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Abstract 

 

Each year, the U.S. sees nearly 17,700 new cases of spinal cord injuries (SCIs) [1]. 

Despite intense rehabilitation, patients with SCIs most often suffer lifelong physical 

consequences and substantial increases in medical expenses per individual [2]. While 

immobilization and surgery can be used for immediate stabilization of the injury, no clinical 

methods exist to address the subsequent inflammation and lack of tissue regeneration that further 

contribute to the motor and sensory deficits seen after an SCI [3, 4]. This dissertation aimed to 

understand how biomaterials and gene therapy treatment affect SCIs. 

In a mouse SCI model, where a left C5 hemisection results in loss of function of the left 

arm, a poly(lactide-co-glycolide) (PLG) scaffold or “bridge” can be implanted in place of the 

resected tissues. The bridge can be loaded with lentivirus for local delivery of gene therapy that 

can aid in control of the post-SCI microenvironment [5]. Using lentiviral interleukin-10 (IL10), 

we found that IL10 animals significantly outperform animals that received a control lentivirus on 

a ladder beam test at 2- and 12- weeks post-injury (wpi). Closer examination of components of 

the forelimb motor circuitry suggest IL10 animals had increased sparing of lower motor neurons 

and neuromuscular junctions. Electrophysiological studies at 2 wpi showed that control injured 

animals had electromyogram recordings that were significantly dampened when compared to 

IL10 and control uninjured animals, thereby confirming that the motor circuitry remained more 

intact with IL10 treatment. These results, which were consistent in both male and female mice, 



 ix 

are the first to show that IL10 spares motor circuitry directly responsible for enhanced muscle 

function.  

We then tested a combination therapy of lentiviral IL10 and brain-derived neurotrophic 

factor (BDNF), followed by examination of tissue sparing and regeneration. At 2 wpi, 

histological and electrophysiological analyses show that the tissue sparing effects of IL10 alone 

are only slightly enhanced by the addition of BDNF. By 12 wpi, most innervation differences 

among the treatment conditions disappeared, though electrophysiological examination suggests 

that IL10 may prevent some of the injury-associated shifts in muscle composition that result in 

increased fatigability in control injured animals. Within the spinal cord, we found that IL10 alone 

and IL10+BDNF cause a similar increase in axon growth across the injury site. 3D imaging 

using Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / in situ-

hybridization-compatible Tissue Hydrogel (CLARITY) shows these axons do completely 

traverse the injury site, while electrophysiological studies suggest these axons are able to carry 

action potentials. These results are the first to show that regenerated axons can be 

electrophysiologically active.  

Taken together, these studies suggest early immunomodulation can have long-lasting 

benefits through tissue sparing, and that regenerated axons have the potential to transduce signals 

across an injury site. These findings provide novel insights into how the pathophysiology 

following an SCI can be altered using biomaterials and gene therapy. Future studies will involve 

identifying the synaptic targets of regenerated axons and determining how the formation of new 

circuits can influence motor function. 



 1 

Chapter 1 Introduction 

 

Opening 

After an SCI, the loss of specific neural connections and inadequate regeneration of 

motor circuitry often results in life-long paralysis. The research in this dissertation aims to better 

understand the pathophysiology following an injury and how anti-inflammatory or neurotrophic 

gene therapy can influence recovery. This work identifies motor circuit components that can be 

spared from secondary damage and examines the anatomical and electrophysiological properties 

of regenerated axons. 

Thesis Overview 

Chapter 1 introduces the major research outcomes presented in this dissertation. 

Chapter 2 outlines existing research that is pertinent to understanding the advances made by this 

dissertation. 

Chapter 3 investigates muscle innervation and tissue sparing immediately following acute 

bridge implantation with and without anti-inflammatory IL10 gene therapy. These studies 

identify components of the motor circuitry that are spared from secondary damage and 

investigate their electrophysiological properties in both male and female mice. This chapter 

demonstrates that IL10’s therapeutic benefits act through the sparing of circuits involved in 

motor control, thereby providing a neuroanatomical explanation behind the efficacy of IL10 as a 

pre-clinical treatment for modulating post-SCI inflammation.  
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Chapter 4 investigates muscle atrophy and axon regeneration seen after acute bridge 

implantation in response to treatment with IL10 and/or BDNF. These studies aim to identify 

changes in muscle composition and fatigability that can affect motor function and investigate the 

electrophysiological properties of regenerating axons. Preliminary results suggest that some of 

the increased muscle fatigability seen after an SCI can be prevented using IL10 treatment. 

Furthermore, this chapter demonstrates that regenerated axons can carry electrical signals across 

the injury site. Ongoing histological studies aim to reveal how post-SCI muscle fiber type shifts 

are affected by gene therapy treatment. Finally, exponential modeling of electromyogram 

recordings is used to quantify signal decay rates to better understand how muscle activation and 

fatigue are affected by an SCI, fiber type shifting, and therapeutic treatment. 

Chapter 5 summarizes the results presented, recommends routes for future directions, and 

concludes the dissertation. 
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Chapter 2 Overview of Spinal Cord Repair 

 

Significance 

The World Health Organization estimates that up to 500,000 people each year will 

sustain a spinal cord injury (SCI) [6]. Cervical injuries are both the most prevalent, making up 

between 49.3-61.5% of all SCIs [7], and the most detrimental since loss of function can be seen 

in nearly all systems innervated at and caudal to the injury level. Risk per individual peaks 

during adolescence in women and young adulthood in men, and again later in life [6]. These 

injuries almost always result in chronic pain, and permanent sensory and motor deficits. For 

those who survive an SCI, the long-term consequences include a myriad of life-long and 

devastating financial, social, and physical limitations [8].  

Neuroinflammation and Secondary Damage 

SCIs can be classified as traumatic or non-traumatic. Non-traumatic injuries can be 

caused by diseases, infections, tumors, or stroke [9]. Traumatic injuries can be further classified 

into penetrating or non-penetrating. Non-penetrating injuries include contusions, compressions, 

or stretch injuries, whereas penetrating injuries are most often caused by motor vehicle or 

sporting accidents [1]. Within 15 minutes following any type of SCI, there is an upregulation of a 

multitude of inflammatory cytokines and chemokines from microglia, the resident macrophages 

of the central nervous system [10]. Additionally, breakage of the blood-brain barrier allows for 

the infiltration of neutrophils that help amplify the injury response by releasing proteases that 

disrupt the extracellular matrix and allow for increased infiltration of peripheral monocytes [10-
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13]. In response to the microenvironment, these peripheral monocytes will then differentiate into 

macrophages that can take on one of two phenotypes. The pro-inflammatory phenotype is 

designed to kill invading pathogens and virus-infected cells [14]. This cascade of feed-forward 

events represents the innate immune response, which is hypothesized to be designed by evolution 

to protect humans from infection. However, in the context of an SCI, molecules that are 

associated with this phenotype can cause increased demyelination and neuronal apoptosis, 

thereby exacerbating the primary injury [3, 15, 16]. Meanwhile, the anti-inflammatory phenotype 

encourages cell survival and tissue regeneration through the production of growth factors [14]. 

Thus, preventing the post-injury inflammation that results in secondary damage is a clear target 

for therapeutic intervention. 

Strategies for Controlling Inflammation 

Several studies have shown that early anti-inflammatory treatment has neuroprotective 

benefits [17]. Methylprednisolone is the only general immunosuppressant that has been widely 

used as the standard of care for acute SCIs. However, more recent studies have shown that its 

therapeutic benefits are marginal to none, while its adverse side effects are dangerous [18-21]. 

Furthermore, general immunosuppression is unsuitable after an SCI, because it increases 

infection rates and decreases pro-regenerative immune cell functions [22]. Alternatively, cellular 

and molecular approaches for reducing inflammation are more promising because they offer 

increased specificity. Studies have shown that neutrophil and macrophage depletion or 

neutralization can improve recovery after an SCI [23, 24], while transplantation of certain 

macrophages and microglia can promote regeneration following the injury [25-27]. The outcome 

is heavily dependent on the phenotype of these inflammatory cells, which depends on the ligands 

that activate them [22, 28]. For example, IL10 is a cytokine that is both expressed by 
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macrophages [29], and used for polarizing macrophages towards the anti-inflammatory 

phenotype [30]. IL10 downregulates pro-apoptotic factors and upregulates anti-apoptotic factors, 

as well as provides trophic support to neurons through the IL10 receptor [31, 32]. In the absence 

of IL10, secondary damage is exacerbated [29, 33].  

The Shea Lab has been actively exploring the profound neuroprotective effects of 

lentivirus-mediated delivery of the IL10 gene under a CMV promotor. Since inflammation and 

regeneration can take upwards of weeks, the ability to locally induce sustained gene expression 

provides an enormous advantage for long-term modulation of the injury microenvironment. The 

Shea Lab has shown that local gene delivery can result in transgene expression, by mainly 

Schwann cells, fibroblasts, and macrophages, that remains for weeks after implantation [5, 34]. 

Thus far, lentiviral IL10 has been shown to promote and sustain anti-inflammatory polarization 

of peri-injury immune cells [35], reduce post-injury inflammation [36], and enhance functional 

recovery [37].  

Figure 1. Cells of the Nervous System. 
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Spinal Cord Circuitry and Regeneration 

The cell type that is mainly responsible for the transmission of information is the neuron 

(Figure 1. Cells of the Nervous System) [38]. Each neuron can have axons or dendrites, which 

are responsible for transmitting and receiving information, respectively. The location where one 

neuron contacts another neuron, via axons and dendrites, is a synapse, which is surrounded by 

astrocytes that help maintain the microenvironment and regulate neurotransmitter concentrations. 

Myelinating oligodendrocytes help facilitate the transduction of information along axons by 

providing insulation. Meanwhile, microglia migrate through tissues to survey for damages and 

pathogens.  

Figure 2. Tracts of the spinal cord. 
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Spinal circuits have three main directions of information transfer (Figure 2) [39]. First, 

ascending tracts are responsible for transmitting sensory information, such as touch, pain, 

temperature, or limb location. Neurons whose cell bodies reside in the dorsal root ganglia collect 

and send information from the periphery to the brain. Second, descending tracts are responsible 

for transmitting motor information, such as balance, posture, and fine motor control. Neurons 

whose cell bodies reside in the ventral gray matter of the spinal cord receive and send 

information from the brain to the periphery. Finally, spinal reflex tracts are responsible for 

immediate sensory to motor information processing, such as for the coordination of a reflex or 

maintenance of muscle tone. Neurons whose cell bodies reside in the dorsal root ganglia and 

throughout the gray matter within a spinal level can receive and send information from and to the 

periphery with or without cortical input.  

In both mice and humans, the corticospinal tract (CST) is responsible for fine motor 

control of skeletal muscles. The CST is composed of upper motor neurons (UMNs), whose cell 

bodies are located in layer V of the motor cortex and whose axons travel down the spinal cord to 

synapse directly or indirectly, via an interneuron, onto lower motor neurons (LMNs). In rodents, 

the direct UMN-LMN connection only exists for the first two postnatal weeks [40-43]. The 

LMN, located in the ventral gray matter of the spinal cord, sends axons that exit the spinal cord, 

through the ventral root, and synapse onto skeletal muscles associated with the spinal cord level 

in which the LMN is located. Disruption of the UMN to LMN connection will prevent the 

transmission of voluntary motor information from the brain to the muscle, which is why 

paralysis so often results from an SCI [44]. After an injury, UMNs transiently express growth 

and regeneration genes such as growth-associated protein (GAP-43) that is found in growth 

cones [45-47]. However, in the absence of trophic factors and in the presence of growth 



 8 

inhibitory factors, the intrinsic regenerative potential of injured neurons is not sustained [48]. 

Furthermore, scar formation results in a physical barrier that prevents axonal elongation across 

the injury site [49]. Therefore, while injured UMNs do hold the innate capacity for axon 

regeneration, these axons meet both physical and chemical barriers that prevent reestablishment 

of the UMN to LMN connection.  

Strategies for Promoting Regeneration 

While reducing inflammation will work to prevent further damage, the preceding 

mechanical insult will inevitably disrupt circuits that are critical for transmitting electrical 

information along the spinal cord. Some neurons, astrocytes, and oligodendrocytes will still 

undergo apoptosis, while severely damaged axons and synapses will degenerate. For behavioral 

recovery to continue beyond the inflammatory period, either the surviving circuits need to rewire 

to accommodate the loss or the damaged circuits need to regenerate to replace what is lost. Aside 

from stabilization and decompression, no clinical intervention currently exists for managing an 

SCI [50]. Once inflammation has subsided, and when macrophages are done clearing tissue 

debris, what remains of the lesion site is a fluid-filled cyst that is surrounded by scar tissues [51]. 

