Gaussian linear model setting, if X and M are indepen-

dent, then

µ =
nβ2

2σ
2
m

σ2
y

, (3.7)

which is the form that is used in Section 3.4. In practice, one can estimate I(θ) using the

observed Fisher information

I(θ) = −∇2
θ`(θ)

∣∣
θ=θ̂

, (3.8)

and use this estimate to form a plug-in estimate of the non-centrality parameter µ.

We have shown that the asymptotic sampling distributions of λm and λy are non-central

χ2
1 distributions with non-centrality parameters µm and µy, taking the form given in 3.5.

Our later analysis will make use of the distributions to develop some intuition for the power

we expect to have for a fixed data-generating population and sample size.

3.4.2 The asymptotic independence of λm and λy

Our derivation of the asymptotic power function of the conditional test depends on the

independence of the two log-likelihood ratios λm and λy. Because the proposed bootstrap

procedure does not depend on the proposition, we do not attempt to prove Proposition 1,

but do offer a small simulation study that suggests that the proposition is indeed true or

nearly true.

Proposition 1:

The log-likelihood ratio test statistics λm and λy are independent as n→∞.
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For a variety of parameter settings (α, β) ∈ Θ0 and sample sizes n, we sampled ns =

10, 000, 000 independent copies of (λm, λy). Using the set S = {(λm, λy)i, i = 1, . . . , ns},

we estimated the probabilities

pg := P(λy < x|λm > a) and p` := P(λy < x|λm < a). (3.9)

for fixed a and x ∈ R. Note that if the random variables λm and λy are independent, then

the two probabilities should be equal at the population level for any value of a and x.

The data-generating parameters are varied in order to show that across all combinations,

for large enough n, p`/pg → 1. We set

(α, β) ∈ {(0, b) : b ∈ {0.0, 0.125, 0.25, 0.5, 0.75, 1.0}} ,

and consider eight samples sizes n, equally spaced between 102 and 104 on the log10-scale.

We show results for a single value of a, chosen to be the empirical median of the generated

λm statistics. Additionally, we consider three values of x, denoted x1, x2 and x3, which

represent the quartiles of the empirical λm distribution. Figure 3.5 plots the ratio

p`/pg =
P(λy < xj | λm < a0.5)

P(λy < xj | λm > a0.5)

against the sample size n on the log-scale for different quantiles xj and data-generating

populations. If λm and λy are asymptotically independent, then p`/pg → 1.

The results of the simulation study (see Figure 3.5) suggest that Proposition 1 is true.

For each value of x and data-generating population (indexed by β), as n increases, the ratio

of probabilities p`/pg → 1. This appears to hold for all values of a, although the results for a

single a are included here. Convergence is affected by both the data-generating population

and the quartile (x1, x2, or x3).

When both α = β = 0, the ratio p`/pg ≈ 1 for all values of n, suggesting that the statis-
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Figure 3.5: Empirical evidence that the log-likelihood ratios λm and λy are asymptotically
independent. Each panel plots the ratio p`/pg (defined in Section 3.4.2) against sample
size n for different data-generating populations (rows) and different quantiles of the λm
distribution (columns). For large enough n, the ratio of probabilities are all approximately
1, suggesting that λm and λy are asymptotically independent.
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tics are independent in finite samples in this setting. This is expected as M is independent

of X and M is independent of Y both marginally and conditional on X . Convergence ap-

pears to be slower as β > 0 grows across all values of x. This simulation study suggest that

λm and λy are asymptotically independent, justifying our derivation of the power function

of the conditional test.

3.4.3 Calculating approximate p-values via the asymptotic sampling

distribution of λ given A

In order to derive the power function of the conditional test, we must be able to calcu-

late tail probabilities of the distribution of λ given A. This amounts to determining the

conditional distribution function of the minimum given the maximum of two independent

random variables. We provide a general derivation of this distribution, and later will apply

the derivation to the setting where both random variables are χ2
1 random variables, poten-

tially with non-zero non-centrality parameters.

Let X ∼ F and Y ∼ G be independent and continuous distributed random variables.

Let

F (z) = P(X < z) and G(z) = P(Y < z).

and let the respective density functions be denoted by f and g.

Define λ = min{X, Y } and A = max{X, Y }. Our goal is to describe the conditional

distribution of λ given A. We begin by finding the joint distribution and density functions

of (λ,A). Our approach is to determine the joint distribution function P(λ < w,A < z)

and then differentiate with respect tow and z in order to find the joint density. Whenw < z,

the event {λ < w,A < z} occurs if either {X < w, Y < z} or {X < z, Y < w}. This

then gives us:
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P(λ < w,A < z) = P
(
{X < w, Y < z} ∪ {X < z, Y < w}

)
= P

(
{X < w, Y < z}

)
+ P

(
{X < z, Y < w}

)
−

P
(
{X < w, Y < z} ∩ {X < z, Y < w}

)
= P

(
{X < w, Y < z}

)
+ P

(
{X < z, Y < w}

)
− P

(
{X < w, Y < w}

)
= F (w)G(z) + F (z)G(w)− F (w)G(w).

The density of (λ,A) is then equal to the first mixed partial derivative of P(λ < w,A <

z):

f(λ,A)(w, z) =
∂2

∂w∂z
P(λ < w,A < z)

=
∂2

∂w∂z
{F (w)G(z) + F (z)G(w)− F (w)G(w)}

= f(w)g(z) + f(z)g(w).

Next, we turn to the marginal distribution of A. Here we have the familiar expression

P(A < z) = P(X < z, Y < z) = F (z)G(z),

the last inequality holding due to the independence of X and Y . We again differentiate

with respect to z in order to determine the density function of A:

fA(z) =
∂

∂z
P(A < z) =

∂

∂z
F (z)G(z) = f(z)G(z) + F (z)g(z).

Thus, the joint density function of (λ,A) is:
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fλ|A(x|a) =
f(λ,A)(x, a)

fA(a)
=
f(w)g(z) + f(z)g(w)

f(a)G(a) + F (a)g(a)
.

To close this section, we calculate P(λ > w|A = a) when w < a. Using the joint

density function, we have that

P(λ > w|A = a) =

∫ a

w

fλ|A(x|a)∂x

=
1

f(a)G(a) + F (a)g(a)

∫ a

w

f(w)g(a) + f(a)g(w)∂x

=

(
F (a)− F (w)

)
g(a) +

(
G(a)−G(w)

)
f(a)

f(a)G(a) + F (a)g(a)

= 1− F (w)g(a) +G(w)f(a)

G(a)f(a) + F (a)g(a)
.

(3.10)

Equation 3.3 gives a formula for a p-value for the conditional procedure when F and G are

χ2
1 distributions with non-centrality parameters µm and µy.

3.4.4 Characterizing the conditional distribution of λ given A

Using the asymptotic approximation to the sampling distribution of λ|A derived in Sections

3.4.1 and 3.4.3, we estimate the conditional quantiles when the non-centrality parameter

µ = 20.0, which corresponds to the setting where n = 500, α = 0, β = 1/25 and the

asymptotic sampling variance of β is equal to 1. Let Fa to be the conditional distribution

function of λ given A = a, so that Fa(x) = P(λ < x|A = a). Denote the inverse

CDF of λ|A = a by F−1
a (α′) = q so that Fa(q) = α′. Figure 3.6 plots F−1

a (α′) for

α′ ∈ {0.5, 0.9, 0.95, 0.99}.

The conditional distribution of λ givenA = a has non-monotone, non-convex quantiles

in a. Since A > λ, the distribution of λ given A = a is truncated at a. As the value of

a increases, the conditional quantiles of λ increase as well. For large a, the conditional

quantile function becomes nearly constant for all α′, since once A is large, the effect of
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truncation on the conditional distribution is negligible. In fact, in this region, the condi-

tional distribution of λ given A behaves approximately like a χ2
1 random variable. In fact,

for moderate a the conditional quantile function decreases. This is due to the fact that the

conditional quantiles are inflated for moderate a, as the conditional quantile function is a

mixture of one central χ2
1 and one non-central χ2

1 random variable.

Figure 3.6: The conditional quantiles of λ plotted against A based on the asymptotic sam-
pling distribution of λ given A. Conditional quantiles for four probability points α̃ are
shown. This conditional quantile function is specific to data-generating populations in
which the non-zero non-centrality parameter equals 20. The conditional quantile function
is non-monotone and non-convex in A. As A increases, the conditional quantile functions
converge to the quantiles of the χ2

1 distribution. This is because when A is large, λ given A
behaves like a χ2

1 random variable.

3.4.5 An asymptotic approximation of the power function

We begin this section by deriving an expression for the asymptotic power of the conditional

test and then compare the theoretical power functions of the conditional and marginal like-

lihood ratio tests. Although competing procedures do not use the marginal likelihood ratio
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test, asymptotic analysis of confidence interval-based tests would be difficult and is be-

yond the scope of this chapter. Comparisons between our conditional test and confidence

interval-based approaches will be made using simulation studies in Section 3.5.

Theoretical power of the conditional test

We wish to approximate the power of the conditional procedure testing H0 : αβ = 0 at

level α̃. The derivation will rely on both Proposition 1 and the asymptotic χ2 behavior

of likelihood ratio test statistics. The following expression is equal to the power of the

conditional test:

P(rejectH0) = P(rejectH0|λ = λm)P(λ = λm)+P(rejectH0|λ = λy)P(λ = λy). (3.11)

Assuming that Proposition 1 is true,

P(λ = λm) = P(λm < λy)

=

∫ ∞
0

P(λm < x)fµy(x)dx,
(3.12)

where fµy is the density function of the χ2
1(µy) distribution and P(λm < x) is given by the

CDF of the χ2
1(µm) distribution.

Next, we turn to finding an expression for P(reject H0|λ = λm). Because the condi-

tional procedure conditions on the value A = max{λm, λy}, we first determine the condi-

tional probability P(reject H0|λ = λm, A = a) and then integrate over the distribution of

A to get P(reject H0|λ = λm).

First, the critical value of the test must be found for fixed A = λy. Assuming that H0 is

true and since λ = λm, the asymptotic approximations are λm ∼ χ2
1(0) and λy ∼ χ2

1(µy).

