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ABSTRACT 
 

Understanding the relationship between protein structure and function is paramount to 

gaining insight into important biological mechanisms. In this context, pH often plays a significant 

role. The organization of charge within a protein prepares it to form intra-/inter-molecular 

interactions as the environmental pH changes. Studying the pKa values of titratable groups in a 

protein allows us to understand its electrostatic network.  Computational pKa values are influenced 

by a microscopic environment and are often compared to macroscopic pKa values derived from 

NMR experiments. In this work we aim to understand the impact of pH on NMR chemical shift 

perturbations such that we can bridge the gap between computational and experimental 

observables. 

Peptide model systems have historically been used in NMR spectroscopy to detangle the 

many contributions which compose the observable NMR chemical shift. Utilizing molecular 

dynamics simulations, we sampled the conformational preferences of model tripeptides each 

containing one of the four titratable groups (aspartic acid, glutamic acid, histidine or lysine) in 

either a protonated or deprotonated state. The conformational ensembles obtained during the 

simulations were then used to compute pH-dependent NMR chemical shift perturbations for each 

nucleus in the tripeptides. The perturbations agree well with experimental findings and elucidate 

the relationship between charge and chemical shift. Furthermore, these results allow for better 

interpretation of NMR spectra and the possible integration of pH in chemical shift prediction 

paradigms.  



 xiii 

Although random coil chemical shifts serve as the basis for chemical shift prediction and 

interpretation, the complexity of the protein environment can produce drastically different 

behaviors. In the second study, we investigate the ability to utilize peptide derived chemical shift 

perturbations along with through-space electrostatic and conformational effects to compute pH-

dependent NMR chemical shifts of the dynamic ensembles produced by constant pH molecular 

dynamics (CpHMD).  Hen egg white lysozyme (HEWL) is an appropriate benchmark protein to 

probe the efficacy of a new protocol which fortifies the microscopic pKa values from simulation 

with macroscopic influences. The inclusion of the pH-dependent chemical shift contribution 

improved the results from the empirical chemical shift predictor for both 15N and 1H atoms and 

added dimensionality to the CpHMD simulations informing pH-dependent conformational 

fluctuations in HEWL.  The newly derived macroscopic pKa values from simulation were directly 

compared to the experimental pKa values.  

Lastly, hisactophilin, a highly charged protein, is studied in order to identify critical 

residues that trigger the pH-dependent switching behavior of a post-translational modification. 

Hisactophilin has an N-terminal myristoyl group which is buried inside the beta-trefoil cavity in 

pH values greater than 7.5. However, at pH values lower than 6.5, the myristoyl group is accessible 

and may incorporate itself into an external lipid membrane. The small pH range where this 

switching behavior occurs likely corresponds with the protonation event of one or a few titratable 

residues. Implicit and explicit solvent CpHMD simulations allow us to explore the residues 

involved in the pH-dependent mechanism and formulate conclusions about charge redistribution.  
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CHAPTER 1 
 

Introduction 
 

1.1  Structural Biology of Proteins 

The ability to associate the intricate and intentional architecture of proteins with their evolved 

function is principal to understanding biology. Recent advances in the field of structural biology 

have increased our ability to answer foundational questions as more protein structures are 

deciphered. The main methodologies of this field include X-ray crystallography, cryo-electron 

microscopy and nuclear magnetic resonance (NMR) spectroscopy. X-ray crystallography which 

was pioneered by giants such as James Sumner, Dorothy Hodgkins, Max Perutz and Rosalind 

Franklin1 has seen great improvements such as the use of X-ray free electron lasers (XFEL)2 and 

lipidic cubic phase3. Not only does XFEL increase structure resolution by allowing for a longer 

diffraction time of crystals without the detrimental effects of radiation damage2; lipidic cubic phase 

is an elegant solution for the crystallization of difficult proteins such as those that are associated 

with membranes3.  

Cryo-electron microscopy with the invention of the Titan Krios can now achieve astonishing 

resolutions up to 3.5Å4, producing stunning images of virus capsids5 and large protein machines6. 

NMR spectroscopists have benefited from the superconducting 1.1 GHz magnet whose hyper-

sensitivity produces greater separation of resonances resulting in very high-resolution spectra7. 

NMR is unique among the other two techniques, as it allows for the elucidation of both structure 

and dynamics in real-time. With this capability, NMR has been utilized to investigate problems 
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such as amyloid aggregation8, protein folding9, chaperone activity10 and many other dynamic 

protein mechanisms11.  

With the availability of more protein structures, and the push toward atomic resolution, 

computational methodologies have become necessary not only in the form of noise reduction and 

image deconvolution, but as a way to provide great insight and guidance on all aspects of the 

protein structure-function relationship. As computational biophysics serves to propel the structural 

biology field forward, the need for seamless comparison between computational and experimental 

observables is imperative.   

1.2  Computing pKa Values 

When investigating the protein structure and function relationship, consideration of pH is 

paramount. The protein’s internal network of charge remains poised to respond to changes in the 

environmental pH. When this balance is perturbed titratable residues experience a protonation 

event. pKa values describe residue specific protonation events and reflect aspects of the residue’s 

microenvironment. Thus, the ability to measure or compute pKa values can illuminate the details 

of many pH-dependent mechanisms.  

Explicit solvent constant pH molecular dynamics simulation in the context of multi-site lambda 

dynamics (CpHMDMSLD) was developed by the Brooks group12-14 to allow for the calculation of 

nucleic acid and protein pKa values. This methodology utilizes a continuous variable, lambda12, 

which is allowed to fluctuate between the bounds of 0 and 112 representing the protonated and 

deprotonated states of a titratable residue14. For example, an aspartic acid residue is assigned three 

lambda sites, one monitoring protonation of the first oxygen on the sidechain carboxyl group, the 

second reports the titration on the second oxygen, and the third represents a fully deprotonated 

sidechain. The lambda values are coupled to the dynamic steps of the simulation14, such that both 
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protonation and conformation can be probed simultaneously14. However, because lambda is a 

continuous variable, unphysical intermediate states may occur and must be disregarded in the final 

calculations using a lambda cutoff (typically l > 0.80 is used)13. CpHMDMSLD relies on a hybrid 

Hamiltonian12 which describes the number of titrating residues, the protein environment and the 

coordinates of protonated and deprotonated sites14 – a complete expression of its potential energy 

equation can be found in references 12 to 14.  The free energy of protonation for model 

compounds14 (common titratable residues: aspartic acid, glutamic acid, histidine and lysine), is 

used to calibrate the environmental pH of the simulation in the form of fixed biases14. Parameters 

for titratable residues with high pKa values such as cysteine, arginine and tyrosine may also be 

computed. Furthermore, variable biases can be altered to increase sampling of specific protonation 

sites14. Benchmarking studies of this method indicate good agreement with experiment14-16, and it 

has been employed to study proteins in a variety of contexts, such as the identification of catalytic 

residues in cellobiohydrolases17 and recently the pH-dependent conformational mechanism of 

influenza A18. 

1.3  NMR Chemical Shift Prediction 

Due to the ability of NMR chemical shifts to comprehensively capture the local and global 

protein environment, there has been significant effort in recent years to establish methods that 

robustly predict these observables. In combination with classical descriptions of chemical 

phenomena19, 20, empirical observations have been used to inform highly accurate chemical shift 

prediction programs21-23. In addition, many popular predictors also employ machine learning 

algorithms and are trained with large databases of chemical shifts obtained either from 

experimental NMR data repositories21-23, such as the Biological Magnetic Resonance Bank 

(BMRB)24 or through numerous quantum mechanical NMR calculations25. SHIFTX2, one of the 
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most popular chemical shift prediction programs can predict backbone and sidechain chemical 

shifts with an accuracy of R=0.96 and R=0.99 respectively21. Utilizing a novel hybrid method, 

SHIFTX2 builds an extensive feature vector from protein coordinate data and uses an additive 

regression approach to produce chemical shifts based on structure21. It combines these predictions 

with SHIFTY+ which is a unique algorithm used to predict sequence based chemical shifts by 

identifying a sequence homolog with available chemical shift data21. This dual approach allows 

for highly accurate chemical shift predictions. Another predictor, SPARTA+22 emphasizes the 

relationship between torsion angles and chemical shifts as the input protein sequence is subdivided 

into tripeptide fragments. Additionally, information about hydrogen bonding interactions, ring 

current effect, electric field effects and predicted flexibility22 is included with the peptide fragments 

to produce a feature vector of 113 nodes22 from which a trained neural network is able to predict 

accurate backbone chemical shifts. The work of Robustelli et. al.26 has demonstrated that empirical 

predictors such as SPARTA+, show improved performance when an ensemble of structures from 

molecular dynamics is used to compute dynamically averaged chemical shifts, over those predicted 

from static crystal structures.  

The incorporation of machine learning has allowed for unparalleled accuracy in the 

prediction of NMR chemical shifts21,22. However, since the large volume of experimental chemical 

shifts required for algorithm training are frequently of proteins at physiological pH, non-

physiological conditions present a challenge for currently available predictors. As of 2017 there 

were only 59 entries listed in the BMRB of protein pH titrations, exemplifying the dearth of 

available pH NMR data. Many of the current predictors utilize the Buckingham equation20 to 

express the contribution of electrostatics to the predicted chemical shift.  

 



 
 

 
 

5 

 

The Buckingham equation20, of which will be a focal point of this thesis describes the electrostatic 

chemical shift contribution (dEF) with the following expression:               

						𝛿!" = 𝐴∥𝑬𝒛                                                                        (1) 

where Ez is the electric field (E) component of the nucleus of interest in the z direction, and AII 

represents the nuclear polarizability constant specific to the bond type20. However, the 

implementation of the Buckingham equation within these programs is limited to a few donor and 

acceptor pairs22,23 where the atomic charges remain static22,23. Although this maintains the 

predictor’s speed, it does not adequately capture the effects of pH especially for titratable residues. 

To date there are no available methods to predict pH-dependent NMR chemical shifts of proteins, 

with the exception of a recently developed predictor POTENCI27, from the Mulder group which 

predicts chemical shifts of intrinsically disordered polypeptides in various environmental pH and 

salt conditions. 

1.4 Outline of Thesis 

In the following dissertation, the second chapter presents the identification of pH-dependent 

chemical shift perturbations of model peptides. The subsequent chapter describes the application 

of the peptide derived chemical shifts to the hen egg white lysozyme protein. Chapter 4 examines 

the pertinent residues responsible for the pH-dependent switching mechanism of hisactophilin. 

Finally, the last chapter offers general conclusions and broader applications of this work. Each 

chapter follows the same structure with an introduction, methods section, results and conclusions 

followed by the bibliography.  
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CHAPTER 2 

 
Peptide NMR Chemical Shifts 

 
This chapter was adapted from:  
Artikis, E. and Brooks III, C.L., 2019. Modeling pH-Dependent NMR Chemical Shift 
Perturbations in Peptides. Biophysical journal, 117(2), pp.258-268. 
 
2.1 Introduction 
 

NMR chemical shifts are composite variables which allow for the holistic description of 

the atomic and chemical environment of a protein in the context of both dynamics and structure1,2. 

However, it is often difficult to decompose and interpret all of the factors that influence the 

experimentally measured chemical shifts. Nevertheless, both experimental and computational 

studies of model peptides have enabled a greater understanding of the relationship between 

chemical shifts and physical attributes of the peptides and their environments3-5,54. In combination 

with classical descriptions of chemical phenomena6-9, empirical observations have been used to 

inform highly accurate chemical shift prediction programs10-15. In addition, many popular 

predictors also employ machine learning algorithms and are trained with large databases of 

chemical shifts obtained either from experimental NMR data repositories10-12, such as the 

Biological Magnetic Resonance Bank (BMRB),15 or through numerous quantum mechanical 

calculations13,14.  

Currently, most chemical shift predictors compute absolute shifts at physiological pH (6.5-

7.5), since most NMR data repositories do not contain a statistically significant number of pH 

dependent chemical shift datasets16 to enable the parameterization of pH conditions outside of this 
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range. The influences of pH on the shielding of atomic nuclei, which give rise to the observed 

chemical shift, result from the change in the electronic environment of these nuclei. This may be 

considered to arise from two mechanisms one local, the chemical environment specific electronic 

structure change due to the addition or loss of a proton at the site of protonation: effects that occur 

through charge rearrangement in the bonded environment of the site of protonation state change. 

The other being a through-space electrostatic effect from the altered electrostatic fields this charge 

change and any attendant conformational changes produce for nuclei that are not local, in the 

bonded sense, to the site of change. The electrostatic effects in most chemical shift predictors are 

primarily modeled by the Buckingham equation (Eq. 1) 9.  This formulism computes the 

electrostatic chemical shift contribution (dEF):               

						𝛿!" = 𝐴∥𝐸%                                                                        (1) 

where Ez is the electric field (E) component of the nucleus of interest in the z direction, and AII 

represents the nuclear polarizability constant specific to the bond type9. This description is 

primarily useful for through-space effects and is typically applied to amide proton and nitrogens 

which tend to be most sensitive to solvent-exposure17. However, the through-space effects alone 

do not fully capture the complexity of pH-dependent NMR chemical shift perturbations (CSPs) as 

noted above, because nuclei closest to the titrating group may be dominated by through-bond 

shielding effects. It has been demonstrated that nuclei on the titratable residue exhibit prominent 

CSPs and serve as reporters for pKa determination in NMR titration experiments16,22. In a 

bioinformatics survey of the existing NMR pH titration datasets deposited in the BMRB, Farrell 

et. al report significant CSPs (0.1 - 0.9 ppm: 1H, 0.7 – 2.9 ppm :15N, and 1.2 - 3.7 ppm:13C) 

associated with model pKa values16. 
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Pioneering ab initio studies on model peptides have greatly contributed to the 

understanding of NMR chemical shifts and have established guidelines for the interpretation and 

prediction of these observables24-27. In this work, we expand on these efforts by further 

investigating the relationship between protonation and pH dependent NMR chemical shifts of 

model tri-peptides (Figure 1).  Previous DFT (density functional theory) studies of pH effects have 

compared absolute NMR chemical shifts to the experimental datasets of random coils28,29.  

Notably, Xu et. al26, using the peptide construct Ace-GGXGG-NH2 concluded that “gas-phase 

DFT NMR chemical shifts of neutral titratable groups (X=Asp, Glu, Lys and Arg) produced better 

agreement with experimental measurements than when compared to the corresponding charged 

residues”26. In this work, we will utilize the recently published NMR dataset from the McIntosh 

group30 for the systematic comparison of computed pH-dependent CSPs.  

In our approach, molecular dynamics (MD) was carried out to probe the conformational 

preferences of protonated and deprotonated states of titratable groups Asp, Glu, His and Lys in a 

tri-peptide construct.  

 

Figure 2.1. Tri-peptide construct used in all calculations adopted from Platzer et. al30. The peptide with 
the sequence Ace-GXG-NH2 where X represents R-groups Asp, Glu, His and Lys is either in a protonated 
or deprotonated state. 
 
