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Abstract 
 

The development of cancer drugs is usually costly and time-consuming, mainly due to growing 

complexity in screening large number of candidate compounds and high failure rates in translation from 

preclinical trials to clinical approval. Despite the great efforts, the preclinical screening platforms combing 

good clinical relevance and high throughput for large-scale drug testing is still lacking. In addition, 

accumulating evidence suggests that cancer drug response can be altered by tumor microenvironment 

(TME), which includes not only cancer cells but also physical, and biochemical cues in niches. To improve 

the current cancer drug screening assays, it is important to mimic local TME to achieve better physiological 

relevance. In the first part of this dissertation, three TME-mimicking microfluidic platforms were 

introduced for three different in-vitro TME-mimicking tumor sphere models: spheres in matrix, self-

aggregated spheres, and single-cell clonal spheres. First, a 3D gel-island chip investigated the heterogeneity 

of single-cell drug responses in biomimetic extracellular matrix (ECM). With 1,500 isolated single cell 

chambers containing ECM, it was demonstrated that ECM support was favorable for some population of 

cancer cells to maintain stemness and develop drug resistance. This result suggested the importance of drug 

screening at single-cell resolution in TME-mimicking platforms. Secondly, a drug combination screening 

chip enabling high-throughput and scalable combinatorial drug screening was demonstrated for the 

aggregated sphere model. Instead of screening a single drug on each of the tumors, this chip allows the 

screening of all pairwise drug combinations from eight different cancer drugs, in total 172 different 

treatment conditions, and 1,032 tested samples in a single microfluidic chip. The presented design approach 

was easily scalable to incorporate arbitrary number of drugs for large-scale drug screening. Finally, single-

cell Hi-Sphere chip enabled high-throughput clonal sphere culture and selective retrieval. Combining 
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fluorescent dye on-situ staining techniques, we identified rare cancer stem-like cell population and confirms 

its location at the leading edge of spheres.  

Advance in experimental throughput generates massive data, which demands the corresponding 

automatic analysis and intelligent interpretation capabilities. The second part of this dissertation focuses on 

the applications of computer vision and machine learning algorithms to automated biomedical data 

processing. Image analysis with convolutional neural network was applied for drug efficacy evaluation in 

a fast and label-free manner. The estimated drug efficacy is highly correlated with the experimental ground 

truth (R-value > 0.93), while the predicted half-maximal inhibitory concentration is within 8% error range. 

In addition, metastatic fast-moving cells could be identified after extracting morphological features from 

the microscope images and applying deep learning algorithm for image analysis, achieving over 99% 

accuracy for cell movement direction prediction and 91% for speed prediction. In summary, this dissertation 

presents high-throughput TME-mimicking microfluidics and deep learning image analysis for large-scale 

drug screening solutions. 
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Chapter 1 : Introduction 

1. 1 Cancer Drug Development Status 

 The development of effective cancer drug has always been the central topic in both clinical 

and industrial cancer research [1-4]. For the last several decades, more than 100 anticancer drugs 

have been discovered and approved by the FDA [5, 6], with the overall cancer death rate declined 

by 29% from 1991 to 2017 [7]. Despite the success, the development of cancer drug is very costly 

and time consuming. It can take between 10 and 15 years to develop a new drug, at a cost of about 

US$2.6 billion. [8, 9]. There are three main steps in drug development and testing: preclinical trials, 

when the drug compound is discovered and first tested; clinical trial, which is when the drug is 

tested in people; and post-clinical research, which takes place after the drug is approved [10, 11] 

(Fig. 1-1). Despite the great initiative and efforts to improve drug development procedures and 

techniques, only 0.03% of candidate compound from preclinical trials are eventually approved by 

the FDA [12]. In fact, many compounds yielding promising preclinical efficacy fail in performing 

desirably in clinical trials [13, 14]. There is an unmet need develop better preclinical drug 

screening model to fill the gap between preclinical drug testing model and translation to human 

trials. 

In general, there are two strategies for preclinical cancer drug development: phenotypic 

screening and genotypic target screening [15, 16]. Facilitated by the advancement of genetic 

profiling tools, genotypic target screening has been the dominant choice in pharmaceutics 
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development for the past decade [17]. This hypothesis-driven method is based on the detection of 

mutations or alteration at specific molecular locations in human genome that are known to be 

responsible for certain cancers [18, 19]. However, the limited knowledge of complexed human 

genome content and drug mechanism of action, together with the frequent treatment failures due  

 

Figure 1-1. “Cost of Developing a New Drug”. Tufts CSDD & School of Medicine and US FDA Infographics, Nov. 2014. 

 

to acquired resistance [20, 21], have led people to realize the limitation of genetic method and 

regain interest in phenotypic screening to identify potential drug candidates [22, 23]. The 

phenotypic screening method is an unbiased approach based on the measures of drug response, 

which does not merely rely on the knowledge of specific drug target [24, 25]. Recent development 

of phenotypic screening research focuses on not only cell viability and growth rate [26], but a 

comprehensive investigation on various cancer behaviors including morphologies, differentiation, 

metastatic and metabolic activities, cellular interactions [27-29] and many other features in a 

quantitative manner [30]. The improvement in 3D cellular phenotyping models, like multicellular 
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co-culture organoid and “tissue on a chip”, is also narrowing the gap between in-vitro assays and 

in-vivo assays [31, 32]. 

 

1. 2 Conventional phenotypic drug screening 

 Traditionally, the most widely used in-vivo model is using whole living animals to 

investigate the effect of any therapeutic candidate or to study any biological process. This model 

has good physiology mimicking capability with minimal genetic drift. However, the long 

experiment time and the high costs limits its application in large-scale drug screening [33]. There 

are many ethical debates on the justice of having animals under certain experimental conditions 

and unnecessary sacrifice [34]. Another popular phenotypic drug screening model is two-

dimensional (2D) model, where cancer cells are cultured on planar surface made from polystyrene 

or glass. This monolayer cell culture model has the merit of high-throughput, low-cost, and good 

repeatability. However, this simple model usually generates quite different outcomes from the 

clinical trials [35, 36]. From the drug screening point of view, this discrepancy is possibly caused 

by failing to reflect the complex physiology of tissue-specific architecture and 

mechanical/biochemical signals. [37-39]. 2D cancer model also largely alters cellular 

phenotypic/genetic characteristic and thus, drug response. People has been trying to find a sweet 

spot between throughput requirement and physiological relevance. With the recent development 

in cell culture platforms, 3D cell culture becomes a promising technique with good potential in 

mimicking the key factors of local physiological properties and preserving tumor heterogeneity 

and drug resistance [40]. Yet, a good 3D cancer drug screening platform requires careful design to 

incorporate different component that have influence on cancer drug responses (Fig. 1-2). There is 
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an unmet need to develop high-throughput drug screening platforms for large-scale in-vitro drug 

screening that recapitulate tumors’ response to chemo-drugs under various 3D cell culture.  

 

Figure 1-2. Pre-clinical Drug Screening Models. 

 

1. 3 Tumor Microenvironment (TME) 

  Tumor, as heterogeneous populations of malfunctional cells, is surrounded by collections 

of stromal cells, blood vessels, extracellular matrix (ECM), and other molecular cues (Fig. 1-3) 

[41, 42]. By sending and receiving both mechanical and biochemical signals from 

microenvironments, solid tumor establishes favorable conditions for growth and acquires the 

essential hallmark functions [43-46] including uncontrolled proliferation, transformation, and 

invasion. Accumulating evidence suggest that TME plays an important role in tumor cells 
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acquiring therapeutic response and resistance [47-51], by preventing drug molecule penetration, 

inducing cancer phenotype transition, and facilitating genetic mutations [51, 52]. For this reason, 

more and more cancer studies have been trying to mimic TME to simulate tumor therapeutic 

response under local environment and targeting the TME to overcome cancer acquired resistance 

and eventually improve clinical outcome [52-54].  

 

Figure 1-3. Tumor microenvironment components [16]  

 

1. 4 Research goal of biomimetic drug screening platform 

 To facilitate the study of cancer drug, we present three microfluidic platform, 3D gel-island 

chip, drug combination screening chip, and single cell hi-chip, to mimic a variety of different 

tumor microenvironments. The 3D gel-island chip was designed to study single cell drug response 

under the condition with solid ECM support, and its influence in cancer cell differentiation and 

drug response. In addition, the drug combination screening platform was designed to achieve 

scalable high-throughput drug combination screening using a self-aggregated spheroid model, 

which recapitulate tumor 3D spherical structure and reflects more clinical-relevant combinatorial 
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drug efficacy compared to conventional 2D drug screening assays. Finally, the single cell Hi-

Sphere chip enables high-throughput clonal sphere culture and retrieval. With the help of Hi-

Sphere chip, we identified Tumor Initiating Cells (TICs) or Cancer Stem Cells (CSCs) in different 

tumor clones and different locations in single clones, which has been widely believed that give 

rise to tumor progression, metastasis, and chemo-drug resistance.  

 

1. 5 Deep learning image analysis for high-throughput drug screening 

In recent decades, microfluidics has shown great potential in advancing biotechnology 

applications in regards of high-throughput parallelization, small sample handling, and wide range 

of functionality [55]. The development of microfluidic technology provided us with considerably 

large amount of data, including biomedical images, videos, cellular behavioral measurements and 

sequence reading data [56]. Yet, the lack of the capability of analyzing the vast amount of data has 

become the bottleneck in biological discovery [57]. On the other hand, due to the advent of large-

scale data computing and storage, machine learning techniques, especially deep learning, has 

enabled rapid analysis of complex biomedical images in a high-throughput manner. An increasing 

number of research works paired microfluidic devices with machine learning tools to realize 

system automation and data analysis in biology. Previous work includes single cell counting [58], 

label-free screening [59] and classification [60, 61], cancer diagnosis [62]. 

Despite the increasing number of works integrating machine learning and microfluidics, 

very few applies machine learning techniques in drug screening studies, which is a data-abundant 

and labor-intensive field. In the latter chapters of this dissertation, we applied deep learning to two 

microfluidic cancer drug studies. The first deep learning model achieves label-free measurement 
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of cancer cell drug responses. By analyzing brightfield microscope images of drug-treatment 

tumors with different doses, the cell viability and drug efficacy could be accurately predicted 

without relying on cell viability fluorescent assays. In the second work, cell migratory direction 

and speed were predicted based on morphological features using computer vision and machine 

learning algorithms. Combined with drug treatment experiment, we established the correlation 

between cellular morphology and cancer cell metastasis behavior.
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Chapter 2 : Microfluidics 3D Gel-Island Chip for Single Cell 

Isolation and Lineage-Dependent Drug Responses Study 

One of the most important components in TME is extracellular matrix (ECM), which not 

only provides structural support to cellular constituents, but also initiates regulatory biochemical 

cues for a variety of important cell functions in tissue. The application of ECM has become more 

and more important in understanding cancer pathology and drug testing. Although the ECM-gel 

has been used in the cell culture both in bulk and on-chip, previous works focus on the collective 

cell behaviors rather than single-cell heterogeneity. To track the behavior of each individual cells, 

we developed a gel-island chip, which can form thousands of islands containing single cells 

encapsulated by desired ECM. Optimized by Poisson's distribution, the device can attain 34% 

capture efficiency of exact single cell per island. Good culture media exchange rate and high cell 

viability can be achieved in the gel-islands. The cells in the islands can be automatically counted 

for high-throughput analysis. As the proof of concept, we monitored the proliferation and 

differentiation of single Notch+ (stem-like) T47D breast cancer cells. The 3D collagen gel 

environment was found to be favorable for stem-like phenotype through better more self-renewal 

and de-differentiation (Notch- to Notch+ transition). More interestingly, we found that the Notch- 

de-differentiated cells were more resistant to doxorubicin and cisplatin than the Notch+ cells. 

Combining 3D ECM culture and single cell resolution, the presented platform can automatically 

analyze the individual cell behaviors of hundreds of cells using small amount of drug and reagents.
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2.1 Introduction 

 In-vitro cell culture has been widely used in cell behavior study for more than 100 years. 

However, it is not until 80's that people started to highlight the importance of 3D cell culture, 

especially for understanding the roles of extracellular matrix (ECM) in the tissue physiology and 

cancer pathology [1]. To bridge the different drug responses between conventional 2D cell culture 

and in-vivo experiment, more and more cancer studies are performing experiments in the more 

realistic 3D culture environment [2-3]. Compared to the 2D culture, which grows cells on artificial 

rigid polystyrene (Young's modulus: 3 GPa) or glass (Young's modulus: 50-90 GPa), 3D culture 

grows cells in the elastic ECM (Young's modulus: 50-5000 Pa, depending on tissues) environment 

and can better mimic the in-vivo environment [4-7]. In addition to the mechanical property, cells 

are known to sense the biochemical signals from surrounding ECM using various signal 

transduction cascades via the receptors on the cell membrane [8]. Hence, it is important to apply 

3D ECM culture in microfluidics for re-capitulating tumor microenvironment. 

Due to the genomic and epi-genomic instability of tumor, cancer cells are notorious for its 

heterogeneity. Among various sub-populations, cancer stem-like cells (CSCs), which play critical 

roles in cancer metastasis, therapeutic resistance, and relapse, are important clinical targets [9-12]. 

As stem-like cell, CSC is capable of either self-renew (symmetric division) to generate CSCs or 

differentiate (asymmetric division) to make differentiated cancer cells [13]. Considerable evidence 

suggests that the symmetric division of CSC is critical for the progression of tumor, while skewing 

toward asymmetric division can lead to tumor suppression [14-15]. Though it is believed that 3D 

culture environment is favorable for stem-like phenotype, it is not clear whether this is caused by 
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(1) reduced asymmetric division, (2) increased symmetric division, or (3) better survival of stem-

like cells [16-17]. In addition, CSC are typically more resistant to chemotherapies, yet it is not 

clear whether the self-renewing CSCs has stronger resistance compared to differentiating CSCs 

[18-19]. Using conventional dish-based approach, only the final cell number and gene expression 

(or Live/Dead) can be counted by fluorescence-activated cell sorting (FACS). The averaged end-

point results provide little insight into the cellular heterogeneity of CSCs, nor the process of how 

the population is skewed. To decipher the changes of CSC populations in different conditions and 

treatments, there is a need for single cell analysis to monitor the fates of each individual cells. 

Due to the benefits of small sample volumes, precise fluid control, and high-throughput 

scaling, microfluidic technology has emerged as a state-of-the-art approach for single cell analyses 

[20-24]. There are a number of previous works reporting on microfluidic platforms for 3D cell 

culture, but many of them use the suspension culture with hydrogel, which cannot emulate the cell-

ECM interactions in-vivo [25-27]. To incorporate 3D ECM in microfluidics, some works control 

the hydrogel matrix using laminar flow [28], surface tension (achieved using micropillars) [29], 

and physical confinements [30-31], but these works cannot achieve precise spatial control for 

performing single cell assay. Hydrogel droplet formation [32-33] and 3D bioprinting [34] 

encapsulating single cells have merits in high-throughput and precise micro-environment control. 

However, limited biomaterials can be used for these technologies, making it difficult to study a 

wide range of different ECMs, which have distinct biochemical properties. In addition, the shear 

force induced by inkjet printing can compromise the cell viability. Though filling hydrogel with 

cells in the microwells can be one simple alternative [35], exposed microwells can easily suffer 

from media evaporation, which increases osmolality and thus affect cell viability. Also, cells will 

be inevitably washed away when exchanging media on microwells. To reliably culture single cells 
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in 3D hydrogel for cellular heterogeneity study, we developed a gel-island chip, which attains (1) 

reliable single cell encapsulation in hydrogel-based 3D culture, (2) high-throughput assay of 

hundreds of single cells, (3) automatic single cell monitoring for cellular heterogeneity 

characterization, and (4) efficient use of ECMs and reagents. 

 

2.2 Design of gel-island chip 

 The microfluidics gel-island chip consists of 1500 individual culture chambers (150 

μm×150 μm, with 100 μm in height) (Fig. 2-1 (a)). All the culture chambers are aligned in series 

and connected to a main microfluidics perfusion channel (200 μm wide) by a narrow channel of 

150 μm length and 40 μm width. A separate channel is designed in parallel with main channel for 

applying vacuum, with the separation of 50 μm-thick PDMS sidewall between culture chambers 

and vacuum channel (Fig. 2-1 (b)). The whole microfluidics chip is divided into 3 subunits with 

500 culture chambers in each. These three subunits share a joint vacuum channel, so that the 

loading process for the whole chip can be performed simultaneously. 

 The gel-island chip is composed of one layer of PDMS (polydimethylsiloxane), which was 

fabricated on a silicon substrate by standard soft lithography, and a glass slide. Each microfluidic 

chip contains 1500 chambers with 2.25 nL (150 μm×150 μm×100 μm) volume capacities. The 

main channel was designed as 200 μm in width to ensure sufficient culture media or drug supply 

near the entrance of each chambers. One mask was used to fabricate the 100 µm thick SU8 

(Microchem) for the microfluidic channel. The 40 grams of PDMS was cured by 100℃ for 1 day 

and then peeled off from the master. After punching the inlet and outlet using 0.6mm diameter  
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Figure 2-1. Overview of the gel-island chip design. (a) Photograph of a fabricated device. (b) Schematic of the gel-island chip. c) 

schematics of single cells isolated in culture chambers. 

 

biopsy punch, the PDMS layer activated by oxygen plasma treatment (80 Watts, 60 seconds) was 

bonded to the glass slide. The bonded device was placed on the hot plate of 80℃ for 5 minutes to 

enhance the bonding strength. 

 

2.3 Single cell loading and cell culture 

 In order to study single cell behavior in 3D ECM microenvironment that recapitulate the 

in-vivo environment, we developed a loading scheme to form isolated collagen islands while 

enabling perfusion media exchange. Due to the surface tension effect, initially the main channel 

of the device is completely filled with fluids, leaving the air trapped inside the chambers (Fig. 2-2 

(a)). Then, vacuum is applied to the vacuum channel next to the chambers (Fig. 2-2 (b)). Due to 

the high gas-permeability of the Polydimethylsiloxane (PDMS) sidewall, air in chambers can 

diffuse through PDMS into the vacuum channel gradually and drive the gel solution into the 

chamber. After applying vacuum for 100 seconds, the air in chambers is completely replaced by 

gel solutions and single cells are captured (Fig. 2-2 (c)). The flow resistance from main channel to 
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the chamber is designed to be two orders of magnitude higher than the flow resistance in main 

channel. According to Hagen-Poiseuille equation, when pumping air into the main channel, the 

gel solution in main channels can be purged, while the collagen solution in the culture chambers 

remains (Fig. 2-2 (d)). Thus, isolated collagen gel islands are formed, and the cell culture media 

can be exchanged through the main channel for long-term cell culture. Since the distribution of 

cells per chamber should follow Poisson distribution, the maximized number of single-cell islands 

can be achieved when loading the same cell number as the total number of the chambers. Using 

optimized loading density, 34% of the 1500 chambers are loaded with single cells (Fig. 2-2 (e, f)).   