Using the results of Section 3.4.3, the distribution function of λm given A = a, which we

denote G0, can be expressed as the density and distribution function of the χ2
1 and χ2

1(µy)
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distributions. The inverse CDF G−1
0 gives the 1 − α̃ quantile, q1−α̃,a of the distribution λ

given A = a, which can be determined numerically using standard root-finding algorithms.

The conditional power depends on the true distribution of λm, which may be a non-

central χ2
1 distribution. Again using results for Section 3.4.3, the true sampling distribu-

tion of λm given A can be determined, which we will denote G1. Then P(reject H0|λ =

λm, A = a) = 1− G1(q1−α̃,a). Integrating the function 1− G1(q1−α̃,a) against the χ2(µy)

gives

P(reject H0|λ = λm) =

∫ ∞
0

(1−G1(q1−α̃,a))fµy(a)da.

This derivation is symmetric in λm and λy, and is also valid for the term P(reject H0|λ =

λy). Putting these parts together gives a calculable expression for P(reject H0), which is a

function of µm and µy, say Pc(µm, µy).

As a point of comparison, we also derive the power function of the marginal likelihood

ratio test. Let q̃1−α̃ be the 1 − α̃ quantile of the χ2
1 distribution. If one were to naively

conduct a likelihood ratio test, the χ2
1 would be the asymptotic reference distribution of the

test statistic. Again, assuming that Proposition 1 is true, the power of the marginal test is

P(rejectH0) = P(λm > q̃1−α̃, λy > q̃1−α̃)

= P(λm > q̃1−α̃)P(λy > q̃1−α̃).

(3.13)

The tail probabilities can be calculated using the distribution functions of the χ2
1(µm)

and χ2
1(µy) distributions. The marginal power function will be denoted Pm(µm, µy).

Figure 3.7 compares the approximations to the asymptotic power functions of the condi-

tional and marginal likelihood ratio tests. The power functions will be denoted Pc(µm, µy)

and Pm(µm, µy), respectively. The power of each procedure is determined through numeric

integration of the power functions given above. The conditional test is more powerful than

the marginal test over all considered values of µm and µy. However, the conditional test is

also anti-conservative (see the panels labeled “µ2 = 0” in right hand column of Figure 3.7).

This analysis provides two important insights into the nature of this testing problem.
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Figure 3.7: Comparisons of the conditional and marginal power functions over a grid of
(µm, µy) pairs. Two test levels are considered; 0.05 and 0.10% for the top and bottom rows,
respectively. The right hand column shows the power increase of the conditional test over
the marginal test. Darker green colors denote larger increases in power. The right column
plots power of the tests against the first non-centrality parameter µ1, stratified over four
values of µ2 ∈ {0.0, 2.0, 4.0, 6.0}. The conditional (red line), marginal (green line), and
the difference in power (green line) are plotted against µ1.
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First, the conditional approach is more powerful than the marginal likelihood ratio test for

certain null hypotheses. Simulation studies will offer additional evidence that this is the

case for two other marginal tests. Second, the analysis shows that the theoretical power

function exceeds its nominal level for a range of data-generating parameter settings in the

null parameter space. The power function exceeds its nominal level by at most 8 and 6

percent for tests at the 0.05 and 0.10 levels, respectively. Simulation studies will show that

the proposed bootstrap procedure partially accounts for the anti-conservatism.

The anti-conservatism is caused by conditioning on the incorrect likelihood ratio test

statistic and using the non-null likelihood ratio as the test statistic. The theoretical power

function converges to the test’s nominal level, since the probability of conditioning on

the incorrect likelihood ratio decreases as the non-zero non-centrality parameter grows.

In these settings, the test statistic’s sampling distribution is stochastically larger than the

bootstrapped estimate of the sampling distribution, resulting in anti-conservative test. The

bootstrap procedure attempts to calibrate the sampling distribution of the test statistic, but

does not achieve perfect recalibration as demonstrated in the following section.

3.5 Simulation studies

This section presents simulation studies to demonstrate that the conditional test has desir-

able properties. First, we show that the method approximately achieves its target level and

has better power than competitor methods. We then explore how the performance of the

method depends on the choice of the bootstrap parameters.

3.5.1 Approximate level control

This simulation study demonstrates that the conditional inference approach approximately

achieves its level when the null hypothesis H0 : αβ = 0 is true. Data are generated from

the Gaussian linear model:
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M = γ1 + αX + εm

Y = γ2 + γ3X + βM + εy,

(3.14)

where εm and εy are independent with variances σ2
m and σ2

y , respectively.

The behavior of the conditional likelihood ratio test is a function of the two non-

centrality parameters. For this statistical model, the non-centrality parameters are:

µm =

(√
nασx
σm

)2

and µy =

(√
nβσm
σy

)2

. (3.15)

Therefore, without loss of generality, we assume that σx = σm = σy = 1, so that µm = nα2

and µy = nβ2.

Two sample sizes, n = 250 and n = 1, 000 will be used in this simulation study.

The regression coefficients α and β will be set so that the same non-centrality parameters

are considered for each sample size. The non-centrality parameters will fall in the set

µ = {0.0, . . . 25.0}. Since αβ = 0 for all data-generating populations, at most one non-

centrality parameter will be non-zero for each data-generating population.

For each sample size and data-generating population, 20,000 Monte Carlo synthetic

datasets were generated. The conditional inference procedure was run on each using 500

nonparametric and 20 parametric bootstrap samples for a total of 10,000 total bootstrap

samples of the statistics (λb, Ab). Conditional p-values were calculated using the kernel

weights for three effective sample sizes: 250, 500, and 1,000. These effective sample sizes

correspond to using 2.5, 5, and 10% of the total bootstrap samples when conditioning.

We compare the level of the conditional test in each setting to the level of the bootstrap

confidence interval-based test, which is the most commonly used procedure for testing the

indirect effect. This test declares that M is a mediating variable at the α̃-level if 0 falls

outside of a (1− α̃)% confidence interval for αβ. The conditional inference test rejects the

null hypothesis H0 : αβ = 0 at the α̃ level if the conditional bootstrap p-value was less

than α̃.
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Figure 3.8: Results from a simulation study exploring the calibration of the conditional
procedure at the α̃ = 0.05 level when αβ = 0 in the population. The estimated level of
both the conditional and marginal tests of the indirect effect are plotted against the value
of the non-zero non-centrality parameter. Results are stratified by data-generating popula-
tion (columns) and the effective sample size used to calculate conditional p-values (rows).
Results for two sample sizes are included (distinguished by color) and tests (distinguished
by point shape). Overall, the conditional procedure is better calibrated than the marginal
procedure.

Overall, the results shown in Figures 3.8 and 3.9 are positive. Each method is conserva-

tive for small values of the non-zero non-centrality parameter, which we will denote by µ

for the remainder of this section. Consider the case when both α = β = 0. In this setting,

both λm and λy are marginally χ2
1(0) random variables. However, the bootstrap proce-

dure will sample (λ,A) from populations in which one non-centrality parameter is greater

than 0. As a result, the conditional quantiles of the bootstrapped estimate of the sampling

distribution will be larger than the true sampling distribution, leading to a conservative test.
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Figure 3.9: Results from a simulation study exploring the calibration of the conditional
procedure at the α̃ = 0.10 level when αβ = 0 in the population. The estimated level of
both the conditional and marginal tests of the indirect effect are plotted against the value
of the non-zero non-centrality parameter. Results are separated by data-generating popula-
tion (columns) and the effective sample size used to calculate conditional p-values (rows).
Results for two sample sizes are included (distinguished by color) and tests (distinguished
by point shape). Overall, the conditional procedure is better calibrated than the marginal
procedure.

As µ grows, the bootstrapped distribution will both under- and overestimate the true

non-zero non-centrality parameter. As a result, the estimates of the conditional quantile

function will be approximately correct across many tests. However, Figures 3.8 and 3.9

show that at both the 0.05 and 0.10 levels, the procedure is anti-conservative by up to

0.5-1.0 % when µ ∈ (2, 8). In this range, there is a nontrivial probability that a χ2
1(0)

random variable will be greater than a χ2
1(µ) random variable. When this event occurs, the

estimated sample distribution of λ given A, estimated using the bootstrap procedure, will
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have smaller conditional quantiles, producing an anti-conservative test.

The conditional procedure is anti-conservative for all considered effective sample sizes.

Alternative methods of calculating conditional p-values and increasing the number of boot-

strap samples used to estimate the conditional p-value did not completely resolve the anti-

conservatism, but decreased its magnitude. Overall, it is our assessment that the anti-

conservative nature of the procedure for certain values of µ is real and not an artifact. As a

point of reference, the Monte Carlo simulation standard error for each estimate of the tests’

levels is approximately 0.2%. This means that greatest violations of the level are more than

two standard errors away from their target level.

For µ > 8, the estimated level of the test appears to converge back to its target level.

In this region of the parameter space, the probability of conditioning on the incorrect like-

lihood ratio vanishes. In this region we are able to correctly learn the conditional sampling

distribution of the test statistic λ given A.

The confidence interval-based test is much more conservative than the conditional pro-

cedure for small values of µ. In fact, it does not reach its target level until µ > 15. The

confidence interval-based test is valid for all values of µ, meaning that we do not have rea-

son to believe that the procedure is anti-conservative for any value of µ. Selecting between

the methods therefore requires deciding whether anti-conservatism of 0.5 and 1.0 % over a

portion of the null-parameter space is better or worse than substantial conservatism over a

much larger region of the null parameter space. Our next simulation will show that if one

elects to use the conditional inference procedure, they gain a moderate amount of power in

exchange for the tests’ anti-conservatism.

3.5.2 Performance of tests based on the asymptotic sampling distribu-

tion of λ given A

In Section 3.4.3 we derived the asymptotic sampling distribution of λ given A under the

assumption that λ and A are independent. In this section, we present the results of a simu-
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Figure 3.10: Estimated level of conditional test using asymptotic p-values. Each panel
shows power of the test plotted against the value of the non-zero χ2

1 non-centrality pa-
rameter. Results are stratified by null parameter (α and β) and by target level (5% and
10%). Line and point color are used to designate the sample size n. The dashed black lines
indicate the target level of the test.

lation study that uses the derived sampling distribution to calculate approximate p-values.