Subsequently, we utilized quantum mechanical (QM) calculations to compute NMR chemical 

shifts and compare our calculations to the measured chemical shift perturbations as published by 
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the McIntosh group30. Finally, we examine the impact of through-space effects on the amide-

protons and carbonyl carbons by both applying the Buckingham equation to the results of the ab 

initio calculations as well as by adding explicit water molecules to the DFT chemical shift 

calculations. From these results, we hope to better understand the manifestation of pH in NMR 

CSPs such that we can establish the groundwork for fortifying already available chemical shift 

predictors with the ability to compute NMR chemical shifts for proteins in a variety of pH 

conditions.  

2.2 Methodology 

2.2.1 Building Input Structures 

Peptides were built using the CHARMM simulation package31, with the sequence Ace-GLY-X-

GLY-NH2 where X is the titratable residue of interest (ASP, GLU, HIS, or LYS). Protonation 

states were altered using the respective CHARMM patches, ASPP, GLUP, LSN, and the terminal 

ends of the peptides were capped using the ACE and CT2 patches. For each peptide, protonated 

and deprotonated states were generated, with the exception of histidine for which two deprotonated 

states were built to represent the variable occupation of the exchangeable proton on either the 

epsilon or delta nitrogen (HSE, HSD).  

2.2.2 Implicit Solvent GBSW Molecular Dynamics Simulations 

Structural ensembles of each peptide were produced for a fixed protonation state by running 650 

ns of molecular dynamics. The GBSW (a generalized Born model with a simple switching 

function) implicit solvent model34 was used and a salt concentration of 50mM was included in 

order to replicate experimental conditions30. All implicit solvent simulations were performed using 

the CHARMM package and the CHARMM2232 force field with GBSW-specific CMAP33 

backbone correction. A non-bonded cutoff of 12 Å was applied, as well as SHAKE35 constraints 
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to all bonds containing hydrogens. All peptide structures were initially minimized with 100 steps 

of steepest decent minimization and all MD simulations were performed in triplicate at 298K. 

Convergence was demonstrated by verifying that each titratable group sampled the same 

Ramachandran space with similar frequency during all three independent runs (Supplementary 

Figure 1). 

2.2.3 Explicit Solvent Molecular Dynamics Simulations  

For further inspection of solvation effects on amide protons and carbonyl carbons, 10 ns of 

dynamics was performed in explicit solvent utilizing the CHARMM36 force field36. The charges 

in the CHARMM 36 and CHARMM 22 force fields are identical, as are the peptide conformations 

which were fixed with restraints. The geometry optimized cluster structures (as described below 

in the cluster analysis section) were solvated in a TIP3P37 cubic box. The convpdb.pl program 

from the MMTSB toolset38 was utilized for this task. Counter ions were added to replicate an 

experimental salt concentration of 50mM NaCl and constraints were applied to all peptide atoms 

using the cons fix facility in CHARMM; this ensured that the representative conformations were 

kept fixed throughout the duration of the runs to correspond to the same conformational states that 

were used in the optimized quantum mechanical calculations of the chemical shifts.  A non-bonded 

cutoff of 10 Å was applied, as well as SHAKE constraints to all bonds containing hydrogens. These 

runs were performed in triplicate for the protonated and deprotonated cluster representatives for 

each peptide. 

2.2.4 K-Means Cluster Analysis 

Analysis of the implicit solvent trajectories was carried out utilizing the CORREL functionality in 

CHARMM which computed select torsional angles (f, y, c) of the peptides as a function of time. 

The ACE and CT2 caps were included in the phi and psi angles of the terminal glycine residues.  
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The torsional time series was clustered using K-means clustering with a cluster radius cutoff of 

100°, which was selected to identify large torsion angle fluctuations39, the angle flag was 

employed, to take angle periodicity into account. For all calculations utilizing ‘cluster structures’, 

the structures closest in root-mean-square distance to the cluster centroids were selected as 

representatives of the corresponding subpopulations. The representative structures were given 

weights based on the number of members in the respective cluster population. As aforementioned, 

these structures were then used to perform the explicit MD simulations. 

2.2.5 Calculation of Chemical Shifts 

NMR chemical shielding tensors were computed using the GIAO-DFT methodology in the 

quantum chemical suite Gaussian 0940. Input structures were obtained either directly from the MD 

simulations or the clustering analysis. Geometry optimization was performed utilizing the 

B3LYP/6-31+G* level of theory. In order to preserve the desired peptide conformation, the f, y, 

and c angles used in the clustering analysis were constrained during the optimization procedure. 

In all of the calculations, solvent effects were incorporated with the use of the integral equation 

formalism polarizable continuum model (IEF-PCM)41, specifying a solvent dielectric of 78.  NMR 

chemical shielding tensors of the optimized structures were computed at the B3LYP/6-311++G** 

level of theory, which has been employed in studies of biomolecules to produce good agreement 

between computed and measured NMR chemical shifts26,42. Diffusivity was added to both of the 

basis sets to account for the anionic nature of the relevant deprotonated peptides. The CSPs 

computed for the histidine tautomers were averaged with an 80:20 ratio to favor the Nε tautomer, which 

has been shown to be more biologically prevalent30. The final number of frames for any given peptide 

is 1,000. NMR chemical shifts (Supplementary Tables 1,2,3) for the peptides were obtained by 

referencing computed shielding tensors to DSS (sodium 4,4-dimentyl-4-silapentane-1-sulfonate) 
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shielding tensors, which were calculated at the same level of theory (C13: 186.52 ppm; H1: 30.47 

ppm).  Nitrogen shielding tensors were referenced to ammonia (15N: 232.77ppm), which was 

computed utilizing the same procedure as that of the peptides and DSS. From explicit solvent 

simulations, 100 frames evenly interspersed were selected from each simulation and all TIP3P 

water molecules within a 3Å radius around any atom in the corresponding peptide was extracted 

for DFT calculations. The structures containing the water molecules were not geometry optimized 

(as they were kept fixed throughout the MD simulation) and the chemical shifts were computed at 

the B3LYP/6-31+G* level of theory. The chemical shifts were then weighted by the representative 

cluster weights as described in the previous section. For the application of the Buckingham 

correction, the Buckingham equation9 was used as shown in equation 1, where the electric field 

component of each amide proton was computed by CHARMM. An average over 1,000 frames 

from the explicit solvent simulations was used to compute the average Ez for each (de)protonated 

peptide. A HN polarizability constant of 118 ppm*au was applied17. 

2.3 Results and Discussion 

2.3.1 Conformational sampling of model peptides 

Daggett and coworkers have demonstrated the impact of protonation on the ability for titratable 

residues to display a conformational preference within glycine and alanine penta-peptides 43,51.  

Therefore, in the exploration of the protonation dependence of NMR CSPs, our study began by 

generating ensembles for each of the tripeptides in fully protonated or deprotonated states in order 

to account for conformational preferences. Figure 2 depicts the phi (f) and psi (y) frequencies 

sampled for the respective titratable groups over the course of a 650 ns simulation. From the 

Ramachandran plots, it is apparent that all peptides predominantly sample the right-handed alpha 

helical conformation (f, y: -60°, -45°).   
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Figure 2.2 Ramachandran plots of titratable residues in tripeptides. The Ramachandran plots for the 
titratable groups in the peptide Ace-GXG-NH2 are shown. The dihedral angles for 3 million frames are 
binned with a grid size of 475. Prominent shifts in sampling are indicated with red arrows. In all panel HA 
denotes a protonated peptide and A is unprotonated. By visual inspection, it is observed that the right-
handed alpha helical region is primarily occupied. The shifts for ASP (A) and GLU (B) show depopulation 
of the beta strand region for the PPII space. HIS (C) indicates a large variation in sampling between the 
two tautomers, the Nd  tautomer (D in histidine figure, E shows the Ne tautomer) closely resembling the 
sampling of the fully protonated histidine. LYS (E) does not show any significant sampling variations.  
 

This is to be expected as the tri-peptides are not true random coils43,51. Also evident, are the 

qualitative differences in the sampling between protonated and deprotonated forms of the ASP, 

GLU and HIS residues. In both states, aspartic acid primarily occupies the right-handed alpha helix 

followed by the less populated beta sheet and polyproline helical (type I or II) regions. Upon 

protonation however, there is a significant shift in the occupancy of the dihedral space, and the 

concentrated turn II population becomes equally dispersed between three states – the beta sheet, 

turn-II and left-handed alpha helix. An increase in the sampling of the right-handed alpha helix is 

observed, likely originating from interactions of the negatively charged carboxyl group with 

neighboring moieties, allowing for the higher prevalence and stabilization of the turn-II structure43. 
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A similar trend is observed in the regions sampled by glutamic acid. The turn-I/turn-II regions are 

highly populated, followed by the beta-sheet space and the right handed alpha helix. The change 

in protonation shifts the polyproline-like character towards a wider sampling of the right handed 

helical region. This is anticipated as the side chain is chemically similar to aspartic acid. 

Presumably, the length of the chain due to the additional carbon adding allows for increased 

flexibility.  

Figure 2 also demonstrates that the dihedral occupation of histidine is vastly different for 

the two tautomers.  Specifically, the epsilon (Ne) tautomer (indicated by E in Figure 2C) samples 

the right handed alpha helix with greater frequency than any other of the four titratable residues. 

This is in stark contrast to the delta (Nd) tautomer (D in Figure 2C) which resembles the sampling 

of the fully protonated histidine, with the majority of the occupied dihedral space near the right-

handed alpha helix. Lysine is the only residue which does not exhibit major sampling variations 

upon protonation. There is a slight increase in the polyproline II character of the deprotonated 

state, however the length of the side chain appears to diminish any conformational preference. Our 

results in sampling agree with the findings of Daggett43 with the exception of the shift in protonated 

and deprotonated forms of glutamic acid where there is a shift towards the left-handed alpha helix 

upon protonation.  The variation is likely attributable to differences in force fields and 

methodologies.  

2.3.2 Computing pH dependent NMR chemical shift perturbations 

In order to introduce dynamical averaging and recapitulate the sampling variations exhibited in the 

protonated and deprotonated structural ensembles, 1,000 frames were selected (1 frame every 650 

picoseconds) from each MD trajectory for the calculation of absolute chemical shifts. The absolute 
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shifts for each frame were then averaged and the CSP for each nucleus was computed with the 

following equation 

                 ∆𝛿 = 𝛿& − 𝛿'&                                      (2) 

 where A and HA denote the deprotonated and protonated residue types, respectively.   

Carbon Perturbations.  

The results for the CSPs of the 13C nuclei are displayed in Figure 3 and Table 1. At first glance, it 

is evident that the computed 13C perturbations are significant, ranging from -2.5 ppm to 7.5 ppm. 

As expected, the largest CSPs are observed in the carbon atoms near the (de)protonation site, and 

generally all atoms in the titratable group. In the aspartic acid tri-peptide (Figure 3A), the computed 

deshielding is most evident in the 13Cb, 13Cg and 13CO nuclei, which have a downfield shift of 6.9 

ppm, 2.4 ppm and 3.2 ppm, respectively. The large perturbations in the backbone 13Ca (3.5 ppm) 

and side chain 13Cb (6.9 ppm) atoms suggest notable differences in the secondary structures4 of 

the deprotonated and protonated tri-peptide forms. These results mirror the Ramachandran plots 

in Figure 2, which also illustrate structural differences, suggesting that an average of 1,000 frames 

sufficiently captures the structural equilibria of the MD ensembles.  
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Figure 2.3 Computed 13C pH-dependent CSPs. The computed CSPs for all carbon atoms in the tri-peptides are 
displayed. Each panel represents an average of 1,000 structural conformations for each protonation state. The residue 
name is indicated in each plot and the carbon types follow the peptide backbone starting with the ACE cap (CH3). 
Perturbations for this atom type range from -2.5 ppm to 7.5 ppm, with the largest shifts occurring on the titratable 
residue. 
 
Of particular importance in pKa determination is the CSP of the terminal carboxyl carbon, 

commonly known as a ‘reporter nucleus’30. Its close proximity to the protonation site enables 

increased sensitivity for the presence or absence of the proton on the carboxylic oxygen. While the 

13Cg can also be influenced by torsional rotations (seen in solid-state NMR)45 the majority of the 

perturbation is generally due to inductive charge effects. In Figure 3, it can be seen that the carbon 

directly bound to the carboxylic acid (Figure 3A: 13Cb or Figure 3B: 13Cg) experiences the largest 

protonation-dependent perturbation and not the carboxylic acid. The aspartic acid 

13Cg experiences a downfield CSP of 2.4 ppm upon protonation. In glutamic acid (Figure 3B), a 

similar trend for the carbon atoms is observed as the most prominent CSPs are seen in the 13Cg 
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(6.6 ppm) and the 13Cd (3.1 ppm), the two carbons directly adjacent to the titratable moiety. 

Analogous to the conformational relevance of 13Ca  and 13Cb chemical shifts, the shifts of the 

13Cg  and 13Cd  nuclei in the histidine imidazole ring are often indicative of the residue’s tautomeric 

state44. This is exhibited in Figure 3C, as the 13Cd2  perturbation is shifted by -2.5 ppm which 

suggests a larger population of the Ne tautomer30. The CSPs computed for the histidine tautomers 

were averaged with an 80:20 ratio to favor the Ne tautomer, which has been shown to be more 

biologically prevalent30. This ratio was utilized to replicate the averaging protocol used in the 

Platzer et. al study30, against which our computed CSPs are compared. Perhaps the most 

unambiguous CSP occurs for the 13Cd nucleus of the lysine tri-peptide (Figure 3D). Due to the 

lack of conformational difference between the charged and uncharged forms, as exhibited by the 

Ramachandran plots in Figure 2, the 13Cd nucleus, which is shifted by 7.5 ppm, is likely displaying 

a primarily charge-driven shift.  

Generally, the computed CSPs are in good agreement with the measured CSPs (Table 1). 

The individual Pearson Correlation Coefficients (R) range from 0.83 to 0.90 for the four model 

peptides and collectively the 13C CPSs have an average mean absolute error (MAE) of 0.73 ppm.  

This is a much lower MAE than those produced from the ab intio calculations of absolute 13C 

chemical shifts, which can range from 1.5 to 3.4 ppm42. Identifying trends in the perturbations of 

absolute chemical shifts allows for the mitigation of systematic error and basis set dependence. 

Due to the greater sensitivity of quantum mechanical methods to the geometrical features of the 

input structure than empirical methods47, it has been demonstrated that DFT calculations cannot 
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produce the same accuracy in computed chemical shifts that is observed from empirically derived 

shifts, when comparing to experimental values. Furthermore, although B3LYP has been 

successfully employed in previous NMR studies to compute chemical shifts, it is known that 

B3LYP tends to yield chemical shifts that are systemically biased toward higher fields carboxylic 

acid nuclei11. This phenomenon is apparent in our calculations as the average correlation of the 

13C CSPs (R = 0.85) significantly improves (R = 0.91) when not considering carboxylic 13C atom. 

