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ABSTRACT

This dissertation is based on the development of a long-wave infrared supercontin-

uum source, and the utilization of this source in a Fourier transform based standoff

optical sensor. The spectra from trace particles deposited on smooth surfaces are

measured with the sensor and simulated using a Bobbert-Vlieger based model.

We create an ultra-broadband, all-fiber supercontinuum source that emits infrared

energy from 1.6 - 11 µm. We utilize a master oscillator parametric amplifier with

Erbium/Ytterbium (Er/Yb) and Thulium (Th) amplifiers to pump a cascade of ZrF4-

BaF2-LaF3-AlF3-NaF (ZBLAN), arsenic sulfide (As2S3), and arsenic selenide (As2Se3)

fibers. This source is power scalable and can emit up to 417 mW at 800 kHz pulse

repetition frequency, with 69 mW beyond 7.5 µm. The output from the long-wave

infrared supercontinuum source is near-diffraction limited single mode output that

can be collimated to a one inch spot.

The output of the source is then tested for feasability of use in commercial FTIR

based systems. Although not optimized for 1.5 ns pulsed sources, we are able to

measure transmission spectra of polystyrene samples, thin films on wafers and 50µL

of acetone that has been evaporated in a 10 cm length gas cell and compare to those

illuminated with the systems internal globar. We find that even though the input

optics are not optimized, the incident energy on the samples is an order of magnitude

higher than that of the globar source.

We develop a long-wave infrared standoff sensor by coupling the output of the

source to a refraction based FTIR interferometer. The modulated energy is then

guided to hit targets that are 3.6 m away from the sensor. The system estimates the

xvi



energy of each pulse and creates an interferogram that is Fourier transformed into

resultant spectra. The linearity of the sensor is verified via the measurement of thin

films of SiO2 and polyimide on silicon wafers. This sensor is then used for standoff

volatile gas and bulk sample scattering measurements.

We then focus on the measurement and modeling of trace chemicals that have

deposited on smooth substrates. We measure concentrations as low as 6.5 µg/cm2

on glass substrates. Furthermore, we measure the diffuse reflectance of RDX, ac-

etaminophen, and caffeine on glass, aluminum, and silicon substrates. Each of these

chemicals exhibit spectral features between 950 and 1800 cm−1 and substrate based

dependencies in reflectance spectra. We simulate these effects with a Bobbert-Vlieger

model that takes particle size distribution into account. We find that a range of

particle sizes smoothens and broadens reflectance features and changes in target ori-

entation and differences in particle shape can strongly impact the spectra between

1800 and 4000 cm−1. We use our Bobbert-Vlieger model to create a library of ex-

emplary spectra based on systematically changing the parameters of the particle size

distribution. This library is employed to identify unknown powders based on the root

mean square error between the second derivative of measured spectra and those in

the library.
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CHAPTER I

Introduction

1.1 Motivation

Imagine a device that acts as a heads-up display for surgeons to help differentiate

tumor margins, or where shipping containers can pass optical sensors that check for

dangerous compounds and residues. Imagine quality control devices that can quickly

determine the thickness and composition of anti-coagulants coating a vial for storage,

or sort medical samples quickly based on the chemical signatures of what’s inside.

Imaging real time smoke-stack emissions monitors that constantly and consistently

record emission levels over broad periods of time with part-per-billion accuracy. This

dissertation focuses on scientific advances that will lead to making these devices a

reality.

We describe the research and demonstration of a non-destructive optical sensor

that can determine the chemical composition of particles smaller than a grain of

sand and indiscernible to the naked eye. The heart of this dissertation is based

on three key requirements for standoff, optical chemical identification: illumination,

sensing, and particle modeling. These advances are analogous to three components

required for vision: light, eyes, and brain. We first develop a high-power, all-fiber,

broadband supercontinuum source that extends from the short-wave to the long-wave

infrared spanning 1.6 - 11 µm and outputs energy at power levels that are an order of
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magnitude higher than other fiber-based broadband sources available. With a near-

diffraction limited beam, this source provides high intensity illumination to standoff

targets. We then integrate the output from the source into a Fourier transform

infrared based sensor to detect the scattered return from targets placed up to 16 m

away. Finally, we the model the effect of small numerical aperture (NA) illumination

and collection of scattering from trace particles on a surface at standoff distances,

to interpret the chemical signatures that are measured with the FTIR based sensor.

These measurements are fundamentally different from the high-NA measurements

performed in benchtop applications.

1.2 Infrared Light

Infrared light is electromagnetic radiation that spans wavelengths longer than

those visible with the human eye. For the purpose of this dissertation we define the

ranges as the near-infrared (NIR) (0.75 - 1.0 µm), the short-wave infrared (SWIR)

(1 - 2.5 µm), the mid-wave infrared (MWIR) (2.5 - 7 µm) and the long-wave infrared

(LWIR) (7 - 15 µm).

Figure 1.1: Infrared ranges for infrared light in wavelength and wavenumber.

Because some of our equipment operates in the frequency regime, we can also

use wavenumber to express a given energy level of light. The conversion between

wavelength and wavenumber is:
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ν = 10, 000/λ (1.1)

where ν is wavenumber in cm−1 and λ is wavelength in µm. Fig. 1.1 shows the

IR ranges on a wavelength scale. Note that wavenumber is inversely proportional to

wavelength and, therefore, exhibits a different scale.

Photons in the infrared exhibit energy levels that interact with molecules, through

absorption, emission, and reflection. This is the basis for infrared spectroscopy [1]

for hydrocarbon-based chemicals. The SWIR contains first overtone (near 1.2 µm),

second overtone (near 1.7 µm), and combinational bands (2.0 - 2.5 µm) which are

caused by electron transition states. The MWIR contains functional band informa-

tion associated with bond vibrations. For example, water contains a very strong

feature at 3 µm from the O-H bond of water. The LWIR is known as the molecular

fingerprint regime (7 - 14 µm) because most molecules have distinct resonances that

absorb specific wavelengths of IR light while transmitting others. These resonances

are caused by the infrared energy being absorbed by the bonds between elements to

cause bending. Because each molecule has a unique set of bonds, these can bend In

this way spectroscopists can measure transmission through a sample to determine the

identity of a given solid liquid or gas.

1.3 Supercontinuum Generation

Supercontinuum (SC) sources provide the best of both worlds between a lamp and

a laser. They provide a spectrally broad output with the spatial coherence of a laser.

In this way, you can deliver high intensities of broadband light long distances all at

the same time.

Supercontinuum generation is a process through which spectrally broad light is

produced through non-linear effects in a medium. Supercontinuum generation occurs
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in fiber-optics when the peak pulse power in the fiber is high enough to undergo non-

linear processes such as self-phase modulation and stimulated Raman scattering which

broadens the pulse to shorter and longer wavelengths [2]. Whereas most spatially

coherent sources output a single or very narrow wavelength at a given point in time,

supercontinuum sources provide spectrally broad outputs.

Most high power, femtosecond (fs) pulses that generate supercontinuum are gener-

ated in one of two ways: they can be injected directly into the fiber from mode-locked

lasers such as optical parametric oscillators (OPO) [3, 4], or they can be created via

modulation instability, where longer pulses break up into hundreds of femtosecond

pulses with high peak power. Optical parametric oscillators generate femtosecond

pulses by focusing light through a non-linear crystal so that second-order nonlinear

effects compress the pulse. This signal can then be amplified through an optical

parametric amplifier (OPA) that works under the same principle. One of the bene-

fits of using OPOs to pump SC generation is that the pulses formed have very high

peak powers. Very little fiber (on the order of 10 cm) or non-linear crystal is re-

quired for broad spectral expansion. The high losses of chalcogenide fibers can be

mitigated with short fiber lengths. Furthermore, OPOs can be tuned to emit energy

at different wavelengths that extend into the MWIR/LWIR so that supercontinuum

generation can be pumped at wavelengths beyond a given fibers zero-dispersion wave-

length (ZDW). One of the drawbacks of using OPOs to pump SC generation include

bulk optic coupling that requires focusing energy onto the core of the SC generating

fiber or crystal, which leads to an increased risk of surface damage. Short fiber lengths

also increase the risk of thermal base damage as most of the nonlinear expansion and

heating will occur very quickly.

The method for SC generation utilized in this dissertation is to pump the SC

generating fibers with nanosecond length pulses that breakup into hundreds of fem-

tosecond pulses through modulation instability (MI). This method allows us to use
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commercial off-the-shelf parts for the initial stages of SC generation. Benefits include

an all-fiber design, with a near-dispersion limited output, and high power-scalability.

MI initiated fs pulses typically exhibit lower peak powers and therefore longer non-

linear lengths (on the order of meters) are required for SC generation that extends

as broadly as OPO pumped fibers. SC generation via MI initiated pulse break up is

much more limited by the loss edge of the fiber used for SC generation.

Prior to the efforts presented in this dissertation, most SC sources that extended

into the LWIR were pumped using OPOs emitted average powers of less than 10 mW

[3, 5–7], with some sources exhibiting average powers slightly above 30 mW [8, 9].

On the other hand, sources that did exhibit hundreds of mW average power only

extended into the MWIR. This dissertation includes details on the creation of a high-

power LWIR SC source using MI initiated pulse breakup for SC generation that is

the key enabler for standoff FTIR measurements.

Figure 1.2: General setup for all-fiber based supercontinuum sources that emit in the
infrared.

The master oscillator power amplifier (MOPA) scheme for the all-fiber based su-

percontinuum sources developed in lab is shown in Fig. 1.2. Generally, a pulse from

a seed source is amplified several times to increase the peak power to induce pulse

breakup via modulation instability. The energy can then be sent through various
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super continuum generating fibers which will spread the pulse to shorter and longer

wavelengths. Different fibers must be used because each fiber in a cascade has a dif-

ferent loss performance and damage threshold within a given wavelength range. By

cascading fibers, we allow SC generation to occur in harder fibers such as fused silica

at high peak powers and then output lower powers to softer glasses that may have

lower damage thresholds but higher non-linearity.

The specifics for the LWIR source, that I developed during my PhD is described in

detail in Chapter II, but most sources created in our lab have a similar architecture.

Specifically, in the sources created to expand into the infrared, a 0.5 - 1.5 ns pulse

at 1550 nm from a fiber-coupled distributed feedback laser is amplified with forward-

pumped, fiber-based Erbium/Ytterbium (Er/Yb) amplifier pumped by up to 8W at

940 nm. After amplification, the pulses are sent through an isolator and band pass

filter to remove any excess amplified spontaneous emission (ASE). The resulting light

is amplified further to begin modulation instability initiated pulse breakup. The

mid-amplifier is a backward-pumped Er/Yb amplifier pumped by up to 20 W at 940,

then the energy can be filtered and amplified further by a Thulium (Th) amplifier, or

sent through SC generating fibers such as fused silica and ZrF4-BaF2-LaF3-AlF3-NaF

(ZBLAN), or chalcogenide fibers, such as, As2S3, or As2Se3 fibers [10, 11].

There are many benefits of generating a broadband spectrum in an all fiber system.

First, most conventional broadband sources used in spectroscopy, such as light bulbs,

halogen lamps, or globars, are spatially incoherent. These sources typically emit in all

directions and are difficult to collimate and send long distances. In comparison, our

fiber outputs all exhibit a single spatial mode output that is easily collimatable with

off-axis parabolic mirrors, and the resulting beam can propagate distances. An all-

fiber source also means that there are no moving parts that need to be realigned. Each

interface between fibers can either be thermally fused or mechanically butt-coupled

and fixed together. This makes the source more rugged than typical mode-locked
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sources that pump high energy fs pulses into fibers to generate SC and require bulk

optics to guide the pump into the SC generating fibers. Additionally, unlike quantum

cascade lasers that emit spatially coherent light at a single wavelength that can be

scanned across the MWIR or LWIR [12], SC sources emit all of the radiation at once

so that all the energy is available at once. Diffraction gratings and detector arrays

can detect multiple wavelengths and entire spectra all at once, but in the LWIR, use

of these gratings and arrays is cost-prohibitive, so we use a Fourier transform infrared

(FTIR) interferometer to distinguish our wavelengths on a single detector to take

advantage of its throughput and multiplex advantages [13].

1.4 Fourier-Transform Infrared Spectroscopy

FTIR spectroscopy is a sensing method that shines broadband light on a target

and compares the transmission or reflection of the target to a reference scan [14]. The

advantage of using an FTIR spectrometer is that a high throughput can be maintained

while utilizing all of the wavelengths available at a given point in time, and the output

beam can be transmitted over long distances without additional optics.

To do this, a beamsplitter separates the incoming beam of light into two separate

arms. One arm is sent towards a stationary mirror and reflected towards the beam-

splitter while the other is sent towards a translatable mirror. As the translatable

mirror moves, it alters the optical path length of that arm which causes different

wavelengths to interfere constructively or destructively when they recombine with

the stationary arm signal. This produces an interferogram that compares intensity

to mirror position. The interferogram can be Fourier transformed (hence FTIR) into

a spectrum. Figure 1.3 shows the setup for a basic Michaelson interferometer.

Spatially coherent sources are ideal for FTIR spectrometers because interferom-

eters work best with collimated beams. Grating monochromators, in comparison,

require the source to be focused through a slit before hitting a grating that separates
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Figure 1.3: Simplified example of a Michaelson interferometer which modulates signal
to create an interoferogram that can be Fourier transformed into the
spectral regime.

the beam into it’s component wavelengths. Wavelengths are scanned as the grating

is rotated over a given angle, and the output is then focused through the output slit

where it must be collimated to a target or detector.

Grating monochromators are slower than FTIR spectroscopy and creating spec-

tra over several octaves requires bandpass or long-pass filters to prevent second order

diffraction from short wavelengths from hitting the detector. Furthermore, only small

percentage of the total energy is used at any given point of time, with the rest of the

energy outside of the given slit wavelength lost within the spectrometer. The time

required to take a full spectrum of our source with a commercial grating monochro-

mator can take on the order of 8-10 minutes and requires a grating change and 2 filter

changes. To take a spectrum with the standoff FTIR system described in Chap. III

takes less than 2-minutes for a 1000 scan run, 69 seconds for collection and 40 seconds

for processing, while commercial systems are even faster. The largest limitation for

our prototype system is the transfer of data from the acquisition card to the memory

of the computer that runs the processing, and through engineering optimization, this

time can be improved.
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Standoff spectroscopic techniques include photoacoustic spectroscopy, photother-

mal spectroscopy, and backscattered reflectance measurements. Photoacoustic spec-

troscopy involves illuminating samples with infrared energy to induce thermal ex-

pansion and create pressure waves that can be measured acoustically. This method

works best in sealed environments and is in open air environments by ambient noise

levels [15]. Likewise, in photothermal spectroscopy, sample temperature changes of

˜1 K are measured via HgCdTe detectors and microbolometer arrays when targets

are illuminated with QCLs at absorption wavelengths in the MWIR [16, 17]. This

method is limited by ambient temperature differences that may already be present

in the environment. Finally, backscattered reflectance involves illuminating a sample

with LWIR energy and collecting scattered return, which is one of the foci of this

dissertation.

Before the work in this dissertation, all three of the above-mentioned standoff

techniques were performed with QCL illuminators and camera based measurement

because SC sources did not provide enough power in the LWIR to measure spectral

return. We describe how to harness the LWIR SC source in a standoff FTIR based

sensor. While an example of an FTIR standoff sensor had been exhibited for a MWIR

illuminator [18], our sensor is the first to be developed with LWIR illumination.

The LWIR SC source and FTIR based sensor presented in this dissertation facili-

tate standoff backscattered reflectance measurements. Scattering from trace particles

on surfaces will be decrease with a 1/r2 dependence on distance. This makes inco-

herent blackbody sources unsuitable for standoff illumination because their incident

intensity can drop to 1% of its initial value at 4.1 m. We present measurements at

3.6 m with theoretical measurement capabilities up to 16 m. Even at 3.6 m, we find

that scattered intensity decreases by 3-4 orders of magnitude compared to the inten-

sity incident on samples with moderate concentrations of ˜30µg/cm2. Standoff diffuse

scattering measurements also produces spectra that will differ from commercial FTIR
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based measurements because standoff measurements require low numerical aperture

(NA) illumination and collection.

We provide modeling of trace particle scattering to interpret the results of mea-

surements performed with our LWIR SC and FTIR based sensor. One of the major

challenges associated with measuring trace chemicals is that the return spectra de-

pends on not only the chemical in question, but the particle size distribution of the

given sample and the substrate upon which the particles rest. In this dissertation we

use Bobbert-Vlieger (BV) simulations [19] and log-normal particle size distributions

to model trace particles on a surface as spheres of varying sizes. The spectra provided

by BV modeling take particle size and substrate effects into account. Previous stud-

ies that measure trace detection at a distance have utilized a trans-reflection-based

model [20], which uses Mie scattering to determine particle size effects on scattered

return. Though accurate for particles on substrates with smoothly varying features,

this model treats the substrate as a multiplicative factor for scattered return and

does not accurately predict spectra for substrates with their own reflectance features.