Here we are only interested in exploring the level of the procedure over the null space.

As a result for all considered settings, αβ = 0 in the population. We generate data with

sample sizes equal to n ∈ {50, 100, 500, 1000, 4000} in order to assess the effect of sample

size on the test level. We generate data for settings in which both α and β are 0, and

generate data so that the non-zero χ2 non-centrality parameter falls at 20 regularly space

points in the interval [0, 30]. Remember that the non-centrality parameter µφ = (
√
nφ/νφ)

2,

where n is the sample size, φ is the value of the regression coefficient, and νφ is the Fisher

information of φ. For fixed n and νφ, one can solve φ. We control µφ rather than than φ so

that simulations are comparable across sample sizes. For each simulation setting 100,000
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data sets were created to estimate the test’s level.

Figure 3.10 presents the simulation results. There are several consistent patterns across

all four panels (combinations of null parameters and test level). First, the level of the test

depends on sample size. When n is small, the level of the test exceeds its nominal level for

almost every value of the non-zero non-centrality parameter. It appears that after n ≥ 500,

the approximation is reasonable and does not dramatically improve as n grows. The anti-

conservatism with small n can primarily be attributed to the fact that the χ2
1 approximation

to the log-likelihood ratios is not appropriate. Secondly, when β = 0 and α 6= 0, tests

using the asymptotic p-values are less anti-conservative than when α = 0 and β 6= 0. This

difference is due to the dependence between the λ and A when β 6= 0, which violates the

independence assumption underlying the approximate p-value calculation.

Overall, the results from the simulation studies suggest that the use of the asymptotic

sampling distribution of λ given A is reasonable when n is moderately large. In such

settings, there’s only weak dependence between λ and A and the χ2
1 approximation is

good. We saw that the approximate p-values are anti-conservative by at mot 0.5% for

non-centrality parameters less than 10 when n is large. Once the non-centrality parameter

exceeds 10, the tests achieve their nominal level.

3.5.3 A comparison of power functions

We now consider the power of the conditional procedure against alternative hypotheses and

compare the power of the conditional method to the power of a confidence interval-based

test. This simulation study takes place in the same setting as Simulation 1. To simplify

the presentation, we present results of the conditional procedure using an effective sample

size of 500 to estimate the conditional distribution of λ given A. Additionally, we limit the

simulation study to values of µα, µβ ∈ {0.0, . . . , 8.0}, since the largest difference between

the methods occurs in this region.
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Figure 3.11: A simulation-based estimate of the power function of the conditional test over
a grid of µα and µβ values. Two test levels were considered (varying across columns) and
two sample sizes were considered (varying by rows). Lighter green areas represent areas
of lower power, while dark green regions indicate areas of greater power.

Figure 3.11 shows a simulation study-based estimate of the discretized power function

of the conditional procedure. For any fixed value on either the µα or µβ axes, the power

function increases as one moves away from the coordinate axis. As either non-centrality

parameter grows, the level sets of the power function appear to approach an asymptote

which is parallel to either the µα or µβ axis. The power of the conditional procedure

does not appear to depend greatly on the sample size n after fixing µα and µβ (each non-

centrality parameter is a function of the sample size n).

Figure 3.12 plots the difference in the power of the conditional and confidence interval-

based procedures, denoted δ in the figure legend. The power gain δ is discretized to aid

interoperability.
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Figure 3.12: An simulation-based estimate of the power increase of the conditional tests
over a confidence-interval based procedure. Results are shown over a grid of µα and µβ
values. Two test levels were considered (varying across columns) and two sample sizes
were considered (varying by rows). Darker green regions indicate areas where the dif-
ference between the procedures’ power functions was larger (in favor of the conditional
procedure).

The largest increase in power occurs near the origin in all simulation settings (see Fig-

ures 3.12). As one moves away from the origin or either axis, δ eventually decreases. The

power gain is larger when the level of the test is equal to 0.10, although the relative in-

crease in δ is larger at the α̃ = 0.05 level. Additionally, the increase in power is larger

when n = 1, 000 versus n = 250.

Although the conditional procedure is not dramatically more powerful than existing

methods, the increase is nontrivial, especially on a relative scale. As an example, consider

the results of the simulations study when µα = µβ = 3.5 (Table 3.2).

In this setting, the confidence interval approach has low to moderate power, and the
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Table 3.2: Simulation-based estimates of test power when µα = µβ = 3.5.

n Level Conf. Int. Power Cond. Inf. Power Relative power increase
250 0.05 0.19 0.24 30%

1000 0.05 0.18 0.26 42%
250 0.10 0.31 0.38 22%

1000 0.10 0.31 0.40 28%

relative increase in power is quite substantial. In many applied mediation analyses, one ex-

pects that associations between variables are weak, which is the region where the proposed

method is most beneficial.

3.5.4 Impact of algorithm parameters on conditional procedure’s per-

formance

The final simulation study assesses the dependence of the procedure’s performance on the

choice of algorithm parameters. In particular, we would like to see whether the empirical

level of the procedure depends on the ratio of outer to inner bootstrap repetitions. Addition-

ally, we use this simulation study to again assess whether performance depends strongly on

the effective sample size of the kernel weighted p-value.

The primary variable of interest, the number of non-parametric bootstrap repetitions

used in Algorithm 3.1, will be varied over Monte Carlo simulation studies. The number of

outer repetitions, denoted nb, will take values in the set

Nb = {1, 2, 5, 10, 25, 50, 100, 250, 500, 1000, 5000}.

For each nb ∈ Nb, a total of 10,000 bootstrap samples (λ,A) will be generated. The number

of inner loops, np = 10, 0000/nb. For each synthetic dataset, a kernel-weighted p-value

will be calculated for four different bandwidths chosen to give effective sample sizes of

100, 250, 500 and 1000. Again, these effective sample sizes correspond to using 1.0, 2.5,
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5.0 and 10.0% of the total bootstrap samples to calculate the conditional p-value.

Both M and Y models will be Gaussian GLMs. The scale parameters for each model

will be fixed equal to one. The simulation study will be conducted for two data-generating

populations, each of which lives in the null parameter space. In the first, α = 3.0/
√

250

and β = 0. In the second, the values of the regression coefficients are switched. These

settings were chosen since they were settings for which the procedure appeared to be most

anti-conservative in other simulation studies. 25,000 Monte Carlo trials will be performed

for each data-generating population and value of nb ∈ Nb. To make the comparisons as

informative as possible, the same 25,000 synthetic datasets were used for each choice of

nb ∈ Nb.

Results are shown in Figures 3.13 and 3.14 for data-generating populations 1 and 2,

respectively. The simulation results and findings are similar between both populations.

Overall, the procedure becomes more conservative as the effective sample size increases.

Effective samples sizes of 100 and 250 were more anti-conservative than larger effective

sample sizes. Using a single outer bootstrap repetition produced tests that were more poorly

calibrated than tests that used more than one outer bootstrap repetition. Performance did

not vary substantially after 10 or more outer repetitions were used.

3.6 Discussion

Our proposed method addresses many of the issues that have often been debated about

the appropriateness of conditional inference. Neither our application nor our observations

fundamentally alter the debate, since they are issues which by nature cannot be definitely

settled, but we believe the proposed procedure highlights conditional inference’s utility and

potential shortcomings.

First, our conditional test of the indirect mediation effect demonstrates the advantage

of making inference more relevant to the observed data. Our analysis showed that the
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Figure 3.13: This figure plots the empirical level of the conditional test plotted against the
number of outer bootstrap repetitions used in Algorithm 3.1. The limits of the error bars
represent the estimate plus and minus two standard errors. Results are stratified by target
significance levels (by column) and four effective sample sizes (by row). The dashed,
horizontal line represents the nominal test level. The data-generating population set α =
0.0 and β = 3.0/

√
250.

variation in the log-likelihood ratio’s sampling distribution is explained by the value of

a nuisance parameter. After conditioning on a nearly ancillary statistic, the conditional

sampling distribution of the log-likelihood ratio was more uniform. We both derived an

asymptotic approximation to the conditional sampling distribution and developed a boot-

strap procedure for learning the conditional sampling distribution if one does not wish to

use the limiting distribution. This lead to a moderate power increase (in the range of 7-

10%) against a class of certain alternatives. Importantly, the variation in the conditional

test’s performance across the null parameter space was drastically reduced.

This brings us to the second oft debated topic: should one carry out conditional in-
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Figure 3.14: This figure plots the empirical level of the conditional test plotted against the
number of outer bootstrap repetitions used in Algorithm 3.1. The limits of the error bars
represent the estimate plus and minus two standard errors. Results are stratified by target
significance levels (by column) and four effective sample sizes (by row). The dashed,
horizontal line represents the nominal test level. The data-generating population set α =
3.0/
√

250 and β = 0.0.

ference when an exactly ancillary statistic does not exist? The answer to this question

likely depends on the application. In order to answer in an informed manner, one needs to

understand the trade-offs in terms of the marginal and conditional tests’ power and level.

We believe that the harm caused by conditioning on a non-ancillary statistic in our ap-

plication is relatively minor, as shown through both theoretical analysis and extensive sim-

ulation studies. Marginal tests of the indirect effect are valid over the full null-parameter

space, but are extremely conservative over a large region of the space. Our proposed con-

ditional test is better calibrated over the full null-parameter space, but it is slightly anti-

conservative over a region of the null-parameter space. Due to the better calibration, the
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conditional procedure has greater statistical power over a large region of the alternative

parameter space. Generally, statisticians are more comfortable with a procedure that is

valid but conservative, even if the conservatism is an order of magnitude larger than the

anti-conservatism of a competing procedure. In this setting, we believe that the relatively

large increase in power is well worth the trade-off of having a slightly anti-conservative

procedure for some data-generating populations.