Table 2.1 Average computed CSPs compared to experimental CSPs 
 

15N NMR chemical shift perturbations 
 

 

13C NMR chemical shift perturbations 

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.83 1.57 0.99 
GLU 0.86 1.19 0.79 
HIS 0.89 0.77 0.52 
LYS 0.90 1.10 0.60 

 
1H* NMR chemical shift perturbations  

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.99 0.10 0.07 
GLU 0.98 0.07 0.04 
HIS 0.91 0.14 0.10 
LYS 0.99 0.67 0.26 

*Excluding exchangeable protons 
 
Table 2.1. Computed CSPs over an average from 1,000 frames are correlated to the experimental CSPs 
provided in Platzer et al.30 Overall, correlations and low MAE values indicate good agreement between 
computed and experimental CSPs. 
 
Moreover, the calculation of relative shift perturbations instead of absolute shifts allows for the 

capacity of generalization, as this suggests CSPs are indicative of global trends, which is important 

when attempting to enhance an existing predictor with pH sensitivity (minimizing the focus on 

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.95 2.15 1.74 
GLU 0.98 0.61 0.52 
HIS 0.99 8.63 5.53 
LYS 0.99 2.32 1.40 



 
 

 
 

22 

accuracy). Furthermore, the verification that 13C atom types are highly sensitive to changes in pH 

enables the incorporation of pH-dependency in predictors that can only predict shifts for carbon 

atom types, such as CheShift49 and LarmorD50. 

Nitrogen Perturbations 

 15N nuclei are ubiquitous in pKa measurements, as nitrogens are especially sensitive to solvent 

effects53. The computed 15N CSPs are shown in Figure 4. Aspartic (Figure 4A) and glutamic acid 

(Figure 4B) have modest 15N perturbations at 5.2 ppm and 2.0 ppm, respectively.  

 

Figure 2.4. Computed 15N pH-dependent CSPs. The computed CSPs for all nitrogen atoms in the tri-
peptides are displayed. Each panel represents an average over 1,000 structural conformations for each 
protonation state. The residue name is indicated in each plot and the nitrogen types follow the peptide 
backbone starting with the glycine backbone nitrogen to the terminal NT2 cap (only perturbations for which 
there is experimental data is displayed). Perturbations for this atom type range from -12.1 ppm to 73.8 ppm, 
with the largest shifts occurring on the titratable residue. 
 
The increase in aspartic and glutamic acid 15N shifts may be indicative of either an inter or intra-

molecular hydrogen bond30. Histidine (Figure 4C) displayed a backbone 15N perturbation of the 
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same magnitude as aspartic and glutamic acid at 5.3 ppm. However, the effect of protonation is 

most visible in the highly perturbed 15Nd1 resonance, which has a remarkable downfield shift of 

73.8 ppm. The alternative protonation site, 15Ne2 , is only perturbed by 13.0 ppm. The backbone 

15N CSP of lysine is minimal at 0.06 ppm. As aforementioned, there is no significant 

conformational difference between the protonated and deprotonated peptide form for LYS, and the 

side chain’s length precludes any intramolecular hydrogen bonding. The ‘reporter nucleus’ for 

lysine is the 15Nz atom which exhibits an upfield shift of -12.07 ppm. 

Typically, the inclusion of explicit solvent is necessary to compute accurate absolute 

chemical shifts for this atom type52.  However, the coarse description of solvent (implicit solvent) 

that was used in the MD and DFT calculations, proved sufficient to elicit the pH-sensitivity of 15N 

CSPs suggesting that the primary effect of the perturbation is due to through-bond charge effects. 

The average correlation of the 15N perturbations is R = 0.99 between the computed and 

experimental CSPs (Table 1). The average MAE for the 15N perturbations is 2.29 ppm and if the 

perturbed 15Nd1 resonance of the histidine residue, with a CSP of 73.8 ppm, is neglected the MAE 

is lower still at 1.22 ppm. This is because the experimental CSP for this atom type is 55.5 ppm30, 

a difference of approximately 18 ppm, significantly skewing the computation of the mean average 

error. Despite this discrepancy in histidine, the overall pH-dependent trends considering all peptide 

models are very well captured. In comparing the carbon and nitrogen CSP distributions, it is 

apparent that the through-bond effects sharply diminish with distance. This is especially apparent 

in the lysine 15N CSPs where the backbone 15N is not meaningfully influenced by the protonation 

event.  
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Proton Perturbations 

The computed proton perturbations were the least sensitive to pH and are shown in Figure 5. Only 

non-exchangeable protons (except for amide protons in the imidazole ring of histidine and the 

lysine side chain) are displayed since hydrogen bonding effects that predominantly influence the 

1HN nuclei CSPs are not well described with implicit solvent models50. For aspartic and glutamic 

acid, most of the pertinent protons (1Ha and 1Hb) were shifted upfield. The most pH-dependent 

CSPs were observed in the protons near the protonation site and were upshifted by a similar 

magnitude (~ -0.4 ppm) in the aspartic acid, glutamic acid and histidine peptides. 

 

Figure 2.5 Computed 1H pH-dependent CSPs. The computed CSPs for protons in the tri-peptides are 
displayed. Exchangeable protons are excluded due to their sensitivity to hydrogen bonding. Each panel 
represents an average of 1,000 structural conformations for each protonation state. The residue name is 
indicated in each plot and the proton types follow the peptide backbone starting with the Ace cap (only 
perturbations for which there is experimental data is displayed). Perturbations for this atom type range from 
-3.8ppm to 0.10 ppm, with the largest shifts occurring on the titratable residue. 
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The protons on the imidazole ring, particularly 1He1 and 1Hd2 displayed perturbations of -0.58 ppm 

and -0.31 ppm reproducing the tautomeric trends of the 15N CSPs. Lysine proton perturbations are 

also indicative of protonation, especially for the 1Hz  which had a shift of -3.8 ppm. It is apparent 

from Figure 5D that the lysine protons 1Hd and 1He  also experience pronounced perturbations.  

Agreement with experimental values for non-exchangeable protons was generally good 

with an average correlation of R = 0.98. Most of the protons are highly dependent on secondary 

structure (1Ha and 1Hb) and can therefore be used to confirm the sampling in the MD ensembles. 

Most germane for pH sensitivity are the amide protons, which in addition to describing solvent 

effects and hydrogen bond formation, tend to rapidly exchange. As previously discussed, although 

the granularity of the GBSW/PCM solvent approximation does not adversely impact the 

computation of the 15N CSPs, the exceptional sensitivity of amide protons requires the 

incorporation of explicit solvent or a long-range electrostatic correction52 which will be discussed 

in a subsequent section.  

2.3.3 K-means clustering of dihedral space for model peptides 

In an attempt to reduce the overall computational cost of the DFT calculations, K-means clustering 

was used to classify the conformational distributions of the MD ensemble. By utilizing K-means 

clustering the MD ensemble can be described by a significantly condensed number of structures 

(12-35 frames). The small number of representative structures can then be weighted according to 

cluster member population, and therefore can be used to reproduce the conformational distribution 

of the ensemble. This method was validated by computing the weight-averaged CSPs for the 

clustered structures. The largest contributing structures represent 5-19% of the general population 

and, for the majority of the peptides, reproduce the qualitative structures observed in the 

Ramachandran plots (Figure 2). More importantly, the weighted-average CSPs of the peptide 
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clusters display reasonable agreement to the original computed CSPs (which CSPs of 1,000 frames 

were averaged) as well as the experimental results as is seen in Table 2. Because dynamical 

averaging is crucial in computing accurate NMR chemical shifts52, there is a slight drop in the 

Pearson correlation coefficient for the clustered CSPs. Clustering is an important step as it enables 

a better understanding of the conformational ensemble and the ability to independently tune the 

weights of each representative to better match experimental CSP observations. 

Table 2.2 Computed pH dependent CSPs of clusters compared to experimental CSPs 
 

15N NMR chemical shift perturbations 

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.80 4.10 3.62 
GLU 0.84 1.31 1.10 
HIS 0.99 8.21 5.11 
LYS 0.99 2.02 1.40 

 

13C NMR chemical shift perturbations 

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.72 2.18 1.62 
GLU 0.87 1.08 0.80 
HIS 0.79 1.40 0.99 
LYS 0.91 1.46 0.99 

 
1H* NMR chemical shift perturbations  

Residue R RMSE 
(ppm) 

MAE 
(ppm) 

ASP 0.87 0.23 0.18 
GLU 0.90 0.06 0.06 
HIS 0.80 0.18 0.16 
LYS 0.99 0.67 0.31 

*Excluding exchangeable protons 
 
Table 2.2 Weighted averages of the CSPs computed for the clustered structures are correlated to the 
experimental CSPs provided in Platzer et al30. Correlations indicate that clustering with a radius of 100° is 
sufficient to reproduce the MD ensemble for the calculation of CSPs.  
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2.3.4 Examination of Through-Space Effects 

In investigating pH-dependent CSPs thus far, we have focused only on non-exchangeable 

protons. However, due to the amide proton’s exquisite sensitivity to its environment, these nuclei 

tend to play an important role in the pKa determination by NMR spectroscopy. Since our 

calculations utilize implicit solvation models, it was not surprising to see that the inclusion of 

computed exchangeable proton CSPs significantly decreases the overall 1H CSP correlation 

coefficient from R = 0.99 to R=0.54. Incorporation of through-space effects is therefore necessary 

to improve the computed CSPs of this nucleus type. We first examined the impact of adding 

explicit water by solving the Buckingham equation (BEQ). Explicit solvent MD simulations were 

performed for the representative structures determined by the clustering procedure described in 

the methods section. During the 10 ns simulations, structures were harmonically restrained and 

only water molecules were allowed to move. The electrostatic interaction energy between the 

water molecules and the amide proton of interest was computed and the difference in the Ez 

component between the protonated and deprotonated form of the respective peptide was used in 

the Buckingham equation. The Buckingham equation accounts predominantly for through-space 

effects, which are the overriding effects described by the 1HN perturbations. The CSPs derived 

from the Buckingham formalism were then added to the CSPs computed by DFT: thereby, 

accounting for both through-bond and through-space contributions; the results of which are 

presented in Table 3. It is evident that the correlation coefficient for the amide proton CSPs 

computed in implicit solvent is quite poor at R = -0.57 compared to experiment. Addition of the 

BEQ correction slightly improves the correlation to R = -0.44, but does not mitigate the inadequate 

representation of the amide proton CSPs and suggests that the predominant variable causing the 

1HN perturbations is not a simple electrostatic through-space effect. 
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When examining the computed absolute chemical shifts of the exchangeable protons, it is 

observed that the average 1HN absolute chemical shift is approximately 4.5 ppm. This suggests 

that it is highly unlikely for the majority of the amide protons in the tri-peptide ensembles to be 

participating in any sort of hydrogen bonding52 (in this case only intramolecular hydrogen bonding 

is available as there are no explicit water molecules present). It has been demonstrated by Exner 

and coworkers52 that an amide proton engaged in hydrogen bonding may exhibit an absolute 

chemical shift between 6 and 8 ppm depending of the strength of the bond (i.e. angle, distance)52. 

Hence, to improve the accuracy of the amide proton CSPs, the chemical shifts of the representative 

structures were recomputed with the addition of a 4Å radius hydration shell around the peptide. 

The inclusion of explicit water molecules in the DFT calculations allows for a better description 

of the charge transfer that occurs during a hydrogen bonding. As can be observed in Table 3, the 

explicit calculations of CSP increase the correlation significantly to R = 0.67, emphasizing the 

impact of hydrogen bonding even when the degree of solvent averaging utilized in the calculations 

is small (100 configurations of solvent snapshots from each cluster simulation were used in our 

quantum mechanical calculations).  
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Table 2.3 Computed 1HN CSPs for ASP, GLU and HIS 

HN Type Exp3

0 
Implicit Explicit Implicit + 

BEQ 

GLY 1  0.02 0.00 0.01 -0.23 
ASP 2  -0.17 0.35 -1.03 0.29 
GLY 3  -0.03 0.00 0.03 0.17 
GLY 1  0.00 0.00 0.01 -0.26 
GLU 2  0.12 0.49 -0.18 0.64 
GLY 3  0.02 0.36 -0.06 0.68 
GLY 1  -0.01 0.19 -0.18 -0.07 
HIS 2  -0.20 1.63 -0.39 1.59 

R     -0.57 0.67 -0.44 
 
Table 2.3 Weighted CSPs computed for backbone amide protons of ASP, GLU, and HIS compared to 
available experimental CSPs provided by Platzer et al30. Implicit denotes DFT calculated CSPs with the 
utilization of implicit solvent models, and explicit indicates the presence of water molecules in the DFT 
calculation. BEQ is an abbreviation for the Buckingham equation which was used to compute the through-
space contribution and was subsequently added to the implicit CSPs.  
 
Many available chemical shift predictors already utilize a combination of the Buckingham 

formulism along with an empirically derived hydrogen bonding correction in order to ensure valid 

HN predictions.   

2.4 Conclusion 

Using model tri-peptides, we have demonstrated that a combination of molecular dynamics 

and quantum mechanics allows for the recapitulation of trends observed in experimental pH-

dependent NMR chemical shift perturbations. In the context of pH, we simplified chemical shift 

influences as either through-space or through-bond. Molecular dynamics ensembles of the tri-

peptides provide insight into the through-space contributions of charge dependent conformational 

states. Although the most densely populated dihedral space observed, was that of the right-handed 

alpha helix - aspartic acid, glutamic acid and histidine sampled alternative subpopulations 

depending on the side chain’s charge. Our findings agree with similar studies illustrating variation 

in the dihedral distribution of model peptides in similar constructs43,51.  
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By considering the conformational variability through dynamical averaging, the observed 

conformational preference is manifested in the computed CPSs. For the averaged ensemble, 13C, 

15N and 1H nuclei had computed CSPs which correlated quite well with experimental values 

(correlation of R = 0.85, 0.99, 0.98 respectively). Furthermore, the computed MAE and RSME 

was correspondingly low compared to ab initio studies which compare absolute chemical shifts to 

experimental chemical shifts42. Clustering the ensembles allows further insight into the types of 

secondary structural features that are dominating the through-space contribution of the computed 

chemical shift – and can serve to reproduce the experimental ensemble by tuning the various 

cluster weights. More importantly, computing perturbations allows for the identification of 

systematic trends - for example, in our calculations we observe an average 13C perturbation of 

approximately 4.5 ppm for aspartic and glutamic acids upon protonation. Interestingly, 

experimental studies on proteins and peptides report similar 13C chemical shift perturbations for 

aspartic and glutamic acid at ~3-4 ppm19,22. Furthermore, it has been shown that the amide 15N in 

histidine shifts on the order of ~73ppm30. Despite the conformational environment, particular 

nuclei exhibit consistent perturbations indicating that the through-bond or electronic structure 

effects due to protonation are the predominant influence when computing pH-dependent CSPs. 

Not only may these through-bond contributions surpass those of through-space variations in 

magnitude, but they are predictable (i.e. systematic). Table 4 illustrates this point by indicating 

generally good agreement with CSPs measure in proteins compared to those seen in peptides16,22. 
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Table 2.4. Comparison of Peptide CSPs with Reported Protein CSPs 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2.4 Above are the typical heteronuclear pH-dependent chemical shifts compiled from pH titrations 
of proteins16,22 compared to those observed experimentally and computationally in peptides.  