 

Figure 2-2. Gel-island loading process with single cell encapsulation. (a) Loading the cell solution into the main channel. (b) Gel 

solution partially fills culture chamber after 60 seconds of applying vacuum. (c) Gel solution fully occupied the whole chamber 

 

   

 

 

(a) (b) 

(f) 

(c) (d)

) 

(e) 
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after 100 seconds of applying vacuum, with a single cell captured. (d) The gel solution in main channel was evacuated by 

pumping air. (e) Gel-island device loaded with MDA231 breast cancer cells. (f) Distribution of the number of captured cancer 

cells per chamber when loading 1500 cells into each device (N=3). (Scale bar: 100 µm) 

 

Since the collagen gel in main channel was evacuated by air flow, we were able to load culture 

media into main channel and supply nutrient to cells in chambers via diffusion. To characterize 

the diffusion rate of nutrient molecules, we created collagen islands using the method described in 

previous section and then flowed dextran conjugated fluorescein (MW = 40k) in main channel to 

mimic large protein molecules diffusing into culture chambers (Fig. 2-3 (a)). By comparing the 

fluorescent intensity between culture chambers and main channel, we verified that it takes less 

than 2 hours for fluorescein concentration in the chambers to reach 80% of that in the main channel, 

and around 4 hours to reach 90% (Fig. 2-3 (b)). In addition, we demonstrated that the fluorescent 

intensity difference between chambers at upstream and downstream was less than 10% (Fig. 2-3 

(c)), indicating uniform media supply in the whole device. In order to make sure the location of 

the encapsulated cells does not lead to large variance in mass transfer, we also verified 
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Figure 2-3. Long-term cell culture capability. (a) Device view of dextran conjugated fluorescein (Molecular weight = 40k) 

diffusion test at 1 minute, 15 minutes, 30 minutes and 2 hours. Fluorescein solution was loaded in main channel and diffused in 

collagen islands. (Scale bar: 100 µm) (b) Ratio of mean fluorescent intensity of chambers to mean fluorescent intensity of nearby 

main channel vs. time. (N=5) (c)Relative fluorescent intensity in chambers at the upstream, center, and downstream of the device 

(N=5) (d) On-chip cell culture of MDA-MB-231 and T47D breast cancer cells for 7 days. (Scale bar: 50 µm) 

 

 

  

 

 

  

 

 

 

 

(a) 

(b) 

(d) 

(c) 
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conformal biomolecule distribution inside culture chambers (Fig. 2-4). The diffusion experiments 

suggest good media exchange capability for cell culture. To further demonstrate the long-term cell 

culture capability of the reported microfluidics platform, we loaded the MDA-MB-231 and T47D 

(breast cancer) cells into the island chip and cultured for 7 days. As shown in Fig. 2-3 (d), single 

cell derived colonies were formed in the culture chambers. The size of the on-chip colony was 

comparable with the bulk collagen gel culture control (Fig. 2-5). Using the isolated gel-islands, we 

were able to track individual single cell proliferation and differentiation behaviors in the 3D 

environment, providing insights about cellular heterogeneity. 

 

Figure 2-4. Diffusion test using dextran-conjugated fluorescein to verify conformal mass transfer inside culture chambers: (a) 

measurement of relative fluorescent intensity at six different region inside culture chambers, (b) Relative fluorescent intensity 

changes in six different regions inside culture chambers (N=5). (Scale bar: 50 µm) 

 

 

 

 

 

(a) (b) 
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Figure 2-5. MDA-MB-231 and T47D breast cancer cells cultured in conventional petri-dish for 7 days: (a) MDA-MB-231. (b) 

MDA-MB-231. (c) T47D bulk. (d) T47D bulk. (Scale bar: 100 µm) 

 

2.4 Cancer cell differentiation study 

Using Notch reporter system [35], Notch activity of each individual cell was determined 

by its GFP expression (fluorescent brightness). To study cell proliferation and differentiation 

behaviors in single cells resolution, T47D cells were loaded with collagen gel at a concentration 

of 2mg/mL or regular culture media (2D control) into different devices (Fig. 2-6 (a)). The cells 

loaded with collagen gel solution will be cultured in gel-island, while the ones loaded with media 

will be in the 2D culture environment. After 2 days culture, although 2D control group had higher 

percentage of proliferating cells, compared to the 3D environment, more Notch+ cells 
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differentiated to Notch- in the 2D environment when normalizing to the total number of 

proliferation events (Fig. 2-6 (b)). In addition to the Notch+ cells, when characterizing the cell fate

  

Figure 2-6. T47D breast cancer cell differentiation: (a) Examples of different cell status after culturing on chip for 2 days. (b) 

T47D Notch+ cell status. (c) T47D Notch- cell status. The data samples used in significance test of (b) and (c) are the ratio of 

Notch+ symmetric division population percentage to Notch+ asymmetric division population percentage in 3D collagen culture 

conditions vs. that in 2D Control culture conditions. (d) Distribution of Notch reporter gene fluorescent intensity ratio between 

48h (day2) and 6h (day0) after cell loading under 2 culture conditions: 3D collagen gels (black, N=209), and 2D culture media 

(red, N=116). * refers to P < 0.05, ** refers to P < 0.01, *** refers to P < 0.001, NS refers to not significant. (Scale bar: 50 µm) 

 

for Notch- population, we observed significantly more Notch- to Notch+ transition cases in 3D 

collagen condition than in 2D condition (Fig. 2-6 (c)). Using conventional approach, people cannot 

identify the process of skewing of the population. With the help of the presented platform, we 

 

 

 

      

(a) 

(b) (c) (d) 
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found that the skewing toward stem-like morphology was caused by both maintaining self-renewal 

potentials and de-differentiation (Notch- to Notch+ transition). In addition to the binary separation 

of Notch+ and Notch- cells, we tracked the Notch expression of each individual cells by its GFP 

intensity. GFP fluorescent intensity of each individual cells were measured 6 hours and 48 hours 

after cell loading (Fig. 2-7). As shown in Fig. 2-6 (d), the Notch expression of cells were elevated 

in the 3D culture environment compared to 2D culture. This data also supports that 3D collagen 

condition enhances the expression of Notch signaling pathways. 

 

Figure 2-7. Distribution of Notch reporter gene fluorescent intensity ratio between 48h (day2) and 6h (day0) after cell loading 

under 2 culture conditions: 3D collagen gels (black, N=209), and 2D culture media (red, N=116). * refers to P < 0.05, *** 

refers to P < 0.001.  
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2.5 Cancer drug susceptibility test 

Conventionally, people use 96-well or 384-well plates for drug screening, and the results 

are measured by MTT-based colorimetric analysis or Live/Dead cell counting using flow 

cytometry. Though this approach has been used for decades and are still prevailing, these 

conventional assays provide limited insight about cellular heterogeneity. Though CSC can be 

sorted based on the markers, the differentiation and state transition can happen before or during 

the drug treatment. More importantly, it is almost impossible to distinguish CSC derived from self-

renewal or de-differentiation using dish-based approach. To precisely correlate the cell states and 

drug efficacy, the states of each single cells should be tracked before and after the drug treatment. 

Here, we categorize the cells into 6 different states: symmetrically divided Notch+ cell, 

asymmetrically divided Notch+ cell, quiescent Notch+ cell, de-differentiated Notch- cell, 

symmetrically divided Notch- cell, and Notch- quiescent cell. Using the gel-island chip, the drug 

(doxorubicin, cisplatin) efficacy of each type of cell state was characterized (Fig. 2-8 (a)). 

Firstly, using the single cell monitoring capability of gel-island chip, we noticed the Notch+ 

cells were less sensitive to chemo-drug than Notch- cells (Fig. 2-8 (b)). The observation match 

well with the expectation that Notch pathways correlate with cell stemness and drug resistance 

[37][38]. Secondly, among the proliferating cells, symmetrically divided Notch+ cells were found 

to be more resistant than asymmetrically divided ones (Fig. 2-8 (c)). Again, the difference can be 

explained by the higher stemness of the self-renewing cells than that of the differentiating cells. 

More interestingly, Notch- de-differentiated cells, which underwent Notch- to Notch+ transition, 

showed significantly higher drug resistance than all other cell states, indicating that the de-

differentiating cells can be a major contributor of drug resistance. The similar drug response 

pattern was observed in the two drug we tested. This result suggests that the drug response of 
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cancer cells is not only determined by the cell status at a single static time point but also the process 

of cell proliferation, differentiation, and de-differentiation. Hence, it is importance to use single-

cell tools to track individual cell behavior for understanding the heterogeneous cell responses to 

cancer drugs. 

 

Figure 2-8. Drug susceptibility test of T47D Notch+ breast cancer cells under 2mg/mL 3D collagen gel condition, cultured on 

chip for 48 hours followed by 72 hours drug treatment: (a) Examples of cell status its drug response (the green fluorescence in 

day0 and day2 images is from GFP, the green/red fluorescence in day5 is from Live/Dead dye). (b) Drug susceptibility 

 

     

 

 

(a)  

(b)  (c)  



22 

 

comparison between symmetrically divided Notch+ cells (blue, N=3) and asymmetrically divided Notch+ cells (orange, N=3). 

(c) Drug susceptibility comparison between 3 types of non-proliferating cells: Notch+ quiescent cells (light blue, N=3), Notch- 

quiescent cells (orange, N=3), and Notch- de-differentiation cells (dark blue, N=3). * refers to P < 0.05, ** refers to P < 0.01, 

and *** refers to P< 0.001. (Scale bar: 50 µm) 

 

2.6 Chapter summary 

We reported a gel-island chip combining single cells resolution and 3D ECM cell culture 

environment. By simply applying vacuum, single cells can be loaded into the islands with gel 

solution. Then, the gel in the main channel is evacuated by pumping air, thus forming isolated gel-

islands. Using optimized cell concentration, the single cell capture rate can reach 34% based on 

Poisson's distribution. Good media exchange rate into the islands, as well as upstream and 

downstream uniformity were demonstrated. We also showed that cells cultured in the gel islands 

for 7 days maintained high viability. Using this platform, we monitored the symmetric and 

asymmetric division of the Notch+ (stem-like) T47D breast cancer cells. Compared to 

conventional approach, which only allows people to observe the cells skewing to stem-like 

morphology in 3D culture without identifying the process in single cell resolution. Utilizing the 

presented platform, we found that the skewing was caused by both the increased self-renewal of 

stem-like cells and the de-differentiation of Notch- (non-stem-like) cells. In addition, we 

performed the drug testing of doxorubicin and cisplatin to compare the different fates of individual 

Notch+ and Notch- cells. As expected, Notch+ cells were more resistant than Notch- cells. 

Interestingly, we found that de-differentiated (Notch- to Notch+) cells were significantly more 

drug resistant than Notch+ cells, demonstrating that the drug efficacy can be correlated with the 
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state change of cells. The finding suggests the importance of monitoring single cells in 3D ECM 

environment, which was previously not possible using conventional approaches. 
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Chapter 3 : Scalable Multiplexed Drug-Combination Screening 

Platforms Using 3D Microtumor Model for Precision Medicine 

Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor 

effective treatments for each individual patient. Drug combinations have been widely accepted in 

cancer treatment for better therapeutic efficacy as compared to single compound. However, 

experimental complexity and cost grow exponentially with more target compounds under 

investigation. The primary challenge remains to efficiently perform a large-scale drug combination 

screening using a small number of patient primary samples for testing. Here, we report a scalable, 

easy-to-use, high-throughput drug combination screening scheme, which has the potential of 

screening all possible pairwise drug combinations for arbitrary number of drugs with multiple 

logarithmic mixing ratios. We introduced a “Christmas tree mixer” structure to generate a 

logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration 

range for screening. A three-layer structure design and special inlets arrangement facilitate simple 

drug loading process. As a proof of concept, we implemented an 8-drug combination chip, which 

is capable of screening 172 different treatment conditions over 1,032 3D cancer spheroids on a 

single chip. Using both cancer cell lines and patient-derived cancer cells, we demonstrated 

effective drug combination screening for precision medicine. 
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3.1 Introduction 

 In recent decades, considerable efforts have been made in precision cancer therapy, which 

aims to customize appropriate treatment decisions based on individual cases [1]. Though advances 

in DNA profiling and next-generation sequencing (NGS) have identified thousands of mutations 

that are critical to cancer progression [2, 3], this genotypic method does not always pinpoint ideal 

cancer therapeutics due to the limited biological understanding [4]. In addition, the presence of 

non-DNA genetic variations, including epigenetic modifications, lineage-specific changes and 

tumor micro-environment modulations [6] could make it even more complicated to correlate 

cancer cell genetic information with clinical consequences [7, 8]. These drawbacks can be 

addressed by empirical phenotypic drug testing [9, 10], in which patient cancer cells are exposed 

to multiple treatments in vitro as a therapeutic guidance for individual patients [11].  

As compared to mono-drug treatment, drug combination has emerged as treatments for 

many diseases [12], especially for cancer due to its difficulty in treatment and cellular 

heterogeneity [13]. Although many new cancer drugs have been developed, mono-drug treatments 

typically fail curing cancer [14] due to the existence of alternative pathways to compensate the 

pathway target of drug [15, 16]. In order to overcome the limitations of mono-drug therapies, drug 

combinations, which aim to inhibit multiple redundant pathways of tumor cells, [17] have been 

widely accepted for better therapeutic efficacy [18]. To identify appropriate drug combinations, it 

is desirable to include more compound candidates [19], yet the resulting experimental complexity 

and cost increases exponentially [20]. For example, investigation of 50 different compounds in 

pairwise combination yields  𝐶250 = 1225  different combinations. Furthermore, we assume 7 

different concentration ratios for each combination, and 6 replicates for each treatment condition, 
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which yields 1225 × 7 × 6 × 10 = 51450 experiments. This is not only costly but also time-

consuming for a typical test panel of well-plate platforms.  

In 2013, The US Food and Drug Administration expressed their dedication in developing 

novel combinatorial therapies, highlighting the need for innovative technologies to accelerate the 

discovery of novel drug combinations [22, 23]. To achieve high-throughput drug combination 

screening, several systems have been presented incorporating robotics and automatic handling [24]. 

However, they are limited by complicated operation systems [25] and time-consuming serial 

processes [26]. Microfluidics emerges as a promising technology for both clinical precision 

medicine and industrial-scale drug discovery [27], thanks to its capability of handling small 

samples and highly multiplexed operations for high-throughput assays [28]. Previous microfluidic 

high-throughput drug screening platforms introduce a “Christmas tree structure” to generate a 

linear drug concentration gradient, but they are limited to the combination of two drugs [29, 30], 

which may not meet the needs for high-throughput drug screening. In addition, since cells respond 

to different drug concentrations in a non-linear manner, in some cases drug screening experiments 

require testing dosages ranging several orders of magnitude to calculate the 50% inhibition 

concentration (IC50) [31]. The narrow concentration range provided by conventional microfluidic 

linear gradient generators severely limits the use of microfluidics in drug screening [32]. Previous 

work using microfluidic generating logarithmic concentration gradient requires complicated valve 

operation and interface system, which is not desirable for routine drug screening application [33]. 

Furthermore, conventional in vitro cancer drug screening was mostly performed on two-

dimensional (2D) well-plates as a simple, fast, and cost-effective tool [34]. However, accumulating 

evidence on in vitro cancer studies shows that a large number of cellular features and gene 

expression are skewed in a 2D culture environment [35], which makes it less reliable to make 
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accurate clinical decisions. Three-dimensional (3D) cell culture systems have been widely used as 

better models in mimicking the in vivo tumor microenvironment [36], and it has become 

increasingly popular in drug screening studies [37]. In this work, we report a scalable, easy-to-

handle, high-throughput drug combination screening scheme, incorporated with custom software 

for drug efficacy readout and data analysis. The presented microfluidic design enables screening 

of all possible pairwise drug combinations from arbitrary number of different drugs. As a proof of 

concept, we demonstrated an 8-drug screening chip with logarithmic concentration gradient. We 

performed drug combination screening experiment with multiple cell lines. Combining 𝐶28 = 28 

drug combinations, 6 mixing ratios, and 6 replicates, plus some single compound control chambers, 

a total of 1,032 drug efficacy screening experiments can be accomplished in a single 8-drug 

screening chip. Using the presented chip, we successfully performed drug combination screening 

of pancreatic cancer patient-derived cell lines, as a demonstration for precision medicine 

applications. 

 

3.2 Microfluidic filter structure for cell capture and sphere formation 

The proposed drug combination screening chip consists of 1032 microtumor culture units, 

(28 drug combinations × 7 concentration mixing ratios + 4 culture media controls) × 6 replicates 

= 1032. Cells loaded to the chip will be automatically distributed to all the culture chambers to 

form microtumors. To facilitate cell capturing and microtumor culturing, each culture unit is 

composed of a center sphere culture chamber, a ring chamber surrounding the center sphere culture 

chamber, and a thin gap (5 µm in height, 50 µm in length) connecting the two chambers. A total 

of 20 octagon micropillars (5 µm in height, 25 µm in side length, and 25 µm in spacing between 
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pillars) are sparsely deployed between the polydimethylsiloxane (PDMS) thin gap to provide 

mechanical support and prevent the thin gap from collapsing (Fig. 3-1 (a)). 

 

Figure 3-1. Schematics of multiplexed 8-drug combination screening chip. (a) Separate views of three PDMS layers. 32 holes are 

punched through all the three PDMS layers for drug inlets using 6mm biopsy punch, connecting the mixing and routing layers. 

