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PREFACE

Starting from a new perspective of the interaction between nanoparticles
and lipid membranes, I developed a systematic model for predicting the
fate of nanoparticles once in contact with a lipid membrane. By factoriz-
ing the contribution from nanoparticles and lipid membranes, the model
allowed the inclusion of data from multiple sources including experimen-
tal measurement, computational properties, and theoretical prediction, and
can predict the time of entry of particles in the membrane at high confi-
dence. The simplicity of the model allows also for fast screening of drug
candidates for their bioavailability. The generality of the parameters in the
model allows the application to various conditions, which were presented
as examples in this thesis.
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ABSTRACT

The number of engineered nanoparticles for applications in the biomedical arena has grown

tremendously over the last years due to advances in the science of synthesis and characterization.

For most applications, the crucial step is the transport through a physiological cellular membrane.

However, the behavior of nanoparticles in a biological matrix is a very complex problem that de-

pends not only on the type of nanoparticle, but also on its size, shape, phase, surface charge, chemi-

cal composition and agglomeration state. In this thesis, I introduce a streamlined theoretical model

that predicts the average time of entry of nanoparticles in lipid membranes, using a combination

of molecular dynamics simulations and statistical approaches. The uniqueness of the model lies in

the ability to identify four parameters that separate the contributions of nanoparticle characteristics

(i.e., size, shape, solubility) from the membrane properties (density distribution and dynamics).

This factorization allows the inclusion of data obtained from both experimental and computational

sources, as well as a rapid estimation of large sets of permutations in membranes. The robustness

of the model is supported by experiments carried out in lipid vesicles encapsulating graphene quan-

tum dots as nanoparticles. The model is applied to the study of various nanoparticles, biological

membranes (i.e., mammalian cellular organelles, viral envelopes), and environmental conditions.

Overall, this work contributes to the understanding and prediction of interactions between nanopar-

ticles and lipid membranes, responding to the high level of interest across multiple areas of study

in modulating intracellular targets, and the need to understand and improve the applications of

nanoparticles and to assess their effect on human health (i.e., cytotoxicity, bioavailability).

xiv



CHAPTER 1

Introduction

The transport of substances across lipid membranes is a biological process of great importance.

Molecules that can readily cross cell membranes are frequently needed in biological research and

medicine. Examples of permeable molecules that are useful for biological research include protein

inhibitors, crosslinking molecules, indicators of ion concentrations, and various fluorescent dyes.

In medicine, numerous drugs are small molecules acting on intracellular targets, and for most of

the routes of administration, cell membrane permeation is required for a drug molecule to reach

the cytoplasm of the cells.

In the case of small organic compounds, it is possible to tune their physicochemical characteris-

tics to facilitate passage through the plasma membrane. Lipophilicity can be increased by avoiding

the presence of ionizable groups, and the number of hydrogen-bonded donors can be reduced by

N– or O–alkylation. However, this is not the case for most macromolecules, such as proteins

or nanoparticles (NPs), whose hydrophilicity and large size hamper direct diffusion through the

membrane lipid bilayer [65]. These limitations are especially frustrating in biomedicine. Indeed,

recently there has been a blooming of applications in the biomedical arena due to advances in

the science of synthesis and characterization of nanoscale engineered particles. Tunable geomet-

ric, optical, and surface properties of organic and inorganic nanomaterials enable engineering for

several applications, such as drug delivery [44, 14, 88], controlled-release [14, 54], deep tissue

imaging and sensing of cellular behavior [53, 82, 1, 52, 111].

NPs can be delivered by various entry routes, including oral administration [77, 29], vaccina-
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tion [83], and aerosol-based drug delivery [19, 12, 5], depending on the therapeutic requirement.

However, one of the crucial steps of NP uptake is transport across a physiological cellular mem-

brane. The semipermeable nature of lipid membranes represents a selective barrier to passive

diffusion and small apolar compounds can cross the membrane at appreciable rates. Passive se-

lectivity arises from the forces and fluctuations present across the membrane environment and it is

not actively regulated by the cell.

In general, cells do not permit access of polar macromolecules to their cytosol, and phospho-

lipid membranes constitute an effective barrier. Nonetheless, over the years several systems have

been reported to give cytoplasmic access to biomacromolecules, most notably cell-penetrating

peptides [102], supercharged proteins [114, 78] and different types of NPs [56, 92, 89].

When discussing nanoparticles in biological membranes, it is critical to make some catego-

rization based on the size of the particle relative to the typical scales of the membranes. For

particles with the smallest dimension larger than the membrane thickness, approximately above

10 – 15 nm, the permeation is generally controlled by membrane deformation [22] and endocy-

tosis [33]. Smaller nanoparticles can instead cross the membrane by passive transport, that is by

displacing, sometimes irreversibly, the lipids or by diffusing in the hydrophobic region of the mem-

brane and then on the other side. At the smaller end, below what is classified as a nanoparticle,

small molecules (e.g., oxygen or water) can cross the membrane by using the small free volume

pockets that are generated as part of the normal thermal fluctuations [106]. Finally, while size

plays an important role, the behavior of NPs in the biological matrix depends also on their type,

shape, surface chemistry, chemical composition, and agglomeration state.
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1.1 Existing models of membrane permeation and their limita-

tions

1.1.1 Solubility-diffusion model

Over the years, several models have been proposed to describe the process of passive permeation of

NP entering the cellular membrane, from the late 19th century solubility-diffusion model [71, 62]

to its recent derivations such as triple-layer model [68], MD based approaches [84, 112, 73] and

state-transition model [79]. The solubility-diffusion model, developed independently by Overton

and Meyer, assumes the whole membrane as a homogeneous layer of hydrophobic hydrocarbons

with a constant permeability, where the permeation process was described directly by the Fick’s

first law of diffusion as molecules move down concentration gradients. The seminal contribution

of this model to biology is the recognition that the permeability of cells to many different solutes is

proportional to the partition coefficients of the solute from water into organic phases [100]. More

hydrophobic the solutes are, the more efficient it can partition into the membrane [59]. While this

model has its advantage in terms of simplicity and it has been widely applied to the study of the

permeation of small molecules, such as oxygen and water, it does not take into consideration the

dynamic motion of the bilayer membrane structure [74] and lacks the inclusion of the variation

of physical structure of the lipid bilayer. Overall, the agreement between the computed perme-

ability and agrees with experiments for lipid bilayers is only in the orders of magnitude. Also,

the bilayer thickness assumed by the model was often found in disagreement with experimental

measurements, indicating that the computed mechanism of permeation was not a simple process

of diffusion.

1.1.2 Improved solubility-diffusion model

A simple improvement to the solubility-diffusion model is the triple-layer model [68], that de-

scribes the mechanism of permeation using Fick’s first law and considers the membrane as a
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combination of homogeneous slabs, where a hydrophobic layer is embedded by two layers of

hydrophilic ones. One can easily adapt different parameters of thickness, solubility, and diffusivity

for the two types of layers for the variation of lipid compositions of different head groups and

aliphatic chains and reach better accuracy for the prediction in the permeability for different lipid

bilayers. Using modern computational power, one can approximate the lipid membrane with an

even finer structure by increasing the number of layers [84, 112, 73] to approximate the diffusivity

and solubility of the NP at different heights inside the membrane.

In summary, these methods, despite being successful in many applications, still lack in the

consideration of 1) the dynamics of lipid packing which changes at different composition and

environmental conditions [108, 61] and 2) the geometric shape of NPs [109], resulting in large

prediction errors for particles of various sizes and shapes, membranes of different compositions,

membranes being deformed by external forces, or when membrane phase-changes are involved.

Also, the computational approaches are often limited by the geometric size of the NP. For large

NP of complex geometry, it may take very long computational time to reach ergodicity for the

membrane-NP system by sampling all the potential configurations of the NP in the membrane.

Sometimes even with the implementation of some accelerated sampling techniques, such as um-

brella sampling [90], Monte Carlo sampling [36], and Metadynamics [47], the system still incurs

the curse of dimension of too many degrees of freedom that the system needs to sample.

1.1.3 Head-group gated model

Another group of studies present in the literature has focused on the molecular interactions between

lipids and NPs from molecular level, as one of the main steps that control the permeation bar-

rier [66, 7, 112]. This head-group gating effect was theoretically studied by Xiang et al. [109, 108],

where the concept of free surface area mediating the permeation was suggested for the first time.

The article also suggested an empirical distribution of the free surface areas of an exponential

shape, and mentioned that barrier of permeation being related to the permeate size. Vamparys et al.

provided molecular insights into multiple definitions of the free surface area as well as the the area
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distribution [94] and found the exponential distribution from statistics. By studying lipid packing

from molecular level, the model enabled the estimation of the effect of various types of lipids in

the membranes, membrane phase changes, and external forces that were applied to the membrane.

While promising, the free surface area model, is still hard to apply as it has several critical short-

comings. For example, the shape of NP was not considered for the permeation. These models had

no bias against two NPs of the same weight but different geometric shapes. However, in the per-

meation process, the one with a smaller cross-sectional area are often preferred [51]. Also, these

studies on the free surface areas didn’t discusse the lifetime distributions of the free surface areas,

resulting in a gap between the static distribution to the kinetics of the permeation process.

1.1.4 Empirical models

Beyond these models on passive permeation, there are also models and approaches to discussing

the effect of forming transient pore, lipid flip, and permeation assisted by membrane channels [59].

However, these processes are either too slow or too specific. In practice, there are also some em-

pirical models being developed with no prior knowledge of the physical mechanism of permeation,

such as the most commonly used ”rule of five” [50] and some QSAR/QSPR models [26, 110, 32].