 

The complexity of pH cannot be detangled into a single variable as its impact largely 

permeates the other chemical shift contributors (ie. conformational variation, hydrogen bonding, 

electrostatics, etc.). Here we demonstrate that in addition to the electrostatic contribution, which 

accounts for through-space effects, it would be prudent to include a separate variable which 

describes the inductive effect that is observed when protonation occurs. Hence, when augmenting 

chemical shift predictors with the ability to consider pH dependent chemical shifts an approach 

Residue 
Type 

Atom 
Type 

Protein 
CSPs16,22 

(ppm) 

Peptide 
CSPs30 

(ppm) 

Computed 
CSPs 
(ppm) 

ASP CA 1.43 1.4 3.5 
 CB 2.3, 3 3 6.9 
 CG 3.12, 4 3.2 2.4 
 N 1.32 1.5 5.2 
 HA 0.12 -0.17 -0.3 
 HB 0.25 -0.23 -0.4 

GLU CG 4 3.5 6.6 
 CD 3.74, 4 4.1 3.1 
 N 0.67 1 2 
 HA 0.07 -0.1 -0.1 
 HB 0.22 -0.06 -0.1 
 HG 0.24 -0.22 -0.4 

HIS CG 2.6 4.2 3.6 
 CE1 2.15 2.6 2.4 
 N 2.86 1.8 5.3 
 ND1 73 56 73 
 NE2 2.78, -9 8 13 
 HB 0.66 -0.17 -0.2 
 HD2 0.33 -0.33 -0.3 
 HE1 0.86 -0.92 -0.6 

LYS CE 1.27 1 -1.8 
 N 0.65 0.7 0 
 NZ -7 -7.5 -12.1 
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where 𝛿() is the chemical shift perturbation for the particular nucleus and residue, scaled by the 

pKa of the residue, in addition to the through-space contribution denoted by the Buckingham 

equation may provide a more complete description of the impact of pH.  

Given the complexity of pH-dependent behavior in proteins, implementation of pH effects 

in chemical shift prediction paradigms is a difficult undertaking. Ultimately, the accuracy of the 

predictions depends on the ability to reproduce the conformational ensemble of the protein. 

Furthermore, important considerations include the accurate prediction of pKa values for which 

CSP corrections may be applied, as well as hydrogen bonding interactions which play a special 

role in the perturbations of amide protons and nitrogens.  

The ability to compute pH-dependent CSPs has the potential to deconvolute NMR spectra, 

aid in the process of structure refinement and allow for a qualitative metric by which we can use 

theoretical models to inform experiment. 
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CHAPTER 3 

Protein NMR Chemical Shifts 
 
3.1 Introduction 
 

Protein electrostatics and the internal organization of charge are crucial in many observed 

biological phenomena. The ability of titratable residues to respond to environmental pH allows for 

processes including enzyme catalysis1, nucleation of aggregation seeds2, activation of chaperones3 

pH-dependent switching mechanisms4 and membrane insertion5. Understanding the influence of 

individual titratable residues directly allows for greater insight into how electrostatics facilitate 

many important biological mechanisms. pKa values describe the ionization behavior of titratable 

amino acids and inform aspects of local protein conformation, solvent exposure and neighboring 

protonation equilibria5. Measuring pKa values experimentally is often accomplished by NMR 

spectroscopy which is used to elucidate the complex microenvironment of proteins.  

In order to circumvent the high cost of carbon nuclei labeling, NMR chemical shifts of 

amide nitrogen and proton atoms are most commonly monitored during a pH titration and fit to 

the modified Henderson-Hasselbach equation6. This process enables amide nitrogen and proton 

nuclei to report on the protonation event of the corresponding titratable sidechain and result in a 

consensus pKa value for the residue. Although these atoms are commonly referred to as ‘reporter 

nuclei’5, they do not unambiguously report on the protonation events of their respective sidechains, 

as chemical shift perturbations due to conformational change, hydrogen bonding, proximity to an 

aromatic group or a neighboring titration7 may concurrently arise from the change in 
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environmental pH5. The effects which accompany the protonation event act to perturb the 

observable chemical shift resulting in a macroscopic pKa value. The pKa observed from the NMR 

pH-titrations therefore is a description of the macroscopic electrostatic environment, as it quite 

difficult to detangle the various contributors of the measured chemical shift perturbations7,8.  

To compute the microscopic pKa of a residue, computational methods such as constant pH 

molecular dynamics9-11(CpHMD) may be used.  CpHMD has been successfully employed in many 

studies to investigate the impact of pH on protein structure and dynamics12-14, performing 

reasonably well when compared to experiment.  Briefly, this methodology utilizes a continuous 

variable, lambda9, which is allowed to fluctuate between the bounds of 0 and 19 representing the 

protonated and deprotonated states of a titratable residue10. The lambda values are coupled to the 

dynamic steps of the simulation11, such that both protonation and conformation can be probed 

simultaneously10. However, because lambda is a continuous variable, unphysical intermediate 

states may occur and must be disregarded in the final calculations using a lambda cutoff (typically 

l > 0.80 is used)11. CpHMDMSLD relies on a hybrid Hamiltonian10 which describes the number of 

titrating residues, the protein environment and the coordinates of protonated and deprotonated sites 

– a complete expression of its potential energy equation can be found in references 9 to 11.  The 

free energy of protonation for model compounds10 (titratable residues: aspartic acid, glutamic acid, 

histidine and lysine), is used to calibrate the environmental pH of the simulation in the form of 

fixed biases10. Furthermore, variable biases can be altered to increase sampling of specific 

protonation sites10. During these simulations, pH replica exchange15 may also be incorporated to 

further explore the conformational landscape.  

In order to directly compare the microscopic pKa computed from the fraction of 

uprotonated states in the CpHMDMSLD simulation and the macroscopic pKa from NMR 
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experiments, chemical shifts must be computed from the conformational ensembles present in the 

simulation.  However, many of the available chemical shift predictors16-18 do not compute pH-

dependent NMR chemical shifts as there is a scarcity of pH titration experiments in the BMRB19 

on which to train machine learning algorithms.  

In this work, we implement a protocol to compute the pH-dependent NMR chemical shifts 

of the conformational ensembles produced by CpHMDMSLD. Utilizing SPARTA+17 in conjunction 

with previously computed pH-dependent chemical shift perturbations of model peptides20 and the 

Buckingham equation21, macroscopic pKa values from simulation can be directly compared to 

those from NMR pH-titration experiments. This methodology allows for deeper insight of the 

computational ensemble and better understanding of the protein’s electrostatic environment.  

3.2 Methodology 

3.2.1 Structure Preparation 
The starting configuration for hen egg white lysozyme (HEWL) was retrieved from the 

Ramanadham et al. crystal structure22 in the protein data bank (accession code 2LZT). After 

crystallographic waters and crystallization solutes were deleted, hydrogen atoms were added with 

the HBUILD functionality of the CHARMM23 macromolecular simulation package. Subsequently, 

the convpdb.pl facility in the MMTSB24 toolset was utilized to solvate the protein in a 71Å cubic 

box of TIP3P water25. After charge neutralization, the appropriate number of sodium and chloride 

ions was added to the system, matching the experimental salt concentration of 50mM6. The 

CHARMM36 all-atom protein force field26 with CMAP correction27 was applied within 

CHARMM to cap the protein’s N- and C-termini. Additionally, residues ASP, GLU, and HIS were 

patched to allow for titration and cysteine residues were patched to form disulfide bonds.  The 

system was minimized by 50 steps of steepest descent followed by the adopted basis Newton–

Raphson method for 2000 steps. 
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3.2.2 Explicit Solvent CpHMDMSLD Simulations of HEWL 

Explicit solvent CpHMDMSLD with pH replica exchange (pH-REX) was performed in CHARMM, 

implementing modules BLOCK and REPDSTR. All simulations utilize the CMAP corrected 

CHARMM36 all-atom protein force field and the CHARMM TIP3P water model.  Residues ASP, 

GLU, and HIS were allowed to sample continuously between protonated and deprotonated states 

via the continuous variable l10. Lysine was outside of the pH range for which NMR data was 

available and therefore remained protonated throughout the duration of the simulation. The 

SHAKE algorithm28 was used on hydrogen-heavy atom bond lengths and the simulations advanced 

at a 2-femtosecond time step. A nonbonded cutoff of 15 Å with electrostatic force and van der 

Waals force switching functions were applied. A Langevin heat bath maintained the temperature 

at 298K and used a frictional coefficient of 10 ps-1. Ten pH replica windows were used to simulate 

pH ranges 1 to 10. The exchange in pH was attempted every 500 dynamics steps and each replica 

was simulated for 20ns after a 1ns equilibration. All biases and parameters were set to reproduce 

the protocol presented in Goh et. al10. All simulations were replicated five times.  

3.2.3 Calculation of pKa Values 

Lambda values extracted from each pH-replica were used to determine the populations of 

protonated and deprotonated states. However, because lambda is a continuous variable, only 

lambda values above a cutoff of 0.80 are considered to be describing physical states10,11. The 

fraction of unprotonated states for a given residue was calculated (Sun) and the pKa was determined 

using the generalized Henderson-Hasselbach equation: Sun = 1/ (1 + 10n (pKa – pH)) where n is the Hill 

coefficient10,11. Chemical shift perturbations were fit using the modified Henderson-Hasselbach 

equation presented in the work of Webb et. al6.  
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3.2.4 Calculation of NMR Chemical Shifts  
 
Frames from each pH-REX CpHMDMSLD simulation were extracted at an interval of 10 

picoseconds and titratable groups were either protonated or deprotonated based on the respective 

lambda values in the corresponding time step. The Buckingham equation was used to compute the 

impact of long-range electrostatics on the chemical shifts and is expressed by: 

						𝛿!" = 𝐴∥𝐸%                                                                 (1) 

where Ez is the electric field (E) component of the nucleus of interest in the z direction, and AII 

represents the nuclear polarizability constant specific to the bond type21. Each residue within a 

given frame was oriented to the reference frame described in Boyd et. al.29 such that the same 

nuclear polarizability constants could be applied to NH and HN nuclei (AxN: -977 ppm au, AyN: 166 

ppm au, AxHN: -89 ppm au, AyHN: -18 ppm au, respectively). The electric field between the nucleus 

of interest and the protein system, excluding its corresponding titratable sidechain was computed 

using CHARMM with a dielectric constant was set to e = 5.  

Subsequently, all water molecules and ions were removed from the snapshots and 

SPARTA+17 was employed to compute NMR chemical shifts for backbone NH and HN nuclei. To 

add pH-dependence, chemical shift perturbations that were quantum mechanically computed from 

tripeptides20 were scaled by the fraction of unprotonated states for each titratable residue. The 

chemical shift perturbations describe the through-bond and through-space contribution of a 

protonation event on the nucleus of interest for a particular titratable group. The expression used 

to compute the chemical shift perturbations is expressed as: 

∆𝛿*'
+,' = ∆𝛿-.&/0&

+,' + 𝑆12-Δ𝛿()
+,'/ + ∆𝛿!"

+,'                                 (2) 

where ∆𝛿-.&/0&
+,'  denotes the difference between the chemical shifts computed with SPARTA+ for 

either N or HN subtracted from the starting pH (pH3), 𝑆12-Δ𝛿()
+,'/ describes the scaling of the 
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quantum computed perturbations (between protonated and deprotonated titratable residues) with 

the unprotonated fraction of the pH-REX CpHMDMSLD simulations, and ∆𝛿!"
+,'  is the difference in 

the Buckingham equation subtracted from pH 3. All computed chemical shifts in this work are a 

linear average of 20,000 frames.  

3.3 Results and Discussion 

3.3.1 pKa Values for HEWL  
Hen egg white lysozyme is a small protein with a predominantly helical structure stabilized 

by four disulfide bonds. An active site facilitated by aspartic acid 52 and glutamic acid 35  

Figure 3.1 Hen Egg White Lyzosyme (PDBID 2LZT) has ten titratable residues in the pH range between 
1-10, which include 2 glutamic acid residues (magenta), 1 histidine (green) and 7 aspartic acid residues 
(blue).  
 
hydrolyzes glycosidic bonds most optimally at pH 530. As seen in Figure 1, apart from the two 

catalytic residues, HEWL contains six additional aspartic acid residues, one glutamic acid and one 

histidine residue. Due to the large amount of available experimental data, HEWL is frequently 

used as a benchmarking protein for case studies, many of which serve to validate the CpHMD 

methodology. The pKa values of the titratable groups in HEWL are most commonly compared to 

those measured by NMR experiments from which consensus pKa values are extracted6. Consensus 
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pKa values are important as unambiguous protonation events are experimentally difficult to 

capture6. In this study, pKa values were obtained using 20ns of explicit pH-REX CpHMDMSLD 

simulations.  To test the convergence of the simulations, computed pKa values were compared at 

5ns intervals as is described in the protocol by Goh et al.10 Convergence of pKa values was achieved 

after 5ns and in subsequent intervals showed only small fluctuations of 0.4 pKa units10. Moreover, 

pKa variations between five trial runs were on average 0.3 pKa units. As summarized in Table 1, 

the computed pKa values which were fit using the Henderson-Hasselbalch equation, agree well  

Table 3.1 pKa Values of HEWL Computed by 20ns of explicit pH-REX CpHMDMSLD 

Residue Exp pKa Comp pKa Error 
GLU-7 2.6 ± 0.2 3.4 ± 0.1 0.8 
HIS-15 5.5 ± 0.2 5.2 ± 0.1 -0.3 
ASP-18 2.8 ± 0.3 1.5 ± 0.5 -1.3 
GLU-35 6.1 ± 0.4 7.9 ± 0.3 1.8 
ASP-48 1.4 ± 0.2 <1 -- 
ASP-52 3.6 ± 0.3 5.9 ± 0.4 2.3 
ASP-66 1.2 ± 0.2 1.3 ± 0.1 -0.1 
ASP-87 2.2 ± 0.1 <1 -- 
ASP-101 4.5 ± 0.1 6.4 ± 0.3 1.9 
ASP-119 3.5 ± 0.3 <1 -- 
RMSE       1.4  
MUE       1.2  

Table 3.1 Computed pKa values for HEWL represent a linear average of five trials and indicate good 
agreement with experiment6 with an RMSE of pKa 1.4 units and an MUE of 1.2 pKa units. ASP-48, ASP-
87 and ASP-119 do not contribute to the RMSE or MUE as these residues were unable to sample the 
deprotonated states. 

 
with the consensus pKas measured by NMR in the work of Webb et al6. Generally, the computed 

pKa values are also comparable to those obtained by similar pH-REX CpHMDMSLD studies 

conducted by Goh et al.6, Swails et al.31, and Shen et al.32  
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There were however some residues presenting significant sources of error (~2 pKa units) 

which included the two catalytic residues GLU-35 and ASP-52, as well as ASP-101. GLU-35 is 

upshifted by 1.8 pKa units suggesting that the protonated form of the residue is favored, and that 

sampling of the deprotonated state does not sufficiently mimic the conformational dynamics of the 

experiment. GLU-35 is buried in the catalytic cleft of HEWL, but as demonstrated in Figure 2 

becomes more solvent exposed as the environmental pH increases. The average hydrogen bond 

occupancy between the sidechain of GLU-35 and water molecules increases starkly between pH 7 

and 9, corresponding with its anomalous pKa of 7.9. While GLU-35 is buried, it is likely that the  

Figure 3.2 Residues with upshifted pKa Values. The average hydrogen bond occupancy as a function of 
pH for A) GLU-35, B) ASP-52, and C) ASP-101 is displayed for hydrogen bonds formed with water and 
intra-molecular residues.  
 
protonated form is maintained but as the sidechain becomes more solvent exposed at pH 7, the 

deprotonated state can more readily be sampled. These results are summarized in Figure 2. ASP-

52 is in a similar electrostatic environment, remaining partially buried while participating in 

hydrogen bonding interactions with residues ASN-46 and ASN-59. Along with the intra-molecular 

hydrogen bonds, ASP-52 slightly increases its average hydrogen bonding occupancy with water 

as the region becomes more solvent exposed. As with GLU-35 this enables sampling of the 

deprotonated state and the upshifted pKa of 5.9. Similar analysis and results for ASP-52 and GLU-

35 have been reported by the Shen group32. Another upshifted residue is ASP-101, located on one 

of the outward facing helices and largely solvent exposed. The average hydrogen bond occupancy 
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seems to increase as pH increases, allowing the deprotonated state to be sampled more readily and 

consequently upshifting the pKa to 6.4. There is also a hydrogen bond that occurs with LYS-97 

which is nominally prevalent.   