(b) Top view of the mixing layer: 32 inlets are allocated to 8 drugs, with a group of 4 connecting to each other with the same 

number in the routing layer. Before drug treatment, cells were loaded to the inlets and automatically deployed to 1,032 culture 

chambers driven by gravity flow. Cell inlets are also used for drug outlet during drug treatment process. (c) Top view of the 

routing layer, same number on different rows are connected in routing layer.  
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3.3 Microfluidic tree structure as logarithmic concentration gradient generator 

 We presented a “Christmas tree mixer” structure with non-uniform channels sizes to 

achieve a logarithmic mixing ratio gradient between two different compounds. The “Christmas 

tree mixer” is composed of five stages of microfluidic meander channels, with an incremental 

number from three to seven in each stage (Fig. 3-2 (a)). Solutions containing two different 

compounds are introduced from the top inlets and flow through the microchannel network. The 

fluid streams are combined in each branch channel stage, yielding mixture of distinct compositions, 

and splitting to the next stage. Finally, a concentration gradient is generated across the last stage 

of branching channels [29]. The splitting ratio of the flow at each stage is determined by the flow 

resistance. According to Hagen-Poiseuille equation, hydraulic resistance of a channel is 

approximately inversely proportional to squared channel width [44]. When all the microfluidic 

meander channels are designed to be of the same size (width, height, length), the flow resistance 

through all the branch channels are the same. In this case, a linear concentration gradient with an 

arithmetic progression ratio will be established in the last stage. 

However, most drug screening experiments require log-scale concentration gradient 

covering a wider concentration range. In order to generate non-linear concentration gradient, 

channels on both two sides are designed to be wider than those at the center, so that the flow 

resistance of meander channels on the sides are smaller than that of the channels at the center. For 

example, two drug compounds, A and B, are loaded on the two sides of the mixer (Fig. 3-2 (a)). 

Due to a small flow resistance inside channels compared to center channels, mostly of the flow 

will be guided side channels, while only a small portion mixed with each other at the center 

meander channels. In this case, when the mixture from the previous stage flowing to the next stage, 

a large volume of compound A from the channels on the left merged with the small volume of 
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mixture compound A+B from the center channel, yielding a mixture containing mostly A with a 

small portion of B. The more drastically different the volumes are, the less amount of compound 

B is contained in the final mixture, the larger concentration ratio of compound A to compound B 

is. In this manner, we can generate a logarithmic concentration gradient (Fig. 3-2 (b)).  

 

Figure 3-2. COMSOL simulation results for logarithmic “Christmas tree mixer” structure (a) Concentration simulation of 

“Christmas tree mixer” using COMSOL. (b) Measurement of the concentration of both drug A and drug B at the final stage of 

the mixer. (c) Velocity simulation of “Christmas tree mixer” using COMSOL. (d) Flow rate measurement of the channels in 4th 

stage and 5th stage (last stage), validating that the last stage can be a “buffering layer” to balance the flow rates among between 

branches. 
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Another critical design of this chip is that meander channels at the last stage (i.e. 5th stage) 

of mixer array have the same dimension, instead of following the previously described rule of 

“side channels wider than center channels”. This last stage meander channels are used as a 

“buffering layer” between the upstream “Christmas tree mixer” and downstream sphere culture 

chambers (Fig. 3-2 (c)). The rationale behind this last stage meander channel design is that the 

sphere culture chambers connected to the downstream also contributes to the equivalent resistance 

of the last stage of the “Christmas tree mixer”. Even if the channel dimension of the last stage is 

carefully designed, because of the contributions of the hydraulic resistance from the downstream 

microfluidic structure, the equivalent resistance seen from the previous stage will be affected. On 

the other hand, the “Christmas tree mixer” also have an influence on the flow resistance of cell 

capture structures. When cells are loaded from cell inlets to cell culture chambers, the imbalanced 

channel design of “Christmas tree mixer” will also affect the cell loading uniformity, resulting in 

more cells loaded to chambers that are connected to side channels due to a lower flow resistance. 

Channels of the same dimension at the last stage of “Christmas tree mixer” help balance the cell 

loading (Fig. 3-2 (d)) and form tumor spheres of uniform size among all branches (Fig. 3-3). 

We demonstrate the COMSOL simulation results of the presented mixer structure (Fig.  3-

2 (a)), in which the channel dimension is designed to be symmetric. As described above, the 

channels at the last stage are the same in dimension (90 μm in width). To achieve the proper range 

of mixing ratios, the center channels are designed to be 60 μm in width, the channels on both sides 

are 120 μm in width, while the channels in between are 90 µm in width. As a result, seven 

concentration ratios between drug A and drug B are achieved at a logarithmic gradient, ranging in 

1:106, 1:100, 1:10, 1:1, 10:1, 100:1, and 106:1 (Fig. 3-2 (b)), which is desirably wide for drug 

screening platforms. 
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Figure 3-3. Formation of uniform spheres. (a) A microscope view containing 40 SUM159 spheroids showing uniform spheroids 

size. (b) Scattering plot showing a small variation of < 4.4% in the diameter size. (Scale bar = 300 μm) 

 

3.4 Mixer array and drug inlets “Sudoku puzzle” 

By deploying the “Christmas tree mixer” structures, we could generate a concentration 

gradient between two drugs. However, if all the  𝐶28 = 28 combinations of 8 drugs need to be 

screened using “Christmas tree mixer” side by side, at least 28 × 2 = 56 drug inlets are, which 

requires a very complicated microfluidic interface tubing system. To address this issue, adjacent 

Christmas tree mixers are designed to share a common drug inlet. However, this design requires 

special arrangement of the inlet array to guarantee the adjacent drug pairs cover all the possible 

combinations. For example, we could arrange the drug inlets as table 3-1 if there are 4 drugs: 

 

Table 3-1. Example drug inlets layout for 4 drugs. Number 1, 2, 3, 4 stands for 4 different drugs. 

 

 

 

 

  

(a) (b) 

1 2 3 4 

2 4 1 3 
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In which, number 1~4 stand for 4 different drugs, and there is a “Christmas tree mixer” between 

each number pairs to generate concentration gradient. In this case, all the possible pairwise 

combinations, 1-2, 2-3, 3-4, 1-3, 2-4, and 1-4 are covered. However, the arrangement problem 

becomes much more complicated when the drug number becomes larger, for example, the 

computational complexity could reach 1026  possible permutations when the drug number comes 

to 16. To make it possible for scaling-up, a general solution to the inlet arrangement is require so 

that the same design strategy could be applied to any arbitrary number of drugs. Although there 

are many possible solutions that could fulfill the requirements, we find a general solution for all 

even number of drugs. To make it convenient to explain, we rephrase the inlets arrangement 

problem to the following “Sudoku puzzle” problem: 

Let N be any even number, use number 1~N to fill in a table with N columns and N / 2 rows. 

If we define the combination of horizontally adjacent numbers as a “pair”, also define “1, 2” 

and “2, 1” are the same pair. We will have 𝑁 × (𝑁 − 1) / 2 pairs in the table. Try to fill in 

table, such that:  

 (a) Each row contains N non-repeating numbers from 1 to N. 

 (b) All the N×(N-1)/2 pairs are non-repeating and covering all the possible combinations. 

Since all the requirements are defined on adjacency relationship, we find it very convenient to 

introduce an “adjacency relationship matrix” to keep record of the existing adjacent number. Take 

the adjacency matrix for N = 6 as example: 
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Table 3-2. Initialization of adjacency matrix. 

 

There are 6 ×  6 =  36 entries in this adjacency matrix. Each entry represents the existence of 

certain adjacent number pairs in the original Sudoku table. For example, if we put an “x” in the 

entry located at row2 colomn3, it means that the combination of “2-3” already exist in the original 

Sudoku table. Similarly, entry in row5 colomn1 means that “5-1” is covered. In this case, if all the 

entries in this “adjacency matrix” is filled with a “x”, its corresponding Sudoku table is a good 

solution. It is obvious that the diagonal entries don’t exist, so we ignore those entries.  

To fill in this table, we first assume this n-by-n array should be symmetric. In this way, it is 

convenient to guarantee “a-b” and “b-a” appear at the same time. Also, it is easy to proof that the 

first row and first column are arbitrary. To make it simple, we fill in number 1~6 in original Sudoku 

table, together with its corresponding adjacency matrix as follows: 

 

Table 3-3. Filling adjacency matrix at the second line next to diagonal with “a”. 
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We keep filling in the entries in third line along diagonal direction.  

 

Table 3-4. Filling adjacency matrix at the third line next to diagonal with “b”. 

 

 

Taking advantage of the symmetry of the table, we could derive: 

 

Table 3-5. Filling adjacency matrix at the fourth line next to diagonal with “c”. 

 

 

Finally, we fill in the 5th line along diagonal direction, we could get the full solution to 6 by 6 

adjacency Sudoku table as follows: 
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Table 3-6. Completion of adjacency matrix. 

 

In this work, due to the limitation of wafer area and availability of chemo-drugs, we only conduct 

experiment on devices for 4 drugs and 8 drugs. However, the introduced method using “adjacency 

matrix” could be applied to get any arbitrary even numbers. As a demonstration, we showed the 

matrix for 16 drugs (Table 3-2).  

 

Table 3-7. Example drug inlets layout for 16 drugs. Number 1~16 stands for 16 different drugs. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 4 1 6 3 8 5 10 7 12 9 14 11 16 13 15 

3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 14 

4 6 2 8 1 10 3 12 5 14 7 16 9 15 11 13 

5 3 7 1 9 2 11 4 13 6 15 8 16 10 14 12 

6 8 4 10 2 12 1 14 3 16 5 15 7 13 9 11 

7 5 9 3 11 1 13 2 15 4 16 6 14 8 12 10 

8 10 6 12 4 14 2 16 1 15 3 13 5 11 7 9 
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3.5 Multiple PDMS layers for drug mixing and routing 

 As described in previous drug inlets array section, even if the inlet number could be reduced 

by sharing common drug inlets, there are still many inlets for each drug. For example, for a 16-

drug combination screening chip, it is labor-intensive to load all the 16 drugs into 162/2 = 128 

drug reservoirs, especially when there are many chips to operate. In order to further minimize the 

pipetting/tubing number, we present a three-layer chip design inspired by multilayer circuit board 

design. The three PDMS layers are routing layer, mixing layer, and lid layer from bottom to top 

(Fig. 3-4 (a)). In the mixing layer, different drug compounds are combined using previously 

mentioned “Christmas tree mixers” that are patterned on it, together with sphere culture chambers 

(Fig. 3-4 (b)). In the routing layer, a total of N (N = number of drugs to be screened) microfluidic 

channels are implemented to connect multiple drug reservoirs for the same drug. Through these 

routing channels with extremely large cross-section area, thus negligible flow resistance compared 

to micro-channels in the mixing layer, each drug compound can be automatically dispensed to all 

the drug inlets within seconds. The layout of the routing channels could be generated and optimized 

automatically using PADS Autorouter, a circuit board design software (Fig. 3-4 (c)). Since the 

flow resistance of the routing channels is extremely small (around 4 orders of magnitude) 

compared to that of the mixing layer, the drug solution will fill all the drug reservoirs in seconds 

when one of the certain drug is loaded to any of the drug reservoirs. The lid layer PDMS covers 

the mixing layer to form an enclosed microfluidic system. The mixing PDMS layer was flipped to 

face upward before bonding to lid layer, so that cells could be captured at the 5 μm thin gap in 

each individual chamber. 
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Figure 3-4. Schematics of multiplexed 8-drug combination screening chip. (a) Separate views of three PDMS layers. 32 holes are 

punched through all the three PDMS layers for drug inlets using 6mm biopsy punch, connecting the mixing and routing layers. 

(b) Top view of the mixing layer: 32 inlets are allocated to 8 drugs, with a group of 4 connecting to each other with the same 

number in the routing layer. Before drug treatment, cells were loaded to the inlets and automatically deployed to 1,032 culture 

chambers driven by gravity flow. Cell inlets are also used for drug outlet during drug treatment process. (c) Top view of the 

routing layer, same number on different rows are connected in routing layer.  

 

3.6 Validation of logarithmic concentration gradient on-chip 

 In order to test drug solution mixing on-chip, both fabricated linear concentration gradient 

device and logarithmic concentration gradient device were loaded with fluorescent dyes. The 

fluorescent intensity profile could be used to represent the concentration of different drugs. PBS 
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(no fluorescence) and three fluorescence dyes with different excitation wavelength were used: 

Tetramethylrhodamine (TRITC, red), Fluorescein (green), and DAPI (blue). After overlaying all 

the fluorescent images from each channel, we observed a rainbow-like color gradient formed in 

linear concentration gradient device (Fig. 3-5 (a)). By measuring the fluorescence intensity of all 

dyes, we verified each of the pairwise compound was mixed in six concentration ratios of 

0% :100%, 20%: 80%, 40%: 60%, 60%: 40%, 80%: 20%, and 100%: 0%, which is accordant with 

simulation results (Fig. 3-5 (c)). For logarithmic gradient generator, due to the tradeoff between 

the dynamic range and detection resolution of camera, different exposure times were needed to 

validation high concentration region and low concentration region, respectively. One image was 

taken with short exposure time (30 ms) to achieve larger detection range and avoid fluorescence 

saturation, so that the concentration relationship between 10%, 50%, and 90% could be verified 

(Fig. 3-5 (b)); While the other image is taken using long exposure time (300 ms), enabling the 

measurement of fluorescence intensity difference between 0%, 1% and 10%. Thus, combining the 

measurement in these two images, it was validated that the logarithmic mixing ratio in fabricated 

device matches well with COMSOL simulation results (Fig. 3-5 (d)). 
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Figure 3-5. Generation of linear and logarithmic concentration gradient validated by fluorescent dye (a) Linear gradient 

generation using PBS, Fluorescein (green), tetramethylrhodamine (red), and DAPI (blue), from left to right. The final image was 

created by overlapping images of the brightfield, FITC, TRITC, and DAPI channels. (b) Logarithmic gradient generation using 

tetramethylrhodamine (red), DAPI (blue), PBS, and Fluorescein (green), from left to right. The final image was created by 

overlapping images of the brightfield, FITC, TRITC, and DAPI channel. (c) Comparison of fluorescent intensity between linear 

gradient generation experiment (solid lines) and simulation results (dashed lines). (d) Fluorescent intensity measurement of 
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logarithmic gradient generation experiment (solid lines), which correlates well with simulation (dashed lines). (Scale bar = 500 

μm) 

 

3.7 Cancer cell loading and sphere formation 

 For cell loading balance considerations, two cell inlets are used on both left side and right 

side. In the loading process, 500 μL cell suspension is loaded to both cell loading inlets, while the 

32 drug inlets are left empty, which are used as outlets. Driven by the pressure difference between 

cell loading inlets and drug loading inlets, cells are distributed to 1032 sphere culture chambers, 

and captured at the 5 μm thin gap in each individual chamber. The chamber bottom was designed 

to be curved (Fig. 3-1 (b)), so that cells finally aggregate at the rounded bottom in central octagonal 

chamber, which is coated with Pluronic-108. After culturing cells for 1 day, cells form spheroids 

of uniform size (Fig. 3-1 (c)). By regulating chamber dimensions, we are able to control the 

equivalent flow resistance of the cell culture gap. The larger the chamber dimension is, the smaller 

the flow resistance is, the more cells could be captured at the cell capture gap, the larger the 

spheroids could be finally formed. As a demonstration, we showed that two different sizes of 

spheres could be achieved (large sphere: 238 ± 16 µm in diameter, small spheres: 124 ± 11 µm in 

diameter), with two different chamber dimension designs (large chamber: 440 µm in diagonal, 

small chamber: 240 µm in diagonal), respectively (Fig. 3-1 (d)). 

 

3.8 Synergy effect analysis 

 To quantify the synergistic effect of various drug combinations, we calculated “Maximum 

Synergy Index” (MSI) inspired by loewe additivity [41]. Based on dose equivalence principle, that 
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for a given effect, dose a of drug A is equivalent to dose ba of drug B, and reciprocally. In addition, 

dose ba can be added to any other dose b of drug B to give the additive effect of the combination. 

The additive effect of drugs A and B can be expressed as [42]: 

Effect (a + b)  =  E𝐴(a + a𝑏) = 𝐸𝐵(𝑏𝑎 + 𝑏) 

To quantify the combination synergistic index, we first calculated the linear interpolation value of 

each combination with different mixing ratio based on single drug effect. For example, drug A 

with dose a yields 𝐼𝑎% inhibition rate, while drug B with dose b yields 𝐼𝑏% inhibition rate. The 

combination of drug A and drug B with the mixing ratio of 1:1 should yields 𝐼𝑎𝑏 = (𝐼𝑎% +

𝐼𝑏%)/2 inhibition rate. The “synergy index” of drug A and drug B with certain mixing ratio is 

defined as dividing the experimental inhibition rate 𝐼𝑎𝑏,𝑒𝑥𝑝 by theoretical inhibition rate 𝐼𝑎𝑏,𝑡ℎ𝑒𝑜𝑟𝑦. 

The largest synergistic index among all the screened mixing ratio between drug A and drug B, 

which has the best chance of achieving the best therapeutic result, is defined as the Maximum 

Synergy Index (MSI) of the drug combination between A and B. An MSI greater than 1 indicates 

a synergistic drug combination, since the maximum inhibition rate of the drug combination is 

higher than the linear interpolation of individual drugs. 

 

3.9 Drug combination screening on breast and pancreatic cancer cell lines 

 To demonstrate the efficacy of high-throughput drug combination screening, we conducted 

a screening experiment with pancreatic cancer cell line, MIA PaCa-2, using a fabricated 8-drug 

logarithmic concentration gradient chip. All the pairwise combinations of seven chemo-drugs 

(Cisplatin, Docetaxel, Doxorubicin, Gemcitabine, Irinotecan, Oxaliplatin, Fluorouracil) together 

with culture media positive control were screened in a single-chip (Fig. 3-6). As a result, we  
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Figure 3-6. Drug combination screening results of control (culture media) and 7 drugs (Cisplatin, Docetaxel, Doxorubicin, 

Gemcitabine, Irinotecan, Oxaliplatin, 5-FU) using pancreatic cancer cell line MIA PaCa-2. Each subplot in the lower triangular 

table illustrates the cell death rate under the combination of drugs at each corresponding row and column. Each bar with 

different colors represent different concentration mixing ratio of certain drug combination. “Maximum Synergistic Index” (MSI) 

is denoted at upper triangle table, which is defined by the largest synergistic index among all the screened mixing ratio between 
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the pair of drugs. Synergistic drug combination pairs with high MSI (>1.4) are highlighted in red, while those non-synergistic 

ones with low MSI (<1.1) are highlighted in blue. 

 

identified a few drug combinations with high synergistic indexes, which were highlighted in red. 

For example, the combination of docetaxel + irinotecan, doxorubicin + 5-FU, docetaxel + 

oxaliplatin, and gemcitabine + Irinotecan showed synergistic indexes higher than 1.4, which have 

been proven to be more effective than single drugs in previous clinical and research literatures [45-

48]. While the non-synergistic drug combinations, highlighted in blue in the table, such as cisplatin 

+ oxaliplatin and gemcitabine + 5-FU [49] may result from their similar mechanism of action. 