To the best of knowledge, all widely used conditional inference methods either achieve

an exact sampling distribution (e.g. Fisher’s exact test) or simplify estimation of parameters

(e.g. conditional logistic regression). Our application of conditional inference shows that

the approach can be useful even when inference does not become exact. The development

of conditional approaches also help to identified and highlighted when and why marginal

methods underperform. Developing conditional tests or estimators for other non-standard

or otherwise challenging inference and estimation problems may produce better statistical

methods.
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CHAPTER 4

Functional Random Effects in a Mechanistic

Multilevel Analysis of a Biological System

4.1 Introduction

In many domains of research, quantitative deterministic laws, often stated using differential

equations, are used to concisely represent the state of our scientific understanding. Such

laws generally reflect well-established mechanisms, and to some extent may be seen as

causal descriptions of how fundamental processes unfold in time and space. However,

it can be challenging to rigorously calibrate and assess such mechanistic models against

empirical measurements. A primary reason for this is that interesting real-world systems

consist of many components, some of which are easier to measure than others. In response

to this and other challenges, multilevel probability models have been successfully used in

many domains to bridge the gap between idealized deterministic laws, and measurements

taken in the real world. This chapter proposes a framework for enhancing what can be

learned using this approach, focusing on gaining insight into components of the system

that are described in terms of probability distributions of random functions.

Embedding a deterministic first-principles model into a probability model allows us

to treat the observable and unobservable parts of the system on equal terms. Through

numerous successes, it has been found that this approach can accommodate systematic and

random measurement error, partially observed data, and other measurement challenges. At
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a high level, such models take the form Pθ(Y, Z, |X), where Y is observable, Z is not

observable, X is observable but we do not wish to consider its distribution, and θ is a

parameter that governs the mechanistic process and measurement processes at hand.

Of particular interest here is the use of probability models to describe unobserved sys-

tem components that exist in multiple realizations. For example, if we are studying a

collection of exchangeable units that each have a distinct state for some characteristic, then

we can use a probability distribution to describe the aggregate characteristics of the en-

semble of such states. Let F denote this state for one unit, and extend the model above

to
∏

i Pθ(Yi, Zi, Fi|Xi), where i indexes repeated observations, which here are taken to be

independent for simplicity. Since Pθ(Yi, Zi, Fi|Xi) = Pθ(Yi, Zi|Fi, Xi)Pθ(Fi|Xi), we can

focus our attention on Pθ(Fi|Xi) and specifically the components of θ that determine this

distribution. This perspective is common to most applications of multilevel modeling. We

note that mathematically, Fi could be taken to be part of Zi, but we wish to distinguish it

since Fi will have particular modeling goals that may differ from the other variables in Zi.

Here we consider multilevel models in which the unit-level latent Fi are continuous

functions of one variable (here that variable is time). These latent functions are treated as

random, and are anticipated to share some common features, while easily diverging in other

ways. Our goal is to learn about their underlying probability distribution, which captures

both their stable and varying aspects. Since the latent variables are functions, we describe

them using distributions that emit random functions. Ideally, these distributions will be

able to encode the statistical characteristics that these functions must exhibit in order to be

consistent with the data. Borrowing ideas from functional data analysis, we can consider

the distribution of the degree of smoothness as a trait that can be learned from the data.

Smoothness is only one of many behaviors that a distribution of random functions can

exhibit.

Motivated by an application in pharmacokinetic modeling, we propose a modeling

framework that is able to learn the extent to which tendencies toward either concavity
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or convexity are likely to hold. We note that concavity, like smoothness, is commonly

used in data analysis involving observable functions. For example, generalized additive

models and isotonic regression are two techniques for modeling data that are observed as

functions (perhaps observed incompletely and with additive noise) that are to some extent

smooth or have restricted convexity. Our problem is somewhat more challenging, in that

the functions of interest are only observed indirectly, through their role propagated through

the mechanistic model, determining downstream observables.

This chapter presents a case study of ibuprofen pharmacokinetics motivated by drug

bioequivalence studies. Typical bioequivalence studies are conducted with human subjects

and are used to show that a new drug product (e.g. a generic drug product) delivers the

product’s active ingredient to the therapeutic site as well as the reference drug product.

Due to the complexity of how a drug product interacts with the in vivo environment, phar-

maceutical scientists have long sought alternative tests for evaluating the equivalence of

drug products. Better tests minimize the exogenous variation that reduces the power of

bioequivalence studies.

One such approach uses computers to simulate hypothetical subjects to assess whether a

competitor drug product is equivalent to its name brand counterpart. This approach, some-

times called in silico experiments, uses pharmacokinetic and pharmacodynamic (PK/PD)

models to describe a drug’s transit through the human body. To conduct an informative in

silico experiment, one must create a model that captures in vivo variation in drug concen-

trations. Principle sources of variation in rate constants are (a) inter-subject differences, (b)

within-subject differences between trials and (c) temporal within-subject changes. Our aim

is to describe and account for these potential sources of variation.
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4.2 The motivating case study

The data motivating the work presented in this chapter was produce by a multi-site study

lead by pharmaceutical scientists from the University of Michigan College of Pharmacy.

The research program was funded through an FDA research contract. The project and the

research it produced contributes to the FDA’s efforts to develop better regulatory tests for

pharmaceutical drugs.

The FDA regulatory framework for allowing generic drug products to be sold requires

showing that the generic product will be statistically indistinguishable from the name brand

drug product in vivo1. To show this, a drug company does not need to repeat the clinical

trials that are used to establish the original product’s safety and efficacy. Since the active

ingredient in the two products is identical, bioequivalence tests establish whether a similar

amount of drug reaches the drug’s therapeutic target (e.g. blood or tissue). Showing this

then establishes that the new drug product is efficacious and safe. For a drug like ibuprofen,

which is used to treat pain, fever, and inflammation, this amounts to showing that the

generic product has a similar maximum concentration of ibuprofen in the blood.

Currently, bioequivalence tests are divided into two categories of test: in vitro and

in vivo. Each of these classes have deficiencies. In vitro tests, which often show that

a drug dissolves sufficiently quickly in lab settings, generally fail to reflect the in vivo

environment. This impacts their predictive power to describe how the new drug product will

perform in human subjects. In vivo studies are often under-powered since they have small

sample sizes. In these small n settings, exogenous variability often causes bioequivalence

tests to fail when pharmaceutical scientists expect them to succeed.

The first task of the FDA funded research project was to better understand the in vivo

sources of exogenous variability that affect systemic availability of an oral drug product

1It is important to clearly differentiate between a drug and a drug product. A drug product refers to the
actual tablet that delivers the active ingredient, or drug, to a patient or subject. Drug products with identical
active ingredients can be manufactured with different inactive ingredients. The choice of inactive ingredients
may impact the drug product’s ability to deliver the active ingredient, necessitating bioequivalence studies to
show that a new product will behave similarly to its reference product.

117



[2]. Of particular interest were differences in gastrointestinal (GI) activity and conditions

that might cause systemic differences in drug distribution. The first part of the research

project involved conducting an intubation study that concurrently measured GI conditions

and concentrations of ibuprofen in plasma.

4.2.1 Ibuprofen intubation study

The ibuprofen intubation study was designed to measure GI factors relevant to the distri-

bution of ibuprofen in vivo. The full study was made up of 60 intubation studies. During

each intubation study, a catheter was placed in a healthy subject’s upper small intestine and

stomach via their mouth and esophagus. The catheter was capable of measuring GI motility

and taking aspiration samples of GI fluid. Each subject took an 800 milligram (mg) tablet

of ibuprofen several hours after the intubation study began. After dosing, the GI pH and

ibuprofen concentrations were measured by aspirating small amounts of fluid from the GI

tract. Intravenous blood draws were used to record the blood or plasma concentration of

ibuprofen.

Each study produces a sparse multivariate time series of GI pH, GI ibuprofen concen-

trations and plasma ibuprofen concentrations. GI conditions are monitored at between one

and four locations along the GI tract. Table 4.1 shows timing of the aspiration and plasma

draws relative to dosing.

In addition to the aspiration samples, the catheter measured GI motility through water-

perfused manometry, which measures the contractive pressure of the GI tract. A grouping

of three sensors was located distally to each aspiration port. Motility measurements were

sampled at 10 Hertz.

The study protocol called for 60 subjects to undergo intubation. Of the 60 studies,

37 were successfully completed. The terminated intubation studies failed for a variety of

reasons, including subject discomfort and vomiting or failing the pre-study screening test.

During multiple studies, the physicians responsible for placing the catheter were unable to
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Table 4.1: The ibuprofen intubation study sampling protocol.

Time (hours) Plasma sample Aspiration sample
0.000
0.167
0.250
0.333
0.500
0.750
1.000
1.500
2.000
2.500
3.000
4.000
5.000
6.000
7.000
8.000

12.000 or 24.000

successfully reach the small intestine. For these studies, data from the small intestine are

not available.

4.2.2 A compartmental model for the ibuprofen study

The foundation of our analysis is a four compartment model of the human body. During

the intubation study, subjects ingested an 800 milligram ibuprofen tablet orally with a 240

milliliter glass of water. After reaching the stomach, the tablet disintegrates. Due to the

stomach’s low pH, the ibuprofen, which is an acid, does not rapidly dissolve until it reaches

the high pH environment of the small intestine. Therefore, ibuprofen predominantly leaves

the stomach as small particles suspended in gastric fluid. After leaving the stomach, the

small ibuprofen particles dissolve readily in the small intestine. After dissolution, ibupro-

fen is able to passively diffuse across the intestinal wall and into the blood stream. The

ibuprofen molecules circulates through the body in the blood until removed by the liver

and excreted in the urine.
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Our model includes four compartments, representing locations or organs where ibupro-

fen is held or processed during its in vivo transit. The first and the last compartments

represent the stomach and plasma, while the second and third compartments represent the

small intestine. The first small intestine compartment represents undissolved ibuprofen and

the second represents dissolved ibuprofen (Figure 4.1).

We will denote the mass of ibuprofen in each compartment at time t using the following

notation. Let:

• G(t) denote the mass of undissolved ibuprofen in the gastric compartment at time t.