However, the predicted permeability is only accurate to the order of magnitude. Sources contribut-

ing to the error of QSAR include 1) the incorporation of too many descriptors that are not related to

the permeation problem, and 2) strong dependency on the quality (extensiveness and consistency)

of the training set.

1.2 Overview of the LDA model

In this thesis, I present a theoretical model that is able to predict the average time of permeation

of NPs through the hydrophilic region of a lipid membrane, using a combination of molecular

dynamics (MD) and ad hoc analysis. The major contributions of this work are the identification

of four parameters to describe the permeation process and the factorization of the contributions
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that are only dependent on the characteristics of NPs (e.g., size, shape), properties of the lipid

membrane (e.g., free surface area) from the ones that depend on both (solubility). This separation

has two main benefits: it allows the use of data obtained from both experimental (e.g., partition

coefficients, NPs’ shape measures) and computational sources (membrane surface dynamics) as

they become available, and it makes possible a rapid estimation of large sets of systems by using

existing data. This model is validated using both experimental data collected in systems composed

of vesicles and NPs, as well as all-atom MD simulations, obtaining in all cases agreement well

within measurement error. The model is interested across multiple areas of study in modulating

intracellular targets, evaluating the effect of NP on human health (i.e., cytotoxicity, bioavailability),

and in the early phases of drug discovery for screening drugs of inefficient permeation.

The following chapters are organized as follows: Chapter 2 describes the development of the

low-density-area (LDA) model as applied to rigid NPs entering phosphatidylcholine membranes, in

Chapter 3 the LDA model is extended to consider various biological membranes and nanoparticles

with a flexible shape. Chapter 4 introduce another type of biological membrane, the coronavirus

envelope, and the LDA model is then applied to the permeation of a variety of drugs through the

viral membrane. The final chapter reports the details of the molecular dynamics simulations used

to develop the LDA model and information on how the biological membranes and transmembrane

protein were modeled in this study.
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CHAPTER 2

Development of LDA Model for Membrane

Permeation

In this chapter, I present the observation of the low-density areas in simulation and its role in the

NP permeation process. Based on the correlation, I developed a physical model of permeation that

factorized the contribution of the NP and membranes. The metrics of the low-density areas is then

compared to the similar concepts in literature in Section 2.3. In the last section of this chapter, I

present the validations of the model based on experimentally measured leakage of NP through lipid

vesicles, and the time of entry of NP in lipid membranes collected from unbiased MD simulations.

Figure 2.1: Permeation of a 2-nm cys-GQD in a lipid bilayer. The process can be separated in
four phases (A), in which position and orientation of the permeant strongly correlate (B).
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2.1 Low-density areas are related to the permeation of NP in

simulation

To identify trends in membrane permeation that can be used for our model, I performed several in-

dependent MD simulations of different NPs in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine

(POPC)/cholesterol (Chl) bilayer (10:1 concentration ratio). The ratio represents the typical com-

position of a mammalian cellular membrane [96].

As for NPs, I focused our study on carbonaceous NPs since they have been widely utilized

in many health-related fields like drug delivery [44, 14, 88], cancer therapy [14, 54], wound dis-

infection [85], biolabeling [53, 82, 1] and biosensing [52, 111], due to their low cytotoxicity,

high photoluminescence and easy surface functionalization. Specifically, a buckminsterfullerene,

a curved OH-terminated GQD and GQD functionalized with two cysteine groups (cys-GQD) were

used [86]. This selection covers NPs of similar size, but different shape and hydrophilicity.

Analysis of MD trajectories shows that the process of permeation can be divided in four stages,

summarized in Figure 2.1A,B: I. The NP reaches the membrane surface via diffusion. II. The NP

diffuses over the water-membrane interface. III. The NP enters the hydrophilic region of the lipid

bilayer. IV. The NP permeates the hydrophobic region of the lipid bilayer. These stages are not

strictly sequential. For example, from Stage II, the NP can go to either Stage I or III, or, depending

on the NP’s properties, Stage II or III may be a long-lived state that does not further evolve in a

given time frame.

The first transition (from Stage I to Stage II) is controlled in most conditions by the diffusion

of the NP in the environment close to the membrane surface, due to the presence of an unstirred

layer [4]. As this environment can be strongly affected by the species (e.g., proteins and sac-

charides) that surround many biological membranes, and it is largely independent of the bilayer

composition, I decided to restrict the focus of our model to the other transitions.

When analyzing the progress from Stage II to Stage III, I consistently observed a drop in the

membrane surface density in the proximity of the particle (Figure 2.2, Figure 2.3 and Figure 2.4).
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Figure 2.2: Lipid head-groups positions and surface lipid density show the LDA in the lipid-head
region formed around the GQD during stage III.

Figure 2.3: The time evolution of the cys-GQD distance from the membrane central plane (A)
with the average atomic density of the membrane surface around the GQD (B).

At the same time, for non-spherical NPs (e.g., cys-GQD), the transition is characterized by a change

in the orientation of the NP, namely from parallel to perpendicular to the membrane plane (Fig-

ure 2.1B), in agreement with previous works [86, 91, 11]. In order to determine whether the
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Figure 2.4: The average distribution of the density around GQD during stage II and stage III.

decrease in local density of the membrane surface was caused by the presence of NPs, I computed

the membrane density distribution and dynamics both in absence and presence (close proximity)

of NPs.

Figure 2.5: Effect of the presence of NPs (three different NPs, see text for details) on a
POPC/cholesterol (ratio 10:1) bilayer density. Error bars (95 % confidence interval) shown only
for selected points for clarity.

The result (Figure 2.5) shows that neither the density distribution nor the autocorrelation is

significantly affected by the presence of the NPs selected in this work, as the difference between
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the curves (purple) is always smaller than the standard error (dashed, red). This result suggests

that the local change in density is due to the internal dynamics of the lipid bilayer, e.g., thermal

fluctuations. It is important to note that I do not exclude that different NPs can affect the local

membrane density, most likely if strong Coulombic interactions are present. This is the case for

compounds like graphene oxide nanosheets and a wide variety of cationic NPs, which are known

to induce pore formation, membrane thinning and membrane erosion [91, 22, 113, 48]. However,

as I will show below, the effect on permeation due to induced membrane changes can be modeled

as a subset of the more complex case of fluctuations driven density changes that I observed.

2.2 Permeation model based on low-density areas

Based on the insights gained from MD simulations illustrated above, I developed a simplified

model for the permeation of nanoparticles in biological membranes. The model describes the

permeation as a gated entry model, in which the single process is regulated by the chance of the

NP to encounter low-density areas (LDAs) on the membrane surface and by the solubility of the

NP in the hydrophobic phase. Once the NP reaches the membrane surface, the process can be

summarized as follows (Figure 2.6):

1. The NP that is in proximity of the membrane surface may encounter a local LDA of lipids

with the right shape to allow the NP to permeate, with a probability PLDA. PLDA is generally

dependent only on the membrane properties (e.g., composition, surface tension). For NPs

that perturb the local density, this probability should be modified.

2. If the LDA is large enough to allow NP permeation, the process is now controlled by its

affinity with the lipid tails, PT .

3. If permeation does not occur, the NP can leave the membrane surface or stay in proximity of

the membrane long enough for a new independent “permeation attempt” (two previous steps)

to occur. To approximate the time elapsed between two independent permeation attempts,

here I use the LDA decorrelation time, τLDA, during which the thermal fluctuations generate
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Figure 2.6: Schematic representation of the proposed permeation model. (A) The probability of
entry controlled by PLDA and PT . (B) The diagram of time evolution. See text for the detailed
description.

a new decorrelated distribution of LDAs on the membrane. Moreover, if I assume a condition

of steady state, the probability of a NP diffusing away from the membrane is the same as the

ones of a different NP reaching the membrane.

Based on this description, the average time of entry tentry can be estimated as:

tentry =
∞∑
n=0

[(1− P )nP (τp + nτLDA)]

= τp + τLDA
1− P
P

(2.1)

where τp is the average time for the NP to diffuse from the lipid head region to the lipid tail region
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and P is the probability defined as:

P = PT · PLDA (2.2)

Below I discuss in detail all the four parameters reported in Eq. 2.1 and Eq. 2.2.

2.2.1 Thermodynamic probability (PT )

The affinity of a particle with the lipid tail PT describes the probability of the NP to move from

the hydrophilic (headgroups region) to the hydrophobic phase. This factor is therefore related to

the solubility of the NP in the membrane and can be estimated using the partition coefficient KD

of the NP in water/lipid as:

PT =
KD

1 +KD

(2.3)

This term agrees with the observed strong correlation between the permeability of NP in different

biological membranes and the NP water/membrane partition coefficient [112, 70, 104].

KD can be obtained from both computational and experimental techniques or approximating

with a simpler system, e.g., the water/octanol partition coefficient. Multiple theoretical mod-

els have been proposed to estimate the water/octanol partition coefficient. For example, Gar-

rido et al. [28] used MD simulations to determine the temperature-dependent partition coefficients

of different n-alkanes obtaining a good agreement with experimental values. Theoretical methods

that do not require simulations [67, 63] can also be used to predict the partition coefficient using

only the atomistic and structural information of a particle.

2.2.2 LDA probability (PLDA).

PLDA is the probability of finding an LDA of a given size and it is affected by both the properties of

NP and membrane. However, for NPs that do not markedly alter the membrane surface dynamics,

the contributions of membrane and NP can be separated and the PLDA can be computed from the

size and shape distributions of the LDA in the membrane and the size and shape of the NP, as

described below.
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Figure 2.7: Schematic representation of the steps used in the analysis of the lipid density for each
sample of the POPC:cholesterol (ratio of 10:1) bilayer (top-down view). See methodology for
additional details. (A) Calculation of lipids’ COM; atoms at the lipid/water interface are selected to
locate the center of mass for each lipid. (B) Voronoi segmentation; crosses show lipids’ COM. (C)
Continuous density map obtained by applying a Gaussian function centered at each lipid COM. (D)
Regions with a density above (light red) and below (dark red) the average water density (33 nm3

excluding hydrogen atoms). Down triangles indicate the local density minima. (E) Segmentation
of joint LDAs by watershed by flooding on the density contour. (F) Dimensions probing of a
single LDA, by sampling on perpendicular directions (e.g., yellow lines) passing through the LDA
minimum (only 3 pairs are shown for clarity).
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Figure 2.8: Average probability of finding an LDA larger than a given rectangular cross-section,
shown as the cumulative histogram in a POPC/cholesterol (10:1) membrane.