Both cisplatin and oxaliplatin are DNA alkylating agents forming platinated intra-strand and inter-

strand cross-link, interfering with DNA replication. [50]. While gemcitabine and 5-FU are both 

belongs to nucleoside analog family of medication, which induces cell apoptosis by inhibiting the 

synthesis of new DNA [51]. We further demonstrated the general usage for the presented chip for 

other types of cancer cell lines using SUM159 and MCF7, on a fabricated 4-drug screening chip 

with linear concentration gradient mixer (Fig. 3-7). We also showed reliable drug combination 

screening result among 4 fabricated 8-drug screening chips using SUM159 breast cancer cells, 

with negligible drug efficacy variations among different chips (Fig. 3-8). 
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Figure 3-7. SUM159 and MCF7 drug combination susceptibility test. (a) Using 20 μM docetaxel, 2 μM doxorubicin, culture 

media, and 200 μM cisplatin. Live (green) / dead (red) staining are used after drug treatment for cell viability readout. (b) 

Example images of 2 spheroids with death rate of 15.8% and 71.2% measured by custom software, respectively. (c) 

Heterogeneous drug response between SUM159 and MCF7 breast cancer cell lines. Cell death rate under certain drug treatment 

condition is quantified using different color. SUM159 is susceptible to doxorubicin + docetaxel and doxorubicin + cisplatin, 

while MCF7 is only sensitive to doxorubicin + cisplatin. (Scale bar = 300 μm) 
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Figure 3-8. Chip-to-chip variance characterization experiment. We repeated drug combination screening experiments on breast 

cancer cell line SUM159, using 4 fabricated chips under identical treatment conditions. (a) Drug combination screening result in 

row 1. The average standard deviation among 4 devices is 3.11%, with maximum standard deviation of 5.26% and minimum of 

0.79%. (b) Drug combination screening result in row 2. The average standard deviation among 4 devices is 3.36%, with 

maximum standard deviation of 5.54% and minimum of 0.70%. 

 

3.10 Drug Combination screening on pancreatic cancer PDX cell line 

 PDX models have been believed as an in vitro cancer mode that is more physiologically 

relevant more readily applicable to the clinics, due to its preservation of the inter-tumor and intra-

tumor heterogeneity, as well as the phenotypic and molecular characteristics of the original cancer 

[52]. Thus, we further tested pancreatic cancer PDX cell lines to demonstrate the potential of 

presented chip for precision medicine. Combining the drug combination screening results of three 

PDX cell line samples, UM5 (Fig. 3-9), UM16 (Fig. 3-10), and UM53 (Fig. 3-11), we established 

general drug responses of pancreatic cancer to a panel of combination treatments (Fig. 3-12 (a)). 

Among all drug combinations, a few of them with high average inhibition rate, such as fluorouracil 

+ oxaliplatin, gemcitabine + oxaliplatin, and docetaxel + oxaliplatin, are identified as generally 

effective drug combinations for pancreatic cancer treatment. In fact, both fluorouracil + oxaliplatin 

and gemcitabine + oxaliplatin have been approved by US Food and Drug Administration (FDA) 

for pancreatic cancer combinatorial treatment [53, 54]. In addition, we also pinpointed the unique 

drug responses of each PDX sample. For UM16, none of the well-accepted drug combination was 

effective in inhibiting cell growth (Fig. 3-12 (b)). The non-conventional combination of 

gemcitabine and docetaxel, however, achieved a good drug efficacy. UM5 showed resistant to 

most of the drug compound except for the combination of 10% gemcitabine and 90% Oxaliplatin 

(Fig. 3-12 (c)). The heterogeneous drug response among different patient samples confirmed the 
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importance of customizing personalized chemotherapy for each individual. The successful 

combinatorial drug screening experiments using PDX cell lines suggest the potential of the 

presented platform in discovering new combination and precision medicine. 
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Figure 3-9. Drug combination screening results of UM5 using 7 commonly used chemo-drugs and control (culture media). With 

the name of all compounds are denoted at diagonal entries, each subplot illustrates the cell death rate under the combination of 

drugs at each corresponding row and column. Maximum Synergistic Index (MSI) is denoted at upper triangle table. Highly 

synergistic pairs are highlighted in red (MSI > 1.4), while non-synergistic ones are highlighted in blue (MSI < 1.1). 
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Figure 3-10. Drug combination screening results of UM16 using 7 commonly used chemo-drugs and control (culture media). 

With the name of all compounds are denoted at diagonal entries, each subplot illustrates the cell death rate under the 

combination of drugs at each corresponding row and column. Maximum Synergistic Index (MSI) is denoted at upper triangle 

table. Highly synergistic pairs are highlighted in red (MSI > 1.4), while non-synergistic ones are highlighted in blue (MSI < 1.1).  
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Figure 3-11. Drug combination screening results of UM53 using 7 commonly used chemo-drugs and control (culture media). 

With the name of all compounds are denoted at diagonal entries, each subplot illustrates the cell death rate under the 

combination of drugs at each corresponding row and column. Maximum Synergistic Index (MSI) is denoted at upper triangle 

table. Highly synergistic pairs are highlighted in red (MSI > 1.4), while non-synergistic ones are highlighted in blue (MSI < 1.1). 

 

 

Figure 3-12. Drug combination screening results of control (culture media) and 7 drugs (Cisplatin, Docetaxel, Doxorubicin, 

Gemcitabine, Irinotecan, Oxaliplatin, 5-FU) using pancreatic cancer PDX cells. 172 different pairwise drug combinations with 

different mixing ratios are listed in X-axis. (a) Average drug response of all PDX cells for 172 different drug treatment 

conditions. (b) UM16 relative drug responses compared to the average drug response of all PDX cells. (c) UM5 relative drug 

responses compared to the average drug response of all PDX cells. (d) UM53 relative drug responses compared to the average 

drug response of all PDX cells. 
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3.11 Chapter summary 

 We reported a high-throughput, easy-handling, multiplex drug-combination screening 

platform scheme. By innovatively using three-layer PDMS structure, drug inlets sharing scheme, 

and specially arranged drug inlets array, we successfully demonstrated the feasibility of scaling up 

combinatorial drug screening for larger number of drugs. In addition, we presented a logarithmic 

concentration gradient generator, which provides a wider dynamic concentration range as 

compared to linear gradient generator. Furthermore, we adopted 3D tumor spheroids models for 

drug screening to better mimic in vivo tumor microenvironment. The design of spheroid culture 

chamber with 5 μm cell capture gap, micropillar array, and rounded bottom structure guaranteed 

the formation of uniform spheroids of 238 ± 16 µm in size. As a demonstration of the design 

scheme, we fabricated an 8-drug combination screening chip, which generates 𝐶28 = 28 pairwise 

drug combinations, with 7 mixing ratios between each pair of drugs, yielding 172 different 

treatment conditions. Combining 6 replicates for each treatment condition, 1,032 drug efficacy 

screening experiments can be accomplished in a single 8-drug screening chip. The drug screening 

experiment using pancreatic cancer cell line, MIA-PaCa-2, identified the synergistic effects 

between docetaxel + Irinotecan, doxorubicin + 5-FU, docetaxel + oxaliplatin, and gemcitabine + 

Irinotecan, which match well with the clinical trial results reported in literature. We further verified 

the application of the fabricated chip in precision medicine using patient derive xenograft (PDX) 

cell lines, which better mimic the drug response of patients. We pinpointed the most synergistic 

drug combinations for each patient based on our screening results. The preliminary results verified 

the efficacy and synergistic effect of high-throughput drug combination screening. The presented 

design approach is easily scalable to incorporate a large number of drugs for large-scale drug 

screening.
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Chapter 4 : High-Throughput Microfluidic Clonal Sphere Chip 

Identifies Cancer Stem Cells Located at the Leading Edge of 

Tumorigenic Subclones 

Cancer heterogeneity refers to the co-existence of multiple subclones with distinct 

genotypic and phenotypic properties, which contributes to drug resistance and cancer relapse. 

Cancer heterogeneity can be interpreted in two levels: inter-clonal heterogeneity and intra-clonal 

heterogeneity. Inter-clonal heterogeneity represents the morphological and molecular variation 

between multiple tumor clones. On the other hand, intra-clonal heterogeneity stands for the cellular 

diversity within each individual clone. This cellular level of heterogeneity could be introduced by 

the spatial distribution of each individual cancer cell within a clonal sphere, which introduces 

different exposure to tumor-microenvironment cues, and thus diversified differentiation stages. In 

order to understand cancer hierarchy and drug resistance, clonal sphere derived from a single 

cancer cell has been widely used. However, very few works incorporate both levels of 

heterogeneity. In this work, we studied the topic of inter-clonal and intra-clonal heterogeneity as 

a whole, using a high-throughput clonal sphere (Hi-Sphere) chip combined with fluorescence 

labelling techniques. The Hi-Sphere chip is capable of culturing more than 2,400 single-cell-

derived clonal spheres and selectively retrieve them based on sphere size. By combining 

fluorescence labelling technique, we compared cells from the tumor leading edge to the tumor core. 

We discovered the majority of cancer stem-like cells (CSCs) were located at the leading edge of a 

specific subclone, called holoclone. This preliminary result not only validated the feasibility of 

using Hi-Sphere chip for both inter-tumor and intra-tumor heterogeneity studies, but it also 

provided us the spatial information of CSC for future drug resistance studies. 
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4.1 Introduction 

Solid tumors are inherited heterogeneous diseases containing cancer cells at different 

stages of differentiation [1]. It has been widely believed that tumor heterogeneity contributes to 

tumor progression, metastasis, drug resistance and tumor relapse [2]. As tumor progresses, the 

increased cellular heterogeneity gives rise to a multitude of neoplastic cells presenting distinct 

morphological and signaling signatures [3]. In general, there are two levels of tumor heterogeneity: 

inter-tumor heterogeneity and intra-tumor heterogeneity [4, 5]. The coexistence of inter-tumor 

heterogeneity and intra-tumor heterogeneity makes it more challenging to understand the complex 

tumor hierarchy and develop cancer therapy. Although considerable efforts have been made in 

studying cancer cell heterogeneity at different level [6, 7], these works treated inter-tumor and 

intra-tumor heterogeneity as separate topics. There is a need to bridging the gap between tumor 

hierarchy levels and consider these tumor signatures as a whole. 

Inter-tumor heterogeneity refers to the phenotypic and molecular variation between 

multiple tumors or subclones from the same patient source [8]. For example, a recent hypothesis 

of tumor hierarchy categorizes tumor clones as holoclones, meroclones and paraclones [9], which 

are derived from stem cells, transit-amplifying cells and differentiated cells, respectively. It is 

believed that holoclones play an important role in tumor proliferation and relapse [10]. Meanwhile, 

a deeper level of tumor heterogeneity is known as intra-tumor heterogeneity, which deals with the 

individual cancer cells with distinct cellular features within a solid tumor [11] Among many intra-

tumor heterogeneity mechanisms, cancer stem-like cell (CSC) model has shown to play a pivotal 

role [12, 13]. CSCs are a small subpopulation of cells within tumors capable of self-renewal, 

differentiation, and tumorigenicity. The search for strategies targeting CSCs represents one of the 

emerging fields in cancer studies [14]. A large number of surface marker (CD24, CD44, ALDH, 
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EpCam) has been used to identify CSCs among bulk populations. However, none of these markers 

has been validated as universal gene among all cancer types. It is fundamentally challenging to 

pinpoint CSCs without direct correlation with CSC behavioral signature [15, 16]. Recently, Cancer 

cell sphere culture models using sphere-forming assays are valuable tools to study the biology of 

CSC [17]. When cancer cells are cultured in serum-free suspension condition, bulk non-stem cells 

undergo apoptosis due to loss of anchorage [18], while only CSCs survive and proliferate to form 

spheres [19] . Based on this unique property of CSCs, sphere formation assay has been widely 

used in selection and enrichment of CSCs [20, 21]. An ideal sphere formation assay should avoid 

cell aggregations at the initial seeding step, so that anchorage-dependent cells cannot survive and 

dilute CSCs population. Most of the conventional clonal sphere assays, like micro-titer plates [22, 

23], hanging-droplet assays [24], and robotic dispensing [25] suffer from poor control of single 

cell isolation, lack of long-term culture capability, or costly automatic control system. It is hard to 

measure the clonal sphere formation rate accurately and explore CSC heterogeneity. 

In recent decades, microfluidics emerges as a promising technique for single cell clonal sphere 

culture [26]. Considerable development has been achieved in high-throughput single cell 

encapsulation and long-term clonal sphere culture tasks. However, it is also very critical to develop 

the technique of separation and re-collection of clonal spheres based on the clonal and cellular 

heterogeneous property. In this work, we presented a high-throughput microfluidic clonal sphere 

(Hi-Sphere) chip (Fig. 4-1 (a)), which enables: (1) 3,200 individual chambers for hydro-dynamic 

single-cell isolation, (2) long-term clonal sphere culture and automatic sphere size tracking, (3) 

easy retrieval and separation of different subtypes of clonal spheres for inter-sphere heterogeneity 

study. (4) a fluorescent labelling technique correlating cancer cell spatial location and stem-like 

features for investigation of intra-tumor heterogeneity. With the help of Hi-Sphere chip, we first 
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validated that certain subtypes of clonal spheres are poised with self-renewal potentials and 

tumorigenic properties. Based on that, we further compared cells located at the outer periphery 

(leading edge) of the spheres and cells at the inner core of the spheres. Using both phenotypic 

assays and biomarker analysis, we confirmed our discovery that the majority of the CSC cells were 

located at the outer part of the spheres, while only a small portion of CSCs were found at the inner 

core. These findings provide us a better understanding of the tumor heterogeneity as a whole and 

help targeting specific cancer populations. 

 

4.2 Hi-Sphere chip for clonal sphere culture 

Inspired by the previous work on microfluidic single cell capture chip [30], the presented 

microfluidics Hi-Sphere chip is composed of 3,200 individual culture chambers (32 rows by 100 

columns), with 150 μm×150 μm, and 100 μm in height (Fig. 4-1 (a)). The culture chambers on the 

same row are connected to the inlet and the outlet by two main channels (100 μm in height), 

respectively. Each culture chamber consists of a single cell capture site, which is 5 μm in height 

and 10 μm in width. A single cancer cell flowing into the sphere culture chamber will block the 

cell capture site, preventing the next cancer cell to enter the same chamber (Fig. 4-1(b)). This 

hydrodynamic cell capture design minimizes the contamination from multiple-cell-plating cases 

(3.9%), while achieving high-throughput single cell clonal sphere culture (81.6% ± 13.2%), which  
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Figure 4-1. Overview of the Hi-Sphere chip design (a) Photograph of a fabricated device. (b) Schematic of the Hi-Sphere chip. 

Driven by gravity flow, single cells flew from inlets to culture chambers, and captured at capture site. (c) Cross-section view of 

Hi-Sphere chip while cell loading and cell culture. Once single cells captured in culture chambers, microfluidic chip was flipped 

upside down. Cells fall inside deep culture chambers and get isolated. d) A sample microscope image of Hi-Sphere chip after cell 

loading. e) Comparison between Hi-Sphere devices and microwell devices. (Scale bar = 100 µm) 

 

is much higher than the single cell chamber percentage (34.7% ± 9.8%) in microwell devices (Fig. 

4-1 (d), (e)). In order to demonstrate the reliability of culturing spheres using Hi-Sphere chips, we 

loaded patient-derived-cell line, HN-13 cells, to five identical Hi-Sphere device replicates. They 

were imaged on day 0 (right after loading), day 3, day 6, and finally day 12 (Fig. 4-2 (a)). A custom 

MATLAB program was applied to the collected microscope images to automatically measure the 

sphere size. Though individual single cells have wide range of sphere-forming capability and 

different growing curve, the collection of a large number of single cells in each device show similar 

distribution in day 12 sphere size (Fig. 4-2 (b)). We further quantified the sphere-forming potential 

by calculating the percentage of spheres that with diameter larger than 70 µm on day 12 out of all  
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Figure 4-2. Sphere culture and size tracking using Hi-Sphere chip. a) Microscope images showing single cell clonal sphere 

growth on day 0, day 3, day 6, and day 12. b) Day 12 sphere equivalent diameter measured across 5 devices. The similar sphere 

size distribution across different devices showing reliability and repeatability. Using 70 µm as the threshold for holo-spheres, 

HN-13 cells has 11.2% ± 0.9% sphere formation rate. (Scale bar = 100 µm) 
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loaded single cells. As a result, the sphere formation rate across 5 device replicates is 11.2% ± 0.9% 

(S.D.). This indicates that the sphere culture experiment is repeatable across different devices. 

 

4.3 Chip flipping strategy for sphere culture 

In recent decades, considerable development has been achieved in single cell encapsulation 

and long-term clonal sphere culture tasks. However, very few works put their efforts on selectively 

retrieving the spheres based on sphere size for further analysis. On the other hand, accumulating 

evidence suggests that tumor heterogeneity may contribute to tumor progression, metastasis, and 

drug resistance to targeted therapy [2, 32, 33]. The technique for separation and re-collection of 

clonal spheres based on the heterogeneous property will be very valuable in studying the cause the 

consequence of tumor heterogeneity. We realized that there is a fundamental tradeoff between the 

ease of sphere retrieval and the risk of losing track of clonal spheres using our scheme: a sphere 

should escape its culture chamber very easily if we wish to collect it after the experiment, but 

should remain steady in the culture chamber during the assay period. In order to solve this dilemma, 

we proposed a chip-flipping culture method. The microfluidic chip was flipped upside down after 

cell loading process was complete (Fig. 4-1 (c)). We put 200 µL cell culture media to the inlet, 

while 100uL cell media in the outlet. Due to the decreased hydraulic pressure fails to push the 

cancer cells at the capture site, and gravity force drives the cells to fall in the deep-well like culture 

chambers. In this way, these cells remain in their chambers even if there is any backflow. When 

the assay is complete, we could simply flip back the chip to let the spheres fall on the blank 

substrate. 
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4.4 Size-based selective sphere retrieval for inter-sphere heterogeneity study 

One hypothesis on CSC hierarchy categorizes cancer subclones based on morphological 

appearance, including holoclone, meroclone, and paraclone. Holoclones containing self-renewing 

stem cells, and meroclones containing transient amplifying cells and differentiated cells [9, 34]. 

Only holoclones are capable of serial passage and generate all three types of clones, while 

meroclones and paraclones have very limited proliferation potential. However, some literatures 

discovered that holoclones and meroclones could also transit to each other in long-term lineages 

[6, 9]. Therefore, there has been some debates on the distribution of tumor initiating cells in 

different subclones. Most of the previous works only address this problem by measuring CSC 

marker expression. However, variations in CSC characteristics were observed with different CSC 

markers [35]. There is a need in selecting and studying CSCs with phenotypic behavior approaches. 