• U(t) denote the mass of undissolved ibuprofen in the small intestine at time t.

• D(t) denote the mass of dissolved ibuprofen in the small intestine at time t.

• P (t) denote the mass of ibuprofen in the plasma (or circulation) at time t.

The system is evolved forward in time by solving the following system of first-order dif-

ferential equations:
∂G(t)
∂t

= −ks(t)G(t)

∂U(t)
∂t

= ks(t)G(t)− kd(t)U(t)

∂D(t)
∂t

= kd(t)U(t)− kabsD(t)

∂P (t)
∂t

= kabsD(t)− kelP (t)

(4.1)

The logged dissolution rate log(kd(t)) depends linearly on xph(t): log(kd(t)) = kd0 +

kd,phxph, where xph is the small intestine pH at time t.

At time 0, the subject takes the 800 milligram ibuprofen tablet, which we assume im-

mediately enters the stomach compartment. The other compartments did not contain any

ibuprofen at dosing since subjects were prohibited from taking ibuprofen for a week prior

to their intubation study. Thus, initial condition of the compartmental model is

Z(0) = (G(0), U(0), D(0), P (0)) = (800, 0, 0, 0) mg.
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Figure 4.1: The four compartment model used to approximate ibuprofen’s path through the
human body. Green and blue compartments indicated when the drug is undissolved and
dissolved, respectively. The red compartment represents the blood and any tissue that the
ibuprofen can diffuse into.

For fixed θ = (kts, kd, kabs, kel), solving the system of equations given the initial condition

calculates the mass of ibuprofen in each compartment at time t.

4.2.3 A first-principles statistical model of ibuprofen pharmacokinet-

ics

As a starting point for our case study analysis, we fit a typical first-principles pharmacoki-

netics model to the case study data [37, 38]. We describe the model as a “first-principles”

model since it assumes that the ibuprofen transfers between compartments at fixed and

unchanging rates according to first-order differential equations. Rates are assumed to be

constant across time within a subject but are allowed to vary between subjects through a hi-
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Table 4.2: Population PK rate constant definitions

Parameter Parameter role
ks Transfer rate constant from stomach compartment to small intestine
kd Dissolution rate constant in small intestine

kdph Multiplicative effect of small intestine pH on dissolution rate
kabs Permeability rate constant between small intestine and plasma compartments
kel Elimination rate constant from plasma compartment

erarchical structure. The model allows for both between-subject, and study-within-subject

variation around the population mean and subject mean rates. In this section, we will de-

scribe the most complex random effects structure that we considered.

Our first-principles model assumes that at the study-within-subject level, the rate pa-

rameters are time-invariant. Definitions of the five PK rate constants are given in Table 4.2.

These parameters represent the population average of the transfer and dissolution rates of

ibuprofen in the four-compartment model.

Let θ = [ks, kd, kabs, kel] be the vector of pharmacokinetic parameters for the four com-

partment model. The statistical model assesses both (a) the degree to which subjects’ indi-

vidual ibuprofen kinetics vary between subjects around the population average, and (b) the

within-subject variability of ibuprofen kinetics. We introduce the subject and visit-within-

subject random effects θi and θij with priors:

θi|θ ∼ N (θ, Σ̃s), θij|θ, θi ∼ N (θi, diag(σv)), (4.2)

where Σ̃s := diag(τs)Σsdiag(τs), with Σs ∈ R4×4 is a symmetric positive definite matrix

and τs, τv ∈ R4, τs > 0, τv > 0. The prior distribution for Σs will be Inverse-Wishart with

5 degrees of freedom and an identity scale matrix. This gives Σ̃s a scaled Inverse-Wishart

prior, which has a nearly uniform prior on the correlations between-subject elements of

θi [39]. At the visit-within-subject level, we assume that the pharmacokinetic parameters

vary independently around their subject-specific means. See Table 4.3 for additional precise

definitions of the first-principle model priors.
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Table 4.3: Prior distributions of first-principle model

Parameter Prior
log(θ) N ((0, 0, 2.5, 0), diag(1, 1, .1, 1))
kdph N (0, 1)
Σs Inverse-Wishart(5, I)
log(τs) N (0, 1)
log(τv) N (0, 1)

Measurement model

For each subject-study combination, the predicted mean plasma and small intestine

ibuprofen concentrations at time t are equal to the solution of the system of differential

equations given in the previous section. We will denote the predicted ibuprofen mass in

the plasma and small intestine compartments during subject i’s jth study at time t by Pij(t)

and Dij(t). Note that each of these functions implicitly depend on population parameters

and subject and study random effects.

Although the model makes predictions of the mass of ibuprofen in each compartment

at time t, we observe the concentration of ibuprofen in the plasma and small intestines.

As a result, we must divide Dij(t) and Pij(t) by a volume in order to connect study ob-

servations to the mechanistic model. The pharmaceutical sciences literature provides an

estimate of ibuprofen’s volume of distribution as a function of body mass. An estimate of

an individual’s volume of distribution is given by:

Vd = Mass ∗ 0.1
L

Kg
.

The volume of distribution represents an apparent volume rather than a physical volume. It

represents the volume of the blood and any tissue that the ibuprofen may reside in while in

vivo [40, 41].

We model the small intestine volumes as constant within a study and use a hierarchical

model at the study level to estimate the population mean µvol and inter-study variation σ2
vol
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in small intestine volumes. Let V ij
s be the small intestine fluid volume for subject i during

study j. We model V ij
s ∼ N (µvol, σ

2
vol).

Given an estimate of the volume of distribution and small intestine fluid volume, we can

link the compartmental model to the study data. Let yij(t) and pij(t) represent the observed

small intestine and plasma ibuprofen concentrations for subject i during study j at time t.

Given the corresponding PK parameters θ̃ij , we use the following measurement models:

log(yij(t))|θ) ∼ N
(

log

(
Dij(t)

V ij
s

)
, σ2

si

)
pij(t)|θ) ∼ N

(
Pij(t)

V ij
d

, α

(
Pij(t)

V ij
d

)κ)
.

4.3 Analysis of the case study data with the first-principles

model

The first-principles model is unable to capture the rapid, short-term, and often delayed

increase in plasma ibuprofen concentration. Predicted and observed plasma ibuprofen con-

centrations are shown in Figure 4.2. The time-invariant rates of the first-principles model

are unable capture the peak concentration experienced during most studies. Instead, the

first-principles model tends to overpredict plasma concentrations prior to T-max (the time

at which we observe the maximum plasma concentration of ibuprofen) and to underpredict

ibuprofen concentrations at T-max.

This deviation is made more clear by considering the residual ibuprofen concentrations

in Figure 4.3. This figure shows the residual ibuprofen concentration against study time for

17 fasted-state intubation studies. The residual plots share a common feature that residuals

tend to be negative after the beginning of the study, abruptly become positive at T-max, and
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Figure 4.2: A comparison of observed ibuprofen concentrations and predicted ibuprofen
concentrations from the first-principles model. Ibuprofen plasma concentrations (µg/mL)
are plotted against study time for 17 fasted-state studies. 0 represents the time at which
the subjects took the ibuprofen tablets. Solid blue and dashed green lines are used to
distinguish between the fitted model’s prediction of the subject’s plasma concentration and
the observed plasma ibuprofen concentration, respectively.
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Figure 4.3: The residual ibuprofen plasma concentrations from the fitted first-principles
model. The panels are stratified by subject and visit.
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then tend back toward 0.

Figures 4.2 and 4.3 show that the first-principles model’s assumption that its rate pa-

rameters are time-invariant is implausible. Although clear between-subjects heterogeneity

exists in many of the rate constants, inter-subject and inter-study differences cannot account

for the heterogeneity across the course of a study within a patient. Next, we present several

possible mechanisms that might explain the within-study rate parameter heterogeneity

Possible biological mechanisms that underly the systems deviation from

first-principles

Several plausible, biological mechanisms might underlie the observed rapid increases in

plasma ibuprofen concentrations that the first-principles model failed to capture. We worked

with our pharmaceutical science collaborators to identify mechanisms that the study data

could potentially identify. We settled on three potential mechanisms that both violate the

time-homogeneity assumption of the first-principles model.

First, the stomach-to-small intestine transfer rate ks could be non-constant. It is known

that the contents of the stomach leave in small packets rather than a constant stream. If

the rate at which packets leaves fluctuates, then our time-homogeneous rate constant would

be inappropriate. Allowing ks to vary across time within a subject would allow one to

approximate the underlying mechanism.

Next, the base dissolution rate kd might change across time, even after controlling for

the pH of the small intestine. Early in the research project, the study team believed that

small intestinal motility would drive variation in plasma concentrations of ibuprofen. More

small intestinal motility after dosing could cause ibuprofen dissolution to dramatically in-

crease, causing the rapid appearance of ibuprofen in the plasma. To test this mechanism,

one would allow kd to vary across time within each subject.

Finally, the absorption rate constant of ibuprofen into the plasma could change over the

course of the study. The absorption rate depends on the total small intestine surface area

127



that the ibuprofen is exposed to. Variation in motility changes the effective surface area of

the small intestine. The absorption rate kabs was allowed to vary across time in order to

assess whether this mechanism was driving the rapid appearance of ibuprofen.

We found the greatest evidence in the data for variation in the stomach-to-small intes-

tine transit rate. The second and third mechanisms do undoubtedly affect plasma concen-

trations [42], but were not well identified by the case study data. We were particularly dis-

appointed to be unable to relate small intestinal motility to variation in either the ibuprofen

dissolution or absorption rates. Ibuprofen dissolves readily in the higher pH environment of

the small intestine and is able to passively diffuse across the intestinal wall once in solution.