The distributions of low-density areas can be computed in different ways, and below I propose

an approach that can be extended potentially to experimental techniques, by converting atomistic

three-dimensional information to two-dimensional images, which in turn are used to compute the

properties of low-density areas. Next, I illustrate all the steps of the procedure by using data from

an MD simulation of a POPC:cholesterol (10:1) bilayer at the physiological ionic concentration

(0.15 M NaCl).

For each sample of our simulation, I located the center of mass (COM) of each lipid by consid-

ering only the atoms at the water interface (Figure 2.7A). The membrane surface is then segmented

using the positions of the COM to build a Voronoi diagram (Figure 2.7B). This partition makes it

possible to determine the average area “occupied” by each lipid type under the specific environ-

mental conditions and membrane composition. To obtain a continuous density map, I summed the

two-dimensional Gaussian functions centered at the COM of each lipid with a radius dependent

on the average membrane area for that type of molecule, e.g., cholesterol, POPC (Figure 2.7C).

With these steps, I have transformed the three-dimensional information from atomistic simulations

to a continuous two-dimensional density map of the water/membrane interface, similar to the one
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that can be obtained from different imaging techniques. Therefore, the following steps can be in

general applied to any two-dimensional density map independently from its source.

The next step is to extract the statistics of LDAs’ morphology from the two-dimensional density

map. I first assign the center of all the LDAs to the local minima in the two-dimensional density

(Figure 2.7C); the LDAs are then extended from these centers to the contour line corresponding

to the density of water, i.e., 33 nm3 (Figure 2.7D). Finally, joint LDAs are separated by a flooding

watershed algorithm [103] (Figure 2.7E).

As shown in Figure 2.7E, the shapes of LDAs produced from the segmentation method, de-

scribed above, are often irregular. To describe these shapes, I draw perpendicular lines starting

from the local minimum at 18 different angles (Figure 2.7F). The lengths of these perpendicular

lines are then used as descriptors of the shape and size of an LDA. Specifically, these dimensions

can also be used as a filter for the size of the permeating particle.

The average filter over all the angles is computed for each LDA and then weighted by the LDA

area. The result, normalized by the total membrane area, gives the size-dependent permeation

probability for the given two-dimensional density map. Finally, the average over all the samples

(i.e., the MD trajectory) gives PLDA as a function of the particle dimensions. One example is

shown in Figure 2.8.

To account for the different possible orientations of a particle, I considered a cross-section

along the 6 directions defined by the axes of inertia of the particle. To eliminate artifacts due to

barbed or oddly-shaped objects, the cross-section was taken 0.28 nm from the particle surface,

roughly the thickness of one water layer, and then approximated by its circumscribing rectangle.

Finally, the sizes of the rectangles are used to compute six values of PLDA that, as an average,

represent the overall particle PLDA and can also be used to estimate the preferential orientation

during permeation.
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Figure 2.9: Estimated lifetime of LDA, based on the (A) fraction of LDAs that converts to non-
LDA over time. (B) τLDA computed for different thresholds, for 95% LDA lifetime (bar indicate
the 93-97% interval).

2.2.3 LDA decorrelation time (τLDA)

As the next step, in order for the model to describe the dynamics of the membrane, I included

knowledge on the time evolution of the LDAs. τLDA is the average time that the membrane surface

density takes to decorrelate, which is controlled only by the membrane thermal and pressure fluc-

tuations, under the non-interacting case discussed above. I estimated τLDA using the thresholded

two-dimensional density map (e.g., Figure 2.7D), and measured the shortest time of part of the

LDA to transition to a non-LDA. As a measure of the decorrelation, I approximated τLDA as the

characteristic time needed for the 95% conversion from LDA to non-LDA.

Figure 2.9 shows the distribution of the lifetimes and τLDA for three different surface density

thresholds. While there are differences in the curves depending on the threshold value, once a 93-

97% conversion interval is considered, taken into account the different sources of error, the results

are substantially similar, approaching values close to 2 ns.

In this work, τLDA is extracted from surface density maps, but it can be derived also from

theoretical models or experimental measurements of the fluctuations of the membrane surface [75,

9]. An intuitive comparison of the order of magnitude of the lifetime of LDA to membrane lipid
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dynamics is lipid wobble (ns), axial rotation (ns), and lateral diffusion (ns to ms).

2.2.4 Time of permeation (τP )

τP is the average time that takes the NP to permeate from the lipid heads to the lipid tails when

no barrier is encountered. This time usually provides a small contribution to the overall time of

entry as compared to τLDA, as the permeation is limited by the head groups. Numerically τP can

be approximated based on the diffusion velocity of the NP, or estimated from the size and mass of

the NP [37]. However, in the extreme condition of NP being extended in one dimension, such as

carbon nanotube and peptide of a long alpha-helical structure, their time of entry can be dominated

by this time of permeation, as the particle can easily find an LDA that matches its tip, but the slow

speed of diffusion and long length along its longest dimension make the entry extremely slow.

In this work I used the time difference between the formation of an LDA and the entry of the

NP obtained from MD trajectories. This approach leads to values approximately between 1 ns for

C60 to 3 ns for cys-GQD (refer to Figure A.18, Figure A.19, and Figure A.20).

2.3 Comparison between low-density areas and similar con-

cepts in literature

To further explain the concept of LDAs, I compare the LDAs introduced in our model to similar

metrics introduced by other researchers. For example, the accessibility surface area presented by

Cui et al. [17] uses a sphere to probe the voids on the membrane surface [17]. The packing defect

introduced by Vamparys et al. [94]) calculates the void by projecting the membrane surface to a

grid. The metrics of the packing defect were further validated with experiments by using small

molecules to probe the existence of the defects [3]. Essentially, these metrics, including the one

reported in this article, speak to the atomic density on the membrane surface, which reflects the

tightness of lipid packing at the hydrophilic/hydrophobic interface of lipid bilayers.

In the work done by Vamparys et al. [94], these metrics are compared accordingly to their
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Figure 2.10: Size distribution of packing defects and LDAs in model membranes. The distribution
is the probability of finding a defect area or LDA of defined size. Panel (A, B) are for the chem-
ical defects and geometrical defects introduced by Vamparys et al. [94] and panel (C) for LDAs
introduced in this work. For each metric, I analyze three types of membrane varying in their com-
position (ratio of POPC:cholesterol). Colors blue represent the POPC:cholesterol=90:10, orange
for 70:30, and green for 50:50. Dots represent each sample and solid lines show the exponential
function fit. Following the same approach as the original work by Vamparys et al. [94], to fit the
exponential function for the distribution of the two types of packing defects, I selected only defects
larger than 0.05 nm2 and with probability greater than 10−4. For LDAs, this range of selection is
for an area larger than 0.5 nm2 and with probability greater than 10−5. The black dashed lines
in panel (A, B, C) indicate such ranges of selection. Panel (D) compares the exponential decay
constants for all the membranes and all the metrics.

distributions of the sizes of defect areas. The results showed that for all these metrics, 1) the

sizes of defect areas increase when packing defects are introduced into the lipid bilayer, and 2) the

distributions of the sizes of defect areas are roughly exponential.

To assess the similarity between LDA and defect area, in the following I compute the chemical

and geometrical defects for three different membranes varying their POPC/cholesterol ratios, fol-

lowing the approach introduced by Vamparys et al. [94]. Analyses were performed on 2500 snap-

shots from 50 ns simulation for each membrane as shown in Figure 2.10. For all lipid compositions,

I observed the exponential decay in size for all the distributions, above a minimal size (0.05 nm2

for defects, 0.5 nm2 for LDA) similar to the results presented in the original work [94]. This decay
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increases with the amount of cholesterol in the membrane, implying that the cholesterol facili-

tates the lipid packing in the bilayer, resulting in less packing defects on the membrane surface, in

agreement with previous works [2, 42, 72, 43]. These similarities indicate that the metric of LDAs

captures similar membrane surface properties as the metrics of packing defects do.

However, the data in Figure 2.10 highlights also some of the differences between these def-

initions. The most important one is the shape of the curve approaching zero: while the packing

defects monotonically decrease as the defect size increases, the LDA distribution shows a maxi-

mum of around approximately 0.5 nm2. The reason for this difference lays in the physical meaning

of LDA, namely the free energy cost associated with the membrane density fluctuations. On one

hand, any deviation from the average density is not entropically favored. On the other hand, the

fluctuations are enthalpically favored for small changes, as the average lipid-lipid distance becomes

closer to the one associated with the potential energy minimum, but it then becomes also unfavor-

able once the repulsive part of the lipid-lipid interactions become prominent. Finally, the typical

size of the LDA is about three times larger than the packing defects. This difference is intrinsic

in their different definitions, as the packing defects are measuring the voids between atoms, which

is a much stricter requirement than the one employed for LDAs that is defined based on density

threshold.

2.4 Validation of the LDA model

Table 2.1: Parameters related to the model’s prediction for the three NPs.