After we published measurement results using BV theory, new studies have begun to

utilize a simplified version of the BV model that uses the Videen approximation [21],

which is a near normal incidence approximation [22]. These studies average together

the spectra from the entire return hemisphere to create spectra. While providing

accurate spectra in the LWIR, the Videen approximation but does not show the os-

cillatory features that can be found in single size and narrow size distribution cases

that are shown in experiment and simulation in Chapter IV.

BV theory, as described in this dissertation, can only model discrete particles on

smooth substrates. If a given chemical has been dissolved or forms a bumpy film on

the surface of a substrate, BV theory has no adjustable parameters to account for film

thickness or particle spacing. Additionally, at very high concentrations, individual

particles begin to aggregate and form larger clusters. BV theory assumes that each
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particle on the surface is distinct and light that interacts with one particle will not

also interact with another. Spectra that is measured with temporally coherent light

sources might exhibit interference effects that could not be modeled using BV theory.

The insights gained from the modeling efforts described in Chapter IV should help

guide the future modeling of more complex targets.

The impact of this work is three-fold. First, we developed a SC source that

extends into the LWIR at average powers an order of magnitude higher than any

other source at the time to illuminate standoff targets. Next, we integrate the SC

source into an FTIR sensor to measure the return infrared backscattered return of

standoff targets. Finally, we model the effects of various target parameters to deepen

the understanding of the types of spectra that can be measured with the sensor, and

we develop a library of spectra for unknown trace chemical identification on smooth

surfaces.
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CHAPTER II

All-Fiber Supercontinuum Generation to >11 µm

2.1 Introduction

We pump an all fiber, ZBLAN to arsenic sulfide (As2S3) to arsenic selenide

(As2Se3) cascade with a master oscillator power amplifier (MOPA) to generate su-

percontinuum (SC) from 1.6 to > 11 µm with an on-time average power of up to

417 mW at 33% duty cycle. The fiber cascade leads to high output power because

each fiber reduces peak power and increases spectral expansion as SC generation is

transferred to softer and more nonlinear fibers.

The experimental results point to several important features related to generating

broad SC. First, the thulium amplifier absorbs residual 1553 nm light that reduces

the damage threshold of As2Se3 glass. Second, the custom 0.76 NA step-index As2Se3

fiber achieves high confinement at longer wavelengths and shifts the zero-dispersion

wavelength (ZDW) to ˜6.0 µm, which leads to more efficient long wavelength SC

generation beyond 6 µm. Finally, the output beam is a single fundamental spatial

mode over the full spectrum with a divergence angle that varies across wavelengths

as determined by the fundamental mode field diameter (MFD) in the As2Se3 fiber.
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2.2 Motivation and Background

Recently, there has been an increased interest in fiber-based SC sources that ex-

tend into the molecular fingerprint region in the mid-infrared (6.6 - 20 µm). Because

long-wave infrared (LWIR) (7 - 12 µm) light interacts with the fundamental vibrations

within molecular bonds, different molecules exhibit unique LWIR absorption spec-

tra. Unfortunately, relatively low output powers have prevented LWIR SC sources

from being used in applications such as remote sensing or in-line diagnostics [1]. We

demonstrate a LWIR SC source that exhibits both the broad spectral coverage and

high average power required for standoff applications.

Several studies in the literature use difference frequency generation or optical

parametric generation (OPG) sources to pump chalcogenide fibers and generate SC

light beyond 7 µm. However, these pumping schemes are complex and use bulk optics

to achieve SC generation. By adjusting the chemical composition of chalcogenide

fibers, changing the core structure, or altering the pump wavelengths, SC generated

in short lengths of arsenic selenide fibers extends to various points in the mid-infrared

at low powers, with some systems extending past 15 µm. [2–5]. Recently, higher

power output is achieved by using tapered As2Se3 fibers. One study achieves 35.4

mW (1< λ <11.5 µm) and 57.3 mW (1< λ <8 µm) by pumping different lengths of

tapered suspended core As2Se3 fiber with an OPG [1], while another achieves 30 mW

(1< λ <9.5 µm) by pumping an As2Se3 taper with a Ho3+, Pr3+-co-doped ZBLAN

laser [6].

Studies that cascade the output of a MOPA system to ZBLAN and suspended core

As2Se3 fibers use bulk optics coupling and a 3.5 µm long pass filter to remove excess

power from the ZBLAN output before free space coupling into a short, suspended core

As2Se3 fiber. Reference [7] generates 54.5 mW with expansion to 7.2 µm. In contrast,

our system is an all solid core fiber cascade that utilizes the shifting in previous fibers

and an As2S3 to As2Se3 splice to increase the average output power.
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Arsenic sulfide fibers exhibit higher damage thresholds than As2Se3 fibers and

produce total SC power outputs as high as 565 mW, but with wavelength extents of

¡5 µm [8, 9]. The SC generation in As2S3 fiber is typically limited by a high S-H loss

peak at 4 µm, but one study utilizes a tapered As2S3 fiber to increase nonlinearities

and generate SC to 7.2 µm at ˜1mW power levels [10]. In our cascade, the As2S3

fiber is seeded with SC generated beyond the high 4 µm loss by our ZBLAN fiber and

acts as an exceptional intermediary between the ZBLAN and As2Se3 fiber because of

its high power tolerance.

2.3 Materials & Methods

2.3.1 Laser Design

Our experimental configuration comprises an all fiber, commercial, off-the-shelf,

MOPA design to pump a cascade of fluoride and chalcogenide fibers. Figure 2.1

shows an optical block diagram for the SC source. Two Er/Yb doped fiber amplifiers

amplify 1.1 ns pulses from a 1.553 µm seed laser operating at a pulse repetition fre-

quency (PRF) between 100 kHz to 800 kHz. These pulses break into several hundred

femtosecond pulses through modulation instability in 10 m of standard single mode

fiber (SMF) and generate up to 3 W SC from 1.55-2.4 µm via Raman processes, as

described in [11]. Then, a 25/400 double clad thulium amplifier absorbs the signal

below 1.9 µm and amplifies the signal above 1.9 µm to increase the spectral density

past 2 µm. Further details on this system can be found in [12]. The thulium amplifier

reduces the average power that would lead to thermal damage of subsequent fibers

and maximizes the power that contributes to SC generation. We find that pumping

the fiber cascade without the thulium stage greatly reduces the damage threshold of

the As2Se3 fiber and leads to poor spectral expansion. We attribute this effect to two

photon absorption within the As2Se3 fiber [13] and conclude that a thulium amplifier
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reduces damage to the As2Se3 fiber by absorbing 1.55 µm light. Finally, a mode field

adapter (MFA) is spliced to the combiner fiber of the thulium amplifier to reduce the

core size from a 25/400 fiber to a 0.2 NA, 7 µm core fused silica outputting up to ˜14

W at 800 kHz.

Figure 2.1: Optical block diagram of MOPA and cascade scheme. SMF: single-mode
fiber, MFA: mode-field adapter

The thermal load of the system is reduced by connecting the thulium pump diodes

in series with a MOSFET switch driven by a 33% duty cycle square wave at 100 Hz.

This reduces the likelihood of damage to the final MFA where the intensity of light

is increased by an order of magnitude. The average powers described in this study

are measured using a thermal power meter then corrected for the 33 % system duty

cycle to reflect the average power while the thulium amplifier is on.

The MOPA pump system is used to pump a cascade of fluoride and chalcogenide

fibers. The fused silica fiber is angle cleaved and butt-coupled to 6.5m of 0.26 NA,

7.5µm core ZBLAN fiber with a coupling efficiency of >75% (at low peak powers,

with background losses and Fresnel reflections taken into account). The output of

the ZBLAN fiber is angle cleaved and butt-coupled to 4m of 0.3 NA, 9µm core As2S3

fiber at a coupling efficiency of >65%. Finally, the As2S3 fiber is spliced to a 4 m

length of 0.76 NA, 12 µm core As2Se3 fiber using a filament based Vytran splicer

(Thorlabs, LFS4000) with a coupling efficiency of >85% to complete the cascade.

The As2S3-As2Se3 fusion splice works well because the fibers have similar chemical

profiles and glass transition temperatures [14].
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2.3.2 Fiber Interface Management

The optimizing the interface between fibers is the key to providing efficient SC

generation. The fibers are first stripped of their outer coating by dipping the end

in dichloromethane to soften the plastic. Then using a fiber cleaner cloth that has

been dipped in acetone, the coating is gently rubbed off the fiber and discarded. The

fibers are then angle cleaved with an angled tension cleaver (Newport FK12). Fused

silica is cleaved with a tension of 120, while ZBLAN, As2S3, and As2Se3, are cleaved

with 76, 60, and 40, respectively. The cleave tension of the ZBLAN must be adjusted

dependent upon the humidity of a given day. Humid atmospheres tend to cause

the fiber to break while being tightened into the groove and cleaving should happen

quickly after fiber stripping to prevent excess water absorption. The fibers should

be cleaved at no more than 6-degree angle with ZBLAN and sulfide fibers requiring

shallower angles for similar end cleave angles. Steeper cleave angles are more likely to

cause nonuniform fiber surfaces that can decrease the fiber damage thresholds, while

cleave angles that are too shallow may allow back reflected light back into the pump

system. It is also advisable to blow on the chalcogenide fibers gently before cleaving.

It is unclear how this helps promote cleaner breakage, but we have found less hackle,

less misting, and smoother cleaves on fibers that have been gently breathed upon. We

take every pain to have a smooth clean face upon cleaving because it is difficult to

polish the soft-fiber surfaces post cleaving, and small discrepancies in end face angles

can lead to lower damage thresholds and less efficient expansion in subsequent fibers.

Rotational and translational alignment are critical for high efficiency supercontin-

uum generation. Before using a UV cure epoxy to fix cleaved fibers to a v-groove, the

fibers must be rotated to match end face orientation. Typically, the output fiber is

rotated such that the end face is face down under a microscope while the input fiber

is rotated such that the end face is face down while looking under the same eyepiece.

The binocular view of the microscope allows a second view angle under the second
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eyepiece. This view typically shows a straight angle that under small rotations be-

gins to angle. These orientations under the microscope allows for the best horizontal

alignment between fibers. The vertical alignment must be monitored via the spectral

output of the given fiber. Typically, total power is not enough for maximum expan-

sion and a grating monochromator must be set to a sufficiently high wavelength that

is not available from the output of the previous fiber.

In the lab setting, we align fibers that cannot be fusion spiced with 3-axis mi-

cron precision stages (Thorlabs, MAX313D nanomax) placed on large steel v-grooves

(Thorlabs, HFV001). This allows for precision alignment that can be adjusted to

compensate for slight drifts that may occur over time. Unfortunately, this is not

a suitable solution for a packaged SC source, first because the nanomax alignment

stages are heavy, unwieldy, and take up a great deal of space, but also because there

is not a great way to freeze the alignment and maintain a sealed environment. To

mitigate these limitations, we have worked with Omni Sciences to develop a tube-

on-groove assembly. Small silicon v-grooves are vacuum mounted on custom built

holders that fit onto the nanomax stages. Alignment proceeds as described above,

but once the power is brought up power and translational alignment is maximized for

SC output, sapphire rods are epoxied to the top of the silicon v-grooves to hold the

alignment in place. Once curing is complete, the vacuum is turned off and the fixed

assembly can be removed from the nanomax base. The tube-on-groove butt-couple

is then fixed to a steel heat sink and sealed within a gasket sealed assembly with a

molecular sieve desiccant inside. It is important to perform optimal alignment at op-

erating powers because chalcogenide and fluoride fibers begin to expand and shift as

they begin to heat up, and performing a ”cold alignment” will shift out of alignment

at operating temperatures.
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2.3.3 As2Se3 Fiber

The high NA As2Se3 step index fiber is designed to maximize the SC long wave-

length edge. The core preform comprises As40Se60, while the cladding comprises

germanium-doped arsenic selenide. The germanium doping is selected to obtain the

index of refraction difference required for a 0.76 NA while maintaining comparable

glass transition temperatures during the fiber drawing. The preform is drawn into

fibers with 10 µm, 12 µm, and 14 µm core diameters using a double crucible method

[14]. Loss measurements, as shown in Fig. 2.2 for the 14 µm fiber, are performed

via the cut-back method. The 14µm core As2Se3 fiber is used in these measurements

to maximize coupling from external cavity quantum cascade laser sources (Daylight

Solutions, MN 21045 and MN 31090-UT) at wavelength ranges of 4.57-4.76 µm and

7.87-10.53 µm. For comparison, the solid blue curve is the typical loss curve for a

0.3 NA multimode As2Se3 fiber [15]. Because both fibers exhibit similar loss beyond

8 µm, the background loss of the 0.76 NA fiber may be extrapolated to be < 0.5 dB/m.

The bump in absorption near 9 µm corresponds to As-O absorption in As2Se3 glass,

the long wavelength absorption tail beyond 9.5 µm is from Se-O absorption, and the

higher Se-H absorption loss near 4.5 µm may be due to excess -OH impurities in the

fiber [2].

The As2Se3 parameters are selected based on MFD and dispersion calculations.

The Sellmeier equation and coefficients for the As2Se3 fiber are used with a 1D finite

element method based numerical strategy, described in [16], to determine the prop-

agation constants and mode fields of the fiber. The fundamental mode propagation

constant is then Taylor series expanded and the second derivate of beta is used to

determine dispersion. Figure 2.2 shows the theoretical fundamental MFD and disper-

sion for the 12 µm 0.76 NA As2Se3 fiber. The high NA reduces the ZDW to ˜6 µm in

all three core diameters. The minimal variation in MFD and shifted ZDW improve

SC generation by reducing confinement losses, maintaining a small mode area over
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the spectral range, and facilitating soliton formation [11].
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Figure 2.2: a) 0.76 NA, 14µm As2Se3 fiber loss measured via QCL and typical mul-
timode As2Se3 loss show high Se-H, As-O and Se-O losses. b) ZDW at
˜6µm and MFD well confined for 0.76 NA, 12µm core As2Se3 fiber.

2.3.4 Laser Characterization

To characterize the performance of our system, we measure the spectral output and

beam quality of the pumped fiber cascade. The wavelength expansion of each fiber

is measured by coupling their output to a grating based monochromator (Princeton

Instruments, SP2150) and detected using a thermoelectrically cooled HgCdTe photo-

conductive detector (Vigo System S.A. PCI-4TE-13) followed by a lock-in amplifier

(Stanford Research Systems, SR865A) with various long pass filters to remove higher

order diffraction. The spectra are then corrected for grating efficiency, detector re-

sponsivity, and filter losses. The output beam profile of the As2Se3 fiber is imaged

using an InSb based camera (FLIR Systems, Inc. FLIR A6700sc) to view the beam

profile at 1 < λ < 5µm and a microbolometer (BAE Systems, Inc. TWV-640) to

image λ > 7.5 µm.
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2.4 Results

2.4.1 Spectral Expansion

Four meters of 12 µm core diameter As2Se3 fiber provides a compromise between

power output and wavelength expansion, with > 16% of the total power past 7.5 µm

and expansion to 11 µm. Figure 2.3 shows the spectral density of the output from

the 12 µm As2Se3 fiber and that the spectrum extends from 1.57 to 11 µm (measured

20 dB down from the plateau in the spectrum, as shown by the red lines). Of the

three As2Se3 fibers pulled, 10 µm core generates SC to 11.4 µm but with 20-25%

lower power transmission than the 12 µm core fiber. On the other hand, the 14 µm

core fiber shows a -20dB wavelength edge of 10.3 µm, but with 15-20% higher power

transmission than the 12 µm core fiber.

Figure 2.4 shows that the generated SC spectra steps out further with each subse-

quent fiber type while reducing total power. The output of the ZBLAN fiber extends

to ˜4.5 µm when pumped with ˜15kW peak power out of the fused silica. Although

the pulse breaks into many high-power solitons [11] we estimate the 1.1 ns pulse peak

power by dividing the average power out of the fused silica by the product of the

pulse width and PRF. When the ZBLAN output is butt-coupled to the step index

As2S3 fiber, the SC extends to just past ˜6.5 µm. Figure 2.4 also shows the spectral

shape of the 10 µm As2Se3 output. The -20dB long wavelength edge for this fiber is

11.4 µm. We believe the dips in the As2S3 spectrum at 2.7 µm and 4 µm are caused

by O-H and S-H impurities in the As2S3 fiber [8]. The minimum at 3.38 µm in the

As2Se3 fiber seems to correspond to two Raman shifts [17] of the O-H minimum from

the As2S3 output, and the minimum at 4.5 µm corresponds to the Se-H loss peak

shown in Fig. 2.2.
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2.4.2 Power Scalability

The total power out of the 12 µm As2Se3 fiber is power scalable by adjusting PRF

and thulium pump power. The peak power out of the fused silica fiber determines

the SC spectral width, while the number of pulses determines the average power. We

increase average power by increasing PRF while adjusting the thulium pump power to

maintain near constant peak power. The left-hand side of Fig. 2.5 shows the spectral

shape as PRF is increased, and the right-hand side of Fig. 2.5 shows the power in

different wavelength bands, which scale linearly with repetition rate. The on-time

average power is scalable up to 417 mW at 800 kHz PRF (i.e. The system outputs an

average power of 417 mW during the 33% on-time of the 100 Hz modulation). The

power between 4.5 - 8 µm, beyond 6.5 µm, and beyond 7.5 µm scale up to 142.5 mW,

108.7 mW, and 69.7 mW, respectively. Furthermore, at 800 kHz PRF the power out

of the ZBLAN fiber is 4.88 W, and the power out of the As2S3 fiber is 1.39 W. To

the best of our knowledge, 1.39 W out of As2S3 and 417 mW out of As2Se3 are the

highest reported SC powers from each fiber type. As shown in Chapter III, these high

powers enable stand off sensing in the LWIR.