A modified first-principles model of ibuprofen pharmacokinetics

The modification that we found to be most plausible and best supported by the data allows

the gastric (stomach-to-small intestine) emptying rate ks(t) to vary across time. A straight

forward way to let ks(t) change over time is to treat each study’s ks as a draw from a

distribution that emits function-valued random variables. Because we did not have an a

priori hypothesis about what type of variation exists between subjects’ emptying rates, we

began with a semi-parametric model for log(ks(t)). Let kijs (t) denote the latent emptying

rate for subject i during study j at time t. Let the functions {φ1, . . . , φk} be the B-spline

basis over the interval (0, 7) hours. Then, we model log(kijs ) by:

log(kijs (t)) =
k∑
`=1

φ`(t)β
ij
` . (4.3)

The vector of coefficients βij = (βij1 , . . . , β
ij
k )T is modeled hierarchically. We omit the

details, but note that the selected prior model for βij penalized the curvature of log kijs [43].

Figure 4.4 compares observed plasma concentrations to the modified model’s predicted

plasma concentrations. The modified model substantially improves upon the in-sample pre-

dictions compared to the first-principles model. In particular, the modified model is capable
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of capturing the periods of rapid ibuprofen appearance in the plasma. Figure 4.5 shows the

posterior estimates of the latent functions kijs (t) plotted against study time. Although the

model for kijs is capable of learning more complex shapes, each subject appeared to ex-

perience a single episode of faster emptying. This suggests that for the typical intubation

study, most of the ibuprofen left the subject’s stomach during a relatively short period of

time. The short period of rapid emptying was often delayed after dosing.

4.4 Studying mechanisms in multilevel models using func-

tional random effects

Our proposed approach to studying and identifying mechanisms in mechanistic analyses is

useful in cases where there is reasonable uncertainty about exactly how the mechanism of

interest impacts the biological system. If prior work has already studied and characterized

the mechanism, then this approach is a less efficient way to estimating a model for the

biological system. Additionally, this approach is most applicable when the underlying

mechanism is assumed to cause one of the mechanistic system’s rate parameters to vary

across time. Furthermore, the method is capable of estimating both the population average

rate and unit-level variation around the population mean trend.

Our approach parameterizes the time-varying rate parameter for unit i as a latent,

function-valued random variable f i. The function f i is modeled as the additive compo-

sition of two independent function-valued random variables gi and hi

f i = gi + hi,

where gi ∼ Gφ and hi ∼ Hψ. The distribution functions Gφ and Hψ are each members of

families of probability distributions G and H indexed by the parameters φ ∈ Φ and ψ ∈ Ψ,

respectively. Here we assume that the functional space of G captures the mechanism of

129



Figure 4.4: A comparison of observed ibuprofen concentrations and predicted ibuprofen
concentrations from the modified first-principles model. Predictions are from the fitted
first-principles model. Panels are stratified by subject and visit.
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Figure 4.5: The estimated subject-by-visit gastric emptying rate kijs (t) plotted against time.
Panels are stratified by subject and visit.
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interest, while H is capable of capturing many time-varying patterns that deviate from G.

In general, G will represent a much richer class of probability distributions.

Our expectation is that if draws from Gφ for some φ ∈ Φ are reasonable approxima-

tions to the true data-generating latent functions, then the posterior distribution of f i will

concentrate around Gφ. To achieve this, the posterior distribution will need to concentrate

around a ψ̃ ∈ Ψ such that draws from Hψ̃ are (nearly) constant.

Since G is a much richer class of probability distributions, one should consider whether

the data will be capable of identifying the mechanism. Our expectation, which will be

borne out through simulation studies, is that data will be capable of identifying the correct

functional space.

To see why this is, first assume that the data-generating latent functions f i are sampled

from Gφ for some φ ∈ Φ. Let us also assume that there exists ψ0 ∈ Ψ such that Gφ = Hψ0 .

Thus, it is seemingly impossible to determine whether f i were sampled from Gφ or Hψ0 .

However, the likelihood function of Gφ is much greater than the likelihood function of Hψ0

when both are evaluated at the f i. Because MCMC maximizes the posterior likelihood, we

expect that posterior will concentrate onto Gφ rather than onto Hψ0 .

4.4.1 A model for the latent random function log(ks)

Our analysis of the motivating dataset suggests that the stomach-to-small intestine transit

rate varies across time. We modified the structural model to allow the rate to be time-

invariant by modeling the rate as a latent function-valued random variable. We expect that

the latent log(ks) tends to be concave for most subjects. However, we would like to use a

methodology that is capable of identifying an alternative model for log(ks) if the data are

inconsistent with a concave model for the latent functions. One approach to learning this

tendency toward a particular shape was outlined in Section 4.4. We will decompose each

study’s latent function into two components, a quadratic or parametric function gij , and a

smooth function hij , so log(kijs ) = gij + hij .
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The gij’s will be sampled from a three parameter distribution that emits quadratic ran-

dom functions. We will use the terms “quadratic” and “parametric” interchangeably to refer

to the gij’s. The non-parametric component hij will be sampled from a mean zero Gaussian

process with squared exponential covariance function. We chose to use a Gaussian process

model for hij because this class of distributions should be able to capture many types of

non-quadratic behavior.

We will use the same random function distributions for both our simulations and case

study data analysis. In this section, we describe the hierarchical models for the simulation

setting because it has a single layer of hierarchy, which makes the presentation simpler. The

model specification for the case study analysis will include an additional layer of hierarchy,

but the probabilistic structure for that additional layer will be identical.

Let kis(t) denote the ith unit’s realization of ks. We model kis as

log(kis(t)) = gi(t) + hi(t), (4.4)

where gi(t) = θi1+θi2(t−θi3)2, hi ∼ GP (0, Kα,ρ(t, t
′)), andKα,ρ(t, t

′) = α2 exp
{
− (t−t′)2

2ρ2

}
.

Again, we model θi hierarchically: θi|θ ∼ N (θ,Σθ). The vector θ denotes the population

average and Σθ measures between-unit variation around θ. In order to conduct our analysis

using Bayesian methods, the parameters θ, α, and ρ will have prior distributions depending

on hyperparameters. Priors will be chosed so that the prior predictive distribution produces

“reasonable” data.

Each component of θ describes a feature of the population curve f . Of particular in-

terest for this application is the sign of θ2, which will indicate whether the typical unit has

convex or concave gi. The (2,2) element of Σθ, which controls the spread of θi2 around the

population mean θ2, measures the strength of the tendency toward either convexity or con-

cavity. The other two components θ1 and θ3 are best interpreted together. The function f

achieves its maximum or minimum value of θ1 at time t = θ3 (whether θ1 is the maximum

or minimum depends on the sign of θ2).
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The parameters of the Gaussian process, α2 and ρ, control the marginal variance and

smoothness of the latent functions hi. For all t ∈ R, Var(gi(t)|ρ, α, t) = α2. Larger α

in the data-generating process leads to greater inter-subject variation in latent functions gi.

The parameter ρ controls the smoothness of the latent functions. When |t1 − t2| > 2 ∗ ρ,

then the correlation between gi(t1) and gi(t2) is negligible.

4.5 Latent function identification in a synthetic mechanis-

tic model

4.5.1 Synthetic model description

The structural model used in this simulation study has two compartments. The transit of

the compartments’ contents is governed by a linear system of differential equations. The

contents of the first compartment transit to the second according to a time-varying first-

order rate ks(t). The contents of the second compartment empty at a constant rate ke. In

order to make the model easier to describe, for the remainder of the section we will assume

that the mechanistic model describes the transit of a drug in vivo.

Let y(t) = (y1(t), y2(t))′ ∈ R2 denote the mass of the drug at time t in the first and

second compartments, respectively. The following system of differential equations describe

the evolution of the y(t):

∂y

∂t
=

−ks(t) 0

ks(t) ke

 y(t). (4.5)

In order to calculate the mass of drug in each compartment at time t = t0 + δ, δ > 0, the

system of differential equations is solved. Given initial conditions y(t0) = (y1(t0), y2(t0))′,
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the system has the following closed-form solution:

y(t) =

 y1(t0)e−φ(t)δ

φ(t)y1(t0)
ke−φ(t)

e−φ(t)δ −
(
y2(t0)− φ(t)y1(t0)

ke−φ(t)

)
e−keδ

 , (4.6)

where φ(t) = exp
{∫ t0+δ

t0
ks(x)dx

}
. In practice, we will treat ks(t) as constant over

the time interval [t0, t0 + δ]. This choice simplifies solving the system of equations 4.5

whenever an analytical solution to
∫
ks(t)dt does not exist. We approximate the true so-

lution to the system by using φ(t) = exp {ks(t0)}. In practice, δ will be small, and thus

ks(t0) ≈ ks(t
′) for all t′ ∈ [t0, t0 + δ].

Since this exercise is used as a proof of concept, we wish to incorporate features of the

case study dataset that make the case study analysis challenging. In most pharmacokinetic

analyses, one directly models the mass of drug in all compartments, but observes the con-

centration of the drug in a subset of compartments (usually only one). In this example,

the mass of drug in compartment one will be unobserved and the concentration of drug in

compartment two will be measured at sampling times t′ ∈ {t0, . . . , tn} ⊂ [0, 1]. Let v be

the volume of compartment two so that measurements consist of c(t) := y2(t)/v rather

than y2(t).

In most analyses, the volume v is also treated as a latent variable and assumed to vary

between subjects.We model subject i’s volume hierarchically. We will treat v as the popu-

lation mean volume and assume that vi|v ∼ N (v, τv), where τv represents the inter-subject

volume variance. Therefore, ci(t) = yi2(t)/vi will denote subject i’s drug concentration at

time t.

Measurement model for ci(t)

In order to estimate the two-compartment model’s parameters, we must relate the ob-

served data, concentrations in compartment two, to the compartmental model’s predicted

drug concentrations. Let pi(t) denote the concentration of drug in compartment two at time
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t and let ci(t) = yi2(t)/vi denote the model’s prediction of subject i’s drug concentration.

We both generate and model log (pi(t)) as a Gaussian random variable with the following

structure:

log(pi(t)) = log
(
ci(t)

)
+ εi(t), εi(t)|ci(t) iid∼ N (0, σ2). (4.7)

The parameter σ represents the multiplicative error. On average, the observed concentration

pi(t) will be exp(σ)% away from the model’s predicted concentration ci(t).