With the advantages of reliable single-cell clonal sphere culture and easy sphere retrieval, 

Hi-Sphere chip provides a convenient way of identifying tumor-initiating cells from different 

subclones. In order to separate holo-spheres and other types of spheres, we designed a size-based 

sphere retrieval strategy consists of two steps (Fig. 4-3 (a)). In the first step, we flipped back the 

microfluidic chip to the orientation as cell loading, followed by applying negative pressure on 

device input using a Pasteur pipette bulb (~1000Pa). The backflow pushed spheres moving out of 

the culture chambers through connecting channels. Since mero-spheres and para-spheres were 

loosely formed spheres that were smaller than the size of connecting channels (Fig. 4-3 (b)), around 

95% of these clones would be selectively collected at the device inlets. On the other hand, holo-

spheres, which were in rounded-shape and larger than 70 µm in diameter, remained on chip and 

could be collected after peeling apart the chip. These two groups of spheres were collected to two  



60 

 

 

Figure 4-3. Hi-Sphere selective retrieval for inter-sphere heterogeneity study. a) Schematics of holo-spheres, mero-spheres 

selective retrieval: flipping back the microfluidic chip to the orientation as cell loading, applying negative pressure on device 

input. The backflow pushes spheres moving out of the culture chambers through connecting channels. Mero-spheres escaped 
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culture chambers due to loosely connected structure and smaller size. b) Sphere size distribution of holo-spheres and mero-

spheres in 2nd generation, compared to 1st generation spheres. (Scale bar = 100 µm) 

 

separate tubes, dissociated to single cell suspensions, and re-loaded to two groups of Hi-Sphere 

chips for another generation of sphere culture.  

We compared the 2nd Generation Clonal Sphere (2-GCS) formation rates between the 

single cells from holo-spheres and the other two type of spheres. As a result, 2-GCS formation rate 

of holo-spheres is significantly higher than that from other types of spheres (Fig. 4-3 (c)). This 3D 

sphere culture result provides phenotypic behavioral evidence that tumor initiating cells are mainly 

contained in holoclones. There is another interesting observation when we compare 2-GCS with 

the 1st Generation Clonal Sphere (1-GCS). Although the collected 1-GCS holo-spheres generate 

similar percentage of holo-spheres population in 2-GCS, the average sphere size in 2-GCS holo-

sphere group is much higher than that in 1-GCS. This indicates that a large number of non-sphere-

forming cells in 1-GCS go apoptosis during sphere culture, while cells with self-renewal potentials 

get enriched by selectively collecting holo-spheres and 2nd generation sphere culture. 

 

4.5 Cell tracker staining enabling intra-sphere heterogeneity study 

After observing that most sphere-forming cells were enriched in holo-spheres, we took a 

further step to explore inside the holo-spheres to investigate intra-sphere heterogeneity. We 

developed a fluorescent dye staining protocol to distinguish whether a cancer cell is originated 

from sphere leading edge and sphere core after dissociating the spheres to single cells (Fig 4-4 (a)). 

Cell Tracker CMFDA fluorescent dye has been widely used for live cell tracking. It utilizes 
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ubiquitous glutathione transferase inside cells. We confirmed that it has negligible long-term 

influence in cell metabolism and proliferation. We stained the clonal spheres with Cell Tracker 

dye while the spheres were still intact. Due to a reasonably large molecular weight (MW = 

464.8581), the CMFDA molecule diffused through the compact holo-sphere structure and created 

a concentration gradient along the radius of the sphere (Fig. 4-4 (b)). Given short incubation time 

in dye solution, cancer cells at sphere leading edge are exposed to the dye molecules with longer 

time and higher concentration compared to those at SC, which makes the outer parts of the spheres 

much brighter in fluorescence. Since the dye molecule converts to a cell-impermeant product that 

can be retained stable in living cells [36], this process helps us identify cells at sphere leading edge 

cells against cells at sphere core, even after sphere dissociation. In order to eliminate the variations 

in glutathione transferase reaction due to different sphere size and structure, we only took top 30% 

of all cancer cells in fluorescence intensity as sphere leading edge, and bottom 30% as sphere core 

(Fig 4-4 (c)). In order to validate that the staining protocol effectively separates cells in spheres 

based on spatial location, we compare staining spheres to staining bulk single cells using the 

protocol. Since bulk single cells were well-exposed to dye molecules, more than 98% of the bulk 

single cells shows higher fluorescent intensity than the threshold of sphere leading edge. While no 

bulk single cell falls to the fluorescent intensity range of sphere core. This demonstrated a clear 

separation of cells from sphere leading edge and sphere core using top 30% and bottom 30% 

brightness as the thresholds. 
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Figure 4-4. Holo-sphere retrieval and staining to identify cells located at sphere edge and sphere core. a) Holo-spheres were 

stained with Cell Tracker CMFDA dye for 5 minutes before dissociation. Cells from leading edge absorbs more fluorescent dye 

compared to those from center. b) Fluorescent dye intensity distribution in a holo-sphere. The leading edge is much brighter than 

sphere core. c) single cell fluorescence intensity distribution after sphere dissociation. Top 30% bright cells were identified as 

leading edge, while bottom 30% cells were identified as sphere core. (Scale bar = 50 µm) 
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4.6 High aldehyde dehydrogenase activity in leading edge cells 

Aldehyde dehydrogenase (ALDH) class has been proposed as the primary marker for CSCs 

in many literatures [37, 38]. In order to validate genetic characteristics of the selected sphere-

forming cells in holo-spheres, we quantified the cellular ALDH activity using a patient-derived 

head and neck cancer cell line, HMC-3B. After staining with cell tracker, the spheres were 

dissociated to single cell suspensions and incubated with AldeRed ALDH activity assay (Fig. 4-5 

(a)). To keep the CSC population consistent with the sphere-forming-cell ratio measured with 

sphere formation experiment. we selected top 12% brightest cells of the whole population as 

ALDHhigh cells. 

We discovered that most of the ALDHhigh cells in holo-spheres were found in sphere 

leading edge (n=61), while only a small population were located at sphere core (n=5) (Fig. 4-5 

(b)). The correlation between ALDH activity with cell tracker fluorescent intensity (r=0.62) 

suggested that the closer a cancer cell is to the leading edge, the higher chance that this cell has 

the CSC-like properties. However, this correlation between stemness and spatial location in sphere 

relied on the assumption that, there was no intrinsic correlation between the ALDH activity and 

glutathione transferase activity. In order to investigate this dependency, we repeated the same 

staining process on dish-cultured bulk cells as control experiment (Fig. 4-5 (c)). We had the 

following interesting observations: 1) there was weak correlation in the fluorescent intensity 

between cell tracker dye and AldeRed dye on individual single cells, with Pearson’s correlation r 

= 0.28. It validated that the linear correlation between the intensity of the two dyes results from 

the location-dependent cancer stem-like properties. 2) Using the same AldeRed fluorescence 

intensity as criterion (21.4 a.u., top 12% brightest cells in spheres), we identified 12/551 ALDHhigh 

cells (2.18%) in dish-cultured control group. This ratio was comparable with that from sphere core,  
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Figure 4-5. Comparison of ALDH activity between sphere leading edge and sphere core. a) Single cell sample images of cell 

tracker staining and its corresponding AldeRed staining (Scale bar = 100 µm). b) AldeRed staining on dissociated cancer cells 

(N=562) shows the majority of CSCs are located at sphere leading edge:  out of all ALDHhigh cancer cells, 70 were from leading 

edge, while only 6 were from center. c) 2D staining control (N=551) shows no correlation between AldeRed fluorescence 

intensity and cell tracker fluorescence intensity. 
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which was 5/169 (2.96%). However, the ALDHhigh cell ratio in sphere leading edge was 61/170 

(35.9%). This observation of higher percentage of CSC population in sphere leading edge proves 

that the enrichment of CSCs using sphere assays are mostly originated from the outer part of the 

spheres. 

 

4.7 Secondary generation sphere formation comparison between leading edge and core 

In order to further validate our discovery on CSCs spatial distribution, the dissociated 

HN13 cells were loaded back to Hi-Sphere chips to compare the 2-GCS rate between cells from 

sphere leading edge and sphere core (Fig 4-6 (a)). As a result, the 2-GCS formation rate of sphere 

leading edge was around 2 times higher than that of sphere core (Fig. 4-6 (b)). This result matches 

well with the ALDH staining outcome and provides a phenotypic evidence on the larger population 

of CSCs in sphere leading edge. 

 

Figure 4-6. 2nd sphere formation rate comparison between leading edge and center. a) sample images of 2nd sphere. b) cells 

from leading edge shows higher sphere formation rate compared to those from center. (Scale bar = 100 µm) 
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4.8 Chapter summary 

Like solid tumors, tumor spheres are endowed with a heterogeneous population of cells 

that can be characterized by functional assays and the expression of distinct molecular markers. 

The search for new strategies capable of targeting CSCs represents one of the emerging fields in 

cancer therapy. Sphere-forming assays are valuable tools to enrich CSC population and study the 

cellular properties. We presented a high-throughput clonal sphere chip suitable for investigating 

both inter-tumor heterogeneity and intra-tumor heterogeneity. The hydro-dynamic cell capture 

design guarantees the high percentage of microfluidic chambers initially loaded with single cells. 

The flipping-chip culture design prevent captured cells from flushed out of the culture chambers, 

enabling long-term sphere culture with sufficient nutrient supply. We designed a size-based sphere 

retrieval scheme, which enables effective separation two sub clones, holo-spheres and mero-

spheres for downstream inter-sphere heterogeneity analysis. After comparing the secondary sphere 

formation rates between the two populations, we concluded that holo-spheres contained 

significantly higher percentage of CSCs . To further explore the location of these CSCs in holo-

spheres, we separated cells from sphere leading edge and sphere core using cell tracker fluorescent 

dye. The diffusion nature of the dye molecules guaranteed that cells from sphere leading edge were 

more thoroughly stained compared to those from sphere core. After comparing ALDH activity and 

secondary sphere formation rate, we concluded that the majority of CSCs in holo-spheres were 

located at the sphere leading edge, while only a small portion of CSCs were from the sphere core. 

In this work, we demonstrated the high-throughput clonal sphere culture and retrieval capability 

of Hi-Sphere chip using one head and neck cancer cell line HN13 and one patient-derived cell line, 

HMC-3B. Using the same experimental protocol, a broader study on multiple cell lines from 

different origins would be useful in generalize our finding in the location of CSCs. Our sphere 
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analysis approach also opens up a new opportunity to correlate cell location and genetic profile of 

each single cell within a clonal sphere, which is important in CSC hierarchy study. 
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Chapter 5 : Label-free Estimation of Therapeutic Efficacy on 3D 

Cancer Spheres Using Convolutional Neural Network Image 

Analysis 

Despite recent advances in cancer treatment, developing better therapeutic reagents 

remains an essential task for oncologists. To accurately characterize drug efficacy, 3D cell culture 

holds great promise as opposed to conventional 2D mono-layer culture. Due to the advantages of 

cell manipulation in high-throughput, various microfluidic platforms have been developed for drug 

screening with 3D models. However, the dissemination of microfluidic technology is overall slow, 

and one missing part is fast and low-cost assay readout. In this work, we developed a microfluidic 

chip forming 1,920 tumor spheres for drug testing, and the platform is supported by automatic 

image collection and cropping for analysis. Using conventional LIVE/DEAD staining as ground 

truth of sphere viability, we trained a convolutional neural network to estimate sphere viability 

based on its brightfield image. The estimated sphere viability was highly correlated with the 

ground truth (R-value > 0.84). In this manner, we precisely estimated drug efficacy of two 

chemotherapy drugs, Doxorubicin and Oxaliplatin. We also cross-validated the trained networks 

of two drugs and found common brightfield morphological features indicating sphere viability. 

The discovery suggests the potential to train a generic network using some representative drugs 

for applying to many different drugs. The brightfield estimation of sphere viability saves 

LIVE/DEAD staining reagent cost and fluorescence imaging time. In addition, the presented 
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method allows viability estimation in a label-free and non-destructive manner. In short, with image 

processing and machine learning, the presented method provides a fast, low-cost, and label-free 

method to assess tumor sphere viability for large-scale drug screening in microfluidics. 

 

5.1 Introduction 

Cancer is a major burden of disease in most developed countries. Just within the United 

States, it was estimated to have 1,735,350 new cases of cancer being diagnosed, and 609,640 

people passed away caused by the disease in 2018 [1]. Despite advances in cancer treatment, 

developing better therapeutic reagents is still essential to help patients. While animal models 

cannot fully recapitulate situation of treating patients, they have been widely used for drug 

development over the past decades [2, 3]. Given drug testing in animals has better physiological 

relevance, it is costly and time-consuming. As compared to animal testing, drug testing in cell 

culture has significant advantages of low cost and quick turnaround time, so it serves as an 

important validation step before animal studies. For simple 2D monolayer model, cancer cells are 

placed on a polystyrene or glass substrate, treated by drugs for a few days, and then examined to 

measure therapeutic efficacy. While the drug screening in 2D has been developed as a low-cost 

and high-throughput technique, limited relevance between 2D culture and animal model makes it 

less desirable nowadays [4]. 3D culture allowing cancer cells to form tumor spheres in suspension 

or hydrogel can better mimic the profile of drug exposure, nutrients, and oxygen supplies in real 

tumor [4, 5]. Given 3D sphere model is more complicated than 2D monolayer culture, it is 

emerging in cancer drug discovery and screening as a more advance model [6-8]. 
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To precisely control the size and environment of 3D spheres for high-throughput drug 

testing, microfluidic technology has numerous advantages. Unlike cell cultured in conventional 

well-plates or polystyrene dishes, microfluidic chips provide capabilities of cell manipulation and 

maintain a well-controlled environment for cell growth in 3D [9, 10]. With micro-fabrication 

capability, thousands of micro-chambers can be implemented on a chip for high-throughput 

screening [11, 12]. Cells can be spontaneously loaded into all micro-wells with good uniformity, 

making microfluidics much less labor-intensive as compared to conventional well-plates [13-20].  

However, while there are many microfluidic platforms aiming to drug screening applications [13, 

14, 21-23], the adoption of microfluidics in large-scale drug screening is slow. One major 

bottleneck is the lack of fast and low-cost readout method for drug screening using microfluidic 

3D culture system. 

To measure drug efficacy, various cell viability assays have been developed [24]. The 

fluorescence-based LIVE/DEAD staining is composed of two components. The LIVE fluorescent 

reagent (e.g. Calcein AM) can be activated by intracellular esterase enzymatic activity to indicate 

viable cells. The DEAD fluorescent reagent (e.g. Ethidium homodimer-1) can diffuse through 

compromised cell membrane to stain nucleic acid, so DEAD staining can indicate loss of cell 

membrane integrity in dead cells. The LIVE/DEAD staining method, which marks viability of 

individual cells, is especially useful in flow cytometry. However, there are several drawbacks 

when using LIVE/DEAD staining in 3D models. (1) Light absorption, scattering, and poor 

penetration can deteriorate image quality of 3D sphere/tissue. (2)  Fluorescence imaging usually 

takes several hundred milliseconds exposure time for each image. As compare to brightfield 

microscopy exposed by a few milliseconds, the imaging throughput is significantly lower by orders 

of magnitude. (3) LIVE/DEAD staining reagents are costly for large-scale drug screening. (4) 
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Cytotoxicity of staining makes it only suitable as an end-point assay. There are other more 

dedicated cell viability assays measuring caspase (e.g. CellEvent™) to indicate apoptotic cells or 

generating luminescent readout from ATP (e.g. CellTiter-Glo), yet they still suffer from high cost 

and potential cytotoxicity. Colorimetric assays (e.g. MTT and XTT) monitoring the metabolic 

function of cells is a fast and cheap alternative to assess cell viability. Healthy cells can reduce 

tetrazolium-based dye to purple formazan, yet dead cells lose the ability to convert MTT to 

formazan. Thus, colorimetric change caused by light absorbance of formazan product can be an 

indicator of cell viability [24]. This method is good for its low cost and easy readout using a plate 

reader, yet it is hard to distinguish effects of reduced cell number from reduced cellular metabolic 

activity by examining all cells in bulk. Its cytotoxicity is a concern for continuous monitoring. In 

addition, monitoring the metabolic function by MTT or XTT requires a large number of cells and 

reagents to accumulate significant colorimetric change. It works well in conventional static well-

plates, yet not favorable for microfluidic platforms having smaller number of cells in perfusion 

culture [25]. 

Recent advances in machine learning have enabled analysis of biomedical images in a high-

throughput manner. An increasing number of research works paired microfluidic devices with 

machine learning tools to realize system automation and rapid data analysis. Specifically, 

microfluidic flow cytometer was assisted with pre-extracted and trained cellular shape feature 

recognition [26]. It was also reported a phenotypic biomarker assay using machine learning 

algorithms to predict post-surgery adverse pathology states clinically [27]. In addition, status of 

cell cycle could be classified in a high-throughput and accurate approach [28,29]. The subcellular 

features were also recognized and classified using deep learning tool kits [30]. More interestingly, 

different fluorescence labels such as cell nuclei and cell type can be predicted using unlabeled 
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transmitted-light images [31]. Those previous works suggest the possibility to develop a low-cost, 

fast, and non-destructive method for quantifying 3D tumor sphere viability with machine learning. 

In this work, we present a microfluidic chip that can form 1,920 tumor spheres for testing 6 drug 

conditions on a chip. The micro-chambers containing spheres were cropped for analysis 

automatically, so we efficiently collected brightfield images and their drug inhibition scores from 

conventional LIVE/DEAD staining. With this database, we developed and trained a convolutional 

neural network (CNN) model to correlate sphere brightfield images with their drug inhibition 

scores. Thus, the machine learning model can judge drug inhibition of a tumor sphere only using 

its brightfield image. In this manner, we can accurately estimate the half-maximal inhibitory 

concentration (IC50) of chemotherapy drugs by brightfield microscopy alone. More interestingly, 

we found there are common morphological features indicating sphere viability across different 

drugs, suggesting the potential to train a generic model for drug screening. The presented method 

provides an automatic, high-throughput, low-cost, and label-free method to assess tumor sphere 

viability in microfluidics for large-scale drug screening. 

 

5.2 Design of the cancer sphere platform 

The presented microfluidic cancer drug screening platform is composed of 6 identical 

tumor sphere culture sections on a chip. Each section is composed of 320 (an array of 10 columns 

by 32 rows) units of sphere culture chambers and the inflow and outflow channels (Fig. 5-1 (a, b)). 