Studies have shown that filling the lesion site with a biomaterial can help prevent cyst formation 

[52]. Without a scar and cyst that act as mechanical barriers, and with a synthetic extracellular 

matrix (ECM) along which axons can grow, regeneration becomes more feasible. Both natural 

biomaterials that are normally found in the ECM of animal tissues (i.e. collagen, laminin, 

fibronectin) and synthetic biomaterials that have tunable porosities and degradation rates (i.e. 

poly(ethylene glycol), poly (2-hydroxyethyl methylacrylate), poly(lactide-co-glycolide)) have 

been explored for implantation into an SCI with varying extents of increased axon regeneration 

and motor recovery [34, 52-66]. 
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As an alternative to changing the mechanical microenvironment using biomaterials, the 

chemical microenvironment may also be modified to support regeneration. For example, 

transplanted neural, embryonic, and induced pluripotent stem cells can release neurotropic 

factors, lay an ECM, and differentiate into neurons, oligodendrocytes, and astrocytes, resulting in 

improved motor recovery [67-78]. Specific proteins such as hepatocyte growth factor or 

fibroblast growth factor have shown limited success in improving SCI pathophysiology and 

subsequent motor function [79, 80]. However, localized delivery is difficult and protein half-life 

is too short for a single application. Thus, attention has shifted towards the use of viral vectors 

for localized, stable, and sustained gene expression. For example, adenoviruses, herpes simplex 

viruses, and lentiviruses have all been used to deliver neurotrophic factors to increase axon 

regeneration and improve behavioral outcomes [37, 81-85].  

Changes to the mechanical and chemical microenvironments have been independently 

successful, thereby begging the question of whether a combinatorial therapy would further 

increase regeneration and recovery. BDNF is a secreted protein that, under developmental and 

homeostatic conditions, encourages growth and differentiation of new neurons and synapses. 

Studies have shown that delivery of BDNF, which also has anti-inflammatory effects [86], in 

combination with stem cells and/or biomaterials can result in positive histological and/or 

behavioral outcomes [87-103].  
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The Shea lab has developed a scaffold implant made of poly(lactide-co-glycolide) (PLG) 

that is degradable via hydrolysis (Figure 3). Implantation of this biomaterial “bridge” that 

bridges the gap left by a lateral hemisection has many advantages. First, it clearly delineates 

between intact and regenerated tissues, since axons observed within the bridge are considered to 

be regenerated [104]. Second, the time course of degradation is tuned for seamless integration 

with host tissues during the wound healing process. Third, its porosity is optimized to allow for 

adequate cell infiltration and adherence. Finally, it contains 9 channels that traverse the anterior-

posterior axis of the injury, thereby acting as a conduit that provides mechanical support for axon 

growth [50]. Bridge implantation results in the regeneration of CST axons into the injury site and 

re-entry of these axons into the spinal tissues caudal to the injury site [104]. The efficacy of the 

bridge may be further augmented through the use of lentiviral gene therapy [105]. The Shea lab 

has shown that lentiviral BDNF via a PLG scaffold can enhance axon growth and myelination 

after an SCI [34]. Thus far, lentiviral neurotrophin-3, interleukin-4, platelet-derived growth 

Figure 3. Biomaterial implant with lentiviral gene therapy. 
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factor, and noggin, and even spinal progenitor cells have all been delivered via the bridge with a 

multitude of favorable outcomes [34, 37, 69, 106]. 

Muscles After a Spinal Cord Injury 

The connection between an LMN and a muscle fiber is called a neuromuscular junction 

(NMJ), whereas each set of muscle fibers innervated by an LMN make up a motor unit [107]. 

Along the spinal cord, LMNs are topographically connected to different muscle groups. Since 

UMN axons descend caudally to their respective LMN targets, an SCI can sever cortical input to 

all spinal levels caudal to the injury. Therefore, both direct LMN loss and indirect reductions in 

LMN activation, due to decreased cortical input, can contribute to the paralysis of muscle groups 

represented at and caudal to the injury level (Figure 4) [108]. 

The axons of an inactive, damaged, or deceased LMN will degenerate, resulting in NMJ 

denervation of muscle fibers within that motor unit [109]. Denervated NMJs will then release 

Figure 4. Muscles of the forelimb are innervated by different cervical levels. 
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factors that drive re-innervation by the sprouting of nearby axons [110, 111], which is possible 

because LMNs express genes associated with growth and regeneration to a higher extent than 

UMN and because the peripheral nervous system has far fewer inhibitory cues for regeneration 

[46, 112]. If a denervated NMJ is captured by the sprouting of a nearby axon, that muscle fiber 

can now survive as an adoptee into another motor unit. However, if a denervated NMJ 

experiences a prolonged absence of neural input, the muscle fiber will atrophy and this atrophy is 

associated with a decrease in muscle contraction force [113-117]. In humans, muscle atrophy 

starts within a few days after an SCI, followed by fiber-type transformation [118-121].   

A single muscle is composed of different fiber types that atrophy at different rates 

immediately post-injury, but to the same extent after prolonged disuse and denervation [122, 

123]. Type I fibers, which atrophy at slower rates, generate low forces that can be sustained for 

long periods of time and are therefore considered to be slow-fatiguing or fatigue resistant. Type 

II fibers, which can generate high forces when activated, fatigue and atrophy more quickly than 

type I fibers [124-130]. Type II fibers are further classified as IIa, IIb, and IIx, which fall along a 

spectrum that can be defined by differences in characteristics such as contraction speed, fatigue 

resistance, oxidative metabolism, glycolytic metabolism, vascularization, and fiber diameter 

[131]. Different muscles are composed of different combinations of type I, IIa, IIb, and IIx fibers 

[132]. The effects that an SCI has on muscle composition can be due to either differences in fiber 

type atrophy rates or by “type-shifting” where a fiber can change to a different phenotype [130, 

133-136]. After an SCI, dynamic shifts in motor units, muscle size, and fiber types means a loss 

of fine motor control, reduced strength, and decreased resistance to fatigue [109, 137, 138].  
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Strategies for Preventing Muscle Atrophy 

To varying degrees, treadmill training, delivery of neurotrophic factors, stem cell 

transplantation, and electrical/magnetic stimulation after an SCI have been shown to 

independently or combinatorially promote muscle fiber formation, prevent atrophy, and enhance 

motor recovery [139-154]. In cases of incomplete SCIs, where some cortical input for voluntary 

movement remains intact, prevention of muscle atrophy can significantly contribute to 

rehabilitation outcomes [155]. However, the strategies employed to combat post-SCI muscular 

changes decrease in efficacy with increasing SCI severity. In cases of complete SCIs, where 

there is a permanent loss of cortical input for voluntary movement, muscle size and composition 

cannot be maintained without ongoing rehabilitation. Therefore, preservation or reestablishment 

of motor circuitry must necessarily coincide with the prevention of muscle atrophy in patients 

with more severe injuries.  

Gaps in Knowledge 

Biomaterials and gene therapy offer a unique way of controlling inflammation and 

regeneration after an SCI. However, many improvements remain critical for this technology to 

become fully efficacious in the clinic. Although a correlative link between IL10 treatment and 

improved SCI outcomes has been identified, some major caveats remain to be addressed. A 

better understanding of how IL10’s therapeutic effects occur is necessary to illuminate its 

potential for success in a clinical setting.  

First, IL10 may augment plasticity of spinal circuits, allowing intact circuits to 

compensate for those that are lost to primary and secondary damage. If plasticity underlies the 

behavioral improvements seen with IL10 treatment, then the age of an SCI victim will need to be 

considered when evaluating outcomes, because spinal cord plasticity decreases with age [156].  
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Second, decreased inflammation due to IL10 may result in earlier decompression than if 

inflammation were to take its natural time course. An earlier decompression would allow 

electrical signals to pass the injury site earlier, leading to less muscle atrophy. Thus, behavioral 

improvements would be due to the secondary effect of muscle preservation in the periphery and 

not due directly to tissue sparing within the central nervous system. Since the human spinal cord 

is about ten times the size of a mouse spinal cord, differences in tissue compressibility can 

therefore result in disparate and scale-dependent outcomes.  

Third, though the effects of IL10 on tissue sparing and behavior have been well-

documented in thoracic level injuries in rodents, the sparing of fine motor circuitry in a cervical 

level injury that is most relevant to human behavior needs to be demonstrated. These injury-level 

differences pose two important considerations. First, tissue composition varies at different spinal 

cord levels, with more cell bodies located in the cervical enlargement. If sparing is limited to 

only certain cell populations or parts of a neuron, then the therapeutic response may be 

dependent on the location and level of an injury. Second, locomotor function of the hindlimbs 

can be unilaterally initiated and sustained in both rodents and primates. However, due to a higher 

center of gravity, bipedal locomotion is much more difficult to maintain than quadrupedal 

locomotion. As a result, the roles of balance, proprioception, and fine motor control serve a 

greater contribution to primate behavior, so the individual responses to treatment of these 

different circuits must therefore be studied in greater detail. Consequently, successful translation 

will require a deeper understanding of IL10’s mechanisms of action, such that therapeutic effects 

are not lost during the step from rodent to primate systems. 

An understanding of the types of circuits formed by regenerated axons and whether 

regenerated axons – especially those of the CST – actually contribute to behavioral recovery seen 
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with treatment are critical pieces of information that must necessarily precede bench-to-bedside 

translation. Similarly for BDNF treatment, the roles of sparing, plasticity, and anti-inflammatory 

decompression may concurrently contribute to the improvements behavioral outcomes. Under 

the scenario that IL10’s main effect is through sparing and BDNF’s main effect is through 

regenerated axons, then a combinatorial therapy should be examined. For example, early tissue 

sparing might result in increased substrate from which regeneration can occur, thereby leading to 

further enhanced behavioral recovery than is possible with IL10 or BDNF alone.  

Biomaterial implants and gene therapy are clearly extremely versatile tools with high 

therapeutic potentials, because they offer the ability to modify and create an environment that is 

supportive of tissue healing and regeneration. This thesis aims to explore and better define gaps 

in our current understanding of how biomaterials and gene therapy work to improve motor 

function, while simultaneously pushing the boundary of what our currently technology can 

accomplish. 
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Chapter 3 Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and 

Function After a Cervical Spinal Cord Injury in Male and Female Mice 
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Abstract 

In mammals, spinal cord injuries often result in muscle paralysis through the apoptosis of 

lower motor neurons and denervation of neuromuscular junctions. Previous research shows that 

the inflammatory response to a spinal cord injury can cause additional tissue damage after the 

initial trauma. To modulate this inflammatory response, we delivered lentiviral anti-

inflammatory interleukin-10, via loading onto an implantable biomaterial scaffold, into a left-

sided hemisection at the C5 vertebra in mice. We hypothesized that improved behavioral 

outcomes associated with anti-inflammatory treatment are due to the sparing of fine motor circuit 

components. We examined behavioral recovery using a ladder beam, lower motor neuron 

apoptosis and muscle innervation using histology, and electromyogram recordings using 

intraspinal optogenetic stimulation at 2 weeks post-injury. Ladder beam analysis shows 

interleukin-10 treatment results in significant improvement of behavioral recovery at 2 and 12 

weeks post-injury when compared to mice treated with a control virus. Histology shows 

interleukin-10 results in greater numbers of lower motor neurons and muscle innervation at 2 

weeks post-injury. Furthermore, electromyogram recordings suggest that interleukin-10-treated 

animals have signal-to-noise ratios and peak-to-peak amplitudes more similar to that of uninjured 

controls than to that of control injured animals at 2 weeks post-injury. These data show that gene 
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therapy using anti-inflammatory interleukin-10 can significantly reduce lower motor neuron loss, 

muscle denervation, and subsequent motor deficits after a spinal cord injury. Together, these 

results suggest that early modulation of the injury response can preserve muscle function with 

long-lasting benefits. 

Introduction 

The loss of complex neural connections and inadequate nerve growth after a spinal cord 

injury (SCI) often results in permanent motor deficits or even complete paralysis [157]. Trauma 

can result in the apoptosis of lower motor neurons (LMNs), whose axons become detached from 

neuromuscular junctions (NMJs), leaving behind denervated motor endplates [109]. With 

sustained loss of neural input, these orphaned motor endplates will then release chemotactic 

signals to induce nearby, innervated NMJ axons to sprout growth cones [110, 111]. An orphaned 

motor endplate may then become re-innervated to form a functional NMJ. Alternatively, if the 

motor endplate remains denervated, it will disintegrate, the muscle fiber will atrophy, and 

paralysis will remain [113-117]. 