τP τLDA PT
1 PLDA tentry tentry,MD SEtentry,MD

C60 1 ns 2.2 ns 100% 7.91% 26.0 ns 26.1 ns 2.2 ns
Curved-GQD 1 ns 2.2 ns 100% 6.39% 33.2 ns 33.3 ns 3.2 ns
Cys-GQD 1 ns 2.2 ns 100% 5.41% 39.5 ns 39.6 ns 3.0 ns

1 KD is estimated by using the approach outline in [67].

To test the performance of this model, I carried out two comparisons: the first one against sta-

tistical observations of all-atom MD simulations, the second versus experiments. As currently only
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Figure 2.11: Comparison of the average time of permeation predicted from MD simulations and
the current model.

PT is estimated from experimental values, the first comparison establishes the ability of the model

to capture the MD process independently of the approximations and simplifications introduced

above.

To obtain the times of entry of three different NPs (Figure 2.11 A), I placed the NPs in close

proximity of the POPC/cholesterol bilayer (10:1 ratio) while immersed in a NaClsolution at phys-

iological conditions (0.15 M), and analyzed the results of multiple simulations (between 12 and 16

simulations). The times of entry were collected and fit with an exponential function from which

the characteristic time was determined as the average time of entry. The quality of the fit can be
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evaluated by the standard error of the time of entry (via its Fisher information). The average time

of entry and the standard error are listed in Table 2.1, along with other parameters used in the

model.

The results are reported in Figure 2.11, which shows that the agreement between the MD and

the current model is within 10%. It is worth noting that all the 3 predictions seem to suffer from a

negative bias error of about 0.1 ns. Since this term is consistent for all NPs, I attributed that to the

factors that depend solely on the membrane, i.e., τLDA.

Table 2.2: Parameters related to the model’s prediction for the three membranes.
P:C τP τLDA PT PLDA tentry

50:50 1 ns 0.84 ns 1 1.6 10−4 5.2 µs
70:30 1 ns 1.2 ns 1 1.1 10−3 1.0 µs
90:10 1 ns 1.7 ns 1 5.0 10−3 0.31 µs

Given the overall excellent agreement between the MD results and the model, I further tested

model predictions with experimental measurements of a photoluminescent NP crossing the mem-

brane of lipid vesicles of different compositions. Specifically, I leveraged the linearity of the

photoluminescence intensity of a GQD solution with its concentration, by monitoring the de-

crease in the luminescence of a GQD solution encapsulated in different vesicles, as a measure-

ment of GQD leakage. The lipid vesicles encapsulating with GQD (0.1 mM), with three different

POPC/cholesterol ratios (i.e., 50:50, 70:30 and 90:10), and GQD ranging from 2 nm to 8 nm in

diameter, were prepared by double emulsion templated vesicles [58]. Next, the lipid vesicles were

moved to a GQD-free solution and the GQD leakage was measured by monitoring the decrease

of the photoluminescence of a single lipid vesicle over a one-hour period (Figure 2.12A) from the

time the vesicle was moved to a GQD-free solution. Of note, I chose GQD that have a negligible

tendency to aggregate, to simplify the interpretation of the experiments. The results, presented in

Figure 2.12A,B are the average over 10 independent vesicles.

The kinetic of the GQDs’ leakage in a spherical vesicle can be modeled by a first-order dynam-
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Figure 2.12: Measured GQD leakage from different lipid vesicles. (A) Experimental images of
photoluminescence change over a one-hour period. Images were taken every 15 minutes. White
scale bar for 50 µm. (B) The photoluminescence intensity over one-hour period for GQD encap-
sulated vesicles with different lipid compositions is indicated. (C) Comparison of the model’s
predictions to the permeability measured from experiment. (Error bars correspond to one standard
deviation.) Experiments credited to Dr. Sagardip Majumder and Prof. Allen Liu.
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ics as

I(t) = I(0) exp

(
−3P

r
t

)
(2.4)

where I(t) is the intensity of the fluorescence over time, P is the permeability of the membrane, r

is the radius of the lipid vesicle. I modeled the leakage of GQD as a two-step process, where the

GQD first enter the vesicle bilayer and then either diffuse back inside or outside the vesicle. If I(t)

is proportional to the GQD concentration inside the vesicle and the bilayer, this model predicts a

decrease in intensity-dependent on GQD concentration in the membrane [GQD]M :

dI

dt
∝ −kx[GQD]M (2.5)

where kx is the kinetic rate describing the GQD leaving the bilayer. Based on the values of the

partition function as well as the difference in timescale between the leakage process and the entry

process (seconds or minutes vs nanoseconds), I assume that a steady state condition is rapidly

reached. Therefore, by comparing Eq. 2.5 with Eq. 2.4, I find that

P ∝ rkx/3 = c/tentry (2.6)

where c is a constant that depends on the membrane thickness, the partition coefficient and the frac-

tion of particles that go outside the membrane when leaving the membrane and tentry is calculated

from our model as reported in Table 2.2. As it is shown in panel c of Figure 2.12, there is a very

close match between the permeability obtained with our model and the values computed by fitting

the experimental data (dash line in Figure 2.12), further validating the quality of our approach.

24



CHAPTER 3

Expanding LDA model to Various Conditions

In Chapter 2, the model was introduced and tested with relatively simple lipid profile in mem-

branes (a mixture of POPC and cholesterol) being homogeneously distributed among leaflets at

the physiological concentration of ions in water (0.15 M NaCl). The NPs that were tested for the

model were also rigid in their geometrical shapes.

In this chapter, I extend the model to include various membranes compositions and different

ionic strengths. For the nanoparticles, I study the effect of flexible shape. These expansions will

add generality to the model so that it can be readily adapted to conditions beyond the cases studied

in this thesis. An example for each type of adaptation is presented in the following sections.

3.1 Application to flexible particles

Two parameters in this model were related by the particle, including the PLDA of the probability of

finding a comparable LDA which depends on the particle’s size, and the PT of the probability of

entry upon meeting the water/lipid interface which depends on the particle’s partition coefficient.

For rigid NP in the previous tests, their sizes were represented as the cross-sectional areas of the

six faces oriented from the three principal axes of inertia. This size features were then combined

with the LDA distribution to calculate the parameter of PLDA, the probability for finding the LDA

that matches the areas of the NP.

To define the cross-sectional areas and principal axes for a flexible molecule, a simple approach

is to use the potential-energy minimized geometry of the molecule. However, such approach may
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Figure 3.1: Size histograms (left) and cross-sectional areas are measured from the principal axes
of inertia (right) of circumcoronene, dodecane, and vancomycin.

result in errors in the size measurement. For example, for a dodecane molecule whose minimized

structure is a linear one, this straight geometry has two spiky cross-sectional areas from the two

terminals. But at room temperature, dodecane in solvent tend to twist its C-C bonds in favor of in-
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creasing entropy of the overall system, resulting in a crunched structure where the spiky terminals

are not always accessible for contact. Using the minimized structure would systematically bias for

smaller cross-sectional areas and better permeability. Meanwhile, for some other molecules with

flexible groups, the extension of these groups as a result of thermal fluctuation creates spikes at the

surface of the molecules. These spikes can reach the smaller low-density areas to the hydrophobic

region before the rest of the molecular body, which then triggers the process of membrane perme-

ation. Ignoring such effect can result in the underestimation of the permeability of these molecules.

In addition to that, for some complicated molecular structures such as RNA and proteins, the 3D

structural minimization is a non-trivial problem.

Here rather than to define a static structure with fixed principal axes, I included the flexibility of

molecular structure through MD sampling of the dynamic structures of flexible drugs. The cross-

sectional areas for each configuration sampled from MD were assembled together to calculate

the overall PLDA of the drug for its membrane permeation in this model. Individual PLDAs were

calculated for each configuration, from which the average of PLDAs over the whole ensemble

was used in the model as the final probability of crossing. By doing so, rare structures that are

favored by membrane permeation, once sampled, will be included in probability calculation. In the

meantime, this method will require the ergodicity of the MD sampling, which in some cases need to

use some specific sampling techniques such as umbrella sampling [90], Monte Carlo sampling [36],

Wang-Landau sampling [81], metadynamics [47], and sometimes takes much computational effort.

Below I reported three molecules as examples to illustrate this approach. These molecules

included two flexible molecules of dodecane and vancomycin, and a rigid circumcoronene for

comparison. The molecular structures for these three molecules are sampled every 10 ps from a

50 ns trajectory of unbiased MD simulation in water at 310 K with 0.15 M NaCl. The ergodicity

was evaluated upon the convergence of the size histogram as shown in Figure 3.1.

As presented in the histograms, the rigid molecules of the circumcoronene had three major

peaks in its distribution which corresponded to the cross-sectional areas taken from the three prin-

cipal axes of inertia. The two flexible molecules had continuous size distributions from nmsq0.25
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to 1.5 nm2 for dodecane, and 4 nm2 for vancomycin.

Table 3.1: Parameters related to the model’s prediction for the three flexible particles in the
POPC:Cholesterol=90:10 membrane.

Molecule logP PT PLDA τP τLDA tentry

Circumcoronene 9.09 99% 12% 1 ns 1.7 ns 14 ns
Dodecane 6.1 99% 17% 1 ns 1.7 ns 10 ns

Vancomycin -3.1 0.08% 14% 1 ns 1.7 ns 17 µs

The PLDAs were calculated for these three molecules, each by the average PLDA weighted by

the size distribution. Note that the PLDA is a membrane-dependent parameter as well. Here using

the profile for the POPC:Cholesterol=90:10 membrane, the PLDAs were 12% for circumcoronene,

17% for dodecane, and 14% for vancomycin, resulting in the predicted time of entry as 14 ns for

circumcoronene, 10 ns for dodecane, and 17 µs for vancomycin (shown in Table 3.1). The long

permeation time for vancomycin was due to its high hydrophilicity.