Choice of prior distributions

In most pharmacokinetic analyses, the analyst does not have strong prior beliefs con-

cerning the parameters of the model. In practice, due to expectations of what “reasonable”

data should look like, usually the parameters are constrained to be in a much smaller sub-

space of the full parameter space. We aim to use prior distributions that are weakly in-

formative, meaning that they reflect our belief that the parameters likely live in the region

of the parameter space that produces realistic data. For example, one would place little

prior density on parameter combinations that generate data that routinely exceeds plasma

drug concentrations of 200 µg/mL if such concentrations have not occurred during previous

studies.

Table 4.4 lists each parameter, the probability model used for its prior distribution, and

the values of the hyperparameters used during our simulations. Again, note that hyper-

parameter selection was done so that the predictive prior distribution produced reasonable

synthetic data. Slightly different choices could have been used without greatly affecting

the estimated posterior distribution.

Two parameters’ prior models deserve additional comment. First, we use the scaled

Inverse-Wishart (IW) prior for the covariance matrix Σθ. This prior model places nearly

uniform density on the correlations between elements of θi. Given log(τθ) ∼ N (aτθ , s
2
τθ

)

and Ψθ ∼ IW(4, I3), then, Σθ = diag(τθ)Ψθdiag(τθ). Second, we do not expect to be able
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Table 4.4: Prior models for parameters of two-compartment model

Parameter Prior Distribution Hyperparameter selection

θ N (aθ, s
2
θ) aθ = (0.0, 0.0, 0.5)′, sθ = (0.5, 1.50, 0.25)′

log(σ) N (aσ, s
2
σ) aσ = −3.0, sσ = 0.75

log(α) N (aα, s
2
α) aα = −0.8, sα = 0.66

ρ Inv-Gamma(aρ, bρ) aρ = 2.93, bρ = 0.42
log(ke) N (ake , s

2
ke

) ake = −0.5, sk3 = 1.0
v N (av, s

2
v) av = 4.0, sv = 0.25

log(τv) N (aτv , s
2
τv) aτv = −1.0, sτv = 0.5

log(τθ) N (aτθ , s
2
τθ

) aτθ = (−1.6,−1.6,−2.0)′, sτθ = (0.5, 0.5, 0.1)′

Ψθ IW(ν, M) ν = 4, M = I3

to estimate properties of the random function that occur at a scale smaller than our sampling

frequency or larger than the total observation time. The hyperparameters aρ = 2.93 and

bρ = 0.42 were selected so that less than 1% of the prior density for ρ fell below 0.05 and

above 1.0.

Data-generating populations

Our simulation studies will involve two data-generating populations. For the first pop-

ulation, the quadratic latent function will be the dominant component of the latent function

log(kis). For the second, the Gaussian process component will be the dominant component.

We will call these data-generating populations the parametric data-generating population

and Gaussian process data-generating population, respectively. Here we present the data-

generating parameters for each setting, beginning with the parameters that are common to

both data-generating populations.

Figure 4.6a shows 100 realizations of the latent function log(kis) from each data-generating

process. Functions drawn from the Gaussian process data-generating process are smooth

and oscillate between being locally concave and convex. The quadratic functions are obvi-

ously either globally concave or convex. Both data-generating processes produce functions

with roughly the same marginal variance across t. This, we hope will not unfairly bias the

posterior estimates toward one component, and instead allow the data to select the compo-
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Table 4.5: Data-generating values of parameters shared by both data-generating popula-
tions.

Parameter Data-generating values

ke 1
σ 0.05
v 4
τv .25

Ψθ

 1 −.8 0
−.8 1 0
0 0 1


Table 4.6: Data-generating values of latent function parameters.

Parameter Parametric generating values Gaussian process generating values

α .02 1.00
ρ 0.75 0.25
θ (1.5,−5, .25)′ (0.0, 0.0, 0.5)′

τθ (1/2, 1, .2)′ (0.05, 0.05, 0.1)′

nent that best describes the data.

Figure 4.6b shows the data realized under these data-generating populations. We also

show prior predictive draws that demonstrate that our prior model generates data that

look reasonably similar to the true data-generating populations, albeit with more varia-

tion in rate of increase, shape, and spread. The parametric concentration curves increase

more quickly than the Gaussian process concentration curves. Additionally, the parametric

curves achieve their maximum plasma concentrations over a shorter time period.

4.5.2 Simulation results

We conducted a small simulation study in order to assess our ability to recover distributions

of latent functions generated by the model described in Section 4.5.1. The simulation study

generated data from both the parametric and Gaussian process data-generating populations

with 20, 50, and 100 subjects or studies per synthetic dataset. For each setting, we generated

10 synthetic data sets and used Stan to estimate model parameters [44]. Multi-chain Monte
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(b) Examples of data generated by two compartment model. The left panel shows prior pre-
dictive draws, the center panel shows realizations from the Gaussian process data-generating
process, and the right panel shows data from the parametric data-generating process.

Figure 4.6: Typical data from the synthetic data-generating populations.
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Carlo (MCMC) was conducted using four chains to assess convergence and multi-modality.

For each chain, 1000 warm-up and 1000 sampling iterations were used to estimate the

parameters’ joint posterior distribution. In most cases, the chains converged to the same

region of the parameter space.

Overall, the results of the simulation study are a mixed success. Broadly speaking,

the population mean latent function parameters are identified by the data, while the vari-

ance components of the latent function distributions were not. Figure 4.7 shows posterior

mean estimates for the parameters α, ρ, θ ∈ R3, and
√

(diag(Σθ)) ∈ R3, the inter-subject

standard deviations in θi. When the data-generating population places more weight on the

Gaussian process latent function, posterior mean estimates of α and ρ appear to be unbiased

for all sample sizes (aqua triangles). When the latent function is approximately quadratic,

these parameters are approximately identified. Importantly, posterior estimates of log(α)

are sufficiently negative so that the marginal standard deviation of the Gaussian process is

very small. Thus, on average, the Gaussian process component impacts the latent function

to a small degree. When α is small, posterior estimates of ρ are inconsequential.

We next turn to θ, the parameters of the quadratic latent function. When the latent

function is approximately quadratic, posterior estimates of θ1 appear to be approximately

unbiased. For both θ2 and θ1, we see that the posterior estimates are converging to the true

data-generating value as n increases. For these parameters, the data-generating value of the

parameter was a low prior-density point in the parameter space, which makes convergence

slower. Likewise, when the latent functions are predominantly generated by the Gaussian

process, posterior means also appear to be approximately unbiased for all sample sizes.

The last 3 panels of Figure 4.7 show estimates for the variance components of θi. We

specifically show the inter-subject standard deviations of the quadratic latent function pa-

rameters. Here, we are unable to estimate each population’s data-generating values. The

one exception is perhaps the standard deviation of θi1 for the parametric data-generating

population. Overall, the variance components of the parametric latent function are not
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Figure 4.7: Posterior estimates from the two-compartment simulation study. Each panel
presents posterior estimates for a single parameter and each point in a panel represents
the posterior estimate from a single simulation trial. The x-axis indexes the number of
subjects in the synthetic dataset used to estimate the parameter. The y-axis represents
the posterior mean of the parameter. Points are colored based on whether the true data-
generating population placed more weight on the parametric or Gaussian process latent
functions. Horizontal dashed lines show the true value of the data-generating parameter,
colored to correspond to each data-generating parameter. Posterior estimates converged to
the true data-generating parameter when the posterior means (represented by points) have
clustered around the dashed line of the same color.
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Figure 4.8: A comparison of latent functions drawn from the prior predictive (green), data-
generating (blue), and posterior predictive distributions (red) for a population that placed
more weight on the parametric latent function.

identified by the data.

Figure 4.8 shows results for one synthetic dataset with quadratic latent functions. The

panels in the first and column show the prior predictive and data-generating distributions

of latent log(kis). The remaining panels show posterior predictive draws from the estimated

distribution of log(kis). The data-generating latent functions exhibit much greater spread

than the posterior predictive estimates, which is driven by the underestimation of the inter-

subject variation.
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4.5.3 Synthetic data simulation discussion

It is unclear to us why the variance parameters are much more difficult to estimate. In part,

we attribute the lack of identification to the nature of the data. Specifically, the data contain

very little information about the latent function after most of the contents of the first com-

partment has transfered to the second compartment. After one-third of the total study time

had passed, over 75% of the contents of the stomach had transfered to compartment two,

averaged across the population. Since the contents of the compartments are indirectly what

inform estimates of the parameters’ values, this leaves the method with little information to

estimate the emptying rate at the end of the study. For a quadratic latent function, much of

the inter-subject variation is described by behavior far from the peak emptying rate, which

is exactly where the data contain the least information.

Another possible explanation for the bias is the choice to model inter-subject differ-

ences on the log-scale. The latent function interacts with data on the linear scale after

exponentiation. Thus, substantial inter-subject variation in latent ks that falls below 0 is

compressed after exponentiation. One can see how this plays out in Figure 4.8. For the

data-generating distribution, substantial variation between latent functions occurs late in

the study time-course and this variation largely falls below 0. This leads to an estimated

distribution of latent functions that under estimates the true level of inter-subject variation.

Although estimates of the latent function variance components are biased, we do re-

cover important features of concentration profiles. The maximum concentration (C-max)

that a subject experiences is one of the relevant regulatory features, since C-max can affect

both the safety and efficacy of the drug. In Figure 4.9, we compare the data-generating dis-

tribution of C-max to the posterior predictive distribution of C-max. For all samples sizes

n, we approximately recover the population C-max distribution and the approximation im-

proves as n grows. This result suggests that even if there is bias in the estimated model,

a fitted model might be able to capture the population variation in interesting or relevant

summaries of the observed data.
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4.6 Discussion

We were unable to successfully use our proposed approach to study mechanisms in the case

study data. Attempts to fit a model with the latent function structure described in Section

4.4.1 were unsuccessful. The Monte Carlo chains converged to different modes (or failed

to converge at all) and Stan’s sampler diagnostics suggested that we had failed to take a

valid sample from the parameter’s posterior.

The analysis of the case study data was challenging for several reasons. First, the case

study had an additional layer of hierarchy, since a subset of the study participants underwent

two intubation studies. Additionally, there is reasonable evidence of stable within-subject

kinetics. This finding necessitated the use of both subject and study-within-subject random

effects, although the data to estimate the additional parameters was quite limited.