The early inflammatory response following trauma to the spinal cord can cause additional 

damage to neural tissues beyond the initial mechanical trauma [3, 158]. Immediately after the 

blood brain barrier is compromised, peripheral monocytes infiltrate the injury site and 

differentiate into macrophages that can exhibit phenotypes ranging from pro-inflammatory to 

anti-inflammatory. An inflammatory phenotype is highly linked to the secondary damage seen 

with an SCI, whereas the anti-inflammatory phenotype has been shown to encourage cell 

survival and tissue regeneration [4, 14]. Interleukin-10 (IL10) is an anti-inflammatory cytokine 

that is both expressed by macrophages and induces macrophage polarization towards an anti-

inflammatory phenotype, which in turn results in a down-regulation of pro-apoptotic factors and 
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an upregulation of anti-apoptotic factors [29-31, 35]. In the absence of IL10, secondary damage 

is exacerbated [33]. Thus, shifting the post-injury response towards an anti-inflammatory 

phenotype has been a major target for therapeutic intervention. 

The neuroprotective effects of IL10 treatment for an SCI have been investigated in 

several rodent studies. IL10 provides trophic support directly to neurons through the IL10 

receptor [32], decreases post-injury inflammation [36], and increases myelination after a cervical 

SCI [159]. IL10 decreases lesion volume and apoptosis, while increasing behavioral recovery 

[36, 85, 160-166]. However, the majority of animal SCI studies are carried out in female subjects 

[85, 160-164, 166, 167], while most human SCIs occur in males [1]. Significant sex differences 

have been observed in immune responses after an SCI [168-170]. Furthermore, the majority of 

animal SCI studies are carried out at the thoracic level [85, 161-166], while cervical level 

injuries are estimated to make up about half of all human SCIs [7]. In contrast to thoracic spinal 

tissues, the cervical enlargement contains a greater proportion of circuitry that is responsible for 

fine motor control, and the impact of IL10 treatment of cervical SCI has not been investigated. 

In this study, we examined immunomodulation after a cervical SCI and assessed the 

sparing of fine motor circuitry and functional recovery, using both male and female mice. A left 

C5 lateral hemisection was performed, resulting in loss of function of the left arm. The resected 

tissue was replaced with a biomaterial bridge made of poly(lactide-co-glycolide) (PLG) loaded 

with lentivirus encoding for IL10, while lentiviral firefly luciferase (FLuc) served as a control. 

Lentivirus delivery has previously been shown to induce localized and sustained transgene 

expression [5]. Lentiviral IL10 expression can shift post-SCI gene expression towards an anti-

inflammatory profile [37, 171]. We initially analyzed behavioral recovery using a ladder beam at 

2 and 12 weeks post-injury (wpi). Then, using immunohistochemistry, we quantified LMNs, 
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motor endplate densities, innervated NMJ densities, fraction of total NMJs that are innervated, 

and growth cone sprouting. We targeted the acromiotrapezius (ATZ) due to its topographical 

representation rostrally and throughout C5. In addition, we analyzed the flexor digitorum 

profundus & carpi ulnaris (FLX) together, due to their small size and topographical 

representation beginning in caudal C5 [108]. Finally, optogenetic stimulation was used to 

examine muscle activatability, which was quantified as a signal-to-noise ratio (SNR) and peak-

to-peak (P2P) amplitude on an electromyogram (EMG). Our results show that early therapeutic 

intervention prevents some motor deficits by sparing the fine motor circuitry from secondary 

damage in both male and female mice. 

Materials and Methods 

Lentivirus Gene Delivery 

Lentivirus containing pLenti-CMV-Luciferase or pLenti-CMV-IL10 was produced as 

previously described [36]. Briefly, HEK-293FT cells (American Type Culture Collection, 

Manassas, VA) were transfected with lentiviral packing vectors and plasmids of interest in Opti-

MEM (Life Technologies, Carlsbad, CA, #31985-070) and Lipofectamine 2000 (Life 

Technologies, #11668-019). After 48hrs, the supernatant was collected and the virus was 

precipitated using PEG-It (Systems Biosciences, Palo Alto, CA, #LV825A-1) and stored at -

80°C until use. Prior to surgery, 4e7 IFU of virus was loaded onto each PLG scaffold, which 

were fabricated as previously described using the gas foaming technique to fuse PLG particles 

into a matrix [36, 37, 106]. Using the particulate leaching technique, 63-106 µm NaCl served as 

sacrificial templates for pores to allow cell infiltration into the scaffold. A sugar mixture pulled 

into nine 150-250 µm diameter A-P parallel strands served as sacrificial templates for conduits to 

guide nerve growth [5, 50]. 
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Animals and Surgery 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Michigan. For histology and ladder beam, mice used were 2-3-

month-old C57BL/6 (Jackson Laboratories, Bar Harbor, ME, #000664) at the time of injury. For 

optogenetics, mice used were 2-3-month-old Thy1-ChR2-YFP line 18 (Jackson Laboratories 

#007612) at the time of injury. Uninjured data is derived from age-, sex-, and genotype-matched 

controls at the time of sacrifice.  

Mice were anesthetized under 2% isoflurane. The surgery site was then shaved and 

disinfected with iodine and 70% ethanol. Bupivacaine (0.8ml/kg) was delivered locally to the 

incision site, and a C5 laminectomy was performed. Using a microfeather microscalpel (VWR, 

Radnor, PA, #72045-15), a left lateral hemisection of 1mm length (A-P) was performed at C5. 

The spinal tissue was excised and replaced with a lentivirus-loaded scaffold. Then the injury site 

was covered using GELFOAM (Pfizer, New York, NY), the overlying muscle was sutured using 

5-0 Chromic Gut (Henry Schein, Melville, NY, #101-8824), and the skin was stapled. Mice 

received buprenorphine (0.1mg/kg) twice daily for 3 days, lactated ringer’s solution fluid 

supplement (5ml/100g) daily for 5 days, and enrofloxacin (2.5mg/kg) daily for 2 weeks.  

Behavioral Analysis 

C57BL/6 females only, due to persistent bladder issues in males, were trained to walk 

across a ladder beam consisting of 50+ rungs prior to surgery as previously described [172]. 

After surgery, at 2 and 12 wpi, animals were placed on the ladder beam and coerced to walk 

across while being recorded on video. A minimum of 3 trials was completed for each animal at 

each time point. The videos were randomized among a total of four individuals such that each 

video was quantified by two counters who were blinded to the treatment condition. Then each 
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video’s quantifications were averaged between the two counters. A placement could be scored as 

1) a complete placement with all toes facing forward and the palm on the rung, 2) a partial 

placement where the toes may be curled or the palm may not be centered though the limb is still 

weight-bearing, or 3) skipped rungs where the flanking rungs are placements. All others, such as 

misses or slips, were not counted. Examples can be seen in Figure 5. 

Histological Analyses 

At 2 wpi, spinal tissues and arm muscles were extracted, flash frozen in isopentane on 

dry ice, then cryosectioned at 12μm in the transverse plane and 14μm in the longitudinal plane, 

respectively. Spinal and muscle tissues were stained following a standard immunohistochemistry 

protocol with fixation and without fixation in 4% paraformaldehyde, respectively. Antibodies 

used were mouse anti-NeuN (1:250, Millipore, Burlington, MA, #MAB377) for mature neurons, 

chicken anti-NF200 (1:250, AVES Labs, Davis, CA, #NFH) for neurofilaments, anti-

bungarotoxin conjugated to Alexa Fluor 647 (1:500, Thermo Fisher, Waltham, MA, #B35450) 

for motor endplates, and rabbit anti-GAP43 (1:100, Millipore, Burlington, MA, #AB5220) for 

growth cones. Secondary antibodies were Alexa Fluor 647 donkey anti-mouse (1:1000, Jackson 

ImmunoResearch, West Grove, PA #715-606-150), Alexa Fluor 488 goat anti-chicken (1:1000, 

Jackson ImmunoResearch, #103-547-008), and Alexa Fluor 594 goat anti-rabbit (1:1000, 

Jackson ImmunoResearch, #111-587-003). 

Tissues were imaged using a Zeiss Axio Observer.Z1 microscope at 10X and processed 

in FIJI [173]. The analyze particles function (0.5-1 circularity, exclude on edges) in FIJI was 

utilized to count cells of 100-250 µm2 and 250-1100 µm2 on images that had a threshold 

established by a single observer who was blinded to the experimental condition. A minimum 

total of 300 neurons across a minimum of 4 spinal cord sections from each spinal cord sample 
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was quantified. Total motor endplate density, innervated motor endplate density, fraction of 

innervated motor endplates, and fraction of motor endplates with a growth cone nearby were 

quantified and averaged across two counters who were blinded to the experimental condition. If 

an NF200+ or GAP43+ axon was colocalized or <1 axon diameter away from a motor endplate, 

then it would be considered innervated or in the process of being re-innervated, respectively. A 

minimum total of 150 motor endplates across a minimum of 3 muscle sections from each muscle 

sample was quantified.  

Optogenetic Stimulation 

The spinal column of Thy1-ChR2-YFP mice anesthetized under 2% isoflurane was 

exposed, and a C4-C6 laminectomy was performed from the dorsal side. The dura mater over 

C4-C6 was removed to allow insertion of a 1mm long LED probe (Plexon, Dallas, TX, 

#OPT/FS-Flat-110/125-1L) into the left C4, midway between the lateral edge of the spinal cord 

and the midline. Optical stimulation was delivered using a PlexBright Controller to drive a 

465nm HELIOS headstage (Plexon, #OPT/LED_Blue_HELIOS_LC_Kit) in a faraday cage. The 

optical stimulation parameters were 20ms pulse width at 1Hz with a power of 0.04mW for a 

minimum of 3 minutes per animal. 

EMG Data Acquisition and Processing 

Digital out and reference signals from the PlexBright Controller were sent to a headstage 

(Tucker-Davis Technologies, Alachua, FL, #RA16AC) that was connected to a pre-amplifier 

(Tucker-Davis Technologies #RA16PA), which converted the inputted electrical signal into an 

outputted optical signal. To gain access to the muscle, small incisions were made in the skin and 

needle electrodes (Natus Neurology, Pleasanton, CA, #019-475400) were dually implanted into 

the left and right ATZ and FLX muscles. A single electrode in the left back ankle served as the 
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reference signal. EMG and reference signals from the animal were connected to a second 

headstage and a second pre-amplifier. The optical outputs from each pre-amplifier were recorded 

by the same RX7 system (Tucker-Davis Technologies). A schematic for the equipment setup can 

be seen in Figure 10A and an example EMG recording can be seen in Figure 10B.  

Signals from both headstages were acquired at a synchronized rate of 24,414Hz with 

bandpass frequencies of 2.2Hz-7.5kHz. After acquisition, the data was converted to MATLAB® 

format using custom scripts. Next, the differential EMG electrode pairs were subtracted from 

each other and then band passed between 100-500Hz. To calculate the SNR for each muscle, a 

threshold was applied to the digital out signal representing the optical stimulation to determine 

the on and off times of the stimulation. Then, these times were used to calculate the root mean 

square values of the EMG signal during activation (stimulation on) and background (stimulation 

off). The ratio of the two values (on vs. off) was then used to calculate the SNR. To calculate the 

average P2P amplitude for each muscle, the maximum-to-minimum difference for each 

stimulation on time was determined, then averaged across all the stimulation on times for the 

length of that recording session.  

Results 

Functional Recovery with IL10 Expression 

Initial studies analyzed the behavioral response following a penetrating injury to the 

cervical spinal cord. A left-sided hemisection to the cervical enlargement at C5 allowed isolation 

of SCI-induced motor deficits to only the left forelimb. The injury level, injury sidedness, and 

difficulty of placing a weight-bearing limb onto a ladder beam rung allowed quantification of 

movement that requires significant fine motor control. Previous reports show uninjured control 

animals average 50 placements [172]. Animals receiving a bridge with a lentivirus encoding 



 24 

IL10 averaged 12.3 and 10.4 placements at 2 and 12 wpi, respectively. Animals receiving a 

bridge with a lentivirus encoding FLuc averaged 8.7 and 6.2 left forelimb placements at 2 and 12 

wpi, respectively. A two-way ANOVA indicates that IL10 significantly increased placements 

relative to FLuc (p = 0.037), while no differences in performance were observed over time (p = 

0.24) or for interaction between time and virus condition (p = 0.87) (Figure 5).  