Figure 2.5: a) 12 µm As2Se3 spectrum scales with PRF. b) Output power scales lin-
early from 100kHz to 800kHz
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2.4.3 Beam Profile

The output of our 12 µm core As2Se3 fiber exhibits a single fundamental spa-

tial mode over the entire wavelength range, but the beam divergence depends on

wavelength. This is a somewhat unexpected result, as the As2Se3 fiber should be

multimode over our entire SC range, and may be a result of large differences between

the propagation constants of different modes. The beam profile filtered from 3.3-5 µm

displays a 1/e2 divergence half-angle of ˜16.3°. Figure 2.6 shows a typical 3.3-5 µm

beam profile imaged on diffuse reflective aluminum at 75mm from the fiber tip. At

wavelengths longer than 7.5 µm, the divergence angle is ˜27.3°. These divergence

angles correspond to an M2 value of ˜1.2 when compared to the theoretical Gaussian

divergence determined by the MFD within the As2Se3 fiber at a given wavelength.

The single spatial mode output from our light source would provide uniform illumi-

nation for standoff applications.

Figure 2.6: Raw image of 3.3-5 µm light incident on scattering aluminum at a distance
of 75mm and intensity distribution along the vertical center line fit with
a Gaussian profile.
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2.5 Discussion

2.5.1 Cascading Spectral Expansion

In our fiber cascade, each fiber overcomes the shortcomings of the fibers following

it. Each fiber has a lower damage threshold than the fiber preceding it. Fused silica

fiber is capable of handling high average and peak power outputs, but SC generation

is limited by its high loss edge at 2.5 µm. As2S3 fibers would damage at the ˜15 kW

peak powers coming out of the fused silica fiber and provide only minimal shifting at

lower peak powers because of their high S-H loss peak at 4 µm. The ZBLAN fiber,

however, handles the high peak power and shifts light to 4.5 µm, which is past the

high 4 µm loss in the As2S3 fiber. Although pumped below its calculated ZDW at

˜6.5 µm, the high peak power out of ZBLAN and the high nonlinearity of the As2S3

fiber [14] allow the SC to expand to 6.5 µm. The As2S3 fiber shields the As2Se3 fiber

from the high peak power ZBLAN output and shifts energy past the high 4.5 µm Se-H

loss and the ˜6 µm ZDW of our 0.76 NA fiber. Light beyond 6 µm in our As2Se3 fiber

improves SC generation through soliton formation [11]. Because of these features,

concatenated SC generation yields high output power and broad spectral expansion.

The length of each fiber is optimized to be long enough to maximize spectral

expansion, but short enough to prevent excess long wavelength loss. If any fiber in

the cascade is too short, we find that too little energy is shifted to longer wavelengths,

which causes inefficient SC generation in subsequent fibers and an increased likelihood

of damage to the next fiber’s input tip. On the other hand, as fiber length increases

beyond the optimal length, we observe diminishing returns in spectral expansion, and

a decrease in power output as loss increases.
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2.5.2 Fiber Interfaces

Cascading multiple soft glass fibers introduces the challenge of requiring interfaces

between fibers that are environmentally stable and capable of tolerating high powers.

The butt-coupled interface between ZBLAN and As2S3 is particularly sensitive to high

average and peak powers and is one of the current challenges limiting higher output

powers. The output wavelengths of the ZBLAN fiber extend into water and CO2

absorption bands leading to ZBLAN tip degradation over time. We use a nitrogen

purged enclosure to reduce this effect, but an As2S3 to ZBLAN splice could mitigate

this limitation. However, efforts to splice these fibers have not been successful as there

seems to be a lack of bonding between the fiber types and all splices lack mechanical

strengths. Ball and joint type splices have been carefully created, but they are very

difficult to achieve and have very low damage thresholds compared to mechanical

butt-coupling methods.

While not as enduring as a constant purge, the tube-on-groove assembly can

protect the SiO2 to ZBLAN interface for at least six months and ZBLAN to As2S3

interface for at least two months before major degradation occurs. we have found

that the tube-on-groove assemblies are not air-tight and without the molecular sieve

can reach ambient humidity levels over the course of a few days.

The splice between the As2S3 and As2Se3 fibers improves long wavelength SC

generation and allows power scaling to higher PRF. First, the splice improves the

efficiency of SC generation by reducing the 17% back reflection at the sulfide-air

interface and the 21% back reflection at the selenide-air interface to a calculated 0.3%

back reflection between the two fibers (As2Se3 index of refraction is 2.7, As2S3 index

of refraction is 2.4). Additionally, the splice prevents heat induced misalignments

caused by the fibers’ low glass transition temperatures.

One of the reasons this configuration enables such high output powers is because

it is an all-solid-core-fiber configuration. Some of the other fiber-based SC generation
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schemes include a suspended core or structured selenide fiber for SC generation into

the LWIR [2, 4, 5]. While this removes the need of intermediary fibers by shifting the

zero-dispersion wavelength to near that of the ZBLAN output, the damage threshold

of structured As2Se3 fibers is limited to near 100 mW average power. Furthermore,

there are no lenses or free space optics that may shift in alignment. Chromatic

aberrations in lenses limit their usefulness in coupling SC electromagnetic radiation

into fibers. Off axis parabolic mirrors must instead be used and alignment typically

is plagued by aberrations such as coma and astigmatism. By butt-coupling and

splicing fiber sources we prevent high temperature zones which might result from

these aberrations.

2.5.3 Alternative Configurations

In the process of developing the supercontinuum source with a high efficiency

output, several alternate fiber configurations were attempted, and some were found

to have merit. We attempted cascade configurations without the sulfide fiber, with

InF3 replacing the ZBLAN fiber, and with a fiber configuration called a ZBLAN

attenuator.

Supercontinuum generation in a configuration without the As2S3 fiber proved to

provide spectra with little expansion. The major challenge comes from the nature of

the supercontinuum generation. At lower peak and average powers there is little to no

supercontinuum generation in the SiO2 or ZBLAN fibers. As the Thulium amplifier

pumps are increased, peak power and spectra increase hand-in-hand. With the low

damage threshold of the As2Se3 fiber, the end face would be destroyed before any

expansion could be seen beyond that of ZBLAN. To mitigate this effect, we developed

the ZBLAN attenuator. The ZBLAN attenuator is a short length of ZBLAN fiber

that is aligned with the output of the original ZBLAN fiber. The pump power can

be increased for maximum supercontinuum generation in the original ZBLAN fiber,
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then the ZBLAN attenuator can be retracted from the tip and the distance between

tips can be recorded for a set decrease in power typically 20 - 100 mW steps. In this

way, we can supply the As2Se3 with broadband energy while keeping the peak power

below the damage threshold of the fiber. Unfortunately, even with this advancement,

the spectra output was damage threshold limited to ˜6 µm.

The use of the ZBLAN attenuator has several advantages. Once the ZBLAN fiber

length decreases below 4 m, as can happen with subsequent damage and re-cleaves,

the output from the ZBLAN fiber does not expand as far spectrally and outputs

too high of a power for the input face of the As2S3 fiber. This happens because

the ZBLAN fiber SC generation and background loss are both functions of length.

When the fiber is too short, there is not enough SC generation and not enough loss to

prevent damage. By adding a ZBLAN attenuator to the shortened original fiber, we

can guarantee maximum SC generation in the first ZBLAN fiber and then attenuate

the overall peak power output to within the damage threshold of the subsequent

sulfide fiber. This typically increases the amount of pump required from the power

amplifier but allows us to use shorter fibers for stable SC output.

We tested an InF3 fiber to as a replacement for the ZBLAN fiber in the SC cascade.

While the fiber can provide SC expansion to ˜5.5 µm, the output tip of the InF3 is

much more likely to damage. The InF3 fiber is also much more prone to damage than

ZBLAN fibers. The coating of the InF3 is not rigid enough to prevent damage from

even light handling. This even caused the fiber to be damaged during shipping on

multiple occasions. Overall, it is currently much more robust to utilize ZBLAN fiber.

Tellurite (TeO2), telluride, and chalcohalide fibers may be useful additions to

cascaded supercontinuum generation in the future. While both fibers are still in

development, TeO2 fibers may become a replacement for ZBLAN fibers as they are

not hydroscopic and can withstand high input and output powers with similar spectral

range as fluoride-based fibers [18–20]. Less fiber length may be needed as they also
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tend to have much higher non-linearity than ZBLAN fibers. There have also been

shown to be able to be effectively spliced to fused silica fibers with very low loss

[21]. Telluride fibers would extend the high wavelength edge of the cascade as well.

Though with slightly higher background loss profiles than selenide-based fibers, the

transparency band for telluride based fibers extends past 14 µm. Instances of low

power SC generation to 16 µm in telluride [22] and 15 µm in chalcohalides [23] have

been shown in the literature.

2.5.4 Intensity at Standoff Distances

Figure 2.7: Intensity vs distance of a commercial collimated broadband source and
that of the LWIR SC source when collimated to a one-inch spot

The near-diffraction-limited beam output provides the high intensity illumination

pivotal to increasing scattering from standoff targets. Figure 2.7 shows the intensity

decrease of a commercially available broadband source (Thorlabs, SLS203L) with a

divergence half angle of 1.3°and that of our LWIR SC source with an initial beam

diameter of 1”. Although measured M2 values are below 1.3, these calculations show
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that even at a worst case M2 = 2 at 5 µm, the intensity of LWIR source only decreases

by half at 16 m. In comparison, the blackbody source decreases to 1% of its initial

intensity by 4.1 m.

2.6 Summary

In summary, we use an all-fiber integrated configuration with concatenated flu-

oride and chalcogenide fibers to generate high power SC from 1.57 µm to >11 µm.

We cascade the SC generation through progressively softer glasses to mitigate the

peak power handling limitations of chalcogenide fibers. Concatenated SC generation

produces the highest power out of As2S3 (1.39W) and As2Se3 (417mW) step index

fibers. With 69mW past 7.5 µm, this SC source delivers significant powers and a

Gaussian beam profile that can be utilized in standoff applications.
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CHAPTER III

LWIR SC and FTIR Sensor for Stand-Off Spectral

Measurements

3.1 Introduction

This chapter describes a Fourier transform infrared (FTIR) spectroscopy-based

sensor that measures spectra at 3.6 m with an all-fiber, 1.6 - 11 µm supercontinuum

(SC) source for high brightness illumination and a rotational, refraction-based FTIR

for high throughput spectral scanning. The testbed sensor was created to study

the challenges of standoff chemical detection with an active mid-wave (3 - 8 µm) to

long-wave (8 - 14 µm) (MW/LWIR) sensor, and support the creation of a high-speed,

portable Supercontinuum Wideband Infrared Fourier Transform (SWIFT) sensor. We

establish that the pulsed LWIR SC source can work as an illumination source for a

conventional FTIR system. We demonstrate a LWIR and FTIR based sensor for

standoff scattering and specular measurements. To demonstrate the linearity of our

system, specular return from thin films down to 2 µm thicknesses on wedged silicon

substrates are measured at 3.6 m. We also measure the backscatter from various

targets and compare those spectra with measurements performed with conventional

FTIR spectrometers. The measurements performed in this chapter highlight the

feasibilty of measuring backscattered spectra with a pulsed SC source using Fourier
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transform infrared spectroscopy to create spectra from collected interferograms.

3.2 Motivation & Background

FTIR spectroscopy is commonly used for measuring the MW/LWIR properties

of materials, as most chemicals have strong and unique chemical signatures between

3 - 12 µm [1]. Many applications, such as smokestack emissions monitoring [2],

food quality control [3], and on-line process monitoring [4], can benefit from active

MW/LWIR standoff measurement. However, most common light sources in FTIR

spectroscopy are thermal emitters that radiate in all directions. This non-directional

radiation often limits the ability to utilize FTIR systems in standoff applications

because they are difficult to collimate with appreciable spectral density. Broadband,

open-path FTIR systems have been demonstrated, both in passive configurations

[5, 6], where a difference in temperature creates spectral differences, and in active

sensors, where a retroreflecting element in the location of interest is required to have

high optical return [7]. Neither of these techniques are ideal, as the first is limited

by the temperature difference between the background and target, and the second

depends on the placement of reflective optical elements and can typically only be used

to study gases. Some studies have utilized optical parametric amplifiers or external

cavity quantum cascade lasers as active light sources for standoff spectroscopy but

the light sources used were narrow band [8, 9], or require wavelength tuning and IR

imaging cameras that have a limited resolution [10, 11]. In using a MW/LWIR SC

source and FTIR configuration, our sensor illuminates with a modulated broadband

beam, and provides ˜16 scans per second with the potential for faster acquisitions.

There have been several demonstrations of FTIR-based measurements with SC

sources [12–14]. These studies operate in the short-wave (0.7 -2.5 µm) to mid-wave

infrared and do not explore a standoff detection scheme but note that SC sources ex-

hibit higher variation than blackbody sources. Recent MW/LWIR SC sources provide
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high output power and spectral coverage rivaling that of blackbody emitters in the

MW/LWIR [15–17], where unique chemical signatures are much stronger than in the

short-wave infrared [1]. In our study, we perform active standoff FTIR spectroscopy

with the MW/LWIR SC illuminator described in Chapter II.

3.3 LWIR SC Illumination in a Commercial FTIR system

In this section, we wish to test the suitability of a pulsed LWIR SC source for

FTIR spectroscopy, independent of the other experimental system components. The

reason we perform these experiments is to determine if the fs pulses within the ns

pulse envelope correctly interfere and produce consistent spectra that is comparable

to conventional blackbody light sources upon Fourier Transform. HgCdTe detectors

are notorious for having very small linear ranges [1] and the high peak power in the

fs pulses could push the detector into the non-linear regime. Furthermore, liquid

nitrogen cooled HgCdTe detector bandwidth limits can force the 1.5 ns input pulse

to spread into a quasi-continuous intensity change.

The output from the source described in Chapter II is launched into a commercial,

Michelson interferometer based FTIR (JASCO, Inc, USA, FT/IR-6300), and the

transmission spectra of various materials are measured. The measurements in the

FT/IR-6300 are performed in continuous scan mode with a scan rate of 1 mm/sec, an

aperture of 3.5 mm, and a 4 cm−1 resolution. The SC source is operated at 100 kHz

pulse repetition frequency and 100% duty cycle to adjust the average output power

to ˜50 mW. Transmission spectra are compared to measurements taken with the

interferometer’s default internal globar. Although the FTIR in use is not optimized

for pulse acquisition, the slow scan speed allowed the internal software to average

over several hundred nanosecond pulses for a given interference position. The spectra

in Fig. 3.1 are created by averaging 256 target scans and performing a ratio between

them and the average of 256 background scans.
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Along with the transmission measurements through solids, volatile gas measure-

ments are performed by placing a 10 cm path length gas cell with AR coated, wedged

ZnSe windows within the sample chamber of the commercial FTIR spectrometer.

Background scans are performed with the gas cell in place in the chamber with no

volatile solvent present.

3.3.1 Results of Globar and MW/LWIR SC Source Measurements

Figure 3.1: Comparison of transmission spectra using a blackbody source vs a SC
source in a Michelson interferometer FTIR system of a) polyimide on
wedged silicon and b) polystyrene.

Transmission spectra are performed within a single FTIR with a blackbody and

SC source. Fig. 3.1 shows a comparison of the transmission spectra of a) polyimide on
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silicon and b) polystyrene using illumination by a globar versus that of our SC source.

With all other parameters and optics kept constant, the SC produces matching spectra

and requires an additional 10 dB attenuation to achieve interferogram magnitudes

that matched that of the blackbody source. Because this is a purged setup, the

measured spectra do not exhibit water or CO2 based atmospheric losses. However,

there are is a relatively low spectral density per wavenumber above 3000 cm−1.

Figure 3.2: Comparison of transmission spectra using a blackbody source vs a SC
source in a Michelson interferometer FTIR system of acetone gas.

Figure 3.2 shows the comparison between a gas cell measurement performed in

the Michaelson interferometer. To perform these measurements, a scan is taken with

a purged 10 cm path length gas cell. After the background scan, 50 µL of acetone is

transferred to the gas cell and allowed to evaporate for 10 s before the scan begins.