3.2 Application to different membrane compositions

Lipid composition plays an important role in the physical properties of the membrane, including

phase-transition, hydrophobic thickness, surface tension, and permeability [42, 35, 69, 68]. In

Chapter 2, I demonstrated the application of the model to POPC:Cholesteorl membranes with dif-

ferent relative ratios of cholesterol. To include membranes of various compositions in this model,

here I created a database of 1) homogeneous membranes composed of phospholipid and choles-

terol, 2) membranes listed by lipid compositions of organelle membranes of mammalian cells, and

3) membranes of asymmetric leaflets. Results are presented in Figure 3.2 and Figure 3.3.

3.2.1 Membranes as homogeneous mixtures of phospholipids and choles-

terols

Figure 3.2 listed 33 membranes of homogeneous mixtures of phospholipid and cholesterol. These

membranes differ in the molecular structures of the phospholipids that include the variation in the
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Figure 3.2: Predicted time of entry for multiple membranes and particles. Error bars for 95%
confidence interval.

ratio of cholesterol (from 10% to 30%), type of aliphatic chains (DP of 16:0/16:0, PY of 16:0/16:1,

and PO of 16:0/18:1), and type of phosphorous groups (PC, PE, PS, PI, SM, CL).

The values reported from Figure 3.2 were the predicted time of entry for the three particles of

dodecane, circumcoronene, and vancomycin from Section 3.1. The time of permeation in these
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membranes ranges from 10 ns to 100 ns for dodecane, and 10 ns to 1 µs for circumcoronene, and

10 µs to 1 ms for vancomycin. This result matched the data in Section 3.1 showing dodecane as the

most permeable compound among the three structures due to its small size and high hydrophobic-

ity, while vancomycin was the least permeable one due to its hydrophilicity.

A quick comparison among these membranes showed also a good alignment between the cur-

rent understanding of their physical properties and the predictions of the time of entry. For exam-

ple, membranes containing shorter and saturated aliphatic chains, such as the 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and

1,2-dipalmitoyl-sn-glycero-3-phosphatidylserine (DPPS) membranes, which were known to stay

in liquid-ordered phase at room temperature [69, 68], tends to have orders of magnitude of higher

time of entry and lower permeability than those membranes with longer and unsaturated aliphatic

chains which stays in liquid-disordered phase, such as the POPC, 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS)

membranes.

The different ratio of cholesterol also shows an interesting effect on various types of lipids. For

membranes in liquid-disordered phases with shorter permeation time, such as the POPC, POPE

and POPS membranes, the introduction of cholesterols in the membranes increases their perme-

ation time. This observation implies that the lipid packing in the molecular-scale is promoted by

the presence of cholesterol in these membranes, leading to higher rigidity of the membrane. The

opposite effect is found in membranes in the liquid-ordered phase with longer permeation time,

such as the DPPE and DPPS membranes. This result is due to the fact that these lipids are nat-

urally well-packed by their aliphatic chains of the same length and orientation. The presence of

cholesterols, however, modifies the situation by introducing cavities inside the membrane, making

them more permeable. This finding agrees with the current literature [25, 21].
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3.2.2 Membranes of mammalian cellular organelles

Depending on the location of the drug targets, drug molecules often need to come across several

biological barriers in order to reach their targets. These barriers include multiple lipid membranes

such as the plasma membrane, nuclei membrane, endoplasmic reticulum membrane, and mito-

chondrial membrane. These membranes often differ in their lipid compositions, resulting in dif-

ferent physical properties such as rigidity, phase transition, and permeability. To make the drug

biologically available to their target, it is essential to have information about their permeability in

these different membranes systems.

Table 3.2: Lipid composition of membranes1.

Membrane POPC POPE POPI POPS CL PSM Cholesterol

Plasma 25 15 5 6 1 11 38
Lysosome 25 9 3 2 1 13 48
Golgi 47 19 11 6 1 7 9
Mitochondrial 43 33 5 1 14 1 4
Endoplasmic
Reticulum 56 22 9 2 1 3 7

1 values represent the number of lipid on each leaflet.

In this chapter, I analyze 5 membranes systems of rat organelles including the plasma mem-

brane, lysosome, mitochondrial membrane, Golgi apparatus, and endoplasmic reticulum mem-

brane. The lipid profiles were retrieved from the experimental value [39], and the number of lipids

for each membrane was presented in the Table 3.2. Membranes were prepared, sampled and prop-

erties were post-analyzed using the same protocol as for the homogeneous membranes in the 3.2.1.

The results were shown in Figure 3.2. These quantities from the figure showed 3 to 4-fold of dif-

ference in the time of entry from the least to the most permeable among the five systems, where

the lysosome and the plasma membrane were the least permeable membranes among the five sys-

tems, in agreement with the fact that the cellular entry was the most difficult step of permeation.

After entering the cell, reaching the mitochondrial or Golgi apparatus takes less time, while the

endoplasmic reticulum being the easiest to permeate through.
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3.2.3 Membranes of asymmetric leaflets

Figure 3.3: Comparison of time of entry for leaflets in asymmetric membranes versus the reference
symmetric membranes. Error bars for 95% confidence interval.

Beyond membranes of symmetric leaflets, the model was tested also for membranes of asym-

metric leaflets compositions, accounting for variations in the amount of cholesterol (between the

POPC membrane with 10% cholesterols and 30%), type of aliphatic chains (between POPC mem-

brane and DPPC membrane), and the head groups (between POPC membrane and POPE mem-

brane). The properties of each leaflet of these asymmetric membranes were then compared to the

symmetric ones by the metrics of the LDA statistics and lifetime, represented by the permeation

time of model NPs from Section 3.1. The results in Figure 3.3 showed no significant differences

between the leaflets in the asymmetric membranes and the symmetric ones, concluding that the
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effect of the interleaflet interaction was limited in the lipid packing and the permeability of the

leaflet.

An issue about the setup of these asymmetric membranes is the non-equilibrated chemical

potential of cholesterols between leaflets, which may lead to diffusion of cholesterols between

leaflets [99]. Here the example was meant to sample the dynamics that happened at the nanosecond

scale, which was much shorter than the timescale for lipid diffusion.

3.3 Application to various ionic strength in environment

Beyond membranes and particles, the permeation behavior can also influence, and sometimes dom-

inate by some other features of the environmental factors, such as temperature, surface tension, hy-

dration level, and ionic strengths. For example, at environment below the transition temperature,

the lipid membrane becomes rigid due to fine lipid packing, resulting in a significant decrease of

its permeability [68]. Also, additional surface tension applied to a lipid membrane can increase

its packing defect and make the membrane easier to permeate. These conditions are often found

from different biological processes, such as different temperatures between body and skin, and the

surface tension introduced by the curvature of some cellular organelles. Thus, including the effect

of environmental factors in the model is necessary for its applications to these various conditions.

One of the advantages of this general permeation model is its parameters not being built upon

any assumption of the environmental conditions. Thus, the model can be easily adapted to various

environmental conditions by just estimating the shift of these parameters at any specific condition.

Here using an example of environmental ionic strength, I demonstrated the steps of adapting this

model to systems at different ion concentrations. The reason for choosing the ionic strength was

due to its influence on both the membrane and permeant. While the change of ionic strength of

the solution affects the membrane surface dynamics of the low-density areas, it can also change

the permeant partition coefficient. For other environmental conditions often only one side could

be significantly affected.
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3.3.1 Contribution of the NP

Figure 3.4: Illustration of the alchemical simulations for calculating the change of partition co-
efficient. A) the change of free energy for introducing the particle to water environment. B) the
change of free energy for introducing the particle to environment of water with ion.

In the model, the partition coefficient of the particle is used to calculate the PT of the chance of

entering the lipid side once the particle is placed on the water/lipid interface. Methods for acquir-

ing partition coefficient include both experimental measurement and theoretical calculation from

different levels of quantum, classical, coarse-grained, and empirical, in decreasing of difficulty in

calculation [16]. Practically for the application purpose, it is often favored to use empirical models

for fast estimation. For example, the XLogP [15], ALogP [87], MLogP [67] work with organic

compounds and have shown great accuracy in their predictions.

These standard methods for acquiring partition coefficients usually give the values between

pure water and octanol. At different ionic strength, the partition coefficient can be affected either

through the electrostatic interaction between ions and particle or the protonation of the particle,

resulting in the shift of partition coefficient from its standard value in pure water. Given µW as the

chemical potential of a particle in pure water, and µW+I as the chemical potential in water with

ion, and µO as the chemical potential in octanol, the partition coefficient PO/W and PO/(W+I) can
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be represented by these quantities as

PO/W = exp(−µO − µW

kBT
) (3.1)

and

PO/(W+I) = exp(−µO − µW+I

kBT
) (3.2)

Combine Eq. 3.1 and Eq. 3.2, the difference between the two partition coefficients can be

written as

∆logP = log(PO/(W+I))− log(PO/W )

= log(e)
µW+I − µW

kBT
(3.3)

And interestingly, this result is independent of the type of second solvent. The difference of

chemical potential of µW+I − µW can be applied to calculate the partition coefficient shift in any

other type of lipid.

To estimate the difference of chemical potential, here I introduced the alchemical method as

demonstrated in Figure 3.4. The detailed setup of the two alchemical simulations were introduced

in the methodology. In general, here for each particle to be evaluated, two alchemical simulations

were performed, one for inserting the particle into a water box, and another for inserting it into

an ionized water box. During the process of insertion, change of free energy was probed. The

difference between the free energies of ∆GW+I−∆GW was calculated to present the measurement

of the difference of chemical potential, µW+I − µW .

From another perspective of the ∆Gs, the insertion of the particle into each environment in-

cludes the cost of free energies from 1) the volume occupation of the particle, 2) the interaction

between particles and water, and 3) the interaction between ion and particle. The first two sources
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of contributions are shared between the two alchemical simulations, while the third one exists only

in the second simulation (Figure 3.4B), which is the change of the chemical potential due to the

presence of ion.