Figure 5. Paw placements (top) and counts (bottom) show IL10-treated animals perform 

significantly better when compared to FLuc-treated animals Error bars are   SD. n = 12 – 

13 animals/condition. Two-way ANOVA (p < 0.05 for virus condition). 
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Neuronal and NMJ Sparing with IL10 

Inflammation following trauma can result in the apoptosis of neurons, and we thus 

quantified peri-injury neuronal density. NeuN+ neuron cell bodies range between 100-1100 µm2, 

with LMNs having larger sizes (250-1100 µm2) than interneurons (100-250 µm2) [174]. 

Histological analyses of ipsilateral, peri-injury, caudal tissues at 2 wpi showed that animals 

treated with IL10 had significantly more interneurons and total neurons per section than animals 

treated with FLuc (Figure 6). Since both the injured and contralateral side of FLuc-treated 

animals trended towards decreased neuron densities for all sizes of neurons analyzed, we added 

age- and sex-matched, uninjured controls for all subsequent experiments.  
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Figure 6. Representative images of mature neurons (NeuN) per section for FLuc (A) and IL10 (AA), 100-250 m2 size neurons 

(A’, AA’), and 250-1100 m2 size neurons (A’’, AA’’) are shown. Quantifications of neurons normalized to each section for the 

left (B) and right (C) side are shown for each size range for 2 wpi females. Error bars are   SEM. n = 4 animals/condition. 

Mann-Whitney test *p < 0.05. Scale bar = 500m (A, AA), 100m (A’, A’’, AA’, AA’’). 
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Next, we analyzed sparing in the peripheral nervous system through the quantification of 

motor endplate density and NMJ innervation status. The NMJs were characterized as innervated 

(overlap of NF200+ neurofilament (NFM) and bungarotoxin (BGT)) (Figure 7A), denervated 

(separation of NFM and BGT) (Figure 7B), and reinnervated (overlap of BGT and growth-

associated protein 43 (GAP43)) (Figure 7C).  

Figure 7. Tissue sections were stained for bungarotoxin (BGT) for motor endplates, neurofilament (NFM) for axons, and growth-

associated protein 43 (GAP43) for growth cones. Representative images of NMJs that are (A) innervated, (B) denervated, or 

being (C) reinnervated are shown. Scale bar = 50 m. 
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Figure 8. Quantifications of motor endplate density normalized to muscle area (A, B), innervated NMJ density normalized 

to muscle area (C, D), fraction of total motor endplates that are innervated (E, F), and fraction of total motor endplates 

that are being reinnervated (G, H) are shown for 2 wpi females. Error bars are ± SEM. n = 5 - 6 animals/condition. One-

Way ANOVA with Tukey Post-Hoc *p < 0.05, **p < 0.01. 
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Figure 9. Quantifications of motor endplate density normalized to muscle area (A, B), innervated NMJ density 

normalized to muscle area (C, D), fraction of total motor endplates that are innervated (E, F), and fraction of total 

motor endplates that are being reinnervated (G, H) are shown for 2 wpi males. Error bars are ± SEM. n = 5 - 6 

animals/condition. One-Way ANOVA with Tukey Post-Hoc *p < 0.05. 
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For both females (Figure 8B, D, F, H) and males (Figure 9B, D, F, H), a few significant 

differences were observed between conditions in the contralateral side, thereby supporting the 

use of an age- and sex-matched uninjured control. Additionally, for both female and male FLX 

muscles, the analysis of the NMJs largely showed no significant difference between the 

experimental conditions and uninjured controls. The lack of difference between injury and 

control suggests that the injury was consistently rostral to where FLX muscle innervation began. 

In the left ATZ of females, a significant increase in motor endplate and innervated NMJ 

density per muscle area were observed in animals treated with either IL10 or FLuc relative to 

control uninjured animals (Figure 8A, C). This result is consistent with previous reports 

showing that motor endplates will undergo fragmentation after a denervating event, resulting in 

an apparent increase in motor endplate density prior to the onset of muscle atrophy [175]. To 

account for fragmentation, we quantified the fraction of total motor endplates that are innervated 

and found that FLuc-treated animals had significantly decreased innervation when compared to 

that of control uninjured animals (Figure 8E). Quantification of motor endplates colocalizing 

with growth cones showed that animals treated with FLuc also had the highest level of 

reinnervation (Figure 8G). Since no difference in reinnervation or fraction of innervated motor 

endplates could be observed between IL10-treated and uninjured control animals, these data 

suggested IL10 spared more NMJs from denervation (Figure 8E, G).  

Overall, the differences observed for females (Figure 8) were also seen in males, but to a 

lesser extent (Figure 9). The left ATZ in males treated with either IL10 or FLuc trended toward 

an increase in motor endplate and innervated NMJ densities (Figure 9A, C). As with females, 

male mice treated with FLuc, but not IL10, had a significant decrease in their fraction of 

innervated motor endplates when compared to control uninjured animals (Figure 9E). Animals 
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treated with either IL10 or FLuc also trended towards an increase in their fraction of 

reinnervating motor endplates when compared to control uninjured animals (Figure 9G). All p-

values are reported in Table 1.  
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Figure # One-Way ANOVA p-value 
Tukey Post-Hoc p-value 

Uninjured vs. FLuc Uninjured vs. IL10 FLuc vs. IL10 

8A (ATZ) 0.0099 0.0498 0.0093 0.5516 

8A (FLX) 0.0312 0.0318 0.0944 0.8703 

8B (ATZ) 0.0057 0.0262 0.0060 0.6114 

8B (FLX) 0.6898 0.8535 0.9502 0.6750 

8C (ATZ) 0.0034 0.4107 0.0031 0.0253 

8C (FLX) 0.1744 0.1788 0.3070 0.9542 

8D (ATZ) 0.0299 0.0715 0.0350 0.8618 

8D (FLX) 0.8300 0.8166 0.9627 0.9398 

8E (ATZ) 0.0040 0.0033 0.3289 0.0586 

8E (FLX) 0.3022 0.3645 0.3606 0.9972 

8F (ATZ) 0.2239 0.4378 0.2102 0.8188 

8F (FLX) 0.4727 0.9717 0.4871 0.5896 

8G (ATZ) 0.0037 0.0035 0.4920 0.0342 

8G (FLX) 0.1184 0.9991 0.1793 0.1465 

8H (ATZ) 0.6967 0.9157 0.8990 0.6726 

8H (FLX) 0.2711 0.6793 0.7029 0.2429 

9A (ATZ) 0.0981 0.0976 0.2081 0.8830 

9A (FLX) 0.8125 > 0.9999 0.8545 0.8346 

9B (ATZ) 0.2882 0.4701 0.2771 0.9090 

9B (FLX) 0.0324 0.9885 0.0729 0.0445 

9C (ATZ) 0.5309 0.5249 0.6694 0.9653 

9C (FLX) 0.8221 0.9888 0.8263 0.8858 

9D (ATZ) 0.3750 0.5983 0.3528 0.8872 

9D (FLX) 0.2022 0.9758 0.3373 0.2200 

9E (ATZ) 0.0334 0.0277 0.1648 0.5640 

9E (FLX) 0.7407 0.7623 0.9936 0.8060 

9F (ATZ) 0.1895 0.1913 0.3198 0.9313 

9F (FLX) 0.0357 0.9287 0.1008 0.0411 

9G (ATZ) 0.0808 0.1106 0.1153 0.9997 

9G (FLX) 0.0689 0.5723 0.0599 0.2928 

9H (ATZ) 0.3778 0.4569 0.4137 0.9961 

9H (FLX) 0.3576 0.6860 0.3260 0.7781 

Table 1. One-Way ANOVA p-values and Tukey Post-Hoc p-values associated with Figure 8 and Figure 9. 
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Sparing of Muscle Activation with IL10 

Next, we tested the hypothesis that NMJ differences identified by histology influence 

muscle activation characteristics, which could be analyzed using electrophysiology. Denervation 

of an NMJ releases factors that can induce sprouting of nearby axons [110, 111]. If a denervated 

NMJ becomes captured by a new motor unit, then stimulation of the adopting motor unit will 

result in an increased contractile force that is correlated with the amplitude of a compound action 

potential, which can be measured by an EMG. If a denervated NMJ remains orphaned, then 

stimulation of the motor unit that formerly owned that NMJ will show a decrease in the 

amplitude of its compound action potential [113-117]. Therefore, we quantified the compound 

action potential as a P2P amplitude after optogenetic stimulation of channelrhodopsin positive 

C4 axons. Additionally, we quantified the SNR because, though not technically “noise,” 

background signals due to spontaneous fibrillations are a common characteristic of denervated 

muscles and can indicate damage to the motor circuitry independent of P2P changes.  

No statistically significant differences in P2P and SNR values were observed between 

IL10-treated and uninjured control animals for both males and females, and for both the left ATZ 

and FLX muscles at 2 wpi (Figure 11A, B, E, F), suggesting IL10 spared the motor circuitry 

from secondary damage. Meanwhile, females treated with FLuc had significantly lower left ATZ 

SNRs when compared to control uninjured animals (Figure 11), whereas males treated with FLuc 

had significantly lower left ATZ P2Ps and SNRs when compared to animals treated with IL10 

(Figure 11E, F). FLuc-treated males also had significantly lower left ATZ P2Ps when compared 

to uninjured control males (Figure 11E). Together, these data show that the profound 

detrimental effects an SCI has on muscle activation, which can be identified in EMG recordings 

after optogenetic stimulation, can be alleviated using anti-inflammatory IL10 gene therapy. 
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Finally, no trends or statistically significant differences could be observed in the contralateral 

side (Figure 11C, D, G, H), which all had low values, suggesting that the optogenetic 

stimulation light was contained within the left C4. All p-values are reported in Table 2.  

 

 

 

 

Figure 10. Schematic of the equipment setup (A) for optogenetically-evoked electromyogram recordings is shown, 

as well as the stimulus parameters (20ms pulses, 0.04mW, 3min, 1Hz) and a representative EMG trace (B). 
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Figure # One-Way ANOVA p-value 
Tukey Post-Hoc p-value 

Uninjured vs. FLuc Uninjured vs. IL10 FLuc vs. IL10 

11C (ATZ) 0.2207 0.9914 0.2591 0.3220 

11C (FLX) 0.5117 0.4834 0.9390 0.6881 

11D (ATZ) 0.0207 0.0193 0.9010 0.0532 

11D (FLX) 0.5296 0.8287 0.7701 0.5060 

11E (ATZ) 0.1146 0.1129 0.3678 0.6649 

11E (FLX) 0.7058 0.7199 0.8262 0.9674 

11F (ATZ) 0.4284 0.8900 0.5942 0.4348 

11F (FLX) 0.1101 0.1239 > 0.9999 0.1492 

11G (ATZ) 0.0052 0.0066 0.9763 0.0162 

11G (FLX) 0.8323 0.9659 0.9160 0.8206 

11H (ATZ) 0.0045 0.0607 0.1991 0.0035 

11H (FLX) 0.1001 0.0917 0.8698 0.2602 

11I (ATZ) 0.4795 0.5936 0.9606 0.4900 

11I (FLX) 0.0545 0.0685 > 0.9999 0.0961 

11J (ATZ) 0.2971 0.6497 0.6737 0.2670 

11J (FLX) 0.2472 0.4042 0.8741 0.2440 

Table 2. One-Way ANOVA p-values and Tukey Post-Hoc p-values associated with Figure 11. 

Discussion 

Our studies examined the potential for anti-inflammatory stimuli to enhance the fine 

motor circuitry and muscle activation in a cervical SCI model. The studies reported here validate 

that lentiviral IL10 gene therapy via a PLG implant into a left-sided, cervical SCI is associated 

with significantly improved performance of the left arm, as observed on a ladder beam. A 

number of groups have reported that IL10 treatment after a thoracic SCI can lead to intraspinal 

sparing of neurons, axons, and lesion size that is associated with improved locomotor function 

[85, 161-166]. We have also previously demonstrated in a left-sided, thoracic SCI that IL10 can 

shift the inflammatory milieu toward a pro-regenerative phenotype, which was associated with 

significantly improved locomotor function [37, 171] and consistent with the results here in the 
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cervical model. Thoracic injuries that employ behavioral tests such as the basso mouse scale for 

locomotion, which is controlled by central pattern generators (CPGs) that can be unilaterally 

activated to initiate bilateral locomotor behavior, may not fully capture the deficit from the 

unilateral injury. In contrast, cervical injuries are assessed through analysis of fine motor control. 

which is controlled unilaterally [176]. Maintenance of fine motor control is also particularly 

relevant to humans, as we rely on forelimbs to a greater extent than rodents. Therefore, our 

studies provide further insight into IL10’s therapeutic benefits on the fine motor circuitry, in 

contrast to previous behavioral tests on hindlimb function in which CPGs and reflexes play a 

larger role.  