The gas cell needs to be removed between scans to purge the chamber for the next

light source type and to add the volatile solvent. Unfortunately. the wedged windows

of the gas cell cause slight beam deviations when the cell is replaced that correspond

to baseline shifts in spectra.
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These measurements show that although the commercial FTIR detection scheme

is not optimized for pulsed sources, we are able to measure matching spectra with

differing illumination sources as long as the we correctly attenuate the signal to within

the linear regime of the HgCdTe detector.

3.4 Development of Standoff LWIR FTIR Sensor

After we have determined

3.4.1 SC source Parameters

Figure 3.3: Spectral density of the SC source in (a) dBm/nm and (b) mW/cm−1 at
300 kHz pulse repetition frequency.

The standoff LWIR FTIR sensor begins with the LWIR SC source. The LWIR

SC source from Chapter II is run with 1.5 ns pulses emitted at a 300 kHz pulse

repetition frequency and a 33% duty cycle, outputting an on-time power of 150 mW

and 15 mW above 7.5 µm. A trigger signal from the FTIR spectrometer is used

to modulate the SC source such that the source provides LWIR light only during

the time when interferograms can be generated. The source outputs an electronic

trigger signal with every optical pulse to trigger pulse acquisition. Fig. 3.3 the output
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spectra of the LWIR SC source in dBm/nm and mW/cm−1. Where the spectrum

is relatively smooth in dB/m, because wavenumber and wavelength are inverses, the

spectral density is much lower above 3000 cm−1 in mW/cm−1.

3.4.2 Turbo FT Interferometer

Figure 3.4: Block diagram depicting the beam path through the Turbo FT with a
rotating ZnSe wedge generating the optical path difference between inter-
ferometer paths.

We use an FTIR interferometer to modulate the output from the LWIR SC source

so that we can produce spectra from collected interferograms. The FTIR used in

the testbed sensor (D & P Instruments, Inc. USA, Turbo FT), unlike traditional

Michelson interferometer based FTIR spectrometers, utilizes a rotating window of

ZnSe to create an optical path difference between separate interferometer arms. A

block diagram of the beam path within the Turbo FT is shown in Fig. 3.4. Although

the rotating slab of ZnSe introduces wavelength and angle dependent dispersion, this

can be accounted for in the Fourier transform matrix described in section 3.4.4. The

Turbo FT is chosen because it has a small form factor, has adjustable rotation speeds,

is durable, and provides an optical throughput of up to 40% [18]. In this study, the

ZnSe window rotates at 3.9 rev/s and produces 4 interferograms per revolution.
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Figure 3.5: Schematic diagram of FTIR sensor actively illuminated by the collimated
MW/LWIR SC source.

3.4.3 Testbed Sensor Optical Configuration

Fig. 3.5 depicts an overview of the testbed FTIR sensor. Light from the 1.6 -

11 µm SC source is collimated by an off axis parabolic mirror and directed into the

Turbo FT. The modulated output from the FTIR is then split into reference (dotted

line) and target paths (orange path). A broadband-coated ZnSe window placed after

the output of the FTIR, samples ˜3% of the light and reflects it towards a pair of

steering mirrors which guides the light through a hole in the final off axis parabolic

mirror. The remaining target path light travels 3.6 m to hit scattering and specular

return targets. The target arm return is collected using 3 off-axis parabolic mirrors.

Two 6”, 15° off-axis parabolic mirrors and a 4”, 90° off-axis parabolic mirror, focus

scattering or specular return onto a an optically immersed photoconductive HgCdTe

detector (Vigo System S.A, POL, PCI-4TE-13) with a 1x1 mm2 active area and

detectivity, D* = 5.2 x 108 cm
√

Hz/W. For standoff measurements, the scattered

solid angle decreases with distance because of the finite size of the receiving optics.

For 3.6 m, our receiving optics have a numerical aperture (NA) of approximately

0.0375.The reference arm spectrum is used to monitor variations in SC source output
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or atmospheric conditions that may affect target spectra.

The optical configuration varies slightly for specular or scatter return measure-

ments. For specular return samples, a 2” holographic wire grid on KRS-5 broadband

polarizer (Thorlabs, Inc. USA, WP50H-K) is placed in the target path to act as

a variable attenuator for the signal, and a 30 dB, NiCr on ZnSe, reflective neutral

density filter (Thorlabs, Inc. USA, NDIR30A) is placed at the detector to further

reduce the return signal to within the dynamic range of the detector. A Si wedge

is used as a background for specular return measurements. For scattering samples,

the broadband polarizer is removed to maximize the signal incident on the sample.

3 dB and 10 dB neutral density filters (Thorlabs, Inc. USA, NDIR03A, NDIR10A)

are used to reduce the signal of high return samples to within the dynamic range of

the detector. When samples produce a low return, the 10 dB filter is placed only in

the reference arm to prevent reference arm saturation. A BaF2 wedge with the 30 dB

filter is used as a background for scattering measurements. The wedged background

substrates return a spectrally flat, smoothly varying reflectance at ˜30% for Si and

˜3% for BaF2 in the wavelength range of interest and reduce the risk of detecting

back surface reflections.

To produce reflectance measurements, sample spectra are divided to their cor-

responding backgrounds and corrected for wavelength dependent neutral density fil-

ter absorption and background reflection. Fig. 3.6, shows the return spectra from

an uncoated silicon wedge and a BaF2 wedge used as backgrounds for specular

and scattering samples, respectively. Most of the wavelength variation comes from

the MW/LWIR SC source. The sharp features between 1250 - 2100 cm−1 and

above 3500 cm−1 are from atmospheric water absorption lines and drop in signal at

2350 cm−1 is caused by atmospheric CO2. The figure also shows agreement between

the different background reference substrates. The mechanical interfaces between dis-

similar fibers will shift and change over time and cause variations in source and system
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Figure 3.6: Normalized background spectra for Si and BaF2 compared to the
MW/LWIR SC source output in power/cm−1.

calibration curves (such as Fig. 3.6) over time. The SC source output spectra may be

stable for several weeks or months, but atmospheric and temperature variations can

cause fibers to shift and spectral output to alter. System recalibration successfully

mitigates these effects.

3.4.4 Testbed Sensor Signal Acquisition and Processing

An overview of the pulse processing is shown in Fig. 3.7. A pulsed acquisition

schema is utilized where the SC source outputs an electronic signal with each optical

pulse. This signal initiates the collection of the reference and target pulse pair on one

analog-to-digital converter channel on a 2 channel, 12-bit, 2GS/s digitizer (Keysight

Technologies, USA, U5303A). The pulses are separated in time by the difference in

travel distance between the reference and target arms. The time difference can be

utilized to estimate the range of the target. The second channel of the acquisition

card collects the signal from an internal 850 nm reference diode located within the
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Figure 3.7: Overview of processing required to create spectra from the measurement
of diffusely scattered pulses.

Turbo FT and is used to estimate the optical path difference of collected pulses.

Limits in sampling and electronic bandwidth prevent the direct measurement of

pulse energy. Although the SC source outputs 1.5 ns optical pulses, distortion from

multi-surface reflections and the 200 MHz preamplifier bandwidth of the detector

result in ˜5 ns digitized pulses. The energy of each pulse is estimated by averaging

the points measured along the pulse.

Pulses are recorded via triggered simultaneous acquisition and record. This col-

lection mode places pulse data in a rotating memory buffer that allows for immediate

retrieval, thus speeding our acquisition and minimizing the collection of incomplete

interferograms. The data acquisition time to collect 1000 scans of ˜ 6000 pulse pairs

is 69 seconds with an additional 40 seconds devoted to estimating pulse energy and

transforming interferograms into sample spectra. These 1000 interferograms are sep-

arated by quadrant and aligned according to the position of their centerburst. A full

Fourier transform matrix is applied to the interferograms by quadrant. Each term in

45



the matrix, F (ṽ, α), is given by

F (ṽ, α) = e−i2πṽ·OPD(α,n(ṽ)) (3.1)

where ṽ and α are the wavenumber and rotation angle, respectively, and the optical

path difference, OPD(α, n(ṽ)) is a function of the ZnSe angle and refractive index,

n(ṽ). The calculation of the energy spectrum follows the Mertz method [19], with

triangular apodization and phase correction to account for the asymmetry of our

interferograms. The resulting spectra from each quadrant are averaged together to

form a final spectrum with a 4 cm−1 resolution.

SC sources have been shown to have higher shot to shot variability compared to

thermal emitters due to the high intensity pulses required to induce nonlinearities in

nonlinear fibers [12, 13]. By averaging 1000 scans, the differences in pulse spectra

that may result from modulation instability-initiated SC generation are mitigated.

3.4.5 Specular Measurements

Specular measurements are performed on thin film samples to verify the linearity

of the SC FTIR based sensor. By matching the spectra to that derived from thin

film theory we can be assured that the sensor does not suffer from nonlinear effects

that can occur when high intensity pulses hit photoconductive HgCdTe detectors.

These detectors are known to have a very small linear range, which can distort the

interferogram near the centerburst pulses that are most important for spectrum gen-

eration. The targets measured in this study are 2 µm thick SiO2 on a silicon wedge

and 5.05 µm thick polyimide on a silicon wedge.

3.4.6 SC FTIR Measurements of Bulk and Gas Samples

Once we have verified that the SC source is suitable for FTIR based measurements

in a commercial system and that the spectra that we create do not suffer from non-
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linear effects, we can begin to use the SC FTIR sensor for scattering based stand-off

measurements. For these measurements, we have several bulk samples that have been

first measured with a handheld FTIR system that requires places the aperture directly

on the surface of the sample. There will be slight differences in spectra because the

illumination and collection optics of the handheld system have a relatively large nu-

merical apertures compared to the standoff system. Specular scans have signals on

the same order of magnitude as those of the background scans, but the scattering

samples are 2-3 order of magnitude lower signal. Scattering magnitude will decrease

with distance by a factor of 1/r2.

We also measure samples placed within a gas cell along the path. For these

measurements, the 10 cm path length gas cell is placed along the beam path between

the output of the FTIR spectrometer and before a gold scattering target. Because the

windows of the gas cell are wedged ZnSe and the collection optics measure scattered

return off of the gold scatterer, this is a single path measurement with a path length of

only 10 cm, similar to that performed in the Michaelson interferometer. A background

scan is measured with the purged gas chamber, then a target scan is measured after

depositing 50 µL of acetone into the gas cell. The results are divided by the purged

gas chamber scan and we create a transmission spectrum for the given gas.

3.5 Results

3.5.1 Testbed Sensor Specular Measurements

We verify the linearity of the testbed sensor by measuring the specular reflectance

of thin films deposited on silicon wafers at 3.6 m. Fig. 3.8 shows specular measure-

ments of a) a 2 µm layer of SiO2 on a wedged silicon wafer and b) a 5.05 µm layer

of polyimide on a wedged silicon wafer. The experimental results are compared to a

thin film model derived from their refractive index values shown in Fig. 3.9 [20, 21].
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Figure 3.8: a) Specular return of a 2 µm layer of SiO2 on a wedged silicon wafer and
b) a 5.05 µm layer of polyimide on a wedged silicon wafer compared to
theoretical prediction.
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Figure 3.9: a) SiO2 and b) polyimide refractive index n- and k- values for modeling
thin film returns.
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Although strong peaks caused by atmospheric CO2 and H2O can be seen in the raw

signal in Fig. 3.6, the lines ratio out and produce a small reduction in signal-to-noise

ratio (SNR) in the reflectance spectra. Thicker samples provide more oscillations as

expected from thin film interference. The fine features in the polyimide spectra are

very well exhibited in measured spectra. Both reference and target scans required

30 dB attenuation to prevent overloading the detector.

3.5.2 Scattering from Bulk Materials

Figure 3.10 shows the SC FTIR measurements of (a) cardboard, (b) brick, (c) and

canvas materials. There are slight differences in spectra that may be attributed to

atmospheric effects and the small collection NA of the system. The brick spectra has

the largest discrepancy between standoff measurement and commercial measurements.

The absorption lines near 3000 cm−1 are associated with H2O and so the clay brick

may have absorbed some atmospheric water between measurements.

Wavelengths below the LWIR, above 1500 cm−1 are prone to geometry related

variations [22]. The backscattered spectra in the MWIR is likely to differ with collec-

tion and illumination optics. The handheld FTIR has a large illumination NA and a

large collection NA, whereas the standoff sensor provides only a narrow illumination

NA and a 0.0375 collection NA. The geometry related variations will average out

in the handheld measurements and be much more pronounced in standoff measure-

ments. The canvas sample likely has high agreement because of the woven nature of

the surface, which will scatter along many different angles and average into a spectrum

similar to high NA illumination and collection.

3.5.3 SC FTIR Sensor Gas Cell Measurements

We measure the transmission spectra of acetone gas that has been allowed to

evaporate within a 10 cm path length gas cell and compare the resulting spectra to
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Figure 3.10: Bulk scattering from a) cardboard, b) brick, and c) canvas samples com-
pared to the same samples measured with a commercial handheld FTIR
system. Note atmospheric effects due to the long path length.
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Figure 3.11: Acetone measurements from the SC FTIR based sensor measured from
the diffuse reflectance off of a gold scatterer compared to Michaelson
interferometer measurements.

that measured within a purged Michaelson interferometer. The noise of the resulting

spectra in Fig. 3.11 is higher than that of the Michaelson interferometer because of

atmospheric effects. Atmospheric water increases the noise from 1450 - 1700 cm−1

and atmospheric CO2 increases noise near 2350 cm−1.

3.6 Discussion

3.6.1 Atmospheric and Source Contributions to Noise

Although Fig. 3.6, shows strong water absorption (1250 - 2100 cm−1 and above

3500 cm−1) and CO2 absorption (near 2350 cm−1) lines, the spectra in Fig. 3.8 ex-

hibit minimal noise in the water bands. This shows that the testbed sensor factors

out atmospheric effects in high return samples. As long as there are no significant

atmospheric fluctuations, a single background scan can serve as the reference for a
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day’s worth of target measurements.

The LWIR SC source seems to stay relatively stable while in operation. If the

purging between fibers is lost for any reason, the long-wavelength edge of the spectra

will begin to decrease to a point that can become unusable. We use the reference arm

spectra to monitor the long wavelength edge of the source and if any significant loss

is seen, the laser is powered down and analyzed for alignment and purging. The long

wavelength edge decreasing between power cycles is a more often occurrence which

happens in the tube-on-groove system. The spectra may decrease because a large

flux of photons upon hitting an unpurged As2S2 face may heat the surface and cause

imperfections on the fiber face.

The LWIR SC source provides relatively low signal above 3000 cm−1. This is

evidenced by a lower signal to noise ratio in this regime. The discrepancy comes from

the differences in spectral density when converting from dBm/nm to mW/cm−1. A

given response in mW/nm will have a 1/wn2 scaling factor in the mW/cm−1 scale.

3.6.2 Background Scans and Calibration

Using specular return for background requires precise alignment for the initial

background scans, followed by adjustment to an off specular angle of choice. To

prevent this originally, a gold scattering target was used for the background scan

to decrease the angular dependence of the return. Unfortunately, this did not work

well because the gold scatterer has sharp features that are difficult to ratio out and

may shift with angle. Figure 3.12 shows the ratio between a silicon scan and a

gold reference scan. Specifically, the features in the molecular fingerprint regime

between 980 cm−1 and 1800 cm−1 would disrupt any chemical reflectance lines that

may be useable for chemical identification. Unfortunately, using a wavelength-based

conversion from gold scatterer to silicon did not always provide reliable results because

gold scattering magnitudes may shift as different parts of the roughened substrate are
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Figure 3.12: Gold scattering return when divided by the specular return of a Si wafer.

illuminated.

3.6.3 Speed Scalability

The acquisition time for a single run in the testbed system is determined by the

number of scans per run and spin rate of the Turbo FT. The acquisition time of 69

seconds can be decreased by a multiplicative factor while maintaining similar perfor-

mance by increasing the spin rate of the Turbo FT and the pulse repetition frequency

of the SC source by that factor. This study is limited to a 300 kHz pulse repetition

frequency from the SC source by the data transfer speed from the acquisition card

to system memory, but custom electronics and adjustments to the acquisition script

can prevent this bottleneck. With a maximum SC source pulse repetition frequency

of 800 kHz, the 69 s acquisition time could be dropped to 26 s for 1000 scans and

potentially lower if fewer scans are needed. Furthermore, if the estimation of pulse

energy can be made to occur before data transfer, this would reduce amount of data
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transferred by an order of magnitude and reduce the 40 s processing time accordingly.

If a shorter wavelength range is required, the acquisition speed can be increased

by another factor of 2. Currently, over 6000 pulses are collected to create each inter-

ferogram and maintain a 4 cm−1 resolution and spectra down to 2.5 µm. As will be

shown in the next chapter, it may be only necessary to measure spectra to 5 µm or

2000 cm−1. In this case, we would only need 3000 pulses over the interferogram and

could increase the rotation speed of the rotor by a factor of 2 without losing resolution

or SNR. This may even prove to be more stable as there should be less wobble in the

rotor shaft at higher speeds.