The inflow channels are connected to an inlet reservoir, and the outflow channels are connected to 

an outlet reservoir. The sphere culture chamber (100 μm in height) is 400 µm in diameter 

surrounded by a ring of gap supported with micropillars structure (5 μm in height) (Fig. 5-1 (c)).  
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Figure 5-1. Tumor sphere chip and culture chamber. (a) The photo of a cancer sphere chip for drug screening. The chip can test 

6 drug concentrations side-by-side for the estimation of IC50. For each condition, it has 320 chambers for sphere culture. (b) A 

microscope image showing 8 tumor sphere culture chambers with inflow and outflow channels. Cells flow through inflow 

channels into sphere chambers. As the cell diameter is larger than the gap supported by micropillars, cells are trapped in the 

sphere culture chambers. The culture media carrying cells can flow out through outflow channels. (Scale bar: 400 µm) (c) Laser 

confocal microscopy image of a unit chamber measured by Olympus OLS 4000 LEXT.  

 

After bonded with a piece of blank PDMS on top, there is a 5 μm gap between the two layers of 

PDMS. These gaps between the micro-pillars structure can trap cells in the sphere culture 

chambers, while allowing culture media to outflow. By properly balancing the flow resistance 

using tapered inflow channels as described in previous work [32], we are able to uniformly load 

cancer cells into each sphere chamber. To facilitate sphere aggregation by gravity, we applied an 

additional layer of photoresist (16 μm in height) to create a rounded substrate in the sphere culture 

chamber [13,15]. The platform design was adapted from our previous work with the improvement 

of high number of sphere culture chambers per condition [13]. In addition, the chamber was 

designed to be circular, so it would be easy to crop by an image processing program. 

Using the presented cancer sphere platform, we can reliably form large number (1,920 

spheres per chip) of cancer spheres for drug screening. Due to consistent number of cells loaded 
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per chamber, the spheres formed are uniform in size (diameter: 214 ± 21 µm, N = 100, ± indicates 

standard deviation (S.D.)). The method is more effective than conventional low-attachment well-

plate, which forms spheres with different sizes in the wells. As cancer sphere size can affect the 

diffusion of drug and nutrients, the uniformity of sphere is critical for reliable and reproducible 

drug testing [38]. In addition, media can be easily exchanged by aspirating and then 

replenishing fresh media in the inlets/outlets. The isolated cancer spheres in chambers will not be 

disturbed by media exchange process to aggregate together undesirably. To handle a large amount 

of images generated by our platform, we developed a custom MATLAB program. The automatic 

cell cropping function can reliably recognize circular chambers and crop them for further data 

analysis and machine learning (Fig. 5-2 (d)). 

 

Figure 5-2. Cell loading in a sphere chamber and sphere aggregation. (a) An empty cancer sphere chamber before cell loading. 

(b) SUM159 breast cancer cells were loaded in the cancer sphere chamber. (c) Cells aggregated to a cancer sphere after 2 days. 

(d) Automatic chamber cropping program cropped the circular chamber regions (blue circles) for further image processing and 

machine learning. (Scale bar: 100 µm) 

 

5.3 Morphological changes of spheres after drug treatment 

 After cancer spheres aggregated in the chambers, drug treatment was performed on-chip. 

In this work, we tested two chemotherapy drugs, Doxorubicin and Oxaliplatin. For each drug, six 
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different concentrations across a wide range were applied for 3 days following previous protocols 

[13, 39], so IC50s of drugs could be estimated. The spheres treated by Doxorubicin with different 

concentrations were demonstrated as in Fig. 5-3. For the conditions of low dose (no drug, 0.05 μM, 

and 0.25 μM), small number of cells were dead as indicated by sparse red fluorescence (DEAD 

staining) dots. Both brightfield and green fluorescence (LIVE staining) images show consistent 

healthy morphology. For the intermediate drug concentration of 1 μM Doxorubicin, we observed 

strong red fluorescence signal in the peripheral region of sphere, suggesting outer cancer cells were 

killed. At the same time, there was a strong green fluorescence signal inside the sphere, indicating 

that inner cells of sphere were still alive. The interesting part is that brightfield image suggests the 

same situation. While there are some dark apoptotic cells around sphere surface forming a dark 

blurry ring, the center of sphere looks similar to the morphology of healthy spheres. When applying 

 

Figure 5-3. Cancer spheres treated by Doxorubicin. Representative images of SUM159 cancer spheres treated by Doxorubicin 

with six different concentrations. LIVE/DEAD staining was used to quantify sphere viability. FITC green fluorescence image 

represents the live cells, and TRITC red fluorescence image represents dead cells. With the increase of drug concentration, green 

fluorescence intensity decreases and red fluorescence intensity increases. The brightfield morphology also changes with different 

drug treatments. (Scale bar: 100 µm) 
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high dose of 5 μM and 40 μM Doxorubicin, we found a large number of dead cells inside the core 

of sphere as indicated by disseminated red fluorescence signal. Similarly, brightfield image shows 

dark dead cells throughout the sphere. Using Doxorubicin treatment as an example, we 

demonstrate that the sphere viability indicated by fluorescence-based LIVE/DEAD staining can 

be correlated with brightfield sphere morphology. Those observations support the feasibility of 

sphere viability estimation based on brightfield image. 

 

5.4 Estimation of cancer sphere viability using brightfield microscopy 

As suggested in previous section, while brightfield images present differences between 

healthy and unhealthy tumor spheres, human beings cannot quantify sphere viability based on 

qualitative observation of morphology. For precise quantification of sphere viability based on its 

brightfield image, we developed a convolutional neural network model. The CNN model was 

trained using brightfield images as input and drug inhibition score determined by LIVE/DEAD 

staining or treatment condition as expected output. After training, we first validated that the model 

can accurately predict the treated drug concentration using brightfield images. Green boxes 

represent correct prediction cases, which significantly outnumber the wrong cases in red boxes 

(Fig. 5-4 (a)). As spheres treated by low Doxorubicin dose (no drug, 0.05 μM, and 0.25 μM) were 

indistinguishably viable, we pooled those three conditions as a group. In this case, we got a high 

accuracy of 94.7% (Fig. 5-4 (a)). For six-condition classification, the accuracy was 80.4% (Fig. 5-

5). As expected, the lower accuracy was caused by confusion between no drug control and low-

dose treatment. It was also relatively difficult to predict the spheres treated by 1 μM Doxorubicin  
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Figure 5-4. Cancer spheres classification and drug inhibition score regression using brightfield image and CNN model. (a) 

Doxorubicin treatment classification accurately (94.7%) predicts the drug treatment concentration based on its brightfield 

image. The green boxes represent correct prediction, the red boxes represent wrong prediction, and the grey boxes represent 

summation of a row/column. Both number of prediction cases and percentage are described in the box. The boxes in a column 

belongs to spheres treated by the same concentration, and the boxes in a row belongs to spheres predicted to be treated by the 

same concentration. The first three classes were combined since those drug concentrations are much lower than the IC50 

transition point, so hard to distinguish even with LIVE/DEAD staining. (b) Prediction of drug inhibition score using the trained 

CNN model. X-axis represents the ground truth of inhibition score measured by LIVE/DEAD staining, and Y-axis represents drug 
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inhibition score predicted using brightfield image with the trained CNN model. Each dot represents a sphere, and different colors 

mean different drug concentrations. The R-value of linear regression is 0.84, indicating a strong correlation between the ground 

truth and prediction. (c, d) Drug efficacy IC50 curves of two chemotherapy drugs. X-axis represents drug concentration, and Y-

axis represents drug inhibition score. Blue curve is plotted based on the ground truth measured by LIVE/DEAD staining, and red 

curve is plotted based on the prediction using brightfield images. Error bars indicate standard deviation (S.D.). (c) Drug efficacy 

IC50 curves of Doxorubicin treatment on cancer spheres. The estimated IC50 based on LIVE/DEAD staining is 1.7 μM, and the 

estimated IC50 based on brightfield images is 1.6 μM. (d) Drug efficacy IC50 curves of Oxaliplatin treatment on cancer spheres. 

The estimated IC50 based on LIVE/DEAD staining is 51 μM, and the estimated IC50 based on brightfield images is 47 μM.  

 

(accuracy: 84.3%). Since 1 μM Doxorubicin was close to IC50, it was expected to generate a larger 

variation in morphology, making it more challenging to predict. As compared to tricky situations, 

high prediction accuracy (around 95%) was achieved for spheres treated with high dose of 

Doxorubicin. We also examined the prediction of drug inhibition score based on brightfield images 

in Fig. 5-4 (b). The drug inhibition scores determined by LIVE/DEAD staining and predicted by 

brightfield images with CNN model were highly correlated with a correlation coefficient R of 0.84 

(Fig. 5-4 (b)). In addition to Doxorubicin, we tested another chemotherapy drug, Oxaliplatin. After 

training the model as we did for Doxorubicin, we got an even higher correlation coefficient R of 

0.89 (Fig. 5-6). Using the prediction model, we sampled 20% of cancer spheres for the estimation 

of IC50. Fig. 5-4 (c, d) demonstrates that the IC50 curves fitted by ground truth (LIVE/DEAD 

staining) and CNN prediction model are similar. For the two drugs we tested, the mean difference 

of IC50s estimated by ground truth and CNN prediction is 7% (6% for Doxorubicin and 8% for 

Oxaliplatin). In literature, we could not find the IC50 of Doxorubicin and Oxaliplatin using exactly 

the same treatment condition and cell line, yet the measured IC50 in this work is comparable with 

reported IC50 of relevant breast cancer cell lines [40, 41]. The accurate IC50 estimation validates 

the presented label-free method to estimate sphere viability based on its brightfield image. 
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Figure 5-5. Cancer spheres classification and drug inhibition score regression for Doxorubicin (a) Six-class classification 

accurately (80.4%) predicts the drug treatment concentration based on its bright-field image. (b) Regression of sphere inhibition 

score using the trained CNN model. X-axis represents the ground truth of inhibition score measured by LIVE/DEAD staining, 

and Y-axis represents drug inhibition score predicted using bright-field image and trained model. Each dot indicates a sphere, 

and different colors mean different drug concentrations. The R-value of this linear regression is 0.84, indicating a strong 

correlation between the ground truth and our prediction. 
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Figure 5-6. Cancer spheres classification and drug inhibition score regression for Oxaliplatin (a) Six-class classification 

accurately (86.1%) predicts the drug treatment concentration based on its bright-field image. (b) Regression of sphere inhibition 

score using the trained CNN model. X-axis represents the ground truth of inhibition score measured by LIVE/DEAD staining, 

and Y-axis represents drug inhibition score predicted using bright-field image and the trained model. Each dot indicates a 

sphere, and different colors mean different drug concentrations. The R-value of this linear regression is 0.89, indicating a strong 

correlation between the ground truth and our prediction. 

 

5.5 Critical morphology features for sphere viability prediction 

While it is known that CNN filters are difficult to interpret [42], we would like to visualize 

them to understand the key features distinguishing healthy and unhealthy spheres (Fig. 5-7 (a)). 

We used a representative brightfield sphere image (Fig. 5-7 (e)) as the input and processed it by 

all filters for visualization. Fig. 5-7 (b-d) demonstrates 64 filters in the first convolutional layer, 

32 filters in the second convolutional layer, and 16 filters in the third convolutional layer, 

respectively. As expected, we found some relevant features in the filters of the first convolutional  
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Figure 5-7. Neural network structure and trained filters for prediction (a) The 3-layer structure of neural network. (b-d) After 

processing a representative sphere image, the critical features are enhanced by filters of each convolutional layer in the neural 

network. The features are related to central darkness, sphere outline, and texture of cancer spheres. Each small square 

represents a filter. (b) The 64 filters in the first convolutional layer. (c) The 32 filters in the second convolutional layer. (d) The 

16 filters in the final convolutional layer. (e) The input representative sphere image. (Scale bar: 100 µm) 

 

layer. The majority of filters highlight the center of the image, where most spheres are located (Fig. 

5-7 (b)), suggesting that trained filters catch spheres rather than background for prediction. 

Specifically, we can see three interpretable features: (1) bright (healthy)/ dark (unhealthy) center 

indicating sphere viability, (2) smooth (healthy)/ rough (unhealthy) outline of tumor spheres, and 

(3) strips/dots picking up different textures of cell spheres [43]. All those relevant features are also 

used by human beings to distinguish healthy and unhealthy spheres. For the second and the third 
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convolutional layers, filters show more abstract and high-order features that are difficult to 

interpret (Fig. 5-7 (c, d)). However, an interesting observation is that the microfluidic chamber 

outline diminishes in the second and the third layers, indicating that the tumor sphere itself rather 

than background noise pattern contributes to the classification and prediction results. 

 

5.6 Inter-drug model validation and mixed prediction for different drugs 

After demonstrating good prediction for individual drugs, we explored whether the model 

trained by one drug can be used for the prediction of another drug. As many chemotherapy drugs 

are associated with DNA damage to induce cell apoptosis, including Doxorubicin and Oxaliplatin, 

we expect there are some similarities in mechanism and resulting sphere morphology [44,45]. Here, 

we used the model trained by Doxorubicin data for the prediction of Oxaliplatin images in Fig. 5-

8 (a). We found that the model can make good prediction for relatively healthy spheres (inhibition 

score < 0.5), yet the model is less accurate to handle totally dead spheres (inhibition score > 0.75). 

This situation can be explained by the fact we did not get totally dead spheres by Doxorubicin 

treatment. Thus, Doxorubicin model is inexperienced with those totally dead spheres. While the 

Doxorubicin model is not perfect for Oxaliplatin, it still yields a good correlation coefficient of 

0.82. Due to this encouraging preliminary results, we further pooled together the databases of two 

drugs for training a new model. With this new model covering a wide range of inhibition score 

from 0 to 1, we made a better prediction with a correlation coefficient of 0.93 (Fig. 5-8 (b)). The 

results suggest that unhealthy spheres inhibited by different drugs share a similar set of 

morphological features. The existence of generic features is very encouraging, meaning the model  
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Figure 5-8. Inter-drug model validation and prediction model combining different drugs. (a) CNN model trained by Doxorubicin 

treated spheres was used for predicting the drug inhibition scores of Oxaliplatin treated spheres. X-axis represents the ground 

truth of inhibition score measured by LIVE/DEAD staining, and Y-axis represents drug inhibition score predicted using 

brightfield images with Doxorubicin trained model. Each dot represents a sphere. The R-value for linear regression is 0.82 

showing a strong correlation between the ground truth and prediction. (b) Tumor spheres treated by Doxorubicin and 

Oxaliplatin were combined for training and prediction. Each dot represents a sphere, and different colors mean different drug 

treatments. The R-value of linear regression is 0.93, which is even higher than prediction of individual drugs.  

 

trained from some representative drugs can potentially be applied widely in large-scale drug 

screening. 

 

5.7 Chapter summary 

Exploration for better therapeutic reagents is a prolonged quest in cancer research, and the 

advance in microfluidic technologies facilitates more relevant 3D cell culture models and higher 

throughput for drug development. While microfluidics is emerging in drug studies, it has been 

hampered by lack of automatic, fast, and low-cost readout methods. In this work, we developed a 

high-throughput 3D cell culture platform growing 1,920 cancer spheres on-chip. The cancer sphere 
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images can be collected by programmed software and then automatically cropped for analysis. 

More importantly, we developed a novel method to precisely estimate cancer sphere viability using 

brightfield images based on a trained convolutional neural network. In this manner, we performed 

drug testing using two chemotherapy drugs (Doxorubicin and Oxaliplatin) on SUM159 breast 

cancer cells. The estimated drug inhibition score using brightfield images is highly (correlation 

coefficients > 0.84 for both drugs) correlated with that measured by conventional fluorescence-

based LIVE/DEAD staining. As compared to LIVE/DEAD staining, the differences in IC50 for 

both drugs are within 8%. When examining the filters in the trained CNN model, we identified the 

morphologies reflecting dark center and rough outline of unhealthy tumor spheres, matching well 

with the features used by human beings. With this capability, we can avoid struggling with 

LIVE/DEAD staining assay, which is slow and costly. In addition, the presented method relies on 

brightfield image alone, so it enables non-destructive (without the toxicity caused by cell viability 

staining) estimation of cell viability in real time. The method can potentially be used for studying 

the time dynamics of cancer cell death during drug treatment, helping us optimize treatment dose 

and frequency. In short, by incorporating machine learning with microfluidics, we present a highly 

automatic method for analyzing drug testing results. The automatic and low-cost readout method 

will help the dissemination of microfluidic 3D culture in drug screening, and the presented 

workflow can be widely applied to other cell biology assays.  
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Chapter 6 : Morphology-based Prediction of Cancer Cell Migration 

Using Artificial Neural Network and Random Decision Forest 

Metastasis is the cause of death in most patients of breast cancer and other solid 

malignancies. Identification of cancer cells with highly migratory capability mainly relies on 

marker-based approaches, which are limited by inconsistences among patients, types of cancer, 

and cancer states. Alternatively, machine learning has been applied in many research areas with 

good performance. However, machine learning has not yet been applied to analysis of cancer 

migratory behaviors. 

Combining microfluidic single-cell migration chip and high-content imaging, we extracted 

morphological features and recorded migratory direction and speed of breast cancer cells. By 

applying Random Decision Forest (RDF) and Artificial Neural Network (ANN), we achieved over 

99% accuracy for cell movement direction prediction and 91% for speed prediction. 

Unprecedentedly, we identified highly motile cells and non-motile cells based on microscope 

images and machine learning model, and pinpointed and validated morphological features 

determining cell migration, including not only known features related to cell polarization but also 

novel ones that can drive future mechanistic studies. Predicting cell movement by computer vision 

and machine learning establishes a ground-breaking approach to analyze cell migration and 

metastasis. 
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6.1 Introduction 

Metastasis is the leading cause of mortality in patients with breast cancer, being responsible 

for over 40,000 deaths per year in the US. Despite advances in early detection and treatment, once 

metastases develop, breast cancer is incurable [1, 2]. Cancer cells with enhanced motility and 

invasiveness migrate away from the primary tumor site and initiate the metastatic process [1]. 