Additionally, we demonstrate that IL10 expression within the spinal cord impacts 

processes in the periphery. Specifically, examination of muscles innervated at the level of injury 

indicated that IL10 decreased NMJ denervation and prevented the pathological increase in motor 

unit and spontaneous fibrillations in those same muscles. In mice, the ATZ is innervated by 

LMNs whose cell bodies reside between C2-C6 [108]. Within minutes after an injury, direct loss 

of the LMN cell body, such as removal via hemisection, can result in Wallerian degeneration of 

the axon and NMJ denervation [177, 178]. This first denervating event is likely unavoidable 

because the majority of hemisected LMN cell bodies from C5 were innervating the left ATZ. 

Later, peri-injury LMNs can undergo apoptosis that peaks at 3 days post injury in the highly 

inflammatory post-SCI environment, followed by axon degeneration and NMJ denervation [3, 

179, 180]. This second denervating event is the target of our anti-inflammatory treatment. After a 

denervating event, motor endplates will undergo fragmentation [175, 181, 182]. The cumulative 

effects of direct removal of the LMN cell body and secondary damage due to inflammation can 

be seen most profoundly in the 2 wpi left ATZ of animals treated with FLuc, which had a 
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significant increase in motor endplate density that reflects fragmentation and a significant 

decrease in the fraction of total motor endplates that are innervated when compared to uninjured 

control animals. Meanwhile, although the 2 wpi left ATZ of IL10-treated animals also showed 

significant motor endplate fragmentation, the fraction of total motor endplates that are innervated 

remained comparable to that of uninjured controls. Since animals treated with IL10 also had far 

fewer growth cones than animals treated with FLuc, suggesting a decreased need for 

reinnervation, together these data indicate a decrease in injury severity that is likely due to our 

anti-inflammatory treatment. We therefore identify IL10-induced sparing of NMJs in the left 

ATZ as a major contributor to improved fine motor control after a cervical SCI.  

We report that IL10 treatment was effective in both male and female mice, though with 

some differences. All previous studies for delivery of IL10 used female rodents [85, 159-164, 

166, 171], except for one that did not indicate the sex of their animals [165]. Since differences in 

the neuroinflammatory response and locomotor recovery between male and female mice have 

been identified [183], IL10 treatment could potentially have disparate effects in each sex. For all 

the electrophysiological measures, no difference could be found between uninjured and IL10-

treated animals, further supporting therapeutic benefits of IL10 in both sexes. Interestingly, 

control injury significantly reduced the P2P of the left ATZ, reflecting a decrease in motor unit 

size due to injury, in males but not in females. Since we found females treated with FLuc had 

significantly increased reinnervation, then reestablishment of a normal motor unit size might 

account for the apparently normal P2P seen in the left ATZ. We therefore suspect that a 

timepoint slightly earlier than 2wpi might have shown a decreased P2P in the female left ATZ, 

whereas a slightly later timepoint might have shown an increased P2P. Whether or not females 

have more or accelerated reinnervation relative to males remains to be determined. We do not 
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anticipate that the normal P2P of the ATZ in females treated with FLuc reflects a lack of 

pathological outcomes, because increased pathological fibrillations explain why the SNR in 

females was decreased despite no observable reduction in the P2P values. Additionally, while the 

electrophysiological effects of IL10 in males were clear, males showed fewer histological 

differences between conditions. Since all experiments were carried out in C57/BL6 background 

mice, and increased testosterone has been linked with increased neutrophil activation and 

decreased functional outcomes [184, 185], we suspect that the observed sex differences reflect 

mechanistic differences in the injury response.  

While tissue sparing is associated with preservation of function as measured by behavior 

and by optical stimulation at 2 wpi, no additional behavioral improvements were observed at 12 

wpi. Hemisected intraspinal reflex and locomotor circuits will inevitably result in the loss of 

some synchronized muscle activation that is necessary for normal gait to occur. Additionally, 

increases in motor unit size due to reinnervation will decrease an animal’s control over their 

contractile force, such that the ratio of cognitive effort necessary to elicit a specific force will be 

shifted during fine motor movements [186]. If a muscle or neuron becomes inappropriately 

reinnervated after injury, the resulting synkinesis can further disrupt the synchronized muscle 

activation that is necessary for coordinated movement. Therefore, though sparing the motor 

circuitry by decreasing secondary damage due to inflammation can prevent some of the motor 

deficits that often results from an SCI, future studies might need to focus on the specificity of 

circuit reconnection in order for proper behavioral recovery to occur.  

Conclusions 

This study utilizes a left-sided, cervical level SCI to demonstrate that lentiviral IL10 can 

prevent some motor deficits from forming in the left arm. Intraspinal expression of IL10 can 
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preserve NMJ innervation in the peripheral nervous system. Using optogenetic stimulation of C4 

axons that originate from channelrhodopsin positive layer V neurons, we were able to examine 

muscle activation due solely to the fine motor circuitry and demonstrate that IL10 treatment can 

prevent pathological EMG signals in injury-affected muscles. Furthermore, these findings were 

mostly consistent in both male and female mice indicating potential applicability for both sexes. 

Collectively, our results indicate that early immunomodulatory intervention can yield long-term 

benefits. 
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Abstract 

A traumatic spinal cord injury and subsequent neuroinflammation cause permanent 

damage to spinal tissues. While progress has been made to decrease inflammation, increase 

regeneration, decrease glial scarring, and increase myelination, full return of motor function 

remains elusive in preclinical studies. The myriad of tissue structure disruptions that occur along 

with a spinal cord injury necessitates a combinatorial therapeutic approach. The studies 

presented here examine the individual and combined effects of interleukin-10 and brain-derived 

neurotrophic factor gene therapy on different aspects of the fine motor circuitry, including 

muscle innervation and fatigue, axon regeneration, and signal transmission in regenerated axons. 

Histological and electromyogram analyses at 2 weeks post-injury suggest interleukin-10 alone 

and in combination with brain-derived neurotrophic factor have a similar, non-additive, sparing 

effect on neuromuscular junction innervation. However, by 12 weeks post-injury, innervation 

differences can no longer be observed. Preliminary results examining prolonged muscle 

activation suggest post-injury differences exist in muscle fatigability, which may be preventable 

with gene therapy treatment. Ongoing histological studies aim to corroborate these 

electrophysiological findings. Within the spinal cord, quantification of axon regeneration at 2 
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weeks post-injury suggests interleukin-10 alone and in combination with brain-derived 

neurotrophic factor also have a similar, non-additive, effect on promoting axon regeneration. 3D 

imaging in cleared spinal tissues show that regenerated axons can be traced across the entire 

injury site, while intraspinal recordings shows that these axons are electrically active. These 

studies demonstrate that early tissue sparing due to decreased inflammation can prevent some of 

the long-term changes in muscle composition and fatigability. In addition, we show that 

regenerated axons can carry electrical signals across the injury site. Together, these studies 

identify muscle composition and regenerated axon excitability as post-injury features that can 

contribute to behavioral recovery.  

Introduction 

Mammalian spinal cord injuries (SCIs) can affect nearly all systems innervated at and 

caudal to the injury level, resulting in permanent sensory and motor deficits. Injuries that are 

more rostral along the spinal cord are more detrimental, while cervical injuries make up between 

49.3-61.5% of all SCIs [7]. Since the first peak risk in SCI risk occurs early in life (adolescence 

in women and young adulthood in men) survivors will meet life-long financial, social, and 

physical consequences [6, 8].  

After an SCI, a multitude of factors hinder the reestablishment of normal tissue histology 

and return of function. First, the inflammatory response causes additional tissue damage and 

exacerbates injury severity [3]. Studies have worked to address this secondary damage. For 

example, treatment with anti-inflammatory cytokine interleukin-10 (IL10) can decrease 

neuromuscular junction (NMJ) denervation [Chapter 3], apoptosis of peri-injury mature 

neurons, and lesion size, resulting in improved behavioral recovery [37, 85, 159, 161-166, 171]. 

Second, reactive astrogliosis causes the formation of a glial scar that physically prevents the 
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regeneration of tissues lost at the injury epicenter [187]. This physical barrier has been addressed 

by studies that showed scar formation can be decreased when the lesion cite is filled with a 

biomaterial [52, 62, 188-194]. Third, the intrinsic regenerative capacity of neurons in the central 

nervous system (CNS) cannot be sustained in the presence of growth inhibitory factors and 

absence of trophic factors in the injury microenvironment [48]. This chemical barrier to 

regeneration has also been addressed. The delivery of trophic factors, such as brain-derived 

neurotrophic factor (BDNF), can increase axonal regeneration and myelination after an SCI [34, 

87, 92-95, 102]. While many methods have been explored to address inflammation, scarring, and 

regeneration separately, there has yet to be a study that has shown full recovery of fine motor 

control. A more effective therapy is needed, so perhaps a combinatorial approach may be used to 

address the multitude of obstacles that prevent a complete recovery. 

Historically, SCI studies have focused heavily on sparing tissues from secondary damage 

and knocking down the barriers to regeneration. Little attention has been given to understand the 

remaining impediments to a full recovery, after tissues are spared and axons have been 

regenerated. Following an injury, muscle fibers that remain denervated for prolonged periods of 

time will begin to atrophy, while muscle composition will slowly shift such that the ratio of 

highly fatigable fibers to fatigue-resistant fibers increases [113-117, 130, 134-136]. Together, 

muscle mass reduction and fiber-type shifting cause decreases in contractile force and fatigue 

resistance [137, 138]. Though we have previously shown that lentiviral IL10 treatment can spare 

NMJs from denervation at 2 weeks post-injury (wpi) [Chapter 3], whether muscle fibers are 

subsequently spared from atrophy and fiber type-shifting at late timepoints remains unknown. 

Additionally, while our lab and many others have used BDNF to augment axonal regeneration, 

whether regenerated axons can carry electrical signals across an injury site also remains to be 
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investigated. Post-injury muscle composition and the electrophysiological properties of 

regenerated axons are two major factors that require further investigation, because they hold the 

potential to contribute to behavioral recovery at late timepoints after injury.  

Therefore, these studies investigate the physiological changes and limitations that remain 

to hinder the full return of behavioral function after a combinatorial therapy of lentiviral IL10 

and BDNF delivered via implantation of a poly(lactide-co-glycolide) (PLG) bridge into a left C5 

lateral hemisection. We used lentiviral firefly luciferase (FLuc) for control injured animals, as 

well as sex- and age-matched naïve animals for uninjured controls. First, we hypothesized that 

early sparing of NMJ innervation can prevent some of the subsequent changes in muscle 

physiology. We examined innervation and fiber-type composition in the acromiotrapezius (ATZ) 

muscle. From electromyogram (EMG) recordings in response to optogenetic stimulation, we 

quantified muscle activatability and fatigability as signal-to-noise ratios (SNRs), peak-to-peak 

(P2P) amplitudes, and mean absolute values (MAVs). Then, we used two-term exponential 

modeling to further characterize fatigue rates with sustained muscle activation. We also 

hypothesized that the neuroprotective effects of IL10 in combination with the neurotrophic 

support of BDNF might further increase tissue sparing and augment the regenerative response. 

We utilized the PLG implant, which clearly delineates between intact and regenerated tissues, to 

isolate regenerated axons for neurofilament (NFM) quantification, filament tracing, and 

electrophysiological analyses.  

Materials and Methods 

Lentiviral Gene Delivery 

Lentiviral vectors for FLuc using pLenti-CMV-Luciferase2, IL10 using pLenti-CMV-

IL10, and BDNF using pLenti-CMV-BDNF were produced by transfecting HEK-293FT cells 
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(American Type Culture Collection, Manassas, VA) with packaging vectors in Opti-MEM (Life 

Technologies, Carlsbad, CA, #31985062) and Lipofectamine 2000 (Life Technologies 

#11668019) as previously described [37]. The virus was collected after 48hrs of incubation, 

precipitated using PEG-It (Systems Biosciences, Palo Alto, CA, #LV825A-1), and a total of 4E7 

IFU were loaded onto a PLG scaffold [36, 37, 106]. For individual treatment conditions, a 1:1 

ratio of therapeutic to FLuc virus was used. For example, the IL10 alone condition is composed 

of 2E7 IFU of lentiviral IL10 and 2E7 IFU of lentiviral FLuc, while the IL10+BDNF condition is 

composed of 2E7 IFU of lentiviral IL10 and 2E7 IFU of lentiviral BDNF. The scaffolds were 

produced by polymerizing PLG particles around 63-106 µm NaCl at a 1:2 by mass ratio and nine 

150-250 µm diameter A-P strands of sugar that were leached to produce pores for cell infiltration 

and conduits to guide axon growth, respectively [5, 50].  