As seen in Table 1, there are three residues (ASP-48, ASP-87, ASP-119) that have a 

computed pKa less than one. This indicates that the deprotonated state is stabilized, such that the 

protonated state is infrequently sampled. The consistency of the protonation state is of a 

conformational etiology. The depressed pKa values for the aspartic acid residues are due to salt-

bridge formation with adjacent positively charged residues. The maintenance of the unprotonated 

state prevents adequate sampling and serves to bias the resulting pKa.  

As seen in Figure 3, ASP-48 forms a salt bridge with the nearby ARG-61 which is sustained 

throughout the various pH replicas (data not shown). The salt-bridge formation alternates with a 

strong hydrogen bond formed with the backbone of SER-50, when a different conformation is 

adopted. Likewise, ASP-87 forms a substantial hydrogen bond with the sidechain of THR-89 

which is maintaining the deprotonated conformation. When ASP-87 is not participating in the 

hydrogen bonding interaction, it forms a salt bridge with HIS-15. This salt-bridge is maintained 

until the histidine is fully deprotonated at pH values above six. 
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Figure 3.3 Residues with downshifted pKa Values. Salt-bridge and hydrogen bond formation serves to 
depress the pKa values of A) ASP-48, B) ASP-87, and C) ASP-119. The panels on the right-hand side 
illustrate the relative frequency of the distance between D) ASP-48 and ARG-61, E) ASP-87 and THR-89 
and F) ASP-119 and ARG-125. The frames were extracted every 4 picoseconds (5000 frames) from pH 
replica 1.  
 
This serves to depress the pKa of ASP-87, but also decreases the pKa of HIS-15 to 5.4, as compared 

to the model compound pKa for histidine which is reported as having a pKa of 6.45.  

The salt-bridge formed by ASP-119 is slightly weaker than the one formed by ASP-48, and 

its occupancy is significantly lower, however, ASP-119 also forms stabilizing hydrogen bonds 

with the backbone of GLN-121 and ALA-122. The combination of a salt-bridge and/or hydrogen 
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bond interaction presents a significant challenge for sampling protonation states and results in 

computed pKa values which are shifted. Similar pH-dependent structural observations of HEWL 

in the context of pKa calculations have been demonstrated by numerous groups6,30,31,32, illustrating 

that microenvironmental factors greatly contribute to the simulated pKa. 

3.3.2 15N pH-Dependent NMR Chemical Shifts of HEWL  

In order to directly compare the microscopic pKa values obtained from simulation and the 

apparent pKa derived from experiments, we utilized SPARTA+ to compute 15N and 1H chemical 

shifts of the pH-REX CpHMDMSLD ensembles at various pH windows. It has been previously 

demonstrated that SPARTA+ preforms very well when computing chemical shifts of molecular 

dynamics ensembles and is sensitive enough to identify changes in backbone dihedrals, variations 

in hydrogen bonding and differences in the proximity to aromatic-rings33. However, because 

SPARTA+ is not parametrized to predict chemical shifts at non-physiological pH, we incorporated 

the through-bond and through-space effects of protonation by scaling the pH-dependent chemical 

shift perturbations of model peptides20. Since the pioneering studies of Wüthrich, there have been 

numerous experimental and computational NMR pH-titration studies performed on model 

tripeptides and pentapeptides34-36. These studies have greatly elucidated the impact of protonation 

on chemical shift perturbations. In this work, we utilize our previously computed pH-dependent 

chemical shift perturbations from tripeptide constructs20. The peptide perturbation for the amide 

nitrogen in each corresponding titratable residue is scaled by the unprotonated fraction of states 

obtained from the pH-REX CpHMDMSLD simulations. This addition supplements the SPARTA+ 

chemical shift perturbations, which predominantly describe the conformational differences 

between the ensembles.  

 



 
 

 
 

50 

 
Figure 3.4 15N pH-Dependent NMR Chemical Shift Perturbations. SPARTA+ (red) was utilized to 
compute chemical shifts for 20,000 frames extracted from the 20ns explicit solvent pH-REX CpHMDMSLD 
simulations at each respective pH window. The differences of the chemical shifts at each pH value with 
respect to the chemical shifts at pH 3, are plotted above. The chemical shift perturbations of SPARTA+ 
including the pH-dependent perturbations scaled by the unprotonated fraction and the through-bond 
contribution provided by the Buckingham equation are indicated in blue and abbreviated as SBQ. The 
experimental 15N chemical shift perturbations are displayed in gray and were calculated by the chemical 
shifts kindly provided by Dr. Damien Farrell as part of the Titration_DB37. All curves are fitted by the 
modified Henderson-Hasselbach equation for 1-site unless otherwise noted.  
 
To account for electrostatic effects outside of the titratable residue (through-space), the 

Buckingham equation is applied. All residues, water molecules and ions with the exception of the 

titratable residue undergoing the protonation event, are included in the Buckingham calculation. 

Although SPARTA+ includes an electrostatic effect in its predicted chemical shift (computed by 

4 6 8 10
0

2

4

4 6 8 10
0

2

4

4 6 8 10
0

2

4 H15 D18

pH-Dependent NMRChemical Shift Perturbations of 15N
15

N
 C

he
m

ic
al

 S
hi

ft 
Pe

rtu
rb

at
io

ns
 (p

pm
)

Experiment
SPARTA+

E7

D87

SBQ

D119  

4 6 8 10
0

2

4 E35

4 6 8 10
0

2

4 D48  
N=2

4 6 8 10
0

2

4 D52

4 6 8 10
0

2

4

pH

D66

4 6 8 10
0

2

4 D87

4 6 8 10
0

2

4 D101

4 6 8 10
0

2

4 pH

pH

D119



 
 

 
 

51 

the Buckingham equation), it is not applied to amide nitrogen atoms. Furthermore, the 

implementation of the Buckingham equation within the program is limited to a few donor and 

acceptor pairs where the atomic charges remain static.  As aforementioned, the Buckingham 

equation is utilized to compute the electrostatic contribution for each extracted frame, taking into 

account the fluctuation of atomic charges as protonation equilibria change concomitantly with 

conformation. Figure 4 shows the average perturbations of 20,000 frames computed by 1) 

SPARTA+, 2) SPARTA+ including the scaled model peptide pH perturbation and through-bond 

electrostatic contribution (denoted as SBQ), and 3) the experimental perturbations from the work 

of Webb et. al6 as reported in the Titration_Database37.  

As expected, the SPARTA+ 15N perturbations do not capture the large changes (~2 ppm) 

associated with the amide nitrogen atom tracking the titration event of its corresponding side chain. 

The computed 15N perturbations are approximately 0.1 ppm for residues GLU-7, HIS-15, GLU-

35, ASP-52 and ASP-101 all of which titrate within the pH range of 3 to 9 during the pH-REX 

CpHMDMSLD simulations. Although, HEWL is a relatively stable protein, only pH values between 

3 and 9 were considered for the calculation of the pH-dependent NMR chemical shifts. pH values 

outside of this range would likely result in the partial denaturation of the protein in an experimental 

setting, and this aspect is not accounted for in the simulations.  

SPARTA+ did however, detect pH-dependent variations for residues ASP-18, ASP-66, 

ASP-87 and ASP-119. All of these aspartic acid residues have a computed pKa value less than 3 

in the pH-REX CpHMDMSLD simulations and hence the observed perturbations cannot stem from 

a change in the residue’s charge. As seen in Figure 5, the chemical shift perturbation of the 

deprotonated aspartic-acid residues is largely due to a conformational fluctuation. Interestingly, 

the largest differences in the titration curves of the four aspartic-acid residues occur between pH 
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values 5 and 7. In this pH region the titration of residues GLU-35, ASP-52, HIS-15 and ASP-101 

(all of which are in close proximity to the aspartic acid residues) is altering the charge of the protein 

and perhaps inducing a localized conformational change which is reflected in the SPARTA+ 

chemical shift perturbations.  

 
Figure 3.5 Source of SPARTA+ 15N Chemical Shift Perturbations. The SPARTA+ program output 
specifies the source of each chemical shift contribution (random coil, ring-current effect, electric field 
effect, secondary-structure). Depicted in the five panels above are the respective contributions of the ring-
current effect and secondary-structure for the five non-titrating aspartic acid residues, averaged over 20,000 
frames. It is apparent that the majority of the total chemical shift perturbation arises from the secondary-
structure component. The random coil value cancels out and the electrostatic field effect is not considered 
for backbone nitrogen atoms.  
 

The addition of the pH-dependency and through-space contributions do not significantly 

change the computed 15N perturbations for the residues that are not undergoing titration events. 

This is surprising in the case of ASP-48, which experimentally possesses a biphasic Henderson-

Hasselbach curve. Through mutagenesis, Webb et al6. determined that the chemical shift 

perturbation observed by ASP-48 is in reality due to the titration of neighboring residues ASP-52 

and GLU-35. Although, their study indicates a robust through-space event, our application of the 
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Buckingham equation did not capture this phenomenon. In our simulations ASP-52 and GLU-35 

are on average 9.60Å and 14.40Å away from ASP-48 respectively, and the long-range effect may 

be too small to produce a significant perturbation. This may suggest that the predominant 

conformation in the experiment differs from that sampled in our simulations. 

Improvements to the SPARTA+ perturbations can be seen in residues GLU-7, HIS-15, 

GLU-35, ASP-52, and ASP-101, where the titration events are captured. The predominant 

contribution for these residues arises from the pH-dependent perturbation that was scaled by the 

fraction of deprotonated frames from the pH-REX CpHMDMSLD simulations. GLU-7 (0.63 ppm) 

agrees well with the experimental chemical shift perturbations (0.77 ppm) in the pH range of 3 to 

9, however the predicted shift for GLU-35 is underestimated by 0.8 ppm, suggesting that there is 

a large contribution that is not accounted for in the current dynamical ensemble. In contrast, the 

magnitudes of the predicted perturbations for HIS-15, ASP-52 and ASP-101 are overestimated by 

~2 ppm possibly indicating a systematic error with the peptide perturbations used to approximate 

pH-dependency. 15N chemical shifts are sensitive to the preceding residue’s backbone torsional 

angles17 and since nearest neighbor effects were not taken into consideration for the peptide study, 

the overestimation is perhaps a consequence of the model peptide’s two flanking glycines.  

For residues ASP-66, ASP-87 and ASP-119, the conformational component is dominant 

as the addition of Buckingham equation does not alter the unique chemical shift behavior seen in 

the SPARTA+ analysis. The distance between ASP-66 and ASP-87 in the protein structure is 19Å, 

and although these residues are not responding to the same influence, they both display a similar 

line shape with the most notable perturbation of ~ -0.5 ppm at pH 6.  
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3.3.3 1H pH-Dependent NMR Chemical Shifts 

Due to rapid exchange with solvent, chemical shifts of solvent exposed and titratable 

protons are difficult to resolve.  Although amide protons are not impervious to exchange with 

solvent, it is typically slower, diminishing the detrimental effect of peak broadening. Along with 

amide nitrogen chemical shifts, amide protons are frequently used in pH-titrations to track 

protonation events of titratable residues7. However, the impact of hydrogen bonding geometry on 

the amide proton’s chemical shift is significant and may obfuscate pH titration spectra. The work 

of Exner et al37. demonstrates a distinct relationship between the amide proton chemical shift and 

the distance of the proton to the hydrogen bond acceptor, causing a large downfield change up to 

6 ppm for a strong hydrogen bond.  

 Moreover, due to the small resonance signal produced by proton nuclei, pH perturbations 

are miniscule (0.02 - 0.5 ppm)6 which further complicates spectral interpretation. When predicting 

amide proton chemical shifts, SPARTA+ implements the Pardi-Wuthrich formalism38 which 

describes an r -3 dependence on hydrogen bond length. This expression along with an empirical 

correction for solvent exposure produces a reasonable agreement with experimental chemical 

shifts (R= 0.63 for HN atoms)17.  

 In this work, pH-dependent NMR chemical shift perturbations for amide proton atoms 

were calculated for the 20,000 frames extracted from the pH-REX CpHMDMSLD simulations at 

each pH window between 3 and 9.  SPARTA+ was utilized to compute chemical shift perturbations 

at each pH. For amide protons, SPARTA+ incorporates an electrostatic contribution by utilizing 

the Buckingham equation. In Figure 6, the plotted SPARTA+ chemical shift perturbations include 

the electrostatic contribution as computed by the program. However for the SBQ perturbations, 
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the electrostatic effect was subtracted from the SPARTA+ component, and our own 

implementation of the Buckingham equation was added.  

The through-space contribution of protonation was calculated by scaling pH-dependent 

chemical shift perturbations of model peptides simulated in either implicit solvent or explicit 

solvent. Previously in our peptide study, pH-dependent chemical shift perturbations were initially 

computed from simulations performed in implicit solvent and ultimately yielded poor agreement 

with measured amide proton perturbations. Not surprisingly, the inclusion of explicit solvent 

molecules improved the model peptide calculations. For a residue in a random coil, hydrogen 

bonding with solvent is likely the largest contributor to the amide proton chemical shift. However, 

in a protein environment an amide proton may be partially or fully buried and as a consequence 

form primarily intramolecular hydrogen bonds. In the latter case, the pH-dependent NMR 

chemical shift perturbations may be better represented by the model peptide calculations in implicit 

solvent. However, if the titratable group is solvent exposed the perturbations computed with 

explicit solvent would be more adequate.  