3.6.4 Turbo FT Internal Alignment

Figure 3.13: Interferogram and blackbody spectra (a) prior to and (b) after FTIR
mirror realignment

Over the course of my work, we found that there was a source independent loss of

the short wavelength edge of the LWIR SC spectrum when measured with the FTIR-

based sensor. Measurements with a grating monochromator did not show the same

loss of spectrum. We found that the short wavelength edge of the spectrum is most

sensitive to mirror misalignments within the FTIR. Fig. 3.13 shows the extent of

the misalignment by illustrating a spectrum and interferogram taken of a blackbody

source prior-to and after mirror alignment. Misalignment to the FTIR system may

have occurred during shipping or by accidental rotation of the hubcaps that control

mirror tilt.
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The four interferograms produced per revolution transform into slightly different

spectra. Though the differences are minimal, they are significant enough for single

scans that each quadrant should be averaged independently before averaging into

the total signal. Spectra created using a single quadrant produce noisier spectra at

low signal locations. The advantages of averaging the quadrants together outweigh

the slight differences in quadrant spectra. The differences in spectra can be com-

pensated for by performing calibration scans with standardized PS samples that are

commercially available with spectra measured by National Institute of Standards and

Technology.

3.6.5 The Impact of Target Distance on Signal-to-Noise Ratio

Figure 3.14: Decrease in SNR for a blackbody source vs that of the LWIR SC for
collimated beams assuming a scattering dependence of 1/r2.

From the measurements performed in this chapter, we can develop a model for the

decrease in SNR compared to the distance to a given target with average reflectance.

For high return samples, the signal hitting the detector must be attenuated to prevent
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nonlinearites in the HgCdTe detector. This along with pulse-to-pulse variations in MI

initiated sources limits the SNR of the SC source to 23 dB for the collection parameters

described in Section 3.4.4. In a commercial FTIR system, the scan parameters and

optics have been optimized to provide SNRs of at least 47 dB. If we assume a 1/r2

dependence on the scattered return from the target and use the illumination intensities

shown in Fig. 2.7, the theoretical decrease in SNR over distance can be derived as

shown in Fig. 3.14.

With the SNR limit caused by the SC source and detector limits, a collimated

blackbody source would provide higher SNR spectra for targets within 1.6 m, beyond

this range, the near-diffraction limited beam properties of the LWIR SC source provide

much higher illumination intensity and therefore SNR.

3.7 Summary

The LWIR SC source can be used in traditional FTIR systems despite the 1.5

ns pulses breaking up into solitons that vary pulse to pulse. We find that we can

measure transmission spectra from gases and through samples in commercial systems,

even though the detection schema is not optimized for these measurements. We

demonstrate a testbed sensor that collects specular and diffusely scattering spectra

from thin film coated and bulk samples at 3.6 m. The high beam quality of the SC

source can allow for standoff measurements at up to 5 m in the lab setting but can

theoretically measure scattering samples much further. With its directionality, high

brightness, and scalable acquisition time, the SC illumination based FTIR sensor is

suitable for standoff gas and bulk scattering measurements.
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CHAPTER IV

Scattering From Sparse Particles on Smooth

Surfaces Illuminated With a LWIR SC and FTIR

Source

4.1 Introduction

This chapter of the dissertation focuses on the factors required for trace chem-

ical identification from spectra measured by the sensor described in Chapter III.

This problem is complex because real-world targets will contain a collection of non-

spherical particles of varying sizes that can each exhibit different return spectra based

on their size and chemical composition that will be modified by the optical charac-

teristics of the substrate that the particles are lying on. Chemical identification is

further complicated because different samples of the same chemical may exhibit dis-

parate spectra based on the particle size distribution inherent to that sample. In

this chapter, we use a Bobbert-Vlieger (BV) model to simulate particle and substrate

effects on diffuse reflectance spectra, examine the effects of changes to simulation

parameters on diffuse reflectance spectra, and weigh the single particle solutions with

log normal distributions to fit measured spectra. We show that despite simulating

non-spherical powders as spheres, the BV model can accurately fit experimentally

measured spectra on glass, down to a concentration of 6.5 µg/cm2. Our model can
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account for changes in spectra based on real-world changes such as variations in par-

ticle size distribution and substrate effects. We can identify an unknown chemical

on aluminum using solely using a library of simulated spectra with step-generated

particle size distributions.

To perform chemical identification in light of the challenges mentioned above, we

develop a library of BV simulated spectra with step-wise varying particle size dis-

tributions. The spectra that we simulate with BV theory accounts for reflectance

changes caused by smooth substrates and can be used to accurately predict the iden-

tity of an unknown chemical that has been deposited on aluminum. In this chapter,

we illustrate a model that can account for the variation in particle sizes and substrate

effects that complicate real-world sample measurements. Further work is required to

model the effects of a roughened background, but the work depicted here can provide

a stepping stone for future measurements and models.

4.2 Motivation & Background

Standoff detection of chemicals in the long-wave infrared (7 - 14 µm) (LWIR) has

become useful in many applications because most chemicals have a unique signature

in the molecular fingerprint regime (3 - 12 µm. Previously, a lack of spatially coher-

ent light sources has led to FTIR based standoff detection in the LWIR to rely on

retroreflecting elements to examine gas signatures [1] or passive sensing using tem-

perature differences [2, 3]. Recent advances in supercontinuum (SC) sources and

quantum cascade lasers (QCL) that extend into the LWIR have made illuminated

standoff chemical sensing and identification possible [4–7]. SC and QCL sources have

spatially coherent outputs that can be transmitted long distances at high incident

intensity. This is necessary as the strength of the scattered return diminishes with

distance and is already found to be 4-5 orders of magnitude lower than incident light

at 3.6 m [8].
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Standoff detection methods utilize QCL or SC sources that emit in the mid-

wave infrared (2.5 - 7 µm) (MWIR) and LWIR to probe targets via photoacoustic

spectroscopy, photothermal spectroscopy, or backscattered reflectance [9, 10]. Pho-

toacoustic spectroscopy involves illuminating samples with infrared energy to induce

thermal expansion and create pressure waves that can be measured acoustically. This

method works best in sealed environments and may be limited in open air envi-

ronments where the effect may be masked by ambient noise levels [10]. Likewise,

in photothermal spectroscopy, sample temperature changes of ˜1 K are measured

via HgCdTe detectors and microbolometer arrays when targets are illuminated with

QCLs at absorption wavelengths in the MWIR [11, 12].

Backscattered reflectance techniques directly measure scattered light that inter-

acts with both the chemical and underlying substrate. It is of particular interest to

measure scattered spectra from trace particles laying on top of various background

substrates. The size of particles that are left behind in fingerprints or airborne par-

ticles that come to rest on different surfaces are on the same order as illumination

wavelengths in the MWIR to LWIR [13]. Therefore, reflectance spectra from these

sparse particles will vary with respect to particle size and will not exhibit the same

features as bulk sample absorption or reflection spectra measured with traditional

FTIR systems [8, 14, 15]. One of the major challenges in identifying unknown chemi-

cals on surfaces is that Mie scattering effects cause shifts in absorption and reflectance

peaks that vary with respect to particle size. This means that real world targets of

the same chemical will manifest different spectra that depend on the specific particle

size distribution that is found on its surface.

Previous studies used Mie scattering and substrate bulk reflectance to model ex-

perimental return from particles on surfaces. This model works well for substrates

with smoothly varying refractive index profiles but does not accurately portray the ef-

fects that the substrate has on return spectra [15]. Furthermore, this trans-reflection
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model does not account for illumination and collection optics that impact spectra in

the MWIR where there are geometry related variations.

Recent studies have utilized external cavity QCLs and cameras to scan across

wavelengths and create hypercube images of backscattered reflectance spectra [16, 17].

The fraction of backscattered energy from the particle and surface effects at a near-

normal incidence approximation [18] is added to the diffuse reflectance signature of

a blank substrate to analyze scattered return from sparsely loaded surfaces that also

scatter light. The near-normal incidence approximation (Videen approximation) is

an assumption applied to the Bobbert-Vlieger model utilized in our studies. Fursten-

berg et al. also average the returns across the backscattered hemisphere to produce

theoretical spectra [16].

In our study, we simulate spherical particles on a substrate using the BV model [19].

The BV model incorporates incident angle, collection angle, and particle distribution

to predict scattering return spectra from trace particles on smooth substrates [8, 20],

and produces spectra that show features that are not available when applying the

Videen approximation, such as oscillatory spectra caused by narrow particle size dis-

tribution samples.

4.3 Examination of Sample Characteristics with Confocal

and FTIR Microscopy

4.3.1 Sample Preparation and Characteristics

Two categories of targets are measured in this study: monodisperse spherical

particles on aluminum and non-spherical powders deposited on various substrates.

Mono-disperse particle targets are created to verify BV theory. Mono-disperse par-

ticle size samples are created by vapor spray deposition of 5.9, 10.8, and 19.5 µm

polystyrene (PS) microspheres (Microspheres-Nanospheres, USA, C-PS-5.0, C-PS-
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10.0, C-PS-20.0) on 1” x 1” aluminum substrates. Non-spherical scattering samples

are created to mimic samples that can be found in real world conditions. These

samples are created by the U.S. Naval Research Laboratory via sieve deposition of

1,3,5-Trinitroperhydro-1,3,5-triazine (RDX), caffeine, or N-acetyl-para-aminophenol

(acetaminophen/paracetamol) powder on 1” x 1” smooth glass, aluminum, silicon,

or soda-lime glass substrates [13]. Sieve deposition limits the particle size to below

30 µm in diameter. The samples exhibit isolated particles of varying sizes and a

low overall fill factor. Concentrations are determined by image analysis of particle

micrographs. Sample concentrations range between 0.2 and 50 µg/cm2.

The chemicals and substrates included in this study are chosen to exemplify dif-

ferent scenarios that this type of sensor might be of use such as scanning shipping

containers, vehicles, or silicon wafers for various contaminants, while distinguishing

between dangerous and innocuous chemicals, such as caffeine. Furthermore, alu-

minum and silicon have relatively smooth reflectances in the LWIR to emphasize

chemical effects on reflectance. Glass is included because it exhibits distinct bulk

reflectance features that are apparent in standoff measurements.

4.3.2 Microscopic Analysis

Microscopic images of samples and FTIR reflective microscopic measurements are

performed with a commercial FTIR with a globar source (Agilent, Cary 620 FTIR

Microscope). In these measurements, the receiving aperture is reduced to ˜40 x 40 µm

to examine the return from single particles or clusters to better understand the effects

of particle size and shape when examining backscatter from particulate matter on a

smooth substrate. The FTIR microscope illuminates and collects return over a range

of 20° - 38°, so these measurements will not exhibit angular dependent effects of diffuse

scattering.

Images of samples are obtained using conventional microscopy and laser confocal
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microscopy to examine particle size and shape. Though particles are crystalline in

nature, image processing allows the estimation of the volume of a given particle.

Spherical particles with radii set to match the volume of a given particle are used to

guide the idealized particle size distribution used in BV analysis.

4.3.3 FTIR and Confocal Microscope Measurements

Figure 4.1: Commercial FTIR reflective microscopy of different locations of RDX par-
ticles on glass at 35.46 µg/cm2. Particles measured with a ˜40 x 40 µm2

aperture. Spectra are offset for clarity.

Fig. 4.1 shows the return spectra of different locations on a 35.46 µg/cm2 RDX

sample using a commercial globar illuminated FTIR reflection microscope. Although

all of these spectra are taken from the same sample, the scattered return can vary

depending on the size of the particle or differences in particle cluster. The microscope

collects light over a broad range of angles, reducing spectral effects that may be angle

dependent.

Microscopic images of a sample of acetaminophen at a concentration of 41.77
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Figure 4.2: (Left) Conventional microscope image of acetaminophen deposited on a
glass substrate at a concentration of 41.77 µg/cm2. Particles are crys-
talline and non-spherical. (Right) 3D mapping of acetaminophen particles
show a measurable particle size to use for BV modeling.

µg/cm2 are shown in Fig. 4.2. 3D mapping using a laser confocal microscope is used

to estimate particle sizes. As can been seen in Fig. 4.2, some particles aggregate after

sieving and clumping leads to larger scattering sites than from individual particles.

Although the particles seen in the images are crystalline in structure, we estimate

the particle shapes as spherical to ease computation in the BV model. The results

of microscopic analysis guide the parameters of the log-normal used to weigh the

theoretical model in Section 4.5.2 but are not necessary for unknown trace chemical

identification as spectra are created from arbitrary particle size distributions.

4.4 Bobbert-Vlieger Modeling

4.4.1 Modeling Overview

Testbed sensor acquired scattering spectra are modeled by numerical solutions of

the BV model of light scattering off a spherical particle on a flat substrate. The ef-

fects of particle size distribution, chemical response, and substrate reflectivity are all

included in the BV model. Mie scattering states that particle size and shape change

the relative amount of forward and backscattering as a function of wavelength [21].

The substrate that the particles are deposited on changes the electromagnetic bound-
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ary conditions compared to free space Mie scattering. The BV model reduces this

problem to the scattering by a sphere in a homogeneous medium and that of the

reflection of spherical waves by the substrate. It then solves this using Mie theory

and the propagation of dipole radiation along a flat surface [19]. We use the National

Institute of Standards Technology (NIST) modeled integrated scatter tool (MIST)

and SCATMECH C++ library to compute the effects of target chemical, substrate,

angle of incidence, and collection angle on the scattering spectra of spherical particles

near a smooth surface [22, 23].

Experimental samples have a distribution of particle sizes including diameters of

up to 50 µm. To allow adequate convergence of the BV algorithms for large particle

diameters, the NIST SCATMECH code are modified to use long double (80 bit)

floating point numbers. For each particle, substrate, incident and collection angle

combination, BV simulations are run and stored for particle radii from 0.1 to 25 µm

in 0.1µm steps.

4.4.2 Refractive Index Data and Sources of Error for Input Parameters

To simulate particle on surface effects with the BV model, we must first have

accurate refractive index data that can be measured from FTIR transmission data

performed on bulk samples or KBr pellets. Figure 4.3 shows the complex refractive

indices for the RDX, acetaminophen, and caffeine tested in this study. The data

for these chemicals are provided by Pacific Northwest National Laboratory and U.S.

Naval Research Laboratory where the complex refractive indices are determined from

FTIR transmission measurements of KBr pellets. The transmission spectrum of a

given chemical that has been diluted with KBr and pressed into a pellet is converted

into an absorption spectrum and the effective thickness of the sample is used to deter-

mine the imaginary refractive index, k. The real refractive index, n, is determined via

the Kramers-Kronig relation, and assumed to have a baseline value, n∞ = 1.5 [24].
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The refractive index data used to model the polystyrene microspheres were deter-

mined from KBr pellets created from polystyrene powders measured by the U.S.

Naval Research Laboratory and have a higher purity than targets created from the

polystyrene microspheres.

Figure 4.3: (a) Extinction coefficient and (b) refractive index for RDX, caffeine and
acetaminophen utilized in BV simulations.

During the course of this study, we have found that the complex refractive index

for a given chemical can vary based on how the original absorbance data is measured.

Any errors in the absolute absorbance measurements will translate to errors in the

magnitude of the extinction coefficient and refractive index. The assumption typically

made during these measurements is that the n∞ value is 1.5 for unknown materials.

While, this assumption is generally true, there may be instances where deviations
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from the norm will cause deviations in the magnitude of the reflected signal and

shifts in reflectance peaks as seen in Fig.4.15.

Aside from baseline differences in n∞, absorbance spectra measured from different

suppliers of the same chemical may vary drastically. These variations will be a lim-

itation to spectra created via BV modeling as trace particulates may have different

refractive index profiles from those measured in bulk material or KBr pellets. Dif-

ferences in the complex refractive indices may arise from the hydroscopic nature of

some powders or through contamination associated with how the chemicals are de-

posited on a given surface. This is most apparent in Fig. 4.8, where the microspheres

contain features associated with water contamination and UV degradation that are

not modeled in the pure PS powder. It would be beneficial to perform further re-

search on methods to determine the refractive index directly from scattering return

measurements. The reliability of data measured in these bulk and pellet samples is

critical to accurately modeling the particle effects using BV theory and further work

is required to determine the differences in purity that may cause real-world powders

to vary from uncontaminated chemicals.

4.4.3 BV Model Solutions and Transreflection

Different size particles will cause interference of incident infrared light at different

wavelengths. Figure 4.4 depicts how a difference in particle size will affect relative

peak height and locations of features in the molecular fingerprint regime. While the

peak spacing is similar, the location of reflectance peaks will shift. Spectra above 1600

cm−1 vary greatly with particle size. The changes in reflectance peak locations caused

by Mie scattering make the spectra measured via diffuse reflectance different than

those that can be measured via bulk reflectance of solid or powder bed measurements.

Figure 4.4 emphasizes the spectral changes below 2000 cm−1 because most chemicals

do not have absorption and reflectance features outside this range.
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Figure 4.4: Acetaminophen spectra for particles on aluminum with a 5, 6, and 7 µm
radius at 1° incident angle and -4.373° collection angle.