Figure 3.5: Partition coefficient at different ionic strengths for four benzene-derived molecules.
Error bar is the difference between the forward and backward FEP calculations.

To demonstrate the alchemical simulations, here I selected four particles of benzene derivatives

as examples. The FEP method was used to introduce the particle into water and water+ion systems

respectively. Totally five ion concentrations were tested at 0 M, 0.14 M, 0.34 M, 0.48 M and 0.63 M

of NaCl. The difference of free energy between each non-zero concentration with the pure water

was calculated and presented in Figure 3.5, which showed that the change of partition coefficient

in different ionic strength was readily captured by this alchemical approach.

The shift of ∆logP for these particles also showed an interesting trend. The most charged

particle was the benzene with carboxyl group which also had the highest change in the partition

coefficient, while the less charged ones with hydroxy or methoxy group had relatively less change.

In opposite, benzene with protonated carboxyl group showed a negative change, implying its pref-

erence for high ionic strength.
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3.3.2 Contribution of the lipid membrane

Figure 3.6: Comparison of time of entry in a POPC:Chl=90:10 membrane for different ionic
condition. Error bars for 95% confidence interval.

It is well known that ions participate in the lipid membrane packing by the introduction of

electrostatic interaction at the hydrophilic region, and sometimes by forming ion bridges between

charged groups [18, 101, 8]. These interactions can influence the behavior of the membrane surface

dynamics and thus may affect the permeation behavior of the membrane as well.

To estimate such interactions, here I introduce the POPC:cholesterol=90:10 membranes to dif-

ferent ions at different concentrations. For three types of ions of CaCl2, KCl, NaCl, the Cl-concentrations

were sampled evenly at five level between 0 M and 0.6 M. Membranes at these different ionic con-

ditions were relaxed and processed using the same protocol as in Chapter 2 and the result was

presented in Figure 3.6, using three particles of dodecane, circumcoronene and vancomycin and
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model particles. About 20% of increasing permeation time was found for membranes at higher

ion concentration, indicating that the presence of ions further facilitated the lipid packing at the

hydrophilic region, making the membrane less permeable.

Figure 3.7: Comparison of time of entry in a POPC:Chl=90:10 membrane for benzene derivatives
at different ionic condition. Error bars for 95% confidence interval.

Combining both effects on the particle and membrane, Figure 3.7 shows the increase of time

of entry with high ionic strength for the three benzene derivatives. Though from Figure 3.5, the

increase in logP for the three derivatives at high ion concentration favors faster permeation, the

increase of the stiffness of the lipid packing dominates the overall permeation behavior, resulting

in a reduced rate of the permeation process for all four particles.
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CHAPTER 4

Study of COVID-19 Drug Permeability using LDA

model

The global health crisis of the COVID-19 epidemic has caused millions of infections and hundreds

of thousands of human death. The ongoing study on the drug discovery for treating COVID-19 has

derived many drug candidates targeting various viral bait and human processes. These drugs often

need to permeate through multiple layers of biological membranes to reach their targets located

inside cells, for which an easy and fast model for screening drug permeability and bioavailability

is needed for the drug design.

Here using the LDA model introduced in this thesis, I study the permeation of a wide range

of molecules in multiple biological membranes including organelle membranes of mammalian

cells and the viral membrane of the COVID-19. The time of permeation was estimated for 66

drug candidates for treating COVID-19 based on the list compiled by Gordon et al. [30]. Results

showed 3 orders of magnitude of difference in permeation time among drug candidates at different

membranes, ranging from 10 ns to 10 µs. Further comparison among membranes showed that the

time of permeation in COVID-19 viral membrane was generally 50% longer than the endoplas-

mic reticulum (ER), though the viral lipids were originated from the ER membrane of the host

cell. The increase of stiffness of the viral membrane is likely due to the presence of highly-dense

transmembrane proteins on the viral membrane, since the increase of permeation reduces to 10%

as compared to the ER membrane when the viral membrane is simulated without the protein. The

comparison among membranes also shows the time of permeation in the plasma and lysosome
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membrane being 3 to 4-fold longer than the viral membrane, implying that drugs permeate faster

to virion envelopes than the mammalian cells.

4.1 Building the molecular structure of COVID-19 viral mem-

brane

Figure 4.1: Flow and data source used in this work of COVID-19 drug database.

Based on the current understanding of the COVID-19 from morphological and biochemical

observations, the structure of the COVID-19 virus has a pleiomorphic appearance with an envelope

of lipid membrane of 80 nm to 120 nm in diameter forms its outer shell [34]. The lipid shell has a

rough surface containing highly-dense membrane proteins about 100 nm2 to 200 nm2 per protein

of transmembrane proteins (estimated from a viral envelope diameter of 80 nm to 120 nm [34] and

an approximate number of 800 transmembrane proteins per virion [38]). Inside the shell is the

nucleocapsid phosphoproteins bonded to its RNA genome.

Here I introduced the viral membrane in the LDA model by studying the dynamics of the viral

membrane with transmembrane protein using MD simulations. The viral membrane composition

is derived from the ER membrane of the host cell, while higher ratio of PI/PS was detected by
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van Genderen et al. [95] with statistical significance. Table B.1 showed the number of lipids for

the viral membrane.

Figure 4.2: Structural diagram of the coronaviral membrane bonded with the COVID-19 spike
protein. A) The full-sized spike protein in the coronaviral membrane. Protein colored according
to secondary structure (purple for alpha helix, red for beta-sheet, and gray for random coils). On
phospholipids, carbon are shown in gray, nitrogen in red, oxygen in blue, and phosphate in tan;
cholesterol is shown uniformly in orange. Hydrogen atoms were omitted for clarity. B) The
transmembrane region of the spike protein in the coronaviral membrane. C) The transmembrane
region of the spike protein colored by the residue type. Non-polar residues are colored in white,
while polar residues are in green.

Inside the membrane, I inserted the spike protein of the COVID-19. The spike protein is a type-

I transmembrane protein formed by three identical chains, which for coronavirus is responsible for

the fusion of viral membrane to the host cell plasma membrane, which is the essential step for

the viral infection [6]. It is also the most abundant and noticeable membrane protein on the viral

membrane. The typical appearance of the coronaviruses is found from the 20 nm-long spikes

emanated from the viral envelope which are directly visible from viral EM images [34]. While the

cryo-EM structure of the spike protein of COVID-19 was found by Wrapp et al. [105] and available

from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Databank (PDB id
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”6vsb”), the transmembrane region of the spike protein was not included in this cryo-EM structure

due to the experimental limitation. To complete the transmembrane region of the spike protein, I

took also the predicted structure of the spike protein from C-I-TASSER model [40], and appended

the transmembrane region to the cryo-EM structure. The steps for merging the two structures were

detailed in the methodology.

The structure of the spike protein bonded with the viral membrane was presented in Fig-

ure 4.2A. The main spike of the upper part from Figure 4.2A was link to the transmembrane

region through the heptad-repeat regions of alpha-helices in their structure. The heptad-repeated

region from residue 1146 to 1209 contained repeated polar/non-polar residues. The intertwining

of three chains was held by the hydrophobic contact of the non-polar residues [10].

The transmembrane regions were the residue 1210 to 1235 of each chain. These residues were

all non-polar except the 1215:TYR, 1219:GLY, and 1223:GLY. The transmembrane regions stayed

inside the hydrophobic region of the viral membrane through the hydrophobic contact between

these non-polar residues and the aliphatic chains of the lipid. Opposite to the heptad-repeat region,

the assemble of the transmembrane regions of the three chains was through the charge-charge

interaction among the polar residues.

The C-tails as the lower part under the viral membrane were mostly polar residues and formed

random coils. The interaction between these charged residues with the lipid head groups stabilized

the end of the transmembrane region of the spike protein.

4.2 Predicting the permeability of COVID-19 drug candidates

in lipid membranes

In this section, I introduce the study on the permeability of multiple drug candidates in the viral

membrane as developed in Section 4.1 and the mammalian membranes from Section 3.2.2. The

viral membranes were prepared in two ways, one with the spike protein and another without, in

order to compare the effect of the transmembrane proteins on permeation.
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Figure 4.3: Time of permeation for drug candidates at different organelle membranes, grouped by
viral baits. Error bars present one standard deviation.
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Figure 4.4: (Appended to Figure 4.3) Time of permeation for drug candidates at different organelle
membranes, grouped by viral baits. Error bars present one standard deviation.

44



Figure 4.5: Time of permeation for drug candidates at different organelle membranes, grouped by
related mammalian processes. Error bars present one standard deviation.

A list of 66 drugs compiled by Gordon et al. [30] was introduced to this study. With the

known chemical compositions of a drug, the properties of the drug molecule were acquire from

multiple sources, as 1) the size feature of the particle was acquired from the protocol introduced

from Section 3.1, 2) the experimental partition coefficient was acquired from PubChem, or if not

available, from the prediction of XLogP3 model [15].

The permeation model predicted for each pair of a combination of membrane and drug and the

predicted time of entry was enlisted in Figure 4.3, Figure 4.4 and Figure 4.5, where the reported

the time of entry for 66 drug candidates was grouped by their viral baits, or if viral baits unknown,

by their related human processes.

The result showed that both the variation of the lipid composition and the protein profile in-
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Figure 4.6: Ratios of times of entry for drugs in different membranes. Time of entry in ER mem-
brane was chosen as reference.

creased the stiffness of the COVID-19 viral membrane, compared to the endoplasmic reticulum

where the viral membranes are formed. Still, the stiffness of the viral membrane was 3 folds lower

than the plasma membrane and lysosomes (see Figure 4.6), which implies the possibility of devel-

oping drugs that have virus target (e.g., the nucleocapsid phosphoprotein, the viral RNA genome,

and the viral membrane itself) with low permeability into mammalian cells.