Figure 6 displays the results for 1) SPARTA+ computed chemical shift perturbations in 

red, 2) SPARTA+ including the scaled model peptide pH perturbation in implicit solvent and 

through-bond electrostatic contribution (implicit SBQ - open blue circles with dotted line fit), 3) 

SPARTA+ including the scaled model peptide pH perturbation in explicit solvent and through-

bond electrostatic contribution (explicit SBQ - blue circles with solid line fit), 4) the experimental 

perturbations from the work of Webb et. al. as reported in the Titration_Database. It is initially 

apparent that the amide proton perturbations are small and average less than 0.5 ppm.  

For GLU-7, the explicit SBQ calculation (-0.11 ppm) seems to agree reasonably well with 

the experimental perturbation (-0.05 ppm) as opposed to the implicit SBQ calculation which over-
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predicts the ability of the amide proton to track the sidechain’s titration. This behavior suggests 

that as the pH increases, the GLU-7 amide proton is in a progressively neutral environment and is 

becoming more shielded. Likewise, for HIS-15 the explicit SBQ (-0.06 ppm) is a better fit with 

 

Figure 3.6 1H pH-Dependent NMR Chemical Shift Perturbations. SPARTA+ (red) was utilized to 
compute chemical shifts for 20,000 frames extracted from the 20ns explicit solvent pH-REX CpHMDMSLD 
simulations at each respective pH window. The differences of the chemical shifts at each pH value with 
respect to the chemical shifts at pH 3, are plotted above. The chemical shift perturbations of SPARTA+ 
including the pH-dependent perturbations (in explicit or implicit solvent) scaled by the unprotonated 
fraction and the through-bond contribution provided by the Buckingham equation are indicated in blue and 
abbreviated as SBQ. The experimental 1H chemical shift perturbations are displayed in gray and were 
calculated by the chemical shifts kindly provided by Dr. Damien Farrell as part of the Titration_DB. All 
curves are fitted by the modified Henderson-Hasselbach equation for 1-site unless otherwise noted.  
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the experimental perturbation (0.04 ppm), although SPARTA+ sufficiently captures the pH trend 

(0.17 ppm). The ability of SPARTA+ to recapitulate the trend implies that the perturbations are 

likely a response to a conformational change occurring in the dynamic ensemble around pH 7. 

Both ASP-18 and ASP-48 are located on flexible loops and display a unique line shape when 

fitting the SPARTA+ perturbations. The curves indicate a change around pH 7.5 where shielding 

increases and in turn moves the spectra upfield. For ASP-18 the implicit SBQ (-0.09 ppm) 

replicates the increase in shielding as seen in the experiment (-0.08 ppm). However, the 

perturbations for ASP-48 are more complex. The amide nitrogen shifts track the titration of nearby 

ASP-52 and GLU-35 residues and likewise, for the amide protons Webb et. al. determine that the 

perturbations arise from the protonation of GLU-35. The application of the Buckingham equation 

does not account for the titration event of the adjacent GLU-35, and both the implicit and explicit 

SBQ approaches produce an almost identical curve.  

The titration of GLU-35 is also captured by its corresponding amide proton with a 

perturbation of 0.23 ppm in the experiment, and 0.56 ppm in the implicit SBQ model. This implies 

that the environment remains partially buried such that the pH-titration is the dominant contributor 

to the chemical shift. ASP-52 and ASP-101 are overpredicted by both SBQ approaches and 

SPARTA+ resulted in the most accurate description of the perturbations. ASP-87, ASP-66 and 

ASP-119 all of which displayed identical titration curves for the amide nitrogen calculations, 

produced differing perturbations neither of which tracked the titration events observed in the 

experimental data.  

The chemical shifts for the amide protons are notoriously difficult to predict, as they are 

very sensitive to the microenvironment of the protein. Although the SBQ protocol does not 

recapitulate all of the experimental trends, it provides useful insight into the dynamic ensembles 
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produced by the pH-REX CpHMDMSLD simulations as compared to those present in the NMR pH-

titration experiment.  

3.3.4 pKa Values from NMR Chemical Shifts 

In order to directly compare the micro-pKa values resulting from the pH-REX CpHMDMSLD 

simulations to the apparent pKa values derived from experiment, the Henderson-Hasselbach 

equation was used to fit pKa values from the calculated pH-dependent NMR chemical shift 

perturbations. The resulting pKa values encompass the protonation events of the titratable residues, 

as well as the various contributions of the protein’s microenvironment. Table 3.2 summarizes these 

results.  

Table 3.2 pKa Values of HEWL Computed from pH-dependent Chemical Shift Perturbations 

Residue Consensus  
Exp. pKa6 

Comp. 
pKa 

15N Exp. 
pKa 

15N Comp. 
pKa 

1H Exp. 
pKa 

1H Comp. 
pKa 

GLU-7 2.6 3.4 3.1 2.8 4.6 3.7, 3.5 

HIS-15 5.5 5.2 5.5 5.2 -- 6.2, 5.3 

ASP-18 2.8 1.5 1.0 3.0 5.5 3.8, 7.3 

GLU-35 6.1 7.9 6.4 7.3 6.3 7.6, 7.4 
ASP-48 1.4 <1 3.8, 7.3* 3.8 5.9 4.5, 4.5 
ASP-52 3.6 5.9 4.0 5.7 2.7 5.5, 5.6 
ASP-66 1.2 1.3 3.1 4.8 3.5 6.5, 6.5 
ASP-87 2.2 <1 2.1 4.7 -- 4.7, 4.5 
ASP-101 4.5 6.4 4.5 6.6 4.1 6.2, 6.6 
ASP-119 3.5 <1 3.3 5.7 3.6 4.9, 4.9 

Table 3.2 Consensus pKa values from the experimental Webb study are listed in the first column. The 
second column shows the computed micro-pKa values from the pH-REX CpHMDMSLD simulations. The 
15N/1H experimental pKa columns display the fitted pKa values for the experimental 15N/1H chemical shift 
perturbations from pH 3 to 9. The 15N computed pKa values column tabulates the fitted pKa values from the 
computed NMR chemical shift perturbations using SBQ and the 1H computed pKa values column indicates 
the pKa values computed for explicit SBQ and implicit SBQ respectively. The asterisk denotes that two sites 
were fitted.  
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It is evident that the amide nitrogen and amid proton pKa values can vary drastically when 

compared to each other. This occurrence demonstrates ambiguous reporting of the titration event 

by backbone nuclei. ASP-18 exemplifies the discrepancy as the difference between the amide 

nitrogen (0.8) and proton (5.5) experimental pKa apparent is significant. More accurate pKa 

apparent values are obtained by monitoring the carbon chemical shift on the sidechain carboxyl 

moiety. It is important to note that only experimental perturbations between pH values 3 and 9 

were used to compute pKa values. This pH range reflects that of the pH-REX CpHMDMSLD 

simulations for which NMR chemical shifts were computed. As a result, the experimental pKa 

apparent values fit in this study vary slightly from those reported in the work of Webb et al.  

The 15N computed pKa values generally agreed with the micro- pKa values from simulation. 

Surprisingly, ASP-48, ASP-87 and ASP-119 which had depressed pKa values due to salt bridge 

formation, presented upshifted 15N pKa apparent values. The increase, however, was overestimated 

and produced an average MUE of 2.3 pKa units. The upshift in the three aspartic acids was also 

mirrored in the computed 1H pKa apparent. GLU-7, HIS-15, GLU-35, ASP-52 and ASP-101 did 

not express significant variation between the micro- pKa and the 15N/1H pKa apparent. HIS-15, 

GLU-35, ASP-52 and ASP-101 are among the only residues that titrate in the pH range between 3 

and 9 suggesting that the perturbations of the titration are robust. Interestingly, there was 

dissimilarity between the computed 1H pKa apparent using either the implicit or explicit SBQ 

methods for two residues. HIS-15 exhibits a 1 pKa unit difference, favoring the implicit pKa which 

suggests that the amide proton is in a more buried environment. Similarly, there is a 3 pKa 

difference for ASP-18 which agrees best with the explicit SBQ which implies hydrogen bonding 

with solvent.  
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3.4 Conclusion and Discussion 
In this work, we devise a protocol to compute the pH-dependent NMR chemical shifts of 

the conformational ensembles produced by CpHMDMSLD. The computed HEWL micro-pKa values 

generally agreed well with experiment, however the formation of salt bridges and strong hydrogen 

bonds prevented adequate sampling for a selection of aspartic acid residues. Due to the variety of 

conformational effects that perturb the chemical shift in concert with protonation, experimentally 

derived pKa apparent values are fundamentally different than those computed from simulation. 

Computing pKa values by fitting computed chemical shift perturbations allows for the direct 

comparison between experiment and simulation. Utilizing the pH-dependent perturbations of 

model peptides, conformational variation from SPARTA+ and through-space effects from the 

Buckingham equation, a model to predict chemical shifts was formulated. This method predicted 

reasonable 15N chemical shift perturbations from which 15N pKa values were fit. The residues that 

titrate in the pH range between 3 and 9, exhibited a Henderson-Hasselbach curve with a 15N 

perturbation of 2-4 ppm. Three aspartic acid residues displayed complex titration behavior 

stemming from a conformational change in the dynamic ensemble. Amide proton chemical shift 

prediction presents a significant challenge due to factors such as solvent exposure and hydrogen 

bonding. We utilized two different SBQ models (implicit and explicit solvent) to account for the 

variation in solvent exposure for the titratable residues. This approach was successful in computing 

1H pKa values, as the implicit and explicit predictions rarely diverged.  
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     CHAPTER 4 
 

The pH-Dependent Switching Mechanism of Hisactophilin 
 

This work is in collaboration with Dr. Duncan MacKenzie and Dr. Elizabeth Meiering of the 
University of Waterloo 

 
4.1 Introduction 

Protein switches enable the reversible conversion between two functional states based on a 

response to environmental stimuli1. Most commonly, a conformational change coupled with a shift 

in the equilibrium of protonation, ligand concentration or ion flux, enables a protein to toggle 

between various functions2. This phenomenon is demonstrated in many biological processes, 

predominantly those involved in regulation of gene expression3, signaling4 and luminescence5. Due 

to the exquisite sensitivity required to produce an allosterically driven response, there have been 

numerous studies in recent years aimed at developing synthetic protein switching models.6,7 Most 

recently, the Baker group has developed the first pH-dependent switch, LOCKR6, which relies on 

an expansive hydrogen bonding network between histidine residues to trigger a multi-domain 

conformational change6.  

Understanding the ability of naturally occurring pH-dependent switches to induce a 

conformational or functional change is important to the advancement of this emerging field. Here, 

we explore the charge organization of hisactophilin in the context of pH-dependent switching. 

Hisactophilin is a highly charged protein in the soil amoeba species Dictyostelium discoideum8. 

After expression, hisactophilin undergoes a cotranslational modification where a myristoyl moiety 
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is added to the protein’s N-terminal glycine residue9. The solvent exposure of the covalently bound 

myristoyl group is modulated by the cytoplasmic pH9. In the ‘accessible state’ (< pH 6.5) 

hisactophilin binds to the cell membrane10 via the solvent exposed myristoyl group, which in turn 

enables actin recruitment to the membrane10. As the environmental pH increases above 6.5, the 

solvent exposed myristoyl group is buried in the central cavity of the b-trefoil and the protein is in 

the ‘sequestered state’10.  

Because switching occurs between pH 6.5 and 7.5, it is likely that the mechanism is 

facilitated by the deprotonation of a selection of histidine residues, as free histidine residues have 

a pKa of 6.45.  Hisactophlin is highly charged, as nearly 45% of the protein is composed of 

titratable residues including 31 histidine, 6 aspartic acid, 7 glutamic acid and 8 lysine residues. 

Furthermore, the three-fold axis of symmetry of the protein’s b-trefoil9 architecture enables the 

titratable sidechains to be grouped together in pairs or triplets, forming stabilizing hydrogen bonds 

and salt-bridges.  

 It has been demonstrated by the Meiering group, that the addition of the myristoyl group 

increases the stability of hisactophilin and that the stabilization is higher in the sequestered state10 

where favorable interactions are formed within the barrel of the protein11. Furthermore, NMR 

studies monitoring amide nitrogen and amide proton chemical shift perturbations suggest that the 

average pKa apparent values of the histidines in the myristoylated (pKa 6) and non-myristoylated 

(pKa 7-7.5) hisactophilin differ by approximately 1 pKa unit11. This further suggests that the 

redistribution of charge within the small pH range of 6.5 to 7.5 plays an important role in the pH-

switching mechanism.  Importantly, large chemical shift perturbations have been identified in 

experimental studies, for residues HIS-75 and HIS-91 which are specifically thought to participate 

in the switching event11. Additionally, NOEs between the myristoyl group and the protein have 
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identified four significant non-titratable residues in the core of the protein cleft11. These residues 

serve to orient the lipid chain in the central cavity of the protein when the system is in the 

sequestered state.  

In this study, we employ constant pH molecular dynamics techniques to clarify the impact 

of histidine protonation on the pH-switching mechanism observed in hisactophilin. With the use 

of explicit solvent pH-REX CpHMDMSLD simulations we identify histidine residues that experience 

large pKa perturbations upon myristoylation in the pH range between 6.5 and 7.5. Furthermore, we 

utilize implicit solvent CpHMD to visualize the pH-switching mechanism allowing for a 

qualitative description of key residues and non-native interactions. Finally, we conduct dynamic 

network analysis of the myristoylated hisactophilin at pH 7, in order to identify additional residues 

in the communication interface of the protein.  

Understanding how the organization of charge keeps the protein poised on the brink of 

conformational change will provide insight into the mechanistic details of the pH-dependent 

switching of hisactophilin. Broadly, this work informs the design of switches responding to 

electrostatic triggers.   

4.2 Methodology 

4.2.1 Structure Preparation 

The structure of myristoylated hisactophilin was provided by the Meiering group10,11 and is based 

on the solution state NMR structure of the non-myristoylated hisactophilin deposited in the protein 

database by the Holak group (PDB accession code: 1HCD)8. The Meiering group10,11 docked the 

myristoyl moiety in the central cavity of the 1HCD structure using Chimera and minimized briefly 

in VMD24. The non-myristoylated structure in this work is obtained from the coordinates deposited 

in the protein database by the Holak group (PDB accession code: 1HCD). For explicit solvent pH-
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replica exchange constant pH molecular dynamics (CpHMDMSLD), hydrogen atoms were added to 

both structures with the HBUILD12 functionality of the CHARMM12 macromolecular simulation 

package. Subsequently, the convpdb.pl facility in the MMTSB toolset13 was utilized to solvate the 

proteins in a 69Å cubic box of TIP3P water14. After charge neutralization, the appropriate number 

of sodium and chloride ions was added to the systems, to match the experimental salt concentration 

of 50mM10. The CHARMM36 all-atom protein force field15 with CMAP correction16 was applied 

within CHARMM to describe the protein and solvent parameters. Force field parameters for the 

myristoyl group were built from palmitic acid in the CHARMM27 lipid force field17 and appended 

to the force fields used for all simulations of myristoylated hisactophilin.  Residues ASP, GLU, 

and HIS were patched to allow for titration.  Lysine residues are outside of the scope of the narrow 

pH range for which switching occurs, and therefore remained protonated throughout the duration 

of the simulation. The systems were each minimized by 1000 steps of steepest descent followed 

by the adopted basis Newton–Raphson method for 1000 steps. 