The substrate refractive indices also play a pronounced role in measurable diffuse

reflectance. BV simulations of RDX and caffeine for various particle sizes on glass is

shown in Fig. 4.5. Glass has a very distinct bulk reflectance that alters the preva-

lence of features beyond 1250 cm−1 and features that may be obvious on aluminum

are hidden by the decrease in reflectance of glass. This matches what is shown ex-

perimentally later when these particle size solutions are weighed in Fig. 4.10 to fit

experimental measurements. Oscillatory features seen in the MWIR are caused by

single particle size interference effects. With sufficiently large particle size distribution

these effects disappear.

Adjusting the incident or collection angles in the MIST BV simulator affects the

slope of the oscillations from 2500 - 4000 cm−1 while minimally affecting the 900 -

1700 cm−1 component in the molecular fingerprint regime as shown in Fig. 4.6. At

small particle sizes, changes in incident or collection angles cause a slope change in

reflectance values, but at longer wavelengths that baseline effect turn into bowing.
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Figure 4.5: BV model predicted backscatter from a) RDX and b) caffeine for particles
of radii, r = 5, 9, 13 µm deposited on a glass substrate from unpolarized
light incident at 3° off normal. Spectra have been offset for clarity.
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Figure 4.6: BV calculated incident beam angular dependence of scattered return for
a) 5 µm and b) 9 µm RDX particles on glass. Slope and bowing of features
above 2000 cm−1 changes with particle size.
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BV theory is required over a Mie and Transreflection based model because BV

theory takes chemical and substrate optical properties into account when determining

reflectance value. The Mie/Transreflection model predicts the backscattered and

forward scattered energy from Mie theory then calculates how the forward scattered

energy would be reflected from the substrate. This does not accurately predict how

illumination and collection angles will impact scattering and cannot account for the

second pass through the particle that the reflected light will take. BV theory however,

takes these effects into account and models the boundary conditions between the

chemical and the substrate.

4.5 Fitting BV Model Solutions to Standoff Trace Particle

Measurements

We use the BV modeling of spherical particles from the previous section to fit

spectra from trace particles of RDX, caffeine, and acetaminophen on aluminum, sili-

con, and glass substrates measured using the LWIR SC and FTIR based sensor. The

experimental configuration for the measurement of trace particle targets is the same

as that described in Fig. 3.5. The collection optics are measured to be 3.767° away

from the incident plane. Data in this manuscript are shown for incident angles of

0° and 1°, which correspond to collection angles of -3.767° and -4.767°, respectively.

The targets are placed on pitch and yaw stages to adjust and measure collection and

incident angles for reproducible measurements. The preamplifier gain of the Vigo

PCI detector is adjusted such that high load samples on glass produce a centerburst

that fills the 1-volt range on the analog-to-digital converter. Specular measurements

require a 30 dB optical attenuation filter to keep the interferogram centerburst within

the linear range of the detector, scattering measurements of chemicals on aluminum

or silicon require a 10 dB attenuation filter, and scattering measurements of chemicals
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on glass are performed without attenuation. The experimental spectra shown in this

chapter are produced by averaging together 8 runs of 500 scans and are divided by a

background specular measurements from a BaF2 wedge.

4.5.1 Log-Normal Particle Size Distributions

The scattering from real world samples are fit using the incoherent addition of the

BV solutions for single particle sizes weighed with a log-normal distribution:

f(D) =
1

Dσ
√

2π
exp

(
− (ln(D)− µ)2

2σ2

)
(4.1)

where D is particle size, µ is the mean of the log of the distribution, and σ is the

standard deviation of the log of the distribution.

Figure 4.7: Exemplary log-normal particle size distributions for fits performed with
BV model.

To illustrate how such distributions may look, Fig. 4.7 shows the probability den-

sity functions of the log-normal distributions for different measurements performed
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in this chapter. Figure 4.7 depicts the distributions for the 5.2 µm PS microspheres

on aluminum in Fig. 4.8(a), the caffeine on aluminum in Fig. 4.9(b), and the RDX

on glass in Fig. 4.10(c).

4.5.2 Testbed Sensor Scattering Measurements of Spherical Particle Tar-

gets

We test the validity of BV theory for producing spectra that can match exper-

imental results, by measuring mono-dispersed PS microspheres with 5.2, 10.8, and

19.5 µm diameters that are deposited on aluminum substrates. Figure 4.8 depicts

the results of these measurements with an expanded wavenumber scale out that ex-

tends from 980 cm−1 to 4000 cm−1 to emphasize that BV theory accurately predicts

oscillations caused by narrow particle size distributions of spherical particles. The

simulated data in Fig. 4.8 is produced from log-normal particle size distributions

with parameters µ = 1.67, σ = 0.117 for the 5.2 µm spheres on aluminum, µ = 2.23,

σ = 0.0471 for 10.8 µm spheres on aluminum, and µ = 2.73, σ = 0.0566 for 19.2 µm

spheres on aluminum, with the incident and collection angles set to 0° and -3.767°,

respectively. Single particle size solutions also provide accurate oscillation positions,

but accentuate features not seen in measured data. The dip in spectra between 1720

and 1830 cm−1 seen in all three measured spectra may be caused by carboxyl groups

that can occur when PS degrades in UV light [25]. The features between 1000 and

1400 cm−1 may be caused by water impurities gained during the emulsification process

used to create the mono-disperse spheres. These features are not shown in the simu-

lated data because the KBr pellets created with nonspherical PS powder, that were

used to determine the complex refractive indices, did not contain these impurities.
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Figure 4.8: Return from (a) 5.2 µm, (b) 10.8 µm, and (c) 19.5 µm polystyrene micro-
spheres deposited on aluminum substrates with BV simulated spectra.
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4.5.3 Testbed Sensor Scattering Measurements Non-Spherical Particle

Targets

Spectral signatures are dependent upon the chemical that is deposited on a given

surface. Figure 4.9 shows measured scattered return from different chemicals de-

posited on 1” aluminum substrates with the log-normal fits of BV solutions for the

given chemical on aluminum. The parameters for the fits are µ = 2.55, σ = 0.136

for RDX on aluminum, µ = 1.98, σ = 0.286 for caffeine on aluminum, and µ = 2.38,

σ = 0.165 for acetaminophen on aluminum, with the incident and collection angles set

to 0° and -3.767°, respectively. Unique features for RDX, caffeine, and acetaminophen

can be found in the molecular fingerprint regime between 950 and 1800 cm−1. These

spectra also contain a sharp reflectance change between 1600 and 1800 cm−1, which

corresponds to the last absorption peak that each chemical exhibits in this range (see

Fig. 4.3).

Measurement discrepancies near 1700 cm−1 can be caused by particle shape effects.

Fig. 4.14, illustrates that non-spherical particles can have wildly varying spectra

entering the MWIR because of shape induced resonances [15].

For a given chemical, the substrate can have a pronounced impact on reflectance

spectra. Figure 4.10 shows measured scattered return from RDX deposited onto 1-

inch aluminum, silicon, and glass substrates fitted with the BV simulations for the

given substrate. The parameters for the fits are µ = 2.02, σ = 0.298 for RDX on

aluminum, µ = 2.13, σ = 0.255 for RDX on silicon, and µ = 2.47, σ = 0.236 for RDX

on glass, with the incident and collection angles set to 1° and -4.767°, respectively.

Although all three substrates are smooth and would not contribute scattered return

themselves, their reflectance begin to play a role in the magnitude and clarity of

signal. Specifically, glass reflectance decreases at ˜1250 cm−1, and masks the features

seen in the other two substrates between 1250 and 1800 cm−1.

The magnitude of the scattered return from chemicals on a smooth surface is
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Figure 4.9: Experimental scattered return from (a) RDX, (b) caffeine, and (c) ac-
etaminophen deposited on a 1”x1” aluminum substrate and their simu-
lated return at 0° angle of incidence.
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Figure 4.10: Experimental scattered return from RDX deposited on 1” x 1” (a) alu-
minum, (b), silicon, and (c) glass substrates and their simulated return
at 1° angle of incidence.
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Figure 4.11: Testbed sensor measured scattering spectra of a) RDX and b) caffeine
particles on glass at 3.6 m.

directly proportional to its concentration. The results of scattering measurements

performed with the testbed sensor on sieve deposited RDX and caffeine particles

on 1” x 1” glass substrate at varying concentrations are shown in Fig. 4.11. As

particle concentration decreases, the chemical signatures visible at 900 - 1250 cm−1

also decrease, but the atmospheric effects between 1250 - 1750 cm−1, near 2350 cm−1,

and above 3500 cm−1 do not.

4.5.4 Analysis of Measured Spectra

To aid in the analysis of the testbed sensor scattering measurements, the theoret-

ical bulk reflectances of soda-lime glass, RDX, and caffeine are shown in Fig. 4.12.

These figures show the normal incident Fresnel reflection expected from flat samples

of each material calculated from their refractive index n- and k-values.

The BV model and microscope FTIR show that the substrate plays a large role in
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Figure 4.12: Theoretical bulk Fresnel reflection of a) soda-lime glass, b) RDX, and c)
caffeine.
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the shape of expected return spectra. The microscopic reflective FTIR measurements

in Fig. 4.1 and BV particle simulations in Fig. 4.4 exhibit substrate reflectance features

seen in the glass from Fig. 4.12. Chemical signatures based on particle size are

superimposed upon the substrate signature as dictated by BV theory. This suggests

that a high reflectance, smooth substrate will increase scattered return and allow for

lower measured concentrations and further standoff distances. Unfortunately, if the

substrate is not smooth, the substrate scattered return may overpower signals from

chemicals found on its surface.

Chemical specific reflectance peaks exhibit wavelength dependent differences as

expected from Mie scattering. Fortunately, the magnitude of the reflectance peaks

and the location of the reflectance peaks quantifiably vary with respect to particle

size and can be simulated with the BV model.

Because real world samples are comprised of many different particle sizes, the

testbed sensor measured reflectance shown in Fig. 4.9 and Fig. 4.10 is a superposition

of single particle size spectra. The experimental return is modeled by performing a

log-normal weighted average of BV predicted returns. The model can estimate the

concentration of the measured sample to within a factor of two from the magnitudes

of the return signal. However, the particle distribution that best fits the experi-

mental result for a given sample is not unique, and different particle distributions

can yield similar return spectra. Examination of the images taken with the confo-

cal microscope guide the selection of the most probably particle size distribution.

Therefore, log-normal weighted BV modeling can be used to develop a library for

chemical identification and differentiation but may not correctly estimate the particle

size distribution.

The particle size distribution has a broadening and smoothing effect on the return

spectra because reflectance peaks and troughs shift and change magnitude based on

particle size. This may limit the differentiation between chemicals that are function-
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ally and optically similar. Resolutions above 4 cm−1 may not improve differentiation

because the chemical features will be broader in samples made up of multiple particle

sizes.

We measure variations in spectra caused by the background substrate on which

chemicals are deposited. Silicon and aluminum have a flat specular return spectrum

in the molecular fingerprint regime, but the magnitude of the silicon return should be

˜30% lower than that of the aluminum sample. We find that the magnitude of return

are similar in Fig. 4.10, but the depth of the chemical features are less pronounced

than those on the aluminum sample. This effect may be due to the second surface

of the silicon wafer being unpolished. The unpolished side can diffusely scatter light

back to the detector and provide a heightened baseline, which dilutes the chemical

reflectance peaks. The signal height may also be caused by more particles sticking to

the silicon substrate than the aluminum substrate after shipping. A smoothed second

derivative for chemical identification can avoid these limitations.

The measurements performed in this study are for particles deposited on smooth

substrates. Understanding the effects of roughened, non-uniform, or woven substrates

on scattered return is important for the development of a sensor that will work in real

world environments and will be one of the next steps in expanding the potential for

LWIR standoff spectroscopy. Standoff illumination of particles on non-uniform sub-

strates will cause infrared light to pass through particles multiple times and deepen

the reflectance features in the molecular fingerprint regime [16] and return reflectance

features from the bare substrate between particles. Aside from modeling constraints,

experimentally, the scatter from a roughened substrate can be orders of magnitude

higher than the scatter from particles on its surface. It is possible that glare re-

duction methods, such as illuminating with circularly polarized light and detecting

non-circularly polarized light may reduce the amount of detected scatter from a rough

substrate.
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4.5.5 Distance and Concentration Limits of Standoff Sensor

We repeatably measure particle data on glass backgrounds and can determine

some limits of the current testbed sensor configuration. Return spectra from particle

samples at concentrations down to 7.4 µg/cm2 are measured at 3.6 m. At this dis-

tance, the scattered return is 4 orders of magnitude lower than the incident intensity.

According to BV modeling, the magnitude of the spectral return is directly propor-

tional to the concentration of the particle on the substrate. As a first approximation

of the limit of detection, based on regression analysis of the return for nine samples

on glass shown in Fig. 4.13(a), we estimate the three standard deviation detection

limit to be 6.5 µg/cm2. This limit is limited by the instrument sensitivity and not

the modeling. BV theory would be expected to fail at higher conecentrations when

there is much more particle aggregation and contact.

Figure 4.13: (a) Linear regression to determine the lowest measurable concentration
with the LWIR SC FTIR sensor. (b) Theoretical centerburst pulse SNR
assuming incident intensity described in Fig. 2.7 and 1/r2 dependence
on scattered intensity.

The theoretical maximum distance that this sensor can measure a given sample

would be based on the height of the collected centerburst pulse, which must be at

least 3 dB above the noise to produce measurable spectra. The centerburst return
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signal is expected to be inversely proportional to the square of the distance between

the target and the first collecting optic. By assuming a M2 = 2 quality beam as

described in Fig. 2.7, the theoretical maximum distance that this sensor can measure

a 40 µg/cm2 sample is ˜16 m. Preliminary measurements at a 5 m distance agree with

this analysis as shown in Fig. 4.13(b). Ways to increase the measurement distance

will be discussed in Section 5.3.3.

4.5.6 Deviations in the MWIR

BV simulation and measured spectra can deviate in the MWIR because this regime

is susceptible to geometry related resonances [16]. As the wavelength decreases with

respect to the particle size, particle shape begins to play a more pronounced role, as

more spherical harmonics are required to approximate the interaction of the incoming

wave with the particle.

Deviations from theoretical predictions between 2500 and 4000 cm−1 that may

arise from variations in collection and incident angle compared to those modeled and

particle shape differences. Adjusting the incident or collection angles in the MIST BV

simulator affects the slope of the oscillations from 2500 - 4000 cm−1 while minimally

affecting the 900 - 1250 cm−1 component as shown in Fig. 4.6. Additionally, the

spectral features above 1667 cm−1 are be governed by interference effects caused by

particle geometry, and that these effects can differ according to particle roughness

[15]. These traits also explain why there will be differences in microscope or close-

range diffuse scattering measurements, which both collect with a high NA, compared

to those measured at a standoff distance and low NA. The geometric contributions

will begin to average together at larger illumination and collection angles.
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4.5.7 Particle Shape and n∞ Effect

Figure 4.2 shows that trace particles on surfaces are not spherical. It is much

more computationally intensive to simulate the diffuse reflectance from non-spherical

particles, and there is a myriad of parameters that can be changed to alter spectra.

We justify the spherical particle approximation used in this chapter, by showing that

the reflectance spectra of various axisymmetric particles can be approximated by a

spherical particle of the same volume.

Figure 4.14: RDX spectra for particles on aluminum of differing axisymmetric shapes
with the same volume.

Figure 4.14 shows the molecular fingerprint for a spherical particle of radius 5 µm,

an ellipsoidal particle with a vertical semiaxis of 4.7 µm and horizontal semiaxes

of 5.15 µm, a circular pyramidal particle of radius 5 µm and height 20 µm, and a

cylindrical particle of radius 5.5 µm and height 8.2 µm. Chemical reflectance peak

locations in the molecular fingerprint regime for non-spherical particles can match

those of spherical particles with the same volume. However, as the light approaches
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shorter wavelengths, the theoretical spectra begin to vary drastically.

Volume is not the only metric to consider when varying particle shape. Narrower

and taller particles of the same volume may exhibit drastic peak position shifts in

the LWIR and exhibit features more similar to larger radius spheres. For example,

a circular bipyrimidal particle of radius 5 µm and height 10 µm is better simulated

with a spherical particle of radius 8 µm in the molecular fingerprint regime.

Figure 4.15: Acetaminophen spectra for particles on aluminum with a (a) 3 µm radius
and (b) 5 µm radius when n∞ is shifted from its original value of 1.5.

For completeness, we have also modeled the impact a change in n∞ may have

on diffusely scattered return. Figure 4.15 illustrates spectral changes caused altering

the n∞ value for 3µm and 5µm radius particles. Adjusting n∞ from 1.5 to 1.4 or 1.6

greatly affects spectra entering the MWIR and has a more pronounced effect in the
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LWIR for larger particle sizes by shifting reflectance peak locations. The shift in peak

position for adjusting the n∞ value is similar to the change seen when particle size

is changed as shown in Fig. 4.4 Therefore, peak position errors that may arise from

overall shifts of n∞ can be minimized by the use of a log-normal weighted distribution

of particle sizes for real world trace particle identification.