While the target of this work was not to make strong suggestions about the candidates for the

cure of COVID-19, here this work not only provided insight on the ability of several candidates

to reach their target membranes, but also offered a simple way for researchers to estimate the

membrane permeability of new candidates (all data required for the model are available in the

Appendix B).
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CHAPTER 5

Methodology

5.1 MD simulations

I used NAMD [76] version 2.13 with CHARMM Force Field [46] version 36 for lipids, CHARMM

General Force Field [97] for simulating the NPs and TIP3P [57] for water molecules. CGenFF [98]

software was used to assist in the production of the needed topology files. The initial placement of

the membrane’s 120 POPC and 12 cholesterol molecules (60 and 6 on each leaflet, respectively)

and 8280 water molecules was performed with the CHARMM-GUI membrane builder [45].

All MD simulations were performed with a timestep of 2 fs while keeping all the C-H and O-H

bonds rigid via the SHAKE algorithm [80]. Long range electrostatic interactions were modeled

with the particle mesh Ewald method [20] using a 0.1 nm grid spacing, a tolerance of 1E-6 and

cubic interpolation, and cubic periodic boundary conditions were applied. Temperature was kept

constant at 310 K using a Langevin thermostat [55] with a time constant of 1 ps, while pressure was

kept at 101.325 kPa using Langevin piston method [60, 24] with period of 50 fs and 25 fs decay.

To account for the intrinsic anisotropy of the system, the production simulations were performed

in the NPsT ensemble, where the x and y dimensions of the periodic system (coplanar with the

membrane) are allowed to vary independently from the z dimension. Non-bonded short-range

interactions where smoothly switched to 0 between 1 and 1.2 nm with a X-PLOR switch function.

Membranes were equilibrated for a total of 30 ns, following 50 ns to 200 ns ns of production

run. The membranes were assumed to be at equilibrium once the time average of the area per

47



lipid in a NPsT simulations was varying less than 10%, as shown in figures from Section A.1. The

surface density dynamics for each of these membranes was analyzed on the production simulations.

The permeation dynamics were studied by placing the different molecule (2 nm) away from the

membrane’s head groups. To stop the molecules from diffusing too far away from the membrane,

I imposed a harmonic potential that pushes the particles towards the membrane when its distance

from the membrane interface exceeded 2 nm. I ran 16 simulations for the cys-GQD, 12 for curved-

GQD, and 12 for C60, in each case for either 40 ns or until the molecule was embedded in the

hydrophobic region of the membrane for at least 1 ns.

VMD [41] and MDAnalysis [64, 31] were used for data analyses and visualization.

5.2 Calculating average time of entry

To estimate the average time of entry for each NP, I plotted the evolution of their distance from

the membrane center (see Figure A.18, Figure A.19 and Figure A.20) and collected the time of

entry. The green (or yellow for non-entry cases) curve tracks the COM of the NP during the

simulation, and the black curve is the COM of the lipid head-groups (including the glycerol group

and phosphorous group for POPC, and the 3,4,5-carbons and the oxygen for cholesterol). The time

of entry is measured as the time passed from the beginning of the simulation to the intersection of

two curves.

Following the assumption that the entrance is a random event, I fitted the collected times with

an exponential distribution:

P (t)dt = exp(− t
τ

)
dt

τ
(5.1)

where τ denote the exponential parameter that has the same unit as t.

In each one of the N independent simulations, the NP can either enter the lipid tails region

during the simulation (tsim =40 ns) or not. The likelihood L for n simulations to satisfy ti < 40 ns

is given by:

L = [Πn
i=1P (ti)][P (ti ≥ tsim)]N−n (5.2)
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From Eq. 5.1 and 5.2, I can find the τ that maximize the likelihood:

τ =
tsim · (N − n) +

∑n
i=1 ti

n
(5.3)

and the expectation and standard error (from Fisher information) of the time are τ and τ/
√
nN ,

respectively.

5.3 Calculating low-density areas

The steps used to define the LDAs and measure their size/shape are presented in the text, but minor

additional details are described below.

1. The center for each lipid (Figure 2.7A) is calculated using the center of masses of the heavy

atoms near the water/lipid interface (glycerol group for POPC, and top 4 heavy atoms for

cholesterol).

2. Based on the center of each lipid, the Voronoi map (Figure 2.7B) is created to calculate the

average area for each type of lipid (POPC: 0.603 nm2, cholesterol: 0.452 nm2).

3. The continuous density map (Figure 2.7C) is created by applying a Gaussian kernel centered

on each lipid COM. The height of each kernel is equal to the number of heavy atoms selected

for the mapping, while the standard deviation of each kernel depends on the lipid type and

is related to its average area by

π(1.5σ)2 = average area (5.4)

Final density of atoms per area is compared with the density of water of atoms per volume,

using the thickness of one water layer of 0.28 nm.

4. The local minima on the continuous density map define the centers of each LDA. A threshold

of 33 nm3 (average water density, considering only the heavy atoms) was used to defines the
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border of the LDAs (Figure 2.7D).

5. When neighboring LDAs were connected, I used a watershed algorithm to split them (Fig-

ure 2.7E).

6. To sample the size, I started from the LDA’s center and for each sampled direction symmet-

rically extended outwards until one of the two ends intersected the LDA’s border, and used

that as the maximum length in that direction. For each LDA, I sampled the lengths at 18

unique angles (equally spaced over 180° (Figure 2.7F). All the pairs formed by perpendic-

ular directions were considered as a width-and-height pair, and were used to build the final

width-height distribution of LDAs (Figure 2.8).

5.4 Experimental setup of GQD leaking in lipid vesicle

GQD encapsulation GQDs (2 nm to 8 nm in diameter) were encapsulated in lipid bilayer vesi-

cles using a double emulsion generating microfluidic device as demonstrated previously [58].

Briefly, the water/oil/water double emulsions were made by flow focusing with the inner solution

containing the GQDs. The outer solution consisted of 20 mM K-HEPES (pH 7.4), 80 mM KCl,

10 mM MgCl2, 10% PVA (M.W. – 13000 : 23000), 2% glycerol, 1% Poloxamer-188 and 250 mM

glucose. The GQD sample was diluted in a buffer with final concentrations of 20 mM K-HEPES

(pH 7.4), 80 mM KCl, 1 mM MgCl2, 2% PVA, 2% glycerol, 1% Poloxamer-188 and 180 mM su-

crose to match the osmolarities of the solutions on both sides of the vesicle membrane. No sig-

nificant difference in fluorescence intensity was observed for GQD samples diluted in water when

compared to those diluted in the above-mentioned buffer. Lipids (POPC and 18:1 Liss Rhod PE)

and cholesterol were purchased from Avanti Polar Lipids Inc. (Alabaster, AL). Liss Rhod PE

was added at 0.01% by moles to impart fluorescence to the vesicle membrane for visualization.

The formed double emulsion templated vesicles were collected in an imaging chamber made from

sticking a glass coverslip on two double-sided tapes fixed onto a glass slide at a certain spacing.

The demixing of middle organic phase took place within few minutes of their formation. A 64:36
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percentage solution by volume of hexane and chloroform was used for dissolving the lipids as the

middle phase.

Imaging An Olympus IX-81 spinning disk confocal microscope was used to image the vesicles

encapsulated with GQD samples. Fluorescence images using a GFP filter (ex-486 nm/em-515 nm)

were captured at 500 ms exposure with a 60X oil objective (PlanApo, NA:1.42) at time interval of

five minutes for 2 h. For vesicle visualization, a TRITC filter (ex-561 nm/em-610 nm) was used at

an exposure of 100 ms.

Image analysis All image analysis was carried out using ImageJ. Average fluorescence inten-

sities were measured by drawing rectangular boxes within the interior of the vesicles at different

places and taking their mean. Background intensity was calculated using the same approach but

with the boxes drawn outside the vesicles in their immediate surroundings. Background subtracted

intensities were then normalized with respect to the maximum intensity at time 0. A two-tailed stu-

dent t-test was carried out with a significance level of 0.05 to compare the background subtracted

intensities for the different lipid compositions between t = 0 and t =1 h.

5.5 Calculating free-energy pertubation (FEP)

The FEP simulations were carried out using NAMD [76] version 2.13 with CHARMM Gen-

eral Force Field [97] for simulating the benzene derivatives and TIP3P [57] for water molecules.

CGenFF [98] software was used to assist in the production of the needed topology files.

Benzene derivatives were initially put at the center of the simulation box and explicit water

molecules were then added to the simulation box to keep at least 4 nm margin between benzene

molecules and its images from the periodic boundary condition. Ions were inserted randomly to the

system with a minimal distances of 0.5 nm between ions. Water molecules within 0.5 nm radius

of each ion are removed to avoid collapse. The dual topology was prepared with the initial state

(λ = 0) of pure solvent and the final state (λ = 1) of solvent with particle.
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Simulations were performed with a timestep of 2 fs while keeping all the C-H and O-H bonds

rigid via the SHAKE algorithm [80]. Long range electrostatic interactions were modeled with the

particle mesh Ewald method [20] using a 0.1 nm grid spacing, a tolerance of 1E-6 and cubic in-

terpolation, and cubic periodic boundary conditions were applied. Temperature was kept constant

at 300 K using a Langevin thermostat [55] with a time constant of 1 ps, while pressure was kept

at 101.325 kPa using Langevin piston method [60, 24] with period of 50 fs and 25 fs decay, while

ratios between lengths of boxes along the x, y and z dimensions were kept constant. Non-bonded

short-range interactions where smoothly switched to 0 between 1 and 1.2 nm with a X-PLOR

switch function. The soft-core potential for van der Waals interactions involving vanishing atoms

were progressively and linearly decoupled during λ = 0 and λ = 1, where the radius shifting

coefficient was set to 5. For electrostatic interaction, the decouple started at λ = 0.5. Trajectory

and free energies were recorded each 2 ps during the simulations.