4.2.2 Implicit Solvent GBSW CpHMD Simulation 

The implicit solvent CpHMD algorithm was implemented in the CHARMM-OpenMM12  interface 

as described in the work by Arthur et al18. The GBSW (a generalized Born model with a simple 

switching function) implicit solvent model19 was used, and a salt concentration of 50mM was 

included in order to replicate experimental conditions11. All implicit solvent simulations were 

performed using the CHARMM package and the CHARMM22 force field20 with GBSW-specific 

CMAP backbone correction. Both initial structures were obtained as described in the previous 

section and patches on titratable groups ASP, GLU and HIS were applied. Subsequently, structures 

were minimized for 1000 steps of steepest descent followed by the adopted basis Newton–Raphson 

method for 1000 steps. A non-bonded cutoff of 12 Å was applied, as well as SHAKE21 constraints 
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to all bonds containing hydrogens. Simulations were performed of the myristoylated and non-

myristoylated hisactophilin for 20ns at pH values between 6 and 8, in 1 pH unit increments.  

4.2.3 Explicit Solvent CpHMDMSLD Simulations of Hisactophilin 

For both myristoylated and non-myristoylated hisactophilin, explicit solvent CpHMDMSLD with pH 

replica exchange (pH-REX) was performed in CHARMM, modules BLOCK and REPDSTR. All 

simulations utilize the CMAP corrected CHARMM36 all-atom protein force field including the 

myristoyl parameters as previously described and the CHARMM TIP3P water model.  Residues 

ASP, GLU, and HIS were allowed to sample continuously between protonated and deprotonated 

states via the continuous variable l22. Lysine is anticipated to titrate outside of the pH range where 

the switching is observed and hence was not titrated in the simulations. The SHAKE algorithm 

was used on hydrogen-heavy atom bond lengths and the simulations advanced at a 2-femtosecond 

time step. A nonbonded cutoff of 15 Å with electrostatic force and van der Waals force switching 

functions was applied. A Langevin heat bath maintained the temperature at 298K and used a 

frictional coefficient of 10 ps-1. Fifteen pH replica windows were used to simulate pH ranges 1 to 

14 with pH units of 1. The exchange in pH was attempted every 500 dynamics steps and each 

replica was simulated for 10ns after a 1ns equilibration. All biases and parameters used are those 

presented in Goh et. al22.  

4.2.4 Dynamical Network Analysis 

The NetworkView module23 of VMD24 was utilized to compute the correlated motions of residues 

in the pH 7 explicit solvent pH-REX CpHMDMSLD trajectory. All water molecules and ions were 

removed from the simulation and the protein was aligned based on backbone RMSD. The last 10ns 

of the simulation were extracted for network analysis. Programs Carma and Catdcd were 
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downloaded separately and interfaced with VMD for the calculation of nodes and edges. All 

parameters were kept as default values.  

4.3 Results and Discussion 

4.3.1 pKa Perturbations between Myristoylated and Non-Myristoylated Hisactophilin 

The pH-dependent switching behavior of hisactophilin has been observed to occur at pH 

6.510 where the accessible, solvent-exposed myristoyl group becomes buried in the central cavity 

of the b-trefoil and adopts the sequestered conformation10. This mechanism is likely facilitated by 

the deprotonation of a subset of the 31 histidine residues present in hisactophilin10, as the pKa of a 

free histidine residue is 6.45. Explicit solvent pH-REX CpHMDMSLD simulations were performed 

in order to understand the contribution of titratable residues ASP, GLU and HIS on the overall 

charge of the protein. Both the myristoylated (MYR) and non-myristoylated (NM) proteins were 

evaluated such that pKa values could be computed in the presence and absence of the myristoyl 

group. The results are summarized in Figure 4.1.  

Only the pKa values for the histidines are plotted as the glutamic and aspartic acid residues 

have severely depressed pKa values (<1). Due to the positively charged microenvironment, the 

glutamic and aspartic acid residues did not sample the protonated state and were negatively 

charged for the majority of the simulations. It is apparent that the computed pKa values of the 

histidine residues span a wide pH range between 2 and 12. NMR pH-titration studies by Meiering  
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Figure 4.1 pKa Values Computed for Myristoylated and Non-Myristoylated Hisactophilin. The pKa 

values of hisactophilin were computed using 10ns of pH-REX CpHMDMSLD for the nonmyristoylated (NM) 
hisactophilin protein shown in black and the myristoylated hisactophilin depicted in grey.  
  

and Houliston25, measured the pKa apparent of all the residues in the non-myristoylated 

hisactophilin from 15N HSQC pH titration experiments and observed pKa values in the range of 5.5 

to 825.  However, the three-fold axis of symmetry of the b-trefoil allows for the histdines to often 

be distributed in pairs or triplets throughout the protein. Due to the close proximity of the titratable 

groups, there is significant crosstalk between the charged residues in the pH titrations. As 

demonstrated by histidine residues 24, 25 and 27 in Figure 4.1, the close proximity both 

sequentially and structurally, allows for histidine 24 to be upshifted in both the myristoylated and 

non-myristoylated proteins; while histidine 25 is depressed to a pKa of ~5 for the myristoylated 

protein and below 2 for the non-myristoylated protein. Nearby histidine 27 however, expresses a 

pKa similar to that of a model histidine at around 6.45. This phenomenon is due to the simultaneous 

titration of multiple histidine residues causing large charge fluctuations in the protein’s 

microenvironment and resulting in anomalous pKa values.   

From the pH-REX CpHMDMSLD calculations, the histidine residues that may participate in 

switching are identified as those demonstrating significant pKa differences upon myristoylation 
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between pH 6.5 and pH 7.5. These results are displayed in Figure 4.2.  It is apparent that the pKa 

differences are not clustered in one particular region of the protein. The large pKa perturbations 

can be found mainly on histidines that are solvent exposed and are likely to display conformational 

flexibility. This is in contrast with the NMR experiments conducted by the Meiering group11 which 

identify the largest chemical shift perturbations clustered around histidine residues 75-10711. 

 HIS-28, which is close to the opening of the myristoyl cavity undergoes the largest pKa 

shift upon myristoylation in the pH-REX CpHMDMSLD results and maintains a positive charge with  

 

Figure 4.2 Largest pKa Perturbations between Myristoylated and Non-Myristoylated Hisactophilin 
between pH range 6.5 and 7.5. The pKa values of hisactophilin were computed using 10ns of pH-REX 
CpHMDMSLD and the largest differences in the switching pH range between myristoylated and non-
myristoylated hisactophilin is tabulated. The differences are also displayed on the structure of hysactophilin 
and are colored in blue. Residues colored in red indicate the largest absolute perturbations.  
 
a highly anomalous computed pKa value of 11.5. However, in the non-myristoylated protein HIS-

28 displays a conventional pKa of ~6.4. Likewise, HIS-35 which is in the vicinity of HIS-28 on the 

top of the myristoyl cavity, experiences a large (-4.82 pKa unit) difference upon myristoylation. 

H10

H12

H27

H28
H31

H33

H35

H39

H66

H68
H71

H75
H106Residue pKa difference 

(MYR-NM)

HIS-10 -1.02
HIS-12 0.94
HIS-27 0.51
HIS-28 5.09
HIS-31 -2.49
HIS-33 1.74
HIS-35 -4.82
HIS-39 0.21
HIS-66 2.04
HIS-68 -0.61
HIS-71 0.53
HIS-75 -4.03
HIS-106 -1.28
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HIS-35 is readily deprotonated in the myristoylated form and seems to coordinate with adjacent 

residue HIS-33 which experiences an upshift in pKa upon myristoylation. These observations 

demonstrate the sharing of protons among adjacent titratable groups.   

 Although the two largest pKa perturbations were near the N-terminus (residues 28 and 35), 

the third largest pKa shift is observed for HIS-75. This residue experiences a 4 pKa unit difference 

upon myristoylation favoring the deprotonated form. HIS-75 is one of two residues identified by 

the experimental NMR studies11 as having very large amide proton chemical shift perturbation. 

Fitting the chemical shifts to the Henderson-Hasselbalch equation, Smith et al.11 established that 

myristoylated hisactophilin exhibits a lower pKa than the non-myristoylated protein. The pKa 

difference between the two was more than 1 pKa unit and as such HIS-75 and HIS-91 (which also 

experienced a 1 pKa unit perturbation) were assumed to play an important role in switching. In our 

studies, HIS-91 titrated outside of the pH range of 6.5 – 7.5 for both the myristoylated and non-

myristoylated hisactophilin.   

4.3.2 Implicit Solvent CpHMD Simulations 

During the explicit solvent pH-REX CpHMDMSLD simulations, the myristoyl group was 

rarely observed in the accessible state. Despite sampling the charge distribution which would 

facilitate the pH-dependent switching mechanism, the 10ns time scale of the explicit solvent 

simulation was not sufficiently long to observe this transition in our simulations. In order to 

increase conformational sampling and capture the switching mechanism, 20ns implicit solvent 

GBSW CpHMD simulations were conducted of myristoylated hisactophilin in the pH range from 

6 to 8. Figure 3 displays the results of one set of the CpHMD simulations. Replicate simulations 

were run 100 times (sets of pH6 to pH8) and only 30% exhibited pH-switching. This may suggest 

that although implicit solvent simulations allow for fewer degrees of freedom and hence more 
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conformational sampling, 20ns is still not an adequate amount of time for all the simulations to 

converge and display pH-switching behavior. Longer runs need to be conducted to verify this 

hypothesis.  

The snapshots in Figure 3, show that at pH 6 the myristoyl group is hovering above the b-

trefoil cavity and is frequently interacting with residues HIS-107, GLU-115 and LYS-105. In 

experimental studies10, HIS-107 exhibits a large amide proton chemical shifts perturbation, 

possibly indicating a non-specific interaction with the accessible myristoyl group. The distance of 

the myristoyl group out of the pocket is quantified by three valine residues that are found in the 

bottom of the protein’s myristoyl cleft. The geometric center of VAL-21, VAL-61 and VAL-101 

to the C14 carbon of the myristoyl group is used as a measurement standard for all three pH 

simulations (similar analysis was performed by Shental-Bechor et al10). As is demonstrated in 

Figure 3 panel D, there is a stark bimodal distribution of distance for pH 6 suggesting that the 

switching occurs in a two-state transition. The myristoyl group is outside of the cavity (as seen in 

panel A) for a majority of the simulation time and the average distance of the myristoyl group from 

the valines is 17.5 Å. This distance distribution is not observed for the other pH values.  

The myristoyl group buries itself in the hydrophobic protein center at pH 7 as seen in panel 

B. There are no large secondary structural changes observed between pH 6 and 7, as the four  

 

 

 

 

 

 



 
 

 
 

75 

 

Figure 4.3 Implicit Solvent CpHMD simulations of Myristoylated Hisactophilin. Snapshots of 
myristoylated hisactophilin from 20ns implicit solvent CpHMD simulations are displayed in panels A, B, 
and C. The snapshots correspond with pH values 6, 7, and 8 accordingly. The backbone of the protein is 
color coded to display secondary structure. The residue sidechains presented inside the trefoil barrel are 
those identified by experiment as important to the switching mechanism. Panel D shows the distribution of 
distances for the respective pH values, as measured between the geometric center of three valines and the 
C14 carbon of the myristoyl group. 
 
beta hairpins on each side of the trefoil remain intact. In the pH 7 snapshot, residues PHE-6, PHE-

113, ILE-85 and ILE-93 are seen interacting with the myristoyl group. This interaction mirrors the 

NOEs detected between the myristoyl and the protein by NMR experiments11. In subsequent work 

by the Meiering group, residues PHE-6, ILE-85, ILE-93 which are inside the cavity have been 

identified as crucial to the pH-switching mechanism as mutating any of the four residues alters or 

even breaks switching10.  At pH 7, the myristoyl group is deep inside the protein’s cavity with an 

average distance of 4.68 Å from the valine triad. As expected, the secondary structure is maintained 

20ns of Implicit Solvent GBSW CpHMD

pH 6 pH 8pH 7

A) B) C)
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for the duration of the simulation as denaturation studies have demonstrated that the myristoylated 

hisactophilin in the sequestered state experiences increased protein stability. Panel C shows the 

pH 8 conformation of the myristoylated protein. Again, the myristoyl group is buried in the center 

of the trefoil and is interacting with the four critical residues. The distance distribution although 

not as uniform as that observed for pH 7, has an average of 5.81Å.  

 
4.3.3 Residues Implicated in Myristoyl Group Switch 

  Due to the complexity of the charge distribution and conformational plasticity, it is difficult 

to identify the residues responsible for pH-switching. To better understand the interplay and 

communication between various residues, we employed dynamic network analysis. Through the 

VMD plugin NetworkView23, a dynamic network for the pH 7 explicit solvent pH-rex CpHMDMSLD 

ensemble was computed. Briefly, the Girvan–Newman algorithm27 is used to identify 

subcommunities in which residues have correlated motion26.  Critical points identify linchpin 

residues that connect motions of subcommunities23.  

In Figure 4, panel A shows the five distinct subcommunities that display correlated 

motions. It is readily apparent that the residues are forming numerous connections with each 

other and only a few display thick edges. Interestingly, the blue subcommunity directly includes 

the backbone of GLY-2 which is covalently bound to the myristoyl group. Also, within this 

subcommunity are residues HIS-28 and HIS-35, which exhibit highly perturbed pKa values upon 

myristoylation. The thick edges displayed in the gray community can be attributed to stabilizing  
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Figure 4.4 Dynamic Network Analysis of Myristoylated Hisactophilin at pH 7. Dynamic network 
analysis identifies five distinct subcommunities which describe the communication between residues shown 
in Panel A. Panel B displays the critical nodes which join the various subcommunities.  
 

salt-bridges formed predominantly by GLU-17, GLU-19 and ASP-29 with neighboring histidine 

and lysine residues.  The critical point analysis produces nodes which are important in the global 

communication of the protein and possibly stability, as they track communication between 

subcommunities. It is encouraging to see that in panel B, three (PHE-113, ILE-85 and ILE-93) out 

of the four residues responsible for altering the protein’s switching behavior are represented as 

critical. PHE-113 which is a critical node in the center of the b-trefoil forms an edge with HIS-35 

and in turn HIS-66, which are also designated as critical residues. Interestingly, ILE-85 and ILE-

93 belong to separate subcommunities, gray and yellow respectively.  