Overall, particles on surfaces will produce diffuse reflectance spectra that will ex-

press changes in peak reflectance positions based on particle size as seen in Fig. 4.4.

Fig. 4.5 shows that reflectance spectra are further complicated by the substrate re-

flectance, which weighs the return spectra with its reflectance properties and must

be calculated using BV theory. Errors in refractive-indices calculations as depicted

in Fig. 4.15 are on the same order as particle size changes and can be mitigated with

particle size distributions as described in Section 4.5. Spectral differences caused

by non-spherical particles are minimal in the LWIR for particles of similar volumes

but are much more pronounced in the MWIR, especially as shapes vary further from

spherical (See Fig. 4.14). Geometry related resonances begin to dominate in the

MWIR [15] and can overwhelm the weaker absorbances that some chemicals exhibit

in the MWIR. Because most MWIR chemical features are hidden, we typically limit

the unknown chemical identification wavenumber range to 950 cm−1 - 1800 cm−1.

However, the MWIR can provide information about the target orientation with re-

spect to the illumination and collection optics. Figure 4.6 suggests that target tilt

can be determined by examining the baseline curvature of measured spectra.

4.6 Unknown Chemical Identification

The goal of the work done in this dissertation is to create a non-contact, non-

ionizing, optical measurement device that can be used to identify unknown chemicals

at a distance without having to approach at distances that would put the investigator

in danger of said chemicals. Using the insights gained from Section 4.5.2 and Section
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4.4.1, the log-normal distributions of BV solutions can be utilized for unknown trace

chemical identification.

To test this, we create a library of scattering spectra for RDX, caffeine, and ac-

etaminophen at normal incidence and a -3.767° collection angle assuming log-normal

particle size distributions of spherical particles varying in maximum probability par-

ticle diameter, Dmax = 0.1 to 25.8 µm in 0.2 µm steps and σ = 0.01 to 0.5 in 0.01

steps. The unknown targets contain sieve deposited RDX, acetaminophen, or caffeine

particles on a 1” x 1” aluminum substrate that have been randomized and presented

to the tester. The tester measures the backscattered spectra of the unknown at nor-

mal incidence and compare the measured spectra to the library of spectra created for

RDX, caffeine, and acetaminophen. The figure of merit (FOM) for chemical identifi-

cation is the root mean square error between the second derivative of the measured

and simulated spectra and is described below:

FOM =

√√√√ 1

n

∑
ν

(
R′′(ν)

max|R′′(ν)|
− S ′′(ν)

max|S ′′(ν)|

)2

(4.2)

where R′′(ν) and S ′′(ν) are the smoothed second order derivatives of the measured

spectra and simulated spectra for a given wavenumber, ν, and n is the number of

wavenumbers in the range of interest. Spectra are smoothed and a second order

derivative is taken using the Savitzky-Golay method with a 19-point window and

third-degree smoothing order. We choose to examine features in the molecular fin-

gerprint regime from 980 to 1800 cm−1. The library value with the minimum FOM

are considered to be the best match for the unknown chemical.

Table 4.1 shows a comparison the library spectra of three unknown trace chemicals

that have been deposited on 1” x 1” aluminum substrates, with the lowest FOM for

each unknown highlighted in gray. The identification schema works well for unknowns

with large absorption and refractive index features. This is exhibited by Unknown
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Table 4.1: Lowest figure of merit values for measured unknowns compared to library
spectra for RDX, caffeine, and acetaminophen. The comparison with the
lowest figure of merit has been highlighted and depicts the identity of the
unknown trace chemical on aluminum.

Sample RDX caffeine acetaminophen
Unknown 1 0.2423 0.2015 0.2603
Unknown 2 0.0787 0.2395 0.2486
Unknown 3 0.3137 0.2655 0.1801

2, which exhibits a low FOM for RDX. Similarly, some chemicals have a much less

varied refractive index profile. The difference in FOM values for unknown 1 are not

as pronounced because the complex refractive index for caffeine does not contain the

larger variations shown in the complex refractive index of RDX.

An example of the spectra for Unknown 3 is presented in Fig. 4.16 and illustrates

the best fit cases of an unknown chemical with simulated spectra of RDX, caffeine,

and acetaminophen on aluminum. The second derivative of the measured data shows

peaks in the molecular fingerprint regime that match with those modeled for the

given chemical. Because there are minimal features outside of the molecular finger-

print regime, the second derivative is relatively constant above 1800 cm−1. Second

derivative data is noisy above 3000 cm−1 due to water absorption and lower wavenum-

ber spectral density and is not considered in the FOM. The figure of merit for the

shown spectra are 0.3137, 0.2655, and 0.1801 for RDX, caffeine, and acetaminophen,

respectively. Using this metric, we would identify Unknown 3 as acetaminophen.

4.6.1 Second Derivative and FOM Analysis

We use the second derivative of measured spectra for library comparisons because

bowing or baseline deviations can cause false positives in chemical identification. The

total magnitude of scattered return will vary with respect to chemical density and

substrate background as well as the target distance from the collection optics [8].

Analyzing second derivatives is a standard method in spectroscopy to emphasize
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Figure 4.16: The second derivative of Unknown 3 compared to the lowest FOM match
from libraries created using log-normal distributions of (a) RDX, (b)
caffeine, and (c) acetaminophen.
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sharp structures [26]. By comparing second derivatives, we focus our identification

techniques on chemical feature recognition rather than slowly varying baseline or

magnitude changes that may result from misalignment, particle shape, or chemical

concentration.

There are several limitations to the use of the root mean square error as the

figure of merit for chemical identification. Firstly, the second order derivative of

measured and simulated spectra oscillate around zero and reduces the maximum value

obtainable for a FOM. For instance, the worst library match to a sample measurement

during unknown testing, does not exceed a FOM of 0.5271. Additionally, slight shifts

in peak location can cause large variations in the difference between spectra at a given

wavenumber. This disadvantage is minimized because the log-normal distribution of

particles widens sharp spectral features found in single particle size reflectance.

4.7 Summary

We analyze the spectra obtained from sparsely loaded powders deposited on

smooth substrates. We find that the long-wave infrared from 950 to 1800 cm−1

contains robust chemical information that is dependent upon particle size distribu-

tion, chemical refractive indices, and the substrate material. We model these effects

using BV theory, and can use this model as an analytical tool to predict the backscat-

tered spectra of unmeasured samples illuminated by LWIR light at standoff distances.

The LWIR backscattered spectra of non-spherical particle can be well approximated

by spherical particles of a similar volume. Second derivative analysis removes base-

line magnitude changes caused by chemical concentration and slowly varying changes

that may arise from target orientation and focuses chemical identification on the

sharp chemical features in the LWIR. The insights gained by examining and mod-

eling single particles deposited on smooth substrates can enable the study of more

complex targets in the future and further the capabilities of real LWIR spectroscopic
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techniques.
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CHAPTER V

Summary and Future Work

5.1 Summary

This dissertation is focused on the development of a LWIR SC source and sen-

sor for standoff spectroscopic measurements, and the measurement and modeling of

trace particles deposited on smooth surfaces. We do this by creating an SC source

for standoff illumination, implementing a sensor capable of measuring diffuse scat-

tering at a distance, and modeling chemical spectra to create a reference library for

identification.

We’ve created an all-fiber supercontinuum source with at least an order of magni-

tude higher power output than other fiber-based SC sources in this wavelength range.

The elegant and simple design makes it a robust source with high spectral density

that can be customized to fit the needs of real-world applications. This dissertation

describes an output from the LWIR SC source of up to 417 mW at 800 kHz that

extends from 1.6 - 11 µm via the concatenation of ZBLAN, As2S3, and As2Se3 solid-

core, supercontinuum generating fibers that are pumped with Er/Yb amplifier based

MOPA configuration.

Several breakthroughs and achievements were required for the success of this

source. First, the use of a thulium amplifier to filter light below 2 µm and amplify

energy above 2 µm increases the spectral density of the signal and reduces high-loss
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wavelengths from interacting with low damage threshold fibers. Second, the cas-

cade of fibers from high damage threshold/low transmission window to low damage

threshold/high transmission window protects each subsequent fiber while spreading

the spectra to beyond high loss regions. Third, the development of a low loss, high

0.76 NA, As2Se3 fiber that has a loss edge of > 11 µm, prevents the spread of the mode

field diameter of light within the fiber at high wavelengths. Lower NA fibers, though

commercially available, have large mode field diameters that spread too far into the

cladding, which reduces non-linearities and increases loss from cladding impurities.

Finally, the development of the splice between the chalcogenide fibers reduced Fresnel

losses from almost 50% to less than 1%, and helps protect the input face of the As2Se3

fiber.

Because of the concatenated design, if shorter wavelengths than those described

and used in this dissertation are necessary, the change or removal of fibers in the

chain can lead to the required spectra. For example, if wavelengths up to 6 - 7 µm

are required for NOx detection and analysis, the As2Se3 fiber can be removed and the

higher output from the As2S3 fiber would be sufficient.

The single mode, near diffraction-limited output enables collimation with lim-

ited divergence and enables the use of the LWIR SC source as an active illuminator

for standoff spectroscopy. We are able to create a standoff infrared sensor using a

refraction-based FTIR to modulate the output signal into an interferogram that can

be Fourier transformed into an infrared spectra that spans from 950 cm−1 to 4000

cm−1 (2.5 µm - ˜10.5 µm) with 4 cm−1 resolution. This sensor utilizes a Triggered

simultaneous acquisition and record function that allows every one of the ˜6000 pulses

in an interferogram to be captured and recorded, for an acquisition time of 69 seconds

for 1000 scans.

In Chapter III we demonstrate volatile gas spectra along a 10 cm path length and

measure the diffuse scattering from bulk samples with the LWIR SC and FTIR based
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sensor. We find that these spectra may vary with respect to commercially available

FTIR systems because of the differences in collection and illumination optics. Our

standoff sensor is necessarily low NA illumination and collection, which causes features

in the MWIR measured with the standoff sensor to differ from those measured in

a commercial FTIR with high NA illumination and collection for diffuse scattering

measurements. We also find that it is necessary to use a smooth target with a smooth

featureless Fresnel reflection as a background scan because while scattering references

are less angle dependent, they exhibit sharp features in the molecular fingerprint

regime that muddy chemical response signatures.

The LWIR SC and FTIR based sensor is also be used to measure trace particles

that have been deposited on smooth substrates. Despite most real-world particles

being non-spherical, their reflectance spectra can be estimated by spherical particles

because differences in particle geometry impact the MWIR more strongly than the

LWIR. We find that the concentration of particles on the surface determine the overall

magnitude of the return signal and there are unique reflectance peaks in the molecular

fingerprint regime that can be used for chemical identification. We are able to measure

powders at concentrations as low as 6.5 µg/cm2 at a 3.6 m distance.

We model the effects of particles on smooth substrates using Bobbert-Vlieger

modeling that uses particle size, incident angle, scattering angle, chemical refractive

indices, substrate refractive indices, and collection NA to numerically determine the

reflectance of a particle on a smooth surface. The BV model we use to fit experimental

data weighs the single particle size solutions with a log-normal distribution and adds

them incoherently. This creates particle distributions similar to those present in real-

world situations, such as particle contamination on surfaces from being in a powder

filled room, or the deposition of loose powders from a fingerprint.

The log-normal distribution of particle shapes changes the features that would be

found in single particle size cases. Narrow particle distributions or single particle sizes
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exhibit sharp chemical features and oscillatory behavior associated with interference

effects. As the distribution of particle sizes widens, chemical features broaden and

their peaks and dips diminish in strength because different particle sizes exhibit those

peaks at shifted positions and varying relative strengths determined by Mie scattering.

This has the additional consequence of causing multiple particle size distributions to

exhibit the same reflectance spectra. The absence of unique solutions is beneficial to

chemical identification because it would require less spectra to characterize a given

chemical when creating a library of potential spectra for that chemical.

We find that one method for chemical identification of unknown chemicals on

substrates is to use a figure of merit that determines the root mean square error

between the normalized second derivative reflectance spectra of an unknown with a

library of theoretical normalized second derivative reflectance spectra created from

systematically created log-normal distributions of the single particle size BV solutions.

The second derivative spectra reduce the prevalence of magnitude and baseline errors

that may come from particle shape, target tilt, or concentration of particles.

We have developed a new light source and sensor to non-destructively measure

spectra from trace particles at standoff distances. We then simulate the reflectances of

particles on smooth substrates and use our simulations to create a library from which

we can identify unknowns based on the reflectance peaks and troughs in the molecular

fingerprint regime using second derivative spectra. Because measured spectra can vary

with respect to particle size distribution for different samples of the same chemical,

we created the simulation library to identify chemical samples that we may not have

a spectrum for.

5.2 Contributions, Difficulties, and Surprises

This was a Herculean effort that involved many different people to accomplish.

The members of my lab, Kaiwen and Lukas, performed numerical modeling for the
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As2Se3 NA and dispersion requirements. Genny assisted in the development of the

LWIR source and initial testing of the FTIR sensor. The folks at AFRL assisted

in the As2Se3 loss measurements and the Michaelson interferometer measurements.

Collaborators at OMNI science put together a prototype LWIR SC source box that

could be transferred for measurements and testing. Augie and collaborators at Lei-

dos developed the standoff FTIR measurement algorithms, and initial sensor optical

configuration. Prof Terry and Prof Pierce modified the BV code to work for larger

particle sizes. Prof Islam provided insight on two-photon absorption damage occur-

ring in the As2Se3 and fought to get the FTIR sensor prototype transferred to the

University of Michigan so that we can develop the system to perform standoff mea-

surements. Some of my major contributions include the development of the ZBLAN

attenuator that first allowed us to generate SC in the As2Se3 fiber, the methodol-

ogy for fiber alignment and power scaling, alignment of the TurboFT as part of the

launching optics as opposed to receiving optics to optimized the infrared energy trav-

eling through the interferometer, and the creation of the simulation library and FOM

used for unknown chemical identification.

The most difficult part of the project was determining a way to inject high peak-

power SC into the As2Se3 without damaging the fiber face. Bulk optic coupling proved

difficult because focusing broadband energy with lenses proved unreliable. We also

found that two-photon absorption in the As2Se3 immediately destroyed the fiber face

and therefore needed to filter out 1550 nm light with a thulium amplifier. The first

instances of expansion came through the use of the ZBLAN attenuator to provide

full spectrum input at lower overall power levels. This allowed our first glimpses

of high-power expansion in the As2Se3 out to ˜6 µm. It was this initial expansion

that led to the idea that a buffer was needed between the high output powers of the

SiO2/ZBLAN fibers and the As2Se3 fiber, and eventually led to a cascade involving

light transfer from SiO2 to ZBLAN to As2S3 to As2Se3.
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There were several big surprises that we found during the development of the

FTIR sensor for trace particle detection. First, we found that the infrared spectral

features in gold scatterers contained sharp peaks that muddied spectral signatures

when the gold scatterer was used as a background (as can be seen in Fig.3.12. Be-

cause of this, we decided to use specular reflectance from Si wafers and BaF2 wedges

as backgrounds since they are essentially featureless in the LWIR. This necessitated

realignment between background and sample scans but provided quantifiable spectra

that could be compared to our models. Another surprise was the clarity of spectra

produced from glass samples compared to spectra measured on roughened aluminum.

Early in the project, we had assumed that the high intensity return provided by the

roughened aluminum substrate would emphasize chemical spectral features. What

we found instead was that the aluminum scattering overpowered the chemical sig-

nature by at least an order of magnitude and hid the requisite features for chemical

identification. Further work needs to be done to model these effects and mitigate

the high substrate return. The glass sample, on the other hand, provided a very low

signal that includes quantifiable peaks and troughs that can be used for chemical

identification, even with glass substrate effects and atmospheric water masking parts

of the LWIR.

This dissertation teaches how to create a LWIR SC source with high power output

and ultra-wide broadband spectral coverage. We show how to utilize this source with

an FTIR interferometer as an illuminator for standoff LWIR spectroscopic measure-

ments. Finally, we teach how the BV model can be used to identify trace chemicals

on smooth surfaces at standoff distances. The insights gained through these teachings

further the realization of a non-contact, non-ionizing radiation, chemical identifica-

tion system that can be used in real world applications. That being said, there is still

much to be done to make a standoff LWIR spectroscopic sensor work beyond the lab

setting.
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5.3 Future Work

5.3.1 Fiber Limitations

The greatest challenge we face is the maintenance of the interfaces between dif-

ferent fiber types. Specifically, the ZBLAN fiber to As2S3 fiber in the fiber cascade

tends to degrade over time in open atmosphere. So far, we have been able to prevent

this deterioration by purging the interface with nitrogen to keep H2O content low,

but a long-term solution may require a switch to TeO2 fibers.