Animals and Surgery 

The Institutional Animal Care and Use Committee at the University of Michigan 

approved all procedures carried out on these animals. We used C57BL/6 (Jackson Laboratories, 

Bar Harbor, ME, #000664), Thy1-ChR2-YFP line 18 (Jackson Laboratories #007612), and 

CrymRFP (bred from Mutant Mouse Resource & Research Center #036627-UCD and Jackson 

Laboratories #007905) mice that were 2-3 months old at the time of injury. All uninjured animals 

are age-, sex, and genotype-matched.  

Acute SCIs were performed as previously described in Chapter 3. Briefly, under 2% 

isoflurane, the surgical site was sterilized and injected with bupivacaine (0.8 mL/kg). After a C5 

laminectomy, a 1 mm (A-P) left lateral hemisection was made using a microfeather microscalpel 

(VWR, Radnor, PA, #72045-15). The excised spinal tissue was replaced with the PLG implant, 

Gelfoam (Pfizer, New York, NY, #0009-0315-08) was used to cover the laminectomy site, the 
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overlying muscles were sutured using 5/0 Chromic Gut (Henry Schein, Melville, NY, #3101-

8824), and the skin was stapled.  

Histological Analyses 

Histology and analyses for NMJs were carried out as previously described in Chapter 3. 

Only the injured, ipsilateral side was analyzed in reference to uninjured controls, because we had 

previously shown in Chapter 3 that the uninjured, contralateral side is affected by our injury. 

For examining axons positive for NFM, flash frozen spinal tissues were cryosectioned at 12 μm 

in the transverse plane, then stained following a standard immunohistochemistry protocol with 

fixation in 4% paraformaldehyde. For muscle fiber type analyses, flash frozen muscles were 

cryosectioned at 14 μm in the transverse plane, then stained following a standard 

immunohistochemistry protocol without fixation. Antibodies used were chicken anti-NF200 

(1:250, AVES Labs, Davis, CA #NFH) for neurofilaments, anti-bungarotoxin conjugated to 

Alexa Fluor 647 (1:500, Thermo Fisher, Waltham, MA #B35450) for motor endplates, rabbit 

anti-GAP43 (1:100, Millipore, Burlington, MA, #AB5220) for growth cones, mouse IgG1 anti-

MHC IIa (1:100, Developmental Studies Hybridoma Bank (DSHB), Iowa City, IA, #SC-71) for 

type IIa fibers, mouse IgM anti-MHC IIb (1:100, DSHB #BF-F3) for type IIb fibers, and rabbit 

anti-NF200 (1:200, Sigma, St. Louis, MO, #N4142) for neurofilaments. Secondary antibodies 

were Alexa Fluor 488 goat anti-chicken (1:1000, Jackson ImmunoResearch, West Grove, PA, 

#103-547-008), Alexa Fluor 594 goat anti-rabbit (1:100, Jackson ImmunoResearch #111-587-

003), Alexa Fluor 555 goat anti-mouse IgG1 (1:1000, Invitrogen, Waltham, MA, #A-21127), 

Alexa Fluor 647 goat anti-mouse IgM (1:1000, Invitrogen #A-21042), and Alexa Fluor 488 goat 

anti-rabbit (1:1000, Invitrogen #A-11070). Tissues were imaged as previously described in 

Chapter 3.  
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For NFM quantifications, a single observer, blinded to the experimental condition, 

outlined the inner wall and contents of the bridge implant as the region of interest (ROI). Then, 

NFM positive filaments within this ROI were quantified using a semi-automated counting 

program written in MATLAB as previously described [195]. A minimum of four sections were 

quantified for each spinal cord. For muscle fiber quantifications, two observers blinded to the 

experimental condition manually counted the number of MHC IIa+ and MHC IIb+ muscle fiber 

using the cell counter plugin in FIJI [173]. Then, the total area of the section was measured by 

outlining the muscle. The area of MHC IIa and MHC IIb fibers was calculated by establishing a 

threshold and using the measure function. A minimum of four sections was quantified for each 

muscle.  

Tissue Clearing and Filament Analysis 

Tissue clearing was achieved using a modified passive CLARITY protocol [196, 197]. 

Briefly, perfused tissues were further fixed in 4% paraformaldehyde, then A4P0 (4% acrylamide 

and 0.25% 2,2’-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride in phosphate buffered 

saline (PBS)) for 1 week each at 4C. Tissues were then polymerized for 4-5 hrs at 40C and 

cleared for 1 week in 8% SDS with 200 mM boric acid at pH 8.5 at 37C. Tissues were then 

washed thoroughly with PBS, blocked in 6% bovine serum albumin with 0.5% Triton X-100 in 

PBS, stained with primary antibodies, washed with PBS, stained with secondary antibodies, and 

washed with PBS for two weeks each. Primary antibodies used were rabbit anti-NF200 (1:50, 

Sigma #N4142) for neurofilaments, mouse anti-NeuN (1:50, Millipore #MAB377) for mature 

neurons, chicken anti-GFAP (1:50, AVES #GFAP) for glial scarring, and rat anti-RFP (1:100, 

ChromoTek, Islandia, NY, #5F8) for counterstaining RFP in CrymRFP animals. Secondary 

antibodies used were Alexa Fluor 594 goat anti-rabbit (1:100, Jackson ImmunoResearch #111-



 48 

587-003), Alexa Fluor 647 donkey anti-mouse (1:100, Jackson ImmunoResearch #715-606-150), 

Alexa Fluor 488 goat anti-chicken (1:100, Jackson ImmunoResearch #103-547-008), and Alexa 

Fluor 594 goat anti-rat (1:100, Jackson ImmunoResearch #112-587-003). Tissues were then 

mounted in standard CUBIC-mount for imaging on a confocal laser scanning microscope 

(Olympus, Shinjuku City, Tokyo, Japan, #FV1000), using a 10x UPlanSApo lens (Olympus #1-

U2B824). Images were analyzed in Imaris version 9.5.  

Optogenetic Stimulation 

As described in Chapter 3, Thy1-ChR2-YFP mice were anesthetized using 2% 

isoflurane, a C3-C6 laminectomy was performed, and the overlying dura was removed. An LED 

probe (Plexon, Dallas, TX, #OPT/FS-Flat-110/125-1L) was inserted (1 mm D-V) into the left 

C4. A PlexBright Controller was used to drive optical stimulation (0.04 mW) through a 465 nm 

HELIOS headstage (Plexon #OPT/LED_Blue_HELIOS_LC_Kit). For both baseline EMG and 

intraspinal recordings, we used 20 ms pulse widths at 1 Hz for a minimum of 3 minutes per 

animal. For muscle fatiguing, we used 50, 100, 200, 500, and 1000 ms pulse widths. Each pulse 

width was delivered 5 times in a row at a 2% duty cycle. For subsequent intraspinal recordings, 

we transected the right C5 to isolate the signals passing through the left C5 bridge implantation 

area and recorded for 3 minutes. We then transected the left C5, through the implant, and 

recorded for an additional 3 minutes to isolate noise within the system. All intraspinal recordings 

were taken with the initial stimulation parameters (20 ms pulse width, 1 Hz).  

Data Acquisition and Processing 

Dually implanted needle electrodes (Natus Neurology, Pleasanton, CA, #019-475400) 

were used for EMG recordings. For intraspinal recordings, we dually implanted wire electrodes 

(A-M Systems, Sequim, WA, #377100) into the left C6. The left ankle was used as ground. 
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Signals from the Plexbright Controller and implanted electrodes were sent to two different 

headstages (Tucker-Davis Technologies, Alchua, FL, #RA16AC), then to two separate pre-

amplifiers (Tucker-Davis Technologies #RA16PA), then to a single RX7 system (Tucker-Davis 

Technologies) such that stimuli and recordings could be time-locked. All recordings were 

acquired at a synchronized rate of 24,414 Hz with bandpass frequencies of 2.2 Hz - 7.5 kHz. The 

difference between EMG electrode pairs was taken, then bandpassed at 100-500 Hz and analyzed 

using custom MATLAB® scripts.  

For intraspinal recordings, males and females were combined. All other analyses 

considered males and females separately. SNR and P2P values were calculated as previously 

described in Chapter 3. C6 recordings for which the P2P did not decrease after subsequent 

transections were excluded under the assumption that the equipment shifted during the 

transection procedure. For analysis of fatigue, the MAV was calculated by taking the mean 

absolute amplitude for either the first or last 20 ms of each stimulus duration, then averaging by 

the number of stimulus pulses. For exponential modeling of fatigue, the absolute amplitude was 

average across all pulses at each stimulus duration, then smoothed using a 20 ms window to 

obtain a smoothed absolute amplitude (SAA) as a function of time (t), which is defined as:  

𝑆𝐴𝐴(𝑡) = 𝐴𝑒−𝑏𝑡 + 𝐶𝑒−𝑑𝑡,   (1) 

where A & C represent the initial maximum amplitude and b & d represent the decay constants 

of higher-amplitude/faster-fatigue and lower-amplitude/slower-fatigue fibers, respectively. These 

data were fitted using the NonLinearLeastSquares and exp2 fit options. Values for which the 

difference between the 95% and 5% confidence interval exceeded the 50% estimate were 

excluded for low fitting accuracy.  
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Preliminary Results & Discussion 

IL10 Sparing is Only Observable at Early Timepoints 

We had previously shown in Chapter 3 that lentiviral IL10 can spare NMJs from 

denervation after injury in the left ATZ in males and females at 2 wpi. Here, we asked how the 

addition of BDNF would affect the injury response and if histological differences persist over 

time. All four conditions (FLuc, IL10, BDNF, and IL10 + BDNF) were compared to uninjured 

controls as a reference point.  

In the 2 wpi ATZ of females, we found that IL10 had significantly increased motor 

endplate and innervated NMJ densities (Figure 12A, B), that FLuc and BDNF conditions had 

significantly decreased fraction of innervated NMJs (Figure 12C), and that FLuc showed 

significantly increased reinnervation (Figure 12D). Importantly, examining the fraction of 

innervated NMJs showed that IL10 and IL10 + BDNF conditions were not significantly different 

from that of uninjured controls (Figure 12C), whereas IL10 + BDNF was the only condition that 

showed no difference from uninjured controls in all measures of NMJ quality (Figure 12A-D). 

Innervation differences among uninjured, FLuc, and IL10 conditions were corroborated by EMG 

data in both male and female mice. In the 2 wpi left ATZ, the SNR of females and the SNR and 

P2P of males treated with FLuc are significantly decreased relative to that of uninjured animals, 

whereas no differences could be found between IL10-treated and uninjured control animals 

(Figure 12E-H, Chapter 3). Preliminary histological results suggest that IL10 + BDNF spares 

NMJs from denervation as well as, if not better than, IL10 alone. However, to verify these 

histological findings, additional 2 wpi EMG data for BDNF and IL10 + BDNF (Figure 12E-H), 

which were excluded from statistical analyses due to low animal numbers, will be collected in 

ongoing experiments.  
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In the 12 wpi ATZ, we found no histological differences between our experimental 

conditions and the uninjured controls (Figure 12I-L). We also found no electrophysiological 

differences between FLuc and IL10 experimental conditions and the uninjured controls (Figure 

12M-P). Additional animals are needed for 12 wpi BDNF and IL10 + BDNF EMG data, so 

those have been excluded from the statistical analyses (Figure 12M-P). Since the early NMJ 

sparing effects of IL10 and IL10 + BDNF from 2 wpi can no longer be observed at 12 wpi, likely 

because of disintegration of denervated motor endplates and muscle atrophy, these preliminary 

results suggest that NMJ innervation is not a major contributor to the behavioral deficits that 

remain at late timepoints after an SCI (Chapter 3). All p-values are reported in Table 3. 
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Figure # 

One-Way 

ANOVA 

p-Value 

Dunnett’s Post-Hoc p-value 

Uninjured vs. 

FLuc 

Uninjured vs. 

IL10 

Uninjured vs. 

BDNF 

Uninjured vs. 