4.4 Conclusion and Discussion 

Hisactophlin is a highly charged pH-sensor that enables the binding of actin to the 

intracellular plasma membrane. Understanding the residue specific influence of the titratable 

groups is invaluable in uncovering the pH-dependent switching mechanism. In this work, we 
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examine the impact of myristoylation on pKa values by utilizing pH-REX CpHMDMSLD 

simulations. We identify 13 histidine residues which exhibit large pKa fluctuations upon 

myristoylation. Most of the shifted histidines are solvent exposed and located towards the N-

terminus of the protein.  In the sequestered state (pH > 6.5), the myristoyl group is buried in the 

protein cavity which is lined with hydrophobic residues such as phenylalanine (PHE-6, PHE-34, 

PHE-113), isoleucine (ILE-85, ILE-93) and valine (VAL-21, VAL-61 and VAL-101). 

Unsurprisingly, NMR studies detect NOEs between the myristoyl and residues PHE-6, PHE-113, 

ILE-85 and ILE-9311. Furthermore, experimental studies demonstrate that the accommodation of 

the lipid group in the hydrophobic core of the protein allows for global protein stability10. When 

the histidine residues possess a positive charge at pH values lower than 6.5, the myristoyl group is 

solvent exposed as the protein has large hydrophilic regions. Upon deprotonation of the histidine 

residues at higher pH, the overall charge of the protein is neutralized especially in the N-terminus, 

and the myristoyl group can be docked in the hydrophobic cleft of the b-trefoil. Importantly, HIS-

75 and HIS-35 which are among the two histidine residues that exhibit largely depressed pKa 

values (~3 and ~4 accordingly) upon myristoylation are located on the rim of the myristoyl cavity.  

To visualize the switching mechanism, implicit solvent simulations were performed for the 

switching pH-range (6-8). Only 30% of the implicit solvent simulations that were conducted 

demonstrated the switching behavior, suggesting that the simulations need to be run longer than 

20ns. However, for the simulations where the switching events were captured, distance 

measurements confirmed that the sequestered and accessible states were sampled. The myristoyl 

group at pH 6 had the largest displacement from the protein cavity at ~17Å, followed by pH 8 and 

pH 7 at 5.81 Å and 4.68 Å accordingly. These simulations were integral in qualitative description 

of the switching behavior as well as identifying non-native interactions formed by the myristoyl 
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group while in the accessible state. Once ejected from the protein cavity, the myristoyl group 

adopts a curled conformation and forms transient interactions with the residues of the C-terminus. 

This behavior agrees well with the large chemical shift perturbations identified by NMR 

experiments, in the same region of the protein10. 

Finally, dynamic network analysis lends support to the importance of the four residues 

found in the center of the hisactophilin cavity as PHE-113, ILE-85 and ILE-93 are identified as 

critical nodes. Although the mechanism of switching is largely controlled by the protonation states 

of the histidine residues, hydrophobic groups in the barrel of the protein cavity are essential to 

guide the myristoyl group into the internal hydrophobic protein core. PHE-113 and PHE-6 are 

staggered on either sides of the protein cleft and demonstrate stabilization of c2 angles upon 

myristoylation (data not shown). Furthermore, the contacts between the phenylalanine residues 

and the myristoyl group are sustained throughout the pH 7 and pH 8 simulations suggesting the 

role of these residues in the internal coordination of the myristoyl. Isoleucine residues found at the 

bottom of the cleft along with the three valine residues serve to further anchor the myristoyl group 

inside the protein. Mutational studies performed by the Meiering group emphasize the importance 

of these residues both in providing steric support and an appropriate electrostatic environment, as 

mutation of these residues causes the pH-switch to break. 

Ultimately, the intentional distribution of hydrophobic and hydrophilic regions within a 

protein allows for a delicate but specific response to environmental pH. Broadly, this principal 

provides insight into the mechanistic details of hisactophilin and may generally inform the design 

of synthetic pH-dependent biosensors. 
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CHAPTER 5 

 
Conclusions and Future Directions 

 
This work outlines the advancement towards incorporating pH into currently available NMR 

chemical shift prediction schemes. Motivated by the contributions of David Case1,2 and Harold 

Scheraga3-5, quantum mechanical calculations of model systems are used to decompose the 

complex influence of pH on chemical shifts. Furthermore, the general objective of this work is to 

develop a set of rules that robustly describe the complex impact of pH on these experimental 

observables. The ability to predict chemical shifts will ultimately appeal broadly to 

experimentalists and theorists, as it will allow for better interpretation of both spectra and 

simulations. 

 Model peptides are characteristic of early NMR studies, as many fundamental structural 

relationships were discovered with tri- and penta-peptides. By using a combination of molecular 

dynamics simulations and quantum mechanical calculations on tri-peptides containing titratable 

residues, we studied the impact of protonation on chemical shifts. Fully protonated and 

deprotonated tri-peptide ensembles allowed us to identify conformational characteristics that were 

distinct to each charge state. As the random coil ensembles converged, chemical shift perturbations 

were computed and demonstrated good agreement with experiment. The implicit solvent 

environment allowed for extensive conformational sampling and the elimination of intermolecular 

hydrogen bonding. The chemical shifts derived from these simulations enabled the elucidation of 

the pH contribution for 15N and 13C nuclei. However, the dependence of 1HN chemical shifts on 
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solvent was apparent as the correlations of these results with experimental values was poor.  The 

addition of explicit solvent molecules rectified the initial overestimation of the 1HN shifts and 

yielding better agreement. The observed pH-dependent chemical shifts of the tri-peptides can be 

used to fortify available chemical shift prediction paradigms by augmenting the random coil 

chemical shift values, which are foundational for all chemical shift prediction programs.   

 Hen egg white lysozyme (HEWL), a favorite for benchmarking due to the plethora of 

available experimental data6, served as an appropriate case study to test the ability of peptide 

chemical shift perturbations to reflect chemical shift variations in the protein environment. Explicit 

solvent pH-REX CpHMD simulations were used to calculate the micro-pKa values of the ten 

titratable residues present in HEWL. The peptide chemical shift perturbations were added to 

SPARTA+ predicted chemical shifts of the CpHMD ensembles and produced reasonable 

agreement with experiment for 15N nuclei. As expected, the 1HN atoms proved challenging as both 

implicit and explicit variations of the pH-dependent peptide correction did not always yield the 

experimental result. Ultimately the micro-pKa values differed from the macroscopic pKa values 

computed from the chemical shifts suggesting that the latter is more directly comparable to 

experimentally derived pKa values. Importantly, this study highlighted some of the short comings 

with applying the peptide pH-dependent shifts and the steps necessary to refine a pH-prediction 

model.  

 Many outstanding challenges in the accurate prediction of pH-dependent chemical shifts 

remain. Firstly, the pH-contribution is tethered to the many other variables which comprise the 

chemical shift and may be hard to simultaneously describe with one correction. The 15N and 13C 

chemical shifts are sensitive to torsional angles of neighboring residues, such that applying the pH-

dependent shift from a titratable group in a tri-peptide construct, carries the memory of its 
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neighboring glycine. The effect of nearest neighbors in this context is not fully deciphered, but for 

aspartic acid and histidine, the overestimation of 15N perturbations proved to be significant in the 

HEWL work. Nonetheless, the framework established in the peptide study may be used to further 

explore these effects.  

 Moreover, the sensitivity of chemical shifts to protein conformation underscores the 

requirement for extensive computational sampling. NMR chemical shift measurements represent 

the average chemical shift of an ensemble of states, and as such prediction paradigms should be 

applied on a large number of structures. As such, the representation of conformational states in the 

simulated ensemble must reflect those in the experiment. This is especially true for proteins that 

exhibit conformational plasticity. In the future, advances in the utilization of GPUs7 and the 

development of enhanced sampling techniques8 will continue to enable theorists to push the 

bounds of the time limits imposed on atomistic simulations such that more comprehensive protein 

ensembles can be obtained. Along with extensive sampling, as the accuracy of force fields 

progresses with the incorporation of more data and machine learning the protein ensembles 

generated by molecular dynamics simulations will be drastically improved. Ultimately the 

prediction of pH-dependent NMR chemical shifts encompasses many challenges, predominantly 

stemming from the ability to capture the experimental conformational ensemble. 

 In the third study, the pH-dependent switching mechanism of hisactophilin was studied with 

the use of pH-REX CpHMD and implicit solvent CpHMD. Significant pKa differences were 

observed between the myristoylated and non-myristoylated hisactophilin proteins in the switching 

pH range 6.5 to 7.5. Implicit solvent simulations allowed for the visualization of the pH-switching 

mechanism and dynamic network analysis hints at the trefoil barrel residues as playing an 

important role. Further NMR experiments will benefit simulation analysis and help elucidate the 
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large perturbations which are identified near the N-terminus during the explicit solvent 

simulations. More specifically, mutational studies of HSP-35 and HSP-78 which are the residues 

identified in the simulations as large contributors of charge change in the switching pH range will 

be valuable in better understanding how they facilitate the myristoyl switching mechanism.  

 As structural biology looks to computation for guidance, the seamless comparison between 

experimental and computational observables will be paramount. In the context of pH, recent 

studies comparing pKa apparent values with the computed micro-pKa are beginning to emerge9,10 

as theorists look for a way to seamlessly compare experimental and computational observations.  

However, a method to integrate pH-dependent NMR chemical shifts in currently available 

predictors must occur in conjunction with the accurate prediction of pKa values. Similar to the 

homology calculations conducted by the chemical shift predictor SHIFTX2 with the incorporation 

of the program SHIFTY11, pKa calculation with programs such as PROPKA12 can be utilized to 

apply the pH dependent NMR correction as described in Chapters 2 and 3 of this work. In proteins 

pKa values of titratable groups may differ from model pKa values and consequently the applied 

pH-dependent chemical shift contribution is not constant among all titration events. In the future, 

the incorporation of a pKa predictor within the chemical shift prediction algorithm will allow for 

pH-dependent NMR chemical shift calculations. Furthermore, as computational speed increases 

with advances in software and hardware, methods such as DFT will not be as time prohibitive and 

quantum mechanically derived chemical shifts of entire proteins and possibly entire 

conformational ensembles may be achieved. AF-QM/MM13 (automated fragmentation quantum-

mechanical molecular mechanics) is one current approach which fragments proteins to produce a 

series of manageably sized DFT jobs which can be submitted in parallel allowing for the 

computation of NMR chemical shifts for an entire protein. Although this method is still hindered 
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by time limitations, quantum mechanical studies are very sensitive to input geometry and in the 

future may provide a useful alternative method for the computation of protein NMR chemical 

shifts. 
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Appendix A. 

Supplementary Information for Chapter 2 
Table S2.1 Computed absolute chemical shifts of carbon nuclei  
 

Residue Atom 
Type 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

    comp exp30 

ASP 

Ca 64.0 60.6 54.3 52.9 
Cb 50.7 43.9 41.1 38.0 
Cg 187.4 185.0 180.3 177.1 
CO 182.0 182.0 174.6 174.8 

GLU 

Ca 63.4 62.2 56.9 56.0 
Cb 39.1 36.5 30.0 28.5 
Cg 43.9 37.2 36.1 32.7 
Cd 191.1 188.1 183.8 179.7 
CO 181.5 182.0 177.0 176.5 

HIS 

Ca 63.9 61.3 56.7 55.1 
Cb 37.3 35.0 31.3 28.9 
Cg 146.6 143.0 135.3 131.0 

Cd2 127.4 129.8 120.0 120.3 
Ce1 145.4 143.1 139.2 136.6 
CO 181.8 182.4 176.2 174.8 

LYS 

Ca 63.2 63.0 56.9 56.4 
Cb 40.3 39.8 33.2 32.8 
Cg 30.5 29.6 25.0 24.7 
Cd 42.2 34.7 33.9 28.9 
Ce 51.2 53.0 43.1 42.1 
CO 181.9 181.8 177.5 177.0 

 
Table S2.1 Computed absolute chemical shifts of carbon nuclei. Computed chemical shifts 
from averaged frames collected from the MD ensembles are tabulated with the corresponding 
experimental chemical shifts obtained from Platzer et al.30. 
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Table S2.2 Computed absolute chemical shifts of proton nuclei  
 

Residue Atom 
Type 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

    comp exp30 

ASP 

HN 5.66 4.97 8.38 8.55 
Ha 2.91 3.25 4.61 4.78 

Hb (avg.) 0.92 1.34 2.70 2.93 
Hd2 -- 5.34 -- > 10 

GLU 

HN 4.97 4.64 8.57 8.45 
Ha 2.81 2.92 4.29 4.39 

Hb (avg.) 0.53 0.66 2.02 2.08 
Hg (avg.) 0.65 1.04 2.27 2.49 

He2 -- 5.22 -- > 10 

HIS 

HN 6.15 4.75 8.35 8.55 
Ha 3.09 3.25 4.59 4.75 

Hb (avg.) 1.68 1.92 3.08 3.25 
Hd2 5.66 5.98 6.97 7.30 
He1 6.29 6.87 7.68 8.60 
He2 12.13 8.19 -- > 10 

LYS 

HN 4.71 4.72 -- 8.40 
Ha 2.80 2.83 4.30 4.34 

Hb (avg.) 0.33 0.38 1.78 1.82 
Hg (avg.) -0.09 0.06 1.36 1.44 
Hd (avg.) 0.02 0.41 1.44 1.68 
He (avg.) 1.29 2.00 2.60 3.00 

Hz1 -0.63 3.16 ~1 - 2 7.52 
Hz2 -0.59 3.17 ~1 - 2 7.52 
Hz3 -- 3.18 ~1 - 2 7.52 

 
Table S2.2 Computed absolute chemical shifts of proton nuclei. Computed chemical shifts 
from averaged frames collected from the MD ensembles are tabulated with the corresponding 
experimental chemical shifts obtained from Platzer et al.30. 
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Table S2.3 Computed absolute chemical shifts of nitrogen nuclei  
 

Residue Atom 
Type 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

d Dep. 
(ppm) 

d Prot. 
(ppm) 

    comp exp30 
ASP N 117.3 112.1 120.2 118.7 
GLU N 116.5 114.5 120.9 119.9 

HIS 
N 114.9 109.6 119.7 117.9 
Nd1 243.9 170.1 231.3 175.8 
Ne2 179.1 166.1 181.1 173.1 

LYS N 114.3 114.2 121.7 121 
Nz 10.4 22.4 ~25.2 32.7 

 
Table S2.3 Computed chemical shifts from averaged frames collected from the MD ensembles are 
tabulated with the corresponding experimental chemical shifts obtained from Platzer et al.30. 
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Figure S2.1 Simulation Convergence 
 
A. Aspartic Acid: Deprotonated 

 
B. Aspartic Acid: Protonated 

 
Figure S2.1 Simulation Convergence. The phi and psi angles of titratable groups Asp, Glu, His, 
and Lys for 300 million frames from respective 650 ns MD simulations were binned (20 x 20 grid 
size). Binned distribtutions of simulation runs 1 and 2, and runs 1 and 3 are correlated and plotted 
as a function of frame number. Results for deprotonated (panel A) and protonated (panel B) Asp 
are displayed. The results from these figures suggest that the convergnece of the phi/psi 
distributions for all peptides occurs at a correlation at or above 0.94 (data not shown).  
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