Therefore, identifying key aspects for cell migration is crucial for understanding and ultimately 

overcoming metastasis. Currently, considerable efforts have focused on elucidating mechanisms 

that govern epithelial-to-mesenchymal-transition (EMT), a developmental program in which 

epithelial cells acquire migratory and invasive phenotypes to promote metastasis. In recent decades, 

various EMT biomarkers including membrane proteins (e.g. E-CAD, N-CAD), cytoskeletal 

markers (e.g. Vimentin, Cytokeratins), transcriptional factors (e.g. Snail, Slug, ZEB1, ZEB2, Twist) 

were developed [3-5]. However, these and other markers for defining EMT underscore problems 

of marker-based approaches across multiple cancers: 1) cancer cells undergo differing extents of 

partial EMT; 2) multiple sets of markers have been used to define EMT even within a single type 

of cancer; 3) markers are inconsistent across different malignancies [3]. Inconsistencies of existing 

EMT markers highlight the need for new approaches to identify highly migratory cells. 

Not only does the recent development of Artificial Intelligence (AI) and computer vision 

provide a potent alternative to define cell properties based on morphology, but also use of 

fluorescent probes and reporters to label proteins, protein activity, and organelles has advanced 

our ability to study mitochondria. Mitochondrial morphology correlates with metabolic state, drug 

response, and cell viability, providing potential insights into overall status and function of cells [6-

8]. Advances in computer technology now allow high-content images of mitochondria to be 

processed by the computer vision program [9,10]. After training on data sets, the computer vision 
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software can autonomously interpret meanings of images and classify cells based on imaging 

features. Various algorithms such as Random Decision Forests [11] (RDFs construct decision trees 

in training and make decisions based on voting of trees) and Artificial Neural Networks (ANNs 

build a group of nodes interconnected with weighted linkage in training and classify things 

accordingly) [12] were developed. However, people so far have only analyzed single imaging 

features using small numbers of cells to investigate correlations between the distribution of 

mitochondria and cell movement [13]. Cutting-edge computer vision techniques were not used to 

fully explore the potency of morphological features in determining cell migration direction and 

speed. 

In addition to imaging analysis capability, an effective cell monitoring scheme is also 

critical to the success of comprehensive cell morphological analysis. Microfluidic technology has 

emerged as a state-of-the-art approach for cell biology because of precise manipulation of single 

cells and high potential in scaling [14-16]. As compared to tracking cells randomly seeded in a 

dish, cells in a microfluidic chip are precisely positioned and easily tracked in a high-throughput 

manner. Thus, the migration distance of individual cells can be accurately measured to correlate 

with its morphology. More importantly, chemoattractant gradients can be generated on-chip to 

model chemotaxis in cancer metastasis. Hence, we applied the high-throughput cell migration chip 

we have previously developed for this study [17].  

In this work, we present a comprehensive morphological analysis using cutting-edge 

computer vision methods including random decision forests and artificial neural networks to 

establish the correlation between cellular morphological features and cell movement direction and 

speed. We first collected 1,358 cellular and mitochondrial images and then trained and optimized 

the machine learning model. Using the model we built, we successfully predicted the migration 
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direction for more than 99% of cells and picked out highly-motile cells (top 10% fast-moving cells) 

and non-motile cells (top 10% slow-moving cells) with 91% accuracy. Based on the prediction, 

we identified critical morphological markers determining cell movement direction and speed. To 

validate the importance of markers we found, we impaired cell movement using commonly used 

chemotherapeutics as well as sorted highly migratory cells from the bulk population for 

comparison. Both experiments validated the importance of identified morphological features in 

determining cell movement. The presented work represents a new method to predict and 

understand the cell migration process, which will advance studies of mechanisms driving cell 

migration. 

 

6.2 Morphological prediction of cell migration pipeline 

In order to discover and validate morphological features that contribute to migration, we 

developed a workflow including 4 steps: experiment, image processing, machine learning, and 

validation (Fig. 6-1). Firstly, the microfluidic migration chip provided single-cell resolution for 

cellular morphological analysis. After 6 hours of incubation time, fluorescence microscopy was 

used to obtain 40X high-content images of both the mitochondria and cell profile. After 

implementing image pre-processing procedures Based on pre-processed images, we implemented 

single-cell segmentation and a Random Decision Forest (RDF) classifier for mitochondrial 

classification, in which all the pieces of mitochondria in each single cell were sorted into three 

categories: fiber, intermediate, and dots [6], with important morphology features including major 

axis, area, and aspect ratio. The distribution of mitochondrial types was then applied as one of the 

61 extracted cellular morphological features (Supplementary information). Using these features 
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Figure 6-1. Workflow of critical morphological features discovery in cell migration, which includes microfluidic migration chip 

experiments, high-content imaging, image processing, machine learning modelling, and control experiment validation.  

 

from both cellular morphology and mitochondria profiles as inputs, we trained two machine 

learning models to predict cell migration direction and cell migration speed. The Random Decision 

Forest (RDF) and Artificial Neural Network (ANN) achieved 99.6% and 91.0% accuracy, 

respectively. More importantly, we were also able to pinpoint significant morphological features 

critical to migration behavior based on the predictor importance analysis from the RDF classifier. 

By performing control experiments, we validated that our discovered morphological markers are 

highly correlated with cancer cell migration. 

 

6.3 Microfluidic single cell migration chip design and cell migration experiment 

In order to accurately quantify the moving speed of individual cancer cells, we loaded the 

cell suspension into a microfluidic migration chip (Fig. 6-2 (a)), which consisted of 2 × 450 

individual narrow migration channels divided into an upper half and lower half. A total of three  
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Figure 6-2. Microfluidic migration chip overview. (a) Photograph of a migration device with a one-cent coin, depicting the 3 

inlets and 3 outlets reservoirs with red dye flowing through each device. The serpentine loading channels can be seen running 

vertically, with the horizontal migration channels running perpendicularly between them. (b) Cells were loaded along both left 

side and right side of the vertical cell loading channels and (c) migrate through the horizontal migration channels due to 

chemoattraction. 

 

inlets and three outlets are deployed on the chip as the loading interface. Cancer cells were loaded 

to the inlets on both upper and lower sides and allowed to migrate towards the center with serum 

as the chemoattractant (Fig. 6-2 (b)). The migration channels were designed to be 1000 μm × 30 

μm × 5 μm (L × W × H). The dimension of the cross-section is small enough that only single cells 

could be positioned in each channel, while the migrating direction was also confined to the 

orientation of the migration channels (Fig. 6-2 (c)). The migration devices were fabricated from a 

single layer of PDMS (Polydimethlysiloxane, Sylgard 184, Dow Corning), which was fabricated 

on a silicon substrate by standard soft lithography, and a glass slide. Two masks were used to 

fabricate the multiple heights for main channel (40 µm height) and the migration channel (5 µm 

height). One device contains 900 migration channels (450 channels in one side), and the migration 

channel is 30 µm in width, 5 µm height, and 1 mm in length. The PDMS layer was bonded to the 

glass slide after activated by oxygen plasma treatment (80 Watts, 60 seconds) to form a complete 
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fluidic channel. The microfluidic chips were sanitized by UV radiation prior to use to ensure 

aseptic conditions. Before cell loading, a collagen (Collagen Type 1, 354236, BD Biosciences) 

solution (1.45 mL Collagen, 0.1 mL acetic acid in 50 mL DI water) was flowed through the device 

for ten hours to coat collagen on the substrate to enhance cell adhesion. Devices were then rinsed 

with PBS (Gibco 10082) for five minutes to remove the residual collagen solution. Culture media 

was used to rinse devices before cell loading. 

For device loading, cells were harvested from culture plates with 0.05% Trypsin/EDTA 

(Gibco 25200) and centrifuged at 1000 rpm for 5 minutes. Then, the cells were re-suspended in 

culture media to a concentration of 3 x 105 cells/ mL. One hundred microliters (100 µL) of this 

cell suspension was pipetted into the lower inlets. After 3 minutes, cell solution in the left and right 

inlets was replaced with 50 µL of serum culture media, and 40 µL serum culture media was applied 

to the central inlet for both high and low sides. After 30 minutes, media in all inlets were emptied 

out and replaced by 200 µL serum-free culture media (for the high-left and high-right inlets), and 

200 µL serum culture media (for the high-central inlet) to induce chemotactic migration. Then, the 

entire chip was put into a cell culture incubator for 5 hours to prepare for image acquisition. 

 

6.4 Mitochondrial classification and image processing 

 As the “powerhouse” of eukaryotic cells [18], mitochondria are important in energy 

demanding behaviors. This includes cell migration, which requires cellular polarization, 

reorganization of actin filaments, and recruitment of structural and signaling components [19]. 

Studies have shown that perturbations to mitochondria dynamics (i.e. fragmentation and fusion) 

may affect cell development, cell cycle or cell signaling [20]. However, those studies were mostly 
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carried out by means of subjective observation or qualitative explanation, instead of objective, 

quantitative analysis. To investigate mitochondria in migration more in-depth, we segmented each 

mitochondrion after a series of image pre-processing steps, including background noise removal, 

contrast enhancement, deblurring, and histogram-based auto-thresholding (Fig. 6-3 (a-f)). We 

trained an RDF classifier to automatically categorize each mitochondrion into three types: dots, 

which represent fragmented mitochondria; fiber, which includes interconnected networks and 

elongated mitochondrial fibers; or intermediate, which defines mitochondria whose length is in 

between dots and fibers. By using 1000 manually labelled mitochondria as training sets and 200 

as test sets, we achieved 97.5% overall accuracy in mitochondrial classification (Fig. 6-3 (g, h)). 

As an average of the result, 61.1% of the total area of mitochondria are classified as fiber, 20.5% 

as intermediate, while 18.4% as dots. This mitochondrial class distribution is skewed to 71.1% for 

fiber, 13.2% for intermediate, and 15.7% for dot, when exposed to a chemotherapeutic drug, and 

to 49.1% for fiber, 28.3% for intermediate, and 22.6% for dot when cells are classified as highly 

migratory from our microfluidic device. 
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Figure 6-3. Image processing flow for the original microscope image (a-f) and mitochondrial classification (g, h). (a) The 

original image of a SUM159 cell was taken with a 40x objective lens. (b) Background of the original image was removed to have 

a clear view of the cell. (c) Spike noise was removed from the image. (d) A 5-pixel by 5-pixel Wiener filter was applied for 

deblurring purposes. (e) A 15-pixel large area filter was applied for sharpening and thresholding. (f) All mitochondria of a cell 

were classified into three classes: fiber, intermediate and dot based on a Random Decision Forest (RDF) classifier. (scale bar: 

10 µm). (g-h) Results of mitochondrial classification. (g) Out-of-bag classification error decreased with the increased number of 

grown trees using the RDF model. (h) Classification results shown by confusion matrix stated that the correction rate was above 

97%, with no misclassification between fiber and dot class. 
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6.5 Feature extraction and data pre-processing  

With the information of processed images from FITC/TRITC channel, we extracted 61 

features for all 1358 single cells in our database. Definitions for these features were included in 

the Supplementary Information and feature extraction was done with the help of MATLAB 

R2017a. For direction prediction, these 61 features were taken with their original value. For speed 

prediction, features with name starting like “TopDownXXX”, CenterShift, FiberUpDownRatio, 

MaxWidth, MaxWidthSum, TotalAreaRatio, TotalPerimeterRatio, TotalPerimeterHalfRatio, 

HeadAverageWidth, HeadAverageWidthRatio, RedShift, RedFoot, RedGreenDist, and 

TotalAreaHalfRatio were reconsidered to make cell moving direction no longer important (e.g. 

CenterShift values -1 (for up-moving cells) and 1 (for down-moving cells) were different for 

direction prediction but the same for speed prediction. Therefore, both values should be taken as 

1 in speed prediction.  

After data normalization, whitening transformation was applied for feature decorrelation, 

which makes the covariance matrix of feature space to an identity matrix. By deploying Zero-

phase Component (ZCA) whitening method with a ZCA constant of 0.0001, the correlation 

coefficient between most of the features are reduced to below 0.1 (Fig. 6-4). Wrapper method 

feature reduction was implemented to minimize the influence of unrelated or redundant features. 

These 61 features were first normalized (zero mean and unit variance), and then took turns to be 

all zeros for one feature. For each arrangement, an average error rate was calculated from 50 

predictions using our Artificial Neural Network (ANN). In all 61 error rates, the feature with the 

lowest error rate was deleted. Features were deleted one by one until a new deletion would visibly 

increase the prediction error rate. 
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Figure 6-4.  Morphological feature correlation heatmap (a) before whitening transformation, (b) after whitening transformation 

 

6.6 Cell migration direction prediction 

The study of migration direction, which involves the process of cellular reaction to 

mechanical/ chemical cue, cytoskeleton polarization, and signaling dynamics, provides important 

clues to our understanding of underlying mechanisms of metastasis [21,22]. Therefore, we 

developed a machine learning model to predict and explain cell migration merely based on the 

morphological features of cancer cells. Random Decision Forest (RDF) is a commonly used 

classifier, as well as a regression tool, which constructs a binary decision tree by asking a sequence 

of simple questions to inputs and assign a label to each condition [23]. To overcome an overfitting 

issue that is caused by using an over-complicated tree structure, a bootstrap-aggregated decision 

tree technique is often adopted for better model performance because it decreases the number of 

variables of the model and combines the results of multiple decision trees [24].  

We first implemented RDF for cell migration direction classification. Bootstrapped-

aggregated decision trees were constructed based on subsets of the training data set and this could 
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reduce the variance significantly. We took the mode of all outputs from trees for classification and 

took the average for regression1. In MATLAB, we used the function “TreeBagger” to simulate the 

growth of random decision forest. For cell direction prediction and cell speed prediction, 500 trees 

were grown to let the error rate become stable. Artificial neural network was also chosen for cell 

direction and speed predictions because of its nonlinear characteristic. Every single feature in our 

raw data were set to zero average and unit variance before being inputted into our model. We chose 

a two-hidden-layer pattern net as our model and by going through all possible combinations of 

hidden node numbers for two hidden layers, the best result was achieved when the first hidden 

layer had 21 nodes and the second had 7 nodes. In our model, 70% of our data were used for 

training, 20% for validation and 10% for test. With the aim of distinguishing highly-motile cells 

against non-motile cells, we randomly pick out 134 cells (10% of the total dataset) from top 10% 

fast-moving cells and top 10% slow-moving cells as test set, while the rest of the cells were split 

to training set and validation set. Hyperbolic tangent sigmoid transfer function (“tansig” in 

MATLAB) was used as the activation function for two hidden layers and linear transfer function 

(“purelin” in MATLAB) was used as the activation function for the output layer. Scaled conjugate 

gradient backpropagation (“trainscg” in MATLAB) was used as our training function with the 

intention to reduce the mean square error. 

Due to confinement of the migration channels, all the cancer cells were only allowed to 

move bidirectionally and were labeled according to the movement of the center of mass 

measurement by computer program. With the randomly scrambled cell image inputs, we achieved 

more than 99% accuracy in prediction of cell migration direction (Fig. 6-5 (a)). We also performed 

a feature importance analysis by summing the estimates of all weak learners in the bagged decision 

trees. Based on the importance analysis, we validated that features reflecting cellular polarization  
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Figure 6-5. Results and important features for cell migration direction prediction. (a) Out-of-bag error rate for cell migration 

direction prediction using RDF. With the increase in number of grown trees, the error rate reduces to less than 1%. (b) 

Confusion matrices for testing datasets. Accuracy for cell migration direction prediction is above 99%. (c) Top 10 important 

features for cell migration direction prediction. 

 

are essential in deciding the migration direction (Fig. 6-5 (b), and Fig. 6-6). These features include: 

TotalAreaRatio, which defines the ratio of the areas between the upper and lower half of the cell, 

CenterShift, which defines of the deviation of the center of mass from the graphic center, as well 

as TotalPerimeterRatio, which defines the ratio of the perimeters between upper and lower half of 

the cell. Although most of the critical morphological features are about cell polarization, each  
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Figure 6-6. Selected important features for cell migration direction/speed prediction. (a) For direction prediction, up-moving 

cells tend to have positive CenterShift values and down-moving ones tend to have negative CenterShift values. For speed 

prediction, large CenterShift values typically indicated fast-moving cells. (b) For direction prediction, up-moving cells often had 

positive MaxWidth values and down-moving ones often had negative MaxWidth values. For speed prediction, large MaxWidth 

values typically indicated fast-moving cells. (c) For speed prediction, large HeadAverageWidth values typically indicated fast-

moving cells. (d) For speed prediction, large RedGreenDist values typically indicated fast-moving cells. (e) For direction 

prediction, up-moving cells often had positive TotalAreaHalfRatio values and down-moving ones often had negative 

TotalAreaHalfRatio values. For speed prediction, large TotalAreaHalfRatio values typically indicated fast-moving cells. (f) For 

direction prediction, up-moving cells often had positive TotalPerimeterHalfRatio values and down-moving ones often had 

negative TotalPerimeterHalfRatio values. For speed prediction, large TotalPerimeterHalfRatio values typically indicated fast-

moving cells. (scale bar: 10 µm). 

 

feature conveys its own unique information. For example, CenterShift indicates that the nucleus is 

more likely to appear in the rear portion of the cell, with a protrusion stretched to the front; 
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TotalPerimeterRatio represents not only the effect from nucleus center shift, but also the border 

length of the cell frontier (i.e. cells with filopodia-like protrusions tend to have larger perimeters).  

Although RDF is straightforward to handle and advantageous in interpreting feature 

importance, it sometimes will only give suboptimal solutions due to the nature of greedy growing 

algorithm, as well as unstable to even slight perturbations of the training data. Artificial Neural 

Network (ANN) is a nonlinear model for universal function approximation. With enough data sets, 

ANN is more likely to provide better prediction power. Therefore, we further explored ANN for 

predicting cell migration direction. Based on a database of 1,358 single-cell images collected using 

the presented method, we trained a four-layer-ANN model which achieves an overall accuracy of 

99.6% combining training, validation, and test data (Fig. 6-5 (c)). 

 

6.7 Cell motility (migration speed) prediction 

In addition to direction, we further explored the capability of our machine learning model 

in predicting motility or migration speed. This will provide insights for the discovery of critical 

markers determining cancer metastasis. To quantify cell migration speed, images for cells at the 

same location were taken with a roughly 10-minute period. Movement for a single cell was defined 

as the movement of center of mass of images under FITC channel. In order to allow the cell speed 

to be more accurate, imaging time was recorded for each image. With this information, cell speed 

could be calculated by dividing movement of a single cell by difference of imaging time.  