IL10 + BDNF 

12A 0.0327 0.0789 0.0134 0.4943 0.0535 

12B 0.0013 0.4256 0.0007 0.9832 0.0780 

12C 0.0179 0.0091 0.5544 0.0215 0.1722 

12D 0.0274 0.0100 0.7357 0.1672 0.0831 

12E 0.2207 0.9886 0.2068 N/A N/A 

12F 0.0207 0.0139 0.8723 N/A N/A 

12G 0.0052 0.0047 0.9686 N/A N/A 

12H 0.0045 0.0451 0.1561 N/A N/A 

12I 0.0959 0.0957 0.9989 > 0.9999 0.9880 

12J 0.5710 0.3633 0.9992 0.9602 0.9302 

12K 0.1712 0.7242 0.7147 0.5218 0.9470 

12L 0.1370 0.3034 0.2377 0.9963 0.9801 

12M 0.9213 0.9964 0.8934 N/A N/A 

12N 0.6635 0.8507 0.5742 N/A N/A 

12O 0.7965 0.9757 0.8349 N/A N/A 

12P 0.3094 0.9910 0.3141 N/A N/A 

Table 3. One-Way ANOVA p-values and Dunnett’s Post-Hoc p-values associated with Figure 12.. 

Injury Affects Muscle Composition and Fatigability 

Since muscle atrophy and changes in muscle fiber types that compose a muscle occur 

after an SCI, we wanted to see if early NMJ sparing could prevent changes in muscle 

composition, activation, and fatigability at late timepoints. Histological analysis is in progress for 

Type IIa and IIb fibers in the left ATZ at 2 and 12 wpi (Figure 13).  

Next, we took EMG recordings at 2 and 12 wpi using successively longer optogenetic 

stimulation durations. We examined the first 20 ms of the stimulus, also known as the initial 

Figure 13. Histology of the left ATZ of an uninjured control mouse stained for Type IIa (red) 

and Type IIb (green) fibers. Quantifications for 2 and 12 wpi tissues are in progress. 
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MAV, and the last 20 ms of the stimulus, also known as the sustained MAV. Comparisons were 

first done between conditions, to identify any differences in activation due to treatment at each 

timepoint. Comparisons were also done between 2 and 12 wpi, to check whether differences 

within each condition are due to changes in the muscle over time.  

In 12 wpi females, preliminary results comparing different treatments show that FLuc-

treated animals had a significantly increased initial MAV when compared to control uninjured 

animals for 200, 500, and 1000 ms stimulation durations (Figure 14C). Since these differences 

were not observable when muscles were given only short stimulus durations (Figure 12M, N), 

these results suggest FLuc-treated females experienced increased recruitment of fast-fatigue 

muscle fibers with increased muscle activation. Meanwhile, 12 wpi IL10-treated animals 

exhibited no difference in initial MAV from that of uninjured control animals, suggesting IL10 is 

able to prevent some of the long-term changes in muscle activation that FLuc-treated animals 

experienced. In 12 wpi males, IL10 significantly increased the sustained MAV when compared 

to control uninjured animals for 50, 100, 200, and 500 ms stimulation durations (Figure 14H), 

suggesting an increase in motor unit size for fatigue-resistant fibers. No other differences were 

found across the rest of the female (Figure 14A-D) or male (Figure 14E-H) conditions. 

Ongoing studies will aim to add more animals to this analysis for better data resolution. All p-

values associated with Figure 14A-H are reported in Table 4.  
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Figure 14. Quantification of MAV for the first 20 ms (A, C, E, G) and the last 20 ms (B, D, F, H) of different stimulus durations 

for females (A-D) and males (E-H) at 2 wpi (A, B, E, F) and 12 wpi (C, D, G, H). Error bars are ± SEM. Two-Way Repeated 

Measures ANOVA with Dunnett’s Post-Hoc *p < 0.05, **p < 0.01 for uninjured vs. FLuc, while #p < 0.05, ##p < 0.01, ###p < 

0.001 for uninjured vs. IL10. Quantification of MAV for female (I, J, K) and male (L, M, N) uninjured controls (I, L), FLuc (J, 

M), and IL10 (K, N) treatment for comparison of 2 and 12 wpi. Error bars are ± SEM. Multiple t-test *p < 0.05. n = 3 - 10 

animals/condition, except FLuc (n = 2 for 2 wpi males) and IL10 + BDNF (n = 1 for 12 wpi males). Note: IL10+BDNF 

condition was excluded from statistical analyses in all panels.  
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Figure 

# 

Two-Way Repeated 

Measures ANOVA p-

value 

Dunnett’s Post-Hoc p-value 

Uninjured vs. FLuc Uninjured vs. IL10 

Inter 

-action 

Stimulus 

Duration 

Treat 

-ment 

50 

ms 

100  

ms 

200  

ms 

500  

ms 

1000 

ms 

50 

ms 

100  

ms 

200 

ms 

500 

ms 

1000 

ms 

14A 0.1975 0.0014 0.2210 0.7778 0.5602 0.5016 0.3025 0.1942 0.3671 0.3056 0.3042 0.7170 0.8853 

14B 0.2284 <0.0001 0.0793 0.1503 0.0868 0.2303 0.2624 0.1901 0.1551 0.2813 0.4454 0.6054 0.8540 

14C 0.0040 <0.0001 0.0305 0.1871 0.0874 0.0167 0.0035 0.0014 0.7889 0.7759 0.9047 0.9302 0.8297 

14D 0.8665 <0.0001 0.6265 0.7985 0.6519 0.9157 0.9025 0.9559 0.5083 0.6260 0.7082 0.8669 0.9611 

14E 0.9508 0.2091 0.2487 0.2735 0.1817 0.1511 0.2779 0.2931 0.8994 0.9280 0.9530 0.7614 0.7657 

14F 0.0588 <0.0001 0.3809 0.0683 0.0980 0.5273 0.6965 0.5763 0.4275 0.2853 0.8743 0.9612 0.9666 

14G 0.1257 0.0860 0.0726 0.7049 0.8832 0.6615 0.7566 0.7777 0.3454 0.2067 0.1026 0.0197 0.0234 

14H 0.1297 <0.0001 0.0108 0.9111 0.9988 0.9801 0.9614 0.9552 0.0008 0.0009 0.0008 0.0271 0.0595 

Table 4. Two-Way Repeated Measures ANOVA p-values and Dunnett’s Post-Hoc p-values associated with Figure 14A-H. Note: 

p < 0.0001 for subject matching in all panels. 

Next, comparing early and late timepoints, both female and male control uninjured 

animals showed no differences for both initial and sustained MAV (Figure 14I, L), suggesting 

10 weeks of ageing had little effect on muscle activation. In FLuc-treated males, the sustained 

MAV for 50 ms stimulus duration was significantly higher at 12 wpi when compared to 2 wpi 

(Figure 14M). In IL10-treated females and males, the sustained MAVs for 50 and 100 ms 

stimulus durations were significantly higher at 12 wpi when compared to 2 wpi (Figure 14K, N). 

No differences could be observed for FLuc-treated females (Figure 14J). Together, these 

preliminary results suggest injury changes how muscles are activated as an animal ages, though 

more animals are needed to confirm these findings. All p-values associated with Figure 14I-N 

are reported in Table 5. 
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Figure 

# 

Multiple T-Test p-value 

First 20 ms Last 20 ms 

50  

ms 

100 

ms 

200 

ms 

500 

ms 

1000 

ms 

50  

ms 

100 

ms 

200 

ms 

500 

ms 

1000 

ms 

14I 0.6895 0.7529 0.9539 0.3298 0.3240 0.5633 0.4760 0.5994 0.8035 0.7277 

14J 0.4109 0.4147 0.3097 0.1162 0.1109 0.6454 0.6700 0.6356 0.5902 0.4954 

14K 0.2867 0.2715 0.3045 0.2162 0.4548 0.0251 0.0303 0.1164 0.2454 0.3180 

14L 0.3152 0.6974 0.6868 0.6877 0.4752 0.5165 0.0680 0.4752 0.7545 0.8876 

14M 0.0898 0.0714 0.1091 0.1772 0.1200 0.0376 0.1350 0.2721 0.6168 0.3829 

14N 0.3576 0.3717 0.2551 0.1797 0.1551 0.0308 0.0489 0.0610 0.2654 0.3177 

Table 5. Multiple t-test p-values associated with Figure 14I-N. 

While analysis of the initial and sustained MAV provides innervation and activation 

insight for fast-fatigue and fatigue-resistant fibers, we sought a more informative way to 

understand how muscle activation changes within a stimulus duration. We noticed that long 

stimulus durations produced EMG signals that exhibited exponential decay characteristics, so we 

applied two-term exponential modeling using equation (1), which would capture the initial 

amplitude of both fast-fatigue and fatigue-resistant fibers and their individual rates of decay. A 

graphical example of this analysis can be seen in Figure 15. When more animals become 

available for analysis, the constant values will be compared across treatment conditions and 

timepoints. We hypothesize that injury increases the decay rates of both fast-fatigue and fatigue-

resistant fibers, while tissue sparing due to IL10 can prevent some of the injury-induced 

increases in fatigability.  
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Figure 15. Graphical representation of exponential modeling applied to the EMG recording 

of the left ATZ in an uninjured female that is receiving optogenetic stimulation in the left C4. 
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Gene Therapy Enhances Axon Regeneration Across an SCI 

Next, we moved to examine how different virus conditions can influence axonal 

regeneration by quantifying NFM within the bridge. We found that 2 wpi animals treated with 

either IL10 or IL10+BDNF had significantly greater NFM densities than FLuc-treated animals, 

and that animals treated with IL10+BDNF had a significantly greater NFM density than animals 

treated with BDNF alone (Figure 16B). However, these differences could no longer be observed 

by 12 wpi (Figure 16C). Together, these results suggest that decreased inflammation enhances 

the onset of regeneration, but not necessarily the total regenerative capacity as long as a PLG 

implant is present. 

Since there exists no synaptic targets within the bridge, we then asked whether these 

axons are traversing the entire injury site. In a hemisection model, where intact, contralateral 

tissues have the potential for axon sprouting, plasticity, and appearance caudal to the injury, 3D 

tracing studies can provide much greater anatomical insight than 2D slice histology. Using 

Figure 16. Representative images of spinal cords (A) stained for NFM. Quantifications of neurofilament normalized to bridge 

area for 2 (B) and 12 (C) wpi females. n = 5 - 6 animals/condition. Error bars are ± SEM. One-Way ANOVA with Tukey Post-

Hoc *p < 0.05, **p < 0.01, **p < 0.001. Scale bar = 500 𝜇m. 
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CLARITY in a wild type, FLuc-treated 26 wpi animal, we found that NFM positive, regenerated 

axons can easily be observed within the injury site (Figure 17A and A’). Filament analysis 

shows some regenerated axons could even be traced from the rostral to the caudal end of the 

injury (Figure 17A’’). However, more animals will be needed to confirm these findings.  

Figure 17. CLARITY images of a 26 wpi spinal cord of a wild type animal that received FLuc treatment (A) and a 12 wpi 

CrymRFP animal that received IL10 + BDNF. At 26 wpi, NFM positive axons can be observed in abundance throughout the 

injury site, which is outlined in a dotted box and a magnified view is shown (A’). Filament tracing (A’’) was able to be carried 

out on NFM positive axons and the average diameter and length of traceable axons are indicated. At 12 wpi, CrymRFP positive 

axons were not traceable throughout the injury or peri-injury tissues, which are outlined in a dotted box and a magnified view is 

shown (B’). An uninjured CrymRFP positive spinal cord is shown for reference (B’’). Arrowheads point towards axon bundles 

and the solid white box outlines the implant area.  
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Next, since fine motor control is most relevant to human behavior, we looked more 

specifically in CrymRFP animals, whose corticospinal tract (CST) axons carry a fluorescent tag. 

The 12 wpi IL10+BDNF-treated CrymRFP spinal cord (Figure 17B and B’) that we analyzed 

appeared to have its one CST axon bundle on the rostral end of the injury split into one medial 

bundle and one lateral bundle at the caudal end of the injury. This is an abnormal finding in 

comparison to uninjured CrymRFP tissues (Figure 17B’’), which displays a single medial CST 

bundle along the length of the cord. However, sparse labeling within the injury prevented us 

from applying filament tracing to confirm if these axons grew from C4 to C6 or if they sprouted 

from the contralateral C5/6. While previous studies using 2D slice histology showed punctate 

staining for CST axons within the injury site [104], higher quality images and more animals for 

our 3D tracing studies will be needed to confirm that CST axons can regenerate across an SCI. 

Furthermore, due to the medial location of the CST, a full transection model might provide a 

cleaner analysis of CST regeneration.  