The systems were initially minimized for 1000 steps and then equilibrated at its initial config-

uration (λ = 0) for 1 ns. The forward transformation introduced 1000 steps between the λ = 0

and λ = 1 and for each step, 4 ps of relaxation was performed, following 16 ps of sampling. The

backward transformation started immediately after the forward transformation and used the same

setup of 1000 steps and each step of 4 ps of relaxation and 16 ps of sampling.

5.6 Properties of drug for COVID-19

CHARMM General Force Field [97] was used for simulating the drugs molecules. CGenFF [98]

software was used to assist in the production of the needed topology files. Each drug molecule was

presented at the center of an cubic box of 6 nm in each dimension, containing explicit solvent of

water and 0.15 M NaCl.

MD setup for drug simulation was the same as the membrane simulations, except the periodic

box was isotropic in each dimension. Each system was minimized for 1000 steps, following 0.5 ns

of relaxation and 0.5 ns of production. Trajectories were saved each 20 ps. For each frame of
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the trajectory from production run, sizes of the drug molecule was measured using the protocol

provided by the LDA model [51] and used to calculate the PLDA for this conformation. The

average PLDA over all the conformation that was sampled from the production run became the

final PLDA for the drug molecule.

The partition coefficients of the drugs molecules in octanol and water were taken from Pub-

Chem website if experimental values were available, otherwise the prediction of XLogP3 model [15].

5.7 Building the molecular structures of COVID-19 viral mem-

brane

The spike protein structure in MD was developed from the cryo-EM structure [105] where the

main part of residue 27 to 1146 for each of the three chains, and the prediction from C-I-TASSER

model [40] for the lower chunk of residue 1147 to 1273. The secondary structure of the alpha

helices of the lower chunk was kept, while the random coils were twisted to align the alpha helices

to vertical orientation. The residue 1210 to 1235 as the transmembrane region were embedded

inside the viral membrane.
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CHAPTER 6

Conclusion

In this work, I presented a kinetic model for the permeation of NPs in lipid membranes that captures

the atomistic details of the process while retaining the simplicity typical of macroscopic models.

The model was built on the observation, based on all-atom simulations, that the permeation process

is controlled by the formation of LDAs on the membrane surface. The surface dynamics of the

membrane is further discussed from an MD perspective, and it was found that the dynamics of

these LDAs is generally independent of the presence of NPs. Based on these findings, I factorized

the process of permeation into the independent effects of membrane thermal fluctuation and the

characteristics of the particles (size, shape, and solubility in the membrane). A combination of

these two factors provides a physical model to predict the time elapsed between the NPs in contact

with the membrane and the NP fully emerged in the lipid tails. Under the assumption of local

equilibrium, this time also serves as the time constant for the model of permeation with barrier

using the first-order dynamic.

The model was tested on carbon nanoparticles of different structures and for the same nanopar-

ticle on different lipid vesicles. Predictions from the model matched quantitatively experimental

results and simulations, indicating the success of the underlying physical model.

6.1 Impact

The LDA model provides a new perspective into the kinetics of the membrane permeation process

from the surface dynamics fluctuation forming low-density areas. Compared with previous phys-
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ical models based on the solubility-diffusivity analysis and Fick’s first law of diffusion, the LDA

model provides insight on the mechanisms of the barrier effect of the membrane surface due to the

presence of dense region of lipid head groups, and for the first time quantitatively estimates the

time of permeation of particles through this region. The time of permeation estimated from the

model was also compared with experimental result for GQD nanoparticles in various membranes

of POPC and cholesterol of different ratio, and showed great agreement within the standard de-

viation, indicating the success of the LDA model in capturing the physics behind the membrane

permeation process. The physics provide by the LDA model helps the knowledge gap between the

current diffusion models and the biomembrane permeation process.

One of the advantages of the LDA model is its efficiency. Indeed, the LDA model factorizes

the crossing effects of particle and membrane so that the properties of particles and membranes can

be estimated independently. The four parameters also allow for the inclusion of data from multiple

sources, such as the experimental source of partition coefficients, particle shape measures, and

computational sources of the membrane surface dynamics. Once the surface dynamics of a given

membrane is collected, the statistics of the membrane low-density areas will be readily applied to

each particle using very less computational time, making the model a quick tool for large-scale

drug screening at low cost. Although using much less computational time, the predictions from the

LDA model are comparable to full-atomistic simulations and agree very well with experiments.

These characteristics make the LDA model a significant improvement over the current physical

models, such as the solubility-diffusion model about accuracy, and a competitive candidate to the

empirical models such as ”rule of five”, QSAR and QSPR about efficiency.

The predicting capabilities of the LDA model have been applied to various biological mem-

branes. Examples provided in the thesis include different cellular organelles such as plasma mem-

brane, lysosome, mitochondrial, Golgi apparatus, and endoplasmic reticulum, as well as viral en-

velopes. These characteristics of the model make it specifically relevant to the process of drug

design from the screening of drugs with permeation problem during the early stage of drug discov-

ery, to the design designing NPs to target specific sites, and to the prediction of the accumulation of
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the drug candidates in specific organs or intracellular compartments, which may aid the prediction

of the side effects.

6.2 Future work

Results of this work also suggest directions for further research in this field. The parameters in

the model may be further validated through different experimental and theoretical approaches. For

example, a membrane with increased tension can induce more low density areas on the membrane

surface and may be used to assess the increase in membrane permeability. Experiments such as

fluorescent labeling and NMR can be used to probe the surface atom density distributions and lipid

mobility [27] (although current labeling techniques can introduce artifacts) while the theoretical

models can be employed to describe the thermodynamics underlying the formation of low density

areas [107].

Given the complexity of the process that the model tries to capture, there are few aspects that

are left to future improvements. Some are related to the model itself, as our approximation of the

particle as a rectangular prism, can be substituted with a more accurate surface integral to better

utilize the information provided by the NPs’ structures. Furthermore, the model can be improved

by refining the interactions between the membrane and NPs as they may influence the orientation

of NPs as well as the formation and kinetics of the formation of the LDA.

Other improvements in the application of the model can be made by extending it beyond the

single permeation events, to include for example statistical variation of the NPs. A straightforward

improvement would be to consider a distribution of sizes for the permeant, for example, due to

the formation of clusters and aggregates [49, 79, 23]. The model would not need to be fundamen-

tally changed, as aggregates can be treated as larger NPs, but care should be taken to account for

different phenomena, like induced-endocytosis, particle aggregates’ fragmentation and long-term

changes of the membrane. Of note, long term effects of the permeation on the membrane, for

example, a change in the mechanical and kinetic properties as well as the formation of long-living
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pores [13] [93] have not been included in this discussion. These effects have the potential to dras-

tically affect the permeation process, but their description is dependent on a much larger number

of factors that can be the target of future studies.
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APPENDIX A

MD Simulations of Membranes and NPs

A.1 Relaxation of membranes

Figure A.1: The area per lipid over time for the POPC membranes presented in this work. Light
lines represent the area per lipids over time for each frame. Dark lines represent the running
average of the light line over a 10 ns window.
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Figure A.2: The area per lipid over time for the DPPC membranes.

Figure A.3: The area per lipid over time for the DPPE membranes.
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Figure A.4: The area per lipid over time for the DPPS membranes.

Figure A.5: The area per lipid over time for the PMCL2 membranes.
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Figure A.6: The area per lipid over time for the POPE membranes.

Figure A.7: The area per lipid over time for the POPI membranes.
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Figure A.8: The area per lipid over time for the POPS membranes.

Figure A.9: The area per lipid over time for the palmitoylsphingomyelin (PSM) membranes.
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Figure A.10: The area per lipid over time for the PVCL2 membranes.

Figure A.11: The area per lipid over time for the PYPI membranes.
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Figure A.12: The area per lipid over time for the mammalian membranes. Membranes were built
upon the ratio provided by Horvath et al. [39].

Figure A.13: The area per lipid over time for the coronaviral membranes and endoplasmic reticu-
lum. Membranes were built upon the ratio provided by van Genderen et al. [95].
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Figure A.14: The area per lipid over time for the asymmetric membranes.

Figure A.15: The area per lipid over time for the POPC:Chl=90:10 membrane at different Na-
Clconcentration.

65



Figure A.16: The area per lipid over time for the POPC:Chl=90:10 membrane at different KClcon-
centration.

Figure A.17: The area per lipid over time for the POPC:Chl=90:10 membrane at different
CaCl2concentration.
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A.2 NPs in Membranes

Figure A.18: 12 simulations of C60 with POPC/cholesterol membrane. Green (that entered) and
orange (that did not enter) trajectories showed where the C60s were regarding the membrane along
the z-axis. The black line showed the surface of the membrane for comparison.

Figure A.19: 12 simulations of curved-GQD with POPC/cholesterol membrane.
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Figure A.20: 16 simulations of cys-GQD with POPC/cholesterol membrane.
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APPENDIX B

Permeation Database for COVID-19 Drugs

Table B.1: Lipid composition of membranes1,2.

Membrane POPC POPE POPI POPS PSM Cholesterol

Endoplasmic
Reticulum 72 17 6 4 2 7

Coronavirus
wo spike protein 65 10 9 5 4 7

Coronavirus
w spike protein 89 13 13 7 5 9

1 values represent the number of lipid on each leaflet.
2 based on the ratio provided by van Genderen et al. [95].
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