Second, the case study analysis was faced with partially-missing data problems that did

not affect the synthetic data simulation studies. Roughly one third of the small intestine

aspiration samples were not taken. This was commonly caused by an absence of fluid at

the aspiration port during sampling. Additionally, the sampling times for both the plasma

and aspiration samples were irregularly spaced. The study called for the irregular spacing

because it was expected that most of the ibuprofen absorption would take place within

the first few hours after dosing. In order to capture the shape of the plasma concentration

trajectories, more frequent sampling was conducted during the first three hours of the seven-

hour study (Table 4.1). However, many subjects experienced peak plasma concentrations

later. This design choice caused the late-peak concentration data to contain less information

about mechanistic parameters than early-peak concentration data.

Finally, the case study data had additional unobserved factors, both constant and time-

varying, that impacted ibuprofen kinetics. The most troublesome of these factors was small

intestine volume, which is known to vary dramatically over time and was unmeasured. Our

models treated small intestine volume as a constant within-subject latent variable. Other

time-varying latent factors can act as nuisance parameters when trying to estimate a sep-
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arate latent factor. The model attempt to use the single flexible latent factor to explain

variation caused by multiple mechanisms. This leads to latent factor estimates that are the

sum total of multiple unobserved processes.

This project has clarified several other challenges with mechanistic modeling in biolog-

ical systems. First, longitudinal, mechanistic biological data contains different amounts of

information about parameters over the study time course. This arises because information

about the system’s parameters is dependent on data being observed in each part of the sys-

tem. After the observable leaves one part of the system, the data are no longer informative

about the parameters of that part of the system.

In PK/PD modeling, once a compartment and the compartments that proceed it no

longer contain drug, the data no longer contain information about the rate parameters that

govern drug kinetics in the empty compartments. In the case simulation examples, this

issue arose because the identification of inter-subject variation was dependent on data from

measurements late in the study. By halfway through the synthetic studies, for most subjects

the majority of the drug has left compartment one. The second half of the study had little

signal to contribute to the estimation of the distribution of the random latent functions. This

ultimately led to biased estimates of the latent function distribution.

This also raises the question of whether one needs to correctly estimate features of

the latent function distribution that do not impact the observed data. Despite the fact that

our estimates of the latent function distribution were biased, we correctly recovered the

distribution of maximum concentrations (see Figure 4.9). In any mechanistic analysis, the

model will only approximate the biological system. If we recover a random effects structure

that produces reasonable realizations, perhaps the fitted model can still be informative about

variation between units, if not the mechanisms of interest.

Studying mechanisms in complex biological systems highlights the tension between

model flexibility and identifiability. PK/PD analysis datasets rarely have large sample sizes,

which requires compartmental and statistical models that roughly approximate the system’s

146



true complexity. Conversely, the proposed latent function specification was capable of

describing many different emptying behaviors. We used a flexible specification because

we did not want to guide the analysis too strongly towards our expectations. Unfortunately,

at least for our case study, the parameters of the latent function distributions were not

identified by the study data.

When flexible models are not identified by the data, one generally chooses a more

restrictive model. However, with a more restrictive model, the data are less likely to be

able to choose an alternative mechanisms. Instead, the data will choose the best option

among the available options. Likely a better approach for our purposes is post-hoc analysis

of a semi-parametric model, followed by assessing sensitivity to choice of prior or other

modeling decisions.

We proposed one approach to assessing whether data from biological systems are con-

sistent with a mechanism, but there may be more efficient methods. In particular, the

our approach introduced two potential models for the time-varying latent variable. Find-

ing strong evidence for the mechanism requires that the posterior concentrates around one

of the two components. In noisy, complex systems, the concentration onto one compo-

nent might be extremely slow. There may be simpler, more parsimonious ways to identify

mechanisms in biological systems.

During the course of our work, we found that semi-parametric specifications of latent

functions were easier to work with than the quadratic functions. However, these fitted

models are less interpretable and do not clearly represent the underlying mechanism or

hypothesis. To assess whether a fitted model is consistent with the proposed mechanism,

substantial post-hoc analysis is needed. Additionally, models with semi-parametric latent

functions often overfit the observed data. In the PK/PD ibuprofen case study, posterior

predictive draws from the fitted model had features not found in the observed study data.

We used standard specifications of semi-parametric latent functions found in the func-

tional data analysis literature. These specifications implicitly link the smoothness and
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marginal variance of the random function distribution. The smoothness-variance con-

nection was partially responsible for unrealistic posterior predictive draws. When we at-

tempted to decouple the latent smoothness-marginal variance, we found that the case study

data were unable to identify the parameters that disconnected the two function traits.
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APPENDIX A

Mediation analysis literature review

More recently, mediation analysis has been place in the counterfactual outcomes frame-

work of causal analysis. Approaching mediation analysis from this perspective allowed

[45, 15] to establish a minimum set of conditions such that the direct and indirect effects

estimated by the coefficient-product method are valid. We now introduce the counterfactual

framework of causal analysis, which closely follows the development of [15].

In the causal inference literature, Rubin’s counterfactual framework is widely known

as a useful tool for establishing causal relationships between treatment and outcome mea-

sures [46]. In brief, the counterfactual framework posits that each observational unit has a

potential outcome for every treatment level. Suppose we are studying the effect of a diet

regime on weight loss. The binary variable Xi contains the experimental arm to which the

ith subject is assigned, with Xi = 1 if subject i is assigned a diet and Xi = 0 if subject

i is assigned to the control group. We then have two potential outcomes, the weight that

subject i gains or loses under control, Yi(Xi = 0), and treatment, Yi(Xi = 1). In practice

we can only observe one of the two potential outcomes, Yi = Yi(Xi) and never YI(1−Xi).

Often the practitioner is interested in the average treatment effect, or E [Y (1)− Y (0)]. Ru-

bin showed that if treatment assignment is independent of the potential outcomes, then the

difference in group means is an unbiased estimator of the treatment effect.

[15] extended the counterfactual framework to encompass the causal mediation analysis

setting. To do so, two new potential outcomes must be defined. Once again, let Xi be a

149



binary variable storing experimental group assignment. Define Mi be the ith individual’s

observed value of the mediating variable. The two potential mediators Mi(Xi = 0) and

Mi(Xi = 1) are the values that the mediator takes if the ith subject is assigned to the control

or treatment group respectively. The potential outcomes Yi(Xi,Mi(Xi)) for Xi = 0 and

Xi = 1 are now a function of both the treatment assignment and mediator value, which

itself is a function of treatment assignment. In our earlier dieting example, Mi could be

the average number of minutes exercised each week by individual i over the course of the

study. The scientist conducting the study might believe that following a proscribed diet

might cause a participant to undertake additional exercise. The hypothesized outocme of

this additional exercise is of course greater weight loss.

The counterfactual causal inference framework allows us to define and then estimate

both the direct and indirect effects in terms of the potential outcomes. We use the notation

of [15] to define each effect. First, the indirect effect for individual i is defined as

δi(x) = Yi(x,Mi(Xi = 1))− Yi(x,Mi(Xi = 0)). (A.1)

The indirect effect represents the change in response if we were to hold the treatment fixed

but allowed the mediator take potential values realized under treatment and control as-

signment. In our running example, Yi(x,Mi(Xi = 1)) is the amount of weight loss under

treatment assignment x and the exercise volume realized under treatment assignment. Con-

versely, Yi(x,Mi(Xi = 0)) is the amount of weight loss under treatment assignment x, but

the exercise volume realized under control assignment. The indirect effect takes the differ-

ence in these two potential outcomes, and, thus the indirect effect represents the change in

outcome measure directly related to the mediating variable’s change caused by a change in

the treatment, while accounting for the treatment’s effect. The direct effect is defined as

ξi(x) = Yi(Xi = 1,Mi(x))− Yi(Xi = 0,Mi(x)). (A.2)
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The direct effect represents the change in response if the treatment assignment changes

from treatment to control, but the mediator value is held constant at the value realized

under treatment x. The quantity ξi(x) is the amount of weight loss caused by the diet

holding the amount of exercise constant at the level realized under treatment assignment x.

Using this notation, we can then express the LSEM in terms of the potential outcomes,

which gives us a method of estimating both the direct and indirect effects ξi(x) and δi(x).

• Yi(Xi,Mi(Xi)) = µ0 + µ1Xi + µ2Ci + ε1i(Xi,Mi(Xi),

• Mi(Xi) = α0 + α1Xi + α2Ci + ε2i(Xi, and

• Y (Xi,Mi(Xi)) = β0 + γXi + β1Mi + β2Ci + ε3i(Xi,Mi(Xi)).

Furthermore, [45] showed that if the no interaction and sequential ignorability assump-

tions are met, then these estimates are consistent. First, the no interaction assumption says

that the indirect and direct mediation effects do no depend on x, or δi(0) = δi(1) and

ξi(0) = ξi(1). The sequential ignorability assumption is more nuanced.

Assumption 1 (Imai, Keele, Yamamoto, 2010). Assume that the following statements of

conditional independence hold:

1. {Yi(x′,m),Mi(t)} ⊥⊥ Xi | Ci = c,

2. Yi(x′,m) ⊥⊥ Mi(x) | Ci = c,X = x, where 0 < Pr(Xi = x | Ci = c) and

0 < Pr(Mi(x) = m | Xi = x) for x = 0, 1 and all c ∈ Rp, m ∈ R.

For a thorough discussion of Assumption 1, see [45]. Briefly, what Assumption 1 says

is that conditional on any pretreatment confounders Ci, the potential outcomes and treat-

ment assignment are independent. This assumption is met through randomized treatment

assignment and therefore reasonable in practice. The second assumption cannot be empir-

ically verified, however. It says that the potential outcomes are Mi(x) and Yi(x′,m) are

independent, conditional on the pretreatment confounders Ci and the treatment assignment
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Xi. We cannot verify this assumption because values of the mediator are not randomly

assigned through experimental design, in general.
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