Regenerated Axons Are Electrically Active 

Finally, we wanted to know if regenerated axons in the central nervous system can carry 

electrical signals. With optogenetic stimulation in the left C4 of cortical layer V projection 

neurons that express a channelrhodopsin, we took intraspinal recordings of the left C6 at 12 wpi. 

We transected the right C5 to isolate signals only to those traveling through the bridge in the left 

C5, then normalized all values to recordings in which there was a full C5 transection to account 

for any electrical noise emitted by the stimulating equipment. A schematic can be seen in Figure 

18A and a sample recording can be seen in Figure 18B. Preliminary quantifications of signals 

traveling through the left C4 can be seen in Figure 18C. Although no statistically significant 

differences can be observed between conditions, since more animals are needed, we find that the 
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left C6 presents recordable electrical signals in almost all animals analyzed. While these 

preliminary results suggest that regenerated axons are electrically active, whether they form 

mature synapses and the identity of their synaptic targets remains to be determined in future 

experiments. 

Figure 18. Schematic for intraspinal stimulation at C4 and recording at C6 (A), as well as the stimulus parameters (20 ms pulses, 

0.04 mW, 3 min, 1 Hz), representative recording of an uninjured female (B), and peak-to-peak (C) quantification. n = 4 - 8 

animals/condition, except for IL10 + BDNF (n = 1). Error bars are ± SEM. One-Way ANOVA with Tukey Post-Hoc. 
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Chapter 5 Conclusions and Future Directions 

 

Summary of Findings 

Collectively, the work described in this dissertation focuses on the histological and 

electrophysiological outcomes associated with the use of lentivirus-loaded PLG scaffolds to 

bridge a cervical SCI. The SCI is a left-sided C5 hemisection, which results in motor deficits of 

the left arm. At 2 and 12 wpi, we found that animals receiving anti-inflammatory IL10 lentiviral 

treatment exhibited greater control of their left forearm than animals who received a control 

lentiviral treatment. We determined that IL10 exerts its therapeutic benefits through the 

preservation of motor circuitry from secondary damage due to inflammation, thus allowing for 

more normal muscle activation characteristics. We find that this tissue sparing at early timepoints 

after an injury can affect how muscles atrophy and age, thus ultimately affecting the ability of 

the muscle to resist fatigue. Additionally, we show that regenerated axons can carry electrical 

signals across an injury site, thereby suggesting these axons have the potential to contribute to 

behavioral recovery long after an injury has occurred. The research presented here advances our 

understanding of the short and long-term effects of lentiviral gene therapy treatment on motor 

circuit integrity, muscle fatigability, and regenerated axon excitability. 

Significance and Impact of Findings 

Of the thousands of new SCI patients each year, most of the affected individuals will be 

male [1], most of the injuries will be at a cervical level [7], and none will receive acute treatment 

designed specifically to address the secondary damage that will contribute to their functional 



 64 

deficits. While studies have identified sex-specific differences in the immune response [168-

170], most SCI studies use female rodents [85, 160-164, 166, 167], and most of these are carried 

out at the thoracic level [85, 161-166]. In Chapter 3, we address the dire need for understanding 

how an anti-inflammatory gene therapy works in both male and female mice at an SCI level that 

is relevant to human motor function. We show that lentiviral IL10 has therapeutic benefits in 

both sexes by preventing the denervation of skeletal muscles whose LMNs reside rostral to and 

at our C5 hemisection. These findings demonstrate the non-sex-specific effectiveness of anti-

inflammatory lentiviral IL10 for the prevention of secondary damage and amelioration of 

behavioral deficits in a cervical injury model. 

While prevention of secondary damage substantially improves outcomes of an SCI by 

various measures, additional improvements remain to be made. Although animals that received 

IL10 treatment perform better than those who received control treatment, neither group of 

animals showed continued improvement between 2 and 12 wpi. Disruptions to the spinal 

circuitry including neuronal apoptosis, axonal degeneration, and synaptic rewiring are 

unavoidable in cases of traumatic SCIs. The loss of these tissues corresponds to the loss of 

information transfer across an injury site. In Chapter 4, we explored how an animal’s 

physiology changes far after an SCI despite early anti-inflammatory gene therapy, looked to 

enhance the regenerative capacity by implementing a combinatorial therapy using IL10 with 

BDNF, and examined anatomical and electrophysiological properties of regenerated axons. 

Preliminary results suggest that, while muscle innervation returns to pre-injury levels by 12 wpi, 

differences in muscle composition and fatigability ensue. Furthermore, initial tissue sparing and 

the neurotrophic benefits of IL10 alone appear to have the greatest positive impact on NMJ 

innervation and NFM regeneration through the injury, such that the addition of BDNF is non-
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additive. Finally, and importantly, we show that regenerated axons can not only be traced 

through the injury site, but they can also carry electrical signals. These findings highlight 

changes in muscle composition as a potential therapeutic target and demonstrate the ability of 

regenerated axons to reestablish lost circuitry. 

Future Directions 

Sex-specific Optimization of Anti-inflammatory Treatment 

 While we show in Chapter 3 that lentiviral IL10 can spare tissues from secondary 

damage in both male and female mice, sex-specific differences were identified. Since previous 

research suggest female rodents recover significantly better than male rodents after an SCI [183, 

184], we suspect that the differential outcomes seen in Chapter 3 represent differences in the 

initial response to injury and not the response to IL10 treatment. These differences suggest room 

for optimization exists, especially during the first 2-3 days after an injury during which lentiviral 

expression is ramping up from subtherapeutic levels. Here, we propose a couple of options 

moving forward.  

First, interleukin-33 (IL33) is another anti-inflammatory cytokine that reduces secondary 

damage and improves functional recovery in female mice [198]. A head-to-head comparison in 

the same injury model in both sexes will be necessary to identify which interleukin is more 

effective, in addition to a combined test to determine if any synergistic effects exist. Second, an 

alternative IL10 delivery method, such as absorption onto the implanted scaffold, may be 

necessary to bridge the gap in lentiviral expression during the first couple of days after an injury. 

Finally, since outcomes in SCI are negatively affected by the presence of testosterone [184], its 

reduction may ameliorate injury severity in males. A localized approach will be necessary to 

avoid the well-known symptoms associated with systemic testosterone withdrawal in men. 
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Coincidentally, testosterone is the precursor to estrogen, which has well-known neuroprotective 

effects after an SCI [199]. Thus, local expression of aromatase, the enzyme that is responsible for 

the conversion of testosterone to estrogen, may be used to dampen testosterone’s detrimental 

effects while simultaneously taking advantage of estrogen’s neuroprotective effects. 

Examining Synaptic Targets of Regenerated Axons 

 Although in Chapter 4 we show that regenerated axons can carry electrical signals 

across the injury site, that signal needs to be received by the correct target neuron for the 

appropriate behavioral output to occur. Axonal regeneration alone is insufficient for circuit 

reformation, so a series of steps are needed to achieve the accurate reconstruction of spinal 

circuits that are lost to an injury.  

First, the ability of a regenerating axon to form a synapse is yet to be determined. 

Research has identified a voltage-gated calcium channel subunit that acts as a switch between 

axon elongation and synapse formation, which cannot occur simultaneously in a single neuron 

[200]. Therefore, studies are needed to determine if post-SCI regenerating axons are capable of 

synaptogenesis or if an additional therapeutic cue is necessary to activate this molecular switch. 

Second, synapse maturation does not necessarily follow synapse formation. Regenerated 

synapses can lack certain molecular components that are vital to their function and prevent 

adequate information transfer [201]. Therefore, studies are needed to determine if synapses 

formed by regenerated axons are functional or if an additional therapeutic cue is necessary to 

induce synapse maturation. Third, the synaptic target of a regenerated axon needs to be specific. 

Synkinesis is a symptom in which voluntary activation of a specific muscle simultaneously 

activates another muscle inappropriately, due to aberrant innervation patterns that commonly 

occur after nerve trauma. Therefore, studies are needed to determine if the synaptic targets of 
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regenerated axons are correct or if a combination of guided synaptogenesis and synaptic pruning 

are necessary to refine circuit specificity.  

While histology, electrophysiology, and transsynaptic tracing are just a few techniques 

that may be employed to further our biological understanding, the path to reconstruct a spinal 

cord is not as clear. The elegance and complexity with which the nervous system is built 

necessitates a combinatorial approach. Only then may an affected individual step across the 

multitude of barriers that contribute to paralysis after an SCI. 
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Appendix  

 

Temporal Control of Lentiviral Gene Expression 

Authors 

Longshun Li, Jessica Y. Chen, Joseph T. Decker, Lonnie D. Shea 

Introduction 

 Although previous studies in our lab show that lentiviral gene delivery through PLG 

bridge implantation for IL10 is able to reduce inflammation and improve locomotor function [37, 

159, 171], the long-term overexpression of lentiviral factors may have some detrimental effects. 

For example, persistent IL10 expression can exacerbate inflammation and cause demyelination 

of the sciatic nerve [202], while transgene overexpression using a strong constitutive promotor in 

general can decrease cell proliferation and have cytotoxic effects [203]. Therefore, inducible 

systems for regulating transgene expression have emerged as a means to improve the safety and 

efficacy of gene therapy [204, 205]. One example is the tetracycline-inducible transgenic system, 

in which transcription can be modulated by the introduction and withdrawal of doxycycline 

(DOX). Herein, we investigated the quality of an all-in-one tetracycline-inducible (TET-ON) 

system under HEK-293T cells, by comparing the fold change of a luciferase transgene with a 

constitutive promotor (CMV).  

Materials and Methods 

 The DNA sequence for firefly luciferase (FLuc) was cloned into a pLIX_403 backbone 

(Addgene, Watertown, MA, #41395), and the resulting plasmid sequence confirmed via Sanger 
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Sequencing to produce pLIX_403-Fluc, which carried a puromycin selection sequence. The 

CMV-FLuc used was produced as previously described in Chapter 3. Both pLIX-403-Fluc and 

CMV-FLuc lentiviruses were produced as previously described in Chapter 3. HEK-293T cells 

were treated with either lentivirus at a cell to virus ratio of 1:10 for 24 hours, after which the cell 

culture media was refreshed, and the cells were allowed to recover for one day. Then the cells 

were treated with 10ug/ml of puromycin, which was removed after an additional 24 hours. After 

14 days of recovery, the cells were passaged into a 96-well cell-culture plate in triplicates for 

bioluminescence imaging under an in Vivo Imaging System (Perkin Elmer, #124262). On day 0 

(1 day after passaging), cells were either exposed to 1ug/ml of DOX or left untreated overnight. 

The next day, luciferin (1:100, Perkin Elmer, #122799) was added, and imaging took place 10 

minutes later. This induction procedure was repeated for 3 consecutive days.  

Preliminary Results 

 We found that the addition of DOX to cells transduced with pLIX_403-Fluc caused a 

significant increase in luciferase expression as described by fold change on days 1, 2, 3, and 4 

(Figure 19). This indicates that expression can be turned on in the presence of DOX. 

Importantly, the absolute photon flux of pLIX_403-Fluc was not significantly different from that 

of CMV-FLuc (Figure 19), suggesting our all-in-one plasmid has the potential for transgene 

expression at therapeutic levels. In future experiments, we plan to culture the cells for longer 

such that we can withdraw DOX from the experiment while continuing the imaging, which will 

allow us to confirm that transgene expression is able to return to baseline after induction. One 

limitation of this all-in-one system is that transduction efficiency is relatively low, which became 

apparent when we applied puromycin and few cells survived the selection. Work may need to be 

done to increase our transduction efficiency, because cell selection is not feasible if we are 
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transducing cells in vivo for gene therapy. We suspect that the large size of pLIX_403-Fluc may 

be a major limiting factor, because increasing plasmid size has been shown to greatly reduce 

transduction efficiency [206]. Alternatively, we are starting a collaboration with University of 

Buffalo’s Dr. Stelios Andreadis, who has a similar tetracycline-inducible lentiviral vector with 

which we can run parallel experiments using our pLIX_403-Fluc to compare efficiency and 

expression. Nonetheless, our preliminary results support the use of the TET-ON all-in-one 

system for modulating gene therapy in vivo.  

 

 

 

 

Figure 19. IVIS Quantification of Luciferase Expression. Snapshots of bioluminescence imaging (a), normalized fold changes 

between TET +Dox and TET -Dox (b), and absolute photon flux comparison between CMV and TET +Dox (c). Two-way ANOVA 

with Tukey’s post hoc test, *p<0.05, **p<0.01. 
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