Tellurite and fluorotellurite fibers, though not as mature as ZBLAN fibers, show

several advantages over their hydroscopic counterparts. Tellurite fibers have been

shown to not absorb moisture, have transmission windows as wide as ZBLAN fibers,

and have nonlinearities that are as high as two orders of magnitude higher than

ZBLAN [1–4]. One study suggests that pumping a cascade of TeO2 and As2S3 en-

tirely in the normal regime can produce coherent supercontinuum generation strictly

because of their high nonlinearity [5]. Unfortunately, these fibers are not yet commer-

cially available, and can exhibit higher losses than their ZBLAN counterparts. Con-

versely, due to their high nonlinearity, broadband expansion can occur with shorter

lengths of tellurite fiber than ZBLAN fibers, potentially offsetting the loss difference.

Another limitation lies in the availability of the high-NA As2Se3 fiber. The purifi-

cation process for the selenide fibers is very difficult and a great deal of time has been

spent by CorActive and IRflex trying to reproduce the fiber properties described in

Fig. 2.2. Without a stable supply of low-loss high-index As2Se3 fiber, the LWIR SC

source cannot be made commercially.

5.3.2 Improving SC Source Noise Performance

One of the limitations of using MI initiated SC sources for standoff illumination is

that these SC sources tend to exhibit high levels of pulse to pulse variability. Because
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modulation instability-initiated pulse breakup is a noise initiated nonlinear effect, the

solitons which form in the anomalous regime are randomly generated and high energy

solitons may form during different parts of the envelope pulse. This means that while

the average power output might be very similar, there can be large spectral differences

between single 1.5 ns pulses. There is continual research into ways to reduce the noise

of supercontinuum based infrared sources that may aid in the noise performance of

our system.

One method for improving SC pulse-to pulse stability is to use high non-linearity

fibers in the normal dispersion regime to rely on self phase modulation and optical

wave breaking based on the peak power of the system alone [5] for SC generation.

The output SC maintains coherence, and for an OCT system for example, normal

dispersion SC sources can exhibit 5 dB higher SNR [6]. Unfortunately, these sources

typically require fs pulses with peak powers of up to 300 kW for spectral broadening.

The ns pulses we use in our experiments typically output less than 15 kW peak

power. This may be overcome with longer fiber lengths if the tellurite fiber maintains

sufficiently low loss as the fiber lengths in [6] is only 10 cm in length. There are other

challenges that include the small core size of the TeO2 fiber to maintain all normal

dispersion and preventing nonlinearities from occurring the SiO2 fiber. These may

be solved with dispersion tuning of either fiber, High non-linearity tellurite fibers,

though still immature may be utilized to create all-normal regime supercontinuum

generation into the LWIR.

Another method for increasing the pulse SNR is based upon dispersion tuning

an early fiber in the SC cascade to reduce the relative intensity noise [7]. This

occurs when a fiber has two zero dispersion wavelengths so that solitons rebound

off of the second zero dispersion wavelength and deposit more energy at the edge of

the spectra instead of falling into the high-loss regions and being absorbed by the

fiber. This process may be used to increase spectral density before entering later
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fibers in the cascade and maintaining the highest power solitons for input to the next

fibers. Optimally, each fiber in the cascade should be dispersion tuned to prevent the

expansion of solitons into the long wavelength edge of the fiber so that the energy

can be used for expansion in the following fibers.

One study suggests inputting a seed pulse before the main SC pulse decreases

pulse-to-pulse variability [8]. Modulation instability is typically noise-initiated, but

the seeded pulse can initiate MI in a repeatable manner which normalizes the resulting

pulse breakup and provides more consistent pulse characteristics. This methodology

can potentially be adapted for our system and pulsed energy can be tapped after the

second Er/Yb amplifier and reinjected before the amplifier to seed SC expansion. The

length of the delay fiber will unfortunately be tied to the pulse repetition frequency

and may need to be adjusted and optimized for various use cases.

A recent study also suggests that using in amplifier SC expansion can also decrease

the relative intensity noise [9]. According to the study increasing the SC generation

that occurs in amplifier or in gain fibers can lead to soliton alignment as high-power

solitons are pushed out of the gain band of the amplifier. This effect can be further

enhanced by using unpumped thulium fiber after the Er/Yb amplifier to increase

spectral red shift and soliton alignment. While interesting, we may already be utilizing

the benefits that this study suggests exist in SC generation, and may speak in favor

of our ns pulse MOPA and concatenated SC fiber design.

The idea behind all these techniques is to improve the noise characteristics of the

pulses that are to be injected into the SC generating fiber. Any noise from early in

the system will be transferred to each of the following fibers. Any improvements in

SNR at the early stages will improve the overall SNR of the source.

Other methods of increasing throughput and therefore signal, would be based

around applying anti-reflection end-faces between fibers. Moth-eye structures can

increase output from As2Se3 fibers by > 12% [10].
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Overall, decreases the signal-to-noise performance in the source by 10 dB will

reduce the number of scans required to achieve high-SNR spectra and coupled with

advancements in the next section could reduce scan times to less than 5 seconds per

scan.

5.3.3 Improving FTIR Sensor Performance

Currently, the speed of acquisition for the standoff LWIR SC and FTIR based

sensor is limited by the transfer speed of the pulse data to the internal memory of

the computer used to process and create interferograms. This bottleneck is caused by

the need to sample over 140 points per pulse and the inclusion of > 6000 pulses per

interferogram. The current triggered simultaneous acquisition and record program

cannot transfer the information fast enough to prevent the rotating buffer memory

to fill completely at higher pulse repetition frequencies. Thus, our system is limited

to a 300 kHz pulse repetition frequency. One of the ways to prevent a data transfer

bottleneck would be to activate pulse processing directly on the acquisition card.

Namely determining the pulse energy on the acquisition card itself would reduce the

amount of data transferred by 140 times. This would open the possibility of scaling

the LWIR SC source output and rotation rate without worrying about transfer speeds

limiting data acquisition.

Scanning 1000 scans has an acquisition time of 69 s, but if the bottleneck described

above is mitigated we could potentially obtain quality scans much faster. The highest

pulse repetition frequency described in this dissertation is 800 kHz. If we were to run

the source at 800 kHz and scale the rotation rate of the Turbo FT correspondingly,

that would reduce the acquisition time of 1000 scans to 25.8 s. If we then increase

the rotation rate of the Turbo FT by another factor of 2 because we do not require

spectra in the MWIR for chemical identification, we further reduce the time for 1000

scans to be 12.9 s. Another factor of 2 in speed can be gained by collecting 500 scans
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as opposed to 1000 and we can create robust spectra in under 10 sec. If the continuous

measurement features that are inherent in commercial FTIR systems is utilized, the

LWIR SC and FTIR based sensor can become a real-time sensor that measures spectra

in real-time and can be used to scan across various surfaces for drastic changes in

spectra.

The greatest improvement to this system would be gained through creating a

standoff imaging sensor to create hypercubes similar to those created when using

QCLs for standoff chemical detection. According to [11] for the number of samples

along the interferogram required for a given resolution and wavenumber range is given

by:

Ns =
2(ν̃max − ν̃min)

∆ν̃
(5.1)

where Ns is the number of points to be sampled, ν̃max and ν̃min are the maximum

and minimum wavenumbers, respectively, and ∆ν̃ is the resolution of the resulting

spectra. Our current system samples ˜6000 pulses when the system is running at

300 kHz pulse repetition frequency. This corresponds to 3.3 µs between 1.5 ns pulses.

One of the fastest HgCdTe cameras in use for QCL hypercube measurements is a

128 x 128 pixel camera that can measure 138 frames in 14 ms when in sub-window

mode (16 x 96 pixels) [12]. This corresponds to 101.45µs per frame. Each frame,

therefore, would be an average of 30 pulses, and would lead to a sampling number of

200 pulses per interferogram. If we limit the band of the spectra to 950 - 1750 cm−1,

we can achieve a theoretical resolution of 8 cm−1 and can create hypercube images

with spectral data. Creating images becomes extremely important for the detection

of trace chemicals on roughened surfaces by baseline subtracting the bulk background

spectra in real-time.

Once imaging becomes available, increasing imaging distance becomes a matter

of implementing telescoping optics that can collect as much light as possible over a
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broad range of wavelengths. The collection optics shown in Fig. 3.5 are commercially

available mirrors. In a new study, our collaborators describe an optical setup with

spectral measurements performed at 10 m distances [13] with an SNR similar to the

measurements we perform at 3.6 m. Following the calculations performed for Fig.

4.13(b), this sensor configuration should be able to measure spectra up to 50 m, with

high chemical loading.

5.3.4 Limitations of BV Theory

BV theory provides accurate diffuse scattering spectra for individual particles

that have been deposited on a smooth surface. As soon as the particles begin to

aggregate or form a film, BV theory begins to break down and scattered spectra may

no longer match with simulations. Further work needs to be done to develop a model

to simulate spectra from bumpy thin films that may result from wiping surfaces with

various cleaning agents.

The BV model is a computationally intensive simulation technique. Incorporation

of the Videen approximation may help to create spectra for larger particle sizes in

more reasonable time frames. Currently it may take at least 15 hours to simulate

scattering from a particle with a radius of 15 µm.

5.3.5 Measurement of Trace Particles on Roughened Substrates

The work presented in this dissertation is focused on the measurement of trace

chemicals deposited on smooth substrates. Understanding the fundamentals of smooth

substrate measurements is a stepping stone for the much more difficult problem of

measuring spectra from particles that are deposited on surfaces that scatter signal

themselves. One of the main challenges will derive from the high signal return from

the substrate itself that may overpower the trace chemical signal by over an order of

magnitude. One of the ways that standoff spectroscopists have overcome this hurdle
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is with detection mapping of hyperspectral images [14]. This method uses a hyper-

spectral image cube that normalizes the blank regions of the substrate and detects

any changes compared to that background. They then measure the spectra of the

bright or dark spots found on the surface. When divided by the substrate, Mie theory

for specific particle sizes can be used to match peak positions. If the above use of a

HgCdTe camera can be implemented for LWIR SC and FTIR based illumination, we

would be able to similarly measure spectra by creating an interferogram cube that

can be Fourier transformed to create a hyperspectral image cube. There should be

no difference in spectra between trace particles illuminated with swept QCLs or with

FTIR modulated supercontinuum sources.

Apart from imaging techniques, recent study has found that particles on rough-

ened surfaces exhibit reflectance troughs that are deeper than particles on smooth

substrate [15]. They are able to accurately fit spectra of KClO2 measured on rough-

ened gold by multiplying their smooth substrate spectra by a multiplicative factor and

an offset based off of the substrate roughness. If the original backscattered spectra is

Qi, then the new spectra Q′i is described as:

Q′i = f(ρ)Qi + g(ρ) (5.2)

f(ρ) = a1 + a2ρ
0.25 + a3ρ

0.5 (5.3)

g(ρ) = b1 + b2ρ
0.25 + b3ρ

0.5 (5.4)

where ρ is a measure of the roughness and the coefficients for ai and bi are ob-

tained through a global fit. We could very easily implement this change in fitting the

measurement of trace chemicals on scattering substrates if the roughness is known.

Additional parameterizations may need to occur for substrates with an arbitrary

roughness. This roughness metric may be unnecessary if we decide to use second or-

der derivatives for chemical identification because the FOM used in Chap. IV depends
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more strongly on peak position than relative peak height changes.

5.3.6 Chemical Identification

The discussion of the figure of merit in subsection 4.6.1, shows that the rms

error between the second derivative of the library values and the second derivative

of the measured spectra may not have a high enough dynamic range to accurately

differentiate chemicals that may contain shallow reflectance features or too many zero

crossings. Because of this it would be beneficial to use machine learning algorithms for

classification [16] with or without principle component analysis to reduce the number

size of the data input [11]. Supervised machine learning could be used to group data

according to characteristics found in their spectra, where new unknown spectra can be

grouped under a specific classification. Second derivative spectra should still be used

during analysis to emphasize the sharp chemical features in the molecular fingerprint

regime.

5.3.7 BV Modeling for Microscopic FTIR Analysis

The BV solutions for a specific particle size can be integrated over various collec-

tion angles to produce spectra that may be collected by complicated optics. One such

example is the illumination and collection optics required for microscopic FTIR mea-

surements which involve the use of a Cassegrain reflector to focus a semi-hemisphere of

light onto a sample. The same Cassegrain reflector is used to capture reflected energy

from the opposite semi-hemisphere through a preset aperture. The reflectance spec-

tra would include the integration of 22° - 30° wedge integrated around an azimuthal

angle between 180° and 360°. A separate calculation would need to be performed for

every illumination angle within the same wedge, with azimuthal angle between 0° and

180° with a step size that would need to be determined through repetition.

This process would be computationally intensive, but would provide spectra that

110



is useful for microspectroscopy applications such as the investigation of particle con-

tamination on diffraction gratings or other delicate surfaces that cannot be touched

or polished without damage. It can also be useful in the examination of microstruc-

tures that are used to create anti-reflection coatings on fiber tips to determine if other

contaminants from stamping process are left on the fiber surface.

5.3.8 Comparisons to QCL Hypercube Sensing

A major competitor LWIR SC FTIR sensor presented in Chapter III is the use of

quantum cascade lasers with a LWIR imaging camera [17, 18]. Instead of requiring

an FTIR spectrometer to modulate the signal of a broadband source, an external-

cavity QCL can scan across wavelengths of interest while a camera records scattered

spectra per pixel over time. By matching time stamps with wavelength, a hypercube

of intensity vs wavelength vs position can be created for trace chemical location and

identification. The modeling theory described in Chapter IV applies to measurements

made via QCL, but with the aid of images to locate chemical contamination.

FTIR spectroscopy has the potential for providing full spectra faster than QCLs

can scan across the requisite wavelength range for chemical identification, but until

pulse-to-pulse variation in spectra can be mitigated or compensated for, QCL sources

can provide images in ˜12 s, or about as fast as the LWIR SC sensor can collect a

single spectra [19].

5.3.9 2D Array Detector for Standoff LWIR Sensing

One of the ways to create fast hyperspectral measurements while utilizing the

total output of the LWIR SC source would be to use a two-channel detector array

coupled to a LWIR diffraction grating. The diffraction grating would separate the

incoming light by wavelength along one direction of the array and provide a 1D image

along the other. By scanning the collection optics, a 3D hyperspectral cube can be
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formed quickly and efficiently.

Currently, we average 8 measurements of 500 scans to produce high SNR spectra.

That means that a pulse along the interferogram is averaged roughly 4000 times. If

we were to run the LWIR SC source at 400kHz, the pulse averaging can be achieved

in 10 ms for a 1D strip. For robustness, you may double the acquisition time and add

another 20 ms delay time between scanning mirror positions and a 128 x 128 pixel

hypercube can be collected within 5.12 s. By doubling the pulse repetition frequency,

this can drop to 2.56 s. A 128 x 128 pixel array could potentially be used to measure

a wavenumber range of 980 - 1492 cm−1 every 4 cm−1.

Additionally, if we include a second grating and detector array as a reference arm,

the simultaneous acquisition of both sample and reference arm data can eliminate

pulse-to-pulse variation noise. The SNR may increase from ˜10 dB per pulse to

within the noise limit of the detectors as seen in some studies where reference arms

were used to account for SC source fluctuations [20]. This would drastically reduce

the number of pulses required to collect high SNR spectra and decrease the acquisition

time by at least an order of magnitude.

5.3.10 Future of LWIR Sources for Standoff Chemical Detection

With the advancements of LWIR sources, detectors, and fibers it is possible to

create a standoff imaging sensor that can create hypercube images in less than a

second. QCLs currently produce the fastest spectra and are showing great promise

for standoff measurements on a wide array of substrates because of their ability to

background subtract spectra in real-time. Optical parametric amplifier pumped non-

linear crystals are swiftly approaching power levels in the LWIR that were presented

in Chapter II, [21] and may provide better noise characteristics due to the direct

pumping of fs pulses into the nonlinear crystal at the cost of a non-fiber coupled

output
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If the noise performance of the sensor can be improved via source pulse-fluctuation

improvements or the use of 2D detector arrays and a reference arm, real-time short

range investigation of scattered spectra, like that from luggage scanned by TSA could

be available within 10 years for SC based devices. If the reproducibility of the As2Se3

fiber does not improve, OPO pumped nonlinear crystals are very likely to become a

common LWIR SC source for standoff broadband illumination.

Quantum Cascade Laser based sources can currently measure concentrations as

low as 100 ng/cm2 at 1 m distances, and high SNR spectra of higher loading samples

at 15 m [19]. The distance and concentration limits should only improve because

LWIR QCL technology and stability have improved at pace with that of LWIR SC

sources. Their use in short-range standoff applications should start becoming more

prevalent within 5 years as imaging is already possible with these sources. QCLs may

become more pervasive than SC sources as a LWIR source because wavelength tuning

occurs source side and does not require additional components, such as gratings or

interferometers to produce spectra. This makes QCLs great for wavelength-based

investigation where the entire spectra provided by SC sources may not be necessary.
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