Using the same workflow as described previously, we first applied RDF to pinpoint the 

important features affecting cell migration speed (Fig. 6-7 (a, b)), and further enhanced the 

prediction power using ANN. Previous studies suggest that cell migration is correlated with  
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Figure 6-7. Cell migration speed prediction. (a) Out-of-bag error rate for cell migration speed prediction using RDF. With the 

increase in number of grown trees, the error rate reduces to 33%. (b) Top 10 important features for cell migration speed 

prediction. (c) The error rate (average of 50 individual runs) can be further reduced to about 18% by eliminating 15 less relevant 

features and then the error rate remains stable until having 24 residual features. After that, the error rate goes up rapidly with 

the reduction of features. The features reduced at the last stage are critical features. (d) Correction rate for cell migration speed 

prediction before feature reduction was 86.6%. (e) Speed regression from our neural network model is correlated with cell actual 

speed. (pixels/s) 

 

mitochondria distribution within a cell [6]. With the help of our machine learning model, we 

discovered that many other morphological features can also predict cell migration. Similar to cell 

migration direction, we found that cellular polarization-related features are still critical in 

determining speed. Unexpectedly, our model also found that other features also provide interesting 

insights into cell migration. For example, RedGreenDist, which is defined as the distance from the 

front of a cell to the first mitochondrion, normalized with the total length of the cell, is positively 

correlated with migration speed. This reveals that the mitochondria network does not necessarily 
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have to be located at the leading edge of a cell to affect cell migration. Furthermore, 

CenterThickness, which is measured by taking the ratio of the average intensity over a small area 

of the nucleus region to the median intensity of the whole cell, suggests that the larger the 

difference is between the center area and cell edge, the more likely a cell moves faster. Evidence 

suggests that a fiber-like or fused mitochondrial network structure is favorable for supplying 

energy for cell migration, whereas dotted mitochondria, or mitochondrial fission, has been reported 

as an indicator of extracellular stress or cell apoptosis. However, in our study, we did not find 

strong correlation between mitochondria morphology with migration behaviors. 

In the next step, we also implemented a neural network for migration speed prediction 

including classification of fast/slow moving cells and regression of moving speed. Targeting on 

selecting the high-migratory cells, which has been reported with significantly greater tumor 

formation and metastasis capabilities in mouse models, we set top 10% migration speed as a 

labelling threshold for fast-moving cells. Similarly, bottom 10% migration speed was used to label 

slow-moving cells, so that balanced inputs for both classes was obtained. Based on the extracted 

61 morphology features, our 4-layer neural network classifier achieves 86.6% prediction accuracy 

at the best case (77.1% as average). To improve computational efficiency as well as avoid 

overfitting, we performed the wrapper method feature selection using the neural network as a 

performance evaluation model. We took an average of 50 individual runs on each of the leave-

one-out subset of features and picked the subsets that achieve the best accuracy on test data. As 

shown in Fig. 6-7 (c), the NN classifier obtained an increase in accuracy when the number of 

features was reduced from 61 to around 33 with the best case reaching 91.0% accuracy (85.3% as 

average) (Fig. 6-7 (d)). The further reduction of features will lead to a dramatic increase in error 

rate due to the loss of significant information. This also suggests that the longer one feature remains 
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in the feature reduction process, the more it contributes to speed prediction. The remaining last 5 

features were TotalAreaHalfRatio, TotalAreaRatio, CenterShift,  TotalPerimeterHalfRatio, and 

MaxWidth, which matches well with the feature importance analysis in the random forest model. 

In addition, we also applied a neural network for regression to predict cell movement in a 

quantitative manner. This optimized model yields 0.0004 pixels/s (0.00006 μm/s) in normalized 

mean square error of migration speed (Fig. 6-7 (e)). 

 

6.8 Validation of morphological features by altering cell migration behaviors 

Following our workflow, several morphological features were identified as critical markers of 

cellular migration. Due to the statistical nature of machine learning models, and its strong 

dependence on data inputs, our computational results could lead to a trivial or irreproducible 

discovery. Therefore, to validate the robustness and biological relevance of our model, we further 

designed control experiments with altered cell migration behavior and examined whether the 

critical morphological markers we found changed as the migration speed changed (Fig. 6-8). As a 

negative control, we inhibited the migration of SUM159 cells with doxorubicin, which has been 

widely used as treatment of metastatic breast cancer [25]. Doxorubicin treatment reduced the 

average migration speed by 25.3% as compared to cells treated with vehicle (control). As expected, 

we also observed a decrease in the average of some morphological markers, such as CenterShift, 

MaxWidth, and TotalAreaHalfRatio, which demonstrates a positive correlation with migration 

speed in our RDF prediction model. We also performed a positive control experiment by 

harvesting fast-moving cells (top 1% of the bulk SUM159 population), re-loading these selected 

cells to another of our migration devices, and observing their migratory behavior. We observed  



104 

 

 

Figure 6-8. Typical images for normal/drug-pretreated/motile cells and medium value differences of selected important features 

for cell migration direction/speed prediction. (a-c) Typical images for normal/drug-pretreated/motile cells. (a) Normal cells was 

not too fat and CenterShift was not so obvious. (b) Drug-pretreated cells were fat, flat and their mitochondria were more 

filamentous. (c) CenterShift values for motile cells were often quite large and their mitochondria were more fragmented. (scale 

bar: 10 µm). (d) Median speed for motile cells is faster than normal ones while median speed for drug-pretreated cells is slower 

than normal ones. (e-g) Medium value differences of selected important features for cell migration direction/speed prediction. 

The unit is pixel per second. (e) Medium CenterShift value for drug cells was below the one for normal cells while medium 

CenterShift value for motile cells was above the one for normal cells. (f) Medium MaxWidth value for drug cells was below the 

one for normal cells while medium MaxWidth value for motile cells was above the one for normal cells. (g) Medium 

TotalPerimeterHalfRatio value for drug cells was below the one for normal cells while medium TotalAreaHalfRatio value for 

motile cells was above the one for normal cells. “***” means significance level is smaller than 0.001. 
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that highly motile cells maintained their highly migratory properties, and moved on average 34.0% 

faster than wild-type SUM159 cells. As a result, we also observed significantly higher values in 

those positively correlated morphological markers. A combination of the two experiments with 

“slow runners” and “fast runners” confirmed that the important features we pinpointed can be 

reliably used as morphological markers for cancer cell migration. 

 

6.9 Chapter summary 

Due to limitations of conventional marker-based approaches to identify motile cells, we 

aimed to establish a direct link between morphological features and cell migration. We focused on 

mitochondrial morphology because studies have shown that mitochondria influence cell migration. 

Although mitochondrial fragmentation has been reported to be associated with migratory behavior 

in different breast cancer cell lines26, we found it has a weak correlation with the fast-moving and 

slow-moving SUM159 triple negative breast cancer cells. Furthermore, another study suggests a 

link between mitochondria distribution and cell migration, yet the prediction power (53.4% 

accuracy) is too low to be reliable13. To improve upon this, our method extracted 61 

morphological features of both mitochondria and the whole cell and correlated these features with 

migration at an accuracy of 72.0% max, 51.6% min, 54.7% mean, and 53.9% median. Although 

the accuracy is improved, this result suggests that the mechanisms underlying cell migration are 

complex and highlights limitations of conventional hypothesis-driven studies using only one 

parameter.  

To address limitations of using single features, we applied cutting-edge Random Decision 

Forest (RDF) and Artificial Neural Network (ANN) models for prediction. To generate a large 
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database for training models, we used our single-cell microfluidic migration chip17 to track 

hundreds of cells on a chip. Using a database of 1,358 SUM159 cancer cells, we determined that 

the comprehensive computer vision method is significantly better than the conventional single 

feature-based prediction. To optimize the RDF model, we swept the number of trees and found 

that 500 trees are enough for prediction. Optimization of ANN was more complicated, as we had 

to remove redundant and irrelevant features as well as determine the numbers of layers and hidden 

nodes. We found that removing around 28 features and building a geometry using a 4-layer neural 

network (2 layers with hidden nodes, 21 hidden nodes in the first layer and 7 hidden nodes in the 

second layer) achieves the highest prediction power. Using the ANN model, we achieved over 99% 

correct prediction for movement direction and 91% for speed, while the RDF model is slightly less 

accurate (67% for speed). 

In addition to prediction, we used the RDF model and reduced the features in the ANN 

model to pinpoint top-ranked key features important for cell migration. Some of these key features 

are known to relate to cell polarization (such as CenterShift), but we also identified novel features 

(such as RedGreenDist and CenterThickness) that correlated with cell migration. The 

identification of novel features highlights the limitations of current methods, and potentially 

advances our understanding about mechanisms involved in cell migration. To validate that the 

identified features are indeed critical for cell migration, we performed migration experiments using 

pharmaceutically pre-treated cells (expected to have lower speed), and highly migratory cells from 

our microfluidic device (expected to have higher speed) [27]. When comparing these experimental 

cell populations with wild-type cancer cells, we found the same associations between 

morphological features (CenterShift, MaxWidth, and TotalAreaHalfRatio) and cell speed, further 

supporting the importance of our discovered features in cell movement. 
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In this study, we established a method to predict cell movement by morphological features 

using computer vision and machine learning, achieving unprecedented prediction power for cell 

movement. This unbiased method discovers both known and novel features critical for the cell 

migration process. The features identified here can aid in our understanding of cancer cell 

migration, and lead to new approaches for identifying metastatic cancer cells. Although the current 

study focuses on one breast cancer cell line on a 2D substrate, the strong prediction power of the 

morphological markers suggests broader applications for this method. In the future, this method 

can be used to explore other cancer types, cell movement in a 3D environment, and other cell 

behaviors, such as metabolism and cell-cell interaction. 
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Chapter 7 : Conclusions 

7.1 Summary 

 In the past decades, large amount of efforts and investment has been given to the 

development of cancer chemo-drugs. Although therapeutic efficacy has improved, both clinical 

research and industrial development continue to suffer from extremely low success rates in 

translating preclinical discoveries into clinical approval. A large percentage of promising 

compound candidates from preclinical trials eventually fail the validation in human testing. In 

order to achieve desirable patient outcomes and reduce development cost, it is imminent to 

improve the preclinical drug screening model with both good physiological relevance and good 

scalability. One of the key components that contributes to cancer drug response is tumor micro-

environment (TME). Recently, TME has drawn more and more attention in cancer drug 

development as the accumulating evidence shows that drug efficacy significantly variation in 

different TME. Recently, considerable efforts have been put forward to develop high-throughput 

TME-mimicking platform. Microfluidic techniques stand out among many candidates due to low 

cost, precise fluidic control and cell manipulation, and compatibility of biomimetic structures, .  

 In addition, High-throughput microfluidic drug screening platforms could provide the large 

amount of high-dimensional data. In order to automate the extraction of image features and 

analysis of biological information from large dataset, an increasing number of research works have 

attempted to incorporate microfluidic devices with machine learning tools for system automation 

and rapid data analysis. Recent advances in machine learning (especially deep learning, 
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which relies on the structure of neural network) have enabled analysis of biomedical images in a 

high-throughput manner. However, very few works explored the deep learning algorithms for drug 

screening. We integrate machine learning techniques and microfluidic chip to facilitate the high-

throughput drug response analysis and cellular behavior interpretation and prediction. 

Here, we first presented three microfluidic platforms using three different TME-mimicking 

drug screening models: spheres in matrix, aggregated spheres in suspension, and clonal spheres in 

suspension. The first work reports a novel gel-island microfluidic platform enabling drug screening 

in 3D extracellular matrix (ECM). Since cellular heterogeneity contributes to drug resistance, we 

investigate the heterogeneous drug response in ECM at single cell resolution. The platform has 

several advantages: (1) reliable single cell loading in 3D gel-islands, (2) high-throughput (1500-

well) drug screening, and (3) automatic single cell lineage tracking. The presented platform 

enabled automatic tracking of single cell behaviors and analyzing drug response of thousands of 

individual cells in biomimetic 3D microenvironment. Combining 3D ECM culture and single cell 

resolution screening, we identified the cancer subpopulation that showed resistance to the 

conventional cancer drug, which should be targeted for new drug development. 

 The second platform realized the cell aggregated sphere model to mimic 3D tumor 

structures for combinatorial drug screening. Drug combinations have been widely accepted in 

cancer treatment for better therapeutic efficacy as compared to single compound. Although several 

systems have been presented for drug combination screening, they were limited to low throughput 

of only two drugs, requiring complicated operation systems, or time-consuming serial processes. 

We developed a scalable, easy-to-handle, high-throughput drug combination screening platform, 

which enables screening of any possible dual-drug combinations from N different drugs with five 

different mixing ratios in each combination. As a proof of concept, we implemented an 8-drug 
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combination platform. Combining 28 drug combinations, 7 mixing ratios, and 6 replicates, total 

1,032 drug-efficacy screening experiments could be accomplished in a single chip. Using breast 

cancer cell lines, pancreatic cancer cell lines, and patient-derived cell lines, we demonstrated 

effective drug combination screening for precision medicine. 

 Recent studies suggested that among bulk tumors only a small subpopulation of cancer 

cells, known as cancer stem-like cells (CSCs), possess capabilities of  self-renewal, differentiation,  

tumor-initiation, and cancer drug resistance, which may lead to cancer relapse after drug treatment. 

In order to identify CSCs in a tumor clone, we developed a Hi-Sphere chip to realize the single-

cell derived 3D clonal sphere model. Combined with fluorescence labelling techniques, Hi-Sphere 

chip enables the study of cancer heterogeneity in two aspects: inter-clonal heterogeneity and intra-

clonal heterogeneity. The Hi-Sphere chip is capable of culturing more than 2,400 single-cell-

derived clonal spheres and selectively retrieve them based on sphere size, which separates different 

subtypes from the clonal spheres, e.g. holoclones, meroclones, and paraclones. We discovered the 

majority of CSCs were located at the leading edge of holoclones. 

To enable automatic readout of cancer drug efficacy in a low-cost, time-efficient, and 

reliable manner, we applied the computer vision and machine learning algorithms to the 

microscope images of cells acquired from the presented dug screening chip. We used the 6-drug-

condition microfluidic chip that allowed thousands of tumor spheres formed, cultured, and drug 

treated on-chip. The cellular bright-field microscope images were collected, and the micro-

chambers containing spheres were tracked for analysis automatically. We trained a convolutional 

neural network for sphere viability estimation based on live/dead staining results. The machine 

learning model could distinguish tumor sphere viability with only bright-field microscopy images. 

In this manner, we could accurately estimate the half-maximal inhibitory concentration (IC50). 
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More interestingly, we found there were common features indicating viability across different 

chemo-drugs, suggesting the potential that a generic model could be established for various drugs.  

The presented method provided an automatic, high-throughput and non-invasive method to assess 

tumor sphere viability for large-scale drug screening. 

In addition, an approach of analyzing single-cell migration in a microfluidic platform was 

explored in conjunction with artificial neural network (ANN). Cancer cells with enhanced motility 

and invasiveness tend to migrate away from primary tumor site and initiate metastatic process. 

Therefore, identifying key aspects for cell migration is crucial for understanding and ultimately 

overcoming metastasis. Considerable efforts have focused on discovering markers for epithelial-

to-mesenchymal transition (EMT), a developmental program in which epithelial cells acquire 

migratory and invasive phenotypes to promote metastasis. Yet marker-based approaches are 

limited by inconsistences among patients, types of cancer, and partial EMT states. In this work, 

we presented a comprehensive morphological analysis using deep learning methods, including 

Random Decision Forest (RDF) and ANN to establish the correlation between cellular morphology 

and migration direction/speed. We developed a workflow to discover and validate morphological 

features that associate with migration. Thanks to the high throughput of microfluidics, we easily 

accumulated the images from 1,358 cells migrating in microfluidic channels. The images were 

processed by noise removal, deblurring, sharpening, and thresholding, and then extracted 61 

morphological features. Using both cellular and mitochondrial features as inputs, we trained the 

RDF and ANN models to predict cell migration direction, and achieved 99% accuracy with both 

models, and identified key predictive features. We further developed one method to recognize fast-

moving cancer cells associated with metastasis. We started with the RDF model but had a low 

accuracy of 67%. Thus, we focused on more advance ANN model. We iteratively removed 
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redundant and irrelevant features as well as optimized the numbers of layers and hidden nodes. 

We found the optimized neural network geometry and achieved a highest accuracy of 91%. In 

addition, we also applied regression to accurately estimate cell speed with an extremely small 

mean square error of 0.0004 pixels/s (0.00006 μm/s) mean square error. The accurate results 

demonstrated the feasibility of correlating cell behaviors with morphology using deep learning 

models. 

 

7.2 Future works 

7.2.1 Pharmacokinetic study: 

 We explored the application of drug pairs in cancer therapy with high-throughput drug 

combination screening microfluidic chip. However, there is another key component in the course 

of drug combination treatment, which is drug administration scheduling. Recent studies have 

shown that the temporal order and during of combinatorial cancer treatment had influence on the 

outcome [1-3]. This phenomenon involves the interaction between drug compounds [4, 5] and the 

study of pharmacokinetics [6], which is affected by drug absorption, distribution, and metabolism 

[7]. It is also critical to include the optimization of drug combination temporal scheduling in drug 

combination screening experiment to achieve the best therapeutic efficacy. The advantage of 

microfluidics in accurate fluidic control makes it a promising screening tool for temporal 

scheduling optimization. Combined with automatic syringe pump, various types of flow pattern in 

different duty cycles could be generated in microfluidic drug screening platforms to simulate 

different drug treatment regimen.  
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7.2.2 Interpretable deep learning model to understand cancer cell behavior 

 As a universal function approximator, deep learning models have the ability to model 

complexed and abstract relationship between random variables using the data-driven approach [8]. 

Although deep learning emerges as a powerful tool in automatic image analysis and cellular 

behavior prediction, it has been treated as a black box in most cases. The poor interpretability 

limits its wider fields of application in biological study. In recent years, a large number of works 

[9-11] attempted to narrow the gap between deep learning models and human reasoning. Among 

the important advancement, attention mechanism stands out by improving model transparency and 

visualization of model functionality [12, 13]. When human looks at an image input for 

classification task, the eye first grabs a rough image of the scene, from which the vision system 

extracts regions of interest [14]. Then we focus on specific areas of the image and recognition 

tasks are performed using a combination of features extracted from all such regions. Inspired by 

this mechanism, attention model improves the visualization and interpreting the latent layers of 

CNNs by generating a attention map: a matrix with the same size of the input tensor representing 

the relative importance of layer activations at different 2D spatial locations with respect to the 

ground truth target [15]. For example, in an image classification task between cats and dogs, the 

regions of ears, whiskers, or tails may play a more important role in distinguishing the two animals 

[16], compared to other regions in the input images, such as background and torsos. By calculating 

a compatibility score between local feature maps and global features used for image classification, 

an attention map representing the importance weight of different regions towards final 

classification task was generated. This provides human observers a visible clue in reasoning the 

inner CNN working mechanism. 
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